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ABSTRACT: In this paper we develop a method to quantify the accuracy of different pattern extraction techniques for the

additive space–time modes often assumed to be present in climate data. It has previously been shown that the standard

technique of principal component analysis (PCA; also known as empirical orthogonal functions) may extract patterns that

are not physically meaningful. Here we analyze two modern pattern extraction methods, namely dynamical mode de-

composition (DMD) and slow feature analysis (SFA), in comparison with PCA. We develop a Monte Carlo method to

generate synthetic additive modes that mimic the properties of climate modes described in the literature. The datasets

composed of these generatedmodes do not satisfy the assumptions of any pattern extractionmethod presented.We find that

both alternative methods significantly outperform PCA in extracting local and global modes in the synthetic data. These

techniques had a higher mean accuracy across modes in 60 out of 60 mixed synthetic climates, with SFA slightly out-

performing DMD.We show that in the majority of simple cases PCA extracts modes that are not significantly better than a

random guess. Finally, when applied to real climate data these alternative techniques extract a more coherent and less noisy

global warming signal, as well as an El Niño signal with a clearer spectral peak in the time series, and more a physically

plausible spatial pattern.

KEYWORDS: Algorithms; Data mining; Empirical orthogonal functions; Pattern detection; Principal components analysis;

Statistical techniques; Climate variability; Data science; Dimensionality reduction; Model interpretation and visualization;

Pattern recognition

1. Introduction

Much climate research relies on extracting space and time

signatures of large-scale climate processes such as El Niño–
Southern Oscillation (ENSO). The spatial patterns and time

series extracted from data are used to direct research into the

physical mechanisms (e.g., Wanner et al. 2001) associated with

these signals, and thus to better understand physical processes

that generate climate variability and teleconnections. The

signal time series are often used to search for other phe-

nomena driven by these large-scale patterns, such as heat-

waves, droughts, and other temporary shifts in local climate

(Weisheimer et al. 2017), and are also relevant for future

forecasts (Wu et al. 2009; Johnson et al. 2014). Our under-

standing of the physics and impacts of this emergent behavior

is therefore strongly impacted by the quality and purity of the

modes we extract from data.

One of the common tools used to extract modes from cli-

mate data is principal component analysis (PCA), also known

as empirical orthogonal functions (EOFs) (von Storch and

Zwiers 2001). The spatial vectors, known as principal compo-

nents (PCs), returned by this method are often interpreted as

if they represent individual climate processes, such as ENSO.

ENSO (Timmermann et al. 2018) is a well-established physical

process and the PCs are often used merely as a visualization of

its variability. However, the debate around different flavors of

ENSO is based on PCA at least in part (Ashok et al. 2007).

Other physical modes with less understood mechanisms, such

as the Pacific decadal oscillation (PDO) (Newman et al. 2016),

rely heavily on PCA for their definition, specification of spatial

pattern, and time index, and as a starting point in the search for

their mechanism. However, PCA is merely designed for com-

pressing data and capturing as much variance as possible in the

first nmodes. Therefore, interpreting these modes individually

or using them as evidence to support a climate mechanism can

be misleading. Dommenget and Latif (2002) showed that PCA

is prone to finding dipoles where none exist and Monahan

et al. (2009) showed that the PCs do not correspond to indi-

vidual dynamical modes, do not represent individual kinematic

degrees of freedom of the system, and are not statistically in-

dependent of each other.

It is often assumed that the first few modes returned by

PCA, with highest variance, should be physically inter-

pretable, and should match some underlying signal in the

data. However, even the first PC cannot capture a true

underlying mode, in examples where true modes exist, if

these modes are nonorthogonal to each other (proof in

appendix A).

Many other methods of extracting modes from climate data

have been proposed and, as we will discuss, are theoretically

more consistent with a physical interpretation of what a climate

mode might be. These newer methods have been developed

both inside and outside the climate community, and we review

some of these in section 3. However, there is no ground truth

for the space–time structure of climate modes. This is true

both for observational data and for data from climate simula-

tions. While climate simulations provide complete information

about the climate state, there is still no ground truth for cli-

mate modes as these are emergent properties of the system.Corresponding author: D. James Fulton, james.fulton@ed.ac.uk
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Therefore, we previously have not been able to quantitatively

evaluate the accuracy of any method of mode extraction.

Some efforts have been made to devise statistical tests to

guard against spurious modes, but these efforts have not been

directed toward accessing how well these patterns match un-

derlying known signals in the data. They have instead tried to

stop researchers from choosing too many modes given the

statistical uncertainty (North et al. 1982), or to stop them iden-

tifying modes that may be attributable to red noise fluctuations

(Dommenget 2007).

In this paper we propose a Monte Carlo method to generate

physically plausible synthetic climate modes. We assume that

these modes are additive, and mix them with generated back-

ground noise to create synthetic climate-like datasets. With

these datasets we can perform pseudoexperiments to test the

accuracy of each method of mode extraction, and quantify how

well it is able to separate known modes from each other, given

our assumptions. The datasets we create are motivated to be an

idealized simple climate with spatial and temporal autocorre-

lation. They do not strictly satisfy the assumptions of any mode

discovery method commonly used. Therefore this will allow us

to explore systematic errors associated with each mode ex-

traction technique on datasets that are motivated to be more

realistic than those assumed by the method’s definition.

2. Generating Monte Carlo climate data

a. What is a ‘‘mode’’ of climate variability?

A standard definition of a mode in climate data has never

been established to our knowledge. In physics, modes are

defined as eigenstates of the time evolution operator of an

oscillator system. These eigenstates evolve in time predictably

and independently from each other, and are derived analyti-

cally rather than from data. The full state of the system can

be expressed as a superposition of its eigenstates. We cannot

apply the same definition to climate, as the time evolution

operator is either an entire global circulation model or the real

climate system itself, and if any eigenstates of this operator

existed theywould be intractable. It is also highly likely that the

physical quantities of any eigenstate of this operator would be

complex combinations of climate variables, not all of themwell

observed.

In this paper we take inspiration from the definition of physical

modes to inform our definition and generation of climate modes.

We assume they are additive, such that a superposition of these

space–timemodesD(i)(t) make up the observed climate stateX(t)

at any time, that is, X(t)5�iD
(i)(t). An example of this would

be the Pacific sea surface temperatures being a sum of ENSO

and PDO projections. In this simple case the projectionsD(i)(t)

are just the spatial patterns of ENSO and PDO multiplied by

their time indices. We also expect that modes should be ap-

proximately independent, so that the phase of one mode does

not strongly imply that of others. This prevents the negative

and positive phases of a phenomenon from being split into two

different modes, and also from being split geographically into

multiple modes covering different regions. We also expect that

modes should show time coherence in their evolution. These

assumptions are reasonable for modes caused by slow physical

mechanisms and are consistent with known climate modes

(e.g., Christensen et al. 2013).

Note that these are modes of climate data, and not of the

physical climate.Whether some physical effect induces a mode

signal in observations depends on the sampling frequency and

the length of observations. At low sampling frequency weather

is approximately white in time [see discussion in Hasselmann

(1976)], but at high sampling frequency weather events could

be modes under our definition. If the sequence is long enough

then glacial cycles would also show up in our signal as modes.

At intermediate sampling frequency even the seasonal cycle

would be amode, but not a particularly interesting one. However,

here we focus on modes inspired by the literature on the time

scale of several months to tens of years.

That these modes are features of the coupled physics–

measurement system, not the physical system alone, is true in

other climate research where sample frequency is defined, a

geographical region is chosen, high-frequency components of

the signal are filtered out, or the global warming trend is re-

moved. It is only after we extract these modes from data that

we can think about any associated physical mechanisms. This is

true in both observations and simulations. Since these signals

direct our research we should care about the magnitude of

biases in their extraction.

Some climate modes may affect each other via teleconnections

as explored in Runge et al. (2015), hence their dynamics may

not be entirely independent. Due to the red nature of the cli-

mate system, it is likely that no set of modes could be defined

that are truly independent from each other. Even ENSO is

strongly tied to the seasonal cycle.

Based on this definition of climate data modes we now

generate synthetic data to test mode extraction methods. We

note that it already appears unlikely that PCA will be the op-

timal tool to estimate these modes. We define modes to have

time coherence and PCA does not consider any of the time

information available, and instead maximizes variance. The

same PCs are calculated when the time series are shuffled as

when not.

b. Monte Carlo mode generation

The spatial patterns of a synthetically generated mode

should be consistent with being on a spherical surface. To

generate these patterns we take ideas from Gaussian pro-

cesses (Rasmussen and Williams 2006). We randomly draw

the spatial pattern of each mode v(i) from a multivariate

normal distribution v(i) ;N (0, S), where we use the following

function to create the covariance matrix

S(x
1
, x

2
)5 exp

�
2
Q(x

1
, x

2
)2

2Du2

�
. (1)

Here x1 and x2 are two points on the surface of a sphere, and

the covariance matrix is defined between a regular spaced

latitude–longitude grid of points. The term Q(x1, x2) is the

central angle between the two points, and Du is the charac-

teristic angular range of correlations. The first column of Fig. 1

shows examples of these sampled spatial patterns.
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Each sampled vector v(i) stores the numerical values of a

singular mode pattern for all latitude–longitude grid points.

