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Abstract 

This study presents a hybrid method based on artificial neural network (ANN) and micro-mechanics 
for the failure prediction of IM7/8552 unidirectional (UD) composite lamina under triaxial loading. The 
ANN is trained offline by numerical data from a high-fidelity micromechanics-based representative 
volume element (RVE) model using the finite element method (FEM). The RVE adopts identified 
constituent parameters from inverse analysis and calibrated interface strengths form uniaxial and biaxial 
tests. A hybrid loading strategy is proposed for the RVE under triaxial loading to obtain the failure 
points on sliced surfaces whilst maintaining the constant stress at different surfaces. It has been found 
that the ANN algorithm is robust in the failure prediction of the UD lamina when subjected to different 
triaxial loading conditions, with over 97.5% accuracy being achieved by the shallow ANN model, 
where only two hidden layers and 560 samples are used. The predicted 3D failure surface based on 
trained ANN model has an elliptical paraboloid shape and shows an extremely high strength in biaxial 
compression. The approach could be used to inform the modification of existing failure criteria and to 
propose ANN-based failure criteria.  

Keyword: Machine learning; UD lamina; Failure prediction; Finite element modelling; Representative 
volume element; Triaxial loading. 

 

1. Introduction 

Carbon Fibre Reinforced Polymer (CFRP) composites are widely utilised in aerospace, wind energy 
and automotive industries due to their high ratio of strength/stiffness to weight. However, the complex 
failure mechanisms of the unidirectional (UD) CFRP composite lamina are still undergoing 
investigation, since the damage initiation and propagation mechanisms vary at different length scales 
under different loading conditions, in particular under the multi-axial loading. 

Currently, a number of failure theories and models have been proposed, including strain-based [1,2], 
stress-based [3–5] and phenomenological models [6–8]. The World Wide Failure Exercises (WWFEs) 
have been conducted to assess the robustness of those aforementioned state-of-art failure theories, based 
on their predictive capabilities of the failure strength of FRP composite lamina and laminates subjected 
to various loading conditions [9–11]. However, it was concluded that no failure theory/model can 
accurately handle all of the experimental testing cases and there is no identical failure predictions 
between any two failure theories [12]. Since then, specific failure modes (i.e. tension, shear and 
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compression failures) have been incorporated into the newly developed generalised failure theories 
[13,14], with the appreciation that such criterion gives better predictions of biaxial failure in the FRP 
composites during the WWFEs [6].  

The mechanical properties of CFRP composite materials are largely dependent on the material 
properties of fibres and matrix, fibre spatial distribution as well as void size and position. Besides, at 
the microscale level, the characteristics of the interfacial bonding between the fibres and matrix and the 
mechanism of loading transfer between different constituents have a significant influence on the 
ultimate mechanical performance [15], especially in multiaxial stress states. Thus, it remains 
challenging to develop a universal failure criterion for UD lamina to cover the aforementioned factors, 
resulting in more difficulties for the failure prediction of composite materials under multiaxial stresses. 
From the perspective of experimental testing, the triaxial test method is not well developed and it is 
difficult to measure the triaxial deformation of a specimen, which leads to the scattering of measured 
data. As a result, establishing a reliable and universal failure criterion with experimental validations, 
even for a UD composite lamina, is still a challenging task. 

Over the past decade, computational micromechanics has been applied to investigate the deformation 
and failure mechanisms of the composites by means of a representative volume element (RVE) within 
the framework of finite element method (FEM). By using the RVE modelling technique, the actual fibre 
size and spatial distribution, and the interface between fibres and matrix can be explicitly taken into 
account in a three-phase model. In addition, the evolution of stresses and strains within the RVE 
subjected to various loads can be captured, which provides more information of the damage onset and 
propagation in composite materials in addition to the ultimate failure strength prediction [16]. 
Micromechanics-based RVE modelling has been successfully applied to study the progressive failure 
of CFRP composite materials under multiaxial loads, such as combined transverse tension/compression 
and out-of-plane shear [17,18], biaxial transverse tension/compression and in-plane shear [19–21] and 
combined transverse compression and axial tension [22]. In the RVE model, the fibre/matrix interface 
properties play a significant role and a cohesive zone model (CZM) is usually employed to capture the 
mechanical response of the fibre/matrix interface. In the linear part of the CZM before damage, an 
empirical initial penalty stiffness Ki (105 GPa/mm) was adopted [16–18,20,21],  which was believed to 
be large enough to ensure the displacement and stress continuity at the interface [21]. However, it was 
reported in [22] that the average Young’s modulus of the interphase between fibres and matrix is five 
to nine times larger than the one of the bulk resin matrix [14]. In our previous work [19], identified 
interface parameters based on a Kriging metamodel [23] were adopted in the RVE modelling of a UD 
composite lamina subjected to combined transverse and in-plane shear stress state and good agreements 
were found when compared to three popular failure criteria. The influences of the interface strength on 
the progressive failure mechanisms of the composite lamina was investigated and it was concluded that 
the Tsai-Wu failure criterion provides more neutral predictions than other two criteria in all cases, 
mainly due to its general mathematical formulation. 

The aforementioned studies using computational micromechanics have demonstrated the capability of 
the RVE models for the failure analysis of composite materials under multiaxial loadings. Also, it was 
found in [19] that the average computing time of a biaxial loading case with the RVE modelling (in 
ABAQUS/Explicit) lies in 6-8 hours, which makes possible the generation of large sets of ‘virtual 
experimental’ data for any loading conditions within a reasonable period of time.  

