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Abstract

We are witnessing an unprecedented growth of Mobile Augmented Reality

(MAR) technologies, one of the main research areas being MAR games. While

this field is still in its early days, researchers have shown the physical health

benefits of playing these type of games. Computational models have been used

in traditional (non-AR) digital games to predict player experience (PX). These

models give designers insights about PX, and can also be used within games for

real-time adaptation or personalised content generation. Following these find-

ings, this thesis investigates the potential of creating models that use movement

data and game metrics to predict PX.

An initial pilot study is conducted to evaluate the use of movement data

and game metrics to predict players’ emotional preferences between different

game levels of an exploration-based MAR game. Results indicate that emo-

tional preferences regarding frustration (≈ 93%) and challenge (≈ 93%) can

be predicted to a reliable and reasonable degree of accuracy. To determine if

these techniques can be applied to serious games for health, an AR exergame

is developed for experiments two, three and four of this thesis. The second and

third experiments aim to predict key experiential constructs, player competence

and immersion, that are important to PX. These experiments further validate

the use of movement data and game metrics to model different aspects of PX

in MAR games. Results suggest that players’ competence (≈ 73%) and sense

of mastery (≈ 81%) can be predicted to a reasonable degree of accuracy. For

the final experiment, this mastery model is used to create a dynamic difficulty

adaptation (DDA) system. The adaptive exergame is then evaluated against

a non-adaptive variant of the same game. Results indicate that the adaptive

game makes players feel a higher sense of confidence during gameplay and that

the adaptation mechanics are more effective for players who do not engage in

regular physical activity.

Across the four studies presented, this thesis is the first known research ac-

tivity that investigates using movement data and game metrics to model PX

for DDA in MAR games and makes the following novel contributions: i) move-

ment data and game metrics can be used to predict player’s sense of mastery or

competence reliably compared to other aspects of PX tested, ii) mastery-based

game adaptation makes players feel greater confidence during game-play, and iii)

mastery-based game adaptation is more effective for players who do not engage

in physical activity. This work also presents a new methodology for PX predic-

tion in MAR games and a novel adaptation engine driven by player mastery. In



summary, this thesis proposes that PX modelling can be successfully applied to

MAR games, especially for DDA which results in a highly personalised PX and

shows potential as a tool for increasing physical activity.
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Chapter 1

Introduction

With the rapid growth in the games industry and the increasing number of

people engaging with digital games, it has become increasingly important to

investigate methods to model player experiences in these environments. This

approach is referred to as player experience modelling[240]. Player experience

(PX) modelling refers to the use of computational models to predict PX based

on features computed from the game-play behaviour of players. PX modelling

is a popular field of research in traditional digital games. There are two main

reasons for this; first, since games are played by many players spread across the

world who tend to show a diverse range of behavioural patterns (which is linked

to different motivations for their game-play). While it is impossible for game

designers to manually conduct user studies with all the various types of players

of their game, it is possible to log player behavioural data from their games

and use data analysis techniques to gain insights about player’s experiences

and motivations. Second, robust predictive models of player experience can be

used to optimize games to best suit player’s ideal experience either through

procedural content generation (PCG)[239] or balancing game parameters[122].

Recent advancements in Virtual and Augmented Reality (VR/AR) tech-

nology has enabled the games industry to engage players using mixed reality

platforms. VR aims to immerse a user into a digital world while AR overlays

digital information into the user’s real world. Both these technologies have seen

a growth in adoption by consumers due to their increasing availability. Game

companies have released VR head-mounted displays (HMDs) since the early

1990s; however, the release of the oculus rift in 2010 has set off a new wave

in immersive VR HMDs, with companies such as HTC, Google and Samsung

releasing their consumer VR HMDs[54].

AR has followed a similar growth over the last decade and is consumed by

using HMDs (such as the Microsoft Hololens device) and mobile devices. While
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AR HMDs are still not used actively by consumers, mobile AR has increased in

popularity and mainstream usage. The release of PokémonGO [3] by Niantic labs

in 2016 has shown the tremendous potential of AR mobile games, with the total

number of downloads crossing 1 billion as of February 2019[228]. The release

of mobile AR software development kits (SDKs) such ARcore from Google[1]

and ARkit from Apple[87] has made developing for this platform more acces-

sible for developers. The potential of mobile AR has been investigated by re-

search for a number of contexts such as gaming[225, 212, 210], tourism[111, 217],

education[231, 229], and physical fitness[109, 9] to name a few.

AR games have been developed for research purposes in both table-top[153]

andmovement [207] types of game-play, and are played using either head-mounted

devices (HMD) or mobile devices. This research focuses on mobile AR games

played within local spaces referred to in this thesis as local AR games. These

type of games are different to location-based AR games such as PokémonGO [3]

or the recently released Harry Potter Wizards Unite[2] that involve players trav-

elling across several locations to accomplish game objectives. Local AR games

are a genre of newly emergent games that involve players using the mobile device

as a magic window into the AR game world and generally involve the player’s

movement within their local space without the need for travel between locations.

Previous research has shown that PCG techniques can be applied to automat-

ically create game levels for AR games[12] however, existing systems have not

considered the player’s experiences in the generation of these game levels. Exist-

ing research has focused on novel applications for mobile AR games such as for

entertainment[137], education[115], and multi-player engagement[23]. It is ob-

served that research work into understanding and modelling player experiences

in these environments is limited.

This PhD thesis investigates techniques for modelling player experience in

mobile AR games. The four experiments described in this thesis shows that PX

can be computationally modelled through supervised learning techniques that

use mobile sensor data and game metrics. Additionally, these models can be

used to adapt the difficulty of these games for an optimal PX. This chapter is

structured as follows: section 1.1 describes the motivations of this thesis in the

context of existing research work. Section 1.2 describes the aims and approach

of this research. Section 1.3 outlines the contributions made by this thesis.

Section 1.4 lists the publications that were made across the PhD. Section 1.5

gives details about the impact the COVID-19 pandemic had on this research

work. Finally, section 1.6 describes the structure of this thesis.
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1.1 Motivations

The development of mobile computing and camera technology for smartphones

has enabled rapid advancement in mobile AR games. There exist some examples

of state-of-the-art applications of AR mobile games; however, there are a lim-

ited number of studies focusing on modelling player experience in this domain.

This research aims to bridge this gap in knowledge on approaches to construct

models that predict player experience in these environments. This research will

complement existing research activities in AR games since understanding player

experiences is an important factor for both research and industry.

As described in the section above, body movement is a common factor in

these games since players have to move their mobile devices around to view and

interact with the AR world. This research explores movement data as an infor-

mation medium to model player’s experiences in these games. Existing research

has shown the viability of using people’s movement data to predict their emo-

tional states[193, 194] and it also shows that this data is an important medium

for game designers to gain insight into player engagement in movement-based

games[25, 26]. These activities have been explored in games that use movement-

based controllers such as the Nintendo Wii [194, 193] and it is still an open

research question to the extent to which similar approaches are aplicable to

local AR games that involve a magic window based interaction. Furthermore,

since player movement is an important feature of these games, modelling player

experiences based on movement can be a generic tool for predicting player ex-

periences in these game systems.

This approach to building player experience models can be beneficial to the

games industry to effectively scale up within mixed reality games since these

models can be used to understand player experiences based on player behaviour

data without expensive user testing. This potential advantage has motivated the

first three experiments of this research. Additionally, these models can optimize

the game to best suit a diverse range of players, allowing for personalising these

games based on their experience. Which has motivated the final user study of

this research that aims to dynamically adjust the difficulty of a local AR game

based on these models.

Finally, researchers have observed the potential of these games in creating

positive health outcomes for their players. This benefit is because movement-

based AR games increase a player’s physical activity through game-play; these

games are also called AR exergames. This potential health benefit has been

investigated in Pokemon Go players[109, 9] as well as through the creation of

AR exergames for research [119, 112]. While these research AR exergames have

some game design patterns or parameters in common (e.g., area of the game level
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and the number of game rewards within the area), it is unclear how different

settings of these design patterns or game parameters will impact PX (e.g., What

is the impact of large vs smaller game areas on PX?). Thus, the final motivation

of this thesis is to evaluate the impact of these commonly used AR exergame

parameters on PX. Which would further contribute to the design of effective

mobile AR exergames. This motivation is addressed in this thesis’s second and

third experiments, which uses a mobile AR exergame as a test environment for

PX modelling and exergame parameter evaluation.

According to the research motivations presented in this section, this thesis

will address the following research questions:

RQ1: To what extent can player movement and game metric data be used to

predict PX in mobile AR games?

RQ2: What is the impact of commonly used AR exergame parameters on PX?

RQ3: Can these predictive models of PX be used for dynamic difficulty adap-

tation in mobile games to improve PX?

These research questions are addressed across the four experiments reported

in this thesis. First, RQ1 is addressed in the first three experiments (chapters

3, 4, 5), which collected PX and corresponding player movement and game

metric data to build and evaluate supervised learning models that predict several

dimensions of PX in MAR games. Next, RQ2 is investigated across two studies

(chapters 4, 5), using both quantitative and qualitative methods. Finally, RQ3

is addressed in the final study reported in this thesis (chapter 5), where a player

mastery model (built in the previous experiment) is used to develop an adaptive

exergame. This adaptive game is evaluated against a non-adaptive version using

both qualitative and quantitative approaches.

1.2 Aims and Approach

Since players movement is a common feature of local AR games, this research

investigates techniques to model players experience in AR mobile games based

on player movement data. It is worth noting that this research scope will focus

on local AR games and not location-based AR games. Since player movement

data or source code from existing games is not available, this research involves

the development of two local AR games. These games have been parameterized,

so that game levels for both are generated using a set of designer defined pa-

rameters. Changing these parameters will result in a diverse range of emotional

responses from players.
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The first game is an exploration-based AR Treasure Hunt game that is used

in the first user study conducted as part of this research (details included in

chapter 3 of this thesis). Thus, this first study is an initial proof of the viability

of using movement data to model player experience in these games.

The second game is a target acquisition game titled Running Chickens where

players are rewarded for their physical exertion within local spaces to accom-

plish game objectives, referred to as exergames. While other research works

in AR exergames have used case study approaches to investigate the success of

these games, there is limited knowledge on how commonly used game mechanics

can impact player experience. Therefore, this game is used for the rest of the

experiments conducted in this thesis.

In the second and third experiments, Running Chickens is used to investigate

to what extent the modelling techniques used in the first user study can be

successfully applied to other local AR games that are different in both objectives

and degree of physicality required for game-play interactions. This is important

in further establishing the generalisability of the method used to model and

predict player experience from the first study. Additionally, these user studies

are used to empirically evaluate the impact of AR exergame parameters on

player experience.

Finally, to further investigate the usefulness of these PX models, a final user

study is conducted in this research work. In this study, players are used to

empirically evaluate a version of Running Chickens where the PX models built

with data from the third study is used to adjust the difficulty of the game to

deliver an optimal experience for the players. This is referred to as Dynamic

Difficulty Adjustment (DDA) in research literature[249, 122]. The subsection

below presents the scope of this research work.

1.2.1 Research Scope

This research will use mobile devices and existing AR frameworks to develop the

two AR games. These games use the ARcore SDK[1] in the unity 3d engine[211].

Android mobile devices are used for development and in the user studies re-

ported in this research work. This work is limited to the context of mobile AR

games and will not explore HMD based AR experiences. Another important

distinction about the games explored in this research is between location-based

AR games and local AR games. Location-based AR games involve GPS and

have players travelling across several locations to accomplish game objectives,

while local AR games are played within the same location and involve the play-

ers’ movement within their local spaces. Again, this research is limited to local

AR games and will not use location-based AR. Finally, this research scope has
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been limited to single-player games and will not address multi-player AR games.

1.3 Contributions

Following the aims and approach described in the previous section, this work

contributes to mobile AR games’ advancement. AR mobile games can lever-

age a number of streams of data such as sensor data and game metrics to

model player experience within these games. This work investigates movement

data extracted from mobile IMU sensors and game data for real-time player

experience prediction and personalisation. This personalisation is essential for

exergames that promote physical fitness. This PhD thesis makes the following

novel contributions to the existing literature:

1. Empirical evaluation of the relationship between commonly used AR ex-

ergame design patterns on player experience. This thesis evaluates two

commonly used AR game patterns: area of the game level and the num-

ber of rewards (e.g. collectables).

• Game Area: The research conducted found that game area posi-

tively impacted experiences of tension and challenge. In general,

when playing local AR games, players find navigating over large ar-

eas challenging, which can lead to a negative experience if they are

already overwhelmed or do not generally engage in physical activities.

• Number of rewards: this research work finds that this game mechanic

positively impacts experiences of Arousal, Flow, Tension, Challenge,

Positive Affect and Immersion. In general, participants found a high

number of rewards motivating as it enabled them to get immersed in

the game world.

Finally, both game patterns impact the amount players must navigate

around a physical area during gameplay. This research found that as

players move around a space, their attention switches between the AR

world (through the mobile viewport) and the non-AR world (using their

peripheral vision). This attention switching occurs to enable safe move-

ment through the physical space during gameplay. However, this attention

switching can break a player’s immersion in the game.

2. A novel methodology for Player Experience Prediction in mobile AR games

is presented. The player experience prediction system measures the player’s

movement, game parameters (e.g., the settings of different game mechan-

ics) and player performance to infer their player experience in the game.
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Although body movement signals have been previously used for emotion

recognition, this thesis presents a new methodology that uses this move-

ment data and game data to predict a player’s experience in a game.

3. A novel adaptation engine that uses a player’s predicted mastery in a game

level to adjust the difficulty of the game experience. Using the player ex-

perience prediction system described above to predict a player’s perceived

mastery from a game level, this adaptation engine adjusts the difficulty

of the game in real-time to provide a personalised game experience in AR

exertion games. Furthermore, by using mastery-based adaptation, that

game experience increases in difficulty, ensuring that the physical exertion

needed from the player is maximised without overwhelming them. This

is the first mobile AR exertion game using player mastery prediction for

dynamic difficulty adaptation (DDA) to the researcher’s knowledge.

4. The use of mastery-based game adaptation for mobile AR exergames is

more beneficial for players who do not usually engage in physical activity.

This finding is likely because in-game rewards more influence this group

of people. Thus having the game reduce difficulty (when people feel a low

level of mastery in-game) allows them to gain more rewards. However,

this is not the case for physically active people as they are motivated by

self-improvement. Thus they do not respond as positively to reductions

to in-game difficulty.

1.4 Associated Publications

This section lists a number of publications that I have worked on during the

PhD program. The following publication is related to the research presented in

this thesis:

• Vivek R.Warriar, John R. Woodward, and Laurissa Tokarchuk. ”Mod-

elling player preferences in AR mobile games.” 2019 IEEE Conference on

Games (CoG). IEEE, 2019.

This conference paper contained an adapted version of the experiment

presented in chapter 4 of this thesis.

The following is a list of conference publications that are not directly related

to the thesis:

• Vivek R.Warriar, Carmen Ugarte and Laurissa Tokarchuk. ”Learning to

generate personalised content based on human behaviour.” Human-Like

Computing Machine Intelligence Workshop (MI21-HLC), 2019.
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This conference paper describes techniques of using player experience mod-

els to create personalised game content using quality-diversity algorithms.

• Vivek R.Warriar, Carmen Ugarte, John R.Woodward and Laurissa Tokarchuk.

”Playmapper: Illuminating design spaces of platform games.” 2019 IEEE

Conference on Games (CoG). IEEE, 2019.

This conference paper describes research work that evaluates player be-

haviour as input to generate Mario game levels using quality-diversity

algorithms.

• Nick Ballou, Vivek R. Warriar, and Sebastian Deterding. ”Are You Open?

A Content Analysis of Transparency and Openness Guidelines in HCI

Journals.” Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems. 2021.

This conference paper describes research work that evaluates the extent to

which the Transparency and Openness (TOP) guidelines from the Center

of Open Science 1 is followed by HCI journals.

1.5 COVID-19 Impact Statement

The Covid-19 pandemic significantly impacted the research work since it in-

volved human data collection. Due to social distancing measures imposed by

the UK government, data collection for the last 2 (out of 4) experiments was

affected. The pandemic broke out in the UK while data collection for the third

experiment was in progress. Due to health and safety concerns, data collection

for experiment 3 was terminated early. This study aimed to collect data from a

sample of 40 participants; however, this study was ended after collecting data

from 25 participants. The fourth experiment was originally planned as an in-

person study; however, the experimental method had to be modified for remote

data collection. This resulted in significant delays to the research work due to

the changes in research design and obtaining ethics approval for the study.

1.6 Thesis Outline

This thesis is structured in seven chapters, as follows:

Chapter 2 outlines previous research done in the areas of interest of this

thesis - Player Modelling in Games; Augmented Reality games; Body movement

and engagement in games; Dynamic Difficulty Adaptation in Games. This

1Details about the TOP guidelines can be found here: https://www.cos.io/initiatives/
top-guidelines
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chapter also presents an analysis of the gaps identified in the existing literature

and presents the approach taken in this thesis.

Chapter 3 presents an initial study that investigates modelling players’

emotion preferences (e.g., Did the player find level A of the game more fun than

level B?) in an exploration-based mobile AR game. This study also presents the

custom game AR Treasure Hunt, which was developed for this study.

Chapter 4 reports a follow-up study that further evaluated the modelling

pipeline developed in the previous study with two key differences. The first

one is that a different game that is more exertion driven is used in the exper-

iment. Secondly, the study aims to model experiential constructs related to

player experience research (e.g., immersion or player competence) instead of

emotion preferences. The study also included an empirical evaluation of the ex-

periential impact of commonly used AR game patterns. Finally, this study also

presented the custom exertion game Running Chickens, which was developed

for this study.

Chapter 5 reports the last two studies of this thesis, where the player ex-

perience prediction pipeline was applied to predicting experiential dimensions

related to player motivations and then used to create a real-time dynamic dif-

ficulty adaptation engine for the Running Chickens game. The first study de-

scribes the evaluation of the prediction pipeline and the empirical evaluation of

AR game patterns on these for these experiential constructs related to player

motivation. The chapter then describes the development of a dynamic difficulty

adaptation (DDA) engine based on predicted mastery (which was one of the

player motivation related constructs explored). Finally, the second study re-

ported in this chapter presents a user-centric evaluation of this DDA version of

the Running Chickens game as compared to the non-adaptive version.

Chapter 6 concludes this thesis by summarizing the main findings, contri-

butions and limitations of this research. Finally, future research directions are

also proposed.
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Chapter 2

Background and Approach

This research aims to apply techniques to model player experiences in mobile

AR games based on player movement data and investigates if these models can

be used to dynamically adjust the difficulty of a local AR game. This chapter

will describe relevant research activities from these domains. The literature

reviewed in this chapter has been divided into four themes: Augmented Reality

games; Player Modelling; Body movement and player engagement in games; and

Dynamic Difficulty Adjustment in games.

The first section (section 2.1) will describe current research activities in

Augmented Reality games. Section 2.2 will cover research activities in player

modelling. Section 2.3 presents research on the role of body movement and

player engagement in games. Section 2.4 will describe research on Dynamic

Difficulty Adjustment (DDA). Section 2.5. Section 2.6 describes the approach

taken in this research. Finally section 2.7 will provide a chapter conclusion.

2.1 Augmented Reality Games

AR is considered complimentary to VR, which immerses a person in a digital

world. While AR overlays digital content into the user’s real world to enhance

their engagement with the world, VR aims to separate a person from the physical

world to increase their sense of immersion within a digital world. Milgram’s

virtuality continuum [143] shows how VR and AR interfaces are related to each

other. This continuum is shown in figure 2.1, on the left of the continuum is the

real world with no digital information while on the right are VR interfaces (with

no elements of the real world). Anything in between these extremes is considered

as mixed reality which uses elements from both the real and digital worlds. AR

lies closer to the real world on this continuum since these interfaces incorporate

digital information into the users’ view of the real world. On the other hand,
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Figure 2.1: Diagram showing Milgram’s Virtuality Continum[143]

closer to the VR extreme are augmented interfaces that use information from

the real world in a virtual environment. Azuma defines AR systems using the

following characteristics [13]: it combines the real and virtual, it is interactive

and in real-time, and finally it is registered in 3D.

There are three broad classifications of devices that support AR experiences

[212, 225], HMDs, handheld devices and projectors. HMDs can be further di-

vided into two categories: optical see-through (OST) devices that overlay digital

content onto the view of the real world and video see-through (VST) devices

that render digital content onto a video of the real world which is then presented

to the user. Handheld AR refers to using devices such as mobiles and tablets

with cameras that overlay digital content in the camera view of the device, this

is also referred to as a mobile augmented reality (MAR). Finally, projector-based

AR uses a single fixed projector to show digital content onto real objects. This

research focuses on MAR game experiences.

AR has been a focus for research in entertainment computing having several

applications in AR games [153, 212]. Nilsen et al.[153] describe how AR gaming

can leverage game mechanics from both real-world and digital games. The

authors show how AR games enhance a player’s experience in 4 factors: physical,

mental, social and emotional. Table 2.1 shows game mechanics from the real

world and digital games. AR games can use mechanics across these factors

leveraging advantages of both the real and digital world to best suit the game

context and overcome any limitations of the specific mediums.

Research applications in AR games have focused on creating AR versions of

more traditional physical and virtual games. There exist several AR counter-

parts to more traditional physical sports. The game of Soccer has been adapted

to a number of augmented reality versions[159, 184]. The AR-soccer [184] game

allowed players the novel interaction of being able to kick and interact with a

virtual ball using their feet as they would a traditional physical football. In the

user study to evaluate the game, Reimann[184] found that users find physical

interactions with virtual content (running and kicking) caused a lot of fun and
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Physical Mental Social Emotional

Real
World

Can use player’s
whole body

Real world can
provide game
environment.

Physical artefacts
can have game
significance.

Players unwilling to
resolve complex
rules.

Supports spatial
reasoning,
particularly 3D.

Supports natural
face to face
communication.

Can stimulate
players across full
range of senses.

Limited by practical
ability to control
environment.

Digital
Physical interaction
limited by input
devices.

Supports complex
game models and
rules.

Can provide AI
opponents and
agents.

Mediation limits
communication, but
can provide other
facilities.

Allows remote and
massively
multiplayer games.

Potential for diverse
virtual environments
and scenarios.

Limited to audio
and visual
stimulation.

Table 2.1: Table showing game mechanics from real world and digital games
[212]

engaging experiences in the game. Similar examples exist in tennis[79] and bas-

ketball [191]. AR-tennis presented by Henrysson et al. [79] is a game where two

players compete in a match of virtual tennis against each other using individual

mobile devices as windows into the world and as a paddle to hit the ball back

to the opponent.

A number of research examples have also been developed of games that are

variants of traditional digital games, it has been observed that these AR games

use existing game mechanics and conventions that have been adapted for an AR

paradigm. X-portal [207] is a first-person shooter in AR that enhances ”full-body

engagement and supports new immersive experiences”. The game was adapted

from an existing war simulation game by mapping the game experience into AR

and is competitive in nature. An example of social gaming has been explored in a

game titled Cows vs. Aliens by Mulloni et al.[147]. The game is a competitive

multiplayer team game that exploits mobility and social interaction as core

gameplay elements. Bricks [23] is another multi-player mobile AR experience

that supports collaborative game-play within a local environment.

A number of AR games exist which incorporate GPS sensor data into the

game mechanics. These techniques apply to game experiences that are meant

to be played over large areas. Real Tournament is an AR first-person shooter

experience developed by McCaffery et al.[137]. Reimann and Paelke [185] build

an AR outdoor mobile version of their game Lost Valley which combines genres

from fighting and puzzle-based games. These outdoor mobile games incorporate
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GPS data and can be considered as an extension of the area of location-based

games [7].

In the domain of commercial games, the recent success of the game PokémonGO

[3] is worth noting. The app has been downloaded more than a billion as of

February 2019[228]. The game uses GPS and IMU sensors from mobile devices

to drive game interactions which are based on the popular franchise Pokémon.

The success of this game has motivated research activities to explore a number

of aspects of the game from the potential health benefits of playing these games

[109, 9], players’ experiences of flow as a consequence of game-play [125], to

its positive impact on mental health [138, 102] and motivations for engaging

with the game [158]. Another commercial game that has been of interest to

this research work is Zomies! Run [8] which is an audio-based augmented real-

ity game that research has shown to improve outdoor running experiences for

players [203, 230].

The research work conducted as part of this thesis focuses on Augmented

Reality Games for physical health benefits which are known as AR exergames.

There is a limited amount of research work conducted into AR exergames.

Gioboids is an AR exergame developed by Lindeman and Lee [119] which is a

target acquisition game where players run around the real world capturing dig-

ital creatures. Another similar example is Calory Battle AR which is a research

game presented by Laine and Suk [112], the game involves players travelling

around the world diffusing AR bombs. Both these games have been validated

using user testing to show that they can facilitate positive game experiences,

it is unclear how the game mechanics used in these games can influence player

experience. STAR is an HMD based AR first-person shooter game developed to

increase the physical activity of their players [103]. Research in AR exergames

has also investigated the potential of improving the physical fitness of older

adults by gamifying the experience of performing exercise at home [226, 154]

and to minimise their fall risk[37]. These types of games have also been inves-

tigated for applications of stroke rehabilitation [52, 73]. While these research

games show the potential of using AR games to improve physical health, it

is possible that personalizing these games based on individual needs will fur-

ther improve the objectives of these serious games. This objective is further

investigated in this research work.

There exists a large number of AR frameworks available for the fast proto-

typing and testing of game concepts. Some of them are ARKit[87], ARCore[1],

Vuforia[4] and Wikitude[5]. The frameworks can be integrated with the game

engine Unity3D[211] to create mobile games for android and iOS mobile devices.

These frameworks use the camera and IMU sensors from mobile devices to track

the position and orientation of the device and to detect visual anchors in the
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environment. Some of these libraries offer environment sensing features such as

point and plane detection so that virtual content can be augmented onto the

physical environment.

There exist many AR games developed both for research and commercial

purposes however, there is an observed gap in the literature on studies that

model players experience in these environments. This research will use the

ARcore SDK[1] to create two local AR games that will serve as test-beds for

this research. The aim is to model player’s experiences in these environments

from their body movement. The next section will present a background on

player modelling.

2.2 Player Modelling

The area of research in games referred to as player modelling[243, 202] refers

to ”the detection, prediction and expression of human player characteristics

that are manifested through cognitive, affective and behavioural patterns while

playing games.” [240]. Yannikakis and Togelius argue that the main aim of

player modelling is to understand players’ cognitive, affective and behavioural

patterns [240].

Models are mathematical or computational representations that capture an

underlying function between player behaviour and their emotional response to

the game. Modelling human beings has been of interest to the field of human-

computer interactions, with player modelling being a subset of this research

focusing on digital games. These models are built using machine learning meth-

ods, such as supervised learning. Training data is collected from players’ inter-

actions with games and labels for these techniques are acquired using an assess-

ment of player experiences or player behaviour. This is usually done through

self-reported questionnaires or from annotations by expert observers. These

techniques are used to find predictors of the game experience. These predic-

tors can be informative to game designers to adjust aspects of the game or by

game adaptation algorithms that adjust the game experience in real-time. It

is important to note that player models can be built for both PX and player

behaviour prediction or detection. Since this research focuses on PX models,

the remainder of this section presents background work on PX modelling. In-

terested readers are referred to [240] for more information on player behaviour

modelling.

