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Abstract

We describe the outcome of a data challenge conducted as part of the Dark Machines
(https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on
Physics at TeV colliders. The challenged aims to detect signals of new physics at the
Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First,
we propose how an anomaly score could be implemented to define model-independent
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signal regions in LHC searches. We define and describe a large benchmark dataset, con-
sisting of > 1 billion simulated LHC events corresponding to 10 fb−1 of proton-proton
collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly
detection and density estimation algorithms, developed in the context of the data chal-
lenge, and we measure their performance in a set of realistic analysis environments. We
draw a number of useful conclusions that will aid the development of unsupervised new
physics searches during the third run of the LHC, and provide our benchmark dataset
for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is
provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.
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1 Introduction and goals

Why model-agnostic1 searches are necessary: The Standard Model (SM) has been tremen-
dously successful in describing a wide range of particle physics phenomena. Nevertheless,
many questions still remain unanswered, e.g. the origin of neutrino masses, the nature of
dark matter, and the dynamics of electroweak symmetry breaking. Therefore, it is commonly
accepted that physics beyond the SM (BSM) is required and several theoretical arguments pre-
dict new particles at an energy scale that could be probed at the CERN Large Hadron Collider
(LHC). A key requirement of the undertaking towards a new physics discovery is handling the
huge amount of complex experimental data collected at the LHC. LHC data is analyzed for
various experimental signatures, as predicted by specific SM extensions, generically referred
to as “new physics models" or “beyond the SM" (BSM) models.

New physics models are tested using LHC data by optimizing data selection criteria on the
energy, momenta and types of particle predicted by the model. Evidence for new particles
typically manifests as an overproduction of events (compared to the SM)2 in a specific data
selection where the number of events expected from SM processes is compared to the number
of measured events in statistical tests. Often the test is quantified with the help of a p-value,
defined as the probability that a given result (or a more significant result) occurs under the SM
hypothesis, in a frequentist statistical framework [1,2]. A typical requirement for the discovery
of an expected signal (such as the Higgs particle) is p < 3× 10−7 corresponding to 5 standard
deviations (5σ) [3]. A hint of new physics requires that the “SM-only" hypothesis is highly
disfavoured.

To date, no BSM physics has been discovered (5σ) at the LHC. However, the new physics
could look different from the various hypotheses described above. This project deals with
the question of how to search for a signal in collider data without adopting a specific signal
hypothesis.

Brief review of model-agnostic searches: A few attempts have been made to systematically
search for new physics with minimal signal assumptions by scanning specific observables, such
as the sum of the transverse momenta, or the invariant mass of particle decay products. Scans

1Model-agnostic here means that we do not assume any specific extension of the Standard Model in the search
strategy.

2This could also be an underproduction in some models due to a negative quantum mechanical interference
of the SM and new physics contributions. We do not consider this possibility in this study.
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have been carried out with the help of model-agnostic (i.e. unsupervised) algorithms to lo-
cate anomalies. Such general searches without an explicit BSM signal assumption have been
performed by the DØ Collaboration [4–7] at the Tevatron using an unsupervised multivariate
signal detection algorithm termed SLEUTH, by the H1 Collaboration [8, 9] at HERA using a
1-dimensional signal detection algorithm that scans kinematic relevant quantities such as the
(sum of) transverse momenta or the invariant mass, and by the CDF Collaboration [10,11] at
the Tevatron (using similar 1-dimensional algorithms). A version of these 1-dimensional signal
detection algorithms that specifically searches for localized excesses (“bumps”) and is used in
general searches is known in the high energy physics (HEP) community as BUMPHUNTER [12].
At the LHC, searches for the presence of localized excesses have been performed by the AT-
LAS and CMS Collaboration in the dijet invariant mass distributions [13,14]. Generic model-
agnostic searches for new physics scanning thousands of analysis channels have also been
performed at the LHC by ATLAS and CMS comparing data to SM simulations [15,16]. In some
of these analyses, the observation of one or more significant deviations in some phase-space re-
gion(s) can serve as a motivation to perform dedicated and model-dependent analyses where
these “data-derived” phase-space region(s) can be used as signal region(s). Such a strategy can
then determine the level of significance by testing the SM hypothesis in these signal regions in
a second dataset (typically collected after the result of the model independent search). Since
the signal region is known, a control region can also be defined to determine the background
expectations in the signal region(s) (e.g. Ref. [15]).

One limitation of these model-agnostic approaches is the problem of multiple comparisons,
or look-elsewhere effect [17], which reduces the significance of an observed deviation given
that it may occur in any of the defined signal regions. Roughly, the p-value is reduced by a
factor of the number of trials, i.e. the number of statistically independent signal regions that
are considered. Thus, there is a fundamental trade-off between covering as many signatures
as possible and maintaining good sensitivity to any individual deviation.

The field of machine learning (ML), sitting at the intersection of computational statistics,
optimization, and artificial intelligence, has witnessed a significant step forward over the past
decade. Research in ML has led to the development of new and enhanced anomaly detection
methods that could be used and extended for applications employing LHC or astroparticle data.
Examples of such outlier detection algorithms recently proposed for HEP include density-based
methods [18], isolation forests, Gaussian mixture models [19], model-independent searches
with multi-layer perceptrons [20] , autoencoders [21–24], variational autoencoders [25–28],
adversarially trained networks [29], ML extended bump-hunting algorithms [30–38], and self-
supervision [39].

The recent LHC Olympics (LHCO) [40] studied anomaly detection techniques in three dif-
ferent black boxes. Using unsupervised, weakly supervised, and semi-supervised approaches,
the contestants were tasked with determining if a black box contained new physics, and if so,
to identify its properties. In contrast to this paper, which deals with a comparison of unsu-
pervised event classification with final reconstructed detector objects, the LHCO task was to
search for a (possible) signal as an overdensity in the data and thus to determine the signal
and evaluate the background. The LHCO data consist of the reconstructed particles prior to
the final high-level reconstruction of objects. Events could consist of up to 700 particles and
jet clustering had to be used, while events in this article consist of up to 20 fully reconstructed
particles. A few methods were able to detect the resonance in Box 1, but none were successful
for Box 3. Meanwhile, Box 2 included only SM events, yet multiple algorithms claimed de-
tection of a high-mass resonance. The outcome of this exercise highlights the need for more
dedicated studies of anomaly detection techniques as well as publicly available data to develop
and compare methods across common benchmarks.

Searches for new physics at the LHC typically define subsets of data potentially enriched
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Figure 1: Illustration of the strategies for defining signal regions with different tra-
ditional approaches (left picture) and the anomaly score proposed and examined in
this article (right picture). The same histogram is used to emphasize the similarity
of the strategies, however, we do not expect the strategies to yield the exact same
results.

with signal (“signal region” or “search region”) with a series of signal selection criteria. When
searching for new resonances, criteria are typically placed on the angular distance between
the decay products, on the invariant mass of the particles in a given final state (e.g., dijet or
dilepton) or the missing transverse momentum. In the context of SUSY, other examples of such
variables include the effective mass [41], the transverse mass [1], αT [42], razor [43], event
shape variables like sphericity [44], and the recursive jigsaw technique [45]. These criteria
are typically designed and set to optimize the selection of a predefined set of events from
an assumed BSM process. Other approaches to define a BSM signal region involve selection
criteria on a supervised machine learning classifier trained to distinguish a potential signal
from background events.

In addition to the signal regions, there are also so-called “control regions”. Control regions
are defined such that they have an increased contribution from background processes. These
control regions are then used to determine the expectation of background processes in the
signal region.

Approach in this paper: Here we propose a different approach with a rather small but im-
portant change in the search strategy. Our study aims to define an anomaly score signal
range by imposing a lower threshold on the anomaly score defined by an unsupervised al-
gorithm (right side of Fig. 1) event-by-event. These algorithms are trained on simulated SM
events only; i.e. without defining a signal. The algorithms can also be trained directly with
real, unlabeled collision data under the assumption that the signal is rare compared to the
background, which would make the method more robust to detector noise, although this is
not done in this paper. For each event the anomaly score is defined such that events that look
different or are unlikely to be generated from SM processes will have high anomaly scores.

As shown in Fig. 1, events with high anomaly scores might accumulate in the signal re-
gion. In the signal region, a statistical test between data and SM expectation is then used to
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determine whether the data contains an excess of abnormal events.
It is important to emphasize that this way of defining a signal region is a rather small

modification of existing search strategies. Therefore, most of the methods for determining the
expectation of backgrounds in the signal regions and methods for performing the statistical
test can be retained from existing analyzes. In addition, “anomaly score” signal ranges can be
incorporated into existing searches with relative ease.

We would like to stress that, being unsupervised, i.e., model independent, this approach
cannot be optimized according to a single well defined criterion. The optimal objective is
typically to find events that are out of the phase space distribution of SM events. The question
that remains is how such an anomaly score can optimally be defined and how well it works.

Look elsewhere effect: In contrast to model agnostic searches which scan over thousands
of analysis channels, we emphasize that anomaly detection does not require this. For instance,
using any one of the methods of this paper, it would be possible to define a signal region based
on the anomaly score (e.g. a cut reducing the background by a factor of 100). As in other
searches, a control region can also be defined. Using the control region, the background in
the signal region can be predicted with a background-only fit. Finally, a p-value or significance
can be obtained with the data and background prediction in the signal region. In this manner,
there are only as many trial factors as there are signal regions (one would not use all of the
methods studied in this paper simultaneously).

Benchmark datasets and Dark Machines: While this document does not address how
detector-related anomalies contribute to the anomaly score (and, therefore, whether our re-
sults on simulation are representative of what would happen in data), it does describe and
compare the performance of a number of possible algorithms and anomaly scores resulting
from a data challenge carried out in the “unsupervised searches at colliders" group of the Dark
Machines initiative. Dark Machines is an open research collective of physicists, statisticians
and data scientists. Dark Machines aims to answer questions about the dark universe and new
physics using the most advanced techniques that data science provides us with. In particular,
Dark Machines organizes data challenges for problems in (astro) particle physics [46,47].

Large datasets of > 1 billion simulated events that were created for these challenges are
described and made available (see Tab. 4). This dataset will remain useful for various future
applications. Additionally, a “secret" (i.e., unlabeled) dataset is provided that can be used to
benchmark the anomaly scores of future ML algorithms3.

2 Description of the challenge and the dataset

The objective for the challenge is to give an event-by-event classification between SM events
(background) and events produced by BSM processes (signal). For this challenge, it is assumed
that these “signal events” look different from the background or have a significantly lower
probability of occurrence. The output of the classification algorithms is an “anomaly score”
for each event. This is a continuous number between 0 (for background) and 1 (for signal).
The determination of the anomaly score depends on the employed algorithm (see section 3).
In what follows, we describe the generation of the data that is used for the challenge.

3Readers interested to run their own algorithms on the secret dataset are invited to submit their request to the
contact persons of this document to arrange such a performance assessment.
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Table 1: Definition of symbols used for final-state objects. Only b-quark jets are
tagged, no τ- or c-jets have been defined.

Symbol ID Object
j jet
b b-jet
e- electron (e−)
e+ positron (e+)
m- muon (µ−)
m+ antimuon (µ+)
g photon (γ)

2.1 Data generation procedures

We simulate proton-proton collision events similar to those occurring at the LHC at a center-of-
mass energy of 13 TeV. The generation of events for the signal and the background processes
has been performed at leading order (LO) with up to two extra partons in the final state us-
ing MG5_aMC@NLO [48]. The choice of the unphysical renormalisation and factorisation scales
was set dynamically to be equal to the transverse mass of the 2 → 2 system resulting from
a kT clustering. The convolution of the parton-level matrix elements with non-perturbative
parton distribution functions (PDFs) was performed using LHAPDF6 [49] where we use the
NNPDF31_lo PDF set with αs(M2

Z) = 0.118 [50] assuming the 5 flavor number scheme of
the proton4. To add parton showering to the parton-level generated samples, we interface
MadGraph to Pythia version 8.239 [51]. The matching of the matrix elements with different
parton multiplicities to the parton shower algorithm was performed using the MLM merging
scheme [52] and a merging scale of Q0 = 30 GeV. In the process of event generation, we
did not simulate the effects of multiple parton interactions within the same or neighboring
bunch crossings (pileup). The corresponding signal and background cross sections were not
reweighted to the higher-order and/or resummed cross sections which exist in the literature.
A fast detector simulation was performed using Delphes version 3.4.2 [53] using a modi-
fied version of the ATLAS detector card5. In the process of the detector simulation, we used
FastJet [54] to perform jet clustering with the anti-kt algorithm and a jet radius of R= 0.4.
Jets coming from b-quarks are tagged in the Delphes card similar to [55]. A repository of the
data scripts that are used to generate the events can be found in [56].

