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Abstract

Background: Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information
about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency
and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances.
However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice.
Another limitation is that these models mostly assume independence among labels, ignoring the complex correlations among
medical codes which can potentially be exploited to improve the performance.

Methods: To address the issues of model explainability and label correlations, we propose a Hierarchical Label-wise Attention
Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences
related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE)
initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final
layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge
summaries: full codes, top-50 codes, and the UK NHS (National Health Service) COVID-19 (Coronavirus disease 2019) shielding
codes. Experiments were conducted to compare the HLAN model and label embedding initialisation to the state-of-the-art neural
network based methods, including variants of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

Results: HLAN achieved the best Micro-level AUC and F1 on the top-50 code prediction, 91.9% and 64.1%, respectively; and
comparable results on the NHS COVID-19 shielding code prediction to other models: around 97% Micro-level AUC. More impor-
tantly, in the analysis of model explanations, by highlighting the most salient words and sentences for each label, HLAN showed
more meaningful and comprehensive model interpretation compared to the CNN-based models and its downgraded baselines, HAN
and HA-GRU. Label embedding (LE) initialisation significantly boosted the previous state-of-the-art model, CNN with attention
mechanisms, on the full code prediction to 52.5% Micro-level F1. The analysis of the layers initialised with label embeddings
further explains the effect of this initialisation approach. The source code of the implementation and the results are openly available
at https://github.com/acadTags/Explainable-Automated-Medical-Coding.

Conclusion: We draw the conclusion from the evaluation results and analyses. First, with hierarchical label-wise attention mecha-
nisms, HLAN can provide better or comparable results for automated coding to the state-of-the-art, CNN-based models. Second,
HLAN can provide more comprehensive explanations for each label by highlighting key words and sentences in the discharge
summaries, compared to the n-grams in the CNN-based models and the downgraded baselines, HAN and HA-GRU. Third, the
performance of deep learning based multi-label classification for automated coding can be consistently boosted by initialising label
embeddings that captures the correlations among labels. We further discuss the advantages and drawbacks of the overall method
regarding its potential to be deployed to a hospital and suggest areas for future studies.

Keywords: Automated medical coding, Deep learning, Attention Mechanisms, Explainability, Natural Language Processing,
Multi-label classification, Label correlation
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1. Introduction

Diagnostic or procedural coding of medical free-text docu-
ments (e.g. discharge summaries) aims to derive a coded sum-
mary of disease-related information about patients, for clini-
cal care, audit, and research. In hospitals, such coding is usu-5

ally done manually, requiring much cognitive human effort, but
could potentially be automated. An automated program could
efficiently take a clinical note as input and then output medical
codes from existing classification systems, e.g. ICD (Interna-
tional Classification of Diseases). This could facilitate coding10

professionals provide more accurate results.

This clinical task is technically challenging, due to (i) the
explainability required to process long documents, in average
about 2000 tokens in a discharge summary in MIMIC-III [1],
and thus pose a “needle-in-a-haystack” issue to locate the key15

words and sentences relevant to each code; (ii) the complex
label correlations in the multi-label setting, in average about
16 different ICD-9 (the Ninth Revision) codes per discharge
summary in the MIMIC-III dataset [2], which inherently ex-
hibit the complex relations among codes; and (iii) a large set20

of codes when using all the codes as candidates for prediction,
e.g. around 13k unique codes in ICD-9 and many times further
in ICD-10 [3] and ICD-11 [4].

Automated medical coding has been studied for more than
a decade. Early studies mostly use systems based on rules,25

grammar, and string matching, as reviewed in [5]. Recent stud-
ies adapt deep learning based document classification methods,
which commonly formalise the task as a multi-label classifica-

tion problem [6, 7, 1]. Typically, they use variations of Recur-
rent Neural Networks (RNNs) and Convolutional Neural Net-30

works (CNNs) to derive a continuous representation of clinical
notes matched to the high-dimensional coding space. However,
few studies have tackled the above challenges above regarding
explainability and label correlations.

Explainability (or interpretability, used interchangeably in35

this paper) is a key requirement for models applied to the clin-
ical domain, particularly regarding the ethical aspect and to
build medical professionals’ trust in machine learning models
[8, 9]. Also, to facilitate the work of coding professionals, a
desired automated coding system should be able to highlight40

the most essential part of a long clinical note to support the as-
signment of medical codes. To address this, models based on
CNNs can be adapted to highlight n-gram information to sup-
port the explanation, as in [7]. Solely the n-grams, however,
may not be enough to provide accurate interpretation reflecting45

the document structure.

In this work, we propose to highlight the most essential
words and sentences in a document for automated medical cod-
ing, inspired and adapted from Hierarchical Attention Networks
(HAN) [10] and the recent model, Hierarchical Attention bi-50

directional Gated Re-current Units (HA-GRU) [1]. With atten-
tion mechanisms, HAN can highlight the salient words and sen-
tences related to the overall prediction. However, HAN could
not generate a specific interpretation for each label. HA-GRU
[1] can provide a sentence-level explanation for each label, but55

still could not specify the most essential words leading to the
decision of each code. We present a novel model, Hierarchical
Label-wise Attention Network (HLAN), which has label-wise
word-level and sentence-level attention mechanisms, so as to
provide a richer explainability of the model.60

We formally evaluated HLAN along with HAN, HA-GRU,
and CNN-based neural network approaches for automated med-
ical coding. With better or comparative coding performance in
various data settings, HLAN can further generate more compre-
hensive explanations through key sentences and words for each65

label, as indicated from the analysis on model explainability.
The analysis of the false positive predictions also shows that
the explanation based on the hierarchical label-wise attention
mechanisms in HLAN can serve as a reference for medical pro-
fessionals and engineers to make reasonable coding decisions70

and system iterations even when the model seems to predict er-
roneously.

Apart from model interpretability, another issue not thor-
oughly studied in deep learning based multi-label classification
is label correlation. Medical codes are related and can be pre-75

dicted together, for example, the code 486 (ICD 9 for Pneumo-
nia) commonly appeared for over 1.5k times (out of about 53k
documents) with the code 518.81 (Acute respiratory failure) in
the MIMIC-III dataset. Such co-occurrences are under-lied by
the clinical, biomedical, and biological associations among dif-80

ferent diseases. Deep learning for multi-label classification rep-
resents the label space with orthogonal vectors: each label as a
one-hot vector and each label set as a multi-hot representation
[11, 7]. This, however, assumes independence among labels.

We propose an effective label embedding initialisation ap-85

proach to tackle the label correlation problem. We encode the
label correlation using pre-trained label embeddings from the
label sets in the training data, derived from the coding practice.
Then the label embeddings are used to initialise the weights in
the final hidden layer and label-wise attention layers. The idea90
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is that the linear projection can automatically leverage the label
similarity encoded in the continuous label embedding space.
This approach shows consistent and significant improvement,
while not requiring hyper-parameter tuning or further computa-
tional complexity.95

We evaluate our approach with three specific datasets based
on the openly available, MIMIC-III database [2], containing
clinical notes in the critical care sector in the US. The first two
datasets, full code and top-50 code predictions, are the same as
in the work [7] for comparison. The third dataset was created to100

simulate the task of identifying high-risk patients for shielding
during the COVID-19 (Coronavirus disease 2019) pandemic by
predicting the ICD-9 codes matched to the codes used in the UK
NHS (National Health Service) patient shielding identification
method1.105

Thus, the contribution of the paper includes:

• A novel, Hierarchical Label-wise Attention Network
(HLAN) for automated medical coding. The proposed
HLAN model provides an explanation in the form of at-
tention weights on both the word level and the sentence110

level for the prediction of each medical code.

• An effective label embedding (LE) initialisation approach
to enhance the performance of various deep learning mod-
els for multi-label classification. Analysis of the LE ini-
tialised layers shows the efficacy to leverage label correla-115

tions for medical coding.

• A formal comparison of the main deep learning based
methods for automated coding. Experiments on three
datasets based on the MIMIC-III discharge summaries,
i.e. full code prediction, top-50 code prediction, and the120

NHS COVID-19 shielding-related code prediction, show
the advantage of the proposed method over the state-of-
the-art methods (CNNs, Bi-GRU) and downgraded base-
lines (HA-GRU, HAN). Label embedding initialisation
significantly improved the performance of neural network125

models in most evaluation settings. An analysis and com-
parison of the model interpretability demonstrate the most
comprehensive explanations from the HLAN model.

The rest of the paper is organised as follows. First, we review
the related work on automated medical coding with explainabil-130

ity, deep learning methods for multi-label classification, and

1https://digital.nhs.uk/coronavirus/

shielded-patient-list/methodology

label correlation in Section 2. Then, we present the problem
formulation, followed by the proposed model, HLAN, and the
idea of LE initialisation in Section 3. The experiments, includ-
ing datasets, experimental settings, main and per-label results,135

analysis and comparison of model explainability, and analysis
on the layers initialised with LE, are in Section 4. We finally
discuss the advantages and drawbacks of the overall methods in
Section 5 and summarise the work in Section 6.

2. Related Work140

We will first present the task of automated medical cod-
ing with the methods used especially in most recent studies,
then introduce in detail the mainstream breakthrough on deep
learning-based multi-label classification for the task, and finally
review the label correlation issue, particularly relevant to the145

medical and clinical domain.

2.1. Automated Medical Coding with Explainability

Automated medical coding is the task of transforming medi-
cal records, especially the natural language in the clinical notes,
into a set of structured, medical codes to facilitate clinical care,150

audit, and research [5]. The applied alphanumerical codes in
the clinical domain, such as ICD and SNOMED-CT, represent
patients’ diagnosis, procedures and other information with con-
trolled clinical terminology.