Yannakakis and Togelius illustrate a high-level taxonomy for player mod-

elling which is seen in figure 2.2. They observe that irrespective of the applica-

tion domain (PX vs. player behaviour), player models consist of 3 components:

the model’s input, the computational model, and the model’s output. The

33



model itself is a mapping between the input and the output. This mapping is

either manually designed or derived from data, or a mix of the two. The authors

present a high-level classification of the approaches to player modelling: model-

based (or top-down) and model-free (or bottom-up) approaches[243, 239]. The

above definitions are inspired by taxonomies in reinforcement learning in which

a world model is available (i.e., model-based) or not (i.e., model-free). Given

the two ends of this continuum, hybrid approaches between them can also exist.

The gradient red colour of the player model box in figure 2.2 illustrates the

continuum between top-down and bottom-up approaches. These classifications

are explained in the subsections below (subsections 2.2.1 and 2.2.2). Following

this, a taxonomy of inputs for player models is described in subsection 2.2.3

and the various ways a player model output can be represented is presented in

subsection 2.2.4.

Figure 2.2: The components of player modelling as presented by Yannakakis
and Togelius[240]. Model-based and model-free approaches are described in
subsections 2.2.1 and 2.2.2 accordingly. The various options for the input of the
model are discussed in subsection 2.2.3. The taxonomy for the model’s output is
discussed in subsection 2.2.4. Finally, the various AI methods (supervised learn-
ing, reinforcement learning and unsupervised learning) are used for modelling
corresponding output data types.
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2.2.1 Model-Based (Top-Down) Approaches

In model-based or top-down[243] approaches a player model is built on a the-

oretical framework which is proposed by researchers in psychology, humanities

and social sciences, to explain phenomena related to human experience or be-

haviour.

Player models can be developed based on theories of emotion such as the

cognitive appraisal theory[63, 197]. Furthermore, player models may rely on

representations of human emotions such as the emotional dimensions of arousal

and valence[59] that draw from Russell’s circumplex model of affect[177] (see

figure 2.3). Valence refers to the extent to which an emotion is positive or

negative, whereas arousal refers to how intense that emotion is. Following these

theoretical models, emotional responses from players are mapped to different

player states while playing the game.

Figure 2.3: A graphical representation of Russell’s circumplex model of affect
with the horizontal axis representing the valence dimension and the vertical axis
representing the arousal or activation dimension.[177]

Yannakakis and Togelius [240] present theories from cognitive-behavioural

research which can also serve as the basis for constructing player models. These

theoretical frameworks include the theory of the mind [179] (modeling aspects of

social interactions in games), usability theory [150, 89], the belief-desire-intention

(BDI) model [29, 66], the cognitive model by Ortony et al. [157] and Skinner’s
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behavioural theory[201] with is related to reward systems in games.

One of the most relevant concepts from psychology for game studies is the

theory of flow by Csikszentmihalyi[44, 45, 46]. This has been a popular con-

struct for modelling player experience. A person in a state of flow during an

activity is characterized by high concentration in the present, loss of a sense of

self-consciousness, high degree of control over the task, loss of perception of time,

and high degree of intrinsic reward from the activity. For a person to enter this

flow state it is important to have an appropriate balance between the challeng-

ing nature of the task and the skill of the user. Within games, this experience

is characterized as a fine balance between boredom (where the task is not chal-

lenging for the player) and anxiety (where the task difficulty is too high for the

player), also known as the flow channel (see figure 2.4). The flow theory has been

adapted to applications of games to understand player experience[208, 209, 149].

Several models have also been developed from studies about how people engage

Figure 2.4: Diagram showing the flow channel in games.[195]

with games. A popular model is Malone’s dimensions that contribute to fun

in games [127] which are challenge, curiosity and fantasy. Challenge refers to

the uncertainty of achieving the goals usually due to the difficulty of the task.

Curiosity refers to the player’s feeling of uncertainty of what will happen next

in the game. Finally, fantasy is the ability of the game to show or evoke images

of physical objects or social situations not present. Malone’s dimensions of fun

have been evaluated in player experience research in prey-predator games[234],

physical games[235, 241], and racing games[215].

Bartle’s[18] classification of player types has been used as a way of modelling

players based on their behaviour. This classification identifies four types of

players named killers (players that focus on winning and are engaged by ranks
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and leaderboards), achievers (players that focus on achieving goals quickly and

are engaged by achievements), socializers (players that focus on social aspects

of games such as developing a network of friends) and explorers (players who

focus on the exploration of the unknown).

Another popular model for understanding player experience included the

theory of fun by Koster[110]. Koster’s theory explains the notion of fun with

learning in a game: the more you learn the more you tend to play a game.

According to this theory, a person stops playing if it is too easy (no learning of

new skills) or too hard (learning does not happen either).

Lazzaro’s model[114] identifies four factors of fun in games: hard fun (playing

to win and challenge one’s self), easy fun (playing to explore a new game world

or new game experience), serious fun (playing to get better at a skill that matters

to the player) and people fun (playing as a need of social engagement with other

players).

It is observed that the literature of theoretical approaches to player experi-

ence is rich and these models can be used to describe a large number of phenom-

ena related to player experience in games. However, Yannakakis and Togelius

express caution when using these theoretical models of player experience in the

construction of player models, since these have not been derived from or tested

on interactive media such as video games[240].

2.2.2 Model-Free (Bottom-Up) Approaches

Model-free approaches refer to the data-driven construction of an unknown map-

ping (model) between player input and a player state. Model-free approaches

involve the collection of observations which are then analyzed. For this, Player

data and labels of player states are collected and used to derive the model

(usually using machine learning approaches).

This is traditionally accomplished using techniques in supervised learning

such as classification, regression or preference learning [240]. Additionally, the

authors note that reinforcement learning can be applied when a reward function,

instead, can characterise aspects of player behaviour or experience. Unsuper-

vised learning is applicable when target outputs are not available for predictive

purposes but, alternatively, data is used for the analysis of playing behaviour.

2.2.3 Input of a Player Model

Any manifestation of player affect or behavioural pattern could define the input

of the model. It is important to note that both Top-down and Bottom-up

approaches to player modelling require some form of input(s). The model’s

input can be of three main types: (1) anything that a player is doing in a
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game environment gathered from game-play data i.e., player input data of

any type such as user interface selections, preferences, or game-play actions;

(2) objective data collected as responses to game stimuli such as physiology,

speech and body movements; and (3) the game context which comprises of

any type of game content viewed, played, and/or created.

Game-Play Data When game-play data is used, the assumption is that a

player’s actions and preferences are linked directly to their experience. If this

is the case, it is possible to infer the player’s current experience by analyzing

patterns of their game interactions[42, 72]. Any form of data that has been

logged from the direct interaction between the player and the game is known as

game-play input. These measures of game-play have also been defined as player

metrics[57].

Objective Data Players can experience a wide spectrum of emotional re-

sponses during their game-play. These emotional responses from players in-

turn lead to changes in their physiological responses. There exists studies that

explore the interplay between physiology and game-play by investigating the

impact of different game-play stimuli on a number of physiological signals.

Such signals are usually obtained through electrocardiography (ECG) [242],

photoplethysmography[242, 216], galvanic skin response (GSR)[129, 82, 81, 83],

respiration[216], and electroencephalography (EEG)[152] (among others). In ad-

dition to physiology the player’s bodily expressions (motion tracking) at different

levels of detail can be used to infer affective responses from the game-play stim-

uli. These include facial expressions[99, 10, 71, 31, 246], muscle activation[41,

51], body movement and posture[99, 11, 219, 53], speech[224, 98, 96, 95, 16],

text[161], haptics[156], gestures[84], and eye movement[11, 148]. Although ob-

jective measures can be useful in inferring a player’s emotional state, in the case

of using physiological sensors these are considered as intrusive on the player and

can have an impact on their experience[240].

Game Context Data Game context refers to the state of the game dur-

ing play and excludes any interactions of the player with the game (which has

been discussed above). Although game-play data and game context data are

closely related to each other. Game context data is considered as a type of game

metrics as opposed to player metrics. A few studies have investigated the phys-

iological reactions of players in isolation (without game content). Yannakakis

and Togelius argue that player modelling would require information about the

current game state. For instance, the model needs to know if the GSR increases

because the player died or completed the level. The game context is combined

with other input data from the player has been used extensively in the literature

38



for the prediction of different affective and cognitive states relevant to playing

experience[41, 134, 167, 199, 198, 187, 183, 133].

2.2.4 Output of a Player Model

The output of the player model is referred to as the player state which is any

representation of the player’s experience or current emotional, cognitive, or

behavioural state. It is important to note that both Top-down and Bottom-

up approaches to player modelling will produce some form of output(s). This

research work focuses on a player’s experience or emotional state. To model the

experience of the player, labels or annotation of their experience during game-

play is required. These labels ideally need to be as close to the ground truth of

experience as possible. The ground truth in affective computing refers to the

unknown label or value that best describes an affective state or experience.

There is a distinction made between two methods of labelling ground truth:

annotations can either be self-reported or reported by external observers[239].

It can be assumed there is a disparity between the true experience of players and

the experience which they self-report or which is perceived by others. Based on

this assumption the player’s self-reported experience annotations should nor-

mally be closer to their inner experience (ground truth) compared to third-

person annotation. However, player self-reports of their experience may suffer

from self-deception and memory limitations[238]. These limitations have been

attributed mainly to the discrepancies between ”the experiencing self” and ”the

remembering self” of a person[97] which is also known as the memory-experience

gap[144].

In third-person annotation, an expert or an external observer provides the

player state which is considered as a more objective method of annotation since

it reduces the described biases of self-reporting experiences. In this case, an

expert (or a group) may provide particular player state tags while observing

a game session. The benefit of third-person annotation is that multiple an-

notators can be used to better approximate the ground truth of the player

experience labels. However, additional third-person observers can be used only

in limited scenarios since it is not as cost-effective as first-person annotations.

Additionally, it can be argued that first-person annotations are more reliable

than third-person annotations if only a single third-person observer is used for

annotations. For these reasons, this research will use first-person self-reports to

establish the ground truth of player experience in the user studies conducted in

this research.

With regards to the format of the labels, there are three different data types

to consider: ratings, classes and ranks. The rating-based format represents a
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player’s state with a scalar value or a vector of values. Ratings are generally the

dominant practice for quantitatively assessing aspects of a player’s experience,

opinion or emotion[240]. The vast majority of user studies have adopted rating

questionnaires to capture the opinions, preferences and perceived experiences of

experiment participants[49]. The most popular rating-based questionnaire fol-

lows the principles of a Likert scale[118] in which users are asked to specify their

level of agreement with (or disagreement against) a given statement. Other pop-

ular rating-based questionnaires for user and player experience annotation in-

clude the Geneva Wheel model [196], the Self-Assessment Manikin[145], the Posi-

tive and Negative Affect Schedule[227], the Game Experience Questionnaire[86],

the Flow State Scale[92], the Player Experience of Need Satisfaction (PENS)

survey[189] (which was developed based on self-determination theory [48]) and

the Player Experience Inventory (PXI)[6] (which was developed based on Means-

End Theory[74, 186]). Although it is dominantly used, research has highlighted

some problems with establishing ground truth of player experience when using

ratings based questionnaires[238]. Firstly it does not account for interpersonal

differences between people and their interpretation of the rating scale. Sec-

ondly, ratings are inherently ordinal data however during data analysis these

are treated as interval data which is fundamentally flawed[240]. Using tech-

niques such as the Affective Slider[22] which was developed for measuring affect

in interactive interfaces (seen in figure 2.5) is particularly interesting. This tool

has the potential to overcome the limitation of using the interval-based analy-

ses techniques to a ratings-based measure since it provides interval values for

affective dimensions.

Figure 2.5: Affective Slider proposed by Betella et al.[22], the top slider mea-
sures the dimension of arousal and the bottom slider measures the dimension of
valence.

The second data type for the annotation of players is the class-based for-

mat. Classes allow annotators to select from a finite and non-structured set

of options and, thus, a class-based questionnaire provides nominal data among

two (binary) or more options. The questionnaire asks subjects to pick a player
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state from a particular representation which could vary from a simple boolean

question to a player state selection form, for instance, the circumplex model of

affect[177, 240].

Finally, rank-based questionnaires ask the annotator to rank a preference

among options such as two or more sessions of the game[233]. In this case, the

annotator compares two options and specifies which one is preferred under a

given statement (pairwise preference). With more than two options, the partic-

ipants are asked to provide a ranking of some or all the options. Examples of

rank-based questions include: was this level more challenging than the previous

level? Another example of a rank-based questionnaire is the 4-alternative forced

choice (4-AFC)[240]. Reporting about subjective experience, preference or emo-

tion via rank-based questionnaires has been growing in popularity in research

activities in user modeling[232, 19] and affective computing[216, 244, 135, 237].

This preference for ranking over ratings is due to the reported advantages of

ranks minimizing the effects of self-reporting subjectivity biases and findings

demonstrating the advantages of ordinal annotation[244, 237] over the rating

and class-based data types.

This research uses both rank-based measures through the 4-AFC protocol

and interval measures through the affective slider, GEQ and the PXI to measure

self-reported experience from players. The 4-AFC protocol is used in initial re-

search work (refer to chapter 3) due to the discussed benefits of rank-based mea-

sures however, these measures do not relate to existing techniques of measuring

player experience in games that predominantly use ratings based questionnaires.

For this reason, this research work introduces approaches of using ratings based

questionnaires (which measures continuous data for player experience) to model

player experience in AR games (refer to chapters 5 and 6). The next section

describes the role of body movement and player engagement in games.

2.3 Body Movement and Engagement in Games

With the advance of body motion-based game technologies such as the Nintendo

Wii and Microsoft Kinect, there is a growing interest in the role played by

body movement in player experience [146]. Research in embodied interactions

suggests that an experience is not predefined by the design of the technology

[170, 171, 55]. It is an emergent property of the interplay between the user and

the technology where the body is used to mediate this engagement.

This has led to the investigation on the role of body movement in player en-

gagement [26, 90, 141, 88]. Bianchi-Berthouze [26] proposes a taxonomy of body

movement that are important to player engagement. This taxonomy consists

of (1) Task-Control Body movements (the movements that are afforded by the
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game interface to achieve game objectives), (2) Task-Facilitating Body Move-

ment (these movements are not required by the game interface, they are con-

sciously or unconsciously performed by the player to facilitate game tasks), (3)

Role-Related Body Movements (these are movements performed by the player

which indicate a higher sense of presence in the game world), (4) Affective

Expression (movements that express the affective state of the player during

gameplay), (5) Expression of Social Behaviour (movements that support social

interactions between players within a game). In [120] the authors find those

game controllers that facilitate a higher degree of body movement engage play-

ers more within the game environment. Due to this connection between body

movement and player experience, Bianchi-Berthouze [25] argues body movement

measures can be used to gain an insight into player experience.

Studies conducted in [164, 151] found that how players used body controllers

varied depending on their motivations for playing the game. When the objective

was to challenge themselves and win the game, players used these controllers

in the most optimal way to maximize their rewards (e.g. minimal and efficient

movements while playing a game of tennis on the Nintendo Wii). Whereas,

when the motivation was to enjoy the experience rather than winning, players

used the controllers more to engage themselves with the role-playing aspects of

the game and they derived pleasure from the body movement that the game

controller afforded (e.g. using more real-world tennis movement to play the

same game) in-spite of this not being as effective a strategy to winning the

game. This suggests that body movement can be used to gain insights into

player’s motivations for playing the game.

Body movement and posture measures to recognize and classify peoples af-

fective states has been explored in the past in some research activities in both

game-based and non-game contexts. Early work by Ekman and Friesen [58]

has shown that head and body cues can be used by human observers to rec-

ognize the dimensions of affect. Paterson et al. [165] mapped speed of head

and arm movements to human observers ability to recognize dimensions of af-

fect. Observers viewed and classified acted knocking and drinking motions,

and statistical analysis was used to map observers agreement to a 2D affective

space. This 2D affective space reflects Russell’s circumplex model of valence

and arousal[177]. These results also show that the dimension of arousal could

be better identified by human observers as compared to valence. Similar ob-

servations are made in studies conducted by Kleinsmith et al. [107, 108] and

Karg et al.[101]. Kleinsmith et al. examined affective dimensions of whole body

posture in an acted scenario [107] which was also followed up in a later study

in a non-acted scenario [108]. Their follow-up study [108] which examined non-

acted postures used a video game situation and also found a higher degree of
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agreement with observers for arousal than for valence. Karg et al.[101] inves-

tigated acted full-body gait patterns along the dimensions of arousal, valence,

and dominance. Similarly, observer agreement was highest for arousal. Clavel

et al. [39] further validate these findings in their study. Observers judged the

affective state of a virtual agent in face only and posture only conditions and

also found that arousal was more recognizable than valence. This indicates that

for human observers, arousal can be better identified than valence which has

implications for automatic affect recognition systems that use human observers

to provide labels for ground truth. This early work shows that the body can

be used as an expressive medium to communicate some aspects of emotions to

human observers. However, Picard[173] argues that the way in which humans

convey emotions or affective messages is affected by factors such as age, gender,

culture, and context.

The large number of affect recognition systems that use information from

body posture and movement have focused on extracting emotion information

from dance sequences [162, 34, 32]. Camurri et al.[33, 34] examined cues and

features involved in emotion expression in dance for four affective states (fear,

anger, joy and grief). After removing facial information, a set of motion cues

was extracted and used to build automatic recognition models. The recognition

of fear was the worst, achieving below chance level classification rates.

Several studies investigate affect recognition in non-dance-based scenarios,

Pollick et al.[176] conducted a study where they compared affect recognition

systems with human observer recognition from body movement in an acted

scenario. Actors performed knocking, lifting, and waving actions which were

used as stimuli in their study. The results showed that the recognition system

was more consistent at recognizing human affect than human observers. Karg

et al.[101] examined automatic affect recognition for discrete levels of valence,

arousal, and dominance in affective gait patterns. Similar to human observers,

recognition rates of the models were best for arousal and dominance, and worst

for valence. The results were significantly higher than observer agreement on

the same corpus of affective gait patterns reported. The study also used gaits

from acted scenarios. Recent work by Sapiński et al. [192] take a similar ap-

proach to Karg et al.[101]. They use human gait which is recorded from skeletal

information extracted from a Kinect for their predictions on discrete emotional

states (happy, sad, surprise, fear, anger, disgust and neutral). Happiness, sad-

ness and fear had high recognition rates while disgust and fear were compara-

tively difficult to classify. Sanghvi et al.[190] explored affect recognition of body

only videos of children playing chess with a robot. They extracted posture and

movement features from video and used them to build these models. Their

study shows that these features can be useful in detecting the level of engage-
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ment during game-play. This study is particularly interesting for this research,

however, the game-play scenario used was a static seated situation which is very

different from movement-based games.

Kleinsmith and Bianchi-Berthouze have examined automatic recognition of

affect from whole-body postures in an acted situation first [27, 106], and con-

ducted a follow-up using a non-acted situation[108]. In their early work[27] on

acted postures, they built an automatic recognition model for three discrete

categories (angry, happy, sad), and achieved a high average classification rate.

As a second step, automatic models were built for recognizing levels of four

affective dimensions (valence, arousal, potency, avoidance)[106]. While these

models also achieved high classification levels, they were lower than the models

for the discrete categories. In later work[108] using non-acted postures and af-

fective states in video games, their models achieved recognition rates lower than

their acted studies, but similar to the target rate set by computing the level of

agreement between sets of observers.

Bernhardt and Robinson’s suggest that although affect can be easily ob-

served in human movement, individual differences in expressing this is notice-

able and hypothesize that a classification system must take this into account to

improve its accuracy[20]. Gong et al.[70] tested the differences between models

with personal biases removed and with personal biases remaining using Pollick

et al.’s motion capture database[176]. The automatic recognition rates achieved

in both studies were higher with personal biases removed over the rates for the

biased motions. Their results were compared with the observers’ agreement

from Pollick et al.’s study[175] to obtain a baseline on which to validate their

models. The results indicated that the recognition models from [20, 70] and

the observers’ rates from [175] were comparable. Using affective whole body

gait patterns, Karg et al.[101] built automatic recognition models to compare

differences between inter-individual and person-dependent recognition modes.

Similar to previous studies they find that inter-individual recognition accuracies

were much lower than the person-dependent recognition accuracies. However,

these studies were based on Pollick et al.’s database which used affective actions

from actors.

Savva et al.[193, 194] investigated these issues in a non-acted situation. They

build an affect recognition system to predict emotional states (High and low-

intensity negative emotion, happiness and concentration) of people playing Nin-

tendo Wii tennis. All the emotional states could be predicted with a high degree

of accuracy however concentration was the most difficult to predict. Their re-

sults further confirmed that person-dependent models perform better than inter-

individual models. This shows that it is important to consider inter-personal

differences when building affect recognition models based on body movement.
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The studies conducted by Savva et al.[193, 194] is of particular relevance to

this research since it aims to recognise the affective state of players in a video

game context. They analysed player’s playing the Nintendo Wii tennis game.

Their results showed a high variability of expressions being classified into the

same category which was due to the different playing styles. Different players

show a varied range of physical movement while playing the game. This has

been discussed previously in this section due to differences in motivations behind

play (playing to win involves efficient movements while playing for role-playing

shows a high range of movement similar to the sport of tennis) [164, 151]. This

highlights the importance to investigate movement-based games which are non-

acted situations where movement is both task-dependent and is highly varied

depending on skills, motivations and engagement during play.

The study conducted by Savva et al.[193, 194] uses full-body motion capture

of participants. This is not a feasible approach for players of local AR games

since these games are played in different environments with mobile devices.

Body movement-based affect recognition systems for these environments will

have to use the sensors available within the mobile device which are usually the

accelerometer and gyroscope. Modern AR SDK such as ARcore and ARKit use

these sensors and the camera to return the position and rotation of the device in

space. Since these devices are used as a magic window for the player in the AR

world, the movement of these devices can be analysed as player movement within

these spaces. The approach and methodology of how to build affect recognition

systems from this movement information is very much an open research question

that this research aims to address.

The existing work on affect recognition from movement using mobile sensors

is limited. Cui et al.[47] used a smartphone to recognize emotional states of

happy, angry and neutral. They primed participants with video stimuli and

recorded accelerometer readings of their walking patterns after priming. This

work has been continued by Zhang et al.[247] who used a smart bracelet instead

of a smartphone. They used personal models for their classification and reported

accuracies ranging from 60.0% to 91.3% across all users. Quiroz et al.[182] raised

concerns about the validity of the priming process used in the previous studies

and conducted a similar investigation focusing on a binary classification of happy

vs sad emotions. They investigated two types of stimuli in their study: audio-

visual and only audio. They reported classification accuracies of 80%-60% for

most users however in some cases classification accuracies were as low as 50%

which is close to random chance. From this is it clear the affect recognition

from movement using mobile sensors is a challenging area for research. It is also

worth noting that these approaches have not been investigated in movement-

based mobile game scenarios and it is unclear if affect recognition systems from
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body movement in these environments are feasible. Since the mobile device used

to recognize affect does not just play the role of a passive listener. However, it

is the instrument that mediates the game experience as well.

This section has reviewed existing work on engagement and body movement.

This research aims to use player movement in local AR games to automatically

recognize their experience. Additionally, these models will be used online to

optimize the difficulty of an AR game based on detected player affect, the next

section reviews existing work on dynamic difficulty adjustment in games.

2.4 Dynamic Difficulty Adjustment

Challenge is an important aspect of digital gameplay, if the reason for this

challenge is due to a particular game mechanic, it is referred to as functional

challenge [40]. The goal of most games is to overcome these challenges to ac-

complish the objectives of the games. If the difficulty is too high for the player

skill, this can lead to frustration, conversely if the difficulty of the game is too

low for the player they can easily get bored. Since players can have very di-

verse skills, it is difficult to design a common difficulty progression for games

that fits all players. For this reason research in games has studied Dynamic

Difficulty Adjustment (DDA), where the challenge level of a game can be ad-

justed to fit the skills of the individual player. Denisova and Cairns[49] show

that adaptation in games can result in higher levels of immersion in the game.

In later studies[50] the authors also show that it is important to consider the

player’s knowledge about the game adaption, with empirical testing they show

that knowledge about game adaption gives players a higher sense of immersion

in the game irrespective of the adaptation strategy used in the game. Previous

research has proposed several techniques for DDA in games that are based on

either player performance or affect-based models. These have been explained in

the subsections below.

2.4.1 Performance-based DDA

In performance-based DDA statistical approaches or player modelling tech-

niques can be used to infer the skills of the player, this information is used

to adjust the difficulty of the game. Hunicke created the Hamlet system, which

uses statistical approaches to determine the appropriate time to intervene in

a first-person shooter by giving the player more ammo or a health boost[85].

Zook and Reidl[249] use player modelling techniques to predict a player skill

mastery over time. They discuss approaches to using this model to adapt a

game’s difficulty according to performance curves[248] which is considered as
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the desired progression of the difficulty of the game (specified by the game de-

signer). In their investigation on the relationship between player immersion

and game adaption, Denisova and Cairns[49] use performance-based adaption

techniques that adjust the difficulty of the game based on the player’s score.

Ishihara et al.[91] used a Mote-Carlo Tree Search (MCTS) based approach to

dynamically adjust the behaviour of an agent in a 1-on-1 fighting game based on

player performance. Results from the user study they conducted indicate that

beginners and intermediate level players rated this DDA approach favourably.

Another application of MCTS for DDA in a prey-predator game is presented by

Hao et al. who use this approach on the game of Pac-man[76]. Stephenson and

Renz[205] present an adaptation approach to adjusting the level of difficulty of

the Angry Birds game (a physics-based puzzle game) based on player perfor-

mance, they evaluated this approach on AI agents that represented models of

human players.

In applications of serious games, performance-based DDA is used for physical

rehabilitation, Hocine et al.[80] used performance-based DDA to improve train-

ing outcomes of stroke patients who require upper limb rehabilitation. Another

application of performance-based DDA in serious games is applied to games

for learning or cognitive training. Plass et al.[174] explored to what extent

performance-based DDA can be used to enhance learning-based games to en-

hance executive function skills of student learners. Their study found that these

skills are improved for older learners (ages 15 and above) with no such benefits

observed for younger learners (12 and below).

Another interesting application of performance-based DDA is for game bal-

ancing of multi-player games, Baldwin et al.[14] present a framework for DDA in

multi-player games that rely on adjusting the abilities of a player’s game avatar

depend on the performance of their opponents. Moreira et al.[221] show that

DDA in Multi-player games has a positive effect on both players, they observed

that even when the DDA adjustment is the most noticeable, players report the

DDA version of the game as more fun.

A notable limitation of performance-based DDA is that these approaches can

be noticed by players, this can potentially result in a negative experience for

players. Gerling et al.[67] explored the effect of DDA on a motion-based dance

game, they report that if DDA is noticed by player’s it has an impact on their

self-esteem and they tend to feel cheated because their victory from game-play

was not earned based on skill. From their results, it is important to consider the

level to which DDA systems can be detected by players during their gameplay.

