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First genome‑wide association 
study investigating blood pressure 
and renal traits in domestic cats
R. E. Jepson1,5*, H. Warren3,5, M. D. Wallace1,4, H. M. Syme1, J. Elliott2 & P. B. Munroe3

Hypertension (HTN) and chronic kidney disease (CKD) are common in ageing cats. In humans, blood 
pressure (BP) and renal function are complex heritable traits. We performed the first feline genome-
wide association study (GWAS) of quantitative traits systolic BP and creatinine and binary outcomes 
HTN and CKD, testing 1022 domestic cats with a discovery, replication and meta-analysis design. No 
variants reached experimental significance level in the discovery stage for any phenotype. Follow up of 
the top 9 variants for creatinine and 5 for systolic BP, one SNP reached experimental-wide significance 
for association with creatinine in the combined meta-analysis (chrD1.10258177; P = 1.34 × 10–6). 
Exploratory genetic risk score (GRS) analyses were performed. Within the discovery sample, GRS of 
top SNPs from the BP and creatinine GWAS show strong association with HTN and CKD but did not 
validate in independent replication samples. A GRS including SNPs corresponding to human CKD 
genes was not significant in an independent subset of cats. Gene-set enrichment and pathway-based 
analysis (GSEA) was performed for both quantitative phenotypes, with 30 enriched pathways with 
creatinine. Our results support the utility of GWASs and GSEA for genetic discovery of complex traits 
in cats, with the caveat of our findings requiring validation.

Chronic kidney disease (CKD) and systemic hypertension (HTN) are common in the ageing feline population. 
CKD is reported to affect up to 80% of cats > 15 years when early non-azotemic disease is included and approxi-
mately 30% of cats with CKD will be simultaneously diagnosed with HTN1,2. However, idiopathic HTN is also 
recognised in approximately 20% of cats > 9 years3. Both CKD and systemic HTN are considered as complex 
disorders affected by genetic, environmental and lifestyle factors although information in feline medicine is 
currently limited.

The most common renal pathology identified in cats as they age is tubulointerstitial nephritis with factors such 
as proteinuria, hypoxia (low packed cell volume), mineral and bone disorder or lifestyle factors (e.g. vaccination 
and dental disease) implicated in either disease development or progression4–9. As in humans, blood pressure 
(BP) increases with age in the cat, even without predisposing disease conditions10,11. However, inter-species dif-
ference exists, with the cat showing a marked response to drugs such as the calcium channel blocker amlodipine 
besylate when compared to humans12,13. Comparative analysis may therefore be of interest.

In humans, genome wide association studies (GWAS) have been used to explore in a hypothesis free man-
ner, genetic associations with renal function, CKD, BP and HTN. Translational information from causative or 
mechanistic genes may enhance either the diagnostic or therapeutic options for patients14–18. The first GWAS of 
HTN was a case–control study in 2007; it failed to identify any genetic associations, subsequently analyses have 
focused on BP as a quantitative trait and GWASs have achieved much greater statistical power and discovery 
yield19,20. Large scale genetic association analyses have identified over 1,000 associated signals demonstrating 
that BP is highly polygenic19,21–29. Studies in humans have also explored phenotypic outcomes such as CKD (e.g. 
creatinine-based estimates of Glomerular Filtration Rate creatinine eGFRcreat < 60 ml/min/1.73m2), marked 
reduction in eGFR (e.g. < 45 ml/min/1.73m2), end stage renal disease or either incident or progressive decline in 
renal function30–34. Quantitative studies evaluating renal function have identified over 300 loci associated with 
eGFR explaining approximately 7% of eGFR variance but relatively few loci have translated directly to causal 
genes and molecular mechanisms by genetic association35–39.
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There is limited knowledge on genetic risk factors for renal function, CKD, BP or HTN in the cat. Studies 
have identified a mutation in PKD1, encoding for polycystin 1, a cation channel protein which results in feline 
polycystic kidney disease40. Variants in UMOD, encoding for uromodulin a highly conserved glycoprotein, have 
been explored given its potential as a candidate gene for both renal function and BP and previous associations 
in human medicine33,36,38,41–43. To date, monogenic forms of HTN have not been recognised in the cat although, 
it is possible they exist. Heritability of biological parameters is poorly described in the feline literature; herit-
ability of creatinine using a colony of related cats has been estimated at 25% but SBP has not been explored44.

Since the introduction of a feline genotyping array (Feline Illumina Infinium Array) which characterises ~ 63 
000 variants across the feline genome, GWAS have become possible45,46. Published feline GWAS have focused on 
rare pedigree related conditions where clear phenotypic cases and controls are available47–51. Such studies have 
successfully identified monogenic mutations resulting in profound phenotypic change. Despite potential limita-
tions, feline genotyping arrays provide the opportunity to consider both monogenic and complex disease traits.

The aims of this study were to perform a GWAS for renal and BP traits, to perform exploratory genetic risk 
score (GRS) analyses, an approach that has previously been adopted in human medicine to perform more sta-
tistically powerful analyses of all genetic loci identified from GWAS combined into an aggregated score in order 
to test with disease outcomes and to undertake a gene-set enrichment and pathway-based analysis (GSEA)19,35.

A primary GWAS analysis was conducted for the quantitative traits SBP and creatinine within a discovery 
cohort of 842 cats. Any SNPs of interest (P < 2 × 10–6) from the quantitative trait discovery analyses were followed 
up in a replication cohort of 180 cats. Subsequently a meta-analysis GWAS, combining data from the discovery 
and replication stages together into the total maximum sample size, was performed (Fig. 1a). A secondary GWAS 
analysis using binary outcomes (CKD and HTN) was also performed (Fig. 1b). Whilst compromising on sta-
tistical power, these case–control GWAS analyses provide the opportunity for assessment of clinical outcomes, 
particularly given the novelty of this study. We also performed two exploratory GRS analyses (Fig. 1c). Firstly, 
we assessed whether GRSs comprising multiple genetic variants identified from the GWAS of SBP and creatinine 
are associated with the HTN and CKD status respectively in cats. The second analysis explored whether a GRS 
comprising variants in genes associated with kidney disease in humans was associated with renal traits in cats. 
Finally, a GSEA was performed using GWAS data for both quantitative traits of SBP and renal function.

Results
Clinical case description.  The discovery GWAS cohort comprised 842 domestic shorthair and long-
hair cats with a median age of 13.3 years (11.0, 15.6) and the replication stage included 180 cats (median age 
13.6 years (10.1, 15.8). These groups were combined for GWAS meta-analysis. Comparisons of clinical data for 
cats included in the evaluation of the quantitative traits creatinine and systolic BP are provided in Tables 1 and 
2 respectively. There were statistically significant differences in some clinicopathological variables between cats 
from the discovery versus replication stages including lower creatinine, potassium, packed cell volume, SBP, 
urine specific gravity and total T4 concentrations, although small enough to not be deemed clinically significant. 
Cats included in the discovery stage GWAS for quantitative traits were reviewed for inclusion in the secondary 
binary outcome GWAS for CKD (N = 827; CKD N = 324, Non-CKD N = 503) and HTN (N = 808; HTN N = 172, 
normotension (NT) N = 636).

