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Abstract   

Scientific advances in genetic analysis have been made possible in recent years by technical 

developments in computational biology, or bioinformatics. Bioinformatics has opened up the 

human genome to diverse analyses involving automated laboratory hardware and machine 

learning algorithms and software. As part of an emerging field of social genomics, recent 

educational genetics studies using big data have begun to raise challenging findings linking 

DNA to predicted life outcomes. Bioinformatic technologies and techniques including 

‘genome-wide association’ and ‘polygenic scoring’ are producing new kinds of genetic biodata 

and expert knowledge for rethinking the upbringing and education of children. This article 

takes as an empirical opening a recent epistemic and ethical controversy over the use of biodata 

to make genetic predictions about educational, socio-economic and life outcomes, detailing the 

forms of expert knowledge and technologies involved these predictions, and exploring the 

social and ethical implications of data-intensive bioinformatics. 

Keywords:  Behavioural genetics, big data, bioinformatics, biology, genoeconomics, 

sociogenomics 

 

Introduction 

The aim of this contribution is to examine a scientific and ethical controversy over the 

production and use of computer-generated biological data in education-related research. The 



controversy has emerged from three converging developments. First, over the past two decades, 

new ‘educational data scientists’ have gained disciplinary and professional authority in 

educational research, and begun undertaking ‘big data’ studies into the cognitive, neural and 

embodied substrates of human learning (Williamson 2020). Second, fresh interest in genetic 

science in education has brought biological accounts of human subjectivity into education 

research as a route to calling for policy and/or practice innovations (Youdell & Lindley 2018). 

And third, the biological sciences have become increasingly ‘data-intensive’ with the 

development of advanced computational power, data analytics and machine learning in human 

genomic research (Leonelli 2016). Computational biology, or bioinformatics—the integration 

of biology and informatics—has become central to data analysis, discovery and knowledge 

production in the biological sciences, profoundly affecting how human life is examined and 

understood (Stevens 2013).  

At the intersection of educational data science, educational genetics and bioinformatics, 

researchers have developed methods for creating precise policy-relevant knowledge about the 

ways that biology impacts on learning and educational outcomes, and begun exploring 

possibilities for intervention informed by biological knowledge (Gulson & Webb 2018). 

Recent educational genomics studies have generated new knowledge through bioinformatic 

analyses of complex associations between DNA and educational outcomes (attainment, test 

performance, achievement, cognitive and non-cognitive skills), as well as longer-term socio-

economic and life outcomes and traits such as intelligence (Martschenko, Trejo & Domingue 

2019). The bioinformatics infrastructures, expert practices and methods employed in these 

tasks, however, remain under-researched from critical social scientific or philosophical 

perspectives. The empirical focus of this article is ongoing controversy over data-intensive 

bioinformatic methods in research on education, addressing how bioinformatics experts and 

technologies are intervening in research practices, what new knowledge is being produced and 



how that knowledge is translated into possible (albeit contested) implications for educational 

practice and policy.  

These emerging fields represent a significant shift in the life sciences to incorporate social data 

in studies of biological processes, described as a novel form of ‘social science genetics’, ‘social 

genomics’ or ‘sociogenomics’ owing to its use of genetic data to explore social issues normally 

reserved to social science disciplines (Braudt 2018; Mills & Tropf 2020). Sociogenomics is 

part of ‘an emerging trend: using huge amounts of data and computing power to uncover 

genetic contributions to complex social traits’, which raises important ‘ethical and societal risks 

of acting on such information’ (Adam 2019). As sociogenomics studies have proliferated to 

examine an increasing range of educational factors, these developments stand to reposition 

education as a datafied ‘precision science’: a new model of ‘precision education’ akin to 

‘precision medicine’ in the biomedical field that positions human bodies and life itself as 

objects of policy and practice interventions (Kuch, Kearnes & Gulson 2020). The contention 

by certain scientists of sociogenomics that ‘precision education’ is possible and desirable, using 

genetic data from bioinformatic analyses to ‘personalise’ learning processes (Plomin & von 

Stumm 2018), and the specific scientific and ethical controversies generated by these proposals 

for predictive DNA-based policy and practice, are the focus of this article. It contributes 

insights into the digitalization of children and upbringing that is the focus for this special 

section, illuminating how new bio-datafied configurations of human subjects are being 

generated by bioinformatics studies related to education and childcare. 

 

Bioinformatics and sociogenomics 

Since the sequencing of the human genome—the entire genetic structure of human DNA—was 

finalised by the Human Genome project in 2003, ‘postgenomic’ science has advanced 

considerably, ushering in biotechnological and biomedical innovations while simultaneously 



catalysing concern about genetic modification (Reardon 2017). In this postgenomic context, 

new knowledge about human life is generated from bioinformation and biodata that are 

analysed in the dry lab of computational hardware and software rather than the wet lab of 

biological samples and instruments, with profound consequences for how human life is 

understood, conceptualized and treated (Parry & Greenhough 2018). The field of genetics, born 

partly out of nineteenth-century innovations in biostatistics, has metamorphosed into 

bioinformatic forms of analysis, examination, dissection and understanding of life ‘with and 

through computers’ (Stevens 2013, 11). 

