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Abstract
Forecasts of eruption are uncertain. The uncertainty is amplified when volcanoes reawaken after several generations in repose, 
because direct evidence of previous behaviour is rarely available. It fosters scepticism about warnings of volcanic activity 
and may compromise the success of emergency procedures. The quality of forecasts has improved over the past 50 years, 
owing mainly to a growing sophistication in statistical analyses of unrest. Physics-based analyses have yet to achieve the same 
level of maturity. Their application has been delayed by a view that volcanoes are too complex to share patterns of behaviour 
that can be described in a deterministic manner. This view is being increasingly challenged and an emerging line of inquiry 
is to understand how forecasts can be further improved by integrating statistical approaches with new constraints on pos-
sible outcomes from physics-based criteria. The introduction of deterministic reasoning yields rational explanations of why 
forecasts are not perfect and, as a result, offers new opportunities for increasing public confidence in warnings of eruption.

Keywords Forecast · Volcanic eruptions · Probabilistic · Deterministic

Introduction

How readily would you take a chance on forecasting the 
outcome of an uncontrolled experiment using incomplete 
data on a process you cannot see? When volcanologists are 
asked to forecast an eruption, this is precisely the challenge 
they face: to anticipate from indirect signals of unrest the 
possibility of molten rock forcing its way to the surface 
from an unknown set of starting conditions in a location 
that is hidden at least several kilometres underground. In 
spite of pioneering work carried out in the first decades 
of the twentieth century (Omori 1920; Minakami 1960; 

Tokarev 1971), the odds of success 50 years ago were far 
from encouraging and forecasts remained little better than 
guesswork (Tazieff and Sabroux 1983; Tilling 1989). Today, 
forecasts are merely uncertain (Marzocchi and Bebbington 
2012; Bell et al. 2015; Sobradelo and Martì 2015; Kilburn 
2018). The change seems a minor step forward. In reality, it 
is a giant leap. Past guesswork was born from ignorance of 
how volcanoes behave beneath the surface; modern uncer-
tainty is based on understanding why that behaviour can be 
unexpected.

The distinction reflects fundamental progress in our 
knowledge of the physical processes that operate within 
magmatic systems—an advance reflected by changes in 
the topics that have been covered in English-language text-
books and edited volumes (e.g. compare Rittmann (1962), 
Macdonald (1972) and Williams and McBirney (1979) with 
Breitkreuz and Rocchi (2018), Edmonds et al. (2019) and 
Papale (2020)). One practical consequence has been the 
emergence of new strategies for forecasting eruptions from 
preceding signs of unrest. In this context, we use the term 
“forecast” to mean the likelihood of an eruption within a 
specified time interval in the near future (commonly days, 
but possibly weeks) based on interpretations of ongoing 
unrest. Swanson et al. (1985a, b) proposed a similar defini-
tion for a “prediction”, reserving a “forecast” for longer term 
assessments that extrapolated past frequencies of eruption; 

Editorial responsibility: J.H. Fink

This paper constitutes part of a topical collection: Looking 
Backwards and Forwards in Volcanology: A Collection of 
Perspectives on the Trajectory of a Science

 * Christopher R. J. Kilburn 
 c.kilburn@ucl.ac.uk

1 UCL Hazard Centre, Department of Earth Sciences, UCL, 
Gower St, London WC1E 6BT, UK

2 INGV-Osservatorio Vesuviano, Via Diocleziano 328, 
80124 Napoli, Italy

3 School of Geosciences, University of Edinburgh, The King’s 
Buildings, James Hutton Road, Edinburgh EH9 3FE, UK

/ Published online: 12 February 2022

Bulletin of Volcanology (2022) 84: 25

http://orcid.org/0000-0003-4961-2123
http://orcid.org/0000-0002-5633-6289
http://crossmark.crossref.org/dialog/?doi=10.1007/s00445-022-01532-0&domain=pdf


1 3

today, however, “forecast” is often applied to both short- and 
long-term assessments (GVP, 2021)). Established forecast-
ing methods are rooted in sophisticated statistical analyses. 
New understanding has since advanced to the point that, 
when combined with established methods, physics-based 
constraints have the potential to make forecasts more reli-
able. The potential is illustrated here for the case of vol-
canic unrest after long repose; however, analogous applica-
tions can be anticipated for forecasts at all types of volcano, 
regardless of how often they erupt.