Primary analysis: discovery stage GWAS for quantitative traits.  In the GWAS discovery analysis 
for Log Creatinine (LogCreat), analysing 839 cats, no SNPs reached experimental wide significance (P < 2 × 10–6), 
with the minimum P-value being P = 3.85 × 10–6 (Table 3, Fig. 2a). Similarly, in the GWAS discovery analysis 
for SBP, analysing 817 cats, no SNPs reached experimental wide significance, with the minimum P-value being 
P = 7.48 × 10–5 (Table 4, Fig. 2b).

Primary analysis: replication study and meta‑analysis for quantitative traits.  Nine SNPs with 
P < 1 × 10–4 were taken forward from the discovery to the replication stage for LogCreat in 180 cats (Table 3) and 
5 SNPs with P < 10–4 for SBP in 178 cats (Table 4). HWE was not demonstrated for one SNP in the replication 
phase for SBP (chrB1.225124311). No SNPs reached Bonferroni-adjusted significance level (P < 0.05/9 = 0.0056 
for LogCreat; P < 0.05/4 = 0.0125 for SBP) in the replication analyses, hence no SNPs formally replicated (Tables 3 
and 4).

The discovery and replication data were meta-analysed together (9 SNPs for LogCreat and 4 SNPs for 
SBP) and there was no evidence of any heterogeneity in the effect estimates between discovery and replica-
tion (Meta_Het_P > 0.01; Tables 3 and 4). One SNP (chrD1.10258177) reached experimental wide significance 

Figure 1.   (a) Illustration of study design for primary quantitative GWAS. Illustration of discovery and 
replication design of primary quantitative GWAS for Log creatinine (LogCreat) and systolic blood pressure 
(SBP). N; number, SD; standard deviation, PC1; principle component 1, PC2; principle component 2, QC; 
quality control. (b) Illustration of study design for secondary binary GWAS. Illustration of discovery GWAS 
for the binary outcomes chronic kidney disease (CKD) versus non-CKD and hypertension (HTN) versus 
normotension (NT), N; number. (c): Illustration of study design for GRS analyses. The first GRS evaluates 
the top SNPs from the discovery GWAS for each of LogCreat and SBP, in an attempt to validate the genetic 
contribution of these SNPs to both SBP and HTN and to LogCreat & CKD within the independent replication 
sample of cats. The second GRS is based on known human genes and attempts to investigate whether genes 
known to be associated with human CKD are also associated with renal function in cats. N; number, LogCreat; 
Log creatinine, CKD; chronic kidney disease, SBP; systolic blood pressure, HTN; hypertension.
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(b)

(c)

Figure 1.   (continued)
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(P = 1.34 × 10–6) in the combined meta-analysis for LogCreat (N = 1,019; Table 3) with concordant direction of 
effect between discovery and replication stages. For this SNP chrD1.10258177, cats carrying the G allele resulted 
in a 0.14 increase in LogCreat (standard error (SE); 0.03) per unit allele increase (Table 3). Searching 1 Mbp up 
and downstream from this SNP we identified 8 predicted genes and 3 predicted open reading frames:, ZC3H12C, 
RDX, FDX1, ARHGAP20, COLCA2, POU2AF1, BTG4, LAYN and C11orf87, C11orf53, C11orf88.

No SNPs reached experimental wide significance (P < 2 × 10–6) for SBP despite the larger sample size when 
combining discovery and replication cohorts (N = 995; Table 4) and between the discovery and replication stages 
only one SNP had a concordant direction of effect.

Secondary analysis: Discovery stage GWAS of binary traits.  No SNPs reached experimental wide 
significance in the GWAS analyses for CKD (N = 324) versus non-CKD (N = 503; Supplementary Table S1, Sup-
plementary Fig S4) or HTN (N = 172) versus NT (N = 636; Supplementary Table S2, Supplementary Fig S5), with 

Table 1.   Baseline signalment and clinicopathological data for cats included in the quantitative association 
with Log creatinine in the discovery and replication stages. P; statistical significance comparing baseline 
parameters for discovery and replication stage for cats included in quantitative association analysis with 
LogCreat (P-values in bold if P  < 0.05).

Variable

Discovery stage Replication stage

p
Median
(25th, 75th percentile) Number (n)

Median
(25th, 75th percentile) Number (n)

Age (years) 13.3 (11.0, 15.6) 839 13.6 (10.1, 15.8) 187 0.488

Sex (by computerised database)
Female entire
Female neutered
Male entire
Male neutered

7
416
6
410

Female entire
Female neutered
Male entire
Male neutered

3
104
2
78

Breed Domestic longhair
Domestic shorthair

108
731

Domestic longhair
Domestic shorthair

27
160 0.281

Body weight (kg) 3.95 (3.29, 4.75) 816 3.92 (3.17, 4.60) 186 0.016

Creatinine (µmol/l) 154.3 (125.9, 194.0) 839 144.5 (120.4, 183.0) 187 0.414

Phosphorus (mmol/l) 1.32 (1.13, 1.55) 838 1.25 (1.09, 1.45) 187 0.01

Potassium (mmol/l) 4.00 (3.73, 4.35) 832 3.96 (3.72, 4.20) 186 0.015

Packed cell volume (%) 35 (32, 39) 828 35 (32, 39) 184 0.413

Systolic blood pressure (mmHg) 136.8 (121.2, 154.0) 839 131.3 (115.2, 146.7) 187 0.008

Urine specific gravity 1.030 (1.019, 1.046) 573 1.024 (1.018, 1.038) 112 0.009

Total Thyroxine (nmol/l) 19.9 (13.5, 26.3) 839 19.8 (13.5, 24.1) 187 0.371

Table 2.   Baseline signalment and clinicopathological data for cats included in the quantitative association 
with systolic blood pressure from the discovery stage with comparison to replication analysis. P; statistical 
significance comparing baseline parameters for discovery and replication stage for cats included in quantitative 
association analysis with systolic blood pressure. Replication data are found in Table 1. (P-values in bold if 
P < 0.05).

