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The complexity of computing a (quasi-)perfect equilibrium for an

n-player extensive form game of perfect recall

Kousha Etessami
University of Edinburgh

Email: kousha "at" inf.ed.ac.uk

Abstract

We study the complexity of computing or approximating refinements of Nash equilibrium
for finite n-player extensive form games of perfect recall (EFGPR), n ≥ 3. Our results apply to
a number of well-studied refinements, including sequential equilibrium, extensive-form perfect
equilibrium, and quasi-perfect equilibrium.

Informally, we show that, for all these refinements, approximating such a refined equilibrium
for an n-player EFGPR is not any harder than (i.e., can be efficiently reduced to) approxi-
mating a Nash equilibrium for a 3-player normal form game. More specifically, we show that
approximating such a refined equilibrium for a given EFGPR, within given desired precision, is
FIXPa-complete. We also study corresponding notions of “almost” equilibrium for these refine-
ments, and we show that computing one is PPAD-complete. (In all these cases our main results
show containment FIXPa and containment in PPAD. Hardness follows from earlier results for
simpler games.)

For 2-player EFGPRs, analogous complexity results follow from the algorithms of Koller,
Megiddo, and von Stengel (1996), von Stengel, van den Elzen, and Talman (2002), and Miltersen
and Sørensen (2010). For n-player EFGPRs, an analogous result for Nash and subgame-perfect
equilibrium was given by Daskalakis, Fabrikant, and Papadimitriou (2006). No analogous results
were known for more refined notions of equilibrium for EFGPRs with 3 or more players.

1 Introduction

Extensive form games are the fundamental mathematical model of games that transpire as a se-
quence of moves by players over time. A finite extensive form game is described by a finite tree,
where each internal node belongs to one of the players (or to chance), and where each leaf indicates
a payoff to every player. A “play” of the game traces a path in this tree from the root to a leaf,
with each player choosing the child to move to at nodes belonging to it (the child being chosen
randomly at chance nodes, or when players decide to randomize their moves). In general, an exten-
sive form game may be of imperfect information, meaning roughly that players may need to make
moves without having full knowledge of the current “state” (i.e., current node of the game tree).
A basic sanity condition for imperfect information games, called perfect recall, requires (roughly)
that every player in the game should remember all of its own prior moves and information sets.
This condition was already put forward by Kuhn ([21]), who showed that games with perfect recall
have nice properties and avoid certain pathologies of general extensive form games. Subsequently,
Selten [43], in his seminal work on perfect equilibria, argued that non-cooperative extensive form
games that lack perfect recall should be rejected as misspecified models. The assumption of perfect



recall has indeed become standard practice in much of the large literature on extensive form games.
Henceforth, we use the abbreviations: EFGPR for “extensive form game of perfect recall”, EFG
for “extensive form game”, and NFG for “normal form game”.

Selten’s work made clear that Nash equilibrium, and even subgame-perfect equilibrium, is not
an adequately refined solution concept for extensive form games. In particular, there are Nash
and subgame-perfect equilibria of EFGPRs that involve “non-credible threats”, rendering them
implausible. Motivated by this, Selten defined a more refined notion of perfect equilibrium, based
on “trembling hand” perfection, and showed that any EFGPR has at least one perfect equilibrium.
(Selten was awarded a Nobel prize in economics, together with Nash and Harsanyi, largely for
his work on refinement of equilibria.) Subsequent work, e.g., by Kreps and Wilson on sequential
equilibria [20], and by many others, has reaffirmed the imperative for considering refinements of
equilibrium, especially for extensive form games. By now EFGPRs, and equilibrium refinements
for them, are treated in most standard textbooks on game theory (see, e.g., [33, 30, 23, 46]).

This paper studies the complexity of computing or approximating an equilibrium for a given
EFGPR, with n ≥ 3 players. We study various important refinements of NE, including: sequen-
tial equilibrium (SE), extensive form trembling-hand perfect equilibrium (PE), and quasi-perfect
equilibrium (QPE). All of these notions refine subgame-perfect equilibrium (SGPE). Of these, PE
and QPE are the most refined notions.1 Quasi-perfect equilibrium (QPE), defined by van Damme
[45], is incompatible with PE, meaning that a PE need not be a QPE and a QPE need not be a
PE. Like PE, QPE also refines NE, SGPE, and SE. Furthermore, QPE also refines “normal-form
perfect equilibrium” (NF-PE) for EFGPRs, which differs from, and is incompatible with (extensive
form) PE for EFGPRs. For the benefit of readers confused by all the different mentioned notions of
equilibrium for EFGPRs, Figure 1 of Section 2 summarizes the refinement relationships that exist
(and don’t exist) between them, by depicting the Hasse diagram of their refinement partial order.

Informally, we show that for all these notions of equilibrium, approximating an equilibrium
for given n-player EFGPR within a given desired precision δ > 0 (or computing an “δ-almost
equilibrium” for given δ > 0) is no harder than approximating a (δ-almost) NE for a given 3-player
normal form game. NFGs are trivially encodable as EFGPRs without blowup in size. Thus our
results extend the celebrated complexity results for computing/approximating an NE for NFGs to
the much more general setting of EFGPRs, and “perfection comes at no extra cost in complexity”.
Before stating our results more precisely, we must first discuss prior related work.

For readers unfamiliar with computational complexity theory, and with notions such as complex-
ity classes, polynomial time, NP, reductions, and hardness: these are very rich subjects. Although
we attempt to be self-contained wherever possible, we can not review all the relevant background
on computational complexity in this paper. We recommend as references, firstly, good textbooks
on complexity theory such as [2, 34], as well as texts on algorithmic game theory [32, 39] which in
particular contain chapters on the complexity of equilibrium computation. Finally, we recommend
specific papers that provide background on the the total search complexity classes PPAD and FIXP,
such as [35, 7, 11] and [13].

Related work. Equilibrium computation, and its connection to fixed point computation, has been
studied for decades, both for normal form and extensive form games. Papadimitriou [35] defined
the search problem complexity class PPAD in order to capture the complexity of problems related

1However, unlike PE and QPE, an SE consists not just of a suitable behavior profile, but also a system of beliefs.
We’ll see later in what sense PE (and QPE) “refines” SE ([20]). Our complexity results for SE are also for computing
its associated belief system.
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to computing an equilibrium.2 It follows from the correctness of the Lemke-Howson algorithm
that computing an NE for 2-player NFGs is in PPAD. It similarly follows from Scarf’s algorithm
that given an n-player NFG (for any n), and given ε > 0, computing a “ε-NE” (which we call
“ε-almost-NE” in this paper, to avoid confusion with other notions3) is in PPAD; this is a strategy
profile where no player can improve its own payoff by more than ε by unilaterally deviating from
its strategy. In a celebrated series of result in 2006, Chen and Deng [7], and Daskalakis et. al.
[11], showed that both of these problems are PPAD-complete. For games with 3 (or more) players,
specified by an integer payoff table, all the NEs may have irrational numbers ([31]). Thus, we can
not compute an NE exactly for them (at least not in the Turing model of computation). With
Yannakakis in [13], we showed that for games with 3 (or more) players, an ε-NE may in fact be
nowhere near any actual NE, unless ε > 0 is so small that its binary encoding size is exponential
in the size of the game; thus, finding an ε-NE may tell us nothing about the location of any actual
NE. In [13] we considered the complexity of computing an actual NE to within a desired number of
bits of precision, i.e., computing a strategy profile that has `∞-distance at most δ > 0 to some NE,
for a given δ (given in binary). We showed that this problem is complete for a natural complexity
class which we called FIXPa.

4 Informally, FIXPa is the class of discrete search problems that can
be reduced to approximating, within desired `∞-distance δ > 0, a (any) Brouwer fixed point of a
continuous function given by an algebraic circuit using gates {+,−, ∗, /,max,min}. (We will later
formally define FIXPa, as well as its real-valued progenitor FIXP, and the piecewise-linear fragment
linear-FIXP (= PPAD).) Very recently, in a paper with Hansen, Miltersen, and Sørensen [12],
building on [13], we have shown that for NFGs with n ≥ 3 players, approximating a “trembling-
hand perfect equilibrium” (PE) within desired precision is also FIXPa-complete. Since PEs refine
NEs, we only had to show containment in FIXPa. Interestingly, it was shown previously in [15]
that given a 3-player NFG, deciding whether a given strategy profile is a PE is NP-hard (unlike for
NEs, for which this is easily in P-time).

Research on the computation of equilibria for EFGs, with and without perfect recall, also has a
long and rich history. Of course for perfect information games computing a NE or SGPE is easily
in P-time using Kuhn’s classic “backward induction” ([21]). On the other hand, for imperfect
information games without perfect recall, it was pointed out by Koller and Megiddo [18] (and by
others, e.g., [5]) that even for 1-player games computing or approximating a (any) NE is NP-hard
(it can easily encode SAT5). By contrast, for 1-player EFGPRs an equilibrium (i.e., an optimal
strategy) can be computed easily in P-time by dynamic programming, as shown by Wilson [49].

Of course, one way to compute an equilibrium for an EFGPR (or EFG) is to first convert it
to an NFG, and then apply any algorithm applicable to NFGs. The problem with this approach
is that, even for EFGPRs, a standard conversion from extensive to normal form incurs exponential
blowup.6 Thus, even a P-time algorithm for NFGs requires exponential time if applied naively in
this way to EFGPRs. In the other direction, an NFG can trivially be encoded as an “equivalent”

2It is well-known that already for 2-player NFGs, computing a specific NE, e.g., that optimizes total payoff or other
objectives, is NP-hard [14, 8]. So, in this paper, whenever we speak of a problem of computing (or approximating)
“an” equilibrium, possibly of a refined kind, we are not more specific than that: any equilibrium of that kind will do.

3We do so to avoid confusion when we combine “ε-almost” with other notions, particularly Myerson’s ε-PEs ([29]).
4We also showed in [13] that approximating an actual NE, even within `∞-distance any fixed constant δ < 1/2

for 3-player NFGs, is “hard”: even placing this in NP would place PosSLP in NP, and thereby resolve long standing
open problems in arithmetic vs. Turing complexity.

5SAT is a prototypical NP-complete problem: deciding satisfiability of a given propositional boolean formula.
6Even notions of reduced normal form in general incur exponential blowup for EFGPRs. We will not elaborate on

reduced norm form, but roughly it means redundant strategies of the EFGPR are not considered in the normal form.
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EFGPR which is not much bigger, so that any equilibrium computation problem for NFGs is P-time
reducible to an analogous problem for EFGPRs.

In a series of important works in the 1990s, Koller, Megiddo, and von Stengel [18, 47, 19]
obtained equilibrium algorithms for 2-player EFGPRs with complexity bounds that essentially
match those of 2-player NFGs. In particular, Koller and Megiddo [18] showed that for 2-player
zero-sum EFGPRs an NE (i.e., a minimax profile) in behavior strategies can be computed in P-
time using linear programming. Furthermore, by using the sequence form ([38, 47]) of EFGPRs,
Koller, Megiddo, and von Stengel ([19]) showed that one can apply variants of Lemke’s algorithm to
certain LCPs associated with 2-player EFGPRs to compute an (exact) NE in behavior strategies.
A consequence of their result (when combined with Chen and Deng’s PPAD-hardness result for
2-player NFGs [7]) is that computing an NE for 2-player EFGPRs is PPAD-complete. Later,
von Stengel, van den Elzen, and Talman [48], using the sequence form, gave a similar Lemke-like
algorithm for computing a “normal form perfect equilibrium” (NF-PE) 7 for 2-player EFGPRs.
More recently, Miltersen and Sørensen have used the sequence form to give related Lemke-like
algorithms for computing both a SE [27] and a QPE [28] for 2-player EFGPRs. As pointed out by
Miltersen and Sørensen in [28], van Damme’s existence proof for a QPE in any EFGPR, given in
[45], is somewhat roundabout: it uses the existence of a proper equilibrium in a NFG ([29]), and
it uses a relationship established in [45] between proper equilibrium in NFGs and QPEs of any
EFGPR that has that NFG as its standard normal form. Miltersen and Sørensen state in [28] that
“As far as we know, no very simple and direct proof of existence [of QPE] is known.” They note
that their results furnish a different proof of existence of QPE for 2-player EFGPRs. One of the
consequences of our results is a simple and direct proof, via application of Brouwer’s fixed point
theorem (and Bolzano-Weierstrass), of the existence of a QPE in any n-player EFGPR. In a similar
way, our results furnish a direct existence proof for all the notions of equilibrium for EFGPRs that
we study.

More closely related to our complexity results for n-player EFGPRs, with n ≥ 3, von Stengel in
[47] used the sequence form of EFGPRs to describe an interesting nonlinear program, associated
with a given n-player EFGPR, such that the optimal solutions to the nonlinear program are the
NEs of the EFGPR, where the encoding size of the nonlinear program is polynomial in the size of
the EFGPR. One can use von Stengel’s nonlinear programming formulation, together with results
on decision procedures for the theory of reals [37, 3], to show that approximating an NE for a given
n-player EFGPR, to within given `∞-distance δ > 0, is in PSPACE.

Even more closely related to our results is a result by Daskalakis, Fabrikant, and Papadimitriou
in [10]. Specifically, Theorem 4 of [10] states that the problem of computing a [ε-]Nash equilibrium
and a [ε-almost] subgame-perfect equilibrium, for an extensive form game [of perfect recall] is
polynomial time reducible to computing a [ε-]Nash equilibrium for a 2-player normal form game.
The statement of Theorem 4 in [10] does not make a distinction between computing an actual Nash
equilibrium (within desired precision ε > 0), versus computing an ε-NE. Indeed, [10] appeared
prior to the publication of the paper [13] where the distinction between the complexity of these
two problems was highlighted, and where the complexity class FIXP and FIXPa were defined. The
proof of Theorem 4 in [10] can be used ([9]) to establish a reduction from the problem of computing
an exact Nash or subgame perfect equilibrium (within given desired precision ε > 0) for a given

7A normal-form perfect equilibrium (NF-PE), is a (behavior) profile that induces a (mixed profile) PE of the
standard NFG associated with the EFGPR. This is not equivalent to extensive-form PE (see [46], Chapter 6). In
fact, unlike extensive-form PE, a NF-PE need not be subgame-perfect. Our results apply to both PE and NF-PE.
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n-player EFGPR, to the problem of computing a Nash equilibrium (within given desired precision
ε > 0) for a 3-player normal form game. In [10] a brief proof sketch for Theorem 4 is provided,
which builds on the earlier PPAD-completeness results in [11, 7] and goes via reductions to graphical
games. However, the sketched proof provided in [10] contains an error ([9]): it assumes that any
behavior strategy profile (even when not fully mixed) necessarily defines a distribution on the nodes
of every information set, but this need not be the case, in particular because some information sets
may be reached with probability 0. Thus, the distributions on information sets described in the
proof sketch in [10] are in general ill-defined. The authors of [10] have communicated ([9]) a fix
for this error to the author of this paper. The fix involves defining the probability distribution on
a given information set using the most recent common single-node ancestor of all vertices in that
information set. The authors of [10] will make their fixed proof available in some future expanded
version of [10]. We will not elaborate further on their fix, since our results make no use of any of
the results in [10]. In particular, we make no use of graphical games. Instead we directly provide
algebraically-defined functions whose fixed points give ε-perfect equilibria of the given EFGPR.
Our results imply essentially the same complexity results for computing Nash and subgame-perfect
equilibrium as those implied by Theorem 4 of [10], as well as for computing various other important
refinements of equilibrium.8

Our results. We consider the complexity of various equilibrium computation problems for which
an input instance consists of 〈G, δ〉, where G is an n-player EFGPR (for any n: n can be part of
the input), and where the rational “error” parameter δ > 0 is given in binary representation. Our
main results are the following:

1. Computing a behavior (strategy) profile, b, such that there exists a PE (or NE, or SGPE)
b∗ of G, with ‖b− b∗‖∞ < δ, is FIXPa-complete. (Theorem 10, Part 1.)

2. Computing a behavior profile, b, such that there exists a QPE (or NF-PE), b∗ of G, with
‖b− b∗‖∞ < δ, is FIXPa-complete. (Theorem 10, Part 2.)

3. Computing an assessment, (b, µ), such that there exist an SE, (b∗, µ∗) of G, with
‖(b, µ)− (b∗, µ∗)‖∞ < δ, is FIXPa-complete. (Theorem 10, Part 3.)
An assessment (b, µ) consists of both a behavior profile b, as well as an associated
system of beliefs, µ. (We shall define all this formally later.)

4. Given, additionally, ε > 0 (again, in binary representation) as input, computing a
δ-almost ε-perfect equilibrium (δ-almost-ε-PE) of G is PPAD-complete. (Theorem 19, Part 1.)

A δ-almost-ε-PE is a relaxation of Myerson’s notion of ε-PE ([29]) applied to EFGPRs.
Roughly (we provide fully formal definitions later), it is a fully mixed behavior profile, b,
such that for any player i, and for any action a played by player i in b with probability > ε,
in some information set j, it must be the case that the action a is “δ-almost local best re-
sponse”, meaning that the utility for player i if it switches unilaterally to pure action a in the
information set j (and retains its behavior strategy in b in all other information sets), will be
at most δ less than the maximum utility it could obtain by unilaterally switching its “local”
distribution on actions within the information set j (while retaining its behavior strategy in
b in all other information sets).

8Although it is worth pointing out that, by contrast, our results do not imply that computing an exact PE, SE,
or QPE, is in FIXP, only that computing a (δ-almost) approximation of these is in FIXPa (and PPAD respectively).
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We show that a δ-almost-ε-PE suitably “refines” δ-almost subgame-perfect equilibrium (δ-
almost-SGPE). A δ-almost-SGPE of G is a behavior profile, b, where no player can improve
its own payoff in any subgame of G by more than δ, by unilaterally changing its strategy in
that subgame.

Thus, as a consequence we also obtain (cf. [10]) that computing a δ-almost-NE and a δ-
almost-SGPE is PPAD-complete (Theorem 19, Part 3.).

5. Likewise, we define a notion of δ-almost-ε-QPE, which is a relaxation of the notion of ε-QPE,
defined by van Damme in [45], and we show that computing a δ-almost-ε-QPE of G, given G,
and given δ > 0 and ε > 0, is PPAD-complete. (Theorem 19, Part 2.)

In all the above results, the “hardness” result follows immediately (already for 3-player games) from
the prior known hardness results for NFGs ([13, 7, 11]). The new results are the upper bounds, all
of which are new, except for the consequence that computing a δ-almost-SGPE and δ-almost-NE
is contained in PPAD (this, as we explained before, follows from a prior result in [10] and its fixed
but unpublished proof [9]).

Outline of proof ideas. By contrast to the prior work on algorithms for 2-player EFGPRs,
our results make no explicit use of the sequence form for EFGPRs. Also, by contrast to [10] we
make no use of reductions to graphical games. Instead, we combine older insights, including Kuhn
and Selten’s original agent normal form for EFGPRs, and Myerson’s alternative definition of PE
using ε-PEs (both for normal and extensive form), with recently developed fixed point functions
for equilibria of n-player normal form games, n ≥ 3, developed in [13] and [12].

More specifically, a key to our results is this: in Section 3, we adapt a construction in [12] of
a fixed point function for “ε-PEs” of a given NFG (which itself is an adaptation of a fixed point
function for NEs of NFGs given in [13]) to show that to any n-player EFGPR, G, we can associate a
continuous function F εG(x), defined by a “small” algebraic circuit over {+, ∗,max} (whose encoding
size is polynomial in that of G), where ε in an input parameter to the circuit, and such that, for
any fixed ε > 0, the function F εG(x) maps the space of behavior strategy profiles of G to itself, such
that the Brouwer fixed points of F εG(x) constitute ε-PEs of G. This proves that computing an ε-PE,
given 〈G, ε〉, is in FIXP, even when ε > 0 is given succinctly by an algebraic circuit.

Also, we similarly define another continuous function, Hε
G(x) using a “small” algebraic circuit,

such that, for any fixed ε > 0 the function Hε
G(x) maps the space of behavior profiles to itself, and

such that every fixed point of Hε
G(x) is a ε-QPE.

The reason why we can construct the functions F εG(x) and Hε
G(x) with a “small” (poly-sized)

algebraic circuit is related to properties of the agent normal form of EFGPRs, and to the fact that
the “realization probabilities” and the expected payoff functions for EFGPRs can be expressed
as “small” (multilinear) polynomials. In particular, a simple but important fact ([43],[29]; see
Proposition 4 in this paper) is that an EFGPR has exactly the same (ε-)PEs as its agent normal
form. (It does not necessarily have the same NEs.) Even though we can not construct the agent
normal form explicitly (because it is exponentially large), it turns out that we do not need to: by
combining these various facts, we can nevertheless construct a “small” algebraic circuit for F εG(x),
by adapting the analogous construction from [12].

With the functions F εG(x) (and Hε
G(x)) in hand, in Section 4 we then use (similar to [12])

algebraic circuits to construct a “very very small” ε∗ > 0 (but whose encoding size, when expressed
as a circuit, still remains polynomial) for which we can prove, using results from real algebraic
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geometry ([37, 3]), that every fixed point of F ε
∗
G (x) is δ-close (in `∞) to an actual PE. Likewise,

we show that every fixed point of Hε∗
G (x) is δ-close to a QPE. This allows us to show containment

in FIXPa for approximating a PE, and for approximating a QPE. We furthermore show how to
extend the function F εG(x) to define another “small” algebraic function GεG(x, z) that serves the same
purpose for sequential equilibrium (SE), and in particular that additionally includes a corresponding
system of beliefs inside its fixed points. This shows containment in FIXPa for approximating an SE.

Finally, in Section 5, we observe some properties of the functions F εG(x) (they are “polynomially
continuous” and “polynomially computable”), which when combined with results in [13] imply that
computing a “δ-almost fixed point” of F εG(x), given G and given δ > 0 and ε > 0, is in PPAD. We
then show that a “δ-almost fixed point” of F εG(x) is a (3δ)-almost-(δ + ε)-PE of G. We also show
that a “δ-almost fixed point” of Hε

G(x) is a (3δ)-almost-(δ + ε)-QPE. Lastly, we show that a δ′-
almost-ε′-PE, for “polynomially small” δ′ and ε′, is a δ-almost-SGPE of G. These results allow us
to show containment in PPAD for the “δ-almost” equilibrium notions that we study.