The final-state physics objects as described in Tab. 1 are stored in a one-line-per-event CSV
text file (see section 2.2 for details). A collision event results in a variable number of objects.
An event is stored when at least one of the following requirements is fulfilled6:

• At least one jet or a b-jet with transverse momentum pT > 60 GeV and pseudorapidity
|η|< 2.8, or

• at least one electron with pT > 25 GeV and |η|< 2.47, except for 1.37< |η|< 1.52, or

4This results in a large cross section for the W+W− production (σWW j j = 244 pb, whereas one would find
σWW j j = 82.1 pb in the 4 flavor number scheme). The reason for the large differences between the two values
is that single-resonant and double-resonant top quark mediated diagrams contribute to the one-parton and two-
parton exclusive samples to the merged cross section in the 5-flavor scheme.

5The Delphes card is available at https://github.com/melli1992/unsupervised_darkmachines/blob/
master/delphes_card_ATLAS.dat. See the card for information about object isolation.

6We use a Cartesian coordinate system with the z axis oriented along the beam axis, the x axis on the horizontal
plane, and the y axis oriented upward. The x and y axes define the transverse plane, while the z axis identifies the
longitudinal direction. The azimuth angle φ is computed with respect to the x axis. The polar angle θ is used to
compute the pseudorapidity η= − log(tan(θ/2)). The transverse momentum (pT) is the projection of the particle
momentum on the (x , y) plane. We fix units such that c = ħh= 1.
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Figure 2: Transverse momentum pT (left) and energy E (right) in GeV of the jets for
all backgrounds.

• at least one muon with pT > 25 GeV and |η|< 2.7, or

• at least one photon with pT > 25 GeV and |η|< 2.37.

Of course, these are unrealistic requirements in terms of what an experiment can afford to
record after the online data selection (trigger) system, but our aim is to create a flexible dataset
that allows for different types of studies that might require different selection criteria. The η-
restriction on the electrons models a veto in the crack regions as often applied in LHC analyses.
Such a veto can also be applied to photons by the user. For the SM processes with the largest
cross sections (W±/γ/Z + jets and QCD jet production) we have additionally applied require-
ments on HT > 100 GeV and 600 GeV respectively to make the data generation manageable.
The observable HT is defined as the scalar sum of the transverse momenta of all jets (with
pT, ji > 20 GeV and |η ji |< 2.8):

HT =
∑

i

|pT,ji | . (1)

Therefore, if one includes any of these processes in an analysis, one must make sure that the
same requirements are also applied to the other processes7, which impacts the production
cross sections (and therefore the event weights) that are indicated in Tab. 28.

The requirements on the final state objects that are stored in the text files are:

• jet or b-jet: pT > 20 GeV and |η|< 2.8,

• electron/muon: pT > 15 GeV and |η|< 2.7,

• photon: pT > 20 GeV and |η|< 2.37.

This means that, for example, a jet with pT = 10 GeV is not included in the dataset. The
detector simulation as performed by Delphes removes any electrons with |η| > 2.5, as the
reconstruction efficiency is set to 0 beyond that point.

All relevant SM (background) processes that have been generated are summarized in
Tab. 2. For each process, the total number of generated events (Ntot) is at least the num-
ber that is needed for 10 fb−1-equivalent of data (N10 fb−1). In Figs. 2-5 we show the (stacked)
distributions of the kinematic variables E, pT, η, and φ of the jets and leptons in all of the gen-
erated background processes. In Fig. 6 we show the number of jets, Njet, and leptons, Nlepton,

7In general, the same selection must be applied to all samples within a given analysis.
8Note that for this challenge the event weights are not used.
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Figure 3: Pseudorapidity η (left) and azimuthal angle φ (right) of the jets for all
backgrounds.
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Figure 4: Transverse momentum pT (left) and energy E (right) in GeV of the leptons
(e+, e−, µ+, µ−) for all backgrounds.
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Figure 5: Pseudorapidity η (left) and azimuthal angle φ (right) of the leptons (e+,
e−, µ+, µ−) for all backgrounds.
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Figure 6: Number of jets (left) and leptons (right).
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Table 2: Generated background processes (first column) with the corresponding
identification (second column), the LO cross section σ in pb (third column) and
the total number of generated events Ntot (fourth column). In the last column, we
also indicate the number of events corresponding to 10 fb−1 of data (N10 fb−1).

SM processes
Physics process Process ID σ (pb) Ntot (N10 fb−1)
pp→ j j(+2 j) njets 19718HT>600GeV 415331302 (197179140)
pp→ l±νl(+2 j) w_jets 10537HT>100GeV 135692164 (105366237)
pp→ γ j(+2 j) gam_jets 7927HT>100GeV 123709226 (79268824)
pp→ l+l−(+2 j) z_jets 3753HT>100GeV 60076409 (37529592)
pp→ t t̄(+2 j) ttbar 541 13590811 (5412187)
pp→ t + jets(+2 j) single_top 130 7223883 (1297142)
pp→ t̄ + jets(+2 j) single_topbar 112 7179922 (1116396)
pp→W+W−(+2 j) ww 82.1 17740278 (821354)
pp→W± t(+2 j) wtop 57.8 5252172 (577541)
pp→W± t̄(+2 j) wtopbar 57.8 4723206 (577541)
pp→ γγ(+2 j) 2gam 47.1 17464818 (470656)
pp→W±γ(+2 j) Wgam 45.1 18633683 (450672)
pp→ ZW±(+2 j) zw 31.6 13847321 (315781)
pp→ Zγ(+2 j) Zgam 29.9 15909980 (299439)
pp→ Z Z(+2 j) zz 9.91 7118820 (99092)
pp→ h(+2 j) single_higgs 1.94 2596158 (19383)
pp→ t t̄γ(+2 j) ttbarGam 1.55 95217 (15471)
pp→ t t̄ Z ttbarZ 0.59 300000 (5874)
pp→ t t̄h(+1 j) ttbarHiggs 0.46 200476 (4568)
pp→ γt(+2 j) atop 0.39 2776166 (3947)
pp→ t t̄W± ttbarW 0.35 279365 (3495)
pp→ γ t̄(+2 j) atopbar 0.27 4770857 (2707)
pp→ Z t(+2 j) ztop 0.26 3213475 (2554)
pp→ Z t̄(+2 j) ztopbar 0.15 2741276 (1524)
pp→ t t̄ t t̄ 4top 0.0097 399999 (96)
pp→ t t̄W+W− ttbarWW 0.0085 150000 (85)

for the generated backgrounds. The Emiss
T and φEmiss

T
distributions are shown in Fig. 7, and the

HT distribution is shown in Fig. 8. Note that, only for Fig. 8, we have filtered out the events
with HT < 600 GeV. For the other figures, we show the events for all values of HT for most
backgrounds, except for the ones with tags njets (HT > 600 GeV), w_jets, gam_jets and
z_jets (HT > 100 GeV).

For the BSM scenarios (signal events) we have chosen a selection of SUSY and non-SUSY
BSM processes. While these models do not cover the range of possible BSM signatures, they
are motivated by having a dark matter particle which escapes the detector.

• The Z ′ + monojet [57–59] contains a 2 TeV Z ′ which decays fully invisibly to 50 GeV
Dirac dark matter. This process is denoted as monojet_Zp2000.0_DM_50.0 in the
figures.

• The Z ′ +W/Z [57–59] also contains a 2 TeV Z ′ which decays fully invisibly to 50 GeV
Dirac dark matter. This process is denoted as monoV_Zp2000.0_DM_50.0 in the figures.

• The Z ′ + single top process [57–59] involves a 200 GeV Z ′. This process is denoted as
monotop_200_A in the figures.
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Figure 8: The scalar sum of the jet transverse momenta HT in GeV (see Eq. (1)) for
all backgrounds, with HT > 600 GeV imposed.

• The Z ′ in lepton-violating U(1)Lµ−Lτ [60, 61] process involves a 50 GeV Z ′ which de-
cays to leptons and neutrinos. There are two processes included, pp23mt_50 has three
leptons in the final state and pp24mt_50 has four leptons in the final state.

• The R-parity violating (RPV) SUSY [62, 63] stop-stop process has pair production of 1
TeV supersymmetric stops which decay to leptons and b-quarks. This process is denoted
as stlp_st1000 in the figures.

• The RPV SUSY [62,63] squark-squark process has 1.4 TeV squark pair production. The
neutralino has a mass of 800 GeV. The squarks decay down to jets. This process is de-
noted as sqsq1_sq1400_neut800 in the figures.

• The SUSY [64–66] gluino-gluino process involves the pair production of gluinos which
eventually decay to jets and neutralinos (missing energy). We include two different
benchmark sparticle mass spectra. In the first, the gluinos have a mass of 1.4 TeV and
the neutralinos have a mass of 1.1 TeV. This is denoted as glgl1400_neutralino1100
in the figures. In the second spectrum, the gluinos have a mass of 1.6 TeV and the
neutralinos have a mass of 800 GeV. This is denoted as glgl1600_neutralino800 in
the figures.

• The SUSY [64–66] stop-stop process has pair produced stops which decay to a top quark
and a neutralino (missing energy). The stops have a mass of 1 TeV and the neutralinos
have a mass of 300 GeV. This is denoted as stop2b1000_neutralino300 in the figures.

• The SUSY [64–66] squark-squark process contains 1.8 TeV squarks which decay to jets
and neutralinos (missing energy). The mass of the neutralinos is 800 GeV. This is denoted
as sqsq_sq1800_neut800 in the figures.

• The SUSY [64–66] chargino-neutralino processes involve the charged-current produc-
tion of a chargino and neutralino. The chargino decays to a W and a neutralino. There
are two mass spectra considered. The first has a 200 GeV chargino and a 50 GeV neu-
tralino, denoted as chaneut_cha200_neut50 in the figures. The second contains a 250
GeV chargino and a 150 GeV neutralino and is denoted as chaneut_cha250_neut150.
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• The SUSY [64–66] chargino-chargino process is the neutral current pair production of
charginos which decay to a W and neutralino. There are three considered mass spec-
tra. The first is denoted as chacha_cha300_neut140 and contains 300 GeV charginos
and 140 GeV neutralinos. The second is more split, with the charginos at 400 GeV and
the neutralinos at 60 GeV and is denoted as chacha_cha400_neut60. The final spec-
trum is heavier with 600 GeV charginos and 200 GeV neutralinos. This is denoted as
chacha_cha600_neut200.

These scenarios are summarized in Tab. 3.
We then divide the background and signal events into separate (non-orthogonal) signal

regions, referred to as channels. Channel 1 looks for hadronic activity with lots of missing
energy. This is good for mono-jet type signatures of dark matter as well as any of the colored
SUSY signals. Both of the channel 2 options reduce the background by requiring leptons, which
then are more sensitive to signals which have an electroweak charge (such as the charginos
and neutralinos). Channel 3 is targeted to be more inclusive and catches most of the signals
except for the softer electroweak signals. The channels are defined as follows:

• Channel 1 (214000 SM events):

HT ≥ 600 GeV, Emiss
T ≥ 200 GeV, Emiss

T /HT ≥ 0.2, (2)

with at least four (b)-jets with pT > 50 GeV, and one (b)-jet with pT > 200 GeV .

• Channel 2a (20000 SM events):

Emiss
T ≥ 50 GeV , (3)

and at least 3 muons/electrons with pT > 15 GeV.

• Channel 2b (340000 SM events):

Emiss
T ≥ 50 GeV, HT ≥ 50 GeV , (4)

and at least 2 muons/electrons with pT > 15 GeV.

• Channel 3 (8500 000 SM events):

HT ≥ 600 GeV, Emiss
T > 100 GeV . (5)

Each channel contains different BSM processes, which can be found in Tab. 3.

2.2 Description of the data format

The generated MC data is stored in the form of ROOT files (including all stable hadrons) and
in CSV files including only the information as described above. The CSV files are published on
Zenodo (see Tab. 4) and the ROOT files are available upon request.

In the CSV files, each line has variable length and contains 3 event-specifiers, followed by
the kinematic features for each object in the event. The line format is:

event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1,
phi1; obj2, E2, pt2, eta2, phi2; . . .
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Table 3: BSM processes in each channel. More information on the masses of the
specific processes can be found in the main text.