Variable

Discovery Stage Replication Stage

pMedian (25th, 75th percentile) Number (n) Median (25th, 75th percentile) Number (n)

Age (years) 13.3 (11.0, 15.6) 817 13.6 (10.1, 15.8) 187 0.542

Sex (by computerised database)
Female entire
Female neutered
Male entire
Male neutered

6
405
6
400

Female entire
Female neutered
Male entire
Male neutered

3
104
2
78

–

Breed Domestic longhair
Domestic shorthair

105
712

Domestic longhair
Domestic shorthair

27
160 –

Body weight (kg) 3.96 (3.29, 4.75) 795 3.92 (3.17, 4.60) 186 0.296

Creatinine (µmol/l) 154.0 (125.9, 193.6) 817 144.5 (120.4, 183.0) 187 0.019

Phosphorus (mmol/l) 1.32 (1.13, 1.55) 816 1.25 (1.09, 1.45) 187 0.012

Potassium (mmol/l) 4.00 (3.8, 4.36) 817 3.96 (3.72, 4.20) 186 0.01

Packed cell volume (%) 35 (32, 39) 806 35 (32, 39) 184 0.373

Systolic blood pressure 
(mmHg) 136.4 (121.0, 153.6) 817 131.3 (115.2, 146.7) 187 0.013

Urine specific gravity 1.031 (1.019, 1.046) 556 1.024 (1.018, 1.038) 112 0.007

Total Thyroxine (nmol/l) 19.8 (13.5, 26.3) 817 19.8 (13.5, 24.1) 187 0.470
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the minimum P-value being P = 5.82 × 10–5 for association with CKD and P = 4.15 × 10–5 for HTN/NT (Supple-
mentary Table S3). Bivariate plots of the P-values from the GWAS discovery and binary trait analyses summary 
statistics were produced (Supplemental Fig S6 and Fig S7). For both LogCreat/CKD and SBP/HTN there was a 
significant positive correlation between the quantitative trait analyses and the binary disease analysis (r2 = 0.26, 
P < 2 × 10–16 for SBP/HTN and r2 = 0.45, P < 2 × 10–16 LogCreat/CKD), showing good concordance in the results, 
despite an overall lack of power for the single-SNP analyses. SNP chrD1.10258177 with a significant association 
for LogCreat shows some suggestive level of association for the binary outcome CKD (P = 0.0001 and OR 2.057).

Genetic risk score analyses.  The first exploratory GRS analysis, which comprised multiple genetic vari-
ants identified from the GWAS of SBP and LogCreat, was tested for association with HTN (N = 808) and CKD 
(N = 827) status, using cats from the discovery and replication GWAS stages as the discovery and testing datasets 
respectively. As initial proof of concept, we confirmed, within the same discovery sample, that these aggregated 
scores of top SNPs from the quantitative traits were strongly associated with the clinical disease outcomes: the 
SBP-GRS was significantly associated (P = 9.4 × 10–3) with increased risk of HTN (N = 808); and the Logcreat-
GRS was significantly associated (P = 6.1 × 10–14) with increased risk of CKD (N = 827). However, testing of the 
GRS in the independent replication sample of cats (N = 180) indicated no significant results: SBP-GRS with SBP 
(P = 0.606) or HTN (P = 0.926); and the Logcreat-GRS with either LogCreat (P = 0.599) or CKD (P = 0.266).

Our second exploratory GRS analysis tested a human CKD-GRS created using the closest feline chip SNPs 
corresponding to 45 known CKD-associated genes. The discovery cohort was randomly divided into a 70% 
training subset (n = 587) and a 30% testing subset (n = 252).

The results of the GRS analysis were non-significant: the GRS was not associated with LogCreat as a continu-
ous variable (P = 0.986) and did not show any significant difference (P = 0.788) in the levels of LogCreat from the 
quintiles analysis between the cats within the top 20% of the GRS risk distribution vs. the cats in the bottom 20%. 
We note though from the single-SNP results that only 6 of these 45 SNPs showed nominal significance (P < 0.05) 
individually within the 70% training data (Supplementary Table S4).

Gene‑set enrichment and pathway‑based analysis (GSEA).  GWAS was complemented with a 
GSEA exploring gene set enriched pathways associated with the quantitative traits LogCreat and SBP. GWAS 
SNPs demonstrating nominal (P < 0.01) association with LogCreat and SBP were annotated with ENSEMBL Fel-

Table 3.   Comparison of discovery, replication and meta-analysis for Log creatinine. SNP; single nucleotide 
polymorphism (Named from Illumina Feline Infinium Array), CHR; chromosome (FelCat5; Felis_catus-
6.2 Genome assembly), BP; base pairs (FelCat5; Felis_catus-6.2 Genome assembly), A1; minor allele, A2; 
major allele, N; number, HWE; Hardy Weinberg Equilibrium, freq1; frequency of minor allele, BETA; beta, 
SE; standard error, p; significance, _disc; discovery, _rep; replication, _meta; combined metanalysis. Data 
table ordered by meta-analysis significance. Bold indicates experimental wide significance for meta-analysis 
(P < 1 × 10–6) and/or concordance of direction of effect.

SNP

Discovery

CHR BP A1 A2 N_disc HWE P_disc Freq1_disc BETA_disc SE_disc P_disc N_rep

chrD1.10258177 D1 8,482,421 G A 839 0.163 0.08 0.14 0.03 3.85 × 10–06 180

chrD4.72377931 D4 73,436,741 A G 839 0.340 0.12 0.12 0.03 6.35 × 10–06 180

chrE1.56119546 E1 29,657,901 A G 837 0.136 0.38 0.07 0.02 7.06 × 10–05 180

chrB1.176960684 B1 147,421,352 A G 839 0.459 0.11 -0.108 0.03 6.80 × 10–05 114

chrD3.10545751 D3 8,222,044 G A 839 0.069 0.11 − 0.11 0.03 4.31 × 10–05 180

chrUn26.3715257 D3 17,723,307 G A 839 0.530 0.16 0.09 0.02 4.80 × 10–05 180

chrB3.69084516 B3 55,418,968 G A 839 0.451 0.10 0.12 0.03 3.60 × 10–05 180

chrD3.51239128 D3 35,001,715 G A 839 0.626 0.28 0.08 0.02 7.56 × 10–06 180

chrD3.84193125 D3 61,072,237 G A 839 0.09 0.27 0.07 0.02 9.34 × 10–05 180

SNP

Replication Meta− Analysis

HWE P_rep Freq1_rep BETA_rep SE_rep P_rep Freq1_meta BETA_meta SE_meta P_meta P_Het_Meta