For this reason, Frommel et al.[64] hypothesize that affect-based DDA would

be less noticeable for players and thus overcome the limitations of traditional

performance-based DDA techniques. Another limitation of performance-based
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DDA is the need for a score or metric for player performance, along with a

mapping of this performance to the difficulty of the game. Affect-based DDA

overcomes these limitations since a model of player affect is used to detect the

emotional state of the player and adjust the difficulty of the game depending

on the designer’s required emotional response.

2.4.2 Affect-based DDA

Affect-based DDA is part of the broader field of affective computing, a term

which was coined by Picard[172]. Research in affective computing has shown

the benefit of adapting the game experience to enhance player experiences. An

example of early work in affect-based DDA is presented by Tijs et al.[213, 214]

who propose an affect-based DDA approach to the game of Pac-man where the

speed of the enemies is controlled by player affect which is modelled using a

number of physiological sensors. Another example of early work is Gilleade and

Dix[69] describe a game experience that adapts itself based on player frustration.

In later work Gilleade et al.[68] propose three heuristics for emotionally adaptive

games: Assist me (refers to the game supporting the player when frustration is

detected), Challenge me (which refers to increasing the difficulty of the game

when boredom is detected from the player) and Emote me (referring to the

game being able to adapt itself to elicit the intended emotional experience from

players).

Liu et al.[122] propose a system the automatically detects player anxiety from

physiological measures of the player through multiple body-worn physiological

sensors. The detected anxiety level was used to adjust the difficulty for partici-

pants playing a game. This study is important as it compares performance-based

DDA and affect-based DDA in an empirical study. Their results show that the

performance of the majority of the participants improved in the affect-based

DDA condition, the majority of participants found the affect-based DDA condi-

tion more challenging, and participants felt less anxious in the affect-based DDA

condition. This study makes a strong case for the use of affect-based DDA to

enhance the experience of players. However, a major limitation of their study is

the use of a large number of body-worn sensors which is not a practical approach

for DDA systems for commercial purposes as they are highly intrusive[240].

In their work on affect-based DDA, Frommel et al.[64] present an approach

to emotion-based adaptation in games where players self-reports of boredom and

frustration are used to adjust the parameters of the game. Their work does not

use a computational model for predicting affect but uses self-reported measures

taken from users in-game. To do this the authors use in-game dialogue boxes to

allow users to self report their emotional state without interrupting game-play.
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However, an argument can be raised that computational models that detect

player affect operate in the background of the game while in-game dialogues

can still interrupt the game-play experience of players potentially making the

effects of the DDA system more noticeable. Their approach was validated in a

user study that showed affect-based DDA can have a positive effect on a player’s

experience.

In recent work on the applications of affect-based DDA in serious games,

Bian et al.[24] present a VR driving simulator for individuals with Autism Spec-

trum Disorder (ASD). Their system uses physiological measures to detect a per-

son’s engagement with the environment and adjust the difficulty based on it.

They conducted a study that compared this engagement-based version of their

system with a performance-based version and found that individuals found the

engagement-based condition more enjoyable than the performance-based condi-

tion.

This section has described the background of research about DDA in games.

It is observed that affect-based DDA has several advantages over performance-

based DDA. However, these techniques traditionally rely on body-worn physi-

ological sensors that are intrusive for players[240]. This is potentially another

reason for its limited application in commercial games. Furthermore, the pre-

vious section has highlighted several techniques to use body movement and

posture to detect affective states. However, the use of these body movement-

based affect models have not been explored in DDA systems for games. The

next section discusses the gaps in the literature presented in this chapter.

2.5 Gaps in Literature

Existing research in mobile AR games shows a gap in the number of empirical

studies that model player experience [79, 191, 147]. It has been observed that

most of the studies around mobile AR games focus on the creation of novel

interactions and game experiences in AR. These studies serve as user validation

studies for the various games being tested. Existing research has not focused on

the computational modelling of a player’s experience for potential use to drive

aspects of the game.

Previous research in games has used AI techniques to model a player’s ex-

perience in digital games such as platformers [167, 166], racing games [216, 215]

and prey-predator games [213, 214] among others. These techniques show the

potential for using computational models to predict player experience. These

models can be used to gain insights into how different aspects of these games

can mediate player experience or optimize the game for individual players[239].

However, the potential of these techniques has not been investigated in AR
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games. These games use embodied interactions where the player movement is

an important aspect of such experiences.

Research has shown that body movement is an important aspect of player

experience with existing work exploring its relationship to player engagement

[26, 90, 141, 88, 120]. However, these studies have been conducted in the context

of using full-body game controllers such as the Kinect and Nintendo Wii. These

are very different compared to the experience afforded by AR games.

Body movement is an important medium of recognizing affective states by

both human observers and automatic affect recognition systems. However, there

is a limited number of studies that apply these movement-based affect recog-

nition models in-game contexts. Related to games, these studies have been in-

vestigated in contexts where the player is seated playing traditional games[190]

or body-based games on the Nintendo Wii [193, 194]. Existing work has not

explored the potential of using body movements to automatically recognize var-

ious dimensions of PX while playing AR games where the devices act as a magic

window into the AR world. Additionally, the study conducted in [190] uses a

camera and computer vision techniques to extract body posture information of a

seated player and the studies reported in [193, 194] use a motion-capture system

to extract full-body movement of the player. For these techniques to be feasible

in AR games, affect recognition systems will need to use built-in sensors on the

mobile device such as the accelerometer and gyroscope as a measure of player

movement. This is a comparatively limited source of movement information as

compared to motion-capture systems.

Research has shown that affective states can be predicted from movement

data logged by mobile devices in non-game contexts[47, 247, 182] however in

these studies, the device acts as a passive listener that makes inferences from

a person’s walking style after emotional priming. It remains an open question

if it is possible to use similar techniques in an AR game context where mobile

devices is an active mediator of the experience. This is a more complex problem

since in these games player experience and their body movement emerge from

the interplay between players and the game world. The use of body movement

as a lens to recognize the emotional state of the player would be highly beneficial

to AR games for two reasons. First movement data could be a generic tool for

modelling player experience across many AR games and secondly, these player

models can be used to automatically adapt the game for the individual player

to enhance their engagement with the game.

Parallel research in DDA has shown that experience-based models can be

used to tune a game experience for players[122, 214, 213, 24]. These techniques

usually rely on several physiological sensors which are worn on the body. A

limitation of this approach is that body-worn sensors are intrusive and can
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interfere with player experience[240]. Furthermore, AR games (especially on

mobile devices) are played in different environments and involve the player’s

movement through their space and potentially across different locations. This

makes the use of body-worn physiological sensors less feasible for commercial

use.

A gap is observed in experience-based DDA research studies that use body

movement information to model PX to drive adaption within the game. These

approaches would be ideal for AR games since PX prediction can be accom-

plished by sensors built into the device making the presence of the adaption

system less noticeable to players (which the literature in DDA for games indi-

cates is an important aspect of these systems [67]).

This research will aim to build on these gaps in the literature as it will be

the first known research activity (to the best of the author’s knowledge) that

explores the potential of using body movement to model PX in AR games.

Specifically, the research will explore key areas of PX in games, namely player

preferences, player experience and player motivations. It will also be the first

know research activity to investigate to what extent the described PX model

can be used to adapt the difficulty of AR games.

2.6 Research Approach

This research will focus on AR games that are played on mobile devices, specif-

ically on how movement data logged from the device while playing the game

can be used to model the player’s experience. To address this problem domain,

this research involves the development of two AR games that are used in user

studies. These user studies test the hypothesis that player movement in mobile

AR games can be used to model the PX. Each of the games will use a number

of parameters to generate the game levels for players. The games will be pa-

rameterized in such a way that different parameters will invoke a spectrum of

emotional responses from players. Players will be asked to self-report their game

experiences from different rounds of these games. The recorded movement data

and additional game context features will be analyzed using supervised learning

to predict the players’ self-reported experience.

The first game developed is an AR treasure hunt game which is exploratory

in nature. Players will be asked to explore their space collecting treasure items.

In this game, players will be motivated by their intrinsic desire to explore their

physical surroundings. The game objective does not bias their movement within

the level. If a player does not wish to explore the space they can choose to

end the game (however their rewards are impacted if they do not explore the

space completely). This serves as an ideal testbed to test the research hypoth-
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esis since their body movement should reflect their experiential state (keeping

movement biases introduced by the nature of the game task to a minimum).

Players are asked to self-report their experiences in a rank based manner. This

is accomplished by asking players to make several pairwise comparisons of their

experiences across two different games levels (e.g. which of the two games was

more fun?) using the 4-AFC protocol. Rank-based measures of player experi-

ence are used due to the reported advantages of ranking approaches over ratings

scales[237, 238]. The PX models tested in this study are based on the discreet

emotional states of players. The study models the emotions of boredom, chal-

lenge, excitement, frustration and fun which have been emotions of interest

in previous player modelling studies[128]. Details of the game and user study

conducted have been reported in chapter 3 of this thesis.

To test the generalisability of findings from the first study, another AR game

is developed for use in the second user study of this research work. This game

is a physical exertion game titled Running Chickens. This is a different game

environment where players accomplish a target acquisition task that actively

biases the body movements of players. Here, the game actively directs the

player’s body movements within the game space to accomplish game objectives.

This game serves as an appropriate test-bed to investigate the generalisability

of the PX prediction method proposed in the first user study in a different

game task. Additionally, this game is parameterized in such a way that different

parameters of the games will result in different degrees of functional challenge[40]

for the player. This study builds on the first study by using ratings based

measures of player experience. The measures of valence and arousal are be

collected at the end of each round of the game using the affective slider[22]

and measures for several dimensions of player experience is collected using the

Game Experience Questionnaire (GEQ)[86]. This is done to better understand

the relationship between player movement in these games and player experience

and to investigate the potential of using supervised learning to model these

dimensions of player experience. Details for this study are provided in chapter

4.

Finally, the validity of the PX models investigated in this research will be

tested for DDA of the Running Chickens game developed. The adaptive ver-

sion of the game will tune the difficulty of the game based on the predicted

experiential state of the player. The goal of this study is to investigate to what

extent experience-based DDA techniques can be used to enhance the experi-

ence of players in an AR game. For this, two conditions of the game will be

tested (linear difficulty progression vs. experience-based DDA) with players in

a within-participant study design. After each condition qualitative and quan-

titative measures of player experience are gathered from players. This study
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validates the potential of using movement-based player modelling techniques to

enhance the player experience in AR games. Details of this study are provided

in chapter 5.

2.7 Chapter Summary

This chapter has described the previous research activities that are relevant to

this thesis. As shown the research in AR games has focused on domain-specific

proof of concept game applications that take the approach of adapting game

mechanics from the real world or digital games for a mixed reality platform.

The research activities conducted around these games focus on validating the

specific games for playability and enjoyment with users.

When players engage with mobile AR games they use their device as a magic

window into the environment. This interaction involves the player’s body move-

ment around their environment. Research in affect recognition has shown that

the bodily expressions of posture and movement can be an expressive medium

of human emotions. Parallel research in affective computing has shown that

models of player’s affective states can be used to adjust the difficulty of a game

to enhance the player experience and for personalization.

It is possible that mobile AR games can use player movement to recognize

their emotional state and dynamically adjust aspects of the game to enhance

the player experience of these games. However, research has not explored this

hypothesis and it is unclear to what extent player experience models built from

body movement can be practically applied to adapt the game experience. This

is the main research goal of this research.

This chapter has also discussed the approach taken in this research to build

on existing research and contribute to gaps in the literature around player ex-

perience modelling in mobile AR games. While related research work has found

the game-based, performance and behaviour data can be used to model play-

ers experience in traditional (non-AR) games. This research work investigates

player modelling in mobile AR games where player movement data is considered

as a behaviour measure along with other game metrics to create models that

predict player experience using supervised learning techniques. These models

are further evaluated for their effectiveness to drive experience-based dynamic

difficult adaptation in mobile AR games to personalise the game experience for

individual players. The next chapter presents the first user study that has been

conducted as part of this research using the AR treasure hunt game. Details

about the games, methodology of the user study and data analysis techniques

applied and results from this study are presented in the next chapter.
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Chapter 3

Modelling Player

Preferences in an

Exploration based AR

mobile game.

The previous chapter discussed the gaps in existing literature, the approach

taken and the scope of the thesis. The main gap addressed in this research is

to explore approaches to modelling player experience in AR games. Although

player modelling is a popular topic of research in game AI, previous studies have

not explored this problem in AR mobile games.

This chapter reports the results of a study conducted to test the hypothesis

that player movement measured from mobile device IMU sensors can be used

to model a player’s emotional experiences in these games. This is a complex

problem since AR games involve the player’s movement through a physical space

to accomplish tasks within the game.

The study conducted in this chapter shows that in-game player movement

can be used to predict a player’s emotional preferences regarding variants of

an AR treasure hunt game. It is interesting to note that this technique does

not require any body-mounted sensors such as ECG, HR or GSR and uses the

built-in sensors of the mobile device. This is advantageous for two reasons:

first, it is cost-effective and existing mobile devices can be used to model player

experiences with no additional sensors. Second, additional body-worn sensors

are intrusive and can break the level of immersion players experience as they

engage with games [240]. Since previous research has found body movement
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within movement-based games can have an impact on game engagement and

enjoyment of the experience and that body movement can act as an indicator

of a person’s affective experience [26, 90, 141, 88]. The majority of research in

this area has focused on movement game controllers such as the Nintendo Wii

[193, 194], mobile Augmented Reality games have not been investigated within

this context. In mobile AR games, the device uses movement and computer

vision to mediate the game experience. This thesis argues that this movement

data can be additionally used to infer a person’s game experience which will

allow these types of games to be tailored to an individual to further increase

game engagement and enjoyment. Other research has begun to explore the

potential for mobile devices to detect a person’s affective state [182, 47] however,

current studies do not explore this within a game or player experience context.

This chapter first presents the aims and motivations of this study in section

3.1. The AR treasure hunt game developed to test the hypothesis is described in

section 3.2. Section 3.3 provides information on the experiment protocol used in

this study. Section 3.4 provides information about the pilot studies conducted

as part of this experiment. Section 3.5 describes the data collected as part of the

experiment. Data analysis and results from the study are presented in section

3.6. Section 3.7 discusses the implication of these results and the limitations of

this study. Finally, section 3.8 presents a chapter conclusion.

3.1 Aims and Motivations

AR experiences have grown in popularity recently. The most popular medium

for AR games are mobile devices, possibly due to the increasing simplicity of

building and deploying mobile AR experiences. Popular AR SDKs such as

ARKit and ARCore use the camera and inertial sensors to extract the device’s

position and orientation[121]. This information is then used to overlay digital

content in the space around the device, which can be viewed through the device.

While this movement data (the device’s position and rotation over time) is used

to create game experiences, this study explores to what extent it can be used

to model a player’s experience from the game.

This study focuses on AR games that involve players’ physical exploration

of their local space. Physical AR mobile games are the focus of this study for 2

reasons. First, they follow trends in mobile AR games that are more relatable

to past experiences players have had, such as playing Pokemon GO (PoGo),

Ingress1 or dARk2. These games use narrative and game design to engage

people with their surroundings (albeit in a more complex manner than this study

1PoGo and Ingress are both location-based AR games developed by Niantic
2dARk is a short story horror experience developed by Combo studio
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game). Second, the potential health benefits of physical AR games make a strong

case to personalize these environments to promote healthy behaviour among

players. Player movement, which is the time-series data of the device’s position

and rotation during the game is used to model their emotional preferences. In

turn, this data is treated as player behaviour in this work.

Following similar studies in player modelling [167, 166, 216] in traditional

video games, player behaviour features (PBFs) and game parameters are used to

predict a player’s emotional preferences. For example, does the player find level

A more fun than level B or vice versa? Effective prediction of such preferences

will enable procedural content generation (PCG) or game balancing systems to

be optimized to a player’s ideal emotional preferences. This approach is novel,

in that it uses movement data to model players’ preferences. Ground truth is

established through data collected from self-reported questionnaires. Exploring

this domain in the context of subjective preferences is useful for personalizing

game experiences in AR. The following research question is investigated in this

study:

To what extent can measurements of player movement be used to predict their

emotional preferences regarding variants of an exploration-based AR mobile

game?

Since data from popular AR mobile games are unavailable, this study in-

cluded the design and development of an AR Treasure-hunt game. This game

is intended to be similar to existing games by incorporating reward systems,

exploration of local space, and a narrative that motivates these rewards. This

game can serve as a standardized game task in the future for similar studies

about player modelling in AR mobile games.

3.2 The AR Treasure Hunt Game

The AR Treasure Hunt game described in this section was designed and devel-

oped to explore the relationship between player movement and emotion pref-

erences. The game design decisions were made to create a game that could

be parameterized to invoke a wide variety of emotional responses from players.

Another crucial aspect of the design was that a player’s movement within their

local space was not biased by the game, i.e. the game did not direct the player

to specific areas within the game level or in a specific direction. Players were

allowed free exploration of constrained space. For this initial study, designing a

game experience that does not bias a player’s movement is important to explore

the relationship between the game experience and player movement.
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Figure 3.1: Fig. [a-g] show the flow of a single round of the game. [a]: Shows
the screen to select an experiment session. [b]: The options for a user to place
a game map. [c]: The (green) start button that the player must tap in order to
begin the game. [d]: The bubbles in the game indicating treasure in close by. [e]:
Treasure that appears which the player collects. [f]: The 2D puzzle presented
to the player in the unsolved form. The white squares indicate treasure pieces
that were not collected. This screen is presented to the player once the exit area
is entered (seen in blue in fig [b] and [d]). [g]: The solved 2D puzzle.
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Figure 3.2: Figure a-b shows a participant playing a single round of the AR
treasure hunt game. [a]: Participant playing a round of the game. [b]: View of
the AR content when viewed through the mobile device.

The aim of the game is to collect all hidden treasures from a constrained

space. This treasure has been randomly distributed within the level area. All

these treasure pieces together form a picture. To win, the player will have to put

together this picture (like a 2D puzzle). Figure 3.1 shows the screens during a

single round of the game. Levels of the game vary across the number of treasure

pieces and the size of the game area. This game can be played in parks and

other open spaces. Indoor spaces such as a gym can be used as well, the main

constraint is that this version of the game requires a space free of obstacles that

are at least 35 × 35m2. Figure 3.2 shows a participant playing a round of the

AR treasure hunt game.

The game design mechanics has been based on Malone’s taxonomy for ’fun’

in games [127] which are challenge, fantasy and curiosity. It is important to

note that Malone developed this taxonomy in the context of educational games

however, these are relevant for other applications of serious games such as ap-

plications for physical fitness. Game challenge refers to the system providing

players with goals whose attainment is uncertain. These challenges have a direct

impact on a person’s self-esteem. Successfully overcoming these challenges can

have a positive impact on a person’s self-esteem and sense of competence which

is an important factor of keeping players motivated in the game [181, 188]. It

is also important to consider the balance between the player’s skill and level

of challenge (or difficulty) of the game since an appropriate balance between

these two factors is important to put players in a state of flow [208, 209, 149].

Failure in a game challenge will lead to low self-esteem, lowered perceived com-
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petence and a decrease in desire to play the game. Additionally, if a player’s

skill is greater than the level of challenge required by the game, this will lead

to boredom with the game and also lower a player’s desire to engage with the

game. Fantasy is the ability for computer games to invoke images of physical

objects or social situations that are not actually present. Fantasy in computer

games is important as they satisfy the emotional needs of players. Finally, cu-

riosity refers to a player’s motivation to engage with the game independent of

any goal-seeking or fantasy fulfilment. The game’s environment must be novel

and surprising for the player but not completely incomprehensible to maintain

their curiosity with the game. The following subsection describes the design

decisions that were taken to incorporate Malone’s taxonomy for fun[127] in the

development of AR Treasure Hunt.

3.2.1 Game Play

The player places the AR level in the world before starting the game (fig 3.1[b-

c]). The game begins once the player finalizes this placement. After the level is

placed, the player must enter a start area to begin the game (seen as a green

column in fig 3.1[c]). Once the player enters this green column they are free to

explore the game level to discover and collect the treasure pieces.

While a player is exploring the level, the boundary of the AR level and an

exit (to the 2D puzzle) is visible to them (the exit is a blue column seen in fig

3.1[b & d], while parts of this boundary wall are seen in fig 3.1[b-d]). They

will not be aware of how many treasure pieces are hidden in the level. This is

important since it will maintain a high level of curiosity and fantasy within the

game experience [127].

These pieces are invisible to the player by default. If a player is close to a

treasure piece they will receive an audio-visual clue. The clues are implemented

using a particle system that is designed to look like a bubble emitter with an

appropriate sound effect (the bubble are seen in fig 3.1[d]). Bubbles are emitted

around the position of the treasure piece. Treasure appears only if the player is

close to it (the treasure pieces are seen in fig 3.1[e]). Once it appears the player

can collect the item by moving the mobile device into it. Collecting treasure

increases the player’s score by +1. The player is instructed to explore the level

until they believe they have discovered all the hidden treasure and then move to

the exit. Only when the player moves into the exit square, they are shown the 2D

puzzle (in the shuffled order) and all the treasure pieces that were not collected

appear to them as white squares. This is when the player will get confirmation

if all pieces were collected or not. This design decision ensures that players

are motivated by the exploration and discovery of dynamic content within the

59



game space. Informing the player beforehand of the maximum number of pieces

hidden in that level would reduce the sense of exploration and discovery, which

is an important aspect of these real-world games. To ensure that the puzzle can

be completed even when a low number of treasure pieces are found, numbers

have been added to each of the puzzle pieces, these numbers indicate where they

must be correctly placed to complete the level. The puzzle along with the white

square is seen in fig 3.1[f].

The player wins the round once the puzzle is completed. The game has been

designed in such a way that all game levels can be completed. However, the

reward for the player varies depending on the amount of treasure they collect,

which corresponds to the amount of the picture they get to appreciate at the end

of the game round. The 2D puzzle has been added to ensure some amount of

challenge which is important in game experiences [127]. The game interactions

were designed to be simple to keep the cognitive load from the UI on the players

low. The game was developed in Unity, using their experimental AR interface

to handle the device and environment tracking for the game. The Unity asset

store was used for assets in the game. The mobile device used for development

and testing was the Google Pixel 2 XL.

3.3 Experimental Design

The study design was informed by previous studies that model player experience

for content creation [167, 166, 216]. This protocol is used to build a data-set

of player movement data and corresponding emotional preferences in AR game

sessions. The study consisted of a number of sessions of the same format. In each

session, participants played 2 rounds of the game with different game parameters

in each round (resulting in varying levels that created a spectrum of emotional

responses from players). Participants were not given any constraints on how to

hold the phone (in portrait or landscape). They could use either hand to hold

the phone depending on comfort. 40 participants played the game in portrait

mode and 2 participants played the game holding the phone in the landscape

orientation. When playing the game participants tended to use their dominant

hand to hold the phone (left vs right handed). Since the focus of this study

is on modelling a player’s emotional preference, pilot studies were conducted

to identify appropriate game parameters that could create a diverse range of

emotional responses from players. The 2 chosen game parameters were:

• The Area of the Level (GA): 2 sizes of levels are compared. Large Area

(LA) levels are ≈ 30m× 30m and Small Area (SA) levels are ≈ 5m× 5m.

GA ∈ {LA, SA}

60



• Treasure in Level (GT ): 2 amounts of treasure are compared: Low Trea-

sure (LT) with 9 and High Treasure (HT) with 16 pieces respectively.

GT ∈ {LT,HT}

Using 2 game parameters has resulted in 4(2×2) levels being compared: (1)

LA×HT (2) SA×HT (3) LA× LT (4) SA× LT . Since games are played in

pairs, the total number of game pair combinations is 6. This study has focused

testing on 3(out of 6) of the game pairs:

• (1) LA×HT vs (4) SA× LT

• (2) SA×HT vs (3) LA× LT

• (1) LA×HT vs (3) LA× LT

The complete comparison space is not explored because real-world opti-

mization for player preferences would rely on similar incomplete data-sets. The

current choice of 2 binary variables as game parameters is adequate for the

purposes of this exploratory study. It would easily become unfeasible to collect

pairwise preferences of the complete comparison space if a more complex set of

game parameters is used.

At the end of each game pair, the participants were given a 4-AFC protocol

[167, 166]. This is a questionnaire that ranks the 2 games according to different

dimensions of emotion preference. The 4-AFC protocol collects the a player’s

preference data for a particular emotion preference. For example, given 2 games,

which game does the participants find more Fun. This study focused on Bore-

dom, Challenge, Excitement, Frustration and Fun as dimensions to measure

player preference; since previous research[128] has shown that these states are

relevant to digital game-play. Following shows the 4-AFC protocol measuring

the dimension of Fun:

Please select 1 of the following options

1. Game 1 felt more Fun than Game 2

2. Game 2 felt more Fun than Game 1

3. Game 1 and Game 2 felt equally Fun

4. Neither of the two games felt Fun

The same format is used to measure each dimension of preference. This

data is used as ground truth for players’ preferences between pairs of games.

The study began with a briefing for each participant which included a training

session on the game and the structure of each session of the study. This was

followed by a trial session in the described format; data from this session is
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discarded. For the trial session, 2 levels were designed with different areas

(LA, SA) containing 4 treasure pieces each. The trial allowed participants to

familiarize themselves with the game and study format. The trial was followed

by 3 experiment sessions.

All experiments were conducted during daylight and adequate weather con-

ditions (no signs of rainfall) in a park near Queen Mary University of London’s

Mile End campus. This is done to minimise the difference in results that may

arise due to different locations or poor lighting and weather conditions. The

order in which participants experienced each session of the experiment was ran-

domised to minimise ordering effects on the data collected. Participants were

anonymised using IDs and were compensated with a hot beverage for their par-

ticipation in the study. The experiment was conducted using a Google Pixel 2

XL mobile device. The following subsection describes the study procedure used

for each participant.

3.3.1 Procedure

All participants provided informed consent before participating in the study.

At the beginning of the study, participants filled up a questionnaire about their

background and previous experience in MAR games. After which they were

given a training session about the game and the questionnaire used in the study.

During training, the researcher first demonstrated how the game works to the

participant over one level of the game, after which participants played 2 training

levels and filled up the 4-AFC protocol after each game pair. During training,

the researcher was present with them and they were encouraged to ask any

questions about the game or the study procedure.

Once the training was completed, the participants were left alone in the park

(while the researcher waited by the entrance of the area), to minimise the effect

of the researcher’s presence on the data collected. During this time, partici-

pants experienced the 3 study sessions of the experiment. In each session, the

participant played a game pair and completed the 4-AFC protocol. Participants

were asked to take a 2-5 min break between sessions to minimise the effects of

physical fatigue from the previous session on the data collected from the next

one.

While playing AR Treasure Hunt, if the participants experienced any tech-

nical issues (the main one being the AR algorithm losing tracking of the envi-

ronment), they were asked to proceed to the next game and the data from this

session was not used in data analysis. At the end of the study, participants were

debriefed about the objectives of the research, all the questions were answered

and the experiment was concluded. The experiment took 40-60 min for each
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participant (depending on the length of the breaks they took during the study).