This last part, for establishing PPAD-completeness for “δ-almost” equilibria, is technically one
of the more involved parts of our proofs. Also, our proof of FIXPa-completeness for computing a
QPE involves a novel fixed point characterization. By comparison to these, our proof of FIXPa-
completeness for PE is technically easier, given the prior results in [12, 13], and given long existing
results in the literature on EFGPRs which we exploit.
Potential computational applications. We believe our results could potentially provide a
“reasonably practical” method for computing δ-almost relaxations of equilibrium refinements for
n-player EFGPRs, including δ-almost ε-perfect and δ-almost ε-quasi-perfect equilibrium, as well as
less refined notions of δ-almost equilibrium like SGPE and Nash (for which see also the result of [10]),
by applying classic discrete path following algorithms for “almost” fixed point computation, such
as variants of Scarf’s algorithm [40, 41], on the “small” algebraic fixed point functions we associate
with EFGPRs. We believe this is a promising approach for “almost equilibrium” computation for
EFGPRs that should be implemented and explored experimentally. We note that the well-known
software package GAMBIT ([24]), which provides a variety of state-of-the-art algorithms for solving
various classes of games, does not currently provide any algorithm for computing or approximating
an equilibrium (of any kind) for a general n-player EFGPR, for any n ≥ 3. Indeed, a survey
on equilibrium computation from 1996 ([25]), by McKelvey and McLennan who helped to develop
GAMBIT, discusses the algorithms by Koller et. al. ([18, 47, 19]) for 2-player EFGPRs, but does not
discuss any general algorithms for n-player EFGPRs, beyond first converting to (reduced) normal
form, and using heuristics like iterated elimination of dominated strategies. We believe our results
can potentially be used to remedy this gap in the availability of “practical” software for (refined)
equilibrium computation for n-player EFGPRs. Of course, since we prove that computing δ-almost
ε-PE is PPAD-complete (= linear-FIXP-complete), it follows from [7, 11, 13] that these problems
are all ultimately reducible to computing a Nash Equilibrium in a 2-player normal form game.
Thus one could simply aim to apply available implementations of algorithms for computing an NE
for 2-player NFGs. However, this is a rather indirect approach, since it goes through reductions
that result in relatively large (albeit polynomial) blowups. We believe that instead it is better to
work directly with the fixed point equations we use to capture these refined equilibria for EFGPRs,
and apply classic discrete path following algorithms for “almost” fixed point computation, such as
variants of Scarf’s algorithm to these.
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2 Definitions and Background

Dear Reader: EFGPRs, and refinements of equilibrium for them, are treated in nearly every modern
textbook on game theory (see, e.g., [23, 33, 30, 46]). Nevertheless, for us to discuss our problems
rigorously, we can not just point you to a book or paper with relevant definitions. We must
fix (a considerable amount of) notation and terminology, and we must describe various essential
background results. This is especially because we will be addressing various subtle refinements
of equilibrium, and corresponding notions (in some cases, new) of “approximate” and “almost”
equilibrium, where slight differences in definitions can have major consequences, particularly for
computational complexity. We also have to define the relevant complexity classes like FIXP, FIXPa,
and PPAD. So, we proceed to carefully fix notation and definitions, and to describe the needed
background results. Readers familiar with EFGPRs, or with other parts of the background, can
skip ahead to subsequent sections that contain the new results, and return to this section as needed,
using it as a “reference”. (Although some things are likely to become harder to follow that way.)

For a finite set X, we let ∆(X) denote the set of probability distributions on X, i.e., the set of
functions f : X → [0, 1] such that

∑
x∈X f(x) = 1. For f ∈ ∆(X), we let support(f) = {x ∈ X |

f(x) > 0} denote its support set. For a positive integer k, we let [k] = {1, . . . , k}.
Extensive Form Games. Intuitively, a finite game tree is just a rooted, labeled, finite tree.
We will find it convenient to view such a tree as a finite, prefix-closed, set of strings over a finite
alphabet of “actions”. Formally, let Σ be a finite set called the action alphabet. We shall use the
symbols a, a′, a1, a2, . . ., to denote letters in the alphabet Σ. For a string u ∈ Σ∗, we use |u| to
denote the length of u. A tree, T = (V,E) over action alphabet Σ, consists of a finite set V ⊆ Σ∗

of nodes (or vertices), where furthermore V is prefix-closed, meaning that if w ∈ V and w = ua,
where a ∈ Σ, then u ∈ V . Note that by definition the empty string ε is in V . We refer to ε as
the root of the tree. The directed edge relation E ⊆ V × V , of the tree T (which points “away
from” the root) is defined by: E = {(u,w) ∈ V × V | ∃a ∈ Σ : w = ua}. For two nodes u,w ∈ V ,
if (u,w) ∈ E, we say that w is a child of u, and that u is the (unique) parent of w. For u ∈ V ,
we let Ch(u) = {w ∈ V | (u,w) ∈ E} denote the set of children of u. Let v denote the reflexive
transitive closure of E. Thus, u v w is just the prefix relation on the set V . We use u @ w to
denote the strict prefix relation: (u v w ∧ u 6= w). When u @ w, we say that u is a ancestor of
w, and that w is a descendant of u. For each node u ∈ V , we define Act(u) = {a ∈ Σ | ua ∈ V }
to be the set of actions available at node u. A leaf is a node u ∈ V with no children, i.e., where
Ch(u) = ∅. Let L = {u ∈ V | Ch(u) = ∅} denote the set of leaves of the tree T . A non-leaf node
is called an internal node; let W = V \ L denote the set of internal nodes. A path ψ in the tree T
is a non-empty sequence ψ = u0, u1, u2, . . . , um of nodes, where for all 0 ≤ i < m, (ui, ui+1) ∈ E.
The path ψ is called a play if u0 = ε, and it is called a complete play if additionally um is a leaf. In
other words, a (complete) play is just a path that starts at the root (and ends at a leaf). Note that
a node u ∈ V is a string in Σ∗ that encodes all the information needed to reconstruct the unique
path in T from the root to u.

A Finite Game in Extensive Form (EFG), G = (N,Σ, T, P, I, p, r), is a tuple consisting of:

1. Players: A set N = [n] = {1, . . . , n} of players.

2. Action alphabet: a finite set Σ, called the action alphabet. Let kG = |Σ| denote the size of Σ.

3. Game Tree: A finite tree T = (V,E) over the action alphabet Σ, called the game tree.
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4. Player partition: A partition P = (P0, P1, . . . , Pn) of the set W of internal nodes, i.e., Pi ⊆W,⋃n
k=0 Pk = W, and Pi ∩ Pj = ∅, for all i 6= j, i, j ∈ {0, . . . , n}.

For i = 1, . . . , n, the nodes in Pi are the internal nodes “belonging” to player i: these are
the nodes where player i has to choose the next move. The set P0 consists of the internal
nodes belonging to chance (or nature). The next move at a node u ∈ P0 is chosen randomly,
according to a provided distribution, pu, given in item (6.) below.
We define the player map, P : V → N, by: for all i ∈ {0, . . . , n} and u ∈ Pi, P(u) := i.

5. Information set partition: A tuple I = (I1, . . . , In), such that for each i ∈ [n] = {1, . . . , n},
Ii = (Ii,1, . . . , Ii,di) is a partition of the set Pi of vertices belonging to player i, where each

information set Ii,j ⊆ Pi is non-empty &
⋃di
j=1 Ii,j = Pi, Ii,j ∩ Ii,k = ∅ for all j 6= k, j, k ∈ [di].

It is furthermore assumed that, for every information set Ii,j , and for any two nodes u, v ∈ Ii,j ,
Act(u) = Act(v). In other words, the same set of actions is available to player i at every node
in Ii,j . Let Ai,j := Act(u), where u ∈ Ii,j . By assumption, Ai,j is well-defined.

We define the map I(·), which maps a node u to the index of the information set to which u
belongs. Thus, if u ∈ Ii,j , then I(u) := j. For convenience, we extend the map I(·) to chance
nodes u ∈ P0 as follows: for all u ∈ P0, we define I(u) := u.

The extensive form game, G, is said to have perfect information if all information sets Ii,j are
singleton sets, for all i ∈ [n], j ∈ [di]. Otherwise, it is called a game of imperfect information.

6. Probability distributions for chance nodes: A tuple of probability distributions p = (pu)u∈P0 ,
one for each chance node u ∈ P0, where pu : Act(u) → (0, 1] ∩ Q is a positive, rational9,
probability distribution on actions available at u. So, pu(a) > 0 and pu(a) ∈ Q for all
a ∈ Act(u), and

∑
a∈Act(u) pu(a) = 1. Let pG0,min := minu∈P0,a∈Act(u) pu(a).

7. Payoff functions: An n-tuple r = (r1, . . . , rn) of payoff functions. For each player i, the payoff
function ri : L 7→ N>0, maps each leaf u ∈ L of the tree T to a positive integer payoff for
player i.10 Let MG := maxi∈[n],u∈L ri(u) denote the largest possible (positive integer) payoff.

We denote the bit encoding size of an EFG, G, by |G|, where we assume binary encoding
for the integer payoff values at the leaves of G, as well as the rational probabilities of actions at
chance nodes (with numerator and denominator given in binary).11 For a rational number q ∈ Q,
we use size(q) to denote its bit encoding size. Similarly, for a rational vector v ∈ Qm, we use
size(v) :=

∑m
i=1 size(vi) to denote its encoding size.

For a game G with tree T = (V,E), let hG := max{|u| | u ∈ V } denote the height of T . For
u ∈ V , we define the subtree rooted at u, Tu = (Vu, Eu, u), by: Vu = {w ∈ V | u v w}, and
Eu = {(u,w) ∈ E | u,w ∈ Vu}. We let hGu := max{|w| − |u| | w ∈ Vu} denote the height of Tu.

9We restrict the distributions pu to have rational probabilities for computational purposes.
10We restrict to positive integer payoffs, rather than real payoffs, for computational purposes. One can of course

also consider rational payoff functions ri : L 7→ Q. However, as is well-known, restricting to positive integer payoffs
is w.l.o.g. for computational purposes: we can always “clear denominators” by multiplying by their LCM, and then
add a large enough positive value to the resulting integers to get positive payoffs. This does not increase by much
the encoding size of G, and the resulting game can be shown to be “suitably isomorphic” to the original for all our
purposes, including equilibrium approximation within desired precision, and δ-almost equilibrium computation.

11We assume natural representations for the various pieces of G, including the tree T , player partition, information
partition, payoff functions, and the probability distributions at chance nodes (with rational probabilities encoded in
binary) . The details of the natural encoding are irrelevant for our purposes, so we do not spell them out.
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(Note that hG = hGε .) Consider an EFG, G = (N,Σ, T, P, I, p, r). For a node u of the game tree T ,
if the subtree Tu satisfies the property that for every node w ∈ Vu, the information set IP(w),I(w) is
a subset of Vu, then the subtree Tu naturally defines a subgame, Gu = (N ′,Σ, T ′, P ′, I ′, p′, r′), which
is rooted at the node u instead of at ε, and where the player partition, information set partition,
payoff functions, and probability function for chance nodes, are all inherited directly from G by
restricting them to the subtree Tu in the obvious way.

Note that a node u ∈ V is a string in Σ∗ which also encodes the unique history of actions, starting
at the root, which lead to that node in T . For any node u ∈ V , with |u| = k, u = a1a2 . . . ak, and
for any m ∈ {0, 1, . . . , k}, let u[m] = a1 . . . am denote the length m prefix of u. For a node u, with
|u| = k, we define the information-action history at u, denoted Y (u), to be the following sequence
of k triples:

Y (u) = 〈 (P(u[m]), I(u[m]), am+1) | m = 0, . . . k − 1 〉

For each player i ∈ [n], we define the visible history for player i at u, denoted Yi(u), to be the
subsequence of Y (u) obtained by retaining only those triples (i′, j′, a′) in the sequence Y (u) for
which i′ = i, and deleting all other triples. In other words, Yi(u) records the sequence of information
sets belonging to player i encountered along the path from the root ε to u (not including u), and
the actions player i chose at each of those information sets, prior to reaching u.

An EFG, G, is said to have perfect recall if the following condition holds: for any two nodes
u, v ∈ V , if P(u) = P(v) = i ∈ [n] and I(u) = I(v), then Yi(u) = Yi(v). In other words, during
play, players remember their own prior sequence of actions as well as the information sets they were
in when they took those prior actions. So, it can not be the case that two nodes u and v are in
the same information set for some player i, and yet the visible history for player i at u is different
from the visible history for player i at v. Note that perfect recall implies there do not exist nodes
u 6= v belonging to the same information set such that u is an ancestor of v. Otherwise, since Yi(u)
is a strict prefix of Yi(v), we would have Yi(u) 6= Yi(v), violating perfect recall. For a game G of
perfect recall, let us define the visible history associated with an information set Ii,j as follow: Let
Yi,j := Yi(u), where u ∈ Ii,j . Note that by perfect recall Yi,j is well-defined.

Assumption: Throughout this paper, extensive form games are assumed to have perfect recall.

As mentioned, this assumption is standard practice in much of the literature on extensive form
games. As mentioned, we use EFGPR to refer to an EFG with perfect recall.

Strategies. For an extensive form game, G, where the information sets for player i are indexed
by the set [di] = {1, . . . , di}, a pure strategy, si, for player i ∈ [n], is a function si : [di] → Σ
that assigns an available action to each information set belonging to player i, so for all j ∈ [di],
si(j) ∈ Ai,j . In other words, when using pure strategy si, player i chooses the available action si(j)
at every node in the information set Ii,j . Let Si denote the set of pure strategies for player i. Let
S = S1 × S2 × . . .× Sn denote the set of profiles of pure strategies.

A mixed strategy for player i, σi ∈ ∆(Si), is a probability distribution on pure strategies Si (note:
for a finite game G, Si is a finite set). For a pure strategy c ∈ Si, we shall use πci to denote this pure
strategy as an element of ∆(Si); so πci (c) = 1, and πci assigns probability 0 to other pure strategies.
We let Mi = ∆(Si) denote the set of mixed strategies for player i. Let M = M1 ×M2 × . . .×Mn

denote the set of profiles of mixed strategies. Let M>0 denote the set of fully mixed profiles of
mixed strategies, that is, M>0 := {σ = (σ1, . . . , σn) ∈M | σi(c) > 0, for all i ∈ [n]and c ∈ Si}.

A behavior strategy, bi, for player i, is a di-tuple bi = (bi,1, bi,2, . . . , bi,di) of probability dis-
tributions, such that for each j ∈ [di], bi,j ∈ ∆(Ai,j) is a probability distribution on the set of
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actions Ai,j available in information set Ii,j . In other words, for all a ∈ Ai,j , 0 ≤ bi,j(a) ≤ 1, and
(
∑

a∈Ai,j bi,j(a)) = 1. We shall find it convenient to sometimes write bi,j,a instead of bi,j(a), and to

view bi,j as a vector of probabilities, bi,j = (bi,j,a)a∈Ai,j . Let Bi,j := ∆(Ai,j). We call bi,j ∈ Bi,j
a local strategy at information set Ii,j . For an action a ∈ Ai,j , we shall use πai,j to denote the
pure local strategy in Bi,j , that assigns probability 1 to the action a. Let Bi = Bi,1 × . . . × Bi,di
denote the set of behavior strategies for player i. Let B = B1 × B2 × . . . × Bn denote the set
of profiles of behavior strategies. Let B>0 denote the set of fully mixed behavior profiles, that is
B>0 := {b = (b1, . . . , bn) ∈ B | bi,j(a) > 0, for all i ∈ [n], j ∈ [di], and a ∈ Ai,j}.

For a behavior strategy bi = (bi,1, . . . , bi,di) ∈ Bi, for j ∈ [di] and a local strategy b′i,j ∈ Bi,j , we
use (bi | b′i,j) to denote the revised behavior strategy (bi,1, . . . , bi,j−1, b

′
i,j , bi,j+1, . . . , bi,j). In other

words, (bi | b′i,j) ∈ Bi consists of the same local strategies as bi, except at information set Ii,j the
local strategy is switched from bi,j to b′i,j . Likewise, for a behavior profile b ∈ B, and a behavior
strategy b′i ∈ Bi, we let (b | b′i) = (b1, . . . , bi−1, b

′
i, bi+1, . . . , bn). In other words, (b | b′i) ∈ B consists

of the same behavior strategies as b, except for player i the behavior strategy is switched form bi
to b′i. Lastly, for a behavior profile b = (b1, . . . , bn) ∈ B and a local strategy b′i,j ∈ Bi,j , we define
the shorthand notation (b | b′i,j) := (b | (bi | b′i,j)).

We also define a more general set of strategies, generalizing both Bi and Mi, called mixed-
behavior strategies, MBi. A mixed-behavior strategy σi ∈ MBi is a probability distribution over
a finite subset of behavior strategies in Bi. Clearly, Si ⊆ Bi ⊆ MBi and Si ⊆ Mi ⊆ MBi. We let
MB = MB1 × . . .×MBn denote the set of profiles of mixed-behavior strategies.

Once we fix a strategy profile, σ = (σ1, . . . , σn) ∈ MB for the players, this determines a
realization probability function, Pσ(u), that assigns to every node u ∈ V the probability of reaching
u starting from the root, when players use their respective strategies in the profile σ. Then the
expected payoff, Ui(σ), to player i under the strategy profile σ is:

Ui(σ) =
∑
z∈L

Pσ(z) · ri(z) (1)

For any profile σ, and a strategy σ′i for player i, we use (σ | σ′i) to denote the revised profile
(σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn), where everyone’s strategy remains the same, except player i’s strat-

egy switches to σ′i. We call two strategies σ′i and σ′′i for player i realization equivalent, denoted by
σ′i ≈ σ′′i , if for all u ∈ V and for all strategy profiles σ ∈ MB, P(σ|σ′i)(u) = P(σ|σ′′i )(u). Note that if
σ′i ≈ σ′′i , then Ui(σ | σ′i) = Ui(σ | σ′′i ) for all σ ∈MB. For games of perfect recall, we have:

Proposition 1 ([21], [43]) For every EFGPR, G, every mixed-behavior strategy σi ∈ MBi is
realization equivalent to a behavior strategy bi ∈ Bi, i.e., such that σi ≈ bi.

Thus, w.l.o.g., we can confine our attention to behavior strategies in Bi for all EFGPRs.
Note that also for every behavior strategy bi ∈ Bi there exists a realization equivalent mixed

strategy, σbii ∈Mi. Here’s how. Define χ(x, y) by: χ(x, y) := 1 if x = y, and otherwise χ(x, y) := 0.

We define the mixed strategy σbii as follows. For every c ∈ Si:

σbii (c) :=
∏

{ (j,a) | j∈[di] & a∈Ai,j }

χ(c(j), a) · bi,j(a).

The mixed strategy σbii is realization equivalent to behavior strategy bi.
12 For a behavior profile

12Of course, in general, the support size of σbii can be exponential in the dimension of the vector bi, so it is not in
general efficient to work explicitly with σbii instead of bi.
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b ∈ B, we will use the notation σ[b] := (σb11 , . . . , σ
bn
n ) ∈ M to denote the (realization equivalent)

mixed profile induced by b.
For a EFGPR, G, for any node u ∈ V , and any behavior profile b ∈ B, we can define the

realization probability Pb(u) as a multi-variate polynomial Fu(x) (in fact, a multilinear monomial)
whose “variables” x correspond to the coordinates of a behavior strategy profile in B, and such that
for all b ∈ B, Fu(b) = Pb(u). Specifically, for all nodes u ∈ V , where13 |u| = k and u = a1a2 . . . ak,
we associate the variable xi,j,a with the probability bi,j,a = bi,j(a) in a behavior profile b, and Fu(x)
is given by14:

Fu(x) ≡

 ∏
{m∈{0,...,k−1} | u[m]∈P0}

pu[m](am+1)

 · ∏
{m∈{0,...,k−1} | u[m]∈W\P0}

xP(u[m]),I(u[m]),am+1

Note that, for any u ∈ V , the total degree of Fu(x) is at most hG , where (recall) hG is the height of the
game tree. More generally, for a subset V ′ ⊆ V of nodes, let Top(V ′) := {u ∈ V ′ | ¬∃v ∈ V ′ : v @ u}.
(Note: for any information set Ii,j , Top(Ii,j) = Ii,j .) We define the realization probability, Pb(V ′),
of (some node in) V ′ ⊆ V , under (behavior) profile b, as follows: Pb(V ′)

.
=
∑

u∈Top(V ′) Pb(u). Thus
we can also define the multilinear polynomial: FV ′(x) ≡

∑
u∈Top(V ′) Fu(x), such that for all b ∈ B,

FV ′(b) = Pb(V ′).
Also, using equation (1), we have that the expected payoff function is given by the polynomial:

Ui(x) ≡
∑
z∈L

Fz(x) · ri(z) (2)

Thus, restating all this, we have:

Proposition 2 Given a EFGPR, G, and given any subset V ′ ⊆ V of nodes of the game tree,
there is a multi-variate multilinear polynomial FV ′(x) in the vector of variables x, with total degree
bounded by hG, such that for all b ∈ B, FV ′(b) = Pb(V ′) defines the realization probability of V ′

under behavior profile b in G. Moreover, there is a multilinear polynomial Ui(x), with total degree
bounded by hG, such that for all b ∈ B, Ui(b) is the expected payoff of player i under behavior profile
b in G, and moreover, the polynomials FV ′(x) and Ui(x) can be expressed (as a weighted sum of
multilinear monomials) with an encoding size that is polynomial in |G|.

For a fixed bi ∈ Bi, we shall use the notation Uk(x | bi) to denote the polynomial obtained by
fixing the values of the variables xi, by assigning to them their corresponding values in bi, in the
polynomial Uk(x). Likewise, for a fixed local strategy bi,j ∈ Bi,j , we shall use Uk(x | bi,j) to denote
the polynomial obtained by fixing the variables xi,j by assigning to them their corresponding values
in bi,j in the polynomial Uk(x).
Information Set Forest. We shall need the concept of the information set forest associated with
each player in a EFGPR. These forest essentially captures, for each player, the possible sequential
orders in which that player may encounter its own information sets during a play of the game.15

Specifically, for a EFGPR, G, for each player i ∈ [n], we define a directed, edge-labeled, graph,

13Here, recall that a node u ∈ V is defined by the sequence a1a2 . . . ak of actions in the game tree that reaches it.
14Recall that P0 denotes the set of internal nodes of the game tree that belong to “chance”, and that
15We need this concept in several proofs, in particular associated with our results for QPEs, where we use dynamic

programming, working “bottom up”, by induction on the height of the information set forest, in order to compute
the optimal utility for a player under certain restricted unilateral deviations from a given behavior profile b.
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Fi = (V Fi , EFi), whose nodes are V Fi = [di], i.e., the (indices of) information sets belonging
to player i, and whose Σ-labeled directed edges, EFi ⊆ V Fi × Σ × V Fi , are defined as follows:
(j, a, j′) ∈ EFi if and only if the last triple in the (non-empty) sequence Yi,j′ is (i, j, a). It follows
immediately from this definition that Fi is a directed (edge-labeled) forest, for all i. The source
nodes (roots) of the forest Fi are those information sets which are the first belonging to player
i to be encountered along some complete play of the game G. The sink nodes (leaves) of this
forest are the last information set for player i encountered along some complete play. The action
a labeling the edge (j, a, j′) ∈ EFi is the action that player i must take at information set Ii,j in
order to enable the possibility of reaching information set Ii,j′ (but whether or not this happens
with positive probability can depend on the strategies of other players). We henceforth refer to
Fi as the information set forest associated with player i. We shall say that a node j′ ∈ V Fi is a
descendant of a node j in Fi if there is a path in Fi from j to j′ (in other words, if j′ is in the
subtree rooted at j).

