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Core Ideas 21 

 Harvesting maize stover at high stubble height provides an upper fraction with 22 

improved feed quality. 23 

 Maize genotypes with higher yields of both grain and stover fractions were 24 

identified. 25 

 High stubble height and genotype choice enhance optimal allocation of stover 26 

fractions for feed and mulch. 27 

 Partitioning of maize stover into fractions is valuable to optimize demands for 28 

feed and mulch.  29 

 30 

Abstract 31 

In smallholder crop-livestock systems where maize (Zea mays L.) is a staple 32 

cereal, the stover is usually an important, but low quality ruminant feed. Maize 33 

stover has various competing uses and optimal allocation of stover, particularly for 34 

forage and mulch, is essential for improving whole-farm productivity and 35 

sustainability. Knowledge that feed quality increases with height in maize stover 36 

provides opportunities. An experiment investigated the effects of a high cutting 37 

height of stover at grain harvest (cut at two internodes below the lowest ear) on the 38 

yields and feed quality of the upper and lower stover (stubble) fractions. 39 

Measurements were made on six maize genotypes at two sites during two cropping 40 

seasons in Ethiopia. The upper stover fraction (USF) on average comprised 674 g 41 

kg-1of the entire stover and was also substantially higher (P < 0.001) than lower 42 

stover fraction (LSF) in in-vitro dry matter digestibility (IVDMD) (527 vs. 450 g kg−1 43 

DM) and total N concentrations (8.8 vs. 6.2 g kg−1 DM), and lower in fiber. Stems 44 

(including leaf sheath and tassel), husks (including shank) and leaf blade comprised 45 
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484, 310, and 206 g kg−1of the USF, respectively. Yields and feed quality of stover 46 

varied among genotypes and environments. Use of an USF can provide a feedstuff 47 

of increased nutritional quality for ruminants but the efficacy of the LSF for mulch 48 

requires investigation. In conclusion a simple management change to harvest maize 49 

stover at higher stubble height combined with use of appropriate genotypes can 50 

provide higher quality feed while leaving stubble for conservation agriculture. 51 

____________________________ 52 

Abbreviations: ADF,  acid detergent fiber corrected for the ash concentration of the residue; CA, 53 

conservation agriculture; CR, crop residues; DDM, digestible dry matter; DM, dry matter; IVDMD, in-54 

vitro dry matter digestibility; LSR, leaf-to-stem ratio; LHSR, leaf and husk-to-stem ratio; LSF, lower 55 

stover fraction; ME, metabolisable energy; N, total nitrogen; NDF, neutral detergent fiber assayed with 56 

α–amylase and corrected for the ash concentration of the residue; NIRS, near infrared reflectance 57 

spectroscopy; USF, upper stover fraction; WS, whole stover. 58 

 59 

1. INTRODUCTION 60 

In smallholder mixed crop-livestock systems, livestock provide inputs for crop 61 

production such as manure for soil fertility and traction, while crops provide crop 62 

residues (straws and stovers) as ruminant feed (Larbi et al., 2002). Shortages of 63 

livestock feed in quantity and quality and low soil nutrient status constrain an 64 

increase in crop and livestock outputs (whole-farm productivity) in smallholder mixed 65 

crop-livestock systems (Anon, 1992). Crop residue management or use is an integral 66 

component affecting the sustainability of crop-livestock systems in the tropics 67 

(Duncan et al., 2016; Larbi et al., 2002).   68 

Although maize (Zea mays L.) in crop-livestock smallholder systems in developing 69 

countries is grown primarily for food the stover is an important resource with many 70 

uses. Along with crop residues (CR), more generally a large proportion of the stover 71 



4 
 

is usually needed as a feed for ruminant and equine livestock (Erenstein et al., 2013; 72 

Thornton et al., 2010). However, stover and CR are also needed for other purposes 73 

including mulch for conservation agriculture (CA), construction, fuel, and to provide 74 

bioenergy feedstock (Clay et al, 2019).  75 

In the context of developing countries, two major issues constrain better use of 76 

maize stover as a feed for ruminants. First, maize stover harvested at grain 77 

maturity is, like most cereal CR, generally of poor nutritional value with low 78 

concentrations of nitrogen (N) and other essential nutrients, low content of 79 

metabolizable energy (ME), and high concentrations of fiber (Ertiro et al., 2013; 80 

Kabaija & Little, 1988). Maize stover fed alone is usually associated with low 81 

voluntary intake and poor animal performance (Tolera & Sundstøl, 2000). Second, 82 

among the competing uses for maize stover, and CR more generally, the largest and 83 

increasing demand is for mulch in CA (Baudron et al., 2014; Duncan et al., 2016; 84 

Jaleta et al., 2015; Rusinamhodzi et al., 2015). Mulching, such as by retention of CR, 85 

is an important soil management technique for sustainability and CA. It  provides 86 

benefits by reducing soil erosion, retaining water, enhancing nutrient cycling, 87 

sustaining soil organic carbon, buffering temperature fluctuations, supporting 88 

microbial communities, increasing soil fertility, improving soil structure and increasing 89 

agricultural productivity (Chen et al., 2018; Clay et al., 2019; Erenstein, 2003). 90 

The high demand of CR for feed for ruminants often leads to shortages of CR for 91 

mulch (FAO, 2018; Tittonell et al., 2015). Thus a major challenge for many 92 

smallholder farmers is to produce and retain enough CR to obtain the changes and 93 

benefits from CA (Baudron et al., 2014). Crop residues are often used (or sold) for 94 

livestock feed, construction, and fuel. The multiple uses and competing applications 95 

of CR create many management challenges and trade-offs (Clay et al., 2019; 96 
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Erenstein et al., 2015). All approaches to maintenance of soil organic matter and soil 97 

fertility need to recognize the importance and need for integration of livestock in 98 

mixed-farming systems (Giller et al., 2015) for whole-farm productivity outcomes. For 99 

instance, Mupangwa et al. (2019) suggested that smallholders may utilize fractions 100 

of CR more efficiently for livestock feeding during months of feed shortage than for 101 

CA due to the limited gain in maize productivity obtained when maize residue is used 102 

as mulch in South African farming systems. Clearly there is extensive current 103 

development of CA (Stevenson et al., 2014; Erenstein et al., 2015; Clay et al., 2019) 104 

that should improve understanding of the biological consequences of various uses of 105 

CR and better inform the necessary trade-off decisions. Thus, the better use and 106 

optimal allocation of stover, especially as feed or mulch, are the major and 107 

increasing challenges for long-term whole-farm productivity in smallholder crop-108 

livestock systems. 109 

Although farmers in some regions use in situ grazing of maize stover, in most 110 

regions of developing countries the traditional practice at grain harvest is to cut 111 

and carry the bulk of the maize stover to the homestead and to store it for use as 112 

ruminant feed (ex situ) during the dry season (Ertiro et al., 2013; Hellin et al., 2013). 113 