3.4 Pilot Study

Aspects of the AR Treasure Hunt game design and experiment protocol were

informed using pilot studies described in this section. The study was designed

with two rounds of pilot testing. The first pilot test used a single participant

across a period of three days and was used to test three variants of the experi-

ment design. A single version of the experiment was tested on each day giving

the participant time to recover from fatigue between tests. The first version had

the participant completing 12 sessions of the experiments with pairs of games

used in each session. This version of the study took 90 min to conduct. This

version was not used since the participant got easily fatigued and found this

format frustrating.

Another version that was tested was a short format of the study where

participants experienced 4 sessions of the study where each session consisted of

a single game as opposed to a pair of games (where the participant was required

to provide a rating instead of a ranked preference). This version of the study

took 20 min to complete. This method does not provide as much data per

participant and also post-session interviews showed that the participant found

it was easier to compare two variants of the game (which was the previous

study design tested) instead of providing a single subjective rating for each of

the game’s variants. For these reasons this approach was not used and the next

method is used as the final experiment design.

The most satisfactory version was found to be where participants experience

four sessions (one training and three experiment sessions) of the game. In this

version, each session consisted of a game pair and participants were asked to

compare the two games across a number of emotion dimensions using the 4-

AFC. This version of the study took 60 min to run (this included a few mins

break between sessions) for each participant.

This was the most optimal variant of the tested experiment designs since

it collected a larger number of data samples per participant (as compared to

the previous version tested), was easier for participants (ranking game pairs

was easier for them than providing ratings for each emotion) and reduced the

amount of participant fatigue (as compared to the first version of the study

design piloted). Therefore, this version was carried forward in a second round

of pilot testing with two additional participants. The first round of pilot testing

also revealed some minor aesthetic problems in the game. For example, the

participant found the shadow cast by the exit point hindered their view of the

game level. To fix this, the shadow for this object was not rendered in later
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versions of the game.

The second round of pilot testing was conducted with two participants. The

experiment took an hour for each participant. The second round of pilot testing

was conducted as expected. Another major learning from the pilot activities is

the need for a demonstration session showing the game-play and task flow of a

single session so participants will have a better orientation to the experiment

design. This was necessary as all the pilot participants (although being familiar

with mobile games), faced a learning curve while using placement controls to

place the game map in the physical world. The data from both rounds of pilot

testing have been discarded and will not be used in analyses.

3.5 Data Collection

During the study, player behaviour and preference data were collected. As each

session consisted of comparing 1 game pair, each subject contributed 3 game

pairs of preferences resulting in 126 game pairs (252 individual games). However,

due to some software crashes, only 117 game pairs were successfully recorded

and used in the data analysis. Software crashes occur when the AR algorithm

loses tracking of the devices position and orientation with the real world. This

section describes the questionnaires, qualitative data, movement data and game

metrics collected during the study as well as the demographic information of

the sample of participants in this study.

3.5.1 Participants

Participants were recruited using university mailing lists which included PhD,

Masters and Undergraduate students from the Electronic Engineering and Com-

puter Science at Queen Mary University of London. The study sample consisted

of 42 volunteers (17 female and 25 male) aged 18-44 (22 were 18-24, 9 were 25-29,

6 were 30-34, 4 were 35-39, 1 was 40-44) took part in this study. Participant’s

age breakdown has been summarised in table 3.1 When asked about prior expe-

rience playing AR games 19 subjects had no prior experience. In the remaining

23 of subjects: 12 reported having only one experience in the past, 10 played

a few times before, and 1 participant played AR games regularly. Participants’

experience in AR games has been summarised in table 3.2

3.5.2 Emotional Preference Data

The 4-AFC collects preference data between game pairs along dimensions of

Boredom, Challenge, Excitement, Frustration and Fun.
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Table 3.1: Summary of participants’ ages.

Age range Number of participants
18-24 22
25-29 9
30-34 6
35-39 4
40-44 1

Table 3.2: Summary of participants’ previous experience with AR games.

Previous AR experience Number of participants
No experience 19

Played only once before in the past 12
Played only a few times in the past 10

Played AR games regularly 1

3.5.3 Player Behaviour Data

Player Behaviour data is measured from player movement in-game sessions. The

mobile IMU sensors record the position and rotation of the device during the

game. This data is recorded at a frequency of 64 Hz following guidelines from

Preece et al.[178] and the discrete-time signals are stored as a 6-dimensional

vector: α ∈ {PX , PY , PZ , RX , RY , RZ} for position and rotation. The first 3

elements of α correspond to the position of the mobile device along the x, y

and z axis measures in meters. While the last 3 elements of α correspond to

the rotation of the device along the 3 axis measured in radians. The sampling

frequency used is the highest possible sampling frequency that can be recorded

during gameplay using the Pixel 2 XL mobile device. This sampling frequency

could vary depending on the hardware used. The player’s score (S ), which

increases as the treasure pieces are collected, is recorded at the same frequency.

3.5.4 Qualitative Data

A structured interview was not conducted in this study however, participants

were asked to provide comments about their experience at the end of the study.

The goal of these comments was to check the validity of the methodology of this

experiment and to make improvements to the method for future investigations.
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3.6 Analysis and Results

The resulting dataset from the study was used to explore preference learning

approaches to modelling players’ preferences. The data is pre-processed and

PBFs are extracted. These features along with the game parameters were used

to model players’ preferences. To better understand the effects of each feature,

and to explore to what extent noise from ordering effects have biased the data,

statistical analysis has been conducted on the features. This section first de-

scribes the method used for data pre-processing and feature extraction followed

by the results of the statistical analysis and preference learning evaluations con-

ducted as part of this study.

3.6.1 Data pre-processing

Pre-processing reduces noise and redundancy in the data. This stage is adapted

from Li et. al. [116] and is broken into these steps: Data Segmentation, Low

Pass Filtering, Coordinate Difference, and Dimensionality Reduction.

Data Segmentation Since the study focuses on in-game behaviour, move-

ment data from when players were interacting with the mobile device before

gameplay (e.g., while confirming the placement of the AR level in the physical

space) was discarded.

Low Pass Filtering The segmented data may be noisy and contain unwanted

high-frequency components. In order to reduce this, a Gaussian filter with

coefficients from Li et. al. [116]: h = 1
16 [1, 4, 6, 4, 1] has been applied. The filter

is a 1D convolution of the Gaussian filter and each column of the raw data in α

(details in section 4.5.3) given by the following equation:

y(n) =

∞∑
t=−∞

x(t)h(n− t) = x(n) ∗ h(n) (3.1)

In eq 3.1, x is a column of the vector α (raw data), h is the Gaussian filter

and ∗ the convolution operation.

Coordinate Difference Movement qualities such as velocity(α̇), acceleration

(α̈) and jerk3 (
...
α ) are extracted for each of the columns of the vector α[20].

α̇(t) = x(t)− x(t− 1) (3.2)

α̈(t) = α̇(t)− α̇(t− 1) (3.3)

3Jerk is the derivative of acceleration
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...
α (t) = α̈(t)− α̈(t− 1) (3.4)

This step outputs 3 6-D vectors for velocity (α̇), acceleration (α̈) and jerk

(
...
α ). These 3 vectors contain data for velocity, acceleration, jerk, angular veloc-

ity, angular acceleration and angular jerk along the x, y and z axis. Analyzing

the quality of movement in this way minimizes the impact of inter-participant

differences in holding the phone on the preference predictions.

Dimensionality Reduction To reduce the dimensionality of the feature

space, the Euclidean norm of the x, y and z axis for velocity, acceleration, jerk,

angular velocity, angular acceleration and angular jerk is computed. This out-

put 6-D vector along with the score is the final output of the data pre-processing

phase for each game, given by β ∈ {V,A, J,RV,RA,RJ, S} at 64Hz. The units

for each of the components of β is provided in table 3.3.

Table 3.3: Units of measurement for components of the β vecotor obtained from
data pre-processing

β component Unit of measurement
V meters per second - m/s
A meters per second square - m/s2

J meters per second cube - m/s3

RV radians per second - rad/s
RA radians per second sqaure - rad/s2

RJ radians per second cube - rad/s3

S no unit as it is the count of the game score

3.6.2 Feature Extraction

PBFs are extracted from the pre-processed movement data: V,A, J,RV,RA,RJ

(first 6 dimensions of the time series vector β), table 3.4 shows the 10 features

that are extracted for each dimension resulting in 60 movement features. The

S signal (last dimension of β) is used to compute 2 features:

• Completion (C): The fraction of the score at the end of game divided by

maximum possible score from game, given by: C = Score At End Game
Max Game Score

• Score Rate (SR): The fraction of the score at the end of the game and

the time taken to reach it (note: this is different from the total time of

the game), given by: SR = Score At End Game
Time To Reach Score

The final feature considered is the time of the game in seconds (T ). This

results in 63 PBFs combined with 2 game parameters, giving us 65 features in
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Table 3.4: Extracted movement features

Feature X Description
Xm Mean
Xstd Standard Deviation
Xsk Skew
Xkur Kurtosis
Xmin Minimum value
Xmax Maximum value
XD Max - Min

XtMin Time of Minimum value
XtMax Time of Maximum value
XtD Time of Max - Time of Min

total which were used in the following analysis.

3.6.3 Statistical Analysis

Statistical analysis was conducted to check for ordering effects in the data and

to understand the relationship between features (PBFs, game parameters) and

emotional preferences. The Chi-square test is used to check for ordering effects

in preference data, which is based on the number of times subjects expressed a

preference for the first or the second game in the pair. The Chi-square test is

also used to check for statistically significant effects of the 2 game parameters

on preferences since these are binary categorical features. The Wilcoxon signed-

rank test was used to check for significant effects of the PBFs on preferences

as these are continuous features. All tests for significant effects use a p-value

< 1%.

This study followed the method to compute correlation coefficients from

[236], given by c(z) =
∑Ns

i=1{zi/Ns} where Ns is the number of pairs where

subjects expressed clear preferences for one of the two games (picking the first

2 options of the 4-AFC), and zi = 1 when the subject preferred the game

with the larger value of the examined feature, and zi = −1 when the subject

chooses the other game. From the 117 game pairs that were analyzed Ns is

59, 105, 89, 81, 106 for Boredom, Challenge, Excitement, Frustration and Fun

respectively. Variance inNs shows that subjects find it difficult to express a clear

emotional preference between game variants. This is especially observed in the

Ns for boredom (59) which indicates that participants have a clear preference

for boredom only 50.42% of the time.

Results from order testing (to check if the ordering of the game has created

noise in the preferences) and the correlation analysis of statistically significant
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features are described below for each dimension of emotional preference tested.

Boredom Participants had a preference of Boredom 50.42% of the time. Or-

der testing showed a significant (p = 0.001) effect: subjects tended to find the

second game more boring. Table 3.5 shows the significant PBFs and game

parameters.

Table 3.5: Statistically significant (p-value < 1%) correlation coefficients for
Boredom.

Feature Symbol c(z)
Controllable Level Features

Area of level GA 0.339
Treasure in level GT -0.322

Player Behaviour Features
Acceleration Mean Am 0.390
Acceleration Standard Deviation Astd 0.390
Maximum Acceleration Amax 0.458
Max-Min Acceleration AD 0.458
Jerk Mean Jm 0.424
Jerk Standard Deviation Jstd 0.458
Maximum Jerk Jmax 0.424
Max-Min Jerk JD 0.424
Velocity Mean Vm 0.390
Time T 0.390

Challenge Participants had a preference 89.74% of the time. Order testing

was not significant. Statistical testing of the features showed that area of the

level was the only game parameter that had a significant effect (details pro-

vided in table 3.6) while 39 PBFs showed a significant effect. Only the top ten

correlation coefficients are reported in table 3.6.

Excitement Participants had a preference 76.06% of the time. Order testing

was not significant. Among all the features, only Treasure in Level GT (a game

parameter) had a significant effect with c(z) = 0.339.

Frustration Participants had a preference 69.23% of the time. Order testing

was not significant. Feature tests showed that area of the level was the only

game parameter that had a significant effect (details in table 3.7) while 38

PBFs showed a significant effect. Only the top ten correlation coefficients for

Frustration are reported in table 3.7.
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Table 3.6: Statistically significant CGFs and Top ten statistically significant
(p-value < 1%) PBFs correlation coefficients for Challenge.

Feature Symbol c(z)
Controllable Level Features

Area of level GA 0.686
Player Behaviour Features

Time of Max Acceleration AtMax 0.467
Time of Max Velocity VtMax 0.476
Time of Max Ang. Acceleration RAtMax 0.504
Time of Max Ang. Jerk RJtMax 0.523
Maximum Ang. Velocity RVmax 0.467
Max-Min Ang. Velocity RVD 0.467
Time of Min Ang. Velocity RVtMin 0.467
Time of Max Ang. Velocity RVtMax 0.504
Score Rate SR -0.714
Time T 0.771

Table 3.7: Statistically significant CGFs and top ten statistically significant
(p-value < 1%) PBFs correlation coefficients for Frustration.

Feature Symbol c(z)
Controllable Level Features

Area of level GA 0.691
Player Behaviour Features

Maximum Acceleration Amax 0.481
Max-Min Acceleration AD 0.481
Time of Max Jerk JtMax 0.530
Time of Max Velocity VtMax 0.444
Time of Max Ang. Acceleration RAtMax 0.481
Time of Max Ang. Jerk RJtMax 0.555
Minimum Ang. Velocity RVmin -0.481
Time of Max Ang. Velocity RVtMax 0.456
Score Rate SR -0.679
Time T 0.802
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Fun Participants had a preference 90.60% of the time. Order testing showed

a significant (p = 0.002) effect, subjects tended to find the first game more fun.

Among the game parameters, Area of level (GA) had a significant effect with

c(z) = −0.198. Among the PBFs Completion (C) had a significant effect with

c(z) = 0.245.

3.6.4 Preference Learning

Preference learning techniques are applied to explore to what extent PBFs and

game parameters can be used to predict players’ preferences. Here two ap-

proaches to modelling player preferences are investigated.

In the first approach, the large margin algorithm [60] was used on the dataset

of 65 features and corresponding preference labels. This approach was originally

developed for a driving route recommendation system [60]. This technique has

been previously applied in similar studies of modelling PX in super Mario bros

[167, 166] and racing games [216]. While this technique has not been applied

to MAR games which require processing movement data from sensors for player

behaviour features, it has been applied to model traditional digital games and

is generalise-able across different genres of digital games. To increase the model

accuracy of the large margin algorithm approach, feature selection techniques

were applied. Feature selection is used to reduce the dimensionality of the

feature space (which is discussed further below).

This problem of reducing the dimensionality of the feature space has moti-

vated the use of another approach to preference learning that extracts player

types from the PBFs. In this second approach, the PBFs are clustered using un-

supervised learning techniques to extract player types from this behaviour data.

This approach has been used in previous research to successfully extracted dif-

ferent types of players based on behavioural metrics [56, 57, 160]. The impact of

the game parameters on each player type is first analyzed using similar statisti-

cal tests and correlation analysis as described above. This is done to understand

how the emotional preference of each player type differs from the other. These

player types are also used as input for the preference learning models. Details

on each of the two approaches are described below.

Large Margin Algorithm Approach

This method aims to model features of interest through a linear combination of

a weighted vector that maps preferences to features. This is given by P (F ) =

FWT , where P (F ) is the subjects preference, F is the extracted feature vector

and W is the weights to be optimized. Since the objective is to predict pairwise

preferences, a function P (Fx) is required where P () is the preference function
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and Fx is a set of features that have been computed from a game X. P (FA) >

P (FB) if a subject has a preference for Game A over Game B. Here FA and

FB are PBFs and game parameters extracted from each of the games A and

B respectively. This inequality can be expressed through a linear combination

FAW
T > FBW

T , which is further rewritten as (FA−FB)W
T > 0 or FDWT > 0,

where FD is the feature difference vector for the preference. The problem is thus

reformulated as a linear classification of estimating W , where the input features

are the feature difference between the original feature space of the 2 game pairs

being compared.

Previous research explores this as a binary classification problem where

FDWT ∈ {0, 1}: 0 is assigned to an instance where the subject has a preference

for Game A over Game B and 1 for the opposite preference. This is accom-

plished by either filtering the data to remove instances with no preferences[60]

or by forcing choice onto subjects via the 2-AFC protocol[216]. However, for

this exploratory study, it would be beneficial to investigate both binary (via

data filtering) and ternary classifications were FDWT ∈ {0, 1, 2}: 2 is the class

assigned to instances where the subject had no preference (options 3 and 4 in

the 4-AFC protocol). This approach is investigated since it matches the format

of the data collected without filtering.

Since the objective is to optimize the weight vector W, which can be used to

linearly combine the feature space FD to predict preferences, the performance of

two linear classifiers: logistic regression and linear discriminant analysis (LDA);

and one non-linear classifier: support vector machines (SVM) for this classifi-

cation problem is investigated. LDA has been used in a related study [216].

However, it is unclear from previous work if other models can outperform this

approach. This study evaluates model performance using the sample accuracy

and standard deviation from 10-fold cross-validation (CV).

Feature Selection Previous studies observe that model performance im-

proves through feature selection techniques [167, 166, 236]. While there are a

large number of approaches, this study uses sequential forward selection (SFS)

and sequential floating forward selection (SFFS) in this study as they are often

used in similar work. In [167], SFS and SFFS outperformed other techniques

tested. SFS is a bottom-up search algorithm that tries to find the best perform-

ing feature set. It starts with the best performing single feature and adds new

features from the remaining set such that model performance of the new set

generates the best possible overall performance over other potential features for

addition. SFFS is similar to SFS except that when a forward step is performed,

the algorithm also checks if a feature from the existing set can be excluded to

improve overall model performance.

72



The feature difference is calculated from each game pair and used in preference

learning techniques. The extracted features are used to predict preferences. A

summary of findings is shown in Table 3.8 which provides the accuracy and

standard deviation from 10-fold CV of the Logistic Regression, LDA and SVM

classifiers, to predict the various emotional dimensions of preferences in both

binary and ternary classification scenarios. Corresponding accuracies of the best

performing feature subset from the feature selection techniques (SFS, SFFS)

along with the number of features in the subset have also been provided in

Table 3.8. It has been a common observation across all dimensions and types of

classifiers that the base (all 65 features) performance without feature selection

performs poorly with very high standard deviation (as high as ±28.55% for the

ternary Fun LDA classifier). However, all base classifiers perform higher than

random chance (50% for binary and 33.34% for ternary).

Boredom The best binary classifier was SVM with a subset of 14 features

found with SFFS - the performance was 86.33± 10.2%. The best ternary clas-

sifier was SVM with a subset of 21 features found with SFS - the performance

was 60.29± 13.8%.

Challenge The best binary classifier was SVM with a subset of 5 features.

Both SFS and SFFS found the same feature set - the performance was 93.36±
4.4%. The best ternary classifier was SVM as well with the same subset of 5

features (found with both SFS and SFFS) - the performance was 84.85± 5.5%.

Excitement The best binary classifier was LDA with a subset of 15 features

found with SFFS - the performance was 75.61± 12.5%. The best ternary clas-

sifier was SVM with a subset of 14 features found with SFFS - the performance

was 56.92± 10.7%.

Frustration The best binary classifier was SVM with a subset of 24 features

found with SFFS - the performance was 93.89±6.1%. The best ternary classifier

was SVM as well with a subset of 11 features found with SFFS - the performance

was 75.43± 8.3%.

Fun The best binary classifier was SVM with a subset of 16 features found

with SFFS - the performance was 79.21 ± 9.7%. The best ternary classifier

was SVM with a subset of 10 features found with SFFS - the performance was

69.42± 7.0%.
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Table 3.8: Summary of results from the preference learning techniques of the
large margin approach including feature selection for both binary and ternary
scenarios. For each classifier, the number of features used, the sample accuracy
and standard deviation from 10-fold CV are shown. The best performing binary
and ternary classifier for each emotion has been highlighted.

Log. Reg. LDA SVM
F# Acc ±SD F# Acc ±SD F# Acc ±SD

Boredom Binary All 65 64.33% 15.8% 65 50.67% 28.6% 65 78.00% 12.9%
Ns = 59 SFS 28 79.67% 9.9% 27 80.00% 12.5% 15 84.67% 9.1%

SFFS 29 79.33% 15.3% 40 84.67% 11.8% 14 86.33% 10.2%
Ternary All 65 45.71% 17.0% 65 37.58% 12.9% 65 47.64% 8.0%
Ns = 117 SFS 3 57.37% 14.7% 6 58.21% 13.0% 21 60.29% 13.8%

SFFS 36 57.45% 16.3% 6 58.21% 13.0% 32 58.69% 10.9%

Challenge Binary All 65 81.00% 10.3% 65 74.54% 13.1% 65 81.10% 10.0%
Ns = 105 SFS 15 91.54% 5.0% 4 91.45% 5.0% 5 93.36% 4.4%

SFFS 3 91.45% 5.0% 4 91.45% 5.0% 5 93.36% 4.4%
Ternary All 65 67.70% 12.7% 65 62.80% 14.1% 65 72.86% 9.1%
Ns = 117 SFS 2 82.20% 5.2% 12 82.26% 6.0% 5 84.85% 5.5%

SFFS 2 82.20% 5.2% 12 82.26% 6.0% 5 84.85% 5.5%

Excitement Binary All 65 55.44% 15.8% 65 57.81% 20.5% 65 56.39% 8.2%
Ns = 89 SFS 12 73.64% 13.6% 9 72.39% 13.7% 8 68.53% 9.6%

SFFS 9 73.64% 14.5% 15 75.61% 12.5% 12 71.89% 10.5%
Ternary All 65 44.05% 12.9% 65 36.41% 11.7% 65 43.01% 6.9%
Ns = 117 SFS 31 54.99% 14.1% 20 54.88% 11.4% 2 55.17% 14.7%

SFFS 15 53.05% 13.3% 11 55.78% 11.2% 14 56.92% 10.7%

Frustration Binary All 65 85.38% 8.8% 65 68.29% 14.1% 65 82.60% 8.4%
Ns = 81 SFS 1 90.41% 8.9% 1 90.41% 8.9% 4 92.78% 5.9%

SFFS 1 90.41% 8.9% 34 92.92% 9.5% 24 93.89% 6.1%
Ternary All 65 50.57% 14.4% 65 45.57% 20.4% 65 59.64% 14.6%
Ns = 117 SFS 11 71.83% 10.6% 16 72.65% 11.6% 16 72.92% 8.3%

SFFS 13 73.57% 9.8% 20 74.05% 10.0% 11 75.43% 8.3%

Fun Binary All 65 65.62% 13.9% 65 58.47% 11.9% 65 60.37% 5.2%
Ns = 106 SFS 42 73.68% 8.9% 35 74.33% 6.5% 16 74.68% 6.8%

SFFS 32 76.26% 8.6% 34 77.59% 11.4% 16 79.21% 9.7%
Ternary All 65 59.56% 9.2% 65 47.53% 11.7% 65 54.77% 5.0%
Ns = 117 SFS 4 65.75% 7.8% 1 65.67% 8.1% 9 67.68% 6.8%

SFFS 32 65.94% 8.4% 18 68.99% 9.0% 10 69.42% 7.0%
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Player Types Approach

This approach aims to reduce the dimensionality of the feature space by cluster-

ing player behaviour to smaller clusters. Previous studies have clustered player

behaviour to extract player types from this data [56, 57, 160]. These player

types can either be used as features for predictive modelling (as is the case in

this study) or to gain insight into the behavioural patterns exhibited by players

in a game.

In this study, the k-means clustering technique is used to extract player

types from the data as it has been used previously to infer player types from

behavioural data [160]. The optimal number of clusters is selected using the

elbow method, i.e. plotting the within-cluster sum of squares and choosing the

number of clusters from the graph [105].

Two types of input features for the k-means model are tested:

1. Large Margin Features whose feature vector has a dimensionality of 63.

2. Game Pair Features whose feature vector has a dimensionality of 126 (63

× 2).

In the first approach, the feature difference vector (which is calculated using

the large margin algorithm described earlier in the section) is used as input. The

dimension of the input feature vector of the large margin approach is 63. Second,

the extracted features from each game pair are used without calculating the

feature difference vector. This leads to an input feature vector of 126 dimensions

(63× 2).

Using behavioural features to infer player types using clustering in an ac-

cepted method (similar to the later approach), it is unclear to what extent

player types can be inferred from large margin features (the former approach).

Using large margin features reduces the dimensionality by half (only 63 features

as opposed to 63 × 2), it is unclear to what extent this is a valid approach to

extract player types from behavioural data. Since these features are descrip-

tors of differences in behaviour between two games as opposed to descriptors of

behaviour within a game.

Since this study is motivated by modelling player’s emotional experiences,

statistical tests are conducted within in each cluster to test the effects of each

of the two game parameters on the emotional preference of each player type.

These tests were conducted on the clusters that emerged from the two types of

input feature vectors tested. It is interesting to note that the two types of input

feature vectors result in a similar number of clusters and a similar number of

data points within each cluster.
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Finally, the player types extracted from the feature difference vector (using

the large margin algorithm) along with the 2 game parameters is used as input

for the three classifiers to predict the emotional preference. As described earlier

in this section, preference learning is approached as a classification problem and

both binary and ternary classification models are tested in this analysis.

The optimal number of clusters for both input feature vectors was found

to be three. Figure 3.3 shows the plot of the within-cluster sum of squares

(WCSS) in each case the elbow is observed at three clusters[105]. The chi-

square test was used to check for significant effects of the game parameters

on player preference within each cluster in both cases. Correlation coefficients

of statistically significant (p-value < 1%) game parameters and corresponding

emotional preference are reported below.

Figure 3.3: Figure a-b shows the Elbow method across both the tested input
feature vectors. The within-cluster sum of square (WCSS) is plotted along the
y-axis and the number of clusters is plotted along the x-axis. The point of the
elbow in both graphs is highlighted in red. [a]: Shows the plot for the large
margin algorithm features vector. [b]: Shows the plot for the normal feature
vector.

Large Margin Algorithm features The three clusters contained: 87, 20

and 10 data points or game pairs respectively. Table 3.9 shows a summary of

the statistical analysis conducted to understand the impact of game parameters

on emotion preference within each player type (or cluster). The results show

that game area impacts the emotion preference in a similar way for all three

clusters. Larger game areas resulted in more frustration and higher challenge

for all three clusters. Additionally, a larger game area resulted in increased

boredom for players in cluster 1.
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Table 3.9: Statistical analysis of game parameters on emotion preferences for
Large Margin Algorithm based player types

Cluster No. of Data
Points (game
pairs)

Game Parameter Description of statistical
effect

Cluster 1 87 Area of level (GA) Participants felt more
Frustrated when area
was larger, c(z) = 0.69

Area of level (GA) Participants felt more
Bored when area was
larger, c(z) = 0.34

Area of level (GA) Participants felt more
Challenged when area
was larger, c(z) = 0.68

Cluster 2 20 Area of level (GA) Participants felt more
Frustrated when area
was larger, c(z) = 0.69

Area of level (GA) Participants felt more
Challenged when area
was larger, c(z) = 0.68

Cluster 3 10 Area of level (GA) Participants felt more
Frustrated when area
was larger, c(z) = 0.69

Area of level (GA) Participants felt more
Challenged when area
was larger, c(z) = 0.68
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Game Pair Features The three clusters contained: 90, 19 and 8 data points

or game pairs respectively. Table 3.10 shows a summary of the statistical anal-

ysis conducted to understand the impact of game parameters on emotion pref-

erence within each player type (or cluster). The results show that game area

impacts emotion preference in a similar way for the first two clusters. Larger

game areas resulted in more frustration and higher challenge for both. Addi-

tionally, a larger game area resulted in increased boredom for players in cluster

1. Finally, a high amount of game treasure resulted in decreased boredom for

players in clusters 1. There was no significant impact of game parameters on

emotion preference for players in the third cluster.