When an emergency begins, the questions normally asked 
first are whether and when an eruption will occur. They are 
especially pressing at volcanoes that have been quiet for 
several generations, because little or no information will 
normally be available for comparing unrest with previous 
episodes. Evaluating the potential for eruption then relies on 
analogy with emergencies at apparently similar volcanoes 
elsewhere (Marzocchi and Bebbington 2012; Sobradelo and 
Martì 2015) or on generic models of unrest that have yet to 
be tested against more than a handful of examples (Voight 
1988; Yokoyama 1988; McNutt 1996; De la Cruz-Reyna and 
Reyes-Davila 2001; Kilburn 2018). Long repose also favours 
a volcano remaining unmonitored (Tilling 1995; Sparks 
et al. 2012), so that forecasts must additionally be based on 
data from emergency monitoring networks installed after 
unrest has begun. Classic examples include the reawakening 
of Mount St Helens, USA, in 1980 (Lipman and Mullineaux 
1981; Newhall and Punongbayan 1996a); of Mt Pinatubo, 
Philippines, in 1991 (Newhall and Punongbayan 1996a,b); 
and of Chaitén Volcano, Chile, in 2008 (Carn et al., 2009; 
Lara et al. 2013), after respective repose intervals of 123, 
more than 500 and possibly 350 years. A first requirement 
for advancing emergency forecasts, therefore, is that they do 
not depend on knowing the previous states of the volcano.

The rise of probabilistic reasoning

Local seismicity and ground movement have been the staple 
precursors to eruptions since the 1970s (Tazieff and Sabroux 
1983; McGuire et al. 1995; Scarpa and Tilling 1996; McNutt 
2005; Dzurisin 2007; Chouet and Matiza 2013; Gottsmann 
et al. 2019; Papale 2020). Early forecasts were qualitative 
and strongly influenced by the personal experience of the 
forecaster (Tazieff 1977, 1979). Subsequent compilations 
of emergency data have allowed patterns to be recognised 
in how individual signals vary with time (Swanson et al. 
1983, 1985a, b; Cornelius and Scott 1993; Cornelius and 
Voight 1995) and how contemporaneous time series vary 
with each other (Sobradelo and Martì 2015). These have 
been integrated into probabilistic tools, such as event 
trees, for estimating the likelihood of an eruption (Newhall 
and Hoblitt 2002; Marzocchi et al. 2008; Marzocchi and 

Bebbington 2012; Sobradelo et al. 2014), with uncertainties 
quantified through methods such as expert elicitation to 
account for human bias (Aspinall 2010; Donovan et al. 
2014; Bebbington et al. 2018); the approach is similar to that 
being developed for probabilistic volcanic hazard assessment 
(PVHA; Tierz 2020).

By analysing combinations of precursory trends, proba-
bilistic reasoning and statistics have enhanced the quality of 
forecasts compared with methods based on individual sig-
nals. They nevertheless remain empirical, because specific 
correlations found at one volcano cannot automatically be 
applied to another (Bell et al. 2011, 2013; Boué et al. 2016; 
Vasseur et al. 2015). This applies especially to recognis-
ing thresholds in the value of a precursor before an erup-
tion is believed to be imminent. For example, how much 
ground movement can be expected? Or how many local 
earthquakes? Does the critical value for a signal depend on 
the design of the monitoring network and the sensitivity of 
its instruments? Are the critical values for different precur-
sors inter-related? The fact is that the absolute numbers vary 
from case to case, so that each set of critical thresholds can 
only be used at the volcano from which they were obtained. 
A second requirement for advancing emergency forecasts, 
therefore, is that they do not depend on the particular vol-
cano that happens to be restless.

