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Abstract

We present a thermodynamic model which explains the presence of a negative slope in the

melt curve, as observed in systems as diverse as the alkali metals and molecular hydrogen at high

pressure. We assume that components of the system can be in one of two well defined states

- one associated with low energy, the other with low volume. The model exhibits a number

of measurable features which are also observed in these systems and are therefore expected to be

associated with all negative Clapeyron-slope systems: first order phase transitions, thermodynamic

anomalies along Widom lines. The melt curve maximum is a feature of the model, but appears

well below the pressures where the change in state occurs in the solid: the solid-solid transition is

related to the melt line minimum. An example of the model fitted to the electride transition in

potassium is discussed.

POPULAR SUMMARY

Most materials expand on melting: the solid is denser than the liquid and the melt-

ing point increases with pressure. Water is the best-known counterexample, but recently a

number of elements were found to melt from a close-packed crystal to an even denser liquid.

Those systems also show evidence of liquid-liquid transitions. The observed behavior of spe-

cific elements can be reproduced using detailed numerical electronic structure calculations,

but a more general analytic model is currently lacking.

We demonstrate that any system where the electrons can adopt two distinct states with

different volumes can exhibit a melting line minimum. The transition between those states

may be either continuous or discontinuous. In the latter case there will be a critical point,

whenever there is a term in the enthalpy describing a repulsion between the two states. The

crucial feature is the competition between energy, entropy and density which determines the

stable structure at given temperature and pressure. The model suggests that any isostruc-

tural transition, (e.g. in hydrogen and cerium), must be accompanied by a solid-solid critical

point unless a third high temperature phase intervenes.

We use a minimal number of parameters to illustrate the principles. Even so, we are

able to accurately fit the phase diagram of potassium. The formalism can be combined

with, or interpolate between, more complicated non-linear single-phase equations of states

to provide descriptions of systems as diverse as the electride transition in alkali metals, the
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spin transition in transition metal oxides and the metallization of hydrogen.

I. INTRODUCTION

Improvements in high-pressure and -temperature experiments mean that the topic of

liquid-liquid phase transitions has attracted significant attention recently. In particular,

there are debates about whether a change in liquid structure can be regarded as a true

phase transition, or a gradual crossover.

Determining this is challenging for either experiment or simulation. In a diamond anvil

cell experiment it is near-impossible to observe phase coexistence and be confident that

the system has reached thermodynamic equilibrium. Indeed, many if not most high pres-

sure experiments report phase coexistence across a range of pressures - something which

is forbidden in equilibrium thermodynamics. The situation is no different in simulations -

typical electronic structure calculations are done at a given pressure and temperature and

“discontinuities” are inferred by extrapolation or, at best, hysteresis.

The melt curve for most materials has a positive slope on a PT phase diagram. This

means that the liquid is less dense than the solid. There are exceptions, notably water is

denser than ice, and other examples among elements include silicon, gallium, and carbon.

These textbook exceptions at ambient pressure can generally be understood as due to the

partial breakdown of a network of well defined covalent or hydrogen bonds causing the atoms

or molecules in the liquid to have a higher coordination than the solid.

Another group of materials which have a negative Clapeyron slope at high pressure are

the alkali metals[1–20]. Here, the slope is typically positive at ambient pressure, reaching

a maximum, then becoming negative in a pressure region where the solid phase is typically

close packed. At still higher pressures, there is a minimum in the melt curve before the

slope becomes positive again. The solid phase in the region of negative slope is close packed,

so the densification on melting cannot come from a collapsing open network. Curiously,

hydrogen has a remarkably similar phase diagram to the alkalis which can be explained by

competition between free rotors and quadrupole interactions [21–23].

Density functional theory can reproduce the negative slope[24–26]. It also shows

some anomalous behaviour in liquid heat capacity, compressibility, viscosity, and ther-

mal expansion[27]. This implies that there is some significant change in the liquid binding,
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though whether it is a true transformation or a crossover remains unclear. As a consequence,

there is renewed interest in analytic equations of state which can be fitted to data. For

single phases, functional forms such as the Vinet equation of state work well, but many

interesting phenomena occur where the equation of state is concave or discontinuous.

