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Comparing Single Touch to Dynamic Exploratory Procedures
for Robotic Tactile Object Recognition

Elliot Kirby1, Rodrigo Zenha1 and Lorenzo Jamone1

Abstract—Recognizing objects by touch is a very useful skill
for robots to be employed in both structured and unstructured
environments. While in some applications it is useful to recognize
an object from a single touch, in other scenarios specific robot
movements can be used to obtain more information about
the object, making recognition easier. In this paper, we show
how this can be obtained through the combination of: (i) a
recently developed tactile sensor that measures both normal and
shear forces on multiple contact points, and (ii) an exploratory
procedure that involves dynamic shaking of the gripped object.
We compare the recognition accuracy in three conditions: static
(i.e. single touch), short dynamic (i.e. using a small fraction
of the exploratory procedure), and dynamic (i.e. using the
entire exploratory procedure). We report experiments with six
different machine learning techniques, and several combinations
of tactile features, to recognize ten objects. Overall, our results
demonstrate that: (i) the sensor we use is well suited for
recognizing grasped objects with high accuracy, and (ii) the
dynamic exploratory procedure provides a 38% improvement
over single touch recognition. We make our data and code
publicly available, to encourage reproduction of our results.

I. INTRODUCTION

Tactile perception is crucial for robots to interact safely and
effectively with both structured and unstructured environments
[1], [2]. In particular, robotic manipulators can leverage tactile
sensors to estimate physical properties of the objects being
manipulated [3], and even to achieve tactile object recognition
[4], [5]. Although visual sensing can be used to recognize
objects [6], [7], common issues such as low light conditions
or occlusions can deteriorate the accuracy of the recognition.
Tactile perception is a valuable alternative (or complementary
measure) since it provides direct physical feedback about the
objects being manipulated.

For tactile perception to happen, the robot must generate
the physical interaction with the objects, i.e. active [8] or
interactive perception [9]. This typically involves a dedicated
Exploratory Procedure (EP) that requires the robot to probe a
surface [10] or an object [11], or to hold the object within a
grasp [12], [13], either keeping it static or performing a set
of controlled actions (e.g. squeezing). However, objects are
often strategically placed so as to maximize the regions of
contact with the sensor. It is unclear if these strategies are
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Fig. 1. High-level overview of the collection of tactile data being used to
inform a classification model, which predicts the grasped object as an output.
In this example the Brush is the object used.

fit for robots that operate autonomously in semi-structured
environments, performing different types of movements (e.g.
grasping, lifting, transporting, at different speeds and with
different accelerations), and often dealing with unstable grasps,
unexpected slips, and high variability in the gripper-object
physical interaction. In fact, if this variability was reflected
in the sensor measurements (i.e. by leveraging a tactile sensor
that can reliably detect rich contact information), and if the
data coming from such interactions was present in the training
data, object recognition models could ideally perform much
better in such real-world scenarios.

Therefore, to overcome the limitations of previous work,
we propose to train object recognition models using data: (i)
extracted from a recently developed tactile sensor; (ii) during
an exploratory procedure that involves dynamic movements
of a robotic gripper. One key objective of this paper is to
show that if data is collected from such a dynamic procedure,
then we have access to more information that is helpful to
better recognize objects. However, to take full advantage of
this we need: (i) a sensor that can collect a large set of
contact information; (ii) appropriate features that represent
such dynamic information. Therefore: (i) we use the recently
developed uSkin tactile sensor [14], which is able to detect
both normal and shear forces on multiple contact points;
(ii) we use an exploratory procedure that involves grasping,
lifting, shaking and releasing each object, and we compare
the effectiveness of a large set of tactile features.
This paper reports the following:

• an analysis of different tactile features that can be
extracted from the measured shear and normal forces
through a robotic exploratory procedure in a realistic
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unstructured environment (results in Table I);
• an evaluation of tactile object recognition capability when

data representative of the full exploratory procedure is
provided, compared to alternative scenarios in which only
a short part of the exploration (or, a single tactile frame)
is considered (results in Fig. 5);

• evidence of how a trained classifier can be used in real-
world settings, by evaluating the generalization to grasp
poses not seen during training (results in Fig. 6).