One of the earliest reviews back in 2010 [5] surveyed 113155

studies on coding or classification of clinical notes. Most of
the studies applied tools with rule-based, grammar-based, and
string matching methods, and they in overall suffered the chal-
lenges of reasoning and the lack of method generalisability.
The field of automated medical coding has in more recent years160

been advanced with the open, benchmarking datasets like radi-
ology reports in [12] and MIMIC-III [2] discharge summaries.
With the datasets, deep learning based approaches have been
proposed and tested, which have generally demonstrated better
performance than traditional machine learning methods. The165

work in [6] compared the deep learning based method, CNN,
with several traditional machine learning methods, support vec-
tor machine, random forests, and logistic regression, for ICD-
9 code prediction (number of ICD-9 codes |Y |=38) from 978
radiology reports in [12]. The result showed comparable or170

improved results of the deep learning approach to the tradi-
tional methods, even without parameter tuning in the CNN
model. The work in [7] adapted CNN with attention mecha-
nisms and established a state-of-the-art performance in predict-
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ing the full set (|Y |=8,921) and the top-50 most frequent ICD-9175

codes (|Y |=50) from MIMIC-III discharge summaries.
A key aspect of clinical applications is their requirement of

the explainability of models. Users are entitled to a “right of
explanation” when their data being used for AI algorithms, as
potentially regulated by the General Data Protection Regulation180

(GDPR) [9]. For clinical applications, e.g. radiology, the Joint
European and North American Multisociety Statement raises
great ethical concern on AI algorithms regarding explainabil-
ity, i.e. “the ability to explain what happened when the model
made a decision, in terms that a person understands” [8, p. 438].185

While deep learning achieves better results in general, the ap-
proach is inherently less transparent than traditional methods
due to its extremely complex networks of non-linear activation.

Few studies explored the explainability of deep learning
models for automated medical coding. A representative work190

is the study [7], which compared the ability of different models
to highlight n-grams along with the models’ ICD-9 code pre-
diction. A manual evaluation showed that the CNN model with
attention mechanisms can generate more meaningful n-grams
relevant to the labels [7]. The study [1] proposed a Hierarchi-195

cal Attention bi-directional Gated Recurrent Unit (HA-GRU)
to produce a sentence-level explanation for each code, instead
of n-gram-level explanation. In this work, we propose an ap-
proach with enhanced interpretability, from both the label-wise
word-level and the sentence-level attention weights, to support200

automated coding.

2.2. Deep Learning-based Multi-label Classification with At-

tention Mechanisms

Automated medical coding is mainly formulated as a multi-
label classification problem [13, 14, 7, 1], where each object205

(e.g. clinical note) is associated with a set of labels (e.g. diag-
nosis or procedure ICD codes) instead of a single label in binary
or multi-class classification.

Deep learning has become the main approach for multi-label
document classification [11, 15] in recent years. The advantage210

of multi-label deep learning models lies in their straightforward
problem formulation and strong approximation power on large
datasets, resulting in better performance over traditional ma-
chine learning approaches, as compared in [16, 15, 6]. For
automated coding, some of the notable neural network mod-215

els adapted for multi-label classification are variations of CNNs
[6, 7] and RNNs [1] with attention mechanisms. Pre-trained
models with multi-head self-attention blocks (e.g. BERT, Bi-
directional Encoder Representations from Transformers) [17],

while substantially improved many NLP tasks, so far still are220

under-performing for automated coding with the MIMIC-III
discharge summaries [18, 19].

The idea of the above mentioned attention mechanism is a
key, recent advancement in deep learning for NLP, originated
from machine translation to align (or attend to) words in the225

source sentence in one language to predict each of the target
words in another language [20]. This inspires to jointly learn
to represent the important words and sentences while classi-
fying a document in HAN [10], thus also enables to explain

the inner working of deep learning models. HAN was adapted230

to a multi-label classification setting to classify socially shared
texts in [15] and for automated medical coding [1]. Founded
on the studies above, our approach provides a richer label-wise
attention mechanism at both the word and the sentence level for
automated medical coding.235

2.3. Label Correlation

In multi-label classification, labels are potentially correlated
to each other. As the example in Section 1, the medical codes
of “Pneumonia” and “Acute Respiratory Failure” tend to ap-
pear together in the MIMIC-III discharge summaries. In auto-240

mated medical coding, the number of unique code |Y | is large
(|Y | = 8921 in the MIMIC-III dataset) and further the possi-
ble label relations (e.g. the number of pairwise combinations
is near to |Y |2). Such correlations among the labels represent
additional knowledge that could be exploited to improve per-245

formance [21].
This issue of label correlation (or “label dependence”) re-

mains an ongoing challenge [21] in multi-label classification,
especially with deep learning models. Deep learning for multi-
label classification mostly represents the label space with or-250

thogonal vectors: each label as a one-hot vector and each label
set as a multi-hot representation, in general domains [11] and
clinical domains [7, 1]. Combined with the sigmoid activation
and binary cross-entropy loss, this overall approach, effectively,
assumes independence among labels.255

One recent approach to address the problem is through
weight initialisation [22, 23]: initialising higher weights for
dedicated neurons (each encoding a co-occurrence relation
among labels) in the final hidden layer. The approach showed
performance improvement, however, it is not computationally260

efficient to assign each neuron in the final hidden layer to rep-
resent one of the massive (even the pairwise) patterns of la-
bel relations. An alternative method is through regularisation
in [15] to enforce the output layer of the neural network to
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satisfy constraints on label relations. This requires to further265

tune the hyper-parameters of the regularisers so that a relatively
marginal improvement (0.5-1.5% example-based F1 on scien-
tific paper abstracts and questions in social Q&A platforms)
could be achieved. In this study, we further propose a novel
effective weight initialisation approach to tackle the label cor-270

relation problem, by initialising pre-trained dense label embed-
dings instead of the sparse co-occurrence representations.

3. Proposed Method

We formalise automated medical coding from clinical notes
as a multi-label text classification problem [11]. With deep275

learning, multi-label classification mainly contains two, inte-
grated parts, (i) a neural document encoder, representing doc-
uments into a continuous representation, and (ii) a prediction
layer, matching the document space to the label space. We
present the problem formalisation and the deep learning based280

multi-label classification in Section 3.1. Then, regarding the
neural document encoder, we propose the hierarchical label-
wise attention network in Section 3.2, followed by the idea of
label embedding initialisation in the prediction layer in Section
3.3.285

3.1. Problem Formulation with Deep Learning Models

Formally multi-label classification can be defined as follows.
Suppose X denoting the collection of textual sequences (e.g.
clinical notes), and Y = {y1, y2, ..., y|Y |} denotes the full set of
labels (i.e. ICD codes) of size |Y |. Each instance xd ∈ X is a290

word sequence of a document, where d is the document index.
Each xd ∈ X is associated with a label set Yd ⊆ Y . Each label
set Yd can be represented as a |Y |-dimensional multi-hot vector,
−→
Yd = [yd1, yd2, ..., yd|Y |] and ydl ∈ {0, 1}, where a value of 1 indi-
cates that the lth label yl has been used to annotate (is relevant295

to) the dth instance, and 0 indicates irrelevance. The task is to
learn a complex function f : X → Y based on a training set
D = {xd,

−→
Yd |d ∈ [1,m]}, where m is the number of instances in

the training set.
Neural document encoders in deep learning models (e.g.

CNN, RNN, and BERT, as review in Section 2.2) represent each
word sequence x as a continuous vector h, with matrix projec-
tion and non-linear activation. The representation h is projected
to the label space and turned into pdl ∈ (0, 1) with the sigmoid
function (σ(x) = 1

1+ex ), as defined in Equation 1 below, where
the weight wl (a row vector in W) and the bias b are parameters
to be learned during the training process. The obtained pdl is

the probability of the label (e.g. ICD code) yl being related to
the document (e.g. discharge summary) d.

pdl = σ(wlh + b), or collectively as pd = σ(Wh + b) (1)

The loss function is commonly the binary cross-entropy loss
[11] as defined in Equation 2, which measures the sum of nega-
tive log-likelihood of the predictions pdl of the actual labels. A
large deviation between

−→
Ydl and pdl will cause a greater value in

the LCE and thus will be penalised during training.

LCE = −
∑

d

∑
l

(
−→
Ydl log(pdl) + (1 −

−→
Ydl) log(1 − pdl)) (2)

For inference, a calibration threshold Th (default as 0.5) is300

set to assign the label to the document when pdl > Th.

3.2. Hierarchical Label-wise Attention Network

Following the framework above, the neural document en-
coder in HLAN (as illustrated in Figure 1) takes into input the
word sequence xd = {xd1, xd2, ..., xdn}, where xdi denotes the305

sequence of tokens in the ith of all n sentences, and output
the document representation. The distinction to HAN [10] is
that HLAN represents the same document differently at both
the word-level and the sentence-level regarding different labels.
HLAN extends the contextual vectors in HAN to the label-wise310

contextual matrices, Vw and Vs. The document representation
also becomes a matrix, Cd, where each row (corresponding to
each label) has the same dimensionality as h.

As shown in Figure 1, the model consists of an embed-
ding layer, hidden layers (hierarchical label-wise attention lay-315

ers), and a prediction (or projection) layer. First, the embed-
ding layer transforms the one-hot input representation udi of
each token in the sequence of the ith sentence xdi into a low-
dimensional continuous vector, edi = Weudi, where we used the
neural word embedding algorithm, Word2vec [24], to pre-train320

We for its efficiency.

