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Abstract 27 

How do we update our linguistic knowledge? In seven experiments, we asked whether error-driven 28 

learning can explain under what circumstances adults and children are more likely to store and retain 29 

a new word meaning. Participants were exposed to novel object labels in the context of more or less 30 

constraining sentences or visual contexts. Both two-to-four-year-olds (Mage = 38 months) and adults 31 

were strongly affected by expectations based on sentence constraint when choosing the referent of a 32 

new label. In addition, adults formed stronger memory traces for novel words that violated a stronger 33 

prior expectation. However, preschoolers’ memory was unaffected by the strength of their prior 34 

expectations. We conclude that the encoding of new word-object associations in memory is affected 35 

by prediction error in adults, but not in preschoolers. 36 

Keywords: prediction error; mutual exclusivity; disconfirmed predictions; memory retention; word 37 

learning. 38 
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Prediction error boosts retention of novel words in adults but not in children. 60 

Children learn new words at a staggering rate (Fenson et al., 1994), demonstrating a 61 

remarkable ability not only to determine what a new word means, but also to retain huge numbers 62 

of form-meaning pairs in memory (Vlach, 2019). This learning extends into adulthood and indeed is 63 

lifelong, as new terms and vocabulary enter our language, and as we move between different 64 

linguistic communities (Ameel, Malt, & Storms, 2008; Borovsky, Kutas, & Elman, 2010; Hulme, 65 

Barsky, & Rodd, 2019). In this work, we investigate what factors affect our ability to retain word 66 

meanings, and whether these are the same in children and adults. In particular, we test how the 67 

retention of novel form-meaning pairs is affected by prediction errors, following theoretical claims 68 

that the computation of prediction errors drives memory encoding (Henson & Gagnepain, 2010).  69 

There is now ample evidence that our interactions with the world are guided by prediction, 70 

from the way we control our movements (Wolpert & Flanagan, 2001) to how we make sense of our 71 

perceptions (Clark, 2013; Friston, 2005; Grush, 2004). Across these different domains, we are able 72 

to generate expectations about the future state of the world and, critically, we compare these 73 

expectations to information about the actual state of the world when it reaches our senses. This 74 

process of comparison between expected and observed states generates prediction error signals, 75 

which are thought not only to drive immediate behavioral responses, but also to affect long-term 76 

encoding of information in memory (Henson & Gagnepain, 2010), and thus our learning (e.g., Den 77 

Ouden, Friston, Daw, McIntosh, & Stephan, 2008; Niv & Schoenbaum, 2008; Rescorla & Wagner, 78 

1972).  79 

Importantly, prediction error is the result of a comparison between expected and observed 80 

states, and thus its magnitude depends on the strength, or precision, of both the information we 81 

receive from the outside world and of our prior expectations (Friston, 2005, 2010). Under the 82 

Predictive Interactive Multiple Memory Systems (PIMMS) framework proposed by Henson and 83 

Gagnepain (2010), larger prediction errors (i.e., greater mismatches between expected and observed 84 

states) lead to the formation of stronger memory traces. Combined with the idea that stronger (i.e., 85 
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more precise) expectations generate larger prediction errors (when disconfirmed), this leads to a key 86 

hypothesis: Stronger expectations that are disconfirmed should benefit memory more than weaker 87 

expectations that are disconfirmed. While this may seem surprising and even counterintuitive (after 88 

all, incorrect expectations are akin to mistakes and making mistakes should impair memory for the 89 

correct answer), it falls out of the way prediction error is defined in these accounts – that is, as the 90 

discrepancy between expectations and input.  91 

For example, Greve and colleagues showed that adults were more likely to remember the 92 

association between a scene and a new face (observed only once) if the scene had previously been 93 

repeatedly paired with another face (i.e., the same face multiple times), compared to several faces 94 

all different from the new face (Greve, Cooper, Kaula, Anderson, & Henson, 2017). Crucially, 95 

although in both instances the new face violated a previously established association (i.e., it 96 

disconfirmed an expectation), the previously-established association supported a stronger 97 

expectation when the scene was paired repeatedly with the same face. Thus, this finding confirms a 98 

key hypothesis derived from accounts of memory based on the computation of prediction error. 99 

But does prediction error also affect our memory for word meanings? Surprisingly, despite a 100 

lot of recent interest in adults’ and children’s ability to predict upcoming language (Huettig, 2015; 101 

Kuperberg & Jaeger, 2016; Pickering & Gambi, 2018; Pickering & Garrod, 2013; Rabagliati, 102 

Gambi, & Pickering, 2016), the answer to this question is still unclear. While much evidence 103 

demonstrates that adults and young children are capable of generating expectations at multiple 104 

linguistic levels (Pickering & Gambi, 2018; Rabagliati et al., 2016), including meaning (Altmann & 105 

Kamide, 1999; Borovsky, Elman, & Fernald, 2012; Lindsay, Gambi, & Rabagliati, 2019; Mani, 106 

Daum, & Huettig, 2016; Mani & Huettig, 2012), structure (Gambi, Pickering, & Rabagliati, 2016; 107 

Havron, de Carvalho, Fiévet, & Christophe, 2019; Lukyanenko & Fisher, 2016; Wicha, Moreno, & 108 

Kutas, 2004), and perhaps form (Dikker, Rabagliati, Farmer, & Pylkkänen, 2010; Ylinen et al., 109 

2014; but see Gambi, Gorrie, Pickering, & Rabagliati, 2018), comparatively little work has 110 

examined the consequences of disconfirmed expectations on memory for novel word meanings.  111 
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 112 

Prediction Error and Language Learning 113 

The idea that prediction errors influence language learning is not new, and indeed a number of 114 

historically important models have made the claim that prediction errors play a critical role in 115 

children’s language development. In these models, prediction error typically acts as a guide for 116 

learning; it offers a signal for when the learner should (or should not) revise their linguistic 117 

knowledge. For instance, Elman (1990; see also St. John & McClelland, 1990) introduced the idea 118 

that prediction error-driven learning could help a simple recurrent connectionist network acquire  119 

approximate linguistic representations: The network was trained to predict the next word in a large 120 

corpus of text and, when an encountered word mismatched its prediction, the model’s internal 121 

representations were revised through backpropagation of error (Rumelhart, Hinton, & Williams, 122 

1986). These ideas have also been highly influential for newer models of grammatical development 123 

(e.g., Chang, Dell, & Bock, 2006; Dell & Chang, 2014) and word learning (Plaut and Kello (1999). 124 

In addition, related ideas about error-driven learning can be seen in models that use theories of 125 

reinforcement learning to explain language development. For instance, Ramscar, Yarlett, Dye, 126 

Denny, and Thorpe (2010) argued that a model based on the Rescorla-Wagner learning rule 127 

(Rescorla & Wagner, 1972) can capture how children acquire word meanings under conditions of 128 

referential uncertainty, because the computation of prediction errors allows the child to discriminate 129 

between the situations in which a word can or cannot be used (see also Ramscar, Dye, & McCauley, 130 

2013b). Thus, across all of these models, prediction errors guide children in forming linguistic 131 

representations that can accurately predict the linguistic input that they are likely to encounter. 132 

 In the PIMMS framework (described above), prediction errors also guide learning, but they 133 

do so by indexing how robustly the learner should encode a piece of encountered information into 134 

memory. Specifically, unexpected information (i.e., information that generates a larger prediction 135 

error) is encoded more strongly and thus can be retrieved more easily in the future. For the task of 136 

learning a word, this framework highlights that prediction errors could influence how learners 137 
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remember and retain word meanings over longer periods of time. While this is not fundamentally 138 

different from the models reviewed above, in those models the focus is on how learners discover the 139 

meanings of words through experience (for examples see Ramscar et al., 2010; Grimmick, 140 

Gureckis, & Kachergis, 2019; Stevens, Gleitman, Trueswell, & Yang, 2017): Prediction errors 141 

generated by current input guide changes in linguistic representations and ensure that the system 142 

can accurately predict future input. The PIMMS framework instead focuses on prediction error’s 143 

influence on retention of novel information in memory, which is the topic we address here, in both 144 

adults and children. 145 

 At least since Carey and Bartlett (1978), it has been recognised that young children can 146 

accurately retain word meanings in long-term memory, though exactly how much they are able to 147 

retain and under what conditions has been debated (e.g., Horst & Samuelson, 2008; Spiegel & 148 

Halberda, 2011; Vlach & Sandhofer, 2012; see Samuelson & McMurray, 2017, for review). In any 149 

case, to the extent that children do retain word meanings, this long-term retention appears to rely on 150 

domain-general memory mechanisms (Markson & Bloom, 1997, Vlach, 2019; Vlach & DeBrock, 151 

2017). For instance, children’s ability to retain word meanings up to one month is roughly matched 152 

to their ability to retain non-linguistic factual information over the same length of time (Markson & 153 

Bloom, 1997; Vlach & Sandhofer, 2012), and their memory for word meanings is affected by 154 

factors that are known to influence memory for non-linguistic information, such as repetition and 155 

spacing (e.g., Sandhofer & Vlach, 2011) and sleep (e.g., Henderson, Weighall, Brown, & Gaskell, 156 

2012). While adults’ retention rates for novel word meanings can be higher than children’s, they are 157 

similarly matched to their retention rates for novel non-linguistic information (Markson & Bloom, 158 