Table 3.10: Statistical analysis of game parameters on emotion preferences for
Game Pair based player types

Cluster No. of Data
Points (game
pairs)

Game Parameter Description of statistical
effect

Cluster 1 90 Area of level (GA) Participants felt more
Frustrated when area
was larger, c(z) = 0.69

Area of level (GA) Participants felt more
Bored when area was
larger, c(z) = 0.34

Area of level (GA) Participants felt more
Challenged when area
was larger, c(z) = 0.68

Treasure in Level (GT ) Participants felt less
Bored when trea-
sure in level was low,
c(z) = −0.32

Cluster 2 19 Area of level (GA) Participants felt more
Frustrated when area
was larger, c(z) = 0.69

Area of level (GA) Participants felt more
Challenged when area
was larger, c(z) = 0.68

Cluster 3 8 No significant effects

It is observed that the two types of inputs feature vectors for clustering has

resulted in similar clusters emerging. Players within each cluster do not show

different emotional preferences from each other. The player types extracted from

clustering the large margin algorithm features along with the 2 game parameters

is used as input to predict player preferences. The feature difference from the

two games pairs is computed using the large margin algorithm resulting in 63
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PBFs and 2 game parameters. The PBFs are clustered using the k-means

algorithm into 3 clusters. This cluster output is a categorical ternary variable

which was then one-hot encoded and one of the columns was dropped to avoid

the dummy variable trap resulting in 2 PBFs. These 2 PBFs along with the 2

game parameters is used as input for the classification models. Table 3.11 shows

the summary of the sample accuracy and standard deviation from 10-fold CV of

the logistic regression, LDA and SVM classifiers in both the binary and ternary

classification scenarios. The best performing binary and ternary classifiers are

reported below for each of the dimensions of emotional preference.

Boredom The best binary classifier was Logistic Regression, the performance

was 82.67 ± 13.9%. The best performing ternary classifier was the SVM, the

performance was 61.04± 14.2%.

Challenge The best binary classifier was the LDA, the performance was

83.90 ± 4.0%. The best performing ternary classifiers were both the logistic

regression and LDA, with the performance was 71.26± 6.2%.

Excitement The best binary classifier was the SVM, the performance was

63.05 ± 16.7%. The best performing ternary classifiers was also the SVM, the

performance was 45.34± 13.8%.

Frustration The best binary classifier was Logistic Regression, the perfor-

mance was 85.23±7.2%. The best performing ternary classifier was also logistic

regression, the performance was 62.63± 6.1%.

Fun The best binary classifier was Logistic Regression, the performance was

66.01±10.1%. The best performing ternary classifier was also logistic regression,

the performance was 59.92± 9.5%.

3.6.5 Feature Recommendations

Since a large feature space is explored in the large margin approach, an anal-

ysis is conducted to identify sets of movement features that are important in

modelling a player’s emotional preference. The recommendations are based on

a grounded analysis of features in terms of statistical effects and the likelihood

of each being selected in the best performing feature subset. This list of feature

combinations can be used as a starting point in similar work to predict player

preferences.

Two common features are observed in predicting all the emotion dimen-

sions, given by: Θ ∈ {Amin, RVmin}. A number of feature sets were also
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Table 3.11: Summary of results from the preference learning techniques of the
player types approach including both binary and ternary scenarios. For each
classifier, the sample accuracy and standard deviation from 10-fold CV are
shown. The best performing binary and ternary classifier for each emotion
has been highlighted.

Log. Reg. LDA SVM
Acc ±SD Acc ±SD Acc ±SD

Boredom Binary Ns = 59 82.67% 13.9% 81.00% 14.7% 76.00% 14.0%
Ternary Ns = 117 54.30% 13.8% 54.30% 13.8% 61.04% 14.2%

Challenge Binary Ns = 105 83.00% 5.3% 83.90% 4.0% 76.27% 4.2%
Ternary Ns = 117 71.26% 6.2% 71.26% 6.2% 68.59% 5.9%

Excitement Binary Ns = 89 58.47% 13.7% 57.36% 11.5% 63.05% 16.7%
Ternary Ns = 117 41.17% 9.2% 41.17% 9.2% 45.34% 13.8%

Frustration Binary Ns = 81 85.23% 7.2% 85.23% 7.2% 80.37% 5.6%
Ternary Ns = 117 62.63% 6.1% 61.72% 5.1% 61.02% 7.5%

Fun Binary Ns = 106 66.01% 10.1% 64.19% 10.3% 62.19% 12.6%
Ternary Ns = 117 59.92% 9.5% 58.25% 9.7% 56.43% 11.6%

found that could predict 4(/5) dimensions. A set of 4 features can be used to

predict Boredom, Challenge, Excitement and Frustration (not Fun), given by:

Λ ∈ {Am, Astd, Amax, Vm}. A single feature can be used to predict Boredom,

Challenge, Frustration, Fun (not Excitement), given by: Π ∈ {GA}. Similarly,

feature sets emerge that can predict 3(/5) dimensions. A single feature was

found to be able to predict Challenge, Frustration, Fun, given by Φ ∈ {C}.
A single feature can be used to predict Boredom, Challenge, Frustration, give

by: Ψ ∈ {Jm}. Common feature sets also emerge that can predict pairs of

emotions. A large set of features could predict Challenge and Frustration, given

by: Ω ∈ {T,AD, Jstd, RAtMin, RJtMin, RVmax}. Another pair of features could

predict Boredom, Excitement, given by: ∆ ∈ {GT , RJtD}. Feature recommen-

dations for each dimension of preference are given by the composition of the

sets of features presented above, illustrated in fig 3.4. For instance, Challenge

is a set of 15 features, given by: CH ∈ {Θ,Λ,Π,Ψ,Φ,Ω}. Table 3.12 presents

summary of the feature sets presented in this section as well as the dimen-

sions of emotion preference that the feature set corresponds to. Showing the

recommendations as compositions of other feature sets allows us to appreciate

important relationships across emotions. For instance, a total overlap in the

features that predict Challenge and Frustration is observed (implications are

discussed in section 3.7).
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Table 3.12: Summary of feature sets and corresponding dimension of emotion
preference

Set Name Feature Components Related Emotion Preference Dimensions

Θ Minimum Acceleration
(Amin)

Fun, Excitement, Boredom, Challenge and Frustration

Minimum Angular Veloc-
ity (RVmin)

Λ Mean Acceleration (Am) Excitement, Boredom, Challenge and Frustration
Standard Deviation of Ac-
celeration (Astd)
Maximum Acceleration
(Amax)
Mean Velocity (Vm)

Π Game Area (GA) Fun, Boredom, Challenge and Frustration

Φ Game Completion (C) Fun, Challenge and Frustration

Ψ Mean Jitter (Jm) Boredom, Challenge and Frustration

Ω Game Time (T) Challenge and Frustration
Difference between max
and min Acceleration
(AD)
Standard Deviation of Jit-
ter (Jstd)
Time of minimum Angu-
lar Acceleration (RAtMin)
Time of minimum Angu-
lar Jitter (RJtMin)
Maximum Angular Veloc-
ity (RVmax)

∆ Game Treasure (GT ) Boredom and Excitement
Difference between time of
max and min angular jit-
ter (RJtD)
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Figure 3.4: The figure shows how recommended feature sets for the various di-
mensions of emotional preference can be expressed as compositions of important
feature sets.

3.7 Discussion

The results indicate that combinations of game parameters and PBFs can be

used to accurately predict dimensions of emotional preferences. The perfor-

mance of three models for classification have been compared in this study and it

is shown that SVM classifiers (unexplored in previous research for this problem)

were the best performing classifiers for both accuracy and stability, indicated

by higher accuracy and lower standard deviation of 10-fold CV accuracies. Al-

though all classifiers perform better than random chance, it is observed that

binary classifiers outperform ternary classifiers in both accuracy and stability.

This is not surprising since the binary classifiers attempt to model a simpler

problem.

It is observed that the player types approach to preference learning did not

perform as well as the large margin approach. A possible explanation for this

is the limited dataset of 117 game pairs. When clustering was applied to this

dataset, three clusters emerged. The game pairs were not evenly distributed

among the three clusters. Most game pairs (≈ 76.9%) were assigned to the first

cluster in both variants of the clustering approach tested. If a larger dataset

with game pairs that are equally distributed between the emergent clusters is

used, this approach could result in better performance in predicting a player’s

emotion preference. It is worth noting that the accuracy and stability of classi-

fiers from the player types approach are higher than the base performance (using

all the features) in the large margin algorithm approach. However, once fea-

ture selection is applied to the latter, the accuracy and stability of all classifiers

across all emotional dimensions are higher than in the player types approach.

In the large margin approach, Boredom, Excitement and Fun are difficult to

82



model. This is observed in statistical analysis as well as the low accuracy and

stability of the classification models tested. Predicting Challenge and Frustra-

tion show higher accuracy and stability. Due to the small data set, it is possible

that classifiers for Boredom, Excitement and Fun show over-fitting due to a high

standard deviation of 10-fold CV accuracies. The performance of Challenge and

Frustration shows more acceptable stability with both binary and ternary clas-

sifiers showing a variance of ≈ 5%. This variance will be further reduced if a

larger data-set is used. These results are similar to results from other studies

that model players’ preferences [167]. Although the authors investigate Super

Mario in their work, they find that Fun and Boredom were the most difficult to

predict, while Challenge and Frustration were the best performing classifiers.

It is possible that these observations are due to the underlying relationship

between game activities and the specific emotional dimension. Some theories[17]

consider emotions as being constructed from more fundamental properties called

Valence and Arousal: Valence is the amount of goodness or badness in expe-

riences, while Arousal is the psychological state of being awake. Fun, Excite-

ment, and Boredom are more resonant with the emotional dimensions of va-

lence. Frustration and Challenge are resonant with the emotional dimension of

arousal. Frustration is a construct of negative valence and high arousal, while

Challenge is strongly linked to player performance and high arousal states. As

this approach uses movement data, this information medium could be more

useful to detect variable arousal rather than variable valence based emotional

states. Although it is useful to use valence and arousal to interpret these re-

sults, the current approach of asking players about preferences across easily

understandable emotions has obvious advantages as it is more intuitive for peo-

ple to compare 2 experiences based on Fun or Frustration rather than valence

and arousal. Studies about emotions[17] also tell us that people are different

in their ability ‘to represent their experiences as categorically distinct events’

and this ability is influenced by context and language abilities. This means that

peoples interpretations of the different emotion dimensions used in this study

are subjective and are influenced by their cultural and linguistic abilities. This

is observed in this study by the variable proportions of clear preference across

the emotions tested. In order to understand the relationship between player

movement and the emotional dimensions of valence and arousal, a revised study

design is required.

The current game requires considerably high amounts of walking; these re-

sults are applicable to similar AR games that require movement in local space.

The techniques proposed in this chapter have considerable potential to create

content that is optimized for an ideal balance of Challenge and Frustration (i.e.

the best balance of most challenging and least frustrating). Currently, a simple
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game design space has been explored and it is possible that Frustration and

Challenge is being predicted by the same underlying feature correlations. In

this game, most participants appear to prefer a large amount of Treasure (more

fun, exciting and less boring) and do not prefer walking a large amount (more

challenging and frustrating). In this case, it would be impossible to find a game

experience that is both challenging but not frustrating. It would be interest-

ing to see how this approach scales in more complex game design spaces. This

can easily be achieved by using a game parameter set of higher complexity, for

example, GA ∈ {XS,S,M,L,XL}. This set contains values for the game area

parameter that allows for a more diverse range of levels moving from small to

large.

This study serves as a starting point in a better understanding of how player

behaviour in AR environments can be used to model their preferences. An as-

pect of this problem that is unresolved is guidelines of following a binary or

ternary approach to classification. Binary classification performs better and

is more stable. However, this is unsurprising since it models a simpler prob-

lem. This advantage over ternary classification seems preferable and could be

accomplished by forcing a binary choice onto participants referred to as the 2-

AFC[216]. A critique of this approach is that it seems a naive way of achieving

better performance and could prove detrimental to optimization for true player

experience.

This work is built on studies of detecting emotions from movement and

has been applied to predict emotional preferences in MAR games, a complex

problem that this work has begun probing. Future research in addressing the

discussed gap in establishing ground truth improved feature extraction, and

different models to address this problem (other non-linear classifiers or models

for time-series data) would increase our understanding. The subsection below

discusses some limitations of this study.

3.7.1 Limitations

One of the main limitations of the current study is the limited amount of data.

Since large training sets are usually required to train machine learning mod-

els, the accuracies of the preference learning models observed in this study are

potentially limited due to the size of the dataset.

As mentioned above, it is possible that the high performance of the challenge

and frustration classifiers are due to the same underlying feature correlations.

One possible reason for this is the relatively simple game design space (four

level variants) being explored in this study. If this limitation persists when a

more complex space is explored, it would be impossible to create content that is

84



challenging but not frustrating for the player. This limitation must be further

investigated in future work by checking the hypothesis that preference learning

models based on movement data cannot differentiate between frustration and

challenge and that modelling preference across the dimensions of valence and

arousal can better differentiate between frustration and challenge. Additionally,

this limitation is further validated by participant comments at the end of the

study. Most participants tended to feel that a frustrating experience for them

meant that the game level was challenging. This conceptual overlap between

challenge and frustration shows the need to explore alternative measures of

player experience.

Another limitation was observed from a number of post-experiment inter-

views with participants. Participants felt that the ease with which they com-

pleted the 2D puzzle, as well as the selection of the puzzle image (which was

selected from a database of 100 images at random), biased their reported emo-

tional preferences. Since images were randomly selected, the study did not con-

trol for the emotional response created by a specific puzzle image. Figure 3.5

shows examples of the image database that were used for the puzzle mechanic.

Since the 2D puzzle is at the end of the game round after the AR exploration,

PBFs or game parameters from this part of the game have not been used. This

would have added noise to the preference data. This limitation will be addressed

in the study described in the next chapter by using a new game.

Another limitation is that it is difficult to generalize the finding of this study

to all genres of AR games. The AR Treasure-hunt described here is a valid test-

bed for this pilot study, however, future work exploring this relationship in other

AR games will need to be conducted. The results observed in this study while

not generalisable to all mobile AR experiences are still applicable to exploration-

based AR experiences such as dARk which is a story-driven horror game.

Post-experiment interviews with participants showed the current game ex-

perience got predictable by the end of the study (there were always either 9 or

16 treasure pieces in each level). This is due to the study design that explores a

simple game design space that utilizes only 2 settings for game treasure a high

setting (16 pieces) and a low one (9 pieces). This predictability is a limitation

as it reduces the curiosity and fantasy aspects of the experiences which are both

important dimensions in Malone’s theory of fun in games [127]. Due to this, it

is possible that precipitants approached the final session of the study less like

a game and more like an experiment task which would’ve further biased the

preference data.

Finally, due to the exploratory nature of this study, only a short unstructured

interview was conducted as part of debriefing the participant. The interview

did yield useful findings on the validity of the game and the subjective mea-
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Figure 3.5: The figure shows a selection of 9 out the 100 images used for the
puzzle mechanic for the AR Treasure Hunt game.

sures used. However, this approach to gathering qualitative data is insufficient

in understanding how different the game parameters could affect a player’s ex-

perience across the different levels. Future work will address this limitation by

conducting player interviews with participants.

3.8 Chapter Summary

The study reported in this chapter has analyzed player movement in an exploration-

based AR mobile game. In order to do this, an AR Treasure hunt game was

designed and developed. This game was used in a user study where participants

self-reported their emotional preference about variants of the game. Statistical

analysis and predictive modelling showed that a combination of game context

information and player movement can be used to accurately predict a player’s

preferences regarding Challenge and Frustration with a high degree of accuracy

while all other emotions tested performed above random chance (Fun, Excite-

ment and Boredom). Based on these observed results, it was proposed that these

techniques are better suited to measure variable arousal states rather than dif-

ferences in valence. A number of limitations of the existing study were also
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discussed regarding the interactions used in the game as well as the approach

of analysing game experience as emotional preferences.

This has motivated the study proposed in the next chapter. The next study

builds on the findings from this study by using a different game that focuses

more on physical exertion as opposed to open-ended exploration. The next study

will also incorporate the collection of self-reported valence and arousal data in

order to understand its relationship with player movement. Additionally, most

traditional questionnaires to measuring PX in games will also be used. Using a

new game in the next user study will overcome a number of limitations observed

from this study such as predictability of the game task. This would also show to

what extent the results reported in this study can be generalized to AR mobile

games.
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Chapter 4

Modelling Game

Experience in an AR

Exergame

The previous chapter presented the first study of this research where supervised

learning techniques were used to predict a player’s preference across a number

of emotion dimensions. The study reported in this chapter aims to overcome

two main limitations observed in the previous study specifically the game and

the questionnaire used.

First, the game used both movement-based interactions in AR and touchscreen-

based interactions both of which contributed to the overall experience of the

game. Since the focus of this research is on movement-based AR interactions,

the puzzle-based touch screen task added undesirable noise to the data collected.

Second, it was discussed that measuring player experience as individual di-

mensions of emotions lead to conceptual overlaps between challenge and frus-

tration. This was seen in comments from participants and the feature selection

algorithms converging to similar feature sets while trying to predict each.

Finally, participants found the game predictable after the first 2 rounds (4

game levels) which lead to boredom in the game. For this reason, this study

focuses on applications of mobile AR exergames. Exergames traditionally com-

bine physical exercise and digital games. Academic investigation into exergames

has shown its benefits for physical health, cognitive and emotional well-being

[204, 9]. AR has be been investigated as a novel platform for these games

[119, 112]. However, there is a notable gap in studies that investigate how

different game parameters can affect PX in these AR exergames.

To address this gap, this study first introduces a new game titled Running
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Chickens which has been designed based on existing examples of AR exergames

[119, 112]. This is different from the AR treasure hunt game in the previous

study since game mechanics are used to motivate players to increase their physi-

cal exertion during gameplay. These game mechanics refer to introducing a time

constraint for each level (which adds a sense of time pressure for players) and

having game collectables evade players (which adds a sense of challenge that

can only be overcome by increasing the amount of physical exertion by running

after the object to collect it).

This chapter first presents the aims and motivations for this study in section

4.1. The AR exertion game: Running Chickens developed to investigate player

modelling is described in section 4.2. Section 4.3 describes the experiment pro-

tocol used in this study. The study design has been informed using pilot studies

which have been described in section 4.4. Section 4.5 provides details about the

data collected during the study. The data analysis method and results from the

analysis are presented in section 4.6. Section 4.7 discusses the implications of

these results and the limitations of the study. Finally, section 4.8 presents a

chapter conclusion.

4.1 Aims and Motivations

To further investigate player modelling in AR games, this study uses a different

game in order to overcome limitations of the previous game task namely the in-

fluence of non-AR game interactions on player experience. While the previous

game and study serve as a useful exploratory study, the game itself cannot gen-

eralise to other AR mobile games. Since AR mobile games is a broad genre, the

remaining studies conducted in this research will focus on AR mobile exergames.

The literature on exergames has shown benefits to both youth and older

adults. It is considered a potential solution to childhood obesity[112]; providing

physical, social and cognitive benefits when incorporated in physical education

curriculum[204]. Gamifying physical activity for older adults has shown to have

higher motivation, enjoyment, and engagement as compared to regular physical

activity[100].

There exists a large number of commercial exergames that use physical sen-

sors to translate body movement into digital gameplay interactions from game

systems just as the Switch and Wii from Nintendo, the Kinect platform from

Microsoft which has several rhythm-based and fitness games. These games are

played indoors usually on a home game console. Mobile exergames usually use

GPS to increase the player’s physical activity by walking to different locations,

using GPS[119, 112, 9]. A popular mobile AR exergame is Run Zombies, which is

an audio-based game for runners. While not traditionally an exergame, another
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popular AR mobile game is Pokemon GO from Niantic labs has been shown to

have positive health benefits due to its mass adoptions and location-based game

design[9].

AR mobile exergames have also been developed by researchers to explore

the potential benefits of these types of games. It is a generally accepted premise

that movement-based games have a positive health impact by increasing the

physical activity of the player. There is a notable gap in studies that evaluate

the impact of exergame parameters on PX.

The main aim of this study is to explore the impact of different game param-

eters of an AR exergame on a player’s experience. Additionally, exploring tech-

niques to predict PX within these games have the potential of creating fitness

applications that can be optimised for ideal PX. Which should in turn increase

a player’s engagement with them leading to increased health benefits. While

the previous chapter explored player preferences across a number of emotion

dimensions, this study uses standardised rating-based measures of PX namely

the Affective Slider [22] and the GEQ [86] as subjective measures of PX. These

measures have been developed for use in HCI based on theories of PX and are

commonly used to evaluate the PX facilitated by a game system.

The two research questions that are explored in this study are:

• What is the impact of AR exergame parameters on PX?

• To what extent can movement-based, performance and game features be

used to predict PX?

In order to explore these research questions, an AR Exergame is developed

(details about the game is provided in the next section) based on existing exam-

ples of such games proposed by other researchers. The game is intended to use

player movement within a local space to accomplish game objectives. Different

game parameters are used to influence the amount of player movement within

the space. For instance, each level changes the size of the physical area which

the player must traverse through as well as the amount of physical exertion

(walking vs jogging) that needs to be employed in order to accomplish game

objectives. The game design has been inspired from existing examples of such

games from research namely GioBoids[119] and Calory Battle AR[112].

In Gioboids players are directed to different locations to capture flocks of

creatures. While in Calory Battle AR players must travel to different areas and

diffuse bombs. These games have two game parameters in common: 1) the

size of the game space in which the different game elements are populated 2)

the number of game elements within the space. While both games involve an

evaluation study of the games’ enjoyment, empirical work that evaluates the

effects of different game parameter settings (eg: large vs small spaces) does
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not exist. While both game parameters control the extent to which players

move within the game, it is difficult to understand how different game settings

will impact PX. This would be beneficial to game designers of similar games in

creating the progression system of these games since the goal is to keep players

engaged while gradually increasing their physical activity. The AR exergame

developed for this study uses similar game parameters to drive player movement

within the game. The next section describes the design and development of

Running Chickens (the AR exergame designed as part of this research).

4.2 AR Exergame: Running Chickens

Running Chickens is the title of the AR Exergame designed and developed for

the purposes of the research. The objective of Running Chickens is to catch

digital chickens within a physical space. In each game, players are given a set

amount of time and are presented with a flock of digital chickens within their

local space. Similar to the previously mentioned examples, the size of the game

level and the number of chickens in each level are controllable game parameters

that are varied between levels.

The player must catch as many chickens as possible before the time runs

out. The player can capture a chicken by colliding the mobile device with the

chicken. Unlike the game used in the previous chapter (AR Treasure Hunt),

the targets are visible. The player can see the chickens and must move towards

them.

A novel game parameter introduced in this game is that chickens are pro-

grammed to evade the player. This evasion mechanic is set up to facilitate

different challenge levels with the game. Chickens can show high evasion in dif-

ficult levels of the game and low evasion in easy levels of the game. This evasion

mechanic is implemented by applying an acceleration to the chicken along a

vector moving away from the player (which is given by the negative unit vector

of the difference between the creature position and the player position). This

mechanic is triggered when the player is within 0.5m of the creature.

In order to ensure that the chickens do not constantly evade players (making

the game unplayable), the evasion mechanic is implemented with properties of

stamina and cool down time. This stamina property allows the chicken to evade

the player for a fixed amount of time after which it must rest for the cooldown

time. In this version of the game, both stamina and cool down times are set

to 3 seconds each. This means that once triggered to evade a player, a chicken

can do so for 3 seconds after which it must rest for 3 seconds before it can

evade the player again. This design decision prevents the evasion mechanic

from being constantly triggered, giving the player a window of opportunity to
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capture the chickens when they are resting (in cooldown time). Figure 4.1 shows

an illustration of this evasion mechanic for each chicken.

Figure 4.1: The figure illustrates how the evasion mechanic is triggered. If the
player moves the mobile device into the radius of the evasion mechanic, it will
be triggered causing the chicken to run away from them. If the player moves
the mobile into the capture radius, the chicken will be captured adding a point
to their game score.

The evasion mechanic is parameterized through the magnitude of the ac-

celeration that is applied to the chicken when the mechanic is trigger. A high

acceleration will result in the creature moving away from the player at a very

high speed (making it difficult to capture) while a low acceleration will move

the creature away from the player at a slow speed (making the creature easy to

capture). In the version of the game used in this research, the evasion mechanic

is set to two simple states where either the chicken runs away from the player

or it does not move. The numeric value of this mechanic was tuned with pilot

testing. The goal was to make the evasion of the chickens challenging on the

player but still keeping it playable.

Each level of the game is played within a fixed square area. Similar to the

previous game, players will be able to see the walls of the game level and the

flocks of chickens will be bounded within this space. The area of the game is

also parameterized to two discreet states: small levels of 15 × 15m and large

levels of 30 × 30m. Finally, each game level will contain flocks of chickens in

varying numbers. The amount of chickens is the final parameter that has been

selected for this game. The flocks range from small (5 chickens) to large (20

chickens).

The game has been set up in such a way that the three parameters mentioned

above will be used to generate each level of the game. At the beginning of the

game, participants will scan the world and place the game level within the world.

Once the level is placed, they can start the game. In each level, the player will

be given a minute in each level to capture all chickens (or as many as they can)

before the time runs out. A scoring system is set up in the game in such a way

that a player gets a point for each chicken that is captured. The round ends
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when the player runs out of time or has captured all the chickens in the level. If

the player captures all chickens before their time runs out, a point will be added

for each second that is remaining in the time limit in the form of a time bonus.

This further encourages the player to collect chickens as soon as possible. Figure

4.2 shows the screenshots of the main game and provides details about the UI

components used in the main game screens. Figure 4.3 shows the screen flow of

a single level. Similar to the previous game, it has been designed to be played in

outdoor parks. Figure 4.4 shows a player testing the Running Chickens game.

The game has been developed in the Unity game engine [211] using the

ARcore SDK [1]. The chicken model used in the game was downloaded from

the unity asset store (fig 4.5 shows the chicken model), sound effects for the

game was downloaded from freesound.org.

Figure 4.2: The figure [a-b] shows the game screens of running chickens. [a]:
shows an in-game screen with the chickens that must be captured along with UI
elements showing the time bar in each level as well as the player score. The Time
bar indicates the amount of time left to collect chickens. The score indicates
the points collected by the player (1 for each chicken collected). [b]: shows
the screen at the end of each level, with the final score (number of chickens
collected) as well as the additional time bonus received by the player.