The transformation of biology into the information science of bioinformatics, and the 

transcoding of organic biological samples into bioinformational data, raises a host of issues 

regarding the ways biodata are accessed, circulated or capitalised on. The assembling and 

analysis of big data in computational biology entails radical new divisions of research labour 

and training for biological scientists in computer programming, data analytics and information 

infrastructures, as biology has moved from in vivo experimentation to in silico databases and 

pattern detection (Leonelli 2018). Bioinformatics does not only signify the physical 

transformation of human tissue and DNA into machine-readable digital data, but is also 

implicated in bodily commodification, the emergence of biocapital markets, the expansion of 

the biotech industry, and questions of ethics, inclusion, exclusion and inequality (Reardon 

2017). The act of bringing up digital biodata from human bodies for analysis in the 

bioinformatics lab is shaped by the bioeconomy of informatic capitalism and the biotech 

industry, which in turn shapes how human life is conceived and acted upon in fields such as 

‘precision medicine’ and ‘personalized healthcare’ (Prainsack 2018). 

The education and upbringing of children have emerged as key concerns in the context of 

postgenomic science. Significant debates and controversies have emerged about DNA testing 

babies to make predictions about later life outcomes, predisposition to disease or other medical 



conditions, and the prospects of engineering ‘designer children’ (Regalado 2019). Postgenomic 

science has opened up the genetic factors involved in education as a new frontier of knowledge 

production and potential policy influence too, as ‘big biodata’ about the human genome have 

been analysed to uncover genetic associations with learning, intelligence, attainment, and 

achievement (Gaysina 2016). Education has now become a central concern of the field of 

sociogenomics, with advocates claiming social scientific analyses must integrate ‘data on the 

genetic material that underlies our human bodies with the study of how those bodies are 

differentially treated in the social world’ (Braudt 2018, n.p.).  

Sociogenomics has also become highly politically charged. Conservative commentators have 

mobilised recent sociogenomic research to dismiss ‘left-wing’ or ‘progressive’ explanations 

for variations and inequalities in educational outcomes, and to support policies that take DNA 

differences related to intelligence, achievement and attainment into account (Young 2018; 

Murray 2020).   Sociogenomic expertise in education therefore raises ethical concerns about 

biological determinism and eugenics, reanimating longstanding debates about the genetic 

inheritance of intelligence and ability (Youdell & Lindley 2018). As such, sociogenomics is a 

site of controversy in two senses: first, a site of scientific controversy between different 

perspectives and lab settings, and second, a site of ethical controversy concerned with the 

scientific measurement, differential treatment, and potential discriminatory practices on 

children (Comfort 2018). 

 

Bioscience controversies 

The analysis in this article builds on science and technology studies (STS), approaching 

bioinformatics as a combination of social, technical, human, economic and political relations 

that are structured by certain forms of knowledge, practices, assumptions, and shared goals, 

and that engender particular ethical ways of thinking about human life and societal order (Rose 



2007). Bioinformatics technologies are imprinted with particular ways of understanding human 

life that emerge both from existing forms of scientific knowledge and from the specific 

computational and analytical capacities available from their programming (Stevens 2017).  

A methodological concern in STS is the study of epistemic and public controversies, or the 

disagreements, negotiations and compromises that occur in relation to scientific knowledge 

production, its reception by the public, and its translation into policy (Meloni & Testa 2018). 

These moments of controversy are important because they demonstrate how scientific 

knowledge production is thoroughly socially embedded, situated relationally in material and 

technical infrastructures, and often in tension with ethical judgments, especially where the 

stakes involve the manipulation of biological life (Prainsack 2017). Controversies also reveal 

instability in the direction of science, calling analytical attention to the ‘social life’ of scientific 

innovation and the contingency of knowledge production.  

Methodologically, the article traces a scientific and ethical controversy over sociogenomics 

through a corpus of texts produced by scientists involved in research about the genetics of 

educational outcomes. These texts are read interpretively, ‘not simply as empirical reports but 

as evidence of relationships between key sociotechnical elements’, and by treating these texts 

as ‘informants’ that provide insight into the concepts, practices and debates that characterise 

the controversy (Perrotta and Selwyn 2019, 4). The sociotechnical elements detailed in the 

following sections include the scientific organizations and individual experts involved in the 

controversy over educational sociogenomics; the apparatus of bioinformatics technologies and 

methods that shape their research findings; and their translation into proposals for policy and/or 

practice.  

Analytically, the key argument is that experts and technologies of sociogenomics are producing 

novel bioinformatic policy objects—datafied renderings of human populations, lives and 



bodies as biodata which are created in such a way to shape implications and proposals for 

policy and practice interventions. The apparatus of bioinformatics, as in other fields of datafied 

knowledge production, not only carries authority to ‘discover’ or ‘reveal things’ but also to 

‘bring into being the very objects they are meant to describe and represent’ (Ruppert 2018, 19). 

As biological science has transformed into bioinformatics, ‘computers have altered our 

understanding of “life”’, as ‘biological objects’ have been ‘virtualized’ as codes, sequences 

and patterns, and ‘databases and algorithms determine what sorts of objects exist’ for analysis 

and knowledge generation (Stevens 2013, 5).  

As such, the title ‘bringing up the bio-datafied child’ refers to (1) how computational biology 

brings into being new ways of understanding children and predicting their life outcomes based 

on data analysis of DNA, and (2) the influence of computational biology on the ways parents, 

educators and policymakers may approach the education and upbringing of children. The claim 

that individually personalised ‘precision education’ could be designed based on computational 

genetic analysis, in particular, carries profound social and ethical consequences for the ways 

that children may be understood in biological terms (by educators, parents and policymakers), 

and for how knowledge produced from computational biodata analysis may be mobilised in 

practice and policy. Though as shown below, the path forward for sociogenomic studies of 

education faces in two ways as scientists disagree about the appropriate interpretation and use 

of novel biodata. 