The thermodynamically stable state is the one with the lowest Gibbs free energy:

G(P, T ) = U + PV − TS

taking P and T as the independent variables. Evidently G depends on three quantities,

energy, density and entropy. Any attempt to relate microscopic to macroscopic properties

needs to consider all three, and how they vary between phases.

There are a wide range of approaches to describe complex high pressure structures.

Those based on electronic-structure include electride[5], two-band[28, 29], Fermi-surface[30–

32], s-p[33] or s-d[34] transfer, Mott transitions[35] or pairing[36], molecularization[37–39],

high-low spin transition[40–42], polymerization, [43] and “simple-complex”[44] transition

types. Other approaches based on interatomic forces include soft-core[45, 46], and associat-

ing particles[47, 48].

Despite this huge variety of microscopic models, simple, analytic thermodynamic mod-

els for the melting point maxima[49–51] and liquid-liquid transformation[52, 53] are miss-

ing. Rapoport[54] implies that Klement built such a model, but it was never published -

Rapoport’s own analysis of Klement’s model does not show a melting point maximum. A

number of lattice-based approaches have been tried [55], but for obvious reasons their appli-

cability to the fluid state is debatable. Makov has introduced a thermodynamic approach

for continuous and discontinuous liquid transitions based on different heat capacities and

compressibility, which also gives a negative melting line[56, 57].

We note that most of the microscopic models are based on a trade-off between two types

of interaction, one which has lower energy, the other lower volume. The purpose of this paper

is to lay out the minimal requirements for an analytic model of a discontinuous liquid-liquid

transformation and a melting point maximum based only on the idea that a material can

adopt two different states.

The paper is structured as follows - we start by deriving thermodynamic results for heat

capacity, expansivity and compressibility in a convenient analytic form. We then present

a mixing model between two thermodynamic states, demonstrating the Widom lines. A
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microscopic model inspired by the electride transition[5–11, 58–68], where the states differ

only in volumes, is worked through in detail for both solid and liquid cases. It is shown that

this model is sufficient to obtain the melt curve maximum, and can support a discontinuous

phase transition in the liquid. A parameterization for potassium is presented.

II. THERMODYNAMIC MODEL

The theory derived here is of very general applicability. However, we found it helpful to

have a concrete microscopic model in mind as it is developed.

A. Motivation from simple metals at pressure

We propose that the structure of the high-pressure alkali metals can be modeled as a

mixture of two distinct electronic states: a low-pressure s-type free electron state, and a

high-pressure “electride” state, with electrons localized in interstitial pockets, referred to as

pseudoanions. In the case of fcc, we can imagine that the octahedral site is the pseudoanion,

so the electride has a rocksalt structure. This should not be taken too literally because in

reality, the electride transition is accompanied by a crystal structural transformation. Similar

evolution happens in a liquid, but here the transition is continuous because differently-sized

pseudoanion sites are available, and there is no symmetry. This microscopic picture can

be related to a macroscopic one by considering the energy, volume and entropy of the two

states:

• The electride has higher energy because the electron is confined away from the posi-

tively charged ion.

• The electride has small volume, because it can occupy the interstitial site between

ions, leading to more efficient packing.

• A mixture of the two states gives higher entropy.

In addition to the electride transition, we may also compare solid and liquid phases for

which the solid has lower entropy and enthalpy, independent of the electride fraction.
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In the specific case of electrides, the entropy difference between the free-electron and

electride state is negligible[27]: in more general applications, one could consider different

entropy in the two states, in addition to entropy of mixing and entropy of melting.

The need to describe U , TS and PV for each phase means that even the simplest model

inevitably has several parameters.

