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Abstract

The space-air-ground integrated network (SAGIN) aims to provide seamless wide-area
connections, high throughput and strong resilience for beyond the fifth generation (B5G)
and future communications. As a multidimensional network, SAGIN adopts different
communication links across three segments: the space segment with satellite networks,
the air segment with aerial networks, and the ground segment with territorial networks.
Apart from Ka-band millimetre wave (mmWave) frequencies being utilized for low earth
orbit (LEO) satellites and medium earth orbit (MEO) satellites communications, with
emerging smart devices brought online and crowded under-6GHz spectrum, mmWave fre-
quencies have also been widely considered to support both aerial networks and territorial
networks. To ensure stable wireless communications and tackle the severer propagation
loss of mmWave transmission, massive multiple input and multiple output (MIMO) and
intelligent reflecting surfaces (IRSs), which can configure directional beams and bring
huge improvements of radiated energy efficiency, are two technologies to be employed in

SAGIN.

Conventionally, perfect channel state information (CSI) is the fundamental knowledge
to enable building reliable communication connections. With massive antenna arrays
installed on orbiting satellites, navigation unmanned aerial vehicles (UAVs), and base
stations, it’s very challenging to acquire real-time mmWave CSI in SAGIN due to the
heavy overheads and the dynamic environment. Most existing mmWave channel esti-
mation work proposed compressive sensing (CS) based algorithms to reduce the heavy
overheads with the assumption that the environment is in two-dimensional (2D) space
and static without any movement. However, in SAGIN, 2D and static assumptions are
not practical. Hence, tracking the dynamic three-dimensional (3D) CSI using small

training overheads becomes a crucial and demanding task.



In this thesis, 3D channel tracking algorithms are proposed based on unique character-
istics of air-ground and space-air links. For IRS-assisted air-ground links, we propose
a 3D geometry dynamic channel model with both UAV navigation and mobile user
movement. We further develop a deep learning (DL)-based channel tracking algorithms
with two modules: deep neural network (DNN) channel pre-estimation for denoising and
stacked bi-directional long short term memory (Stacked Bi-LSTM) for channel tracking.
For space-air links, we exploit the on-grid and off-grid single user (SU) and multi-user
(MU) UAV-satellite communications. Two statistical spatial and temporal correlation
sparsity of the dynamic channel models called 3D two-dimensional Markov model (3D-
2D-MM) and multi-dimensional Markov model (MD-MM) are developed by introducing
the more realistic 3D movement in the system. Based on the message passing rule and
the proposed Markov structures, 3D dynamic turbo approximate message passing algo-
rithm (3D-DTAMP) and multi-dimensional dynamic turbo approximate message passing
(MD-DTAMP) are derived for channel tracking. Our proposed algorithms can achieve
better channel estimation accuracy with comparable complexity and smaller training

overheads.
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Chapter 1

Introduction

Space-air-ground integrated network (SAGIN) has attracted intensive attention from
both academia and industry for beyond the fifth generation (B5G) communication and
future wireless communications. The advantages from three segments (i.e., space, air,
and ground) can be exploited to support multifarious services and scenarios in an effi-
cient and cost-effective manner. Territorial networks in the ground segment can serve
mobile users through high data rates in urban or suburban areas. Aerial networks in
the air segment can be utilized to boost capacity in areas with congested or disaster
terrestrial infrastructure. Satellite networks in the space segment can help reach ubiqui-
tous coverage in rural and remote areas. Moreover, both satellites and unmanned aerial
vehicles (UAVs) can assist terrestrial networks and relieve the overload data demands

.

With the rapid increase of mobile data growth and the use of smart devices, the
bandwidth shortage has become an unprecedented challenge for wireless services. The
less-congested millimetre-wave (mmWave) frequency spectrum, offering the potentiality
of high-capacity wireless transmission of multi gigabit-per-second(Gbps) data rates, has
been widely considered as a promising technology solution to such significantly increase

network capacity [2]. Moreover, for low earth orbit (LEO) satellite and medium earth
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orbit (MEO) satellite communication in SAGIN, Ka-band mmWave frequency has been
widely deployed [3]. Therefore, multiple mmWave frequencies will be operated across
three segments in SAGIN. However, there are two major characteristics of mmWave prop-
agation that should be drawn special attention: atmospheric attenuation and shadowing
by objects. The atmospheric oxygen absorption is especially severe at the frequency
around 60GHz and 120GHz, and the rain attenuation is also greater than that of sub-
6GHz [4]. Furthermore, due to the small wavelength, mmWave signal can be easily

interrupted by obstacles, such as human bodies, doors, buildings, and vegetation [5].

To mitigate the vulnerability of the mmWave transmission, two advanced technolo-
gies have been broadly studied: massive multiple-input multiple-output (MIMO) and
intelligent reflecting surfaces (IRSs). Although the short wavelength is the main reason
behind the strong path loss of the mmWave transmission, the large antenna arrays can
be integrated into a smaller form, due to the principle that the distance between any
two antenna array elements is basically half of the wavelength. With the help of extra
antenna elements in the massive MIMO system, highly directional beams can be gener-
ated and bring huge improvements of the radiated energy efficiency [6]. Similarly, an IRS
is an artificial surface that can be implemented with large arrays or metamaterial ele-
ments to customize the propagation of the radio waves impinging upon it [7]. In SAGIN,
satellites in the space segment, UAV relays in the air segment, and base stations in the
ground segment can all be installed with large antenna arrays. At the same time, IRSs
can be installed on buildings, walls, street lamps, and so on. Conventionally, to enable
both MIMO and IRSs on configuring directional beams, beamforming matrices should
be designed based on the knowledge of the channel state information (CSI). However,
in SAGIN, the large number of antenna arrays/ reflection elements and the dynamic
propagation environment caused by satellite orbiting, UAV navigation and ground user
movement impose more difficulty to obtain accurate real-time channels. Moreover, state-
of-art studies are not practical, as they focus on 2D static channel estimation without

considering the time-varying environment.
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Different from channel estimation in static case, channel tracking can provide more
reliable dynamic CSI to support communications. This is because it considers the adja-
cent observations correlation across time domain in dynamic environment. This thesis
will present several mmWave dynamic 3D channel tracking algorithms based on specific

characteristics in air-ground and space-air links.

1.1 Motivation and Contribution

The detailed motivations and contributions of my PhD research are summarised in the

following.

1.1.1 Deep Learning Based 3D Channel Tracking for IRS-assisted Air-

Ground Communications

As wireless communication networks move towards B5G, mmWayve is a promising tech-
nology to accommodate explosive increment of users online with wide spectral efficiency.
To mitigate the high penetration loss and short wireless paths of mmWave transmission,
UAVs aided communications have drawn dramatically attention due to its flexibility in
establishing line-of-sight (LoS) communications in SAGIN. However, with the blockage
in the environment, and due to the movement of UAVs and mobile users, the direc-
tional paths are very vulnerable. TRSs that can reflect signals to generate virtual LoS
paths are capable of providing stable communications and serving wider coverage. From
our knowledge, state-of-art air-ground communications haven’t considered the help of
IRSs in the system. Hence, for the channel estimation problem in IRS-assisted UAV
communications systems, there are still many challenges to tackle: good estimation per-
formance, the small pilot overheads, and the dynamic channel caused by the mobility of
both UAV and mobile users. Therefore, in such a complex dynamic environment of the
IRSs-assisted air-ground links in SAGIN, efficient channel tracking algorithms should be

designed to support stable wireless communications.
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In this thesis, we exploit a three-dimensional (3D) geometry dynamic channel model
in the mmWave IRS-assisted UAV-enabled communication system which considers the
velocities of UAV and mobile users, and the blockage parameter of LoS link. Moreover,
we develop a novel deep learning (DL) based channel tracking algorithm consisting of two
modules: channel pre-estimation and channel tracking. A deep neural network (DNN)
with offline training is designed for denoising in the pre-estimation module. Furthermore,
for channel tracking, a stacked bi-directional long short term memory (Stacked Bi-LSTM)
is developed based on a framework that can trace back historical time sequence together
with a bidirectional structure over multiple stacked layers. Simulations have shown that
the proposed channel tracking algorithm requires fewer epochs to convergence compared
to benchmark algorithms, such as least square (LS) and DNN. It also demonstrates that
the proposed algorithm is superior to different benchmarks (DNN+LSTM, DNN+Bi-

LSTM) with small pilot overheads and comparable computation complexity.

1.1.2 3D Channel Tracking for SU Space-Air Communications

Acting as another crucial link segment of the SAGIN, space-air communication has drawn
much attention. Due to the LEO satellite orbiting and 3D UAV trajectory navigation, it
is a key challenge to track real-time channel information in such dynamic environment.
Fortunately, different from the conventional channel estimation, there are some distinct
properties that can be considered to support the channel tracking in space-air links: the

high non-stationary and the dominant LoS rays.