 

Expert lab settings 

Two key lab settings have established trajectories for bioinformatics-based educational 

genomics studies, and are at the centre of the scientific and ethical controversy studied here. 

The first is a research cluster at the Social, Genetic and Developmental Psychiatry Centre 

(SGDP) at King’s College London, centred on behavioural geneticist Robert Plomin, along 



with other collaborators. The other is the Social Science Genetics Association Consortium 

(SSGAC), an internationally distributed consortium with members in the US, Canada, 

Australia and Europe, established and led by the genoeconomist Daniel Benjamin of the 

University of Southern California, Los Angeles. These groups pursue similar research 

questions and methodologies, and together their studies are part of the emerging subfield of 

sociogenomics, yet they have begun to diverge sharply in terms of the interpretations and policy 

and practice implications they derive from the data.  

The SGDP group has firmly established itself to produce policy-relevant sociogenomic 

evidence, based on its research track record in behavioural genetics, molecular genomics, and 

statistical genetics).1 In their systematic review of the contribution of behavioural genetics to 

understanding the associations between genes, cognitive ability and education, Plomin’s team 

argue that: ‘Considering both cognitive and noncognitive skills as well as their biological and 

environmental underpinnings will be fundamental in moving towards a comprehensive, 

evidence-based model of education’ (Malanchini et al. 2020, 229).  

A particular understanding of education infuses the SGDP research: (1) drawing on OECD, 

that ‘Educational attainment is a measure of human capital and is indicative of the skills of a 

population’; (2) ‘extant research has identified general cognitive ability as the major source of 

variation in academic performance, measured as both school achievement and how long people 

spend in education—i.e. educational attainment’; and (3) ‘the observed associations between 

cognitive ability and education … are rooted in genetic variation’ (229). This identifies the 

importance of human capital development as an international education policy agenda; situates 

general cognitive ability—intelligence—as a key indicator of human capital, as measured 

through school achievement and attainment proxies; and claims intelligence has clear genetic 

underpinnings.  



The SSGAC has become an established centre of expertise in polygenic scoring and 

genoeconomics in education, operating as a ‘distributed lab’ across many institutions and 

disciplines in a variety of countries. It was founded in 2011 as a research consortium to test the 

feasibility of an ‘alternative, rigorous, large-data approach to social science genetics’ 

(https://www.thessgac.org/). Its specialism is ‘big data’ meta-studies involving very large 

samples of biodata on phenotypes/traits, ‘including attitudes, behaviors, economic preferences, 

and socioeconomic outcomes’ (https://www.thessgac.org/phenotypes). It also shares datasets 

publicly for re-use by other researchers (https://www.thessgac.org/data). Plomin’s team used 

SSGAC data in conjunction with UK exams data to predict school achievement in high-stakes 

assessments. The SSGAC is not a conventional biological lab that works with ‘wet’ samples; 

instead, it compiles digital biodata for analysis seeking to identify social-scientific phenotypes 

such as behaviours and socioeconomic outcomes. 

The SSGAC’s most high-profile project is a long-term study of the genetics of educational 

attainment. The study itself is the accomplishment of a well-funded international team of 80 

scientists working in departments of psychology, sociology, behavioural genetics, behavioural 

science, neurogenomics, economics, biosciences, health sciences, and many others including 

scientists from the commercial organization 23andMe, the Silicon Valley consumer genetics 

ancestry company backed by Google (and owner of the world’s largest private database of 

consumer biodata). Its research, then, is distributed across public universities and commercial 

labs at huge scale and significant cost. 

Controversy among the SGDP and SSGAC groups first emerged in 2016 when SSGAC 

colleagues reported ‘divisive’ findings in Nature (Hayden 2016) showing the very small effect 

of genes on educational attainment (years spent in education). The key finding was that DNA 

analysis could be used to predict a small percentage of the variation in educational attainment, 

on average rather than at the individual level, with the secondary finding that attainment 



worked as an accurate proxy of intelligence because of its associations with cognitive 

performance test scores. As reported in the media, however, Plomin interpreted the findings as 

a ‘tipping point’ for future studies ‘to predict genetic strengths and weaknesses for individuals’, 

which he argued could be used to ‘move education closer to “personalised learning” rather than 

continuing to assume that a one-size-fits-all national curriculum works equally well for 

everyone’ (Sample 2016). He also argued such studies could pave the way to ‘predictive 

genetics for traits such as how well children perform on standardized tests’, although the 

SSGAC termed such proposals ‘irresponsible’ and scientifically implausible (Hayden 2016). 

These lab settings—and their disagreement—illuminate how the labour of producing new 

knowledge related to educational outcomes has moved to new and competing sites, where the 

disciplinary expertise and assumptions of fields of behavioural genetics, molecular genomics 

and genoeconomics differentially structure the kinds of scientific endeavours that take place 

and shape what interpretations and knowledge are produced. This process of knowledge 

production, however, also relies on complex sociotechnical bioinformatics infrastructure for 

its realization. 

