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Abstract 17 

Earthen construction generates interest due to its environmental and economic advantages such as 18 

low embodied energy, thermal comfort and low construction cost. Two challenges, namely 19 

durability and strength, hinder its application. Tung oil, a sustainable vegetable oil traditionally 20 

applied in waterproofing wooden construction, could improve the water resistance and strength of 21 

earthen materials. This study aims to detail the multiple roles and mechanisms of Tung oil as a 22 

stabilizer. Completely decomposed granite, a natural mineral soil, was selected to assess the 23 

influence of Tung oil and its time-hardening behavior on the compaction behaviour, unconfined 24 

compressive strength and hydrophobicity. Results revealed that: (1) fresh Tung oil could 25 

simultaneously increase the density of compacted soils and decrease the water required for 26 

compaction. (2) Tung oil hardened during drying, bonding soil particles and enhancing the 27 

unconfined compressive strength of the compacted soils. (3) Hydrophobicity of the stabilized soils 28 

were also enhanced, with high and persistent contact angles, which could further contribute to its 29 

durability and minimize water-induced damage. 30 

 31 

Key words: earthen materials; stabilizers; Tung oil; hydrophobicity; compaction; strength 32 
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Introduction 35 

 36 

Earthen materials have been used as building elements in walls, shelters and floors for thousands 37 

of years (Easton, 2007; Walker et al., 2005). Compared to traditional civil engineering materials, 38 

they have significant environmental benefits including low embodied energy and carbon footprint 39 

(Treloar et al., 2001; Hall and Allinson, 2009; Arrigoni et al., 2017). However, two key limitations 40 

remain, mostly related to their low strength and durability. 41 

Unstabilized earthen materials (i.e., without any cementing or bonding additives) have a relatively 42 

low strength, comparing to other traditional construction materials such as concrete and steel. For 43 

example, Lin et al. (2017) tested rammed earth formed from three representative soils in Hong 44 

Kong (residual soil, alluvium and completely decomposed granite), revealing their compressive 45 

strength to be generally lower than 2.0 MPa. Comparable results have also been reported from 46 

other soils in different regions e.g., 1.9-2.5 MPa in Aguilar et al. (2016) and 1.7 MPa in Luo et al. 47 

(2020). As a soil-based material, its mechanical behavior is also affected by the soil water content. 48 

The role of suction (or capillary pressure) of unsaturated soils is now recognized as a key factor 49 

controlling their strength and stability (Jaquin et al., 2009). In humid areas, for instance, rammed 50 

earth has a decreased strength (Beckett et al., 2018; Bui et al., 2014; Jaquin et al., 2009) due to the 51 

higher water content and low suction. Inadequate durability related to the presence and action of 52 

water is another concern. Erosion and desiccation cracks of earthen buildings can be triggered by 53 

rainfall, wind and wetting-drying cycles (Bui et al., 2009). For example, recently Luo et al. (2020) 54 

reported erosion, due to wind-driven rain, and desiccation cracks,  due to drying, on the earthen 55 

walls of the UNESCO World Heritage site of Tulou (Fujian Province, China).  56 
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To address these two key challenges, efforts have been made to use hydrophobic coatings to 57 

prevent erosion and stabilizers to improve strength. For example, Nakamatsu et al. (2017) used 58 

carrageenan to ameliorate the durability of earthen construction. Silane-based materials have also 59 

been used as hydrophobic coatings and have proven effective in monuments and historical earthen 60 

buildings with no ill effect on their strength (e.g. Holub et al., 2015). Using cementing or bonding 61 

additives in the soil matrix (or so-called stabilizers or integral admixtures) to enhance the strength 62 

is widely accepted. The most long-established stabilizers are cement and lime which have been 63 

used for hundreds of years (Easton, 2007). These stabilizers increase the compressive strength of 64 

rammed earth to 10~20 MPa (Ciancio and Gibbings, 2012; Gu and Chen, 2020; Reddy et al., 2008; 65 

Reddy and Kumar, 2011). However, they have high carbon footprint and embodied energies. 66 

Maskell et al. (2014) reported that using more than approximately 10% of cement or lime as 67 

stabilizers can offset the embodied energy advantage of the earthen construction.  68 