In this thesis, we explore the 3D channel tracking for a Ka-band space-air commu-
nication systems. We firstly propose a statistical dynamic channel model called the 3D
two-dimensional Markov model (3D-2D-MM) for the UAV-satellite communication sys-
tem by exploiting the probabilistic insight relationship of both hidden value vector and
joint hidden support vector. Specifically, the hidden value vector can be treated as the
amplitude of the channel gain and the joint hidden support vector can be treated as

the sparsity of the directions in angular domain. For the joint hidden support vector,
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we consider a more realistic 3D support vector in both azimuth and elevation direc-
tions. Moreover, for each direction, the spatial sparsity structure and the time-varying
probabilistic relationship between degree patterns named the spatial and temporal cor-
relation are studied, respectively. Furthermore, we derive a novel 3D dynamic turbo
approximate message passing (3D-DTAMP) algorithm to recursively track the dynamic
channel through the message passing rule based on the proposed 3D-2D-MM structure.
Numerical results show that our proposed algorithm achieves superior channel track-
ing performance named time-averaged normalized mean square error (TNMSE) to the

state-of-the-art algorithms with lower pilot overheads and comparable complexity.

1.1.3 3D on-grid and off-grid Channel Tracking for MU Space-Air

Communications

To further explore the more practical scenario of space-air communications in SAGIN,
the spatial relationship between multiple UAVs should be further considered. Moreover,
as conventional mmWave channel models are proposed based on 3D on-grid angles, it is

inevitable to study the true 3D off-grid case5E| with improved channel tracking accuracy.

In this thesis, we further propose a statistical dynamic channel model called the
multi-dimensional Markov model (MD-MM), which investigates the more realistic spa-
tial and temporal correlation in the sparse UAVs-satellite channel. Specifically, the spa-
tial and temporal probabilistic relationships of multi-user (MU) hidden support vector,
single-user (SU) joint hidden support vector, and SU hidden value vector are investi-
gated. The specific transition probabilities that connect the SU and MU hidden support
vectors for both azimuth and elevation directions are defined. Moreover, we derive a
novel multi-dimensional dynamic turbo approximate message passing (MD-DTAMP)
algorithm through the message passing rule based on the proposed MD-MM structure
for tracking the 3D dynamic channel in the multiple UAVs system. Furthermore, we also

develop a gradient update scheme to recursively find the azimuth and elevation offset

!Specifically, for on-grid case, the angle range is divided into multiple average grids. The true angle
will be approximated as the nearest on-grid degree. Differently, off-grid can be treated as the true value.
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for 3D off-grid estimation. Numerical results verify that the proposed algorithm shows
superior 3D channel tracking performance called TNMSE with smaller pilot overheads

and comparable complexity.

1.2 Publications

The publications during my PhD study are listed below. Part of [J2] and [C1] are included
in Chapter 2. The work in [J4] is discussed in Chapter 3. The work in Chapter 4 has
been published as [J1] and [C2]. Moreover, the work in Chapter 5 has been accepted as
[J3].

Journal papers:

[J1]. J. Yu, X. Liu, Y. Gao and X. Shen, ”3D Channel Tracking for UAV-Satellite
Communications in Space-Air-Ground Integrated Networks,” in IEEE Journal on Selected
Areas in Communications, vol. 38, no. 12, pp. 2810-2823, Dec. 2020, doi: 10.1109/JSAC.
2020.3005490.

[J2]. J. Yu, X. Liu, H. Qi and Y. Gao, "Long-term Channel Statistic Estimation for
Highly-Mobile Hybrid MmWave Multi-User MIMO Systems,” in IEEE Transactions on
Vehicular Technology, doi: 10.1109/TVT.2020.3040794.

[J3]. J. Yu, X. Liu, Y. Gao and X. Shen, ” 3D On and Off-Grid Dynamic Channel
Tracking for Multiple UAVs and Satellite Communications,” in IEEE Transactions on

Wireless Communications, accepted with minor revision, 2021.

[J4]. J. Yu, X. Liu, Y. Gao ,C. Zhang, W. Zhang, ” Channel Tracking with Deep
Learning in Intelligent Reflection Surface Assisted UAV Communication System,” in

IEEE Transactions on Wireless Communications, major revision, 2021.

[J5]. J. Yu, R. Zhang, Y. Gao and L. Yang, "Modularity-Based Dynamic Clustering
for Energy Efficient UAVs-Aided Communications,” in IEEE Wireless Communications
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1.3 Thesis Outline

Chapter 2 provides an overview of the mmWave channel estimation and channel track-
ing in SAGIN. The structure of the SAGIN is firstly introduced. The reason why our
research focusing on mmWave channel estimation in SAGIN is addressed. Conventional
CS-based and DL-based mmWave channel estimation algorithms are explained. More-

over, due to the dynamic links in SAGIN, two basic mmWave channel tracking algorithms
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are further reviewed.

Chapter 3 proposes a 3D geometry dynamic channel model in mmWave IRS-assisted
air-ground communications. A two modules DL-based channel tracking scheme is devel-
oped: channel pre-estimation for denoising using DNN and channel tracking using Stacked
Bi-LSTM.

Chapter 4 proposes an on-grid 3D-2D-MM for the SU space-air communications. For
the joint hidden support vector, a more realistic 3D support vector in both azimuth and
elevation directions is explored. The spatial and temporal correlation are all considered
in each direction. A novel 3D-DTAMP algorithm is proposed to track the dynamic chan-
nel based on the 3D-2D-MM priors.

Chapter 5 proposes a statistical dynamic channel model called MD-MM for the MU
space-air communications. The spatial and temporal probabilistic relationships of MU
hidden support vector, SU joint hidden support vector, and SU hidden value vector are
explored. A novel MD-DTAMP algorithm is proposed to track the 3D dynamic channel.
A gradient update scheme is further developed to find the 3D offset for the off-grid esti-
mation.

Chapter 6 draws the conclusions of this thesis and potential future research work.



Chapter 2

Background

2.1 Overview of SAGIN Networks

In order to handle the dramatically increased traffic demands of different communication
services, such as the Internet of Things (IoT), big data, cloud and edge computing, it’s
imperative to exploit the technology to provide wireless communication services with high
data rate at any place on the earth. The SAGIN[8] has been drawn dramatic attention
for its advantages such as seamless wide-area connections, high throughput, and strong
resilience for B5G communications [1]. In recent years, several announcements have been
published to deploy satellite constellations into LEO which containing several hundred
to thousands of rather small-sized satellites to construct the SAGIN, such as OneWeb,

Norwegian STEAM network [9], and SpaceX[10], etc.

2.1.1 SAGIN Architecture

There are mainly three segments in the SAGIN multidimensional network: the space
segment with satellite network, the air segment with aerial network and the ground

segment with territorial network [11]. The architecture of the SAGIN can be found in

Fig. 2.1}
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Figure 2.1: The illustration of the Space-Air-Ground Integrated Networks

e Space segment: The space network consists of satellite constellations which are
orbiting at different altitude. Based on the altitude, satellites can be categorized
into geostationary orbit (GEO), MEO, and LEO. Moreover, satellite constella-
tions can construct various satellite networks with different characteristics, such
as narrowband satellite networks, broadband satellite networks, and multi-layered

satellite networks with inter-satellite links and inter-layer links.

e Air segment: The air network is mainly composed of low and high altitude plat-
forms such as UAVs, airships, and balloons. These aerial mobile systems are acting
as base stations and relays to provide larger coverage wireless access services. Com-
pared to ground base stations, the aerial base stations in the air network can be
low-cost, easy-deployment and can provide wider coverage of communication ser-

vice.

e Ground segment: The ground network includes different terrestrial system net-
works such as cellular networks, mobile ad hoc network (MANET)[12], wireless
local area networks (WLANS), and so on. However, the coverage of ground net-

works is limited especially in rural, remote, maritime and disaster areas.
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2.1.2 Why mmWave Channel Estimation in SAGIN?

As more and more devices are brought online, the mobile data demand grows dramat-
ically, and the spectrum bands below 6 GHz are becoming increasingly crowded. The
underutilized mmWave frequency spectrum is a promising technology to accommodate
explosive increment of users online with wide spectral efficiency and multiple Gigabit

data transmission speeds [2], [13].

Recently, a number of candidate frequency bands in the mmWave range from 24
- 100 GHz, specifically, the following bands were approved for study (in GHz: 24.25
-27.5; 31.8 - 43.5; 45.5 - 50.2; 50.4 - 52.6; 66 - 76;81 - 86)|14], [15]. The initial com-
mercial deployments of the fifth generation (5G) system based on both sub-6 GHz and
at mmWave frequencies (up to 52GHz) are already underway during 2019, focusing on
enhanced mobile broadband (eMBB) based on the Release 15 (Rel-15) and Rel-16 of
the 3rd Generation Partnership Project (3GPP) specifications [16]. 3GPP has already
nearly completed a study of use cases, deployment scenarios and requirements for the
full frequency range 52.6-114.25 GHz, and this is expected to lead to a detailed study of
technical considerations in Rel-17 and specifications in Rel-18 [16]. Apart from 3GPP,
the Institute of Electrical and Electronics Engineers (IEEE) also has recently defined
specifications in the 60 GHz mmWave band in 802.11 ay|17]. Moreover, Ka-band which
is the mmWave spectrum range between 26.5 GHz to 36 GHz is widely used in MEO

and GEO satellites system to achieve high-speed data transmission [3], [18].

Hence, for future wireless communications, multiple mmWave frequencies will be
deployed across different communication links in SAGIN, such as space-air links[19],

space-ground links [14], and air-ground links|20].

