

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

X-ray Free Electron Laser-Induced Synthesis of - Iron Nitride at **High Pressures**

Citation for published version:

EuXFEL Community, Ball, O, McHardy, JD, Pace, EJ, McMahon, MI & McWilliams, RS 2021, 'X-ray Free Electron Laser-Induced Synthesis of - Iron Nitride at High Pressures', The Journal of Physical Chemistry Letters, vol. 12, no. 12, pp. 3246-3252. https://doi.org/10.1021/acs.jpclett.1c00150

Digital Object Identifier (DOI):

10.1021/acs.jpclett.1c00150

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: The Journal of Physical Chemistry Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

X-ray Free Electron Laser-Induced Synthesis of ε Iron Nitride at High Pressures

3 Huijeong Hwang,^{[a], f} Taehyun Kim,^[a] Hyunchae Cynn,^[b] Thomas Vogt,^[c] Rachel J. Husband,^[d]

4 Karen Appel,^[e] Carsten Baehtz,^[e] Orianna B. Ball,^[f] Marzena A. Baron,^[g] Richard Briggs,^[b]

5 Maxim Bykov,^[h] Elena Bykova,^[h] Valerio Cerantola,^[e] Julien Chantel,^[i] Amy L. Coleman,^[b]

6 Dana Dattlebaum,^[j] Leora E. Dresselhaus-Marais,^[b] Jon H. Eggert,^[b] Lars Ehm,^[k] William J.

7 Evans,^[b] Guillaume Fiquet,^[g] Mungo Frost,^[l] Konstantin Glazyrin,^[d] Alexander F. Goncharov,^[h]

8 Zsolt Jenei,^[b] Jaeyong Kim,^[m] Zuzana Konôpková,^[e] Jona Mainberger,^[d] Mikako Makita,^[e]

9 Hauke Marquardt,^[n] Emma E. McBride,^[l] James D. McHardy,^[f] Sébastien Merkel,^[i] Guillaume

10 Morard, [g], [o] Earl F. O'Bannon III, [b] Christoph Otzen, [d] Edward J. Pace, [f] Alexander Pelka, [e]

11 Charles M. Pépin,^{[p],[q]} Jeffrey S. Pigott,^{[j],[r]} Vitali B. Prakapenka,^[s] Clemens Prescher,^[d] Ronald

12 Redmer,^[t] Sergio Speziale,^[u] Georg Spiekermann,^[v] Cornelius Strohm,^[d] Blake T. Sturtevant,^[j]

13 Nenad Velisavljevic,^[b] Max Wilke,^[v] Choong-Shik Yoo,^[w] Ulf Zastrau,^[e] Hanns-Peter

14 Liermann,^[d] Malcolm I. McMahon,^[f] R. Stewart McWilliams^{*,[f]} Yongjae Lee^{*,[a]} (EuXFEL

15 *Community Proposal #2292)*

16

17

19 AUTHOR ADDRESS

- Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722,
 Republic of Korea
- ^[b] Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550,
 USA
- 24 ^[c] Nano Center and Department of Chemistry and Biochemistry, University of South
- 25 Carolina, Columbia, South Carolina 29208, USA
- ^[d] Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg
 27 22607, Germany
- 28 ^[e] European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- 29 ^[f] The School of Physics and Astronomy, Centre for Science at Extreme Conditions and
- 30 SUPA, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
- 31 [g] Inst. Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne

32 University, UMR CNRS 7590, Muse-um National d'Histoire Naturelle, 4 Place Jussieu, Paris,

- 33 France
- ^[h] Carnegie Science, Earth and Planets Laboratory, 5241 Broad Branch Road, NW,
 Washington, DC 20015
- ⁽ⁱ⁾ Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 UMET Unité Matériaux et
 Transformations, F-59000 Lille, France

38	[j]	Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
39	[k]	Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
40	[1]	SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California
41	94025	, USA
42	[m]	Department of Physics, Research Institute for Natural Science, HYU-HPSTAR-CIS High
43	Pressu	re Research Center, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul
44	04763	Republic of Korea
45	[n]	Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN
46	Oxford	l, United Kingdom
47	[0]	Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR,
48	ISTerr	e, 38000 Grenoble, France
49	[p]	CEA, DAM, DIF, F-91297 Arpajon, France
50	[q]	Université Paris-Saclay, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-
51	le-Châ	tel, France
52	[r]	Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United
53	States	
54	[s]	Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637,
55	USA.	
56	[t]	Universität Rostock, Institut für Physik, D-18051 Rostock, Germany

57	[u]	GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam,
58	Germ	nany

- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Straße 24-25,
 14476 Potsdam, Germany
- 61 [w] Department of Chemistry, Institute of Shock Physics, and Materials Science and
- 62 Engineering, Washington State University, Pullman, Washington 99164, USA
- 63 [§] Present address: Photon Sciences, Deutsches Elektronen-Synchrotron (DESY),
- 64 Notkestraße 85, Hamburg 22607, Germany

