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Pneumococcal conjugate vaccines reduce pneumococcal colonization via serotype-specific immunoglob-
ulin G (IgG) at mucosal surfaces. The infant immunization schedule with the ten-valent pneumococcal
conjugate vaccine (PCV10) changed from a 3 + 1 schedule (2–3-4–11 months) to a 2 + 1 schedule (2–
4–11 months) in The Netherlands in 2013. We compared anti-pneumococcal IgG concentrations in saliva
between the schedules. IgG was measured using a fluorescent bead-based multiplex immunoassay at the
ages of 6 (post-primary) and 12 (post-booster) months in 51 infants receiving the 3 + 1 schedule and 68
infants receiving the 2 + 1 schedule. Post-primary IgG geometric mean concentrations (GMCs) were com-
parable between schedules for all vaccine serotypes. Post-booster IgG GMCs were significantly lower
after the 2 + 1 schedule for serotypes 4 (p = 0.035), 7F (p = 0.048) and 23F (p = 0.0056). This study shows
small differences in mucosal IgG responses between a 3 + 1 and a 2 + 1 PCV10 schedule. Future studies
should establish correlates of protection against pneumococcal colonization for mucosal antibodies.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Pneumococcal conjugate vaccination in children has drastically
reduced the burden of disease caused by Streptococcus pneumoniae,
ranging from respiratory infections like acute otitis media and
pneumonia to invasive disease like septicaemia and meningitis
[1,2]. Apart from direct protection, a reduction in nasopharyngeal
pneumococcal colonization is the second pillar of success of conju-
gate vaccines [3]. Nasopharyngeal colonization can be considered
both a prerequisite for infection as well as the source of commu-
nity spread [4,5]. The pneumococcal conjugate vaccine does not
only induce long-term immunoglobulin type G (IgG) in serum,
but also at mucosal surfaces [6], which were shown to correlate
well with serum levels [7]. Although the exact mechanisms by
which pneumococcal acquisition at the nasal mucosa is prevented
following pneumococcal conjugate vaccination remain unclear,
mucosal IgG has been suggested as a protective agent [8,9].

The Netherlands introduced the 7-valent pneumococcal conju-
gate vaccine (PCV7) in the national immunization program (NIP)
in 2006, and switched to the 10-valent vaccine (PCV10, Synflorix)
in 2011. Initially, immunization was advised in a primary series
of 3 vaccines at the ages of 2, 3 and 4 months followed by a booster
dose at the age of 11 months (3 + 1 schedule). In November 2013,
the schedule was adapted by dropping the 3-month dose (2 + 1
schedule). This decision was based on non-inferiority data from a
trial investigating the impact of timing and number of doses for
the 13-valent vaccine [10]. However, less is known for the 10-
valent vaccine, which covers fewer serotypes, and differs in carrier
proteins and immunogenicity [11,12], and in particular, the impact
on mucosal IgG concentrations has not been compared between
different immunization schedules. Therefore, we aimed to compare
post-primary and post-booster serotype-specific anti-
pneumococcal IgG concentrations in saliva following vaccination
with PCV10 in a birth cohort of infants who received either the
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3 + 1 (2–3-4–11 months) or the 2 + 1 (2–4–11 months) immuniza-
tion schedule.
2. Methods

2.1. Study population and sample collection

Saliva was available from 119 healthy, full-term infants born
between December 2012 and June 2014, who participated in the
Microbiome Utrecht Infant Study [13]. Follow-up until the age of
12 months was complete for 117 (98.3%) infants (Fig. 1). According
to the Dutch NIP, 51 infants born before September 2013 received
PCV10 in a 3 + 1 schedule with vaccinations at 2, 3, 4 and
11 months of age, and 68 infants born from September 2013
received a 2 + 1 schedule with vaccinations at 2, 4 and 11 months
of age. Mothers were not vaccinated with PCV10. Saliva was col-
lected from infants during home visits at 1 month of age (baseline),
after finishing the primary series at 6 months of age (post-
primary), and after the booster dose at 12 months of age (post-
booster). Saliva was collected by placing an absorbent sponge
(S10 Oracol, Malvern Medical Developments Ltd., Worcester, UK)
in the cheek pouch and under the tongue for 1 minute, so that
the sponge became saturated with saliva, and was immediately
transferred to a tube containing EDTA (BD Vacutainer, New Jersey,
USA) plus protease inhibitor (Roche, Basel, Switzerland). Samples
were transported on dry ice and stored at �80 �C awaiting labora-
tory analyses. Ethical approval was granted by the Dutch national
119 pa
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Fig. 1. Flowchart showing number of infants and samples per PCV10 immunization sched
at each sampling moment, broken down according to PCV10 immunization schedule (2
volume for laboratory analysis, the infant not having received the vaccine before the sam
infant dropping out of the study.
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ethics committee (METC Noord-Holland, M012-015, NTR3986),
and parental informed consent was obtained from all participants.
The study was conducted in accordance with the European State-
ments for Good Clinical Practice.
2.2. Laboratory methods