2.1.2.1 Propagation Characteristics of mmWave Communications

Although mmWave can provide wider available bandwidth, due to the characteristics of
the mmWave transmission such as weather dependent and sensitivity to obstacles (as

shown in Fig. [2.2)), there are some fundamental technical challenges to tackle [2].
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e Atmospheric attenuation|21], [22]: This kind of attenuation of mmWave transmis-
sion is caused particularly by the absorption of oxygen, water vapour gas, and of
course rain. Moreover, there are some other inter-related factors such as temper-
ature, altitude, pressure and the most important one, operating carrier frequency

that determines the intensity of gaseous absorption.

e Shadowing by objects: Since mm-waves do not effectively penetrate or diffract
around, static and dynamic obstacles such as foliage, buildings, walls, cars, and

even human bodies can shadow the signal [5].

To mitigate the vulnerability of mmWave links caused by atmospheric attenuation
effect and shadowing effect, advanced technologies have been widely studied and devel-

oped.

2.1.2.2 Enable Technologies and Technical Challenge

Due to the mmWave propagation characteristics, some advanced technologies such as
massive MIMO, and IRSs are developed to enable the feasibility of mmWave communi-

cations.

e Massive MIMO (also known as large-scale antenna systems)[@, : As the dis-

tance between any two antenna elements in the antenna array is normally half of
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the wavelength, with frequency increases, the large number of antenna elements
can be packed into a smaller form to support massive MIMO system. With the
support of large antenna arrays, multiple directional beams can be generated to
support spatial multiplexing. The fundamental physics of generating sharpness
energy for directivity communication is a coherent superposition of wave-front [6]
as shown in Fig[2.3] By appropriately shaping the signal sent out from each antenna
element, different phase shifts of the signal emitted can lead to a constructive wave-

front with focused sharpness regions heading to the specific terminals. Thanks to

Figure 2.3: The illustration of coherence superposition.

such directional communications, atmospheric attenuation can be mitigated with
improved radiated energy efficiency. At the same time, the narrow beams gener-
ated implies securer links can be constructed against eavesdropping and jamming

25).

e IRSs (also known as large intelligent surfaces and re-configurable intelligent sur-
faces) [7], [26], [27]: An IRS is a software-defined surface with low cost and low
energy consumption that can be installed in building facades, ceilings, indoor walls,
road signs, as well as pedestrians’ wearable devices |28]. There are two different
kinds of implementation: a large array of reflecting elements whose inter-distance is
of the order of half the wavelength and the use of metamaterial elements whose size
and inter-distance is much smaller than the wavelength [27]. As mentioned before,
mmWave suffers severer shadowing by obstacles, by re-configuring the phase shifts

of elements on the IRS, the blocked signals can be reflected and form virtual LoS
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links between mobile users and base stations with enhanced transmission signal

power.

The technologies mentioned above support the severe path-loss of mmWave links with
directional communication beams that are generated from both massive antenna arrays
at the terminal and reflection elements on IRSs. Normally, the design of the beamform-
ing matrices to configure directional beams is based on perfect knowledge of channel
state information. In SAGIN, large antenna arrays can be installed in satellites|29],
[30], UAV relays|31], [32], and base stations[6], [24] across three segments. Moreover,
as a compensating for the vulnerability of mmWave transmission, the deployment of
IRSs in the ground segment is inevitable |28]. Therefore, due to the large number of
antenna/reflection elements and the dynamic propagation environment with satellite
orbiting, UAV navigation, and ground user movement in SAGIN, it is even challenging

to acquire precise channel state information [33].

2.2 Channel Estimation in mmWave Communication

2.2.1 Conventional mmWave Channel Model

In a conventional mmWave MIMO system|34], the BS with Npg antenna elements com-
municates with a mobile station (MS) with Nyg antenna elements. The channel model

of each MS for the k" subcarrier can be written as

Ncluster Nfay

Hk] = \/NpsNus Z Z Pc,rAMS (92/[7«8) G'ES ( CBE) 6j27rfc’rkTS, (2.1)

c=0 r=1

where Nejuster and Ny,y denote the number of propagation clusters and the number of
rays in each cluster, p., represents the gain of the " ray in the ¢ cluster, fe,r and
Ts denote the Doppler shift and sampling period, respectively. Besides, agg (¢CB§) and
ans (02747,8) represent the receive and transmit array response vectors, where ¢ and 0 are

the azimuth of angles of arrival (AoAs) and departure (AoDs), respectively.
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The channel model for MS can be briefly written as

H = Agg (diag (g)) (Ams)", (2.2)

where diag (g) € CI*F is a diagonal matrix of the channel gains, which means there are
L = Njyster X Nray channel paths between the MS and the BS. The channel gain of the

MS incorporating the effect of the Doppler shift vector is

T
g = [g1717 "'7gleray7 ""chlusterJ-"'gNClustereray] ’ (23)

with time-varying Doppler shift gain as g., = pc,rej%f erkTs - Apg € CNBs*L ig the AoA
vector at the BS side, Ayg € CNVMs*L g the AoD vector at MS. Here, Apg € CVBs*L ig

defined as

Ags = [aBs (01,1) ;- @BS (A1, Nray) > -+ GBS (ONuruerersNray ) | (2.4)

and Ayg can be written in a similar way. As we take the uniform linear array (ULA)

into consideration and the array response vector at BS can be written as

1 - 27 . - 27 . T
ags (¢C,T) = 17 ey e]Tdsmd)C’r? 3] ede(NBS_l)Sm(bc’r ) (25)

Vv NBs
where ¢ is azimuth of AoA. This model only consider the quantized on-grid angles.

Due to spatial channel sparsity, the channel model can be extended to a virtual model

and then processed by compressive sensing techniques, which is presented as

H = Apg (ding (§)) (Aws) (2.6)

where diag (§) € CP*P is a sparse matrix with the number of non-zero elements as L,
Apg € CNesxD | Ay 1o € CVs*D are the array response vectors dictionary matrices with

spatial grids D at BS and MS, respectively.
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2.2.2 Compressive Sensing Based Approaches

In mmWave wireless communication systems that have a large number of array elements
installed at the antenna of base stations, due to the limited number of scatterers in
the environment, the channel can be quite sparse under appropriate spatial domain
[34]. Hence, compared to the traditional Nyquist sampling theorem, compressive sensing
(CS) techniques have been widely leveraged for mmWave channel estimation to reduce

the number of measurements.

Mathematically, CS sampling process can be written as

y=Yh+mn, (2.7)

where y € CV*! denotes the measurement vector, h € CM*! denotes the signal with
length M > N, ¥ € CV*M represents the linear transform of signal h, and n € CN*!

is the noise. The signal h can be written as a sparse format with a suitable basis, i.e.,

h = Ag, (2.8)

where A € CM*M ig the basis matrix, and g € CM*! is the sparse representation of
h in the A domain. The sparse g has the non-zero support P = {m : g[m| # 0} with
|P| < M. Hence, by substituting h into the linear measurement process in (2.8, the
measurement vector y in (2.7)) can be formulated as

y=YAg+n, (2.9)

~~
P

with @ € CV*M a5 the measurement matrix. By leveraging CS algorithm, the high
dimensional sparse signal g can be recovered from significantly smaller size of measure-

ments vector y based on the model in (2.9) and the known measurement matrix @.

By observing the signal model in (2.9)), there are two aspects that can affect the

recovery accuracy of the CS algorithms: the design of the measurement matrix and the
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sparse structure of the signal [35]. Conventionally, different CS algorithms and different
applications have their unique requirements for the measurement matrix. Moreover,
in mmWave wireless communication systems, the physical scattering structure of the
propagation environment has a burst structure of the channel support in angular domain
[36] and a clustered structure in the spatial domain [37]. Therefore, in mmWave channel
estimation, it is necessary to design efficient CS algorithms based on the requirement
of measurement matrix and specific sparsity structures under various applications and

scenarios.

For mmWave wireless communications channel estimation, the measurement vector
y in (2.9) is the received signal, the sparse signal g is the sparse channel information in
an appropriate domain that needed to be estimated. Several common CS methods that

are widely applied for mmWave channel estimation are introduced as follows.

2.2.2.1 Orthogonal Matching Pursuit

Greedy approaches can iteratively improve the estimation by choosing the column of
the measurement matrix that has the most correlation with the residual. As the basic
and most commonly adopted greedy algorithm, orthogonal matching pursuit (OMP)
implements the heuristic by incrementally pursuing a new support candidate and finding

the optimal solution that describes the detected supports [38].

Algorithm 2.1: OMP based channel estimation
Input: @, received signal y, and activated path number P.
Output: Recovered path gain g.

1: Initialization: g <+ O, S + O, r + y.
2: for iter =1: P do

3:  j < argmax; H[@]firﬂg

4: S+ Suj.