65 * Correspondence to: yongjaelee@yonsei.ac.kr (Yongjae Lee) / rs.mcwilliams@ed.ac.uk (R.
66 Stewart McWilliams)

ABSTRACT The ultrafast synthesis of ε -Fe₃N_{1+x} in a diamond-anvil cell (DAC) from Fe and N₂ 77 78 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When 79 the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample 80 temperature at the delay time was above 1400 K, confirmed by in-situ transformation of α - to γ iron. Ultimately, the Fe and N₂ reacted uniformly throughout the beam path to form Fe₃N_{1.33}, as 81 82 deduced from its established equation of state (EOS). We thus demonstrate that the activation 83 energy provided by intense X-ray exposures in an XFEL can be coupled with the source time 84 structure to enable exploration of time-dependence of reactions under high pressure conditions. 85

86 TOC GRAPHICS

88 **KEYWORDS** X-ray free electron laser • Diamond-anvil cell • Solid-gas reaction • Iron • Iron

89 nitride

90

87

91

93 Solid-gas reactions at high pressures and in high radiation environments are important in space 94 and on (exo-) planets.¹ In such environments copious amounts of molecular nitrogen are found 95 together with common refractory materials, such as iron alloys. On Earth, better understanding 96 of the processes guiding to the evolution of atmospheric nitrogen on Earth, from its presence in a 97 protoplanetary disc² to its present-day appearance in deep mantle reservoirs, is needed.^{3,4}

In addition, recent theoretical work on solid-gas reactions such as Mg with Xe, Kr and Ar^5 ,

99 iron and nickel with xenon⁶, Kr with oxygen⁷ and the possible formation of Helium compounds⁸

100 warrants extensive exploratory synthesis efforts. The recent synthesis of a NiAr Laves phase⁹

101 and $(Xe,Si)O_2^{10}$ supports changes of electronegativity at high pressures¹¹ and the opportunity to

102 synthesize new materials with unusual properties.

High-pressure chemical synthesis is important since it permits the exploration of novel compounds at extreme conditions encountered in Earth and space science.¹² Diamond-anvil cell (DAC) experiments are suitable for such studies since the contained gas can function simultaneously as a pressure-transmitting medium (PTM) and a reactant. To trigger a chemical reaction, the energy of intense electromagnetic radiation pulses can be used.¹³ Time-resolved diffraction and spectroscopic studies in a DAC at XFEL facilities have the potential to elucidate the formation and dynamics of new materials under extreme conditions.

Here we present an experimental setup using a DAC containing an Fe foil and N_2 as a PTM and reactant to demonstrate that a reaction to form ε -Fe₃N_{1+x} can be induced by appropriate XFEL pulse-probe conditions.

In addition to cosmochemical and planetary aspects,¹⁴ iron nitrides have important technological applications due to their greater magnetization compared to iron oxides and lower manufacturing cost compared to iron alloys.^{15,16} In general, iron nitrides are synthesized by

116	reacting Fe and NH_3 above 400 °C where Fe catalyzes the decomposition of ammonia. Atomic
117	nitrogen then diffuses into bulk Fe with reaction times in the order of 100 seconds to form a
118	nitride surface layer. ¹⁷ Our experiments here show that we can synthesize uniform ϵ -Fe ₃ N _{1+x}
119	within nanoseconds without using conventional heating at an initial pressure of 5 GPa within a
120	DAC. Previously, Hasegawa and Yagi synthesized Fe ₂ N using a laser heated DAC at pressures
121	up to 10 GPa and temperatures near $1800 \pm 50 \text{K}$. ¹⁸ Additional high-pressure and high-
122	temperature syntheses of iron nitrides have led to the discovery of new Fe-N compounds such as
123	$\alpha''-Fe_{16}N_2, \alpha'-Fe_8N, \gamma'-Fe_4N, \epsilon-Fe_3N_{1+x} (-0.40 < x < 0.48), Fe_7N_3, \zeta-Fe_2N, \gamma'''-FeN, and most$
124	recently, Fe_3N_2 , FeN_2 and FeN_4 . ¹⁸⁻²⁴ On the other hand, Laniel et al. revealed that after
125	decompression of a laser-heated DAC to 5 GPa only Fe_2N was found, while above 17.7 GPa
126	NiAs-type FeN was the most stable phase found after pressure release. ²³ No indications for the
127	presence of ϵ -Fe ₃ N _{1+x} was found in these studies up to pressures of 128 GPa. However, work by
128	Clark et al. using ⁵⁷ Fe-Mössbauer studies revealed a mixture of ζ -Fe ₂ N and ϵ -Fe ₃ N _{1+x} after laser
129	heating at 1300 K below 10 GPa. ¹⁹
130	Our experiments were performed at the High Energy Density (HED) instrument at the
131	European X-ray Free Electron Laser (EuXFEL) facility in Schenefeld, Germany. ²⁵⁻²⁸ Pulses of
132	20 fs duration at 17.8 keV were generated in a train of 2-20 pulses at a 2.25 MHz repetition rate,
133	repeating at 10 Hz. The fluence incident on the DAC at 100% transmission was 187(48)
134	μ J/pulse over a spot size of 14 ± 1 μ m FWHM, focused by the compound refractive lens (CRL),
135	as measured using damage imprinting in freestanding Ta foil. At this repetition rate, XFEL
136	pulses were so close in time (443 ns) that they may be used to pump and probe <i>in-situ</i> chemical
137	reactions. ^{13,29}