Due to the covariance matrix chosen, elements in the vector

that are adjacent on the globe’s surface are sampled with

high covariance, and so are likely to have similar values. While

those far apart are more likely to have very different values in

v(i). Equation (1) shows that this covariance decays exponen-

tially with distance, and this function is known in the Gaussian

processes literature as the covariance kernel function.

Numerically, the method to create one of these vectors is to

decompose the covariance matrix S 5 LLT. We use Cholesky

decomposition in particular. Then simply use v(i) 5 n(i)LT, where

n(i) is a vector of values with the same shape v(i), where each value

is randomly sampled from a univariate normal distribution.

These sampled modes are spatially dense maps, meaning

that most points on the globe have nonzero elements in the

vector v(i) (see first column of Figs. 1a and 1b for examples). By

slightly modifying our sampling from the normal distribution

we can also generate patterns which are spatially sparse, and

are confined to a smaller area of the globe as in Fig. 1c. We

exclude exact detail of this sampling from our discussion but

make all source code available (see acknowledgments). These

spatially dense and sparse maps mimic climate modes that

are either global scale with teleconnections, or more localized

respectively, similar to the different modes presented in

Dommenget and Latif (2002). These modes have space–time

separable, linear projections onto the observations. Their pro-

jection isD(i)(t)5 z(i)(t)v(i) where z(i)(t) is themode’s time series.

We will refer to these as linear modes because the projections

are linear with z(i)(t).

Seasonal autoregressivemoving average (SARMA) time series

models are often used to model climate indices (von Storch and

Zwiers 2001) and so we use these to generate feasible synthetic

time indices z(i)(t) for our modes. The autoregressive and

moving average parameters used were sampled over the range

of parameters of SARMAmodels fit to observational monthly

indices of ENSO, PDO, DMI (dipole mode index), AMO

(Atlantic multidecadal oscillation), and AO (Arctic Oscillation)

(NOAA/OAR/ESRL PSL 2019).

This method of construction of linear modes with SARMA

time series produces synthetic modes that are strongly moti-

vated by signals found in climate data. As we assumemodes are

additive, we create a pseudodataset by summing a number of

modes X(t)5�iD
(i)(t). These modes are not constrained to

be orthogonal to each other, which is as expected in real

climate data.

We can generate nonlinear modes (modes that are not

space–time separable) by extending the covariance kernel

function [Eq. (1)] to add a new phase dimension. This modi-

fication in Eq. (2) means that the spatial pattern ofmodes is not

constant like the linear modes, and the mode projections are

not linear with z(i)(t).

We are motivated to do this by considering ENSO, which

is nonlinear—La Niña events have slightly different spatial

patterns from El Niño events. Although the mode discovery

methods we use will only search for linear modes, we wish to

know how much nonlinear modes confound them and whether

they make good linear estimates of nonlinear modes.

When we sample vectors from the new covariance kernel

function [Eq. (2)], we generate 3D space-phase modes instead

of 2D spatial patterns. These 3D modes are on a regular

latitude–longitude–phase grid, where the phase values of the

grid are chosen to be in the range [0,1] and the latitude–

longitude values cover the global surface. Some examples of

these modes are shown in the source code repository in gif

format (see acknowledgments).

S
NL

(x
1
, s

1
, x

2
, s

2
)5S(x

1
, x

2
) exp[2S(s

2
, s

1
)
2
]. (2)

FIG. 1. (a)–(c) A comparison between three synthetic generated modes and their reconstructions using three latent variable methods.

The left column shows three of the eight modes generated for this dataset. The PCA, SFA, and DMD columns show the mode discovered

by each method that best matches the generated mode in the same row. The projection correlations for each match are stated below each

subplot. These scores represent how similar themodes are. Note that the coastlines are fictitious but included to act as an eye guide and for

demonstration purposes.
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In this new nonlinear covariance kernel SNL, we must

define a function for phase distance S(s2, s1). This function
tells us how similar the spatial patterns at phase s1 and s2 will

be for a single mode (i.e., how similar a synthetic set of La

Niña and El Niño spatial patterns would be). We choose

S(s2, s1)5 (1/
ffiffiffi
2

p
Ds)(s1 2 s2) so that the covariance between a

mode’s spatial patterns at different phases decreases expo-

nentially with phase difference. Here Ds is the characteristic

phase range of correlations.

Once the nonlinear modes have been sampled we must

generate a phase series s(i)(t) rather than a time index series

z(i)(t). The projection of these nonlinear modes onto obser-

vations is D(i)(t) 5 v(i)[s(t)]. To generate the phase series we

first generate a SARMA time series z(i)(t) like before and then

apply a sigmoid function

s(i)(t)5 (11 e2az(i)(t))21 (3)

to ensure that s(t) 2 [0, 1]"t. Each space-phase vector v(i)(s)

was randomly sampled for a discrete grid of s coordinates, so

we use cubic interpolation to map to continuous values of s for

the projections.

Further we can generate nonlinear modes with cyclic pro-

jections. This means the mode projection grows and shrinks

along different pathways. This mode type is motivated to be even

more similar to ENSO, as the pattern of transitioning from a La

Niña to an El Niño state is not the exact reverse of transitioning

fromElNiño toLaNiña. To accomplish thiswe use a cyclic phase-

distance function S(s2, s1)5 (
ffiffiffi
2

p
/Ds)sin[p(s2 2 s1)]. Here the

projections for s5 0 and s5 1 are identical as S(1, 0)5 0. The

projectionmoves on a nonlinear closed path. In this case we set

s(t) to a randomly generated monotonically increasing time

series to give the modes a defined direction. We will refer to

these as cyclic nonlinear modes.

Finally we can generate moving wave modes, like the

Madden–Julian oscillation (Zhang 2005). We approximate

these by creating a linear spatial vector v(i) and simply rotate it

around the surface of the sphere.

We generate red noise to add to this synthetic dataset that

has shorter range spatial correlations than our modes, and time

series with a smaller amount of time autocorrelation. We do

this by using a covariance kernel function like Eq. (1) but with

smaller Du to give a covariance matrix Snoise. Instead of sam-

pling from N (0, Snoise) as before, we decompose Snoise into a

full set of basis vectors. If there are N grid points then we will

have N vectors. We generate a moving average (MA) time

series for each basis vector, and sum the projections of all of

these to make our noise component. This gives us our de-

sired red noise as a background, which has space and time

correlations. It has equal variance in all directions, and so is

‘‘spherical.’’ The modes will generally stand out against this

spherical background as they have more variance in a single

direction.

Themodes we have created here are consistent with what we

discussed in section 2a and are, by construction, additive with

independent dynamics and time series. This is often assumed to

be approximately the case in climate mode research. There

remains a question about whether any additive mode signals

actually exist in real climate data. We do not intend to answer

this here, but we note that essentially all climatemode research

quietly assumes that this is true.

The spatial structure and time sequences of the modes are

constructed to be similar to climate modes proposed in the

literature. However, we have added complexity by also creat-

ing nonlinear modes.

These generated modes can now be used to test additive

mode extraction techniques against true known additive modes.

They can help us assess how likely we are to be led astray by

different mode extraction techniques in our search for physical

mechanisms.

3. Review of latent variable methods for
pattern extraction

Extracting patterns from high-dimensional data is a com-

mon problem in various research fields. Therefore a range of

methods have been devised for this task. These methods

are known as latent variable methods (LVMs), of which

PCA is one example, and many of them have similar math-

ematical forms. Some of these LVMs have been extended

to extract nonlinear modes, using nonlinear maps between

time series and projections, that is, D(i)(t) 5 v(i)[s(t)]. Here

we limit ourselves to use only the linear versions, even

though some of our generated modes, and the real climate

modes, are nonlinear. This was chosen because the focus of

this study is how these LVMs can reliably direct our research

in climate physics, and linear maps are easier to interpret than

nonlinear ones.