In order to resolve the strength and durability challenges simultaneously, hydrophobic stabilizers 69 

have been proposed which can not only improve the water resistance by inducing soil 70 

hydrophobicity (i.e., the matrix is hydrophobic), but also enhance the mechanical properties. For 71 

example, Zhang et al. (2020) explored the use of polyvinyl acetate (PVA) as a hydrophobic 72 

stabilizer to induce soil hydrophobicity and protect earthen construction from erosion. Aguilar et 73 

al. (2016) reported that chitosan increases the strength of rammed earth and generates soil 74 

hydrophobicity simultaneously. Fatty acids such as stearates and oleates combined with cement 75 

are also able to achieve a hydrophobic effect for earthen buildings (Eires et al., 2017; Nagaraj and 76 

Muguda, 2020). 77 

Among these hydrophobic stabilizers, Tung oil is a promising substance given its natural origin, 78 

cost-effectiveness and its ability to improve both the mechanical behavior and water resistance in 79 
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soils (Samadzadeh et al., 2011; Yang et al., 2015; Li et al., 2018). Tung oil is a traditional Chinese 80 

vegetable oil abstracted from the Tung tree (Vernicia fordii). As a drying oil with a high content 81 

of unsaturated fatty acids, Tung oil can be hardened when exposed to the atmosphere (Schönemann 82 

and Edwards, 2011). Its most common use is for wood preservatives, where it is applied solely, or 83 

in combination with lime, water and flour as part of an elaborate multi-layered process (Fu et al., 84 

2020). Moreover, Tung oil has had other uses historically, including as an organic additive to 85 

enhance specific properties of lime mortars, as a primary constituent of caulking applied directly 86 

between the wooden boards of ships, and as a protective waterproofing layer in masonry 87 

construction (Xing et al., 1995). Recently, Tung oil has been extended to other construction 88 

materials such as self-healing concrete and asphalt (Chen et al., 2017; Fang et al., 2014; Qiang et 89 

al., 2014; Xin et al., 2016; Yan et al., 2020). 90 

Of interest to earthen materials, Dai (2013) investigated the traditional technique of adding Tung 91 

oil and lime to rammed earth to enhance the water resistance and tested different concentrations 92 

of raw Tung oil in the mixture of clay soil and calcium hydrate (10 %), with results showing that 93 

5% Tung oil is the optimum dosage to reduce the capillary water uptake of the rammed earth. 94 

However, lime alone also has a stabilizing effect on clayey soils and their study does not 95 

differentiate whether the improved properties are a result of either or both additives. Zhang et al. 96 

(2016) considered the use of Tung oil to enhance the water resistance of earthen monuments. Tang 97 

et al. (2010) mixed the soils with Tung oil and sticky rice juice to ameliorate its durability under 98 

wetting-drying cycles, and explored its use to reduce water infiltration in a clayey soil (Tang et al., 99 

2006). Lin et al. (2019) investigated the effects of Tung oil (heated and unheated) on soil 100 

hydrophobicity and the strength of soil aggregates, showing that by using high temperature, soil 101 

can be more hydrophobic and consequently the consumption of Tung oil can be saved. At the same 102 
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time, water stability and tensile strength of soil aggregates are also enhanced by Tung oil and 103 

heating. From these observations, Tung oil shows potential in earthen materials as a hydrophobic 104 

stabilizer. However, the published studies do not investigate the improvement of the soil properties, 105 

i.e. mechanics and hydrophobicity, with Tung oil concentration and time to account for the 106 

hardening effect, and its implications for earthen construction remains unresolved. 107 

This study aims to detail the multiple roles of Tung oil in improving properties of earthen materials 108 

with time. The specific objectives are (1) to investigate the effect of Tung oil concentration and its 109 

time-dependent hardening behaviour on soil compaction, compressive strength and 110 

hydrophobicity and, (2) to elucidate the controlling mechanisms of the stabilization of Tung oil in 111 

soils. Three sets of tests corresponding to these properties were carried out, namely modified 112 

compaction tests, unconfined compressive tests and soil hydrophobicity assessment (Fig. 1). 113 

 114 

Materials 115 

 116 

Completely decomposed granite 117 

Completely decomposed granite (CDG) used in this study was collected from Beacon Hill, Hong 118 

Kong. CDG is a mineral soil prevalent in Hong Kong where the sub-tropical climate has weathered 119 

its parent rocks (granite) to a material comprising sand, silt and clay-sized particles. To determine 120 

the particle size, CDG was firstly wet sieved through a 63-μm mesh. The coarse fraction (i.e., soils 121 

retained on the mesh) was oven dried and analysed by a dynamic image analyser, QicPic™ 122 

(Sympatec GmbH, Clausthal-Zellerfeld, Germany) through a gravity dispenser (GRADIS™), 123 

while the fines dispersed in water were analysed by QicPic™ through a wet dispersion unit 124 