II. RELATED WORK

Exploratory Procedures (EPs) have been used in previous
works to enable robotic tactile perception, either in the form
of probing or grasping/manipulation.

The works in [10] and [15] use probing EPs to scan the
surface of objects and identify their materials, using either
piezoelectric [10] or capacitive [15] tactile sensors. Both works
use hand-crafted features to identify characteristics of the
material, such as the frictional coefficients or cracks and
bumps in the surface, and they achieve accuracies of 89%
and 99% respectively. An alternative probing EP is a simple
touch of a tactile sensor as shown in [12], where an array
of piezoresistive tactile sensors with high spatial resolution is
used. A recently popular approach to tactile object recognition
is to treat pressure images obtained from tactile sensors as
traditional RGB images and to train a convolutional neural
network (CNN) to identify the object through deep learning
[12], [16], typically by using a single high resolution tactile
image; this strategy is even more natural when using camera-
based tactile sensors [17].

Another type of EP is to use an actuated gripper or hand to
physically grasp an object and hold it in position or conduct
a fixed routine whilst the object is gripped (e.g. squeezing
[18]). If the sensor mounted to the gripper has sufficiently high
spatial resolution, then computer vision techniques and deep
learning can again be used, as shown in [18]. An alternative
approach is explored in [11], where a multi-fingered robot
hand equipped with a distributed version of the uSkin tactile
sensors [19] gathers tactile information from all sides of an
object; several grasps are used in combination to identify the
object with deep learning; when only a single grasp is used,
an accuracy of 49% is achieved, however using a combination
of grasps increases the accuracy up to 88%. In a later work
[13] the same authors show an even increased accuracy of
95%; they also show how a dynamic hand exploration provides
more (and useful) data than a single grasp; however, the data
used for classification is not only tactile, but it includes finger
joints positions and force sensors in the fingertips; overall, this
is a complex and specialized robotic setup that might not be
easily available to researchers and companies, and it might not
fit standard applications in industry.

Unlike previous works which use highly controlled or
specialized EPs and robotic setups, our EP could be easily
included within routine robot operations (i.e. pick and place of
objects) in unstructured environments (i.e. objects are placed
on the table and autonomously picked by the robot, using
depth sensing). The sensor we use (uSkin) has lower spatial

resolution than other pressure sensitive (e.g. resistive [18] or
camera-based [17]) tactile sensors; however, we believe that
the ability of uSkin to measure not just the normal forces but
also the shear forces on each contact point can prove valuable
when using a dynamic exploratory procedure (i.e. lifting and
shaking). For recognition, we favour classifiers with hand-
crafted features over deep learning approaches as it is expected
that higher accuracies can be achieved with the few training
samples available.

III. METHODOLOGY

An overview of our method is shown in Fig. 1. Our objective
is to recognize an object after it has been picked by a robot
gripper, during normal robot operations, using tactile data.
To this end, we can either consider tactile data from the
entire EP (dynamic classification), a short fraction of the EP
(short dynamic classification) or a single tactile frame (static
classification). A training strategy is proposed to evaluate the
model generalization capabilities to previously unseen object
poses. Next we describe the tactile sensor, experimental set up
and data collection process.

A. Tactile Sensor

The uSkin sensor [14] (Fig. 2 left) allows to measure
signals that proportionally relate to the shear and normal forces
individually applied to each of its 18 taxels, distributed in a
3x6 layout. The forces observed by each taxel are measured
through changes of a magnetic field caused by the displace-
ment of small magnets held within a malleable silicone rubber
dome; more details on the working principle, at the level of
the single taxel, are provided in previous works [20], [21]. A
piece of fabric placed across the surface of the sensor creates
an artificial skin which is sensitive to stretching and friction.
At each instance, 1 ≤ t ≤ N (where N corresponds to the
last available sample instance), each taxel, p ∈ {1, · · · , 18},
measures 3 signals, [xp,t, yp,t, zp,t], at a frequency of 180Hz;
signals xp,t and yp,t relate to the shear forces applied to it; zp,t
relates to the normal forces. Fig. 2 right, shows a graphical
representation of a complete (18 taxels) tactile imprint; the
signals zp,t measured by each taxel are represented by the
vertical motion of the corresponding vertices; the red vectors
represent the direction of the contact with each taxel (extracted
from xp,t and yp,t).