On the other hand, with the rapid development of computing power, machine learning (ML) technique 
is gaining wider applications in predicting the failure of materials and structures. It is well known that 
a ML algorithm relies on a sufficiently large number of data for training to produce reliable and accurate 



results, while obtaining such big data from experiments only would be time-consuming and expensive. 
Nevertheless, with increasing computing power, such as high-performance computing (HPC), enough 
data sets can be possibly acquired from numerical simulations within a few days or months. This has 
enabled some encouraging progresses in recent years. For example, Sujith and Jong-Su [24] used lasso 
regression to predict the failure mode and the shear strength of reinforced concrete beam-column joints;  
Honglan and Henry [25] compared the performance of different ML algorithms for identifying the in-
plane failure modes of concrete frames; Xin et al. [26] used neural network model to predict the failure 
strength of the woven composites; Xing et al. [27] adopted the regression trees and neural networks to 
identify a small-scale fracture toughness; Shibo et al. [28] built a surrogate model in together with a 
neural network model to predict the stress and damage evolution.  

However, to the authors’ best knowledge, few studies were focused on the failure prediction of 
composite materials subjected to triaxial loads using the combination of ANN and high-fidelity RVE 
models. Therefore, in this study an RVE model of IM7/8552 UD lamina was built using identified 
constituent parameters by an ANN algorithm. After calibrating the interface strengths under uniaxial 
loads and validating the failure predictions under biaxial loads, the RVE model was applied to predict 
the failure points of the composite lamina subjected to triaxial loads. Especially a hybrid loading 
strategy is proposed to eliminate the Poisson’s effect occurred in displacement loadings and to 
determine the failure points of composites under triaxial loads. The failure prediction of composite 
materials was regarded as a classification problem in this study, and three ML algorithms, including 
ANN, logistic regression and support vector machine (SVM), were evaluated. ANN was chosen for 
training and validations by the failure data generated from the RVE model under triaxial loads, 
considering of its high prediction accuracy and the nonlinearity of the problem concerned. 

The paper is organised with the following structure. In Section 2, the micromechanics-based FE model 
is introduced, including the details of the RVE, periodic boundary conditions and loading paths. In 
Section 3, the performance of different ML algorithms for failure prediction is compared using the 
theoretical data from the Tsai-Wu criteria. In Section 4, the RVE model is calibrated and validated by 
experiments. In Section 5, the numerical data from the RVE modelling are collected and used to train 
the ANN model. Finally, conclusions are drawn in Section 6. 

2. Computational micromechanics-based FE modelling using RVEs 

2.1 3D FEM RVE model 

Computational micromechanical analysis is generally performed on the RVEs of the UD composite 
laminae. The number of fibres within an RVE should be large enough to possess the same mechanical 
properties as the macroscopic material. It has been proved 50 fibres would be sufficient to represent the 
microstructure of a UD composite lamina [16], and small enough to maintain a reasonable computing 
time. Moreover, the volume fraction was set as 60% and the average fibre diameter is considered to be 
7 µm, based on the experimental measurement of the IM7/8552 composite [29]. A discrete element 
method-based approach, developed in our previous wok by combining experimental data and an initial 
periodic shaking algorithm [30], was adopted to generate the random distribution of fibres in 2D. The 
3D RVE model of the UD composite lamina was created by extruding the 2D model along the fibre 
direction. The microstructure of the RVE is idealised as the dispersion of circular fibres randomly 
distributed in the matrix. It was found by Totry et al. [17] that the RVE depth has an insignificant effects 
on the transverse properties obtained from the finite element simulations. Thus, a thickness of 5 µm for 
the RVE was selected in this study as a compromise between the accuracy of the results and the 
computing efforts, resulting in an RVE of 50 µm ×50µm× 5µm. An identified interface thickness using 



an artificial neural network from our previous work [31] was utilised in the construction of the 3D RVE 
model. More details will be described later in Section 4.1. 

The fibres and the matrix in the RVE model were discretised using hexahedral solid elements with 
reduced integration scheme (C3D8R) and some wedge elements (C3D6) inserted into some regions that 
are difficult to be meshed using the hexahedral elements. The interphase was meshed using the first-
order cohesive elements (COH3D8), as shown in Fig. 1. Approximately 20,000 elements were utilised 
to capture the stress distribution and material deformation between neighbouring fibres at a reasonable 
computational cost. Node positions on opposite faces of the RVE were identical to allow periodic 
boundary conditions. Mass scaling was employed to accelerate the numerical simulations in 
ABAQUS/Explicit. A ratio of the kinetic energy over the internal energy of the system is a commonly 
used parameter to determine whether the mass scaling has significant influence on the numerical results, 
and it is well recognised that any ratio less than 10% could be seen as insignificant [14]. Therefore, the 
stable time increment was set to be 5×10-6 s in this study. The linear bulk viscosity and the quadratic 
bulk viscosity parameter were set to be 0.06 and 1.2 in ABAQUS/Explicit, respectively. 