Second, we applied the Gated Recurrent Unit (GRU) [25],
a type of RNN unit, to capture long-term dependencies in the
clinical narrative. An RNN unit “reads” each token in the se-
quence one by one, every time producing a new hidden state
h(t), corresponding to the token at time t. Different from the
vanilla RNN unit, GRU additionally considers the previous to-
kens by using a reset gate r(t) and an update gate z(t). This allows
to model the dependencies among tokens in long sequences.
A GRU can be formally defined as in the Equations 3 below,
where

−→
h denotes the hidden states through forward processing,
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Figure 1: Hierarchical Label-wise Attention Network (HLAN)

σ is a non-linear activation function (e.g. sigmoid function),
Whr,Whz,Whh̃ ∈ Rdh×dh are weights, and br, bz ∈ Rdh represent
bias terms. A bi-directional adaptation was applied by concate-
nating the hidden states at each time after read the sequence
both forwardly (→) and backwardly (←) to form a more com-
prehensive representation, h(t) = [

−→
h (t);
←−
h (t)] ∈ R2dh . This sub-

architecture is generally known as Bi-GRU [25].

r(t) = σ(Were(t) + Whr
−→
h (t−1) + br)

z(t) = σ(Weze(t) + Whz
−→
h (t−1) + bz)

h̃(t) = tanh(Weh̃e(t) + Whh̃(r(t) ◦
−→
h (t−1)))

−→
h (t) = (1 − z(t)) ◦

−→
h (t−1) + z(t) ◦ h̃(t)

(3)

For simplicity, we use the function h = Bi-GRU(e,Θ) to de-
note the whole process (with bi-directional concatenation of
hidden states) above. Instead of applying one single Bi-GRU
layer to represent the whole document, we applied a word-level325

Bi-GRU to represent each sentence and then a sentence-level
one to represent the whole document, as illustrated in Figure
1. This captures the hierarchical structure of the document and
relieves the burden of having a too lengthy sequence for each
GRU [1] (e.g. from the original sequence length 2500 in the330

MIMIC-III discharge summaries to only 100 on the word level
and 25 on the sentence level).

A common way is to represent the whole sequence as the
concatenated hidden state h(t) of the last time t. This repre-
sentation tends to emphasise the ending elements (i.e. words
or sentences) and does not discriminate between the elements
in a sequence. In fact, the key information for medical cod-

ing is contained in a well selected part of the lengthy discharge
summary. We therefore use an attention mechanism to learn
a weighted average of the hidden states to form a final repre-
sentation as in [10, 20]. The attention scores are based on an
alignment (or a similarity computation) of each hidden repre-
sentation in a sequence to a context vector. The context vector
is usually shared for all labels as in [10, 15], whereas in med-
ical coding, it is essential to interpret the amount of attention
paid regarding a specific medical code to the clinical note.

h(i) = Bi-GRU(e,Θw)

v(i) = tanh(Wwh(i) + bw)

α(i)
wl =

exp(Vwl • v(i))∑
o∈[1,nt] exp(Vwl • v(o))

Csl =
∑

i∈[1,nt]

α(i)
wlh

(i)

(4)

Thus, the adapted, label-wise word-level attention mechanism

is defined in Equations 4 above. The context matrix for the
word-level attention mechanism is denoted as Vw ∈ R|Y |×dw ,335

where each row Vwl (of attention layer size dw) is the context
vector corresponding to the label yl. The attention score α(i)

wl

for the label yl is calculated as a softmax function of the dot
product similarity between the vector representation v(i) (trans-
formed from the ith hidden state h(i) with a feed-forward layer)340

and the context vector Vwl for the same label. nt denotes the
number of tokens in a sentence. The sentence representation
Csl, as a row vector in Cs ∈ R|Y |×2dh , for the label yl, is com-
puted as the weighted average of all the hidden state vectors
h(i).345
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In a similar way, we can compute the label-wise sentence-

level attention mechanism as defined in Equations 5, which
encodes each row Csl in the sentence representations Cs to a
label-wise sentence representation S (r)

l , to be non-linearly trans-
formed to U(r)

l and aligned to the corresponding row Vsl in
sentence-level contextual matrix Vs ∈ R|Y |×ds , and outputs the
sentence-level attention scores αsl (for a label yl) and the doc-
ument representation matrix Cd ∈ R|Y |×4dh . To note that the
dimensionality of S r

l and thus Cdl are further doubled to 4dh

through the Bi-GRU process.

S (r)
l = Bi-GRU(Csl,ΘS )

U(r)
l = tanh(WS S (r)

l + bS )

α(r)
sl =

exp(Vsl • U(r)
l )∑

q∈[1,n] exp(Vsl • U(q)
l )

Cdl =
∑

r∈[1,n]

α(r)
sl S (r)

l

(5)

Then, we use a label-wise, dot product projection with logis-
tic sigmoid activation to model the probability of each label to
each document, as defined in Equation 6, adapted from Equa-
tion 1. The parameters in wl are row vectors in the projection
matrix W.

pdl = σ(wlCdl + bl) (6)

We finally optimise the binary cross-entropy loss function
in Equation 2 with L2 regularisation using the Adam opti-
miser [26].

3.3. Label Embedding Initialisation

For automated medical coding, the diagnostic and proce-350

dural codes (or labels) have complex semantic relations, and
can potentially be leveraged to improve prediction. Clinically,
these code relations represent the correlation among diseases
and medical procedures from the medical coding practice.

As we reviewed in Section 2.3, previous studies on weight355

initialisation to address the label correlation issue mostly focus
on a co-occurrence based representation of labels [22, 23]. Both
studies dedicate a neuron in the final hidden layer to initialise
one single co-occurrence pattern. There are, however, very lim-
ited neurons to be assigned to initialise the massive number of360

label relations, especially for the large label size in automated
coding.

Instead of encoding the sparse co-occurrence patterns of la-
bels, we learn low-dimensional, dense, label embeddings. For
two correlated labels y j and yk, e.g. 486 (Pneumonia) and365

518.81 (Acute respiratory failure), one would expect that the
prediction of one label has an impact on the other label for some
clinical notes, i.e. pd j is correlated or has a similar value to pdk.
To achieve this, according to Equations 1 or 6, we propose to
initialise their corresponding weights w j and wk (corresponding370

to the labels y j and yk) in W with a label representation E which
reflects the actual label correlation (e.g. similarity between y j

and yk) in a continuous space.

A straightforward idea is thus to initialise the projection ma-
trix W using E as pre-trained label embeddings, e.g. with a375

neural word embedding algorithm, learned from the label sets in
the training data, {

−→
Yd |d ∈ [1,m]}. For initialisation, we pre-train

the label embeddings E with dimensionality the same as W.
We used the Continuous Bag of Words algorithm in word2vec
[24] for its efficiency and its power to represent the correla-380

tions of the labels. Figure 2 shows an intuitive visualisation, for
which we used an unsupervised technique, T-SNE (t-distributed
Stochastic Neighbor Embedding), to reduce the dimensionality
of the learned label embeddings while preserving the local simi-
larity and structure of the labels [27]. It can be observed that the385

ICD-9 code learned from the MIMIC-III training label sets can
capture the semantic relations that are distinct from the ICD-9
hierarchy. For example, 486 (Pneumonia) and 518.81 (Acute
respiratory failure) appear closely on the bottom while they are
not under the same parent in the ICD-9 hierarchy.390

Besides, the label embedding initialisation can also be ap-
plied to the context matrices Vw and Vs (see Figure 1) in the
label-wise attention mechanisms. Taking the word-level atten-
tion mechanisms in Equation 4 as an example, we can initialise
Vwl with the pre-trained label embedding El for the label yl.395

This imposes a tendency for context vectors of the correlated
labels to align the Bi-GRU encoded token representation vi in
a geometrically similar way. Similarly, we can also initialise
the label-wise attention layer in CNN+att [7] and in HA-GRU
[1]. While the initialised layers are dynamically updated dur-400

ing the training, the tendency that imposed by label embeddings
remains for most neural networks; we will empirically demon-
strate this in the analysis of initialised layers in Section 4.8.

For automated coding, the approach can be extended by ini-
tialising label embeddings with the clinical ontologies and de-405

scription texts of ICD codes. However, due to the different na-
ture of the knowledge (i.e. embedded label relations), the ex-
ternal sources may bring contradictory label correlations to the
ones in the dataset, as also discussed in [28]. In this research,
we focus on leveraging label relations from the label sets alone410
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Figure 2: The 2-dimensional T-SNE plot of word2vec Continuous Bag of Words label embeddings of the 50 ICD-9 codes in MIMIC-III-50, trained on the whole
training label sets, {

−→
Yd |d ∈ [1,m]}, in MIMIC-III.

as in [22, 23], as it directly reflects the label correlation of the
coding practice that generated the dataset, and leave the inte-
gration of external knowledge for a future study.

4. Experiments

We tested HLAN and several strong baseline models, with415

label embedding initialisation, on three data sets based on the
MIMIC-III database. The main results show the comparative
results of HLAN to other state-of-the-art models on the datasets
and the consistent improvement with label embedding initiali-
sation. More importantly, through an analysis on model inter-420

pretability, we also show that HLAN can provide a more com-
prehensive explanation using the label-wise word and sentence-
level attention mechanisms. Analysis of the layers initialised
with label embeddings further reveals the effect of the ini-
tialisation approach. The source code of our implementation425

and the results are openly available at https://github.com/
acadTags/Explainable-Automated-Medical-Coding.

4.1. Datasets

We used the benchmark dataset, MIMIC-III (“Medical In-
formation Mart for Intensive Care”) [2], which contains clin-430

ical data from adult patients admitted to the critical care unit
in the Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts between 2001 and 2012, to validate our approach.
The ICD-9 codes annotated by professionals in the dataset were
used as labels. We focused on discharge summaries and fol-435

lowed the preprocessing and data split from [7]. The prepro-
cessed full MIMIC-III dataset has 8,922 unique codes as labels
assigned to 52,724 discharge summaries, where 47,724 of them
(from 36,998 patients) were used for training, 1,632 for valida-
tion, and 3,372 for testing. We also used the same top-50 setting440

(termed as “MIMIC-III-50”) from [7], which narrows down the
labels to the top 50 by their frequencies (codes and their fre-
quencies are available in Table S1 in the supplementary mate-
rial). This has 8,067 discharge summaries for training, 1,574
for validation, and 1,730 for testing.445

We further created a subset of discharge summaries anno-
tated using the COVID-19 shielding related ICD codes. This
simulates the application of identifying key patients for shield-
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ing during the pandemic. We used the ICD-9 codes matched
to the ICD-10 codes selected by the NHS to identify patients450

with medium or high risks during COVID-19. The considered
patients were related to solid organ transplant recipients, people
with specific cancers, with severe respiratory conditions, with
rare diseases and inborn errors of metabolism, on immunosup-
pression therapies, or who were pregnant with significant con-455

genital heart disease2, which is still in active use and under
maintenance at the time of writing this paper. While the actual
EHR data and the shielded patient list from the NHS are not
easy to obtain, the ICD-10 codes are openly available for re-
use3. We thus used MIMIC-III to simulate the task of identify-460

ing patients for shielding during COVID-19. We selected those
appeared at least 50 times in the MIMIC-III dataset, resulting
in 20 ICD-9 codes (out of 79 matched codes), available in Table
S2 in the supplementary material. After filtering the MIMIC-III
dataset with the selected ICD-9 codes, there are 4,574 discharge465

summaries for training, 153 for validation, and 322 for testing.
We name this dataset as “MIMIC-III-shielding”.