138 A DAC with 500 μ m culets was used as a pre-compression chamber. A small piece of a 4 μ m 139 thick Fe foil (< 250 μm × 250 μm, 99.99% purity) was loaded into a cylindrical chamber of 140 310 µm diameter and 50 µm height made by electro-spark erosion in a pre-indented rhenium 141 gasket (Figure 1). A small spherical ruby crystal with $\sim 10 \mu m$ diameter was placed into the 142 sample chamber to determine the pressure.^{30,31} We then loaded N_2 gas as a pressure transmitting 143 medium (PTM) and a reactant using the gas loading system at the Extreme Conditions Science 144 Infrastructure (ECSI) of PETRA III. The pressure of the sample inside the DAC was determined 145 by recording the shift of the R1 emission line of ruby (precision: ± 0.1 GPa). The initial pressure 146 of the sample before XFEL irradiation was set at 5.0(1) GPa. Prior to the experiment, the sample 147 was characterized by synchrotron X-ray diffraction and optical techniques at the Extreme 148 Conditions Beamline, P02.2, at PETRA III to confirm the presence of pure N₂ and Fe in the 149 sample. 150 The horizontally polarized EuXFEL X-ray beam was directed along the central axis of the 151 DAC, through both diamond culets (Figure 1). Powder X-ray diffraction patterns were collected 152 at 10 Hz using two VAREX XRD4343 area detectors placed above and below the perpendicular 153 direction of the XFEL beam (Figure 1). Patterns comprise a superposition of all scattering during 154 each pulse train, allowing reactions to be tracked in a pump and probe fashion, while repeatedly 155 exposing the sample. We recorded the X-ray diffraction pattern using different combinations of 156 the XFEL fluence and pulses as summarized in Table 1. Dioptas software was used to convert 2-157 dimensional diffraction images to 1-dimensional diffraction patterns.³² Following the *in- situ* 158 XFEL measurements, *ex-situ* X-ray powder diffraction data of the reaction product were 159 collected at the P02.2 beamline at PETRA III using a monochromatic synchrotron X-ray beam 160 with 0.2898(1) Å wavelength and a Perkin Elmer XRD 1621 flat-panel detector. The incident X-

161	ray beam on the sample was focused to 2 μm FWHM beam using a pair of Kirkpatrick Baez
162	(KB) mirrors. The CeO2 powder standard from NIST SRM 674b was used to calibrate the
163	detector parameters using Dioptas. A 200 μ m × 200 μ m sample area was grid-scanned in 21 × 21
164	steps with 1 second exposure time per step.
165	Figure 2 shows photographic images of the sample before and after the XFEL experiments.
166	Areas irradiated by the three different XFEL pump-and-probe modes are marked with A, B, and
167	C (Table 1). While area A appears to be intact after exposure during run A (increasing pulse
168	fluence), area B and C visibly show partial and complete alteration of the sample, after 20
169	consecutive pulses and continuous exposure with 2 consecutive pulses for 11 seconds,
170	respectively. It should be noted that during exposure runs B and C, in-situ XRD patterns
171	showed the presence of both the reaction product and compressed solid N_2 (Figure 3c). The
172	observed damage on area C in Figure 2b is interpreted to result from the indirect effects of the
173	X-ray absorption and heating in the sample leading to reaction.
174	Real-time changes in the X-ray diffraction patterns as a function of XFEL irradiation are
175	summarized in Figure 3. First, we measured the XRD patterns using two consecutive pulses by
176	changing the XFEL fluence to 10%, 30%, 50%, 70%, and 100%, (run A) to check the stability of
177	the sample and the diamond anvil cell. In each two-pulse exposure, the first pulse probed the
178	sample at ambient temperature and also increased its temperature as a result of the X-ray
179	absorption. The second X-ray pulse probed the sample 443 ns after the first, measuring
180	diffraction peaks that are shifted to lower q values, where the relative shift was used to estimate
181	the temperature at this time (530 to 1424 K). The peak sample temperature was higher due to
182	cooling between exposures, ranging from 700 K to 5700 K in the Fe for 10 to 100% transmitted
183	power. ²⁹