 

Fig 1. The 3D RVE model with three phases 

2.2 Constitutive models of the three phases 

The carbon fibres were modelled as linearly elastic, transversely isotropic solids, and their material 
properties are listed in Table 1. The polymeric matrix was modelled as isotropic elasto-plastic. It has 
been found that the hydrostatic stress has significant influences on the mechanical behaviour of polymer 
[32], and exhibits a completely different behaviour when subjected to various simple uniaxial loading 
conditions, such as brittle in tension while plastic in compression and shear [33]. These characteristics 
of polymers were considered in the failure analysis of composite materials under multiaxial stress states, 
by means of the extended Drucker-Prager (D-P) yield model associated with a ductile damage criterion 
[19], the modified Drucker-Prager plastic damage model [20] and the elasto-plastic with isotropic 
damage constitutive model, proposed by Melro et al. [34]. In order to generate a large amount of 
numerical data from the RVE model efficiently and to avoid the change of hardening pattern in the 
extended D-P model at the damage mode transition point [19], the modified D-P plastic damage model 
implemented in ABAQUS was adopted. The constitutive model is based on the yield function proposed 
by Lubliner et al. [35] associated with modifications accounting for damage evolution subjected to 
tensile and compressive loads [36]. The yield surface of epoxy is given by the modified Drucker–Prager 
yield function 

Φ(𝐼 , 𝐽 , 𝜎 , 𝛽, 𝛼) = 3𝐽 + 𝛼𝐼 + 𝐵〈𝜎 〉 − 𝜎 = 0,  (1) 



where 𝐼  is the first invariant of the stress tensor, 𝐽  the second invariant of the deviatoric stress tensor, 
𝛼 the pressure-sensitivity parameter, 𝜎  the maximum principal stress, <> the Macaulay brackets  that 
returns the argument when it’s positive or zero, and 𝐵 is a function of the tensile and compressive yield 
strengths (𝜎  and 𝜎 ), which reads 

𝐵 = (1 − 𝛼) − (1 + 𝛼), (2) 

wherein 𝛼 can be determined according to tan 𝛽 = 3𝛼 from the internal friction angle of the material 
(𝛽), which controls the hydrostatic pressure dependence of the plastic behaviour of the material. 

After onset of damage under tensile loads, the quasi-brittle behaviour is determined by an exponential 
law, characterised by a damage variable for the fracture energy 𝐺 . For the behaviour of matrix under 
compressive loads, perfect plastic was assumed, which is schematically illustrated in Fig. 2(a). More 
details about the constitutive model and the numerical implementation can be found in [20].  

 

Fig 2. (a) Schematic of the modified Drucker-Prager damage-plastic model for the epoxy matrix; (b) 
Traction-separation law of the fibre/matrix interface. 

The mechanical behaviour of the interface between fibres and matrix was modelled by a cohesive zone 
model (CZM) and governed by the traction-separation law (see Fig. 2(b)). Damage onset was controlled 
by a quadratic interaction criterion, while the propagation was determined by the energy-based 
Benzeggath-Kenane damage criterion, considering the dependence of the fracture energy dissipation on 
the fracture modes. The interface fracture energy in mode I, 𝐺 , is extremely difficult to be measured 
experimentally, so it is assumed between 2-5 J/m2 [20]. Here in this study, the energy of 2 J/m2 was 
adopted in the simulations, which has also been adopted in other studies [20,34]. Furthermore, because 
of the absence of experimental data, it was assumed that the interface fracture energy for the shear mode 
was equal to the matrix cracking fracture energy, 100 J/m2, which is similar to the one used in [20,36]. 
More details of this cohesive zone model and its numerical implementation can be found in [19]. It 
should be noted that in this model, the friction between fibres and matrix after interface failure was not 
considered, which could result in the underestimation of the shear failure strength under a moderate 
transverse compressive stress during combined transverse compression and in-plane shear. The 
interface properties and the identified parameters can be found in Table 1. 

Table. 1. Material properties of IM7/8552 composite and identified interface parameters [11,36] 

IM7 fibre properties 

 1 GPaE   2 3 GPaE E 12  23   12 GPaG   23 GPaG  



287 13.399 0.29 0.48 23.8 7 

8552 epoxy properties 

 GPaE  m   MPamyt   MPamyc   2J / mmG  

4.08 0.38 99 130 100 
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2.3 Boundary and loading conditions  

When an RVE is constructed, periodic boundary conditions (PBCs) are necessary to ensure the periodic 
displacement and traction fields by introducing the following equations for the nodes of surfaces and 
their counterparts on the opposite surfaces. The unified PBCs are generally written with displacement 

vectors 𝑈⃗, 𝑈⃗ and 𝑈⃗ as 

𝑢(0, 𝑥 , 𝑥 ) − 𝑢(𝐿 , 𝑥 , 𝑥 ) = 𝑈⃗

𝑢(𝑥 , 0, 𝑥 ) − 𝑢(𝑥 , 𝐿 , 𝑥 ) = 𝑈⃗

𝑢(𝑥 , 𝑥 , 0) − 𝑢(𝑥 , 𝑥 , 𝐿 ) = 𝑈⃗

,  (3) 

where Li (i=1, 2, 3) is the length of the RVE, and 𝑈  (i=1, 2, 3) are the relative displacement between 
two nodes on the pair of opposite surfaces. Three dummy points are introduced to apply the load, such 
that it is easy to achieve various loading conditions through the modifications of displacements/loads 
of these nodes. More details of PBC and its implementation in RVE based modelling are referred to 
[19,35]. 

 

Fig 3. RVE subjected to different loads: (a) uniaxial transverse tension/compression and in-plane 
shear loadings; (b) biaxial transverse tension/compression and in-plane shear loadings. 