1997; Sandhofer & Vlach, 2012).  159 

 Given these considerations, and the findings that prediction errors influence memory for 160 

non-linguistic information in adults, we might expect prediction error should also affect the 161 

retention of word meanings over time, such that retention accuracy is greater for words that are 162 
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learned in unexpected contexts. However, the prior evidence for this is actually somewhat unclear, 163 

as we review below.  164 

Adults. We are not aware of any study that has tested how prediction error affects retention 165 

of newly-learnt word meanings in adults. However, a small number of studies do provide indirect 166 

evidence for a role of prediction error in adult word learning. Fitneva and Christiansen showed that 167 

adults perform better in a learning task when they encounter a greater proportion of word-referent 168 

mappings that are unexpected (Fitneva & Christiansen, 2011, 2017). Using a cross-situational 169 

learning paradigm, where novel words are repeatedly presented under situations of referential 170 

ambiguity (i.e., with multiple potential referents for each word; Yu & Smith, 2007), they exposed 171 

learners to word-referent mappings that were unexpected because they differed from those trained 172 

during an initial familiarization phase. Other mappings were instead expected, as they did not differ 173 

from those established during the familiarization phase. Strikingly, when the proportion of 174 

unexpected to expected mappings was higher, adult learners actually learned more compared to 175 

when the proportion of unexpected mappings was lower.  176 

But while this finding may suggest that prediction error plays a role in adult word learning, 177 

it is unclear whether this interpretation is correct. According to a prediction error account, 178 

participants generated expectations about the words they were going to hear based on the mappings 179 

established during the familiarization phase and, the more often these expectations were then 180 

disconfirmed (because many mappings had changed), the more the resulting error signals benefitted 181 

learning of new word-referent pairings. But if this advantage stems from prediction errors, then it 182 

should be specific to the unexpected mappings – because it is only for these items that the learner 183 

should generate incorrect expectations. In contrast, Fitneva and Christiansen (2011, 2017) found 184 

that both unexpected and expected mappings were learned better when the proportion of unexpected 185 

mappings was higher, suggesting a very different explanation: The larger number of errors may 186 

have prompted participants to allocate more attentional resources to the task, and thus process all 187 

words and referents more deeply. However, since a recent study instead found that learning was 188 
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enhanced specifically for unexpected mappings (Grimmick et al., 2019), it remains possible that 189 

prediction errors do play a role in adult word learning.  190 

Children. More child studies are relevant to our question, but the picture that emerges from 191 

them is also mixed. Two strands of work suggest that, far from driving learning, generating 192 

incorrect expectations may hinder children’s processing of new information, with negative 193 

consequences for their ability to learn this information. First, when Fitneva and Christansen (2017) 194 

asked whether 4-year-olds’ word learning would benefit from encountering high proportions of 195 

unexpected mappings (as in adults), they instead found that 4-year-olds learn better when the 196 

proportion of unexpected mappings is lower. But since it is unclear whether the findings in adults 197 

demonstrate a role for prediction error, it is also unclear whether the findings in children provide 198 

evidence against it, for the same reason: The expectancy-driven effects were not item-specific.  199 

Second, Benitez and colleagues showed that infants (Benitez & Smith, 2012) and 2-year-200 

olds (Benitez & Saffran, 2018) learn novel word-referent associations better when the associations 201 

are demonstrated in predictable contexts, compared to unpredictable contexts. While this seems to 202 

go against the idea that prediction error boosts learning, in this task predictability was manipulated 203 

by having the referents appear in predictable or unpredictable spatial locations, but the association 204 

between the words and their referents were not themselves more or less predictable. Therefore, the 205 

prediction error signal may have enhanced memory, but for the location of the stimuli (which was 206 

not tested), rather than for the word-referent association.  207 

In contrast, other evidence suggests that disconfirmed expectations boost children’s 208 

memory. First, Stahl and Feigenson (2017) showed that 3-to-6-year-olds are more likely to 209 

remember a novel action word if the action it refers to is unexpected due to violations of physical 210 

“core knowledge” (e.g., a bag “magically” changing the color of objects that are put inside it). 211 

However, in the control condition where no expectation was violated (i.e., the object behaved 212 

“normally”), children did not learn the novel word at all (they performed at chance), likely because 213 

in this condition there was no salient action, and the very use of a novel word was thus 214 
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pragmatically infelicitous. This finding suggests that perhaps the unexpected action did not boost 215 

memory because it violated an expectation, but rather because it created the pragmatic conditions 216 

for use of a novel word. Moreover, actions that violate core knowledge are not just unexpected, but 217 

outright impossible, so this conclusion may not generalize to word learning in the wild. 218 

Second, potential evidence that children learn from disconfirmed expectations comes from 219 

Reuter, Borovsky, and Lew-Williams’s (2019) eye-tracking study. Three-to-five-year-olds heard 220 

novel words while observing two potential referents, one of which was a familiar object whose 221 

name was likely known to the child, while the other was a novel (and thus nameless) object. Infants 222 

as young as 16 months (Halberda, 2003; Horst & Samuelson, 2008) reliably map a novel word unto 223 

the novel object at first exposure under these conditions, following the so-called mutual exclusivity 224 

constraint. Crucially, Reuter and colleagues embedded the novel words within sentences, and 225 

manipulated the degree of semantic constraint of such sentences, so that they would provide either a 226 

strong expectation for the name of the familiar object (high constraint) or no strong expectation 227 

(low constraint). For example, a child looking at pictures of a spoon and a novel object should 228 

generate a strong expectation of spoon following Yummy! Let’s eat soup. I’ll stir it with a..., 229 

whereas following Neat! Look over there. Take a look at the…, no strong expectation for either 230 

object should be generated.  231 

The child then heard a novel word (e.g., …cheem) at the end of both high and low constraint 232 

sentences. As a result of the expectation-strength manipulation, the novel word disconfirmed a 233 

stronger prior expectation in the high than in the low constraint condition, thereby generating a 234 

larger prediction error signal in the former than the latter condition. Reuter and colleagues 235 

hypothesized that novel words associated with larger prediction errors should be better learnt, and 236 

used a preferential looking task to test this: They presented children with each novel word and two 237 

novel referents (the target, and a distractor that was the correct referent for a different novel word), 238 

and measured whether the child looked more at the correct referent than the distractor. Surprisingly, 239 

children’s performance was at chance with words encountered after high-constraint sentence 240 



PREDICTION ERROR AND WORD LEARNING 
 

 10 

contexts (and instead above chance in the low constraint condition). This finding is difficult to 241 

reconcile with prediction error being the driver of children’s memory: If it were, children should 242 

have been more likely to gaze at the correct referent in the high than the low constraint condition, 243 

because novel words disconfirmed a stronger prior expectation in the former than the latter 244 

condition.  245 

Nevertheless, Reuter et al. (2019) suggested that their findings support error-driven accounts 246 

of novel word learning because they also found a positive correlation between each child’s ability to 247 

revise following a disconfirmed prediction and their performance at test. Specifically, they 248 

computed a “predict-and-revise” looking measure, which was larger the more the child looked at 249 

the familiar object before hearing the novel word (i.e., the stronger their prior expectation) and the 250 

more they looked towards the novel object upon hearing the novel word (i.e., the faster they revised 251 

their prior expectation). They argued that a positive correlation between children’s “predict-and-252 

revise” looking pattern during learning and the extent to which they preferentially looked at the 253 

target referent for the novel word at test was evidence that the revision of incorrect expectations 254 

was driving learning. But while this correlation was specific to novel words that were embedded in 255 

high-constraint sentences (i.e., no correlation was present for items that were presented at the end of 256 

low-constraint sentences), this interpretation is at odds with the lack of an overall memory 257 

advantage for words presented in the high-constraint condition. 258 

Thus, we suggest an alternative interpretation is more likely: High-constraint sentences may 259 

have hampered memory by shifting attention away from the novel object, and only those children 260 

who were able to recover from this attentional shift would have learned the correct referent for the 261 

novel word. In contrast, low-constraint sentences did not reduce children’s preference for looking at 262 

the novel object, thus supporting memory regardless of individual differences in sentence 263 

processing ability. Importantly, under this interpretation, the relation between individual children’s 264 

learning and their sentence processing ability could be entirely explained by a common underlying 265 
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factor, such as processing speed, rather than being explained by a specific ability to predict-and-266 

revise. 267 

In sum, we do not know whether a prediction-error mechanism underlies the formation and 268 

consolidation of novel word-object associations: Theories of memory based on prediction error 269 

predict that adults and children should form stronger memory representations following the 270 

disconfirmation of stronger expectations, but the empirical evidence is inconclusive. There is 271 

evidence that children have weaker memories for novel words when they are encountered in 272 

unexpected contexts (Benitez & Smith, 2012: Benitez & Saffran, 2018), but also some suggestive 273 

evidence that strong but incorrect expectations may in fact be beneficial (Stahl & Feigenson, 2017; 274 

Reuter et al., 2019). In adults, no study has contrasted memory following a stronger than a weaker 275 

disconfirmed expectation.  276 

Thus, our first question is whether adults acquire stronger memories for new word-object 277 

associations, if they are observed in the context of a violation of a stronger linguistic expectation. 278 

Since word learning is a lifelong process, our second question is whether the underlying 279 

mechanisms remain similar across the lifespan or whether they themselves develop, and therefore 280 

we also compare adult performance to that of 2-to-4-year-olds on the same learning task. If we find 281 

evidence that this effect emerges early in development, this would suggest that the computation of 282 

prediction errors plays a role in word learning from the early stages of language acquisition. 283 

The current study 284 

 Using a task similar to Reuter et al. (2019), we asked whether expectation strength affects 285 

the strength of memory representations for the mapping between a novel word and its referent. 286 

Importantly, we did so both for children (2-to-4-year-olds) and young adults (university students), 287 

so we could directly observe any developmental changes in the mechanisms used for word learning 288 

(unlike Reuter et al., who tested only children). While we disagree with Reuter et al.’s interpretation 289 

of their findings, note that we do not take issue with their design, and in fact we adopt a very similar 290 

design.  291 
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Reuter et al.’s (2019) design has two key strengths. First, it allows for a comparison between 292 

disconfirmed expectations that differ in strength (of the a priori expectation): This is an ideal 293 

comparison for testing the effect of prediction errors on subsequent memory (see Greve et al., 294 

2017). In contrast, most previous studies (Stahl & Feigenson, 2017; Benitez & Smith, 2012; Benitez 295 

& Saffran, 2018) compared confirmed to disconfirmed predictions, which is problematic because 296 

these conditions do not just differ in the magnitude of the prediction error: When a prediction is 297 

disconfirmed, the predicted but not encountered word may linger in memory (Rommers & 298 