 

Biodatafied knowledge production 

A number of key bioinformatics innovations underpin the capacity of sociogenomics labs to 

produce knowledge. For the SGDP, ‘molecular genetic research, particularly recent cutting-

edge advances in DNA-based methods, has furthered our knowledge and understanding of 

cognitive ability, academic performance and their association’ (Malanchini et al. 2020, 229-

230). They describe these cutting edge methods as part of a ‘technological advance’ that 

‘enabled an atheoretical approach to identify associations across the genome’, and which, 

through ‘statistical power’, have led to ‘increasingly more insight into the molecular genetic 

architecture of cognitive ability and academic performance’ (Malanchini et al. 2020, 235). This 



emphasis on technologically-advanced and atheoretical analysis of molecular genetic 

architecture is typical of the shift to ‘data-centric’ rather than theory-driven biology that utilises 

bioinformatics for knowledge discovery from vast datasets (Leonelli 2016). It also exemplifies 

a ‘molecular style of thinking’ in contemporary biology that conceives of human life at the 

scale of molecular entities and their interactions, which ‘is fabricating a new way of 

understanding life itself’: 

Molecular genomics has depended on the invention of a whole range of technologies for 

decomposing, anatomizing, manipulating, amplifying and reproducing vitality at this 

molecular level. … [T]hese techniques opened ‘the gene’ to knowledge and technique at 

the molecular level. (Rose 2007, 13-14) 

Bioinformatics has been central to the transformation of human biology into molecular 

genomics. The field of sociogenomics has now brought these techniques and a molecular gaze 

to bear on educational questions and the anatomization of the molecular genetic architectures 

underpinning student outcomes. Two technologies in particular are integral to the knowledge 

production techniques of the SGDP and SSGAC: microarrays and biobanks. 

Microarrays 

Molecular sociogenomic studies require hardware and software capable of capturing and 

identifying minute DNA variations scattered across different regions of the genome. 

Microarrays are matchbox-sized glass slides, termed ‘labs-on-a-chip’, imprinted with DNA 

fragments. When a dissolved sample of a patient’s or client’s DNA flows across the slide, it 

binds with any complementary fragments. It can then be analysed in a microarray scanner or 

an automated ‘laboratory robot’ capable of analysing thousands of arrays, which is necessary 

for genotyping an individual in terms of how they differ from a group or population (Kragh-

Furbo et al. 2016). A huge industry of bioinformatics infrastructure suppliers has developed to 



support microarray-based genomics, as science has hybridised with business and technology 

in contemporary data-centred biology (Reardon 2017).   

Genomic science has labelled the variations identified by microarrays as single nucleotide 

polymorphisms (SNPs), tiny building blocks in human DNA. Each individual person’s genome 

has 4-5 million SNPs, and across large populations hundreds of millions of SNPs have been 

identified. Mapping patterns among these variations, especially across large populations, has 

become the basis for Genome-Wide Association Studies (GWAS). These molecular genomics 

studies resist simplistic explanations that any single gene or cluster of genes is responsible for 

disease risk, susceptibility to inherited health problems, or behavioural trait, instead seeking 

out complex architectural associations across millions of SNPs (Plomin 2018).  

By aggregating and weighting identified SNPs, scientists produce genome-wide polygenic 

scores, or predictors of a particular phenotype, trait or outcome based on patterns found in the 

analysed SNP sample. This is a complex statistical and computational procedure, involving 

bioinformatics hardware, software packages, algorithms, and machine learning methods. 

Associations between SNPs and traits or diseases ‘are highly numerically leveraged’, relying 

on ‘many crosshatched layers of data, inference, modelling, and testing’, with the DNA 

microarray ‘effectively running thousands or millions of experiments in parallel’: 

The toolboxes of computer science and statistics have been effectively ransacked for 

pattern recognition, data mining, and machine learning techniques that can detect the 

associations between hundred and thousands of SNPs. (Kragh-Furbo et al. 2016, 11)   

Microarray-based studies of gene interactions such as genome-wide association studies of 

SNPs and polygenic scoring need to be understood as a complex accumulation of scientific 

knowledges, lab settings and experimental practices, computer science and statistical 



techniques, business logics and marketisation, biotechnology devices and automated 

infrastructures, and models and inferences.  

Sociogenomics has embraced microarrays and GWAS methods, especially the mapping of SNP 

patterns that are associated with educational outcomes. Educational attainment was among the 

first human cognitive phenotypes to be studied using genome-wide association, SNP and 

polygenic scoring methods. Robert Plomin’s lab in particular has mobilised microarrays, 

GWAS, SNP detection and polygenic scoring to support its vision of an ‘evidence-based model 

of learning’ that integrates ‘genetic prediction into personalized approaches to learning and 

interventions’ (Malanchini et al. 2020, 241). As the SGDP lab acknowledge, these new insights 

into genotype-phenotype associations and prediction in education have only become possible 

through cutting edge techniques such as SNP microarrays and ‘laboratory robots’ armed with 

lasers and digital optics for scanning the chips. Microarray technologies are not just passive 

tools of biological discovery but ‘characterized by the leveraging and assembling of a plurality 

of forms, standards, knowledge, technologies, and practice’, and they depend on ‘computer and 

statistical sciences to recognize patterns of variations and to highlight possible associations. As 

commodities, microarrays build on molecular biology and genomics, robotics and automation’ 

(Kragh-Furbo et al. 2016, 21). In the polygenic molecular genetics practised at labs such as the 

SGDP, human biology is reconceived through the analytical gaze of laboratory robots and the 

toolboxes of the computer, statistical and data sciences.  