Statistics of the three datasets are in Table 1. Denoted by Ave,
the average number of labels per document (or label cardinality)
in the training set of MIMIC-III, MIMIC-III-50, and MIMIC-470

III-shielding are 15.88, 5.69, and 1.08, respectively. While all
originated from MIMIC-III database, the three datasets repre-
sent different case scenarios in automated medical coding with
various scales of data and vocabulary size (“vocab”), number
of labels to predict, and the average number of labels per doc-475

ument. While the full MIMIC-III dataset has much more train-
ing instances, it is more complex as its number of labels |Y | and
vocabularies are significantly greater than MIMIC-III-50 and
MIMIC-III-shielding.

Table 1: Statistics of the datasets

Dataset Vocab Train Valid Test |Y | Ave
MIMIC-III-50 59,168 8,067 1,574 1,730 50 5.69
MIMIC-III-shielding 47,979 4,574 153 322 20 1.08
MIMIC-III 140,795 47,724 1,632 3,372 8,921 15.88

Figures of ICD-9 code distributions by frequency in the three480

datasets are available in Figure S1 in the supplementary mate-
rial, along with the list of the selected codes (and their frequen-
cies) in the MIMIC-III and MIMIC-III-shielding datasets. The

2A clearer description of the “high risk” category is in https:

//digital.nhs.uk/coronavirus/shielded-patient-list/

methodology/background
3To see the annexe B in https://digital.nhs.uk/coronavirus/

shielded-patient-list/methodology/annexes

statistics show a high imbalanced characteristics of the labels
in all three data settings. Most label occurrences are from a485

few labels and there is a long-tail of labels having very low
frequencies. This is most pronounced in the full label setting
(“MIMIC-III”) and also presented in the other two datasets.

4.2. Experiment Settings

We implemented the proposed Hierarchical Label-wise At-490

tention Network (HLAN) model and the other baselines for
comparison:

1. CNN, Convolutional Neural Network, which is essentially
based on [29] for text classification, and applied in [6, 30]
for automated medical coding.495

2. CNN+att (or CAML), CNN with a label-wise attention
mechanism, proposed in [7].

3. Bi-GRU, Bi-directional Gated Recurrent Unit [25] for
multi-label classification. The document representation is
set as the last concatenated hidden state h(t) .500

4. HAN, Hierarchical Attention Network [10], which can be
considered as a downgraded model of HLAN when the
attention mechanisms are shared for all labels (see Figure
1, when Vw, Vs, and Cs, Cd become vectors, same for all
labels).505

5. HA-GRU, Hierarchical Attention bi-directional Gated Re-
current Unit, proposed in [1], which can be considered as
a downgraded model of HLAN when the word-level atten-
tion mechanism is shared for all labels (see Figure 1, when
Vw and Cs become vectors, same for all labels, while Vs510

and Cd are the same as in HLAN).

We applied the label embedding initialisation approach (de-
noted as “+LE”) to all the models above. We pre-trained the
label embeddings E from the label sets in the training data with
the word2vec (Continuous Bag of Words with negative sam-515

pling) algorithm [24]. The label embeddings have the dimen-
sion same as the final hidden layer or the label-wise attention
layer(s) in each neural network model. We applied the Python
Gensim package [31] to train embeddings, by setting the win-
dow size as 5 and minimum frequency threshold (“min count”)520

as 0. Label embeddings were normalised to unit length for ini-
tialisation. Xavier initialisation [32] was used for labels not
existing in the training data for faster model convergence. We
used the same setting to train and initialise the 100-dimension
word embeddings We from the documents.525
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The implementations of HLAN and HA-GRU were adapted
from our previous implementation4 of HAN in [15] using the
Python Tensorflow [33] framework, originated from bright-
mart’s implementation5, all under the MIT license. We adapted
HA-GRU with the sigmoid activation and binary cross-entropy530

as described in Section 3.1, instead of the softmax activation
used in the original paper [1], for a controlled comparison with
other models. For CNN, CNN+att, and Bi-GRU, we adapted
the implementation6 from [7] using the PyTorch framework
[34] with the same parameters for MIMIC-III and MIMIC-50535

from [7]. For MIMIC-III-shielding, we used the same hyper-
parameters as in MIMIC-50. We did not get the results with
HA-GRU and HLAN for the MIMIC-III dataset, due to the
memory limit caused by the large label size (|Y | = 8, 921), while
for MIMIC-III-50 and MIMIC-III-shielding, we obtained the540

results of all models.
The input token length for the models was padded to 2,500

as in [7]. We optimised the precision@k or micro-F1 metrics
(defined in Section 4.3) during the training7, according to the
implementation in [7]. The batch size for CNN, CNN+att, Bi-545

GRU were set as 16 as in [7], for HLAN and HA-GRU as 32,
and HAN as 128. For HLAN, HAN, and HA-GRU, we tried
both a customised rule-based parsing of real sentences with
Spacy8 and using text chunks of fix length as “sentences”; for
both ways, we set the sentence length as 25 and padded the550

number of sentences to 100. The dimensions of the final docu-
ment representation were 512, 500, 50, 400 for Bi-GRU, CNN,
CNN+att, and HLAN (also HAN and HA-GRU), respectively.
All models were trained using a single GeForce GTX TITAN
X server, and the trained HLAN, HA-GRU, and HAN mod-555

els were further tested using a CPU server (4-core, Intel(R)
Xeon(R) Platinum 8259CL CPU @ 2.50GHz). The detailed
hyper-parameter settings, containing learning rate, dropout rate,
and CNN specific parameters (kernel size and filter size), with
the estimated training and testing times, are in Table S3 in the560

supplementary material.
We also experimented with BERT as the neural document

encoder. Due to the GPU memory limit, we tested the nor-

4https://github.com/acadTags/Automated-Social-Annotation/

tree/master/2%20HAN
5https://github.com/brightmart/text_classification
6https://github.com/jamesmullenbach/caml-mimic
7We optimised precision@k for CNN, CNN+att, and Bi-GRU for MIMIC-

III and MIMIC-III-50, and micro-F1 for all other models and for the MIMIC-
III-shielding dataset.

8We parsed sentences using the rule-based pipeline component in Spacy
with adding double newlines as another rule to segment sentences, see https:
//spacy.io/usage/linguistic-features#sbd.

mal size of a BERT model, i.e. BioBERT-base [35], which
had been further pre-trained with PubMed paper abstracts9 and565

full texts10; we used a sliding window approach to address the
token limit issue (512 tokens) in BERT. Our results from the
BioBERT-base model were similar to the results in [19], signif-
icantly worse than HLAN and CNN11. We believe further adap-
tations are necessary for BERT models on automated medical570

coding and leave the direction for a future study.

4.3. Evaluation Metrics

For comparison, we applied the same set of label-based met-
rics as in [7] and according to the evaluation of multi-label
classification algorithms [14, 13]. The chosen metrics include575

micro- and macro-averaging precision (P), recall (R), F1 score
(F1), area under the receiver operating characteristic curve
(AUC), an the precision@k.

The micro-averaging metrics treat each document-label as a
separate prediction, whereas the macro-averaging metrics are
an average of the per-label results. Micro- and macro-averaging
applies to all the binary evaluation metrics including precision,
recall, AUC. For example, the micro- and macro-averaged pre-
cision is defined in Equation 7 below. Recall is calculated in a
similar way, but divided by all the true cases (T Pl + FNl), and
F1 is then the harmonic mean of the calculated precision and
recall, i.e. F1 = 2×P×R

P+R . The AUC is defined by two metrics,
the true positive rate (or recall) on the Y axis and false positive
rate on the X axis, depicting the tradeoff between the two met-
rics when varying the calibration threshold Th [36]. The overall
performance of a classifier (with a set of varied Th) can thus be
reflected by AUC.

Micro-P =

∑L
l=1 TPl∑L

l=1 TPl + FPl
Macro-P =

1
|L|

L∑
l=1

TPl

TPl + FPl

(7)

In some clinical application or epidemiological studies, only
one type of code (either the diagnosis or the procedure code) is580

favoured. Thus, for the MIMIC-III full label setting, we also
report Micro-F1 results on the diagnosis codes (F1-diag) and
procedure codes (F1-proc) separately as in [7].

Furthermore, we report the example-based metric,
precision@k as in [7], averaged over all the documents,585

9https://pubmed.ncbi.nlm.nih.gov/
10https://www.ncbi.nlm.nih.gov/pmc/
11We thus do not report the BERT results here but make the implemen-

tation details and results available on https://github.com/acadTags/

Explainable-Automated-Medical-Coding.
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where each precision score is the fraction of the true positive in
the top-k labels, having highest score pdl, for the document d.
The idea is to simulate the real-world scenario that the system
recommending k predicted medical codes and to evaluate the
percentage of them being correct. The number of top-ranked590

labels k were set as 8 for MIMIC-III, 5 for MIMIC-III-50 to be
consistent to the study [7], and 1 for MIMIC-III-shielding, near
to the average number of labels per document (see Table 1).