Federmeier, 2018), and potentially counteract the benefits of a larger prediction error on memory, if 299 

it interferes with encoding of observed word. Second, expectations strength is manipulated using 300 

sentence contexts (rather than artificially, by changing word-referent mappings mid-way through 301 

the experiment, as in Fitneva & Christiansen, 2011, 2017), thus providing a more ecologically valid 302 

test. We retained both of these aspects of Reuter et al.’s (2019) study, but our procedure did differ 303 

from theirs in some important respects, which we highlight below. 304 

Like Reuter et al. (2019), we manipulated contextual constraint in order to vary expectation 305 

strength: Adult and child learners encountered novel words (e.g., cheem) embedded within 306 

sentences that were either more constraining (Now, Peppa will eat the cheem) or less constraining 307 

(Now, Peppa will get the cheem) with respect to the visual context. The visual context always 308 

consisted of two objects: a familiar object that fit the more constraining verb (e.g., an apple for eat) 309 

and an unfamiliar object (e.g., the jelly-like object in Figure 1). Since the younger children we 310 

tested were 2-year-olds (vs. 3-year-olds in Reuter et al., 2019), we took our constraining verbs from 311 

Mani and Huettig (2012), who showed evidence for prediction in 24-month-olds. 312 

Based on the vast literature on linguistic prediction in adults and children, we expected 313 

listeners to generate a strong expectation that the familiar object would be mentioned following an 314 

High Constraint context – because Peppa is much more likely to eat the apple than the jelly-like 315 

object in Figure 1 (as we confirmed in a post-test; see Methods below). In contrast, following the 316 

Low Constraint context, listeners could generate only a weaker expectation (or no expectation at 317 
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all), because “Now, Peppa will get the…” is not as strongly predictive of “apple” as “Now, Peppa 318 

will eat the…” is.  319 

   In order to disconfirm listeners’ expectations, we relied on the presence of the unfamiliar 320 

object in the display (similarly to Reuter et al., 2019). Since even very young children prefer to map 321 

novel words onto unfamiliar (and thus nameless) objects when the alternative is a familiar object 322 

with a known name (i.e., they follow the mutual exclusivity constraint; Halberda, 2003), both 323 

children and adults should be biased to revise their expectations, and select the unfamiliar object as 324 

the referent of the novel word. This bias may not operate on 100% of trials, so sometimes 325 

participants may select the familiar object as a referent for the novel word. In such cases, it may be 326 

that participants noticed the novel word but chose to interpret it as a novel name for the familiar 327 

object (e.g., the name of a novel variety of apple), or it may be that they failed to notice the novel 328 

word (e.g., because they followed their expectations).  329 

Because it is hard to discriminate between these two options, we conducted analyses that 330 

exclude such cases, and are restricted to instances in which participants selected the unfamiliar 331 

object explicitly, as in these cases we can be certain that they mapped the novel word onto the 332 

unfamiliar object. Crucially, while the occurrence of the novel word should disconfirm participants’ 333 

expectations following both more and less constraining contexts, the magnitude of the resulting 334 

prediction error should be larger following more constraining contexts, where the strength of the 335 

prior expectation was higher. Compare Figures 1a and 1b for a graphical illustration of the 336 

processes at play during high and low constraint learning trials.  337 

To test how memory depends upon processing during learning, we asked participants to 338 

select a referent for each novel word at test to probe retention of the novel mappings. Note that this 339 

task differs from the preferential looking measure used by Reuter et al. (2019), and it is a more 340 

explicit measure of memory. We chose this explicit measure because it is the one used in much 341 

research on the mutual exclusivity constraint. Studies that have tested 2-year-olds on similar tasks 342 

have shown that, even though children correctly map the novel word cheem to the unfamiliar object 343 
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on the fly, they often fail to retain the mapping established via mutual exclusivity in memory when 344 

tested at short (i.e., on the order of 5-10 minutes) retention intervals (e.g., Horst & Samuelson, 345 

2008; see Samuelson & McMurray, 2017 for review; but cf. Spiegel & Halberda, 2011). While this 346 

means we were expecting the youngest children to perform well below ceiling overall in our 347 

explicit memory test, it also provides an additional motivation for our study: If children initially 348 

encode novel words only weakly in memory after a first encounter, is it possible to strengthen such 349 

memory traces by encouraging them to generate linguistic expectations that will be later 350 

disconfirmed?  351 

To summarize, we hypothesize that both adults and young children should be more likely to 352 

remember novel words that violate stronger, as opposed to weaker expectations. We test this 353 

hypothesis in 7 experiments (see Table 1 for an overview).  354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 
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Table 1. Overview of experiments. Please refer to the text for an explanation of the 369 

differences between experiments. 370 

Experiment Participants Aim Manipulation Testing modality / task 

during break 

Context 

repetitions 

1 40 adults Power 

calculation 

Verb constraint Experimenter present / 

tapping, conversation 

with experimenter 

1 

2 40 adults Power 

calculation 

Verb constraint Online / video + 

comprehension questions 

2 

3 58 adults Replication of 

Exp. 1-2 

Verb constraint Online / video + 

comprehension questions 

1 

4 58 adults Control 

experiment 

Object distractor  Online / video + 

comprehension questions 

1 

5 65 adults Replication of 

Exp. 4 

Object distractor Online / video + 

comprehension questions 

1 

6 80 children Child version 

of Exp. 1-3 

Verb constraint Experimenter present / 

tapping 

1 

7 86 children Child version 

of Exp. 4-5 

Object distractor Experimenter present / 

tapping 

1 

 371 

Experiments 1-3: Verb-constrained prediction errors in adults 372 

While the paradigm was designed with children in mind, we first tested it on adult participants to 373 

assess the robustness of the effect. We established this in three experiments, which differed 374 

minimally in procedure. These differences are described below (and summarized in Table 1), but 375 

since findings were consistent across experiments, here we present combined results. All materials, 376 

data, and analyses scripts, including separate analyses and graphs for each experiment are available 377 
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at https://osf.io/zvn6u/?view_only=ce8cc8f5432e41019498a98a2687982b, see Additional analyses 378 

in the analysis_scripts folder, section 1).  379 

Methods. 380 

Participants. Experiments 1 and 2 tested 40 adults each; this sample size was a rough estimate, and 381 

it was expected to yield around 80% power only with a large effect size (d=0.8; Westfall, Kenny, & 382 

Judd, 2014). We then used a simulation approach to compute sample size (N) for subsequent 383 

studies. We did this through a bootstrapping approach: we repeatedly (1000 times) randomly 384 

sampled N adult participants, analyzed retention accuracy as reported below (Data Analysis), and 385 

extracted the z statistics associated with the effect of interest (i.e., the effect of sentence constraint). 386 

We defined power as the percentage of samples that yielded z equal to or greater than 1.645 - i.e., 387 

the threshold for significance of a one-tailed test, as our prediction is directional: High Constraint 388 

contexts should lead to better memory than Low Constraint contexts. When this procedure was 389 

applied to data from Experiments 1 and 2, it indicated that 58 participants would achieve 95% 390 

power, so we recruited that many participants for a replication (Experiment 3). In total, 138 391 

University of Edinburgh students (32 male, age range: 17 to 31; 40 participants did not provide age 392 

information) took part across the three experiments, either for course credit or £2; 16 reported to be 393 

native speakers of a language other than English, but since this did not affect the results (see 394 

Additional analyses in the analysis_scripts folder on the OSF, section 4), the analyses below 395 

disregard language status. The study received ethical approval from the University of Edinburgh. 396 

 397 

 398 

 399 

 400 

 401 

 402 
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Figure 1. Schematic depiction of the experimental design in Experiments 1-3 and 6, including a 403 

graphical illustration of the processes at play during different types of learning trials: a) High 404 

Constraint trials, b) Low Constraint trials. Note that in (a) we conservatively assume no expectation 405 

that the novel object will be named before the participant hears the novel word – this is because the 406 

novel objects only had a loose fit with the constraining verb (e.g., the spiky red object in the figure 407 

had a jelly-like consistency). We depict only learning trials on which participants choose the novel 408 

object as the referent of the novel word. 409 

 410 

Materials and Procedure. The experiments consisted of two phases (see Figure 1). In the learning 411 

phase (top), participants completed 14 trials: Following two practice trials, 8 experimental trials 412 

were randomly interspersed with 4 filler trials. All learning trials had the same structure. 413 

Participants saw a picture of the cartoon character Peppa Pig centered on the top half of the screen. 414 

On the bottom half of the screen, they saw photographs of a familiar and an unfamiliar object.  415 

Participants began a trial by clicking or tapping on the picture of Peppa Pig, which triggered 416 

a pre-recorded sentence. To test whether repetition helps participants revise a disconfirmed 417 

expectation, in Experiment 2 adults heard two sentences, so the target word was always presented at 418 

Experiments 1-3 (Adults) and 6 (Children)
Learning Phase

a) High Constraint

Familiar
Distractor

Novel
Target

Tap the cheem!

Retention Phase

Now, Peppa will eat the…………… cheem. Put your finger on the…… cheem!

Expectation generation Expectation updating Choice

b) Low Constraint 
Now, Peppa will get the…………… cheem. Put your finger on the……. cheem!