Direction 
of effect 
(discovery to 
meta)

chrD1.10258177 0.087 0.054 0.11 0.08 0.1704 0.07 0.14 0.03 1.34 × 10–06 0.706 ++ 

chrD4.72377931 0.641 0.09 0.05 0.07 0.4944 0.12 0.11 0.02 7.12 × 10–06 0.331 ++ 

chrE1.56119546 0.286 0.41 0.05 0.04 0.202 0.39 0.07 0.02 2.93 × 10–05 0.722  + + 

chrB1.176960684 0.646 0.11 − 0.08 0.07 0.2444 0.11 − 0.10 0.03 3.20 × 10–05 0.754 –

chrD3.10545751 0.320 0.12 − 0.04 0.06 0.5347 0.12 − 0.09 0.02 6.07 × 10–05 0.270 –

chrUn26.3715257 0.116 0.17 − 0.01 0.05 0.8575 0.16 0.08 0.02 0.0002124 0.082  + −

chrB3.69084516 0.473 0.11 − 0.02 0.06 0.7522 0.10 0.09 0.03 0.0002838 0.041  +−

chrD3.51239128 0.240 0.25 − 0.03 0.04 0.5218 0.28 0.07 0.02 0.0001066 0.017  + 

chrD3.84193125 0.459 0.27 − 0.03 0.04 0.4481 0.27 0.06 0.02 0.001061 0.022  +−
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Cat5 genes when located in or within 5 Kb flanking the gene boundaries. For each trait, the subset of these genes 
found in both the discovery and replication cohort were included in the GSEA. The GSEA for LogCreat identi-
fied 30 enriched KEGG pathways corresponding with 33 unique GWAS genes (P < 0.05; Fig. 3a, Supplementary 
Table S5). The top pathways are of particular interest and include cyclic adenosine monophosphate (cAMP) 
signalling, parathyroid hormone (PTH) synthesis, secretion and action, growth hormone (GH) synthesis, secre-
tion, action and regulation of actin cytoskeleton pathways (Table 5; Fig. 3b–d). GSEA showed no evidence of 
pathway enrichment for the quantitative trait SBP.

Discussion
This is the first feline GWAS to investigate complex disease traits in domestic cats. Although no SNPs reached 
significance in the separate discovery or replication GWAS stages for either SBP or LogCreat, a single SNP 
chrD1.10258177 reached experimental-wide significance, with concordant direction of effect, in the combined 
meta-analysis for association with LogCreat. It is impossible to draw strong conclusions, however, there were 
a few genes of potential interest from a pathophysiological perspective within 1Mbp of this locus. ZC3H12C 
encoding for zinc finger CCCH type containing C12, plays a role controlling macrophage activation, inhibits 

Figure 2.   (a) Manhattan plot for GWAS evaluating Log creatinine as a quantitative trait in the discovery stage. 
Manhattan plot of the discovery genome-wide association study in 839 cats. The y axis shows the −log10 P 
values of SNPs with MAF ≥ 5% and the x axis shows their chromosomal positions. Horizontal blue and red lines 
represent the thresholds of P = 1 × 10–4 used for selecting follow-up SNPs for replication and P = 2 × 10–6 denoting 
experimental-wide significance, respectively. No SNPs reached experimental-wide significance in the discovery 
stage. (b): Manhattan plot for GWAS evaluating systolic blood pressure as a quantitative trait in the discovery 
stage. Manhattan plot of the discovery genome-wide association study in 817 cats. The y axis shows the -log10 P 
values of SNPs with MAF ≥ 5% and the x axis shows their chromosomal positions. Horizontal blue and red lines 
represent the thresholds of P = 1 × 10–4 used for selecting follow-up SNPs for replication and P = 2 × 10–6 denoting 
experimental-wide significance, respectively. No SNPs reached experimental-wide significance in the discovery 
stage.
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production of TNF-alpha and inducible nitric-oxide synthase promotor activity52 and in vitro, inhibits the 
endothelial inflammatory response53. CKD is widely considered an inflammatory disease and as such altered 
expression of genes with a negative regulatory response could contribute to the progression of disease. RDX 
encodes for radixin, a member of the ERM (ezrin-radixin-moesin) proteins which provide cellular structure, 
linking the plasma membrane to the cystoskeleton and providing a mechanism for regulation of signal transduc-
tion pathways54–56. The role of radixin in CKD has not been explored although other ERM proteins have been 
associated with regulation of fibrosis57,58, FDX1 encoding for Ferrodoxin 1 is a small iron sulfur protein important 
for electron transfer particularly to cytochrome P450 enzymes and iron homeostasis and has also been implicated 
in Vitamin D homeostasis via CYP enzymes59,60. Finally, LAYN encoding for layilin is a transmembrane c-type 
lectin-homologous protein which has been associated in vitro with TNF-alpha induced epithelial to mesenchymal 
transformation of renal tubular epithelial cells from patients with IgA nephropathy, therefore potentially playing 
a role in renal disease progression and fibrosis61..

As part of the gene mapping performed (Supplemental Methods), none of these predicted genes have previ-
ously been identified from human GWAS exploring renal function traits35. However, evaluating these genes in 
the GWAS catalog revealed that in humans the RDX/ZC3H12C locus has previously been associated with PTH 
concentration in women and also with high density lipoprotein (HDL) cholesterol in human GWAS62–64. In 
humans, there is an association among dyslipidemia, atherosclerosis, cardiovascular and renal disease although 
species differences mean that atherosclerosis is a rare phenomenon in cats64,65. The FDX1/ARHGAP20 locus has 
been associated with renal sinus fat which has a proposed link between obesity and renal function66–69. Renal 
pelvis fat can be identified during the imaging of feline kidneys but has never been explored as a risk factor for 
CKD70. Finally, the POU2AF1 locus has been associated with both nephrolithiasis and urinary pH which are 
current areas of interest in feline CKD71–73.

To increase statistical power beyond single-SNP analyses, GRS analyses were performed. GRS from the 
discovery sample showed that the aggregated GRS of the top follow-up SNPs from the SBP and LogCreat were 
significantly associated with the binary clinical outcomes of HTN and CKD, respectively. However, insufficient 
power remains one of the reasons why it was not possible to independently validate the association of our top 
discovery SNPs for SBP or LogCreat with either SBP or HTN, or with LogCreat or CKD, respectively. This is 
perhaps unsurprising, given that, due to the limited replication sample size available, none of the top discovery 
SNPs formally replicated individually in the primary analyses and very few even had concordant direction of 
effect between the discovery and replication data.

Our second exploratory GRS analysis attempted to investigate whether genes known to be associated with 
CKD in humans may also play a role in influencing renal function and creatinine levels in cats. Unfortunately, 
our GRS including the closest feline SNP to a set of 45 human CKD associated genes did not show any evidence 
of association with LogCreat. We are therefore unable to demonstrate from our data that genes associated with 

Table 4.   Comparison of discovery, replication and meta-analysis for systolic blood pressure. SNP; single 
nucleotide polymorphism (Named from Illumina Feline Infinium Array), CHR; chromosome (FelCat5; 
Felis_catus-6.2 Genome assembly), BP; base pairs (FelCat5; Felis_catus-6.2 Genome assembly), A1; minor 
allele, A2; major allele, n; number, HWE; Hardy Weinberg Equilibrium, disc; discovery cohort, rep; replication 
cohort, meta; meta-analysis, freq1; frequency of minor allele, SE; standard error, p; significance. Bold indicates 
experimental wide significance for meta-analysis (P < 1 × 10–6) and/or concordance of direction of effect.