Combined uniaxial tension/compression along the x2 axis and longitudinal shear along the fibres (σ22 

and τ12 in Fig 3(a)) were imposed with 𝑈⃗ = (𝑢 , 0,0), 𝑈⃗ = 0, 𝛿 / , 𝛿  and 𝑈⃗ = (0, 0, 𝑢 ), where 



δc and δs are the imposed compressive and shear displacements, respectively. 𝑢  and 𝑢  are regarded as 
the resultant displacements with the consideration of Poisson’s effects, so that the corresponding normal 
forces acting on the RVE surfaces are zero. The imposed strains were computed from the imposed 
displacements divided by the corresponding lengths, while the predicted normal and shear stresses were 
computed from the resultant normal and tangential forces acting on the RVE faces divided by the cross-
sectional area.  

For triaxial loadings, including biaxial transverse loads perpendicular to the fibres and in-plane shear, 
the loads were imposed on two dummy nodes in two steps. Here in this study, force loading was 
introduced throughout these two steps, considering the restriction of Poisson’s effects in displacement 

loading. In the first step, the uniaxial force loading was imposed with 𝑈⃗ = (𝑢 , 0,0), 𝑈⃗ =

(0, 𝑢 , 0), 𝑈⃗ = (0, 0, 𝑢 ) and 𝐹⃗ = (0, 0, ±𝐹 ) , where the 𝑢  and 𝑢  are the resultant 
displacements with the consideration of Poisson’s effects, the ±𝐹  is the concentrated force loaded on 
the dummy node along the x3 axis and 𝑢  is the resultant displacement due to the concentrated force 
loading ±𝐹 . By doing so, the transverse stress can be imposed on the cross-section, and needs to be 

kept constant throughout the second step. In the second step, triaxial loads were imposed with 𝑈⃗ =

(𝑢 , 0,0), 𝑈⃗ = 0, 𝛿 / , 𝛿 , 𝑈⃗ = (0, 0, 𝑢 ) and 𝐹⃗ = (0, 0, ±𝐹 ),  in which the transverse 

tension/compression and in-plane shear were loaded with displacements on the dummy nodes along x2 
axis.  

For all the loadings, the displacements and reactions of these dummy nodes were obtained to determine 
the stress–strain curves under the transverse, shear and combined loads. They were also used to derive 
the corresponding material stiffness and strength, and plot the failure surface in (σ33, σ22, τ12) stress space. 
The average computing times were around 6 hours and 15 hours for the biaxial and triaxial loading 
cases, respectively, using a single CPU for each job on the Eddie HPC platform at the University of 
Edinburgh.  

3. Verification tests 

3.1 Theoretical data 

In order to verify and compare ML methods, the Tsai-Wu failure criterion [37] described in Eq. (4) was 
adopted as a benchmark to provide theoretical data sets for training and validation. The Tsai-Wu 
criterion was selected because it includes all stress components with a concise expression and performs 
generally well in comparing theoretical failure criteria and RVE based simulations under biaxial loads 
[19].  
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where Fi and Fij (i, j, k=1, 2….6) are strength tensors. The strength coefficients are determined by 
following conventional strength parameters: 
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where σ* 
1t and σ* 

1c are the tension and compression along fibre direction; σ* 
2t and σ* 

2t are the tension and 
compression strengths transverse to fibre direction; and 𝜏* 

12 and 𝜏* 
23 are the shear strength parallel and 

transverse to fibre direction, respectively. 

In this section, three stress components, σ22, σ33 and 𝜏12 are considered. Therefore, in this stress space, 
the Tsai-Wu failure criterion Eq. (4) is simplified as  

    3 2 3
2 2 2

22 2 3 22 44 2 2 66 12( )2 +F F F F F F             (6) 

The strength parameters of IM7/8552 (lamina) are given in Table 2 [38]. To include the whole failure 
envelope in the sample space, the range of stress space was defined as 

2 3 12[ 600MPa,100MPa], [ 600MPa,100MPa], [ 300MPa,300MPa].         (7) 

In the work conducted by Yan et al. [28], the sample space covers the entire defined strain space. 
However, this may bring errors for the ML model. In general, the objective of a ML algorithm is to 
minimise the loss function [39], and every data point contributes weight for the loss function. Therefore, 
a large number of data points far away from real decision boundary (RDB) could pull the decision 
boundary the ML model predicted (PDB) away from the real one, which in return reduces its 
accuracy( see the 2D case in Fig 4 (a)). For the Tsai-Wu criteria in Eq.(4), the UD composite is safe 
when F<1, which means its decision boundary can be defined as  

   2 2
2

2
22 22 33 22 44 22 33 2 66 13 22 3( ) =12 +F F F F F           , (8) 

 

Table. 2 the strength parameters for IM7/8552 (lamina) 

σ* 
2t (MPa) σ* 

2c (MPa) 𝜏* 
23 (MPa) 𝜏* 

12 (MPa) 
62 255 70 100 

 

 

Fig 4. Decision boundary with different types of training data 

(a) (b) 



In order to address this issue, only those data points close to the decision boundary were collected for 
training in this paper, such that the training set was filtered by 

1 1+d F d   , (9) 

The distribution of data points after filtration is illustrated in Fig 4 (b). This can offer a higher accuracy 
for the ML model, and reduce the volume of training set and the time consumption for training. 
Furthermore, with this novel data collection strategy, only the data close to critical failure points are 
needed, therefore significantly reducing the workload for data pre-processing. 

In order to verify this strategy, two kinds of training sets ,train n trainX R y（ ） were generated for 

comparison. By using Latin hypercube sampling, 10,000 data points were generated in the stress space 
described by Eq. (7) and were regarded as training set type-I. Similarly, 20,000 data points were 
generated by using Latin hypercube sampling in the stress space described by Eq. (7) and filtered by 
Eq. (9) with d=0.5. This led to 1282 remaining data points, which were regarded as training set type-II. 
Another 1000 data points generated by Latin hypercube sampling in the same stress space were used as 
a testing set ,test t testX R y（ ）. Distributions of these data points are shown in Fig 5 and Fig 6. 