5 re (I-2sk)y

6: end for

7.9 = dijrsy

The details of the OMP based channel estimation are introduced as follows. To begin

with, the initialization gives the support S = @ and recovered path gain g = @. The
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next iteration updates the residual
= (I - dssqsg) v, (2.10)

where (-) represents pseudo inverse. To be noticed, the sparse level which is the activated
total paths P in wireless communications can be defined as the overall iteration. The
support position is updated based on the correlation of the sensing matrix and the

residual through
S:SUargmaXH[@]ﬁrHQ, (2.11)

where (-)¥ represents conjugate transpose and || - || is the I norm. Finally, the recovered

channel gain g can be updated based on least-squares:
g=>oky. (2.12)

The pseudo-code for OMP based channel estimation can be found in Algorithm

Besides the OMP algorithm, there are many variants of OMP such as compressive
sampling matching pursuit (CoSaMP)[39] and subspace pursuit (SP)[40]. The difference
between OMP and these two algorithms is that the OMP cumulatively detects the sup-
port in the desired signal, while CoSaMP, SP update more columns to the active set,
and they allow removal of elements from the active set as well. However, these greedy
algorithms do not incorporate more complicated sparsity structures based on various

applications and environment.

2.2.2.2 Sparse Bayesian Learning

Sparse Bayesian learning (SBL) as a Sparse-Bayesian-inference-based algorithm has been
deployed to solve the sparse channel estimation CS problem[41], [42]. It can deal with
the unknown parameters involved in the CS model, such as the uncertain parameters

induced by the priors, or the uncertain parameters involved in the measurement matrix.



Chapter 2. Background 19

The details of the SBL based channel estimation are introduced as follows. Given

the CS model in (2.9), SBL assumes a Gaussian prior model of the signal to be sensed:

p(g;v) =CN (g ]0,diag (7)), (2.13)

where ~ is defined as a vector of prior hyper-parameters. To be noticed that g is modelled
as a statistical signal, where CN (g | 0, diag (7)) denotes the probability density function
of Gaussian distribution of variables g with means 0 and covariance matrix diag (7). By
considering the Gaussian noise n which has the variance o2, the probability density

function of the received measurement vector y conditioned on g can be written as

p(y|g;0®) =CN (y|g,0°I). (2.14)

The purpose of SBL is to maximize the marginal likelihood (ML) with o2 and hyper-

parameters «. This can be expressed by

(0%, YML) = arg max p (y;v,0%) = argrfg/p(y | g;0°)p(g;7) dg. (2.15)

Since the above problem cannot be solved in closed form, iterative estimators such as the
Expectation-Maximization (EM) based SBL algorithm have to be employed [43]. The
basic idea behind the EM framework is to find a convex surrogate function approximat-
ing the original objective, and an optimum of the original objective can be found by
iteratively optimizing the surrogate function until convergence. The surrogate function

is defined as

QYY) = Egy2 o p(y | g5 0%)p(g37), (2.16)

where (-)*) denotes the parameters in the k' iteration and Egjy.02 () denotes the
expectation of a random variable with the conditional probability distribution f(g |

y; 02, 'y(k)). Based on the Bayesian rule, the posterior probability term in p(g | y; o2, 'y(k))
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is accounted by

o2 0y _ Py 1g:a?p(gy) ) 5 517
plg|y;0°,~") o wr2) (y | wp3), (2.17)

where p = 0256y, and X = (626 & + T—1)"" with T = diag () [43]. Then in

2(k+1) A (k+1)

A are updated by maximizing the surrogate function

maximization step, o

Q(fy,fy(k)). Details can be expressed as

v = B0+,

(2.18)

yo — B+ (02) M M - tr(zzo)]H

2(k+1)
o N ,

where zﬁ,’i)m is the m'" diagonal element of () and u%k) is the m'" element of p2(*).

Upon convergence, g is then obtained as the expectation of the posterior distribution

as
g = pur, = (27D + o3y diag(var)) Dy. (2.19)

The pseudo-code for SBL based channel estimation can be found in Algorithm

Although SBL is proved in general settings of numerical simulation to solve the CS
problem with superior recovery performance, the limitations of the SBL are that the
two-layer hierarchical prior can not handle more complicated sparse priors that may

occur in practice, such as the Markov tree priors or the hidden Markov priors.

2.2.2.3 Approximate Message Passing

Approximate message passing (AMP) [44] applies Gaussian and quadratic approxima-
tions at the asymptotic region (i.e., M — o0) to loopy belief propagation, which is
fast and highly accurate and admits to rigorous analysis. Because of its fast conver-
gence, the iterative AMP algorithm has been used to recover the CS problem with low

computational complexity. The detailed technical explanation can refer to [44].
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Algorithm 2.2: SBL based channel estimation
Input: @, dictionary length M, maximum iteration K, received signal y, and stop

criteria e.
Output: g
1: Input y
2: while (AQ > e and k < K) do
3: E-Step:
4 p®) o2ty
5 N0 ((072@H) @H 4 T-1) 7
6: M-Step:
7 A =P 2
8 AQ <+ Q — Qold
9: end while
10: g <

Algorithm 2.3: AMP based channel estimation
Input: @, received signal y, and total number of iterations K.
Output: Recovered path gain g.
1: Initialization: gy + @, v_1 < 0, by < 0,co < 0.
2: for k=0: (K —1)do
3 v y—Pgr+bvg_q + ctv,il
4 o fluell3.
5 Ty < gy + @H’Ut
6:  Gri1 < Nst(Te; A, 0F)
7

_ 1y M mst(rr,i)e,07)
bkt1 = N1 o,

_ 1M Mst(rriideo?)
8: Cktr1 = NEizl B 87"%. t
i

9: end for
10: g =gk

The pseuodo-code details of the AMP based channel estimation are shown in Algo-
rithm The term b vi_1 and the term ckv,f_l in step 3 are called Onsager Correction,
which are introduced into the AMP algorithm to accelerate the convergence [45]. The
most important step of this algorithm is step 6, in which the sparse information gy is
updated through the soft threshold shrinkage function ns:. The shrinkage function is a
non-linear element-wise operation that considers the sparsity structure of the vector g
to approach a sparser result. In Step 7 and Step 8, the element-wise derivatives of the

H

shrinkage functionns at the input vector r; and its conjure vector ;" are respectively

calculated to obtain by and cpy1.
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However, with different applications and scenarios of the channel estimation, the
general AMP algorithm cannot fully exploit the prior distribution of the signal. By

exploring the various sparsity structure, the estimation can be more accurate.

2.2.3 Deep Neural Network Based Approach

DL has been successfully applied in a wide range of areas with significant performance
improvement in different fields, such as, computer vision, natural language processing,
speech recognition, and so on [46]. Generally, DNN is a deeper version of artificial neural
networks (ANNs) with multiple layers (more than three hidden layers). The structure
of the network of ANN and DNN can be found in Fig[2.4]

In both ANN and DNN, each layer of the network consists of multiple neurons, each
of which has an output that is a nonlinear function such as, Sigmoid function or the Relu
function. For DNN, the output of the overall network o is a cascade of the nonlinear

transformation of the input data ¢, mathematically as

o= f(,0) = fr—1(fr—2.--f1(2)), (2.20)

where f is the nonlinear function, £ denotes the total number of layers, and 0 represents

the weights and bias in DNN.

Hidden Layer

Input 9 Output

Figure 2.4: The structure of (a) ANN, (b)DNN.

During the training phase, the model is trained to minimize the difference between
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the output of the neural network and the supervision data, and the weights and bias
can be learnt through back propagation. For channel estimation, DNN can be regarded
as a black box, and the sparsity characteristics of the complicated mmWave channel

information can be acquired through the training procedure [47], [48].

2.3 Channel Tracking in mmWave Communication

In SAGIN, the mobility of ground users and vehicular systems, the navigation of UAVs,
and the orbiting satellites all need accurate alignment of narrow mmWave beams to
avoid severe loss of signal power through transmission. Moreover, to establish a stable
link, it is non-trivial to obtain the real-time channel information. Different from the
static channel estimation, channel tracking can provide more accurate estimation in
the dynamic environment as it considers both the correlation across time sequence and
the observation at the current stage. However, this imposes a formidable challenge on

modelling and tracking the time-varying channel with small training overheads.

2.3.1 Prior-Based CS Approaches

In sparse channel estimation, consecutive frames tend to share some multi-paths due
to the slowly varying propagation environment between base stations and users [49].
As such, considering the temporal correlation as prior information is the main idea
behind channel tracking. Utilizing temporal correlation as extra information for dynamic
channel tracking together with conventional CS algorithms can be a robust solution. For
example, in [49]—[51], both the prior information obtained from the temporal correlation
and the channel sparsity have been exploited to design the prior-aided sparse channel
tracking schemes. Moreover, [52], [53] considered the dynamic evolution of the channel,
however, they failed to study the dynamic spatial sparsity structure while the channel
evolves through time. Although both prior information obtained from the temporal
correlation and the channel sparsity have been exploited to design the prior-aided sparse

channel tracking schemes in [49]-[53], the spatial sparsity structure and the probabilistic
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temporal dependency of the channels jointly to track the dynamic channels are not

considered.

2.3.2 Recurrent Neural Network

As recurrent neural network (RNN) is a class of machine learning that has been widely
used for time-series tracking and prediction [54]. Different from DNN which only learns
the network parameters from training data, RNN can utilize the memory of past states of
the sequence input data. Hence, besides prior-based CS based approaches, such machine
learning algorithm can also be utilized for channel tracking. The structure of the RNN

for channel prediction can be found in Fig. [55].