B. Thermodynamics

In a general two-state model, a Gibbs free energy is written as G(x, P, T ) where x is

the fraction of one of the two states. The equilibrium value for G(P, T ) is obtained by

minimizing G(x, P, T ) with respect to x. So for all P, T we have

G(P, T ) = min
x
G(x, P, T ) (1)

Thus x is a dependent variable whose value at equilibrium varies with the independent

variables pressure and temperature. Values of x which do not minimise G(x, P, T ) represent

non-equilibrium states. A necessary, but not sufficient requirement for equilibrium is:(
∂G

∂x

)
P,T

=

(
∂H

∂x

)
P,T

− T
(
∂S

∂x

)
P,T

= 0 (2)

where H = U +PV is the enthalpy. Simply solving that equation will also generate unphys-

ical free energy maxima, and metastable states.

Thermodynamic properties are obtained as derivatives of the free energy. Although the

calculus is routine, we present the results here because of the additional terms which arise

due to the x factor, and the fact that some derivatives cannot be written analytically because

of the requirement to minimise x.

1. Heat capacity Cp

The standard thermodynamic definitions of the heat capacity are

Cp =

(
∂H

∂T

)
P

= T

(
∂S

∂T

)
P

= T

(
∂2

∂T 2
min
x

[G(x, P, T )]

)
P

(3)
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Note that x is not an independent variable, and changes in x contribute to the heat

capacity.

CP =

(
∂H

∂T

)
P,x

+

(
∂H

∂x

)
P

(
∂x

∂T

)
P

(4)

The quantity ∂T
∂x

can be awkward to evaluate, so to eliminate it, we consider

(
∂

∂T

)(
∂G

∂x

)
= −

(
∂S

∂x

)
+

(
∂x

∂T

)[(
∂2G

∂x2

)]
(5)

dropping the subscripts for clarity. Using the equilibrium condition (Eq.2), this gives

(
∂T

∂x

)
P

= T

(
∂2G

∂x2

)
P

/

(
∂H

∂x

)
P

(6)

From which the expression for the heat capacity becomes:

CP =

(
∂H

∂T

)
P

=

(
∂H

∂T

)
P,x

+
1

T

(
∂H

∂x

)2

P

/

(
∂2G

∂x2

)
P

(7)

2. Isothermal Compressibility

The standard thermodynamic definitions of compressibility are

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂2G

∂P 2

)
T

(8)

including the internal variable x.(
∂2G

∂P 2

)
T

=

(
∂2G

∂P 2

)
T,x

+ 2

(
∂2G

∂P∂x

)
T

(
∂x

∂P

)
T

(9)

The equilibrium condition ensures that the
(
∂G
∂x

)
T

(
∂2x
∂P 2

)
T

term is zero.

Again, there is no convenient relationship between P and x, but following a similar

argument to Eq.6 we find

(
∂x

∂P

)
T

= −
(
∂2G

∂P∂x

)
T

/

(
∂2G

∂x2

)
T

(10)

and

(
∂2x

∂P 2

)
T

=

(
∂3G

∂P 2∂x

)
T

/

(
∂2G

∂x2

)
T

−
(

∂3G

∂P∂x2

)2

T

/

(
∂2G

∂x2

)2

T

(11)
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3. Thermal Expansion

The standard thermodynamic definitions of thermal expansion are

α =
1

V

(
∂V

∂T

)
T

=
1

V

(
∂2G

∂T∂P

)
(12)

∂2G

∂T∂P
=

(
∂2G

∂T∂P

)
x

+

(
∂2G

∂P∂x

)
T

(
∂x

∂T

)
P

+

(
∂2G

∂T∂x

)
P

(
∂x

∂P

)
T

(13)

Again, using the equilibrium condition
(
∂G
∂x

)
T

= 0.

C. Linear combination model with ideal solution

In a slightly more specific model, a system is described by particles in two possible

thermodynamic states A (x=1) and B (x=0). When mixed in an ideal solution, the Gibbs

free energy is given by:

G(P, T ) = xG(1, P, T ) + (1− x)G(0, P, T )

+RT [x lnx+ (1− x) ln (1− x)] (14)

where x is the fraction of particles in state A, GA = G(1, P, T ) and GB = G(0, P, T ) are

the Gibbs free energies of pure A and B states. The equilibrium value for x is found by

minimizing G(P, T ):

x(P, T ) =
e−GA/RT

e−GA/RT + e−GB/RT
=

1

1 + e−∆G/RT
(15)

with ∆G = GB −GA.

