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ABSTRACT
The design and evaluation of data-driven network intrusion detec-

tion methods are currently held back by a lack of adequate data,

both in terms of benign and attack traffic. Existing datasets are

mostly gathered in isolated lab environments containing virtual

machines, to both offer more control over the computer interactions

and prevent any malicious code from escaping. This procedure how-

ever leads to datasets that lack four core properties: heterogeneity,

ground truth traffic labels, large data size, and contemporary con-

tent. Here, we present a novel data generation framework based on

Docker containers that addresses these problems systematically. For

this, we arrange suitable containers into relevant traffic communi-

cation scenarios and subscenarios, which are subject to appropriate

input randomization as well as WAN emulation. By relying on

process isolation through containerization, we can match traffic

events with individual processes, and achieve scalability and mod-

ularity of individual traffic scenarios. We perform two experiments

to assess the reproducability and traffic properties of our frame-

work, and demonstrate the usefulness of our framework on a traffic

classification example.
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1 INTRODUCTION
The exponential growth of data availability enabled the machine

learning revolution of this decade that transformed many areas

of our lives. Ironically, security oriented data describing computer

networks is notoriously hard to obtain, and researchers struggle to

evaluate new network intrusion detection systems (NIDS) or similar

tools on suitable network traffic data. Well-designed datasets are

such a rarity that researchers often rely on datasets that are well

over a decade old [18, 35], calling into question their effectiveness
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on modern traffic and attacks. The lack of quantity, variability,

meaningful labels, and ground truth has so far slowed scientific

progress and objective and appropriate measurements on ML-based

network security methods.

Privacy and security concerns discourage network administra-

tors to release rich and realistic datasets for the public. Network

traffic produced by individuals contains amass of sensitive, personal

information, such as passwords, email addresses, or usage habits,

requiring researchers to expend effort anonymising the dataset

[24]. To examine malicious behaviour, researchers are often forced

to build artificial datasets using isolated machines in a laboratory

setting to avoid damaging operational devices. Background traffic is

usually generated in real-time from scripts executed on the virtual

machine, which constrains both the amount and heterogeneity of

the data. Current experiments show that it is possible to use large

network of virtual machines for traffic generation [7, 8], however

we did not find any publicly available dataset of that category.

Existing network intrusion detection datasets are predominantly

designed to support a broad range of applications, and are collected

in a static manner, unable to be modified or expanded. This proves

to be a serious defect as the ecosystem of intrusions is continually

evolving. Furthermore, it prohibits a more detailed analysis of spe-

cific areas of network traffic due to the available data only being a

fraction of the original dataset. To combat this, new datasets must

be periodically built from scratch.

Allowing researchers to create datasets dynamically to circum-

vent these issues would be extremely beneficial. We propose a such

framework, based on application containers using Docker [13].

Docker is a service for developing and monitoring containers, also

known as OS-level virtual machines. By moving from virtual ma-

chines to containers, we enable the scalable, modular, and dynamic

creation of network traffic datasets. Since Docker containers can

be arranged in complex settings with a few commands, it is a lot

easier with containers to script a variety of network activities thus

increase the heterogeneity and realism of the generated data.

Furthermore, each Docker container is highly specialized in

its purpose, generating traffic related to only a single application

process. Therefore, by scripting a variety of Docker-based scenarios
that simulate benign or malicious behaviours and collecting the

resultant traffic, we can build a dataset with perfect ground truth,

something that has so far not been possible for network traffic.

Finally, the most import reason to rely on Docker for container-

ization is that many containerized applications are shared on the

Docker Hub platform.

This work provides the following contributions:

(1) We present a novel network traffic generation framework

that is designed to improve several shortcomings of cur-

rent datasets for NIDS evaluation. This framework is openly

https://doi.org/10.1145/3464458.3464460
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accessible for researchers and allows for straightforward

customization.

(2) We define four new requirements a network intrusion dataset

should fulfil in order to be suitable to train machine-learning

based intrusion detection methods.

(3) We perform a number of experiments to demonstrate the

suitability and utility of our framework.

1.1 Outline
The remainder of the paper is organized as follows. Section 2 dis-

cusses existing NIDS datasets and the problems that arise during

their usage as well as background information about network traf-

fic data formats and virtualization methods. The section concludes

with a set of requirements we propose to improve the training and

evaluation of machine-learning-based methods. Section 3 describes

the general design of our framework, and how it improves on the

discussed problems in existing datasets. We also discuss a specific

example in detail. Section 4 discusses several experiments to vali-

date the improvements and utility our framework provides. Section

5 concludes the results and discusses limitations of our work and

directions for future work.

2 BACKGROUND
2.1 Data formats
Computers in a network communicate by sending network packets
to each other, which are split into the control information, also

called packet header, and the user information, called payload. The

payload of a packet in general carries the information on behalf of

an application and can be encrypted, while the header contains the

necessary information for the correct transmission of the packet,

including the transmission protocol layer, IP addresses, etc. Meth-

ods using packet-level input can be divided into payload inspection,

header-based, or hybrid. Packets are usually stored in the wide-

spread pcap format.

The majority of packets are exchanged between two hosts within

bidirectional connections. Another common format of network traf-

fic information is based on connection summaries, also called net-
work flows. RFC 3697 [5] defines a network flow as a sequence of

packets that share the same source and destination IP address, IP

protocol, and for TCP and UDP connections the same source and

destination port. A network flow is usually represented by this

information along with additional information such as the start and

duration of the connection as well as the total number of packets

and bytes transferred.

2.2 Related work and existing datasets
To evaluate their ability to model the behaviour of a network and

to identify malicious activity and network intrusions, new methods

have to be tested using existing datasets of network traffic. This

network should ideally contain realistic and representative benign

network traffic as well as a variety of different network intrusions.