Stover is usually harvested to ground level. However in some regions of east Africa 114 

farmers use a high stubble height at harvest (e.g. the stover is cut at two internodes 115 

below the lowest ear) and the upper stover fraction (USF) is used ex situ as feed 116 

while the lower stubble used for mulch, in situ grazing, or other purposes (Dejene, 117 

2018; Duncan et al., 2016). Cutting stover at a high stubble height should be a 118 

simple management change to provide an USF of higher nutritive value and 119 

palatability as a feed, while also leaving the lower stover fraction (LSF) for mulch. 120 

The USF should contain the majority of the leaf and husk that have higher 121 
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concentrations of nutrients and lower concentrations of fiber, and be a more 122 

palatable feedstuff than the whole stover (WS). This follows from the general 123 

observation that the upper parts of most grasses are higher in nutritive value and 124 

more palatable for ruminants than the entire plant (Van Soest, 1994), and is 125 

supported by reported measurements of N, dry matter (DM) digestibility and fiber in 126 

the morphological fractions of maize stover (Liang et al., 2015). Furthermore grazing 127 

ruminants selectively ingest the leaf and husk of maize stover resulting in higher 128 

intakes of nutrients (Fernandez-Rivera & Klopfenstein, 1989; Klopfenstein et al., 129 

2013; Petzel et al., 2018). This principle of using a higher stubble height to provide 130 

forage of higher nutritive value has been established for maize silage production in 131 

the context of developed countries (Bernard et al., 2004; Kennington et al., 2005; 132 

Neylon & Kung, 2003; Oliveira et al., 2013) but, to our knowledge, has not been used 133 

in the context of smallholder agriculture in developing countries and particularly with 134 

maize stover harvested at grain maturity. 135 

Another approach to increase the nutritive value and the amount of maize stover 136 

available is through use of improved genotypes. Dual purpose maize genotypes that 137 

provide higher yields of WS as well as grain, and also stover of higher feed quality, 138 

are available for some environments (Blümmel et al., 2013). However, there is a lack 139 

of information on the effects of using various cutting heights on the attributes of 140 

stover fractions, or the possible interactions between stover feed quality versus 141 

stubble height and genotypes. Combining the benefits of a higher stubble height with 142 

genotype choice should provide greater benefits than either approach alone, but 143 

requires an understanding of the benefits and limitations of genotypes and genotype 144 

x environment interactions on stover feed quality and yields. These technologies are 145 

likely to provide options for improved management flexibility for the use and 146 



7 
 

allocation of maize stover. Farm productivity and efficiency is likely to be 147 

improved by optimal allocation of maize stover fractions to the purposes for 148 

which they are most useful and valuable. Cognizance of the issues, trade-offs 149 

and management decisions required will be particularly important where the 150 

availability of CR is less than the demand, as typically occurs in eastern and 151 

southern Africa (Duncan et al., 2016; FAO, 2018; Jaleta et al., 2015; 152 

Rusinamhodzi et al., 2015) and many other regions of developing countries 153 

(Erenstein et al., 2015; Hellin et al., 2013; Valbuena et al., 2012). 154 

The relationships between yields of maize grain, and stover yields and nutritional 155 

attributes of WS have been investigated (Blümmel et al., 2013), but no investigations 156 

have evaluated the variation among stover fractions that may allow better use of 157 

maize biomass. The present study examined the hypotheses that: (i) an USF of 158 

maize stover would provide a feedstuff of increased nutritive value for ruminants as 159 

well as providing a LSF for CA or other needs, and (ii) a higher nutritive value of the 160 

USF is consistent across maize genotypes and growing environments, and in 161 

particular with higher-yielding genotypes.  162 

 163 

2. MATERIALS AND METHODS 164 

2.1. Study site description 165 

Field studies were conducted in the 2013 and 2014 cropping seasons at two sites in 166 

Ethiopia at Bako (9o12’N, 37o08’E, 1650-m altitude, nitisols) and Melkassa (8o24’N, 167 

39o21’E, 1550-m altitude, andosol) (Eyasu, 2016; MARC, 2014). Additional 168 

information of site soil (0-30 cm) pH, organic carbon and total N have been reported 169 

by Seyoum et al. (2018). These sites represented mid-altitude sub-humid and semi-170 

arid areas, respectively, and together they represent the major maize growing area 171 
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in Ethiopia (Nigussie et al., 2001) and are also representative of many regions of 172 

eastern and southern Africa. Cumulative rainfall, and maximum and minimum 173 

temperatures at the two sites during the 2013 and 2014 cropping seasons are 174 

presented in Supplemental Figures S1 and S2. Planting dates were 5 June 2013 175 

(B2013) and 6 June 2014 (B2014) at Bako, and the 4 July 2013 (M2013) and 9 July 176 

2014 (M2014), at Melkassa. Rainfall, maximum temperature (MaxT), and minimum 177 

temperature (MinT), varied considerably between sites and seasons (Figures S1 and 178 

S2). At both sites rainfall was higher in the 2013 than in the 2014 cropping season. 179 

The total-cropping season rainfalls at Bako for 2013 and 2014 were 1190 and 790 180 

mm, respectively. Rainfall was well distributed throughout the growing season in 181 

both years, although substantial rain (>550 mm) fell in June and July in 2013 (Figure 182 

S1). The total cropping season rainfalls at Melkassa were 682 and 478 mm during 183 

the 2013 and 2014 seasons respectively, but the majority of this rain was in July 184 

2013 during the vegetative stage of crop growth (Figure S2). The average maximum 185 

temperature during May to December was marginally higher (27.5OC) at Melkassa 186 

than Bako (26.3 OC) (Figures S1 and S2).   187 

 188 

2.2. Experimental design and crop husbandry 189 

Three early (MH-130, SC-403, and THI3321) (~138 day) and three medium (BH-540, 190 

BH-543, and BH-546) (~148 day) maturing maize genotypes were evaluated at each 191 

site in a randomized complete block design with three replications. Early and 192 

medium maturing genotypes account more than 85% of the area cultivated for maize 193 

in Ethiopia. These genotypes are well adapted to eastern and southern Africa maize 194 

growing environments, morphologically diverse (droopy vs. upright leaf), had 195 

different time of release (old and new) and were developed by different organizations 196 
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(i.e. both public and private research organizations such as Ethiopian Institute of 197 

Agricultural Research (EIAR), International Maize and Wheat Research Center 198 

(CIMMYT), Pioneer-Hi Bred, and  Seed Co). All genotypes were planted in six rows 199 

of 5.1-m length plot with 75-cm inter-row spacing. Seeds were hand-planted at the 200 

onset of rainfall at two seeds per hill and later thinned to one seedling per hill within 201 

10 days after emergence to achieve a plant density of 5 plants m-2. All phosphorus 202 

(20 kg P ha-1) and one third of nitrogen (15.3 kg N ha-1) were applied at planting as a 203 

basal dose and the remaining N (30.7 kg N ha-1) was side-dressed about 35 days 204 

after emergence. Both sites had been cropped with maize in the previous season. 205 