4.4. Main Results

We report the mean and the standard deviation (i.e. the595

square root of variance) of the testing results of 10 runs with
randomly initialised parameters for each model. The results
of the MIMIC-III-50, MIMIC-III-shielding, and MIMIC-III
datasets are shown in Table 2, 3, and 4, respectively.

For the top 50 label dataset (MIMIC-III-50, see Table 2),600

HLAN performed the best among all experimental settings,
achieved significantly better Micro-AUC (91.9%), Micro-F1

(64.1%), and Precision@5 (62.5%) than the second best model,
CNN. This shows the advantage of the hierarchical label-wise
attention mechanisms for top-50 code prediction. With the605

same calibration threshold, the precision of HLAN is better than
CNN absolutely by 15% (73.2% vs. 57.7%), while recall is
lower with a similar absolute value, indicating that tuning the
threshold to balance precision and recall could further improve
the F1 scores.610

For code related to high-risk patients for shielding during
the COVID-19 pandemic (MIMIC-III-shielding, see Table 3),
results (of Micro-AUC) show that HLAN (96.9%) and HAN
(97.6%) performed comparably to the best performed model,
CNN (97.9%). HLAN obtained a high value of precision@1,615

slightly below CNN by 1% (81.2% vs 82.2%), while the dif-
ference was not significant (p > 0.05). The better performance
of CNN (or HAN) may be because that smaller datasets like
MIMIC-III-shielding, with much fewer documents and labels
(see Table 1), tends to favour models with simpler architectures.620

In both MIMIC-III-50 and MIMIC-III-shielding, HA-GRU
did not perform better than HLAN, this shows that the label-
wise word-level attention mechanisms in HLAN further im-
proved the performance. Also, surprisingly, the HLAN or HAN
models with the real sentence split did not perform better (up625

to 2.8% less Micro-F1) than using text chunk “sentences” (of
25 continuous tokens) in all three datasets. This is probably
because, with the sentence split setting, some tokens and sen-
tences were lost during the padding procedure, which could sig-
nificantly affect the performance.630

For the full label setting (“MIMIC-III”), HAN has better re-
sults of Micro-AUC and precision@8 than the vanilla CNN
and Bi-GRU, but worse than the CNN+att approach specifi-
cally tuned for this dataset. With label embedding initialisa-
tion, CNN+att+LE achieved significant best results on MIMIC-635

III (an Micro-AUC of 98.6%). It is worth to further explore
to enhance the scalability of HLAN so that it can process
datasets with large label sizes. Also to note that results of the
Macro-level metrics (averaging over labels) were dramatically
lower than the Micro-level ones (calculated from document-640

label pairs), showing the strong imbalance of labels in MIMIC-
III (see Section 4.1).

Injecting the code relations through label embedding consis-
tently boosted the performance of automated medical coding. It
is clear that most models were improved with label embedding645

initialisation (“+LE”). Models were affected to different extend
by label embedding: CNN+att model was mostly improved
with “+LE” (an increase of 6.6% Macro-AUC on MIMIC-III-
shielding), the rest models (CNN, Bi-GRU, HA-GRU) being
relatively less affected, while there was no significant improve-650

ment for HLAN or HAN on the datasets. This may due to
the fact that the prior layers, e.g. hierarchical layers and the
label-wise attention layers, could already learn some of the la-
bel relations. We thus further analyse the LE-initialised layers
in Section 4.8 to understand the effect of label embedding ini-655

tialisation. Besides, most metrics with the “+LE” models also
have higher stability (i.e. reduced variance); and low variance
is an essential characteristic to deploy a model in the clinical
setting.

4.5. Result for each label660

Apart from the overall performance of the models, it is also
essential to see how the models perform regarding each med-
ical code. Figures 3 show the precision and recall of the five
diagnosis codes having the highest and the lowest frequencies
in MIMIC-III-50. For this analysis, we selected the three best665

performing models, CNN, CNN+att, and HLAN, all with la-
bel embedding initialisation (“+LE”), in terms of AUC metrics
for MIMIC-III-50 (see Table 2). We provide the full per-label
results of HLAN+LE with the MIMIC-III-50 and MIMIC-III-
shielding datasets in Table S1-S2 in the supplementary material.670

In Figures 3, we can observe that the overall trend of perfor-
mance is generally consistent to, while not solely dependent on,
the label frequency in the training data. For the five most fre-
quent labels, the models achieved around 70%-90% precision
and recall. For example, in terms of precision, HLAN obtained675
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Table 2: Results on MIMIC-III-50 dataset (50 labels)

Macro Micro Top-k
Model AUC P R F1 AUC P R F1 P@5
CNN 88.1±0.3 51.5±0.9 67.4±1.0 58.4±0.5 90.9±0.2 55.6±1.1 71.2±0.9 62.4±0.6 61.8±0.3
+LE 88.3±0.3 53.0±1.0∗ 66.7±1.5 59.1±0.5∗ 91.3±0.1∗ 57.7±1.4∗ 70.4±1.4 63.4±0.5∗ 62.1±0.3
Bi-GRU 80.6±1.1 47.2±3.2 36.7±2.6 41.2±2.3 85.5±1.0 58.1±3.2 45.8±2.2 51.2±1.9 51.3±1.7
+LE 80.9±0.8 47.3±2.0 39.2±2.0∗ 42.8±1.5 85.8±0.7 57.5±2.2 48.4±2.1∗ 52.5±1.3∗ 52.1±1.2
CNN+att 88.1±0.0 63.1±0.1 48.4±0.2∗ 54.8±0.2∗ 91.1±0.0 70.9±0.2 53.1±0.2∗ 60.7±0.1 60.8±0.1
+LE 88.3±0.0∗ 64.3±0.3∗ 46.0±0.1 53.6±0.1 91.3±0.0∗ 71.6±0.1∗ 52.5±0.1 60.6±0.1 61.6±0.1∗

HAN 87.0±0.4 61.7±2.7 46.3±2.3 52.8±1.1 90.1±0.3 68.2±3.1 52.9±2.4 59.4±0.7 59.5±0.7
+LE 87.3±0.4 61.3±3.2 46.9±2.9 53.0±1.1 90.3±0.4 67.9±4.1 54.2±2.8 60.1±0.7 59.9±0.8
HA-GRU 85.3±1.3 59.3±2.5 43.1±4.0 49.9±3.4 89.2±0.9 69.5±0.6 48.7±4.1 57.2±2.8 57.9±1.7
+LE 86.4±0.7∗ 62.1±1.9∗ 44.3±2.3 51.7±1.9 90.1±0.5∗ 71.1±1.2∗ 50.7±2.3 59.1±1.4∗ 59.5±1.0∗

HLAN 88.4±0.7 65.0±1.2 51.0±2.6 57.1±1.6 91.9±0.4 72.9±0.8 57.3±2.5 64.1±1.4 62.5±0.7
+LE 88.4±0.5 65.5±1.5 50.2±1.1 56.8±0.8 91.9±0.3 73.2±0.6 56.9±1.0 64.0±0.7 62.4±0.6
+sent split 86.9±0.5 63.6±1.3 47.8±2.4 54.5±1.7 90.4±0.3 71.5±1.2 53.8±2.1 61.4±1.2 60.2±0.7

The results of better metric score between the model with label embedding initialisation (“+LE”) and the model not using LE initialisa-
tion are underlined, and the asterisk (*) further marks the paired two-tailed t-tests with .95 significant level (p < 0.05) between them. The
best result for each metric (column) is in bold. The AUC, F1, and P@5 scores in HLAN models with italics indicates their significantly
improved results (p < 0.05) over the second best model category (i.e. HLAN vs. CNN). The model with lower variance is preferred if
the average scores are the same.

Table 3: Results on MIMIC-III-shielding dataset (20 labels)

Macro Micro Top-k
Model AUC P R F1 AUC P R F1 P@1
CNN 96.9±0.2∗ 59.8±1.2 59.6±1.3 59.7±0.9 97.9±0.4∗ 80.5±1.3 76.2±0.9 78.3±1.0∗ 82.2±0.8
+LE 96.7±0.2 60.4±2.8 60.4±2.3 60.4±2.3 97.6±0.3 78.8±2.5 76.4±1.8 77.5±0.7 81.6±0.9
Bi-GRU 91.9±1.4 57.4±3.1 43.4±2.2 49.4±2.2 93.6±0.8 77.9±2.8 58.5±1.9 66.8±1.2 72.2±1.6
+LE 92.0±1.6 58.6±1.5 46.8±2.3∗ 52.0±1.4∗ 95.1±0.7∗ 78.1±2.1 61.8±2.7∗ 68.9±1.6∗ 75.1±2.0∗

CNN+att 88.9±1.3 46.7±4.6 37.6±2.4 41.7±3.3 93.5±0.2 86.9±1.2∗ 52.9±2.8 65.7±2.0 70.0±2.6
+LE 95.5±0.0∗ 62.1±2.2∗ 48.4±1.9∗ 54.4±2.0∗ 96.1±0.0∗ 83.3±0.5 61.4±0.6∗ 70.7±0.3∗ 77.7±0.3∗

HAN 96.0±1.4 66.4±2.7 58.2±2.0 62.0±2.0 97.4±0.3 82.9±1.8 68.7±2.4 75.1±1.5 78.1±1.7
+LE 96.4±1.3 65.2±2.1 56.5±2.9 60.5±2.3 97.6±0.3 83.4±1.2 68.2±2.0 75.0±1.2 79.2±1.7
HA-GRU 93.4±2.0 60.9±3.9 51.6±2.8 55.8±3.1 96.7±0.4 83.0±2.1 65.8±2.2 73.4±1.6 80.3±1.5
+LE 93.9±2.0 59.2±4.3 49.7±4.2 54.0±4.1 96.8±0.9 81.3±4.0 66.3±4.1 73.0±3.6 79.1±4.3
HLAN 93.5±2.5 59.8±2.9 53.2±2.6 56.3±2.4 96.9±0.7 81.4±1.8 69.0±2.9∗ 74.6±1.6 81.2±1.2
+LE 93.5±1.9 60.5±4.2 52.7±5.0 56.3±4.6 96.5±0.4 81.8±2.8 65.6±4.0 72.7±3.1 79.8±3.0
+sent split 94.5±1.2 60.9±2.1 51.7±3.1 55.8±2.3 96.3±0.2 81.4±2.2 64.4±2.5 71.9±1.7 77.8±2.6

The results of better metric score between the model with label embedding initialisation (“+LE”) and the model not using LE initialisa-
tion are underlined, and the asterisk (*) further marks the paired two-tailed t-tests with .95 significant level between them. The best result
for each metric (column) is in bold. The AUC, F1, and P@1 scores in CNN models with italics indicates their significantly improved
results (p < 0.05) over the second best model category (i.e. CNN vs. HAN or HLAN). The model with lower variance is preferred if the
average scores are the same.

highest to 91.7% for 427.31 (Atrial fibrillation) and lowest to
71.4% for 584.9 (Acute kidney failure). For the five least fre-
quent labels, the results were much worse due to the fewer train-
ing data for the labels and the imbalance issue. For precision,
HLAN generally performs better than CNN and CNN+att, es-680

pecially there is a significant gap for low frequent labels; while
for recall, CNN outperforms the other two models. We also
note that the precision and recall could be tuned in favour of
only one of them through changing the calibration threshold Th

(now set as the default value, 0.5), considering the need and685

the preference of the coding work when deploying the model to
support coding professionals.