However, as network traffic contains a vast amount of information

about a network and its users, it is notoriously difficult to release a

comprehensive dataset without infringing the privacy rights of the

network users [34]. Furthermore, the identification of malicious

traffic in network traces is not straightforward and often requires a

significant amount of manual labelling work. Introducing malicious

software into an enterprise network would be impossible for ethical

and security reasons. For that reason, only about four structured

datasets for network intrusion containing real-world traffic and

attacks are available openly. The most recent and notable real-

world datasets have been released from the Los Alamos National

Laboratory (LANL) in 2015 and 2017 [19, 36], and the University of

Granada (UGR) in 2016 [21]. Both datasets contain network flow

traffic data from a large number of hosts collected over multiple

months, giving an accurate representation of medium- to large-

scale structures in benign traffic. However, the amount of attack

data is small and insufficient for accurate detection rate estimation.

Furthermore, packet-level data is not available for both datasets.

Other real-world datasets, such as CAIDA 2016 [37] or MAWI 2000

[33], provide packet headers, but are unstructured and contain no

labeled attack data at all.

To improve the lack of attack traffic in NIDS datasets, several

artificially created datasets have been proposed. For this, a testbed

of virtual machines is usually hosted in an enclosed environment

to prevent any malicious code from spreading to other machines

on other networks. To generate attack traffic, these machines are

then subject to a selection of attack carried out by other machines

in the environment. Benign traffic is generated using commercial

traffic generators such as the IXIA PerfectStorm tool, or by scripting

a selection of tasks for each machine. Synthetic datasets cover

a smaller timeframe and contain traffic from a small number of

hosts. Notable examples are the CIC-IDS 2017 dataset from the

Canadian Institute for Cybersecurity [29], and the UNSW-NB 2015

dataset from the University of New South Wales [25]. Both datasets

contain traffic from a variety of attacks, and are available as packet

headers or as network flows with additional features crafted for

machine-learning. While the benign traffic for the CIC-IDS 2017

data was generated using scripted tasks from a number of host

profiles, the benign data for the UNSW-NB 2015 data is a mixture

of captured real traffic from another subnet and traffic generated

using a commercial traffic replicator.

We omitted the synthetic KDD-Cup 1999 and the DARPA 1998

datasets along with their derivates from the discussion as they are

well-known to be outdated and contain unrealistic benign traffic,

artificially high benign/attack data ratios, and artifacts stemming

from communication simulations [23, 35], problems which have

been addressed by most modern datasets.

Container networks have recently been adopted to conduct traf-

fic generation experiments, such by Fujdiak et al. [9] who use

containerized web servers to collect DoS-traffic. Furthermore, sig-

nificant effort has been put into the creation of large-scale vir-

tualization frameworks to provide automatized network testbeds

[3, 6].

2.3 Problems in modern datasets
The difficulty of obtaining malicious traffic in real-world captures

means that the performance of new network intrusion detection al-

gorithms are almost exclusively evaluated on synthetic datasets. Po-

tential disadvantages of synthetic compared to real-world datasets

have been discussed by several authors [32, 34]. However, none

address problems in the particular design of such synthetic testbeds



Traffic Generation using Containerization for Machine Learning DYNAMICS 2019, December 9–10, 2019, San Juan, PR, USA

that are holding machine-learning based methods back in perfor-

mance and from getting more widespread application. Here, we

focused on this aspect and four design problems common among

modern synthetic datasets.

Lack of variation. To generate benign traffic, a selection of ac-

tivities is scripted and executed on virtual machines. Activities

are selected to cover the most prominent protocols, but seldom to

cover the range of subactivites that each protocol offers. Instead,

the manner in which each protocol is used is highly-restricted, and

there are doubts about whether this traffic is representative of its

real-world equivalent usage [32]. An illustrative example of the

restricted protocol activity in synthetic datasets can be seen in the

CIC-IDS 2017 dataset. Here, the vast majority of successful FTP

transfers consist of a client downloading a single text file containing

the Wikipedia page for ‘Encryption’ several hundred times in a day.

In reality, FTP is used for a large number of tasks, which can occur

in random order with varying input sizes and parameters.

In addition to that, implemented test bed environments are usu-

ally separated from external influence or even virtualized, which

isolates them from fluctuations and faults introduced by the com-

plexity of modern networking. These include packet delays through

network congestions, unexpected connection drops or resets, and

out-of-order arrivals, all of which lead to variations in the response

behavior of particular services.

This general lack of variation in individual protocols leads to

observed homogeneity both on a packet exchange level and on a

network flow level, and thus to clearer structures in the data. Iden-

tifying separations of malicious and benign activity or between

different services consequently becomes easier, which leads to

overoptimistic results in the evaluation of machine-learning based

methods. It is therefore clear that traffic variation is a crucial aspect

of a comprehensive intrusion detection dataset. parameter

Lack of ground truth. To evaluate machine-learning-based meth-

ods that distinguish between different types of network traffic data,

we need to verify that separating structures in themodel correspond

to distinct computational actions, using traffic labels. Most obvious

is the labelling of benign and malicious traffic. More granular labels

are desirable to distinguish between several different types of net-

work traffic. An example for this is the design of ‘stepping stone’

detection methods, where researchers try to detect connections

relayed over a jump-host. Similarity or correlation metrics that

measure the closeness of two connections are a popular tool. To

understand such a measure, ground truth about how computation-

ally similar two connections are and what type of behavior they

represent is necessary. Other areas that look at small-scale traffic

structures and would benefit from detailed traffic labels include

protocol verification, traffic classification, traffic disaggregation, or

exploit discovery.

Ground truth labels for network traffic are hard to obtain. The

network traffic produced by a typical PC will invariably contain

traffic originating from background processes, such as software

updates, authentication traffic, network discovery services, adver-

tising features, as well as many other sources. To separate traffic

from different origins retrospectively is often hard, if not impossi-

ble. Source attribution through port numbers is unreliable because

port numbers can be dynamically allocated and are not restricted

to particular processes, and processes can open connections on

multiple ports at the same time. All of these reasons mean that the

identification of different computational operations from captured

traffic is often infeasible. Therefore, no public NID dataset currently

considers the inclusion of ground truth traffic labels.