 206 

2.3. Field data collection and stover sampling 207 

Immediately before grain harvest at physiological maturity the morphological 208 

characteristics of plant height (ground level to the tip of the plant), ear height (ground 209 

level to the upper-most ear insertion), and above-ear height (height from the upper- 210 

most ear insertion to the tip of the plant) were measured in four randomly selected 211 

plants for each plot. All plants in the middle two rows of each plot, from an area of 212 

7.65 m2 were hand-harvested to ground level for measurements of stover fraction 213 

yields. After being weighed, four randomly selected maize plants from each of the 214 

three replicated plots were sub-sampled; fresh weights of aboveground biomass 215 

were recorded and separated into two fractions. These comprised: (1) the upper part 216 

of the stover fraction (USF) that included all stover above the 2nd node below the first 217 

attached ear from the base of the plant (husks with shank, upper-stems (including 218 

the upper-leaf sheath and tassel) and upper-leaf blade); (2) the lower part of the 219 

stover fraction (LSF) that included the remaining stover above ground level (lower-220 

stems, including lower-leaf sheath, and lower-leaf blade). Neither grain nor cobs 221 
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were included in the USF or LSF. The yields and composition and in-vitro DM 222 

digestibility (IVDMD) of WS were calculated from the stover fractions. These harvest 223 

procedures were designed to mimic harvest scenarios of farmers using either a 224 

conventional low stubble height or a high stubble height as observed in some 225 

regions of east Africa (Dejene, 2018). Sub-samples of the USF and LSF were 226 

mechanically chopped to less than 10 cm in length. Fresh weights were measured 227 

and the samples (500 g) were then oven dried at 60oC for 48 h (until weight loss 228 

ceased) and weighed.  229 

In 2014, additional measurements were made of the stem thickness and of the 230 

morphological components within the upper and lower stover fractions. The upper 231 

and lower stem diameters were measured from four randomly selected plants from 232 

the middle two rows before harvest. Measurements were made using vernier 233 

callipers at the midpoint of the second internode counted from top-to-bottom and 234 

bottom-to-top of the plant, respectively. The USF and LSF samples within each plot 235 

were further manually separated into morphological components. The USF was 236 

separated into: (1) upper-leaf blade; (2) upper-stems including upper-leaf sheath and 237 

tassel, and (3) husks including the shank. The lower stover was separated into: (1) 238 

lower-leaf blades and (2) lower-stems, including the lower-leaf sheath. The leaf-to-239 

stem ratio (LSR) in both upper and lower stover, and the leaf and husk-to-stem ratio 240 

(LHSR) in the USF, were calculated. Sub-samples (500 g) of the stover 241 

morphological fractions were mechanically chopped to less than a 10 cm length and 242 

dried as described above. The yields and quality attributes were calculated on a dry 243 

basis.  244 

 245 
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2.4. Stover chemical composition and in vitro dry matter digestibility 246 

analyses 247 

2.4.1. Stover sample processing and laboratory analyses 248 

Stover sub-samples were ground through a 1-mm screen using a laboratory hammer 249 

mill (Christy and Norris Limited, Chelmsford, UK) and stored at ambient temperature. 250 

Samples were air-freighted to Australia and, to meet quarantine requirements, were 251 

gamma irradiated (25k Gray) before transport to laboratories. Total N, neutral 252 

detergent fiber (NDF) assayed with α–amylase and corrected for ash concentration 253 

and acid detergent fiber (ADF) corrected for ash concentration, and in-vitro DM 254 

digestibility (IVDMD) were estimated using near infrared reflectance spectroscopy 255 

(NIRS; Dejene, 2018). 256 

The NIRS calibrations used to measure the feed chemical composition and 257 

IVDMD described below were based on established northern Australian (NA) forage 258 

calibrations (unpublished results, D B Coates and R M Dixon) that had been 259 

developed primarily with tropical C4 grass and legume samples (n = 409 - 1688, 260 

depending on the attribute). These data sets were expanded and validated with 261 

additional reference samples to represent crop residues (CR) in east African farming 262 

systems. Of the CR samples from Ethiopia (n = 2851), a subset of 470 samples 263 

(maize stover fractions and whole stover (n = 203) from the two sites in the present 264 

experiment, and from 2 other sites (Hawassa and Adamitullu), and also samples of 265 

the CR of common bean, chickpea, faba bean and soybean (n = 267); 15–42% of 266 

each of these species or subclasses were selected) (Dejene, 2018). These 267 

additional reference samples were selected on the basis of high standardized global 268 

H values (Mahalanobis distance)2/f, where f is the number of factors in the model 269 

(Shenk & Westerhaus, 1991) with stratification so that each of the morphological 270 



12 
 

fractions of maize and grain legume species, genotypes, year, sites and grain 271 

legume crop growth stages at harvest was represented. These reference samples 272 

were analysed for chemical composition and IVDMD by the laboratory procedures 273 

described below and were then included with the calibration data from NA. The 274 

combined data (NA + CR) were used to calculate and validate improved calibration 275 

equations for concentrations of total N, NDF and ADF, and IVDMD. These improved 276 

calibrations were used to predict the attributes in the maize stover samples in the 277 

present experiment (for further details see Dejene, 2018). 278 

The validation statistics of the NIRS calibration for predicting maize stover 279 

samples showed that concentrations of N (n = 201), NDF (n = 203) and ADF (n = 280 

203) and IVDMD (n = 203) were well predicted by NIRS with the coefficient of 281 

determination in validation (R2
v) 0.97, 0.96, 0.95 and 0.90, respectively. The relative 282 

predictive determinant (RPDv = the ratio of the standard deviation of validation data 283 

set to bias corrected standard error of performance (SEP(C)) in the validation set) 284 

(Patil et al., 2010) were 5.67, 5.04, 4.67 and 2.93, respectively. Also the standard 285 

errors of performance (SEP) were 0.9, 15.7, 13.1 and 28.4 g kg−1 DM for the total N, 286 

NDF and ADF concentrations and IVDMD, respectively.   287 

Total N was determined using a LECO combustion system (TruMac® CN analyser 288 

2013 version1.3x;LECO Corporation, St. Joseph, MI, USA) that complied with AOAC 289 

(2005) analysis #990.03. Both the NDF and ADF were analysed using an ANKOM200 290 

Fiber Analyser (Model200, ANKOM Technology, Macedon, NY, USA) with F57 filter 291 

bags (ANKOM 57 micron pore size-ANKOM Technology, NY) (Anonymous, 1995a;  292 

Vogel et al., 1999) followed by incineration of the fiber residue to correct for ash 293 

(Mertens, 2002; 2011). In-vitro DM digestibility was determined with the filter bag 294 

method in a DAISYII incubator (ANKOM Technology, Macedon, Fairport, NY, USA) 295 
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(Anonymous, 1995b; Holden, 1999). Rumen fluid was obtained from two rumen 296 

fistulated steers fed a high quality forage diet, and was prepared as described by 297 