The role of deterministic reasoning

Volcanic behaviour is frequently presented as “complex” 
and “highly non-linear” (Sparks 2003; Sobradelo and Martì 
2015; Rouwet et al. 2019; Palmer 2020). Such descriptions 
are most relevant when anticipating the style and scale of an 
eruption, or how that style may fluctuate with time (Sparks 
2003). They may also be convenient for managing expec-
tations about the reliability of eruption forecasts. Caution, 
though, is necessary, because the descriptions run the risk 
of cementing a mindset that volcanoes are too complex to 
generate pre-eruptive behaviour that is systematic, general 
and open to deterministic study. Indeed, even complex and 
non-linear processes are capable of yielding forecastable 
patterns of behaviour (Main 1996).

The success of statistical approaches has distracted 
attention from exploring physical limits on the behaviour 
of pre-eruptive phenomena and how we can create a new 
generation of high-quality forecasts by combining empiri-
cal data with new quantitative physical models. After long 
quiescence, for example, eruptions are commonly preceded 
by a year or less of elevated unrest (White and McCausland 
2016; Stix 2018); the cumulative seismic moment of vol-
cano-tectonic (VT) earthquakes increases with the volume 
of the pressurizing source (White and McCausland 2016), 
while the total amount of seismic energy released is on the 
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order of  1010–1011 J (Yokoyama 1988); and rates of local VT 
seismicity and ground deformation appear to increase hyper-
bolically with time several days before an eruption (Voight 
1988). Such repeatable behaviour suggests the action of a 
common set of controls on precursory signals, regardless of 
a volcano’s location. To move beyond statistical analyses, 
therefore, the set of controls needs to be quantified in terms 
of known physical processes.

The procedure is well illustrated at volcanoes reawaken-
ing after long repose, when magma usually has to break open 
a new pathway through the crust before it can erupt. This 
constraint allows ground deformation and VT seismicity to 
be used as quantitative measures of changing stress in the 
crust and, hence, to conditions when the stress exceeds the 
crust’s strength and allows a new fracture to open. The crust 
is stretched by an increase in pressure at depth, normally 
attributed to some combination of the pressurization of an 
existing magma chamber, the growth of a new magma intru-
sion or the disturbed flow of hot fluids in a hydrothermal 
system (Gudmundsson 2020; Acocella 2021). Deformation 
is dominated at first by elastic (and theoretically aseismic) 
stretching of unbroken rock but later by brittle fracture and 
slip along faults (Kilburn 2018). The change occurs when 
unbroken rock cannot deform any further without cracking, 
so marking the approach to conditions under which a major 
fracture can form.

Elastic deformation and fault slip both contribute to 
ground movement, whereas fault slip determines VT seis-
micity alone. The growing importance of brittle deformation 
can thus be followed by how the amount of VT seismicity 
increases with ground movement and time. A common strat-
egy is to relate the potential for eruption to a critical rate of 
VT seismicity (Tilling 2008). The chosen threshold depends 
on the sensitivity of the seismic monitoring system and data 
processing techniques, the existing distribution of faults in 
the crust and the size and shape of the stress field that is cre-
ated above the pressurizing source (which, in turn, depends 
on the size and shape of that source, as well as the shape 
of the volcanic edifice). As a result, it is unlikely that any 
two volcanoes will share the same set of absolute thresholds 
before an eruption. An alternative is to express thresholds 
in terms of relative change—for example, expecting rup-
ture when the rate exceeds its initial value by more than a 
critical amount. However, the same critical amount can be 
applied only if measurements begin when the volcanoes are 
in the same starting condition, which is another unlikely 
coincidence, especially when systematic observations are 
first made at unspecified times after the start of unrest. As a 
result, particular values of critical threshold cannot simply 
be transferred from one volcano to another.