We let hFi denote the height of the forest Fi, i.e., the length of the longest path in Fi. For
j ∈ [di], we let hFij denote the height of information set j in the forest Fi, i.e., the length of the
longest path from vertex j to a leaf of the forest Fi. For a node u ∈ Pi of the game tree T , we will
sometimes abuse notation and use hFiu instead of hFiI(u). Note that hFi ≤ hG , for all i ∈ [n].

For a behavior strategy bi ∈ Bi for player i, for any information set j ∈ [di], and for any (other)
profile b′i ∈ Bi, we use the notation (bi |(i,j) b′i) to denote a new behavior strategy b′′i := (bi |(i,j)
b′i) ∈ Bi which is defined as follows. For every information set j′ ∈ [di], the local strategy b′′i,j′
is defined as follows: if j′ is a descendant of j in the information forest Fi, or if j′ is equal to j,
then b′′i,j′ := b′i,j′ . Otherwise, b′′i,j′ := bi,j′ . We also use the notation (b |(i,j) b′i) := (b | (bi |(i,j) b′i))
to denote a behavior profile which is identical to b except that player i’s behavior strategy bi is
replaced by (bi |(i,j) b′i). In other words, (b |(i,j) b′i) is the profile which is identical to b for all players
other than player i, and where for player i, the local strategy at information set j′ agrees with b′i
if the information set Ii,j′ is reachable from Ii,j , and otherwise it agrees with bi.

We shall also use Fi in another way to alter behavior strategies of player i. For the information
set forest Fi of player i, and for integer m such that 0 ≤ m ≤ hFi , let Fmi denote the sub-forest of
Fi induced by all vertices j in Fi that have height hFij ≤ m. Let Vmi denote the vertices of Fmi .

For a behavior strategy bi ∈ Bi for player i, for 0 ≤ m ≤ hFi , and for any other behavior
strategy, b′i ∈ Bi, we use (bi |m b′i) to denote the behavior strategy that is given by local strategy
b′i,j for every j ∈ Vmi , and by the original local strategy bi,j , for all other j ∈ [di] \ Vmi . We also
use the notation (b |m b′i) := (b | (bi |m b′i)) to describe a profile that is identical to b, except that
behavior strategy bi for player i is replaced by (bi |m b′i).

Recall Uk(x) is the polynomial representing the expected payoff function to player k under
a behavior profile x. For fixed bi ∈ Bi, we will use the notation Uk(x |(i,j) bi) to denote the
polynomial obtained from Uk(x) as follows: for any j′ ∈ [di], if information set Ii,j′ is reachable
from information set Ii,j , then the associated variables xi,j′ are fixed to their values in the local
strategy bi,j′ . Likewise, for 0 ≤ m ≤ hFi , Uk(x |m bi) denotes the polynomial obtained from Uk(x)
as follows: for every j′ ∈ Vmi , the variables xi,j′ are fixed to their values in bi,j′ .
Normal Form. A finite normal form game (NFG), Γ = (N, (Si)

n
i=1, (ui)

n
i=1), consists of a finite set

N = {1, . . . , n} of players, a finite set Si of pure strategies for each player i, and a payoff function
ui : S → N+ for each player16 i, where S = S1 × . . . × Sn. For every finite n-player EFG(PR),
G, there is an associated standard normal form game, N (G) = (N, (Si)

n
i=1, (ui)

n
i=1), where the set

16Again, we restrict w.l.o.g. to positive integer payoffs, for computational purposes.
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of pure strategies Si for player i in N (G) is the set of pure strategies for player i in G, and where
the payoff function, ui(·), for each player i is defined by ui(s) := Ui(s) for all s ∈ S, where Ui(s)
is the expected payoff in G to player i under pure profile s. For NFGs we use the same notations
(σi, σ, Ui(σ), etc.) for mixed strategies, mixed profiles, and their expected payoffs, etc., as we do
for EFGPRs. Note that the encoding size |N (G)| of the NFG N (G) is in general exponential in
|G|, because already when there are two actions available at each information set, the number of
strategies |Si| of player i is 2di , where di is the number of information sets belonging to player i.

In the other direction, we can easily convert any NFG Γ = (N, (Si)
n
i=1, (ui)

n
i=1) to an “equiv-

alent” EFGPR, E(Γ), which is not much bigger in terms of encoding size than Γ. Specifically, let

the action alphabet Σ of E(Γ) be the disjoint union of pure strategies of Γ, Σ =
⋃̇n

i=1Si, and let
the nodes V of the game tree of E(Γ) be V := {s1s2 . . . sk | k ≤ n and, for all j ∈ [k] : sj ∈ Sj}.
The player partition is given as follows: P0 = ∅ and for all i ∈ [n]: Pi := {u ∈ V | |u| = i − 1}.
There is only one information set for each player i ∈ [n]: namely Ii,1 := Pi. Finally, the leaves
are the nodes L := {u ∈ V | |u| = n}, and the payoff functions ri are defined as follows, for all
i ∈ [n]: for any leaf s1s2 . . . sn ∈ L, ri(s1s2 . . . sn) := ui(s1, s2, . . . , sn). Note that E(Γ) clearly has
perfect recall since “there is nothing to remember”: for any player i ∈ [n] and any nodes u, v ∈ Pi,
the visible histories Yi(u) and Yi(v) are both the empty sequences, and thus equal, because there
is no ancestor of u or v belonging to Pi. The encoding size of E(Γ) is certainly polynomial in
the encoding size of Γ (and with judicious encoding of the various parts of E(Γ) it could be made
essentially linear). It is not hard to see that the games Γ and E(Γ) are essentially “equivalent” in
every respect that matters to us (including for computational purposes). Note, in particular, that
there is a one-to-one correspondence, which respects payoffs, between the mixed strategies of Γ and
the behavior strategies of E(Γ).
Equilibrium. For a NFG, Γ = (N, (Si)

n
i=1, (ui)

n
i=1), a mixed strategy σ′i for player i is called a

best response to a mixed profile σ = (σ1, . . . , σn) if Ui(σ | σ′i) ≥ Ui(σ | σ′′i ) for all mixed strategies
σ′′i . Note that σ′i is a best response to σ if and only if, for every pure strategy c ∈ support(σ′i), and
for every strategy c′ ∈ Si, Ui(σ | πci ) ≥ Ui(σ | πc

′
i ). A mixed profile σ is called a Nash equilibrium

(NE) for Γ if σi is a best response to σ for all i. Nash [31] showed every (finite) NFG has an NE.
It follows that the standard normal form game N (G) associated with an EFGPR, G, has a mixed
NE, σ∗ ∈M , which by definition is also a mixed Nash equilibrium of G. We can say more. In light
of Proposition 1, a behavior strategy b′i ∈ Bi for player i is called a best response to a behavior
profile b ∈ B if for all b′′i ∈ Bi, Ui(b | b′i) ≥ Ui(b | b′′i ). A profile b = (b1, . . . , bn) ∈ B is call a Nash
equilibrium (NE) in behavior strategies if for all players i, bi is a best response to b. Combining
Proposition 1 and Nash’s theorem applied to the standard normal form N (G), it follows that a NE
in behavior strategies exists for any EFGPR, G.

A profile b ∈ B is called a subgame-perfect equilibrium (SGPE) if b induces a Nash equilibrium
on every subgame Gu of G. In other words, for every subgame Gu, if we confine the behavior profile
b to the subtree Tu rooted at u, it induces a Nash equilibrium bu for the subgame Gu. Again,
a SGPE in behavior strategies exists for any EFGPR [42], and of course subgame-perfection is a
refinement of NE: the SGPEs form a subset of the NEs.

We now discuss several notions of “approximate” and “almost” equilibrium for normal form and
extensive form games. The well known notion of a “ε-NE” for a NFG is a profile where, informally,
no player can improve its own payoff by more than ε by switching its strategy unilaterally. This
of course can be defined analogously for EFGs and EFGPRs. However, to avoid confusion in
terminology between this notion and the very different notion (introduced by Myerson [29]) of
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ε-perfect equilibrium (ε-PE), which we define shortly, we will use the different terminology “δ-
almost-NE” to refer to what would usually be called a “δ-NE” in the literature.

Formally, for δ > 0, we call a behavior strategy b′i ∈ Bi for player i a δ-almost best response to
a profile b ∈ B if for all b′′i ∈ Bi, Ui(b | b′i) ≥ Ui(b | b′′i ) − δ. We call a profile b = (b1, . . . , bn) ∈ B
a δ-almost Nash equilibrium (δ-almost-NE), if for all players i, bi is a δ-almost best response to
b. For δ > 0, we define a δ-almost subgame-perfect equilibrium (δ-almost-SGPE), to be a profile
b ∈ B which induces a δ-almost-NE, bu, on every subgame Gu of G. Note that “δ-almost-SGPE” is
a refinement of “δ-almost-NE”.

As mentioned, Selten [43] pointed out that SGPE has inadequacies as a refinement of NE.
For this reason, Selten defined a more refined notion of perfect equilibrium, based on “trembling
hand” perfection. Two distinct notions emerge from this: normal form perfect equilibrium (NF-PE)
and extensive form perfect equilibrium (PE). We shall find it very useful to provide Myerson’s [29]
alternative definitions for these notions, going via the notion of “ε-perfect equilibrium”. Myerson
originally defined ε-PE for NFGs, but his definition adapts readily to EFGPRs (see, e.g., [46, 45]).
Although Myerson’s definition of PE via ε-PEs (adapted to EFGPRs) differs from the original
definition of (extensive form) PE given by Selten [43], it is equivalent; see, e.g. [29, 46, 45]. (The
key reason for the equivalence was already pointed out by Selten himself in ([43], Lemma 7 & 8),
as we shall highlight later.)

For an NFG17, Γ = (N, (Si)
n
i=1, (ui)

n
i=1), and for ε > 0, a mixed profile σ ∈ M is called a

ε-perfect equilibrium (ε-PE) of Γ if it is both (a): fully mixed meaning σ ∈M>0, and (b): for every
player i and pure strategy c ∈ Si, if σi(c) > ε, then the pure strategy πci is a best response for
player i to σ, in other words, Ui(σ | πci ) ≥ Ui(σ | πc

′
i ) for all c′ ∈ Si. Likewise, we call σ a δ-almost

ε-perfect equilibrium (δ-almost-ε-PE) of Γ if (a) holds and, instead of condition (b), σ satisfies the
following condition (b′): for every player i and pure strategy c ∈ Si, if σi(c) > ε, then the pure
strategy πci is a δ-almost best response for player i to σ, in other words, Ui(σ | πci ) ≥ Ui(σ | πc

′
i )−δ,

for all c′ ∈ Si.
We call a mixed profile σ∗, a (trembling hand) perfect equilibrium (PE) of Γ if it is a limit point

of a sequence of ε-PEs of Γ (with ε→ 0). In other words, σ∗ is a PE iff there is a sequence εk > 0,
k ∈ N, such that limk→∞ εk = 0, and such that for all k ∈ N there is an εk-PE, σεk of Γ, with
limk→∞ σ

εk = σ∗. Every NFG, Γ, has a PE, and every PE is both a NE and a SGPE ([43]).
For a EFGPR, G, a local strategy b′i,j ∈ Bi,j is called a local best response to a profile b ∈ B if

for all local strategies b′′i,j ∈ Bi,j , Ui(b | b′i,j) ≥ Ui(b | b′′i,j). It is not hard to show that b′i,j is a local
best response iff Ui(b | b′i,j) ≥ Ui(b | πai,j) for all a ∈ Ai,j . For δ > 0, a local strategy b′i,j ∈ Bi,j
is called a δ-almost local best response to a profile b ∈ B if for all b′′i,j ∈ Bi,j , Ui(b | b′i,j) ≥ Ui(b |
b′′i,j) − δ. Again, b′i,j is a δ-almost local best response to b if and only if for all actions a ∈ Ai,j ,
Ui(b | b′i,j) ≥ Ui(b | πai,j)− δ.

For an EFGPR, G, and for ε > 0, a behavior profile b ∈ B is called a ε-perfect equilibrium
(ε-PE), if it is (a): fully mixed, meaning b ∈ B>0, and (b): for all i, j, and all a ∈ Ai,j , if bi,j(a) > ε,
then πai,j is a local best response to b. It other words, if a local strategy bi,j places probability
greater than ε on action a, then unilaterally switching the local strategy bi,j to pure action a is a
local best response to b.

For δ > 0, and ε > 0, a behavior profile b ∈ B is called a δ-almost ε-perfect equilibrium (δ-
almost-ε-PE) of G, if it is (a.): fully mixed, b ∈ B>0, and (b.): for all i, j, and all a ∈ Ai,j if
bi,j(a) > ε, then πai,j is a δ-almost local best response to b.

17For example, but not necessarily, for the standard normal form N (G) of an extensive form game G.
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We call a behavior profile b∗ ∈ B a extensive form perfect equilibrium (PE) of G if it is a limit
point of ε-PEs of G (where ε → 0). Selten [43] showed that every EFGPR, G, has a PE, and that
every PE is also a SGPE of G (so, PE refines both SGPE and NE).18

A different refinement of equilibrium for a EFGPR, G, is a normal form perfect equilibrium
(NF-PE). This is, by definition, a behavior profile b ∈ B such that the (realization equivalent)
mixed profile σ[b] induced by b is a PE of the standard normal form game, N (G). We note that
even a pure PE of an EFGPR, G, is not necessarily a NF-PE (i.e., does not necessarily induce a
PE of N (G))), and nor is a pure NF-PE (i.e., a pure PE of N (G)) necessarily a PE of G (see [46],
Chapter 6). So, for EFGPRs, the two notions of PE and NF-PE are incompatible. In fact, a NF-PE
of G is not necessarily even a SGPE (there are examples where it is not), and note that Selten’s
purpose for defining PE was to refine subgame-perfect equilibrium. So, it is not unreasonable to
argue that PE is the more relevant notion for EFGPRs. Our results apply to approximating both
a PE and a NF-PE for EFGPRs. (By contrast, the results of [48] apply only to computing NF-PE
for 2-player EFGPRs.)

We next define quasi-perfect equilibrium (QPE), and the associated notions: ε-QPE. Let us first
give a informal idea of what a QPE is, and how it differs from a PE. Intuitively, an ε-QPE only
allows a player, i, to play an action with probability > ε if that action when combined with optimal
actions chosen in all descendant information sets belonging to player i, amounts to a best response
action in that information set, and a QPE is just a limit point of a sequence of ε-QPEs, as ε’s
get smaller and smaller. This differs from the notion of ε-PE and PE, in which we do not allow
player i to deviate optimally in descendant information sets belonging to player i, when determining
whether a given action amount to a “local best response”. It was argued by van Damme [46] that
the QPE definition captures a natural, and in some ways better, notion of a “local” best response.
Later the superiority of QPE was further advocated by Mertens [26], who argued based on the
desirability of dominant strategy equilibria: Mertens observed that there exist EFGPRs with a
dominant strategy equilibrium (where every player simply plays a dominant strategy) which is a
QPE but not a PE, whereas all dominant strategy equilibria in EFGPRs are necessarily QPEs.
(We elaborate on the implications of Mertens’ examples later in this section.)

We now formally define ε-QPE and QPE. For an EFGPR, G, and for ε > 0, a behavior profile
b ∈ B is called a ε-quasi-perfect equilibrium (ε-QPE), if it is (a.): fully mixed, b ∈ B>0, and (b.):
for all players i, all j ∈ [di], and all actions a, a′ ∈ Ai,j , if (maxb′i∈Bi Ui(b |(i,j) (b′i | πai,j))) <
(maxb′i∈Bi Ui(b |(i,j) (b′i | πa

′
i,j))) then bi,j(a) ≤ ε.

(We shall delay the analogous definition of “δ-almost ε-quasi-perfect equilibrium” until Section
5, because it will require further definitions. )

We call a behavior profile b∗ ∈ B a quasi-perfect equilibrium (QPE) of G if it is a limit point of
ε-QPEs of G (where ε→ 0). It was shown by van Damme [45] that every EFGPR has at least one
QPE. Furthermore, as noted by van Damme in [45], QPE refines NF-PE. (We will highlight this
again in Proposition 3 below.)

Finally, we define the notion of sequential equilibrium due to Kreps and Wilson [20]. We need
the notion of a system of beliefs. For a EFGPR, G, with game tree T = (V,E), a system of beliefs (or
belief system) is a map µ : (W \P0)→ [0, 1] such that that for all players i ∈ [n] and all j ∈ [di], we

18Please note that we have overloaded the “(ε-)PE” terminology to apply to both (ε-)PE for NFGs and extensive
form (ε-)PE for EFGPRs. The reason for this overloading will become clear when we discuss agent normal form.
We remark that it is easier to see why (extensive form) PE refines SGPE via Selten’s original definition of PE (via
perturbed games). But Myerson’s definition, via ε-PEs, has particular advantages for our purposes, as we’ll see.
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have
∑

u∈Ii,j µ(u) = 1. Let B denote the set of all belief systems (associated with the game G). An

assessment is a pair (b, µ) ∈ B×B, where b is a behavior strategy profile, and µ is a belief system.
Intuitively, in assessment (b, µ), for a node u ∈ Ii,j , the belief µ(u) represents the probability that
player i assigns to the play hitting node u assuming profile b is played, if player i finds out that
the play has hit information set Ii,j . For any node u ∈ Ii,j , let Pb(u | Ii,j) = Pb(u)/Pb(Ii,j) denote
the conditional realization probability of reaching node u, under profile b, conditioned on reaching
(i.e., realizing) information set Ii,j . This is well-defined whenever Pb(Ii,j) > 0.

We will call a belief system µ suitable for behavior profile b if for all information sets Ii,j such
that Pb(Ii,j) > 0, for all nodes u ∈ Ii,j , µ(u) = Pb(u | Ii,j). Note that if b is a fully mixed profile
then there is a unique belief system suitable for b, because Pb(Ii,j) > 0 for all information sets
Ii,j . Accordingly, when b is a fully mixed behavior profile, we denote the unique belief system
suitable for b by µb, and we say that µb is the belief system generated by b. Note that given an
EFGPR, G, and given a fully mixed (rational) profile b ∈ B>0, we can easily compute the belief
system µb generated by b in time polynomial in |G|+ size(b), because the conditional probability
µb(u) = Pb(u | Ii,j) = Pb(u)/Pb(Ii,j) is easy to compute given G, b, and u. (By Proposition 2
the numerator and denominator are defined by multilinear polynomials, whose value can be easily
evaluated at b, given G and b, in time polynomial in |G|+ size(b).)

For any node u ∈ V , and for any leaf z ∈ L, let Pub (z) denote the probability that leaf z is reached
if the game is started at node u and the profile b is played. For any information set Ii,j , define the

probability distribution Pi,jb,µ(z) on leaves by: Pi,jb,µ(z) :=
∑

u∈Ii,j µ(u) · Pub (z), for all z ∈ L. Then

the expected payoff with respect to assessment (b, µ), starting in information set Ii,j , is defined by

Uµ,ji (b) =
∑

z∈L P
i,j
b,µ(z)·ri(z). A behavior strategy b′i for player i is called a best reply at information

set Ii,j against assessment (b, µ) if Uµ,ji (b | b′i) = maxb′′i ∈Bi U
µ,j
i (b | b′′i ). We say that profile b is a

sequential best reply against assessment (b, µ) if for all players i, and all information sets Ii,j , bi is a
best reply at information set Ii,j against assessment (b, µ). An assessment (b, µ) is called a sequential

equilibrium (SE) of G if: there exists a sequence 〈(bk, µbk) | k ∈ N〉 of assessments, such that for all

k ∈ N, bk is fully mixed and µb
k

is the belief system generated by bk, and limk→∞(bk, µb
k
) = (b, µ)

(this conditioned is usually called consistency of (b, µ)), and furthermore b is a sequential best reply
against (b, µ). Kreps and Wilson ([20]) showed the following facts about sequential equilibrium (the
facts relating QPE to SE and NF-PE were shown later by van Damme [45]):

Proposition 3 ([20]; [45]) For any EFGPR, G:

1. ([20]) An SE, (b′, µ′), exists for G.

2. ([20]) For every SE, (b′, µ′), of G, the behavior profile b′ is a SGPE of G.

3. ([20]) For every PE, b∗, of G, there is a system of beliefs µ∗ such that (b∗, µ∗) is a SE. In this
sense, we say “every PE is a sequential equilibrium”.19

In fact, for every PE, b∗, of G, if 〈(bk, µbk)〉k∈N denotes any sequence where, for all k ∈ N,

bk is a fully mixed behavior profile which is a (1/k)-PE for G, and µb
k

is the belief system
generated by bk, and where limk→∞ b

k = b∗ and limk→∞ µ
k = µ∗, then (b∗, µ∗) is a SE of G.

4. ([45]) For every QPE, b∗, of G, there is a system of beliefs µ∗ such that (b∗, µ∗) is a SE. In
this sense, we again say “every QPE is a sequential equilibrium”.20

19The converse is false: there are EFGPRs with an SE, (b′, µ′), such that b′ is far from any PE. See, e.g., [20, 46].
20The converse is again false: there are EFGPRs with an SE, (b′, µ′), such that b′ is far from any QPE. See [45].
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NE

PE

NF-PE

SE

SGPE

QPE

Figure 1: Hasse diagram of the mentioned equilibrium refinements for EFGPRs.

In fact, for every QPE, b∗, of G, if 〈(bk, µbk)〉k∈N denotes any sequence where, for all k ∈ N, bk

is a fully mixed behavior profile which is a (1/k)-QPE for G, µb
k

is the belief system generated
by bk, and where limk→∞ b

k = b∗ and limk→∞ µ
k = µ∗, then (b∗, µ∗) is a SE of G.

5. ([45]) Every QPE, b∗, of G is a NF-PE.

(Recall: for b∗ is a NF-PE of G means that the mixed profile σ[b∗] = (σ
b∗1
1 , . . . , σ

b∗
n ) induced by

b∗ is a PE of the standard NFG, N (G).)

Figure 1 summarizes the mentioned refinement relationships between the various equilibrium
notions that we have defined for EFGPRs: it depicts the Hasse diagram of the refinement partial
order. In the diagram, a directed edge X → Y means that equilibrium notion Y refines notion
X, i.e., that every Y -equilibrium is also a X-equilibrium. Moreover, whenever there is no directed
path in this Hasse diagram from a node X to a node Y , that means there exist known examples of
EFGPRs where a Y -equilibrium is not an X-equilibrium. (So, this is a partial order not because
we lack knowledge of an underlying richer (total) order: no other refinement relationships exist for
general EFGPRs, other than those implied by this Hasse diagram.)