B. Experimental Setup

We consider the robotic setup shown in Fig. 3, composed
of a 6 DOFs arm (UR5) with a 1 DOF 2-jaws parallel
gripper (EZGripper). One uSkin tactile sensor is mounted
on one jaw of the gripper. Although two sensors (i.e. one
on each jaw) could provide more tactile information, that
could be useful for better object recognition, using one sensor
only has the advantage of reducing costs (of both purchase
and maintenance) and complexity (e.g. cabling), and might
therefore be a favourable choice in practical applications. A
Kinect2 depth camera is fixed perpendicularly above the robot
workspace.
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C. Data Collection

To collect the tactile data, a robotic Exploratory Procedure
(EP) is performed on 10 objects with distinct physical and geo-
metric properties (Fig. 4). The EP includes grasping, lifting,
shaking and finally placing each object back in its original pose
(total duration of 30 seconds); the whole procedure has been
programmed and executed using the GRIP software framework
[22] and it is described in detail in [23]. In our data collection,
each objects is placed in 5 different poses, within a 50cm x
50cm workspace, and a total of 15 grasps are executed for
each pose, leading to a total of 75 EPs for each object. The
grasps are generated automatically from depth sensing, using
GGCNN2 [24].

Because during the EP objects can slip from the gripper, and
we collect data only when the object is within the gripper,
the overall amount of data that we collect for each object
is different, since some objects slip more frequently than
others. For example, we have a total of about 33K tactile
frames for the Brush, about 130K for the Screwdriver and
the Spoolsolder, and about 160K-240K for each of the other
objects. We discuss in the results (Sec. V-B) how this data
imbalance may affect the recognition results.

The dataset is freely available here:
https://github.com/ARQ-CRISP/tactile object recognition.

D. Feature Extraction

This section describes the tactile features which are ex-
tracted from the data collected during the EP which are used
during the classification stage. As shown in V-A, each are
extracted either form the detected shear forces, normal forces,
or both.

Data statistical descriptions: For each component x, y, z, the
data is grouped in 3 groups: the raw data across all taxels
(w1); the sum of readings of each taxel, for each frame (w2);
or averaged by taxel (w3). Once the data is grouped (e.g.
considering both normal and shear forces), their minimum, f1,
maximum, f2, and standard deviation values, f3, are extracted
as features:

w1 = [x, y, z]p=1:18,
t=1:N

; w2 = [
18∑
p=1

xp,

18∑
p=1

yp,

18∑
p=1

zp]t=1:N

w3 = [

N∑
t=1

xt/N,

N∑
t=1

yt/N,

N∑
t=1

zt/N ]p=1:18;

[std(w1:3),max(w1:3),min(w1:3)] = [f1, f2, f3](w1:3).

Fig. 2. The uSkin sensor (left) and a visualization of 3D tactile readings (right)
when the sensor is subject to a contact. For each taxel, the deformation of the
surface reflects the normal force, and the direction of red vector represents
the shear forces.

Ratio of normal and shear forces: Two approaches are
considered to characterise frictional behaviour; the first (f4)
looks at the ratio between the maximum averaged normal force
experience by a single taxel and magnitude of the maximum
of the averaged shear forces (by taxel); the second (f5) looks
at the ratio of the forces at the moment when the sum of the
normal forces across all taxels is maximal, tmax.

f4(w3) =
max(w3(z))√

max(w3(x))2 +max(w3(y))2
;

f5(w2) =
w2(z, tmax)√

w2(x, tmax)2 + w2(y, tmax)2
;

tmax = argmax
t

w2(z, t).