4.6. Model Explanation with Hierarchical Label-wise Atten-

tion Visualisation

A critical requirement of the clinical use of automated med-690

ical coding systems is their explainability or interpretability.
We propose to use label-wise word-level and sentence-level at-
tention mechanisms in HLAN to enhance the explainability of
the model. The learned word-level and sentence-level atten-
tion scores for the label yl are αwl ∈ (0, 1) and αsl ∈ (0, 1)695

(see Equations 4 and 5, respectively). For a more concise visu-
alisation, we propose a sentence-weighted word-level attention
score α̃wl to only highlight the words from the salient sentences.
This adapted word-level attention score is calculated as α̃wl =

µαs̃lαwl, where αs̃l is the attention score of the sentence where700

the word is belong to and µ is a hyperparameter to control the
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Table 4: Results on MIMIC-III dataset (8,922 labels)

Macro Micro Top-k
Model AUC P R F1 AUC P R F1 F1-diag F1-proc P@8
CNN 81.8±0.7 4.5±0.4 3.7±0.5 4.1±0.4 97.0±0.1 51.0±2.8 36.9±1.7 42.8±0.9 41.1±1.0 50.7±0.9 59.6±0.5
+LE 82.4±0.4∗ 4.7±0.4 3.6±0.2 4.1±0.2 97.1±0.1 53.0±2.6 36.9±1.2 43.4±0.6 41.7±0.6 51.3±0.9 60.3±0.4∗

Bi-GRU 83.5±1.6 4.9±0.2 3.6±0.5 4.1±0.4 97.3±0.3 52.8±4.6 34.8±2.2 41.8±1.5 39.3±1.6 51.7±1.3 58.9±2.2
+LE 84.9±0.7∗ 5.0±0.4 3.6±0.5 4.2±0.5 97.6±0.1∗ 55.4±4.1 34.8±2.4 42.6±1.5 40±1.6 52.7±1.1 60.3±1.8
CNN+att 88.6±0.2 7.7±0.2 6.4±0.3 7.0±0.2 98.4±0.0 62.8±0.3∗ 43.9±0.4 51.7±0.1 50.1±0.2 59.8±0.1 69.4±0.2
+LE 90.2±0.0∗ 9.3±0.1∗ 8.0±0.1∗ 8.6±0.1∗ 98.6±0.0∗ 61.8±0.4 45.6±0.1∗ 52.5±0.1∗ 50.7±0.1∗ 60.7±0.1∗ 69.7±0.1∗
HAN 88.5±0.1∗ 5.4±0.2∗ 2.7±0.2∗ 3.6±0.2∗ 98.1±0.1 63.2±3.3 30.0±1.1∗ 40.7±0.7∗ 37.0±0.7∗ 52.6±0.9∗ 61.4±1.3∗

+LE 88.2±0.2 5.1±0.2 2.4±0.1 3.3±0.2 98.1±0.0 63.2±1.0 27.6±1.1 38.4±1.0 34.8±1.2 50.6±1.0 59.6±0.6
+sent split 87.4±0.7 4.7±0.6 2.3±0.4 3.1±0.5 97.9±0.1 60.4±2.2 25.3±2.5 35.6±2.6 31.4±2.6 49.1±2.3 56.3±2.0

The results of better metric score between the model with label embedding initialisation (“+LE”) and the model not using LE initialisation are
underlined, and the asterisk (*) further marks the paired two-tailed t-tests with .95 significant level between them. The best result for each metric
(column) is in bold. The model with lower variance is preferred if the average scores are the same.

Figure 3: Precision and recall of the five most and the five least frequent ICD-9 diagnosis codes in the MIMIC-III-50 dataset. The bar chart (with the left y-axis)
shows the metric score, while the line chart (with the right y-axis) shows the number of occurrences or the frequency (“Freq”) of the label in the training data.

magnitude of the final weighted attention score. A greater µ
will result in highlighting more words in the clinical note and
we empirically set µ as 5. We clip the value of α̃wl to 1 if it is
above 1.705

An example attention visualisation for a random document
(number 24) in MIMIC-III-50 using the model HLAN+LE with
the parsed sentences (“+sent split”) is shown in Figure 4. The
two columns on the left visualise the sentence-level attention
scores αsl for the two codes, 427.31 (Atrial fibrillation) and710

428.0 (Congestive heart failure, unspecified), respectively. The
highlighted sentences are corresponding to the sections “past
medical history” and “discharge diagnosis” in the discharge
summary. This is in line with our intuition that the key diag-
nosis information is likely to be contained in the two sections.715

The words are highlighted according to the adapted word-level
attention score α̃wl. Words related to the code 427.31 is high-
lighted in yellow and for 428.0 in blue. It is clear that the
most salient words are highlighted, and the model successfully
recognised the abbreviations and alternative short forms com-720

monly used by clinicians in the clinical note, for example “a
fib” as a short form of atrial fibrillation and “chf” as the ab-
breviation of Congestive Heart Failure. This shows that the
proposed HLAN model can learn to recognise the strongly cor-
related words (e.g. “a fib”) related to the label (e.g. the code725

427.31) with label-wise attention mechanisms, even given the
fact that the label description (i.e. the knowledge that 427.31 is
“Atrial Fibrillation”) were not fed into the model during train-
ing. Other relevant words are highlighted, e.g., “ef” (short for
Ejective Fraction), “pressor”, and “extremities”, which show a730

correlation to the code 428.0 while not indicating a causal rela-
tion to the diagnosis. We also note that the highlighted words
like “age” and “drugs” were too general, which could not be di-
rectly related to the diagnosis from a clinician’s point of view.
This may be related to the peaky distribution of the softmax735

(normalised exponential) function to form the attention scores
(see Equation 4), paying the most of the attention to only a few
(one or two) words in a long sentence.
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Figure 4: An example of interpretation using attention visualisation from the Hierarchical Label-wise Attention Network (HLAN), the chosen example is a ran-
dom document (index 24) in the MIMIC-III-50 dataset with two true positive labels, ICD-9 code 427.31 (Atrial fibrillation) and 428.0 (Congestive heart failure,
unspecified). The two red columns show the sentence-level attention scores for the two codes respectively. The tokens highlighted by yellow (for code 427.31)

or blue (for code 428.0) show the importance of them based on the value of sentence-weighted word-level attention scores. The deeper the colour, the higher
the (sentence-weighted) attention scores, and thus the more important the highlight words or sentences contributes to the model prediction. Only the first part (11
tokens) of each sentence was shown for a clearer display.

4.7. Comparison of Model Explanations

Following the previous section, we further qualitatively anal-740

yse and compare the interpretability of the HLAN model and
other baseline models. Table 5 shows how CNN, CNN+att,
HAN, HA-GRU, and HLAN, all with label embedding initial-
isation, highlight the “important” part of a random document
(number 24) to predict two different labels (427.31 and 428.0).745

The CNN12 and CNN+att chose the most salient n-grams based
on the max-pooling and the attention mechanism, respectively
[7]. HLAN and its downgraded models, HA-GRU and HAN,
alternatively, highlighted the important sentences and words.
The distinction is that HAN has the same highlights of the same750

document for different labels (columns in Table 5), and HA-
GRU has the same word-level but different sentence-level high-
lights across labels, while HLAN can highlight the most salient
words and sentences for different labels. This gives HLAN the
most comprehensive interpretability among the models.755

Compared to CNN, we observe that CNN+att generated a
more relevant set of n-grams. This is in accordance with the
conclusion in [7]. We also found that the attention weights from
CNN are unstable, i.e. the suggested n-grams from CNN were
not the same among different runs. Compared to the interpre-760

tation with n-grams, highlighting the key sentences and words
can produce a more comprehensive interpretation, as the lat-
ter is based on the whole hierarchical structure of a document.

12We further normalised the scores of n-grams in CNN based on max-pooling
from [7] to probabilities, to be comparable to the attention scores in other mod-
els.

Especially with the sentence parsing (“HLAN+LE+sent split”,
see the last row in Figure 5, corresponding to the visualisation765

in Figure 4), we can clearly see which sections of the discharge
summary, along with words, contribute more to predict the la-
bel.

It is also interesting to see how the proposed model inter-
pret when it predicted a medical code not previously assigned770

by the coding professionals. We selected some representative
“false positive” results from the HLAN+LE model with sen-
tence splitting in Table 6. We presented the prediction results
and the highlighted explanations to an experienced clinician to
validate and deduce the potential reason for the error. In Table775

6, we observe that the model can explain the predictions with
key sentences and words, therefore it is easier for us to know
where there may have been a problem. For example, for the
first two rows, “doc-68” and “doc-19” in MIMIC-III-50, the
highlighted words and sentences are quite relevant to the non-780

coded, “false positive” ICD-9 code, indicating that there might
have been missed coding or the disease was a past disease of
the patient.