BSM process Channel 1 Channel 2a Channel 2b Channel 3
Z ′ + monojet × × ×

Z ′ +W/Z ×
Z ′ + single top × ×

Z ′ in lepton-violating U(1)Lµ−Lτ × ×
/R-SUSY stop-stop × × ×

/R-SUSY squark-squark × ×
SUSY gluino-gluino × × × ×

SUSY stop-stop × ×
SUSY squark-squark × ×

SUSY chargino-neutralino × ×
SUSY chargino-chargino ×

The event ID is an event specifier. It is an integer to identify the generation of that particu-
lar event, included for debugging and reproducibility purposes. The process ID is a string
referring to the process that generated the event, as mentioned in Tabs. 2 and 3. The event
weight w is defined as

w=
σ

Nlines
×
�

10 fb−1
�

, (6)

with σ the cross section for a particular process (expressed in fb), and Nlines the number of
events in a single CSV file.

Concerning the kinematic features, the MET and METphi entries are the magnitude Emiss
T

and the azimuthal angle φEmiss
T

of the missing transverse energy vector of the event. The Emiss
T

is based on the truth Emiss
T , meaning the transverse energy of those objects that genuinely es-

cape detection, such as neutrinos and weakly-interacting new particles. The object identifiers
(obj1, obj2,. . . ) are strings identifying each object in the event, using the identifiers of Tab. 1.
Each object identifier is followed by 4 comma-separated values fully specifying the 4-vector
of the object: E1, pt1, eta1, phi1. The quantities E1 and pt1 respectively refer to the full
energy E and transverse momentum pT of obj1 in units of MeV. The quantities eta1 and phi1
refer to the pseudo-rapidity η and azimuthal angle φ of obj1.

As an example, an event corresponding to the final state of the t t̄ + 2 j process with two
b-jets (with E = 331.9 GeV and E = 55.8 GeV) and one jet (with E = 100.4 GeV) reads:

94;ttbar;1;112288;1.74766;b,331927,147558,-1.44969,-1.76399;j,100406,85589,-
0.568259,-1.17144;b,55808.8,54391.4,-0.198215,1.726

For the hackathon challenge [68], a cocktail of SM backgrounds is provided in four CSV
files (one for each channel), with a luminosity of 7.8 fb−1(214185 events), 309.6 fb−1 (20005
events), 7.8 fb−1(340 268 events) and 8.0 fb−1 (8 544111 events) for channel 1, 2a, 2b and 3,

Table 4: The different datasets and their Zenodo weblinks.

Dataset Link Selection
Darkmachines generation [67] All events in Tab. 2.
Unsupervised Hackathon [68] Labeled signal and background events.

Secret dataset [69] Unlabeled dataset.
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respectively. These files have to be split into training data and validation data. The validation
background events are supplemented by signal CSV files belonging to the processes summa-
rized in Tab. 3. For channel 1, 2a, 2b and 3 we provide 8 (38 666 events), 6 (5868 events), 9
(89 676 events), and 10 (1023 320 events) different signal files.

The algorithms are ultimately assessed (see section 2.2.1 for the figures of merit) on their
performance on four “secret” datasets [69], one for each channel. These contain a mixture of
SM events and non-SM events, where the labels (i.e. process ID) of the events are hidden.
In addition, noise events have been added as an additional blinding mechanism. The events
contained in these secret datasets have been generated in a similar way as the training-data
events. Note that this is only partially representative of LHC data, as one cannot expect the
outcome of the Monte Carlo generation and fast simulation to represent full complexity of the
actual physical events that are produced at the LHC, without an estimation of both theoretical
and detector-related uncertainties. In any case, and for the scope of this paper, these datasets
can be useful to understand the main characteristics and performed of different anomaly de-
tection algorithms under controlled simplified conditions, and we leave a full analysis for data
to future studies within the experimental collaborations or using Open Data.

2.2.1 Figures of merit

For each event in the validation data and secret dataset an anomaly score is obtained (as
detailed in the individual method section in Sec. 4). The receiver operating characteristic
(ROC) curve is obtained by scanning over thresholds of the anomaly score to cut on when
determining if an event is anomalous or not. The ROC curve is parameterized as the signal
efficiency (εS , the true-positive rate) as a function of the background efficiency (εB, the false-
positive rate). The area under the ROC curve (AUC) is a common metric for classification
problems, an AUC of 1.0 is a perfect classifier while a random guess gives an AUC of 0.5.
However, the AUC is dominated by the signal efficiency at large background efficiency, whereas
many new physics signals need to cut out a much larger fraction of the background. Therefore,
we also use as metrics the signal efficiency at three separate working points. The figures of
merit (per signal model) used in this study are:

• Area under the Curve (AUC),

• The signal efficiency at a background efficiency of 10−2,
�

εS(εB = 10−2)
�

,

• The signal efficiency at a background efficiency of 10−3,
�

εS(εB = 10−3)
�

,

• The signal efficiency at a background efficiency of 10−4,
�

εS(εB = 10−4)
�

.

In addition, we derive combined performance figures (see section 5) in order to quantify
the mean, maximum and minimum performance of the algorithms for the many examined
signals.

3 Approaches to the problem

Depending on the availability of labelled data, several approaches for the tagging of the signal
events are possible. We can summarize at least four of them as follows.

(a) Training the algorithm on computer-generated (simulated) backgrounds. It will then be
tested on real data.
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(b) Training the algorithm on real data, possibly being a mixture of signal and background.
This is necessary when a reliable or accurate model for the background is not available.
It will then be tested on another independent sample of real data.

(c) Training the algorithm by two-sample comparison of background data and real data [18,
20]

(d) Training the algorithm on a specific signal and background. This is what is typically
done at the LHC. Another possibility would be to train the algorithm on a large number
of possible signals with a large variety.

In this challenge we follow the first route, meaning that the anomaly detection algorithm
can be trained on a pure SM sample. In this step the algorithm is supposed to learn background
specific properties. The trained algorithm is then exposed to a mock dataset where signals of
various kinds are injected on top of the SM background. This is done to validate the algorithm
and assess its performance to spot outliers.

In all four cases, including ours, the outcome can be reduced to constructing one or more
variables which maximize the power to discriminate signal from background (e.g. the prob-
ability of being an outlier, see Fig. 9). For all those approaches requiring a background-only
dataset as input, one should keep in mind that even the most accurate simulation tools do not
provide a perfect description of LHC collisions and the consequent mismodeling may show up
as fake new physics signals.

In Sec. 4 we describe all the ML algorithms that have been applied to the challenge.
These include Kernel Density Estimation (KDE) [70], Gaussian Mixture Models (GMMs) [71],
flow models [72], (variational) autoencoders [73, 74] and Generative Adversarial Networks
(GANs) [115]. Although these algorithms are very different from each other, they rely on one
or more of the following ingredients: assessing an anomaly score, performing clustering, di-
mensional reduction and/or density estimation. We dedicate the remaining part of this section
to the description of each of these ingredients.

3.1 Assessing Anomaly Scores

We present an instructive toy example in Fig. 9. We simulated data from a background expec-
tation distributed exponentially and we combined it with a narrow Gaussian signal anomaly. In
order to give an anomaly score to the points we trained the Local Outlier Factor (LOF) [75] on
a background-only simulation, and subsequently used it on the dataset containing both inliers
and outliers (this would correspond to approach (a) mentioned above). Despite its simplicity,
this example shows two interesting characteristics. First, it is clear that feature selection is
important, since the variable on the x-axis is discriminating, while the variable on the y-axis
is less discriminating. This is because the exponential distribution of the background has a
different variance in the two directions. Second, the example has the characteristics that it is
difficult to separate an anomaly from the background with a simple selection on one of the two
plotted variables. The purpose of anomaly detection in this context is not to find all anomalous
points, but to be able to reliably state when a point (or a set of points) is anomalous and worth
studying. The LOF gives a score to all points in order to assess how much they differ from the
background. On the right-hand side of Fig. 9, we see that most outliers have a high probability
of being part of the signal, and not belonging to the background.

Once all points are assigned an anomaly score, one may compare the distribution of such
scores to a validation set containing only SM events. Therefore, we use the framework of a two-
sample test, aimed at detecting statistically significant differences in the score distributions of
inliers and outliers. While this example makes it seem like outliers can only be found in the
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Figure 9: Left: A narrow Gaussian anomaly centered around (2,2) (in red) is added
to an exponentially-distributed background (in blue). Right: The probability of be-
longing to the signal events (outliers) is assigned to each point of the dataset and we
can perform a counting. In this case, higher probabilities are correctly assigned to
the outliers.

tails of distributions, most methods studied in this work could also find anomalous signals in
“voids" in the high-dimensional space, up to questions of topology [76].

3.2 Clustering

We expect data amenable for analysis to lack in class labels (e.g. it is not known if the data
is a signal event); it will then be necessary to extract information in an unsupervised fash-
ion. A solution is to invoke clustering techniques [77,78], where the goal is to group the data
into clusters, each cluster bearing certain unique properties. Specifically, the goal is to parti-
tion the data such that the average distance between objects in the same cluster (the average
intra-distance) is significantly less than the distance between objects in different clusters (the
average inter-distance). Several approaches have been developed to cluster data based on di-
verse criteria, such as the cluster representation (e.g. flat, hierarchical), the criterion function
to identify sensible clusters (e.g. sum-of-squared errors, minimum variance), and the prox-
imity measure that quantifies the degree of similarity between data objects (e.g. Euclidean
distance, Manhattan norm, inner product). Our goal is to experiment with a variety of cluster-
ing approaches to gain a better understanding of the type of patterns emerging from clustering
structures.

In order to analyze clusters to identify novel groupings that may point to new physics, one
approach is to use what is known as cluster validation [79], where the idea is to assess the
value of the output of a clustering algorithm by computing statistics over the clustering struc-
ture. Clusters with a high degree of cohesiveness, where events within the group are sampled
from regions of high probability density, are particularly relevant for analysis. In addition, one
could carry out a form of external cluster validation [80], where the idea is to compare the
output clusters to existing, known classes of particles. While finding clusters resembling exist-
ing classes may serve to confirm existing theories, clusters bearing no resemblance to known
classes can potentially drive the search for new physics models.
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3.3 Dimensional Reduction

Data stemming from the LHC arrive in copious amounts, are high-dimensional, and lack class
labels; clustering can be useful to find patterns hidden in the data, a task whose importance
has been highlighted in the previous section. Unfortunately, high-dimensional data creates a
plethora of complications during the data analysis process. Two possible solutions exist: we
can either pre-process the data through dimensionality reduction techniques [81], or we can
make use of specialized approaches [82].

Dimensionality reduction can be done through feature selection, by determining which
features are most relevant, i.e. those that possess a high power to discriminate signal from
background. This may come with some information loss, but it is commonly the case at the
LHC that only a subset of information is needed to distinguish among different types of data.
Another approach is to invoke principal component analysis: the data is transformed while
eliminating cross correlations among the new features; the resulting subset can be further
analyzed to filter out irrelevant features.

Another promising direction is to use ML to attain a reduced representation of the data
by performing non-linear transformations [83, 84]. This approach can have a strong impact
in the search for new physics since it implements data transformations that can unveil hidden
patterns corresponding to new particle signals.

3.4 Density estimation

Events produced at the LHC (either real or simulated) can be thought of as samples drawn
from an unknown probability density function (PDF) that characterizes the complex physical
processes leading to the generation of the events themselves. The PDF of a new physics signal
might be different from the PDF of the SM. However, also the estimated PDFs of the SM, and
the one from real experimental data may be different. Spotting and analyzing the differences
in these two densities can provide a great deal of information about the underlying process
(i.e. the true physical model) that generates the signal events.

Assuming density estimation can be performed accurately, there are several ways to use
it for model independent unsupervised analysis. For instance, one can compare the PDFs of
real and simulated data to detect differences. They point towards interesting signal regions,
which can be used in order to guide further scrutiny. In the context of this challenge, since
we determine the anomaly score on a event-by-event basis, we cannot rely on a comparison
between the two densities. We can still estimate the PDF of the background dataset and use this
in order to determine an anomaly score for new events. However, estimating the PDF reliably
starting from the raw data is far from trivial, especially if the number of features is high.
This constitutes an active field of research in data science and, depending on the specific task,
different approaches may be suitable [70,85]. One such approach is kernel density estimation,
which estimates the PDF by a sum of kernel functions (e.g. multivariate Gaussians) centered
around each data point [86]. Furthermore, one could also perform clustering and anomaly
detection in a way independent from the approaches mentioned before, see e.g. [87,88].

One difficulty in applying density estimation on the dataset described in this work is the
fact that the events change in dimensionality because the number of objects is not the same
in every event. Additionally, there are both continuous data (for example energy and angles)
and categorical data (object symbol). To circumvent these issues, one might try to map events
to a different parameter space. A potential methodology is described in Ref. [26].
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Table 5: Summary of the algorithms.