Concentrations of serotype-specific anti-pneumococcal IgG in
saliva were measured using a fluorescent bead-based multiplex
immunoassay (MIA), which had been validated internally for use
in saliva and was previously published [7,14]. In short, 10 sets of
carboxylated microspheres (Luminex, Austin, TX) were coated with
the pneumococcal polysaccharide antigens 1, 4, 5, 6B, 7F, 9V, 14,
18C, 19F and 23F (ATCC, Manassas, VA). Antigens were linked to
Poly-L-lysine, and the complex was bound to the microspheres in
a reaction using EDC with sulpho-NHS. The in-house reference
serum IVIG (Sanquin, Amsterdam, The Netherlands) with previ-
ously assigned concentrations of IgG, determined by calibration
with international standard serum, was used in serial dilutions as
standard reference [15]. Saliva samples were thawed and cen-
trifuged, and supernatants were diluted 1:2 and 1:10 using phos-
phate buffered saline (PBS; pH = 7.2) with 5% antibody-depleted
human serum (Valley Biomedical, Winchester, VA) and with 15
mg/ml multi cell wall polysaccharide (Statens Serum Insititut,
Copenhagen, Denmark). From each dilution, 25 ml was mixed with
an equal volume of beads. R-phycoerythrin conjugated goat anti-
human IgG solution diluted 1:200 (Jackson ImmunoResearch, West
rticipants

2+1 schedule: n=68

baseline IgG: n=35
volume too low: n=33

post-booster IgG: n=58
drop-out: n=1

non-adherence to NIP: n=5
volume too low: n=4

post-primary IgG: n=59
non-adherence to NIP: n=2

volume too low: n=7

ule. Numbers of infants in the study and of immunoglobulin G (IgG) measurements
+ 1 or 3 + 1 schedule). Reasons for missing measurements were a too low sample
pling moment (non-adherence to the national immunization program [NIP]) or the
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Grove, PA) was added to each well. Analysis of the beads was per-
formed on a BioPlex 200 apparatus using the BioPlex software
package version 6.2 (Bio-Rad Laboratories, Hercules, CA). Concen-
trations were determined by averaging results of both dilutions.
Results from the two dilutions differed more than twofold (coeffi-
cient of variation (CV) greater than 47%) in 23 samples with low
IgG concentrations. The 1:10 dilution was considered to be more
precise because of less interference from components of the saliva,
and therefore, the result of the 1:10 dilution was used when in
standard range for samples with a high CV. IgG concentrations
were expressed in ng/ml. The lower limit of detection ranged from
0.08 ng/ml for serotype 4 to 0.37 ng/ml for serotype 14. Lower IgG
concentrations were set at half the limit.
2.3. Statistical analysis

Serotype-specific IgG antibody concentrations in saliva are
reported as geometric mean concentrations (GMCs) with 95% con-
fidence intervals (CI). Fold changes were calculated as the ratio
between GMCs. Baseline, post-primary and post-booster IgG con-
centrations were compared with Kruskal-Wallis tests followed by
pairwise comparisons, and p-values were adjusted for 3 multiple
comparisons using Bonferroni correction. Differences in post-
primary and post-booster salivary serotype-specific IgG concentra-
tions between immunization schedules were first assessed using
Wilcoxon rank-sum tests. Multivariable linear regression was used
to test independent associations of log2-transformed IgG concen-
trations with vaccination schedule, month 1 (baseline) log2-
transformed IgG concentrations, sex, age in days at time of first
vaccination, and time between vaccination and sampling as covari-
ates. The antilog (2x) of model coefficients with their 95% CIs are
presented as geometric mean ratios (GMRs). GMRs indicate the rel-
ative increase in salivary IgG concentrations that is related to a 1-
unit change in the model covariate. Time between vaccination and
sampling was included in the model in a second degree polynomial
to reflect the natural kinetics of IgG responses to vaccination. P-
values below 0.050 were considered statistically significant, and
p-values above 0.050 but below 0.100 were considered relevant
trends towards significance. Analyses were performed in R version
4.0.3.
3. Results