Most of the LVMs appropriate to climate data fall into one

of three classes. In this section, we review these methods and

select one form to take forward from each class. Here, we

present a general explanation of the methods and then provide

their mathematical definition.

a. Variance maximizing methods

As mentioned, the most common technique for analyzing

high-dimensional data in climate research is PCA. This is simply

the eigendecomposition of the covariance matrix and is known

in other communities as principal orthogonal decomposition or

empirical orthogonal functions, and shares muchmathematical

detail with singular value decomposition. This method pro-

duces vectors of spatial patterns which maximize the variance

captured in each successive component. Autoencoder neural

networks (Kramer 1991) are also a member of this class, but

the linear version of these networks returnmodes equivalent to

PCA’s modes. We will be using PCA only.

b. Slowness maximizing methods

There are several techniques that have been proposed,

which aim to capture slowly varying aspects of a system. The

underlying assumption of these methods is the slowness

principle (Goodfellow et al. 2016), which states that the most

important aspects of a system are those that change slowly.

In monthly means of climate data over tens of years, this

means we focus on indices that may represent global warm-

ing, slow ocean circulation, or other long-term coherent

patterns, as opposed to the chaotic variation of short-term
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weather. A selection of these is detailed below, but note that

many more variants exist.

d Slow feature analysis (SFA) (Wiskott and Sejnowski 2002) is

the simplest of these methods and finds the slowest varying

components of the system. This is achieved by finding

spatial maps that minimize the mean square differential

of the associated time series.
d Optimally persistent patterns (OPP) (DelSole 2001)

are a well-established method in climate research. This

method finds spatial maps that maximize the autocor-

relation of the time series across multiple steps behind

and ahead.
d Low-frequency component analysis (LFCA) (Wills et al.

2018) is a recently proposed method that aims to find

patterns that maximize the ratio of low-frequency variance

to total variance of the time series.

We have chosen to use SFA as a representative model from

this group because it has a simple optimization objective,

which is highlighted in section 3a, which we believe is more

intuitive and interpretable. It also does not require additional

parameter values to be chosen. In contrast, LFCA requires

definition of a cutoff between low and high frequency. OPP

also has an extra free parameter, which is the limit of time

steps ahead or behind for which the correlations are consid-

ered (as shown in section 3a). Choosing SFA is also an op-

portunity to explore this technique, which has not been

widely used in climate research despite being commonly

employed in other fields.

c. Time dynamics methods

Many proposed time dynamics methods share an identical

simplest form. This is to model the system dynamics as x(t) 5
Ax(t 2 Dt) 1 h(t), where A is a real or complex matrix that

defines the dynamics andh(t) is a random noise vector sampled

at each time step. This form is shared by dynamic mode de-

composition (DMD) (Schmid 2010; Kutz et al. 2016a), prin-

cipal oscillation patterns (Hasselmann 1988), discrete time

linear dynamical systems (Dahleh et al. 2011), and first-order

vector autoregressive methods (Hamilton 1994). Through

eigendecomposition of A we retrieve modes that represent

independent dynamic modes in the data vectors x(t). These

modes are predictable in their dynamics and the eigenvalues

dictate whether they grow, decay, and oscillate. The idea

behind this method is that modes that evolve coherently are

more likely to be physically meaningful. Although all of these

methods are mathematically equivalent, we follow DMD as

this has had more recent developments (Kutz et al. 2016b)

and can be efficiently applied to high-dimensional data (Tu

et al. 2014).

It is important to note that the slownessmaximizing and time

dynamics methods produce spatial patterns that are not con-

strained to be orthogonal in the observable variables. This is a

desirable feature as the modes we create, and any real climate

modes, are not constrained in this way either.

We also note that the forward model of DMD, that is, x(t)5
Ax(t 2 Dt) 1 h(t), is similar to the forward model used to

create our synthetic data. Our forward model would be

identical if we limited ourselves to generating only linear

modes, if we used AR (autoregressive) time series rather

than SARMA time series, and if the noise we add was white

rather than red in time. Additionally, if the generated modes

are orthogonal then DMD and SFA calculate the exact same

modes. However, the modes we generate in this paper are

not orthogonal.

From this theoretical basis we should expect SFA and DMD

to better capture the generated linearmodes. But since some of

their assumptions are not met by our data generation, we also

should not expect them to be perfect, and we do not know

quantitatively how each will perform.

d. Latent variable methods as eigendecomposition
problems

All of the methods described above can be expressed as

eigendecomposition problems. In the following we list the

matrices that when decomposed to a set of eigenvectors and

eigenvalues represent the spatial patterns and key values for

each method.

SFA,OPP, and LFCA are performed on a whitened rotation

(Kessy et al. 2018) of the original data, that is, on S
21/2
x x(t)

instead of x(t). Here we also use the notationS
21/2
x 5UL21/2UT

where the matrix U is the column PCs, and the diagonal

matrix L is the PCA eigenvalues of x(t). Therefore the

matrix S
21/2
x performs a transform that would remove all

correlation between variables in the data matrix x(t) and set

the variance of each variable to one. The spatial eigenvectors

of SFA, OPP, and LFCA must be rotated back into the ob-

servation space after computation by left-multiplying by the

matrix S
1/2
x 5UL1/2UT.

We use the notation h . . . i to indicate the time average of the

quantity inside the brackets.

PCA: The highest eigenvalues represent spatial patterns that

capture most variance:

hx(t)x(t)Ti . (4)

SFA: The lowest eigenvalues represent spatial patterns

with time series that change the slowest (Dt is the sampling

time step):

hS21/2
x [x(t)2 x(t2Dt)][x(t)2 x(t2Dt)]TS21/2T

x i . (5)

OPP: The highest eigenvalues represent spatial patterns

with time series that have the highest average correlation

across multiple steps ahead and behind.

�
k

n52k

hS21/2
x x(t)x(t2nDt)TS21/2T

x i . (6)

LFCA: The highest eigenvalues represent spatial patterns

with time series that have the highest proportion of variance in

low frequencies. Here L() is a Lanczos low-pass filter:

hS21/2
x L[x(t)]L[x(t)]TS21/2T

x i . (7)

DMD: Large eigenvalues represent spatial patterns with

time series that have high one-step-ahead autocorrelation.
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Here x21(t2Dt) is the pseudoinverse of the matrix x(t2Dt)
" t:

hx(t)x21(t2Dt)i . (8)

4. Defining mode similarity

We need a way to quantify how well the discovered modes

match to the generated modes. To do this we compare the

projections of the discovered modes ~D(j)(t) to the known syn-

thetic patternsD(i)(t). In the case of complex discovered mode

projections we take the real part of ~D(j)(t). To compare them

we subtract the time mean at each location from the projec-

tions, unroll them in space and time into 1D vectors, and then

calculate the cosine similarity between these. We will refer to

this as the projection correlation and denote its value between

generatedmode i and discoveredmode j asmij.More explicitly,

m
ij
5

h[D(i)(t)2 hD(i)(t)i] � [ ~D(j)(t)2 h ~D(j)(t)i]i
s(i)~s(j)

, (9)

where

s(i) 5 [hD(i)(t) �D(i)(t)i2 hD(i)(t)i � hD(i)(t)i]1/2 (10)

and ~s(j) is similar.

If the discovered and generated modes are both linear, then

the projection correlation is equal to the Pearson correlation

coefficient between their time series multiplied by the dot

product between their normalized spatial vectors (detailed in

appendix B).

This makes the metric of choice easily interpretable in

simple cases and but also generalized for more complex, non-

linear cases. This metric gives a maximum value of unity when

the projections are perfect and a minimum value of zero when

the projections are orthogonal.

The order of the estimated LVM modes will not match the

order of input modes, and we always have more LVM esti-

mated modes than input modes. Therefore we need to match

them up by creating a set of one-to-one indexmatches {ik/ jk}

between the generated modes and the LVMmodes.We do this

in a ‘‘greedy’’ fashion by first calculating the projection corre-

lation values between all mode pairs mij, then select the index

pair i and j that maximizemij and add this to our set of matches.

Next we find the index pair that maximizes mij subject to the

constraint that neither of the index values have been selected

previously, and repeat this step until each generated mode has a

matched LVM mode. Using these matches we then define a

mean projection correlation for the dataset for that LVM:

M5
1

n
�
n

k51

m
ikjk

, (11)

where n is the number of generated modes.

5. Pseudoclimate experiments

To assess systematic biases in the chosen LVMs we pro-

pose a series of mode recovery experiments in which the

pseudoclimate comprises different combinations of modes

and noise.

Note that each generated pseudoclimate dataset has 7008

spatial points and 14 400 time measurements unless stated

otherwise. These values were chosen to mimic monthly aver-

age data from a long climate simulation experiment.

The experiments we performed were as follows.

1) Precision. This is the simplest case for a pseudoclimate and

gives us an estimate of the natural spread in the metric

scores. We create 30 datasets each with eight modes. Each

mode has the same variance, and is linear and spatially

dense. A small amount of noise, which has variance equal

to the variance of one mode, is added to the dataset.