Abbreviation Algorithm Section Hyperparameters # Submitted

SimpleAE Autoencoders 4.1 Tab. 6 1

VAEs Variational Autoencoders 4.2 Tab. 7 140

DeepSetVAE Deep Set Variational Autoencoders 4.3 Tab. 8 4

ConvVAE (NoF) Convolutional Variational Autoen-
coders

4.4 Tab. 9 1

Planar ConvVAE+Planar Flows 4.5.1 Tab. 10 1

SNF ConvVAE+Sylvester Normalizing
Flows

4.5.2 Tab. 11 3

IAF ConvVAE+Inverse Autoregressive
Flows

4.5.3 Tab. 12 1

ConvF ConvVAE+Convolutional Normaliz-
ing Flows

4.5.4 Tab. 13 1

CNN Convolutional (β)VAE 4.6 2

KDE Kernel Density Estimation 4.7 Tab. 14 36

Flow Spline autoregressive flow 4.8 Tab. 15 2

Deep SVDD Deep SVDD 4.9 Tab. 16 & 17 80

Combined (Deep
SVDD & Flow)

Spline autoregressive flow with
Deep SVDD

4.10 8

DAGMM Deep Autoencoding Gaussian Mix-
ture Model

4.11 Tab. 19 384

ALAD Adversarial Anomaly Detection 4.12 Tab. 21 96

Latent Anomaly Detection in the Latent
Space

4.13 Tab. 22 288

4 Methods

In this section we described the employed methods. For every method, we also indicated the
authors of that section with a footnote. The methods are summarized in Tab. 5, where the
number of submitted models (i.e. with different sets of hyperparameters) within that category
is also quoted.

4.1 Autoencoders9

Autoencoders (AEs) [89] are a class of deep neural networks characterised by a central hidden
layer of lower dimension than the input layer, and a target space coinciding with the input
space. AEs can therefore be trained to reconstruct the various features of the input data,
while their bottleneck structure prevents them from simply learning the identity map. The
dimension of the central layer is of particular importance, as it determines the amount of
compression of the features between the input space and this latent space. The AE architecture
can thus be deconstructed into an encoder part, which compresses the input data into the latent
space, and a decoder part, which uses information from the lower dimensional latent space
to extrapolate to the full input space. A promising use of AEs in HEP has been outlined in
Refs. [90,91], namely the online compression of jets during data-taking at the LHC and their

9Baptiste Ravina, Marija Vaškevičiūte, Erik Wulff, Honey Gupta, Erik Wallin, Jessica Lastow, Antonio Boveia,
Lukas Heinrich, Caterina Doglioni

19

https://scipost.org
https://scipost.org/SciPostPhys.12.1.043


SciPost Phys. 12, 043 (2022)

Table 6: Hyperparameters and input features for the benchmark model, as well as
the model optimised specifically for Channel 2a after a grid search.

Parameter Benchmark model Optimised model

activation tanh ReLU

dropout None 0.05

kernel init. normal uniform

latent dim. 10 15

# of layers 3 1

optimiser Adam SGD

input features leading 8 objects leading 4 objects

+ missing ET + missing ET

high-fidelity offline decompression, offering competitive processing rates and a reduced need
for data storage. Furthermore, an AE trained extensively on SM data and reaching arbitrarily
low reconstruction errors could be used as an anomaly detection algorithm. Presented with
new data, the AE could tag anomalous events from their comparatively higher reconstruction
error.

Here we consider an AE architecture inspired by the results of Refs. [90, 91], shown to
perform well on the identity reconstruction of an independent dataset of dijet events, currently
being studied for data compression. This benchmark model is left unoptimised with respect to
the various data channels of the challenge at hand. Only in Channel 2a, where the available
training statistics are insufficient to achieve a similar performance as in the other channels, is
a simple grid search performed over a small range of hyperparameters. The benchmark model
consists of an encoder with three hidden dense layers with 200, 200 and 20 nodes respectively,
leading to a latent layer with 10 nodes; the structure of the decoder is completely symmetric
with respect to the encoder. No dropout is applied anywhere and all weights are initialised
from a normal kernel. A tanh activation function is applied after each inner layer, while the
output layer receives linear activation. One instance of the model is trained per channel of
the dataset, reserving 10% of the training data for validation and considering 125 events per
batch. The Adam optimiser [92] is used with an MSE loss function. An early stopping strategy
is adopted, ending the training when no improvement in the validation loss is observed after
20 consecutive epochs.

Data are pre-processed as follows: only the 4-vectors (pT,η,φ, E) of the leading 8 objects in
pT are kept, together with the magnitude and azimuthal component of the missing transverse
energy. Object labels are not considered. Where there are fewer than 8 objects in an event,
zero-padding is applied. All features are then standardised over the entire training dataset;
the same means and standard deviations are then used to standardise subsequent datasets
(validation and test signals) in a consistent manner. Tab. 6 summarises the structure of this
benchmark model, and highlights differences found in the optimisation of the specific model
targeting Channel 2a.

4.2 Variational autoencoders10

Variational Autoencoders (VAEs) [74] are a class of autoencoder architecture (sec. 4.1) where
the output is equal to the input, and the bottleneck layer is generated by letting the encoder
output two numbers per latent space dimension, which represent a mean and standard devia-
tion for a normal distribution. A sample is drawn from this set of distributions and the sample

10Luc Hendriks, Roberto Ruiz
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is run through the decoder to reconstruct the original input. A term is added to the loss func-
tion proportional to the the Kullback-Leibler (KL) divergence, which tries to make the latent
space normally distributed.

It is generally thought that the reconstruction loss of a VAE is a good anomaly score vari-
able. The VAE has to compress the original input data into a lower dimensional representation,
and so it has to efficiently store the relevant data in the latent space in order to be able to re-
construct the input data well at the output stage. Signal events look different from background
events, and as the VAE has not been optimised for this, they will be reconstructed more badly
than the background events. To balance out the relative importance of the reconstruction loss
and the KL-divergence term, a term β is sometimes introduced as a hyperparameter to control
this relative importance. The loss function then becomes

LVAE = (1− β)MSE+ βKL . (7)

Not only the reconstruction loss can be a good outlier variable. Because the KL-divergence
favors inputs that are encoded near the center of the latent space, the radius from the center
is another anomaly score definition that can have predictive results. We refer to the VAE using
this form of the loss function as the β-VAE.

Table 7: All hyperparameters used to train the various β-VAE models.

Parameter Values

β [10−6, 10−3, 0.1, 0.5, 0.8, 0.999, 1]
z [5,8,13,21,34]
Anomaly score [Reconstruction loss, Radius]
Dataset [Dynamic, Static]

We try different hyperparameter combinations and anomaly score definitions and compare
their performance. We performed a grid search with all of the combinations from Tab. 7. The
dataset is preprocessed in two ways: a dynamic and a static method. The dynamic dataset
orders the objects in an event by pT and contains both the object type as class variables and
the object properties and Emiss

T and φEmiss
T

as regression variables. The loss function is updated
to contain parts for the classification and regression parts for the reconstruction. This setup is
equivalent to the method described in 4.13. In the static dataset the object type is implicit in
the object ordering. We take for every object in the dataset the maximum number of those in
the entire dataset and add a label if the particular object is in a particular event. In this way,
an event will look like

~x =
�

Emiss
T ,φEmiss

T
, x j,1, x j,1,pT

, x j,1,η, x j,1,φ , . . . ,

x j,n j
, x j,n j ,pT

, x j,n j ,η, x j,n j ,φ . . . ,

for all object types
�

. (8)

The advantage is that there is no classification part necessary in the β-VAE, as the object
type is defined explicitly by its position in the input vector.

Note that when β = 1, the only relevant part in the loss function is the KL-divergence term,
effectively rendering the decoder useless, as there is nothing in the loss function that pushes
the weights in the decoder to particular values.
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4.3 Deep set variational autoencoder11

The main idea behind this method is that the outgoing particles in collider experiments can
be thought of as a collection of four-vectors. There is no intrinsic ordering, although we often
sort them by the magnitude of the transverse momentum. Therefore, using a network archi-
tecture which respects the permutation symmetry is more natural and could lead to improved
results. In Ref. [93], it was shown that “deep sets” with permutation-invariant functions of
variable-length inputs can be parameterized in a fully general way. This idea was introduced
to the High Energy Physics community in Ref. [94], where the operations were generalized
to include infrared and collinear safety. While their methods outperformed other state-of-the
art classifiers, they found a slight improvement if the operations were not restricted to be IRC
safe.

For an unsupervised learning task, we modify the deep sets paradigm to include an auto
encoding structure, following the example of Ref. [95]. As in Ref. [94], we map each particle to
the latent space using a common function Φ. The functional form of Φ is a four layer network
which has inputs of (log10 E, log10 pT,η,φ, PID).

One possible way of combining the per-particle latent spaces into an event-level latent
representation is to sum the individual components [95]. However, it was shown that sorting
each feature (for instance all of the first latent dimension) along all of the particles, followed
by learned mapping from the sorted features to the latent space improves performance. This
layer/operation is known as FSPool [96]. After the FSPooling layer, we reparameterize the
system using a variational autoencoder with a Gaussian prior.

A decoding network is then used to transform the latent data back to a set of four-vectors
and particle IDs. We do so using a dense neural network. We use two layers with 256 nodes
with ReLU activations. From here, the network splits to 80 nodes, representing the 20 four-
vectors, and a series of 180 nodes representing the probabilities that each of the 20 particles
belongs to one of the eight particle IDs or be masked out (as in there should not be another
particle).

Once the final set is obtained, we can compute the loss compared to the initial set. This
is made more challenging because of the permutation invariance–the first input particle does
not correspond to the first output particle. We therefore use a modified version of the Chamfer
loss, which is given by

LC =
∑

x∈Sinput

min
y∈Soutput

�

�~x − ~y
�

�+
∑

y∈Soutput

min
x∈Sinput

�

�~x − ~y
�

� . (9)

In addition to this, we include the − log SoftMax for the PID prediction of y for the true class
of x for the pair which minimizes the distance. It is unclear how to weight this classification
loss compared to the distance loss, so we experiment with different values. In addition, we
test the ratio of the loss of the KL divergence of the latent space and the Chamfer loss similar
to Eq. (7), substituting MSE by LC . Thus the total loss is given by

LDeepSet = (1− β) LC + β KL . (10)

The parameters used for this study are summarized in Tab. 8. Note that the values of β = 0
or β = 1 performed best, so only these were submitted to the challenge for further analysis.
More details on this method can be found in Ref. [97].

4.4 Convolutional variational autoencoder12

In this method we use a one class trained VAE with the reconstruction loss serving as the
anomaly score. The VAE is only trained to reconstruct background events and as a result,

11Author: Bryan Ostdiek
12Pratik Jawahar, Maurizio Pierini, Kinga Anna Wozniak, Mary Touranakou, Javier Mauricio Duarte

22

https://scipost.org
https://scipost.org/SciPostPhys.12.1.043


SciPost Phys. 12, 043 (2022)

Table 8: All hyperparameters used to train DeepSet β-VAE models.

Parameter Values

β [0,10−6, 10−3, 0.1, 0.5, 0.8, 0.999, 1]
Latent space dimension 8

Encoder Width 256

Decoder Width 256

Weighting of particle ID prediction [1, 10]
Anomaly score Total Loss [Eq. (10)]

Table 9: ConvVAE hyper-parameters.

Parameter Values

learning rate (10−3 with decay)

batch size 32

latent space dimension 10

kernel size [(3,4), (5,1), (7,1)]
stride 1

anomaly score Chamfer Loss [Eq. 9]

signal events yield a higher reconstruction loss. Applying a set threshold, we classify events
with a reconstruction loss higher than the threshold as signal events and the rest as background
events. The architecture used here is a ConvVAE [98], in which the encoder and decoder are
composed of Convolutional Neural Networks. We pre-process the input into an image-like 2D
matrix, such that the CNN identifies information such as number of objects of each type per
event as spatial features. The “image" is a 4 × n matrix where the 4 rows are [E, pT ,η,φ]
for each of the n objects. The loss function used is composed of the KL Divergence term and
the Chamfer Loss term defined in Eq.(9) by choosing β = 1. This method relies on good
reconstruction of background events since the model is only trained on this class, and expects
poor reconstruction of signal events to allow simple threshold-on-loss strategies for anomaly
detection. The hyperparamters used are shown in Tab. 9.

4.5 ConvVAE with normalizing flows13

With the ConvVAE of section 4.4 serving as the baseline for this method, we optimize perfor-
mance in anomaly detection using normalizing flows to learn a better suited posterior approxi-
mation [99], in place of the multivariate normal approximation made in the baseline ConvVAE
model. The same input format as Sec 4.4 is used.

