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Borane-Catalyzed C(sp3)‒F Bond Arylation and Esterification Ena-
bled by Transborylation 
Dominic R. Willcox, Gary S. Nichol, and Stephen P. Thomas* 

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH9 3FJ, United Kingdom 
KEYWORDS Boron, arylation, esterification, bond-metathesis, C‒F activation, ligand exchange, main group 

ABSTRACT: The activation and functionalization of carbon‒fluorine bonds represents a significant synthetic challenge 
given the high thermodynamic barrier to C‒F bond cleavage. Stoichiometric hydridoborane-mediated C‒F functionaliza-
tion has recently emerged, but has yet to be rendered catalytic. Herein, the borane-catalyzed coupling of alkyl fluorides 
with arenes (carbon‒carbon bond formation), and carboxylic acids (carbon‒oxygen bond formation) has been developed 
using transborylation reactions to achieve catalytic turnover.  Successful C‒C and C‒O coupling across a variety of struc-
turally and electronically differentiated arenes and carboxylic acids was achieved using 9-borabicyclo[3.3.1]nonane (H-B-9-
BBN) as the catalyst and pinacolborane (HBpin), with broad functional group tolerance. Experimental and computational 
studies suggest a mechanistic dichotomy for the carbon‒carbon and carbon‒oxygen coupling reactions. B‒F transborylation 
(B−F/B−H metathesis) between F-B-9-BBN and HBpin enabled catalytic turnover for carbon‒carbon bond formation 
whereas direct exchange between the alkyl fluoride and acyloxyboronic ester (C‒F/B‒O metathesis) was proposed for car-
bon‒oxygen coupling, where H-B-9-BBN catalyzed the dehydrocoupling of the carboxylic acid with HBpin. 

The carbon−fluorine bond is the strongest single bond in 
organic chemistry (99 to 131 kcal mol-1)1 and thus the cata-
lytic functionalization of C−F bonds remains a significant 
challenge. Unlike the activation of other carbon−halogen 
bonds, C−F functionalization is less developed2,3 with only 
a limited number of examples reported to be mediated by 
main-group species.4,5 Strong Lewis acids, including BF3,

6 
aluminum species,7–11 low oxidation-state main-group com-
pounds, such as Al(I) or Mg(I) species,5,12–16 cationic sili-
con17,18 and phosphonium complexes,19,20 and HF21–24 have 
been used for the functionalization of C−F bonds. These 
methods either required harsh reaction conditions, or the 
use of highly reactive species. Overcoming the large ther-
modynamic barrier to C‒F functionalization under mild 
conditions using main-group species presents a significant 
challenge. Stephan and Crimmin have shown that hy-
dridoboranes undergo activation of C−F bonds where the 
formation of a B−F product is proposed to provide a ther-
modynamic driving force for the reaction (Scheme 1, a).25–

27 The potential barrier to catalysis using main-group ele-
ments lies in the strength of the bonds made to fluorine. 
For example, the B‒F bond is up to 150 kcal mol-1 so not 
only must the C‒F bond strength be overcome, but also the 
B‒F bond for the catalyst to be regenerated.1  

Transborylation, boron-boron exchange, has emerged as 
a potential mechanism to enable the stoichiometric reac-
tivity of organoboranes to be translated to catalysis. Bo-
ron−carbon (B−C/B−H metathesis)28–33 and boron−oxygen 
(B−O/B−H metathesis)34–37 transborylation have been used 
as turnover steps in boron-catalyzed hydroboration reac-
tions and the C−H borylation of heterocycles.38,39 Although 
stoichiometric exchange of B−F bonds has been 
achieved,40–42 to the best of our knowledge, no catalytic ex-
amples have been reported. If B−F transborylation 
(B−F/B−H metathesis) could be developed, this would al-
low borane-mediated C−F bond functionalization to be 

Figure 1. Examples of C−F functionalization with 
main-group compounds. 
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rendered catalytic. However, the large thermodynamic 

barrier to turnover would need to be overcome, and at a 
rate that facilitates synthetically useful turnover frequency. 
Herein, the C−F functionalization of alkyl fluorides has 
been developed for the formation of carbon‒carbon and 
carbon‒oxygen bonds using, commercially available, 9-bo-
rabicyclo[3.3.1]nonane (H-B-9-BBN) as the catalyst, and pi-
nacolborane (HBpin) as the turnover reagent (Figure 1, b). 