Salivary serotype-specific anti-pneumococcal IgG concentra-
tions were measured in 73 baseline saliva samples, 106 post-
primary samples (obtained on average 62 days after the last prim-
ing dose, range 22–89 days) and 101 post-booster samples (ob-
tained on average 27 days after the booster dose, range 5–
64 days) (Fig. 1). IgG concentrations increased over time for all vac-
cine serotypes (Fig. 2A). After the primary series, salivary serotype-
specific IgG GMCs varied between 1.00 ng/ml (95% CI, 0.75–1.34)
for serotype 23F and 4.56 ng/ml (95% CI, 3.67–5.65) for serotype
7F, representing a 1.2 to 5.5-fold change compared with pre-
immunization concentrations; this increase was significant for ser-
otypes 1, 4, 5, 6B, 7F, 9V and 18C (all Bonferroni-adjusted p-
value < 0.050) but not for serotypes 14, 19F, and 23F. After the
booster dose, we observed a stronger, significant 3.2 to 9.4-fold
increase compared with post-primary salivary IgG GMCs for all
vaccine serotypes (all Bonferroni-adjusted p-value�0.001), result-
ing in post-booster GMCs between 7.33 ng/ml (95% CI 5.75–9.33)
for serotype 23F and 27.30 ng/ml (95% CI, 22.14–33.67) for sero-
type 19F.

Because the PCV10 immunization schedule changed in 2013, 51
(42.5%) infants who were immunized according to the ‘old’ 3 + 1
schedule with priming doses at 2, 3 and 4 months, were compared
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with 68 (56.7%) infants who received the ‘new’ 2 + 1 schedule,
dropping the 3-month dose. Regarding post-primary IgG concen-
trations, there were no differences between the schedules,
although we observed a trend towards higher IgG concentrations
against serotype 4 in children who received the 2 + 1 schedule
compared with the 3 + 1 schedule (p = 0.064) (Fig. 2B). By contrast,
post-booster IgG concentrations were significantly lower following
the 2 + 1 in comparison with the 3 + 1 schedule for serotypes 4
(p = 0.035), 7F (p = 0.048) and 23F (p = 0.0056), with a borderline
significant difference for serotype 9 V (p = 0.058) (Fig. 2C).

To investigate independent effects of immunization schedule
and other factors known to influence PCV immunogenicity, i.e.
age at first immunization, baseline anti-pneumococcal IgG concen-
trations, and male compared to female gender, on the IgG response
to PCV10, we performed a multivariable analysis (Fig. 3). These
host factors were comparable between subjects receiving different
schedules (Table 1). We found no significant associations between
immunization schedule and post-primary or post-booster salivary
anti-pneumococcal IgG concentrations in multivariable analysis,
though for serotype 23F a trend towards lower post-booster IgG
concentrations was observed for the 2 + 1 group (p = 0.079). Older
age at time of first immunization was associated with higher post-
primary IgG concentrations against serotypes 1, 4, 18C and 19F
(GMR 1.05–1.08, p < 0.030), but not with post-booster salivary
IgG concentrations. Finally, we observed negative correlations
between baseline and post-primary IgG concentrations for sero-
types 5, 6B, 7F, 14, 18C and 23F (GMR 0.70–0.86, all p < 0.005),
and between baseline and post-booster IgG concentrations for ser-
otype 14 (GMR 0.84, 95% CI 0.73–0.96, p = 0.014). Male compared
to female gender was not associated with IgG responses to PCV10.
4. Discussion

To our knowledge, this is the first study that compared
serotype-specific anti-pneumococcal IgG in saliva following pneu-
mococcal conjugate vaccination with PCV10 between different
immunization schedules. Comparable IgG concentrations were
observed 2 months after completion of a 2-dose (2–4 months)
and a 3-dose (2–3-4 months) primary series of PCV10. However,
IgG concentrations against serotypes 4, 7F and 23F were modestly
but significantly lower following the booster dose in children who
received PCV10 in a 2 + 1 schedule. Studies comparing serum IgG
responses between the 3 + 1 and 2 + 1 PCV10 schedule have not
been published, and it remains unclear whether our findings in sal-
iva align with results in serum. However, a large trial comparing
schedules with PCV13 showed that post-booster serum responses
following the 2 + 1 schedule were non-inferior to the 3 + 1 sched-
ule [10]. Previous studies have demonstrated strong correlations
between saliva and serum anti-pneumococcal IgG [7,16], suggest-
ing that salivary antibodies can be a useful indicator of serum anti-
body status. Furthermore, IgG at mucosal surfaces may contribute
to protection against pneumococcal infection by inhibiting
nasopharyngeal colonization. Findings from a human challenge
model showed that mucosal IgG effectively prevented acquisition
of S. pneumoniae through bacterial agglutination [9]. Future studies
should strive to establish correlates of protection against pneumo-
coccal colonization for mucosal antibodies.