(LIXELLTM). The particle size distribution of CDG is shown in Fig. 2 and complies with general 125 
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guidance on suitable gradings for earthen construction (e.g., Walker et al., 2005). Mineralogical 126 

composition of CDG comprises quartz, microcline, kaolinite and illite as detected by X-ray 127 

diffraction (XRD). CDG contained limited organic matter (<2%) which was determined by loss 128 

on ignition test (LOI, following BS 1377-3:1990). Soil specimens were firstly air dried at ambient 129 

temperature (20~25°C) for three days so that the soil water content was lower than 3%. Soil 130 

properties are summarized in Table 1.  131 

 132 

Tung oil 133 

The Tung oil used in this study is a commercial product from Jogel Co., China. It contained 134 

approximately 80% of alpha-eleostearic acid, and 20% of other fatty acids (linoleic, oleic and 135 

palmitic acid) which are known to induce soil hydrophobicity (Lin et al., 2019; Schönemann and 136 

Edwards, 2011) and was used in a raw state, i.e. without further additives. The properties of Tung 137 

oil are listed in Table 2. 138 

 139 

Experimental program 140 

 141 

Modified compaction test  142 

Geotechnical materials are frequently compacted in samples with a volume 1000 cm3 when 143 

examining compacted dry densities. To allow the testing of a greater number of samples, Sridharan 144 

and Sivapullaiah (2005) proposed a modified compaction test (MCT) with smaller mould 145 

dimensions. Here, to accelerate the equilibration process of specimens (both water content and 146 

Tung oil hardening), the MCT test was adopted with a mould volume of 85.06 cm3 (36.5 mm 147 
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diameter by 105 mm height) which was more than 10 times larger than the largest particle size of 148 

CDG, a requirement set by Sridharan and Sivapullaiah (2005). 149 

It is well understood that the dry density influences the mechanical properties of earthen materials 150 

and that multiple pore network architectures can exist for a given dry density, depending on the 151 

strength of the soil aggregates. To isolate the effect of Tung oil, the energy per unit volume (ec), 152 

rather than dry density, was controlled and kept similar to the Standard Proctor Test (SPT) 153 

following Eq. (1). 154 

𝑒𝑒𝑐𝑐 = 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆/𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑔𝑔 × ℎ𝑆𝑆𝑆𝑆𝑆𝑆�/𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆                      (Eq. 1) 155 

Where ESPT is the total input energy, VSPT is the volume of the mould, nSPT is the number of blows 156 

per layer, lSPT is the number of layers, m is the mass of the rammer, g is the gravity acceleration 157 

and hSPT is the falling height per blow. The subscript SPT refers to Standard Proctor Test. By 158 

reducing the number of blows from 25 (SPT) to 17 (MCT), ec in the MCT was kept similar to the 159 

SPT (Ciancio et al., 2013): 572 J and 594 J, respectively. Testing parameters used in the MCT are 160 

listed in Table 3, in which the parameters of the SPT are also attached as a reference.  161 

Tung oil is able to harden after mixing with soils within 7 days due to oxidative polymerization 162 

(Lin and Lourenço, 2020; Tang et al., 2010; Tang et al., 2006). To investigate this hardening effect 163 

on the compaction behaviour, MCT tests were conducted immediately after mixing with Tung oil 164 

(hereinafter fresh stabilized soils) and after 7-day equilibrium (hardened stabilized soils). Testing 165 

procedures are detailed next.  166 

For the fresh stabilized soils, a given concentration of Tung oil (0, 1, 5, 8, 10 and 15%) was firstly 167 

mixed with 1.0 kg of CDG. This concentration range was based on preliminary tests and other 168 

works (e.g., Lin et al., 2019; Tang et al., 2006) where 5~10% of Tung oil can induce extreme soil 169 

hydrophobicity. After that, water was immediately added to the mixed soils (10~28%) and 170 
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compaction was conducted. For the hardened stabilized soils, Tung oil was mixed with 1.0 kg of 171 

CDG and then equilibrated at an ambient condition for 7-days (20~25°C, relative humidity = 172 

70~85%). Then, the stabilized soils were wetted to the same water content range and compacted.  173 