A more reliable measure emerges from the self-accelerat-
ing nature of fracture growth. The rate of fracturing depends 
on how much the rate at which the stress being supplied 

exceeds the rate at which it can be absorbed elastically. It 
does not depend on the amount of crust being deformed. 
As the crust approaches conditions for rupture, the rate of 
VT seismicity tends to increase hyperbolically with time 
(equivalent to a linear decrease in inverse rate with time 
(Voight 1988)). The onset of rupture is thus preceded not 
by a particular value of the rate, but by a particular style 
with which the rate increases (Voight 1988; Cornelius and 
Voight 1995). Forecasts can be based on extrapolating the 
shape of the increasing trend to effectively infinite values, 
at which stage fracture growth is uncontrolled and creates a 
new rupture. They no longer depend on knowing the rates 
before (so-called baseline data) or at the start of unrest and 
so can realistically be attempted even when data are first 
collected after an emergency has begun. Moreover, the same 
limiting rate applies regardless of the volcano in question, so 
that the method can be transferred from one case to the next.

The VT trends before rupture are a natural result of elas-
tic-brittle behaviour and can be expressed in terms of nor-
malised stress and strength, namely, the ratio of stress lost 
by fracturing to stress stored in the crust, which describes 
the amount of fracturing, and the ratio of the crust’s tensile 
strength to modulus of elasticity, which describes how much 
deformation can occur before rupture (Kilburn 2018). The 
control of ratios, rather than the sizes of individual param-
eters, reflects the scale-independent properties of fractur-
ing and, as anticipated by Voight (1989), the patterns of 
precursory behaviour in the field can be investigated quan-
titatively with rock-physics experiments in the laboratory. 
Experiments performed under known conditions can then 
be used not only to reproduce observed precursory trends, 
but also to reveal constraints on their underlying controls. 
For example, the forms of accelerating VT event rate com-
monly observed are found to emerge when the rate of stress 
supply is constant (Hao et al 2016, 2017; Kilburn 2018). 
A constant supply rate is not obligatory, but is controlled 
by dynamical conditions in the pressure source. Natural 
dynamical systems establish steady rates to minimise energy 
loss and, beneath volcanoes, may indicate that pressurization 
in the crust is governed by steady rates of magma supply 
from depth. Deterministic reasoning thus bridges the gap 
between identifying general methods for interpreting pre-
cursory trends and explaining why volcanoes operate under 
restricted conditions in Nature.

An integrated framework

In addition to the advances in statistical analyses (Aspinall 
et al. 2003; Marzocchi and Bebbington 2012; Sobradelo 
et al. 2014; Sobradelo and Martì 2015; Sandri et al. 2019), 
progress in forecasting eruptions is being driven by a greater 
confidence that physics-based methods can enhance a purely 
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probabilistic approach (De la Cruz-Reyna et al. 2008; Hao 
et al. 2016, 2017; NASEM 2017; Kilburn 2018; Rouwet 
et al. 2019). At long-quiescent volcanoes, the new confi-
dence follows a shift in focus from unravelling the complex 
details of magmatic processes to the comparative simplicity 
of evaluating their combined influence on stress in the crust 
(Kilburn 2018; Roman and Cashman 2018).

Strictly, however, the new approach forecasts not the time 
of eruption, but the time when the crust breaks. Whether an 
eruption will follow depends on the ability of magma to uti-
lise the new pathway and to continue its propagation to the 
surface. Potential outcomes range from an eruption almost 
immediately (Kilburn and Voight 1998; Kilburn 2003) 
or after several weeks (Syahbana et al. 2019) to no erup-
tion at all, when magma stalls along the pathway (Hincks 
et al. 2014) or is unable to enter the pathway, because it has 
formed too far from the magma body (Kilburn 2018; Roman 
and Cashman 2018). Hence, although rupturing is necessary 
for an eruption after long repose, it is not a guarantee that an 
eruption will occur.