Holden (1999). Bags were incubated in rumen fluid and buffer for 48 h at 39.5 ± 298 

0.50C (Anonymous, 1995b), and then with acid-pepsin solution for another 24 h 299 

(Holden, 1999) before bags were dried and weighed. A laboratory standard sample 300 

(Astrebla spp C4 grass) and empty blank bags were included in each batch. 301 

Laboratory errors in the current study were controlled at an acceptable level, with a 302 

coefficient of variation between duplicate analyses of less than 5%. Digestible dry 303 

matter (DDM) yields of the USF and LSF and whole stover were calculated from the 304 

yields and IVDMD of the respective stover fractions. 305 

 306 

2.5. Statistical analyses 307 

Analysis of variance was performed for yields, morphological traits and nutritional 308 

attributes of the stover using a general linear model in SAS software (SAS, 2009). 309 

Homogeneity of variance was tested as described by Shapiro & Wilk (1965) prior to 310 

combined analyses over environments. Genotypes x environment interactions were 311 

examined using pooled analysis of variance that partitioned the total variance into 312 

the components of genotype, environment, genotype x environment interaction and 313 

pooled error. Environment (site-year combination) and replication were treated as 314 

random model in the analysis while the genotype was treated as fixed model. 315 

Differences among means were compared using the least significant difference 316 

(LSD) test (P < 0.05) in PROC MIXED with the PDIFF option of the LSMEANS 317 

statement. The association between the grain yield and yields of stover DM and 318 

DDM was examined using regression and graphs were developed using Sigma plot 319 

10.0 (Systat Software, SanJose, CA) and R software (R CoreTeam, 2017). 320 
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 321 

3. RESULTS 322 

 323 

3.1. Yields of maize grain and stover fractions, stover proportions, and 324 

morphological traits 325 

Both the genotype and environment were significant (P < 0.05) sources of variation 326 

(> 83%) for yields of grain, stover fractions and whole stover, and stover 327 

morphological traits, but there were no significant (P > 0.05) G x E interactions for 328 

most yield and stover morphological parameters measured (Table 1). On average 329 

across the sites and years the yields of grain, USF and LSF were 5.80, 5.94 and 330 

2.94 t ha-1, respectively (Table 2). The yields of grain and USF varied (P < 0.05) 331 

among genotypes from 5.18 to 6.60 t ha-1 and from 5.40 to 6.56 t ha-1, respectively. 332 

In general the grain and USF yields were higher in the higher rainfall environment of 333 

Bako (6.43 and 6.59 t ha-1 for B2013 and 7.44 and 6.04 t ha-1 for B2014, 334 

respectively) than in the lower rainfall environment of Melkassa, but the proportion of 335 

USF in whole stover was not affected by environment (Tables 1 and 2). Genotypes 336 

TH13321 and BH-546 had consistently higher yields of both grain (6.60 and 6.60 t 337 

ha-1, respectively) and USF (6.56 and 6.38 t ha-1, respectively) than the other 338 

genotypes. Moreover, the LSF yield was also high for genotype BH-546 (Table 2).  339 

The proportion of USF was greater in the early-maturing than the medium-340 

maturing genotypes. (Table 2).The USF accounted for, on average,674 g kg-1 of the 341 

whole stover, being highest (753 g kg-1, P < 0.05) for the shortest genotype (MH-342 

130) and lowest (P < 0.05) (602 and 626 g kg-1) for the tallest genotypes (BH-543 343 

and BH-546), respectively (Table 2).  344 
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TABLE 1 Analysis of variance and percent variation accounted by genotype (G), environment (E) and G x E for the attributes of 345 

plant height (PH), ear height (EH), above-ear height (AEH) (cm), upper stover fraction (USF) as a proportion of whole stover (WS), 346 

and yields (t ha-1) of grain, stover fractions, WS and digestible dry matter (DDM) in USF, lower stover fraction (LSF) and WS for six 347 

maize genotypes, three each from early and medium maturity groups, grown at Bako and Melkassa in Ethiopia in the 2013 and 348 

2014 cropping seasons. 349 

 350 

Source of variation  
df 

Height Proportion Yield DDM yield 

PH EH AEH USF Grain USF LSF WS USF LSF WS 

Genotype (G)  5 41.0*** 74.0*** 31.1*** 89.7*** 12.5*** 30.7*** 80.0*** 51.3*** 37.4*** 86.5*** 51.3*** 
Environment (E) 3 55.6*** 21.3*** 65.8*** 3.9ns† 82.4*** 57.3*** 14.4** 40.6*** 45.4** 5.2ns 40.6*** 
G x E  15 2.1ns 2.9ns 1.9ns 3.8ns 3.6** 6.7ns 3.3ns 4.7ns 9.8ns 5.2ns 4.7ns 
Residual  46 1.3 1.7 1.2 2.6 1.4 5.3 2.2 3.4 7.4 3.1 3.4 
CV, %  5.5 8.7 6.1 4.9 13.3 10.6 16.1 10.3 10.9 18.2 10.3 

 351 

*Significant at the 0.05 probability level. **Significant at the 0.01 probability level. ***Significant at the 0.001 probability level. †ns, 352 

nonsignificant. 353 
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TABLE 2 Least squares means for plant height (PH), ear height (EH), above-ear height (AEH), upper 354 

stover  fraction (USF) as a proportion of whole stover (WS), and yields of grain, USF, lower stover 355 

fraction (LSF), WS and digestible dry matter (DDM) of USF, LSF, and WS for six maize genotypes, 356 

three each from early and medium maturity groups, grown at Bako and Melkassa in Ethiopia in the 357 

2013 and 2014 cropping seasons . 358 

 359 
Source of  
variation 

Height Proportion  Yield DDM yield  

 
Genotype 

PH EH AEH USF Grain USF LSF WS USF LSF WS 

cm g kg-1  t ha−1  

MH-130a 201 96 105 753 5.19 5.83 1.91 7.7 3.07 0.88 3.9 
SC-403a 234 109 125 696 5.82 5.40 2.35 7.8 2.77 0.98 3.7 
TH13321a 239 108 132 710 6.60 6.56 2.73 9.3 3.38 1.28 4.7 
BH-540b 250 133 117 655 5.18 5.72 3.01 8.7 3.02 1.30 4.3 
BH-543b 255 147 108 602 5.42 5.76 3.81 9.6 3.19 1.77 5.0 
BH-546b 260 136 124 626 6.60 6.38 3.82 10.2 3.33 1.75 5.1 
LSD 10.8 8.6 5.9 27.3 0.63 0.52 0.39 0.8 0.28 0.20 0.4 
SE 3.8 3.0 2.1 9.6 0.22 0.18 0.14 0.3 0.10 0.07 0.1 