2) Spatial sparsity. It is important that our LVMs can estimate

both global and local patterns, as this may direct our

search to understand the physics. These generated data-

sets are identical to experiment 1 except that four of the

generated modes are spatially sparse and the other four

spatially dense.

3) Noise sensitivity. Our climate signals may contain high

amounts of noise.We would like methods that are still able

to find modes among the noise. These generated datasets

are identical to experiment 1 except that we add noise with

variance 0.5–32 times that of any single mode.

4) Record length sensitivity. Real observational data are quite

short in length while our climate model runs can be many

hundreds of years.Wewould like to know if any of the LVMs

are more negatively affected by limited length of the data. In

this experiment we generate modes as in experiment 1 but

with time scales equating to 20–2000 years of monthly data.

5a) Nonlinear confounding. This experiment is designed to

explore the effect of having nonlinear modes mixed among

linear modes. We would like our linear LVMs to approx-

imately capture nonlinear modes and not let the residuals

of these modes leak into the others. We create 30 pseudocli-

mate datasets each with eight modes. Half of the datasets

have one nonlinear mode, and the other datasets have two.

The remaining modes in each dataset are linear dense modes

and all modes have the same variance and a low-level noise as

in experiment 1.

5b) Nonlinear cyclic confounding. As experiment 5a, but using

the nonlinear cyclic modes.

5c) Wave confounding. As in experiment 5a, but using moving

wave modes.

6a) Dominant mode. Having one dominant mode such as ENSO

may make it more difficult to identify other modes. We

generate 32 datasets each with eight linear dense modes,

seven ofwhich have the same variance and one ofwhich has a

variance 2–32 times greater. Noise with variance equal to one

nondominant modes was also included.

6b) Dominant nonlinear mode. We perform the same exper-

iment as 6a except that the dominant mode is nonlinear.

This puts anymethodwe use at particular risk ofmixing the

residual of the linear fit to the dominant nonlinear mode

into the other modes.

7) Mixed. This is the most generalized of all the experiments

and is designed so that the mean and spread of the

projection correlation scores from this experiment can be
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used to approximate the general ability of each LVM for

climate-like data that consist of additive modes.

In this experiment we created 60 pseudoclimates that are

randomly generated from all the mode types mentioned, with

randomly drawn variances for each and with randomly drawn

amounts of noise.

The number of modes in each generated pseudoclimate is

randomly drawn from the distribution P(n)} Poisson(n; l5 8)

H (n 2 1), where H() is the Heaviside step function (this gave

5–12 modes per dataset).

Each drawn mode has a 45% chance of being linear, 45%

nonlinear, and 10% wavelike. Each linear mode has a 50%

chance of being dense or sparse. Each nonlinear mode has a

35% chance of being cyclic.

The variance for each mode is drawn from the distribution

P(s2) 5 gamma(s2; a 5 3, b 5 5) (this gave variances of

0.99–58.7). The variance of the noise in each dataset was cho-

sen to be the median variance of the modes multiplied by a

factor drawn from P(s2) } gamma(f; a 5 1, b 5 1)H(f 2 0.5)

(this gave noise variances of 5.5–71.2).

Note that the choices for these distribution functions are

necessarily arbitrary. We simply aimed to avoid creating very

simple datasets, with few modes or very low levels of noise

compared to the modes. We also desired a diverse set of gen-

erated pseudoclimates.

In each of the experiments there are eight generated modes

(excluding experiment 7, which had a randomly drawn quantity n).

Before doing greedy matching we only keep the first 12 LVM

modes (n 1 2 for experiment 7) as in practice we are unlikely

to look through the sample of 7008 modes that fully describe

the datasets. We also believe the first modes are more likely to

be meaningful as they are more variant, slower changing, or

more predictable. This also reduces the probability that a good

match to the mode was found just by chance.

To provide a baseline method for correlations between

random modes, we sample a new random set of dense linear

vectors ~v (i) from the same spatial covariance matrix as used to

generate the inputmodes. Thenwe project the full dataset onto

these column vectors as ~D (i)(t)5 ~v (i)~v(i)
T

X(t). Therefore the

modes of the baseline method are essentially random guesses

given the covariance matrix.

6. Synthetic mode extraction results

From experiment 1 we find that the projection correlations

between the generated modes and those discovered by each

LVMhave large spreads (Fig. 2). This shows that nomatter the

method we apply, we cannot assume that there is a precise

match between any particular discovered mode and any un-

derlying signal. However, the modes calculated by SFA and

DMD had substantially better matches than those calculated

by PCA and are likely to capture any additive mode more

accurately if it exists.

In this experiment, the distribution of the PCA and baseline

projection correlations overlap substantially. Only 27% of the

PCA projection correlation values were larger than the 95th

percentile of values from the baselinemethod (i.e., only 27%of

the PCA modes had projections that were significantly better

than a random guess). For SFA and DMD this value was 98%

and 87% respectively.

A subset of generated modes and the matching modes from

PCA, SFA, and DMD are shown in Fig. 1. These are taken

from a typical dataset from experiment 2. We have plotted

coastlines as an eye guide and to draw comparisons to the real

application of these methods.

Figure 1a shows a mode where the match from PCA is in-

accurate. PCA has failed to capture the positive area over

South America and the negative areas in the Pacific. It has also

exaggerated the positive areas over Australia and the Middle

East. This retrieved map is qualitatively different from the

generated one, and if it were to occur while analyzing obser-

vations or climate simulations then wemight be led to research

and propose physical mechanisms that are incorrect.

Figure 1b shows the mode of the dataset in which PCA

achieved its highest projection correlation. This projection

correlation is also in the top 3%of PCAprojection correlations

across all datasets in experiment 2. This represents a best case

scenario for PCA, and even here it narrows the highly positive

region over North America and misses the positive area over

Australia. If this were a real dataset, this could lead us to be-

lieve that this signal connects to a localized equatorial ocean

process when it does not. In both of these cases SFA andDMD

FIG. 2. Histogram of projection correlation scores from experi-

ment 1, achieved by our three candidate mode extraction methods

and a baseline. (top) The m are all of the greedily matched scores

across 30 pseudoclimates of 8 modes each. (bottom) TheM are the

mean of the 8 greedily matched projection correlation for each of

the 30 pseudoclimates.
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capture the mode more accurately both quantitatively and

qualitatively.

In Fig. 1c, PCA has suggested a dipole for a monopolar

signal. It has also incorrectly linked other areas of the globe to

this mode. This pole multiplication and spatial signal leaking

happened for every sparse mode in all experiments, and is

similar to the simplified example used in Dommenget and Latif

(2002). In that study the authors discuss the DMI in relation to

PCA’s dipole creating bias, and question whether this phe-

nomenon really is dipolar. We note that each of the 30 datasets

in experiment 2 in this paper is broadly equivalent to one of the

examples presented in Dommenget and Latif (2002). Our re-

sults here suggest that SFA and DMD would be better choices

for the examples posed in their paper. The range of scores for

spatially sparse and dense modes were very similar, and similar

distortion of modes happens for both kinds. However the

sparse modes, due to their simplicity, better highlight the

qualitative significance of the distortion.

This spatial signal leaking is directly related to PCA’s opti-

mization objective. Each PC is optimized to capture as much

variability as possible, so if two localized (spatially sparse)

generated modes are nonorthogonal, then PCA will capture as

much variance from both of them as possible in a single PC.

This causes the PC to have a mix of the spatial structures of the

two generated modes, and so it will not be localized.

In experiment 2 even VARIMAX rotation (von Storch and

Zwiers 2001), a common variant of PCA that targets localized

variability, would perform poorly on the given mixture of global

and localized modes. The optimization objective of VARIMAX

PCA encourages it to make most elements in ~v (i) approximately

zero, and allow the rest to have high value. This forces the esti-

mated modes to be spatially localized and therefore would distort

truly global modes. SFA and DMD have optimization objectives

which do not lead them to favor either global or local modes as

PCA and VARIMAX PCA do.

Figure 3 shows that all of the methods were sensitive to the

level of background noise and the number of observations.

This is expected as both of these parameters affect the signal-

to-noise ratio.

Over the range of background noise tested, 0.5–32 times the

variance of a single mode, we found that all methods had the

same proportional noise sensitivity. The median value of M

decreased by approximately the same fraction for a given in-

creased noise level for all methods. Therefore SFA and DMD

performed better than PCA for all noise levels tested.

Over all observation lengths tested we found only a slight

sensitivity, with the equivalent observations to 2000 years of

monthly data having a median value of M only 7%–30% greater

than 20 years.

In experiments 5a–5c we found that nonlinear modes were

estimated less well by any single LVM mode than the linear

ones. Table 1 shows that regular nonlinear modes were re-

constructed better than the cyclic nonlinear modes. These in

turn were reconstructed better than moving wave modes, in-

dicating that reliable detection of the latter will be a challenge

with linear mode extraction methods.