Biobanking 

A second key bioinformatics technology for sociogenomic studies is biobanks, which have 

been integral particularly to the GWAS research, polygenic scoring and knowledge production 

of the SSGAC. SSGAC’s first GWAS of educational attainment, reported in 2013 and based 

on a sample of 126,500 individuals, identified three SNPs associated with just 2% of the 

variation in educational attainment, with a follow-up 2016 of a sample of 300,000 identifying 



74 SNPs that could explain 3.2% of the variation. Then in 2018, with an updated sample of 1.1 

million, the SSGAC team reported more than 1,200 SNPs that together accounted for 11–13% 

of the variation in years spent in school—which it claimed explains approximately as much 

variation in time in education as family socio-economic status.  

The paper, ‘Gene discovery and polygenic prediction from a 1.1-million-person GWAS of 

educational attainment’ (Lee et al. 2018), reported that genetic variants involved in educational 

attainment particularly included those involved in brain-development processes and the 

formation of neuronal connections in foetuses and newborns. These early developmental 

neuro-biological factors, the SSGAC claimed, influence psychological development, which in 

turn affects how long people continue at school, and continues to exert lifelong influences on 

socio-economic life outcomes. As such, through polygenic scoring, the SSGAC claims to have 

established the influence of biology on factors normally measured in social or economic terms, 

such as educational attainment and occupational status. 

Its biodata sample of over a million people was from two ‘biobank’ sources: the UK Biobank, 

a huge open access health resource based on a living population of over 500,000 volunteer 

participants; and the private biobank of 23andMe, the consumer genetics company offering 

health and ancestry services for profit. By employing the services of 23andMe both as a 

biobank supplier and as a research partner, the SSGAC has embedded itself as an organization 

in the infrastructure of ‘bioinformatic capitalism’ (Reardon 2017). As Reardon (2017, 124-

125) notes, 23andMe is ‘powered by Google’s money and algorithmic prowess’, and has helped 

transform human genetics into ‘genomics 2.0’ by bringing social media strategies to the field 

of human genomics, and by vastly increasing both the number of subjects and the amount of 

data collected about them. The SSGAC has harnessed the power of 23andMe’s private biobank 

as a source of new knowledge production, in the process making this new form of 

sociogenomic educational research into a new front of the bio-economy. Although the SSGAC 



has not conducted polygenic scoring on any samples of children, Plomin (2018) foresees the 

potential for 23andMe to do so.  

Crucially, these exercises in data-mining biobanks for predictive value assume that biobanks 

provide unmediated insight into genotype-phenotype dynamics. Critical science studies of 

biobanks, on the contrary, contend that the digitalised samples of biobanks ‘are not stable 

realities, defined once and for all according to fixed and essential characteristics: they are 

always evolving, formatted by sociotechnical processes that make them shift from the status of 

living entities—linked to the bodies of the people from which they come from—to “things” or 

“bio-objects”’ (Milanovic, Merleau-Ponty & Pitrou 2018, 285). In biobanks, ‘human biological 

resources are fabricated through the interweaving of a technical processes and not “natural” at 

all’ [sic] (287), but the result of scientific and technical practices of extraction, standardisation, 

classification, conservation, circulation, commercialisation and commodification.  

Microarrays and biobanks exemplify the ways that bioinformatics perform particular 

operations to define and classify living bodies. They are not passive intermediaries through 

which scientific expertise can penetrate embodied molecular genetic architectures, but actively 

mediate the possible meanings available through the intertwined sociotechnical apparatus of 

computer and data sciences, bioinformatics businesses and biological entrepreneurship. Just as 

‘precision medicine’ and ‘postgenomic’ sciences are understood as a combination of business, 

biology and technology, the introduction of sociogenomics into educational knowledge 

production brings the logics of the commercial bioeconomy and the practices of Silicon Valley 

data mining to bear on analysing and predicting phenotypes such as educational outcomes and 

their molecular genotypical associations.  

 

Biodata translations 



The third sociotechnical element of the new sociogenomics is the diverging ways in which they 

have begun translating new research findings into proposals for educational policy and practice. 

Two particular knowledge claims are detectable: for the SSGAC, that polygenic scores can be 

used as indicators of socio-economic outcomes, and for the SGDP, that polygenic scores may 

be used for personalised precision education.  

Genoeconomics 

The SSGAC, notably, is guided by ‘genoeconomics’. Its ‘research philosophy’ is set out in two 

papers: ‘Molecular genetics and economics’ (Beauchamp et al. 2011) and ‘The promises and 

pitfalls of genoeconomics’ (Benjamin et al. 2012). The use of molecular genetic information 

to study economic behaviours and outcomes emerged originally from behavioural genetics, 

where Plomin is a leading figure, and moved towards the combination of genotype data with 

socioeconomic datasets, enabling genoeconomists to ‘focus on the collection of additional, 

standardized socioeconomic variables in samples that already contain genotyped data. Over 

time, adding genotype information to existing socioeconomic datasets should provide an 

important new source of data to economists interested in studying the molecular genetic 

associates of economic behaviors and outcomes’ (Beauchamp et al. 2011, 24). The molecular 

genetics approach to economics, or genoeconomics, sees ‘economic outcomes and preferences 

… as heritable as many medical conditions and personality traits’ and seeks ‘to find 

associations between genetic variation and economic behavior’ through ‘pooling datasets’, 

using ‘statistical techniques that exploit the greater information content of many genes jointly’, 

and ‘focusing on economically relevant traits that are most proximate to known biological 

mechanisms’ (Benjamin et al. 2012, 627). As such, its GWAS consist of data-intensive 

bioinformatics infrastructure and methods for identifying associations between biological 

genotypes and behavioural or physical phenotypes, with polygenic scoring increasingly used 

to predict socio-economic outcomes. 