Distinguishing the outcomes may seem a challenge that 
can only be addressed with statistics based on the relative 
frequency with which each has occurred. Improving fore-
casts of rupture may have thus simply delayed the stage at 
which probabilistic analyses are deployed. The problem to 
be solved, however, has changed from estimating the prob-
ability of eruption directly from multivariate trends among 
precursory signals to estimating the probability of eruption 
from precursory trends given that rupture has occurred. 
The added condition simplifies analyses through Bayesian 
methods (Newhall and Hoblitt 2002; Marzocchi et al. 2008; 
Sobradelo et al. 2013). In other words, the deterministic rea-
soning applied to forecasting rupture also serves to constrain 
more tightly the subsequent probabilistic forecasts of erup-
tion. Evaluating deterministic limits on different outcomes 
has thus the potential to constrain probabilistic forecasts still 
further.

The outcomes are controlled by the structure and geom-
etry of a volcanic feeding system (for both magma bodies 
and the crust) and whether and how the pressures driving 
magma ascent can overcome the strength of the crust and 
a magma’s resistance to motion. Even when the conditions 
are unknown in detail, physical arguments and dimensional 
analysis can define limits to the rates and timescales of con-
trolling processes and connect these with the corresponding 
characteristics of observable precursors. Further constraints 
may emerge from analytical and numerical models of spe-
cific magmatic processes, such as mechanisms for creating 
and pressurizing magma bodies (Jellinek and DePaolo 2003; 
Cashman et al. 2017; Huber et al. 2019) and for controlling 
rates of magma ascent (Rivalta et al. 2015; La Spina et al. 
2019).

The physically defined limits reveal conditions that apply 
to volcanoes in general, although behaviour within the lim-
its may vary between volcanoes. Consider, for example, the 
simple case when a pressurizing magma body breaks the 
crust and is connected to the new rupture. An eruption fol-
lows when the time to reach the surface is shorter than the 
time for magma to solidify. This is favoured by a shallower 
pressure source and a faster rate of ascent, which, for a given 
magma viscosity and vesicularity, is promoted by faster rates 
of pressure increase in the magma body. Hence, slower rates 
of ground movement are expected to favour longer delays 
between rupture and eruption and, when they are extremely 
slow, even to indicate that an eruption might not occur at 
all. The result may be a new and general application for 
relating rates of ground movement to the timing of an erup-
tion, but with the particular form of quantitative connection 
differing for each volcano and remaining in the province of 
probabilistic analysis. Nevertheless, the probabilistic assess-
ment will be more precisely defined as the conditional prob-
ability of eruption given that two deterministic conditions 
have now been satisfied, namely, that rupture has occurred 
and that the ground is continuing to move at a particular 
rate. Further refinements may then be possible by relating 
the observed movements to outputs from numerical models 
of magma pressurization and ascent (Jellinek and DePaolo 
2003; Rivalta et al. 2015; Huber et al. 2019; La Spina et al. 
2019). This example is not exhaustive, but illustrates how 
physical reasoning and modelling can help to anticipate sce-
narios that may be observed in the field.

A new framework that integrates deterministic and proba-
bilistic reasoning is an exciting prospect for improving the 
quality of eruption forecasts. The idea is similar to initiatives 
in computer science that have been successful for evaluating 
the reliability of deterministic numerical models (DAKOTA 
2021). It has the scientific advantage of clarifying which ele-
ments of precursory behaviour can quantitatively be trans-
ferred among similar volcanoes. Thus, deterministic reason-
ing can take advantage of the scale-independent features of 
fracturing to investigate in the laboratory how precursory 
behaviour changes under a range of stress histories broader 
than those covered by available field data; to extrapolate 
trends to different timescales in the field—for instance, con-
necting patterns typically seen at intervals of a year or less 
to those evolving over years to decades (De la Cruz-Reyna 
et al. 2008; Parks et al. 2012; Robertson and Kilburn 2016; 
Kilburn et al. 2017; Stix 2018; Bell et al. 2021); and to use 
rates and durations of signals to seek distinctions between 
pre-eruptive and intrusive unrest (Sturkell et al. 2003; White 
and McCausland 2019), between magmatic and hydrother-
mal pressure sources (Pritchard et al. 2018; Sandri et al. 
2019) and even between styles of eruption (Cassidy et al. 
2018).
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An integrated framework brings also a social advantage. 
Progress in forecasting is not always obvious to non-special-
ists, who may see uncertainty in forecasts as a sign of pro-
fessional inadequacy. The credibility of specialists is called 
into question and rumours may emerge that a forecast is 
driven by political or economic motives and not by scientific 
study (Tazieff 1977; McBirney 2004; Donovan et al. 2014; 
Solana et al. 2018; Longo 2019). Even without conspiracy 
theories, the excuse that volcanoes are complex is hardly 
reassuring. A deterministic, physics-based component pro-
vides a rational structure for explaining why forecasts are not 
perfect. Explanations favour understanding; understanding 
favours engagement; and engagement favours a successful 
outcome during an emergency. The framework is thus valu-
able not only for improving the quality of forecasts, but also 
for reinforcing the trust of non-specialists in warnings of 
eruption.