Static design. A released dataset can only contain data that is

representative a system at the time of creation. In contrast to other

many other data sources for machine-learning, network traffic, both

benign and malicious, is constantly changing as computational

protocols and systems evolve. All available NIDS datasets today

have been created in a static manner , so that a fixed test bed of host

machines is created designed to contain specific vulnerabilities to

the selected attacks. This makes it very hard to change the test bed

and thus adjust the dataset to updated traffic structures. Allix et al.

[1] claim that it is impossible to release a NID dataset that is truly

representative of the real-world attacks due to the inherent secrecy

of the intrusion ecosystem and the rate at which it develops.

Limited size. Today’s machine-learning revolution was super-

charged by the exponential growth of available data. Larger amounts

of data mean that a given model can identify more complex struc-

tures that remain invariant in noisy environments and thus gener-

alize better. Although the amount of globally transmitted network

traffic is growing every year, the size of available NIDS datasets is

limited by small host numbers, typically 5-10, and short capture pe-

riods, at maximum a 5-6 weeks, inherent to test bed captures. This

means that traffic models can experience difficulties to generalize

over specific traffic types which represent a smaller fraction of the

total dataset. In an ideal setting, researchers would have the ability

to generate arbitrary amounts of specific traffic types.

2.4 Containerization with Docker
Virtual machines (VMs) share the same hardware infrastructure as

the host machine. VMs necessitate the use of hypervisors, software

responsible for sharing the host OS’s hardware resources, such as

memory, storage and networking capabilities. OS-level virtualiza-

tion, also known as containerization, is a virtualization paradigm

that has become popular in recent years due to its lightweight

nature and speed of deployment. In contrast with standard VMs,

containers forego a hypervisor and the shared resources are instead

kernel artifacts, which can be shared simultaneously across several

containers. Although this prevents the host environment from run-

ning different operating systems, containerization incurs minimal

CPU, memory, and networking overhead whilst maintaining a great

deal of isolation [20].

The main advantage of using containers for traffic generation is

the isolation of individual applications. This enables us to gather

ground truth about the traffic origin, and enables us to easily extend,

modify, and scale our traffic generation framework, which would

not be possible when relying on VMs.

Docker container. Docker is a software platform that allows for

the creation,maintenance and deployment of containers. In Docker’s

terminology, a container is a single, running instance of a Docker

image. Docker images are defined via a text file known as the

Dockerfile, which consists a series of commands that modify

an underlying base image, usually a containerized OS. Example
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FROM ubuntu

MAINTAINER XYZ ( email@domain . com )

RUN apt − ge t update

RUN apt − ge t i n s t a l l −y nginx

ENTRYPOINT [ " / u s r / s b i n / nginx " , " − g " , " daemon o f f ; " ]

EXPOSE 80

Figure 1: Example of Dockerfile creating a nginx-container.

commands include installing libraries and copying files. Figure 1

displays a simple example of Dockerfile.
After each command is executed, the intermediate, read-only

image is saved as a layer. These layers can be shared between

containers. When a Docker image is run as a container, a final

read-write layer is added and when the container is later stopped,

this layer is discarded, preserving the integrity of the underlying

layers. This allows Docker containers to be run repeatedly whilst

always starting from an identical state.

Individual Docker containers are intended to be highly special-

ized in their purpose with each container running only a specific

piece of software or application. Commonly used base images —

such as Alpine Linux — have minimal background processes run-

ning during a container’s lifetime. This means that the network

traces of a Docker container can be associated with a specific appli-

cation. The one-to-one correlation between containers and network

traces allows us to produce labeled datasets with fully granular

ground truths.

The Docker software platform includes a cloud-based repository

called the Docker Hub [15] which allows users to download and

build open source images on their local computers. At the time of

writing, nearly 2.5 million images are available from the Docker

Hub. Some common software — such as popular webservers and

databases — have officially maintained images. We use these as far

as possible to simplify the production of our scenarios, and keep

them close to software configuration used in practice.

Docker Networking. Docker allows the creation of virtualized

networks with one or more subnetworks, to which containers can

connect via a virtualized network bridge. Containers attached to

the bridge network are assigned an IP address and are able to com-

municate with other containers on their subnetwork. Containers

can furthermore be connected to a host network, which allows

communication with external networks using NAT via the host

interface.

To host containers in an isolated network, we can create our

own user-defined bridge networks, which provides greater isolation

between containers [14]. Furthermore, this allows us to fix the

subnet and gateway for our networks as well as the IP addresses of

our containers, which simplifies scripting scenarios. Docker allows

containers to share the same network interface. This enables us to

assign the same IP address to multiple containers.

Netem. The Docker engine also provides network access to Linux
traffic control facilities such as NetEm, on which we will rely in

this project. NetEm is a Linux toolkit for testing protocols by em-

ulating properties of wide area networks [11]. It allows the user

emulates variable delay, loss, duplication and re-ordering of packets

on particular network interfaces.

v e r s i o n : ' 3 '

s e r v i c e s :

webserver :

image : nginx : a l p i n e

p o r t s :

− " 8 0 : 8 0 "

networks :

− app−network

db :

image : mysql : 5 . 7 . 2 2

p o r t s :

− " 3 3 0 6 : 3 3 0 6 "

environment :

MYSQL_DATABASE : l a r a v e l

MYSQL_ROOT_PASSWORD : your_mysq l_root_password

networks :

− app−network

networks :

app−network :

d r i v e r : b r i d g e

Figure 2: Example of Docker-compose file launching a nginx-
and a mysql-container in an isolated network.

Docker Compose. Applications built using the Docker framework

often need more than one container to operate, for example an

Apache server and a MySQL server running in separate containers.

We must build and deploy several interconnected containers simul-

taneously. Docker provides this functionality via Docker compose,
a tool that allows users to define the services of multiple containers

as well as the properties of virtual networks in a YAML file. By

default, this file is named docker-compose.yml. This allows for nu-
merous containers to be started, stopped and rebuilt with a single

command in a consistent manner. This is particularly significant

for our purposes; with Docker compose, we can launch several

containers in a specific order, with a specific network configuration,

whilst running specific commands within each container on start

up. This ensures that our interactions are deterministic, barring

any added randomization. Figure 2 displays an example of a simple

Docker compose file.