Hidden
Layer
Input 2 Output

3

Figure 2.5: The structure of RNN.

Basically, a simple RNN consists of three layers: an input layer, one hidden layer,
and an output layer. Each neuron connection between the activation of a neuron in
depredecessor layer and the input of a neuron in the successor layer is assigned a weight.
Hence there are two weight matrix W7 and W5 as shown in Fig. The input for the
hidden layer at time slot ¢ can be expressed as

z,(t) = Wiy(t) +r(t) + b, (2.21)
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with by/ denotes the bias vector in the hidden layer. The recurrent component r(t) =
Rg(t — 1), which denotes the mapping of the output at the previous time slot with
matrix R. The activation vector of the hidden layer is y' () = f(z, (1)), with f(-) as the
activation function, normally Sigmoid function. Then, the input for the output layer is

zo(t) = Way' (t) + by, with b, as the biases in the output layer. Hence the result of the

output can be written as g(t) = f(2,(t)).

Similar to the operation of DNN, back propagation in combination with gradient
descent learning is deployed for the training of the RNN model to update the weights
and biases iteratively. Once the training process completed, the trained network can be

used to process upcoming sequences.

2.4 Summary

This chapter presents the overview structure of the SAGIN and the importance of
mmWave channel estimation in SAGIN. Some fundamental mmWave channel estimation
algorithms are introduced, such as CS-based algorithms: OMP, SBL, AMP, and DNN.
Moreover, some mmWave channel tracking algorithms: Prior-based CS algorithms and
RNN are also introduced. Based on different links across three segments of SAGIN,
different channel tracking algorithms can be proposed accordingly. For the links with a
clearer sparse structure, temporal correlation and the dynamic sparsity structure of the
information can be jointly considered. For the links with more complex structure, the
DL-based approach can be considered thanks to its powerful learning ability and lower

computation complexity.
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Deep Learning Based 3D Channel
Tracking for IRS-assisted

Air-Ground Communications

Millimeter wave (mmWave) communications have drawn significant research efforts for
supporting high data rates and capacity to resolve the spectrum crunch crisis caused
by emerging massive connectives.|56]. However, the small wavelength of mmWave with
the high penetration loss mainly rely on the line of sight (LoS) communication paths
[57]. The mobility unmanned aerial vehicles (UAVs) acting as aerial base stations can
provide a solution in mmWave communications on serving wider coverage, supporting
reliable connections, and providing energy efficient communications [58], [59]. The flex-
ibility of UAVs has led to plenty of applications such as security surveillance, real-time
monitoring, rescue, and emergency communications [60]. Although UAV-aided systems
are considered as promising techniques for future wireless communications for smart city,
the complex urban environment poses potential blockage problem on LoS links between

navigation UAVs and ground users [61].

26
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To address the blockage problem, intelligent reflection surfaces (IRSs) can be installed
to assist the UAV-aided system to offer ubiquitous communication services [61]-|64].
IRSs that can construct virtual LoS paths to enhance the quality and coverage of wireless
propagation has become an invaluable solution on overcoming signal pathloss of mmWave
transmission and on securing communications [65], [66]. This is because that the low-
cost IRS can intelligently adjust its phase shifts to steer signal power towards targeted
directions and reduce information leakage. Additionally, deploying IRSs in the UAV-
aided system can further help with the time- and energy- consuming problem caused by

UAV navigation when some users are far away [62].

Moreover, to achieve high quality communications, it is indispensable to acquire accu-
rate channel state information (CSI) for effective transmissions. Compared to the CSI
estimation in the conventional communication systems, channel tracking in IRS-assisted
UAYV systems are more challenging in a time-varying environment with small overheads.
Since IRS is unable to perform signal processing, the large number of reflecting elements
of IRS, and the mobility of UAV and users all leads to high complexity. In this chapter,
a DL-based channel tracking algorithm is proposed in IRS-assisted air-ground communi-
cations. This chapter is structured as follows. Section [3.1] outlines the introduction and
contributions of the work in this chapter. The mmWave IRS-assisted air-ground wireless
communication system is introduced in Section In Section a DL-based channel
tracking algorithm is proposed. Then, the proposed channel tracking performance over
a time-variant channel is quantified in Section [3.4l Finally, conclusions are drawn in

Section 3.5

3.1 Introduction

3.1.1 Related Work

Conventional channel estimation algorithms such as minimum mean square error (MMSE)
and LS are not suitable for mmWave communication with massive MIMO system [67].

This is because of the substantial training overheads needed for accurate channel esti-
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mations when the total number of transmit antennas is very large. By considering
the approximate sparse characteristic of the channel information in time, frequency,
angular and Doppler domains, compressive sensing (CS) based estimation techniques,
such as orthogonal matching pursuit (OMP) and compressive sampling matching pur-
suit (CoSaMP), have been broadly investigated and developed with further reduced pilot
overheads [|68]. However, since the demands and applications burst and more advanced
technologies are installed in wireless communication systems, it is critical to develop
higher dimensional channel estimation and tracking algorithms based on more complex

channel models in different scenarios [69].

Compared to the terrestrial base stations, the UAV-based aerial base stations’ advan-
tage is the adjustable altitude and mobility. This flexibility enables UAVs to play a vital
role in wireless communications. Particularly, UAVs can assit the communication devices
such as sensors and monitors that are unable to transmit over a long distance due to
the energy constraints [70]. Although the existing statistical MIMO channel models are
suitable for most communication environment, the unique features, such as the three-
dimensional(3D) space movement of UAVs at high altitude can not be captured [32].
Hence, recent work [32], |71]-|73] proposed geometry-based UAV channel models for
air-to-ground communication environment. The first work that considered the UAV’s
mobility from the moving velocities to directions in the vertical plane is reported in [32].
Moreover, authors in [71]-[73] derived the time-varying parameters of the AoAs and
AoDs to describe the nonstationarity of the dynamic channel caused by the movement
of the UAV. Differently, authors in [71] ignored the scatterers’ movement and contained
a LoS link and only one non-LoS link. Authors in [72] investigated the cluster-based
multiple propagation paths. Besides, the initial azimuth and elevation AoAs and AoDs

were further considered in |73].

Apart from UAVs aided communications that can provide effective communication
services, the deployment of IRSs in wireless communications has attracted remarkable

attention [74]. The IRS that consists of an array of reflecting elements with low cost and
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low energy consumption, can be installed in building facades, ceilings, indoor walls, road
signs, as well as pedestrians’ wearable devices|28]. By re-configuring the phase shifts of
elements on the IRS, the reflected signals can be propagated. They can form virtual
LoS links between mobile users and base stations with enhanced transmission signal
power|[75], [76]. Also, an IRS-aided system can improve spectral efficiency and enhance
the communication coverage capability [77]. However, the promised communication per-
formance brought by an IRS relies on good knowledge of CSI. Hence, obtaining accurate
CSI with low complexity channel estimation and tracking approaches is indispensable

and more challenging for practical IRS implementation [28§].

Recently, channel estimation in IRS-assisted systems has been widely studied based
on both conventional|78]-[82] and specific [83], [84] communication scenarios. For con-
ventional scenarios, [78] proposed a three-phase pilot-based channel estimation frame-
work for IRS-assisted MU communications, in which different links are estimated in
different phases, separately. The authors in [79] developed two customized schemes,
simultaneous-user channel estimation and sequential-user channel estimation, by sepa-
rately considering different dominant links in the real-world scenario. Moreover, [80]-[82]
all considered the conventional scenario but with part of the reflecting elements switched
on in IRS. For some specific communication scenarios, [83] considered an indoor IRS-
assisted channel model which assumed that the LoS path being blocked by the obstacles
and the virtual LoS path reflected by IRSs as the major link. Double-IRS cooperatively
aided MIMO system that has cascaded single-reflection and double-reflection links have

been further exploited in [84].

Data-driven deep learning (DL) techniques have shown remarkable effectiveness to
revolutionize communication systems [28]. In contrast to the traditional model driven
channel estimation approaches, DL with powerful learning capabilities can be adopted
for estimating the CSI that has beyond linear correlations in emerging advanced com-
munication environment [85[-[89]. A deep residual learning method for channel estima-

tion in [RS-assisted multi-user communications by considering the channel model with
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both LoS links and virtual LoS links is proposed in[85]. The authors in [86] proposed
a learned denoising-based approximate message passing network to learn the channel
structure for beamspace mmWave massive MIMO systems. Similarly, a deep denoising
neural network-assisted CS channel estimation framework for mmWave IRS systems with
reduced training overheads has been proposed in [87]. Moreover, authors of [88] devel-
oped a DL-based solution that enables IRS to learn to interact with the signal optimally.
[89] proposed a twin convolutional neural network (CNN) architecture to estimate both

LoS and cascaded non-LoS paths in IRS-assisted mmWave massive MIMO systems.