Furthermore, anti-pneumococcal IgG patterns in saliva were
comparable to those observed in studies of systemic IgG responses
in serum following vaccination with PCV-10, which suggests that
saliva may be a good, non-invasive specimen next to serum to
monitor IgG responses to vaccination. In line with earlier observa-
tions, we confirmed that older age at time of the first PCV10 dose
was associated with higher post-primary IgG concentrations
[10,17]. Likewise, we confirmed that pre-vaccination IgG concen-
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Fig. 2. Serotype-specific anti-pneumococcal IgG responses following the priming doses and the booster dose of PCV10. Serotype-specific anti-pneumococcal IgG
concentrations were compared (A.) before PCV10 vaccination, after the primary series and after the booster dose, and between the 3 + 1 (at 2–3-4–11 months) and the 2 + 1
(at 2–4–11 months) PCV10 immunization schedule (B.) after the primary series, or (C.) after the booster dose. Black dots and error bars represent geometric mean
concentrations with 95% confidence intervals. Significance was assessed by pairwise Wilcoxon rank-sum tests, and was indicated by ***: p < 0.001; **: p < 0.005; *: p < 0.05; �:
p < 0.10; ns: not significant.
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trations at 1 month of age were negatively related to post-primary
IgG concentrations. Similar associations were previously reported
for serum antibody concentrations, and likely reflect that mater-
nally derived IgG, which predominates in early life, inhibits the
IgG response to pneumococcal vaccination [17].
411
Strengths of our study include the extensive participant data
including vaccination dates. The sensitive MIA technology also
allowed us to accurately measure IgG concentrations, even in very
low volumes of saliva. A limitation of our study is the lack of
serum; therefore, salivary IgG could not be correlated with serum
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Table 1
Gender, age at first immunization, and baseline anti-pneumococcal IgG in infants receiving the 3 + 1 and the 2 + 1 PCV10 schedule.

3 + 1 schedule 2 + 1 schedule p-value

51 68
Basic characteristics
Male, n (%) 23 (45.1) 33 (48.5) 0.85
Age at first immunization (months), median [IQR] 1.9 [1.8, 2.1] 1.9 [1.8, 2.0] 0.74
Baseline anti-pneumococcal IgG per vaccine serotype (ng/ml), GMC (95% CI)

1 0.75 (0.54–1.06) 0.80 (0.51–1.26) 0.80
4 0.79 (0.60–1.04) 0.61 (0.45–0.83) 0.28
5 0.94 (0.63–1.39) 1.11 (0.76–1.62) 0.52
6B 0.45 (0.26–0.76) 0.69 (0.40–1.17) 0.19
7F 1.08 (0.58–2.01) 0.61 (0.37–1.01) 0.25
9V 0.52 (0.29–0.92) 0.37 (0.24–0.57) 0.62
14 1.05 (0.60–1.84) 1.15 (0.62–2.16) 0.84
18C 0.69 (0.40–1.18) 0.62 (0.32–1.18) 0.80
19F 2.16 (1.50–3.10) 2.86 (2.04–4.00) 0.32
23F 0.82 (0.48–1.40) 0.81 (0.44–1.47) 0.93

Significance was assessed using chi-square tests for the categorical variable and Wilcoxon rank-sum tests for continuous variables. Data are summarized as n (%); median
with interquartile range (IQR); or geometric mean concentrations (GMC) with 95% confidence intervals (CI).
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levels. Furthermore, the relatively low number of participants lim-
ited our power to detect significant differences and may explain
why vaccine schedule was not associated with the anti-
pneumococcal IgG response in multivariable analysis. We did not
correct IgG measurements for the dilution factor in saliva, but ear-
412
lier work has shown that this has only little effect [7]. Moreover,
our observational design does not allow to fully preclude the influ-
ence of potential confounding factors, including potential differ-
ences in circulation of pneumococcal vaccine serotypes in the
population and thereby boosting of mucosal immunity during
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the study period [7,18]. However, since 2011, temporal changes in
vaccine serotype prevalence in the paediatric population in The
Netherlands have been rare, so we anticipate this to be of limited
effect [19].

In conclusion, modest decreases in serotype-specific anti-
pneumococcal IgG concentrations in saliva following the booster
PCV10 dose were observed after leaving out the middle dose of
the primary series, resulting in a 2 (2–4) month interval between
the first and second primary immunizations. Future research
should investigate whether salivary IgG is a good correlate of pro-
tection from nasopharyngeal pneumococcal colonization after
immunization. We propose that measuring IgG against vaccine ser-
otypes in saliva next to serum may represent a valid, non-invasive
method to quantify mucosal immune responses in studies investi-
gating or monitoring changes to pneumococcal vaccines and
schedules.
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