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⊥ICGM, CNRS, Université de Montpellier, ENSCM, Montpellier, France

#Istituto Nazionale di Ottica (CNR-INO) and European Laboratory for non Linear

Spectroscopy (LENS), via N. Carrara 1, 50019 Sesto Fiorentino, Italy

E-mail: xiaodi@issp.ac.cn; santoro@lens.unifi.it

1



High pressure, hydrogen, zeolites, Raman spectroscopy, X-ray diffraction, Monte Carlo

modelling

Abstract

Our combined high-pressure synchrotron x-ray diffraction and Monte Carlo mod-

elling studies show super-filling of the zeolite, and computational results suggest an

occupancy by a maximum of nearly two inserted H2 molecules per framework unit,

which is about twice more than observed in gas hydrates. Super-filling prevents amor-

phization of the host material up to at least 60 GPa, which is a record pressure for

zeolites and also for any group IV element being in full 4-fold coordination, except for

carbon. We find that the inserted H2 forms an exotic topologically constrained glassy-

like form, otherwise unattainable in pure hydrogen. Raman spectroscopy on confined

H2 shows that the micro-porosity of the zeolite is retained over the entire investigated

pressure range (up to 80 GPa) and that inter-molecular interactions share common

aspects with bulk hydrogen while they are also affected by the zeolite framework.
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Introduction

Zeolites are archetypal micro-porous crystalline systems both natural and synthetic1–4

with a broad range of industrial applications. Adsorption studies on zeolites at extreme

conditions led some of us and other groups to develop a rich and dynamic research area.

Particularly, the high pressure insertion of simple dense molecular systems as the guest

species in zeolite hosts leads to the formation of exotic guest phases and to unique proper-

ties for the host framework5–20. Once the latter is supported by inserted guests to form a

“molecular spring”, it resists the applied pressures. But what would happen if the zeolites

are filled by the most penetrating fundamental systems and also the most abundant element

in the universe: hydrogen? Indeed, dense H2 is a “master” and benchmark system in high

pressure sciences.21 Dense, sub-nano confined states of H2 could be investigated and com-

pared to those of bulk hydrogen at extreme conditions, since these states would add to the

general view of such a fundamental element. The highly penetrating character of H2 could

be also compared to other larger molecular and atomic systems to allow us to investigate

the ultimate capability of filled zeolites to resist the pressure-induced pore collapse and the

consequent pressure induced amorphization (PIA). The complete deactivation of PIA can

then provide information on the local structure of the framework cation, silicon in our case,

at record extreme conditions. Indeed, it is of great interest to search to which extent the

4-fold coordination of silicon can be preserved. In bulk silica, the thermodynamic 4-fold-

to-6-fold transformation occurs below 10 GPa, while metastable 4-fold coordinated phases

can survive at most up to 20-40 GPa.22–25 In gas hydrates, similar host-guest systems, the

four-connected framework is built up by H-bonded water molecules, instead of being cova-

lently bonded like in zeolites, and it is filled by simple gaseous molecules. Recently, a CH4

filled ice has been found to be stable up to the record pressure of 150 GPa.26 On the other

hand, cold compression of methane clathrates at GPa has been found to lead to PIA with
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the amorphous form still being a host-guest gas hydrate.27

We focused our work on a model, pure SiO2 zeolite, silicalite-1 in order to avoid catalytic

effects and to investigate how the pore size and shape affect the topology of the confined

molecular form under pressure. Silicalite-1 is characterized by a framework of 4-, 5-, 6-,

and 10-membered rings of corner-sharing SiO4 tetrahedra forming interconnected, mutually

orthogonal straight and sinusoidal channels, with ambient pressure diameters of close to 5.5

Å (see Figure 1, at 7 GPa, together with inserted H2).
28,29 Silicalite-1 is produced in crystals

of several tens of microns, which makes it very suitable for optical spectroscopy studies.