 
 
 



 

Scheme 1. (a) Stoichiometric H-B-9-BBN-mediated 
C−F arylation. (b) B−F/B−H Transborylation. (c) 
B−F/B−H transborylation from independently pre-
pared F-B-9-BBN. (d) DFT-Computed free energies for 
B−F/B−H transborylation (ωB97XD/6-311++G(d,p), 
kcal mol-1) 
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To validate the possibility of using B−F transborylation 

as a mechanism of catalytic turnover, single-turnover ex-
periments were conducted for the Friedel-Crafts-type ary-
lation of 4-(tert-butyl)benzyl fluoride 1a with d6-benzene 
2a (Scheme 1).25,26 Reaction of benzyl fluoride 1a with 0.5 
equivalents of [H-9-B-BBN]2 3 in d6-benzene/CDCl3 (1:2) 
was monitored by 11B and 19F NMR spectroscopy (Scheme 1, 
a). [H-B-9-BBN]2 3 (δ 11B = 28 ppm) was consumed within 
30 minutes and the formation of F-B-9-BBN 5 (δ 11B = 64 
ppm, δ 19F = −46 ppm) observed. Importantly, the rate of F-
B-9-BBN 5 formation was observed to be consistent with 
the rate of formation of the C−C coupled product, 4-(tert-
butyl)benzyl benzene 4a. Upon addition of HBpin 6 (δ 11B 
= 29 ppm), the amount of F-B-9-BBN 5 decreased with con-
current formation of FBpin 7 (δ 11B = 21 ppm, δ 19F = −151 
ppm) and, significantly, the regeneration of [H-B-9-BBN]2 
3 (δ 11B = 28 ppm) was observed (Scheme 1, b).43 Thus, the 
potential of B‒F transborylation as a method for catalytic 
turnover had been established. To further support B−F 

transborylation, independently prepared F-B-9-BBN 544 
was reacted with two equivalents of HBpin 6 and again the 
formation of FBpin 7 was observed at the same rate as the 
loss of F-B-9-BBN 5, as monitored by 11B NMR spectroscopy 
over 10 minutes (Scheme 1, c). An energy profile for 
B−F/B−H transborylation between F-B-9-BBN 5 and HBpin 
6 was calculated using density functional theory (DFT) 
[ωB97XD/6-311++G(d,p)] and the barrier was found to be 
relatively large (25.8 kcal mol-1)45 when compared to 
B−C(sp2)/B−H (20.3 kcal mol-1)30 and B−O/B−H (22.7 kcal 
mol-1)37 transborylation (Scheme 1, d). Although, the bar-
rier was lower than B−C(sp3)/B−H (28 kcal mol-1) trans-
borylation.32 The overall reaction was calculated to exer-
gonic following H-B-9-BBN dimersation.30,46 

To translate the stoichiometric B−F transborylation to 
catalysis, the arylation of benzylic C−F bonds was investi-
gated (Table 1). 4-(tert-Butyl)benzyl fluoride 1a was re-
acted with sub-stoichiometric [H-B-9-BBN]2 3 (5 mol%) in 
the presence of excess d6-benzene 2a and HBpin 6 (1 equiv-
alent) at 30 °C to give the corresponding diaryl methane in 
95% yield, showing the viability of B−F transborylation the 
for catalytic turnover (for full optimization see SI). Control 
reactions without H-B-9-BBN 3 or HBpin 6 gave no reac-
tivity. Benzyl chlorides and bromides were unreactive, pre-
sumably as H-B-9-BBN 3 is not a strong enough Lewis acid 
to initiate the Friedel-Crafts-type reaction.  
Table 1. H-B-9-BBN-catalyzed C−F arylation control re-
actions. 