Environment 
(site-year) 

cm g kg-1  t ha−1  

B2013c 251 123 128 669 6.43 6.59 3.33 9.9 3.41 1.41 4.8 
B2014d 263 132 130 687 7.44 6.04 2.80 8.8 3.10 1.23 4.3 
M2013e 226 119 107 665 4.50 5.54 2.89 8.4 2.94 1.33 4.3 
M2014f 220 111 108 674 4.84 5.60 2.74 8.3 3.05 1.33 4.4 
LSD 8.9 7.1 4.8 ns† 0.52 0.42 0.32 0.6 0.23 ns 0.3 
SE 3.1 2.5 1.7 8.0 0.18 0.15 0.11 0.2 0.08 0.06 0.1 

Mean 240 121 118 674 5.80 5.94 2.94 8.9 3.13 1.33 4.5 
aEarly-maturing genotypes. bMedium-maturing genotypes. cBako site in 2013 cropping season. dBako 360 

site in 2014 cropping season. eMelkassa site in 2013 cropping season. fMelkassa site in 2014 361 

cropping season. 362 

. LSD, least significance difference at P < 0.05; SE, standard error; †ns, nonsignificant. 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 
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The contributions of the morphological components, the LSR, the LHSR and stem 371 

diameters, varied (P < 0.05) among genotypes and also by environments (P < 0.001) 372 

for some attributes (Supplemental Tables S1 and S2). Within the USF the upper-373 

stem constituted the highest proportion (mean 484 g kg−1), followed by the husk (310 374 

g kg−1) and then upper-leaf (206 g kg−1). Stems formed most (mean 809 g kg−1) of 375 

LSF (Table S1). The LHSR in the USF varied (P < 0.05) among genotypes, ranging 376 

from 0.91 to 1.22 and varied between environments (P < 0.05). The stem diameter in 377 

both upper and lower stover varied (P < 0.05) among genotypes, ranging from 0.78 378 

to 0.93 cm and from 1.92 to 2.33 cm, respectively. However no such differences 379 

were observed between environments (Table S2). 380 

The DDM yield of USF averaged 3.13 t ha-1 and ranged from 2.77 to 3.38 t ha-1, 381 

and was highest for the genotypes with highest yields of grain and USF (TH13321 382 

and BH-546 yielding 3.38 ± SD 0.48 t ha-1and 3.33 ± SD 0.24 t ha-1, respectively) 383 

(Table 2). The DDM yields of the various morphological components of stover also 384 

varied among genotypes (P < 0.01) except for the DDM yield of upper-leaves 385 

(Supplemental Table S4). Genotypes TH13321 and BH-546 had higher DDM yields 386 

than the other genotypes for all the morphological fractions measured.  387 

 388 

3.2. Chemical composition and in-vitro DM digestibility of upper and lower 389 

stover fractions and their morphological components 390 

Both genotype and environment affected (P < 0.01 or P < 0.001) the stover quality 391 

attributes (> 82% of the variation) with environment always having the greater effect, 392 

but there were no significant (P > 0.05) G x E interactions for most stover quality 393 

attributes measured (Table 3). The IVDMD (mean 527 g kg−1 DM) and N 394 

concentration (mean 8.5 g kg−1 DM) of USF were higher (P < 0.001 or P < 0.05) than 395 
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in LSF (by 77 and 2.3 g kg−1 DM units, respectively) or in whole stover (by 25 and 0.8 396 

g kg−1 DM units, respectively; Table 4). The IVDMD and N concentration of the USF 397 

varied among genotypes (P< 0.01), ranging from 513 to 554 g kg−1 DM and 7.8 to 398 

9.7g kg−1 DM, respectively. At Melkassa lower IVDMD and total N concentrations, 399 

and higher NDF and ADF concentrations (P < 0.05) were observed in both the upper 400 

and lower stover during the 2013 than the 2014 cropping season. However no such 401 

differences between years were observed at Bako. 402 

 403 
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TABLE 3 Analysis of variance and percent variation accounted by genotype (G), environment (E), and G x E for the attributes in-404 

vitro dry matter digestibility (IVDMD), total N (N), neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations (g kg-1 405 

DM) of upper and lower stover fractions and whole stover for six maize genotypes, three early and three medium maturity, grown at 406 

Bako and Melkassa in Ethiopia in the 2013 and 2014 growing seasons. 407 

 408 

Source of variation 
df 

Upper stover Lower stover Whole stover 

IVDMD N NDF ADF IVDMD N NDF ADF DMD N NDF ADF 

Genotype (G) 5 36.9*** 37.2** 10.7* 29.2*** 23.6*** 28.3** 30.3*** 35.6*** 20.1*** 26.2* 15.2** 29.2*** 
Environment (E) 3 56.8*** 45.9** 82.0*** 65.3*** 64.7*** 55.5*** 51.9*** 46.0*** 71.4*** 56.0** 74.9*** 61.5*** 
G x E 15 2.6ns† 7.0ns 4.1ns 2.8ns 8.5** 8.7ns 12.9** 14.2*** 5.1ns 7.7ns 6.4ns 6.0ns 
Residual  46 3.7 9.9 3.3 2.7 3.3 7.5 4.9 4.1 3.4 10.1 3.5 3.2 
CV, %  3.0 15.4 2.7 2.9 5.6 22.7 3.7 4.6 3.4 16.9 2.8 3.4 

 409 

*Significant at the 0.05 probability level. **Significant at the 0.01 probability level. ***Significant at the 0.001 probability level. †ns, 410 

nonsignificant. 411 
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TABLE  4 Least squares means for in-vitro dry matter digestibility (IVDMD), and concentrations of total N (N), 412 

neutral detergent fiber (NDF), and acid detergent fiber (ADF) of upper and lower stover fractions and whole 413 

stover for six maize genotypes, three each from early and medium maturity groups, grown at Bako and Melkassa 414 

in Ethiopia in the 2013 and 2014 growing seasons. 415 

Source of  
variation 

Upper stover Lower stover Whole stover 

 
Genotype 

 
IVDMD 

 

N 

 

NDF 

 

ADF 

 

IVDMD 

 

N 

 

NDF 

 

ADF 

 

IVDMD 

 

N 

 

NDF 

 

ADF 

g kg−1 DM 

MH-130a 526 8.0 764 436 460 5.7 775 525 510 7.5 767 458 
SC-403a 513 7.8 773 461 418 4.9 811 560 485 6.9 785 491 
TH13321a 517 7.9 752 443 466 5.9 752 504 502 7.3 752 460 
BH-540b 528 8.9 773 446 433 7.0 788 557 496 8.3 778 484 
BH-543b 554 9.7 761 426 465 6.8 799 542 519 8.5 776 472 
BH-546b 523 8.7 783 452 458 6.7 797 541 499 7.9 788 485 
LSD 13.1 1.1 17.3 10.7 20.9 1.1 23.9 20.1 13.8 1.1 18.1 1.31 
SE 4.6 0.4 6.1 3.8 7.3 0.4 8.4 7.1 4.9 0.4 6.4 4.6 