Expectation generation Expectation updating Choice

Choice

Target

5 minutes later
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least twice. However, adults’ performance in Experiment 2 did not differ from Experiment 1, where 419 

only one sentence was used. Thus, Experiment 3 and all other experiments reported here used only 420 

one sentence. Participants could listen to the sentence as many times as they wished by tapping on 421 

the top picture again. 422 

Filler sentences were always high constraint and mentioned the predictable, familiar object 423 

(e.g., Now, Peppa will rock the baby) in order to encourage participants to predict familiar words. 424 

Crucially, on half the experimental trials participants listened to a High Constraint sentence (e.g., 425 

Now, Peppa will eat the, when the familiar object was an apple), but on the other half they listened 426 

to a Low Constraint sentence (e.g., Now, Peppa will get the). This way we manipulated the degree 427 

to which participants expected to hear the name of the familiar object. Constraint was manipulated 428 

within participants and items, counterbalanced across two lists.  429 

While filler sentences always ended with the name of the familiar object, experimental 430 

sentences ended with one of 8 novel pseudowords (cheem, dite, doop, fode, foo, pabe, roke and 431 

yok), mostly drawn from Horst and Samuelson (2008). After the sentence, learners heard an 432 

instruction (e.g., Put your finger on the cheem!) asking them to select the object corresponding to 433 

the final word in the sentence. Unfamiliar objects were selected from Horst and Hout’s (2016) 434 

NOUN database; familiarity and nameability were kept as low as possible, but such that the novel 435 

objects would always match the constraint of the verb in High Constraint sentences (e.g., the object 436 

paired with eat had to look edible). A post-test with 20 adults (7 males, 22 to 61 years of age) 437 

recruited from the online platform CloudFlower confirmed that novel objects were a better fit for 438 

the constraining verbs they were paired with (M = 3.08 on a 1-to-7 Likert scale), than for another 439 

(randomly selected) constraining verb (M = 2.19,  t(19) = 4.12, p<.001). The same post-test showed 440 

that, unsurprisingly, familiar objects were a better fit for the constraining verbs (M = 6.10) 441 

compared to the unfamiliar objects (M = 3.08) they were paired with (t(19) = 7.85, p < .001). We 442 

return to this issue below as it was part of the motivation for conducting Experiments 4 and 5. 443 
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Following completion of the learning phase, participants took a short (approximately 5-444 

minute-long) break. What happened during the break depended on whether the experiment was 445 

conducted in the lab or online. Participants in Experiment 1 were tested in the lab and, during the 446 

break, they first tapped on a series of cartoon characters (this task was designed for children, and is 447 

described in more detail below, as it was also used in Experiments 6 and 7); since they completed 448 

this task quite quickly, for the remaining time they engaged in a conversation with the experimenter 449 

about their studies. Participants in Experiments 2 and 3 completed the study online and, during the 450 

break, they were asked to watch a short video from an episode of Peppa Pig and answer four 451 

comprehension questions (to ensure they were paying attention).  452 

Immediately after the break, all participants completed 8 trials in the retention phase (bottom 453 

of Figure 1). On each retention trial, they again tapped on the picture of the cartoon character Peppa 454 

Pig (top of the screen) and then heard an instruction to select the object corresponding to one of the 455 

novel words (e.g., Tap the cheem!), while they observed three randomly-ordered pictures at the 456 

bottom of the screen: the unfamiliar target object (the one that had appeared on the learning trial the 457 

novel word was used on) and two other unfamiliar objects, which served as distractors. Of these, 458 

one was a target object from a different trial, while the other had been also encountered by 459 

participants in the learning phase, but on a filler trial, and had therefore not been named (see 460 

Additional analyses in the analysis_scripts folder on the OSF, section 5, for a breakdown of 461 

participants’ errors by distractor type). Across retention trials, each unfamiliar target object 462 

appeared twice (once as target, once as distractor) and each unfamiliar filler object also appeared 463 

twice (always as a distractor, but paired with two different target words). Participants never 464 

received any feedback about the accuracy of their choices. When pairing target objects with 465 

distractors, we made sure that the average pairwise dissimilarity of the three objects was 466 

comparable across trials (Mean = 0.8173, SD = 0.098, range [0.6490, 0.9624]; ratings from Horst 467 

and Hout, 2016).  468 
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All spoken instructions were recorded by a female native speaker of Scottish English with 469 

child-directed prosody. Target words were recorded separately and combined with the spoken 470 

contexts online, so that we could fully randomize object-word pairings for each participant. Trial 471 

order was also randomized separately for each participant and each phase of the experiment. 472 

Participants first completed the learning phase for all items and then completed the retention phase 473 

(i.e., learning and retention were fully blocked, with no interleaving) The task was custom-coded in 474 

HTML and Javascript. An OSF link to the code is available upon request: Since some of the visual 475 

stimuli are protected by copyright, we are unfortunately unable to make all materials publicly 476 

available. 477 

Data Analysis and Results. 478 

Data analysis. We analyzed participants’ choices on learning trials (i.e., choosing the novel vs. 479 

familiar object) and their accuracy on retention trials as a function of Constraint. For the retention 480 

trials, accuracy was coded in terms of whether participants were able to retain the pairing of the 481 

novel label with the novel object, regardless of whether they had chosen the novel object or the 482 

familiar distractor during the learning phase. Additional analyses of retention accuracy controlled 483 

for the choice made on the corresponding learning trial (Choice-at-learning) and were followed up 484 

with separate analyses of retention trials for which the novel object had been chosen (Novel) on the 485 

corresponding learning trial, and retention trials for which the familiar object had been chosen 486 

during learning (Familiar) to check how previous referential choices affected retention. Fixed 487 

effects were contrast coded and centered. 488 

Since we combined data for three experiments, Experiment was added as an additional 489 

factor with three levels and contrast coded; the first contrast compared performance in Experiment 490 

1, which took place in the lab, to performance in the two online experiments (2 and 3), while the 491 

second contrast compared performance in Experiment 2 to Experiment 3. The models included 492 

interactions between these two contrasts and the fixed effect of interest (Constraint); for analyses of 493 

retention accuracy, we initially also included interactions between the Experiment contrasts and 494 
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Choice-at-learning, but these more complex models did not converge. All analyses used generalized 495 

linear mixed effects models with a logistic link function (function glmer from the lme4 package; 496 

Bates, Maechler, Bolker, & Walker, 2015) in R (R, Version 3.5.1). Random effects structure was 497 

kept maximal, unless (1) correlations between random effects and/or (2) higher-order random 498 

slopes had to be dropped to aid convergence (full model specifications available in the Analysis 499 

Summary within the analysis_scripts folder, section 1, at the OSF link). Instead of p values, we 500 

report 95% confidence intervals for model estimates from the confint function (method=“Wald”).  501 

Results. To maximize power, we report a combined analysis of data from all three adult 502 

experiments, but findings were highly consistent across all experiments (see Additional analyses in 503 

the analysis_scripts folder, section 1, on the OSF for separate analyses for Experiments 1, 2 and 3), 504 

and there were no significant differences between Experiments (either as main effects or 505 

interactions with Constraint) in any of the analyses reported below (see Analysis Summary in the 506 

analysis_scripts folder, section 1, on the OSF). Importantly, the planned replication (Experiment 3) 507 

was successful (z = 1.65). Descriptive statistics for these and subsequent experiments are provided 508 

in Table 2. 509 

Accuracy on filler trials was 100%. During learning, adults were more likely to (correctly) 510 

select the novel object on low constraint (92%) than high constraint trials (81%); this difference was 511 

significant: log-odds B = -1.59, SE = 0.26, z = -6.23, CI = [-2.53,-1.09]. Conversely, on retention 512 

trials, adults were more accurate for novel word-object pairs they had encountered on High 513 

Constraint trials during the learning phase (76%) than on those they had encountered on Low 514 

Constraint trials (69%); log-odds B = 0.39, SE = 0.15, z = 2.65, CI = [0.10,0.67]; see Figure 2, top 515 

left. This pattern was qualified by an interaction between Constraint and Choice-at-learning (log-516 

odds B = 1.38, SE = 0.49, z = 2.81, CI = [0.42, 2.33]), which indicated that it was driven by novel 517 

(i.e., “correct”) learning trials; log-odds B = 0.66, SE = 0.17, z = 3.98, CI = [0.34,0.98]. In contrast, 518 

retention of familiar (i.e., “inaccurate”) learning trials tended to be worse for High Constraint items, 519 

but this pattern was not reliable; CI = [-1.68,0.07]. 520 
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Figure 2. Retention accuracy (%) as a function of Verb Constraint (left) or type of Object Distractor 521 

(right) and of the referent chosen during learning (Familiar vs. Novel). The top panels report data 522 

from the adult experiments (Verb Constraint: Experiments 1-3; Object Distractor: Experiments 4-523 

5), while the bottom panels report the child data (Verb Constraint: Experiment 6; Object Distractor: 524 

Experiment 7). Conditions where weaker expectations were violated are represented by a filled 525 

circle, while conditions where stronger expectations were violated are represented by an empty 526 

circle. The error bars represent 95% bootstrap CI’s (1000 samples) over subjects. The dashed 527 

horizontal lines represent chance performance (33%). 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 
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Table 2. Descriptive statistics for all experiments. 539 

 Experiment 1-3 4-5 6 7 

% Filler accuracy 

(learning phase) 

 100 >99 >99 96 

% Novel object choices 

(learning phase) 

 

High Constraint/ Plausible 

Distractor trials 

81 86 66 63 

Low Constraint/Implausible 

Distractor trials 

92 96 77 69 

% Retention accuracy 

(novel trials) 

 

High Constraint/ Plausible 

Distractor trials 

80 79 57 50 

Low Constraint/Implausible 

Distractor trials 

69 68 52 49 

% Retention accuracy 

(familiar trials) 

 

High Constraint/ Plausible 

Distractor trials 

61 73 30 25 

Low Constraint/Implausible 

Distractor trials 

78 48 35 20 

 540 

 541 

Discussion.  542 

In accord with prediction error-based theories of memory (Henson & Gagnepain, 2010), 543 

adults were more likely to retain a newly formed association between a word and its referent when 544 

that association disconfirmed a stronger expectation compared to a weaker one. Importantly, this is 545 

not merely a novelty effect: Pseudowords and unfamiliar objects were equally novel for participants 546 

across High and Low Constraint contexts. Critically, what changed was the strength of the prior 547 

expectations generated by the verbs.  548 

However, adults were also much more likely to disregard mutual exclusivity when the 549 

constraint was High rather than Low (e.g., picking a picture of an apple as the referent for cheem 550 
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more often after eat than get). This may suggest that, when contextual support is strong, adult word 551 

learners may be more likely to infer that a novel word is a synonym for a highly expected familiar 552 

word (e.g., cheem is a synonym for apple, or perhaps a type of apple). While this finding is 553 

interesting in itself, and in line with previous evidence about adults’ learning of novel word 554 

meanings from context (Borovsky et al., 2010), it also means that we may have underestimated the 555 

benefit of disconfirming strong expectations: Since familiar target objects were a much better fit 556 

than unfamiliar objects after High Constraint contexts, adult learners may have found it more 557 

difficult to revise their expectations following such contexts. Thus, we devised a second version of 558 

the task where new unfamiliar objects were selected to better fit the High Constraint verbs.  559 