2.5 Dataset Requirements
The primary task of this project is to provide a suite of Docker

container compositions that is capable of generating traffic datasets

suitable for machine-learning-based intrusion detection systems.

This container suite is designed to address the criticism of current

NIDS datasets discussed in Section 2.3. For this, we created a set

of requirements that a modern intrusion detection dataset has to

fulfil to address the problems discussed in Section 2.3:

Variation. To ensure that we produce representative data for

modelling, we want the traffic generated by our container suite to

cover a sufficient number of protocols that are commonly found

in real-world traffic and existing datasets. For malicious traffic, we

want to ensure that the attacks are modern and varied, both in

purpose and in network footprint. For each protocol, we want to

establish several capture scenarios to encompass the breadth of

that protocol’s possible network traces. Communication between

containers should be subject to the same disturbances and delays

as in a real-world setting.
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Figure 3: Visualization of the different levels at which traffic
variation is introduced in DetGen.

Ground truth. Since ground truth is a main focus of this work, we

want a capture scenarios to be consistent and reproducible in the

traffic they generate. This way, we can be certain that a particular

traffic trace corresponds to the capture scenario it was generated by,

and can thus relate individual traffic events to computational oper-

ations. We discuss what it means for a scenario to be reproducible

in detail in Section 4.1.

Modularity. Traffic capture scenarios should be implemented in a

modular way allow for a straightforward addition or modification of

traffic capture modules without disrupting the rest of the container

suite. This reduces the effort to adjust a dataset to changing traffic

patterns and allows the addition of modern attacks traffic.

Scalability. Each capture scenario should be running in a scalable
manner to allow generation of large data quantities.

3 DESIGN
To cover a range of activities, the containers in our framework are

arranged in different configurations corresponding to particular

capture scenarios. Running a given capture scenario triggers the

launch of several Docker containers, each with a scripted task spe-

cific to that capture scenario. A simple exemplary capture scenario

may consist of a containerized client pinging a containerized server.

We ensure that each Docker container involved in producing or

receiving traffic will be partnered with a tcpdump container, allow-

ing us to collect the resulting network traffic from each container’s

perspective automatically.

We outline different stages within the creation of a dataset at

which traffic variation is introduced. Figure 3 visualizes this process.

3.1 Scenarios
We define a scenario as a series of Docker containers interacting
with one another whereby all resulting network traffic is captured

from each container’s perspective. This constructs network datasets

with total interaction capture, as described by Shiravi et al. [31].

Each scenario produces traffic from either a protocol, application

or a series thereof. Both benign and malicious activities are imple-

mented as scenarios. Examples may include an FTP interaction, a

music streaming application and client, an online login form paired

with an SQL database, or a C&C server communicating with an

open backdoor. A full list of currently implemented scenarios can

be found in Section 3.9.

Each scenario is designed to be easily started via a single script

that allows the user to set the length of the capture time, and the

specification of particular subscenarios, discussed below. Scenarios

can be repeated indefinitely without further instructions and be

run in parallel, therefore allowing the generation of large amounts

of data.

Our framework is modular, so that individual scenarios are con-

figured, stored, and launched independently. Adding or reconfigur-

ing a scenario has no effect on the remaining framework.

3.2 Subscenarios
In contrast to scenarios, subscenarios provide a finer grain of control
over the traffic to be generated, allowing the user to specify the

manner in which a scenario should develop. The aim of having

multiple subscenarios for each scenario is to explore the full breadth

of a protocol or application’s possible traffic behavior. For instance,

the SSH protocol can be used to access the servers console, to

retrieve or send files, or for port forwarding, all of which may or

may not be successful. It is therefore appropriate to script multiple

subscenarios that cover this range of tasks.

The same applies to malicious activity. For instance, it would

be naive for an SSH password bruteforcing scenario to always

successfully guess a user’s password. Instead, we include a second

subscenario in which the password bruteforcer fails.

Subscenarios are specific to particular scenarios and can be spec-

ified when launching that scenario.

3.3 Randomization within Subscenarios
Scripting activities that are otherwise conducted by human oper-

ators often leads to a loss of random variation that is normally

inherent to the activity. As mentioned in Section 2.3, the majority

of successful FTP transfers in the CIC-IDS 2017 data consist of a

client downloading a single text file. In reality, file sizes, log-in

credentials, and many other variables included in an activity are

more or less drawn randomly, which naturally influences traffic

quantities such as packet sizes or numbers.

To account for these fluctuations, we identify variable input pa-

rameters within scenarios and their subscenarios and systematically

draw them randomly from a suitable distribution. Passwords and

usernames, for instance, are generated as a random sequence of

letters with a length drawn from a Cauchy distribution, before they

are passed to the corresponding container. Files to be transmitted

are selected at random from a larger set of files, covering different

sizes and file names.

3.4 Network transmission
Docker communication takes place over virtual bridge networks,

so the throughput is far higher and more reliable than in real-world

networks, with the Docker virtual network achieving a bandwidth

of over 90 Gbits/s when measured using iPerf [10]. This level of

speed and consistency is worrying for our purposes as packet tim-

ings will be largely identical on repeated runs of a scenario and any

collected data could be overly homogeneous.

To retard the quality of the Docker network to realistic levels,

we rely on emulation tools. As discussed in section 2.4, Netem is a

Linux command line tool that allows users to artificially simulate
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network conditions such as high latency, low bandwidth or packet

corruption in a flexible manner.

Although it is relatively straightforward to apply Netem com-

mands to a Docker Bridge network, we decided not to invoke Netem

in this manner as this would cause all network settings of all con-

tainers to be identical, such as all containers in a scenario having a

latency of 50ms. Instead, we developed a wrapping script that ap-

plies Netem commands to the network interface of a given container,

providing us with the flexibility to set each container’s network set-

tings uniquely. This script randomizes the values of each parameter,

such as packet drop rate, bandwidth limit, latency, ensuring that

every run of a scenario has some degree of network randomization

if desired.