4.3 Experiment Design

This section describes the experiment design for the user study described in this

chapter. The study follows a within-participant design where a participant faces

all conditions of the study. Participants were not given any constraints on how
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Figure 4.3: The figures [a-h] shows the game screens of running chickens for a
single game level. [a]: when the game application is launched players (in the
user study) are required to provide an ID that is provided to them. [b] Once a
level begins the player will need to place the game level in the physical world.
The text at the top of the screen reads, ”Tap on the detected ground plane to
place a level”. The ground plane is seen in purple along the ground. [c] Once the
user places the level, they are presented with a count down (”3.. 2.. 1.. GO!”)
to the beginning of the level. [d] Once the level begins the player sees chickens
populate the game level (which they are required to collect). [e] Shows particle
effects that are triggered when a player captures a chicken. [f] Shows the game
over screen at the end of the level. [g] Shows a questionnaire that the player
must complete at the end of each level. This screen shows the affective slider
[22] [h] Shows the in-game GEQ being presented to the user which is another
questionnaire the player must complete at the end of the level.
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Figure 4.4: The figures [a-c] shows a player using the Running Chickens game.
[a] Shows the player capturing a chicken. [b] Shows the view of the mobile
device from the player’s hand. [c] Shows an illustration of the game world as
seen from the player’s hand. The player is shown using the green circle while
chickens are shown using red circles. The yellow area shows the device viewport
and the boundary of the game level is shown using the blue line.

Figure 4.5: The figure chicken model downloaded from the unity asset store
that is used in the Running Chickens game.
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to hold that phone (in landscape vs portrait orientation), however, the screen

design was made to play in portrait orientation.

Here, a condition refers to a specific game level. Three controllable game

parameters are used to generate each level of the game:

• The Area of the Level (GArea): 2 sizes of levels are compared. Large Area

(Lrg) levels are 30m× 30m and Small Area (Sml) levels are 15m× 15m.

• Number of Chickens (GNo): 2 amounts of chicken in each level are com-

pared: Low Number with 5 and High Number with 20 pieces respectively.

• Chicken Movement (GMov): 2 setting of the chicken evasion mechanic are

selected for evaluation: Non-Evasive condition where the chickens do not

evade players, Evasive condition where the chickens evade players. The

speed of chickens and the length of the cooldown time of this mechanic

in the evasive condition has been selected through pilot testing which is

described in the next section. This is done in order to ensure that the

chickens can be caught by players.

Using 3 game parameters to generate levels has resulted in 8 (2 × 2 × 2)

levels of the game. In this study, participants play all 8 levels of the game. In

order to minimise ordering effects from biasing the data, the order in which the

participants play each level of the game was randomised. At the end of each

level of the game, participants were asked to fill in player experience measures

relating to that specific level. This study used two measures:

• The Affective slider [22]: This is a tool that has been developed by Betella

et al. for measuring affect in interactive interfaces. It measures 2 dimen-

sions of affect: Valence and Arousal using separate sliders for each.

• The Game Experience Questionnaire (GEQ) [86]: This questionnaire was

developed by Ijsselsteijn et al. to measure player experience in games

across a number of factors. The GEQ comprises the following sub-scales:

Competence, Immersion, Flow, Tension, Challenge, Positive Affect and

Negative Affect. For this study, the in-game version of the GEQ was

used. The in-game GEQ is a shorter version that has been designed for

repeated measures studies to prevent questionnaire fatigue.

The study consisted of 9 sessions (1 training + 8 experiment), each exper-

iment session took approximately 2 min to complete while the training session

took up to 10 min to complete. The training session involved a demonstration

by the researcher of the game and interactions. Which was followed by the

participant practising the game for 2 levels. For training, a simple level is used
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with 3 chickens that do not evade the player in small a 5m × 5m area (data

from the training session is not used in analysis). In each experiment session,

participants played a level of Running Chickens and completed the Affective

Slider and the in-game GEQ.

All experiments were conducted during daylight and adequate weather con-

ditions (no signs of rainfall) in a park near Queen Mary University of London’s

Mile End campus. This is done to minimise the difference in results that may

arise due to different locations or poor lighting and weather conditions. The

order in which each participant experienced each session of the experiment was

randomised to minimise ordering effects on the data collected. Participants were

anonymised using IDs and were compensated £10.00 for their participation in

the study. The experiment was conducted using a Google Pixel 2 XL mobile

device. The following subsection describes the study procedure used for each

participant.

4.3.1 Procedure

All participants provided informed consent before participating in the study.

At the beginning of the study, participants filled up a questionnaire about their

background and previous experience in MAR games. After which they were

given a training session about the game and the questionnaires used in the

study. During training, the researcher first demonstrated how the game works

to the participant over one level of the game, after which participants played

2 training levels and filled up the Affective Slider and the in-game GEQ after

each level. During training, the researcher was present with them and they were

encouraged to ask any questions about the game or the study procedure.

Once the training was completed, the participants were left alone in the

park (while the researcher waited by the entrance of the area), to minimise

the effect of the researcher’s presence on the data collected. During this time,

participants experienced the 8 study sessions of the experiment. In each session,

the participant played one of the game levels and filled up the questionnaires.

Participants were asked to take a 2-5 min break between sessions to minimise

the effects of physical fatigue from the previous session on the data collected

from the next one.

While playing Running Chickens, if the participants experienced any techni-

cal issues (the main one being the AR algorithm losing tracking of the environ-

ment), they were asked to proceed to the next session and the data from this

session was not used in data analysis. At the end of the study, participants were

debriefed about the objectives of the research, all the questions were answered

and the experiment was concluded. The experiment took 40-60 min for each
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participant (depending on the length of the breaks they took during the study).

4.4 Pilot Study

Aspects of the game design and experiment protocol described previously in

the chapter were informed using pilot studies. The study was designed with

two rounds of pilot testing. The first pilot test was conducted to select optimal

game parameters specifically the speed with which the chickens evade players.

4 participants took part in the first round of pilot studies, each participant

took part in 3 sessions where they tested different game parameter settings.

Each session was conducted on separate days to prevent participant fatigue.

The same participants experienced all study sessions as it is important to get

a comparative evaluation of the different game parameter settings used in each

game.

In the first session, participants played 5 levels of the game where the area

and number of chickens were fixed (to the large area and the high number of

chickens). In each level, the speed of chickens was varied from slow to fast.

This is implemented by varying the acceleration with which the chicken moves

away from the player when the evasion mechanic is triggered. The different

accelerations tested in this pilot was a ∈ {0, 1.5, 3, 4.5, 6} measured in m/s2.

At the end of the session, participants were asked how their experience was

different depending on the speed of the chickens. Most participants preferred

a moderate speed for the chickens (either 3 or 4.5 m/s2), since if the chickens

moved too slowly the evasion mechanic was ineffective. While if the evasion

speed was too high, participants were easily discouraged as it made capturing

the chickens very difficult.

In the second session, participants played all 8 levels of the game, where the

speed and number of chickens, area of the level were varied across the high and

low settings described in section 4.3. For this pilot, the high condition of the

evasion mechanic was set to 4.5 m/s2. The goal of this session was to test all

the game parameter variations within an experiment study. At the end of the

second session, the speed of chickens was lowered as participants got easily tired

across all 8 rounds of the study. This was observed by participants showing

clear signs of fatigue towards the end of the session and was confirmed by their

feedback at the end of the session. In the third session, participants tested all

8 levels with the lower chicken speed (3 m/s2). This was found to be optimal

game parameter settings out of all the parameters tested.

The second round of pilot testing was conducted with two participants. This

test included the full experiment protocol along with the PX questionnaires

at the end of each level. The experiment took an hour for each participant.
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The second round of pilot testing worked as expected and only minor aesthetic

changes have been noticed at this stage. The 2 main aesthetic changes were

the font size of the score text of the game screen had to be increased and the

sound effect for when a chicken was decreased in volume. Another main learning

from this pilot was that participants found the Affective Slider a bit confusing

to use in the context of their experience with the game. This limitation was

overcome with added focus on the PX measures during the training session with

participants in the main study. The data from both rounds of pilot testing have

been discarded and will not be used in analyses.

4.5 Data Collection

During the study, PX, player movement data (measured through the mobile

sensors) and game metrics were collected. As each game level was a study

condition, each participant contributed 8 games to the data set. This resulted

in a total of 320 games played across the study. However, due to some technical

crashes, only 298 games were recorded and used in data analysis.

The data set collected is used to analyse the impact of game parameters

on PX. Additionally, it is also used to train and evaluate supervised learning

classification algorithms to predict PX from the mobile sensor data and game

metrics. This section describes the questionnaires, qualitative data, movement

data and game metrics collected during the study as well as the demographic

information of the sample of participants in this study.

4.5.1 Participants

Participants were recruited using university mailing lists which included PhD,

Masters and Undergraduate students from the Electronic Engineering and Com-

puter Science at Queen Mary University of London. The study sample consisted

of 40 volunteers (13 female and 27 male) aged 18-44 (24 participants were aged

18-24, 13 were 25-29, 3 were above 30) took part in this study (summarized in

table 4.1). When asked about prior experience playing AR games 19 of the sub-

jects had no prior experience. In the remaining 21 subjects: 6 reported having

only one experience in the past, 14 played a few times before, and 1 participant

played AR games regularly (summarised in table 4.2). All participants provided

informed consent before taking part in this study.

4.5.2 Questionnaire Data

The Affective Slider[22] and in-game GEQ[86] are used to collect PX measures

of each game. The affective slider uses 2 sliders to provide floating point scores

99



Table 4.1: Summary of participants’ ages.

Age range Number of participants
18-24 24
25-29 13

Above 30 3

Table 4.2: Summary of participants’ previous experience with AR games.

Previous AR experience Number of participants
No experience 19

Played only once before in the past 6
Played only a few times in the past 14

Played AR games regularly 1

for Valence and Arousal that range from 0-1.0. While the in-game version of the

GEQ consists of a 14 item questionnaire where participants use a 7 point Likert

scale to provide their level of agreement with the different statements in the

questionnaire. The items of the questionnaire are aggregated to provide scores

for the following 7 subcomponents of the questionnaire: Competence, Sensory

and Imaginative Immersion, Flow, Tension, Challenge, Negative Affect, and

Positive Affect. Additionally, qualitative data related to PX was also collected

from the interviews conducted with each participant.

4.5.3 Qualitative Data

At the end of the study, a semi-structured interview was conducted with players

to get qualitative insights into their experience with the game. The interview

mainly focused on their preferences between the different level parameters, any

specific strategies players used, main experiential highlights from their game-

play and any design suggestions for future iterations of the game.

4.5.4 Player Behaviour Data

Player Behaviour data has been measured from player movement in-game ses-

sions. The mobile IMU sensors record the position and rotation of the device

during the game. This data is recorded at a frequency of 64 Hz and the discrete-

time signals are stored as a 7-dimensional vector: α ∈ {PX , PY , PZ , RX , RY , RZ , RW }
for position (in meters) and rotation (in quaternions). Quaternions are a four-

dimensional vector (X, Y, Z and W), which is a number system that describes

that rotation in a three-dimensional space that prevents gimbal lock, which is
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a phenomenon that occurs when measuring rotation with Euler angles. Gim-

bal lock occurs when one of the rotation axes realigns with the other axis and

eventually causes loss of one degree of freedom [169].

The player’s score (S ), which increases as chickens are captured (one point for

every chicken captured), is recorded at the same frequency. The time remaining

(T ) at the end of the round if the player captures all the chickens in the level

is also recorded as a measure of performance.

4.6 Analysis and Results

The resulting data set from the experiment was used to understand the impact

of different game parameters on PX and to explore the potential of supervised

learning to predict dimensions of PX based on player movement and game-

based data. The following subsections describe the quantitative, qualitative

and supervised learning evaluations conducted as part of this study.

4.6.1 Analysis of Game Parameters influence on Player

Experience

The relationship between game parameters on PX is analysed using the three-

way ANOVA with a p-value of 0.05. Residual analysis was performed to test

for the assumptions of the three-way ANOVA. Normality within groups was

assessed using QQplots. In some cases the normality assumption was not met

however, as indicated by Blanca et. al [28] the ANOVA test is still a valid option

for analysis. It is worth noting the Blanca et. al. proved this hypothesis using

a Monte Carlo simulation study. The assumptions of homogeneity of variances

was assessed by Levene’s test. A posthoc Tukey test was also conducted if

significant main or interaction effects were observed from the ANOVA test.

The results of each of the PX dimensions are reported below:

Valence: Residuals were not normally distributed (p < 0.05) and there was

homogeneity of variances (p > 0.05). Inspection of the QQplot by experiment

conditions showed most groups fall approximately along the reference line shown

in figure 4.6, indicating that data within groups show minor deviations from

normality. There was a significant main effect from the number of chickens on

the Valence score, F(1, 290) = 4.17, p = 0.041 with an effect size η2partial =

0.014. A post hoc Tukey test showed that when the number of chickens was

low the valence was higher and differed significantly (p = 0.041). This effect

is observed in figure 4.7, which shows the plot of the valence scores across the

study conditions.
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Figure 4.6: The figure shows the QQplots for the Valence scores across
the study conditions which show minor deviations from normality across the
different conditions.

Figure 4.7: The figure shows the boxplot plot for the Valence scores across
the study conditions. The image shows that when number of chickens is low,
valence scores are higher - this effect is clearly observed in the larger game areas.
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Arousal: Residuals were not normally distributed (p < 0.05) and there was

homogeneity of variances (p > 0.05). Inspection of the QQplot by experiment

conditions showed most groups fall approximately along the reference line shown

in figure 4.8, indicating that data within groups show minor deviations from

normality. There was a significant main effect from the evasion mechanic, F(1,

290) = 5.98, p = 0.015 with an effect size η2partial = 0.020. A significant 2-way

interaction effect was also observed between the number of chickens and the

evasion mechanic, F(1, 290) = 4.61, p = 0.033 with an effect size η2partial = 0.016.

Posthoc testing showed that when chickens evaded players, arousal scores were

significantly higher (p = 0.015). Additionally, when the number of chickens was

low, the evasive chickens resulted in significantly higher arousal (p = 0.07). This

effect is observed in figure 4.9, which shows the plot of the arousal scores across

the study conditions.

Figure 4.8: The figure shows the QQplots for the Arousal scores across
the study conditions which show minor deviations from normality across the
different conditions.

Competence: A moderate reliability was found for competence scores, Cron-

bach’s α = 0.67. Residuals were not normally distributed (p < 0.05) and there

was homogeneity of variances (p > 0.05). Inspection of the QQplot by exper-

iment conditions showed most groups fall approximately along the reference

line shown in figure 4.10, indicating that data within groups show minor de-

viations from normality. There was a significant main effect from the number

of chickens, F(1, 290) = 10.23, p = 0.001 with an effect size η2partial = 0.034.

A significant 2-way interaction effect was also observed between the number of

103



Figure 4.9: The figure shows the boxplot plot for the Arousal scores
across the study conditions. The image shows that when chickens evade players,
arousal scores are higher. Additionally, when the number of chickens are low,
evading chickens results in higher arousal scores.

chickens and the evasion mechanic, F(1, 290) = 4.61, p < 0.001 with an effect

size η2partial = 0.066. Posthoc testing showed that when the number of chickens

is low, competence scores were significantly higher as compared to when the

number of chickens is high (p = 0.01). When the number of chickens is low

and the chickens are stationary, players reported significantly higher compe-

tence scores as compared to levels with a high number of chickens that evade

the player (p = 0.005). Keeping the number of chickens high and the chickens

stationary resulted in significantly higher competence scores as compared to

levels with a high number of chickens that evade players (p < 0.01). This effect

is observed in figure 4.11, which shows the plot of the competence scores across

the study conditions.

Sensory and Imaginative Immersion: Amoderate reliability was found for

immersion scores, Cronbach’s α = 0.68. Residuals were not normally distributed

(p < 0.05) and there was homogeneity of variances (p > 0.05). Inspection of

the QQplot by experiment conditions showed most groups fall approximately

along the reference line shown in figure 4.12, indicating that data within groups

show minor deviations from normality. There was a significant main effect

from the evasion mechanic, F(1, 290) = 12.78, p = 0.002 with an effect size

η2partial = 0.031. Posthoc testing showed that when chickens evaded players,

immersion scores were significantly higher (p = 0.02). This effect is observed

in figure 4.13, which shows the plot of the immersion scores across the study

conditions.
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Figure 4.10: The figure shows the QQplots for the Competence scores
across the study conditions which show minor deviations from normality across
the different conditions.

Figure 4.11: The figure shows the boxplot plot for the Competence scores
across the study conditions. The image shows that when the number of chickens
is low competence scores are higher. Additionally, when the number of chick-
ens is low and the chickens are stationary, players reported significantly higher
competence scores as compared to levels with a high number of chickens that
evade the player. Finally, when the number of chickens high and the chickens
stationary resulted in significantly higher competence scores as compared to
levels with a high number of chickens that evade players
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Figure 4.12: The figure shows the QQplots for the Immersion scores across
the study conditions which show minor deviations from normality across the
different conditions.

Figure 4.13: The figure shows the boxplot plot for the Immersion scores
across the study conditions. The image shows that when chickens evade players,
immersion scores are higher.
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Flow: A moderate reliability was found for flow scores, Cronbach’s α = 0.69.

Residuals were not normally distributed (p< 0.05) and there was homogeneity of

variances (p > 0.05). Inspection of the QQplot by experiment conditions showed

most groups fall approximately along the reference line shown in figure 4.14,

indicating that data within groups show minor deviations from normality. There

was a significant main effect from the number of chickens, F(1, 290) = 4.40, p

= 0.036 with an effect size η2partial = 0.014. There was also a significant main

effect from the evasion mechanic, F(1, 290) = 12.81, p = 0.018 with an effect

size η2partial = 0.018. Posthoc testing showed that when the number of chickens

was high, flow scores were significantly higher (p = 0.036). Additionally, when

chickens evade players, flow scores were significantly higher (p = 0.018). This

effect is observed in figure 4.15, which shows the plot of the flow scores across

the study conditions.

Figure 4.14: The figure shows the QQplots for the Flow scores across the
study conditions which show minor deviations from normality across the differ-
ent conditions.

Tension: A high reliability was found for tension scores, Cronbach’s α = 0.81.

Residuals were not normally distributed (p < 0.05) and there was homogeneity

of variances (p > 0.05). Inspection of the QQplot by experiment conditions

showed most groups fall approximately along the reference line shown in figure

4.16, indicating that data within groups show minor deviations from normality.

There was a significant main effect from the number of chickens, F(1, 290) =

10.61, p = 0.001 with an effect size η2partial = 0.034. There was also a significant

main effect from the evasion mechanic, F(1, 290) = 4.26, p = 0.039 with an effect

size η2partial = 0.014. A significant 2-way interaction effect was also observed

between the game area and the number of chickens, F(1, 290) = 5.92, p =
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Figure 4.15: The figure shows the boxplot plot for the Flow scores across
the study conditions. The image shows that when number of chickens is high
flow scores are higher. Additionally, when chickens evade players, flow scores
were significantly higher.

0.015 with an effect size η2partial = 0.019. Posthoc testing showed that when

the number of chickens was high, tension scores were significantly higher (p =

0.001). Additionally, tension scores are significantly higher when chickens evade

the player as compared to when they are stationary (p = 0.039). A large area

and a high number of chickens result in significantly higher tension scores as

compared to levels with a small area and a low number of chickens (p = 0.008).

Additionally, a large area and a high number of chickens result in significantly

higher tension scores as compared to a large area and a low number of chickens

(p < 0.001). This effect is observed in figure 4.17, which shows the plot of the

tension scores across the study conditions.

Challenge: A moderate reliability was found for challenge scores, Cronbach’s

α = 0.69. Residuals were not normally distributed (p < 0.05) and there was

homogeneity of variances (p > 0.05). Inspection of the QQplot by experiment

conditions showed most groups fall approximately along the reference line shown

in figure 4.18, indicating that data within groups show minor deviations from

normality. There was a significant main effect from the game area, F(1, 290) =

8.58, p = 0.003 with an effect size η2partial = 0.022. There was also a significant

main effect from the number of chickens, F(1, 290) = 54.76, p < 0.001 with an

effect size η2partial = 0.142. There was also a significant main effect from the

evasion mechanic, F(1, 290) = 27.31, p < 0.001 with an effect size η2partial =

0.071. Posthoc testing showed that when the game area was large, challenge

scores were significantly higher (p = 0.003). Additionally, challenge scores were
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Figure 4.16: The figure shows the QQplots for the Tension scores across
the study conditions which show minor deviations from normality across the
different conditions.

Figure 4.17: The figure shows the boxplot plot for the Tension scores across
the study conditions. The image shows that when the number of chickens is high
tension scores are higher. Additionally, when chickens evade players, tension
scores were higher. Finally, a large area and a high number of chickens result in
significantly higher tension scores as compared to a large area and a low number
of chickens.
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significantly higher when the number of chickens was high as compared to when

it was low (p < 0.001). Finally, challenge scores were significantly higher when

chickens evade players as compared to when they were stationary (p < 0.001).

This effect is observed in figure 4.19, which shows the plot of the challenge scores

across the study conditions.

Figure 4.18: The figure shows the QQplots for the Challenge scores across
the study conditions which show minor deviations from normality across the
different conditions.

Positive Affect: A good reliability was found for positive affect scores, Cron-

bach’s α = 0.78. Residuals were not normally distributed (p < 0.05) and there

was homogeneity of variances (p > 0.05). Inspection of the QQplot by experi-

ment conditions showed most groups fall approximately along the reference line

shown in figure 4.20, indicating that data within groups show minor deviations

from normality. There was a significant 2-way interaction effect observed be-

tween the game area and the number of chickens, F(1, 290) = 4.91, p = 0.027

with an effect size η2partial = 0.016. A significant 2-way interaction effect was

also observed between the number of chickens and the evasion mechanic, F(1,

290) = 5.63, p = 0.018 with an effect size η2partial = 0.018. Posthoc testing

showed that when the game area is large, more chickens lead to significantly

lower positive affect scores as compared to levels of the same area with few

chickens (p = 0.046). Additionally, in levels where chickens evade players, more

chickens lead to significantly lower scores as compared to similar levels with

fewer chickens (p = 0.041). This effect is observed in figure 4.21, which shows

the plot of the positive affect scores across the study conditions.
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Figure 4.19: The figure shows the boxplot plot for the Tension scores
across the study conditions. The image shows that when the game area is large,
challenge scores were higher. Additionally, when the number of chickens is high,
challenge scores were higher. Finally, chickens evade players, challenge scores
are higher.

Figure 4.20: The figure shows the QQplots for the Positive Affect scores
across the study conditions which show minor deviations from normality across
the different conditions.
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Figure 4.21: The figure shows the boxplot plot for the Positive Affect
scores across the study conditions. The image shows that when the game area is
large, a high number of chickens lead to lower positive affect scores as compared
to levels with the same area and a low number of chickens. Additionally, in
levels where chickens evade players, more chickens lead to significantly lower
scores as compared to similar levels with fewer chickens.

Negative Affect: A poor reliability was found for negative affect scores,

Cronbach’s α = 0.49. Residuals were not normally distributed (p < 0.05) and

there was homogeneity of variances (p > 0.05). Inspection of the QQplot by ex-

periment conditions showed most groups fall approximately along the reference

line shown in figure 4.22, indicating that data within groups show minor devi-

ations from normality. No significant main or interaction effects were observed

from the game parameters on negative affect scores. The boxplot of Negative

score across is shown in fig 4.22 which shows that scores are similar across all

conditions.

This subsection reported the results of statistical analysis of the impact of

game parameters on PX. Table 4.3 summarises the impact of PX on each of the

game parameters used in the game.

4.6.2 Grounded Analysis of Semi-Structured Interviews

This subsection presents the main themes that emerged from the grounded the-

ory analysis of the interview data. The semi-structured interviews were anal-

ysed and categorized according to the grounded theory analysis described by

Strauss as the constant comparative method of data analysis[206]. The inter-
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Figure 4.22: The figure shows the QQplots for the Negative Affect scores
across the study conditions which show minor deviations from normality across
the different conditions.

Figure 4.23: The figure shows the boxplot plot for the Negative Affect
scores across the study conditions. The image shows that scores are similar
across all conditions.
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Table 4.3: Summary of results of statistical analysis of game parameters on PX.

PX dimension Game Parameters F-value η2partial Effect Description

Valence GNo

(main effect)
4.17 0.014 Decreases when number is high.

Arousal GMov

(main effect)
5.98 0.020 Increases when chickens evade players.

GNo ×GMov

(Interaction effect)
4.61 0.016 Increases when number is low and chickens evade

players, as compared level with a low number and
chickens are stationary.

Competence GNo

(main effect)
10.23 0.034 Decreases when number is high.

GNo ×GMov

(Interaction effect)
4.61 0.066 Increases when the number is low and the chickens

are stationary, as compared to levels with a high
number of chickens that evade players.
Increases when the number of chickens high and the
chickens stationary as compared to levels with a high
number of chickens that evade players.

Immersion GMov

(main effect)
12.78 0.031 Increases when chickens evade players.

Flow GNo

(main effect)
4.40 0.014 Increases when number is high.

GMov

(main effect)
12.81 0.018 Increases when chickens evade players.

Tension GNo

(main effect)
10.61 0.034 Increases when number is high.

GMov

(main effect)
4.26 0.014 Increases when chickens evade players.

GArea ×GNo

(Interaction effect)
5.92 0.019 Increases when area is large with a high number as

compared to levels with a small area and low number.
Increases when a large area with a high number as
compared to levels with large area and small number.

Challenge GArea

(main effect)
8.58 0.022 Increases when area is large.

GNo

(main effect)
54.76 0.142 Increases when number is high.

GMov

(main effect)
27.31 0.071 Increases when chickens evade players.

Positive Affect GArea ×GNo

(Interaction effect)
4.91 0.016 Increases when area is large and number is high as

compared to levels with large area with low number.
GNo ×GMov

(Interaction effect)
5.63 0.018 Increases when chickens evade players with high

number, as compared to levels where chickens evade
players with low number.

Negative Affect No main or inter-
action effects
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view data were summarized into different themes, which were confirmed and

modified throughout the analyses. The data analysis consisted of open, axial

and selective coding. Open coding included repeated readings of the interviews

and an in-depth, line-by-line analysis of the data. Using open coding, data were

coded under various headings according to their content. In the axial coding,

categories were linked together, with sub-categories describing the specific cat-

egory. In the final selective coding, the categories were linked together, which

resulted in a core category[206]. These core categories form the main insights

from the qualitative data. The core categories that emerged were: Game Expe-

rience, Game Progression, Playing Strategy, Health Benefit, Game Preferences

and Design Suggestions. Each one is described below:

Player Experience: The game was positively received by participants in the

study. Participants used adjectives such as fun, novel and engaging to describe

their experience playing the game. Participants felt highly immersed in the

game, 5 of them reported that they were so immersed in the game they lost their

sense of direction. While another noted that: “...[I] was so engaged, [I] swore to

myself many times...”. In one case the participant reported that it felt similar

to chasing actual animals or agents with intelligent thought. The majority

of participants reported that “near misses” where chickens narrowly avoided

getting captured as highly motivating. Finally, it is interesting to note that

several participants reported the repeated switching of attention between the

AR world (seen through the mobile device) and the non-AR world (around the

mobile screen). When asked to elaborate, they reported that it was challenging

to use the AR view to navigate around the game area (especially when moving

fast). Participants would use the AR view to search for chickens and the non-

AR views to navigate through the game space. It is important to note that

participants could easily perform fast movements in the same area and moderate

walking while looking through the mobile screen, running is what shifted the

participant’s focus away from the AR viewport to the non-AR world.