Importantly, the new version also addressed a potential confound. Given that High and Low 560 

Constraint conditions used different verbs, and that constraining verbs tend to be semantically 561 

richer, it is possible that adult learners performed better in the High Constraint condition simply 562 

because they could build richer and more distinctive representations for the word meanings, 563 

providing more cues for retrieving information from memory. In the new version we therefore kept 564 

sentential contexts constant and manipulated expectations by varying the plausibility of the familiar 565 

object distractor instead.  566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 
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Figure 3. Schematic depiction of the experimental design and graphical illustration of the processes 576 

at play during different types of learning trials in Experiments 4-5 and 7; a) Plausible Distractor 577 

trials, b) Implausible Distractor trials. Note that in (a) the strength of the expectation is larger for the 578 

plausible familiar distractor (apple) than the novel object (exotic fruit), but there is some 579 

expectation for the latter to be named – this reflects the findings from our post-test: The novel 580 

objects used in Experiments 4-5 and 7 were less of a good fit for the constraining verbs compared to 581 

the familiar objects, but they were also a better fit compared to the novel objects used in 582 

Experiments 1-3 and 6 (cf. Figure 1). In (b) the expectation updating step confirms the expectation 583 

generated initially (i.e., that the novel object will be named). We depict only learning trials on 584 

which participants choose the novel object as the referent of the novel word. 585 

 586 

Experiments 4 and 5: Generating prediction errors using plausible distractor objects in adults 587 

These experiments were closely modelled on Experiments 1-3 but with two key 588 

modifications. First, we replaced all unfamiliar objects with objects that, while still unfamiliar, 589 

would better fit constraining verbs. For example, the target for eat was now an exotic fruit (see 590 

Experiments 4-5 (Adults) and 7 (Children)
Learning Phase

Retention Phase

a) Plausible Distractor

Plausible 
Familiar
Distractor

Novel
Target

Tap the cheem!

Now, Peppa will eat the…………… cheem. Put your finger on the…… cheem!

Expectation generation Expectation updating Choice

b) Implausible Distractor 

Now, Peppa will eat the…………… cheem. Put your finger on the……. cheem!

Expectation generation Expectation updating Choice

Novel
Target

Implausible 
Familiar
Distractor

Choice

Target

5 minutes later
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Figure 3; a full list of materials is available in the materials&lists folder on the OSF). An additional 591 

20 adults (6 male, 19 to 57 years of age), who participated in a similar post-test to the one 592 

mentioned above, rated the new unfamiliar objects as more likely to undergo the actions referred to 593 

by the constraining verbs (M=4.91), compared to the unfamiliar objects used in Experiments 1-3 (M 594 

= 3.08, t(34.72) = 5.40, p < .001).  595 

Secondly, learners were exposed only to semantically rich verbs (the constraining verbs 596 

from Experiments 1-3). Rather than manipulating expectations by varying the verb, we instead 597 

paired the same constraining verb (e.g., eat) either with a familiar object that fit its constraint (e.g., 598 

apple, as in Experiments 1-3) or with a different familiar object (e.g., car), which was implausible 599 

given the verb (see Figure 3b). Thus, if semantic richness was responsible for the memory boost we 600 

observed previously, we should now find no difference in retention accuracy using this design. 601 

However, if the memory boost was driven by disconfirmed expectations, then we should find better 602 

retention accuracy for trials with plausible than implausible familiar object distractors.  603 

Implausible distractors should facilitate mapping of the novel word onto the correct, 604 

unfamiliar target, even before the novel word is heard, so they should make it less likely that 605 

participants will have their expectations disconfirmed (see Figure 3b); in other words, on 606 

implausible distractor trials both the sentence context and the mutual exclusivity constraint should 607 

bias participants to map the novel word onto the unfamiliar object. In contrast, on plausible 608 

distractor trials, participants should still generate a strong expectation that the plausible familiar 609 

distractors will be named (just as on high constraint trials in Experiments 1-3); in addition, they 610 

may generate a weaker expectation that the unfamiliar object will be named (as this also fits the 611 

constraint of the verb, though not as well as the familiar object). In any case, the occurrence of the 612 

novel word should disconfirm the stronger expectation for the familiar distractor to be named, 613 

generating prediction error (see Figure 3a). 614 

Participants.  615 
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One hundred and twenty-three adult participants took part online. Fifty-eight of these were students 616 

from the University of Edinburgh (14 male, age range: 18 to 22, one participant did not provide age 617 

information), who took part in Experiment 4. The remaining 65 participants were students from 618 

Cardiff University (11 male, age range: 19 to 22, two participants did not provide age information) 619 

and they took part in Experiment 5; two participants only completed the learning phase, so analyses 620 

of retention accuracy are based on a sample size of 63 participants. Across the two experiments, 621 

eleven participants were native speakers of a language other than English (6 in Experiment 4, 5 in 622 

Experiment 5).  623 

Methods. 624 

The procedure was identical to Experiment 3. The design and materials were similar except for the 625 

modifications described above: New unfamiliar target objects were chosen that provided a better fit 626 

to the constraining verbs, and only sentences with constraining verbs were used, as we instead 627 

varied the identity of the familiar distractor object, which could either be a good fit for the verb 628 

(e.g., apple for eat; Plausible Distractor) or not (e.g., car for eat; Implausible Distractor). 629 

 Experiment 4 and 5 were almost identical replications of each other, with only a minor 630 

variation in the assignment of items to conditions across the two experimental lists. We used two 631 

lists in order to counterbalance the assignment of items to conditions (Plausible vs. Implausible 632 

Distractor). While analyzing Experiment 4 data, we noticed that for a subset of the items, adults 633 

were particularly likely to select the incorrect (familiar) distractor as the referent for the novel word 634 

in the Plausible Distractor condition (but not in the Implausible Distractor condition), and these 635 

items happened to cluster together in the counterbalancing (i.e., they all appeared in the Plausible 636 

Distractor condition in the same list). As a result, one list led to fewer novel object selections during 637 

the learning phase on Plausible Distractor than Implausible Distractor trials (88% vs. 99% Novel 638 

choices), while the other did not (98% vs. 96% Novel choices). Since we were concerned this may 639 

affect the results, we re-distributed item versions across lists before running Experiment 5. Lists for 640 

both experiments are available in the materials&lists folder on the OSF. 641 
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Results and Discussion. 642 

Since the two experiments yielded comparable findings, here we report combined analyses to 643 

maximize power. Again, Experiment (contrast coded) and its interactions with the predictors of 644 

interest (Distractor and Choice-at-Learning) were added to all models, and again there were no 645 

significant differences between experiments, and there were no interactions modulating any of the 646 

effects reported below. For separate analyses for each experiment, see Additional analyses in the 647 

analysis_scripts folder, section 2, on the OSF. Accuracy on filler trials was higher than 99%. 648 

During learning, adults were more likely to (correctly) select the target when the familiar distractor 649 

was implausible (96%) compared to when it was a good fit (86%), though this difference was only 650 

marginal; log-odds B = -1.84, SE = 1.10, z = -1.68, CI = [-3.99,0.31]. 651 

Most importantly, adult learners performed better at retention when their expectations had 652 

been disconfirmed during learning (78%) than when they had not (67%); log-odds B = 0.61, SE = 653 

0.19, z = 3.43, CI = [0.26,0.96] (and this pattern did not depend on their choice during learning; CI 654 

= [-2.22,0.49]); see Figure 2, top right. Thus, disconfirmed expectations can enhance memory for 655 

novel words, and it is unlikely that the findings from Experiments 1-3 were only due to differences 656 

in semantic richness between verbs. 657 

Experiments 6-7: Children 658 

Having established that adults’ memory for novel word-object associations is boosted by larger 659 

prediction errors, we tested whether children would show similar effects using both the original 660 

design (i.e., manipulating verb constraint as in Experiments 1-3) and the modified design (i.e., 661 

manipulating the distractor object as in Experiments 4-5).  662 

Methods. 663 

Participants. A refined power calculation based on data from Experiment 1-3 (total N = 138) 664 

suggested that we may have overestimated the size of the effect in adults. This refined power 665 

analysis indicated that a sample size of N=80 would achieve 83% power, so we aimed to recruit at 666 
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least 80 children per experiment. The final sample sizes were 80 in Experiment 6 and 86 in 667 

Experiment 7. 668 

We had originally planned to test 2- and 3-year-olds because this age range sits at the 669 

intersection between research on mutual exclusivity (e.g., Horst & Samuelson, 2008) and on 670 

linguistic prediction (Borovsky et al., 2012; Mani & Huettig, 2012), but a few 4-year-olds were 671 

included (10 in Experiment 6, 13 in Experiment 7) due to recruitment constraints; additional 672 

analyses including the child’s age in months did not reveal any age-related differences (see 673 

Additional analyses in the analysis-scripts folder, section 3, on the OSF), so below we report 674 

analyses that collapse across all ages. Children in Experiment 6 (Mage = 38 months, range = 25-56 675 

months; 45 males, 35 females) were recruited from nurseries in the Edinburgh area, Edinburgh Zoo, 676 

a local library, and from a database of families interested in research; children in Experiment 7 677 