3.1.2 Motivation and Contribution

Although [32], [71]-[73] studied the UAVs aided MIMO system, the carrier frequencies
were considered around 5.9GHz or below. With a considerable amount of devices being
brought online, deploying mmWayve frequency above 28GHz for wireless communication
is the inevitable trend [23]. When considering mmWave UAVs aided communication, the
LoS channel can be easily blocked by the obstacles and can suffer more vital penetration
loss. Hence, it is necessary to leverage IRSs to reinforce the communication quality and
extend coverage in the mmWave UAVs aided communication networks. Moreover, the
environment and the mobile users are assumed to be static for simplicity in the existing
work [78]-[89] for channel estimation in an IRS-assisted communication system. How-
ever, in practice, the mobility of users cannot be ignored. Hence, time-varying channel
estimation or channel tracking is a potential research topic but full of challenge. Fur-
thermore, the proposed DL channel estimation techniques in [85]—[89] simply considered
off-line training. None of the mentioned work considered the time-sequence of historical

information for channel tracking.

For the channel estimation problem in TRS-assisted UAV communications systems,
there are mainly three challenges to tackle: good estimation performance, the small
pilot overheads, and the time-varying channel caused by the mobility of both UAV

and mobile users. Motivated by the aforementioned literature review, we propose a DL-
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based channel tracking algorithm in mmWave IRS-assisted UAV-enabled communication
systems with lower training overheads and significantly improved tracking performance.

The main contributions are summarized as follows:

e From our knowledge, this is the first work that develops a 3D geometry-based
dynamic channel model in mmWave IRS-assisted UAV-enabled communication
system with fixed IRS, navigation UAV, and mobile users. We define the mmWave
time-variant channel model consisting of both dynamic LoS link (user-UAV) with
blockage parameter and dynamic cascaded virtual LoS link (user-IRS-UAV) with
activation parameter. The velocities, the max Doppler effects, the propagation

delays and the time delays are specially included in the system model.

e We propose a DL-based channel tracking mechanism to track the time-varying
channel in the developed system. The proposed algorithm consists of two modules:
channel pre-estimation and channel tracking. The pre-estimation is achieved by
using a deep neural network (DNN) to perform off-line training on pre-collected
training dataset. The tracking module is designed as a stacked bi-directional long
short term memory (Stacked Bi-LSTM) that can track the CSI over a time-varying
channel in a data-driven manner. The Stacked Bi-LSTM is constructed by a frame-
work that involves a certain historical trace-back period in the time sequence and

bidirectional structure over multiple stacked layers.

e In comparison with the benchmark algorithms, the proposed channel tracking algo-
rithm requires less epochs for the convergence of the loss function during the off-
line training phase. Moreover, simulations demonstrate that the proposed scheme
(DNN followed by Stacked Bi-LSTM) shows better channel tracking performance
with smaller pilot overheads than the benchmark algorithms, and it has comparable

complexity.
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Figure 3.1: (a) The illustration of the IRS-assisted UAV-enabled communication sys-
tem. (b) The system model of the uplink of the IRS-assisted UAV-enabled single-user
communication.

3.2 System Model

This chapter considers the uplink IRS-assisted UAV-enabled multi-user system, which
consists of M element antenna array equipped on UAV and N reflecting elements
installed on IRS serving K users. The k" user is assumed to be equipped with a
single antenna. To enhance the quality of wireless communication services between UAV
and mobile users, IRS is considered to be placed at the high-rise building to provide
extended coverage and enables less movement of UAV, . Important notations are

summarized in Table B=Al

As shown in Fig. (a), there are mainly two different kinds of links in the system:
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the user-UAV LoS link and the user-IRS-UAV virtual LoS link. The k' user-UAV LoS
link at time ¢ is represented by dy(t) € CM*1. The k' user-IRS-UAV virtual LoS link at
time ¢ consists of two LoS sub-links: the user-IRS sub-link u(t) € CV*! and the IRS-
UAV sub-link G(t) € CM*N, The illustration details of the dynamic 3D IRS-assisted
channel model is presented in Fig. [3.1] (b). The moving speed of UAV and k" user are

represented by vy and vg.

The LoS link between k' user and UAV at time t is dy,(t) = [dgm(t, 7)] a5 [71], [73)]

with

Ak (t,T) = Qg e T2 FTom (1 — 75 & Los)

eJQWfUt[COS(OéU,k —YU,a)cosBu, kcosyu, g+sinfBu, ksinyu, g] (3, 1)

327 fitlcos(au k =k, )c0sPu k]
)

where (2, ,, is the attenuation factor between the mth (0 <m < m’ <M ) antenna
element on UAV and the single antenna on k" user, f, is the carrier frequency, Thom =
Ly, /c is the propagation delay of the waves between the mt" antenna element on UAV
and single antenna on k" user at time ¢ with Li,m as the distance between user and
m!" antenna element, TU,k Los is the time delay of this k" user-UAV LoS link at time
t, fu = % and fi = 3¢ are the maximum Doppler frequency caused by the movement
of both UAV and k' user, ay, and Sy, are the azimuth and elevation angle between
the k™" user and UAV, Y,a and yu g are the azimuth and elevation angle of the UAV’s
moving direction, v o is the azimuth angle of the k" user’s moving direction associate

with the UAV location. The time delay of this LoS link is

Dy,

2
CQCOSﬁUJC’ (3 )

TU,k,LoS =

with Dy, as the zy-plane antenna center distance between UAV and k¥ user, ¢y as light

!The reason of having the m' ™" element presented in the illustration Fig. is to show the antenna
flat angle ¢y. Similar to the existence of the n " reflection element on IRS, the physical flat angle is
represented by ¥s.
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speed.

To be noticed, for vitual LoS link, the main difference between dy, ,,, (¢, 7) in (3.1)) and
each LoS sub-link is that the IRS is installed at a fixed place without moving at all i.e.,

fs = 0. Hence, the k™" user-IRS LoS sub-link at time # is uy(t) = [ugn(t, 7)]nx1 With

Uk,n (t, T) = Qk,neij%rfc‘rk’"(s (T — TS,Ic,LoS) (3 3)

ej%fkt[cos(as,k Y0 )C0SBs k|
7

where (2, ,, is the attenuation factor between the nth 0<n< n <N ) reflecting element
on IRS and the single antenna on k** user, TSk, Los is the time delay of this kth user-IRS
LoS sub-link at time t, agp and s are the relative azimuth and elevation direction
between k' user and IRS, 7k, is the azimuth angle of the k' user’s moving direction,
Tk = Lin/c is the propagation delay of the waves between the nt" antenna element on
IRS and single antenna on k" user at time t with Ly, , as the distance between user and

nt" element on IRS.

The IRS-UAV LoS sub-link at time ¢ is G(t) = [gmn(t, T)| mxn With

Gmn(t,T) = Qe 72T (1 — 75 5 108)
(3.4)

ej27rfUt[COS(aU,S —VU,a )COSBU,SCOS'YU,B +SinBU,SSin'\/U,B}
9

where (2, ,, is the attenuation factor between the mt" antenna element on UAV and the
n? reflecting element on IRS, TU,S,Los 1s the time delay of this IRS-UAV LoS sub-link
at time ¢, ay,gs and Su,g are the relative azimuth and elevation direction between UAV
and IRS, 7, , = L n/co is the propagation delay of the waves between the m!" antenna

element on UAV and n'” element on IRS with L, n as the distance.
The corresponding time delay for two sub-links at time t are

Ds i,

TS kLoS = — o
cocosfs
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Table 3-A: Table of Important Symbols
| Symbols i Explanations
M, m,m’ Total number and index of antenna elements of UAV
N,n,n Total number and index of elements of TRS
Ny Total number of training pilot
auk, Buk | Azimuth and elevation AoAs/AoDs of user-UAV link
as iy Bs i Azimuth and elevation AoAs/AoDs of user-IRS link
au, s, Bu, s | Azimuth and elevation AoA/AoD of IRS-UAV link
Y.a,YU,8 | Azimuth and elevation angle of UAV movement
Tk, Angle of k" user movement
Bt.n Amplitude at n'" element of IRS at time slot ¢
bt Phase shift at n” element of IRS at time slot ¢
vy UAV movement speed
VU,zy;VU,> | UAV speed’s horizontal and perpendicular components
Vg Speed of k" user movement
fu Maximum Doppler frequency of UAV
S Maximum Doppler frequency of k" user
Yy Antenna physical flat angle on UAV
g Reflection elements’ physical flat angle on TRS
| Tem | The propagation delay of the wave between UAV m!?
antenna element and k" user single antenna at time ¢
| T | The propagation delay of the wave between IRS P~
reflection element and k" user single antenna at time ¢
| T | The propagation delay of the wave between UAV mt*
antenna element and IRS n'” reflection element at time t
TU k. LoS The time delay of £ user-UAV LoS link at time ¢
TS k LoS The time delay of k™" user-IRS LoS link at time ¢
TU,S,LoS The time delay of IRS-UAV LoS link at time ¢
Dy The zy-plane center distance between UAV and k™ user
Dg The zy-plane center distance between IRS and UAV
Dg The zy-plane center distance between IRS and k" user
km Attenuation factor between the UAV m!" antenna
element and the k' user single antenna
| Qen | Attenuation factor between the IRS n'" reflection |
element and the k™" user single antenna
Q| Attenuation factor between the UAV m!" antenna |
element and the IRS n" reflection element
| Lem | The distance between the UAV mf* antenna element |
and the k' user single antenna
| Len | The distance between the IRS nf* reflection element |
and the k' user single antenna
| Ly | The distance between the UAV m™ antenna element |
and the IRS n'” reflection element
and
TU,S,LoS = Ds (3.6)

cocosfus’
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The k' user-IRS-UAV virtual LoS link at time ¢ can be expressed as G(t)®(t)uy(t) €
CM>1in which &(t) = diag(e(t)) € CV*V is the phase shift matrix of IRS with ¢ (t) =
[ﬂmej‘bf*l, ...,Bt,nej‘mv", ...,Bt,NeWt’N]T e CN*! where B € 10,1] and ¢y, € [0,27] are

the reflection amplitude and phase shift of the subsurface n of IRS at time slot ¢ [83].