A normalizing flow can be generalized as any invertible transformation that can be applied
to a given distribution to generate a desired target distribution. In order to be compatible with
variational inference, it is desirable for the transformations to have an efficient mechanism for
computing the determinant of the Jacobian, while being invertible [99]. We utilize 4 major
families of flow models described below, to learn better approximate posteriors as part of a
single, sequential training process.

13Pratik Jawahar, Maurizio Pierini, Javier Mauricio Duarte
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4.5.1 Planar flows

Planar flows were introduced in Ref. [99] as invertible transformations whose Jacobian de-
terminant can be computed rather efficiently, making them suitable candidates to be used in
variational inference. Planar flow transformations are defined as,

z′ = z+ uh(wT z+ b) . (11)

Here, u,w ∈ RD, b ∈ R and h(z) is a suitable smooth activation function. The additional
hyper parameters used are shown in Tab. 10.

Table 10: Planar model hyper-parameters.

Parameter Values

flow layers 6

dense layers per flow layer 3

neurons per dense layer 90

4.5.2 Sylvester normalizing flows

Sylvester normalizing flows (SNFs) [100] build on the planar flow formulation and extend it
to be analogous to a multi layer perceptron with one hidden layer of M units and a residual
connection as,

z′ = z+Ah(Bz+ b) . (12)

Here, A ∈ RD×M , B ∈ RM×D, b ∈ RM and M ≤ D. Computing the Jacobian determinant for
such a formulation is made more efficient by utilizing the Sylvester determinant identity [100].
Depending on the way A and B are parametrized, we get different types of SNFs. In this paper
we use orthogonal, Householder, and triangular SNFs. The model parameters used are shown
in Tab. 11.

4.5.3 Inverse autoregressive flows

Autoregressive transformations are invertible learnable functions, hence a suitable choice to
define a normalizing flow. However, computing the transformation requires multiple sequen-
tial steps [100]. The inverse transformation however, leads to certain simplifications allowing
more efficient parallel computing, thereby making it a more desirable transformation for our
case. Thereby, we use the inverse autoregressive flows (IAF) [72] formulated as,

z t
i = µ

t
i (z

t−1
1:i−1) +σ

t
i (z

t−1
1:i−1) · z

t−1
i , i = 1,2, . . . , D , (13)

where t is the number of IAF transformations applied and D is the number of latent dimensions.
Such a formulation allows stacking of multiple transformations to achieve more flexibility in
producing target distributions. The model parameters used are shown in Tab. 12.

4.5.4 Convolutional normalizing flows

Convolutional normalizing flows (ConvF) [101] extrapolate the idea of planar flows with a
single hidden unit [72] to multiple hidden units and replace the fully connected network op-
eration with a 1-D convolution to achieve bijectivity giving,

z′ = z+ u� h(conv(z,w)) . (14)
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Table 11: SNF model hyper-parameters.

Parameter Values

flow layers 4

dense layers per flow layer 5

no. of orthogonal vectors 8

no. of Householder transformations 8

Table 12: IAF model hyper-parameters.

Parameter Values

MADE layers 4

MADE neurons per layer 330

Table 13: ConvF model hyper-parameters.

Parameter Values

flow layers 4

flow kernel size (7, 1)
dilation True

Here, w ∈ Rk is the parameter of the 1-D convolution filter with k being the kernel width; h
is a monotonic non-linear activation function and � denotes point-wise multiplication [101].
The model parameters used are shown in Tab. 13.

4.6 Convolutional β-VAE14

As for the VAEs in sections 4.2 and 4.3, we investigate the impact of a β term in the loss
definition of the ConvVAE, defined according to Eq.(7). On investigation of the CNN-VAE
approach (sec. 4.4), we found some issues with the KL divergence pulling reconstructions
towards a Gaussian distribution, rather than the true distribution of the input data. In some
cases this can be solved by minimizing the effect of the KL divergence by adding a tweak-able β
term. The β-VAE has an emphasis on discovering disentangled latent factors. If each variable
in the latent space is only sensitive to one generative factor, this representation is considered
disentangled. This can lead to greater interpretability of the model and generalization to a
wider breadth of tasks.

The β hyperparameter acts as a Lagrange multiplier, and looks to aid in optimization to-
wards a local minimum [102]. The values range between 0 and 1 and we adjust both elements
of the loss function by a scale that allows the contribution to match each other, keeping the
co-dependence of the loss functions.

The values of β are different depending on the channel and trial and error was used to
find which value performed best for each model. Channel 1: β = 0.4, Channel 2a: β = 0.9,
Channel 2b: β = 0.3, Channel 3: β = 0.1.

14Author: Joe Davies

25

https://scipost.org
https://scipost.org/SciPostPhys.12.1.043


SciPost Phys. 12, 043 (2022)

Table 14: KDE model hyper-parameters.

Parameter Values

dimensionality reduction method [PCA, VAE]
β [10−5, 10−3, 0.1]
latent space dimension D [2, 3,4, 5,6, 7,8, 9,10]

4.7 Kernel density estimation15

A simple yet powerful approach to the task of finding anomalous events is given by density
estimation. Starting from the background-only sample, the PDF reconstructed from these
points can be estimated as p̂b using kernel density estimation (KDE). Then the events that
appear as rare will be considered anomalous: for a given event x , an anomaly score can be
defined as

S(x) = − log p̂b(x) . (15)

However, estimating the PDF of the background is not a trivial task. The first issue arises
from the curse of dimensionality. Our input dataset contains the missing energy information
and an ordered sequence of 4-momenta with zero-padding. In particular the objects whose 4-
momenta we consider are the 10 leading jets, 4 bottoms, 3 of each lepton type and 2 photons,
which means that the input dataset has around 100 features. In order to overcome this issue,
we perform dimensionality reduction in different ways. We either use principal component
analysis (PCA) [103] or a β-VAE whose complexity is comparable to PCA. This simple β-VAE
consists of an encoder and decoder with a hidden layer of 32 nodes and a bottleneck size D.
The loss is given by equation 7.

The methods used for density estimation will differ in the way we perform the dimension-
ality reduction (PCA or β-VAE). In the case of the β-VAE, our analysis shows that small values
of β lead in general to better results with the density estimation approach. Our methods are
also characterized by the final number of features D. This is summarized in Tab. 14.

KDE requires longer computation times for an increasing number of samples. This means
that, depending on the channel, we will use different procedures. For channels 1 and 2a, we
perform a 5-fold cross-validation in order to assess the optimal bandwidth, based on the data-
based maximum likelihood. Both the cross-validation and the KDE are performed with the
scikit-learn libraries [104].

However, channels 2b and 3 have a larger sample size and this makes the previous pro-
cedure unfeasible. In this case, we adopt as the optimal bandwidth choice the one from Sil-
verman’s rule of thumb [105]. By looking at the results for channels 1 and 2a we know that
the optimal bandwidth found with this rule is close to the one found from cross-validation.
Then, the density estimation is performed using fast Fourier transforms on a grid, which is al-
ready implemented in KDEpy [106] and makes the computations considerably faster. Finally,
in order to assess the anomaly score of an event, we use a nearest neighbor interpolation with
weights inversely proportional to the distances. These weights are used with the aim of lifting
residual degeneracies in events sharing the same nearest neighbors.

4.8 Spline autoregressive flows16

While in Sec. 4.5 normalizing flows are used as a posterior for a ConvVAE, they may also be
applied in isolation. In [107] an autoregressive flow model was used to infer the likelihood

15Andrea De Simone, Alessandro Morandini
16Luc Hendriks, Rob Verheyen

26

https://scipost.org
https://scipost.org/SciPostPhys.12.1.043


SciPost Phys. 12, 043 (2022)

of HEP events from weighted training data, with the goal of being able to sample new events
from the model. However, using the tractable likelihood of normalizing flows, this model may
also be used as an anomaly detector. While the model is similar to the normalizing flows men-
tioned earlier, the most significant difference is that, instead of the relatively simple transforms
used previously, this model uses rational quadratic splines (RQS). These are highly expressive
functions with well-defined domains, which is particularly useful for HEP events as they fill
a bounded phase space. The RQS transforms are parameterized by MADE networks [108],
which are autoregressive neural networks that ensure efficient tractability of the flow likeli-
hood.

The anomaly score of an event x is defined as

S(x) =
log p(x)− log pmin

log pmax − log pmin
, (16)

where p(x) is the flow likelihood, and pmin and pmax are respectively the minimum and maxi-
mum likelihoods to appear among the evaluated event samples.

The flow model parameters are defined in Tab. 15. The dataset is parsed in a few different
configurations:

• Efficient: For every event, only the Emiss
T , φEmiss

T
, number of every object type and the E,

pT, η and φ of the top 7 jets, or b-jets and top 4 leptons,

• Efficient no E: For every event, only the Emiss
T , φEmiss

T
, number of every object type and

the pT, η and φ of the top 7 jets, or b-jets and top 4 leptons,

• Only Aggregates: For every event, only the Emiss
T , φEmiss

T
and number of every object

type.

In the result tables, these models are indicated by Flow-algorithmName_Likelihood.

Table 15: Parameter combinations used for training the spline autoregressive flow
model.

Hyperparapeter Value

Initial learning rate 0.001

Batch size 512

Optimizer Adam [109]
Loss function Log-likelihood

RQS knots 35

Flow layers 11

MADE layers 7

MADE neurons per layer 200

Epochs (channel 1, 2a, 2b) 100

Epochs (channel 3) 10

4.9 Deep SVDD models17

Deep Support Vector Data Description (SVDD) models [110] are neural networks that go from
an input to a vector of constant numbers. The loss function of the neural network is simply

17Luc Hendriks, Sascha Caron
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Table 16: Parameter combinations used for training the Deep SVDD models.

Hyperparameter Value

Initial learning rate 0.001

Batch size 10000

Optimizer Adam [109]
Loss function Mean squared error

Dense layers 3

Neurons per layer [512, 256, 128]

Table 17: Network parameters of the Deep SVDD networks.

Parameter Values

Output values [0, 1, 2, 3, 4, 10, 25]
Output value dimensionality [5, 8, 13, 21, 34, 55, 89, 144, 233]

the mean squared error of the predicted values versus the expected values, which is the same
value for all inputs. The expected output value and the dimensionality of the vector are hy-
perparameters. The loss function is given by equation 17, where d is the length of the output
vector and Cd is the output value:

L= 1
d
| ŷ − Cd |2 . (17)

In addition to this standard deep SVDD approach we also trained a set of networks using the
KL divergence loss of the network output and a standard normal distribution. In the result
tables the algorithms are labelled as follows: DeepSVDD_CC_dd, where C and d represent
the target value and vector length respectively and the loss function is either MSE or KL. Ad-
ditionally, there is a run where the MSE is taken over all values C, these are labelled with
DeepSVDD_Reduced_dd The hyperparameter combinations are shown in Tab. 16 and the cho-
sen values for C and d in Tab. 17.

4.10 Spline autoregressive flow combined with deep SVDD models18

The Spline autoregressive flow model and Deep SVDD models are also combined to obtain a
single score which combines the likelihood approach of the “Flow efficient" model (sec. 4.8)
and the combined anomaly score of the Deep SVDD models (Sec. 4.9). The ensemble of Deep
SVDD models are first combined using the methods described in Sec. 4.13. Then, the flow
model score and combined Deep SVDD model score are combined into a single score using
the same method. This method is described in detail in [111]. The results are labelled as
Combined-combination-DeepSVDD-Flow in the results.

Additionally we also combined the results of the VAE with β = 1 and z = 21 (which was the
best performing VAE) with the flow model. This result is labelled as Combined-combination-
VAE_beta1_z21-Flow. Interestingly, the β = 1 case behaves similarly to a Deep SVDD model,
except that the loss function is not the mean squared error of the network output and a constant
output, but the KL divergence of the network output and a standard normal distribution. The
β = 1 VAE is therefore also a “fixed target" neural network.

18Luc Hendriks, Rob Verheyen, Sascha Caron
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4.11 Deep Autoencoding Gaussian Mixture Model19

The Deep Autoencoding Gaussian Mixture model (DAGMM) [112] combines dimensional
reduction performed by a deep autoencoder and density estimation on the learned low-
dimensional space.

In the literature this is typically done in a two-step approach due to the difficulty of doing
a joint optimization. DAGMM addresses this through a sub-network called an estimation net-
work which basically learns a density in the low-dimensional space generated by the compres-
sion network. Thus the DAGMM model consists of a compression network and an estimation
network.

Compression network. The compression network reduces the dimensionality of the input
vector x through an encoder network to a latent representation zc = E(x,θe), and also recon-
structs it to a vector x′ through a decoder network x′ = D(zc ,θd). Then with the x and x′

vectors, error features are computed zr = f (x,x′), where f represents multiple distance met-
rics such as the Euclidean distance, cosine similarity, etc... Here θe and θd are the parameters
of the encoder and decoder networks respectively.