In this work we show the high-pressure insertion of H2 in silicalite-1 up to 82 GPa. Based

on synchrotron X-ray diffraction (XRD) and Monte Carlo (MC) modelling, we show that

the insertion leads to an exotic glassy-like form of molecular hydrogen. H2-filled silicalite-1

is found to be stable up to at least 60 GPa and significantly less compressible than the same

zeolite filled by the bigger molecules; this being a consequence of the more penetrating nature

of H2. The number of inserted molecules vs. pressure is non-monotonic with a maximum close

to two per SiO2 unit. Raman spectroscopy shows that the framework porosity is retained

up to at least 82 GPa and it provides important clues on inter-molecular interactions.

Our experimental and theoretical methods are described in Supplementary Materials30

together with the relevant references20,31–50.

Results and Discussion

Powder XRD patterns of H2-filled silicalite-1 were measured upon increasing pressure up

to 60 GPa (Figure 2), in order to investigate to which extent the framework is stable at

high pressures and also to provide inputs for Monte Carlo modelling aimed to determine

the amount of stored hydrogen. The large, nanometer scale, unit cell size of silicalite-1

is related to the micro-porosity of the framework and it gives rise to the 101, 011, 200,

020 and 111 diffraction peaks located at very low 2θ angles, down to 2◦-3◦. The widths
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Figure 1: Structure of H2-filled orthorhombic silicalite-1. Left: principles of MC modeling in
the Grand Canonical ensemble. Like in real experiments, a zeolite material is set in contact
with an infinite reservoir of bulk H2. The purple shaded area denotes the unit cell volume
while the blue dashed line indicates the periodic boundary conditions. Right: molecular
(top) and crystallographic (bottom) view of H2 inserted in silicalite-1 at room temperature
and P = 7 GPa. In addition to the channels, some hydrogen molecules occupy the cages
enclosed by the small 5- and 6- membered rings. In the molecular view, the red and orange
sticks correspond to the chemical bonds between silicon and oxygen atoms while the white
spheres correspond to the hydrogen atoms in H2 (the sphere radius roughly corresponds to
the van der Waals radius of hydrogen). In the crystallographic view, the blue tetrahedra
correspond to the silica tetrahedra in silicalite-1 with the red spheres showing the apical
oxygens. The black dumbells represent the inserted H2 molecules. A 2×2×2 unit cell is
considered here for the sake of clarity.
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Figure 2: Left panel: Selected powder XRD (λ =0.4828 Å) patterns of H2-filled silicalite-1,
measured upon increasing pressure. A broad Compton scattering background due to air
and diamonds has been subtracted. Right panel: experimental pressure behavior for the
relative to ambient pressure unit cell volume of H2-filled silicalite-1 (filled circles). Error
bars are within the size of the circles. Red line: compression curve for Ar and CO2 filled
silicalite-1.8 Black line: equation of state for silicalite-1, measured in a non-penetrating
pressure transmitting medium: silicon oil, where amorphization has been found to occur
below 10 GPa.
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of the Bragg peaks increased gradually by a factor of two over the entire pressure range

investigated. This can be linked to a gradual increase in deviatoric stress in the solid H2

pressure medium. We also observed some apparent changes in relative intensity, principally

due to the separation of overlapping peaks resulting from changes in the unit cell parameters

(Figure SM3 and Table SM1).40–42 Importantly, at the highest pressures, in spite of the

increase in line-width, the peaks retained much of their initial integrated intensity (typically

30-100 %) at low pressure. That suggests that silicalite-1 remaines crystalline up to the

highest pressure and, consequently, full 4-fold coordination of silicon by oxygen was retained

at record pressures among all known group IV compounds, except carbon. Indeed, the

thermodynamic transformation pressure from 4-fold to 6-fold coordination in bulk silica is

lower by one order of magnitude. LeBail fitting of the XRD patterns (Figure SM4) was used

to obtain the pressure behavior of the unit cell volume of H2-filled silicalite-1 (Figure 2)

normalized to its ambient pressure value. We can compare this compression curve with

those observed for other penetrating simple gaseous systems such as Ar and CO2.
8 The most

striking result is the much higher relative volumes of up to 24 % at 25 GPa measured for

H2-filled silicalite-1 than for Ar or CO2 filled silicalite-1, clearly indicating that H2 is much

more penetrating than the other two larger systems. Also, the compression curve of H2-filled

silicalite-1 shows an anomaly. Indeed, a quasi-horizontal inflection point appears at around

19 GPa. Above this point, the curve is convex rather than concave, up to about 50 GPa.

This anomaly is suggestive of substantial pressure changes in the filling of silicalite-1 by H2,

a hypothesis that can only be tested on the Grand Canonical ensemble based Monte Carlo

(MC) model, whose main outputs are the spatial distribution and the number of inserted

molecules per unit cell.