Hence, the IRS-assisted UAV uplink at time ¢ is the superimposition of the vitual

LoS link and the LoS link, which can be given as

H,,(t) = G(1)®(t)u(t) + midi(t)

— G(t)diag(up(t) p(t) + mpdi(t) k = 1, K, (3.7)

Hc (1)

where Hc 1 (t) € CM*N denotes the cascaded k' user-IRS-UAV channel at time slot ¢,
. € {0, 1}MXl is the blockage parameter that is distributed according to a Bernoulli

distribution [92] with the blockage probabilities for LoS link is py.

The received signal at the UAV from K users at time slot ¢t can be expressed as

k=1
(3.8)

K
= [Hep(t), medi(t)] [0(t); 1]7 s + Ny (1),
h—1 —
H,(t) r(t)

where Y (t) € CM*Ne ig the MU received signal, Hy(t) € CM*(N+D jg the channel
matrix that need to be estimated, r(t) € CWN+D)x1 g e C*Np ig the training pilot with
skskH = PN, and sj, sy, = 0, where P is the power of each user, kq, k, € 1,2, ..., K, and

ko # kp. N, (t) ~ CN(0, O'?V, I) is the AWGN noise matrix.

For MU case, since the pilot sequences of each two users are orthogonal, the received
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signal vectors for k¥ user can be decoupled by multiplying a sequence skH as

1 ! H o o 1 ! H
prY(t) s = Hy(t) + TNka(t)Sk
= [He (1), midi ()] [o(); 1T + N (t)sf!,
YO LT PN,
Hk(t) ’I‘(t) N
N (t)

where Y (), € CM*Ne is the received signal vector at the UAV from the k" user,
Hy.(t) € CM*(N+1) js the channel matrix that need to be estimated, r(t) € CV+D*1

N (t) ~ CN(0,0%.I).

The channel Hy(t) is estimated by a channel tracker, denoted by F(-), which depends
on the received signal Y(t)/, r(t), and the training pilot s;. The estimated channel
Hy(t) = F(Y3(t);7(t), sx). Hence, the pilot-aided channel estimation problem can be

written as

minE [ Hy () — Hi(t)

2,

s.t. tr (sksg) = K,

(3.10)

where F; = N,TsP is the energy constraint with N, as pilot overheads length, T§ as the

length of one time slot, and P denotes the transmit power.

To be noticed, because of the mobility of both UAV and k" user, the relative azimuth
and elevation angle and the relative distance constantly change through time. We assume
the initial position of the UAV is (zu,yu,zu) = (0,0, Hy), k' user is (xk,yr, 21) =
(Dy cosay i, Dy sinay g, 0), IRS is (xs,ys,25) = (Dscosayk, Dgsinay g, Hs). The
UAV speed vy has the moving direction vy o and vy g. The user speed vy has the mov-
ing direction < o. Hence, the location should be updated for t*" time slot, i.e., UAV is
(0,0, Hy —vytsinyy ), k" user is (Dy, cos ay kgt o8 Y o, Dy sin oy g+ vkt sinyg o, 0).
Hence, the updated relative azimuth, elevation angles and distances in — can be

calculated based on new locations. Furthermore, we assumed that the antenna on UAV
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Lim = \/(|Dk sinay x| — Ap sinyy)? + (D cosayy + Ay cosypy)? + 234, (3.11)

Ly = \/(|Ds,k sinag k| — Ap sintg)? + (Dg cosas  + Ap cospg)? + 22, (3.12)

I (|Dg cos au g — A, cospy + Ay, cos ihg)?+ (3.13)
m,n — . . . . .
(Dgsinaug + Ay sints — Ap, sintpy)? + (2u — 25)?
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Figure 3.2: The illustration framework of the overall channel tracking algorithm.

has fixed physical flat position angle . Similarly, the reflecting surface on IRS has
fixed physical flat position angle 1)s. The element distance on both antenna and reflect-
ing surface is A = A/2. Therefore, the propagation delay of the waves Ty, Tk ns Tm.n

can be calculated accordingly.

By taking the relative position in Fig(b) as an example, with A, = J(M +
1 — 2m)A as the distance between the mt" element and the center Oy, and A, =
3(N 4+1—2n)A as the distance between the n'" element and the center Og, the distance
between the k" user and the m!" element on UAV antenna L m, the distance between

k" user and n" element on IRS is Ly, n, and the distance between mt" element on UAV

antenna and n'" element on IRS is L., n, are calculated as in 1) 1 , and |)
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3.3 Proposed Deep Learning Based Channel Tracking Algo-

rithm

Data-driven DL based framework is now widely designed and employed for channel
estimation |47], [93], [94]. This is because that DL can extract the characteristics of
the complex environment information from received signals without the need of prior
knowledge about the channel statistics [94]. Additionally, DL-based algorithms have low
computational complexity with simple operations such as multiplications [93]. However,
all these DL-based channel estimation work ignore the time sequence of the CSI. In
another word, the adjacent observations of the time-varying CSI can be further utilized

for more precise prediction.

To track the time varying channel, it is necessary to give neural networks the ability
of learning the behavior of the correlation across time domain. There are two widely
considered methods called recurrent neural network (RNN) and LSTM on solving the
time-varying tasks, such as natural language processing. Both methods consider the
information from the previously entered data and the currently entered data to predict.
Specially, RNN has feedback loops to maintain information over time. However, it’s diffi-
cult for RNN on learning long-term temporal dependencies due to the vanishing gradient
problem. Differently, LSTM introduces input and forget gates for better preservation of

long-term dependencies on dealing gradient flow [95].

By combining the advantages of DNN with multilayer perception mechanism on
extracting characteristics of complex environment and LSTM with different input/output
layers on passing information across time domain, in this section, DNN followed by
Stacked Bi-LSTM framework is proposed to track the time sequence CSI in IRS-assisted
UAV communication systems. The illustration of the overall structure of the proposed
algorithm is shown in Fig. There are mainly two modules in this framework: DNN
for denoising pre-estimation based on off-line trained model and Stacked Bi-LSTM for

tracking with the assistance of the history sequence information. To present the chan-
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c CMNpx1

nel tracking problem in the vector form, we denote yi(t) = vec (Y(t)) and

hi,(t) = vec (E,(t)) € CMN+1)x1,

3.3.1 Module One: DNN Channel Estimation Framework

DNN is an extension version of the artificial neural network with multiple hidden layers
between the input and output layers [46]. To be specific, each hidden layer has multiple
neurons and each output is the weighted sum of neurons operated by a nonlinear function.
The Sigmoid function fsigmeid () = H% and the ReLU function freru(z) = max(0, z)

are the widely used nonlinear function for activation in the DNN.

The pre-estimation DNN is shown in Fig. (a) with £p — 2 hidden layers among
total £p layers. The I** hidden layer of the network consists of N, neurons where 2 < [ <
Lp—1and 1< ne <N, The DNN input vector Y (t) = [R(yx(t)); I(yx(t))] € RMNpx2
with the real and imaginary part of yx(t) as R(yx(t)) = [R(y,1(t)), ---» R(yr,mn, ()] and
I(yr(t)) = [3(yr(t))s .-, I(Yr, M, ()], respectively. The total number of input layer
neurons is 2M N,. Similarly, the DNN output vector H(t) = [R(hi(t)); T (hi(2))] €
RMN+1)x2  The total number of output layer neurons is 2M (N +1). The total number

of neurons on each hidden layer is defined as 16 M Np.

To express the DNN transmission principle, we use #; represents the input of the

[t layer neurons. o1,n. Tepresents the output of the nt? neuron at I** layer. VVZ(DNN)

bl(DNN)

and denote the weight matrix and the bias vector of the I*" layer. Hence, each

neuron’s output can be expressed as

oine = fi (B 4 wf2T) 514

Ine

with f; ,, as the activation function for I** layer and n’* neuron. For training stage, with

total B batch size, the output of the DNN with b batch can be expressed as

ﬁk(b’ t) = f,CD(u-fz(yk(i),t); 03)...;0,,,). (3.15)
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Figure 3.3: The structure of Stacked Bi-LSTM.

During the training phase of constructing DNN, the parameter set 8; = (VVl(DNN),

p(DNN)

) ) which represents the weights and biases of the DNN model at the I*" layer can

be obtained through gradient descent by recursively minimize the loss function Loss(8)

until convergence. The loss function across all the layers is defined as

B
Loss(6) 2M(N1+1)B S (#slb.) — Ha, t))2 , (3.16)
;

with @ denotes all the parameter set across all the layers, Hy (b, t) = [R(hy (b, t)); I (hp
(b,t))] denotes the true value of the channel in the b batch of the training process.