It is noteworthy that there can not exist some more refined equilibrium notion that refines both
PE and QPE, and exists in every EFGPR. In particular, Mertens [26] has given a simple example
of a 2-player EFGPR whose set of PEs is disjoint from its set of NF-PEs (and whose NF-PEs
consist of just one dominant strategy equilibrium). Thus, since QPE refines NF-PE, the set of
PEs of Mertens’ EFGPR is also disjoint from its set of QPEs. Mertens argues, partly based on
this example, that QPE is preferable to PE as a refinement for EFGPRs: a dominant strategy
equilibrium, when it exists, is generally prized, and it is always a QPE, but it is not necessarily a
PE as shown by Mertens’s example. Mertens’s example shows we can not hope for some (as yet
unknown) “most refined” notion of equilibrium for EFGPRs, which always exists, and which refines
all the refinements we have mentioned. It is worth mentioning however that the results of [6] and
[36] combined show that if a EFGPR is suitably “generic”21, then its set of PEs, QPEs, and SEs

21Here “generic” means the EFGPR has some “structure” Ψ (which excludes the payoff information) and has a
vector of payoff functions r = (r1, . . . , rn) ∈ Rm such that r 6∈ R[Ψ]; where R[Ψ] ⊆ Rm is a certain (semi-algebraic)
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are all the same. However, many natural games that we might encounter may not be “generic”
in this sense, as illustrated by the various simple and natural examples of games provided in, e.g.,
[46, 26, 45, 23], where PE, SE, and QPE do not coincide.
Agent Normal Form. Kuhn [21] and Selten [43] considered an alternative way to associate a
normal form game with a given EFGPR, G, which they called the agent normal form. The agent
normal form game, AN (G), is defined as follows. AN (G) has a player, called an agent, associated
with each information set Ii,j of the EFGPR, G. Thus if G has n players and player i has di
information sets, then the total number of agents in AN (G) is d =

∑n
i=1 di, which is the total

number of information sets in G. We refer to each agent in AN (G) by its index: (i, j). The set of
pure strategies for agent (i, j) in AN (G) is given by the set Ai,j of actions available to player i of
G in the information set Ii,j . Thus, note that the set of mixed strategies for agent (i, j) in AN (G)
is in one-to-one correspondence with the set of local strategies Bi,j for player i at information set
Ii,j in the EFGPR, G. Thus also, the set of profiles of mixed strategies in AN (G) is in one-to-one
correspondence with the set B of behavior strategy profiles in G. Moreover, the set of pure strategy
profiles of the agents in AN (G) is in one-to-one correspondence with the set of pure strategy profiles
S in G. Thus, hereafter, we use S interchangeably, to denote both the sets of pure profiles for G
and for AN (G), and we also use B interchangeably, to denote both the set of behavior profiles of G
and the set of mixed profiles of AN (G).

We define the payoff functions, u(i,j)(s), of AN (G) as follows: given a pure profile s ∈ S for
the d agents, the payoff to agent (i, j) is given by u(i,j)(s) := Ui(s). In other words, the payoff for
every agent (i, j) in AN (G) under profile s is the expected payoff of player i in G under the same
profile s. Thus, the goal of all the agents (i, j) who are “acting on behalf of” player i, is aligned
exactly with the goal of player i. It follows that also the expected payoff, U(i,j)(b), to agent (i, j)
under any mixed profile b ∈ B in AN (G) is equal to the expected payoff Ui(b) of player i under the
same (behavior) profile b ∈ B of G.

A simple but important fact, that follows immediately from the definitions we have given for
(ε-)PEs, is that the set of (ε-)PEs of G is equal to the set of (ε-)PEs of AN (G).22

Proposition 4 (cf. [43] Lemma 7, & [29]; see also [46]) For a EFGPR, G, and ε > 0, a be-
havior profile b ∈ B is a ε-PE of G if and only if b is a mixed ε-PE of AN (G) (this is true by
definition). Thus, a profile b ∈ B is a PE of G iff b is a PE of AN (G).

Note, firstly, that it is not true in general that the set of Nash equilibria of G and AN (G) are
the same. There are simple (even 1-player) examples showing this. This is because even though
a profile b ∈ B might consist entirely of “local best responses” in G, some information sets may
be reached with probability 0 under profile b, and therefore “local best responses” together do not
necessarily constitute a “global” best response in G.

Note also that, as mentioned already, no such relationship holds in general between the PEs of
G and the PEs of its standard normal form N (G), in either direction.

Proposition 4 holds by definition because we have used Myerson’s [29] alternative definition
of PEs, via ε-PEs. We remark that the reason why Myerson’s definition is equivalent to Selten’s
original definition (which we will not give formally) was shown already by Selten himself. Namely,
Selten defined a PE as a limit point of NEs of a sequence of perturbed games (with positive “pertur-
bations” going to zero). In a perturbed EFGPR, there is a minimum positive probability specified

“forbidden” set of dimension strictly less than m.
22This is why we overload the “(ε-)PE” terminology for the corresponding notions of both NFGs and EFGPRs.
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for each action available in each information set, and that action must be played with at least that
probability in any behavior strategy. Selten ([43], Lemma 7) showed that for perturbed EFGPRs, a
behavior strategy that consists entirely of “local best responses” is also necessarily a “global” best
response. As explained already, this does not hold in general when the game is not perturbed.

We shall need the following “almost” variant of Proposition 4, which also follows immediately
from our definitions.

Proposition 5 For all δ > 0 and ε > 0, for any EFGPR, G, a (behavior) strategy profile b ∈ B is
a δ-almost-ε-PE of G iff b is a (mixed) δ-almost-ε-PE of AN (G).

Note that if the agent normal form AN (G) is represented in the usual way, by providing its
table of payoffs for all possible pure strategy profiles of all the agents, then just as was the case for
standard normal form, the encoding size |AN (G)| is also exponential in |G|, because the number
|S| of pure profiles of AN (G) is exponential in |G|. Nevertheless, we shall find AN (G) very useful
for our computational purposes.

The complexity classes FIXP, FIXPa, and linear-FIXP( = PPAD)

We shall now define the search problem complexity classes FIXP, FIXPa, and PPAD, which we shall
use to characterize the complexity of computing an equilibrium (of various kinds) for a EFGPR.

A {+,−, ∗, /,max,min}-circuit has inputs consisting of variable x1, x2, . . . , xn, as well as rational
constants, and has a finite number of (binary) computation gates taken from {+,−, ∗, /,max,min},
with a subset of the computation gates labeled {o1, o2, . . . , om} and called output gates.23 The class
of {+,max}-circuits are the restricted class of {+,−, ∗, /,max,min}-circuits, where the only allowed
gates are {+,max} in addition to gates for multiplication by a rational constant.

When a circuit in this paper is a general {+,−, ∗, /,max,min}-circuit, we shall often just refer to
it simply as “circuit”, when it is clear from the context. We shall also refer to {+,max}-circuits as
piecewise-linear circuits. A circuit (of either kind) computes a continuous function from Rn → Rm
(and Qn → Qm) in the natural way. Abusing notation slightly, we shall often identify the circuit
with the function it computes.

By a (total) multi-valued function, f , with domain A and co-domain B, we mean a function
that maps each a ∈ A to a non-empty subset f(a) ⊆ B. We use f : A � B to denote such a
function. Intuitively, when considering a multi-valued function as a computational problem, we are
interested in producing just one of the elements of f(a) on input a, so we refer to f(a) as the set
of allowed outputs.

A multi-valued function f : {0, 1}∗ � R∗ is said to be in FIXP if there is a polynomial time

computable map, r, that maps each instance I ∈ {0, 1}∗ of f to r(I) = 〈1kI , 1dI , P I , CI , φI , aI , bI〉,
where

• kI and dI are positive integers.

• P I is a convex polytope in RkI , given as a set of linear inequalities with rational coefficients.

• CI is a circuit, with kI inputs and kI outputs, which maps P I to itself.

23The set of gates {+,−, ∗, /,max,min} is of course redundant, e.g., using rational constants the gates {−,min}
can be simulated by the other gates.
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• φI : [dI ]→ [kI ] is a finite function, given by its table.

• aI , bI ∈ QdI .

• f(I) = {(aIi yφI(i) + bIi )
dI
i=1 | y ∈ P I ∧ CI(y) = y}. Note that f(I) 6= ∅, by Brouwer’s fixed

point theorem.

The above is one of many equivalent characterizations of FIXP [13]. In particular, it was shown
in [13] that the gates {+, ∗,max} together with rational constants suffice for functions computed
by the corresponding circuits to characterize FIXP, and furthermore adding other gates such as
k’th-root gates for any fixed k does not increase the power of FIXP.

A multi-valued function f : {0, 1}∗ � R∗ is said to be in linear-FIXP if it satisfies the same defini-
tion as for FIXP, except that the circuit CI must be a {+,max}-circuit (recall: with multiplication
by rational constants allowed).

Informally, FIXP are those real vector multi-valued functions, with discrete inputs, that can be
cast as Brouwer fixed point computations for algebraically defined functions, and linear-FIXP is the
restriction of those to functions that are piecewise-linear. A multi-valued function f : {0, 1}∗ � R∗
is said to be FIXP-complete (respectively, linear-FIXP-complete) if:

1. f ∈ FIXP (respectively, f ∈ linear-FIXP), and

2. [f is FIXP-hard (respectively, f is linear-FIXP-hard)]: for all g ∈ FIXP (respectively, g ∈
linear-FIXP), there is a polynomial time computable map, mapping instances I of g to

〈yI , 1kI , φI , aI , bI〉, where yI is an instance of f , where f(yI) ⊆ RkI , φI : [dI ] → [kI ] is a
function (given by its table), dI ≥ 1, and aI and bI are dI -tuples with rational entries, so

that g(I) ⊇ {(aIi zφI(i) + bIi )
dI
i=1 | z ∈ f(yI)}. In other words, for any allowed output z of f on

input yI , the vector (aIi zφI(i) + bIi )
dI
i=1 is an allowed output of g on input I.

In [13] it was shown that the multi-valued function which maps normal forms games, with n ≥ 3
players, to their Nash equilibria is FIXP-complete.24

Since the output of a FIXP function consists of real-valued vectors, and since there exist circuits
whose fixed points are all irrational, a FIXP function is not directly computable by a Turing machine,
and the class is therefore not directly comparable with standard complexity classes of discrete total
search problems (such as PPAD, PLS, or TFNP).

Even though we phrased linear-FIXP as a class of real-valued search problems, it can also be
viewed as class of discrete search problems, because the nature of the functions defined by {+,max}-
circuits (with multiplication by rational constants), over a convex polytope domain P I , implies that
they always have at least one rational-valued fixed point, with encoding size polynomial in that of
the circuit.25 In fact, it was shown in [13] that linear-FIXP = PPAD. (So, linear-FIXP can serve as
our definition of PPAD in this paper. We will not need the original definition.)

It was shown by Chen and Deng [7] that the multi-valued function that maps 2-player NFGs to
their NEs is PPAD-complete, and by Daskalakis et al. [11] that the multi-valued function that maps
NFGs (with any number of players), and a given rational ε > 0, to their ε-NEs is PPAD-complete.

24To view the Nash equilibrium problem as a total multi-valued function, fNash : {0, 1}∗ � R∗, we can view all
strings in {0, 1}∗ as encoding some game, by viewing “ill-formed” input strings as encoding a fixed trivial game.

25Technically, to view linear-FIXP as a discrete search problem class, comparable to PPAD, etc., we likewise close
(discrete) linear-FIXP under polynomial time (search problem) reductions.
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We now define the discrete class FIXPa, also from [13]. A multi-valued function f : {0, 1}∗ �
{0, 1}∗ (a.k.a. a totally defined discrete search problem) is said to be in FIXPa if there is a function
f ′ ∈ FIXP, and polynomial time computable maps δ : {0, 1}∗ → Q+ and g : {0, 1}∗ → {0, 1}∗, such
that for all instances I,

f(I) ⊇ { g(〈I, y〉) | y ∈ Q∗ ∧ ∃y′ ∈ f ′(I) : ‖y − y′‖∞ ≤ δ(I) }.

Informally, FIXPa are those totally defined discrete search problems that reduce to approximating
exact Brouwer fixed points. A multi-valued function f : {0, 1}∗ � {0, 1}∗ is said to be FIXPa-
complete if:

1. f ∈ FIXPa, and

2. [f is FIXPa-hard]: For all g ∈ FIXPa, there are polynomial time computable maps r1, r2 :
{0, 1}∗ → {0, 1}∗, such that g(I) ⊇ { r2(〈I, z〉) | z ∈ f(r1(I)) }.

In [13] it was shown that the multi-valued function that maps pairs 〈Γ, δ〉, where Γ is a NFG
and δ > 0, to the set of rational δ-approximations (in `∞-distance) of Nash equilibria of Γ, is
FIXPa-complete.

3 Computing a (extensive form) ε-PE, and a ε-QPE, is in FIXP

Given a EFGPR, G, we now construct an algebraically defined function, F εG(x), whose Brouwer
fixed points (for each fixed ε > 0), constitute ε-PEs of G. We likewise construct a function,
Hε
G(x) whose Brouwer fixed points (for each fixed ε > 0), constitute ε-QPEs of G. The functions

F εG(x) and Hε
G(x) are both defined using an algebraic {+, ∗,max}-circuit whose encoding size is

polynomial in |G|, and where ε > 0 is an input of the algebraic circuit. Our construction of F εG(x)
essentially amounts to the same construction as given for ε-PEs of normal form games in [12],
except when it is applied to the agent normal form, AN (G). Of course the problem is that we can
not afford to actually construct AN (G), because it is exponentially large. However, it turns out
we do not need to construct AN (G) in order to construct F εAN (G)(x). We instead exploit the fact

(Proposition 2) that the expected payoff functions U(i,j)(x) := Ui(x) for agents (i, j) in AN (G) are
expressible as polynomials whose encoding size is polynomial in |G|. This allows us to construct
F εG(x) = F εAN (G)(x) with encoding size polynomial in |G|, avoiding the explicit construction of

AN (G).
Our construction of the function Hε

G(x) for ε-QPEs is based on some similar ideas, but is more
involved, and does not make direct use of the relationship with AN (G).

Given a n-player EFGPR, G, the space B of behavior strategy profiles for G is clearly a compact
convex polytope in euclidean space, Rm, where m is the dimension of the vectors b ∈ B that denote
behavior profiles. Moreover, B can clearly be expressed efficiently using a system of less than 3m
linear inequalities (which define B to be the set of vectors b ∈ Rm in which each local strategy bi,j
forms a probability distribution on Ai,j). For ε > 0, let Bε ⊆ B denote the polytope of behavior
profiles defined by:

Bε = {b ∈ B | bi,j(a) ≥ ε, for all i ∈ [n], j ∈ [di] and a ∈ Ai,j}.

Theorem 6 For any EFGPR, G:
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1. There is a function, F εG(x) : B → Bε, given by a {+, ∗,max}-circuit computable in polynomial
time from G, with the circuit having both x and ε > 0 as its inputs, such that for all fixed
0 < ε < 1/m (where m is the dimension of vectors b ∈ B), every Brouwer fixed point of the
function F εG(x) is a ε-PE of G. In particular, the problem of computing an extensive form
ε-perfect equilibrium for a given EFGPR is in FIXP.

2. There is a function, Hε
G(x) : B → Bε, given by a {+, ∗,max}-circuit computable in polynomial

time from G, with the circuit having both x and ε > 0 as its inputs, such that for all fixed
0 < ε < 1/m (where m is the dimension of vectors b ∈ B), every Brouwer fixed point of the
function Hε

G(x) is a ε-QPE of G. In particular, the problem of computing a ε-QPE for a given
EFGPR is in FIXP.

As mentioned, the proof we give below of Part (1.) of Theorem 6 is very similar to the proof
of the analogous result for ε-PEs of NFGs given in [12], which itself builds on a fixed point char-
acterization of Nash equilibria from [13]. By Proposition 4, to prove Theorem 6 it suffices to find
ε-PEs of the agent normal form AN (G), because these are the same as ε-PEs of G. We can not
“construct” AN (G), because it has size exponential in G, but we do not need to. We now give
the detailed proof for both parts. Although the proof of Part (1.) is very similar to the analogous
proof in [12], the proof of Part (2.) also involves additional constructions and does not appeal to
the relationship with AN (G). To facilitate our proof of Part (2.), we need some definitions, and an
alternative characterization of ε-QPE.

Note that for any fully mixed profile b ∈ B>0, for any player i, j ∈ [di], and any node u ∈ Ii,j ,
the conditional probability Pb(u|Ii,j) = P(u)

Pb(Ii,j) is well-defined, because Pb(Ii,i) > 0. Furthermore,

importantly, given that Pb(Ii,j) > 0, Pb(u|Ii,j) is otherwise “independent” of bi. It only depends on
the behavior strategies b−i of players other than i, because, by perfect recall, for all nodes u ∈ Ii,j
the visible history for player i is the same: Yi,j . For b ∈ B>0, for i ∈ [n], and for j ∈ [di], we use

U ji (b) to denote the conditional expected payoff to player i, conditioned on reaching information set
Ii,j , under profile b. Again, this conditional expectation is well-defined, since b ∈ B>0. Furthermore,

again, except for the fact that Pb(Ii,j) > 0, the conditional expectation U ji (b) is independent of
those local strategy bi,j′ in bi for information sets Ii,j′ such that the node j′ ∈ V Fi of the information
set forest Fi is not in the subtree of Fi rooted at node j ∈ V Fi . It only depends on those local
strategies bi,j′′ where j′′ ∈ V Fi is a node in the subtree of Fi rooted at j. For i ∈ [n], j ∈ [di] and
a ∈ Ai,j , and for b ∈ B>0, we define

Kj,ai (b) := max
b′i∈Bi

U ji (b |(i,j) (b′i | πai,j)).

Thus Kj,ai (b) denotes the maximum conditional expected payoff to player i, conditioned on reaching
information set Ii,j using b, where player i switches to action a ∈ Ai,j at Ii,j , and chooses the rest

of its strategy b′i (below information set Ii,j in Fi) so as to maximize U ji (b |(i,j) (b′i | πai,j)). Note

that, since b ∈ B>0, Kj,ai (b) is both well defined and “independent” of bi: it only matters that
Pb(Ii,j) > 0. Now, observe that, for any b ∈ B>0, for any i ∈ [n], j ∈ [di], and for any a, a′ ∈ Ai,j ,
we have:

( Kj,ai (b) < Kj,a
′

i (b) ) ⇐⇒ ( (max
b′i∈Bi

Ui(b |(i,j) (b′i | πai,j))) < (max
b′i∈Bi

Ui(b |(i,j) (b′i | πa
′
i,j))) (3)
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This equivalence holds because the profiles (b |(i,j) (b′i | πai,j))) and (b |(i,j) (b′i | πa
′
i,j))) differ only

within player i’s local strategies within bi at information sets j′ in the subtree of Fi rooted at
j ∈ V Fi . Thus, since Pb(Ii,j) > 0, the strict inequality on the left of (3) holds if and only if the
strict inequality on the right of (3) holds. Thus, an alternative definition for a profile b to be a
ε-quasi-perfect equilibrium (ε-QPE), is this: (a.) b ∈ B>0, and (b.) for all i ∈ [n], j ∈ [di], and

a, a′ ∈ Ai,j , if Kj,ai (b) < Kj,a
′

i (b), then bi,j(a) ≤ ε. We will exploit this alternative definition.26

Consider a EFGPR, G, and let b ∈ B have dimension m as vectors in Euclidean space. Suppose
we are given 0 < ε < 1/m. For a vector x of variables corresponding to the coordinates of a
behavior strategy b ∈ B, we let v(x) be a m-vector such that for all i ∈ [n], j ∈ [di], and a ∈ Ai,j
v(x)i,j,a = Ui(x | πai,j) = U(i,j)(x | πai,j). In other words, for all behavior profiles b ∈ B, v(b)i,j,a is the
expected payoff to agent (i, j) in the agent normal form game AN (G), if all agents play according
to b, except that agent (i, j) switches to pure strategy πai,j . Note that by Proposition 2, v(x)i,j,a
can be expressed as a polynomial in the variables x whose encoding size is polynomial in |G|.

Likewise, let us define v′(x)i,j,a := Kj,ai (x). We shall show, in Lemma 7 below, that the func-

tion Kj,ai (x), defined over B>0, can indeed be expressed as a {+,−, ∗, /,max,min}-formula in the
variables x, where the encoding size of the formula is polynomial in |G|.

Lemma 7 Given a EFGPR, G, for all players i ∈ [n], all information sets j ∈ [di], and all actions
a ∈ Ai,j, there is a {+,−, ∗, /,max}-formula v′(x)i,j,a (i.e., a {+,−, ∗, /,max,min}-circuit with no
re-use of subcircuits), such that the encoding size of v′(x)i,j,a is polynomial in |G|, and each v′(x)i,j,a
can be constructed from G in P-time, and such that for all fully mixed b ∈ B>0, v′(b)i,j,a = Kj,ai (b).

Proof. The basic idea of the proof is that, given b ∈ B>0, one can compute Kj,ai (b) using dynamic
programming, by working “bottom up” on the information set forest Fi for player i. Then the key
observation is that this dynamic program can actually be described by a {+,−, ∗, /,max}-formula
which has encoding size only polynomial in G.

We next describe the dynamic program, and the resulting formula, in detail. (We will later
need to use facts about the detailed structure of the formula.) Consider the information set forest
Fi for player i. Let LFi denote the set of leaves of Fi. Let WFi denote the set of internal nodes
of Fi. For a node j ∈ [di] = V Fi , and for a ∈ Ai,j , let us denote the set of a-children of j in Fi
by: ChaFi(j) = {j′ ∈ V Fi | (j, a, j′) ∈ EFi}. For an internal node u ∈ W, and for a ∈ Act(u), let
~Lu,a = {z ∈ L | ua v z & ∀m such that ua v z[m], z[m] 6∈ PP(u)}. In other words, ~Lu,a denotes
the set of leaves z of the game tree T that are in the subtree rooted at ua, and such that there is
no node on the path from ua to z which belongs to the same player P(u) that u belongs to.

For u, v ∈ V , let Pb(v | u) denote the probability that, using profile b, conditioned on reaching
node u, the play eventually thereafter hits node v. For i ∈ [n] and j, j′ ∈ [di], let Pb(Ii,j′ | Ii,j)
denote conditioned probability of reaching information set Ii,j′ , conditioned on reaching Ii,j , when
using profile b.

We can define v′(x)i,j,a := Kj,ai (x) inductively in a “bottom up” fashion based on the forest

Fi, based on the height, hFij , of the subtree rooted at node j ∈ V Fi = [di] of Fi. Recall that

26Indeed, this is one of the equivalent characterizations of ε-QPE that was originally given by van Damme in [45].
We used a different definition for clarity, and for compatibility with the way we defined ε-PE. In fact, similarly van
Damme [45] used a similar equivalent characterization of ε-PE for an EFGPR, defined as follows: (a.) b ∈ B>0, and

(b.), for all i ∈ [n], j ∈ [di], and a, a′ ∈ Ai,j , if U ji (b | πai,j) < U ji (b | πa
′
i,j) then bi,j(a) ≤ ε. Again, it is clear that this

is equivalent to the definition we have given for ε-PE.
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Px(u | Ii,j) = Px(u)
Px(Ii,j)

, is defined for all x ∈ B>0, and by Proposition 2 both the numerator and

denominator are given by polynomials in x with “small” encoding size (polynomial in |G|). Note
that likewise, for a ∈ Ai,j , P(x|πai,j)(v | u) is easily defined by a weighted monomial over the variables

x whose encoding size is polynomial in |G|. Furthermore if the node j′ ∈ V Fi is a child of the node
j ∈ V Fi in the forest Fi, then

P(x|πai,j)(Ii,j′ | Ii,j) =
∑
u∈Ii,j

Px(u | Ii,j) ·
∑
v∈Ii,j′

P(x|πai,j)(v | u).