Looking forward

Four combinations of expectation and outcome describe the 
success or failure of a forecast. Success follows when (1) an 
eruption is forecast and does occur or (2) an eruption is not 
expected and doesn’t occur, whereas failure results when (3) 
an eruption is forecast but does not occur or (4) an eruption 
is not expected and does occur. An oft-cited dilemma for 
decision-makers is to choose between the consequences of 
incorrect forecasts, especially when evaluating the need to 
evacuate an area under threat (Marzocchi and Woo 2007). 
Less regard is paid to the optimistic view of a successful 
forecast. Although prudent operationally, a focus on being 
wrong is reinforced by uncertainty and a lack of confi-
dence in forecasts. A key goal for the coming decades is to 
raise confidence that forecasts are becoming more reliable. 
Introducing physics-based criteria is a natural contribution 
towards meeting this goal.

The approach requires acceptance that volcanoes really do 
show patterns of pre-eruptive behaviour that are systematic 
and repeatable and that measurable precursory signals can 
be linked quantitatively to the physical processes in opera-
tion (Voight 1988; McNutt 1996; Kilburn 2018; White and 
McCausland 2019). Once the patterns have been established, 
additional procedures can be developed for identifying and 
understanding deviations from the general trends: the essen-
tial point is to have confidence that the general trends exist.

We have demonstrated the approach by using the physics 
of fracturing to understand the mutual dependence of just 
two precursory signals, VT seismicity and ground move-
ment, at volcanoes reawakening after long repose. With the 
growth of machine learning and artificial intelligence, new 
opportunities are emerging for revealing mutual dependen-
cies among a broader range of precursors at both frequently 

and rarely erupting volcanoes (Anantrasirichai et al. 2019; 
Gaddes et al. 2019; Sun et al. 2020; Carniel and Guzmán, 
2021). Physics-based procedures are thus well placed to 
advance quantitative analyses of (1) additional physical pre-
cursors and their causes, such as long-period earthquakes, 
tremor and seismic b value (McNutt 1996, 2005; Chouet and 
Matiza 2013; Bean et al. 2013; Roberts et al. 2015; Chardot 
et al. 2015; Dempsey et al. 2020; Butcher et al. 2021); (2) 
relations between the composition and flux of volcanic gases 
and the physical state of subsurface magma (Chiodini et al. 
2016; Liu et al. 2020; Moretti et al. 2020; Raponi et al., 
2021); (3) connections between observed patterns of unrest 
and those expected from numerical models of magmatic pro-
cesses (NASEM 2017); (4) forecasts of the likely size and 
style of an eruption (Tazieff 1979; White and McCausland 
2019); and (5) forecasts of eruption and changes in eruptive 
behaviour at frequently erupting and open-system volcanoes 
(Brancato et al. 2011; Carrier et al. 2015; Bell et al. 2017; 
Neuberg et al. 2018; Gaunt et al. 2020). All these goals are 
within our grasp and a test of progress in the next 20 years 
will be how far we have transformed today’s uncontrolled 
volcanic experiments into tomorrow’s forecastable events.
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