We can find the volume

V (P, T ) =

(
∂G

∂P

)
T

= xVA(P, T ) + (1− x)VB(P, T ) (16)

and entropy

S(P, T ) = −
(
∂G

∂T

)
P

= xSA(P, T ) + (1− x)SB(P, T )

+R[x lnx+ (1− x) ln (1− x)]

(17)

always remembering that x = x(P, T ). We further derive analytic expressions for compress-

ibility

κT = − 1

V

(
∂V

∂P

)
T

= xκT,A + (1− x)κT,B +
∆V

V

(
∂x

∂P

)
T

(18)
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with ∆V=VB − VA and thermal expansion

α =
1

V

(
∂V

∂T

)
P

= xαT,A + (1− x)αT,B +
∆V

V

(
∂x

∂T

)
P

(19)

Both of which have an anomalous component arising from the conversion of material between

the two states, in addition to the weighted average. For the heat capacity there is an

additional anomalous term from the mixing entropy

CP = T

(
∂S

∂T

)
P

(20)

= xCP,A + (1− x)CP,B +

(
∆S +R ln

x

1− x

)(
∂x

∂T

)
P

with ∆S=SB − SA.

From Equation 15 we immediately see that there is no discontinuity in x, from which it

follows that this model cannot describe a phase transition, only a crossover. We also observe

that the ideal solution entropy ensures that mathematically, as well as intuitively, 0 < x < 1.

D. Non-ideal solution solid model

A small rephrasing of the Bragg-Williams[69] (BW) model can be used to extend the

model from section II C to describe a discontinuous transition within a single solid phase.

BW is a mean field approximation to the Ising model, where for high-pressure applications

the spins are mapped to “electride” and “free electron” states, and the “field” is mapped

to the enthalpy difference between the two states. Although the model has wider applica-

bility, e.g. the high-spin/low-spin transition in ferrous minerals, we will use the electride

terminology here.

The enthalpy difference with respect to the x = 0 “free electron” state is

H = x(∆Ue + P∆Ve) + Jx(1− x) (21)

where x is the electride fraction, ∆Ue and ∆Ve are the change in energy and volume with

respect to the “free electron” values when an electron moves to an electride pseudoanion

site, both assumed positive, and J is a local coupling between electride and free electron. A

high pressure phase transition at T = 0 occurs when the field/enthalpy difference changes

sign (PT = ∆U/∆V ).
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Including entropy, the Gibbs Free Energy relative to the “free electron” state is:

GBW = x(∆Ue − P∆Ve − T∆Se) + Jx(1− x)

+RT [x lnx+ (1− x) ln(1− x)]
(22)

We find that the x-dependent contributions to relative volume, internal energy and en-

tropy are

V = −x∆Ve (23)

U = x∆Ue + Jx(1− x) (24)

S = R[x lnx+ (1− x) ln(1− x)] + ∆Se (25)

We obtain these results by differentiating G. This is not completely trivial, as they rely on

the stationary property of G(x) at equilibrium (Eq.2).

We now find

∂H

∂x
= (∆Ue − P∆Ve) + J(1− 2x) (26)

∂G

∂x
= (∆Ue − P∆Ve − T∆Se) +RT ln[x/(1− x)] + J(1− 2x) (27)

∂2G

∂x2
=

RT

x(1− x)
− 2J (28)

CP (x) =
1

T

(∆Ue − P∆Ve + J(1− 2x))2

RT
x(1−x)

− 2J
(29)

We can see immediately that the heat capacity has a discontinuity if RT/2J = x(1− x),

and since x(1− x) must lie between 0 and 1/4, a discontinuous phase transition occurs for

any T < J/2R at P = ∆Ue/∆Ve. Interestingly, along a line above the critical point, the

contribution to CP goes to zero.

If it seems odd that V and U go to zero, at high and low pressures, remember that the

full free energy of the system will include terms independent of x, representing the equation

of state of a reference (x = 0) material. To compare with a real system, one needs to add an

x-independent free energy Gref (P, T ) to Eq. 22 which adds a smoothly varying additional

term to all quantities.