 

Fig 5. Distribution of data points for training set type-I (y=0 indicates ‘safe’; y=1 indicates ‘failure’). 

 

Fig 6. (a) Failure surface for Tsai-Wu failure criterion in stress space (σ22, σ33, τ12); (b) Distribution of 
data points for training set type-II (y=0 indicates ‘safe’; y=1 indicates ‘failure’). 

Both the training and the testing sets were standardised to improve the performance of ML algorithm 
by  
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where 2 2 2
train train trainu u u（ ， ， ） and 2 3 12

train train trains s s（ ， ， ） are the mean values and standard deviations of the 

training sets, respectively. 

3.2 Verification and comparisons 

Three different ML algorithms were selected for evaluation, including Logistic regression, Support 
vector machine (SVM) and Artificial neural network (ANN). Logistic regression algorithm [40] is one 
of the most widely used tool for binary classification problems, and has the advantage of simplicity and 
interpretability. However, it can only work for linearly separable data if the original features are used. 
Therefore, the original features are normally mapped into new features: 

2
2 3 4 5 6 7

2 2
1 1 1 2 3 1 128 9 3 2 2 3 3( , , , , , , , , )=( , , , , , , , ),x x x x x x x x x x x x x x x x x x x x x x , (11) 

In this paper, the sigmoid function was used as the logistic regression function, and L2 regularisation 
was adapted for preventing overfitting. The classification rule for prediction rule was defined as: 

0 when 0

1 when 0

T

T

p

p

y w x

y xw

  


 
, (12) 

where w is the weight vector and yp is the predicted value. 

SVM [41] is another popular algorithm for binary classification problems. It transfers the original 
features into higher dimension by considering the similarity between different samples, therefore it 
shows advantage of non-linear classification. The classification rule is defined as: 

0( ) sign( ( ) )Tc x w x w   , (13) 

where w is the weight vector, w0 is the bias term and ø(x) is the input feature vector transformed from 
original feature vector by the Gaussian kernel function. 
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. (14) 

ANN [28] is a ML algorithm inspired by brain structure that can deal with non-linear and complex 
relationships. Besides, it shows good performance on extrapolation and prediction on the relationship 
among unseen data. In this paper, the ANN model was built on the open-source platform TensorFlow 
2.1.0. The ANN model includes an input layer, two hidden layers and an output layer. There are three 
neurons in the input layer, which are σ22, σ33, τ12, and 6 neurons and 12 neurons in first and second 
hidden layer, respectively. 



 

Fig 7. ANN scheme for failure prediction 

The Rectified Linear Unit (ReLU) function, 

( ) max( ,0)R z z  (15) 

was chosen as activation function in the first layer. The activation function in second hidden layer was 
the Sigmoid function:  

1
( )

1+ z
S z

e . (16) 

The sigmoid function, as plotted in Fig 8 (a), determines the output in a way such that the output is 1 
when sigmoid function exceeds 0.5, otherwise the output is 0. Meanwhile, the confidence of the 
prediction decreases with the sigmoid function approaching 0.5. In this case, for measuring the 
confidence of the ANN prediction, a confidence function is introduced: 

2
[ ( ) 0.5]

( )
0.5

S z
C z

   
 

. (17) 

 

Fig 8. (a) Sigmoid function and (b) Confidence of prediction. 

 

A plot of the confidence function is shown in Fig 8 (b). Furthermore, binary cross entropy loss function, 
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      (18) 



combined with Nadam optimisation algorithm [42] was used for training the ANN model, and L2 
regularisation was adopted for preventing overfitting. Compared to the logistic regression and SVM 
algorithm, ANN maps the old features into new features using the activation function in every layer, 
which offers a highly nonlinear characteristic. 

Table. 3. Verification results from different ML algorithms. 

 
Training set type-I 
(10,000 data points) 

Training set type-II 
(1282 data points) 

Logistic regression 94.0% 87.0% 
SVM 97.5% 94.9% 
ANN 98.3% 98.1% 

 

The results in Table. 3 show that ANN offers the highest accuracy in this problem and the accuracy of 
all three ML algorithms with training set type-II is close to that with training set type-I using much 
fewer data points. In particular, the ANN maintains a consistent high accuracy when using training set 
type-II with a smaller training set. As the mechanical response of the RVE under triaxial loads is 
expected to show high nonlinearity, the ANN with training set type-II were adapted in the following 
sections for failure prediction. 

4 Calibration and validation of the RVE-based FE model 

In order to obtain the reliable data from the RVE-based FE modelling under triaxial loadings, a 
parametric study was conducted to identify and calibrate the micro-parameters of the RVE which was 
further validated by the experimental data from the combined transverse and in-plane biaxial loading 
states. 

4.1 Identification of constituent parameters for the RVE model  

Due to the absence of some micro-parameters from experiments, a parameter identification plugin tool 
developed for ABAQUS in our previous work [31] was adopted to identify these parameters. Using the 
plugin, 1000 samples from Latin hypercube sampling of unit cell RVEs with different micro-parameters 
were generated and the corresponding macro-parameters were calculated, as illustrated in Fig 9.  