3.5 Capture
To capture traffic, we use containers running tcpdump, a widespread
and free packet analyzer software that can capture packets arriving

at or leaving from a network interface [17]. We attach tcpdump
containers on every interface in the virtualized docker network and

write packets into separate capture files. This allows us to capture

traffic from the perspective of every container in a scenario, giving a

complete view. In Section 3.8, we discuss how the collected capture

files are coalesced into one dataset.

3.6 Implementation Process
The implementation process for each scenario follows broadly the

same outline:

(1) Select containers which provide the required services and

identify the primary container/s for a given scenario which

is/are dictating the container interaction. Then create and

build a Dockerfile containing all necessary dependencies.

(2) Identify different ways to use the service of the given sce-

nario and define them into a set of subscenarios.

(3) Design and implement the behavior for secondary containers

to provide the required service to the primary container(s).

(4) For each subscenario, identify variable input values and their

appropriate range; then systematically implement their gen-

eration from appropriate distributions covering this range.

(5) Add tcpdump containers to every network interface.

(6) Create a Docker compose file that launches all containers

simultaneously.

(7) Finally, write a script that, upon running, calls this Docker
compose file, applies a network emulation script to each

container network interface, and allows the user to specify

how long and how many times a scenario should be run.

Following the Docker guidelines [12], each container in our

framework consists of a single service with a specialized purpose,

with as few additional dependencies as possible. Moreover, we

ensure that there are minimal inter-dependencies between the con-

tainers of a scenario. This allows us to easily modify and update

containers as new versions of the underlying software are released.

3.7 Simple Example Scenario - FTP server
We review the design of a prototypical capture scenario, namely,

an FTP server and client interaction. The interaction is initiated

by a single script, which allows the user to specify the length of

Figure 4: Diagram of FTP scenario

the interaction, the number of times the interaction takes place

as well as the specific subscenario. The script generates a random

ftp username and password, creating the necessary User directory
on the host machine before calling the Docker-compose file which

creates a bridge network. Subsequently, the necessary containers

are then started which, in this case, consist of a VSFTPD server,

a client with ftp instaled and two containers running tcpdump to

capture all of the traffic emitted and received by the client and server

respectively into separate .pcap-files. These .pcap-files are shared
with the host machine via a shared volume. The host machine also

shares:

• A dataToShare volume containing files that can be down-

loaded by the client.

• The User directory with the server, which contains the same

files as the dataToShare folder.
• An empty receive folder with the client into which the files

will be downloaded.

• The random username and password is shared with the client

container so it can authenticate itself to the server.

Up to this point, no network traffic has been generated and the

containers are now ready to begin communicating with one another.

For this particular interaction between an FTP server and client,

we want to ensure that it is possible to capture the many ways in

which an FTP session may develop. For instance, the client may

seek to download files via the get command or the put command,

alongside many other possibilities. We define 13 possible capture

subscenarios intended to encapsulate a wide range of potential

FTP sessions. These include downloading a single file using get or

put, downloading every file using mget or mput, deleting every file

from the server and requesting files from the server without the

necessary authentication.

After the scenario ends, both the User directory and any down-

loaded files are removed from the host machine. The containers

are then stopped and the bridge network is torn down. All neces-

sary containers, volumes and scripts are in the same position prior

to initiating the scenario — barring any generated .pcap-files —
allowing for the scenarios to be started repeatedly with minimal

human interaction. The .pcap-files are tagged with information

about the time of creation, executed scenario and subscenario, and

the container generating the traffic.
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3.8 Dataset creation
Our framework generates network datasets consisting of a single in-

teraction, but it is possible to coalesce these datasets to create larger

datasets with a wide variety of traffic, albeit with some caveats.

Due to the networking constraints of the Docker virtual network,

such as limitations regarding clashing ports, running many of our

Docker scenarios simultaneously over a large period of time is

unfeasible. Thus, to ensure that the generated traffic is suitably

heterogeneous, numerous datasets must be generated before being

coalesced into a main dataset. If done naively, this presents a prob-

lem. As discussed by Shiravi et al. [31], merging distinct network

data in an overlapping manner can introduce inconsistencies. For

instance, if one wanted to create a dataset containing both normal

webserver traffic and traffic originating from a Denial of Service

attack, it would not work to generate these two datasets separately

before merging them together. If these two events really did occur

simultaneously, the high network throughput of the latter would

likely effect the packet timings of the former.

To avoid such inconsistencies, we create larger datasets by col-

lecting data in consecutive chunks of fixed time. Within each chunk,

several scenarios are run simultaneously. All .pcap-files collected
during a given chunk can be merged together. It is then simple to

stitch together all of these chunks into a single .pcap-file using a
combination of Mergecap [28] and Editcap [30]. This allows us to

shift the timings of each .pcap-file by a fixed amount such that all

of our chunks occur in succession whilst maintaining the internal

consistency of each chunk.

3.9 Scenarios
Our framework contains 29 scenarios, each simulating a different

benign or malicious interaction. The protocols underlying benign

scenarioswere chosen based on their prevalence in existing network

traffic datasets.These datasets consist of common internet protocols

such as HTTP, SSL, DNS, and SSH. According to our evaluation,

our scenarios can generate datasets containing the protocols that

make up at least 87.8% (MAWI), 98.3% (CIC-IDS 2017), 65.6% (UNSW

NB15), and 94.5% (ISCX Botnet) of network flows in the respective

dataset. Our evaluation shows that some protocols that make up

a substantial amount of real-world traffic are glaringly omitted by

current synthetic datasets, such as BitTorrent or video streaming

protocols, which we decided to include.

In total, we produced 17 benign scenarios, each related to a

specific protocol or application. Further scenarios can be added in

the future, and we do not claim that the current list exhaustive.

Most of these benign scenarios also contain many subscenarios

where applicable.