Estimation network. The goal of the estimation network is to make density estimation with
a Gaussian Mixture Model (GMM). It takes as input z= [zc ,zr] and predicts the K components
of the GMM. It is done with a network which outputs p = N(z,θm) where θm parametrize N .
Finally the GMM soft-mixture components vector γ̂ = softmax(p).

For a batch of N components the GMM parameters are estimated as follows [112]

φ̂k =
N
∑

i=1

γ̂ik

N
, µ̂k =

∑N
i=1 γ̂ikzi
∑N

i=1 γ̂ik

, Σ̂k =

∑N
i=1 γ̂ik(zi − µ̂k)(zi − µ̂k)T

∑N
i=1 γ̂ik

, (18)

Table 18: DAGMM model architecture. Here d is the number of dimensions of the
latent space whereas d1 and d2 are the number of nodes corresponding to the esti-
mation network layers.

Operation Units Activation

E(x)

Number of hidden layers 3

Dense 128 tanh

Dense 256 tanh

Dense 512 tanh

Output d linear

D(z)

Number of hidden layers 3

Dense 512 tanh

Dense 256 tanh

Dense 128 tanh

Exz(x , z)

Number of hidden layers 1

Dense d1 tanh

Output d2 softmax

19Roberto Ruiz
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Table 19: DAGMM model hyper-parameters.

Parameter Values

learning rate [10−4, 10−5]
number of epochs [50, 100]
batch size [100, 500,1000]
latent space dimensions d [10, 20,30]
number of nodes d1 [10, 15]
number of nodes d2 [4, 8]
λ1 [10−2, 10−3]
λ2 [10−2, 10−3]

where φ̂, µ̂ and Σ̂k are the mixture probability, mean and covariance for component k of the
GMM, respectively. Finally the sample energy [112] is defined as

E(z) = −log

� K
∑

k=1

ex p
�

−1
2(z− µ̂k)T Σ̂−1

k (z− µ̂k)
�

Æ

det(2πΣ̂k)

�

. (19)

The sample energy can be interpreted as the negative log probability associated with z. Thus
when minimizing the energy, we assign higher probability to normal data and vice versa for
anomalies. We add this value to our loss function and use it as the anomaly score.

Finally the loss function is defined as

L = ||x− x′||2 +λ1E(z) +λ2P(Σ̂) , (20)

where the first factor is the well-known L2-norm, P is a function to regularize the singularities
caused by zeroes in the covariance matrices (see Ref. [112] for details) and λ1 and λ2 are
hyper-parameters which we optimize.

We consider two features as the outputs of the compression network: the Euclidean dis-
tance and the cosine similarity as in Ref. [112]. These plus the latent representation zc of the
data x constitute the vector z which is fed into the estimation network. Therefore the vector z
has dimensions d + 2 where d is the latent space dimensionality.

The model architecture is summarized in Tab. 18 to which we add a dropout rate of 0.5 to
the estimation network. Regarding the optimization of the model, we have adopted the Adam
optimizer and have varied the hyper-parameters as shown in Tab. 19. The data encoding
follows the static prescription described in 4.2.

4.12 Adversarial Anomaly Detection20

The adversarial anomaly detection (ALAD) algorithm [113, 114] is a hybrid method which
combines generative adversarial networks [115]with autoencoders [74], designed for anomaly
detection. Generative adversarial networks (GANs) are composed of two neural networks
which compete against each other during training. One network is the generator G : Z → X
and the other one is the discriminator D : X → [0,1]. While the generator network G learns
to generate new samples from a latent space Z, the discriminator one has the role of distin-
guishing real samples from generated ones. The ALAD GAN is based on BiGANs which inherit
implicit regularization, mode coverage, and robustness against mode collapse [116].

20Roberto Ruiz
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Table 20: ALAD model architecture. Here d is the number of dimensions of the latent
space.

Operation Units Activation
E(x)
Number of hidden layers 4
Dense 64 leaky ReLU
Dense 128 leaky ReLU
Dense 256 leaky ReLU
Dense 512 leaky ReLU
Output d linear
G(z)
Number of hidden layers 4
Dense 64 ReLU
Dense 128 ReLU
Dense 256 ReLU
Dense 512 ReLU
Dxz(x , z)
Number of hidden layers 3
Dense 128 leaky ReLU
Dense 128 leaky ReLU
Dense 128 leaky ReLU
Output 1 sigmoid
Dx x(x , x̂)
Number of hidden layers 1
Dense 128 leaky ReLU
Output 1 sigmoid
Dzz(z, ẑ)
Number of hidden layers 1
Dense 128 leaky ReLU
Output 1 sigmoid

The use of GANs as anomaly detectors has been studied in HEP literature (see e.g. [114]).
The particularity of the ALAD method is that it adds an encoder E : X → Z to the GAN [116,
117], besides a discriminator Dxz which takes x and z as inputs and is trained simultaneously
with the generator. It allows to derive an anomaly-score A(x) by comparing real samples with
reconstructed ones by the generator using some metric (A(x) = f (x , G(E(x))). Finally, two
additional discriminators Dx x and Dzz are incorporated to help with the training convergence.
With these additions the ALAD objective function becomes (see Ref. [113] for details)

min
G,E

max
Dxz ,Dx x ,Dzz

V (Dxz , E, G) + V (Dx x , E, G) + V (Dzz , E, G) , (21)

where

V (Dxz , E, G) = Ex∼pX [log Dxz(x , E(x))] +Ex∼pZ [log (1− Dxz(G(z), z)] , (22)

V (Dx x , E, G) = Ex∼pX [log Dx x(x , x)] +Ex∼pX [log(1− Dx x(x , G(E(x)))] (23)
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Table 21: ALAD model hyper-parameters.

Parameter Values

learning rate 10−5

number of epochs 2000

batch size [100, 500,1000, 5000,10000, 20000]
latent space dimensions [10, 20,30, 40]

and
V (Dzz , E, G) = Ex∼pZ [log Dzz(z, z)] +Ex∼pZ [log (1− Dzz(z, E(G(z)))] . (24)

For the anomaly scores we consider the ones used in Ref. [114]

• The L1 distance: AL1
(x) = ||x − G(E(x)||1

• The L2 distance: AL2
(x) = ||x − G(E(x)||2

• A Logits-score: AL(x) = log(Dx x(x , G(E(x))))

• A Features-score: AF (x) = || fx x(x , x)− fx x(x , G(E(x))))||1

As in the DAGMM case we have employed the Adam optimizer. The ALAD model architec-
ture is shown in Tab. 20. We have further added dropout and batch normalization following
Ref. [114]. Finally, a summary of the model hyper-parameters adopted in this work is displayed
in Tab. 21.

The dataset is parsed following the static prescription described in 4.2.

4.13 Combined models for outlier detection in latent space21

First detailed in Ref. [118], this method involves training various anomaly detection methods
within the latent space of a variational autoencoder, and then performing combinations of
these anomaly scores to determine the optimal method. In the previously referenced paper
we show that training an anomaly detection method on latent space representations of events
dramatically improves the performance, and that combining these methods allows more in-
formation to be extracted. Our process is as follows:

1. Define a VAE architecture.

2. Train it on a subset of the background data.

3. Pass the remainder of background data + signal through the VAE and obtain the latent
space representations for each event.

4. Train further anomaly detection algorithms on the latent space representations of the
background events (isolation forest (IF), Gaussian mixture model (GMM), static autoen-
coder (AE), and KMeans)

5. Pass the remaining background and signal events through these algorithms, obtaining
5 measures of anomalousness for each event (VAE reconstruction loss, IF mean path
length, GMM log likelihood, AE reconstruction loss, and KMeans distance to nearest
centroid).

21Adam Leinweber, Roberto Ruiz, Melissa van Beekveld, Luc Hendriks, Martin White
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Table 22: ALAD model hyper-parameters.

Parameter Values

batch size [1000, 10000]
β term [1e−5,1e−4, 1e−3, 0.01,0.1]
latent space dimensions [4, 13,20,30]

6. Normalise each anomaly score to uniform background efficiency.

7. Perform various combinations (logical and/or, average, and product).

8. Construct a ROC curve and compare the area under the curve (AUC), and signal effi-
ciencies at various background efficiencies.

We have defined numerous variational autoencoders with differing β terms, latent space
dimension, and batch size in order to determine the optimal configuration.

The reconstruction loss of the VAE consists of four different components: an MSE on the
number of objects xn, an MSE on the dimensionless 4-vector terms (~xr,i = pT/GeV,η or φ),
and a categorical cross-entropy [119] on the categorical variables xc,i that represent different
objects in an event (jet, b-jet, electron, etc.). The last component is the KL divergence that
ensures that the events in the latent space are grouped to a Gaussian. The total loss function
of our VAE is then defined as

L = 100β (xn − x̂n)
2 (25)

+
β

dr

dr
∑

i

�

xr,i − x̂r,i

�2

−
10β
dc

dc
∑

i

�

xc,ilog( x̂c,i) + (1− xc,i)log
�

1− x̂c,i

��

+ (1− β)
dz
∑

i

KL (N (µ̂i, σ̂i),N (0, 1)) .

Here, x̂n represents the predicted number of objects, x̂r,i represents the i-th predicted
regression label, x̂c,i represents the i-th predicted categorical label, dr represents the number
of regression variables, and dc represents the dimensionality of the categorical data. The
relative importance of each of these contributions to the loss function is indicated by β . The
anomaly score of an event is given by the reconstruction loss term (the first three lines of
Equation 25).

The architecture consists of 3 fully-connected hidden layers for the encoder and decoder,
each containing 512, 256 and 128 nodes for the former, and 128, 256 and 512 nodes for
the latter. The activation function used between the hidden nodes is the exponential linear
unit (ELU) [120]. Tab. 22 contains a summary of the different values of the latent space
dimensionalities, batch sizes and β terms that are explored in this analysis.

The algorithms trained in the latent space of this VAE (step 4) are an isolation forest [121],
a Gaussian mixture model [122], a static autoencoder [123], and a k-means clustering algo-
rithm [124]. These algorithms were chosen to utilize a variety of anomaly detection metrics.
Each algorithm learns information about the background in a different manner, and as such
there is information to be gained by combining the results.
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In order to combine our anomaly detection techniques, they must be normalised to uni-
form background efficiency. For each anomaly score distribution a function f (x) is constructed
which returns the background efficiency at a given anomaly score value x . Let gbkg(x) rep-
resent the number of background events with anomaly score greater than x , and Nbkg be the
total number of background events. This function f (x) is then given by:

f (x) =
gbkg(x)

Nbkg
. (26)

The signal and background datasets are then normalised by computing f (x) for each signal
and background anomaly score. Finally, we construct various combinations. For a given event,
let the anomaly score normalised to uniform background efficiency be x i where i denotes the
anomaly score algorithm. The combinations used in this analysis are defined as such:

• AND: xAND =min(x i) ,

• OR: xOR =max(x i) ,

• Product: xproduct =
∏

i x i ,

• Average: xaverage = 1
N

∑

i x i ,

where N is the number of algorithms being used.

5 Results22

The results of the various anomaly detection methods applied to the physics signals are pre-
sented here for each of the figures of merit, i.e. the AUC and the signal efficiencies at a back-
ground efficiency of 10−2, 10−3, and 10−4 (see Sec. 2.2.1). First we examine the new physics
signals used as benchmarks and then combine the signals to determine which methods are
most likely to discover new physics. We mainly show two types of visualization that we will
discuss below.

5.1 One anomaly algorithm and many signals shown as Box-and-whisker plots

As this study covers many methods tried on many signals, the results will be presented as box-
and-whisker plots, as exemplified in Fig. 10. In this plot, the AUC for each signal coming from
the Combined-PROD-VAE_beta1_z21-Flow (Sec. 4.10) method is denoted by the data points.
To summarize these, a box is drawn spanning the inner half of the data. A line through the
box marks the median. Whiskers extend from the box to either the maximum and minimum
unless these are further away from the edge of the box than 1.5 box lengths. The outlier points
are not removed, but are shown as circles. Thus, in this example we see that the Combined-
PROD-VAE_beta1_z21-Flow method has a very high AUC for most signals, but has a few that
perform close to a random guess.

Here, we do not show all figures displaying the performance of each of the anomaly detec-
tion algorithms for all signals since the number of different algorithms we tested (including dif-
ferent hyper-parameters) is 1048. The reader can find detailed information on GitHub [125].
We continue this chapter with a discussion of a different type of visualization and then discuss
selection criteria for choosing the best performing anomaly detection algorithms.