 174 

Unconfined compression test 175 

CDG specimens with two Tung oil concentrations (5 and 10%) were selected for unconfined 176 

compression test based on the results of the modified compaction test, where lower and higher 177 

concentrations were discarded because 1% of Tung oil had a minor effect on compaction and 15% 178 

made CDG too hydrophobic to be wetted. The CDG specimens with 0% (i.e. control), 5% and 10% 179 

of fresh Tung oil were firstly wetted to achieve the optimum moisture content of the stabilized 180 

soils with respective concentrations of Tung oil, and then compacted in a cylindrical mould with 181 

dimensions 36.5 mm diameter by 105 mm height, as described in Section 3.1. After compaction, 182 

these specimens were equilibrated at ambient temperature (20~25°C) for 3, 7 and 28 days. 183 

Specimens were tested in a universal compression machine (Tritech 50, Wykeham Farrance, 184 

United Kingdom) in strain-controlled conditions with the displacement rate of 1.0 mm/min (BS 185 

1924-2:2018).  186 

 187 

Hydrophobicity measurement 188 

Hydrophobicity of granular materials can be quantified by two widely-used parameters, namely 189 

water drop penetration time (WDPT) and contact angle (CA) (Leelamanie et al., 2008; Wessel, 190 

1988). All CA and WDPT tests were conducted in disturbed (uncompacted) stabilized soils which 191 

had a lower density. This led to a more conservative measurement of hydrophobicity because soil 192 

specimens with larger void size had a lower contact angle and shorter WDPT. The WDPT test was 193 
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originally developed in soil science and involves placing a water drop on a surface of particles and 194 

recording the time taken for its full penetration (Letey et al., 2000); the time therefore reflects the 195 

treatment’s persistency.  196 

CA reflects the severicity of soil hydrophobicity. CA is obtained from Young’s equation (Eq. 2). 197 

The equation is derived from the mechanical equilibrium of a water drop on a flat surface with 198 

three interfacial tensions, solid-liquid γsl, solid-air γsa and liquid-air γla.  199 

  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛾𝛾𝑠𝑠𝑠𝑠−𝛾𝛾𝑠𝑠𝑠𝑠
𝛾𝛾𝑙𝑙𝑙𝑙

                                                         (Eq. 2) 200 

Higher CA shows the earthen material has greater hydrophobicity, and subsequently a higher water 201 

resistance.  202 

In this study, hydrophobicity was measured after 3, 7 and 28 days of equilibrium, the same times 203 

as used for the uniaxial compressive strength test. WDPT test was carried out by placing a 50μL 204 

of water drop on a stamped granular surface. The penetration time was recorded with an upper 205 

limit of 3600s. CA was measured by sessile drop method (SDM) proposed by Bachmann et al. 206 

(2000) with a Drop Shape Analyser (KRÜSS GmbH, Hamburg, Germany). A schematic of SDM 207 

is shown in Fig. 3. Stabilized soils were firstly sprayed on a double-sided tape on a glass slide. A 208 

10μL of water drop was placed on the soil surface. Its shape was recorded by a camera and CAs 209 

was determined by a curve-fitting algorithm (Saulick et al., 2018). Note that the CAs measured in 210 

soils, including the ones reported in this paper, are apparent CAs to account for the roughness and 211 

porous nature of the soil together with the surface chemistry. Intrinsic CAs only account for the 212 

molecular composition of a surface and its interaction with liquid water.  213 

FTIR spectra and SEM imaging 214 

To elucidate the mechanisms controlling the hardening of Tung oil stabilized soils, FTIR analyses 215 

were conducted in fresh and hardened stabilized soils using a FTIR spectrometer: a PerkinElmer 216 
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Spectrum 100 with an accuracy of 1 cm-1. Soil specimens were prepared by the KBr pellet method. 217 

The particle surface and microstructure of stabilized soils were investigated with scanning electron 218 

microscope (SEM, Leo 1530 FEG). 219 

 220 

Results 221 

 222 

Compaction behaviour 223 

For fresh stabilized soils (i.e., soils stabilized with Tung oil in a fresh liquid state), a higher 224 

concentration of Tung oil reduced the optimum moisture content (OMC) while increasing the 225 

maximum dry density (MDD), as illustrated in Fig. 4. For example, the OMC of natural CDG was 226 

23% and corresponding MDD was 1.59 g/cm3. With 5% of Tung oil, the OMC reduced to 17% 227 

and MDD increased to 1.65 g/cm3. OMC continuously decreased and MDD rose at greater 228 

concentrations. Obtained MDDs were lower than might be considered for rammed earth 229 

construction but are comparable to construction typologies receiving less compaction, for example 230 

shuttered cob (Walker et al., 2005). 231 

The compaction behaviour differed for the hardened stabilized soils. Fig. 4b shows the compaction 232 

curves of stabilized soils after equilibrating for 7-days. In this case, the OMC decreased with Tung 233 

oil concentration but MDD remained unchanged. For instance, comparing to natural CDG 234 