The remaining 12 scenarios generate traffic caused by malicious

behavior. These scenarios cover a wide variety of major attack

classes including DoS, Botnet, Bruteforcing, Data Exfiltration, Web

Attacks, Remote Code Execution, Stepping Stones, and Cryptojack-

ing. Scenarios such as stepping stone behavior or Cryptojacking

previously had no available datasets for study despite need from

academic and industrial researchers.

We provide a complete list of implemented scenarios in Table 1.

Name Description #Ssc.

Ping Client pinging DNS server 1

Nginx Client accessing Nginx server 2

Apache Client accessing Apache server 2

SSH Client communicating with 5

SSHD server

VSFTPD Client communicating with 12

VSFTPD server

Scrapy Client scraping website 1

Wordpress Client accessing Wordpress site 1

Syncthing Clients synchronize files 1

via Syncthing

mailx Mailx instance sending 2

emails over SMTP

IRC Clients communicate via IRCd 2

BitTorrent Download and seed torrents 3

SQL Apache with MySQL 2

NTP NTP client 2

Mopidy Music Streaming 5

RTMP Video Streaming Server 1

WAN Wget Download websites 5

SSH B.force Bruteforcing a password 3

over SSH

URL Fuzz Bruteforcing URL 1

Basic B.force Bruteforcing Basic 2

Authentication

Goldeneye DoS attack on Web Server 1

Slowhttptest DoS attack on Web Server 4

Mirai Mirai botnet DDoS 3

Heartbleed Heartbleed exploit 1

Ares Backdoored Server 3

Cryptojacking Cryptomining malware 1

XXE External XML Entity 3

SQLi SQL injection attack 2

Stepstone Relayed traffic using 2

SSH-tunnels

Table 1: Currently implemented traffic scenarios along with
the number of implemented subscenarios

4 VALIDATION EXPERIMENTS
A framework that generates network traffic does not necessarily

provide realistic and useful data. To evaluate the utility of our

Docker framework, we construct a series of experiments. We have

two goals in mind. First, we want to demonstrate that the traffic

generated is sufficiently representative of real-world traffic. Second,

we want to demonstrate that having a framework to continually

generate data compared to static datasets benefits evaluating the

efficacy of intrusion detection systems.

The first experiment provides a general verification of the re-

producability of our framework, which is required for guarantee

the ground truth of the produced data. The second experiment

demonstrates that the WAN-characteristics we emulate for our data

make it quasi non-distinguishable from real WAN traffic. Our third

experiment then demonstrates the advantage of unlimited data

generation capabilities for training ML-based traffic classification.
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Figure 5: Means of IATs & packet sizes along with standard
deviation bars for the first twelve packets in the Apache sce-
nario.

4.1 Reproducible scenarios
To provide ground truth, we have to guarantee that our imple-

mented scenarios and subscenarios are consistent and reproducible

upon repeated execution. This applies both to consistency for ex-

ternal influences on the host, such as increased computational load,

as well as internal consistency of the implemented script execution.

It is impossible to guarantee that each scenario will produce

a truly ‘deterministic’, or repeatable, output due to differences in

network conditions, computational times, or input. Instead, we aim

for our data to be reproducible up to networking and computational
differences. This means that when running a scenario multiple times,

we expect the quantities of most packets to be largely identical.

We do expect some packets to exhibit greater variation due to

non-determinism in the underlying protocols, Fig. 5 outlines this

behavior in terms of interarrival times and packet sizes.

To measure how consistent our scenarios are, we generate 500

.pcap files for three different implemented scenarios, namely the

Apache, the VSFTPD, and the SSH scenario. These were generated

consecutively under different host CPU load. We did not apply any

delays or other NetEm traffic controls.

We assess the consistency of a scenario across different .pcap
files by comparing all generated .pcap files pairwize. We measure

this by the similarity of the connections captured.

To test the similarity of two connections, we extract the sam-

ple distributions of the packet interarrival times and packet sizes

overall, upstream and downstream. We define two connections as

similar if the two distributions for each of these quantities pass

an equality test. We use the two-sample Kolmogorov-Smirnov (K-

S) test, a non-parametric statistical test for the equality of two

continuous one-dimensional distributions [22], with a p-value of

0.01.

As all tested files passed this similarity test, we conclude that

these scenarios yield consistent and reproducible results. As other

scenarios follow the same setup and launch commands, we expect

the results to stay the same as long as the involved containers are

consistent in their behavior.

4.2 Explorating Artificial Delays
Most traffic our framework generates is transported over Docker’s

virtual network and therefore does not succumb to problems asso-

ciated with normal network congestion, such as packet loss, cor-

ruption and packets arriving out of order. A realistic dataset should

include these phenomena, which is why we developed wrapping

scripts that allow us to artificially add delays as well as packet

loss and corruption, using NetEm. Choosing the parameters is not

straightforward; it is not clear how close to real-world traffic such

network emulation techniques are. This is especially true for packet

delays, which are described by continuous distributions and often

have temporal correlation.

Furthermore, the high effective bandwidth of the Docker virtual

network resulted in traffic with extremely short inter-arrival times

(IATs, defined as the time between two packet arrivals). Therefore,

we devote considerable time to demonstrating that it is possible for

traffic generated by our Docker framework to conform to real-world

IAT distributions when altered using NetEm.

Datasets. We create two classes of datasets, one which is representa-

tive of ‘real-world’ traffic, and one which has been generated from

our Docker framework. For simplicity, we only consider datasets

consisting of FTP traffic.

For the real-world dataset, we set up a containerized VSFTPD

server running on a Google Compute virtual machine located in

the Eastern United States, and a containerized FTP client on our

local host. We then ran a series of our scripted interactions between

the two machines, generating 834 megabytes of data in 250964

packets. These interactions consisted of several FTP commands

with various network footprints. We collect all data transmitted

on both the server and the client. We call this data the Non-Local
dataset.

We then repeat this process using the same container setup, but

across the Docker virtual network on a local machine. We repeat

this process several times, generating several Local datasets under
a variety of emulated network conditions, discussed in Section 4.2.