Environment 
(site-year) 

g kg−1 DM 
 

B2013c 517 7.8 773 447 421 4.9 792 546 485 0.69 780 480 
B2014d 513 8.6 768 452 437 6.6 789 545 489 0.80 775 481 
M2013e 532 8.3 795 455 459 6.2 811 552 508 0.76 800 488 
M2014f 545 9.4 735 422 482 7.0 757 509 525 0.86 742 451 
LSD 10.7 0.9 14.1 8.8 17.0 0.9 19.5 16.5 11.3 0.09 14.8 10.7 
SE 3.8 0.3 5.0 3.1 6.0 0.3 7.0 6.0 4.0 0.03 5.2 3.8 

Mean 527 8.5 768 444 450 6.2 787 538 502 7.7 774 475 
 416 

aEarly-maturing genotypes. bMedium-maturing genotypes. cBako site in 2013 cropping season.  dBako site in 417 

2014 cropping season. eMelkassa site in 2013 cropping season.  fMelkassa site in 2014 cropping season. 418 

LSD, least significance difference at P <0.05; SE, standard error. 419 

 420 

There were generally large differences due to genotype and environment (P < 421 

0.05) in both the IVDMD and N concentrations of the various morphological 422 

components within the upper and lower stover measured at both sites in 2014 423 

cropping season (Supplemental Table S3). The IVDMD of stem and husk 424 

components in the USF were higher (P < 0.0001) in the lower rainfall environment at 425 

Melkassa (514 and 592 g kg-1 DM, respectively) than in the higher rainfall 426 

environment at Bako (462 and 538 g kg-1 DM, respectively) (Table S3).   427 

Analysis of the pooled data from mean values for each of the genotypes in each 428 

environment showed that grain yield was correlated with both the DM yield (r = 0.61; 429 

P < 0.001) and DDM yield of the USF (r = 0.50; P < 0.001) (Supplemental Figures 430 
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S3a and S3b). However, grain yield was correlated to a lesser extent with the DM 431 

yield of LSF (r = 0.26; P < 0.05) and was not related to the DDM yield of LSF (r = 432 

0.15; P = 0.21). Furthermore, the correlations between grain yield with yields of DM 433 

and DDM of the USF were closer for early-maturing genotypes (r = 0.73 and 0.62, 434 

respectively; P < 0.001) than for medium-maturing genotypes (r = 0.55; P < 0.001 435 

and r = 0.37; P < 0.05, respectively).  436 

 437 

4. DISCUSSION 438 

4.1. Yields of grain and stover, chemical composition and in-vitro DM 439 

digestibility of upper and lower stover and their morphological 440 

components  441 

There was substantial variation among genotypes in yields of grain and stover, 442 

stover chemical composition, IVDMD, and the DDM yields of the upper and lower 443 

stover. This is in agreement with the report of Liang et al. (2015) that there was 444 

variation in yields of biomass and nutrients and stover quality attributes among five 445 

maize cultivars in a study in China that might result from genetic differences in 446 

morphological characteristics of various cultivars or maturity at harvest.  447 

In accord with the hypothesis that the USF of maize stover would be higher in 448 

nutritive value, the, concentrations of N and IVDMD were higher, and those of ADF 449 

were lower, in the USF than the LSF (Table 4). This was likely due to N translocation 450 

from older to younger plant tissues (Kalmbacher, 1983) and the expected gradient of 451 

physiological cell wall age and lignification from the base to the top of the stem of the 452 

maize plant. It has been shown that in general the N concentration and IVDMD of the 453 

stem tissue decreases, and the ADF concentration increases, from the top to the 454 

bottom of the stem of grass plants; thus there is a trend for increasing N 455 
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concentration and IVDMD with increasing height in the plant (Jung et al., 1998; Lam 456 

et al., 2013). 457 

The genotype differences in nutritional quality of the USF and LSF (Tables 3 and 458 

4) appeared to be associated primarily with the differences in the proportions of 459 

morphological fractions, and especially in the stem proportion (Tables S1 and S2). 460 

Stem comprised the largest fraction of both the USF and LSF (484 and 809 g kg-1 461 

DM, respectively) (Table S1) and stem had the lowest IVDMD (488 and 426 g kg-462 

1DM in USF and LSF, respectively) (Table S3). This is in agreement with the report 463 

of Tolera and Sundstøl (1999) that the stem comprises the highest proportion (450 to 464 

530 g kg-1) of maize stover, and is the most important fraction influencing its nutritive 465 

value. Similarly, Hansey et al. (2010) reported that at physiological maturity of maize 466 

the stems comprised the largest fraction of the plant (460 g kg-1) and had the lowest 467 

neutral detergent fiber digestibility (380 g kg-1). Furthermore the differences in N 468 

concentration and IVDMD of each morphological fraction of the stover in the current 469 

study were in agreement with the previous reports (Li et al., 2014; Lynch et al., 2014; 470 

Tang et al., 2008; Tolera & Sundstøl, 1999 ). It is well established that in grass plants 471 

such as maize the leaf is higher in N concentration and DM (or organic matter) 472 

digestibility than the stems (Petzel et al., 2019; Tolera & Sundstøl, 1999). 473 

The two genotypes with the highest grain yields in the current study (TH13321 and 474 

BH-546) also had high yields of DM and DDM in the USF. In addition, genotype BH-475 

546 had higher yields of DM and DDM in the LSF than other genotypes (Table 2). 476 

These results demonstrated that superior genotypes that have higher yields of both 477 

grain and stover fractions, and also higher stover nutritional quality, can be identified. 478 

Furthermore, a strong association observed in the present study between upper 479 

stover DDM yield and grain yield (r = 0.50; P < 0.001) indicates that there is 480 
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opportunity to select genotypes for higher yields of both grain and DDM in the USF 481 

(Figure S3b). The higher yielding genotypes (TH13321 and BH-546) in the present 482 

study also had a LHSR (1.07 and 1.11, respectively) in the USF comparable with the 483 

other genotypes (MH-130, SC-403, BH-540 and BH-543) (Table S2). These traits 484 

are easily measured in the field and if the LHSR provides consistent prediction of the 485 

yield of DDM in USF, it may be useful for rapid screening to identify genotypes with 486 

higher yields and nutritive value of USF. Combining the most appropriate genotype 487 

with higher stubble heights should offer opportunities to supply more maize stover of 488 

higher quality as a feed for livestock and a greater quantity of mulch for soil 489 

amendment, potentially reducing conflict between the allocations of the stover to 490 

competing uses. It has been shown that multi-objective crop improvement programs 491 

can improve both human food and livestock feed and at least in some circumstances 492 

may be easily out-scaled (McDermott et al., 2010). 493 

Maize performance was also influenced by environment (Table 1). The result of 494 

the present experiment supports the hypothesis that there are options for farmers to 495 

select more suitable genotypes in a given region to achieve higher yields of both 496 

stover and grain. The differences between environments for yields of grain and USF 497 

and plant height (all higher at Bako than Melkassa) are in accord with higher and 498 

well distributed rainfall during the growing seasons at the former site. The Bako site 499 

represents sub-humid areas with a high rainfall environment and the rainfall well 500 

distributed through the growing seasons, whereas the Melkassa site represents 501 

semi-arid maize growing areas with a low and erratic rainfall. The lower IVDMD and 502 

total N, and higher NDF and ADF, in both upper and lower stover at the Melkassa 503 

site in 2013 than in 2014 (Table 4), were likely due to the higher rainfall in 2013 504 