SNP

Discovery

CHR BP A1 A2 N_disc HWE P_disc Freq1_disc BETA_disc SE_disc P_disc

chrA1.175695892 1 134,277,731 A G 817 0.874 0.30 6.24 1.48 2.68 × 10–5

chrD2.99141949 11 74,668,392 A G 812 0.155 0.38 5.74 1.37 2.93 × 10–5

chrB1.225124311 4 200,288,643 A C 817 0.582 0.24 6.27 1.56 6.00 × 10–5

chrC1.128491506 8 114,624,871 G A 817 0.480 0.21 − 6.71 1.67 6.33 × 10–5

chrB1.167814582 4 136,873,181 G A 817 0.390 0.29 − 5.95 1.50 8.19 × 10–5

SNP

Replication

CHR BP N_rep HWE P_rep Freq1_rep BETA_rep SE_rep P_rep

chrA1.175695892 1 134,277,731 178 0.066 0.33 1.17 2.99 0.6951

chrD2.99141949 11 74,668,392 178 0.879 0.41 − 0.67 3.07 0.8265

chrB1.225124311 4 200,288,643 175 4.9 × 10^− 22 0.11 − 0.48 3.58 0.8933

chrC1.128491506 8 114,624,871 178 0.022 0.23 0.71 3.32 0.8304

chrB1.167814582 4 136,873,181 178 0.854 0.27 4.08 3.54 0.2512

SNP

Meta− Analysis

CHR BP Freq1_meta BETA_meta SE_meta P_meta P_Het_Meta Direction of effect (discovery to meta)

chrA1.175695892 1 134,277,731 0.31 5.24 1.32 7.48 × 10–5 0.129 ++ 

chrD2.99141949 11 74,668,392 0.39 4.68 1.25 0.0001771 0.056 +−

chrB1.225124311 4 200,288,643 NA NA NA NA NA NA

chrC1.128491506 8 114,624,871 0.21 − 5.21 1.49 0.0004715 0.046 −+ 

chrB1.167814582 4 136,873,181 0.29 − 4.42 1.38 0.001404 0.009 −+ 
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Figure 3.   Gene set enrichment analysis of Log Creatinine. (a) Bar plot showing enriched KEGG pathways 
for quantitative renal trait Log Creatinine. Results of gene-set enrichment analysis (GSEA): Bar charts of 
significantly enriched KEGG pathways. Number of genes (n) corresponding to nominally associated LogCreat 
GWAS SNPs is represented on the x-axis with adjusted significance (P < 0.05) indicated by order and colour 
trend. (b) Gene network plot for enriched KEGG pathways associated with the renal trait Log creatinine. Gene 
network plot showing identified feline genes (grey nodes) and overlap between enriched KEGG pathways for 
renal trait Log creatinine. Gold nodes represent top 5 enriched KEGG pathways including cAMP signalling, 
parathyroid hormone synthesis, secretion and action, growth hormone synthesis, secretion and action, 
regulation of actin cytoskeleton and amphetamine addiction where nodal size is proportional to the number 
of nominally associated LogCreat GWAS genes in each pathway. (c): Violin plots showing Log Creatinine by 
genotype for SNPs corresponding to genes of the top 4 pathways enriched in GSEA. cAMP; cyclic adenosine 
monophosphate pathway, cytskel; cytoskeleton pathway, hormone; parathyroid hormone and growth hormone 
pathways, HOM A1; homozygous allele 1, HOM A2; homozygous allele 2, HET; heterozygous, LogCreat; Log 
creatine. (d) Violin plots of Log Creatinine by genotype for the most striking SNPs corresponding to RDX and 
MAPK1 from top enriched GSEA pathways. HOM A1; homozygous allele 1, HOM A2; homozygous allele 2, 
HET; heterozygous, LogCreat; Log creatinine.
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Figure 3.   (continued)
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renal function in humans are also associated with renal function in cats. However, due to the small sample sizes, 
the limitations in predicted gene location using the currently available feline genome data and also not knowing 
the exact causative genes in humans, this does not rule out the future potential of translation between humans 
and cats.

GSEA identified 4 KEGG pathways of interest in relation to renal function; cAMP, PTH, GH and actin 
cytoskeleton. Of particular note, was the identification of RDX from the cystoskeleton pathway which had previ-
ously been identified in proximity to SNP chrD1.10258177 from the LogCreat GWAS. Identification of the actin 
cytoskeleton pathway raises the potential importance of maintenance of both podocyte and tubular structure 
in the pathogenesis of CKD. cAMP is a universal second messenger found in cells of all biological systems with 
many physiological roles within the kidney74. In relation to tubulointerstitial nephritis, increased cAMP exerts 
anti-fibrotic effects and cyclic nucleotide modulation is a potential therapeutic target for renal fibrosis75,76. PTH is 
an important phosphoregulatory hormone contributing to the development of renal mineral and bone disorder77. 
GH and insulin-like growth factor (IGF) are important not only for the physiological development of the kidneys 
but also in renal homeostasis with the inflammatory state of CKD potentially altering the GH-IGF axis78,79.

This study has highlighted some of the challenges associated with the exploration of complex genetic traits 
and disease conditions currently in the domestic cat. Inability to identify significant loci in the discovery stage 
can be attributed to small sample size and insufficient power for discovery. Power calculations were performed 
for study design using data from a small extreme phenotype pilot study (50 severely HTN and 50 NT cats). Due 
to the novelty of the feline GWAS array and no prior analysis of BP and renal traits in cats, calculations were 
based on assumptions for the heritability and LD structure from human GWAS, with expected effect estimates 
based on the current knowledge of effect sizes of SNPs on SBP and renal function in human medicine. Despite 
this being one of the largest feline genetic studies, it is very small compared to human GWAS which frequently 
include several hundred thousand individuals in the discovery stage and more recently up to 1 million individuals 
for meta-analyses19,35. Studies exploring the diagnosis and management of CKD in the UK indicate that 96.1% of 
cats are cross-breeds rather than pedigree cats, emphasising the importance of studying common disease within 
the crossbreed population80. Future studies of similar complex traits in domestic cats should therefore aim to 
test sample sizes of at least 1,000 as the very minimum required.