184	As the XFEL fluence increased from 10 to 100 % transmission ($\sim 10^{10}$ to $\sim 10^{11}$ photons per
185	pulse), the diffraction peak intensities of the compressed solid N_2 and bcc-Fe (α -iron) increase as
186	expected, which demonstrates that the anvils remain intact and maintain the original compression
187	conditions (Figure 3a). At 30% transmission, a shoulder peak starts to form at the low-q side of
188	the α -iron (110) peak, indicating an XFEL-induced thermal expansion. At 50% transmission, this
189	shoulder peak grows and shifts further toward the low-q side, and above 70 % transmission,
190	high-temperature fcc-Fe (γ -iron) is observed by the appearance of its (111) peak. The
191	transformation of α - to γ -iron would require at least 900 K at 5 GPa. ³³ Based on the refined peak
192	positions and the established EOS of the iron phases, ³⁴ we estimate residual temperatures of 750
193	and 1270 K at 50 and 70% fluence (2400 and 3900 K calculated peak temperatures), respectively
194	(Figure 3a). The reaction between Fe and N_2 , however, did not occur even at the full 100%
195	transmission in run A, at which point the residual temperature is estimated to be 1424 K (5700 K
196	peak temperature). The \sim 70% cooling between the pump and the probe is consistent with
197	expectations for Fe samples. ²⁹ The pulse to pulse energy variance of the XFEL, of order 30%,
198	could lead to differing heating in shorter duration experiments, whereas in longer duration
199	studies, where reactions products appear, only the averaged heating and duration is important.
200	Thus, temperatures measured following single pulses (pump-probe) are consistent with expected
201	values including initial volumetric X-ray absorption and heat transfer between pulses ²⁹ ;
202	somewhat higher temperatures are expected after serial exposures in a MHz pulse train, due to
203	heat accumulation ²⁹ , thus the temperature conditions reported following single pulses are lower
204	bounds on those achieved after second and subsequent pulses in a train.
205	In contrast, XFEL-induced chemical reaction between Fe and N_2 is observed in the runs B and
206	C (Figure 3a). The new peaks observed both <i>in-situ</i> and <i>ex-situ</i> after exposure during run B are

207	indexed as an ε -Fe ₃ N _{1+x} phase (Figure 3b). When we exposed the sample with serial XFEL trains
208	for 11 seconds (run C), the formation of the ϵ -Fe ₃ N _{1+x} was observed from the third train by the
209	growth of its (002) and (111) peaks (Figure 3c). In the first and second trains, we observed the
210	growth of (111) and (002) Bragg reflections of fcc-Fe indicating temperatures of 1490 K and
211	1680 K, respectively. From the third train where ϵ -Fe ₃ N _{1+x} formed, the temperature was
212	maintained between 1340 K and 1780 K up to the fourteenth train where the Bragg peaks of fcc-
213	Fe disappeared. The ϵ -Fe ₃ N _{1+x} (and residual bcc-Fe) remained until the last train without any
214	systematic changes in the relative peak intensities and positions. We estimate a cumulative
215	absorbed energy of 3 mJ for the chemical reaction of Fe and N_2 at the pre-compression
216	conditions of 5 GPa.
217	The sample pressure after run C increased to 7.8(1) GPa, where the unit cell parameters of ϵ -
218	Fe_3N_{1+x} are refined to a = 4.707(1) Å and c = 4.357(1) Å in the space group P6 ₃ 22 (no. 182)
219	(Figure 3d). It is well established that the unit-cell volume of ϵ -Fe ₃ N _{1+x} is linearly proportional to
220	the increasing nitrogen content x at ambient pressure. ^{35,36} The refined unit cell volume of the
221	recovered ε -Fe ₃ N _{1+x} , e.g., 83.59(3) Å ³ at 7.8(1) GPa, would correspond to ε -Fe ₃ N _{1+x} with x = 0.33
222	at ambient conditions, assuming an EOS of $B_0 = 172$ GPa and B' = 5.7 as derived previously. ³⁶
223	We therefore conclude that the composition of the XFEL-induced synthesis product is $Fe_3N_{1.33}$.
224	To investigate the cross-sectional textures and chemical distribution of the $Fe_3N_{1.33}$ reaction
225	product, we have prepared the sample from run B using a focused Ga ion beam (FIB, 30 kV and
226	10 pA to 30 nA for surfacing) and performed scanning electron microscopy (SEM) (ZEISS
227	Crossbeam 540 at Yonsei University) and scanning transmission electron microscope imaging
228	(STEM, JEOL JEM-F200 combined with energy-dispersive X-ray spectroscopy) (Figure 4). The
229	sample was mounted on a Cu grid and measured in the annular dark-field mode. A two-