(OMC=23% and MDD=1.59 g/cm3), soils with 10% of hardened Tung oil had lower OMC (13%) 235 

but MDD was almost equivalent (1.60 g/cm3).  236 

A comparison of OMC and MDD between fresh and hardened stabilized soils is plotted in Fig. 5. 237 

In both cases, Tung oil decreased the OMC during the compaction (Fig. 5a). The effect on OMC 238 

was comparable between fresh and hardened specimens. As for MDD, in fresh stabilized soils, the 239 
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value increased with Tung oil concentration, but in the hardened samples, compaction did not yield 240 

higher MDD at higher concentrations. For example, MDD of 1% Tung oil was 1.6 g/cm3 in fresh 241 

samples and continuously increased to 1.68 g/cm3 at 10%, while the corresponding MDD of the 242 

hardened sample was comparable at 1% (1.59 g/cm3) but remained unchanged at 10%. 243 

 244 

Unconfined compression strength 245 

The UCS of stabilized soils increased with the concentration of Tung oil and hardening time. Fig. 246 

6 illustrates the increase of UCS of natural and stabilized soils. Without Tung oil, natural CDG 247 

soil (control sample) had a slight increase in compression strength from 632 kPa on the 3rd day to 248 

687 kPa on the 28th day; 5% of Tung oil resulted in a higher strength, from 1853 kPa at 3 days to 249 

2136 kPa after the 28-day equilibration. A higher concentration (10%) further enhanced UCS to 250 

2217kPa at 3 days and 2641 kPa after 28 days. 251 

 252 

Hydrophobicity 253 

Soil hydrophobicity, quantified by CA and WDPT, increased with Tung oil concentration and time 254 

in stabilized soils. Fig. 7 shows the increase of CA and WDPT with Tung oil concentration during 255 

28-day hardening. The initial CA of natural CDG ranged from 70.3 to 71.8°. Tung oil 256 

concentration induced higher CAs from 94.6° at 1% to 110.5° at 15%. The CAs continued to 257 

increase up to day 7, becoming stable on the 28th day. For example, the CA of specimens with 5% 258 

of Tung oil ranged from 101.6° on day 0, to 115.7° and 117.9° after 7 and 28 days, respectively. 259 

WDPT showed the same tendency, i.e. increasing persistency with time and Tung oil concentration. 260 

 261 

FTIR spectra and SEM imaging 262 
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Mineral composition and chemical changes due to the presence of Tung oil were reflected by the 263 

FTIR spectrum of natural and stabilized CDG as shown in Fig. 8. Absorption in the region of 3750-264 

3570 cm-1 represented the hydroxyl (O-H) stretching vibrations of kaolinite in CDG (Mckissock 265 

et al., 2013). The bands at 1101 cm-1, 1033 cm-1 and 913 cm-1 are from in-plane Si-O stretching, 266 

out-of-plane symmetric Si-O stretching, and O-H deformation of kaolinite, respectively (Linker et 267 

al., 2005). The absorption of 797 cm-1 can be identified in the spectrum, which is the fingerprint 268 

region of quartz (from CDG). Hematite is identified by the peak at 539 cm-1 (Salama et al., 2015). 269 

The spectrum of fresh stabilized CDG had three identifiable peaks at 2926, 2856 and 1746 cm-1. 270 

Given the existence of hydroxyl (O-H) in kaolinite (3750-3570cm-1), O-H stretching vibrations 271 

from Tung oil could not be differentiated. Typical C-H stretching of aliphatic -CH=CH- is at 272 

around 3010cm-1 (Grehk et al., 2008), but this was not detected in Fig. 8. A possible reason is the 273 

limited concentration of Tung oil in the stabilized soil. The peaks at 2926 cm-1 and 2856 cm-1 are 274 

the symmetric and asymmetric C-H stretching vibration of the methyl group (Schönemann and 275 

Edwards, 2011). These methyl groups were mostly from alpha-eleostearic acids (representing ~80% 276 

of the Tung oil). The peak at 1746 cm-1 was attributed to hydrogen-bonded carboxyl groups. The 277 