Our Local datasets vary slightly in size, but are all roughly 800

megabytes with 245000 packets.

Methodology. NetEm allows us to introduce packet delays accord-

ing to a variety of distributions, namely uniform, normal, Pareto
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Figure 6: Results of Random Forest Classifier for a given
distribution at the best performing delay mean `. Note that

a score of .5 indicates total indistinguishability.

and Paretonormal
1
. Furthermore, NetEm adds delays according to

modifiable distribution tables, and so it is trivial for us to add a

Weibull distribution, which along with Pareto distributions have

been shown to closely model packet IATs [2, 27]. In total, we test the

efficacy of four distributions to model inter-arrival times — normal,

Pareto, Paretonormal and Weibull.

We generate several Local datasets by delaying traffic accord-

ing these distributions, performing an exhaustive grid search over

their means and standard deviations. Initial experiments revealed

that introducing delays with a mean in the range of 40 ms to 70

ms produced the best results. Setting the jitter of the distribution

too high resulted in the repeated arrival of packets out of order,

therefore we further limit the grid search to jitter values in 5ms

intervals up to half of the value of the mean. In total, we generate

88 Local datasets.
Our goal is to discover the Local dataset whose packet timings

most closely resemble those of our Non-Local dataset. To do this,

we extract the IATs and packet sizes from our datasets on a packet-

by-packet basis and store these results in arrays. We measure the

similarity between two of these arrays by training a Random Forest

classifier to distinguish between them. We say that if the Random

Forest correctly classifies each packet with a success rate of only

50% then it is no better than randomly guessing and, as such, the

inter-arrival times of these two arrays are indistinguishable from

one another for the Random Forest.

To perform this measurement, we concatenate one Local dataset
array with our Non-Local dataset array, label the entries and then

shuffle the rows. We proportion this data into a training set and a

testing set using an 80-20 split. We then feed this training data into

a Random Forest with 1000 trees and fixed seed, and then record

the accuracy of this Random Forest on the test set. We repeat this

process for every single Local dataset.

1
This Paretonormal distribution is defined by the random variable 𝑍 = 0.25 ∗ 𝑋 +
0.75 ∗𝑌 , where 𝑋 is a random variable drawn from a normal distribution and 𝑌 is a

random variable drawn from a Pareto distribution.

Results. Table 2 summarizes the values of the mean and jitter for a

given distribution that produced the worst results from the random

forest classifier.

Distribution Mean Jitter RF Accuracy

No Delays (Baseline) 0 0ms 0.8176

Constant Delay 40ms 0ms 0.6730

Normal 60ms 5ms 0.6028

Pareto 60ms 10ms 0.5979

Paretonormal 50ms 10ms 0.6015

Weibull 60ms 10ms 0.5540

Table 2: Worst Random Forest accuracy rates for a given dis-
tribution

To establish a baseline, we compare the traffic generated from

our Docker scenario to that of the Google Compute data with no

added delays. In this case, the Random Forest was able to distinguish

between the two datasets, achieving an accuracy of over 90%. The

classification accuracy is worsened considerably by introducing

network delays, with the best results being achieved using aWeibull

distribution with a mean of 60 ms and a jitter of 10 ms, leading to an

accuracy of just 55%. Results for Pareto and Weibull distributions

seem to yield consistent results for differing jitter values. Although

not completely indistinguishable, this proves that using NetEm we

can emulate WAN properties very closely.

4.3 Advantages of Dynamic Dataset Generation
Having examined whether our Docker framework is capable of

emulating real-world IATs, we explore their utility in traffic classifi-

cation to demonstrate the advantages that our framework provides

compared to static, unlabeled datasets.

Machine-learning techniques are a popular tool for traffic classi-

fication, with many successful published classifiers. Furthermore,

inter-packet arrival times have been shown to be a discrimina-

tive feature [26, 38]. However, these methods considered datasets

consisting of completed traffic flows, limiting their use in, say, a

stateful packet inspector. On-the-fly classifiers are also successful.

Jaber et al. [16] showed that a K-means classifier can classify flows

in real-time solely based on IATs with precision exceeding 90%

for most protocols within 18 packets. Similarly, Bernaille et al. [4]

demonstrated that a K-means classifier can precisely classify traffic

within five packets using only packet size as a feature.

However, Jaber et al. [16] only evaluated their traffic classifier

with training and testing data drawn from the same dataset con-

taining traces of a single network; there is no measure of how this

model may generalize to other networks with differing conditions.

Furthermore, they were limited to using unsupervised machine

learning algorithms to classify their traffic as their datasets had no

ground truth.

We attempt to replicate these results within our Docker frame-

work with some adjustments. As we can generate a fully accurate

ground truth, we attempt to segregate application flows based on

their packet IATs using supervised learning techniques. Moreover,

we then measure this model’s ability to generalize by expanding our

dataset to include traffic from networks with differing bandwidth

and latency.
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Data & Preprocessing. Our goal is to measure a classifier’s ability

to generalize across datasets. Therefore we construct two datasets

using our Docker framework, both containing the same number of

network traces from the same containers.

For our first dataset, we generate .pcap-files, each containing

traffic from one of 16 different classes: HTTP (Client & Server),

HTTPS (Client & Server), RTMP (Client, Server & Viewer), SSH

(Client & Server), FTP (Client & Server), IRC (Client & Server),

SMTP, SQLi andDoS traffic. To prevent class imbalance, we generate

200 .pcap-files for each of the 16 classes, resulting in 3200 total

files. To more accurately emulate potential network conditions, we

use our NetEm scripts to apply a unique delay to every container

involved in a scenario. These delays follow a Pareto distribution

with random mean between 0 and 100 milliseconds and random

jitter between 0 and 10milliseconds.We then preprocess this data by

removing all but the first 12 packets of each .pcap-file. We extract

the 11 inter-arrival times separating the 12 packets, which act as

our feature vectors. We collect these feature vectors for each class

along with a class label, and store collected feature vectors from

all 3200 .pcap-files in a 12 x 3200 array. We call this our Primary
dataset.