Shear forces correlation: For t = tmax, the shear forces at
each taxel, w1(x, y) are transformed into polar co-ordinates,
with angle φ, and magnitude r. φ is then used to determine
the quadrant where each signal rests. We consider two signals
to be strongly correlated if they live in the same quadrant,
weakly correlated if they live in adjacent quadrants, or non-
correlated if they live in opposite quadrants. We attempt
to characterise objects with different shapes and different
frictional characteristics following two approaches:

• Proximal shear forces correlation (f6(w1,w2)): The
number of taxels, adjacent to compressed taxels, that
are strongly, weakly or non-correlated to the compressed
taxels.

• Overall shear forces correlation (f7(w1,w2)): Extract-
ing two binary flags that indicate if the majority of
shear forces detected by all taxels rest in the same or
adjacent quadrants (evidence of parallel forces), opposite
quadrants (evidence of symmetric forces), or a mixture
of both.

Squared Force Components in Phases: The EP is divided
into windows of 0.5 seconds each (n tactile frames). For
each window the individual force components are squared and

Fig. 3. Experimental setup for data collection: the Kinect v2 depth sensor is
used to automatically locate each object, which is then picked by the UR5
robot arm with the EZGripper (equipped with the uSkin sensor).
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averaged (w4):

w4 = [

n∑
t=1

x2t/n,

n∑
t=1

y2t /n,

n∑
t=1

z2t /n, · · · ,

· · · ,
N∑

t=N−n

x2t/n,

N∑
t=N−n

y2t /n,

N∑
t=N−n

z2t /n]p=1:18.

These windows are then grouped into three key phases of
the EP; “Pick & Lift” (≤3 seconds); “Raise” (3-11 seconds)
and “Shake & Place” (≥11 seconds). For each phase the
corresponding average and standard deviation are extracted as
features (f8(w4) and f9(w4), respectively).

Stability description: We start by determining if substan-
tive changes occur between each consecutive frames. To do
this, measurements from consecutive frames are subtracted,
w1(t)−w1(t−1), and compared to a predetermined tolerance
value. We proceed to extract the number of consecutive frames
where changes in tactile data is observed, f10(w1).

EP data length: In an attempt to capture objects which were
regularly dropped at a similar stages, the length of each EP is
considered: f11 = N .

Number of taxels compressed: When the normal force,
w1(z), measured at each taxel is greater than a predetermined
threshold (determined experimentally), that taxel is considered
to be compressed. Two approaches were taken for extracting
features based on compressed taxels: (1) extracting the total
number of taxels compressed at t = tmax (f12(w1,w2)); (2)
the EP is broken into windows of equal length in which
the average number of compressed taxels is recorded. The
maximum (f13(w1,w2)), mode (f14(w1,w2)) and standard
deviation (f15(w1,w2)) across all windows are extracted as
features.

Initial Contact: The first 0.5 seconds of the EP is broken
into two equally sized windows. For each window, f10(w1)
and max(w3(z)) (taxel that experiences the largest normal
force, in average) are recorded. The computed difference of
the averaged forces for each window is obtained. The same
operation is performed for f10(w1) values. Finally, a binary
flag is also extracted indicating whether max(w3(z)) changes
between windows. A feature, f16(w1,w3), is obtained from
the combination all of the previous.

Fig. 4. Images of the 10 objects used for classification. From left to right:
(a) metal box, (b) teddy bear, (c) tennis ball, (d) Lego Duplo block, (e)
screwdriver, (f) marker pen, (g) spool solder, (h) marble net (cardboard box
not included), (i) 3D printed adversarial, (j) brush.

E. Classifiers Used

We compare six classifiers (available from the Scikit-learn
python packages [25]) in terms of overall recognition accu-
racy:

• K-Nearest Neighbour Classifiers (with either K=1,
K=3 or K=5): Classifiers which assign new samples to
the same class as the closest neighbour(s) available from
training samples in the attribute space [26].

• Random Forest Classifier: An ensemble learning algo-
rithm which creates many binary decision trees based on
random sampling of the training data using subsets of
features. The classification of new samples is based on
the most popular class observed across all trees [27]. For
this paper the maximum number of trees is fixed at 100
and the maximum depth is 7.