7-day equilibrium resulted in the oxidative polymerization of Tung oil, which was reflected by the 278 

shifts of 2926 and 2856 cm-1 peaks to 2931 and 2858 cm-1 (Schönemann and Edwards, 2011; Lin 279 

et al., 2019). At the same time, a generated peak at 1637 cm-1 suggested COO- groups formed 280 

during the equilibrium. 281 

SEM images (Fig. 9) show the natural (untreated) soil particles and particles covered with 282 

hardened Tung oil. In natural CDG, silica sand particles were covered by fines comprising 283 

kaolinite and illite based on the XRD results (Section 2.1). Clay minerals are hydrophilic 284 

(Mgbemena et al., 2013; Lourenço et al., 2015) and consequently CDG has a low contact angle 285 



14 

 

(~70°). Imaging of stabilized CDG reveals a Tung oil coating covering the whole surface of the 286 

particles (Fig. 9b). These are either (1) large quartz particles covered with fines (mostly kaolinite) 287 

and Tung oil or (2) several quartz particles with fines bonded and covered by Tung oil. Tung oil 288 

has been reported to bond particles (i.e., aggregation) (Lin et al., 2019). Tung oil films are slightly 289 

hydrophobic with CA ranging from 90° to 95° (e.g., Arminger et al., 2020). When coated onto the 290 

soil particles, the CA measured can be higher due to the rough surface of the particles (Saulick et 291 

al., 2018; Saulick et al., 2020). 292 

 293 

Discussion 294 

 295 

Mechanisms 296 

 297 

Tung oil was found to enhance compaction, compressive strength and hydrophobicity. The 298 

controlling mechanisms for compaction and compressive strength are three-fold and may be 299 

attributed to changes in suction, inter-particle friction and bonding (analogous to cohesion or 300 

cementation) (Fig. 11). For compaction enhancement (Fig. 4 and Fig. 5), a combination of suction 301 

and inter-particle friction is likely to dominate. As the particles’ surfaces are now hydrophobic, 302 

suction is lower (for a given amount of water), increasing the deformability of the soil aggregates 303 

and allowing grains to be arranged in closer packings. The fresh Tung oil coatings in a liquid state 304 

may also change the inter-particle friction as the inter-particle contacts are no longer mineral to 305 

mineral. Although such mechanisms have yet to be examined for Tung oil, Lourenço et al. (2018) 306 

showed that polydimethylsiloxane (PDMS) coatings smooth the soil particle surfaces. Liu et al. 307 

(2019a, 2019b) investigated the mechanical behaviour of PDMS-coated sands through triaxial tests 308 
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and inter-particle friction tests, revealing that coatings can alter the dilatancy, critical state and 309 

inter-particle friction. However, in hardened stabilized soils, higher concentrations of Tung oil did 310 

not increase the dry density. A possible reason is that adding Tung oil resulted in the aggregation 311 

of soil particles which could strengthen during the 7-day equilibrium. During compaction, these 312 

hardened aggregates had to be firstly crushed, followed by the re-arrangement of soil particles, 313 

resulting in looser soil packings and a lower dry density. 314 

As for the compressive strength enhancement, soil aggregation was observed in the hardened 315 

stabilized soils. Lin et al. (2019) tested the compressive strength of the fresh soil aggregates and 316 

aggregates after heating (where Tung oil underwent oxidative polymerization and hardened during 317 

heating), revealing that the tensile strength of fresh aggregates were negligible while for hardened 318 

aggregates the tensile strength was 200~800 kPa, depending on the Tung oil concentration and 319 

heating conditions. Therefore, the strength enhancement during the equilibrium (Fig. 6) is assumed 320 

to be related to the solidification of Tung oil bonding the soil particles.  321 

The hydrophobic enhancement (Fig. 7) correlates with the Tung oil concentration and time.  The 322 

increasing CA and WDPT at time 0 may be related to increasing aggregate size with Tung oil 323 

concentration (Lin et al., 2019) and the filling of intra-aggregate pores with Tung oil. As for the 324 

time-dependent increase, this phenomenon may be related to the oxidative polymerization of Tung 325 

oil which gradually switches the liquid coating into a solid phase (Arminger et al., 2020). The 326 

Tung oil reaction consists on the oxidation and polymerization of unsaturated fatty acids, which 327 

decrease the viscosity of Tung oil and form solid or semi-solid films (Grehk et al., 2008; Arminger 328 

et al., 2020; Fuller, 1931). This process requires the double bonds in unsaturated fatty acids to 329 

react with oxygen from the air, forming a crosslinked network (Fig. 10). Note that while this 330 

process explains the hardening of Tung oil, it does not explain the hydrophobic enhancement. In 331 
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allied fields, the drying and hardening of thin oil films (for paintings, for instance) has been studied 332 

but its relation to hydrophobicity has not been established (e.g., Lazzari and Chiantori, 1999). 333 