22The data for the hackathon results are publicly available at https://github.com/bostdiek/
DarkMachines-UnsupervisedChallenge [125]. The website contains easy-to-follow instructions for adding
the results for a new model to the figures of this section for subsequent development of improved models.
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Figure 10: Example of a box-and-whisker plot. The AUC for the Combined-PROD-
VAE_beta1_z21-Flow method is marked by the data points for each of the 34 channel-
signal combinations. This method uses a combination of flow based likelihoods and
a variational autoencoder with a loss function only focused on the KL divergence of
the latent space (see Sec. 4.10 for more details). A box is drawn spanning the inner
half of the data (Qn denotes the nth quartile), with a line through the box at the
median. The whiskers extend to the extremal points unless they are further away
from the box than 1.5 times the length of the box. These data points are denoted by
circles.

5.2 All anomaly algorithms and one signal shown as Box-and-whisker plots

One question that we aim to answer in this work is if a good anomaly detection method can
discover many models (and ideally any model) of new physics. To help assess this, we show the
scores for the individual figures of merit for each signal in Fig. 11. The box-and-whiskers now
summarize the over 1000 anomaly detection models. Each row denotes a given new physics
signal with the color of the data representing which channel the search is being performed in.

The most important take-away is that some signals are much more difficult for the anomaly
detectors than others. For instance, in the chargino-neutralino models with small mass split-
tings, most of the anomaly detectors have an AUC of around 0.5, equivalent to a random guess.
The small mass splittings typically lead to less energetic objects/events, thus, the anomalous
events are not in the tails of the distributions and harder to detect. In contrast, the gluino-
neutralino signal as well as the RPV stop signal have high AUCs for most detection techniques.

Further study reveals that Channel 2a has consistently worse scores than the other chan-
nels. This channel has the tightest pre-selection cuts, yielding the smallest training set. As
most of the anomaly detection techniques rely on learning the background well, thus having
less data affects the performance. While it would be possible to artificially enhance the train-
ing set, this is beyond the scope of this work. The physics signals that only show up in Channel
2a are therefore much more difficult to probe.

The top methods for each signal are available on GitHub.

5.2.1 Which algorithm is best? Combining the figures of merit for all physics signals

The results in Fig. 11 indicate that some signals are difficult to discover with anomaly detection
techniques. However, we also want to know what techniques work the best for most of the
physics signals. With this in mind, we compare the figures of merit (see Sec. 2.2.1) for each
anomaly detection technique applied across all of the physics signals. We then look at six
different ways of defining ‘best’.
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Figure 11: Box plots for each of the physics signals in the hackathon dataset. These
summarize the span of results for the many anomaly detection models trained on
background only samples. Channel 2a has the tightest pre-selection cuts, and there-
fore less data, which leads to the signals looking less anomalous.

A) Top scorer method: The first method is straightforward: take the models which have the
highest score the most number of times. These are summarized in Fig. 12. Each row denotes
a given anomaly detection method (including the relevant hyper parameters). The different
panels show the four figures of merit. The box plots are colored in according to which models
had the top score the most number of times. For instance, the Flow-Efficient Likelihood has
the best AUC most often. The VAE_HouseholderSNF (Sec. 4.5) yields the highest AUC the 3rd
most number of times, and so on. The box plots that are grey are not in the top five techniques
for that figure of merit, but are for another figure of merit in the figure.

It is not obvious if having the top score the most times is actually the correct definition of
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Figure 12: Box plots summarizing the anomaly detection techniques applied to all of
the new physics signals. The colors denote the technique that have the top score the
most times.

‘best’. For instance, it is possible that some technique was consistently the second best, with
the ‘best’ models being the best just one time for that particular signal, and performing very
badly for the other signals.

B) Top 5 method: To assess this, our second method consists of counting the number of
times that each technique is within the top 5 scores for each figure of merit. The result is
displayed in Fig. 13. While most of these techniques also appeared in the top 1 summary,
more of the combination methods show up. Thus they were never the best, but consistently
had high scores. Meanwhile the DeepSVDD techniques dropped from the list, indicating that
they were best on a single physics model, but not as good overall.
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Figure 13: Box plots summarizing the anomaly detection techniques applied to all of
the new physics signals. The colors denote the technique that appear in the top five
scores the most times.
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Figure 14: Box plots summarizing the anomaly detection techniques applied to all
of the new physics signals. The colors denote the techniques that have the highest
average rankings.

C) Average ranking method: Counting the number of times that a technique has the top one
or one of the top 5 scores is useful in determining the best technique. However, one aspect that
is not captured in this is whether a technique does very poorly on a few signals, but very well
on others. To get a sense of this, our third method consists of sorting the anomaly detectors
based on their average ranking. With this ranking, the model will not have a good ranking if
it is the best on one signal and the worst on another. We show the results using this ranking
in Fig. 14. We note that the methods combining a fixed target (either DeepSVDD or the VAEs
with β = 1) and a Flows are again among the best techniques. In addition, we see that some
standard VAEs with small β values (i.e. the loss is weighted towards the reconstruction loss) do
well for very low background efficiencies, but have not appeared in the previous metrics. We
observe that the ALAD models perform well at low background efficiency (large background
rejection).

D) Highest mean score method: Each of the previous three metrics for determining the
best technique have been based on the rank ordering of the figures of merit. The methods
using a fixed target combined with the flow likelihood have consistently been among the top
models. It is also interesting to look at the numerical value of the figure of merit, rather than
just the ordering of the results. In Fig. 15 the models we show our fourth method of ordering
the algorithms, and use the highest mean scores for each figure of merit.

E) Highest median score method: Our fifth method uses the median score, which gives a
better sense of the score across the physics signal space. These results are shown in Fig. 16.
The median score gives a sense of what methods work best for most new physics signals.

F) Highest minimum score method: Another point of interest is to examine the minimum
score for each method, which is our sixth and final way to determine which method is the ‘best’
one. With this, we can find the techniques which have the highest minima. These models are
shown in Fig. 17, and there are many interesting aspects. First, the list of the top techniques
does not contain any of the combined methods which have otherwise been top methods. The
next aspect of note is that the methods which have the highest minimum εS for εB = 0.01 do
not score very well on the AUC. The AUC is dominated by large εB, demonstrating that just
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Figure 15: Box plots summarizing the anomaly detection techniques applied to all
of the new physics signals. The colors denote the techniques that have the highest
mean scores for each of the figures of merit.
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Figure 16: Box plots summarizing the anomaly detection techniques applied to all
of the new physics signals. The colors denote the techniques that have the highest
median scores for each of the figures of merit.
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Figure 17: Box plots summarizing the anomaly detection techniques applied to all
of the new physics signals. The colors denote the techniques that have the highest
minimum scores for each of the figures of merit. No technique has εS above 0 for
all physics signals for εB = 10−4 and only one ALAD model has εS above 0 for all
physics signals at εB = 10−3.
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having a large AUC does not necessarily lead to having a useful classifier for digging deep into
the background. The final, and most striking, aspect of the largest minimum scores shown
in Fig. 17 is that the εS(εB = 10−4) columns are all gray. This indicates that no method was
able to yield a non-zero signal efficiency for all physics signals at these tight background cuts.
Similarly, the ALAD model (see sec. 4.12) is the only one which give a non-zero efficiency for
all physics signals tested at a background efficiency at 10−3. However, these statement sounds
more pessimistic than they actually are. Currently, the summaries are being shown for each
physics signal in each channel. If a technique works for a given physics model in Channel 2b,
but not in 2a (which has the least data), the current analysis uses the minimum from 2a. This
motivates a more holistic approach discussed in the next section, looking at the physics models
as a whole and looking for the best chance to discover them across channels.

To summarize this section, we have examined six different methods to determine the best
anomaly detection techniques. These ranged from sorting the rankings as well as the ac-
tual scores across the figures of merit. Often, the methods which were best according to the
AUC were sub-optimal when considering the signal efficiency at fixed background efficiency.
Further, some methods are better at very tight cuts, but do not work well at the moderate
background efficiencies. The techniques which were often in the list of best models include
the Flow-Efficient Likelihood and Combined methods using the Flow Likelihood with either a
VAE model with β = 1 or ensemble of Deep SVDD models (see sec. 4.10).

5.2.2 Significance improvement

The chances to discover new physics depend both on the complexity of the signal as well as
the cross section for production at the LHC. For this work, we wish to remain agnostic about
the cross section. However, we would like to provide a way to combine the different working
points into a collective view of how the anomaly detectors are helping.

To keep things simple, we will assume that there are enough events such that the back-
ground counts are well modeled by Gaussian statistics. This means that the standard deviation
is equal to the square root of the counts. Thus, in a given channel, the significance of the new
physics signals can be estimated in terms of the significance before any selection is applied

σS =
S
p

B
, (27)

where S and B are the number of signal and background events, respectively. When the
anomaly detector is applied to the channel, the number of signal and background events
changes by εS and εB, leading to the significance after applying the anomaly detection (AD)
selection:

σAD =
S′
p

B′
=

εS S
p

εB B
=
εSp
εB
×σS . (28)

From this, we define the significance improvement (SI) as

SI = εS/
p
εB . (29)

This metric does not tell us if the anomaly detection technique is capable of discovering new
physics, as this still depends on the cross sections, but it informs us on how much the anomaly
detector can enhance the statistical purity of the signal over the SM noise

For some methods, this will be for a looser selection (εB = 10−2), while for others it will
be for the tightest background selection (εB = 10−4). Using the SI, we can turn the figures
of merit for each technique into a single number, the maximum SI across the working points.
The maximum SI is defined as the maximum significance improvement over over the three
working points (εB = 10−2, 10−3, and 10−4).
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Figure 18: Box plots for each of the physics signals in the hackathon dataset. These
summarize the span of results for the many anomaly detection models trained on
background only samples. The SI is defined as εS/

p
εB. The maximum significance

improvement over the three working points (εB = 10−2, 10−3, and 10−4) are used as
the metric for each technique.

In Fig. 18, we display box plots for the maximum SI for each of the physics models, broken
down by channel. From these, it is apparent that the chargino-neutralino signals are very
challenging to find using anomaly detection techniques–the best techniques only allow for
unit significance improvement. However, we see that as long as a physics signal shows up in
any other channel, there is at least one technique that yields has a maximum SI greater than
1.

As a final step, we analyze the maximum SI over the various physics signals for each of the
anomaly detection techniques and combine the signals in multiple channels. This means that if
a method has a significance improvement of 1.0 for a signal in channel 2a but an improvement
of 3.2 in channel 2b, we will only report the number 3.2. With this metric, which we call total
improvement (TI), we then examine the minimum, median, and maximum scores across each
of the physics models.
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Figure 19: The minimum, median, and maximum best total improvements for each
technique across the physics models. The TI is defined as the maximum signal im-
provement for a physics model across all signal regions.

Fig. 19 shows a scatter plot of the results. The individual data points represent anomaly
detection techniques. The colors and shape of the markers denote the family of the technique.
The left panel displays the minimum and median TI where two clusters stand out as different
from the others. The first is the Deep SVDD methods (see sec. 4.9) which have some of the
highest minimum significance improvements. However, they have only an average median
improvement. Despite having a relatively high minimum, this is still less than unity, implying
that using the technique will make it harder to discover some physics models. The other meth-
ods to note are the Flows (a spline autoregressive flow, sec. 4.8), and the Combined techniques
(spline autoregressive flow with Deep SVDD or VAE with β = 1, sec 4.10). These methods
offer the largest median significance improvements across the physics models. All of the other
techniques are clustered towards smaller median and minimum significance improvements.

The second and third panels show the maximum TI along the y axis. Looking back to
Fig. 18, we see that the maximum significance improvement is dominated by the score on
the easy to find gluino-neutralino or RPV-violating stop models. The methods doing anomaly
detection inside the latent space (sec. 4.13), as well as the ALAD models (sec. 4.12), have large
maximum significance improvements, even though their medians are rather small.

We plot the methods in three dimensions in Fig. 20 to obtain a clearer picture of the results.
This shows clearly that the Deep SVDD, Flows, Deep Sets (sec. 4.3), and Combined methods
stand out from the rest of the methods. We expect that the methods with the highest median
improvement will perform best on the blinded dataset. For this reason, we select all of the
models which have a median TI greater than 2 to be passed on the the blinded dataset. The
selection of models passing this cut are shown in Tab. 23.

The method with the largest median significance improvement is the Flow-Efficient Likeli-
hood, one of the spline autoregressive flows of sec. 4.8. The next highest medians also have
larger maxima, and are both combined methods using the flow likelihood with an ensemble of
Deep SVDD (sec. 4.10). It is interesting that many of the best methods use a constant target
value in the loss function. This means they do not do any reconstruction and only concern
compressing the input to a constant. With no attempt at decoding, it may be more challenging
to validate for use at the LHC. Further study of this topic is required.
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Figure 20: The minimum, median, and maximum best total improvements for each
technique across the physics models.