230 dimensional elemental distribution of the cross-sectioned sample shown in Figure 4c and 4d 231 reveal that over the 4 µm thickness of the original Fe-foil, the distribution of Fe and N appears to 232 be uniform with regularly spaced holes representing degassed N_2 after the recovery of the 233 sample. STEM data corroborate the results of the *in-situ* and *ex-situ* XRD by showing the 234 distribution of the ABAB type stacking and distance between the Fe atoms, as expected for the ε -235 Fe_3N_{1+x} structure (Figure 4b). It is remarkable that such a homogeneous composition is obtained 236 after such a short cumulative heating time as atomic nitrogen diffusion is in general a much 237 slower process.38

238 In conclusion, our work demonstrates that the required activation energy for chemical 239 reactions controlled by the XFEL radiation is an important experimental parameter. Despite only 240 a limited number of exposures due to constraints and availability of in- and ex-situ 241 characterizations we are confident that the XFEL parameters of our studies are well within 242 parameters that are reproducible and in agreement with the known behavior of the Fe-N₂ system 243 under high pressure and temperature. In contrast the kinetics of the XFEL-induced synthesis of 244 ϵ -Fe₃N_{1,33} are noteworthy and unprecedented. We found a remarkably homogeneous reaction 245 product after the ultrafast reaction between Fe and nitrogen in a DAC at pressures above 5 GPa 246 and temperatures exceeding 1400 K as pumped and probed by consecutive XFEL pulses 247 separated by 443 ns. Following chemical reactions between gas and solid at high pressures and 248 temperatures in a DAC using a tailored pump-probe setup at an XFEL open up a new parameter 249 space for the exploration of new materials forming on fast timescales at high pressure.

250

251

- **Figure 1.** Experimental setup of the XFEL pump-and-probe using the DAC. Schematic diagram
- 257 of the experimental setup at HED (High Energy Density science) Beamline at European XFEL.

- Figure 2. Photos of the sample inside DAC (a) before and (b) after a series of XFEL exposures as
 described in Table 1. The red line in (b) has been cross-sectioned by FIB for SEM and STEM
 imaging (see Figure 4).

Figure 3. The changes of X-ray diffraction patterns of iron and nitrogen during and after in-situ chemical reaction by XFEL pump-and-probe. (a) Changes in diffraction patterns of the Fe foil under N₂ PTM pre-compressed to 5 GPa in a DAC. The percentages in run A indicate the transmission (fluence) of the XFEL. At 100% XFEL transmission, run B contains 20 consecutive pulses while run C has consecutive pulses over 11 seconds. (b) Synchrotron X-ray diffraction patterns collected at beamline P02.2 at PETRA III after run B, compared to the XFEL data measured right after run B (top pattern). After the XFEL experiments, the sample pressure has changed from 5.0(1) GPa to 7.8(1) GPa. (c) Changes in the diffraction patterns of the Fe foil during run C. (d) Profile fitting of the ex-situ XRD pattern measured after run B as shown in (b). ϵ -Fe₃N_{1+x} (P6₃22) and δ -Nitrogen (Pm3n) were fitted to an agreement index of R_{wp} = 1%. Observed data are shown in black crosses and the calculated pattern in a red line. Tick-marks under the pattern indicate the (hkl) reflection positions of the composing phases (green: ε -Fe₃N_{1+x}, blue: δ -Nitrogen). The red asterisk is an unidentified shoulder peak.

Figure 4. Electron microscope images and elemental mapping of the recovered sample. (a) A cross-sectional SEM image after exposure run B (the red line in Figure 2b). (b) The positions of the red, orange, and green area in the SEM image are shown by the STEM images. (c) Energy dispersive spectroscopy (EDS) elemental mapping of iron (left), nitrogen (middle), and their overlay (right) at the middle of the recovered sample (the green area in the SEM image).

-

	Experimental run	XFEL pump and probe condition					
	A		With increasing XFEL transmission from 10 to 100 % (2 pulses per train)				
	В	2.25 MHz 0.19 mJ/pulse 17.8 keV XFEL beam diameter:	20 consecutive pulses at 100% transmission (20 pulses in one train)				
	С	14 $\mu m \varnothing$	2 consecutive pulses per train at 100% transmission for 11 s (220 exposures)				
309							
310 311							
312							
313							
314							
315							
316							
317							
318							
319							
320							
321							
322							
323							
324							
325							
326							
327							
328							

Table 1. Pump and probe conditions used in our experiment.

329 ASSOCIATED CONTENT

330	AUTHOR	INFORMA	TION
			-

- 331 Corresponding Author
- 332 **R. Stewart McWilliams** The School of Physics and Astronomy, Centre for Science at
- 333 Extreme Conditions and SUPA, University of Edinburgh, Edinburgh, EH9 3FD, UK; E-mail:
- 334 rs.mcwilliams@ed.ac.uk
- 335 **Yongjae Lee** Department of Earth System Sciences, Yonsei University, Seoul 03722,
- 336 Republic of Korea; E-mail: yongjaelee@yonsei.ac.kr

337

- 338 Notes
- 339 The authors declare no competing financial interests.

