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Synopsis: 

Current popular methods for Magnetic Resonance Fingerprint (MRF) recovery are bottlenecked 
by the heavy computations of a matched-filtering step due to the size and complexity of the 
fingerprints dictionary. In this abstract we investigate and evaluate the advantages of incorporating 
an accelerated and scalable Approximate Nearest Neighbour Search (ANNS) scheme based on the 
Cover trees structure to shortcut the computations of this step within an iterative recovery 
algorithm and to obtain a good compromise between the computational cost and reconstruction 
accuracy of the MRF problem. 

Purpose: 

Current proposed solutions for the high dimensionality of the MRF reconstruction problem1 rely 
on a linear compression step to reduce the matching computations2,3 and boost the efficiency of 
fast but non-scalable searching schemes such as the KD-trees4. However such methodologies 
often introduce an unfavourable compromise in the estimation accuracy when applied to nonlinear 
data structures such as the manifold of Bloch responses with possible increased dynamic 
complexity and growth in data population5.  
 
To address this shortcoming we propose an inexact iterative reconstruction method, dubbed as the 
Cover BLoch response Iterative Projection (CoverBLIP). Iterative methods improve the accuracy 
of their non-iterative counterparts6 and are additionally robust against certain accelerated 
approximate updates, without compromising their final accuracy7,8. Leveraging on these results, we 
accelerate matched-filtering using an ANNS algorithm based on Cover trees9 with a robustness 
feature against the curse of dimensionality. 
 
Algorithm: 
The CoverBLIP iterations consist of 

ܺ௧ାଵ ൌ ୈ࣪෪൫ܺ௧ െ ሺܺ௧ሻܣுሺܣߤ െ ܻሻ൯, 
where, ܻ ∈ ԧ௠ൈ௅ is the undersampled k-space measurements across ܮ temporal frames, ߤ is the 
step-size	ሺwith line-search6), ܺ ∈ ԧ௡ൈ௅ is the spatio-temporal images reconstructed at iteration t, 
and ܦ ∈ ԧௗൈ௅ denotes the dictionary of ݀ ≫ ,ܣ fingerprints. The forward-adjoint operators ܮ  ுܣ
correspond to the gradient updates and model the multi-coil sensitivities and the per-frame 
subsampled 2D Fourier Transforms. ୈ࣪෪ (.) is the approximate matched-filtering similar to4,6 
consisting of i) a search over the normalized dictionary ܦഥ to replace temporal pixels of ܺ௧ାଵ with 
their (approximate) nearest fingerprints, and ii) a proton density rescaling. For the search step we 
however use Cover trees’ fast ሺ1 ൅ ߳ሻ-ANNS algorithm with controlled approximation levels ߳ ൒
08,9. For smooth O(1)-dimensional manifold data, Cover tree’s complexities namely the storage, 
(offline) construction and ANNS times scale as ܱሺ݀ሻ, ܱሺ݀ logሺ݀ሻሻ  and ܱሺ߳ିଵ logሺ݀ሻሻ , 
respectively9,10. Remarkably the search complexity grows logarithmically with dataset population as 
compared to the linear complexity of a brute-force search used in 6. 
 
When applicable and with a compromise in the accuracy, a temporal compression similar to4 can 
be optionally used to shrink dimensions of ܺ௧, ݇ across the ܦ ൑  dominant Eigen-components	ܮ



of ܦܦு. This also includes a compromise between cheaper distance evaluations during the search 
steps and the additional cost of iterative compression-basis applications (particularly when k has 
to be large and the gradient updates are using cheap FFT operations e.g. in Cartesian sampling).  
 
Methods: 

Methods are tested on a numerical brain phantom11, a physical tube phantom and a healthy human 
brain (scanner data collected with a 12-channel head coil 3T GE MR750w scanner, GE Medical 
Systems, Milwaukee, WI). Sampling follows the multi-shot EPI-MRF protocol6 (in contrast with 
the existing single-shot approaches12,13) with k-space compression factors x32 and x16 for the 
numerical and scanner data, respectively. The Numerical phantom is synthesized (256x256 sized 
T1, T2 maps in Figure 1 and off-resonance B0=0) with an Inversion Recovery (IR) Balanced SSFP 
sequence with L=1000 Flip Angles (FA), TR and TE similar to3. The constructed dictionary 
consists of 321’640 fingerprints for combinations of T1=[100:40:2000,2200:200:6000], T2 = 
[20:2:100,104:4:200,220:20:600], B0=[-250:40:-190,-50:2:50,190:40:250]. The scanner data uses IR 
Quantitative Transient-state Imaging (QTI) sequence (TR=16 ms, Tinv = 18 ms, 22:5x22:5 cm 
FOV, 128x128 matrix size, 1.3 mm in-plane resolution and 5 mm slice thickness) with a linear 
ramp FA variation 1°-70° across L=500 frames14. Dictionary construction uses the EPG model15 
with 23’866 fingerprints for combined T1=[10:20:1900,2100:100:6000], 
T2=[20:1:120,122:2:200,210:10:600], where T1>T2.  
 