Thus P(x|πai,j)(Ii,j′ | Ii,j) is also described by a formula over the variables x with encoding size

polynomial in |G|. We can now describe a dynamic program for computing Kj,ai (x), for all i ∈ [n],
j ∈ [di], and a ∈ Ai,j :

Kj,ai (x) :=


∑

u∈Ii,j Px(u | Ii,j) ·
∑

z∈~Lu,a P(x|πai,j)(z | u) · ri(z) , if j ∈ LFi
(
∑

j′∈ChaFi (j)
P(x|πai,j)(Ii,j′ | Ii,j) · (maxa′∈Ai,j′ K

j′,a′

i (x)) )+∑
u∈Ii,j Px(u | Ii,j) ·

∑
z∈~Lu,a P(x|πai,j)(z | u) · ri(z) , if j ∈WFi

(4)

It is clear that (4) defines a dynamic program for computing Kj,ai (b), given b ∈ B>0, and at the
same time (4) defines a {+,−, ∗, /,max}-formula with variables x, which when evaluated at b ∈ B>0

yields Kj,ai (b). Furthermore, the encoding size of the formula given for Kj,ai (x) is polynomial in |G|.
This can be seen by noting, firstly, that all the constituent parts of the inductively defined formula
for Kj,ai (x) are given by formulas with encoding size polynomial in |G|, and furthermore since the
inductive definition works “bottom up” on the forest Fi, there is no re-use of subformulas in this
inductive definition, i.e., it indeed defines a formula, not a circuit, and the size of the formula
is polynomial in |G| × |V Fi | ≤ |G|2. (Later, in Section 5, for “almost” approximation of a QPE,
we will also use the fact that the only use of division gates in this formula is in cases where the
denominator evaluates to Pb(Ii,j) for some information set Ii,j .)

Let h(x) = x+v(x), and let h′(x) = x+v′(x). For each agent (i, j), and for fixed x ∈ B, consider
the function fi,j,x(t) =

∑
a∈Ai,j max(hi,j,a(x) − t, ε). Likewise, for x ∈ B>0, consider the function

f ′i,j,x(t) =
∑

a∈Ai,j max(h′i,j,a(x)− t, ε). Clearly, both fi,j,x(t) and f ′i,j,x(t) are continuous, piecewise

linear function of t. The functions are strictly decreasing as t ranges from −∞, where fi,j,x(t) = +∞
(respectively, f ′i,j,x(t) = +∞), up to maxa∈Ai,j hi,j,a(x) − ε (respectively, maxa∈Ai,j h

′
i,j,a(x) − ε),

where fi,j,x(t) = |Ai,j | · ε (respectively, f ′i,j,x(t) = |Ai,j | · ε). Since we have |Ai,j | · ε ≤ m · ε < 1,
there is a unique value of t, which depends on x, call it ti,j(x) (call it, t′i,j(x), respectively) , where
fi,j,x(ti,j(x)) = 1 (where f ′i,j,x(t′i,j(x)) = 1).

The functions F εG : B → Bε and Hε
G : B → Bε are defined as follows. First we define F εG :

F εG(x)i,j,a = max(hi,j,a(x)− ti,j(x), ε) (5)

for every i = 1, . . . , n, and j ∈ [di], and a ∈ Ai,j .
To define Hε

G : B → Bε, care is needed since v′(x)i,j,a is only defined for x ∈ B>0. To address
this, we use an auxiliary normalizing function. For ε > 0, Dε : B → B>0, defined as follows:

Dε(x)i,j,a =
max(xi,j,a, ε)∑

a′∈Ai,j max(xi,j,a′ , ε)
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Dε clearly does map B to B>0. Furthermore, importantly, note that for all b′ ∈ Bε, Dε(b′) = b′.
We only use Dε as a tool to ensure the function Hε

G is defined for all b ∈ B. The range, and thus
the fixed points, of Hε

G lies within Bε, and on Bε the function Dε(x) is the trivial identity function.
We define Hε

G : B → Bε as follows:

Hε
G(x)i,j,a = max(h′i,j,a(D

ε(x))− t′i,j(Dε(x)), ε) (6)

for every i = 1, . . . , n, and j ∈ [di], and a ∈ Ai,j .
From our choice of ti,j(x) and t′i,j(D

ε(x)), it follows that
∑

a∈Ai,j F
ε
G(x)i,j,a = 1 and also that∑

a∈Ai,j H
ε
G(x)i,j,a = 1, for all i ∈ [n] and j ∈ [di]. Thus, for any behavior profile, x ∈ B, we have

F εG(x) ∈ Bε and Hε
G(x) ∈ Bε. So both F εG and Hε

G indeed map B to Bε, and since they are clearly
also continuous maps, by Brouwer’s theorem, they both have a fixed point in Bε.27

Lemma 8 For 0 < ε < 1/m:

1. Every fixed point of the function F εG : B → Bε is an ε-PE of AN (G), and thus also of G.

2. Every fixed point of the function Hε
G : B → Bε is a ε-QPE of G.

Proof. The proof is essentially the same in both cases:

1. If x is a fixed point of F εG , then x ∈ Bε and xi,j,a = max(xi,j,a + v(x)i,j,a − ti,j(x), ε) for all
(i, j, a). Recall that v(x)i,j,a = Ui(x | πai,j) = Ui,j(x | πai,j) is the expected payoff for agent
(i, j) under profile (x | πai,j).
Note that the equation xi,j,a = max(xi,j,a + Ui(x | πai,j)− ti,j(x), ε) implies that Ui(x | πai,j) =
ti,j(x) for all i, j, a such that xi,j,a > ε, and that Ui(x | πai,j) ≤ ti,j(x) for all i, j, a such that
xi,j,a = ε. Consequently, by definition, x constitutes an ε-PE.

2. If x is a fixed point of Hε
G , then x ∈ Bε, and thus Dε(x) = x. Thus, we have will xi,j,a =

max(xi,j,a + v′(x)i,j,a − t′i,j(x), ε) for all (i, j, a), where v′(x)i,j,a = Kj,ai (x).

Note, again, that the equation xi,j,a = max(xi,j,a + Kj,ai (x)− t′i,j(x), ε) implies that Kj,ai (x) =

t′i,j(x) for all i, j, a such that xi,j,a > ε, and that Kj,ai (x) ≤ t′i,j(x) for all i, j, a such that
xi,j,a = ε. Consequently, by definition, x constitutes an ε-QPE.

The following Lemma shows that we can implement the functions F εG(x) and Hε
G(x) by a circuit

which has x and ε as inputs, by using sorting networks.

Lemma 9 Given G, we can construct in polynomial time a {+, ∗,max}-circuit that computes the
function F εG(x), where x and ε > 0 are inputs to the circuit. Likewise, we can construct in P-time
a {+, ∗, /,max}-circuit that computes the function Hε

G(x), where x and ε > 0 are inputs to the
circuit.

27The reason we specify the domain of these functions as B instead of Bε is technical. To place the approximation
problems for PE and QPE in FIXPa, we shall need make ε > 0 very very small, and we do so by using a polynomial
sized algebraic circuit to define it. However, we shall also need the function domains to be definable by linear
inequalities having encoding size only polynomial in |G|. Both can be achieved by retaining the domain B.
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Proof. We define the circuits for both F εG(x) and Hε
G(x) together, since they are defined very

similarly.
Given a vector x ∈ B, and ε > 0 as inputs, the respective circuits first compute y = h(x) =

x+ v(x), and y′ = Dε(x) + v′(Dε(x)). It follows from the definition of v(x), Dε(x), and v′(x), and
from Lemma 7, that both y and y′ can be computed by a circuit using {+, ∗, /,max}-gates which
has size polynomial in |G|. For each agent (i, j), let yi,j be the corresponding subvector of y induced
by the (local) strategy of agent (i, j). Likewise, let y′i,j be the corresponding subvector of y′. Sort
the vector yi,j (the vector y′i,j) in decreasing order, and let zi,j (respectively, z′i,j) be the resulting
sorted vector, i.e. the components of zi,j = (zi,j,a1 , . . . , zi,j,a|Ai,j |) are the same as the components of

yi,j , but they are sorted (likewise for z′i,j = (z′i,j,a′1
, . . . , z′i,j,a′|Ai,j |

)). In other words, we are assuming

for convenience that Ai,j = {a1, . . . , a|Ai,j |} and that zi,j,a1 ≥ zi,j,a2 ≥ . . . ≥ zi,j,a|Ai,j | , and likewise

that Ai,j = {a′1, . . . , a′|Ai,j |} and that z′i,j,a′1
≥ z′i,j,a′2

≥ . . . ≥ z′i,j,a′|Ai,j |
, To obtain the sorted lists

zi,j and z′i,j , the respective circuits use a polynomial sized sorting network, for each (i, j) (see e.g.
Knuth [17] for background on sorting networks). For each comparator gate of the sorting network
we use a max and a min gate.

Using this, for each agent (i, j), we compute ti,j(x) and t′i,j(D
ε(x)) as the following expressions:

ti,j(x) := max{(1/l) · ((
l∑

k=1

zi,j,ak) + (|Ai,j | − l) · ε− 1) | l = 1, · · · , |Ai,j |} (7)

t′i,j(D
ε(x)) := max{(1/l) · ((

l∑
k=1

z′i,j,a′k
) + (|Ai,j | − l) · ε− 1) | l = 1, · · · , |Ai,j |} (8)

We will show below that this expression does indeed give the correct value of ti,j(x). The proof
for t′i,j(D

ε(x)) is virtually identical, so we omit it.
We output F εG(x)i,j,a = max(yi,j,a − ti,j(x), ε), and Hε

G(x)i,j,a = max(y′i,j,a − t′i,j(Dε(x)), ε), for
each i = 1, . . . , n, j ∈ [di], and a ∈ Ai,j .

We now have to establish that ti,j(x), defined above, is the correct value. (Again, we forgo the
proof for t′i,j(D

ε(x)), which is virtually identical.) Consider the function fi,j,x(t) =
∑

a∈Ai,j max(zi,j,a−
t, ε) as t decreases from zi,j,a1 − ε where the function value is at its minimum of |Ai,j | · ε, down
until the function reaches the value 1. In the first interval from zi,j,a1 − ε to zi,j,a2 − ε the func-
tion is fi,j,x(t) = zi,j,a1 − t + (|Ai,j | − 1) · ε; in the second interval from zi,j,a2 − ε to zi,j,a3 − ε
it is fi,j,x(t) = zi,j,a1 + zi,j,a2 − 2t + (|Ai,j | − 2) · ε, and so forth. In general, in the l-th interval,

fi,j,x(t) =
∑l

k=1(zi,j,ak − t) + (|Ai,j |− l) · ε =
∑l

k=1 zi,j,ak − lt+ (|Ai,j |− l) · ε. If the function reaches

the value 1 in the l’th interval, then clearly ti,j(x) = ((
∑l

k=1 zi,j,ak) + (|Ai,j | − l) · ε− 1)/l.

In that case, furthermore for k′ < l, we have
∑k′

k=1(zi,j,ak − ti) + (|Ai,j |−k′) · ε ≤
∑l

k=1(zi,j,ak −
ti,j(x))+(|Ai,j |−l)·ε = 1, because in that case we know (zi,j,ak−ti,j(x)) ≥ ε for every a ∈ {1, . . . , l}.
Therefore, in this case ((

∑k′

k=1 zi,j,ak)+(|Ai,j |−k′)·ε−1)/k′ ≤ ti,j(x). On the other hand, if l < |Ai,j |,
then for k′ > l we have ti ≥ zi,j,ak′ − ε, i.e., zi,j,ak′ − ti ≤ ε, and thus for all k′ > l, k′ ≤ |Ai,j |, we

have
∑k′

k=1(zi,j,ak − ti,j(x)) + (|Ai,j |−k′) · ε ≤
∑l

k=1(zi,j,ak − ti,j(x)) + (|Ai,j |− l) · ε = 1. Thus again

((
∑k′

k=1 zi,j,ak) + (|Ai,j | − k′) · ε− 1)/k′ ≤ ti,j(x). Therefore, ti,j(x) = max{(1/l) · ((
∑l

k=1 zi,j,ak) +
(|Ai,j | − l) · ε− 1)|l = 1, · · · , |Ai,j |}.

Lemma 8 and Lemma 9 together immediately imply Theorem 6.
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4 Approximating an SE, PE, and QPE is FIXPa-complete

In this section we exploit the algebraically defined function F εG(x) and Hε
G(x) for a EFGPR, G, with

input parameter ε > 0, devised in the previous section for ε-PEs and ε-QPEs, and we construct a
“small enough” ε∗ > 0 (using an algebraic circuit, given δ > 0) such that any fixed point of F ε

∗
G (x)

is a ε∗-PE which is also δ-close to an actual PE of G (in `∞ distance), and likewise any fixed point of
Hε∗
G (x) is a ε∗-QPE which is also δ-close to an actual QPE. In this way, we show that approximating

a PE, and a QPE, to within given desired precision, δ > 0, for a given EFGPR is FIXPa-complete.
Since PE constitutes a refinement of NE and of SGPE, this of course immediately implies that
approximating a NE or SGPE is also FIXPa-complete (cf. [10]). Likewise, since QPE constitutes a
refinement of NF-PE, this also implies that approximating a NF-PE is FIXPa-complete.

For SEs, we then also show that for any such ε∗-PE, b′′, if µb
′′

is the unique belief system
generated by b′′ then (b′′, µb

′′
) is δ-close to an actual SE of G (again in `∞). Furthermore, using

F ε
∗
G (x), we define an auxiliary fixed point function Gε

∗
G (x, z) with domain B × B, such that the

Brouwer fixed points of Gε
∗
G are pairs (b′′, µb

′′
), where b′′ is a ε∗-PE and µb

′′
is the belief system that

it generates. In this way, we show that approximating a SE (including its belief system) to within
given desired precision δ > 0, for a given EFGPR, is also FIXPa-complete.

Theorem 10 Given as input a EFGPR, G, and a rational δ > 0:

1. The problem of computing a vector b′ ∈ B such that there is a PE (or NE or SGPE), b∗, of
G, with ‖b′ − b∗‖∞ < δ, is FIXPa-complete.

2. The problem of computing a vector b′ ∈ B such that there is a QPE (or NF-PE), b∗, of G,
with ‖b′ − b∗‖∞ < δ, is FIXPa-complete.

3. The problem of computing a vector b′ ∈ B and a belief system µ′ such that there is a SE,
(b∗, µ∗) of G, with ‖(b′, µ′)− (b∗, µ∗)‖∞ < δ, is FIXPa-complete.

Note that FIXPa-hardness for these problems follows from the fact that we can encode any NFG,
Γ, as an EFGPR, E(Γ), with not much larger encoding size, and from the fact that approximating a
NE within desired precision for n-player NFGs is FIXPa-hard, as shown in [13]. The FIXPa-hardness
of approximating a SGPE, PE, QPE, NF-PE, and SE, then follows because we know that these
constitute refinements of NE. Thus, we only need to prove containment in FIXPa. Our proofs
follow closely some of the proofs in [12] used for characterizing the complexity of approximating
a PE for NFGs. Although very similar, our proof differs in some details (especially for sequential
equilibrium). So, both for clarity and in order to be self-contained, we provide detailed proofs.

Before we prove Theorem 10, we need some Lemmas. The following is a special case of a general
paradigm noted by Anderson [1].

Lemma 11 For any fixed EFGPR, G, and any δ > 0, there is an ε > 0, so that any ε-(Q)PE, b′,
of G has `∞-distance at most δ from some (Q)PE of G, and furthermore, if µb

′
denotes the belief

system generated by b′, then (b′, µb
′
) has `∞-distance at most δ from some SE of G.

Proof. Assume to the contrary that there is a EFGPR, G, and a δ > 0 so that for all ε > 0,
there is an ε-(Q)PE, bε of G so that there is no (Q)PE in the δ-neighborhood (with respect to `∞)
of bε or that there is no SE in the δ-neighborhood (with respect to `∞) of (bε, µb

ε
), where µb

ε
is the

belief system generated by bε.
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Consider the sequence of assessments (b1/n, µb
1/n

)n∈N. Since this is a sequence in a compact
space (namely, the direct product of the space of behavior profiles and the space of belief systems),
it has a limit point (b∗, µ∗). But then b∗ is a (Q)PE of G, by definition, since each b1/n is a 1/n-
(Q)PE. But this contradicts the statement that there is no (Q)PE in a δ-neighborhood of any of
the behavior profiles b1/n. Furthermore, it follows from Proposition 3 (Part 3.) that (b∗, µ∗) is
a SE. But this contradicts the statement that there is no SE in a δ-neighborhood of any of the
assessments (b1/n, µb

1/n
).

A priori, we have no bound on ε, but we can use results in real algebraic geometry [3, 4] to
obtain a specific bound. We first do this for PE and SE:

Lemma 12 There is a constant c, so that for all integers n,m, k,M ∈ N and δ ∈ Q+, the following

holds. Let ε ≤ min(δ, 1/(MhG+1))m
cm3

. For any n-player EFGPR, G, with a combined total of m
pure local strategies for all players in the game, with game tree T having height hG, and with M a
positive integer which is at least as large as any (by assumption, necessarily positive) integer payoff
of G and such that pu(a) > 1/M , for every u ∈ P0 and every a ∈ Act(u). Then any ε-PE, bε, of G
has `∞-distance at most δ from some PE of G, and furthermore if µb

ε
is the belief system generated

by bε, then (bε, µb
ε
) has `∞-distance at most δ from some SE of G.

Proof. The proof involves constructing formulas in the first order theory of real numbers, which
formalize the statement of Lemma 11, with δ being “hardwired” as a constant and ε being the only
free variable. Then, we apply quantifier elimination to these formulas. This leads to a quantifier
free statement to which we can apply standard theorems bounding the size of an instantiation of
the free variable ε making the formula true. We shall apply and refer to theorems in the monograph
of Basu, Pollack and Roy [3, 4]. Note that we specifically refer to theorems and page numbers of
the online edition [4]; these are in general different from the printed edition [3].

First-order formula for an extensive form ε-perfect equilibrium and for the belief sys-
tem it generates: Let EPS-PE-BS(x, z, ε) be the quantifier-free first-order formula, with free
variables x ∈ Rm, z ∈ R|W\P0|, and ε ∈ R, defined by the conjunction of the following formulas,
which together express the fact that x is a behavior profile that is an extensive form ε-PE of the
given EFGPR, G, and that z is the (unique) belief system generated by x:

xi,j,a > 0, for i ∈ [n], j ∈ [di], and a ∈ Ai,j ,∑
a∈Ai,j

xi,j,a = 1, for i ∈ [n] and j ∈ [di] ,

(
Ui(x | πai,j) ≥ Ui(x | πa

′
i,j)
)
∨ (xi,j,a ≤ ε) , for i ∈ [n], j ∈ [di], and a, a′ ∈ Ai,j ,

zu · Px(Ii,j) = Px(u), for all u ∈ V where u ∈ Ii,j for i ∈ [n] and j ∈ [di].

Note that by Proposition 2, Px(Ii,j) and Px(u) are expressible as multilinear polynomials in the
variables x (whose encoding size is polynomial in |G|).

First-order formula for perfect equilibrium and sequential equilibrium: Let PE-SE(x, z)
denote the following first-order formula with free variables x ∈ Rm, and z ∈ R|W\P0|, expressing
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that x is a behavior profile that is a PE of G, and that z is a belief system such that (x, z) is a SE
of G:

∀ε > 0 ∃x′ ∈ Rm ∃z′ ∈ R|W\P0| : EPS-PE-BS(x′, z′, ε) ∧ ‖x− x′‖2 < ε ∧ ‖z − z′‖2 < ε .

First-order formula for “almost implies near” statement: Given a fixed δ > 0 let PE-SE-boundδ(ε)
denote the following first-order formula with free variable ε ∈ R, denoting that any ε-perfect equi-
librium, x, of G is δ-close to a PE (in `2-distance, and therefore also in `∞-distance), and likewise
that if z is the belief system generated by x, then (x, z) is δ-close to a SE:

∀x ∈ Rm ∀z ∈ R|W\P0| ∃x∗ ∈ Rm ∃z∗ ∈ R|W\P0| :

(ε > 0) ∧
(
¬EPS-PE-BS(x, z, ε) ∨

(
PE-SE(x∗, z∗) ∧ ‖x− x∗‖2 < δ2 ∧ ‖z − z∗‖2 < δ2

))
.

Suppose δ2 = 2−k and that M = 2τ is a positive integer that satisfies the conditions in the
statement of the Lemma. Then for this formula we have

• The total degree of all involved polynomials is at most max(2,m).

• The bitsize of coefficients is at most max(k, τ · (hG + 1)).

• The number of free variables is 1.

• Since |W\P0| ≤ m, converting to prenex normal form, the formula has 4 blocks of quantifiers,
of sizes at most 2m, 2m, 1, 2m, respectively.

We now apply quantifier elimination [4, Algorithm 14.6, page 555] to the formula PE-SE-boundδ(ε),
converting it into an equivalent quantifier free formula PE-SE-bound′δ(ε) with a single free variable
ε. This is simply a Boolean formula whose atoms are sign conditions on various polynomials in ε.
The bounds given by [4] in association with Algorithm 14.6 imply that for this formula:

• The degree of all involved polynomials (which are univariate polynomials in ε) is:
max(2,m)O(m3) = mO(m3).

• The bitsize of all coefficients is at most:
max(k, τ · (hG + 1)) max(2,m)O(m3) = max(k, τ · (hG + 1))mO(m3).

By Lemma 11, we know that there exists an ε > 0 so that the formula PE-SE-bound′δ(ε) is
true. We now apply Theorem 13.14 of [4, Page 521] to the set of polynomials that are atoms of

PE-SE-bound′δ(ε) and conclude that PE-SE-bound′δ(ε
∗) is true for some ε∗ ≥ 2−max(k,τ ·(hG+1))mΩ(m3)

.
By the semantics of the formula PE-SE-boundδ(ε), we also have that PE-SE-boundδ(ε

′) is true for
all ε′ ≤ ε∗, and the statement of the lemma follows.