The detail of the training process of the channel pre-estimation DNN can be found in

Algorithm

3.3.2 Module Two: Stacked Bi-LSTM Channel Tracking

As the second module of the overall algorithm framework, Stacked Bi-LSTM tracks the
time sequence CSI based on pre-estimation denoised channel information (i.e., Hye t-T)
to Hy(t)) and previous channel tracking output (i.c., Hy(t — T — 1) to Hp(t — 1)).

Specifically, T denotes the total history time slot utilized in the model.

3.3.2.1 LSTM

As an enhancement of the recurrent neural network, LSTM is a gradient-based learning

algorithm which is able to connect previous information to the current task [96], [97].
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Algorithm 3.1: Training of Module One: Channel Pre-estimation DNN

1 Input:Training received signal Vi (1), ..., Vi (7T), training true channel
information Hy (1), ..., Hi(T).
2 Output:Trained pre-estimation DNN.
3 Initialization:Randomize initial weights 6.
1: Generate a set of training sequences YV (1), ..., Vi(T') and Hg (1), ..., Hp(T') with
selected SNRs and pilot overheads size Np.
2: Design the pre-estimation DNN framework with £p layers and N, neurons in each
hidden layer. Set the learning rate and batch size.
3: while not convergence do
. Update weights 8 by minimizing loss function in (3.16)).
5: end while

Normally, the time sequence data fed to the LSTMs along the chain-like structure in a
forward direction. The illustration of a single LSTM cell is shown in Fig. on the
left hand side. (This illustration structure only takes the first layer forward LSTM as an

example.)

The main difference between LSTM architecture and widely known RNN is the hidden
layers in each LSTM cell. The first layer is called forget layer which is also known as
the forget gate f,:. It consists of the information passed from previous layer 7:L(t -1)
and current denoised input ’}:[(t) with weights Wf, Wf and bias by along with activation

function:

fou=0 (Wfﬂk(t) + W HL(E— 1) + bf) . (3.17)
The second layer is the input gate 4,; which can be written as

igi =0 (ka(t) FWH(E - 1) + bl-) . (3.18)

It has the similar structure as the forget gate f,; but with different weights Wi, W; and

bias b;. The third layer is the cell input state ¢, ; that can be calculated as

ey = tanh (WFH(t) + WoHk(t = 1) +b.) (3.19)
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through a tanh function. The final layer is called output gate o4+, which can be calculated

as
041 = o (WoHk(t) + WoHly(t = 1)+ b,) (3.20)

To summarize the aforementioned hidden layers structure, W and b are the weight
matrix and bias vector of the corresponding parameters. o represents the gate activation

function which is normally sigmoid function.

Apart from the cell input state ¢, ¢ in the hidden layers, there are two other cell states
in the structure: the previous cell output state ¢(t — 1) fed in the current LSTM cell,
and the current cell output state ¢(t) passed to the next LSTM cell. The output state

at current time t can be updated as
C(t) = .fg,t &® C(t — 1) + 'ig,t ® cg,t7 (321)

A ® B denotes the Kronecker product. More importantly, the conventional input layer
is the denoised time sequence ﬂk(t) at time slot ¢ passed from DNN pre-estimation.

Finally, the output layer can be calculated as

Hi(t) = 041 © tanh(c(t)). (3.22)

3.3.2.2 Stacked Bi-LSTM

The illustration of the Stacked Bi-LSTM is shown in Fig. [3.3]on the right hand. To over-
come the drawback of single LSTM cell which can only capture the history information,
bidirectional structure has been proposed to combine both forward and backward direc-
tions to be able to utilize both history and future information [98]. Hence the forward
output Hy(t)' ") and backward output Hy(t)'® of each LSTM cell is calculated based
on the relative input and the output layer function in . The forward layer output

is iteratively calculated based on the time slot ¢t — 7 to t — 1. Similarly, the backward
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layer output is calculated based on the reversed time sequence t —1 to t —7. The output

of bidirectional structure can be expressed as

Hit) = o (Het) D @ F(t) ), (3.23)
which is the combination of the forward and backward output with the pre-defined merge
mode oyp, A @ B denotes the direct sum. The oy function can be concatenating,

summation, average or multiplication.

It has been proved that by stacking multiple hierarchical models, the performance
can be improved progressively[99]. Hence, we adopt a stacked structure where the output
from the lower layer is then fed as the input to the upper layer with £Lg > 2 Bi-LSTM
layers. The workflow of the Stacked Bi-LSTM considers both forward and backward
directions and deeper structure with 7 time slots. The final tracking output after the

Egh layer of the Stacked Bi-LSTM can be written as

ﬁk(t) =0fp (ﬂk(t)lﬁ(g) S, ﬁk(t)/c(?) . (3.24)

The training process of the channel tracking Stacked Bi-LSTM can be found in Algo-
rithm The proposed overall channel tracking algorithm can be found in Algorithm
B3

3.4 Numerical Results

In this section, the training loss of various algorithms, the channel tracking performance
and the complexity are evaluated. Based on the framework with two modules, we spe-
cially compare the channel tracking performance of DNN, DNN followed by LSTM, DNN
followed by Bi-LSTM and DNN followed by Stacked Bi-LSTM. Specifically, DNN fol-
lowed by Stacked Bi-LSTM is the proposed algorithm we mainly focused on evaluated.

Basic parameters are set as follows: carrier frequency f. = 28GHz, the UAV speed
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Algorithm 3.2: Training of Module Two: Channel Tracking Stacked Bi-LSTM

1 Input:Pre-estimation ?Elk(l), e 7:lk(T) training sequence, true channel
information Hy(1), ..., Hr(T') training sequence.

2 Output:Trained tracking model for the current sequence.

3 Initialization:Randomize initial weights W and bias b.

1: Generate a new set of training sequences Hy (1), ..., Hp(T) and Hy(1), ..., Hi(T)
with selected SNR, pilot overheads size Np, and 7 historic time step.
2: Design the bi-directional tracking framework with Lg stacked layers and 7T historic
time step in each layer. Set the learning rate and batch size.
3: while not convergence do
Update weights W and bias b by minimizing loss function in .
5: end while

Algorithm 3.3: Proposed Overall Channel Tracking Algorithm

1 Input: Received signal Vi (1), ..., Vi(T).
2 Output: Channel tracking information Hj(T).
% Module One Channel Pre-estimation:
1: Construct the Lp layers DNN framework.
2: Load the DNN optimized parameters that has been trained in Algorithm
3: Pre-estimate the channel information H,(1), ..., H(T).
% Module Two Channel Tracking:
4: Train the channel tracking model as in Algorithm with (7" — 1) sequence data
and 7 historic time step.
5. Use time sequence T'— T to T — 1 as input data to track T channel information
Hi,(T) based on the trained tracking model.

vy = bm/s with azimuth and elevation angle of UAV speed vy o = 7/6 and vy g = 7/6.
The k' user speed v, = 5m/s with azimuth angle of user speed ;o = 7/24. To prove
the superiority tracking performance of our proposed scheme, in the simulation, we con-
sider one moving user in the system. Total number of IRS reflection elements N = 8
and total number of antenna elements on the k*» UAV M = 8. The antenna angle on
UAV is ¢y = 7/6, the reflecting surface on IRS has fixed physical flat angle ¢g = 7/6.
The height of UAV Hy = 2000m, the height of IRS Hg = 100m. The initial relative
position of the UAV, IRS, and the k* user is shown in Fig (b) with IRS location
as (—600m, —600m, 100m) and UAV location as (500m, 600m). The total time sequence

is 200 time slotsE] with train test split rate set as 0.8 for channel tracking performance

2For simplicity, we assume that the tracking signal is received in every time slot. This means that
T = 200 in the simulation.
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evaluation. To be noticed, during the off-line learning, the adaptive moment (Adam)

estimation optimizer is employed.

3.4.1 Loss function

Firstly, the loss function of the channel pre-estimation DNN with a different number of
pilot overheads sizes Np and hidden layers Lp are shown in Fig. The total batch
size B and learning rate € are set as 512, 0.001 for training the pre-estimation DNN. The
total training data set is selected from many SNR= —5,0, 5,10, 15,20dB and blockage
probability from p = 0.3,0.4,0.5,0.6 with 7" = 200 sequences. It can be observed that
when Lp = 3 for both Np = 10, 20 require longer epochs to achieve convergence of the
loss function. The difference for convergence of the loss function between Lp = 4,5, 6 is
not significant. Besides, the converge loss for pilot overheads size Np = 10 is higher than
Np = 20. The reason lies in that with Np increases, the input size and neurons on each
layer are increased accordingly, resulting in a more complex structure but more suitable
model. However, with Np increases, the network neuron size increases accordingly.
Empirically, our model can achieve sufficient performance gain with relative small Np.

Hence, Lp = 4 and Np = 10 are adopted for the remaining simulations.

Secondly, the loss function of different channel tracking methods (LSTM, Bi-LSTM
and proposed algorithm) are compared in Fig. [3.5] The proposed algorithm has total
stacked layers £g = 3. The channel sequence for training difference tracking methods is
set as SNR= 20dB and p; = 0.3 with a total T" = 200 