 



 

Fig 9. Micro-parameters (Young’s modulus 𝐸 , 𝐸 , Possion’s ratio 𝜐 , 𝜐  shear modulus 𝐺 , 

of fibre, the thickness 𝑇  and stiffness 𝐾 , 𝐾  of interface ) and macro-parameters (Young’s 

modulus 𝐸 , 𝐸 , Poisson’s ratio 𝜐 , 𝜐  shear modulus 𝐺 , of UD laminae) 

 

Then, an ANN model is trained with the micro-parameters as the input and macro-parameters as the 
output. After training, 1,000,000 samples with Latin hypercube sampling was generated by ANN model. 
The one with the highest similarity of macro-parameters compared to the target material (IM7/8552 UD 
lamina) was selected, and the similarity was measured using the Euclidean distance function: 
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, (19) 

where 1
sE  and 2

sE are the predicted longitudinal and transverse modulus, 12
s  and 23

s  are the predicted 

Poisson’s ratio and 12
sG  is the predicted shear modulus. The identified constituent parameters, together 

with the experimental ones can be found in Table. 4. As can be seen the macro-parameters of the 
selected sample agrees with the experimental data extremely well, which means the micro-parameters 
of the selected sample can be regarded as the identified micro-parameters of the target material.  

Table. 4. Elastic parameters of the IM7/8552 UD lamina [38] 

  1 GPaE   2 3 GPaE E  12  23   12 GPaG  

Experiment 163.0 9.0 0.32 0.5 5.17 

RVE with identified 
micro-parameters 

163.2 9.0 0.32 0.5 5.0 

 

4.2 Calibration of interface strength in the RVE model  

Due to the lack of experimental data of the fibre/matrix interface strengths, reverse engineering was 
adopted based on correlating the RVE predicted ultimate strengths to the experimental data [38] under 



different uniaxial loadings. As explained in the above section, the interface fracture energies for mode 
I and mode II were taken as 2 J/m2 [20,34] and 100 J/m2 [20,34,36], respectively. For the parametric 
study of the interface properties, the stress-strain curves of the RVE model under different loadings can 
be obtained by varying the interface strengths of mode I from 48 to 58 MPa and of mode II from 82 to 
102 MPa, respectively, with a reference to those values used in [36]. It can be found in Error! 
Reference source not found. that when keeping the fracture energy of mode I constant, the interface 
normal strength shows strong influence on the ultimate strength of the RVE. A value of 58 MPa for the 
interface strength was observed to give the best match with the experimental tensile strength, compared 
to the numerical results obtained from the strength values of 48 and 53 MPa. Here in this study, the in-
plane shear strength of the interface was assumed to be equal to its transverse shear strength. After a 
few trials, it was found that the ultimate in-plane shear strength of the RVE increased with the interface 
shear strengths. However, the ultimate strength obtained from the interface strength of 102 MPa was 
only slightly larger than the one from 92 MPa, which is mainly due to the fact that the shear strength is 
slightly larger than the matrix tensile strength (99 MPa), resulting in the earlier damage in the matrix, 
instead of the interface failure. Compromising between the compressive and in-plane shear ultimate 
strengths of the RVE with different interface shear strengths, 92 MPa was adopted in the following 
numerical simulations of biaxial and triaxial loadings.   

 

Fig 10. Comparison of failure strengths between experimental data [32] and numerical simulations 
under tensile, compressive and in-plane shear loadings 

 



 

Fig 11. Comparison between the experimental failure points [32] and numerical failure envelope of 
the RVE model loaded with combined transverse and in-plane shear stress states in σ22-τ12 stress plane 

4.3 Validation of the RVE model under transverse tension/compression and in-plane shear biaxial loads 

Once the interface properties had been determined, the RVE model was further validated against 
experimental findings to assess the calibrated interface properties under biaxial loading conditions. Fig 
11 shows the comparison of critical failure points between the experimental data [38] and the predicted 
failure envelope in the σ22-τ12 stress plane. Each of the obtained stress curve corresponds to a specific 
strain ratio of transverse tension/compression to in-plane shear load. For more details refer to [19]. It 
should be noted that the critical failure points were collected at the points when the respective stresses 
started declining for different dominated failure modes, which means the points of compression stress, 
shear stress and tension stress were regarded, respectively, as the critical failure points for the 
compression dominated failure, shear dominated failure and tension dominated failure. Moreover, the 
region for each failure mode in the σ22-τ12 stress plane is marked according to the observed dominant 
failure mode of the RVE when subjected to different biaxial loadings.  

It can be found that the predicted critical failure points agree very well with the experimental data in 
the compressive and tension dominated failure regions, suggesting that the interface friction has 
negligible effects in both regions. However, it plays a significant role in the shear dominated region, 
which causes the shear hardening when the RVE is subjected to a moderate compressive stress. This is 
believed to result in the big discrepancy between the predicted critical failure points and experiments 
in the shear dominated region, as shown in Fig 11. Nevertheless, it should also be noted that the aim of 
this study is to propose a framework of applying the ML techniques to predict the failure of composite 
materials under multiaxial stress states with the help of RVE modelling. Therefore, with continuing 
improvement on the RVE model in the future (i.e. consideration of interface friction), more accurate 
critical failure points would be generated for the training of the ML models. 



 

Fig 12. Stress curves from the RVE model under triaxial loads (a) in the (σ22, σ33, τ12) stress space and 
(b) their projections on the σ22-τ12 stress plane. 