Further research is needed to identify the mechanisms controlling hydrophobic enhancement in 334 

hardening Tung oil films. 335 

 336 

Implications for earthen construction 337 

Nowadays construction of earthen buildings is focusing more and more on detailed investigation 338 

of traditional practices as well as reviving traditional craftsmanship as a basis of informed decision 339 

making for sustainable construction. Dealing with follow up damage of past earthen structures, 340 

engineers concluded that chemical and physical compatibility are the most important quality of a 341 

successful construction. Traditional techniques are investigated scientifically to understand the 342 

chemical and microstructural processes and utilize this deeper understanding to create the building 343 

materials with similar or improved properties.  344 

From the outcomes of this study, the difference of compaction behaviour between fresh and 345 

hardened stabilized soils indicates that in order to achieve a high density, the compaction time (i.e., 346 

the time between mixing and compaction) should be shorter than the hardening time of Tung oil 347 

(7 days). The hardening time depends on the type of Tung oil, temperature and sunlight ranging 348 

from a few hours to one day (Arminger et al., 2020; Fang et al., 2014). Water savings during 349 

compaction can also be accrued, as the optimum moisture content of Tung oil-stabilized soils is 350 

relatively lower than the untreated one. 351 

The compressive strength of compacted stabilized soils can be increased to more than 2.6 MPa 352 

within 7 days suggesting the suitability of Tung oil as a stabilizer. This strength enhancement is 353 

lower than cement (~15 MPa) but comparable to novel stabilizers such as calcium carbide residue 354 
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combined with fly ash (~2.5 MPa, Siddiqua and Barreto, 2018), Carrageenan (~3.8 MPa, 355 

Nakamatsu et al., 2017b), and chitosan (~3.8 MPa, Aguilar et al., 2016). For compacted soils, the 356 

lower bound of unconfined compressive strength is variable in the literature. For example, NZS 357 

4298 (2020) standard proposes that the strength should be larger than 1.1 MPa (for 2:1 compacted 358 

cylindrical specimens) while Walker et al. (2005) suggested 1.0 MPa as adequate. Ciancio et al. 359 

(2013) suggested 0.2 MPa was sufficient for non-load bearing walls (although this low strength 360 

has repercussions for durability). As for the hardening period, the results show that 85% of the 361 

ultimate UCS can develop within 7-days. Comparing to other stabilizers, Tung oil has a faster 362 

strength development. For example, the calcium carbide residue-fly ash stabilizer required at least 363 

28 days to achieve 80% of ultimate UCS (Siddiqua and Barreto, 2018), and this hardening time is 364 

comparable to cement-stabilized rammed earth (Arrigoni et al., 2017; Hall and Allinson, 2009; 365 

Reddy et al., 2008).  366 

Tung oil can induce high and persistent hydrophobicity in CDG, as demonstrated by CA ~117° 367 

and WDPT >3600 seconds (Fig. 7). The fact that the earthen matrix shows hydrophobic properties, 368 

represents an added advantage as it might delay its decay from weathering and erosion and prolong 369 

its longevity (Meek et al., 2020). 370 

 371 

Conclusions 372 

 373 

The effect of Tung oil and its time-dependent hardening behaviour on the mechanical and 374 

hydrophobic behavior of a compacted soil has been investigated. Different concentrations of Tung 375 

oil were added and mixed with completely decomposed granite, a widespread mineral soil from 376 

Hong Kong. Modified compaction tests, unconfined compression strength and hydrophobicity 377 
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measurements (contact angles and water drop penetration time) were performed and the analysis 378 

of the results were supported by elemental characterization and surface imaging. Major outcomes 379 

are as follows: 380 

1. Mixing the soil with fresh (liquid) Tung oil creates an aggregated soil structure which 381 

hardens with time; 382 

2. Compacting the soil with fresh (liquid) Tung oil results in a higher dry density and lower 383 

optimum moisture content, while for soils with hardened Tung oil the dry density had no relation 384 

with Tung oil concentration; 385 

3. The compressive strength of the stabilized soil increased with Tung oil concentration and 386 

hardening time; 387 

4. Soil hydrophobicity was imparted by Tung oil and enhanced with hardening time. 388 

These results showed that Tung oil is a promising stabilizer for earthen materials because of its 389 

benefits on (1) increasing the dry density, (2) increasing the compression strength and (3) inducing 390 

soil hydrophobicity which may further improve its durability. The results and analysis presented 391 

in this study provide a record for reviving a traditional technique and a basis for utilizing it to 392 

construction of earthen buildings, as well as conservation and interventions for earthen architecture 393 

heritage sites. Future work should focus on the durability, environmental impact and life-cycle 394 

assessment of Tung oil-stabilized earthen construction.  395 
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Table 1. Properties of completely decomposed granite 