Ideally, we would use heritability analyses as the ideal approach to formally confirm that genetics play a role 
in BP regulation and renal traits in cats. Previous exploration of heritability using a colony of cats estimated the 
heritability of creatinine to be 25%81. We attempted to calculate the heritability of our BP and renal traits from 
feline GWAS data using GCTA software82, but this proved not to be possible, with no meaningful results obtained, 

Figure 3.   (continued)

Table 5.   Top 4 enriched KEGG pathways associated with quantitative renal trait Log Creatinine. Term ID; 
KEGG pathway identification, Description; descriptor of enriched KEGG pathway, Count; number of feline 
genes enriched within given KEGG pathway, %; percentage of feline genes compared to genes in KEGG 
pathway, P value; significance, Genes; feline genes associated with enriched KEGG pathway.

Term ID Description Count P value Genes

hsa04024 cAMP signalling pathway 10/81 0.009178 ADCY2/PDE3B/ATP2A2/MAPK1/GRIN2A/CREB5/CREB3L2/EP300/RAPGEF4/TIAM1

hsa04928 Parathyroid hormone synthesis, secretion and action 7/81 0.009178 ADCY2/MAPK1/ARHGEF1/PRKCB/MMP16/CREB5/CREB3L2

hsa04935 Growth hormone synthesis, secretion and action 7/81 0.012676 ADCY2/MAPK1/PRKCB/CREB5/CREB3L2/SOS2/EP300

hsa04810 Regulation of actin cytoskeleton 9/81 0.016506 RDX/ARHGEF12/MAPK1/LPAR1/ARHGEF1/PIP5K1C/SOS2/MYH9/TIAM1
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due to both the insufficient array SNP density and the small sample size. We are therefore at least encouraged 
by the positive proof of concept result from the exploratory GRS analysis, showing some evidence, albeit in the 
same discovery sample, that the top variants influencing BP and renal traits are also associated with the clinical 
outcomes of HTN and CKD in cats.

A further limitation of this study is the low density of the feline Illumina Infinium iSelect DNA array for 
identification of loci associated with complex disease conditions45,83,84. SNPs incorporated onto this array have 
been remapped to the feline genome assembly 6.246,49 and subsequently assembly 8.0 and 9.045,85. The array 
average marker distance varies based on chromosome and region of the array, with an average marker distance 
of 37,741 bp although in certain areas gaps of up to 3 Mbp are reported45. The lack of other genotyped variants 
in LD or close proximity to the follow-up SNP of interest makes it challenging to assess if there is wider support 
for an association signal at a locus. In human studies, most GWAS analyses take advantage of genetic datasets 
that have been densely imputed from imputation reference panels, which is not yet feasible for feline studies. To 
date, this feline array has proved to be useful in the identification of traits under selection or recessive traits, e.g. 
congenital myasthenic syndrome in the Devon Rex48 or hypokalemia in the Burmese86 or for dominant traits 
that are under positive selection e.g. Scottish Fold cat folded ears47. However, exploration of complex traits is 
fundamentally vital to veterinary medicine, given that these represent the most common medical conditions that 
are impacting the health and welfare of the largest number of feline patients. A SNP array with denser coverage 
is currently under development as part of the Feline 99 Lives Consortium87.

Sparsity of variants was also a disadvantage when performing the GSEA given that relatively few SNPs lie 
within a known gene sequence or flanking region. Overlap of genes within the top pathways gives challenges in 
terms of determining relevance of over-representation within a given pathway. However, novel genes from each 
pathway were identified suggesting each may have some independent relevance. It should be recognised that the 
nominal criteria used for SNP inclusion within this analysis increases the risk of false positive associations being 
reported but represents a balance between discovery and output for this exploratory analysis. Failure to identify 
pathways enriched in relation to SBP follows lack of significance identified in the GWAS and most likely relates 
to this being a complex polygenic trait with extreme limitations in terms of sample size.

The strengths of this study include the unique DNA archive combined with standardised phenotypic evalua-
tion available including biochemical and blood pressure data. In addition to cross-sectional data, a large propor-
tion of this population of cats also had standardised longitudinal data facilitating clinical phenotypic classifica-
tion. Nevertheless, there are factors which may have influenced the classification of cats. Plasma creatinine can 
be influenced by biological factors, in particular muscle condition and concurrent disease e.g. hyperthyroidism. 
Total thyroxine concentrations were reviewed in all cats to exclude hyperthyroidism and cats were excluded if 
they were receiving drugs that could influence GFR. Careful review of clinical data permitted binary classification, 
however, it is recognised that cats may demonstrate evidence of CKD prior to the onset of azotemia. Therefore, 
misclassification as non-CKD when cats may have had International Renal Interest Society (IRIS) stage 1 or 
early stage 2 CKD is possible88. As in humans, situational HTN can influence SBP measurements. BP measure-
ments for all cats were performed in accordance with American College of Veterinary Internal Medicine HTN 
consensus guidelines, but some degree of inaccuracy is inevitable. Careful longitudinal assessment of SBP was 
used for classification of cats with HTN with exclusion of cases where insufficient data were available to prevent 
inappropriate classification. There were statistically significant differences in biochemical parameters between 
the discovery and replication cohorts. However, at the time of analysis, every genomic DNA sample within the 
biobank was used for this study and therefore alternative selection of replication stage cats was not possible. 
Clinically the cats were recruited using the same eligibility criteria and numerically the differences did not raise 
concern for clinical differences between groups.

This is the first feline GWAS to explore genetic associations with SBP and renal function in cats. Our analysis 
identified a single SNP with experimental wide significance for the quantitative trait creatinine and highlighted, 
through GSEA, enriched biological pathways associated with this trait. Further validation work would be required 
to draw strong conclusions in relation to the specific loci identified. Nevertheless, this study positively supports 
the utility of GWAS and GSEA in feline medicine, especially if arrays with denser coverage of the feline genome 
could be developed in the future, and larger studies may also enable further success from GRS analyses of clinical 
outcomes and the testing of human genes in cats, which we attempted here.

Methods
Cats > 8 years that had been evaluated as part of a longitudinal elderly cat monitoring programme at the Royal 
Veterinary College including healthy cats or those with known conditions of interest including CKD and HTN 
were included in this study (Supplementary Methods). The clinic study protocols received ethical approval by 
the Royal Veterinary College’s Clinical Research and Ethical Review Board (CRERB; URN: 2013 1258) which 
included routine storage of cell pellets for genomic DNA (gDNA) extraction. All cats included in this study were 
client owned and informed consent was obtained prior to enrolment. Clinical data pertaining to each cat included 
in this study was obtained through standard veterinary care offered by the clinic. All methods were carried out 
in accordance with the research guidelines at the Royal Veterinary College and are reported in accordance with 
ARRIVE guidelines.