The false positives in “doc-1” and “doc-65” in MIMIC-III-
shielding are errors related to the wrong correlations learned785

from the data, particularly regarding the high granularity and
subtle difference among sub-type diseases. In “doc-1”, the
highlighted words “htn elev lipids” show that the patient has a
certain type of hypertension, but does not necessarily mean the
predicted code 416.0 for “Primary pulmonary hypertension”.790

In “doc-65”, the strongly highlighted word “metastasis” actu-
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Table 5: Comparison of model interpretability across deep learning models of true positive predictions on a random document (index 24) in the MIMIC-III-50
dataset

Model doc-24 to predict 427.31 (Atrial fibrillation) doc-24 to predict 428.0 (Congestive heart failure, unspecified)

CNN+LE
n-gram-1 (0.105): admission date discharge date service surgery
allergies patient recorded as having no known...

n-gram-1 (0.096): ...surgical intensive care unit she required max-
imum pressor support to maintain sufficient cardiac index...

n-gram-2 (0.083): ...surgical or invasive procedure ex lap r hemi-
colectomy mucous fistula ileostomy gj tube placement history of
present illness...

n-gram-2 (0.075): ...past medical history pmhx a fib aortic stenosis
chf last ef in osteoporosis reflux...

n-gram-3 (0.075): ...presented to location un with perforated vis-
cous hd stable upon transfer to location un...

n-gram-3 (0.071):...on ventilation support family meeting at latter
evening decided to make patient cmo patient...

CNN+att+LE n-gram-1 (0.026): ...upon arrival past medical history pmhx a fib
aortic stenosis chf last ef in osteoporosis reflux doctor first name
hx appendectomy many years ago social history non...

n-gram-1 (0.017): ...pressor support to maintain sufficient cardiac
index patient did show signs of distal ischemia to extremities by
the afternoon urine output post...

n-gram-2 (0.023): ...diagnosis cardiopulmonary arrest perforated
colon atrial fibrillation ventilatory support discharge condition
death discharge instructions none followup instructions none

n-gram-2 (0.011): ...past medical history pmhx a fib aortic stenosis
chf last ef in osteoporosis reflux doctor first name hx appendec-
tomy many years ago social history non contributory...

HAN+LE
sent-1 (0.34): medical history pmhx a fib(0.374) aortic stenosis chf(0.206) last ef in osteoporosis reflux(0.097) doctor first name hx
appendectomy many(0.28) years ago social history non contributory
sent-2 (0.18): arthritis fosamax q week(0.039) coumadin(0.282) qd discharge medications none discharge disposition expired dis-
charg diagnosis cardiopulmonary(0.019) arrest(0.109) perforated(0.134) colon(0.119) atrial(0.173) fibrillation(0.023) ventila-
tory(0.047) support discharge condition death
sent-3 (0.11): admission(0.201) date(0.263) discharge(0.05) date(0.055) service(0.075) surgery(0.118) allergies(0.062) pa-
tient(0.013) recorded(0.054) as having no known allergies to drugs attending first name3(0.021) lf(0.02) chief complaint perforated
bowel(0.046) major

HA-GRU+LE sent-1 (0.62): arthritis fosamax q week coumadin(0.06) qd dis-
charge medications none discharge disposition expired discharge
diagnosis cardiopulmonary arrest perforated colon atrial fibrilla-
tion(0.94) ventilatory support discharge condition death

Did not predict 428.0 (i.e. false negative)

HLAN+LE sent-1 (0.54): arthritis fosamax q week coumadin qd discharge
medications none discharge disposition expired discharge diagno-
sis cardiopulmonary arrest perforated colon atrial(1.0) fibrillation
ventilatory support discharge condition death

sent-1 (0.71): medical history pmhx a fib aortic stenosis chf(1.0)
last ef in osteoporosis reflux doctor first name hx appendectomy
many years ago social history non contributory

sent-2 (0.18): medical history pmhx a fib(1.0) aortic stenosis chf
last ef in osteoporosis reflux doctor first name hx appendectomy
many years ago social history non contributory

+sent split sent-1 (0.49): discharge diagnosis cardiopulmonary arrest perfo-
rated colon atrial fibrillation(1.0) ventilatory support discharge
condition death discharge instructions none followup instructions
none

sent-1 (0.8): past medical history pmhx a fib aortic stenosis
chf(0.888) last ef(0.112) in osteoporosis reflux doctor first name
hx appendectomy many years ago social history non

sent-2 (0.41): past medical history pmhx a fib(1.0) aortic stenosis
chf last ef in osteoporosis reflux doctor first name hx appendectomy
many years ago social history non

∗ CNN and CNN+att suggested top n-grams, while HAN, HA-GRU, and HLAN suggested key sentences (“sent-”) and words in the sentences. “+sent split”
denotes the HLAN model using real sentence splits. The numbers in the parentheses are the attention scores (e.g. for HLAN, αw and αs) in the models.
∗∗ For CNN and CNN+att, some of the suggested top-3 n-grams were combined together if any of them overlapped; up to five tokens before and after the
top n-grams were also displayed.
∗∗∗ For HAN, HA-GRU, and HLAN, the sentences were selected by those with sentence-level attention scores above 0.1 and the words were selected by
those with the word-level attention scores above 0.01. Both HAN and HA-GRU predicted 427.31 but not 428.0. The word- and sentence-level attention
weights of HAN are shared for all labels, therefore the interpretation is the same for both columns.

ally is related to pancreatic cancer, rather than the more com-
mon lung cancer as predicted. This wrong correlation may
be due to the imbalance of vocabularies in the training data:
there are 94 (about 2% out of 4,593) discharge summaries in795

the training data where “pancreatic” and “metasta” appeared
together in MIMIC-III-shielding, while there are significant
more discharge summaries (661, about 14%) where “lung” and
“metasta” appeared together.

The error in the last example was due to the subtle differ-800

ence between two codes (280.00 vs 280.03). We noticed some
unexpected highlights (e.g. the local oncologist’s name code)
in the last example (“doc-95” in MIMIC-III-shielding). This

may be related to that “hypercalcemia” (appeared in both sent-
1 and sent-2) can be caused by cancer, while neutropenia can805

be caused by treatments like cancer chemotherapy. The word
“chemotherapy” was highlighted in another sentence with an
attention weight 0.09 (not presented as below the 0.1 thresh-
old) and the word “neutropenia” in the document was not in-
cluded during the padding process. While it is very likely810

that the neutropenia was induced by the drug for chemotherapy
(that is, 280.03, Drug induced neutropenia), we did not find di-
rect words in the report to point the cause of the disease (thus
280.00, Neutropenia, unspecified, is also appropriate).

In general, we observe that the label-wise attention mecha-815
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Table 6: Examples of false positives of HLAN (with label embedding “+LE” and sentence splitting “+sent split”) on MIMIC-III-50 and MIMIC-III-shielding
Document index (dataset) False positive ICD-9

code
Explanation with the most relevant sentences and words by at-
tention scores

potential reason

doc-68 (MIMIC-III-50) 427.31 (Atrial fibrillation)
sent-1 (0.32): discharge diagnosis septic shock due to as-
cending cholangitis choledocholithiasis atrial fibrillation(1.0)
with rapid ventricular response pulmonary emboli deep venous
thrombosis upper gi bleed peptic ulcer

missed coding

sent-2 (0.31): past medical history recent pe dvt afib(1.0) htn
hypotension hypothyroidism cad mild chf
sent-3 (0.25): she was found to have bilateral pe s and new
afib(1.0) and started on coumadin

doc-19 (MIMIC-III-50) 401.9 (Hypertension
NOS, or Unspecified
essential hypertension)

sent-1 (0.84): decision made to proceed with primary right to-
tal knee arthroplasty past medical history htn(1.0) asthma al-
lergies diabetes social history nc family history nc

past disease or missed
coding

doc-1 (MIMIC-III-shielding) 416.0 (Primary pulmonary
hypertension)

sent-1 (0.45): brief hospital course year old female with
h o mild alzheimer s disease cea in htn(0.177) elev(0.145)
lipids(0.659) bladder ca who presents as a transfer

subtle difference in
language (regarding the
type of hypertension)

sent-2 (0.36): past medical history mild alzheimer s disease
l cea in htn(0.284) elev(0.167) lipids(0.518) bladder ca no
known metastasis

doc-65 (MIMIC-III-shielding)
197.0 (Secondary
malignant neoplasm of
lung)

sent-1 (0.31): brief hospital course yo man with history of
metastatic(1.0) pancreatic cancer was admitted with dyspnea
new ascites and profound hyponatremia

subtle difference in
language (regarding the
type of secondary cancer),
imbalance of vocabularies
or diseases in the training
data

sent-2 (0.3): history of present illness yo cantonese and span-
ish speaking male with metastatic(1.0) pancreatic cancer was
admitted from the ed with dyspnea altered mental status and
sent-3 (0.1): metastatic(1.0) pancreatic cancer evidence of
progression of ct abdomen pelvis

doc-95 (MIMIC-III-shielding) 280.00 (Neutropenia,
unspecified)

sent-1 (0.24): she has since been found to have a rising ldh and
hypercalcemia and decided with her local(0.538) oncologist dr
first name8(0.448) namepattern2 name stitle to

subtle difference between
the predicted label 280.00
and the ground truth label
280.03 (Drug induced
neutropenia)

sent-2 (0.17): at presentation on she developed hypercalcemic
with a calcium(1.0) of an elevated ldh

nisms in the HLAN model can provide a more comprehensive
explanation to support the predictions. For wrong or non-coded
predictions, the explanations through highlighted sentences and
words can help us better understand the problem. This provides
an essential reference to help coding professionals use the sys-820

tem and help engineers fix the problems for the next system
iteration.