(Figure S2). This contrasts with an absence of such between-year difference in 505 
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stover quality attributes at Bako (Table 4) where there was no water stress through 506 

the cropping seasons (Seyoum et al., 2018). Similarly, lower IVDMD and higher 507 

proportions of fiber in the straw of temperate barley, wheat and oat cereals grown in 508 

years with high rainfall were reported by Ørskov et al. (1990). This evidence 509 

indicates that quality attributes of maize stover may be partly associated with the 510 

rainfall and moisture stress during growth.  511 

 512 

4.2. Plant morphological traits and the proportions of upper and lower 513 

stover fractions 514 

The genotype differences observed in yields and nutritional quality of the stover 515 

fractions (Tables 2 and 4) appeared to be associated with the inherent differences in 516 

plant morphological traits (example plant heights), the proportions of morphological 517 

fractions (especially the stem proportion), and dual-purpose characteristics or 518 

maturity at harvest among the genotypes tested. The greater ear and plant heights in 519 

the medium-maturing genotypes than in the early-maturing genotypes (Table 2) were 520 

in accord with the findings of both Dijak et al. (1999) and Tadesse (2014) that later 521 

maturing genotypes tend to have taller plant heights. Pooled analysis of the data 522 

from both sites and years also showed that (1) strong and significant association 523 

between plant height and yields of USF (r = 40; P < 0.001), LSF (r = 0.65; P < 524 

0.0001) and whole stover (r = 0.63; P < 0.0001), and (2) a significantly positive 525 

relationships (P < 0.001) between grain yield with plant height, ear height and above-526 

ear height (Data not shown). Interestingly in the present study the higher proportions 527 

of USF in early-maturing than in medium-maturing genotypes were also associated 528 

with ear height (Table 2). If these differences occur generally and are stable they 529 

may be useful as a simple tool to inform selection of genotypes and/or cut height 530 
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decisions. In addition the observation that the proportions of upper and lower stover 531 

did not vary with environment (Table 1) suggests that selection for a high proportion 532 

of USF and LSF may be based on genotype without consideration of environment. 533 

The study demonstrated that high stubble height of maize at harvest can provide a 534 

USF substantially higher in both IVDMD and N concentration than whole stover 535 

(WS). The average increases of IVDMD and N by 25 and 0.8 g kg-1DM units, 536 

respectively, relative to WS in the present study would provide substantial increases 537 

in the nutritional value of the stover as a ruminant feedstuff. Moreover, the higher 538 

leaf and husk proportion and thinner stems in the USF (Supplemental Tables S1 and 539 

S2) than in whole or lower stover is also likely to increase voluntary intake of stover 540 

and thus animal productivity. 541 

 542 

4.3. Implications for improving productivity through crop residue 543 

management in conservation agriculture 544 

Soil erosion and the decline of soil organic matter and fertility is one of the most 545 

important constraints to enhanced crop productivity in sub-Saharan Africa and 546 

elsewhere globally (Cong et al., 2016; Erenstein et al., 2015; Guto et al., 2012; 547 

Karlen et al., 2019; Sanchez & Jama, 2002). Organic resources, such as animal 548 

manures and plant residues, can enhance soil organic matter and improve long-term 549 

soil fertility. The bulky nature of animal manure and the nutrient losses at various 550 

stages from manure production to field application can limit its practicality in a wider 551 

scale under smallholder systems (Rufino et al., 2007). Crop residues need to be 552 

returned to the soil on a regular basis and in adequate amounts so as to maintain 553 

soil fertility. On the other hand, farmers also need to sustain and feed their livestock 554 

(Giller et al., 2009). 555 
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The supply of large amounts of CR required as mulch to maintain soil fertility and 556 

reduce soil erosion has been challenging due to the demands for CR to feed 557 

livestock (Baudron et al., 2014; Erenstein et al., 2015; Giller et al., 2009; Larbi et al., 558 

2002; Rodriguez et al., 2017; Tittonell et al., 2015). Current recommendations are 559 

that at least 30% of the soil surface should be covered with crop residue mulch 560 

(Erenstein et al., 2003). Providing this coverage of mulch will presumably be 561 

particularly difficult where crop production and biomass yields are low, or where 562 

there are high livestock populations and/or profitable markets for CR as fodders 563 

(Rusinamhodzi et al., 2015; Duncan et al., 2016). Balancing the use of maize 564 

residues for soil amendment and forage is an important strategy for agricultural 565 

sustainability (S.Z. Tian et al., 2016). In principle it is clearly advantageous to 566 

preferentially allocate various crop residue fractions to the use for which they have 567 

the highest biological and economic value. The present study indicates the potential 568 

advantages of allocating the USF of maize stover for use as ruminant feed providing 569 

that there is little disadvantage to use of the LSF for CA.  570 

The results of the present experiment show that the LSF remaining in the field with  571 

high stubble height would be of low quality as a feed due to the low N concentration, 572 

but feed quality would also be reduced by the low proportion of leaf and the thick, 573 

fibrous and unpalatable stems. Clearly information is needed on the suitability of the 574 

lower mature stems in maize stubble for soil coverage and mulch in each maize 575 

growing environment. However providing that the LSF is of comparable value for CA 576 

as observed in China by Liang et al. (2015) and S.Z. Tian et al. (2016), the use of a 577 

high stubble height of maize stover should provide a simple ‘win-win’ management 578 

strategy to make best use of maize stover to provide ruminant feed as well as to 579 

provide mulch. In the present experiment the highest yielding genotype (BH-546) 580 



27 
 

provided upper and lower stover yields of 6.38 and 3.82 t ha-1, respectively (Table 2) 581 

and could be used as ruminant feed and mulch, respectively. Two studies in Chinese 582 

farming systems in Hebei Plain and Shandong province support these conclusions. 583 

For instance Liang et al. (2015) reported that the upper two-thirds of the stover of 584 

several cultivars were valuable as a ruminant feed while the lower third part of the 585 

stover with higher fibre and lower N was more suitable for mulch. Also S.Z. Tian et 586 

al. (2016) compared four maize stover stubble heights and concluded that 34% (3.6 t 587 

ha-1 year-1) stover retention (with a cutting height of 0.5 m) was optimal to provide a 588 

substantial amount of the USF (66%; 6.2 t ha-1 year-1) of higher quality feed for 589 

ruminants without adverse effects on the soil C and N levels and associated 590 

economic benefits. 591 

Crop residue management (mulching) effects on soil are complex and are 592 

influenced by many factors, and in addition the benefits of CR mulching are highly 593 

context specific (Giller et al., 2009; Karlen et al., 2019; Mupangwa et al., 2019; 594 