Bragg and Williams considered an atomic level system[69], and so assumed that the

two sites have equal entropy; in applications such as polymerization or atomic-molecular
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transitions where the number of independent objects changes a further term T∆Se could

be added to relax this assumption. This introduces a slope to the phase boundary and

additional tilt to the Widom line, but does not change the general picture.

Bragg-Williams’ solid-solid model is conceived for alloy order-disorder rather than pres-

sure. However, a similar concept can be applied to the high-spin low-spin crossover in iron

oxides[40, 70]. The present model allows for an isostructural phase transition at low temper-

ature, as well as a crossover: such a true phase transition, an associated critical point, would

require a coupling J between sites which disfavoured mixing. This coupling may come from

short ranged strain[41, 42], magnetic spin coupling or from phonons[71], or be calculated

directly from first principles[70], and may vary with pressure[72]. Magnetowüstite (Mg,Fe)O

and perovskite (Mg,Fe)SiO3 in the iron rich regime are prime candidates. They are known to

pronounced anomalies in heat capacity, and compressibility, but from experiment and DFT

calculations these system appear to exhibit a crossover[73–76], suggesting the spin coupling

either favors mixing or is so weak that the transition is below the studied temperatures.

E. Two site electride liquid model

Our liquid model differs from the solid in just one detail: we assume there are a range of

different possible electride sites, each entailing different volume changes ∆V (see fig.1, inset).

This contrasts with the crystal model, in which the available electride sites are equivalent

by symmetry.

For simplicity, we assume that the electride sites are such that the change in volume

entailed in occupying them is linearly distributed and range from −2∆Ve to +2∆Ve . Note

that a positive ∆V implies that the electride would increase the volume, so such sites will

never be occupied.

With finite electride fraction x, those sites offering the largest volume reduction will be

occupied. The total volume change is calculated by integrating over the volumes changes of

the individual occupied sites.

∆V =

∫ x

0

2∆Ve(x
′ − 1)dx′ = ∆Ve(x

2 − 2x) (30)

where the upper bound on the integral indicates that sites which would increase the

overall volume are not occupied.
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The excess Gibbs Free Energy, relative to the “free electron” liquid, is thus:

GEL(x) = x∆Ue − x(2− x)P∆Ve + Jx(1− x)

+kBT [x lnx+ (1− x) ln(1− x)]
(31)

There are now nonlinearities in relative energy, entropy and density:

V = −x(2− x)∆Ve

U = x∆U + Jx(1− x)

S = R[x lnx+ (1− x) ln(1− x)

(32)

We now find

∂H

∂x
= (∆Ue − (2− 2x)P∆Ve) + J(1− 2x) (33)

∂G

∂x
= (∆Ue − (2− 2x)P∆Ve) +RT ln[x/(1− x)] + J(1− 2x) (34)

∂2G

∂x2
= 2P∆Ve +

RT

x(1− x)
− 2J (35)

CP =
1

T

[∆Ue − (2− 2x)P∆Ve + J(1− 2x)]2

RT
x(1−x)

− 2J + 2P∆Ve
(36)

This model does not necessarily have a critical point: the entropic and volume terms

are always convex, so only the demixing J term can drive phase separation. Whether

this happens depends on the value of P at the putative phase boundary x = 1
2
, giving

P = ∆Ue/∆Ve.

These quantities are plotted in Figure 2, where it is again clear that the model predicts a

peak in specific heat and compressibility, along with a dip in the thermal expansivity. These

extrema trace out the Widom lines of the phase diagram (Figure 3). It is important to note

that this phase diagram includes only the two-site Hamiltonian: the underlying free energy

of the x = 1 and x = 0 states is ignored.
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a phase transition. The chosen values of ∆Ue = 1; ∆Ve = 1 mean that the transition pressure is at

P = 1 in either model. Inset - schematic showing the different volume changes available in liquid