4.8. Analysis of Label Embedding Initialisation

We previously visualised the label embedding from the
MIMIC-III dataset reduced to two dimensions using T-SNE, in825

Figure 2. The visualisation intuitively shows how the label em-
bedding can capture the correlations among ICD-9 codes de-
rived from the coding practice in the clinical setting.

It is also interesting to know, after the dynamic update during
training, how the weights in the initialised layers (the final pro-830

jection layer and the attention layer) preserve the semantics of
the label embedding, and why, in a few cases, LE did not result
in a significant improvement. We thus extracted the weights in
the learned layers and measured their similarity to the original
label embedding. Based on the idea of label similarity, we cal-835

culated the top-10 similar labels for every label based on the
pairwise cosine similarity of the rows in the initialised layer

weights (e.g. rows such as w j, wk in W in Equation 1 or rows
Vwl in Vw in Equations 4), and also the top-10 similar labels
from original label embedding E, and then to see to what ex-840

tent the two sets of “top-10 similar labels” overlap. We used
the Jaccard Index to measure the degree of overlap between the
two sets for each label, which is the size of the intersection di-
vided by the size of the union of the two sets. We averaged the
Jaccard Index over the labels. Thus the final metric reflects how845

the layers can retain the semantics, i.e. label similarities, of the
label embedding E. We also used the models without the LE
initialisation as the control group and calculated this averaged
Jaccard Index from their layers for comparison.

The results are displayed in Figure 5. We selected several850

representative models that either were significantly improved
with LE initialisation approach or did not improve with LE ac-
cording to the results in Tables 2-4. The experiment shows that
weights in the final projection layer (and the label-wise atten-
tion layer, if applied) with LE initialisation (“+LE”) can capture855

further label similarities from the label embedding. We also ob-
served a strong correlation between the performance improve-
ment with LE (see Tables 2-4) and the increase of averaged
Jaccard Index with LE initialisation (i.e. the extent that the ini-
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tialised layers captures the semantics of LE after training, as860

reflected in Figure 5). The models which are more enhanced by
LE (for example, CNN+att, with 6.6% improvement of Macro-
AUC with “+LE” in Table 3) have a greater averaged Jaccard
Index compared to the models without LE (0.76 vs. 0.42-0.43)
in Figure 5. On the contrary, the models which were not im-865

proved with LE, e.g. HLAN and HAN, for automated coding,
also, was also not affected by LE in terms of the averaged Jac-
card Index. The less effect of LE on HLAN and HAN may
be because the hierarchical attention layers (especially with the
label-wise attention mechanisms) could already model certain870

label correlations through the document-level matching pro-
cess. In overall, the analysis supports the idea that LE initial-
isation, capturing the label correlations, is a key factor to en-
hance automated coding with deep learning based multi-label
classification. Since LE can be visualised after dimensionality875

reduction (see Figure 2), this further serves as a mean to help
explain the overall model.

5. Discussion

We have presented the results on the three datasets and anal-
ysed the interpretability of models and the layers initialised880

with label embeddings.

The main advantage of HLAN lies in its model explainabil-
ity, based on the label-wise word-level and sentence-level at-
tention mechanisms. The qualitative comparison of model ex-
planation suggests that the highlighted key words and sentences885

from HLAN tend to be more comprehensive and more accurate
than, those from HAN or HA-GRU and the n-gram explana-
tion from the CNN related models. Such explainable highlights
can be particularly helpful when medical coding professionals
need to locate the essential part of a long clinical note. When890

the model suggests a code, its accompanying explanation could
be served as a reference for professionals to validate whether
the code should be included. This has the potential to build the
users’ trust in the deep learning model and help identify missed
and erroneous coding.895

The label embedding initialisation approach boosted the per-
formance and reduced the variance of most models. The
method is efficient, not requiring further model parameters. It is
independent of the neural encoders, and can thus be applied to
various deep learning models for multi-label classification. Our900

analysis on the LE initialised layers show that they can preserve
the semantics in the pre-trained label embeddings and therefore

can better capture the label similarity from the data. This fur-
ther contributes to the explainability of the overall approach.
There are a few exceptions that LE did not improve the perfor-905

mance, this may be due to the fact that the hierarchical layers
can already model certain label correlations when optimising
the document-label matching.

In terms of the performance, for MIMIC-III-50, the HLAN
model with LE achieved significant better micro-level AUC910

(91.9%) and F1 score (64.1%) than the previous state-of-the-art
models; for MIMIC-III-shielding, HLAN and HAN performed
comparably to CNN (all around 97-98% micro-level AUC); for
MIMIC-III, the previous state-of-the-art model CNN+att was
significantly boosted by LE initialisation, achieving best AUC915

and F1 scores (Micro-level AUC of 98.6% and Micro-level F1

of 52.5%).
It is worth nothing that the higher comprehensiveness in ex-

planation from HLAN is at the cost of further memory require-
ments and the training time13. Thus, in practice, if there are920

only limited computational resources (e.g. a single GPU with
12GB memory), we suggest training HLAN with a fewer num-
ber of codes, e.g. equal or less than 50, in a sub-disease do-
main or for specific tasks (i.e. shielding-related diseases dur-
ing COVID-19) that require higher model explainability for de-925

cision making. We also notice that the vanilla CNN can be
trained relatively faster with significantly less memory require-
ment; HAN and HA-GRU can also be applied as “downgraded”
alternatives of HLAN for tasks with larger label sizes. It is also
worth to explore to optimise the implementation and to distil the930

model of HLAN to enable its application to large label sizes.
While training deep learning models can be slow, during the

testing phase, the trained models perform reasonably efficient
for real-time inference. On average, it requires less than 1/3
second (330 milliseconds) to assign ICD codes with explain-935

able highlights for a discharge summary with a CPU server us-
ing HLAN trained from MIMIC-III-50; and the CNN related
models can process even faster (see Table S3 in the Supple-
mentary Material). This allows the efficient use of the models
in real-time for automated coding.940

Also, the calibration threshold (default as 0.5) could be tuned
to adjust the precision and recall of the system when deploying
it to a coding department. While high precision is obtained
when suggesting a few top-ranked predictions, a system with
a higher recall can help the coding professionals to prevent945

13The estimated training and testing time of the models are in Table S3 in the
Supplementary Material.
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Figure 5: Averaged Jaccard Index between the sets of top-10 similar labels derived from the layers (final projection layer and label-wise attention layers with or
without label embedding initialisation) and from the label embedding (LE). The higher the averaged Jaccard Index, the more similar the overall semantics between
the layer weights and the pre-trained label embedding. Error bars show the standard deviation over the labels. Representative models are selected for all the three
datasets. “+LE” means label embedding initialised for the layer indicated in the closest left bar.

missed coding. A higher recall can be achieved by using a lower
calibration threshold, e.g. 0.3-0.4. The results are also highly
varied across labels, as seen in the per-label results in Figures 3.
A domain for future studies is therefore to investigate few-shot
or zero-shot learning for the rare labels and we noticed one re-950

cent related work in [37], which is based on ICD-9 hierarchies
and descriptions to better predict rare labels.

The results demonstrate the usefulness of label embedding
to boost coding performance for most models. In this work,
the label embedding was trained with the label sets in the955

training data using the Continuous Bag of Words algorithm in
word2vec. Thus, it encodes the similarity of medical codes de-
rived from the real-world coding practice in the critical care unit
of the US hospital. This knowledge is distinct from the ICD-9
hierarchy, as visualised in Figure 2 and there may be contra-960

dictions between them. The advantage of the former is that it
directly learned the label correlation from the existing hospital
and does not require external knowledge. There are recently
more studies on leveraging the hierarchy for medical coding as
in [38, 39]. One future direction is thus to combine the local965

knowledge with external knowledge for the task.

The analysis of false positives in the model (see Section 4.6
and Table 6) suggests further research in the area of automated
medical coding. The errors are likely due to missed coding,

past medical history rather than present diseases, nuances of970

language variations, imbalanced vocabularies, and high label
granularity. The highlighted sentences and words helped us
better determine the cause of the problems. Since missed cod-
ing is very common in real-world practice, as also pointed out
recently in [40], it is worth to adapt the current algorithms975

to capture missing labels and emerging new labels. Informa-
tion on the report template may further help the model select
the relevant part of a discharge summary and differentiate a
present disease from a past disease. Unable to capture the subtle
variations or labels is potentially related to wrong correlations980

learned from the imbalance of vocabularies and labels in the
dataset. This may be addressed by incorporating various exter-
nal knowledge.

6. Conclusion

In this paper, we examined the existing deep learning based985

automated coding algorithms and introduced a new architec-
ture, Hierarchical Label-wise Attention Network (HLAN) and
a label embedding initialisation approach for automated medi-
cal coding. We tested the approaches on the benchmark datasets
extracted from the MIMIC-III database, with the simulated task990

to predict ICD-9 codes related to the high-risk diseases selected
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by the NHS for shielding during the COVID-19 pandemic. The
experiment results showed that HLAN has a more comprehen-
sive explainability and better or comparative results to the pre-
vious state-of-the-art, CNN-based approaches and the down-995

graded models, HAN and HA-GRU. The proposed label em-
bedding initialisation effectively boosted the performance of the
state-of-the-art deep learning models, capturing label correla-
tions from the dataset, which reflects the coding practice.

Analyses on the experiment results of this work suggest that1000

future studies are required in several areas: incorporating ex-
ternal knowledge, learning to capture missed coding, rare la-
bels, and emerging new labels. In particular, automated medical
coding work requires to be tested in real-world clinical settings
and iteratively improved with inputs from relevant profession-1005

als such as coders, nurses and clinicians. Thus an open area
to work on in the future is to adapt automated coding models
with human corrections in real-time, which is mostly related to
human-in-the-loop machine learning and active learning [41].
Inspire by these, we plan to further test and develop the ap-1010

proach to support the coding department in the NHS. We will
consult processionals to identify and address the issues involved
in deploying the system to facilitate coding staff and improve
efficiency, accuracy, and overall satisfaction.
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