Oladeji et al., 2006; Rufino et al., 2007; G. Tian  et al., 1993a,1993b;  G. Tian et al., 595 

2007; S.Z. Tian et al., 2016). For instance, the study of Larbi et al. (2002) suggested 596 

that 25-50% of the total CR could be removed as livestock feed without any adverse 597 

effect on grain yield and soil organic C, N, and P while retaining for mulch 50 to 75% 598 

of the total CR (3.28 to 5.60 t ha-1) in the environment studied (West African humid 599 

forest and savanna zones). Similarly, Mupangwa et al. (2019) demonstrated that 600 

mulching at 0, 2, 4, 6 and 8 t ha-1 year-1with maize stover resulted in little increase in 601 

grain yield over 6 years even in low rainfall locations in South Africa. These studies 602 

suggest that smallholder farmers can apply low to moderate levels of stover (e.g. 2 603 

to 4 t ha−1) and still obtain the benefits of CA (Mupangwa et al., 2019).  604 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=W.%20Mupangwa%20&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=W.%20Mupangwa%20&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=W.%20Mupangwa%20&eventCode=SE-AU
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A further consideration is that apart from their availability, the CR of maize and 605 

other cereal crops may have disadvantages of N availability especially when large 606 

amounts of low quality cereal CR are retained as mulch. The low concentrations of N 607 

and other minerals in maize stover and other cereal CR are likely to induce short-608 

term nutrient deficiencies due to their high C:N ratio (Larbi et al., 2002; Mupangwa et 609 

al., 2019; Palm et al., 2001; Vanlauwe & Giller, 2006) that can reduce crop yield 610 

(Giller et al., 2015). Combining low quality CR like maize stover with fertilizer inputs 611 

altered the temporary C and N mineralization (Gentile et al., 2011; Gomez-612 

Macpherson & Villalobos, 2015; Mupangwa et al., 2019), although the short-term 613 

nutrient immobilisation effect is context specific and influenced by the interactions 614 

between residue quality and agro-ecology (G. Tian et al., 2007). These authors 615 

confirmed that the low quality plant residue could decompose and release N and P 616 

faster in dry than wet zones. 617 

These studies illustrate the complexity of the processes associated with soil 618 

mulching. We hypothesize that various appropriate fractions of CR can be used for 619 

both soil mulching and livestock feeding without adversely affecting crop productivity 620 

and for improving whole-farm productivity (Baudron et al., 2014). The benefits of 621 

mulching can be obtained from the taller stubble height of maize stover by retaining 622 

all of the LSF (2.73 and 3.82 t ha-1) provided by the highest yielding early and 623 

medium maturing genotypes, respectively in the present study (Table 2) (Liang et al., 624 

2015; S.Z. Tian et al., 2016). The benefit of mulching is likely especially if combined 625 

with about 30 kg N ha-1 to offset the short-term N immobilization (Mupangwa et al., 626 

2019). The corresponding USF (6.56 and 6.38 t ha-1, respectively) can be used as 627 

feed for ruminants to improve whole-farm productivity outcome. 628 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=W.%20Mupangwa%20&eventCode=SE-AU
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A further consideration for evaluation of feed resources is that almost all studies 629 

have reported the availability of maize stover as the total above ground biomass 630 

(Baudron et al., 2014; Duncan et al., 2016; Ertiro et al., 2013; FAO, 2018; Jaleta et 631 

al., 2015; Tolera et al., 1999 ). Consideration is needed to the amounts and 632 

attributes of various fractions of the stover relative to the practicality of separating 633 

stover fractions for different uses. The simple manipulation of height of cutting the 634 

stover, as used in the present study, provides one valuable option likely applicable 635 

globally and to many crop-livestock systems where maize and other thick-stemmed 636 

cereals sorghum and millet are major crops.  637 

The concepts of the  present study have the advantages that high stubble height: 638 

(1) is very simple and easy to implement on-farm, (2) provides an on-farm approach 639 

to obtaining forage of high feed quality for ruminants, (3) is based on well-640 

established knowledge that the higher feed quality of the USF than the LSF is a real 641 

and consistent difference,  (4) is applicable globally and to many smallholder crop-642 

livestock systems in developing countries where maize and other thick-stemmed 643 

cereals sorghum and millet are major crops, and where there is often a scarcity of 644 

ruminant feed resources. This is the first study to demonstrate these two uses of CR 645 

from maize stover from various genotypes and environments at grain harvest 646 

maturity. It also identified superior genotypes that have higher yields of both grain 647 

and stover fractions (upper and lower stover) and also higher stover nutritional 648 

quality of the USF. This research provides new insights for multi-objective crop 649 

improvement programs for improving both human food and livestock feed, and for 650 

animal nutritionists for evaluating feed resources of various fractions of the stover 651 

relative to the practicality of separating stover fractions for different uses (feed and 652 
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mulch) for improved whole-farm productivity and adoption of CA in developing 653 

countries. 654 

 655 

5. CONCLUSION 656 

The study established that a simple management change to cutting height of maize 657 

stover at grain harvest could provide an USF as a ruminant feed that is substantially 658 

higher in IVDMD and N concentration than whole stover. The results were in accord 659 

with the hypotheses that the high-cut procedure used (i) allowed harvests of about 660 

two-thirds of the whole stover as USF that provided about 6 t ha-1 of higher quality 661 

ruminant feed, while leaving about 3 t ha-1 of a LSF as stubble that would be less 662 

suitable for livestock feed and available for mulch, and (ii) a higher nutritive value of 663 

the USF is consistent across maize genotypes and growing environments. Obviously 664 

cutting height can be adjusted to provide the most appropriate proportions of USF 665 

and LSF for the circumstances. High-cut management of maize stover at harvest is 666 

likely best used with high-yielding genotypes and has the potential to reduce conflict 667 

between the competing uses of maize stover and improve whole-farm productivity 668 

outcome. Nevertheless, N concentrations in the USF were still generally low so that 669 

additional diet N would still be required for best use of USF as a feed for ruminants.  670 

This study showed that recently developed varieties, TH13321 (early) and 671 

BH-546 (medium), with higher grain yield also had higher yields of stover fractions 672 

indicating that genotype selection for both higher stover fractions and grain yield can 673 

be done simultaneously. The genotype differences observed in yields and nutritional 674 

quality of the stover fractions appeared to be associated with the inherent differences 675 

in plant morphological traits (plant heights), the proportions of morphological 676 

fractions (especially the stem proportion), dual-purpose characteristics or maturity at 677 
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harvest among the genotypes tested. An improved understanding of genotype 678 

differences on stover morphological traits (characteristics of plant height, ears 679 

insertion heights, and proportions of morphological fractions), yields of grain and 680 

stover fractions, and quality traits of the stover fractions should also allow more 681 

accurate estimates of the stover biomass available for livestock and mulch. 682 
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