In Figure 1, we report the structure of H2 filled orthorhombic silicalite-1 at 7.0 GPa,

obtained by combining the experimentally determined lattice parameters with Monte Carlo

modelling. The zeolite framework is entirely filled by guest H2 molecules, 127 per unit

cell. The state of inserted hydrogen is remarkable. Indeed, this is a disordered, dense form
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within all the investigated pressure range by XRD and MC, i.e. up to 60 GPa. Also,

considering the very large density reached in nanoconfined H2 at such extreme pressures, we

assume this disordered form to be glassy-like rather than liquid-like. This type of disorder is

supported by the intermolecular radial distribution function (RDF), reported in Fig. SM2

for a selected pressure of 7.0 GPa. As expected for glassy-like i.e. disordered configurations,

the RDF displays a strong peak at short distance (here about 2.6 Å) corresponding to the

nearest neighbours’, followed by additional much weaker and broader peaks at increasing

distances. Overall, the different peaks are broad with an amplitude that strongly decreases

with increasing the intermolecular distance. The calculated number of inserted H2 molecules

per unit cell of silicalite-1 by MC as a function of pressure clearly exhibits a maximum

(Figure 3, left panel), which corresponds to the anomaly experimentally observed for the

pressure behavior of the unit cell volume. The maximum is equal to about 174 and it is

located at around 34 GPa. The very low compressibility of H2 -filled silicalite-1 in the

15-25 GPa pressure interval is now found to be due to H2 rapidly entering silicalite-1 to

a greater and greater extent upon increasing pressure in this range; here, the filling of H2

hinders the reduction of the host framework volume by strongly reducing the compressibility

of the pores. Then, above 30-40 GPa, some amount of previously inserted H2 is extruded and

the volume of silicalite-1 decreases as a result of the combined effect of guest extrusion and

normal compression of the filled framework material. H2-filled silicalite-1 is thus a hydrogen

rich material, with H2 being physisorbed by the zeolite, and an overall pressure dependent

chemical composition: SiO2(H2)x, with x=1.32-1.82. In fact, this gas content is substantially

greater, in terms of number of stored guest molecules, than that experimentally observed so

far in any gas hydrate phase at any pressure-temperature condition,51,52 as may be expected

as zeolites contain both cages and channels.

At least two remarkable differences emerge between H2-filled silicalite-1 and the filling of

this zeolite with larger simple systems such as Ar and CO2.
53 Firstly, the maximum number

of confined H2 molecules exceeds that for bigger molecules by a factor of 3-4. Secondly, H2
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Figure 3: MC calculated pressure behavior of the number of inserted H2 molecules in
silicalite-1 (left) and of the ratio of the nearest neighbor’s H2-H2 distance for confined hy-
drogen to that of bulk hydrogen (right). Error bars are due to the simulation and to the
evaluation method of the average distances. Red lines through the points are guides for the
eye.
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is so much more penetrating that even the cages with small openings of 1.4-3.0 Å diameter

built up by 5- and 6- membered rings are well filled in this case. We found that the number

of H2 molecules in these cages is equal to 20 per unit cell over all the investigated pressure

range, which is 11-16 % of the total amount of inserted molecules. Also, we found that

multiple filling of some cages occurs, similarly to several gas hydrates.51,52,54,55 Interestingly,

the non-monotonicity for the pressure behavior of the filling appears to be entirely due to

molecules inserted in the channels. All this explains why the volume of the zeolite is so much

larger when H2, rather than bigger guests, is inserted in the framework.

Importantly, the nearest neighbor’s intermolecular distance for confined hydrogen is larger

than that for bulk hydrogen (Figure 3, right panel) by a few percent, indicating that the

H2-silicalite-1 interaction adds a negative term to the local pressure.