What translations into policy-relevant knowledge follow from this massive sociogenomics 

study of educational attainment and socio-economic life outcomes? Although the SSGAC is 

careful to report no immediate policy implications of its findings, one of its founding papers 

speculates that ‘knowledge of the biological mechanisms’ underpinning socioeconomic 

outcomes ‘might suggest additional policies or interventions that had previously not been 

anticipated’, such as the use of molecular genetic data to ‘predict which individuals are at high 

“genetic risk” for adverse outcomes’ (Beauchamp et al. 2011, 25). It also suggests ‘molecular 

genetic data may prove helpful in understanding variation in policy response across 

individuals’ (27). As such, despite claims to policy agnosticism, the SSGAC was founded upon 

aspirations to use molecular genetic data, in the shape of polygenic scores, to make individual-

level analyses and produce policy-relevant findings.   

Their educational attainment study anticipates the further use of biobank data as sources for 

socio-economic analysis and potential policy intervention, particularly on those individuals 

who could be categorised as at ‘genetic risk’. Taking educational attainment as a socio-

economic correlate might produce policy-relevant insights into how such genetic risks based 

on polygenic scores—or the opposite, genetic potential—can that can be either minimised or 

maximised. The study also highlights the value of genoeconomics to labour market forecasting, 

where molecular genomics analysis and polygenic scoring are taken as proxies for future 

distributions of occupational status and income. It anticipates the use of predictive polygenic 

scoring for human capital calculation, and using precise molecular genetic information about 

individuals and collectives for making and testing policy interventions designed to optimise 

economic outcomes. 

Precision education 

Plomin’s book Blueprint provides a clear example of how new molecular and computational 

understanding of human genomic architectures can translate into policy-relevant knowledge. 



Favouring a model of DNA as a biological ‘blueprint’ that can be detected through polygenic 

scoring, Plomin (2018) specifically advocates a model of ‘precision education’ based on 

tailoring education to students’ DNA. Plomin’s arguments for personalised, precision 

education are based on GWAS aggregating the SNPs associated with educational attainment, 

achievement and cognitive ability. He argues that the results of such studies demonstrate that 

DNA is ‘the best predictor we have of a child’s years of education, even better than the 

environmental effect of family socioeconomic status’ (129).  

In the version of ‘personal genomics’ that Plomin promotes, polygenic scores are ‘fortune 

tellers’ used to predict a psychological trait such as intelligence or school achievement, and to 

‘promote promise’ (135). Utilising data from the SSGAC, the results, he argues, show that 

polygenic scores are powerfully predictive of not just years in school, but also of test 

achievement and intelligence too. ‘So if all you know about people is their DNA, you can 

indeed predict their school achievement’, Plomin claims, although he also admits that 

‘polygenic scores are only probabilistic predictors’ which do not accurately capture ‘individual 

differences’ (158). As another sociogenomics researcher—and SSGAC advisory board 

member—puts it: ‘Today these polygenic scores—as they are called—are noisy predictors. But 

rapid progress is being made such that soon a bit of saliva or blood from a newborn will be 

able to capture her full genetic potential for educational attainment’ (Conley 2017). 

Building on this promissory quality, Plomin claims polygenic scores are unique in identifying 

causal links between DNA and psychological traits and effects such as school attainment, 

achievement and intelligence. ‘DNA differences captured by the polygenic score cause 

differences between children in their school achievement,’ though it ‘does not tell us about the 

brain, behavioural or environmental pathways by which the polygenic score affects the trait’ 

(Plomin 2018, 162). He even goes on to argue that since ‘polygenic score predictions are 

specific to an individual’ (163), then it follows that ‘polygenic scores are key for personalized 



learning, as they predict pupils’ profiles of strengths and weaknesses, which offers the 

possibility to intervene early to prevent problems and promote promise’ (181).  

Plomin suggests parents may in the first instance take up the opportunities of purchasing 

polygenic scores for their children, as a way of informing their choices about education and 

schooling based on ‘getting a glimpse of their children’s individuality—their strengths and 

weaknesses, their personalities and their interests. This information might help parents to try 

to maximize their children’s strengths and minimize their weaknesses’ (178). Consumer 

ancestry companies such as 23andMe could begin offering polygenic scores to parents in order 

to ‘arm themselves with their child’s genetic blueprint’ (178). This is already happening, as an 

SSGAC-affiliated report states, since ‘23andMe customers have the possibility to download 

their own genetic data to inspect it themselves or to share it further, for example with websites 

such as dna.land, which calculates a polygenic score value for educational attainment for its 

customers’ (Angers et al. 2019, 28). 