F
+ 3, (5 mol%)

HBpin (1 equiv.),
CHCl3, 30 °C, 16 h

D6 D5
tBu tBu

1a 2a 4a
(excess)

[H-B-9-BBN]2

 
Deviation from conditions Yield  (%) 

None 95 

No [H-B-9-BBN]2 0 

Neat 0 

1 equiv. C6D6 Trace 

Benzyl chloride (no BnF) 0 

Benzyl bromide (no BnF) 0 

Yields obtained by 1H NMR spectroscopy with 1,3,5-tri-
methoxybenzene as an internal standard. 4-(tert-Butyl)benzyl 
fluoride (1 equiv.), C6D6 (23 equiv.), HBpin (1 equiv.), CHCl3 (1 
M), [H-B-9-BBN]2 (5 mol%). 

The scope and limitations of the boron-catalyzed C−C 
coupling were investigated using 4-(tert-butyl)benzyl flu-
oride 1a at 30 °C with five equivalents of arene 2 (Table 2, 
and see SI). Arenes bearing electron-donating groups such 
as toluene, naphthalene, and 1,3,5-trimethoxybenzene gave 
high yields and regioselectivity of the diarylmethane prod-
ucts 4b, 4c and 4d, respectively, with the regioselectivity 
equaling that achieved using stoichiometric borane.26 
Highly substituted arenes were also tolerated, giving hexa-
substituted arenes, 4e and 4f, as dictated by reagent sub-
stitution pattern. Reaction of fluorobenzene gave 1-benzyl-
4-fluorobenzene 4g in 99% yield and good regioselectivity, 



 

showing chemoselective functionalization of the alkyl flu-
oride over the aryl fluoride bond. Heterocycles were suc-
cessfully coupled to give the furan 4h, thiophene 4i, and N-
methylindole 4j C-F arylation products. However, strongly 
coordinating arenes such as pyridine were found to be un-
reactive. 

The use of substituted benzyl fluorides was next ex-
plored. An ortho-phenyl group 4k was tolerated, without 
intramolecular coupling. Trifluoromethoxy- and difluoro-
methoxy substituents were tolerated, to give 4-benzyl-
α,α,α-trifluoromethoxybenzene 4l (61%) and 4-benzyl-α,α-
difluoromethoxybenzene 4m (89%), respectively, again 
showing chemoselectivity for arylation at the alkyl fluoride 
bond. The chloro- 4n, bromo- 4o and iodo-arenes 4p were 
all chemoselectively coupled at the C‒F bond without any 
loss of the aryl halide or decrease in regioselectivity, alt-
hough at a higher reaction temperature of 60 °C. The 
chemoselectivity for reaction at the benzyl fluoride offers a 
simple means for further functionalization of the aryl hal-
ide products by classical cross-coupling reactions. Elec-
tron-withdrawing substituents, such as a potentially re-
ducible ester (1q, 1r) were not tolerated. Fluorocyclohex-
ane 1s, 1-fluoropentane 1t, and 1-adamantylfluoride 1u gave 
no conversion, even upon heating to 80 °C. Presumably 
due to the increased C‒F bond strengths of these 

substrates (e.g. benzyl fluoride C‒F = 99 kcal mol-1; 1t C‒F 
= 114 kcal mol-1).1 

The intermediacy of a formal carbocation presented the 
possibility of diverse functionalization through trapping by 
other nucleophiles19,22,26 and expansion of this transfor-
mation beyond Friedel-Crafts-type C−C bond formation. 
Carboxylic acids 8 were found to give the C−O coupled es-
ter products 9a-ae (Table 3), a formal nucleophilic substi-
tution at an alkyl C−F bond. Control reactions showed no 
background C‒F substitution by the carboxylic acid (see SI 
for details).6 For C‒O coupling, ethyl acetate was found to 
be the optimal reaction solvent, giving a high yield of the 
ester in 1 hour at room temperature with only one equiva-
lent of the carboxylic acid required. Broad functional group 
tolerance was observed, significantly greater than the C−C 
coupling reaction. An aryl fluoride 8a, underwent 
chemoselective alkyl fluoride bond functionalization. Re-
ducible functional groups, such as alkenes and alkynes 8b-
8e were tolerated under reaction conditions, without any 
borane-catalyzed hydroboration28 or other deleterious re-
activity observed. The sterically demanding carboxylic 
acid, 1-adamantanecarboxylic acid 8f, gave good yield of 
the ester product 9f. A cyclopropyl-containing carboxylic 
acid was tolerated 8g, without formation of products re-
sulting from ring-opening, suggesting an ionic rather than 
radical mechanism.  