340 ACKNOWLEDGMENT

341 We thank H. Sinn for experimental assistance and T. Tschentscher and S. Pascarelli for fruitful 342 discussions. This work was supported by the Leader Researcher program (NRF-343 2018R1A3B1052042) of the Korean Ministry of Sci-ence, ICT and Planning (MSIP). We also 344 thank the supports by NRF-2019K1A3A7A09033395 and NRF-NRF-2016K1A4A3914691 grants 345 of the MSIP. We acknowledge European XFEL in Schenefeld, Germany, for provision of X-ray 346 free-electron laser beamtime at Scientific Instrument HED (High Energy Density Science) and 347 would like to thank the staff for their assistance. The authors are indebted to the Helmholtz 348 International Beamline for Ex-treme Fields (HIBEF) user consortium for the provision of 349 instrumentation and staff that enabled this experiment. We acknowledge DESY (Hamburg, 350 Germany), a member of the Helmholtz Association HGF, for the provision of experimental 351 facilities. Parts of this research were carried out at PETRA III (beamline P02.2). The research 352 leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 353 730872 from the EU Framework Program for Research and Innovation HORIZON 2020. Part of 354 this work was performed under the auspices of the U.S. Department of Energy by Lawrence 355 Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by the US Depart-356 ment of Energy through the Los Alamos National Laboratory, operated by Triad National Security, 357 LLC, for the National Nuclear Security Administration (Contract No. 89233218CNA000001). 358 Research presented in this article was supported by the by the Department of Energy, Labora-tory 359 Directed Research and Development program at Los Alamos National Laboratory under project 360 number 20190643DR and at SLAC National Accelerator Laboratory, under contract DE-AC02-361 76SF00515. Support is acknowl-edged from the Panofsky Fellowship at SLAC (awarded to 362 EEM); the DOE Office of Fusion Energy Science funding num-ber FWP100182 (MF and EEM); 363 EPSRC Grants EP/P024513/1 (RSM) and EP/R02927X/1 (EJP and MIM); the European Research 364 Council (ERC) under the European Union's Horizon 2020 research and innovation Programme for 365 grant agreements Nos. 670787 (GF, MAB, and GM) and 864877 (HM). KA, KG, RH, ZK, HPL, 366 and RR thank the DFG for support within the Research Unit FOR 2440. SM and JC acknowledge 367 support from the I-SITE ULNE project MetalCore (R-ERCGEN-19-006-MERKEL). CSY 368 acknowledges DOE-NNSA (DE-NA0003342), NSF (DMR-1701360) and ARO (W911NF-17-1-369 0468).

- 370
- 371
- 372

REFERENCES

374	(1) Dawes, A.; Mason, N. J.; Tegeder, P.; Holtom, P. Laboratory Synthesis of Astrophysical
375	Molecules. In : Electron Scattering From Atoms, Molecules (Eds.: Whelan, C. T.; Mason,
376	N. J.), Springer, Boston, MA, 2005, pp. 329-340.
377	(2) Adler, J. F.; Willams, Q. A high-pressure X-ray diffraction study of iron nitrides :
378	Implications for Earth's core. J. Geophys. Res. 2005, 110, B01203
379	(3) Labidi, J.; Barry, P. H.; Bekaert, D. V.; Broadley, M. W.; Marty, B.; Giunta, T.; Warr,
380	O.; Sherwood Lollar, B.; Fischer, T. P.; Avice, G.; Caracausi, A.; Ballentine, C. J.;
381	Halldórsson, S. A.; Stefánsson, A.; Kurz, M. D.; Kohl, I. E.; Young, E. D. Hydrothermal
382	¹⁵ N ¹⁵ N abundances constrain the origins of mantle nitrogen. <i>Nature</i> 2020 , 580, 367-371
383	(4) Mikhail, S.; Sverjensky, D. A. Nitrogen speciation in upper mantle fluids and the origin
384	of Earth's nitrogen-rich atmosphere. Nat. Geosci. 2014, 7, 816-819
385	(5) Miao, M.; Wang, X.; Brgoch, J.; Spera, F.; Jackson, M. G.; Kresse, G.; Lin, H.; Anionic
386	Chemistry of Noble Gases : Formation of Mg-NG (NG = Xe, Kr, Ar) Compounds under
387	Pressure. J. Am. Chem. Soc. 2015, 137, 14122-14128
388	(6) Zhu, L.; Liu, H.; Pickard, C. J.; Zou, G.; Ma, Y. Reactions of xenon with iron and nickel
389	are predicted in the Earth's inner core. Nat. Chem. 2014, 6, 644-648
390	(7) Zaleski-Ejgierd, P.; Lata, P. M. Krypton oxides under pressure. Sci. Rep. 2016, 6, 18938
391	(8) Liu, Z.; Botana, J.; Hermann, A.; Valdez, S.; Zurek, E.; Yan, D.; Lin, H.; Miao, M.
392	Reactivity of He with ionic compounds under high pressure. Nat. Commun. 2018, 9, 951
393	(9) Adeleke, A. A.; Kunz, M.; Greenberg, E.; Prakapenka, V. B.; Yao, Y.; Stavrou, E. A High-
394	Pressure Compound of Argon and Nickel : Noble Gas in the Earth's Core? ACS Earth
395	Space Chem. 2019, 3, 2517-2524