Results and discussion: 

We compare the reconstruction times and accuracies of three iterative methods: BLIP6 with exact 
NNS using MATLAB’s matrix product, KDBLIP with randomize KD-trees ANNS 
(approximations controlled by the number of Checks) using the FLANN package16, and 
CoverBLIP using Cover trees’ ሺ1 ൅ ߳ሻ -ANNS with a parallel MATLAB interface to17. 
Experiments are conducted on a desktop with 8 CPU-Cores and 64GB RAM.  

Cover tree construction takes around 10 and 0.8 seconds for the IR-BSSFP and EPG full-size 
dictionaries. Results tested on the numerical phantom (Figures 2 and 3) show that in the full-size 
ambient dimension CoverBLIP significantly outperforms the two other methods: better time-
accuracy than KDBLIP, and a similar accuracy to BLIP however with O(104) cheaper operations 
for matched-filtering. Since the numerical phantom is low-rank, we also apply temporal 
compression (k=20) i.e. a numerically beneficial setup to the KD-trees: CoverBLIP and KDBLIP 
report comparable time-accuracy with acceleration factors x50 compared to BLIP. Results tested 
on the scanner data (Figures 4 and 5) and using a smaller EPG dictionary show comparable 
recovered maps for all methods. Here the computational gain of approximate methods is less 
visible due to using a smaller size EPG dictionary. Nonetheless, CoverBLIP still outperforms other 
methods in the total runtime with matched-filtering accelerations x2 and x5-7 compared to 
KDBLIP and BLIP, respectively. 
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Figure 1: (a) the segmented anatomical brain phantom colored by index: 0 = background, 1 = CSF（T1=5012ms, 

T2=512ms）, 2 = grey matter（T1=1545ms, T2=83ms）, 3 = white matter（T1=811ms, T2=77ms）, 4 = 

adipose （T1=530ms, T2=77ms）, 5/6 = skin/muscle（T1=1425ms, T2=41ms）, (b) the proton density map 
used for generating the low-rank numerical phantom. 

 

Figure 2: Computational cost (matched-filtering only) vs. normalized solution MSE (i.e. 
‖௑෠ି௑‖

‖௑‖
) for BLIP, KDBLIP 

and CoverBLIP (different approximation levels for CoverBLIP and KDBLIP), tested on the numerical phantom. 
The cost of matched-filtering is measured by the total number of the pairwise distance calculations (until 

convergence) times their dimensions. Using temporal compression (k=20), CoverBLIP performs comparable (or 
better) than KDBLIP. In full-size ambient dimension (L=1000) however, the computational cost of CoverBLIP is 

about O(102) and O(104) less than KDBLIP and BLIP, respectively. 
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Figure 3: Statistical comparisons including the normalized solution MSE, average T1 and T2 errors (i.e. 
ଵ

௃
∑ ห ଵܶ෡ ሺ݆ሻ െ ଵܶሺ݆ሻห
௃
௝ୀଵ ),  computational cost (matched-filtering only) and the total run times for BLIP, KDBLIP and 

CoverBLIP, tested on the numerical phantom (approximation levels with best runtime-accuracy are presented for 
CoverBLIP and KDBLIP). Regardless of the non-optimized code for cover tree ANNS, CoverBLIP and KDBLIP 
perform comparably when using temporal compression (k=20) i.e. a beneficial setup for the KD-trees. In full-size 

ambient dimension (L=1000) however, CoverBLIP outperforms all methods in recovery time with accelerations x4 
and x80 compared to KDBLIP and BLIP, respectively.  



 

Figure 4: Recovered T1, T2 and PD maps for the tube phantom (Diagnostic Sonar, Livingston, UK) using BLIP, 
KDBLIP and CoverBLIP algorithms with no temporal compression. The iterative mathed-filtering steps take 20.0 

seconds in BLIP, 5.3 seconds in KDBLIP (checks=64) and 2.8 seconds in CoverBLIP (epsilon=0.1). 