An initial cohort of cats (n = 842) was used for the discovery GWAS evaluating the quantitative traits SBP 
and creatinine utilising the feline Illumina array. SNPs of interest (P < 2 × 10–6) were then taken forwards using a 
second cohort of cats (n = 187) into a replication and meta-analysis stage. A secondary discovery analysis explor-
ing the binary traits CKD and HTN was performed but due to limited sample sizes replication analyses were not 
evaluated. Exploratory GRS analyses were performed to increase statistical power beyond single-SNP analyses 
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considering firstly the top SNPs from the quantitative GWAS meta-analyses and secondly testing known human 
CKD loci for association with feline renal function.

Eligibility criteria for quantitative genome wide association study discovery and replication 
stage.  Only domestic shorthair (DSH) or long-hair (DLH) cats were included in this study. The first visit 
with concurrent SBP (Doppler technique) and plasma creatinine concentration (Idexx Laboratories, Wetherby, 
UK) together with a stored cell pellet for gDNA extraction was selected. Information on inclusion/exclusion 
criteria is provided in supplemental methods. Signalment, clinical, and laboratory data were extracted for all cats 
including age, sex, body weight, potassium, phosphorus, packed cell volume and urine specific gravity.

Eligibility criteria for cats included in the replication stage were identical to the discovery stage. Case selec-
tion was based on availability of breed, creatinine, SBP data and stored cell pellet for gDNA extraction. Mann 
Whitney U-tests were used to compare clinical parameters between the discovery and validation cohorts. All 
available cats that fulfilled the eligibility criteria were included at the time of the replication study.

Eligibility criteria for binary genome wide association analyses.  All cats from the discovery stage 
were reviewed in order to be classified as CKD/non-CKD at entry to the study (Supplementary Methods). For 
the binary outcome HTN versus NT, longitudinal clinical records were reviewed with a diagnosis of HTN based 
on SBP > 170 mmHg, presence of ocular target organ damage and requirement for prescription of anti-hyperten-
sive medication (Supplementary Methods).

Genotyping and quality control.  Genotyping was performed using the Illumina Infinium iSelect DNA 
array (Illumina, Abington, Cambridge, UK) which genotypes 62,897 SNPs across the feline genome (Bart’s and 
the London Genome Centre, UK). Array marker locations were adjusted to the feline genome assembly Felis 
catus 6.2/felcat546. Quality control (QC) of the genetic data was conducted (Supplementary Methods). Eight 
hundred and ninety-two cats were selected for evaluation on the feline Illumina Infinium array. Sample QC was 
performed (Supplementary Methods) including call rate, heterozygosity, population stratification, gender and 
relatedness. In total 50 cats were excluded from all sample QC checks, leaving 842 cats post-QC for inclusion 
within the discovery GWAS.

Phenotypes and model selection.  For the GWAS analysis, an initial non-genetic statistical assessment 
of the phenotypic traits and potential covariates was performed, using the cats in the discovery stage, in order 
to select the appropriate statistical models for subsequent use. The distributions of the quantitative phenotype 
variables creatinine and SBP were examined visually using histogram plots and Quantile–Quantile (QQ) plots to 
check for normality. This resulted in the requirement to log transform creatinine (LogCreat) but not SBP. Based 
on prior epidemiological studies and knowledge of likely biological associations, potential covariates breed, age, 
sex, weight, plasma potassium, blood pressure were tested independently for association with the quantitative 
phenotype creatinine and the binary outcome CKD. Insufficient data were available for urine protein to creati-
nine ratio to be evaluated as a covariate. Similarly, the potential covariates breed, age, sex, weight, potassium 
and LogCreat were tested independently for association with the quantitative phenotype SBP and the binary 
outcome HTN. Univariate linear or logistic regression models were used for the quantitative traits or binary 
outcomes, respectively, to evaluate these associations. Any variables with a significant association (P < 0.05) were 
evaluated jointly in a multivariate model, and those remaining significant were selected as covariates for the 
GWAS. Bivariate plots and correlation statistics showing the relationship between each phenotype and covari-
ate were also reviewed to confirm the chosen covariates. The addition of the genetic principle components 1 
(PC1) and 2 (PC2) to both models was explored. Given that neither PC1 nor PC2 were significantly associated 
with the phenotypes of interest (SBP and creatinine), nor increased the variance explained by the multivariable 
model (adjusted R2), nor reflected any underlying relationship by breed, they were not included as covariates in 
the final GWAS models, in contrast to the usual practice in human GWAS. The final statistical models used age, 
potassium and LogCreat as covariates for SBP and HTN analyses, whereas age was the only covariate used for 
the analyses of creatinine and CKD.

Genome wide association study discovery stage.  All genetic analyses were performed in PLINK 
(v1.07). Each quantitative trait GWAS corresponded to a linear regression analysis testing each SNP, one at a 
time, for association with the phenotype with adjustment for covariates. Data for the 842 cats post-QC were 
checked for missing covariate data resulting in N = 839 cats remaining in the analysis for LogCreat and N = 817 
cats for SBP (Supplementary Methods).

Logistic regression analyses were performed for the GWAS of the secondary binary outcomes HTN versus 
NT and CKD versus non-CKD. After removal of cats which could not be defined, 827 cats were evaluated in the 
binary CKD (N = 324) versus non-CKD (N = 503) whilst for HTN versus NT, 808 cats were analysed of which 
172 cases were considered HTN and 636 cats NT.

Post-analysis QC checks were performed to confirm the results for each of the analyses, which resulted in 
filtering the results to 49,945 SNPs with MAF ≥ 5% (Supplementary Methods).

In order to select an appropriate experimental array-wide significance threshold for this new feline genotyp-
ing array, we considered all SNPs on the chip and used linkage disequilibrium (LD) pruning, according to an r2 
threshold of 0.2 to determine the number of independent SNPs (~ 25,000) and hence the number of independent 
tests to adjust for in the Bonferroni multiple testing correction of 0.05/25,000. This resulted in an experimental 
array-wide significance threshold of P < 2 × 10–6 for all GWAS analyses.
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Replication and meta‑analysis for quantitative traits SBP and creatinine.  Replication analyses 
were performed for the quantitative traits SBP and LogCreat. As no SNPs reached experimental wide significance 
in the discovery stage, SNPs for inclusion in the replication stage for both LogCreat and SBP were selected on the 
basis of MAF > 5% and P < 1 × 10–4. For any potential follow-up SNP, a visual review of regional locus plots was 
performed to check for locus-level support by seeing if any SNPs in LD with the top SNP also showed evidence 
of association. No plots showed any major QC warnings for any of the follow-up SNPs, although due to sparse 
coverage, there are very few SNPs in LD. Having checked pairwise LD of the SNPs with P < 1 × 10–4, one SNP for 
creatinine was excluded, hence only following up pairwise LD independent SNPs at P < 1 × 10–4. This resulted 
in 5 follow-up SNPs for SBP and 10 for LogCreat to be taken forward for genotyping in the replication cohort.