The Raman spectroscopy investigation provides direct information on dynamical prop-

erties of the confined dense form of hydrogen. In Figure 4, we report waterfalls of selected

Raman spectra of the H2 vibron for H2 /silicalite-1 samples, measured upon increasing pres-

sure on silicalite-1 crystals up to 82.5 GPa. In the spectra, we observe the pure H2 peak due

to bulk hydrogen layers surrounding the crystals and several blue shifted extra peaks which

can be easily attributed to confined dense H2. The blue shift, which increases with pressure,

is the net result of the modified intermolecular interactions in confined hydrogen and the

interaction between the guest molecules and the internal walls of the porous host. Spectra

measured on larger silicalite-1 crystals show up to 4-5 partially resolved peaks for confined

hydrogen (Figure 4, left panel), likely to be ascribed to H2 guest molecules located on dis-

tinct host crystallographic sites of silicalite-1 and, as a consequence, experiencing different

interactions. These peaks are much broader than the peak of bulk H2 and they broaden upon

increasing pressure till they merge. This finding is compatible with confined hydrogen being

highly disordered around the different crystallographic sites corresponding to the distinct

peaks, in full agreement with the combined XRD/MC outcome where confined H2 is indeed
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bulk H2 confined H2

50 mm

bulk H2 confined H2

25 mm

Figure 4: Selected Raman spectra of H2-filled silicalite-1 crystals in the frequency range of
the H2 vibron, measured upon increasing pressure. Left (right) panel: spectra measured on
top of a silicalite-1 crystal of 80×40×40 µm3 (30×15×15 µm3) initial size. Red dashed lines
separate the bulk and the confined H2 peaks. Insets: silicalite-1 crystals in the gasket holes,
at 0.4 GPa and 4.2 GPa, in the left and right panels, respectively, immersed in H2 as the
pressure transmitting medium. Ruby chips are also present for pressure measurements.
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Orange line: pressure shift for the IR active H2 frequency in pure hydrogen.57–59
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found to be in a glassy-like state

In Figure 5, we report the pressure shift of the H2 frequency for the most intense peak

in confined H2 and for bulk H2 measured in this work up to 82.5 GPa, and also for isolated

H2 impurities in three crystalline matrices: Ne, Ar and D2.
56 The pressure behavior for the

confined H2 frequency is remarkable: it is systematically higher than that of the Raman

frequency for pure H2 and, more importantly, in both cases we observe a maximum, which

is located at around 50 GPa in confined H2 and 35 GPa in pure H2. In addition, in confined

hydrogen, a frequency jump occurs around 62 GPa, beyond the pressure range of our XRD

investigation, which probably relates to a major structural change in silicalite-1 such as a

yet unknown phase transition. The origin of the maximum in the H2 frequency for confined

hydrogen can be easily traced back to the H2-H2 vibrational coupling56–59 (and references

therein. See also SM). The Raman frequency being blue shifted in confined H2 and the

maximum being at higher pressures with respect to bulk H2 suggest that vibrational coupling

is weaker in the confined form. This is due the larger inter-molecular distance (see Figure 3)

and to the reduced number of H2 neighbors. An extreme case in this respect is that of

molecules in the cages of silicalite-1, where the number of H2 neighbors drops to 1 or 0 and

the vibrational coupling is nearly or entirely switched off. This case likely corresponds to the

highest frequency components in the Raman frequency distribution for confined hydrogen

(Figure 4). The Raman spectra of the rotational peaks (Figure SM5)40–42 show that confined

H2 is a near free rotor, the rotations of which are somewhat more hindered than for pure

hydrogen.60

Conclusion

Our investigation uncovered an exotic form of dense hydrogen inserted in a zeolite at

pressures up to 80 GPa. Which is the Mbar/multi-Mbar fate of H2-filled zeolites? Which

is the fate of silicon coordination in gas filled framework materials and, more generally, of

host-guest systems where the host is a covalent or H-bonded network and the guest is a
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simple atom or molecule, and which is the potential to synthesize novel H rich systems in

this way? All these questions among others build up an entirely unexplored field, initiated

here and left to future intriguing studies.
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