Experiments 6a and 6b showed that the dominant modes

were better reconstructed than the nondominant modes, and

the higher their variance the better reconstructed they were.

This is shown in Fig. 4 and is essentially a signal-to-noise boost

for SFA and DMD and is a direct result of the PCA algorithm

as discussed in appendix A.

The performance of PCA on the dominant mode ap-

proaches that of DMD and SFA if the dominant mode has a

variance of about 8 ormore times that the othermodes. However,

PCA still underperforms on the remaining modes.

Dominant modes such as ENSO have been extensively

studied so any lesser modes would be of particular interest.

Even in cases where we believe we have fully removed these

dominant modes from our data, which may be impossible due

FIG. 3. The median value and uncertainty of the dataset mean projection correlation M, achieved by our

three candidate LVMs for various background noise levels and number of time points, from (left) experiment

3 and (right) experiment 4. Shaded regions represent the 50% and 95% values of the baseline method from

experiment 1.
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to our additive assumption of mode imprints (discussed in

appendix C), SFA and DMD would still be better choices.

Finally in experiment 7 we found that SFA and DMD sig-

nificantly outperformed PCA on every mode type across the

generated pseudoclimates. The exception to this is moving

wavemodes, which were not estimated well by one linearmode

from any method.

Out of 480 modes SFA, DMD, and PCA extracted more

similar modes to the generated modes than a random mode

baseline in 78%, 67%, and 44% of modes respectively when

taking account of different thresholds for different mode types.

SFA, DMD, and PCA recovered the most accurate recon-

struction of 326, 94, and 60 modes respectively and had the

highest mean projection correlation M in 53, 7, and 0 datasets.

A full comparison of mode projection correlation scores is

shown in Fig. 5.

Our results so far have shown us that SFA and DMD are

significantly better at estimating additive modes in a range of

scenarios. Using the results of these experiments we should

expect SFA and DMD to perform better than PCA in a range

of conditions where we have few expectations about the compo-

sition of the modes that exist.

7. Application to climate data

SFA and DMD recover known additive modes in our syn-

thetic data more accurately than PCA. However, there is no

robust or principled way to test whether any LVM mode

matches a true synthetic mode, without already knowing the

ground truth. We have shown that LVMs risk mixing these

modes, and in real climate data there is no guarantee that

additive ground truth modes exist, and no objective way to

distinguish which method’s extracted modes are most realistic.

Some methods such as testing against a Hasselmann-type

red noise model (Hasselmann 1976) have been proposed, and

applied to PCA (Dommenget 2007), and could be easily extended

for use on the DMD and SFA. However, this only tests whether

the discovered modes could be explained by a red noise model.

We do not propose any method of guarding against discov-

ering mixed up modes. However we do note that from our

Monte Carlo experiments that SFA and DMD are more likely

than PCA to correctly separate any independent additive

modes if they do exist. So if any tool is to be used to find ad-

ditivemodes or explore a reduced dimension version of climate

data, as is often done in this research area, SFA and DMD

would be significantly better choices than PCA.

In Fig. 6 we have applied our three LVMs tomonthly surface

temperature anomalies from HadCRUT4 observational me-

dians (Morice et al. 2012), from a single CESM2 historically

forced run, and from a single CESM2 preindustrial control run

(Danabasoglu 2019) to further demonstrate these methods on

real data. We subtracted the seasonal cycle from each dataset

and applied root-cosine-latitude weighting prior to analysis. To

use the observational data, which have missing values, we ap-

ply probabilistic PCA (Tipping and Bishop 1999) and truncate

to the first 36 dimensions before applying the different LVMs.

After we apply the LVMs to each dataset we perform, as

done in the synthetic case, greedy matching between modes

discovered by the differentmethods by calculating the projection

correlations between modes. Figure 6 shows the set of modes

that appeared the most like global warming, and the most like

a broad ENSO pattern. These patterns are nonorthogonal to

TABLE 1. The average of the matched projection correlation scoresmij, for each mode type. The number stated is the median with the

uncertainty in the last digit in parentheses. The subscript and superscript values are the difference between the median and the 15.9 and

84.1 percentile values, respectively (i.e., one standard deviation), included to show the spread and overlap in values. Some experiments

were not carried out for the baseline method as these experiments were not relevant; these entries are left blank.

Experiment Mode type SFA DMD PCA Base

1. Precision Linear 0:82(2)10:14
20:21 0:73(2)10:18

20:26 0:32(1)10:15
20:18 0:246(5)10:096

20:094

2. Spatial sparsity Linear 0:84(2)10:12
20:18 0:76(1)10:18

20:21 0:33(1)10:13
20:18 0:242(9)10:101

20:098

Linear sparse 0:84(2)10:11
20:17 0:74(1)10:15

20:19 0:35(2)10:16
20:21 0:25(1)10:12

20:11

5a. Nonlinear confounding Linear 0:906(8)10:058
20:227 0:84(1)10:12

20:30 0:36(1)10:13
20:22 —

Nonlinear 0:831(1)10:053
20:062 0:830(9)10:045

20:064 0:35(2)10:11
20:16 —

5b. Nonlinear cyclic confounding Linear 0:78(2)10:17
20:24 0:77(3)10:16

20:28 0:37(2)10:12
20:23 —

Nonlinear cyclic 0:48(2)10:19
20:14 0:55(2)10:14

20:18 0:297(9)10:053
20:074 —

5c. Wave confounding Linear 0:78(2)10:15
20:25 0:74(2)10:20

20:31 0:36(1)10:15
20:21 —

Moving wave 0:39(3)10:11
20:1 0:38(4)10:18

20:17 0:29(2)10:09
20:06 —

6a. Dominant mode Linear 0:89(1)10:07
20:26 0:87(2)10:05

20:39 0:348(9)10:161
20:210 —

Linear dominant 0:994(2)10:004
20:014 0:988(3)10:009

20:012 0:95(2)10:04
20:29 —

6b. Dominant nonlinear mode Linear 0:89(2)10:06
20:24 0:789(7)10:142

20:195 0:30(1)10:13
20:17 —

Nonlinear dominant 0:87(1)10:06
20:03 0:87(1)10:06

20:03 0:87(2)10:07
20:22 —

7. Mixed Linear 0:85(1)10:09
20:29 0:84(2)10:10

20:42 0:44(2)10:28
20:27 0:20(2)10:14

20:09

Linear sparse 0:74(4)10:20
20:34 0:68(8)10:25

20:39 0:30(2)10:32
20:20 0:20(1)10:15

20:09

Nonlinear 0:57(2)10:20
20:28 0:54(2)10:22

20:31 0:33(2)10:17
20:18 0:21(1)10:11

20:12

Nonlinear cyclic 0:43(2)10:18
20:25 0:30(2)10:23

20:18 0:23(2)10:16
20:1 0:17(1)10:09

20:07

Moving wave 0:27(4)10:18
20:15 0:21(2)10:16

20:12 0:22(1)10:12
20:11 0:109(9)10:062

20:059
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each other and evolve on different time scales. ENSO is spa-

tially more localized, but may have teleconnections to other

parts of the globe, is nonlinear, and should have a clear spectral

peak. Global warming is spatially global and more linear than

ENSO (see pattern scaling discussion; Collins et al. 2013), and

both are reasonably well understood. Therefore we can consider

differences in the LVMmodes with little uncertainty of what the

patterns should look like, as would be the case if we were con-

sidering combinations of modes such as ENSO and the PDO.

Usually PCA is applied only to the Pacific region to focus on

the spatial pattern of ENSO. However, we apply these LVMs

globally to find ENSO. This is a useful qualitative test of the

methods, as we may wish to find global ENSO teleconnections.

Usually global warming is not considered a mode and is re-

moved before modes are extracted. However we could consider

it an emission-driven mode, or a mode of the anthroposphere.

There is also some complexity in removing the global warming

trend in a way suitable for these mode extraction techniques

(an equivalent problem of correctly removing the seasonal

cycle is discussed in appendix C).

The first row of the figure shows the HadCRUT4 derived

modes that appear most like global warming. These matched

modes happen to be the slowest, most predictable, and most

variant as defined by our three respective LVMs. The SFA and

DMD time series have a much greater proportion of their

variance at lower frequencies, and therefore the trend is much

easier to see without any temporal averaging. SFA has reduced

the weighting over landmasses compared to the other two

methods. This is to be expected as the temperature variance

over land has much more power at higher frequencies. This

spatial pattern therefore gives the optimally slow time signal.

The third row shows the most ENSO-like modes recovered

from the observations. We note that the DMD and particu-

larly the SFAmodes are spatially simpler than the PCAmode.