Game Progression: The order of the levels were randomized in this study to

minimize ordering effects in the PX data associated with each level. However,

this approach was confusing to the majority of participants since they expected

a system of progressive difficulty in the game. While most expected the game

to get more difficult as levels progressed 3 participants noted that finding eas-

ier levels after difficult ones reassured their sense of competence in the game.

However, extremely easy levels (eg: small area and a few stationary chickens)

was considered boring if experienced towards the end of the experiment session.

While 2 participants noted that it would be nice to be able to choose between
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easy or difficult levels, the remaining participants (35 out of 40) expected the

game to have a steadily increasing difficulty in the progression of their game

experience.

Playing Strategy: There was a common strategy that 5 participants reported

using in levels where chickens evaded them. They would herd the chickens to

the corner of the levels and then focus on capturing clusters of them from these

corners. The other 35 participants did not report any specific strategy while

playing the game. These participants reported running to the chicken that was

closest to them. If these participants retrospectively noticed a closer chicken

they missed, it resulted in some amount of frustration at themselves.

Health Benefit: Several participants (31 out 40) noted that playing the game

felt like light exercise, made them feel more active and energetic. While partic-

ipants reported that this game would be beneficial in motivating their physical

activity, it is important to note that participants were referring to game me-

chanics. In the current state, most participants felt like the game would need a

narrative and more complex reward systems for them to use the game regularly.

Game Preferences: Participants were asked about their individual prefer-

ences regarding each of the game parameters. Half of them preferred a large

area while the other half preferred the smaller one. Only 1 person reported

having no preference for large or small levels. It is important to note that par-

ticipants who preferred larger areas also tended to like sports and other physical

activities. Conversely, participants who preferred smaller areas tended to not

enjoy running or physical activity in general. Participants’ preferences for the

number of chickens in a level was not as clear. While participants who enjoy

physical activity enjoyed a larger number of chickens as it challenged them more

and gave them a more rewarding experience. The other participants reported

having no preference for the number. They reported preferring few chickens in

large areas and more chickens in smaller areas. Only 2 participants reported

preferring fewer chickens to many in all games. Finally, 39 out of 40 partici-

pants preferred the chickens evading them rather than being stationary. Only 1

person reported having no preference between running and stationary chickens.

It is interesting to note that even participants who did not enjoy running and

physical activity still preferred games where chickens ran away from them.

Design Suggestions: The participants had many suggestions for improving

the PX of the game. This included improvements to the games audio and visual

aesthetics such as better designed models and animations, additional digital
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content (different types of animals and a narrative for the game), additional

interactions with the chickens (eg: trying to capture chickens that can fly). A

large portion of participants (26 out of 40) requested social play. They wanted to

be able to play with their friends in a co-located AR space either competitively

or cooperatively.

This subsection reported the findings from the qualitative interview data.

The main categories that emerged from the analysis were Player Experience,

Game Progression, Player Strategy, Health Benefit, Game Preferences and De-

sign Suggestions. Participants reported positive experiences while playing the

game. Additionally, it was observed that players found the act of chasing and

catching chickens highly motivating. Additionally, it was interesting to observe

that participants reported switching attention between AR and non-AR envi-

ronments as they navigated through space. A majority of participants (35 out of

40) reported having expectations that game levels would progress from easy to

hard levels (which was not the case). This lead to an easy level being perceived

as boring if they appeared towards the end of the experiment. Some partici-

pants (3 out of 40) found that easy levels appearing after more challenging ones

reassured their sense of competence within the game. Some participants (5 out

of 40) reported using a strategy of herding chickens together in clusters to be

able to capture them. Players (31 out of 40) also reported that game-play has

the effect of a light exercise making them feel active and energetic. In terms of

preferences for game parameters, there was a split in preferences for the area

and number of chickens parameters, participants (19 out of 40) who enjoy phys-

ical activity prefer large areas with a high number of chickens while participants

(20 out of 40) who do not like to engage in physical activity preferred smaller

areas and did not have any preference regarding the number of chickens. It was

interesting to observe that irrespective of their preference for physical activity,

most participants (39 out of 40) enjoyed levels where chickens evaded players.

Participants also provided a number of design recommendations to improve

the aesthetics of the game (eg: more realistic chicken models and additional

animals), social play (leader-boards, competitive and cooperative multiplayer

gaming) was highly requested by participants in future versions of the game.

4.6.3 Player Experience Classification using Supervised

Learning

Supervised learning algorithms were tested to explore the potential of predict-

ing PX of an individual in a game level based on their behaviour and perfor-

mance. This section first describes the supervised learning pipeline used and
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then presents the results from this evaluation.

Supervised Learning Pipeline

The dataset is first pre-processed and Player Behaviour Features (PBFs) are

extracted from the movement data and performance features are extracted from

the game metrics recorded. These features along with the game parameters

referred to as Controllable Game Features (CGFs) were used to predict PX.

Here, these features are the input of a model that aims to predict the measured

dimension of PX (eg: Valence).

In this work, predicting PX is treated as a supervised classification problem.

The numerical values for the different PX measures are transformed into binary

categorical values. This transformation is based on the median of the reported

PX measure by that participant across all conditions in the study. For instance,

if the Valence score for a specific game is greater than the median Valence score

reported by that player across all games played, then it is set to 1 (and 0 if it is

lesser than the median). This player-based transformation of the ground truth is

applied as it reduces the differences in PX measures due to subjectivity between

participants. Additionally, the median statistic is selected due to the limited

number of data samples available per participant. The median is a more robust

measure of centrality since the mean is easily influenced by extreme values when

there is a low number of data points.

Data Pre-processing: The procedure for data preprocessing of the move-

ment data has been adapted from the previous study. The movement data is

first filtered to reduce high-frequency artefacts. The rotation vectors along x, y

and z are constructed from the rotation quaternions recorded from each game.

Following which velocity, acceleration and jitter are extracted from the position

and rotation by taking the first, second and third differences of time series data

(for position and rotation). This results in 3D vectors containing data for ve-

locity, acceleration, jerk, angular velocity, angular acceleration and angular jerk

along the x, y and z axis; 6 × 3D vectors in total. Finally, the dimensionality

of this data is reduced by taking the Euclidean norm for the x, y and z axis for

each. This 6-D vector is the final output of the data pre-processing phase for

each game, given by β ∈ {V,A, J,RV,RA,RJ} and this is done at 64 Hz over

the duration of the game.

Feature Extraction: PBFs are extracted from the pre-processed movement

data: V, A, J, RV, RA, RJ. Similar to the previous study, the same 10 features

that are extracted for each dimension of β resulting in 60 movement features,
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refer to table 3.4 for the list of features. Performance features such as Comple-

tion and Time Remaining are computed from game sessions. Completion is the

ratio between the score at the end of the game and the maximum possible score

from that game. Time Remaining is the number of seconds left at the end of the

game (if the player collects all the chickens before the time limit). Which adds

up to a total of 62 PBFs (60 + 2). Feature scaling is applied to these features by

subtracting the sample mean and scaling sample variance. Finally, the 3 game

parameters referred to as controllable game features (CGFs) are considered as

inputs for the model. This results in a total of 65 features that are used as input

to the learning algorithms tested in this study.

Player Experience Classification: This study compares the performance

of 4 classifiers for this problem: logistic regression, linear discriminant analy-

sis (LDA), support vector machines (SVM) and the XGBoost algorithm. The

first 3 algorithms have been tested in the previous study, however, it is un-

clear if an ensemble tree-based approach such as XGBoost can provide more

accurate predictions for this problem. XGBoost and other decision trees based

algorithms have been successfully applied to the domain of player modelling

in traditional (non-AR) digital games [140, 61, 62]. In [61, 62] the XGBoost

classifier was shown more successful than other learning algorithms tested in

predicting player’s preferences for fun in action-adventure games. Finally, fea-

ture scaling is not employed for the XGBoost classifier as it is not required.

The previous study observed that model performance improves through fea-

ture selection techniques which is consistent with work conducted by Pedersen

et. al [167]. While there are a large number of approaches, the experiment

used sequential floating forward selection (SFFS) in this study since it is often

used in similar work [167], additionally SFFS was the best performing feature

selection technique in the previous study conducted. SFFS is is a bottom-up

search algorithm that tries to find the best performing feature set. It starts with

the best performing single feature and adds new features from the remaining set

such that model performance of the new set generates the best possible overall

performance over other potential features for addition. When a forward step is

performed the algorithm also checks if a feature from the existing set can be

excluded to improve overall model performance.

Evaluation Metrics: In this study, model performance is evaluated using

10-fold cross-validation scores (similar to the previous study). Additionally, in

order to test to what extent these models can generalise to unseen players Leave-

one-subject-out cross-validation (Loso-CV) is used as an evaluation metric. In

Loso-CV data from one participant is used as a test set, the model after feature
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selection is trained using the remaining data (39 players) and evaluated on the

test participant data. This process is repeated 40 times for each player in the

data set. The mean accuracy and the standard deviation is used to test the

generalisability of the model to new players. This is an important metric to

consider for the application of such models in game adaptation systems.

All algorithms were implemented using their default hyperparameter val-

ues. The supervised learning pipeline was implemented in python, the SciPy

library[222] was used to convert data from quaternions to rotation vectors, the

SciKit learn library [168] was used for feature scaling and to implement the lo-

gistic regression, LDA and SVM models, and the XGBoost[38] library was used

for this study.

Supervised Learning Evaluation Results

The results from supervised learning techniques are presented here, the ex-

tracted features are used to predict the different dimensions of PX. It has been

a common observation across all dimensions and types of classifiers that the

base (all 65 features) performance without feature selection performs poorly.

Features selection tends to improve classification accuracies across all the clas-

sifiers and dimensions of PX tested. All the accuracies from the 10-fold CV and

the LOSO-CV are reported for the models after feature selection. Results for

each of the dimensions of PX are reported below.

Valence: Random chance classification for valence was 50.02%. All classifiers

perform higher than random chance on 10-fold CV accuracies. However, ac-

curacies for Logistic Regression, LDA and SVM classifiers decrease to close to

random chance when LOSO-CV accuracies are computed. The XGBoost clas-

sifier was the best performing model tested with a 10-fold CV of 64.79± 7.69%

and LOSO-CV of 60.84 ± 17.66% which is higher than random chance classifi-

cation. Table 4.4 shows the summary of results for all the classifiers tested for

valence.

Table 4.4: Summary of results from supervised learning to classify Valence.

10-CV Acc LOSO-CV Acc
Logistic Regression 63.11± 6.41% 52.16± 20.43%

LDA 64.80± 7.08% 52.84± 8.44%
SVM 64.45± 5.23% 47.86± 5.31%

XGBoost 64.79± 7.69% 60.84± 17.66%

120



Arousal: Random chance classification for arousal was 50.32%. All classifiers

perform higher than random chance on 10-fold CV accuracies. However, ac-

curacies for Logistic Regression, LDA and SVM classifiers decrease to close to

random chance when LOSO-CV accuracies are computed. The XGBoost clas-

sifier was the best performing model tested with a 10-fold CV of 66.12± 6.48%

and LOSO-CV of 61.69 ± 18.96% which is higher than random chance classifi-

cation. Table 4.5 shows the summary of results for all the classifiers tested for

arousal.

Table 4.5: Summary of results from supervised learning to classify Arousal.

10-CV Acc LOSO-CV Acc
Logistic Regression 63.77± 10.43% 53.78± 12.06%

LDA 63.43± 9.99% 50.98± 11.86%
SVM 65.40± 4.50% 54.51± 8.90%

XGBoost 66.12± 6.48% 61.69± 18.96%

Competence: Random chance classification for competence was 51.62%. All

classifiers perform higher than random chance on 10-fold CV accuracies. Ac-

curacies for Logistic Regression, LDA and SVM classifiers decrease but remain

higher than random chance when LOSO-CV accuracies are computed. The

XGBoost classifier was the best performing model tested with a 10-fold CV of

73.20± 6.18% and LOSO-CV of 69.61± 17.37%. Table 4.6 shows the summary

of results for all the classifiers tested for competence.

Table 4.6: Summary of results from supervised learning to classify Competence.

10-CV Acc LOSO-CV Acc
Logistic Regression 73.57± 13.53% 59.96± 14.62%

LDA 72.22± 12.11% 60.60± 13.42%
SVM 74.21± 10.96% 60.60± 13.71%

XGBoost 73.20± 6.18% 69.61± 17.37%

Immersion: Random chance classification for immersion was 52.00%. All

classifiers perform higher than random chance on 10-fold CV accuracies. Ac-

curacies for Logistic Regression and LDA classifiers decrease but remain higher

than random chance when LOSO-CV accuracies are computed, while the SVM

classifier shows a performance below random chance for this. The XGBoost clas-

sifier was the best performing model tested with a 10-fold CV of 71.13±12.87%
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and LOSO-CV of 68.86 ± 16.95%. Table 4.7 shows the summary of results for

all the classifiers tested for immersion.

Table 4.7: Summary of results from supervised learning to classify Immersion.

10-CV Acc LOSO-CV Acc
Logistic Regression 67.10± 7.69% 61.18± 14.34%

LDA 67.43± 4.81% 63.33± 15.56%
SVM 70.08± 4.75% 39.43± 13.99%

XGBoost 71.13± 12.87% 68.86± 16.95%

Flow: Random chance classification for flow was 52.00%. All classifiers per-

form higher than random chance on 10-fold CV accuracies. Accuracies for all

classifiers decrease but remain higher than random chance when LOSO-CV ac-

curacies are computed. In this case, there does not appear to be a clear best

performing classifier for flow classification. Table 4.8 shows the summary of

results for all the classifiers tested for flow.

Table 4.8: Summary of results from supervised learning to classify Flow.

10-CV Acc LOSO-CV Acc
Logistic Regression 70.18± 11.60% 61.31± 14.78%

LDA 71.54± 12.29% 60.24± 15.81%
SVM 71.50± 6.96% 60.87± 13.02%

XGBoost 69.82± 7.31% 64.62± 18.16%

Tension: Random chance classification for tension was 58.82%. All classi-

fiers perform higher than random chance on 10-fold CV accuracies. Accuracies

for SVM and LDA classifiers decrease but remain higher than random chance

when LOSO-CV accuracies are computed, while the Logistic Regression classi-

fier shows a performance below random chance for this. The XGBoost classifier

was the best performing model tested with a 10-fold CV of 76.52 ± 5.51% and

LOSO-CV of 71.16 ± 20.69%. Table 4.9 shows the summary of results for all

the classifiers tested for tension.

Challenge: Random chance classification for tension was 51.62%. All clas-

sifiers perform higher than random chance on 10-fold CV accuracies. Accu-

racies for all classifiers decrease but remain higher than random chance when
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Table 4.9: Summary of results from supervised learning to classify Tension.

10-CV Acc LOSO-CV Acc
Logistic Regression 75.87± 4.30% 57.01± 21.20%

LDA 72.81± 5.32% 70.06± 20.23%
SVM 73.82± 2.45% 70.48± 20.79%

XGBoost 76.52± 5.51% 71.16± 20.69%

LOSO-CV accuracies are computed. The XGBoost classifier was the best per-

forming model tested with a 10-fold CV of 74.79 ± 9.01% and LOSO-CV of

71.06 ± 16.06%. Table 4.10 shows the summary of results for all the classifiers

tested for challenge.

Table 4.10: Summary of results from supervised learning to classify Challenge.

10-CV Acc LOSO-CV Acc
Logistic Regression 76.14± 4.96% 69.33± 18.36%

LDA 75.80± 7.75% 66.39± 18.98%
SVM 75.17± 7.62% 59.87± 12.98%

XGBoost 74.79± 9.01% 71.06± 16.06%

Positive Affect: Random chance classification for positive affect was 51.62%.

All classifiers perform higher than random chance on 10-fold CV accuracies.

However, accuracy for Logistic Regression classifier decrease to close to random

chance when LOSO-CV accuracies are computed and the accuracies for SVM

and LDA decrease to below random chance for this. The XGBoost classifier

was the best performing model tested with a 10-fold CV of 72.13± 10.40% and

LOSO-CV of 67.19 ± 17.69%. Table 4.11 shows the summary of results for all

the classifiers tested for positive affect.

Table 4.11: Summary of results from supervised learning to classify Positive
Affect.

10-CV Acc LOSO-CV Acc
Logistic Regression 68.75± 7.06% 53.20± 17.51%

LDA 67.12± 7.45% 38.25± 14.52%
SVM 69.75± 5.64% 40.54± 13.74%

XGBoost 72.13± 10.40% 67.19± 17.69%
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Negative Affect: Random chance classification for negative affect was 52.88%.

All classifiers perform higher than random chance on 10-fold CV accuracies.

However, accuracies for Logistic Regression and LDA classifiers decrease to be-

low random chance when LOSO-CV accuracies are computed while the other

classifiers tested remain higher than random chance for the same. The SVM clas-

sifier was the best performing model tested with a 10-fold CV of 69.47± 5.23%

and LOSO-CV of 61.45± 16.72%. Table 4.12 shows the summary of results for

all the classifiers tested for negative affect.

Table 4.12: Summary of results from supervised learning to classify Negative
Affect.

10-CV Acc LOSO-CV Acc
Logistic Regression 66.80± 4.64% 37.10± 17.37%

LDA 67.79± 4.46% 41.54± 16.14%
SVM 69.47± 5.23% 61.45± 16.72%

XGBoost 69.50± 8.23% 60.88± 19.89%

4.7 Discussion

This chapter describes the design, development and user-centric evaluation of

Running Chickens, an AR mobile exergame. Additionally, player data is used to

create models that predict several measures of PX. Robust predictive models of

PX, along with an understanding of the relationship between the various game

parameters on PX, would enable the creation of experience-driven adaptive

mobile AR exergames.

The need for well-designed game progression systems is observed from the

interviews with participants where most of them expect these types of games

to increase in difficulty. However, some of them indicated that having some

easy levels between challenging levels reassured their sense of competence in the

game. This indicates that a simple linear progression of the game challenge may

not be the most optimal strategy to create engaging AR exergames. Having an

adaptive game that adjusts game parameters based on PX could lead to higher

engagement with the game which is similar to the idea of flow in games. The

adaptive system would try to find the optimal balance of the game’s challenge

and the player’s skill to put the person in a state of flow.
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4.7.1 Game Parameters impact on Player Experience

User evaluations of the game show that all 3 game parameters evaluated in this

study have a meaningful impact on PX which is observed in both the statistical

testing of the questionnaire data and analysis of the participant interview data.

The area parameter had a significant impact on the challenge experienced by the

player. Larger areas were more challenging which is observed from statistical

analysis and interviews with players. People who consider themselves as physi-

cally active enjoyed larger areas while others preferred smaller areas. Increasing

the areas between game levels would increase the challenge of the game. In

games that are played over large areas, it is important to consider PX as they

navigate through space. If the person is moving slowly, they can use the AR

viewport for navigation, however, as their speed increases, they rely more on

their peripheral vision which makes it difficult to focus on the AR world while

running. This attention switching between peripheral vision and device view-

port will also reduce the levels of immersion a user experiences. This finding

is more relevant for mobile AR experiences however, this could be a factor in

HMD AR experiences with a limited field of view.

The number of chickens was an important game parameter as it had a sig-

nificant impact on the sense of Valence, Competence, Flow, Tension, Challenge

and Positive Affect. While people felt less competent, more tensed, had a lower

positive affect and were more challenged in games with a large number of chick-

ens, the scores for flow increased as the number of chickens increased. People

felt more inflow and more rewarded by increasing the number of chickens in lev-

els. However, when a level was perceived as difficult, a high number of chickens

could harm PX as people tend to feel overwhelmed. This explains why scores

for tension and challenge increased, positive affect and competence decreased

when a large number of chickens were used. This game parameter is particu-

larly interesting since it has the potential for creating high player engagement

and increased immersion or flow, tunning this parameter could result in posi-

tive PX. The challenge for game designers and adaptive exergame systems is to

modulate this parameter across a number of game levels within a single play

session to ensure the player’s experience is maintained in a flow channel (where

the number of chickens is kept large enough to keep players engaged without

being too high which would result in players being overwhelmed, frustrated and

eventually disengaging with the game).

Similarly, the evasion mechanic, which is proposed in this chapter was found

to have a significant effect on several dimensions of PX. Levels with evading

chickens resulted in significantly higher arousal, immersion, flow, tension and

challenge scores. In some cases, it also leads to lower competence scores. An

125



optimal selection of the evasion speed will ensure higher immersion in the game

however if it is too fast players would feel overwhelmed and conversely bored if

it is too slow. It is interesting to note that all the participants enjoyed chas-

ing after evading chickens irrespective of their preferences for physical activity.

This shows that participants enjoy physically interacting with digital objects

(in this case chickens) which is similar to observations made by Reimann[184]

who investigated an AR footballs game’s game interactions. Considering these

results, it is possible that users enjoy embodied digital interactions with digital

content that mirrors physical objects in the real world, e.g. kicking a football

or catch a chicken that tries to evade the player. These observations show that

the evasion mechanic can be useful to other AR exergames to motivate physical

activity. It would be interesting to explore to what extent this motivation and

positive engagement would sustain over time across many play sessions since it

is possible that the novelty of these interactions will reduce over time.

The number of chickens and the evasion mechanic are important parameters

for adaptive AR games since they can be tuned for optimal PX. While they

both can have a meaningful impact on a person’s immersion and state of flow,

improper selection of this parameter can result in a negative experience for

the player. Increasing the area increases the level of challenge in the game

however this is often constraint by the availability of physical space, the other

two parameters can be used to create a wide range of levels within the same

area.

4.7.2 Modelling Player Experience

Interestingly, the proposed modelling technique can predict dimensions of PX

considerably better than random chance. Valence, Positive and Negative Affect

were classifiers that performed poorly (close to random chance) indicating that

positive ad negative emotions are difficult to model. While other PX dimen-

sions relevant to games such as Flow, Immersion, Competence, Tension and

Challenge perform considerably better. This shows that some aspects of PX

can be successfully modelled using supervised learning. Among these classifiers

competence, challenge and tension showed the highest and most reliable per-

formance. The results of challenge and tension are similar to the results for

challenge and frustration from the previous study. It is interesting to note that

the experience of competence can be successfully modelled within MAR game

environments.

All predictive models developed in this experiment show a high variance in

the sample LOSO-CV scores, this indicates that model performance is different

for different participants. While PX models perform well for some participants,
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the same models perform close to random chance (or worse) for others. This

can be improved by using a more generalisable dataset to train these models.

Additionally, since PX is highly subjective and varies greatly depending on

the individual, it would be useful to create individual models that are trained

on data from a single person, instead of inter-subject models that are trained

using data from several participants (which is the case in this study). However,

individual PX models require a large amount of data from a single participant

to train them.

Among the different supervised learning classifiers tested, the XGBoost clas-

sifier had the highest 10-fold CV and LOSO-CV accuracies across all dimensions

of PX tested in this study. For some PX dimensions, namely for competence,

flow and challenge the 10-fold accuracies of the XGBoost classifier are outper-

formed by other classifiers tested (logistic regression, LDA or SVM), however,

XGboost remains the best performing classifier when LOSO-CV accuracies are

considered. This indicates that XGBoost shows the best generalisability for un-

seen players. The only exception to this pattern appears in the evaluation of

the negative affect model, which showed that the SVM was the more reliable

classifier, however, the SVM’s LOSO-CV scores were only marginally higher

than the scores for the XGBoost model.

Among the other classifiers tested, logistic regression and LDA show com-

paratively poor performance in both 10-fold CV and LOSO-CV scores. The

SVM classifier tended to perform better in most cases, however, there is a sig-

nificant performance drop between 10-fold CV and LOSO-CV scores. This is

especially observed in results for the immersion where the SVM classifier showed

10-fold CV scores of ≈ 70% (higher than random chance) and LOSO-CV scores

dropping to ≈ 40% (lower than random chance).

Findings from this user study will be used to create an adaptive version of

Running Chickens. The adaptive game would adjust the parameter selection

of the next level based on predicted PX from the previous level. Consider an

adaptive system that is driven by predictions from the classifier for competence.

The adaptive system would adjust the challenge of the next level to induce

a state of flow and avoid overwhelming (or underwhelming) the player. For

instance, if the classifiers predict high competence it would mean the player is

bored and the game should increase the challenge level (by increasing the area,

number of chickens or the evasion mechanic). Similarly, adaptive systems could

be developed using models for player flow (to ensure the player is in a state of

flow within the levels) or tension (to avoid high levels of tension or frustration

during gameplay).

For experience-based adaptive systems, it is important to know that models

do not have a high ability to generalise to unseen players, which is indicated by
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the low Loso-CV scores for most models tested. Considering this requirement,

the results of this study suggest that the competence model using the XGBoost

classifier shows promising performance that can be applied to real-time game

adaptation. This is further explored in the next chapter.

4.7.3 Study Limitations

This study has several limitations and gaps that must be addressed. Since data

from a limited sample of 40 university students have been used in this study, it

is difficult to generalise findings to other demographics of players. Additionally,

the supervised learning techniques can show a problem of model bias when a

smaller dataset is used. Another challenge of this research is that these types

of games are designed to be played outdoors where several factors like climate,

quality of the ground, time of day and surroundings can significantly change PX

and add noise to the training data for the predictive models. It is interesting

to note that the supervised models can predict PX higher than random chance

despite the limited dataset used. Using a larger dataset from players of a wider

demographic and varied environments would increase prediction performance

and improve the generalisability of findings. Future work could also explore us-

ing environmental factors as features for the learning algorithm to consider when

predicting PX. Finally, recent research in HCI has found some problems with

the validity of the internal structure of the GEQ[94, 30, 113]. These studies use

a confirmatory factor analysis which does not find any evidence for the original

7-factor structure proposed for the GEQ and that it appears to have unstable

results. This limitation is addressed to some extent in this study by providing

scores for Cronbach’s α for each factor of the GEQ to give the reader a measure

of the reliability of the factor following guidelines from Law et al. [113]. Addi-

tionally, the next chapter reports a study that uses a different questionnaire, the

Player Experience Inventory[220, 6] which has been comprehensively validated

by the authors of the scale.

4.8 Chapter Summary

The potential for AR mobiles games to promote physical activity and positive

mental health is an emerging field of research, with this chapter contributing

to this body of work. Further investigation into this domain would enable the

creation of intelligent AR mobile games that have a positive behavioural im-

pact on players. AR exergames is not a new phenomenon however, there is a

gap in empirical evaluations of commonly used mechanics in these games. To

address this gap, this chapter describes the design, development and evaluation

128



of the Running Chickens game. Additionally, the study shows that player be-

haviour, measured through mobile sensor data, can be used to predict several

dimensions (Flow, Immersion, Competence, Tension and Challenge) of player

experience higher than random chance classification. Robust PX models can be

used to drive adaptive AR exergames which would be more engaging for players.