The promissory quality of precision sciences, which have expanded beyond the biomedical 

domain, is based on the anticipation that new forms of knowledge—and commercial 

opportunity—will emerge from the compilation of diverse and ever-larger forms of data (Kuch 

et al. 2020, 3). Indeed, Plomin’s lab has set out a research agenda to increase the scale and 

longitudinal reach of sociogenomic studies of education and to embed genotype analysis into 

predictive precision education:  

identifying the specific environmental and biological processes that lead from genetic 

predisposition to observed variation in cognition and education remains one of the major 

challenges for future research. Understanding the mechanisms by which genotypes 

become phenotypes is likely to lead to advances in more effective personalised 

approaches to learning. (Malanchini et al. 2020, 242). 



In sum, then, the Social, Genetic and Developmental Psychiatry Centre has mobilised 

bioinformatics knowledge, based on big data about education and methods of polygenic 

scoring, to promote a model of evidence-based personalised learning modelled on precision 

medicine in the biomedical field. 

The SSGAC fundamentally rejects Plomin’s precision education vision. While its results show 

on average that higher polygenic scores are associated with longer educational attainment, huge 

variation exists between individuals, making individual-level polygenic prediction unfeasible. 

Key European members of the SSGAC also wrote a report for the European Union on the 

policy implications of genome-wide association, polygenic scores and social science genetics, 

specifically arguing that ‘it is probably not a good idea to base educational policies, 

recommendations, tracks, and experiences on a biomarker that carries very little information 

for any specific individual’ (Angers et al. 2019, 25).  

This ongoing disagreement, first emerging in 2016 when Plomin mobilised SSGAC findings 

to support his argument for precision education (Hayden 2016), illustrates the bidirectionality 

of sociogenomic research in related to education. Viewed as a scientific controversy, it 

highlights how sociogenomics remains characterised by tensions and frictions—even regarding 

the same datasets—and the ways that ‘competing epistemologies’ are informed by ‘imaginaries 

and visions’ as much as by the available data and evidence (Meloni & Testa 2018, 198). Far 

from consensus about sociogenomics, it remains uncertain, speculative and the subject of 

dispute. As with the field of postgenomic science more broadly, ‘it is in this mismatch between 

what is established and what is at present a source of heated scientific dispute that speculative 

assumptions, inflated discourses and enthusiastic media promotion … are likely to find fertile 

ground’ (201).  

 



Social and ethical implications 

The possibilities of social genomics are exemplified by the development of behavioural 

genetics and genoeconomics in educational research and knowledge production. The new 

knowledge of education produced by these forms of sociogenomics depend on the apparatus 

of bioinformatics—hardware, software, experts, knowledge, and laboratory settings—for the 

generation of novel biodata, with significant potential consequences for how human subjects 

are known, understood and acted upon through various practices or policy interventions.  

As yet the translation of biodata into knowledge remains a contingent, contested and 

controversial enterprise. The controversy mapped in this article demonstrates that 

sociogenomics remains a science-in-the-making rather than a settled field. Computerised 

knowledge and epistemic expertise are opening up new sites of conflict over epistemic 

significance, exacerbated by speculation and hype that sociogenomics may revolutionise the 

study of socioeconomic outcomes such as educational attainment and achievement, or even 

contribute to DNA-based precision education. It appears to face two ways at once: towards a 

future of precision-targeted services modelled on precision medicine; or towards a 

socioeconomic forecasting based on large population samples. Either way, the uptake of 

sociogenomics methods, knowledge and bioinformatics techniques raises a series of key social 

implications and ethical controversies. 

The first is that sociogenomics operates at a distance from the bodies it analyses. Most 

obviously, it involves analysis of biodata samples collected from adult volunteers or paying 

customers of biobanks. These data, despite the veneer of objectivity imputed to ‘big data’ and 

bioinformatic styles of analysis, are highly partial. Data collected from the UK Biobank, for 

example, consist of a sample of volunteer adults aged over 50 of white European descent, while 

the 23andMe data used to construct the SSGAC dataset reflects the company’s customer base 

rather than a fully representative population sample. The polygenic scores so produced can 



only then be said to represent very specific socio-demographic and ethnic selections which, as 

with precision medicine, raises clear tensions regarding social inclusion and exclusion 

(Prainsack 2017).  

Moreover, knowledge produced through bioinformatics is mediated through many 

sociotechnical layers of biobanks, microarrays, robot scanners, polygenic scoring and GWAS 

techniques and technologies, further distantiating the living body from its analysis. Stevens 

(2017, 153) notes, ‘data-inside-computers’ is created ‘so that it can take on distinct forms and 

be manipulated in ways that are not possible without a computer’. Bioinformaticians are 

involved in different knowledge-making practices derived substantially from the development 

of algorithms and analytics in the technology industry rather than biology itself, and ‘the 

quantities of data processed by computers, and the algorithms needed to deal with them, make 

a qualitatively different kind of knowledge’ (172). In the vision of precision education based 

on ‘personal genomics’, children themselves would become biodata transmitters of their own 

DNA ‘blueprint’, perhaps from before birth, with their ‘genetic futures’ foretold by predictive 

polygenic scores (Plomin 2018, 187). These genetic futures, however, are fabrications of the 

bioinformatics infrastructure of microarrays, biobanks, polygenic scoring algorithms and the 

epistemic practices of behavioural geneticists and genoeconomists, which act as powerful 

mediators between embodied subjects and their representation as calculated biodata objects. 