FIG. 4. The median value and uncertainty of the projection correlation scoresm achieved by the three LVMs for

the dominant modes and nondominant modes. The x axis shows the variance ratio between the dominant and the

nondominant modes. Results are shown from (top) experiment 6a with all linear modes and (bottom) experiment

6b with nonlinear dominant modes and linear nondominant modes.
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The ENSO-like modes discovered by SFA, DMD, and PCA

were respectively the second slowest, second most predictable,

and seventh most variant comprising only 4% of global var-

iance. PCA suggests that the positive phase of this mode is

associated with warmer European temperatures and warmer

temperatures in parts of Asia. The power spectrum of the

normalized time series of each mode shows that SFA and

DMD have a higher proportion of their total power at lower

frequencies, and they more clearly peak in the 3–7-yr range,

which is consistent with ENSO. Considering the two CESM2

datasets the SFA and DMD ENSO-like modes have a more

consistent spatial structure than the equivalent PCA modes.

Analysis of the historically forced run (CESM2 Hist) is un-

able to separate the ENSO-like signal from global warming,

and mixes in some of ENSO’s low-frequency signal in all

methods. The spatial pattern associatedwith this global warming

mode has a strong component in the ENSO region, and the time

series has enhanced variability in the 3–7-yr band, as well as some

apparent multidecadal variability. The discovered ENSO-like

mode in this dataset is spatially narrower than those of the

other two datasets, and has less power at a period of 5 years or

greater than the other datasets. This is because the longer-term

ENSO variability is already accounted for.

This result is an interesting contrast to the observational

data, where ENSO and global warming were separated well.

This mixing happened consistently in all runs tested from the

CESM2 historically forced ensemble and so was not specific

to this one dataset. This could simply be because the CESM2

data do not contain observational noise as in HadCRUT4,

and so this mixed signal is slower than the two separated

signals. It may also suggest differences in the relative

strength and variability of ENSO and global warming be-

tween model and observations, which we do not investigate

further here.

FIG. 5. The projection correlation scores between the input modes and those discovered by the three LVMs.

These results are from experiment 7. The black diagonal shows where the scores are even between the different

LVMs. In the plotmargins are the distributions for the three different LVMs and are broken down bymode type. In

the distributions the mode types are stacked from bottom to top in order: linear-dense, linear sparse, nonlinear,

cyclic nonlinear, and moving wave.
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We also carried out the same analysis on annual as op-

posed to monthly means and found very similar results

(not shown).

Figure 7 shows the different LVMs applied to datasets de-

rived from an ensemble of CESM2 historically forced simula-

tions. The global warming mode found by SFA in the ensemble

mean data is remarkably similar to the global warming mode

extracted from the observational data in Fig. 6. This may

present an opportunity to use SFA alone to remove the global

warming signal from observations instead of relying on sub-

tracting a climate model ensemble mean.

In Fig. 7 the detrended data are the single run data with the

ensemble mean subtracted. The SFA ENSO-like mode from

Fig. 7 detrended is very similar to that from the preindustrial

(piControl) run of Fig. 6. This similarity can also be seen in the

DMD modes, but not the PCA modes.

The fact that DMD and SFA find very similar modes in the

detrended historical and preindustrial control runs while PCA

did not is another reason to prefer these alternate techniques.

We should expect these datasets to have the same modes,

unless historical forcing influences strongly influence climate

variability. However, both methods deal differently with the

variance difference between land and ocean, something not

tested in synthetic cases.

8. Conclusions

In this study we have developed a Monte Carlo (MC)

method to generate additive space-time modes. Methods of

mode extraction are often developed analytically with highly

idealized assumptions of the form of modes and the back-

ground noise. Using our MC generated datasets allows us to

quantitatively assess how accurately these mode extraction

methods perform when their assumptions are not strictly

met. This is important as the extracted modes direct our

research into the physical mechanisms that imprint these

mode signals.

We have shown that two alternatemode extractionmethods,

SFA andDMD, vastly outperform the commonly usedmethod

PCA (also known as empirical orthogonal functions) in

separating multiple additive synthetic modes. Both SFA and

DMD methods target modes that are temporally autocorre-

lated, which is the case for manymodes of climate variability in

data. Even the North Atlantic Oscillation, which has fairly

FIG. 6. The modes discovered by three different latent variable methods, SFA, DMD, and PCA, computed on HadCRUT4 observa-

tional data, a single CESM2 historically forced run, and a single CESM2 preindustrial control run. Above the line are the most global

warming–like modes discovered by each method along with their time series. Below the line are the most ENSO-like patterns and their

normalized power spectral density. Each row shows the spatial patterns for the dataset labeled at the left of the row. The time series or

power spectral density of the normalized index time series for the threemodes is shown on the left, and the color bar for the entire row is on

the right. Below each spatial pattern is the mode number ordered by the normal LVM criteria (see section 3d) and the eigenvalue for each

mode (or in the case of PCA the fraction of total variance).
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white time series, exhibits substantial decadal variability (Iles

and Hegerl 2017).

This performance gap may have been predicted from

definitions of the mode extraction methods, but impor-

tantly we have quantified this gap under various scenarios,

and presented an example of how this could misdirect re-

search efforts.

These two techniques, and particularly SFA, significantly

outperform PCA whether the synthetic modes are linear, or

nonlinear, or a mixture. This was true whether the generated

climate included one or more modes with higher variance and

also where the signal-to-noise ratio is small, as might be ex-

pected in climate observations and simulations.

We find that a particularly problematic property of PCA is

its inability to discover localized modes, always deforming

them into global modes. In all synthetic datasets it extracted

false dipoles instead of monopoles, which may lead to serious

misinterpretation of extracted modes. More generally we

found that PCA tends to mix independent spatial regions into

single modes.

Overall, this evidence based on pseudoclimate data may

suggest that SFA and DMD are better suited to analyzing

real climate data from observations and simulations, assum-

ing that climate modes could be reasonably approximated as

additive.

When applied to observational data we found that SFA and

DMD produced less noisy time indices for a global warming

signal. The global warming pattern from observational data

matched well with that from an ensemble mean of historically

forced simulations. This suggests that SFA and/or DMD could

be used to remove the global warming signal fromadatasetwithout

the need of an external reference such as a model ensemble.

ENSO-likemodes discovered by SFA andDMDalso appear

to be more realistic than those found by PCA. Their time in-

dices had a higher proportion of variance in the 3–7-yr period

band and their spatial patterns are much more localized to the

equatorial pacific, as would be expected from an ENSO signal.

The ENSO-like PCA modes had anomalous projections onto

spurious parts of the globe which were not consistent between

datasets, whereas SFAandDMDweremuchmore self-consistent

across datasets. This suggests that comparison between modes

derived from different data sources would be more meaningful

using SFA and DMD.
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FIG. 7. The modes discovered by three different latent variable methods, SFA, DMD, and PCA, on an ensemble of CESM2 historically

forced simulations. The datasets used are a single run that is identical to CESM2Hist in Fig. 6, the ensemblemean of 10 historically forced

run members, and the single run with this ensemble mean subtracted, which we refer to as detrended. All further detail is the same as in

Fig. 6. See appendix C for more discussion on power spectra 1-yr peaks despite seasonal detrending.
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APPENDIX A

PCA and Nonorthogonal Modes

Wemention inmain the text that PCA (EOFs) cannot recover

any true mode signal if these modes are nonorthogonal. This is

contrary to the seemingly common assumption that the first

couple of principal components, as ordered by decreasing vari-

ance, are reliable while the later ones may be wrong due to being

constrained to be orthogonal to the earlier ones. We show here

analytically, that if the true underlyingmodes are nonorthogonal

then even the first principal component (PC) will be incorrect.

Suppose we have a set of k true modes of climate variability

fv(i)ji 2 N, i# kg. These modes might be the signal imprint

on surface temperature anomalies, precipitation, or pressure

anomalies etc. For simplicity we will suppose that these modes

are space–time separable (linear), meaning that eachmode can

be expressed as a column vector, and we will assume that they

are not necessarily orthogonal but are normalized. We will

define a basis matrix of all of the linear modes V, where

V5

j j j
v(1) v(2) � � � v(k)

j j j

2
4

3
5 . (A1)

Each of these modes has a corresponding time series z(i) that

states how much of that mode is expressed at any time. These

time series, fz(i)ji 2 N, i# kg, can be thought of as climate

indices associated with each mode. We will define that they

have zero mean and are not correlated. These indices can also

be stacked into a matrix of column vectors.