Proof of Theorem 10, parts (1.) and (3.). We shall combine the proofs of parts (1.) and (3.)
of the Theorem together. To do so, we shall first define an auxiliary fixed point function GεG(x, z)

defined in terms of F εG(x), such that the Brouwer fixed points of GεG are pairs (b′′, µb
′′
), where b′′ is

a ε-PE and µb
′′

is the belief system that it generates. Specifically, we define GεG : B×B→ Bε×B
as follows: For all (b, z) ∈ B ×B, GεG(b, z) := (b′, z′) where b′i,j,a := F εG(b), for all i ∈ [n], j ∈ [di]

and a ∈ Ai,j ; and furthermore where z′u :=
Pb′ (u)

Pb′ (Iiu,ju ) for all u ∈W \ P0, and where u ∈ Iiu,ju . Note
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in particular that, for all u ∈ W \ P0, we can express z′u as a (efficiently algebraically encodable)
rational function of b because, recalling from Proposition 2 that for all V ′ ⊆ V , there is a efficiently
encodable polynomial FV ′(x) such that for all b ∈ B FV ′(b) = Pb(V ′) represents the realization

probability of V ′, we have z′u :=
Pb′ (u)

Pb′ (Iiu,ju ) =
Fu(F εG(b))

FIiu,ju
(F εG(b)) .

Thus GεG : B×B→ Bε×B is a continuous map, and notably GεG is defined in the entire compact

domain B ×B, because b′ := F εG(b) ∈ Bε and thus the ratio
Pb′ (u)

Pb′ (Iiu,ju ) is always well defined (we

never divide by 0, because all nodes have positive realization probability under a profile b′ ∈ Bε, for
all ε > 0). Moreover, by definition of GεG , for all ε > 0, for any Brouwer fixed point (b′′, µ′′) ∈ Bε×B
of GεG , b′′ must be a ε-PE of G and µ′′ must be the unique belief system µb

′′
generated by b′′.

We now prove that computing a PE to within desired precision is FIXPa-complete, and that
computing a SE to within desired precision is FIXPa-complete. Let G be the n-player EFGPR given
as input. Let m be the combined total number of pure strategies for all players. Let M ′ be the
minimum positive integer such that pu(a) > 1/M ′, for every u ∈ P0 and every a ∈ Act(u). Let M ∈
N be a positive integer which is the maximum of M ′ and any (by assumption, necessarily positive)
integer payoff of G. By the definition of FIXPa, our task is the following. Given a parameter δ > 0,
we must construct a polytope P , a circuit C : P → P , and a number δ′, so that a δ′-approximation
to a fixed point of C can be efficiently transformed into δ-approximation of a PE of G, and a
δ′-approximation of a fixed point of C can also be efficiently transformed into a δ-approximation
of a SE of G. In fact, we shall let δ′ = δ/2 and ensure that δ′-approximations to fixed points of
C yield both a δ-approximation of a PE and a δ-approximation of a SE of G. The polytope P is
simply the polytope B×B, i.e., the cartesian product of the space of behavior profiles of G and the
space of belief systems; clearly we can output the inequalities defining this polytope in polynomial
time. The circuit C is the following: We construct the circuit for the function GεG above. Then, we

construct a circuit for the number ε∗ = min(δ/2,M−h
G
)2dcm

3 lgme ≤ min(δ/2,M−h
G
)m

cm3

, where c

is the constant of Lemma 12: The circuit simply repeatedly squares the number min(δ/2,M−h
G
)

(which is a rational constant that can be computed in P-time given the input G) and thereby
consists of exactly dcm3 lgme multiplication gates, i.e., a polynomially bounded number. We then
plug in the circuit for ε∗ for the parameter ε in the circuit for GεΓ, obtaining the circuit C, which
is obviously a circuit for Gε

∗
Γ . Now, by the above, any fixed point (b′′, µ′′) of C on P is an ε∗-PE of

G. Therefore, by Lemma 12, in any fixed point (b′′, µ′′) of C, we know that b′′ is both a ε∗-PE and
a δ/2-approximation (in `∞-distance) to a PE b∗ of G, and furthermore that µ′′ is the unique belief
system generated by b′′, and that µ′′ is a δ/2-approximation (in `∞-distance) of a belief system
µ∗ such that (b∗, µ∗) is a SE of G. Finally, by the triangle inequality, any δ′ = δ/2-approximation
(b′, µ′) to a fixed point (b′′, µ′′) of C on P is a δ/2 + δ/2 = δ approximation (in `∞) of some pair
(b∗, µ∗), such that b∗ is a PE of G and (b∗, µ∗) is a SE of G. We have thus established Theorem 10,
parts (1.) and (3.).

Next, we want to prove something analogous to Lemma 12, but for QPEs. In order to do so, we
first need the following:

Proposition 13 For any EFGPR, G, with i ∈ [n], j ∈ [di], and any a, a′ ∈ Ai,j, the inequality

Kj,ai (x) < Kj,a
′

i (x) can be expressed as formula, Φi,j,a,a′

G (x) ≡ ∃yΨi,j,a,a′

G (y, x), in the existential

theory of reals, where Ψi,j,a,a′

G (y, x) is quantifier free, where the total degree of all polynomials

involved in Ψi,j,a,a′

G (y, x) is 2, where the encoding size of Φi,j,a
G (x) is polynomial in |G|, and such
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that for all b ∈ B>0, Φi,j,a,a′

G (b) holds true iff Kj,ai (b) < Kj,a
′

i (b).

Proof. Note that Kj,ai (x) < Kj,ai (x) is an inequality between two {+,−, ∗, /,max}-formulas (over
the variables x) of encoding size polynomial in |G|. We will show that any such inequality, over any
subset of Euclidean space where the formula is always well-defined (i.e., involves no division by 0),
can be expressed by an existential theory of reals formula whose encoding size is polynomial in the
original inequality (and thus polynomial in |G|).

Specifically, suppose x is anm-vector of variables. By induction on the depth of any {+,−, ∗, /,max}-
formula, ζ(x), which is well-defined over the domain B>0 (i.e., which involves no sub formula that
performs a division by 0, when x is anywhere in that domain), we prove that there is a existential
theory of reals formula Ψζ(y0, y, x), of size linear in the size of ζ, with auxiliary variable y0 and a
vector of auxiliary variables y, such that for all x ∈ B>0, {y0 ∈ R | ∃yΨζ(y0, y, x)} = {ζ(x)}. In
other words, for the values x in the domain B>0, the formula ∃yΨζ(y0, y, x) “expresses” a unique
value, y0 ∈ R, which is the same value as ζ(x).

The base case, when ζ(x) is a variable from x, or a rational constant, is trivial.
Inductively, suppose ζ(x) := ζ1(x) � ζ2(x), where � ∈ {+,−, ∗, /,max}. By the inductive

hypothesis, there is a formula ∃yΨζ1(y0, y, x) using which y0 expresses ζ1(x), and which has size
linear in that of ζ1, and likewise there is a formula ∃y′Ψζ2(y′0, y

′, x) using which y′0 expresses ζ2(x),
and which has size linear in that of ζ2.

We construct a new formula ∃y0, y
′
0, y, y

′Ψzeta(y
′′
0 , y0, y

′
0, y, y

′, x) as follows. If � ∈ {+, ∗,−},
then Ψζ(y

′′
0 , y0, y

′
0, y, y

′, x) := (y′′0 = y0 � y′0 ∧Ψζ1(y0, y, x) ∧Ψζ2(y′0, y
′, x)).

If � .
= /, then Ψζ(y

′′
0 , y0, y

′
0, y, y

′, x) := (y′′0 ∗ y′0 = y0 ∧Ψζ1(y0, y, x) ∧Ψζ2(y′0, y
′, x)).

If � .
= max, then Ψζ(y

′′
0 , y0, y

′
0, y, y

′, x) := (y′′0 ≥ y0∧y′′0 ≥ y0∧(y′′0 ≤ y0∨y′′0 ≤ y′0)∧Ψζ1(y0, y, x)∧
Ψζ2(y′0, y

′, x)). (The case with � .
= min is entirely similar and symmetric to the max case. )

Note that, by induction, the new formula ∃y0, y
′
0, y, y

′Ψζ(y
′′
0 , y0, y

′
0, y, y

′, x) again has encoding
size linear in the encoding size of ζ(x), and furthermore note that the total degree of all polynomials
in Ψζ(y

′′
0 , y0, y

′
0, y, y

′, x) remains 2.

Finally, for x in the domain B>0, let Kj,ai (x) be expressed by ∃yΨ
Kj,ai

(y0, y, x), and let Kj,a
′

i (x)

be expressed by ∃y′Ψ
Kj,a

′
i

(y′0, y
′, x). We can express the inequality Kj,ai (x) < Kj,a

′

i (x) using the

following existential theory of reals formula:

Φi,j,a,a′

G (x) := ∃y0, y
′
0, y, y

′ ( y0 < y′0 ∧Ψ
Kj,ai

(y0, y, x) ∧Ψ
Kj,a

′
i

(y′0, y
′, x) ).

Lemma 14 There is a polynomial q(·), such that, for any EFGPR, G, and any δ = 2−k > 0, where
k is a positive integer, for any ε ≤ 1

22q(|G|+k) , any ε-QPE of G is δ-close (in `∞) to a QPE.

Proof. The proof is entirely analogous to that of Lemma 12. We spell out the details for
completeness.

First-order formula for ε-quasi-perfect equilibrium: Let EPS-QPE(x, ε) be the first-order
formula (a universal formula in the theory of reals), with free variables x ∈ Rm and ε ∈ R, defined
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by the conjunction of the following formulas, which together express the fact that x ∈ B>0 is a
behavior profile that is an extensive form ε-QPE of the given EFGPR, G:

xi,j,a > 0, for i ∈ [n], j ∈ [di], and a ∈ Ai,j ,∑
a∈Ai,j

xi,j,a = 1, for i ∈ [n] and j ∈ [di] ,

(¬Φi,j,a,a′

i (x)) ∨ (xi,j,a ≤ ε) , for i ∈ [n], j ∈ [di], and a, a′ ∈ Ai,j .

Note that by Proposition 13, Φi,j,a,a′

i (x) is expressible as a existential formula in the theory of reals,
whose size is polynomial in |G|. Thus, the conjunction EPS-QPE(x, ε) of all of the above formulas
is expressible as a universal formula in the theory of reals.

First-order formula for quasi-perfect equilibrium: Let QPE(x) denote the following first-
order formula with free variables x ∈ Rm, expressing that x is a behavior profile that is a QPE of
G:

∀ε > 0 ∃x′ ∈ Rm : EPS-QPE(x′, ε) ∧ ‖x− x′‖2 < ε .

First-order formula for “almost implies near” statement: Given a fixed δ > 0, let QPE-boundδ(ε)
denote the following first-order formula with free variable ε ∈ R, denoting that any ε-quasi-perfect
equilibrium, x, of G is δ-close to a QPE:

∀x ∈ Rm ∃x∗ ∈ Rm :

(ε > 0) ∧
(
¬EPS-QPE(x, ε) ∨

(
QPE(x∗) ∧ ‖x− x∗‖2 < δ2

))
.

Suppose δ2 = 2−k, for some positive integer k, and let q′(·) be some fixed polynomial such that
τ = q′(|G|) + k is at least the maximum encoding size of any coefficient in any of the polynomials
involved in QPE-boundδ(ε). (We know that such an explicit polynomial q′(·) exists, given the
polynomial bounds as a function of G on the encoding size of the various parts of the formula
QPE-boundδ(ε).)

• The total degree of all involved polynomials is at most 2.

• The bitsize of coefficients is at most τ .

• The number of free variables is 1.

• Converting to prenex normal form, the formula has 5 blocks of quantifiers, of sizes at most
m, m, 1, m, and q′′(|G|), for some fixed polynomial q′′(·), respectively.

We now apply quantifier elimination [4, Algorithm 14.6, page 555] to the formula QPE-boundδ(ε),
converting it into an equivalent quantifier free formula QPE-bound′δ(ε) with a single free variable
ε. This yields Boolean formula whose atoms are sign conditions on various polynomials in ε. Since
m ≤ |G|, the bounds given by [4] in association with Algorithm 14.6 imply that, for some fixed
polynomial q′′′(·), we have that in this formula:

• The degree of all involved polynomials (which are univariate polynomials in ε) is at most
2q
′′′(|G|+k).
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• The bitsize of all coefficients is at most: 2q
′′′(|G|+k).

By Lemma 11, we know that there exists an ε > 0 so that the formula QPE-bound′δ(ε) is
true. We now apply Theorem 13.14 of [4, Page 521] to the set of polynomials that are atoms of

QPE-bound′δ(ε) and conclude that QPE-bound′δ(ε
∗) is true for some ε∗ ≥ 2−2q

′′′(|G|+k)2

. By the
semantics of the formula QPE-boundδ(ε), we also have that QPE-boundδ(ε

′) is true for all positive
ε′ ≤ ε∗, and the statement of the lemma follows.

Proof of Theorem 10, part (2.) The proof is completely analogous to the proof of parts (1.) and
(3.). We use the algebraically defined functions Hε

G : B → Bε, which are parametrized by an input

variable ε. We “instantiate” ε with ε∗ = 2−2q
′′′(|G|+k)2

, where k = d− log((δ/2)2)e. We know we can
define ε∗ using an algebraic circuit having encoding size q′′′(|G| + k)2, by repeatedly squaring the
rational number (1/2), a total of q′′′(|G|+k)2 times. We thus can construct an {+,−, ∗, /,max,min}-
circuit C(x), having encoding size polynomial in |G| and size(δ), which defines the function Hε∗

G :

B → Bε∗ on the domain B, and such that every fixed point of Hε∗
G is a ε∗-QPE of G, which by

Lemma 14 is also (δ/2)-close (in `∞) to an actual QPE. Thus, applying the triangle inequality, if
we approximate a fixed point of Hε∗

G within `∞ distance (δ/2), we will have approximated a QPE
of G within `∞ distance δ. This shows that δ-approximating a QPE, given G and given δ > 0, is in
FIXPa.

5 Computing a δ-almost-ε-PE & δ-almost-ε-QPE is PPAD-complete.

In this section we again exploit the functions F εG(x) and Hε
G(x), for a EFGPR, G, devised in Section

3 for ε-PEs and ε-QPEs. This time we do so in order to show that computing a δ-almost-ε-PE,
given G, and given δ > 0 and ε > 0 (both in binary), is PPAD-complete. We also show that the
notion of δ-almost-ε-PE suitably “refines” δ-almost-SGPE (and thus also δ-almost-NE), and that
as a consequence computing a δ-almost-SGPE (or a δ-almost-NE), given G and given δ > 0 (in
binary), is PPAD-complete ([10]). Furthermore, we also show computing a δ-almost-ε-QPE, given
G, and given δ > 0 and ε > 0 is PPAD-complete. Roughly speaking, we will establish these results
by showing that (a): a δ-almost approximate fixed point of the function F εG(x) and the function
Hε
G(x), provides a δ′-almost-ε′-PE, and respectively a δ′-almost-ε′-QPE, for suitable δ′ and ε′ that

are linearly related to δ and ε; and that (b): computing a δ-almost approximate fixed point of the
function F εG(x) and Hε

G(x) is in PPAD (and PPAD-complete).
We have not yet actually defined the “almost” relaxation for QPE, which we call δ-almost-ε-

QPE. We do so now. For this, please recall the notation Kj,ai (b) defined in section 3, which is the
maximum conditional expected payoff to player i conditioned on reaching information set Ii,j , there
playing pure action a, and thereafter (in information sets below Ii,j in Fi) player i playing so as to
maximize this conditional expected payoff. For δ ≥ 0, a behavior profile b ∈ B is called a δ-almost
ε-quasi-perfect equilibrium (δ-almost-ε-QPE) of G, if it is (a): fully mixed, b ∈ B>0, and (b): for all

players i, all j ∈ [di], and all actions a, a′ ∈ Ai,j , if Kj,ai (b) < Kj,a
′

i (b) − δ then bi,j(a) ≤ ε. Note
that when δ = 0 this definition is equivalent to ε-QPE (this is because for a fully mixed profile

b, Kj,ai (b) < Kj,a
′

i (b) holds if and only if maxb′i∈Bi Ui(b |(i,j) (b′i | πai,j)) < maxb′′i ∈Bi Ui(b |(i,j) (b′′i |
πa
′
i,j)).

28 Thus, our definition is a reasonable “almost” relaxation of ε-QPE.

28In fact, as noted earlier, van Damme [45] defines QPE using the strict inequalities Kj,ai (b) < Kj,a
′

i (b) instead of
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We will make crucial use of some results and definitions from [13], which we now recall. Note
that the circuit defining F εG(x) associates a function F εG : Bε → Bε with each given pair 〈G, ε〉,
where the rational value ε > 0 is given in binary as part of the input.29 Thus |G|+ size(ε) is the
encoding size of the input from which the algebraic circuit for F εG(x) is generated.

Following [13], we call the family of functions 〈F εG(x)〉{〈G,ε〉}, associated with input pairs 〈G, ε〉,
polynomially continuous in their domain Bε, if there is a polynomial q(z) such that for all input
pairs 〈G, ε〉, for every rational ε1 > 0, there is a rational δ1 > 0, such that size(δ1) ≤ q(|G| +
size(ε) + size(ε1)) and such that for all b, b′ ∈ Bε:

‖b− b′‖∞ < δ1 =⇒ ‖F εG(b)− F εG(b′)‖∞ < ε1.

Again following [13], we call the family of functions 〈F εG(x)〉{〈G,ε〉} associated with input instances
〈G, ε〉, polynomially computable if (a): the domain Bε of the functions F εG : Bε → Bε is a convex
polytope described by a set of linear inequalities with rational coefficients that can be computed
from the input 〈G, ε〉 in polynomial time (note that this is clearly always the case for Bε, because
ε > 0 is part of the input), and (b): there is a polynomial q(z) such that there is an algorithm that
given 〈G, ε〉, and given a rational vector b ∈ Bε, computes F εG(b) (which is of course also a rational
vector) in time q(|G|+ size(ε) + size(b)). We need the following Lemma:

Lemma 15 The family of functions 〈F εG(x)〉{〈G,ε〉} for EFGPRs defined in Section 4 (equation (5))
is both (a.) polynomially computable and (b.) polynomially continuous.

Proof.
(a.): First, we observe that the family of functions 〈F εG(x)〉{〈G,ε〉} for EFGPRs is polynomially
computable. This follows easily from the definition of F εG(x) given Section 4 and in equations (5)
and (7). Specifically, given a rational vector b ∈ Bε, to compute F εG(b), we must first compute
a vector y := h(b) := b + v(b), where v(b)i,j,a := Ui,j(b | πai,j) = Ui(b | πai,j). Note that, given
a rational vector b ∈ Bε, each value yi,j,a = h(b)i,j,a = bi,j,a + Ui(b | πai,j) is clearly computable
in P-time, because Ui(x | πai,j) is given by a polynomial in x whose encoding size, as a sum of
multilinear monomials, is polynomial in |G| + size(ε). Note also that the encoding size of the
resulting rational vector y is clearly polynomial in |G|+ size(ε) + size(b). Next, having computed
the vector y, we must sort each subvector yi,j , associated with agent (i, j), into a non-increasing
sequence: zi,j = (zi,j,a1 , zi,j,a2 , . . . , zi,j,a|Ai,j |). We can clearly do so in P-time. Next, for each agent

(i, j), we can clearly compute ti,j(b) in P-time using the simple {max,+} formula over the sorted
vector of inputs zi,j given in equation (7). Finally, having computed ti,j(b) and y = h(b) in P-time,
we have from equation (5) that F εG(b)i,j,a = max(hi,j,a(b)− ti,j(b), ε). Thus we can compute F εG(b)
in time polynomial in |G|+ size(ε) + size(b), given G, ε > 0, and any rational vector b ∈ Bε.
(b.): Next, we want to show that the function family 〈F εG(x)〉{〈G,ε〉} for EFGPRs is polynomially
continuous. We will in fact show that in the domain Bε the function F εG(x) is Lipschitz continuous

with Lipschitz constant 2q(|G|+size(ε)) (with respect to the `∞ norm), for some polynomial q(·). In
other words, for all b, b′ ∈ Bε, we have:

‖F εG(b)− F εG(b′)‖∞ ≤ 2q(|G|+size(ε)) · ‖b− b′‖∞. (9)

maxb′i∈Bi
Ui(b |(i,j) (b′i | πai,j)) < maxb′′i ∈Bi

Ui(b |(i,j) (b′′i | πa
′
i,j)).

29In this section it will be more convenient to view the domain of the function F εG as Bε, rather than B, because
ε > 0 will be explicitly given.
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Of course, it immediate follows from (9) is that the family of functions 〈F εG(x)〉{〈G,ε〉} is polynomially

continuous: in the definition of polynomially continuity, take δ1 := 1
2q(|G|+size(ε)) · ε1, it then follows

from (9) that for all b, b′ ∈ Bε, ‖b − b′‖∞ < δ1 =⇒ ‖F εG(b) − F εG(b′)‖∞ < ε1. Furthermore, clearly
size(δ1) ≤ q∗(|G| + size(ε) + size(ε1)), for some fixed polynomial q∗(·). So, we only need to
establish (9).

Consider any b, b′ ∈ Bε. First, let us bound ‖h(b)−h(b′)‖∞. Recall that hi,j,a(x) = xi,j,a+Ui(x |
πai,j). Moreover, we know by Proposition 2 that Ui(x | πai,j) is given by an explicit polynomial (a

weighted sum of multilinear monomials) in the variables x, with degree bounded by the height hG

of the game tree T , and with encoding size polynomial in |G|.
First, consider any monomial f(x) = α · xi1 . . . xik . Note that in the domain Bε ⊆ [0, 1]d

(for a suitable dimension d), the monomial f(x) is Lipschitz continuous with Lipschitz constant
|α|k (with respect to the `∞ norm). To see this simple fact, note that for b, b′ ∈ Bε, we have
|f(b) − f(b′)| ≤ |α||bi1 . . . bik − b′i1 . . . b

′
ik
|. Furthermore, by induction on k ≥ 1, we have that for

b, b′ ∈ [0, 1]k, |b1 . . . bk − b′1 . . . b′k| ≤ k‖b− b′‖∞. The base case, k = 1, is trivial. For the inductive
case, we have:

|b1 . . . bk − b′1 . . . b′k| = |b1 . . . bk − b1b′2 . . . b′k + b1b
′
2 . . . b

′
k − b′1 . . . b′k|

≤ |b1 . . . bk − b1b′2 . . . b′k|+ |b1b′2 . . . b′k − b′1 . . . b′k|
= |b1| · |b2 . . . bk − b′2 . . . b′k|+ |b′2 . . . b′k| · |b1 − b′1|
≤ |b1| · (k − 1)‖b− b′‖∞ + |b1 − b′1| · |b′2 . . . b′k| (by inductive hypothesis)

≤ (k − 1)‖b− b′‖∞ + |b1 − b′1| (because |b1| ∈ [0, 1] and |b′2 . . . b′k| ∈ [0, 1])

≤ k‖b− b′‖∞.

Now suppose that the polynomial hi,j,a(x) = xi,j,a + Ui(x | πai,j) is the sum of Mi,j,a weighted
monomials, and that the maximum absolute value of a coefficient of any of the monomials is Amax

i,j,a.
Then by the above, for any b, b′ ∈ Bε, we have |hi,j,a(b) − hi,j,a(b

′)| ≤ Mi,j,a · Amax
i,j,a‖b − b′‖∞.