(Orange) compared with unique value in solid (blue, delta function).
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temperature is 0.5 and the phase line is vertical at P=1
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real materials, this critical point may lie below the melt line. Above the critical temperature, the

extrema of the thermodynamic properties trace out the Widom lines which converge and end at

the critical point.
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Free energy variation with x is shown in Figure 1, for a range of pressures around the

phase transition. Below Tc there are two minima, degenerate at P = ∆Ue/∆Ve, indicating

a first order phase transition. An analytic estimate of Tc can be obtained from ∂2G
∂x2 = 0 or

from setting x = 1/2. Note that the existence of the critical point requires two nonlinear

terms in G, coming here from the entropy and the interaction energy. Figure 1(lower) shows

that x changes discontinuously along an isotherm at the transformation, in either the solid

or liquid model. Notice that, for equivalent parameters, the critical point in the liquid falls

at a lower Tc than for the solid.

If the liquid structure cannot accommodate enough potential electride sites, the model

can be extended to a maximum electride fraction f . This would result in a change of the

P∆Ve prefactor from x(2 − x) to x(2 − x/f), but this additional complication makes no

difference to the general argument, so hereinafter we take f = 1.

Positive J generates a first order transition with a critical point. The phase line is vertical

(at P = ∆Ue/∆Ve) and ends at the critical temperature Tc. Note that the high pressure

phase transition we are describing corresponds to the Ising spin-up→ spin-down transition,

not the usual BW paramagnetic one.

Above the critical temperature, there are anomalies in several observables, as shown in

Figure 2. The extreme values (Widom lines) for various properties do not fall in the same

place: any definition of the supercritical transition pressure depends on which property is

considered.

F. Entropy-driven transformation

So far we have considered models where the difference between the two phases is in the

enthalpy. In other cases, such as the molecular-atomic transition in hydrogen, there is a

significant change in entropy between the two states - in the hydrogen case because the

number of particles doubles.

The addition of an x-dependent entropy term gives a slope to the phase boundary, and

a similar change of slope to the Widom lines: some of which can even have the opposite

slope to the phase boundary. From the Clausius-Clapeyron equation, the slope of the phase

boundary is dP
dT

= ∆S/∆V . Exactly similar to the volume change, a linear dependence of

entropy with x does not create a first order transition, the lowest order term which can do so
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is x(1− x)∆S. Such entropic demixing occurs in models with hard-core cubes and spheres

[55, 77, 78], and has been claimed experimentally in supercooled water [79].

The heat capacity model with ∆S = 2 is illustrated in Figure 4, showing the lambda

profile of the discontinuous transition changing to the broad peak above the critical point.

The gradient of the Clapeyron slope is evident from the shift of the lambda peak to higher

pressure. The inset shows the peak in heat capacity in the low-x phase.

G. Two site model for liquid-solid transformation

We can extend the two-site model to compare liquid and solid phases and calculate a

melt line. This requires us to consider the x-independent contributions to the free energy.

A full equation of state is required for the non-anomalous contributions to Cp, α and κT ,

however, to calculate the phase boundary, we need only know the free energy difference of

x-independent contributions to the solid-liquid free energy ∆Gsl.

Thus we have an equation for the phase boundary

∆Gsl(P, T ) = Gl(xl, P, T )−Gs(xs, P, T ) (37)

where xl(P, T ) and xs(P, T ) are the equilibrium values of x in liquid and solid respectively,

calculated by minimising the free energy G(P, T ) at each P, T point.

In figure 5 we show an illustrative example with a zero pressure melting point at T=0.4

and a positive Clapeyron slope of 0.8, in reduced units.

To illustrate the model, we use the same x-dependent parameters ∆V = 1, ∆U = 1,

∆S = 0, J = 1 in both liquid and solid. This means that x-dependent terms in free energy

for solid and liquid models are equal in the x→ 0 and x→ 1 limits. For the x-independent

terms, we assume that energy, entropy and density differences between solid and liquid are

constant.

This choice of parameters means that the solid-solid phase line is vertical (∆S = 0) and

there is no discontinuous liquid-liquid transition. This is similar to the case of the simple

metals. A significantly larger value of J would be needed to extend the phase boundary

into the liquid region, as shown in figure 3. A non-zero ∆S leads to a slope in the phase

boundary, but does not change the general picture.
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The figure also shows how x varies across the phase diagram - gradually in the liquid,

but discontinuously in the solid.