4.4 Failure prediction of IM7/8552 UD lamina under triaxial loadings 

Failure prediction of the IM7/8552 UD lamina was conducted under σ22-τ12-σ33 triaxial loads. Examples 
of stress curves from the RVE-based FE modelling are presented in Fig 12. A slicing technique was 
applied in the (σ22, σ33, τ12) stress space, with one slice at each σ33 stress. Due to the symmetry of the 
failure surfaces in the σ22-σ33 stress plane, only the data points on one side were needed from the RVE 
modelling. In the triaxial loading cases, the loading process was divided into two steps. In the first step, 
σ33 was pre-loaded smoothly; in the second step, σ22 and τ12 were loaded simultaneously, whilst σ33 was 

kept constant. Small and moderate stress states of σ33 in tension and compression were selected to 
investigate the influences of σ33 on the failure envelope in the σ22-τ12 stress plane.  

It can be found in Fig 12 (a) that σ33 has little influence on the combined transverse tension and in-plane 
shear envelopes, but greater influences on the transverse compression and in-plane shear failure 
envelopes. To have a better view of this difference, the stress curves were projected to the σ22-τ12 stress 
plane, as shown in Fig 12 (b). Specifically speaking, the transverse compressive stress, σ33 (blue and 
pink curves), accelerates the tensile failure in the x2 direction under the biaxial loads, compared to the 
transverse tensile stress σ33 (black curves). That is due to the tensile stress in the x2 direction in the matrix, 
induced by the compressive stress σ33 through the Poisson’s effect, promoting earlier failure when the 
combined transverse tensile and in-plane shear loads are applied. However, in the (σ22, σ33, τ12) stress 
space, σ33 shows larger effects on the compressive failure stress than tensile failure stress. The failure 
stresses obtained in the compressive failure dominated regions on the slice σ33 =-100 MPa is two times 
larger than the ones on the slice of σ33 =30 MPa, but on the contrary it shows negligible change in the 
tensile failure dominated regions. That is mainly because the biaxial compression may have closed the 
micro cracks, and thus delaying the compressive failure during the triaxial loadings.  

There are 32 slices inserted between σ33=60 MPa and σ33=-260 MPa, because the tensile strength and 
compressive strength are 63MPa and -269 MPa, respectively. Since the cases with pre-loaded 
compressive stresses σ33 higher than 220MPa see unstable simulations, they were not considered in this 
work; therefore, 28 slices in total were taken into account in this study. In every slice, 20 cases with 
different strain ratios of transverse tension/compression to in-plane shear load were defined, i.e. 560 
stress curves were obtained in total.  

5. Data-driven ANN prediction of composites failure 

Before training the ANN model, effective data sets need to be extracted from the stress curves sliced at 
different σ33 in the (σ22, σ33, τ12) stress space. Firstly, half of critical failure points (560 points) of the 

Biaxial failure curves when 𝜎 = 30 MPa Biaxial failure curves when 𝜎 = −30 MPa Biaxial failure curves when 𝜎 = −100 MPa 

(a) (b) 



stress curves can be identified according to the stress curves and their corresponding failure modes, and 
the other half is obtained by mirroring them about the σ22-σ33 stress plane due to the symmetry, thus 
1120 data points in total were collected (see in Fig 13). Because there is a change of failure mode on 
every slice and the stress curves among slices share identical strain ratios of transverse 
tension/compression to in-plane shear load, there is a vacant space among the critical failure points in 
the (-σ22, -σ33, τ12) stress space and it becomes enlarged with the increase of the pre-load, σ33. Another 
vacant space is located in the (-σ22, -σ33, τ12) stress space, which is because no more slices are inserted 
in this direction. These vacancies have limited influence to the training of ANN model, because there 
will be no significant fluctuation of critical failure points in these vacant spaces. 

Fig 13. Critical failure points of the RVE in the (σ22, σ33, τ12) stress space 

Secondly, a radial loading path was drawn, starting from the original point and passing through every 
critical failure point in each slice. In our previous work and other reported studies in literature [14,43–
46], the failure patterns were found to be independent from the loading paths. Therefore, the points 
before the critical failure point on the radial loading path can be regarded as safe points, and those after 
the critical failure point are regarded as failure points. As such, two failure points and two safe points 
close to the critical failure point were generated and collected for later training of the ANN, resulting 
in 2240 safe points and 2240 failure points in total as illustrated in Fig 14.  

Vacancy  

Vacancy  



 

Fig 14. Training sets extracted from RVE modelling for the ANN training 

Twelve points, including those two points from the training set, on every radial path beyond the critical 
failure point were collected as failure points (i.e.13440 points) and for the balance of the weight between 
the safe points and the failure points, 13440 points on the failure curves before the critical points were 
randomly collected as safe points as illustrated in Fig 15. Of these safe points and failure points, 20 % 
were used as the validation set while 80 % were used as testing set. 



 

Fig 15. Data sets extracted from the RVE modelling for validation and testing of the ANN model 

 

Fig 16. Training loss and validation loss across epochs. 

Once the data sets were selected, the ANN model described in Section 3.1 was trained, validated and 
tested. It can be found in Fig 16 that the training and validation loss decreased with epochs and 
converged after 600 epochs with no overfitting issue. Finally, the accuracy of ANN model on the testing 
set reached 97.5%. 