396	(10)	Crépisson, C.; Sanloup, C.; Blanchard, M.; Hudspeth, J.; Glazyrin, K.; Capitani, F. The
397		Xe-SiO ₂ System at Moderate Pressure and High Temperature. Geochem. Geophys.
398		<i>Geosyst.</i> 2019 , 20, 992–1003.
399	(11)	Rahm, M.; Cammi, R.; Ashcroft, N. W.; Hoffmann, R. Squeezing All Elements in the
400		Periodic Table : Electron Configuration and Electronegativity of the Atoms under
401		Compression. J. Am. Chem. Soc. 2019, 141, 10253-10271
402	(12)	Mao, HK.; Chen, B.; Chen, J.; Li, K.; Lin, JF.; Yang, W.; Zheng, H. Recent advances
403		in high-pressure science and technology. Matter Radiat. Extrem. 2016, 1, 59-75
404	(13)	Pace, E. J.; Coleman, A. L.; Husband, R. J.; Hwang, H.; Choi, J.; Kim, T.; Hwang, G.;
405		Chun, S. H.; Nam, D.; Kim, S.; Ball, O. B.; Liermann, HP.; McMahon, M. I.; Lee, Y.;
406		McWilliams, R. S. Intense Reactivity in Sulfur-Hydrogen Mixtures at High Pressure
407		under X-ray Irradiation. J. Phys. Chem. Lett. 2020, 11(5), 1828-1834
408	(14)	Adler, J. F.; Williams, Q. A high-pressure X-ray diffraction study of iron nitrides :
409		Implications for Earth's core. J. Geophys. Res. 2005, 110, B011203
410	(15)	Zhang, Y.; Wang, Q. Magnetic-Plasmonic Dual Modulated FePt-Au Ternary
411		Heterostructured Nanorods as a Promising Nano-Bioprobe. Adv. Mater. 2012, 24,2485-
412		2490
413	(16)	Mahmoudi, M.; Shokrgozar, M. A. Multifunctional stable fluorescent magnetic
414		nanoparticles. Chem. Commun. 2012, 48,3957-3959
415	(17)	Arabczyk W.; Pelka, R. Studies of the Kinetics of Two Parallel Reactions: Ammonia
416		Decomposition and Nitriding of Iron Catalyst. J. Phys. Chem. A 2009, 113, 411-416

417	(18) Hasegawa, M.; Yagi, T. Systematic study of formation and crystal structure of 3d-transition
418	metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using
419	diamond anvil cell and YAG laser heating. J. Alloy. Compd. 2005, 403, 131-142
420	(19) Clark, W. P.; Steinberg, S.; Dronskowski, R.; McCammon, C.; Kupenko, I.; Bykov, M.;
421	Dubrovinsky, L.; Akselrud, L. G.; Sschwarz, U.; Niewa, R. High-Pressure NiAs-Type
422	Modification of FeN. Angew. ChemInt. Edit. 2017, 56, 7302, 7306
423	(20) Bykov, M.; Bykova, E.; Aprilis, G.; Glazyrin, K.; Koemets, E.; Chuvashova, I.; Kupenko,
424	I.; McCammon, C.; Mezouar, M.; Prakapenka, V.; Liermann, HP.; Tasnádi, F.;
425	Ponomareva, A. V.; Abrikosov, I. A.; Dubrovinskaia, N.; Dubrovinsky, L. Fe-N system at
426	high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun.
427	2018a , 9, 2756
428	(21) Bykov, M.; Khandarkhaeva, S.; Fedotenko, T.; Sedmak, P.; Dubrovinskaia, N.;
429	Dubrovinsky, L. Synthesis of FeN_4 at 180 GPa and its crystal structure from a submicron-
430	sized grain. Acta Cryst. 2018b, E74, 1392-1395
431	(22) Laniel, D.; Dewaele, A.; Anzellini, S.; Guignot, N. Study of the iron nitride FeN into the
432	megabar regime. J. Alloy. Compd. 2018a, 733, 53-58
433	(23) Laniel, D.; Dewaele, A.; Garbarino, G. High Pressure and High Temperature Synthesis of
434	the Iron Pernitride FeN ₂ . Inorg. Chem. 2018b, 57, 6245-6251
435	(24) Leineweber, A.; Jacobs., H.; Huning, F.; Lueken, H.; Schilder, H.; Kockelmann, W. ε-
436	Fe ₃ N: magnetic structure, magnetization, and temperature dependent disorder of nitrogen.
437	J. Alloys Compd. 1999, 288, 79-87