H. Example - application to potassium

The high pressure crystallography and re-entrant melt curve of potassium have been

determined experimentally[4, 80, 81]. DFT calculations show an electride transition in

potassium as in other simple metals[5–10, 82]. Liquid potassium calculations suggest a

number of irregularities[27] in the thermodynamic properties which cannot be fitted by

smoothly varying models[83].

Figure 6 shows an ab oculo parameterization of the liquid-solid transformation model to

this data, with a simple linear model for x-independent terms. The reduced units of the

model correspond to 20GPa and 1000K for potassium. While the overall shape is reproduced

with a linear fit, the low pressure melt curve appears parabolic and the high pressure line

is not sufficiently steep. The fit can be significantly improved by introducing a non-linear

equation of state, such that P ∗ → P 3/2, and is reduced by a factor of 5 above the transition.

Curiously, the unadjusted high-pressure melt line of the linear model follows the chain-

melting line, in which the guest atoms in the solid phase III melt[4, 26].

It is notable that the melting line minimum is coincident with the triple point of the

solid-solid transformation from fcc to host-guest structure, which has been associated with

the electride transition[5, 7, 26]. The melting point maximum has no such association, which

casts doubt on the extrapolation of the fcc-bcc line to the melt curve maximum, which has

been drawn and copied without evidence in, e.g. lithium[13, 14, 84–86]. In fact, the 180deg

rule means that it is thermodynamically impossible for a solid-solid phase line to intercept

the melt curve at a point of negative curvature such as a maximum.

III. DISCUSSION

We have presented a simple analytic model which explains the anomalous shape of the

melt line observed in many high pressure systems. The key features required are

• a microscopic mechanism by which the atoms can reduce their volume, at the expense

of increasing their energy.
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• disorder in the liquid leading to wider range of possible atomic environments compared

to the solid.

We have shown that a discontinuous phase transformation can be driven by a repulsion

between the two states, analogous to the Jx(1−x) term in the Bragg-Williams model. This

repulsion may be either enthalpic or entropic, but must introduce negative curvature to

G(x): terms linear in x cannot result in a discontinuous transition.

The discontinuous transitions in the model do not depend on changes in crystal symmetry;

In reality, it is likely that a discontinuous change in the type of electronic binding of a solid

will also be accompanied by a symmetry change. Thus even in principle the solid-solid critical

point can occur only for isostructural transitions such as hydrogen and cerium[35, 87, 88].

Above the critical point, the model predicts a series of experimentally measurable “Widom

lines” associated with anomalies of thermodynamic properties. These occur for all param-

eterizations, even where there is no critical point, or there is a liquid-liquid critical point

which lies below the melt line.

By comparing free energy models for crystal and liquid phases, we constructed a melt

line from this model. This has a characteristic minimum at the point where the two-state

mixing entropy is maximized (x = 1
2
), coincident with the solid-solid phase transformation.

Combined with a positive slope at low pressures, this means that there must also be a

melting temperature maximum which, curiously, does not appear to be coincident with

other features in the phase diagram.

The model has been applied to the melt curve of potassium, using a very simple linear

fitting scheme. More accurate fitting to other materials would be straightforward, and the

model framework has broad application for producing equations of state for any material

with a complex liquid-liquid transformation.
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[21] I. B. Magdău, M. Marqués, B. Borgulya, and G. J. Ackland, Simple thermodynamic model

for the hydrogen phase diagram, Physical Review B 95, 094107 (2017).

[22] H. Zong, H. Wiebe, and G. J. Ackland, Understanding high pressure molecular hydrogen with

a hierarchical machine-learned potential, Nature communications 11, 1 (2020).

[23] S. van de Bund and G. J. Ackland, Quadrupole arrangements and the ground state of solid

hydrogen, Physical Review B 101, 014103 (2020).

[24] E. R. Hernández, A. Rodriguez-Prieto, A. Bergara, and D. Alfe, First-principles simulations

of lithium melting: Stability of the bcc phase close to melting, Physical Review Letters 104,

185701 (2010).
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