5.3 Results: The secret and blinded darkmachines dataset

We now discuss the results of the various anomaly detection methods applied to the blind
darkmachines dataset. For this, we only use the subset of the models that performed best in
the previous section. Since we do not know what kind of signal to find in this data challenge,
we use a metric that infers the ability to find “discoverable” signal models. Some signal models
are not found well by any algorithm. We will use the median TI metric to account for this,
as selecting on the minimum or maximum TI might bias our results. Therefore, the anomaly
classifiers with a median TI greater than 2 are selected to participate in an unlabeled data
hackathon set (the blind darkmachines dataset). To allow for comparison with the other tech-
niques, we have also included some of the other algorithms. A full list is shown in Tab. 23
with their minimum, median and maximum TI on the hackathon dataset.

Firstly, we show the box plots for the average ranked, medium score, and minimum score of
the figures of merit described in Sec. 2.2.1 in Fig. 21. We combine all channels for these results.
We see that the Combined algorithms (Sec. 4.10) and also the SimpleAE (Sec. 4.1) consistently
performs well. In Sec. 5.2.1 we found that the Combined algorithms performed well when
using the average rank metric, but also the Flow-Efficient_Likelihood algorithm performed well
there. On the Secret dataset, we find that this algorithms does not make it to the top 5 for
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Table 23: Selection of models from the Hackathon dataset that are chosen to be
applied to the Secret dataset. The TI scores represent those from the Hackathon
challenge. The first block of models have a median TI greater than 2, and are ex-
pected to generalize well to unknown new physics. The second block of models were
chosen for comparison.

Name Min TI Median TI Max TI Section

Flow-Efficient_Likelihood 0.90 15.00 54.00 4.8

Combined-AND-DeepSVDD-Flow 0.32 10.00 79.00 4.10

Combined-AVG-DeepSVDD-Flow 0.80 10.00 97.00 4.10

Flow-Efficient-No-E_Likelihood 0.32 8.00 53.00 4.8

Combined-PROD-DeepSVDD-Flow 0.00 7.91 24.00 4.10

Combined-AND-VAE_beta1_z21-Flow 0.10 7.00 66.00 4.10

Combined-OR-DeepSVDD-Flow 0.50 6.30 31.00 4.10

Combined-OR-VAE_beta1_z21-Flow 0.30 6.30 22.00 4.10

Combined-AVG-VAE_beta1_z21-Flow 0.10 6.00 69.00 4.10

Combined-PROD-VAE_beta1_z21-Flow 0.10 6.00 69.00 4.10

DeepSetVAE_beta_1.0_weight_10.0 0.08 3.75 18.81 4.3

DeepSetVAE_beta_1.0_weight_1.0 0.03 3.50 16.91 4.3

ALAD_ld10_lr1e-5_bs500_epoch2000_enc512_F_sc 0.19 2.85 14.63 4.12

DAGMM_10_1e-07_1000_0.01_0.01_50_15_8 0.00 2.31 6.51 4.11

DAGMM_10_1e-07_1000_0.001_0.01_50_15_8 0.00 2.31 6.51 4.11

ConvVAE_PlanarFlow (Planar) 0.12 2.28 3.45 4.5.1

VAE-dynamic-beta1-z13_Radius 0.00 2.20 28.00 4.2

ALAD_ld10_lr1e-5_bs5000_epoch2000_enc512_F_sc 0.28 2.20 17.40 4.12

KDE_PCA_D=9 0.00 1.43 12.25 4.7

ALAD_ld10_lr1e-5_bs5000_epoch2000_enc512_L_1 0.00 1.40 24.27 4.12

ALAD_ld10_lr1e-5_bs5000_epoch2000_enc512_L_2 0.00 1.21 20.73 4.12

ALAD_ld10_lr1e-5_bs5000_epoch2000_enc512_L_sc 0.00 1.06 36.94 4.12

ALAD_ld10_lr1e-5_bs500_epoch2000_enc512_L_1 0.03 1.06 28.27 4.12

ALAD_ld10_lr1e-5_bs500_epoch2000_enc512_L_sc 0.22 1.04 38.17 4.12

SimpleAE 0.20 0.98 39.60 4.1

ALAD_ld10_lr1e-5_bs500_epoch2000_enc512_L_2 0.17 0.91 21.49 4.12

ConvVAE_ConvolutionalFlow (ConvF) 0.06 0.12 0.21 4.5.4

neither of the figures of merits in the average rank. A similar conclusion holds for the median
score metric. On the other hand, the DeepSetVAE and the SimpleAE perform better on the
Secret dataset than on the Hackathon datasets using these two metrics. For the miminum
score metric, we see that the ALAD, SimpleAE and the Flow-Efficient methods work well, which
was also observed in the Hackathon dataset. The Combined methods perform less well using
this metric. For all algorithms we find that there are some signals where they perform worse
than a random guess, which we also show in these plots for comparison.

We now move on to the TI merit to asses which model performs best on the Secret dataset.
The minimum, median and maximum TI scores are shown on a 3D projection in Fig. 22. The
highest minimum TI is found for the SimpleAE algorithm. The Flow-Efficient and one of the
Combined methods also show a relatively high minimum TI. This Combined algorithm also
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Figure 21: Box plots summarizing the anomaly detection techniques applied to the
secret dataset. The colors denote the techniques that have the highest average rank
(top), median score (middle) and minimum score (bottom) for each of the figures of
merit described in Sec. 2.2.1.
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Figure 22: The minimum, median, and maximum best total improvements for each
technique applied on each of the signals in the secret dataset.

shows a significantly higher median TI score than the other algorithms. The other versions
of the Combined algorithm show persistently high scores for the maximum TI, but perform
less well for the median and minimum TI metrics. This indicates that these algorithms are
generally good at detecting one specific signal, but not at detecting new physics in general.
The same can be said for the ALAD methods, and the DeepSetVAE. The KDE (Sec. 4.7) and the
DAGMM methods (Sec. 4.11) seem to perform badly on all three figures of merit.

It is interesting to observe that the relative performance of the algorithms on the Hackathon
dataset does not directly reflect their relative performance on the Secret dataset. To get a
better sense of this, we show the 2D projections of the TI scores for the selected models for the
Hackathon dataset (upper panel) and the Secret dataset (middle panel) in Fig. 23. The general
trend is that the minimum TI is lower (worse) for the Secret dataset than for the Hackathon
dataset. This implies that one of the unknown signals is much harder to find with anomaly
detection technique. Another similar trend is that most models have higher maximum TI on
the Secret dataset than on the Hackathon dataset, implying that one of the secret signals is
much easier to find than those seen in the Hackathon. This emphasizes the potential downside
of the minimum or maximum TI, they are determined by the performance of a single signal.

Ideally, the median TI should reflect the potential for a model to discover a new physics
signal. However, this metric does also depend on the ensemble of new physics signals. In par-
ticular, we see that many of the methods have lower median TI scores on the Secret dataset
than on the Hackathon dataset. Beyond the general trend, there are a few noteworthy ex-
amples. On the Hackathon dataset, the Flow-Efficient_Likelihood algorithm had the highest
median TI, whereas the highest median TI of the Secret dataset is found for the Combined-OR-
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Figure 23: The minimum, median, and maximum best total improvements for each
technique applied on each of the signals in the Hackathon (top) and Secret (middle)
dataset.

DeepSVDD_MSE-Flow method. The Flow-Efficient_Likelihood even performs quite poorly on the
median TI metric in the Secret dataset.

In Fig. 24, we show the median TI scores for for the selection of models for both the
Hackathon dataset (along the x-axis) and the Secret dataset (along the y-axis). In this plot,
it is easy to see that many of the best models on the Hackathon dataset (further to the right
of the figure) are no longer the top models for the Secret dataset (further to the top of the
figure). However, it is important to note that most of the models that were selected as having
high median TI scores on the Hackathon dataset do better than most of the other reference
models on the Secret dataset. For instance, the top 5 models on the Secret dataset all had a
median TI > 2 on the Hackathon dataset. Additionally 13 of the top 14 models on the Secret
dataset had a median TI > 2 on the Hackathon dataset. The SimpleAE model had a low TI
on the Hackathon dataset but performs relatively well on the Secret dataset. The models with
T I > 2 on both datasets are shown in Tab. 24.

While the Flow-Efficient models still have decent median TI scores on the Secret dataset, it
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Figure 24: The median TI scores for the Hackathon and Secret datasets along the x-
and y-axis, respectively. The point marked with color were chosen as having median
TI > 2 on the Hackathon data, and the grey points are included as reference models.

was surprising to see their scores fall so much. It is unclear what the exact cause is. Possibilities
include that there is something underlying the modeling which makes certain signals more
susceptible to the anomaly score. Over-optimization seems unlikely as there was no large
hyperparameter scan performed. However, there does seem to be some evidence of this when
examining the results of the other models. For example, the ALAD_F and DAGMM models are
also well below the diagonal of Fig. 24, while Tab. 5 shows that these chosen models with high
median TI on the Hackathon dataset were part of a hyper-parameter scan of 96 models (ALAD)
and 384 models (DAGMM). It is important to keep in mind that optimizing for a validation set
may still not generalize to an unknown test set.

Table 24: The models which have a median TI score greater than 2.0 on both the
Hackathon and Secret datasets. The values show the median TI scores on the respec-
tive datasets.

Model Hackathon Data Secret Data

Combined-OR-DeepSVDD-Flow 6.30 19.02

DeepSetVAE_weight_1.0 3.50 4.27

Combined-AVG-VAE_beta1_z21-Flow 6.00 3.21

Combined-PROD-VAE_beta1_z21-Flow 6.00 3.20

Combined-AND-VAE_beta1_z21-Flow 7.00 2.98

Combined-AVG-DeepSVDD-Flow 10.00 2.31

Combined-AND-DeepSVDD-Flow 10.00 2.26

DeepSetVAE_weight_10.0 3.75 2.03

6 Conclusions

In this paper, we have described benchmark datasets for future studies of new physics detec-
tion at the LHC. We described the details of the data generation and the data format, which
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allow the user to easily handle the data in any programming language. This data is divided
in two different sets in this paper: the Unsupervised Hackathon dataset, used for training and
testing of the machine-learning algorithms, and a still-blinded Secret dataset, used to assess
the relative performance of the algorithms. This Secret dataset will remain blinded in order
to facilitate an unbiased benchmark of future algorithms. Combined, the datasets consist of
more than 1 billion simulated LHC SM events, distributed over 4 different analysis channels.
It contains more than 40 potential LHC signal samples. The datasets and their Zenodo we-
blinks are summarized in Tab. 4 on page 14, and we encourage the community to familiarize
themselves with this dataset.

These datasets are used to perform a comparison of 16 different machine-learning meth-
ods. More than 1000 variations and combinations of these methods (see Tab. 5) are tested on
their ability to determine an anomaly score of LHC events. We propose in Sec. 1 on page 5
how such an anomaly score could be implemented in almost all LHC searches to define model-
independent signal regions. The precise definition of the anomaly score depends on the em-
ployed algorithm, but as a figure of merit we have used the AUC and the signal efficiencies at
a background efficiency of 10−2, 10−3 and 10−4. In addition, as four different channels and
O(40) different signals are involved in both the Secret and Hackathon datasets, we have de-
rived combined figures to derive the mean, maximum and minimum performance scores of the
algorithms (see Sec. 5). The results of all of the models presented are available at [125,126],
allowing for an easy comparison with future methods.

We encourage the community to develop new anomaly detection methods using these
datasets. However, caution should be used in order to ensure that one is not over optimizing
to the validation Hackathon dataset signals. For instance, the methods which employed large
hyper-parameter scans were able to find a few models which performed well on the Hackathon
dataset. However, these models did not generalize as well to the Secret dataset.

Of the over 1000 submitted models, eight had median TI scores greater than 2.0 for both
the Hackathon and the Secret datasets separately. These are shown in Tab. 24 and consist
of Combined models (Sec. 4.10) and DeepSet models (Sec. 4.3). The Combined models use a
flow based likelihood in combination with either a Deep SVDD model or a βVAE model with
β = 1. In a Deep SVDD model, the inputs are mapped to a vector of constant numbers. In
a βVAE, using β = 1 places all of the weight of the loss function on the KL divergence term,
so the network maps the inputs to a Gaussian latent space, but does not try to reconstruct the
inputs. The particular DeepSet models with high scores also used β = 1 in the loss function.
It is interesting that all of top models use some sort of fixed target, either only focusing on
the KL divergence of the latent space, or having a component that is mapping the inputs to a
fixed number. The reason that these methods seem to generalize better is unknown and left
for further study.
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