(Mage = 38 months, range = 24-59 months; 43 males, 43 females) were recruited from nurseries in 678 

and around Cardiff, Techniquest (a science museum in Cardiff), from a database of families 679 

interested in research, or through personal contacts. Written informed consent was obtained from all 680 

caregivers and verbal assent from all children. All participants were exposed to English as one of 681 

their home languages or at nursery, and some were exposed to at least one additional language (15 682 

in Experiment 6, 16 in Experiment 7). Children who grow up bilingual may follow the mutual 683 

exclusivity principle to a lesser extent than monolingual children (Byers‐Heinlein & Werker, 2009), 684 

so we added language background as a covariate in preliminary analyses. Since no differences were 685 

found in these preliminary analyses, below we report analyses collapsing across number of 686 

languages; note that in Byers-Heinlein and Werker (2009) the largest differences were observed 687 

between monolingual and trilingual children and there were only two trilingual children in our 688 

sample. 689 

Procedure. The procedure was as similar as possible to the adult one. Children completed the task 690 

on a touch-screen tablet. Although they were allowed to pace the task for themselves, the 691 

experimenter monitored them closely to make sure they were paying attention to the spoken 692 
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instructions and, in case they appeared distracted, encouraged them to listen to the instructions 693 

again. During the break between the learning phase and the retention phase of the experiment, 694 

children completed a series of three tapping games involving known cartoon characters (as in 695 

Experiment 1); in each game, their task was to find the character named by the experimenter and 696 

“turn it” into a green tick mark by tapping on it with their finger. Experiment 6 used the same lists 697 

as Experiments 1-3 and Experiment 7 used the same lists as Experiment 4.  698 

Results. 699 

Children’s accuracy on filler trials was high (Exp. 6: >99%, Exp. 7: 96%). Like adults, 700 

children were more likely to (correctly) select the novel object on Low Constraint than High 701 

Constraint trials; Exp. 6: 77% vs. 66%); log-odds B = -0.59, SE = 0.25, z = -2.33, CI = [-1.08,-702 

0.09]. Numerically, they were also more likely to select the novel object when the familiar 703 

distractor was implausible; Exp. 7: 69% vs. 63%), but this difference was not reliable; CI = [-704 

0.67,0.10].  705 

In contrast to the adult findings, children’s retention of the novel word-object mappings was 706 

unaffected by the expectations they had generated during learning (see Figure 2, bottom panels). In 707 

Experiment 6, they were as accurate for pairs they had encountered on High (48%) or Low 708 

Constraint (48%) trials; CI = [-0.35,0.30]. In Experiment 7, they were similarly accurate regardless 709 

of whether the familiar distractor fit the verb well (41%) or was implausible (40%); CI = [-710 

0.26,0.36]. These findings held even when we restricted the analysis to items for which children had 711 

chosen the novel referent during the learning phase (Experiment 6: CI = [-0.18,0.60], Experiment 7: 712 

CI = [-0.32,0.45]). 713 

Retention accuracy was much higher when children had (correctly) selected the novel object 714 

during learning, than when they had not (Exp. 6: 55% vs. 32%; Exp. 7: 50% vs. 23%); Experiment 715 

6: log-odds B = 1.10, SE = 0.27, z = 4.01, CI = [0.56,1.63]; Experiment 7: log-odds B = 1.33, SE = 716 

0.21, z = 6.44, CI = [0.92,1.73]. However, choice at learning did not interact with our 717 

manipulations. 718 
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While we set our sample size for each study using power analyses, these were based on adult 719 

data, which are likely less variable than children’s. However, combined analyses of data from both 720 

Experiment 6 and 7 found no evidence for an effect of expectation strength on retention accuracy 721 

(log-odds B = 0.10, SE =  0.13, z =  0.79, CI = [-0.15,0.35]), despite their increased power. There 722 

was also no indication that performance improved within the age range tested (log-odds B = -0.001, 723 

SE =  0.007, z = -0.09, CI = [-0,015,0.014]), nor that the size of the expectation strength effect was 724 

larger for older children (log-odds B = 0.01, SE = 0.02, z = 0.99, CI =[-0.01,0.04]; see Additional 725 

analyses in the analysis_scripts folder, section 3, on the OSF).  726 

Follow-up analyses combining data from all 7 experiments showed that, overall, adults’ 727 

choices at learning were affected by the strength prior expectations more than children’s (log-odds 728 

B = -0.94, SE =0.23, z = -4.04, CI = [-1.40,-0.48]). Importantly, these analyses also confirmed that 729 

adults’ retention performance was affected by the strength prior expectations more than children’s 730 

(log-odds B = 0.39, SE = 0.18, z = 2.18, CI = [0.04,0.75]).  731 

 732 

Discussion 733 

Unlike for adults, prediction errors did not enhance children’s memory for word-referent 734 

associations. This was despite clear evidence that children can generate expectations based on the 735 

constraint of verbs even at age 2 (Mani & Huettig, 2012; recall that all of our constraining verbs 736 

were English translations of stimuli in Mani and Huettig’s German study). Moreover, children 737 

clearly demonstrated sensitivity to the constraint manipulation in Experiment 6: Like adults, they 738 

were much more likely to disregard mutual exclusivity when constraint was High (i.e., picking the 739 

apple as the referent more often after eat than get), though their choices at learning were less 740 

sensitive than adults’ to the strength of prior expectations. Finally, although children’s memory 741 

performance was (unsurprisingly) lower than adults’, it was still above chance, which suggests that, 742 

although the task was difficult, children still encoded significant amounts of information during the 743 
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learning phase. Thus, our results cannot be explained by a floor effect. They suggest that prediction 744 

errors play a surprisingly small role in how children encode word meanings. 745 

Moreover, as we discuss below, other aspects of these data may be informative for models 746 

of children’s word learning. Children were strongly affected by their choices during learning: In 747 

fact, while their retention was above chance-level (33% in this task) for words they had (correctly) 748 

mapped onto the novel referent during learning, it was at chance for words they had instead mapped 749 

onto the familiar referent. This suggests that children had only tracked one potential word-referent 750 

mapping during this task (Stevens et al., 2017; Trueswell, Medina, Hafri, & Gleitman, 2013). We 751 

return to this point in the General Discussion. Finally, while Horst and Samuelson (2008) found no 752 

evidence for retention in 24-month-olds, we showed that children aged between 2 and 4 years were 753 

able to retain the new word-referent mappings at above-chance levels over at least a 5-minute 754 

period. This could suggest that children’s retention abilities improve dramatically during the second 755 

year of life, but note another important difference between our design and Horst and Samuelson’s: 756 

We presented the novel words in informationally rich, high constraint sentential contexts (e.g. ...eat 757 

the cheem), which may have facilitated more robust encoding of the word-referent mappings, 758 

whereas they used only low constraint contexts (e.g., get the cheem!). 759 

 760 

General Discussion 761 

 Can a prediction-error mechanism explain how adults and children encode associations 762 

between novel word forms and their meanings? The evidence around this important question is 763 

surprisingly mixed and, despite considerable evidence that both adults and children can process 764 

language predictively, the role of prediction in the creation of new linguistic representations 765 

remains poorly understood. In the introduction, we argued that a key hypothesis of error-driven 766 

accounts of memory formation is that the disconfirmation of expectations should enhance memory 767 

for the unexpected information and, importantly, the more so the stronger the initial expectation. In 768 

this study, we tested this prediction in both 2-to-4-year-olds (2 experiments, combined N = 166) 769 
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and young adults (5 experiments, combined N = 259). Below, we summarize our findings and then 770 

discuss their implications for our understanding of the mechanisms that support word learning and 771 

their development. 772 

 There are two key findings. First, young adults are more likely to remember a novel word-773 

object association that has disconfirmed a stronger, compared to a weaker, expectation. We 774 

established this finding (Experiments 1 and 2), directly replicated it (Experiment 3), and showed 775 

that it still held when we modulated expectation strength through visual rather than linguistic 776 

context (Experiments 4 and 5). Second, and in contrast to the adult findings, 2-to-4-year-olds’ 777 

memory was not enhanced by violations of stronger, compared to weaker expectations 778 

(Experiments 6 and 7). This was despite the fact that children clearly generated linguistic 779 

expectations: These expectations were strong enough to affect their referential choices (i.e., 780 

choosing the familiar object more often when it was more expected). Moreover, these expectations 781 

also had an indirect effect on memory: When children failed to revise during the learning phrase, 782 

they retained nothing about the novel objects and associated labels for the test phase. But when 783 

words were mapped to novel objects during learning, expectation strength did not affect children’s 784 

retention.  785 

 786 

Prediction error shapes the encoding of linguistic information in adult memory: Implications 787 

for models of word learning. 788 

 Our adult findings clearly show that linguistic expectations shape the encoding of the link 789 

between novel words and their meanings in memory, and can thus be viewed as an extension of the 790 

PIMMS framework for memory (Henson & Gagnepain, 2010; Greve et al., 2017) to linguistic 791 

representations. Importantly, these findings also have far-reaching consequences for computational 792 

models of word learning. Such models have implemented a variety of different mechanisms, from 793 

associative (i.e., Hebbian) learning (e.g., Kachergis, Yu, & Shiffrin, 2012; McMurray, Horst, & 794 

Samuelson, 2012; Yu, Smith, Klein, & Shiffrin, 2007) to Bayesian inference (e.g., Xu & 795 
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Tenenbaum, 2007; Frank, Goodman, & Tenenbaum, 2009), from hypothesis testing (e.g., Stevens et 796 

al., 2017; Trueswell et al., 2013; Yu et al., 2007) to the application to semantic-interpretation rules 797 

(e.g., Siskind, 1996). However, with a few exceptions (Plaut & Kello, 1999; Ramscar et al. 2010; 798 

Grimmick et al., 2019; Stevens et al., 2017), such mechanisms have not included error-driven 799 

learning.  800 

An error-driven learning mechanism is one that updates the current state of the model based 801 

on the discrepancy between expected and observed inputs. By doing so, it can account for the role 802 

played by prior expectations in learning: In our study, generating a stronger, but incorrect, prior 803 

expectation led to the creation of a stronger memory trace for the correct word picture-mapping 804 