We then repeat this process to generate a second dataset, chang-

ing the properties of our emulated network. Again, we delay all

traffic using a Pareto distribution, however, this time we select a

random mean in the range of 100 to 500 milliseconds and random

jitter between 0 and 50 milliseconds. The subsequent preprocessing

of our data remains unchanged. We call this our Secondary dataset.

Methodology. First, we attempt to reproduce the results presented

by Jaber et al. [16] by training a Random Forest with 100 trees

to classify application flows based on packet IATs. We do this by

proportioning our Primary dataset into training and testing sets

using an 80-20 split. We then train and test our Random Forest

repeatedly, first considering the classification accuracy based on

the IATs of only the first two packets, then the first three packets

and so on, up to 12 packets. We record the resulting confusion

matrix for each round and calculate the precision and recall rates

of our classifier.

Having trained the classifier, we measure its ability to generalize

by repeating the above experiment, but replacing the test set with

the Secondary dataset.

Results. After each run of our Random Forest on our Primary

dataset, we gather the True Positive (𝑇𝑃 ), False Positive (𝐹𝑃 ) and

False Negative (𝐹𝑁 ) rate for each class. We then calculate their

precision, defined as
𝑇𝑃

𝑇𝑃+𝐹𝑃 , and recall, defined as
𝑇𝑃

𝑇𝑃+𝐹𝑁 , values.

in Fig. 7, we see that our average precision and recall across the

classes exceeds 0.9 after 10 IATs. Furthermore, after 12 packets our

DoS and SQLi data is classified with precision and recall rates of

1.0 and 1.0 and 0.9462 and 0.9322 respectively.

These results does not hold when we test the classifyer on our

Secondary dataset. As seen in Fig. 7, we see a substantial decrease

in our average precision and recall rates, achieving a maximum

of 0.5923 and 0.5676 respectively. Moreover, after four packets,

increasing the number of IATs in our dataset provides little addi-

tional benefit. Although some services generalized well, such as

IRC-client and IRC-server, others failed to be classified, with every

Figure 7: Results of Random Forest Classification on Pri-
mary dataset (Above) and Secondary dataset (Below)

single SMTP feature being classified as HTTP-client. We also see a

substantial drop-off in the classification of malicious traffic, with

the precision rates of DoS and SQLi data not exceeding 0.6.

These diverging results demonstrate the necessity of dynamic

dataset generation for evaluation purposes. Researchers evaluating

their methods only on a dataset with fixed properties such as the

Primary dataset might receive overoptimistic results. The capability

of generating two or more datasets with the same traffic classes, but

otherwise differing properties, provides a more realistic evaluation.

5 CONCLUSIONS
In this paper, we outlined four requirements a modern dataset has to

fulfil to strengthen the training of intrusion detection systems. We

then proposed a Docker framework capable of generating network

intrusion datasets that satisfy these conditions. The major design

advantage of this framework are the isolation of traffic scenarios

into separate container arrangements, which allows the extension

of new scenarios and detailed implementation of subscenarios as

well as the capture of ground truth of the computational origins

of individual traffic events. Furthermore, containerization enables

the generation of traffic data at scale due to containers being light-

weight and easily clonable.

We verified the realism of the generated traffic and the corre-

sponding ground truth information with two experiments, and
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demonstrated the usefulness of the framework in another experi-

ment. Presently, our framework consists of 29 scenarios capable of

producing benign and malicious network traffic. Several of these

scenarios, such as the BitTorrent or the Stepping-Stone scenario,
provide novel traffic data of protocols or behaviours that has not

been widely available to researchers previously.

5.1 Difficulties and limitations
Our framework is building network traffic datasets from a small-

scale level up by coalescing traffic from different fine-grained sce-

narios together. While this provides great insight into small-scale

traffic structures, our framework will not replicate realistic network-

wide temporal structures, such as port usage distributions or long-

term temporal activity. These quantities would have to be statisti-

cally estimated from other real-world traffic beforehand to allow

our framework to emulate such behavior reliably. Other datasets

such as UGR-16 use this approach to fuse real-world and synthetic

traffic and are currently better suited to build models of large-scale

traffic structures.

Working with Docker containers can sometimes complicate the

implementation of individual scenarios compared to working with

VMs. Although several applications are officiallymaintainedDocker

containers that are free from major errors, many do not. For in-

stance, in the BitTorrent scenario, most common command line

tools, such as mktorrent, ctorrent and buildtorrent, failed to

actually produce functioning torrent files from within a container

due to Docker’s union filesystem. Furthermore, due to the unique

way in which we are using these software packages, unusual con-

figuration settings are sometimes needed.

Lastly, capturing .pcap-files from each container can quickly

exceed available disc space when generating traffic at scale. De-

pending on specific research requirements, it is advizable to add

filtering or feature extraction commands to the scenario execution

scripts to enable traffic preprocessing in real-time.

5.2 Future work
Our traffic generation framework is designed to be expandable and

there are many avenues for future work. The continual develop-

ment of scenarios and subscenarios would improve the potential

realism of datasets generated using the framework. The addition

of more malicious scenarios would enable a more detailed model

evaluation and improve detection rate estimation. Another future

improvement for framework is to add scripts that emulate the usage

activity of individual scenarios by a user or a network.

Although ground truth for particular traffic traces is provided

by capturing .pcap-files for each container individually, we have

not implemented a labelling mechanism yet for the dataset coales-

cence process. Though not technically difficult, some thought will

have to be put how such labels would look like to satisfy differ-

ent research demands. Furthermore, the Docker platform provides

the functionality to collect system logs via the syslog logging
driver. We plan on implementing their collection in the future,

where they could act either as traffic labels providing more ground

truth details, or act as a separate data source that complements the

collected traffic.

We wish to publish this framework to a wider audience, allowing

for further modification. This will be done using a GitHub repos-

itory, which contains both the implemented capture scenarios as

well as the corresponding container images.
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