 

 

 

 

 

 

 

 

 

 

  

Property & composition 

Moisture content (%) <3.0 

Organic matter (%) <2.0 

Specific gravity 2.68 

Atterberg limits (%) Liquid limit 44 

Plastic limit  28 

Particle size 

distribution 

Clay (%) 18 

Silt (%) 17 

Sand (%) 49 

Gravel (%) 16 

Mineral composition Quartz (%) 46 

Kaolinite (%) 43 

Illite (%) 6 

Gibbsite (%) 5 
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Table 2. Properties of Tung oil (after Lin et al., 2019; Zhang et al., 2016) 

 

 

 

Property Description 

Appearance   Transparent with 

amber colour 

Density 0.94×103 kg/m3 

Moisture or impurities (%) 0.5 

Chemical composition (%) Alpha-eleostearic acid ~80 

Linoleic acid,  ~20 

 Palmitic acid, 

Oleic acid 
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Table 3. Testing parameters of Standard Proctor and modified compaction tests 

Parameter Standard Proctor 

test 

Modified compaction 

test 

Compaction energy (kJ/m3) 594 572 

Height of drop (m) 0.305 0.245 

Rammer weight (kg) 2.5 0.397 

Volume of mould (cm3) 1000 85.06 

Number of layers 3 3 

Number of blows per layer 25 17 
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Figure 1. Testing procedure workflow (CDG - completely decomposed granite) 
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Figure 2. Particle size distribution curve of completely decomposed granite 
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Figure 3. Schematic of sessile drop method for contact angle measurement on soils 
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(a) 

 

(b) 

Figure 4. Compaction curves of Tung oil-stabilized completely decomposed granite (a) 

compaction immediately after mixing and, (b) after 7-day equilibrium 

8 10 12 14 16 18 20 22 24 26 28
1.40

1.45

1.50

1.55

1.60

1.65

1.70

 

 

Dr
y 

de
ns

ity
 (g

/cm
3 )

Water content (%)

 Control
 1% - TO
 5% - TO
 8% - TO
 10% - TO
 15% - TO

8 10 12 14 16 18 20 22 24 26 28
1.40

1.45

1.50

1.55

1.60

1.65

1.70

Dr
y 

de
ns

ity
 (g

/cm
3 )

Water content (%)

 Control
 1% - TO
 5% - TO
 8% - TO
 10% - TO



33 

 

 

(a) 

 

(b) 

Figure 5. Relation between Tung oil concentration and (a) optimum moisture content and, (b) 

maximum dry density immediately after compaction and after 7-day equilibrium 
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Figure 6. Unconfined compression strength of natural and stabilized completely decomposed 

granite after 3, 7, 28 days 
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(a) 

 

(b) 

Figure 7. Completely decomposed granite hydrophobicity induced by Tung oil during 28 

days; (a) contact angles and, (b) water drop penetration time 
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Wavenumber (cm-1)   Assignment (moiety and source) 
Fresh stabilized soils 7-day hardened stabilized soils 
2926 2931 υ (C-H) of fatty acids in oil 
2856 2858 υ (C-H) of fatty acids in oil 
1746 1746 υ (C=O) of fatty acids in oil 
- 1637 υ (C-O) of carboxylate formed in oil 

1462 1456 δ (C-H) of methyl in oil 
1100 Overlapped υ (Si-O) of quartz in soil 
1035 Overlapped υ (Si-O) of quartz in soil 
913 Overlapped δ (O-H) of kaolinite in soil 

Figure 8. FTIR spectrum of untreated completely decomposed granite, Tung oil-treated CDG 

immediately after compaction and after 7-day equilibrium; the table shows the assignment of 

the absorption bands in the spectrum for the fresh and hardened soils 
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Figure 9. SEM micrographs of (a) natural and (b) stabilized completely decomposed granite 

with 10% of Tung oil
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Figure 10. Oxypolymerization of unsaturated fatty acids in Tung oil 
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Figure 11. Mechanisms of Tung oil stabilization in an earthen material 

 