(once the initial expectation was revised), suggesting that the generation of incorrect expectations 805 

may benefit word learning. It is useful to contrast this with associative (Hebbian) learning: In its 806 

simplest form, an associative word learner tracks the co-occurrences between words and referents, 807 

augmenting the strength of the association between a word and a referent every time they co-occur 808 

(e.g., Yu et al., 2007). More sophisticated associative models include parameters that let the 809 

strength of associations decay over time, and can also model attention – that is, the fact that not all 810 

possible word-referent associations are processed and stored equally (e.g., Kachergis et al., 2012).  811 

However, associative models cannot straightforwardly account for the fact that association 812 

strength depends on prior expectations. Recall that Grimmick et al. (2019) recently showed that 813 

training adults on one set of word-referent mappings in a cross-situational learning paradigm, and 814 

then changing the mappings, led to better memory performance for the items that had been changed 815 

(i.e., initially incorrect items) than for those that had not. We argued that Grimmick et al.’s finding 816 

also supports the hypothesis that prediction error is implicated in adult word learning and, indeed, in 817 

order to reproduce their human data, Grimmick et al. augmented an associative word learning 818 

model (Kachergis et al., 2012) with a prediction-error mechanism; the associative model by itself 819 

could not reproduce their finding. Similarly, our findings suggest that adult word learning makes 820 

use of a prediction-error mechanism.  821 
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Our findings can also be explained in terms of McMurray et al.’s (2012) competition-based 822 

model of word learning. This model assumes that potential referents for a heard word compete with 823 

each other, and that this process of “in-the-moment” competition during linguistic processing can 824 

affect long-term learning (i.e., leading to changes in the weights representing the strength of 825 

associations between words and their referents). In our study, competition levels were likely higher 826 

on high-constraint and plausible distractor trials (compared to low constraint and implausible 827 

distractor trials, respectively), and thus the novel target referent had to reach a higher level of 828 

activation in order to be selected. If this higher activation translates into stronger association 829 

weights, McMurray et al.’s model could explain the higher memory performance displayed by 830 

adults for items encountered on those trials.  831 

Note that other types of models can also be augmented with prediction-error mechanisms. 832 

Recent years have seen the emergence of so-called hypothesis-testing models of word learning 833 

(e.g., Trueswell et al., 2013). In these models, when learners hear a novel word, they generate a 834 

single hypothesis about its referent, rather than tracking all possible associations between the word 835 

and every co-occurring referent. If this hypothesis is confirmed on the next encounter, the 836 

hypothesized word-referent mapping is retained, but if it happens to be disconfirmed, then the 837 

learner needs to start afresh, as they have not retained any information from previous encounters; 838 

see Berens, Horst, and Bird (2018) for evidence supporting this model using fMRI activation 839 

patterns in the hippocampus during cross-situational word learning.  840 

While the original hypothesis-testing model (Trueswell et al., 2013) includes processes of 841 

expectation generation and error computation, it does not incorporate a prediction-error mechanism 842 

because its learning following a disconfirmed expectation is not proportional to the strength of that 843 

expectation. However, a recent modification of the original model, called PURSUIT, augments it 844 

with a prediction-error mechanism where the amount of learning is proportional to expectation 845 

strength (Stevens et al., 2017). We suggest that our findings are more compatible with this 846 

augmented model than with the original hypothesis-testing model.  847 
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While an error-based learning mechanism straightforwardly explains our findings, we note 848 

that they could also be accommodated within a Bayesian framework. Expectation generation would 849 

be akin to positing a prior probability distribution, and expectations would then be updated based on 850 

how surprising the data are given the prior, to derive a posterior probability distribution. On a high 851 

constraint trial, most of the prior probability mass is placed on the expectation that the familiar 852 

object will be mentioned next, while on a low constraint trial, it is distributed more evenly between 853 

the familiar and unfamiliar object (see Figure 1). Thus, the very same data (i.e., the occurrence of 854 

the novel word) will lead to a larger updating on a high constraint than low constraint trials, because 855 

the novel word increases the probability that the unfamiliar object will be mentioned. However, 856 

existing Bayesian models of word learning (Xu & Tenenbaum, 2007; Frank, et al., 2009) do not 857 

include memory parameters, so it is unclear how they would account for the finding that larger 858 

updating leads to enhanced retention. In contrast, this finding highlights the importance of building 859 

models of word learning that account for the nature of memory.  860 

More speculatively, our findings may also help link computational models of word learning 861 

with the cognitive neuroscience of word learning. A large body of evidence implicates the 862 

hippocampus in the initial stages of word learning in adults (Davis & Gaskell, 2009; Tagarelli, 863 

Shattuck, Turkeltaub, & Ullman, 2019; Berens et al., 2018). According to the complementary 864 

systems account of word learning (Lindsay & Gaskell, 2010), the hippocampus supports rapid, 865 

initial acquisition of novel words, whereas the neocortex is responsible for slower consolidation, 866 

typically following periods of sleep (see McClelland, McNaughton, & O'Reilly, 1995 for detailed 867 

theoretical arguments in support of the complementary systems account of learning and memory). 868 

Strong evidence for this account comes from the inability of patients with hippocampal lesions to 869 

learn new words (see Cooper, Greve, & Henson, 2019, for a recent review and discussion).  870 

Interestingly, the hippocampus is sensitive to novelty and unexpected events (e.g., Kumaran 871 

& Maguire, 2006), and it is thought to encode not just episodic memories but also predictions about 872 

future outcomes (e.g., Shohamy & Adcock, 2010). Our finding that prediction errors affect word 873 
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learning in adults, therefore, is consistent with a key role for the hippocampus in this process. Given 874 

we did not find evidence for a role of prediction error in children word learning, an interesting 875 

question for future research is whether there are significant developmental changes in the reliance 876 

of word learning processes on the hippocampus (similarly to what has been shown for other areas of 877 

cognitive development; Qin et al., 2014). It may also be that children only show sensitivity to 878 

prediction error after a period of sleep consolidation (which was not included in our study). 879 

 880 

Do the mechanisms of word learning change across the lifespan? 881 

A key contribution of our study is to highlight a potential developmental discontinuity in the 882 

mechanisms of word learning: While adult memory for novel word-referent mappings was affected 883 

by the strength of prior expectations, we found no evidence that 2-to-4-year-olds’ memory was 884 

similarly affected. This raises the possibility that the above-described models of word learning, 885 

which have often been evaluated based on adult data, may not automatically generalize to explain 886 

children’s behavior. 887 

Our study is not the first to highlight differences between adults’ and children’s word 888 

learning mechanisms. We have already mentioned Fitneva and Christiansen’s (2017) work, 889 

showing that 4-year-olds learn more when their expectations are confirmed, but adults learn more 890 

when they are exposed to a higher proportion of unexpected word-referent mappings. But while 891 

their findings suggest that children should benefit from generating correct expectations (see also 892 

Benitez & Saffran, 2012, 2018), we found no difference in memory performance between trials on 893 

which generating an incorrect expectation was more likely (high constraint) and those in which it 894 

was less likely (low constraint).  895 

Can Fitneva and Christiansen’s (2017) findings be reconciled with ours? Incorrect 896 

expectations may both hinder selection of the correct novel referent and benefit memory for it, if it 897 

is selected. However, when we excluded all trials on which children (incorrectly) selected the 898 

familiar referent, we still found no evidence for a difference in children’s memory performance 899 
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between strong and weak expectation trials. Thus, it seems more likely that children at this age are 900 

yet to develop the mechanism that makes memory sensitive to expectation strength. 901 

Further, our results seem incompatible with Ramscar, Dye, and Klein (2013a), who argued 902 

that children’s word learning is more likely than adults’ to be driven by an error-based mechanism 903 

(rather than less likely, as our findings suggest). They devised a word learning task in which a 904 

learner driven only by prediction error (Rescorla & Wagner, 1972; Ramscar et al., 2010) would 905 

behave differently from one who additionally makes use of explicit inferences (e.g., reasoning by 906 

exclusion). Participants were first exposed to three novel objects and two novel words. Two of the 907 

objects co-occurred with only one of the words each, while the third object co-occurred with both of 908 

the words. When children were presented with a third novel word at test (here, wug), they were less 909 

likely to select this third object as a referent for wug. While none of the objects had co-occurred 910 

with wug during the learning phase, the object that had co-occurred with two other words was the 911 

least predictive of wug, and so it should be the least preferred choice of an error-driven learner 912 

(Ramscar et al., 2010).  In contrast, adults were more likely to select the third object than either of 913 

the other objects, suggesting that they were more likely to explicitly reason by exclusion, choosing 914 

the third object because they had already mapped each of the other two objects onto the word it had 915 

co-occurred with.  916 

While Ramscar et al.’s (2013a) findings suggest that child word learners track co-occurrence 917 

information across multiple encounters, we note that in our study co-occurrence information was 918 

identical across high and low constraint conditions. Instead, what (likely) changed across conditions 919 

was participants’ processing of the novel word and novel target object; for example, by violating a 920 

strong linguistic expectation, we may have prompted deeper processing of the novel word and 921 

object, which in turn would have led to enhanced encoding of the association between word and 922 

object in memory.  923 

We thus suggest that by the age of 4 children may be capable of accumulating information 924 

using an error-driven learning rule to track which words and referents co-occur and which do not 925 
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(in accordance with Ramscar et al., 2013a), and form expectations about future co-occurrences. But 926 

at this age the violation of such prior expectations does not yet lead to deeper processing and 927 

encoding of unexpected information in memory. In sum, different mechanisms, with different 928 

developmental trajectories, may underly our ability to track regularities in the environment (i.e., 929 

statistical learning; Yu & Smith, 2007) and to focus attention and cognitive resources on the 930 

encoding of unexpected events. 931 

 932 

The effect of linguistic prediction on children’s word learning. 933 

 Our findings suggest two conclusions about how prediction affects children’s learning. The 934 

first conclusion is that children’s predictions affect what children learn, by guiding their attention, 935 

but the second conclusion is that these predictions do not affect the strength of children’s memory 936 

representations. These two conclusions may seem to contradict one another, but we propose they 937 

can be reconciled with one another, and with findings from previous work (Reuter et al., 2019) by 938 

carefully distinguishing the mechanisms involved.  939 

First, the predictive strength of the sentence contexts affected the inferences that children 940 

made about the likely referent of the novel word: They were more likely to choose the familiar 941 

object (thus disregarding the mutual exclusivity constraint) when the sentence context led them to 942 

expect a reference to this object. In turn, choosing the familiar object as the referent led to chance 943 

performance at test, suggesting that children’s attention was focused on the selected referent, to the 944 

extent that little information about the unselected referent was retained – a finding which, 945 

incidentally, replicates previous studies (Aravind et al., 2018; Woodard, Gleitman, & Trueswell, 946 