Z5

2
4 j j j
z(1) z(2) � � � z(k)

j j j

3
5 . (A2)

The full dataset matrix X that represents observations of the

state of the climate, taken at regular time intervals and at de-

fined locations, is therefore

X5VZT (A3)

and has a shape of [N, T], where T is the number of time

snapshots and N is the number of measurements taken at each

time. From our definitions of v(i) and z(i), the data matrix X

has a zero mean in the time dimension and so can be used

to represent measurement anomalies. Here we assume that

measurements are composed from only the superposition of

linear modes with no noise, either red or white.

To show that PCA will not recover any of the true non-

orthogonal modes, we consider performing PCA by eigende-

composition of the covariance matrix S 5 XXT. Any column

vector u that is an eigenvector of S has the property that

XXTu2 lu5 0: (A4)

We use the substitution that XXT 5 VZTZVT and note that

since the index time series are uncorrelated, z(i)
T

z(j) 5 dijs
2
i .

In this case G 5 ZTZ is the diagonal covariance matrix where

G5diag(s2
1, s

2
2, . . . , s

2
k). Following this,

VGVTu2 lu5 0: (A5)

And since G is diagonal,

�
�
k

i51

s2
i (v

(i)Tu)v(i)
�
2lu5 0: (A6)

Using the equation above we can see that the eigenvector u can

only be an element of the original mode set u 5 v(n), if at least

one of the following conditions is true:

1) s2
i 5 dinl5 dins

2
i (i.e., there is only one mode).

2) v(i)
T

v(n) 5 din (i.e., the mode u 5 v(n) is orthogonal to every

other mode).

3) �k

i51,i 6¼ns
2
i [v

(i)Tv(n)]v(i) 5 (l2s2
n)v

(n) (i.e., extreme coinci-

dence). The mode u 5 v(n) is an extremely specific and

unlikely linear combination of the other modes.

Therefore in practice PCA cannot find even a single correct

mode if the modes are nonorthogonal. This is true whether we

consider the first PC with the most variance or the later ones.

PCA is a greedy algorithm and so as much variance as possible

from all of the input modes is captured in each subsequent PC,

and so the first PC is not the true mode with the most variance.

There is no physical reason for climate modes to be or-

thogonal. It is also extremely unlikely for climate modes to be

arranged ‘‘just so’’ as required by condition 3. Therefore if our

climate is composed of multiple modes of variability such as

ENSO, NAO, PDO, AMO, DMI, etc., then PCA cannot ex-

tract the ‘‘real’’ modes for any of these and will return PCs

which are impure mixtures of these modes as well as the added

complication of noise. We note that PDO is defined by the

leading PC of SST anomalies the North Pacific basin and so is

likely mischaracterized.

A limited case where the first PC could approximatelymatch

an input mode is where the variance in one true mode is much

greater than the variance of the other modes, s2
n � s2

i " i 6¼ n.

However, in this case all other modes that are not completely

orthogonal to the first mode will be distorted by it, absorbing

some small part of its variance to the point where they may

be corrupted and spatially unrecognizable. This is in fact the
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reason why when applying PCA we need to remove the sea-

sonal component. This is by far the strongest mode of climate

variability and if we do not remove it we have this stated

problem.

It is easy to follow this reasoning to modes further down the

variance hierarchy. The next most dominant signal of any cli-

mate data, if global warming is removed, is ENSO. So we

should expect the ENSO signal to dominate other modes thus

projecting parts of ENSO into them. This of course must be a

major concern for teleconnection studies as spurious lead–lag

relations might be the product of this variability leakage.

The same reasoning as presented above can be applied to

extended EOFs to say that they cannot return the correct

spatiotemporal modes if the system contains multiple spatio-

temporal modes which are nonorthogonal. However since the

modes are extended into the time dimension, it is more likely

that any modes will be approximately orthogonal as they will

likely have different dominant frequencies.

APPENDIX B

Equivalence to the Projection Correlation

In the text we state that when the discovered and generated

modes are both linear, then the projection correlation is equal

to the Pearson correlation coefficient between their time series

multiplied by the dot product between their normalized spatial

vectors.

Assuming the modes are linear so D(i)(t) 5 z(i)(t)v(i), then

Eq. (9) becomes

m
ij
5
h[z(i)(t)v(i) 2 hz(i)(t)v(i)i] � [~z(j)(t)~v(j) 2 h~z(j)(t)~v(j)i]i

s(i) ~s(j)

5
h[z(i)(t)2 hz(i)(t)i]v(i) � [~z(j)(t)2 h~z(j)(t)i]i~v(j)

s(i) ~s(j)

5
h[z(i)(t)2 hz(i)(t)i][~z(j)(t)2 h~z(j)(t)i]i

s(i) ~s(j)
v(i) � ~v(j) . (B1)

If we make the same substitutions into Eq. (10), and use the

fact that the spatial vectors are normalized, then it becomes

s(i) 5 [hz(i)(t)v(i) � z(i)(t)v(i)i2 hz(i)(t)v(i)i � hz(i)(t)v(i)i]1/2
5 [hz(i)(t)z(i)(t)i2 hz(i)(t)ihz(i)(t)i]1/2 . (B2)

Once Eq. (B2) is substituted into Eq. (B1) it becomes obvious

that the term on the left of Eq. (B1) is indeed the Pearson

correlation coefficient between the modes’ time series and the

term on the right is the dot product between their normalized

spatial vectors.

APPENDIX C

The Difficulty of Removing a Nonlinear Yearly Cycle

In the main text we claim that it may not be possible to fully

remove the yearly cycle or other dominant modes from our

climate signal if they are nonadditive. This is what we ob-

serve in all power spectra in Figs. 6 and 7 and is particularly

noticeable in the final row of 7. Despite deseasonalizing the

data as usual where we subtract from each month J the mean

value of all months J, this peak remains.

Lets assume we have some climate data x(t) that are made

up of some mode projection Ds(t) and some other part x0(t),
which is the sum of the other modes and noise, so that

x(t)5 x0(t)1D
s
(t) . (C1)

Here Ds(t) is seasonal such that Ds(t 1 s) 5 Ds(t) for some

seasonal time length s.

If Ds(t) were the seasonal cycle we would remove this using

the usual method to get the perfectly deseasonalized data x0(t).
However, if the seasonality is not additive as in

x(t)5 x0(t)1A
s
(t)x0(t)1D

s
(t) , (C2)

where As(t)5As(t1 s) is some seasonal scalar function, then

the seasonality cannot be removed as normal. In the climate

system this could be a higher summer or winter variability and

As(t) could even be a matrix operator to account for spatially

heterogeneous variability effects. If we applied the normal

method of deseasonalizing where we subtract the monthly

means we would get x0(t)1As(t)x
0(t).

Since all of our LVM methods as well as calculating the

power spectrum involve taking some form of the inner product

of the data with itself, this will maintain some seasonal infor-

mation as hx0(t)x0(t)Ti is replaced by

h[11A
s
(t)]x0(t)x0(t)T[11A

s
(t)

T
]i . (C3)

If As(t) is simply a scalar factor as opposed to a matrix then

this is h[11 2As(t)1As(t)
2]x0(t)x0(t)Ti. This explains the one

year peak observed in the normalized power spectra in Figs. 6

and 7 despite the data being deseasonalized in the usual way.

This kind of seasonality may affect our calculated modes

as the factor 11 2As(t)1As(t)
2
weights anomalies by time

of year.

REFERENCES

Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata,

2007: El Niño Modoki and its possible teleconnection.

J. Geophys. Res. Oceans, 112, C11007, https://doi.org/10.1029/

2006JC003798.

Christensen, J. H., and Coauthors, 2013: Climate phenomena and

their relevance for future regional climate change. Climate

Change 2013: The Physical Science Basis, T. F. Stocker et al.

Eds., Cambridge University Press, 1217–1308.

Collins, M., and Coauthors, 2013: Long-term climate change:

Projections, commitments and irreversibility. Climate Change

2013: The Physical Science Basis, T. F. Stocker et al., Eds.,

Cambridge University Press, 1029–1136.

Dahleh, M., M. A. Dahleh, and G. Verghese, 2011: 6.241j:

Lectures on dynamic systems and control. Massachusetts

Institute of Technology: MIT OpenCourseWare, 354 pp.,

https://viterbi-web.usc.edu/;mihailo/courses/ee585/f17/mit-notes//

mit-notes.pdf.

Danabasoglu, G., 2019: NCARCESM2model output prepared for

CMIP6 CMIP. Earth System Grid Federation, accessed 2021,

https://doi.org/10.22033/ESGF/CMIP6.2185.