 



 

Figure 5: Recovered T1, T2 and PD maps for the human volunteer data using BLIP, KDBLIP and CoverBLIP 
algorithms with no temporal compression. The iterative mathed-filtering steps take 21.2 seconds in BLIP, 8.0 

seconds in KDBLIP (checks=64) and 4.2 seconds in CoverBLIP (epsilon=0.1). 

References:  

[1] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. Sunshine, J. Durek, and M. Griswold,  
“Magnetic resonance fingerprinting,” Nature, vol. 495, no. 7440, pp. 187–192, 2013. 
[2] McGivney, D. F., Pierre, E., Ma, D., Jiang, Y., Saybasili, H., Gulani, V., and Griswold, M. 
A., “SVD compression for magnetic resonance fingerprinting in the time domain. IEEE 
transactions on medical imaging, 33(12), 2311-2322, 2014. 
[3] Cauley, S.F., Setsompop, K., Ma, D., Jiang, Y., Ye, H., Adalsteinsson, E., Griswold, M.A. 
and Wald, L.L., “Fast group matching for MR fingerprinting reconstruction,” Magnetic 
resonance in medicine, 74(2), pp.523-528, 2015. 
[4] Cline, C.C., Chen, X., Mailhe, B., Wang, Q., Pfeuffer, J., Nittka, M., Griswold, M.A., 
Speier, P. and Nadar, M.S., “AIR-MRF: accelerated iterative reconstruction for magnetic 
resonance fingerprinting,” Magnetic Resonance Imaging, 41, pp.29-40, 2017. 
[5] Wang, C.Y., Coppo, S., Mehta, B.B., Seiberlich, N., Yu, X., and Griswold, M.A., 
“Magnetic Resonance Fingerprinting with Quadratic RF Phase for Simultaneous Measurement 
of δf, T1, T2, and T2*,” in Proc. Intl. Soc. Mag. Reson. Med., 2017. 
[6] M. Davies, G. Puy, P. Vandergheynst, and Y. Wiaux, "A compressed sensing framework 
for magnetic resonance fingerprinting," SIAM Journal on Imaging Sciences, vol. 7, pp. 2623-
2656, 2014. 



[7] Golbabaee, M. and Davies, M.E., “Inexact Gradient Projection and Fast Data Driven 
Compressed Sensing,” arXiv preprint arXiv:1706.00092., 2017. 
[8] Golbabaee, M., Chen, Z., Wiaux Y., and Davies M. E.,"Cover tree for fast MR 
fingerprint Recovery", Proceedings of the IEEE workshop on Machine Learning for 
Signal Processing (MLSP), 2017, arXiv:1706.07834.  
[9] Beygelzimer, A., Kakade, S. and Langford, J., “Cover trees for nearest neighbor,” 
In Proceedings of the 23rd international conference on Machine learning, pp. 97-104, ACM, 
2006. 
[10] Krauthgamer, R. and Lee, J.R., “Navigating nets: simple algorithms for proximity 
search,” In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, 
pp. 798-807. Society for Industrial and Applied Mathematics, 2004. 
 [11] Brainweb data repository, available at: http://brainweb.bic.mni.mcgill.ca/brainweb/ 
[12] Rieger, B., Zimmer, F., Zapp, J., Weingärtner, S. and Schad L.R., "Magnetic resonance 
fingerprinting using echo‐planar imaging: Joint quantification of T1 and T2∗ relaxation times," 
Magnetic resonance in medicine, vol. 78, pp. 1724–1733, 2017. 
[13] Cohen, O., Sarracanie, M., Rosen, M.S. and Ackerman, J.L.,"In Vivo Optimized Fast MR 
Fingerprinting in the Human Brain," in Proc. Intl. Soc. Mag. Reson. Med., 2016. 
[14] Gomez, P.A., Buonincontri, G., Molina-Romero, M., Sperl, J.I., Menzel, M.I., and Menze, 

B.H., "Accelerated parameter mapping with compressed sensing: an alternative to MR 
Fingerprinting," in Proc Intl. Soc. Mag. Reson. Med., 2017. 

[15] Weigel, M., "Extended phase graphs: dephasing, RF pulses, and echoes‐pure and simple," 
Journal of Magnetic Resonance Imaging, vol. 41, pp. 266-295, 2015. 

[16] Available at: http://www.cs.ubc.ca/research/flann/ 
[17] Available at: http://hunch.net/~jl/projects/cover_tree/cover_tree.html 
 
 
 
 
 
 
 
 