2016; but see Yurovsky & Frank, 2015) and is consistent with hypothesis-testing models of word 947 

learning (Trueswell et al., 2013). Importantly, however, during the learning phase children still 948 

selected the novel referent at above-chance rates, even when doing so required them to abandon a 949 

prior expectation, and when they did select the novel referent during learning, they then 950 

demonstrated above-chance retention of the association between the novel word and this novel 951 
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referent during the test phase. Thus, children were capable of revising and updating their 952 

expectations based on the mismatch between those and the auditory input (i.e., when a novel word 953 

occurred instead of the expected familiar one) on the majority of trials.  954 

Second, the predictive strength of the sentence contexts did not affect children’s likelihood 955 

of retaining the association between the novel word and the novel object. Thus, while the ability to 956 

revise disconfirmed expectations may guide children to discover new linguistic information (i.e., 957 

one aspect of learning), we suggest it is not a key driver of retention of this information. This 958 

interpretation allows our data to be reconciled with Reuter et al.’s (2019) finding that children who 959 

show a stronger predict-and-revise looking pattern are also better at word learning. Recall that in 960 

their study children’s performance at test was no greater in the high than the low constraint 961 

condition (in fact, it was greater in the latter than the former), so they also found no evidence that 962 

stronger expectations were associated with enhanced memory, when disconfirmed. What they did 963 

find was that children who engaged less in prediction-and-revision were less likely to remember 964 

high-constraint words, which is actually in line with our findings: When children did not engage in 965 

mutual exclusivity reasoning during learning, then they had poor memory at test. Thus, Reuter et 966 

al.’s findings concur with ours in suggesting that prediction-and-revision skills help reference 967 

resolution in children, but do not affect retention, so long as reference is resolved to the object that 968 

is later tested for retention. 969 

There is however one caveat to these conclusions that is worth considering. Children’s 970 

choices during learning were less sensitive to the strength of prior expectations compared to adults’. 971 

This could be in part because children’s choices are often noisier than adults’ (e.g., due to lapses in 972 

attention). But it is also expected because studies that have compared predictive skills between 973 

children and adults have typically found stronger effects of prediction in adults (e.g., Gambi et al., 974 

2016, 2018; Borovsky et al., 2012). Moreover, the strength of prediction effects increases 975 

throughout the pre-school years (Gambi, Jindal, Sharpe, Pickering, & Rabagliati, in press). This 976 
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raises the possibility that prediction did not affect children’s retention because they did not generate 977 

expectations that were strong or consistent enough (unlike adults).  978 

However, we think that this possibility is unlikely, because children clearly generated quite 979 

strong expectations. As noted above, when children did follow their expectations and chose the 980 

familiar referent (which they were more likely to do than adults in the High Constraint/Plausible 981 

Distractor conditions; compare 66% novel referent selections in Experiment 6 and 63% in 982 

Experiment 7 for children with 81% in Experiments 1-3 and 86% in Experiments 4-5 for adults), 983 

this choice had a large impact on their memory performance during the retention phase. Similarly, 984 

there may be a worry that the lack of expectation strength effects on children’s memory is down to 985 

the task being too difficult for children of this age, but as noted above children’s performance was 986 

well above chance when they selected the novel object during learning, which they did on most 987 

trials.  988 

In sum, we argue that, despite the use of different tasks during the learning phase and 989 

different measures of learning (looking-while-listening vs. referent selection), as well as a slightly 990 

different age range (3-to-5 vs. 2-to-4-year-olds), Reuter et al.’s (2019) findings are consistent with 991 

our own: Both studies suggest that children’s predictions affect reference resolution but are unlikely 992 

to drive retention of new word-meaning mappings. Therefore, we disagree with Reuter et al.’s 993 

suggestion that their findings show that children’s memory for novel word-object associations is 994 

supported by a prediction-error mechanism. Instead, we suggest that children who exhibited a 995 

stronger predict-and-revise pattern were better at word learning in their study because they were 996 

faster at processing sentences, and their higher processing speed allowed them to learn following 997 

high-constraint sentences even though these initially biased their attention towards the incorrect 998 

referent.  999 

 1000 

Why did disconfirmed expectations not boost memory in young children? 1001 



PREDICTION ERROR AND WORD LEARNING 
 

 42 

If pre-school aged children can generate linguistic expectations, and revise such 1002 

expectations “in-the-moment” when they are disconfirmed, then why does prediction error not 1003 

affect encoding of novel linguistic information in young children’s memory? Below we discuss two 1004 

possible answers to this question. 1005 

One possibility is that the null effect follows from children’s lack of fluency at completing 1006 

the task, which follows from a recent proposal that violations of expectations only influence 1007 

memory once inhibitory control skills are well-developed (Brod, Breitwieser, Hasselhorn, & Bunge, 1008 

2019). In our task, inhibitory control skills would be important for quickly suppressing the 1009 

generated expectation once a novel word is encountered, allowing fluent mapping to the correct 1010 

referent. Brod and colleagues (2019) have proposed that this use of inhibitory control is still not 1011 

apparent even in late childhood: They found that violating expectations did not enhance memory for 1012 

new declarative knowledge in children aged 9 to 12 years, but that it did enhance memory in adults 1013 

(Brod, Hasselhorn, & Bunge, 2018).  1014 

This could potentially explain children’s difficulty with our task. While our child 1015 

participants were able to inhibit selection of the strongly expected familiar object on the majority of 1016 

trials, it is likely that they took longer than adults to focus attention on the novel object, by which 1017 

time, activation of the novel word in their working memory may have already started to decay, and 1018 

this could have led to a weaker binding of the word-object association. In sum, perhaps children 1019 

were not able to re-direct their attention quickly enough to benefit from the stronger encoding of 1020 

information following a larger prediction error. If this is the case, then our findings indicate that 1021 

children may have already developed an error-based learning mechanism, but their memory for 1022 

novel word-referent mappings does not benefit from this mechanism (at least in our paradigm) 1023 

because of delays in children’s development of attentional skills. 1024 

 Alternatively, children may show relative insensitivity to disconfirmed expectations because 1025 

doing so is in fact adaptive for their learning. Since children’s linguistic knowledge is so limited, 1026 

their linguistic input is likely to deliver more surprises more frequently (i.e., unexpected words), at 1027 
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least compared to adults. Children may therefore be more likely than adults to “expect the 1028 

unexpected” (i.e., placing a higher likelihood on the eventuality of encountering unexpected words). 1029 

While this means that unexpected words may not leave a particularly strong trace in children’s 1030 

memory, it also allows attentional resources to be distributed more evenly across many mildly 1031 

surprising words. This idea is supported by evidence that children are indeed sensitive to the 1032 

predictability of the environment. For example, the so-called Goldilocks effect shows that infants 1033 

and young children prefer to attend to input that is of intermediate predictability, neither too 1034 

predictable nor too unpredictable given their current knowledge about the environment (Kidd, 1035 

Piantadosi, & Aslin, 2014), and children can also quickly learn to expect the unexpected when they 1036 

have been exposed to a speaker that talks about very unlikely events (Yurovsky, Case, & Frank, 1037 

2017). 1038 

We do not know of any research that shows that children’s memory becomes more sensitive 1039 

to unpredictable information as they become more knowledgeable about the environment, but if 1040 

children’s word learning does indeed benefit from encountering unexpected information that 1041 

violates “core knowledge” (Stahl & Feigenson, 2017), this may suggest that children’s memory is 1042 

more sensitive to unpredictable information in domains that the child is more knowledgeable about 1043 

(because core knowledge is acquired very early on). Similarly, children may be more sensitive to 1044 

prediction error when there is a conflict between internally-generated expectations and strong 1045 

external cues (e.g., unambiguous referential cues, such as an adult’s pointing) compared to 1046 

situations where there is a conflict between internally-generated expectations and the child’s 1047 

preferred interpretation of a novel stimulus, as in our task. In the latter case, the error signal may be 1048 

too weak or noisy because it is based on the child’s own developing knowledge of language, 1049 

whereas strong error signals from the environment may play a much more important role in shaping 1050 

children’s error-based learning. 1051 

 1052 

Conclusion 1053 
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 In sum, we showed that prediction error drives the encoding of novel word-object 1054 

associations in adult memory, as associations were encoded more strongly when they violated a 1055 

stronger compared to a weaker prior expectation. However, we found no effect of disconfirming a 1056 

stronger versus weaker prior expectation on children’s memory. The adult findings represent a clear 1057 

demonstration that at least one of the mechanisms underlying adult word learning is based on the 1058 

computation of prediction errors. Thus, they set an important constraint on models of adult word 1059 

learning. The lack of a comparable effect of prediction error on children memory was not due to 1060 

children’s inability to generate linguistic expectations, nor to an inability to revise them when they 1061 

proved incorrect. Instead, we suggest that children are either too slow to inhibit disconfirmed 1062 

expectations or that they do not prioritize the processing of unexpected information as much as 1063 

adults, because the environment is overall more unpredictable to them. These findings thus 1064 

highlight an important developmental discontinuity in the mechanisms that underlie prediction’s 1065 

role in language learning. 1066 
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