In order to visualise the decision boundary of the ANN model, around 630,000 data points were 

sprinkled evenly in the stress space σ22∈(-800MPa, 100 MPa), σ33∈(-300 MPa, 100MPa), τ12∈(-

150MPa, 150MPa), and then the sigmoid function Eq. (16) in the output layer of ANN model was 
calculated using the trained ANN model for every data point. After that, an iso-surface for S(z)=0.5 can 
be constructed, which is the predicted failure surface for the IM7/8552 UD laminae, as shown in 

 

Fig 17. The predicted failure surface turned out to be an elliptical paraboloid, where the failure strength 
in the (-σ22, -σ33, τ12) stress space is much larger than that in the (+σ22, +σ33, τ12) stress space. As can be 
seen the failure surface in the (σ22, -σ33, τ12) stress space is open, and there is a growing tendency for 
failure strength with the increase of biaxial compression stresses, which agrees with the infinite strength 
assumption for equal biaxial transverse compression proposed by Hashin [3]. Besides, the predicted 
failure surface is in good agreement with the critical failure points, demonstrating the trained ANN 
model offers a high accuracy for predicting the failure strength in the (σ22, σ33, τ12) stress space 
concerned in this study.  

 

 



Fig 17. ANN predicted failure surface in the (σ22, σ33, τ12) stress space 

 

 

Fig 18. 2D cross-planes from the predicted 3D failure surface 

Based on the predicted failure surface, slices perpendicular to the σ33 and τ12 directions are plotted in 
Fig 18 to show the evolution of the 2D failure envelopes. Due to that the failure surface is symmetric 

about the σ22-σ33 plane, only the slices in τ12∈(0Mpa, 120Mpa) are plotted. It has been seen in Fig 18 
(a) that the failure envelopes in the (σ22, σ33) stress region shrink with the increase of τ12, which is mainly 
because τ12 could introduce micro-damage to the composite and reduce the final compression strength. 
Similar phenomenon also occur in the failure envelopes in the (σ22, τ12) stress region in Fig 18 (b), where 
the increase of +σ33 results in lower compression or shear strength. Another interesting observation from 
Fig 18 (a) is that with the increase of τ12, the failure envelops shifts to the (-σ22, -σ33) stress region, 
suggesting that the shear strength increase with the increase of -σ22 and -σ33. This is because the biaxial 
compression supressed the matrix and interface, resulting in a higher fracture energy for shear failure. 
In Fig 18 (c), with the increase of -σ33, the tensile strength decreases, while the compressive strength 
increases dramatically. This is mainly because -σ33 induces tensile deformation in the +σ22 direction as 
the result of the Poisson’s effect, which leads to a lower needed +σ22 for the interface failure. However, 
for the compressive strength -σ22, biaxial compression can compact the composite and improve the 
compressive strength. Due to the symmetry of τ12, the failure surface should be symmetrical about the 
σ22-σ33 stress plane, but the cross-planes for the predicted failure surface Fig 18 (b) and (c) are not 
perfectly symmetrical because of the errors from ANN model training and iso-surface calculation. 

6. Conclusions  



A general framework of applying ML techniques associated with micromechanics-based FE analysis 
was proposed to predict the failure of the IM7/8552 UD lamina subjected to σ22-τ12-σ33 triaxial loads. 
An RVE-based FE model was established using three phases (fibre, matrix and interface) and loaded 
by means of periodic boundary conditions following a hybrid loading strategy. The microscale 
parameters used in the RVE model, such as the fibre elastic parameters and interface thickness and 
stiffnesses were identified using a plugin developed in the ABAQUSTM together with ML techniques. 
A coupled numerical-experimental methodology was employed to calibrate the interface properties and 
validate the RVE model. Failure prediction of the UD lamina subjected to triaxial loadings was 
conducted by employing the RVE model. Triaxial critical failure points were collected to reconstruct 
the failure surface of UD lamina under triaxial loadings with a shallow ANN model. The main 
conclusions of the study are summarized as follows: 

 A three-phase RVE model was established with identified constituent parameters. The uniaxial 
strength and the biaxial strength for tension dominated compression dominated failure show 
good agreement with experiment data. However, the lack of friction between fractured 
fibre/matrix interfaces may lead to reduced accuracy of the RVE model for capturing the shear 
strength hardening under moderate compressive stresses. 

 Transverse stress (σ33) in one direction has little influences on the (+σ22, τ12) stress region, while 
has great influences on the (-σ22, τ12) stress region.  

 Using limited data close to the failure surface can provide high enough accuracy for failure 
prediction with shallow ANN model compared to using the large number of data with random 
distribution. 

 The ANN model appeared to be reasonably robust for the failure prediction of composite 
laminae. Based on the critical failure points extracted from the RVE-based FE modelling in the 
(σ22, σ33, τ12) stress space, a high-accuracy ANN model is trained with only 560 samples and 
can offer 97.5% accuracy.  

 The failure surface constructed based on the trained ANN model turned out to be elliptical 
paraboloid, in which the failure strength in (-σ22, -σ33, τ12) stress space was much higher than 
that in (+σ22, +σ33, τ12) stress space. It is noticed that the triaxial strength reduce with the increase 
of τ12 or +σ33, the shear strength increases with -σ22 and -σ33 involved, furthermore, the tensile 
strength decreased and the compressive strength increased with the increase of -σ33, 

A more high-fidelity FE model, particularly considering the friction between fibres and matrix should 
be developed in the future work to capture the shear hardening under moderate compressive stresses. A 
more reliable matrix constitutive model should be adopted since it would have large effects on the 
determining the ultimate strength of the RVE model. In the future, this work will be extended to the 
failure prediction with more than three stress components, e.g. ambitiously all six stress components, 
such that a failure criterion can be integrated in an ANN model. Eventually, the failure criterion can be 
implemented into a FEM software for composites failure analysis and design. 
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