	438	(25)	Mcwilliams.	R. S.	2019.	DOI:10	.22003/XFE	EL.EU-DA	ГА-002292-00
--	-----	------	-------------	-------	-------	--------	------------	----------	--------------

439	(26) Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a
440	superconducting linear accelerator. Nat. photonics, 2020, 14, 391-397
441	(27) Grünert, J.; Carbonell, M. P.; Dietrich, F.; Falk, T.; Freund, W.; Koch, A.; Kujala, N.;
442	Laksman, J.; Liu, J.; Maltezopoulos, T.; Tiedtke, K.; Jastrow, U. F.; Sorokin, A.; Syresin,
443	E.; Grebentsov, A.; Brovko, O. X-ray photon diagnostics at the European XFEL. J.
444	Synchrotron Rad. 2019, 26, 1422-1431
445	(28) Maltezopoulos, T.; Dietrich, F.; Freund, W.; Jastrow, U. F.; Koch, A.; Laksman, J.; Liu, J.;
446	Planas, M.; Sorokin, A. A.; Tiedtke, K.; Grünert, J. Operation of X-ray gas monitors at the
447	European XFEL. J. Synchrotron Rad. 2019, 26, 1045-1051
448	(29) Meza-Galvez, J.; Gomez-Perez, N.; Marshall, A. S.; Coleman, A. L.; Appel, K.; Liermann,
449	H. P.; McMahon, M. I.; Konôpková, Z.; McWilliams, R. S. Thermomechanical response
450	of thickly tamped targets and diamond anvil cells under pulsed hard X-ray irradiation. J.
451	Appl. Phys. 2020, 127, 195902
452	(30) Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the Ruby Pressure Gauge to 800 kbar Under
453	Quasi-Hydrostatic Conditions. J. Geophys. Res. 1986, 91, 4673-4676
454	(31) Dewaele, A.; Torrent, M.; Loubeyre, P.; Mezouar, M. Compression curves of transition
455	metals in the Mbar range : Experiments and projector augmented-wave calculations. Phys.
456	<i>Rev. B</i> 2008 , 78, 104102
457	(32) Prescher, C.; Prakapenka, V. B. DIOPTAS : a program for reduction of two-dimensional
458	X-ray diffraction data and data exploration. High Pressure Res. 2015, 35(3), 223-230

459	(33) Dewale, A.; Svitlyk, V.; Bottin, F.; Bouchet, J.; Jacobs, J. Iron under conditions close to
460	the α - γ - ϵ triple point. <i>Appl. Phys. Lett.</i> 2018 , 112, 201906
461	(34) Dorogokupets, P. I.; Dymshits, A. M.; Litasov, K. D.; Sokolove, T. S. Thermodynamics
462	and Equations of State of Iron to 350 GPa and 6000 K. Sci. Rep. 2017, 7, 41863
463	(35) Guo, K.; Rau, D.; von Appen, J.; Prots, Y.; Schnelle, W.; Dronskowski, R.; Niewa, R.;
464	Schwarz, U. High pressure high-temperature behavior and magnetic properties of Fe_4N :
465	experiment and theory. High Pressure Res. 2013, 33(3), 684-696
466	(36) Leineweber, A.; Jacobs, H.; Hüning, F.; Lueken, H.; Kockelmann, W. Nitrogen ordering
467	and ferromagnetic properties of ϵ -Fe ₃ N _{1+x} (0.10 \leq x \leq 0.39) and ϵ -Fe ₃ (N _{0.80} C _{0.20}) _{1.38} . J. Alloy.
468	<i>Compd.</i> 2001 , 316, 21-38
469	(37) Niewa, R., Rau, D., Wosylus, A., Meier, K., Hanfland, M., Wessel, M., Dronskowski, R.,
470	Dzivenko, D. A., Riedel R. & Schwarz, U. High-Pressure, High-Temperature Single-
471	Crystal Growth, Ab initio Electronic Structure Calculations, and Equation of State of ϵ -
472	Fe ₃ N _{1+x} . <i>Chem. Mater.</i> 2009 , 21, 392-398
473	(38) Glasson, D. R.; Jayaweera, S. A. A. Formation and Reactivity of Nitrides. I. Review and
474	Introduction. J. Electrochem. Soc. 1954, 1010, 171-175