• Gaussian Naı̈ve-Bayes Classifier: A classifier which
relies on probability theory and Bayes’ rule. The Gaus-
sian Naı̈ve Bayes (GNB) classifier assumes each feature
is independently generated from a Gaussian distribution
which is dependent on each object [28].

• Linear SVC Classifier: A support vector classifier (SVC)
which maximises the distance between the linear bound-
ary and the closest samples from each class [29].

IV. EXPERIMENTS

In this section we describe a set of experiments that aim at:
identifying the best classifier, features and exploration strategy
(Sec. IV-A), and testing the generalization capabilities of the
best performing model (Sec. IV-B).

A. Training and Validation

We perform different training and validation strategies
with 3 objectives: identify the best classifier; select the best
combination of tactile features; identify the best exploration
approach. For all classifiers, the dataset was divided into a
training dataset and a validation dataset with a 70:30 split
respectively. This split is stratified based on objects to ensure
a consistent ratio regardless of the total number of samples
available for an object.

To evaluate the performance of each classifier, the accuracy
metric is considered:

Accuracy =
1

nobjects

nobjects∑
object=1

TPobject + TNobject

Pobject
× 100;

where, nobjects, are the total number of objects, TPobject +
TNobject are the number of correctly classified (true positive
and true negative) samples per object, and Pobject are the
total number of samples fed to the model, per object. For
each classifier the random split of training and validation
data was repeated 10 times with the overall accuracy of the
classifier being the average achieved across all repetitions.
The samples used to train and validate the classifiers combine
the features described in Sec. III-D, extracted in 3 different
scenarios: Dynamic, with features generated from the whole
EP; Short Dynamic, with features generated from a period
of two seconds selected randomly from the EP; Static, with



KIRBY et al.: COMPARING SINGLE TOUCH TO DYNAMIC EXPLORATORY PROCEDURES FOR ROBOTIC TACTILE OBJECT RECOGNITION 5

features generated from a single frame selected randomly from
the EP.

For each of these 3 scenarios, the validation phase was split
into two key stages. The initial stage validates individual fea-
tures in isolation, for each classifier, whilst also assessing the
impact of the different force components (shear vs normal). In
the second stage, the most promising features were combined
iteratively to create a subset of features with which to train
our classifiers; we then identify the classifiers that produce the
best overall accuracies across objects.

B. Generalization Testing

The objective of generalization testing is to evaluate how
the classifier might behave in a real-world scenario where
objects are not placed in a previously observed poses, i.e.
an object being grasped in a different way from what was
recorded during training. For all objects, one of the five poses
is withheld from the training dataset to act as a test dataset.
Only the best classifier and the best combination of tactile
features obtained during the validation phase are considered
IV-A.

V. RESULTS AND DISCUSSION

Next we discuss the performance of the different classifiers
and feature combinations. Each is evaluated with regards to
the accuracy in recognizing objects from validation and test
datasets described in IV.

A. Training and Validation Results

First, each feature was tested in isolation. The accuracy
achieved by each individual feature, with the best classifier
(among the six classifiers compared) and using the full dy-
namic approach is shown in Table I. Then, to select the best
set of features, the following criteria was used: for each type
of feature, if the combination of shear and normal forces did
not increase the overall accuracy more than a predefined value
(i.e. 10% in our case), then only the best performing individual
component was selected (i.e. either shear or normal). This
was done to minimise the number of features and to keep
the complexity of the model bounded: ideally, this helps to
avoid overfitting and to obtain better generalisation, and it
reduces the computation time needed to train the model and to
generate predictions. The selected features (that will be used
in the final classifier) are highlighted in Table I. In general,
while the combination of shear and normal consistently leads
to better accuracy, shear-only typically outperforms normal-
only, and in some cases shear+normal does not bring much
advantage with respect to shear-only (i.e. less than 10%): in
those cases, we select the shear-only features, to reduce the
overall computational complexity of the model.
For the short-dynamic approach, the identified best performing
features are the same as in the dynamic approach (although in
this case f8 and f9 are extracted over the entire short-dynamic
window, and not during a specific phase of the EP); for the
static approach, features f1(w2:3), f3(w2:3), f4 and f12 have
been selected as the best ones.