Table 2. Scope of borane-catalyzed C−F arylation. 

tBu

OMe

MeO OMe

tBu

S

tBu
N

tBu

4d, 80%

4j, 77%
10:3:2:1:1:1f

4i, 99%
2:1e

4b, 99%
14:6:1a

tBu

4a, 99%

tBu F

4g, 99%c

7:2:1a

tBu

OMe

OMe

OMe

OMe

4e, 99%b

tBu

4f, 94%

tBu

O

4h, 84%d

tBu

4c, 99%
3:1

Ph

4k, 46%
O

F3C

4l, 61%
Br

4o, 71%b

Cl

4n, 52%b

I

4p, 62%b

O
HF2C

4m, 89%

Arene Scope

Benzyl Fluoride Scope

Unsuccessful Alkyl Fluorides

+ 3, (2 mol%)
HBpin (1 equiv.),

(5 equiv.)
1 2 4a-p

+ H2 + FBpin

OEt

O

FF
MeO

O

F F

F

1q 1r 1s 1t 1u

[H-B-9-BBN]2

CHCl3, 30 °C, 16 h

R F R ArH
Ar

 
Reaction conditions: Benzyl fluoride, arene (5 equiv.), HBpin (1 equiv.), [H-B-9-BBN]2 (2 mol%), CHCl3 (1 M), 30 °C, 16 hours. 

Isolated yields are reported. a Ratio of the para:ortho:meta isomers. b Temperature = 60 °C. c Time = 48 hours. d 10 equivalents of 
arene used. e Ratio of the 2- : 3-isomers. f Ratio of the 3- : 2- : x- isomers (see SI).



 

Table 3. Scope of borane-catalyzed C‒F esterification. 

+ 3, (5 mol%)
HBpin (1 equiv.),
EtOAc, r.t., 1 h

O

O

tBu
9a, 79%

O

O

tBu
9b, 80%

F

O

O

tBu

O

O

tBu

F O

O

tBu

N

Cl

Cl

from Ibuprofen
9s, 79%

from Flurbiprofen
9x, 76%

from Chlorambucil
9y, 44%

Esterification Scope

O

O

tBu S

N

O

O O
H

from Sulbactam
9r, 37%

O

O

tBu

O

from Gemfibrozil
9w, 47%

O

O

tBu

NO2

9i, 79%

O

O

tBu
9d, 65%

O

O

tBu

O

from Fenoprofen
9v, 73%

O

O

tBu
9e, 73%

O

O

tBu
9f, 31%

O

O

tBu
9h, 76%

Br
O

O

tBu

9g, 59%

O

O

tBu

From Probenecid
9t, 95%a

O

O

tBu
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O

O

Br F
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O

O

F
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O

O N

O

O Cl

from Indomethacin
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+ H2 FBpin+

O

O
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O

Cl Cl
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O

O

tBu
HN

Cl

Cl
from Diclofenac
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From Biologically-Relevant Compounds
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NnPr2

O O

O

O
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O
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O
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O
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O

O
O

N
H

O

Cl
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O

O O
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O

O
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CN

O

O

OH

O
O

O
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O

O

F

O
O

O

N
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O
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R F O R
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O R

O

R
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H

 
Reaction conditions: alkyl fluoride, carboxylic acid (1 equiv.), HBpin (1 equiv.), [H-B-9-BBN]2 (5 mol%), EtOAc (0.33 M), room 

temperature, 1 hour. Reported yields are isolated. a = 16 hours. b = HBpin (2 equiv.), followed by MeOH/SiO2 workup.