One hundred and eighty-seven cats were selected for inclusion in the replication stage and combined meta-
analysis. Genotyping and QC was performed including MAF and call rate for SNPs (Supplementary Methods) 
with sample QC including call rate and evaluation of covariate data (Supplementary Methods). Ultimately 14 
SNPs were analysed: 5 for SBP and 9 for LogCreat. After sample QC 180 cats were available for creatinine rep-
lication analysis and 178 for SBP.

Linear genetic association analyses evaluating the replication data were performed in PLINK for LogCreat 
and SBP using the same covariates as the discovery stage GWAS. A meta-analysis was performed for each of the 
two quantitative traits using METAL software (version release 2011–03-25; http://​www.​sph.​umich.​edu/​csg/​abeca​
sis/​metal/)89. Heterogeneity between the discovery vs replication stages was checked within the meta-analysis.

As significance definitions, we declared a SNP as “formally replicated” if it reached Bonferroni corrected sig-
nificance, P = 0.01 (for testing 5 SNPs) for SBP and P = 0.0056 (for testing 9 SNPs) for LogCreat, in the replication 
data alone, together with having concordant direction of effect between discovery and replication stages. Any 
SNPs reaching experimental wide significance (P < 2 × 10–6) in the combined meta-analysis of both discovery 
and replication data-sets together with a concordant direction of effect between discovery and replication stages 
are also reported as overall significant associations.

Genetic risk score analyses.  Genetic risk score (GRS) analyses were performed, combining data from 
multiple genetic variants: firstly constructing GRSs of the top SNPs from the discovery GWAS for each of SBP 
and LogCreat, in an attempt to validate the genetic contribution of these SNPs to both SBP and HTN and to 
LogCreat & CKD; secondly to construct GRSs based on known human CKD genes.

GRS of top SNPs.  For BP analyses the SBP-GRS was constructed using the set of 5 follow-up SNPs reaching 
P < 1 × 10–4 for association with SBP. For each cat, the number of trait-increasing alleles were summed across all 
SNPs, and weighted according to the SNP’s beta regression effect estimate of the discovery GWAS analysis for 
SBP, and then averaged across all 5 SNPs, to derive the mean weighted risk score. Due to using genotyped data, 
the mean GRS, averaging across the number of non-missing SNPs per cat, is preferable, in order to account 
for any small amount of missing SNP data. The GRS was constructed using the “score” risk profile function in 
PLINK v1.07. Similarly, the weighted mean creat-GRS was constructed, using the 10 LD-pruned independent 
follow-up SNPs reaching P < 1 × 10–4 from the LogCreat analysis. The SBP-GRS was analysed for association 
with SBP and HTN using linear and logistic regression analyses, respectively, adjusting for age, potassium and 
LogCreat as covariates. The creat-GRS was analysed for association with LogCreat and CKD using linear and 
logistic regression analyses, respectively, adjusting for age as the only covariate, as in the primary analyses. Ini-
tially, the GRS were constructed and tested within the same discovery sample of cats (N = 827 LogCreat and 
CKD, N = 808 SBP and HTN). Then as the main analysis, the SBP-GRS and creat-GRS (with only 9 of the 10 
LogCreat SNPs available in the replication data post-QC) were constructed and tested using the independent 
replication sample of cats (N = 180).

GRS of human CKD genes.  For the purposes of this exploratory analysis, we only considered LogCreat and 
not SBP, knowing from our primary GWAS analyses, that LogCreat analysis had shown more significant results 
than the SBP analysis. At the time of analysis, the most recent publication was used to identify loci associated 
with renal function38. The gene names associated with these loci (n = 53) were searched using Ensembl 90 and 
UCSC databases (Sep.2011 (ICGSC Felis_catus 6.2/felCat5) for predicted comparable feline genes with concur-
rent mapping of known SNP locations from the feline array78. Predicted feline genetic loci were identified for 46 
human loci and the closest SNP on the feline array identified. Where multiple SNPs fell within the predicted gene 
location, the SNP with the highest significance value was selected. Gene and SNP locations were checked against 
the latest Felis_catus_9.0 genome assembly (NCBI genome data viewer (Felis_catus_9.0 (GCF000181335.3))85. 
As these 46 SNPs were not genotyped for follow-up in the replication sample, this GRS analysis could only be 
performed within the discovery dataset. Therefore, in order to have independent subsets of the data for model-
building vs analysis-testing, we randomly split the N = 839 discovery cats from the LogCreat analysis with non-
missing LogCreat and age variables for phenotype and covariate data according to a 70:30 training: testing ratio, 
with N = 587 cats in the training subset and N = 252 cats in the testing subset. A new training association analysis 
was run to test these 46 CKD SNPs for association with LogCreat, adjusted for age, restricted only to the 587 cats 
in the training dataset. One of the 46 closest CKD SNPs was not available for this analysis, hence a total of 45 
SNPs remained. Similarly, to the first GRS analysis construction above, the “score” function was used in PLINK 
to construct the GRS of these 45 SNPs, on the 252 cats in the testing dataset, weighted according to the beta 
effect estimates from the training analysis results, aligned to the equivalent effect alleles, giving the average score 
per non-missing SNP, for the mean weighted GRS. In addition to the main linear regression analysis analysing 
the 46-SNP human-CKD GRS as a continuous score variable for association with LogCreat, adjusted for age, for 
all 252 cats in the testing dataset, a quintile analysis was also performed to evaluate if there was any significant 
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difference in creatinine levels comparing the cats in the top 20% quintile of the human-CKD-gene genetic risk 
score vs the cats in the lowest 20% risk group.

Gene‑set enrichment and pathway‑based analysis.  Gene-set enrichment and pathway-based analy-
sis (GSEA) was performed90. A nominal p < 0.01 was used to filter SNPs from the GWAS analysis for GSEA. 
Ensembl FelCat 5 gene annotations (https://​hgdow​nload.​soe.​ucsc.​edu/​golde​nPath/​felCa​t5/​datab​ase/) were 
used to assign SNPs to genes if they were either within the genomic sequence of the gene, or within the 5 Kb 
upstream/downstream flanking regions in order to include SNPs within regulatory regions91. The Kyoto Ency-
clopedia of Genes and Genomes pathway (KEGG), Gene Ontology (GO) biological process, and msigdb Hall-
mark databases were used for functional annotation and enrichment analyses92–94. To avoid testing narrow or 
broad categories, only categories with more than 10 and less than 500 genes were included. A Fisher’s exact test 
was performed to test for over-representation of the significant genes in each gene-set with BH (Benjamini & 
Hochberg) correction for multiple testing.

Data availability
The datasets generated during and/or analysed during the current study are available in the Royal Veterinary 
College repository, https://​rvc-​repos​itory.​workt​ribe.​com/​output/​14434​87.
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