Fig. 5 shows boxplots for the peak accuracy achieved in
classification of all ten objects using each type of classifier
with full dynamic approach, short dynamic approach and static
approach, respectively. In all approaches, the RF classifier
stands above the other ones, with an average accuracy of either
72%, 62% or 52% (depending on the approach) and very low
standard deviation (less than ±2%), while the GNB shows to
be the lowest performing. Regardless the classifier used, the
full dynamic approach always shows the highest classification
accuracy, followed by the short dynamic approach, and then
by the static approach.

Since the best results were achieved using the RF, this model
will be considered for the generalization test. For this classifier,
the average computation time (i.e. the time between the instant
in which the raw input data is measured by the sensor and
the instant in which the classification output is generated) is
189ms, composed of 187ms for computing the features (for
the Dynamic and Short-Dynamic case) and 2ms for generating
the prediction, running on a MacBook machine with a 2GHz
Quad-Core Intel Core i5 CPU and 16GB of memory. For the
Static case, the average time for computing the features is
shorter, only 60ms, since there are less features.

B. Generalization Testing Results

The generalization results are presented in Fig. 6. The
confusion matrices show the performance of the RF classifier
when one of the object poses (from Pose 1 to Pose 5) is
not used for training, but only for testing. Only the best
performing selected features highlighted in Table I are used.
The last confusion matrix shows the results when all the
poses are used for both training and testing: this is the same
of the RF result in Fig. 5(a), but shown ”per-object” rather
than averaged. The confusion matrices indicate that, for some
geometrically uniform objects, such as the Tennis Ball, the

TABLE I
A SUMMARY OF THE MAXIMUM ACCURACY ACHIEVED

ACROSS ALL CLASSIFIERS USING ISOLATED FEATURES AND
FULL DYNAMIC INFORMATION FOR ALL 10 OBJECTS

Peak accuracy across all classifiers (%)Features Shear (S) Normal (N) (S) & (N)
Raw Taxels (w1)

f1 / f2 / f3 32/ 31/ 32 22/ 26/ 21 44a/44a/44a
f10 27a

Sum of Forces (w2)
f1 / f2 / f3 32a/29/ 30a 20/ 22/ 18 37/ 43a/38

f5 23
Averaged Taxels (w3)

f1 / f2 / f3 33/ 27/ 34 26/ 20/ 20 47a/42a/44
f4 23a

Squared Forces (w4)
Pick & Lift: f8 / f9 32a / 29 20 / 20 42 / 38

Raise: f8 / f9 38a / 38 29 / 24 45 / 42
Shake&Place: f8 / f9 36a / 32 30 / 24 45 / 42

EP Data Length: f11 20
SF Correlation: f6 / f7 14 / 19
Taxel Compression

f12 33
f13 / f14 / f15 33a/31/ 22

Initial Contact: f16 44 32 52a
aFeatures selected for final classifier.
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Fig. 5. Boxplots of the highest accuracy achieved for each classifier. (a), (b) and (c) show the results for classifying 10 objects using each validation
approaches: (from left to right) dynamic, short dynamic, and static.
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Fig. 6. Confusion matrices presenting the predicted label (x-axis) against the
true label (y-axis). The RF classifier is used, with the selected features from
Table I. The pose used for testing (and therefore omitted during training) is
highlighted above each matrix.

Teddy Bear or the Marker, classification rates are high and
consistent in all cases, with an accuracy of more than 90%
when all poses are used, and always more than 60% when
one pose is missing. In contrast, for other objects, it is very
difficult for the classifier to generalize to a certain pose that
was not observed during training: an example of this can
be seen in Pose 4 for the Marble Net, that is consistently
wrongly classified as the Teddy Bear. This is not surprising,
since objects which are uniform or symmetrical in terms of
shape and stiffness create similar tactile imprints even when