These knowledge-making practices of bioinformatics produce novel conceptualizations of 

human vitality. In bioinformatics human bodies are understood as ‘networked and calculable’ 

bio-objects, taking on ‘the characteristics of the cyberinfrastructure that they are connected to, 

in the sense that the analytical logic of informatics pervades the view on biological and more 

specifically genomic processes and thus also on human bodies’ (van Baren Nawrocka, Consioli 

& Zwart 2019, 3). Sociogenomics analyses concentrate on bio-datafied subjects that exist in a 

different epistemic and ontological domain—the database—than the embodied subjects from 



which the original DNA samples were taken. They characterise bodies in informational terms, 

as biodigital bodies constituted of computational codes, sequences, networks and calculations 

rather than as embodied subjectivities (Parry & Greenhough 2018). Bioinformatics ‘brings up’ 

an informatised body for analysis, and its diagnoses and predictions might (ideally for precision 

education promoters) inform how parents and teachers approach the education and upbringing 

of children too.   

The informatisation of the body in sociogenomics also contributes to the creation of new 

‘biosocialities’. Biosociality refers to how people relate to themselves as ‘molecular-genetic 

identities’, to form collective forms of identification around genetic categories, and to negotiate 

and make ethical calculations in the light of knowledge about their genetic risks or 

susceptibilities (Rose 2007, 126). With sociogenomics, a new kind of digitally-defined 

biosociality is emerging, whereby polygenic scores might become a source of both individual 

and collective identification, based on one’s identification as a subject that has been rendered 

discernible in patterns and polygenic associations. New digital biosocialities are constructed as 

genetic collectives categorised by their polygenic scores and ‘treated’ on that basis. As 

genoeconomics shows, genome-wide polygenic scoring can even be used as a way of 

predicting human capital, while precision education advocates argue polygenic scores are 

useful for parents and teachers to make calculations about the life outcomes of the children in 

their care, and to act on that knowledge accordingly. 

Finally, sociogenomics potentially represents an emerging hereditarian social science with 

historical links to the biostatistics of the nineteenth century (Porter 2018). Although field 

experts dispute criticisms that their studies support genetic determinism and caution against 

simplified policy uptake (Mills & Tropf 2020), sociogenomics findings are circulated in the 

press and social media by influential high-profile conservative commentators, as well as by 

extreme alt-right racist groups, reanimating longstanding debates about eugenics and 



discrimination stemming from the political uses of intelligence data (Comfort, 2018). 

Translated into a political science of population prediction, polygenic predictions risks 

reducing social-structural or environmental causes to deterministic genetic explanations. As 

polygenic scores for education enter mainstream policy debates, these ‘slippery genetic 

predictions could turn people’s attention away from other things that influence how children 

do in school and beyond—things like their family’s wealth, the stress in their neighborhoods, 

the quality of the schools themselves’ (Zimmer 2018). A further risk is polygenic scores being 

used for discriminatory interventions based on one’s calculated biological fortunes—a new 

‘Eugenics 2.0’ based on predictions of a child’s genetic educational potential (Regalado 2017). 

 

Conclusion 

This initial analysis shows how bioinformatics are implicated in significant changes to how 

knowledge about educational outcomes are produced, and how these bioinformatics 

apparatuses are imprinted with particular disciplinary assumptions, speculations and 

disagreements from sociogenomic fields of behavioural genetics and genoeconomics. This 

combination of expert knowledge and bioinformatics infrastructure ‘brings up’ a particular 

configuration of human life as a code, network or architecture of complex associations only 

visible through computation, that is, a new form of bioinformational knowledge that stands to 

affect the ways educators and parents might approach the upbringing of children.  

The utilisation of bioinformatics in sociogenomic analyses of education ushers genetic 

explanations back into debates about bringing up children. New kinds of educational data 

scientists who move across biology and informatics have begun to conduct novel social 

genomics analyses and produce new understandings of ‘educated’ human bodies. The 

emerging authority of educational data science does not merely ‘reveal’ objective insights into 

the biological substrates of learning and educational outcomes, but generates new 



understandings shaped by the bioinformatics apparatus required to turn bodies into biodata 

objects and then translate the data into policy-relevant knowledge.  

As disagreement between the ‘labs’ identified in this article demonstrates, the use of molecular 

genomic data in knowledge production is not a settled matter. While some propose a ‘precision 

education’ model based on individual-level polygenic scoring of children, most extant 

sociogenomic research does not deliver the individualised findings to support it. Others are 

building new knowledge about the associations between DNA, education and socio-economic 

outcomes based on extensive datasets gathered from biobanks. In both cases, the objective is 

to produce ‘precision’ in the understanding and prediction of the biological substrates of 

educational, socio-economic and life outcomes. Mapping the scientific controversy has 

illuminated some urgent emerging ethical controversies, including the potential for 

sociogenomic data and predictions to be used for discriminatory practices and policies.  

The article has added an important dimension to recent discussions of the impacts of 

digitization and datafication on children, schools and families. Sociogenomics and precision 

education proposals appear to open up the possibility for increasing bio-datafication of human 

subjects, and for forms of digitally-enabled biological prediction that are aimed at securing 

particular social, economic and personal futures. Opening up sociogenomics in terms of its 

internal controversies in this article enables us to begin to grasp what kinds of technical, 

industrial, epistemological and ethical challenges remain to be confronted as educational issues 

are increasingly treated as complex biological problems that only computers and algorithms 

can diagnose and, perhaps, solve.   
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