15 SEPTEMBER 2021 FULTON AND HEGERL 7659

Brought to you by UNIVERSITY OF EDINBURGH | Unauthenticated | Downloaded 09/27/21 10:01 AM UTC

https://doi.org/10.1029/2006JC003798
https://doi.org/10.1029/2006JC003798
https://viterbi-web.usc.edu/~mihailo/courses/ee585/f17/mit-notes//mit-notes.pdf
https://viterbi-web.usc.edu/~mihailo/courses/ee585/f17/mit-notes//mit-notes.pdf
https://doi.org/10.22033/ESGF/CMIP6.2185


DelSole, T., 2001: Optimally persistent patterns in time-varying

fields. J. Atmos. Sci., 58, 1341–1356, https://doi.org/10.1175/

1520-0469(2001)058,1341:OPPITV.2.0.CO;2.

Demo, N., M. Tezzele, and G. Rozza, 2018: PyDMD: Python dy-

namic mode decomposition. J. Open Source Softw., 3, 530,

https://doi.org/10.21105/joss.00530.

Dommenget, D., 2007: Evaluating EOF modes against a stochastic

null hypothesis. Climate Dyn., 28, 517–531, https://doi.org/

10.1007/s00382-006-0195-8.

——, andM. Latif, 2002: A cautionary note on the interpretation of

EOFs. J. Climate, 15, 216–225, https://doi.org/10.1175/1520-

0442(2002)015,0216:ACNOTI.2.0.CO;2.

Goodfellow, I., Y. Bengio, and A. Courville, 2016:Deep Learning.

MIT Press, 800 pp., http://www.deeplearningbook.org.

Hamilton, J. D., 1994: Time Series Analysis. Princeton University

Press, 816 pp.

Hasselmann,K., 1976: Stochastic climatemodels Part I. Theory.Tellus,

28, 473–485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.

——, 1988: PIPs and POPs: The reduction of complex dynamical

systems using principal interaction and oscillation patterns.

J. Geophys. Res., 93, 11 015–11 021, https://doi.org/10.1029/

JD093iD09p11015.

Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and

datasets in Python. J. OpenRes. Software, 5, 10, https://doi.org/

10.5334/jors.148.

Iles, C., andG.Hegerl, 2017: Role of theNorthAtlanticOscillation

in decadal temperature trends. Environ. Res. Lett., 12, 114010,

https://doi.org/10.1088/1748-9326/aa9152.

Johnson, N. C., D. C. Collins, S. B. Feldstein,M. L. L’Heureux, and

E. E. Riddle, 2014: Skillful wintertime North American tem-

perature forecasts out to 4 weeks based on the state of ENSO

and the MJO. Wea. Forecasting, 29, 23–38, https://doi.org/

10.1175/WAF-D-13-00102.1.

Kessy, A., A. Lewin, and K. Strimmer, 2018: Optimal whitening

and decorrelation. Amer. Stat., 72, 309–314, https://doi.org/

10.1080/00031305.2016.1277159.

Kramer, M. A., 1991: Nonlinear principal component analysis us-

ing autoassociative neural networks. AIChE J., 37, 233–243,

https://doi.org/10.1002/aic.690370209.

Kutz, J. N., S. L. Brunton, B. W. Brunton, and J. L. Proctor, 2016a:

Dynamic mode decomposition: An introduction. Dynamic

Mode Decomposition, SIAM, 1–24, https://doi.org/10.1137/

1.9781611974508.ch1.

——, X. Fu, and S. L. Brunton, 2016b: Multiresolution dynamic

mode decomposition. SIAM J. Appl. Dyn. Syst., 15, 713–735,
https://doi.org/10.1137/15M1023543.

Monahan, A. H., J. C. Fyfe,M. H.Ambaum,D. B. Stephenson, and

G. R. North, 2009: Empirical orthogonal functions: The me-

dium is the message. J. Climate, 22, 6501–6514, https://doi.org/
10.1175/2009JCLI3062.1.

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012:

Quantifying uncertainties in global and regional temperature

change using an ensemble of observational estimates: The

HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://

doi.org/10.1029/2011JD017187.

Newman, M., and Coauthors, 2016: The Pacific decadal oscillation,

revisited. J. Climate, 29, 4399–4427, https://doi.org/10.1175/

JCLI-D-15-0508.1.

NOAA/OAR/ESRL PSL, 2019: Climate timeseries. Accessed 8 July

2019, https://psl.noaa.gov/gcos_wgsp/Timeseries/index.html.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng,

1982: Sampling errors in the estimation of empirical

orthogonal functions. Mon. Wea. Rev., 110, 699–706,

https://doi.org/10.1175/1520-0493(1982)110,0699:SEITEO.
2.0.CO;2.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning

in Python. J. Mach. Learn. Res., 12, 2825–2830.

Rasmussen, C. E., and C. K.Williams, 2006:Gaussian Processes for

Machine Learning, Vol. 2. MIT Press, 248 pp.

Runge, J., and Coauthors, 2015: Identifying causal gateways and

mediators in complex spatio-temporal systems. Nat. Commun.,

6, 8502, https://doi.org/10.1038/ncomms9502.

Schmid, P. J., 2010: Dynamic mode decomposition of numerical

and experimental data. J. Fluid Mech., 656, 5–28, https://

doi.org/10.1017/S0022112010001217.

Timmermann,A., andCoauthors, 2018: El Niño–SouthernOscillation

complexity. Nature, 559, 535–545, https://doi.org/10.1038/s41586-
018-0252-6.

Tipping, M. E., and C. M. Bishop, 1999: Probabilistic principal

component analysis. J. Roy. Stat. Soc., 61B, 611–622, https://

doi.org/10.1111/1467-9868.00196.

Tu, J. H., C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and

J. N. Kutz, 2014: On dynamic mode decomposition: Theory

and applications. J. Comput. Dyn. 1, 391–421, https://doi.org/
10.3934/jcd.2014.1.391.

von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in

Climate Research. Cambridge University Press, 484 pp.

Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher,

C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North

AtlanticOscillation—Concepts and studies. Surv. Geophys., 22,

321–381, https://doi.org/10.1023/A:1014217317898.

Weisheimer, A., N. Schaller, C. O’Reilly, D. A. MacLeod, and

T. Palmer, 2017: Atmospheric seasonal forecasts of the

twentieth century: Multi-decadal variability in predictive

skill of the winter North Atlantic Oscillation (NAO) and

their potential value for extreme event attribution. Quart.

J. Roy. Meteor. Soc., 143, 917–926, https://doi.org/10.1002/

qj.2976.

Wills, R. C., T. Schneider, J. M.Wallace, D. S. Battisti, and D. L.

Hartmann, 2018: Disentangling global warming, multi-

decadal variability, and El Niño in Pacific temperatures.

Geophys. Res. Lett., 45, 2487–2496, https://doi.org/10.1002/

2017GL076327.

Wiskott, L., and T. J. Sejnowski, 2002: Slow feature analysis:

Unsupervised learning of invariances. Neural Comput., 14,

715–770, https://doi.org/10.1162/089976602317318938.

Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal

prediction model of the East Asian summer monsoon using

ENSO and NAO. J. Geophys. Res., 114, D18120, https://

doi.org/10.1029/2009JD011733.

Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43,

RG2003, https://doi.org/10.1029/2004RG000158.

Zito, T., N. Wilbert, L. Wiskott, and P. Berkes, 2009: Modular

toolkit for data processing (MDP): A Python data processing

framework. Front. Neuroinform., 2, 8, https://doi.org/10.3389/

neuro.11.008.2008.

7660 JOURNAL OF CL IMATE VOLUME 34

Brought to you by UNIVERSITY OF EDINBURGH | Unauthenticated | Downloaded 09/27/21 10:01 AM UTC

https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2
https://doi.org/10.21105/joss.00530
https://doi.org/10.1007/s00382-006-0195-8
https://doi.org/10.1007/s00382-006-0195-8
https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2
http://www.deeplearningbook.org
https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/10.1029/JD093iD09p11015
https://doi.org/10.1029/JD093iD09p11015
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.1088/1748-9326/aa9152
https://doi.org/10.1175/WAF-D-13-00102.1
https://doi.org/10.1175/WAF-D-13-00102.1
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1137/1.9781611974508.ch1
https://doi.org/10.1137/1.9781611974508.ch1
https://doi.org/10.1137/15M1023543
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1175/2009JCLI3062.1
https://doi.org/10.1029/2011JD017187
https://doi.org/10.1029/2011JD017187
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1175/JCLI-D-15-0508.1
https://psl.noaa.gov/gcos_wgsp/Timeseries/index.html
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1023/A:1014217317898
https://doi.org/10.1002/qj.2976
https://doi.org/10.1002/qj.2976
https://doi.org/10.1002/2017GL076327
https://doi.org/10.1002/2017GL076327
https://doi.org/10.1162/089976602317318938
https://doi.org/10.1029/2009JD011733
https://doi.org/10.1029/2009JD011733
https://doi.org/10.1029/2004RG000158
https://doi.org/10.3389/neuro.11.008.2008
https://doi.org/10.3389/neuro.11.008.2008