grasped in different poses, whilst objects with a more complex
and deformable shape, such as the Marble Net, may appear
completely differently in testing (i.e. when a novel grasp is
performed) compared to the data used for training. In fact,
for these complex objects, recognition is difficult even when
all the poses are considered, exactly because of this higher
variability in the gripper-object contacts from one pose to
another (see for example the Adversarial object, which in
fact is a very complex shape). In addition, as explained in
Sec. III-C, for objects that tend to slip more during the EP (e.g.
Brush, Screwdriver, Spoolsolder) there is less data available,
and this might affect the recognition accuracy. In fact, this
could be considered a general limitation of the EP approach: in
order to collect valuable tactile data, the grasp should be robust
enough for the object not to slip during the EP. Ideally, this
data imbalance could be avoided by using the same number
of samples for each object, i.e. the number of samples of the
object with less samples. However, we tested this solution with
our dataset (detailed results not shown for space constraints)
and we verified that using such a balanced dataset (with little
data for each object) increases the recognition accuracy for the
”worst” objects only slightly (i.e. between 2% and 5%) and
instead reduces the recognition accuracy for the ”best” objects
of a consistent amount (i.e. more than 10%).
An additional analysis we performed was to test the RF
classifier trained with all features described in Sec. III-D,
instead of the best performing selected features only. Results
are displayed in Table II, and they show that there is no clear
increase in recognition accuracy when using all the features.
Therefore, we can conclude that the selected features we
identified are indeed a good subset that generalizes well to
unseen poses, while keeping the computational complexity of

TABLE II
COMPARISON BETWEEN USING SELECTED FEATURES AND

ALL FEATURES IN THE FULL DYNAMIC CASE:
THE DIFFERENCE IN ACCURACY IS NEGLIGIBLE

Pose Selected Features All Features Difference
1 62.5% 62.5% -
2 66.7% 68.3% +1.6%
3 64.0% 60.4% - 3.6%
4 60.5% 62.8% +2.3%.
5 67.6% 69.4% +1.8%
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the classifier (and therefore also the time needed to obtain
predictions) bounded.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We show experimentally that using a dynamic Exploratory
Procedure (i.e. pick, lift, shake, place an object) improves
tactile object recognition, as compared to a single touch on
the object; this is possible by using a tactile sensor (uSkin,
in our case) that can measure both normal and shear forces
on multiple contact points, and it is particularly interesting
for applications in which the object can be recognized after it
has been grasped and manipulated for at least a few seconds,
for example in pick and place operations in logistics or man-
ufacturing. We also show that the combination of both shear
and normal forces improves the recognition performance, with
respect to using only normal or only shear, making a case
for the use of tactile sensors that can collect this type of
information, even if the spatial resolution is lower than e.g.
camera-based tactile sensors; when a smaller subset of tactile
features is selected, to reduce the computational complexity
of the classifier, we show that shear forces seem to be even
more useful than normal force, especially with data collected
during the shaking of the object. Our results demonstrate that
when the model has full visibility of data gathered throughout
the entire EP an average recognition accuracy of 72% can be
achieved (which is a 38% improvement with respect to single
touch, that showed a 52% accuracy); the specific numerical
values are not very relevant, and it would be hard to compare to
recent results in the literature, that are obtained with different
objects and robotic setups; however, what 72% tells is that
despite some success in object recognition, there is still margin
for improvement. Notably, our EP is realized with a standard
and relatively simple robotic setup, in semi-structured settings,
i.e. the objects are autonomously picked by the robot using
vision. This represents a crucial difference with respect to
most works in the literature, and it expands the applicability
of these systems to real-world scenarios. However, the lack
of a fully structured procedure also comes at a cost. While in
general the model shows very good recognition capabilities for
geometrically uniform objects (more than 90% accuracy), the
accuracy drops significantly for more complex objects; this is
expected, since complex objects can generate a wide variety
of gripper-object interactions when they are grasped in semi-
structured settings (i.e. autonomous grasping from vision),
and therefore the tactile readings could be very different the
next time the same object is grasped. This problem could be
mitigated by making sure that each object is always grasped
with the same gripper-object configuration: this might be
possible in some applications (i.e. very structured industrial
settings, in which the target objects are always in the same
fixed position, possibly tightly held in place before they are
grasped and picked by the robot), but challenging in more
unstructured settings.
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