 

Coupling of 4-bromomethylbenzoic acid 8h was 
chemoselective for C‒F esterification 9h, with no reaction 
at the benzyl bromide bond observed. Electron-withdraw-
ing groups, such as a nitro group 9i were preserved under 
reaction conditions. 1-Adamantyl fluoride was successfully 
coupled to the adamantyl ester 9k in good yield after 16 
hours. N-Boc-proline 8l was successfully reacted to give 
the corresponding adamantyl ester 9l, without loss of the 
carbamate. A further tertiary alkyl fluoride was also suc-
cessfully coupled, showing unique reactivity when com-
pared to traditional esterification methods. 2-Fluoro-2-me-
thyl-4-phenylbutane gave the corresponding tertiary ester 
9m when coupled to 4-fluorobenzoic acid. Further, acetal-
bearing carboxylic acid 8n was coupled in good yield to the 
corresponding ester 9n, and without hydrolysis of the ace-
tal. A nitrile substituted carboxylic acid 8o was tolerated, 
without any reduction observed at the nitrile. Using an ex-
tra equivalent of HBpin, a tertiary alcohol 8p was well tol-
erated and gave ester 9p in high yield. 

Late-stage esterification was carried out on a number of 
biologically-relevant carboxylic acids 9q-9ae with a large 
degree of functional group diversity tolerated. The β-lac-
tamase inhibitor, sulbactam, which contains a lactam and 
sulfone group, gave a modest yield of the corresponding 
ester 9r. The nonsteroidal anti-inflammatory drug 
(NSAID), diclofenac, which contains a secondary amine, 
gave a good yield of the ester 9u without dehydrocoupling 
of the amine observed.47 Indomethacin, another NSAID, 
gave the corresponding adamantyl ester 9z in 92% isolated 
yield, improving on traditional esterification methods for 
the same substrate (55%).48 Using an extra equivalent of 
HBpin, an amide 8aa, alcohol 8ab, and unprotected indole 
8ac were able to be coupled in high yield to the corre-
sponding esters 9aa-ac, where N/O-Bpin is presumably 
acting as a traceless protecting group.32,49,50 The highly con-
jugated carboxylic acid, isotretinoin 8ad, gave a modest 
yield of the corresponding adamantyl ester 9ad. A deoxy-
fluorinated derivative of the opioid antagonist, diprenor-
phine, reacted with 4-fluorobenzoic acid to give the corre-
sponding ester 9ae in good yield. Compounds containing 
ketones and aldehydes were not tolerated in the reaction, 
as well as highly coordinating groups, such as pyridine. 

As previously unreactive alkyl fluorides, such as 1-ada-
mantyl fluoride, were found to be suitable coupling part-
ners in the C‒F esterification reaction, the mechanism of 
esterification was investigated through a series of single-
turnover reactions to establish any divergence from the C‒
C coupling reaction (Scheme 2). The direct esterification of 
alkyl fluorides has, to the best of our knowledge, not been 
reported.51,52  In the absence of [H-B-9-BBN]2 or HBpin only 
trace ester formation was observed (Scheme 2, a). When 
stoichiometric [H-B-9-BBN]2 was used, in place of HBpin, 
very slow formation of the ester product was observed, sug-
gesting HBpin played a role other than facilitating turno-
ver. In the absence of alkyl fluoride, the rapid formation of 
acyloxyboronic ester 10 was observed, indicating that de-
hydrocoupling was an initial step of catalysis (Scheme 2, 