Let Mmax = maxi,j,aMi,j,a , and let Amax = maxi,j,aA
max
i,j,a. Then we have ‖h(b) − h(b′)‖∞ ≤

Mmax · Amax · ‖b − b′‖∞. Thus, clearly h(x) is Lipschitz continuous in domain Bε, with Lipschitz
constant Mmax ·Amax, which is clearly upper bounded by 2q(|G|) for some polynomial q(·).

Next, note that the sort function has Lipschitz constant 1, with respect to `∞. In other words,
if sort(y) is a function that takes a vector y ∈ Rk as input, and yields its (non-increasing) sort,
sort(y) ∈ Rk, then for all y, y′ ∈ Rk, ‖sort(y)− sort(y′)‖∞ ≤ ‖y − y′‖∞.

For completeness, we provide a proof of this easy fact. Suppose for contradiction that |sort(y)i∗−
sort(y′)i∗ | = ‖sort(y) − sort(y′)‖∞ > ‖y − y′‖∞, for some index i∗ ∈ [k]. Define the permuta-
tions π and π′ of [k], such that for all i ∈ [k], sort(y)i = yπ(i) and sort(y′)i = yπ′(i). Suppose,
wlog, that yπ(i∗) = sort(y)i∗ < sort(y′)i∗ = y′π′(i∗). Since |{π(1), . . . , π(i∗)}| = i∗ > i∗ − 1 =

|{π′(1), . . . , π′(i∗ − 1)}|, there must exist an r ∈ {1, . . . , i∗} such that π(r) ∈ {π′(i∗), π′(i∗ +
1), . . . , π′(k)}. In other words, yπ(r) ≤ yπ(i∗) = sort(y)i∗ < sort(y′)i∗ = y′π′(i∗) ≤ y′π(r). Thus

‖sort(y)− sort(y′)‖∞ = |sort(y)i∗ − sort(y′)i∗ | ≤ |y′π(r) − yπ(r)| ≤ ‖y′ − y‖∞.

Note also that the composition f1(f2(x)) of Lipschitz continuous functions f1(y) and f2(x),
where f1(y) has Lipschitz constant β1 and f2(x) has Lipschitz constant β2 (both with respect to
the `∞ norm), is Lipschitz continuous with constant β1 · β2 (again with respect to `∞).

Now, consider ti,j(x) as defined by equation (7). The expression defining ti,j(x) is a maximum
over linear (affine) expressions (using ε as a constant) with at most |Ai,j | terms over the sorted
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vector of variables zi,j . Since the max function has Lipschitz constant 1 (it is just a component of the
sort function), it follows that for all b, b′ ∈ Bε, we have ‖ti,j(b)−ti,j(b′)‖∞ ≤ 2q

′(|G|+size(ε)) ·‖b−b′‖∞
for some polynomial q′(·).

Finally, since we have F εG(x)i,j,a = max(hi,j,a(x)−ti,j(x), ε), and since max has Lipschitz constant
1, and since the sum of two Lipschitz functions with Lipschitz constant β1 and β2 is a Lipschitz
function with Lipschitz constant ≤ β1 + β2, we are done: there is a polynomial q(·) such that for
all b, b′ ∈ Bε,

‖F εG(b)− F εG(b′)‖∞ ≤ 2q(|G|+size(ε)) · ‖b− b′‖∞.

In fact, let us remark that Lemma 15 is a special case of a more general fact, namely that
function families defined by {+, ∗,max, sort}-formulas whose encoding size is polynomial in the
input instance, over a bounded domain such as Bε, are necessarily polynomially computable and
polynomially continuous. The proof of the next lemma will argue this more explicitly.

Lemma 16 The family of functions 〈Hε
G(x)〉{〈G,ε〉} for EFGPRs defined in Section 4 (equation (6))

is both (a.) polynomially computable and (b.) polynomially continuous.

Proof. (a.): First, we again observe that the family of functions 〈Hε
G(x)〉{〈G,ε〉} for EFGPRs is

polynomially computable over the corresponding domain Bε. This again follows easily from the
definition of Hε

G(x) given in Section 4, in equations (6) and in the dynamic program (4) defining

Kj,ai (x). Specifically, given a rational vector b ∈ Bε, to compute Hε
G(b), noting that Dε(b) = b,

we must first compute a vector y′ := h′(b) := b + v′(b), where v′(b)i,j,a := Kj,ai (b). We know
from the dynamic program given in (4) that given G and b ∈ Bε, we can compute v′(b)i,j,a in
time polynomial in |G| + size(ε) + size(b), for all i, j, and a. In particular, it is important
to emphasize that size(Kj,ai (b)) remains polynomial in |G| + size(ε) + size(b), and so do the

sizes of all the intermediate rational numbers computed by subformulas of Kj,ai (b). This is not
only because the formula has only polynomial size, but also because, importantly, the special
kind of {+,−, /,max,min, sort}-formula defining Kj,a

i (b), given in (4), has the property that the
only occurrences of division in the formula occur when the denominator of the division operation
evaluates to Pb(Ii,j) for some information set Ii,j . But the probability Pb(Ii,j), for any b ∈ Bε is

at least εh
G
. Note that size(εh

G
) ≤ hG · size(ε). This ensures that the rational values arising as

the result of such division gates in the formula for Kj,a
i (b) always have an encoding size that is

polynomial in |G|+size(ε)+size(b). It follows, by an easy induction on the size m of a subformula,
that the encoding size of the value computed by a subformula of size m has encoding size polynomial
in m ·(|G|+size(ε)+size(b)). Since m itself is bounded by a polynomial in |G|+size(ε)+size(b),
this means all values computed in the formula have encoding size bounded by a polynomial in |G|+
size(ε)+size(b). We can thus also compute h′(b)i,j,a in time polynomial in |G|+size(ε)+size(b).
Likewise, computing t′i,j(b) is easily done in time polynomial in |G|+size(ε)+size(b), using sorting.
Thus Hε

G(b) can be computed in time polynomial in |G|+size(ε) +size(b). Thus we can compute
Hε
G(b) in time polynomial in |G|+size(ε)+size(b), given G, ε > 0, and any rational vector b ∈ Bε.

(b.) We now argue that the family of functions 〈Hε
G(x)〉{〈G,ε〉} is polynomially continuous over

the domain Bε. We will again actually show that the functions Hε
G(x) are Lipschitz continuous,

with a Lipschitz constant of the form 2q(|G|+size(ε)), for some polynomial q(·), over domain Bε. Just
as in Lemma 15, this implies polynomial continuity.
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The proof is again similar to the case F εG(x). We noted already, after the proof of Lemma 15, that
an adaptation of that proof shows that any such function that can be defined by a {+, ∗,max, sort}-
formula and has encoding size polynomial in |G| + size(ε) is polynomially continuous over the
domain Bε. We will establish a more direct version of this fact here. Hε

G(x) is defined by a
{+, ∗, /,max, sort}-formula, meaning it also involves division. However, in the case of Hε

G(x)
we furthermore have the fact that the only use of division is inside subformulas which compute
Pb(u | Ii,j) = Pb(u)

Pb(Ii,j) , for some information set Ii,j and some node u ∈ Ii,j . Furthermore, we also

see easily by inspection of Hε
G(x) that, for all b ∈ Bε, and for every subformula f1(x) of the formula

for Hε
G(x), we have maxb∈Bε |f1(b)| ≤ 2q

′′(|G|+size(ε)) for some fixed polynomial q′′(·) which is also
independent of the subformula. We will use both of these facts.

Now, for any two subformulas f1(x) and f2(x) of Hε
G(x), suppose f1(x) (f2(x)) has Lipschitz

constant β1 (β2), with respect to the `∞ norm, i.e., that for k ∈ {1, 2}, if for all b, b′ ∈ Bε we have
|fk(b)− fk(b′)| < βk‖b− b′‖∞, then:

1. f1(x) · f2(x) has Lipschitz constant at most 2q
′′(|G|+size(ε)) · (β1 + β2). To see this, note that

for all b, b′ ∈ Bε we have:

|f1(b) · f2(b)− f1(b′) · f2(b′)| = |f1(b) · (f2(b)− f2(b′)) + f2(b′)(f1(b)− f1(b′))|
≤ |f1(b)| · |f2(b)− f2(b′)|+ |f2(b)| · |f1(b)− f1(b′)|
≤ 2q

′′(|G|+size(ε))(β1 + β2) · ‖b− b′‖∞

2. f1(x) + f2(x) has Lipschitz constant at most β1 + β2. (This is obvious.)

3. max(f1(x), f2(x)) has Lipschitz constant at most max(β1, β2). This follows immediately from
the more general fact (established in the proof of Lemma 15) that the sort function has
Lipschitz constant 1 (under the `∞ norm), since sort(y)1 = maxi yi. More directly (and
repeating some the same arguments), we have:
|max(f1(b), f2(b))−max(f1(b′), f2(b′))| ≤ max(|f1(b)−f1(b′)|, |f2(b)−f2(b′)|) ≤ max(β1, β2) ·
‖b − b′‖∞. To see why the first inequality holds, assume w.l.o.g. that max(f1(b), f2(b)) ≥
max(f1(b′), f2(b′)), and that f1(b) ≥ f2(b). Then, if f1(b′) ≥ f2(b′) we have |max(f1(b), f2(b))−
max(f1(b′), f2(b′))| = |f1(b)− f1(b′)|. Otherwise, if f1(b′) < f2(b′), then |max(f1(b), f2(b))−
max(f1(b′), f2(b′))| = |f1(b)− f2(b′)| < |f1(b)− f1(b′)|, since f1(b) ≥ f2(b′). Thus, w.l.o.g., in
all cases, |max(f1(b), f2(b))−max(f1(b′), f2(b′))| ≤ max(|f1(b)− f1(b′)|, |f2(b)− f2(b′)|).

Next, observe that for x in the domainBε the functions Px(u)
Px(Ii,j)

have Lipschitz constant 2q
′(|G|+size(ε)),

for some fixed polynomial q′(·). This holds because for all i, j and u, and for all b, b′ ∈ Bε, we have:
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| Pb(u)

Pb(Ii,j)
− Pb′(u)

Pb′(Ii,j)
| = |Pb

′(Ii,j) · Pb(u)− Pb(Ii,j) · Pb′(u)

Pb(Ii,j) · Pb′(Ii,j)
|

≤ 1

|Pb(Ii,j) · Pb′(Ii,j)|
· |Pb′(Ii,j) · Pb(u)− Pb(Ii,j) · Pb′(u)|

≤ 1

ε2·hG
· |Pb′(Ii,j) · Pb(u)− Pb(Ii,j) · Pb′(u)| (because for all b′′ ∈ Bε, Pb′′(Ii,j) ≥ εh

G
)

≤ 2q
′′(|G|+size(ε)) · |Pb′(Ii,j) · Pb(u)− Pb(Ii,j) · Pb′(u)|

= 2q
′′(|G|+size(ε))|Pb′(u)(Pb(Ii,j)− Pb′(Ii,j)) + Pb′(Ii,j))(Pb′(u)− Pb(u))|

≤ 2q
′′(|G|+size(ε))(|(Pb(Ii,j)− Pb′(Ii,j))|+ |Pb′(u)− Pb(u))|)

≤ 2q
′′(|G|+size(ε))+q′(|G|+size(ε))+1‖b− b′‖∞

Thus, by induction on the size s of any subformula of f(x) of Hε
G(x), which is either a

{+, ∗,max, sort}-formula or of the form Px(u)
Px(Ii,j)

, we have that for all b, b′ ∈ Bε, |f(b) − f(b′)| ≤
2(q′(|G|+size(ε))+1)·s ≤ 2q(|G|+size(ε)), for some fixed polynomial q(·). Thus, Hε

G(x) is polynomially
continuous over the domain Bε.

We now define a search problem called the almost fixed point approximation problem, called the
weak (fixed point) approximation problem in [13], specialized to the case of the fixed point functions
F εG : Bε → Bε. Namely, given as input 〈G, ε〉, and a rational δ1 > 0, compute a rational vector
b′ ∈ Bε, such that ‖F εG(b′)− b′‖∞ < δ1. We shall make crucial use of the following fact, which was
established in [13] by employing Scarf’s [40] algorithm, and Kuhn’s [22] related algorithm, for weak
(i.e., almost) fixed point approximation:

Proposition 17 ([13], Prop. 2.2 (part 2.)) If the family of fixed point functions 〈F εG(x)〉{〈G,ε〉},
associated with input instances 〈G, ε〉, is polynomially continuous and polynomially computable, then
the almost (weak) fixed point approximation problem for F εG(x), given input 〈G, ε〉, is in PPAD.

The following Lemma is the key to this section:

Lemma 18 For any EFGPR, G, and ε > 0:

1. For any δ > 0, if b ∈ Bε satisfies ‖b−F εG(b)‖∞ < δ, then b is a (3 · δ)-almost-(δ+ ε)-PE of G.

2. For any δ > 0, if b ∈ Bε satisfies ‖b−Hε
G(b)‖∞ < δ, then b is a (3 · δ)-almost-(δ+ ε)-PE of G.

3. For any δ > 0, let ε(G, δ) :=
pG0,min

12·(hG+1)·MG ·|G|
· δ.

If b ∈ Bε(G,δ) is a 1
(hG+1)

· ε(G, δ)(hG+1)-almost-(2 · ε(G, δ))-PE, then b is a δ-almost-SGPE.

Proof.
(1.) Suppose that for b ∈ Bε, we have ‖F εG(b)− b‖∞ ≤ δ.
Then |bi,j,a −max(bi,j,a + v(b)i,j,a − ti,j(b), ε)| ≤ δ for all (i, j, a).
Recall that v(b)i,j,a = Ui(b | πai,j) = Ui,j(b | πai,j).
Now note that |bi,j,a−max(bi,j,a+Ui(b | πai,j)− ti,j(b), ε)| ≤ δ implies the following, by case splitting
based on the value of bi,j,a:
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1. If bi,j,a > ε+δ, then |bi,j,a−(bi,j,a+Ui(b | πai,j)−ti,j(b))| ≤ δ, and thus |Ui(b | πai,j)−ti,j(b))| ≤ δ.
Thus, in this case ti,j(b) + δ ≥ Ui(b | πai,j) ≥ ti,j(b)− δ.

2. If ε ≤ bi,j,a ≤ ε+δ, then bi,j,a+Ui(b | πai,j)−ti,j(b) ≤ ε+2·δ, and thus Ui(b | πai,j)−ti,j(b) ≤ 2·δ,
and so Ui(b | πai,j) ≤ ti,j(b) + 2 · δ.

Thus, for all (i, j, a), we have Ui(b | πai,j) ≤ ti,j(b) + 2 · δ, and for all (i, j, a) where bi,j,a > ε+ δ, we

have Ui(b | πai,j) ≥ ti,j(b)− δ. Thus, if bi,j,a′ > ε+ δ, then (maxa Ui(b | πai,j))− Ui(b | πa
′
i,j) ≤ 3δ. In

other words, b is a (3 · δ)-almost-(ε+ δ)-PE. This completes the proof of Part (1.). of Lemma 18.

(2.): the proof of part (2.) is actually identical to the proof of part (1.), except that instead of
v(b)i,j,a = Ui(b | πai,j), we have to use v′(b)i,j,a = Kj,ai (b), and instead of ti,j(b) we have t′i,j(b). If

we systematically replace occurrences of Ui(b | πai,j) by Kj,ai (b) in the proof, and likewise replace

Ui(b | πa
′
i,j) by Kj,a

′

i (b), and replace ti,j(b) by t′i,j(b), then the proof remains unchanged. Note, in
particular, that for b ∈ Bε, we have b = Dε(b), and thus we can ignore the applications of Dε(x)
in the definition of Hε

G , because here we are explicitly given ε > 0 and we can view the function as
Hε
G : Bε → Bε.

(3.):
Recall that (w.l.o.g.) the payoff functions ri : L → N>0 are positive integer-valued for every

player in G, and that MG denotes the maximum such value. Also recall that hG denotes the height
of the game tree T = (V,E) of G, and that for any node u ∈ V , hGu denotes the height of the subtree
rooted at u.

Note that for any profile b ∈ Bε′ for any ε′ > 0, for any player i, any information set j ∈ [di],
and for any node u ∈ Ii,j , the conditional probability Pb(u | Ii,j) of the play reaching node u con-
ditioned on the event of reaching information set Ii,j , under profile b, is well defined. Furthermore,
importantly, again note that the conditional probability Pb(u | Ii,j) is independent of bi. It only
depends on the behavior strategies of players other than i, because, by perfect recall, for all nodes
u ∈ Ii,j the visible history for player i at node u is the same: it is Yi,j .

For i ∈ [n], and for j ∈ [di′ ], we use U ji (b) to denote the conditional expected payoff to player
i, conditioned on the event of reaching information set Ii,j .

We are now ready to prove (3.). By assumption, b ∈ Bε(G,δ), and b is a

1
(hG+1)

·
(

pG0,min

12·(hG+1)·MG ·|G|
· δ
)(hG+1)

-almost-(
pG0,min

6·(hG+1)·MG ·|G|
· δ)-PE.

We will show that any such b is also a δ-almost-SGPE of G. Consider b from the point of view of
a single player i. We need to show that behavior strategy bi is a δ-almost best response to b, i.e.,
that Ui(b) ≥ Ui(b | πci ) − δ, for any pure strategy c ∈ Si. Recall that a pure strategy c : [di] → Σ
for player i maps information sets j ∈ [di] to available actions c(j) ∈ Ai,j .

Claim 1 For every player i, every j ∈ [di], and every action a ∈ Ai,j such that

bi,j,a > (
pG0,min

6·(hG+1)·MG ·|G|
· δ), we have for any a′ ∈ Ai,j:

U ji (b | πai,j) ≥ U
j
i (b | πa′i,j)−

1

3 · (hG + 1)
· δ

40



Proof. Since b ∈ Bε(G,δ) is a 1
(hG+1)

(
pG0,min

12·(hG+1)·MG ·|G|
· δ
)(hG+1)

-almost-(
pG0,min

6·(hG+1)·MG ·|G|
· δ)-PE, for

any a ∈ Ai,j such that bi,j,a > (
pG0,min

6·(hG+1)·MG ·|G|
· δ), and any πa

′
i,j , we know that:

Ui(b | πai,j) ≥ Ui(b | πa
′
i,j)−

1

(hG + 1)

(
pG0,min

12 · (hG + 1) ·MG · |G|
· δ

)(hG+1)

(10)

Note that, for any b′ ∈ Bε(G,δ), we have

Pb′(Ii,j) ≥ ε(G, δ)h
G

=

(
pG0,min

6 · (hG + 1) ·MG · |G|
· δ

)hG

This follows because ε(G, δ) ≤ pG0,min, and thus under profile b′ ∈ Bε(G,δ), every “edge” of the game

tree will have probability at least ε(G, δ). Thus already for every node u ∈ Ii,j , Pb′(u) ≥ ε(G, δ)hG ,

and so Pb′(Ii,j) ≥ Pb′(u) ≥ ε(G, δ)hG .
Now note that, for any profile b′ ∈ Bε(G,δ), the expected payoff Ui(b

′) can be expressed as
a sum Ui(b

′) = U ji (b′)Pb′(Ii,j) + U¬ji (b′)Pb′(¬Ii,j), where U¬ji (b′) denotes the expected payoff to
player i conditioned on not reaching information set Ii,j , and Pb′(¬Ii,j)

.
= (1−Pb′(Ii,j)) denotes the

probability of not reaching information set Ii,j .
Note that, if in any such profile b′ we change only the local strategy b′i,j to a new strategy b′′i,j

then this does not effect the probabilities Pb′(Ii,j) and Pb′(¬Ii,j), nor does it effect the conditional

expectation U¬ji (b′). In other words, for any behavior profile b′ ∈ Bε(G,δ) and any local strategy
b′′i,j ∈ Bi,j , we have:

Ui(b
′ | b′′i,j) = U ji (b′ | b′′i,j) · Pb′(Ii,j) + U¬ji (b′) · Pb′(¬Ii,j) (11)

Now suppose, for contradiction, that for some πa
′
i,j , we have:

U ji (b | πai,j) < U ji (b | πa′i,j)−
1

3(hG + 1)
· δ.

But then, by applying equation (11) with b′ := (b | πa′i,j) and b′′i,j := πai,j , we have:

Ui(b | πai,j) = U ji (b | πai,j) · P(b|πa′i,j)
(Ii,j) + U¬ji (b | πa′i,j) · P(b|πa′i,j)

(¬Ii,j)

< (U ji (b | πa′i,j)−
1

3(hG + 1)
· δ) · P

(b|πa′i,j)
(Ii,j) + U¬ji (b | πa′i,j) · P(b|πa′i,j)

(¬Ii,j)

≤ Ui(b | πa
′
i,j)−

1

3(hG + 1)
· δ · P

(b|πa′i,j)
(Ii,j)

≤ Ui(b | πa
′
i,j)−

1

3(hG + 1)
· δ ·

(
pG0,min

6 · (hG + 1) ·MG · |G|
· δ

)hG

Thus30, Ui(b | πai,j) < Ui(b | πa
′
i,j)− 1

(hG+1)

(
pG0,min

12·(hG+1)·MG ·|G|
· δ
)hG+1

. But this contradicts inequality

(10). Thus, we must have U ji (b | πai,j) ≥ U
j
i (b | πa′i,j)− 1

3(hG+1)
· δ.

30Noting that
pG0,min

12·(hG+1)·MG ·|G|
· δ < δ

3
.
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Again, let b ∈ Bε(G,δ) be a 1
(hG+1)

(
pG0,min

12·(hG+1)·MG ·|G|
· δ
)(hG+1)

-almost-(
pG0,min

6·(hG+1)·MG ·|G|
· δ)-PE.

Claim 2 For every player i, for every integer m where 0 ≤ m ≤ hFi, for every information set Ii,j
such that hFij = m, and for every pure strategy πci ∈ Bi for player i:

U ji (b) ≥ U ji (b |m πci )−
m+ 1

(hFi + 1)
· δ

Proof. The proof is by induction on m, using Claim 1, starting with base case m = 0.
Base case: For m = 0 consider an information set Ii,j such that hFij ≥ 0. This means that j is a
leaf node in the directed information set forest Fi. So, for any pure strategy πci , suppose the local
pure strategy (i.e., local action) chosen at Ii,j within the pure strategy πci is a′ ∈ Ai,j . Note that we

then have U ji (b |m πci ) = U ji (b | πa′i,j). Thus, we have to show that U ji (b) ≥ U ji (b | πa′i,j)− 1
(hFi+1)

· δ.
For the local strategy bi,j , and for η ≥ 0, let b>ηi,j =

∑
{a∈Ai,j |bi,j,a>η} bi,j,a. Likewise, let b≤ηi,j =∑

{a∈Ai,j |bi,j,a≤η} bi,j,a. For 5 ∈ {>,≤}, for ε > 0, for a behavior profile b ∈ Bε, and for η ≥ 0,

let U j,5ηi (b) denote the conditional expected payoff to player i, under profile b, conditioned on the
event that the play both reaches information set Ii,j , and thereupon plays some action in the set

{a ∈ Ai,j | bi,j,a 5 η}. Note that, for the profile b ∈ Bε(G,δ), the conditional expected payoff U ji (b)
can be written as:

U ji (b) = U
j,>ε(G,δ)
i (b) · b>ε(G,δ)i,j + U

j,≤ε(G,δ)
i (b) · b≤ε(G,δ)i,j (12)

But then, for any a′ ∈ Ai,j , we have

U ji (b) = U
j,>ε(G,δ)
i (b) · b>ε(G,δ)i,j + U

j,≤ε(G,δ)
i (b) · b≤ε(G,δ)i,j

≥ U
j,>ε(G,δ)
i (b) · b>ε(G,δ)i,j

≥ (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · b>ε(G,δ)i,j (by Claim 1)

≥ (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · (1− |Ai,j | · ε(G, δ))

= (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · (1− |Ai,j | ·

pG0,min

12 · (hG + 1) ·MG · |G|
· δ)

≥ U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ − U ji (b | πa′i,j) · (|Ai,j | ·

pG0,min

12 · (hG + 1) ·MG · |G|
· δ)

≥ U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ − 1

3 · (hG + 1)
· δ

(because U ji (b | πa′i,j) ≤MG and |Ai,j | ≤ |G| and pG0,min ≤ 1)

≥ U ji (b | πa′i,j)−
1

(hFi + 1)
· δ (because hFi ≤ hG , for all i, and 2

3 ≤ 1.)