b). In the absence of H-B-9-BBN, HBpin was found to be 
unreactive with carboxylic acids under reaction conditions, 
indicating H-B-9-BBN was catalyzing the dehydrocoupling 
reaction (Scheme 2, b). 
Scheme 2. Probing stoichiometric reactivity. 
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Scheme 3. (a) Proposed mechanism for H-B-9-BBN-catalyzed C−F arylation. (b) Proposed mechanism for H-B-9-
BBN-catalyzed C−F esterification. 
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To support this, stoichiometric H-B-9-BBN was found to 
react rapidly with a carboxylic acid 8a to give the acyloxy-
B-9-BBN 11. Independently prepared 4-fluorobenzoate-B-
9-BBN 11 was reacted with HBpin in EtOAc and again the 
4-fluorobenzoate-Bpin 10 was observed, along with H-B-9-
BBN-coordinated 4-fluorobenzoate-B-9-BBN 12, the struc-
ture of which was determined by X-ray crystallography 
(Scheme 2, c). This indicated that B‒O/B‒H transboryla-
tion was operating, which was found to be reversible; reac-
tion of 4-fluorobenzoate-Bpin 10 with [H-B-9-BBN]2 3 gave 
no observable 4-fluorobenzoate-B-9-BBN 11, but the H-B-
9-BBN adduct 12 was observed (Scheme 2, c). 4-Fluoroben-
zoate-B-9-BBN 11 was found to be unreactive with a benzyl 
fluoride 1a under standard reaction conditions (Scheme 2, 
d). However, 4-fluorobenzoate-Bpin 10 reacted with 4-
(tert-butyl)benzyl fluoride 1a to give the corresponding es-
ter 8a and FBpin 7, at room temperature in EtOAc, as mon-
itored by 19F and 11B NMR spectroscopy (Scheme 2, d). Sim-
ilar reactivity was found between 4-fluorobenzoate-Bpin 
10, and 1-adamantyl fluoride 1s and cyclohexyl fluoride 1t 
to give the esters 9k  and 9af, respectively, (Scheme 2, d), 
though in the latter case this reactivity was not translated 
to catalysis and required heating to 80 °C. 

To the best of our knowledge, the reactivity of the 
acyloxyboronic ester 10 towards an alkyl fluoride is unre-
ported and represents unexplored reactivity for organobo-
ron compounds. Modified Gutmann-Beckett analysis53,54 
showed the 4-fluorobenoate-Bpin 10 to be more Lewis 
acidic than the 4-fluorobenzoate-B-9-BBN 11 (4-fluoro-
benoate-Bpin 10 AN = 84,  4-fluorobenzoate-B-9-BBN 11 
AN = 70),  suggesting that Lewis acidity is controlling 
chemoselectivity and the exclusive ability of the acyloxy-
boronic ester species to react with alkyl fluorides. 

Based on the single-turnover studies, DFT calculations 
and catalytic observations, a catalytic cycle with turnover 
facilitated by B−F transborylation was proposed for the C‒
F arylation of alkyl fluorides (Scheme 3, a). Dissociation of 
the borane dimer [H-B-9-BBN]2 3 and coordination to the 
benzyl fluoride 1 initiates carbon‒carbon bond formation 

by generation of a putative carbocation and a fluoroboro-
hyride, by fluoride extraction. This was proceeded by nu-
cleophilic attack of the arene to give a Wheland interme-
diate, followed by deprotonation by the fluoroborohy-
dride, which generated H2 and the C‒C coupled product 
4.25 Catalytic turnover was achieved by F-B-9-BBN 5 under-
going B−F transborylation with HBpin 6 to give FBpin 7 
and regenerate the H-B-9-BBN catalyst 3. 

Conversely, for C‒F esterification, a catalytic cycle where 
instead of B‒F/B‒H transborylation being the driving 
force, the previously unreported boron-mediated defluor-
onative-carboxylation step is proposed to drive turnover 
(Scheme 3, b). Upon formation of monomeric H-B-9-BBN 
3 a rapid dehydrocoupling with the carboxylic acid 8 gave 
the acyloxy-B-9-BBN 11, and released dihydrogen. The 
acyloxy-B-9-BBN 11 reversibly formed the corresponding 
H-B-9-BBN adduct 12. Reversible B‒O transborylation with 
HBpin 6 gave the acyloxy-Bpin 10 and regenerated the H-
B-9-BBN catalyst 3. The acyloxy-Bpin 10 underwent C‒F es-
terification with the alkyl fluoride 1 and gave the C‒O cou-
pled product 9 and FBpin 7. 

In conclusion, the use of transborylation as a turnover 
mechanism for catalytic C−F arylation and esterification 
reactions has been demonstrated with broad functional 
group tolerance. Mechanistic analysis showed that B−F 
transborylation was operating between F-B-9-BBN and 
HBpin and that this reaction was rapid at room tempera-
ture. This B−F transborylation further demonstrates the 
potential of transborylation for the discovery and develop-
ment of main group catalysis. We have also demonstrated 
a unique mode of C‒F activation with acyloxy-Bpin com-
pounds for the formation of esters, which we will continue 
to explore. 
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