Thus U ji (b) ≥ U ji (b | πa′i,j)− 1
(hFi+1)

· δ, which completes the proof of the base case.31

31Let us remark that we could have opted for a proof that renders the base case trivial, and “swallows” it into the
inductive case, but we felt this would have come at the expense of clarity.
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Inductive case: Assume the claim is true for m− 1 such that 0 ≤ m− 1 < hFi . We want to show
it holds for m. Again, consider any pure strategy πci for player i, and suppose that πci (j) = a′. In
other words, in information set Ii,j , the action chosen by πci is a′.

Let J i(j, a′) = {j′ ∈ [di] | (j, a′, j′) ∈ EFi} denote the set of children j′ of j in the forest Fi,
such that the edge from j to j′ is labeled by a′. (In other words, J i(j, a′) denotes the information
sets belonging to player i that could possibly be the next information set for that player which is
reached, after reaching information set j.) For j′ ∈ J i(j, a′), let P i

(b|πa′i,j)
(j′ | j) denote the condi-

tional probability of reaching information set Ii,j′ , conditioned on event of reaching information set
Ii,j and thereupon taking action a′ ∈ Ai,j , under profile b. Furthermore, let P i

(b|πa′i,j)
(¬J i(j, a′) | j)

denote the conditional probability of not reaching any information set in J i(j, a′), conditioned on

the event of reaching Ii,j and thereupon taking action a′. Finally, let U
j,¬Ji(j,a′)
i (b | πa′i,j) denote the

conditional expected payoff (under profile b), conditioned on reaching Ii,j and thereupon playing
a′, but thereafter not reaching any information set in J i(j, a′). Note that for all b ∈ Bε(G,δ), and
every a′ ∈ Ai,j , we have:

(
∑

j′∈Ji(j,a′)

P i
(b|πa′i,j)

(j′ | j)) + P i
(b|πa′i,j)

(¬J i(j, a′) | j) = 1.

Note furthermore that:

U ji (b | πa′i,j) =

 ∑
j′∈Ji(j,a′)

U j
′

i (b | πa′i,j) · P i(b|πa′i,j)
(j′ | j)

+ U
j,¬Ji(j,a′)
i (b | πa′i,j) · P i(b|πa′i,j)

(¬J i(j, a′) | j).(13)

We now use equation (13), the inductive hypothesis, and equation (12), in order to establish that
for any pure strategy πci for player i, we have U ji (b) ≥ U ji (b |m πci )− m+1

(hFi+1)
· δ.

Suppose that the pure strategy πci has πci (j) = a′. Observe that in this case:

(b |m πci ) = ((b | πa′i,j) |m−1 π
c
i ) = ((b |m−1 π

c
i ) | πa

′
i,j) (14)

Also observe that:
U
j,¬Ji(j,a′)
i (b | πa′i,j) = U

j,¬Ji(j,a′)
i ((b | πa′i,j) |m−1 π

c
i ) (15)

because this conditional expectation does not change when we change the strategy bi in local
strategies (at J i(j, a′) and below) which we have conditioned on not reaching. We thus have:
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U ji (b) = U
j,>ε(G,δ)
i (b) · b>ε(G,δ)i,j + U

j,≤ε(G,δ)
i (b) · b≤ε(G,δ)i,j (by(12))

≥ U
j,>ε(G,δ)
i (b) · b>ε(G,δ)i,j

≥ (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · b>ε(G,δ)i,j (by Claim 1)

≥ (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · (1− |Ai,j | · ε(G, δ))

= (U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ) · (1− |Ai,j | ·

pG0,min

12 · (hG + 1) ·MG · |G|
· δ)

≥ U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ − U ji (b | πa′i,j) · (|Ai,j | ·

pG0,min

12 · (hG + 1) ·MG · |G|
· δ)

≥ U ji (b | πa′i,j)−
1

3 · (hG + 1)
· δ − 1

3 · (hG + 1)
· δ

(because U ji (b | πa′i,j) ≤MG and |Ai,j | ≤ |G| and pG0,min ≤ 1)

≥ U ji (b | πa′i,j)−
1

(hFi + 1)
· δ (because hFi ≤ hG , for all i)

= (
∑

j′∈Ji(j,a′)

U j
′

i (b | πa′i,j) · P i(b|πa′i,j)
(j′ | j))

+ U
j,¬Ji(j,a′)
i (b | πa′i,j) · P i(b|πa′i,j)

(¬J i(j, a′) | j)− 1

(hFi + 1)
· δ (by equality (13))

≥ (
∑

j′∈Ji(j,a′)

(U j
′

i ((b | πa′i,j) |m−1 π
c
i )−

m

(hFi + 1)
· δ) · P i

(b|πa′i,j)
(j′ | j))

+ U
j,¬Ji(j,a′)
i ((b | πa′i,j) |m−1 π

c
i )−

m

(hFi + 1)
· δ) · P i

(b|πa′i,j)
(¬J i(j, a′) | j)− 1

(hFi + 1)
· δ

(by inductive hypothesis, and by (15))

= U ji (b |m πci )−
m

(hFi + 1)
· δ − 1

(hFi + 1)
· δ (by (14) and (13))

= U ji (b |m πci )−
m+ 1

(hFi + 1)
· δ

Thus U ji (b) ≥ U ji (b |m πci )− m+1
(hFi+1)

· δ. This completes the proof of Claim 2.

Part (2.) of Lemma 18 now follows readily from Claim 2. To see this, let JFi denote the set of
root vertices in the information set forest Fi. Let P ib(¬JFi) denote the probability, under profile b,

of not reaching any information set in JFi . Finally, let U¬J
Fi

i (b) denote the conditional expected
payoff to player i, under profile b, conditioned on the event of not reaching any of the information
sets in JFi , and if this event has probability zero, then by definition we let U¬J

Fi
i (b) := 0.

Then, for any pure strategy πci for player i, we have:
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Ui(b) = (
∑
j′∈JFi

U j
′

i (b) · Pb(Ii,j′)) + U¬J
Fi

i (b) · P ib(¬JFi)

≥ (
∑
j′∈JFi

(U j
′

i (b | πci )− δ) · Pb(Ii,j′)) + (U¬J
Fi

i (b | πci )− δ) · P ib(¬JFi)

(by applying Claim 2, and since U¬J
Fi

i (b) = U¬J
Fi

i (b | πci ))

= Ui(b | πci )− δ.

Thus Ui(b) ≥ Ui(b | πci )− δ, which completes the proof of Part (2.) of Lemma 18.

Applying Lemma 18, Proposition 17, and Lemma 15, we obtain the main results of this section:

Theorem 19

1. The problem of computing, given a EFGPR, G, and given rationals δ > 0 and ε > 0 (in
binary), a δ-almost-ε-PE of G, is PPAD-complete.

Likewise, the problem of computing, given a EFGPR, G, and given rationals δ > 0 and ε > 0
(in binary), a δ-almost-ε-QPE of G, is PPAD-complete.

2. (cf. [10]) The problem of computing, given a EFGPR, G, and given a rational δ > 0 (in
binary), a δ-almost-SGPE of G is PPAD-complete.

Proof. First, we establish containment in PPAD for all the problems:

1. The fact that computing a δ-almost-ε-PE, and computing a δ-almost-ε-QPE for a given
EFGPR, G, and given δ > 0 and ε > 0, is in PPAD follows immediately from Lemma 18,
Parts (1.) and (2.), Proposition 17, and Lemma 15.

Specifically, by Lemma 18, Parts (1.), for 0 < δ < 1 and 0 < ε < 1, a profile b ∈ Bε/2,

such that ‖b− F ε/2G (b)‖∞ < ε·δ
3 , is also a δ-almost-ε-PE. Likewise, profile b ∈ Bε/2, such that

‖b−Hε/2
G (b)‖∞ < ε·δ

3 , is a δ-almost-ε-QPE.

But by Proposition 17 and Lemma 15, since the functions F εG(b) and Hε
G(b) are polynomially

computable and polynomially continuous (with respect to the input 〈G, ε〉), the problem of
computing such a profile b is in PPAD.

2. For δ > 0, let ε(G, δ) :=
pG0,min

12·(hG+1)·MG ·|G|
· δ. Let δ′ = 1

3·(hG+1)
· ε(G, δ)(hG+1).

Since δ′ < ε(G, δ), we have (δ′ + ε(G, δ)) ≤ (2 · ε(G, δ)). It thus follows from Lemma 18, Part

1., that if b ∈ Bε(G,δ) satisfies ‖b− F ε(G,δ)G (b)‖∞ < δ′, then

b is a 1
(hG+1)

· ε(G, δ)(hG+1)-almost-(2 · ε(G, δ))-PE. But then Lemma 18, Part 2., implies that

b is also a δ-almost subgame perfect equilibrium of G.

Thus, the problem computing a δ-almost-SGPE of G is P-time reducible to the problem of

computing a b ∈ Bε(G,δ) such that ‖b − F ε(G,δ)G (b)‖∞ < δ′. But since both ε(G, δ) > 0 and
δ′ > 0 are rational numbers both of whose encoding size (in binary) is polynomial in the
encoding size of the input 〈G, δ〉, by Proposition 17, computing a δ-almost-SGPE is in PPAD.

45



Finally, to see that both problems are PPAD-hard, recall that Daskalakis, Goldberg, and Pa-
padimitriou [11] established that computing a δ-almost NE (a.k.a., a δ-NE, in the terminology they
used), given a n-player normal form game, Γ, and given δ > 0, is PPAD-hard. Now recall that a
n-player NFG, Γ, is trivially encodable as a n-player EFGPR, E(Γ), and note that a δ-almost-SGPE
of E(Γ) is also a δ-almost-NE of Γ.

A simple corollary of Theorem 19 is that computing an δ-almost-ε-PE for a NFG is also PPAD-
complete.

Corollary 20 The problem of computing, given a NFG, Γ, and given rationals δ > 0 and ε > 0
(in binary), a δ-almost-ε-PE of Γ, is PPAD-complete.

Proof. This follows by applying Theorem 19 ( Part 1.) to the “equivalent” EFGPR, E(Γ), which
we can easily construct from Γ, and from the fact that E(Γ) has exactly the same δ-almost-ε-PEs (in
behavior strategies) as Γ does (in mixed strategies). This follows easily from the payoff-preserving
one-to-one correspondence between the mixed profiles of Γ and the behavior profiles of E(Γ).

We have suggested that the notion of a δ-almost-ε-PE, is a reasonable “almost” relaxation of
(ε-)PE, allowing for its computation in PPAD (i.e., using path following algorithms), in the same
way that δ-NE (= δ-almost-NE) serves as a relaxation of NE.

We have thusfar not defined a “almost” relaxation for sequential equilibrium (SE). Since PE
“refines” SE (see Proposition 3), a possible definition is this: “an assessment (b′, µb

′
), where the

behavior profile b′ is a δ-almost-ε-PE, and where µb
′

is the belief system generated by b′ ”. This is
well-defined, because for ε > 0, any δ-almost-ε-PE, b′, is fully mixed, and thus the belief system µb

′

that it generates is uniquely defined; and we can compute µb
′

efficiently, given b′ and G. So, we can
take this as our definition of a “almost” relaxation of SE. Theorem 19 then implies that computing
such an “almost” SE, given G, and given δ > 0 and ε > 0, is PPAD-complete.

6 Conclusions

We have characterized the complexity of approximating various refinements of equilibrium, and
“almost equilibrium”, for extensive form games of perfect recall with n ≥ 3 players.

Specifically, we have shown that the complexity of approximate (or almost) equilibrium com-
putation for extensive form games of perfect recall, with n ≥ 3 players, including for fundamental
refinements such as sequential and (quasi-)perfect equilibrium, is the same as that of approximate
(or almost) Nash equilibrium computation for normal form games with 3 players. Namely, these
problems are, respectively, FIXPa-complete and PPAD-complete.

Although our results establish that approximating a PE for a n-player EFGPR, is in FIXPa, our
results do not imply that computing an actual (real-valued) PE for an n-player EFGPR is in FIXP.
We leave this as an open question, although the more relevant question, from the point of view of
the standard (Turing) model of computation, is containment in FIXPa (in PPAD) for approximation
(respectively, “almost” computation), which we have established.
Some natural open questions suggest themselves:
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1. The complexity of approximating a proper equilibrium for n-player NFGs. Proper equilibrium,
defined by Myerson in [29], is an important refinement of PE for NFGs32 , which Myerson
showed always exists for any NFG.

It is defined as follows: for an NFG, Γ, and for ε > 0, a mixed strategy profile σ = (σ1, . . . , σn)
is called a ε-proper equilibrium if it is (a.): fully mixed, and (b.): for every two pure strategies
c, c′ of any player i, if Ui(σ | πci ) < Ui(σ | πc

′
i ) then σi(c) ≤ ε · σi(c′). A proper equilibrium is

defined to be a limit point of a sequence of εk-proper equilibria, where εk > 0 for all k ∈ N,
and where limk→∞ εk = 0.

There are connections between proper equilibrium for NFGs and QPEs of EFGPRs. In
particular, van Damme [45] showed that a proper equilibrium for an NFG, Γ, induces a
QPE in every EFGPR whose (standard) normal form is Γ. However, the other direction
does not hold: there are EFGPRs with a QPE (or PE) which is not induced by a proper
equilibrium in a corresponding normal form game. Sørensen [44] has given a Lemke-like
algorithm for computing a proper equilibrium for 2-player NFGs.33 Can we approximate a
proper equilibrium for n-player NFGs in FIXPa?

2. One can adapt Myerson’s definition of (ε-)proper equilibrium in a natural way, to define a
notion of extensive form (ε-)proper equilibrium (PropE) as well as (ε-)quasi-proper equilibrium
(QPropE) for EFGPRs. PropE refines PE, and likewise QPropE refines QPE, for EFGPRs.
Such refinements for EFGPRs were already alluded to briefly by van Damme in [45]34, but we
are unaware of any subsequent study of them. Myerson’s existence proof of proper equilibrium
for NFGs can be suitably adapted to show existence of both a PropE and a QPropE for any
EFGPR. Can we approximate a PropE, and a QPropE, for n-player EFGPRs in FIXPa?

We believe the answer to both of the above questions is “Yes”.
Even if the answers are “yes”, it is not entirely clear what the suitable “δ-almost” relaxations of
(qausi-)proper equilibrium should be. We need such relaxations to place the problems in PPAD, i.e.,
to enable discrete path following algorithms that compute a suitably refined “almost equilibrium”.
One natural attempt is to define such a relaxation as follows: a δ-almost-ε-proper equilbrium for
NFGs is a mixed strategy profile σ which is (a.): fully mixed, and (b.): for every two pure strategies
c, c′ for any player i, if Ui(σ | πci ) < Ui(σ | πc

′
i ) − δ then σi(c) ≤ ε · σi(c′). It remains to be seen

whether this definition is the “right” one, and in particular whether computing such a δ-almost
relaxation can be placed in PPAD.

(Note added during late revision: In a very recent paper, Hansen and Lund [16] have
answered question (1.) above, affirmatively, proving that approximating a proper equilbrium for an
n-player NFG is in FIXPa. In fact, their proof makes crucial use of the notion of δ-almost ε-proper
equilibrium which we have suggested above, and does so in a novel and interesting way. )

32Peter Bro Miltersen, in conversation with the author, has referred to proper equilibrium as “the mother of all”
refinements of equilibrium for NFGs.

33For NFGs with n ≥ 3 players, Yamamoto [50] outlined a procedure for approximating a proper equilibrium
based on a continuous homotopy path following approach, but as indicated by Sørensen in [44], even for 2-player
NFGs it is unclear under what conditions Yamamoto’s procedure is guaranteed to converge to an approximate proper
equilibrium.

34As van Damme remarks in [45], his main result actually shows that every proper equilibrium of an NFG, Γ,
induces a QPropE in every EFGPR which has Γ as its (standard) normal form.
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We want to again highlight that we believe our results can potentially provide a “practical”
computation method for computing a “almost” (ε-perfect, and ε-quasi-perfect) equilibrium for EFG-
PRs, with n ≥ 3 players, by applying Scarf-like discrete path following algorithms on the “small”
algebraic fixed point functions that we have developed for n-player EFGPRs. We believe this is a
promising computational approach that should be implemented and explored experimentally.

Acknowledgements. Thanks to Peter Bro Miltersen for several helpful comments. Thanks to
Mihalis Yannakakis for our collaboration on [13], which provides both the perspective, and a number
of the tools, used in this paper. Thanks to my co-authors Peter Bro Miltersen, Kristoffer Hansen,
and Troels Sørensen (now Troels Bjerre Lund) on the paper [12], on which this paper builds directly.
Thanks to Costis Daskalakis for clarifications about the result in [10] for extensive form games.

References

[1] R. M. Anderson. “Almost” implies “Near”. Transactions of the American Mathematical
Society, 296(1):229–237, 1986.

[2] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009.

[3] S. Basu, R. Pollack, and M. Roy. Algorithms in Real Algebraic Geometry. Springer, second
edition, 2008.

[4] S. Basu, R. Pollack, and M. Roy. Algorithms in Real Algebraic Geometry. http://perso.univ-
rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.html, online edition, 2011.

[5] J. Blair, D. Mutchler, and C. Liu. Games with imperfect information. In Working notes of
the AAAI Fall Symposium on Games: Planning and Learning, pages 59–67, 1993.

[6] L. E. Blume and W. R. Zame. The algebraic geometry of perfect and sequential equilibrium.
Econometrica, 62(4):783–794, 1994.

[7] X. Chen and X. Deng. Settling the complexity of two-player Nash equilibrium. In Proceedings
of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
261–272, 2006.

[8] V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In 18th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pages 765–771, 2003.

[9] C. Daskalakis. personal communication, 2014.

[10] C. Daskalakis, A. Fabrikant, and C. H. Papadimitriou. The game world is flat: the complexity
of Nash equilibrium in succinct games. In Proc. 33rd Int. Coll. on Automata, Languages and
Programming (ICALP), pages 513-524, 2006.

[11] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a
nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

48



[12] K. Etessami, K. A. Hansen, P. B. Miltersen, and T. B. Sørensen. The complexity of approx-
imating a trembling hand perfect equilibrium of a multi-player game in strategic form. In
Proc. 7th Int. Symp. on Algorithmic Game Theory (SAGT), 2014. (To appear.) Preprint at:
arXiv:1408.1017.

[13] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points.
SIAM J. Comput., 39(6):2531–2597, 2010.

[14] I. Gilboa and E. Zemel. Nash and correlated equilibria: some complexity considerations.
Games and Economic Behavior, 1:80–93, 1989.

[15] K. A. Hansen, P. B. Miltersen, and T. B. Sørensen. The computational complexity of trembling
hand perfection and other equilibrium refinements. In Algorithmic Game Theory - Third
International Symposium, SAGT 2010, volume 6386 of Lecture Notes in Computer Science,
pages 198–209. Springer, 2010.

[16] K. A. Hansen and T. B. Lund. Computational Complexity of Proper Equilibrium. Proceeding
of the 19th ACM Conference on Economics and Computation (ACM EC’18), pages 113–130,
2018.

[17] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-
Wesley, 1973.

[18] D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive form.
Games and economic behavior, 4(4):528–552, 1992.

[19] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive
form games. Games and Economic Behavior, 14:247–259, 1996.

[20] D. M. Kreps and R. Wilson. Sequential equilibria. Econometrica, 50(4):863–894, 1982.

[21] H. W. Kuhn. Extensive games and the problem of information. Annals of Matematical Studies,
28:193–216, 1953.

[22] H. W. Kuhn. Simplicial approximation of fixed points. Proceedings of the National Academy
of Sciences of the USA, 61(4):1238–1242, 1968.

[23] M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge U. Press, 2013.

[24] R. McKelvey, A. M. McLennan, and T. L. Turocy. Gambit: Software Tools for Game Theory,
Version 14.0.2., 2014. http://www.gambit-project.org.

[25] R. D. McKelvey and A. McLennan. Computation of equilibria in finite games. In Handbook of
computational economics, Vol. I, volume 13 of Handbooks in Econom., pages 87–142. North-
Holland, Amsterdam, 1996.

[26] J. F. Mertens. Two examples of strategic equilibrium. Games and Economic Behavior,
8(2):378–388, 1995.

[27] P. B. Miltersen and T. B. Sørensen. Computing a sequential equilibrium for two-player games.
In Proc. 17th ACM-SIAM Symp. on Discrete Algorithms (SODA 2006), pages 107-116, 2006.

49



[28] P. B. Miltersen and T. B. Sørensen. Computing a quasi-perfect equilibrium of a two-player
game. Economic Theory, 42(1):175–192, 2010.

[29] R. B. Myerson. Refinements of the Nash equilibrium concept. International Journal of Game
Theory, 15:133–154, 1978.

[30] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[31] J. Nash. Non-cooperative games. Annals of Mathematics, 54:289–295, 1951.

[32] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani (editors). Algorithmic Game
Theory. Cambridge University Press, 2007.

[33] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT press, 1994.

[34] C. Papadimitrou. Computational Complexity. Addison-Wesley Publishers, 1994.

[35] C. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[36] C. Pimienta and J. Shen. On the equivalence between (quasi-)perfect and sequential equilibria.
Int. J. Game Theory, 43(2):395–402, 2014.

[37] J. Renegar. On the computational complexity and geometry of the first-order theory of the
reals, parts I-III. J. Symbolic Computation, 13(3):255–352, 1992.

[38] I. V. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet
Mathematics, 3:678–681, 1962. (Russian original: Dokaldy A. N. SSR, 144, 62-64.).

[39] T. Roughgarden. Twenty Lectures on Algorithmic Game Theory. Cambridge University Press,
2016.

[40] H. Scarf. The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math.,
15:1328–1343, 1967.

[41] H. Scarf. The Computation of Economic Equilibria. Yale University Press, 1973.

[42] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit.
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