Mobile AR Game designers are creating immersive digital experiences that are

enjoyed by a large number of players, resulting in a positive impact on their

quality of life. Research into adaptive AR exergames will allow designers to use

the AR platform to create positive behavioural changes in their players through

intentional design, rather than as a consequence of gameplay. The next chapter

further investigates PX in the Running Chickens game by exploring the impact

of game parameters on player motivations as well as the extent to which player

motivations can be modelled using supervised learning techniques. While this

chapter has investigated player models in mobile exergames for general game

experiences using the GEQ, the next chapter will overcome the limitations of

the GEQ discussed in this study and investigate player models in this domain

when applied to understand people’s motivations for gameplay. This will fur-

ther help mobile AR exergame designers create games that can motivate people

towards positive behavioural change. These models built in the next chapter are

further evaluated in the context of real-time DDA in games. This is important

since it will show to what extent these models will generalise well to new or

unseen players and show the validity of using these models in real-time game

applications to create an optimal PX for the people.

129



Chapter 5

Experience-based Difficulty

Adaptation in an AR

Exergame

The previous chapter presented the second study of this research which investi-

gated supervised learning to predict player experience (PX) and the impact of

game parameters on PX in an augmented reality exergame: Running Chickens.

The study reported in this chapter consists of 2 experiments that build on the

previous study. While the research chapters presented until now (chapters 3

and 4) have described a single experiment per chapter, this chapter combines 2

experiments that build and evaluate PX models in MAR games for DDA. The

research activities described here explore to what extent game parameters can

impact PX when analysed using the theoretical framework of player motiva-

tions. In the first study, the supervised learning pipeline developed in previous

studies is used to explore to what extent these models can predict player ex-

perience dimensions related to their motivations within AR exergames. In the

second study, these PX models are evaluated in the context of dynamic diffi-

culty adjustment (DDA) to assess to what extent these models can be used to

personalise the game experience for players.

The validity of PX models must be evaluated based on the objective for which

it is made (i.e. is the model meant for DDA, player experience analysis or PCG),

both experiments are required to evaluate the suitability of applying these PX

models for DDA (which is integral to answering RQ1 and RQ3). Additionally,

this thesis focuses on PX modelling so the second experiment of this chapter

can be considered as a validation exercise for the models built in experiment 1

of the chapter. Additionally, as argued, DDA in MAR games is a domain that
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requires much further investigation (which is out of scope for this thesis), the

application of MAR DDA presented in this chapter is a simple application of

DDA that is built to test the validity of the PX models. Hence it is presented

as a second experiment within this chapter as opposed to a separate one.

In the first experiment of this chapter, a user study is conducted using the

AR Exergame: Running chickens (the design and development process of the

game is described in the previous chapter). In this experiment PX constructs

of interest/enjoyment, mastery, autonomy and immersion are used as experi-

ence metrics. The user study explores how different game parameters (that

generate the different levels of the game) can impact these experience metrics.

Additionally, the data collected from this study is used to build and evaluate

supervised learning models that predict each of these PX constructs. The ex-

periment method used is similar to the one used in the previous study (reported

in chapter 5). Unlike the previous study which focused on general game ex-

perience, experiment 1 of this chapter uses PX constructs that are related to

motivation and behaviour research. The goal of this experiment is to investigate

to what extent these PX constructs can be used in an affective game loop to

sustain a player’s motivation across their play session and provide an overall

positive game experience.

The second experiment reported in this chapter explores to what extent su-

pervised learning models built in the first experiment can be used for game

adaptation. The goal of this adaptation is to put players in an optimal af-

fective state and maximise their engagement with the game. The adaptation

described here is determined by a decision system that changes the difficulty of

the game based on the predicted level of mastery. Predicting the player’s per-

ceived mastery for a given level is formulated as a binary classification problem.

A supervised learning classification algorithm is trained to predict either high or

low mastery from a number of features extracted from mobile sensors and game

data for a level. In this experiment, a user study is conducted to empirically

compare the player experience of this adaptive game against a non-adaptive

version of Running Chickens.

Across the two studies, this chapter investigates to what extent player ex-

perience models can be used for real-time game adaptation in MAR exertion

games. This is important for personalizing exertion based games since appropri-

ate balancing of game parameters can lead to increased internalisation of game

objectives. This would keep players engaged in the game for longer, leading to

increased physical activity through engagement with the game.

This chapter is structured as follows: the aims and motivations for this chap-

ter are described in section 5.1. Section 5.2 provides details on the AR exergame

game used in both experiments of this chapter. Section 5.3 describes the ex-
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periment design, analysis and results for the first experiment of this chapter.

The data from this experiment is used to build an experience-based DDA sys-

tem implemented within the Running Chickens game, this process is described

in Section 5.4. This adaptation system is evaluated in the second experiment

which is described in section 5.5. Section 5.6 discusses the implications of the

results and limitations of the experiments conducted in this chapter. Finally,

section 5.7 presents a chapter summary.

5.1 Aims and Motivations

The two experiments reported in this chapter explored to what extent PX con-

structs related to player motivation can be predicted from player behaviour and

game data. Additionally, the potential of these models for experience-driven

DDA is evaluated. To further investigate player modelling in AR games, this

chapter builds on the results from the study reported in the previous chapter.

While the previous study explored the impact of player experience using the

GEQ [86], it was discussed that this measure has some limitations where val-

idations of this questionnaire could not support the internal factor structure

proposed by the authors of this measurement tool [94, 30, 113].

One of the main aims of this chapter is to overcome this limitation by us-

ing PX measurements that have been comprehensively validated by other re-

searchers. Additionally, this chapter focuses on PX dimensions that have been

identified as significant to player motivations. This aim is addressed in the first

experiment reported in this chapter but using PX measures that have been built

from the Player Experience Inventory (PXI) which is a tool that has been de-

veloped over a number of rounds of development and validation using 64 game

user researchers and population of 529 participants [6]. This experiment fo-

cuses on the following dimensions of player motivation (which have been taken

from the PXI): Interest/Enjoyment, Mastery, Autonomy and Immersion. The

motivations for using each of these PX dimensions are described as follows:

• Interest/Enjoyment with the game is one of the main factors of intrinsic

motivation, where player behaviour (or in this case, engagement with the

game) is satisfying internalised objectives and rewards [136]. This study

explores to what extent game parameters can be used to facilitate intrinsic

motivation through the enjoyment of engaging with the game.

• Mastery of the game is an important factor for motivation and is related

to several theories that describe behaviour, motivations and player expe-

rience. Self-Determination Theory (SDT) [181, 188] identifies competence

(which is similar to mastery) as an important factor that can describe a
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person’s motivation for a task. It states that when a person’s capabil-

ity to engage with a task matches their existing skills their competence

needs are satisfied. This allows them to enhance their skills and expertise.

When competence is frustrated it can lead to an experience of failure and

helplessness. Mastery is also related to a person’s sense of self-efficacy

and confidence for the task. Self-efficacy can be understood as a per-

son’s belief in their ability to succeed in a particular situation [15] which

is a significant mediator of PX in exergames [126]. While confidence is

an important component of the ARCS (Attention, Relevance, Confidence

and Satisfaction) model that is a popular framework used for motivational

design [104, 223] and games for learning [75, 245]. Finally, mastery is im-

portant in the theory of flow [43, 36], which describes the importance of

a good balance between games challenge and player skills to push players

towards an optimal psychological state of flow.

• Autonomy which is an important construct identified by SDT, refers

to the experience of volition and willingness [181, 188]. It is satisfied

when a person’s actions within a task are perceived as self-endorsed or

self-directed. When autonomy is frustrated it results in the experience of

pressure, conflict or being pushed by the activity in an undesired direction.

This construct is investigated here since players of the Running Chickens

game actively make many choices about how to physically move around

and engage with the game levels. It is therefore important to analyse

how game parameters can satisfy or frustrate participants autonomy need

when playing the game.

• Immersion is an important aspect of games, it is the engagement or

involvement a person feels through game-play [93, 180]. Immersion has

been extensively studied in the context of digital games, however, there

is limited understanding of how immersion is mediated in AR games that

involve physical activity[200]. While the previous study explored immer-

sion using the GEQ, experiment 1 of this chapter further builds on this

by using a different questionnaire to validate these results.

While the PX constructs described above have been used as descriptive mea-

sures to understand game experiences, there is limited research on how these di-

mensions can be predicted using player models in movement-based MAR games.

Therefore another aim of this chapter is to bridge this gap by applying super-

vised learning classification algorithms to predict them.

These player models can be used to adapt game levels based on PX as the

player engages with the game. Therefore, the final aim of this chapter is to eval-

uate to what extent these predictive models can be used to meaningfully adapt
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player experience. This aim is addressed in the second experiment described in

this chapter.

Player motivations in exergames have been investigated by previous re-

searchers taking a case study approach which compares player motivations be-

tween different people[126] or using competition to improve motivations [155].

However, further investigation into the impact of game parameters on player

motivation would enable the design of optimal exertion trajectories [130], which

is an important design consideration of successful exergames. Additionally, pre-

dictive models of player motivations would allow for the creations of personalised

trajectories that maximise players’ motivations for gameplay which would ide-

ally lead to increased physical benefit from the exergame activity.

5.2 The AR Exergame: Running Chickens

This section provides details about the game used in the two experiments de-

scribed in this chapter. The Running Chickens game is the same as the one used

in the previous chapter (refer to section 5.2 for a full description of the game).

The version of the game used in this chapter had some usability modifications

made to it in order to improve the performance of the AR tracking algorithm. It

was observed in previous the previous chapter that participants would perform

a ”hammering” action (jerk the phone up and down) when they were trying to

capture the chickens in a level. This hammering action would sometimes lead

to loss of tracking from the AR algorithm resulting in a game crash. This was

the case especially if the participant was unsuccessful at capturing the chicken

causing them to continue this hammering gesture with the phone.

In order to solve this problem, the interaction for collecting a chicken was

modified to make capturing the chickens a smoother experience for the player.

Instead of calculating distance in 3-dimensional space (x, y and z axes) between

the mobile device and a chicken to check for possible collisions, the newer ver-

sions of the game would calculate the distance in 2-dimensional space using only

the x and z axes (ignoring the y axis). This reduced the need for participants to

perform the hammering action with the mobile in order to collect the chickens.

Which reduced the vertical jerking motion of the mobile device and resulted in

more stable tracking by the AR algorithm. This modified mechanic was tested

with two pilot participants to confirm that the mechanic resulted in a more

stable game. The other aspects of the game were the same as the version used

in the previous chapter. This updated Running Chickens game was used in the

remaining experiments conducted as part of this research.
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5.3 Experiment 1

This section describes the first experiment conducted in this chapter. The de-

sign of this experiment is similar to the one used in the previous study however,

different questionnaires were used to collect the player experience data. In

this experiment, semi-structured interviews were not conducted since qualita-

tive data from the previous study showed ”knowledge saturation”[21]. So it is

unlikely to find out any new information by conducting additional interviews,

especially when working with a relatively homogeneous sample of university

students.

5.3.1 Experiment Design

The experiment followed a within-participant design where a participant faces

all conditions of the study, a study condition refers to each level of the Running

Chickens game. The study uses the same 3 game parameters (as binary cate-

gorical variables) from the previous study which resulted in 8 (2× 2× 2) game

levels (or study conditions). The 3 game parameters used are:

• The Area of the Level (GArea): 2 sizes of levels are compared. Large Area

(Lrg) levels are 30m× 30m and Small Area (Sml) levels are 15m× 15m.

• Number of Chickens (GNo): 2 amounts of chicken in each level are com-

pared: Low Number with 5 and High Number with 20 pieces respectively.

• Chicken Movement (GMov): 2 settings of the chicken evasion mechanic are

selected for evaluation: Non-Evasive condition where the chickens do not

evade players, Evasive condition where the chickens evade players. The

speed of chickens in the evasive condition is the same as in the previous

study.

The study consisted of 9 sessions (1 training + 8 experiment), each exper-

iment session took approximately 2 min to complete while the training session

took up to 10 min to complete. The training session involved a demonstration

by the researcher of the game and interactions. Which was followed by the

participant practising the game for 2 levels. For training, a simple level is used

with 3 chickens that do not evade the player in small a 5m × 5m area (data

from the training session is not used in analysis). In each experiment session,

participants played a level of Running Chickens and rated a PX questionnaire.

All experiments were conducted during daylight and adequate weather con-

ditions (no signs of rainfall) in a park near Queen Mary University of London’s

Mile End campus. This is done to minimise the difference in results that may
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arise due to different locations or poor lighting and weather conditions. The

order in which each participant experienced each session of the experiment was

randomised to minimise ordering effects on the data collected. Participants were

anonymised using IDs and were compensated £10.00 for their participation in

the study. The experiment was conducted using a Google Pixel 3 mobile device.

Procedure

All participants provided informed consent before participating in the study.

At the beginning of the study, participants filled up a questionnaire about their

background and previous experience in MAR games. After which they were

given a training session about the game and the questionnaires used in the

study. During training, the researcher first demonstrated how the game works

to the participant over one level of the game, after which participants played 2

training levels and filled up the PX questionnaire after each. During training,

the researcher was present with them and they were encouraged to ask any

questions about the game or the study procedure.

Once the training was completed, the participants were left alone in the

park (while the researcher waited by the entrance of the area), to minimise

the effect of the researcher’s presence of the data collected. During this time,

participants experienced the 8 study sessions of the experiment. In each session,

the participant played one of the game levels and filled up the PX questionnaire.

Participants were asked to take a 2-5 min break between sessions to minimise

the effects of physical fatigue from the previous session on the data collected

from the next one.

While playing Running Chickens, if the participants experienced any techni-

cal issues (the main one being the AR algorithm losing tracking of the environ-

ment), they were asked to proceed to the next session and the data from this

session was not used in data analysis. At the end of the study, participants were

debriefed about the objectives of the research, all the questions were answered

and the experiment was concluded. The experiment took 40-60 min for each

participant (depending on the length of the breaks they took during the study).

5.3.2 Data Collection

This study used the same data collection methods employed in the previous

experiment (qualitative data from semi-structured interviews was not collected).

During the study, PX, player movement data (measured through the mobile

sensors) and game metrics were collected. As each game level was a study

condition, each participant contributed 8 games to the data set. This resulted

in a total of 200 games played across the study. However, due to some technical
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crashes, only 185 games were recorded and used in data analysis.

The data set collected is used to analyse the impact of game parameters

on PX. Additionally, it is also used to train and evaluate supervised learning

classification algorithms to predict PX from the mobile sensor data and game

metrics. This section describes the questionnaires and sensors used as well as

the demographic information of the sample of participants in this study.

Participants

Participants were recruited using university mailing lists which included PhD,

Masters and Undergraduate students from the Electronic Engineering and Com-

puter Science at Queen Mary University of London. The study sample consisted

of 25 volunteers (7 female and 18 male) aged between 18-44 (8 participants were

aged between 18-24, 11 were 25-29, 6 were above 30) who took part in this

study (summarized in table 5.1). When asked about prior experience playing

AR games 14 subjects had no prior experience. In the remaining 11 subjects:

5 reported having only one experience in the past, 5 played a few times before,

and 1 participant played AR games regularly (summarised in table 5.2). It is

worth noting that the study aimed to collect data from 40 participants however,

due to the COVID 19 pandemic, data collection was stopped at 25 for safety

concerns.

Table 5.1: Summary of participants’ ages.

Age range Number of participants
18-24 8
25-29 11

Above 30 6

Table 5.2: Summary of participants’ previous experience with AR games.

Previous AR experience Number of participants
No experience 14

Played only once before in the past 5
Played only a few times in the past 5

Played AR games regularly 1

Questionnaire Data

The study used ratings based questionnaires to collect PX data. The dimen-

sions of PX measured in this study were Interest/Enjoyment, Mastery, Auton-
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omy and Immersion. Interest/Enjoyment is measured using the subscale (with

the same name) from the Intrinsic Motivation Inventory (IMI) [136]. The in-

terest/enjoyment subscale consists of a 6 item questionnaire that uses a 7 point

Likert scale providing their level of agreement with the different statements.

Mastery, Autonomy and Immersion are measured using the corresponding sub-

scales of the Player Experience Inventory (PXI) [220, 6] which consists of a 9

item questionnaire (3 for each) using a 7 point Likert scale as well. The com-

plete versions of the IMI and the PXI were not used in order to minimise the

possibility of questionnaire fatigue on the participants as they are required to

fill in this questionnaire 10 times across the study (2 training + 8 experiment

sessions).

Player Behaviour Data

Player behaviour in game sessions is measured through mobile sensor data which

is similar to the previous study. This player movement data is the position and

rotation of the mobile device during the game and is recorded at a frequency

of 64Hz as a 7-D vector: α ∈ {PX , PY , PZ , RX , RY , RZ , RW }of positions (in

meters) and rotations (in quaternions). Additionally, the timing and score data

for each level is also recorded. Refer to section 4.5.3 in the previous chapter for

additional details.

5.3.3 Analysis and Results

Similar to the previous study, the resulting data set from the experiment was

used to understand the impact of different game parameters on PX and to

explore the potential of supervised learning to predict dimensions of PX based

on player movement and game-based data. The methods used are the same as

the previous study. The data analysis and results have been described below in

this section.

Analysis of Game Parameters influence on Player Experience

Similar to the previous study, the relationship between game parameters on

PX is analysed using the three-way ANOVA with a p-value of 0.05. Residual

analysis was performed to test for the assumptions of the three-way ANOVA.

Normality within groups was assessed using QQplots. In some cases the nor-

mality assumption was not met however, as indicated by Blanca et. al [28] the

ANOVA test is still a valid option for analysis. It is worth noting the Blanca et.

al. proved this hypothesis using a Monte Carlo simulation study. The assump-

tions of homogeneity of variances was assessed by Levene’s test. A posthoc

Tukey test was also conducted if significant interaction effects were observed
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from the ANOVA test. The results of each of the PX dimensions are reported

below:

Interest/Enjoyment: A good reliability was found for the interest/enjoyment

scores, Cronbach’s α = 0.91. Residuals were not normally distributed (p < 0.05)

and there was homogeneity of variances (p > 0.05). Inspection of the QQplot by

experiment conditions showed most groups fall approximately along the refer-

ence line shown in figure 5.1, indicating that data within groups show minor de-

viations from normality. No significant main or interaction effects were observed

from the game parameters on interest/enjoyment scores. Figure 5.2 shows the

box plot of the Interest/Enjoyment scores for the experiment conditions, which

shows that scores are similar across all conditions.

Figure 5.1: The figure shows the QQplots for the Interest/Enjoyment
scores across the study conditions which show minor deviations from normality
across the different conditions.

Mastery: A good reliability was found for the mastery scores, Cronbach’s

α = 0.85. Residuals were not normally distributed (p < 0.05) and there was

homogeneity of variances (p > 0.05). Inspection of the QQplot by experiment

conditions showed most groups fall approximately along the reference line shown

in figure 5.3, indicating that data within groups show minor deviations from nor-

mality. There was a significant main effect for the number of chickens, F(1, 177)

= 8.28, p = 0.004 with an effect size η2partial = 0.015. There was also a signif-

icant main effect for the evasion mechanic, F(1, 177) = 11.04, p = 0.001 with

an effect size η2partial = 0.053. Finally, there was a significant 2-way interaction

effect was also observed between the number of chickens and the evasion me-

chanic, F(1, 177) = 7.02, p = 0.008 with an effect size η2partial = 0.033. Posthoc
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Figure 5.2: The figure shows the boxplot plot for the Interest/Enjoyment
scores across the study conditions. The image shows that scores are similar
across all conditions.

testing showed that mastery scores were significantly lower when the number of

chickens was high as compared to when it was low (p = 0.004). Mastery scores

were significantly lower when chickens evade players as compared to when they

were stationary (p = 0.001). Levels with a high number of chickens that evade

players have significantly lower mastery scores as compared to levels with a

low number of chickens that are stationary (p < 0.001). In levels with a high

number of chickens, mastery scores were lower when chickens evade players as

compared to when they are stationary (p < 0.001). Finally, in levels where

chickens evade players, a high number of chickens had significantly lower mas-

tery scores as compared to a low number of chickens (p < 0.001). These effects

are observed in figure 5.4, which shows the plot of the mastery scores across the

study conditions.

Autonomy: A good reliability was found for the autonomy scores, Cronbach’s

α = 0.88. Residuals were not normally distributed (p < 0.05) and there was

homogeneity of variances (p > 0.05). Inspection of the QQplot by experiment

conditions showed most groups fall approximately along the reference line shown

in figure 5.5, indicating that data within groups show minor deviations from nor-

mality. No significant main or interaction effects were observed from the game

parameters on autonomy scores. Figure 5.6 shows the box plot of the auton-

omy scores for the experiment conditions, which shows similar scores across all

conditions.
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Figure 5.3: The figure shows the QQplots for the Mastery scores across
the study conditions which show minor deviations from normality across the
different conditions.

Figure 5.4: The figure shows the boxplot plot for the Mastery scores across
the study conditions. The image shows that when the number of chickens is high
mastery scores are lower. Additionally, when chickens evade players, mastery
scores are lower. Levels with a high number of chickens that evade players have
significantly lower mastery scores as compared to levels with a low number of
chickens that are stationary. Finally, in levels where chickens evade players, a
high number of chickens had significantly lower mastery scores as compared to
a low number of chickens.
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Figure 5.5: The figure shows the QQplots for the Autonomy scores across
the study conditions which show minor deviations from normality across the
different conditions.

Figure 5.6: The figure shows the boxplot plot for the Autonomy scores
across the study conditions. The image shows that scores are similar across all
conditions.
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Immersion: A moderate reliability was found for immersion scores, Cron-

bach’s α = 0.61. Residuals were not normally distributed (p < 0.05) and there

was homogeneity of variances (p > 0.05). The QQplot by experiment conditions

showed most groups fall approximately along the reference line shown in figure

5.7, indicating that data within groups show minor deviations from normality.

A significant main effect for number of chickens, F(1, 177) = 4.06, p = 0.045

with effect size η2partial = 0.022. Posthoc testing showed that when number of

chickens was high, immersion scores were significantly higher as compared to

when number of chickens was low (p = 0.045). These effects are observed in

figure 5.8, which shows the plot of the immersion scores across study conditions.

Figure 5.7: The figure shows the QQplots for the Immersion scores across
the study conditions which show minor deviations from normality across the
different conditions.

This subsection reported the results of statistical analysis of the impact of

CGFs on player motivations. Table 5.3 summarises the results from the statis-

tical analysis.

Player Experience Classification using Supervised Learning

This subsection presents results from supervised learning techniques. The same

supervised learning pipeline is used to predict the dimensions of PX. Details

on the complete pipeline are provided in subsection 4.6.3. Predictions of the

different dimensions of PX is treated as a supervised classification problem by

transforming the ratings based measures into binary categorical data through

the player-based transformation described in the previous chapter. Using the

data-processing and feature extraction methods described previously 65 features

are extracted for each game. These features are used as an input for logistic
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Figure 5.8: The figure shows the boxplot plot for the Immersion scores
across the study conditions. The image shows that when the number of chickens
is high immersion scores are higher.

Table 5.3: Summary of results of statistical analysis of CGFs on PX.

PX dimension CGFs F-value η2partial Effect Description

Interest/Enjoyment No main or inter-
action effects

Mastery GNum

(main effect)
8.28 0.015 Decreases when number is high.

GMov

(main effect)
11.04 0.053 Decreases when chickens evade players.

GNo ×GMov

(Interaction effect)
7.02 0.033 Decreases when number is high and chickens evade

players as compared to levels with a low number of
chickens that are stationary.
Decreases when number is high and chickens evade
players as compared to levels with a high number of
chickens that are stationary.
Decreases in levels where number is high and chick-
ens evade players as compared to levels where num-
bers are low and chickens evade players.

Autonomy No main or inter-
action effects

Immersion GNum

(main effect)
4.06 0.022 Increases when number is high
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regression, LDA, SVM and XGBoost models to predict the different dimensions

of PX. In this study, Logistic Regressions and LDA are linear models, while the

SVM1 and XGBoost classifiers are nonlinear models.

Feature selection is performed using the SFFS algorithm to improve model

performance. Similar to the previous study, model performance improves with

feature selection. The 10-fold CV and Loso-CV scores are used as evaluation

metrics for each model. All the accuracies are reported for the models after

feature selection. Results for each of the dimensions of player motivations are

reported below.

Interest/Enjoyment: Random chance classification for interest/enjoyment

was 50.05%. All classifiers perform higher than random chance on 10-fold CV ac-

curacies. However, accuracies for Logistic Regression, LDA and SVM classifiers

decrease to close to random chance when LOSO-CV accuracies are computed.

The XGBoost classifier was the best performing model tested with a 10-fold CV

of 68.12±10.09% and LOSO-CV of 62.27±21.06% which is higher than random

chance classifications. Table 5.4 shows the summary of results for all classifiers

tested for Interest/Enjoyment.

Table 5.4: Summary of results from supervised learning to classify Inter-
est/Enjoyment.

10-CV Acc LOSO-CV Acc
Logistic Regression 62.63± 13.24% 56.12± 9.99%

LDA 64.35± 9.26% 55.15± 10.21%
SVM 67.54± 7.70% 44.84± 8.84%

XGBoost 68.12± 10.09% 62.27± 21.06%

Mastery: Random chance classification for interest/enjoyment was 51.78%.

All classifiers perform higher than random chance on 10-fold CV and LOSO-CV

accuracies. The XGBoost classifier was the best performing model tested with

a 10-fold CV of 81.72±10.63% and LOSO-CV of 71.65±19.98% which is higher

than random chance classifications. Table 5.5 shows the summary of results for

all classifiers tested for Mastery.

Autonomy: Random chance classification for autonomy was 53.50%. All

classifiers perform higher than random chance on 10-fold CV accuracies. How-

ever, accuracies for the Logistic Regression classifier decreases to close to random

1The SVM classifier in this study uses an RBF kernel so it is a nonlinear classifier in this
study.
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Table 5.5: Summary of results from supervised learning to classify Mastery.

10-CV Acc LOSO-CV Acc
Logistic Regression 73.59± 7.79% 67.21± 11.18%

LDA 73.09± 10.46% 61.83± 12.61%
SVM 75.78± 9.90% 59.22± 12.46%

XGBoost 81.72± 10.63% 71.65± 19.98%

chance when LOSO-CV accuracies are computed. Accuracies for LDA, SVM

and XGBoost perform higher than random chance for LOSO-CV. The SVM clas-

sifier was the best performing model tested with a 10-fold CV of 71.34± 7.17%

and LOSO-CV of 63.02 ± 15.51%. Table 5.6 shows the summary of results for

all classifiers tested for Autonomy.

Table 5.6: Summary of results from supervised learning to classify Autonomy.

10-CV Acc LOSO-CV Acc
Logistic Regression 64.94± 6.91% 52.38± 15.61%

LDA 68.07± 9.86% 61.97± 16.72%
SVM 71.34± 7.17% 63.02± 15.51%

XGBoost 68.15± 9.35% 64.85± 14.95%

Immersion: Random chance classification for immersion was 52.95%. All

classifiers perform higher than random chance on 10-fold CV accuracies. How-

ever, accuracies for Logistic Regression and LDA classifiers decrease to close

to random chance when LOSO-CV accuracies are computed, while the SVM

and XGBoost models perform higher than random chance for the same. The

XGBoost classifier was the best performing model tested with a 10-fold CV of

72.51± 9.07% and LOSO-CV of 69.81± 12.85%. Table 5.7 shows the summary

of results for all classifiers tested for Immersion.

Table 5.7: Summary of results from supervised learning to classify Immersion.

10-CV Acc LOSO-CV Acc
Logistic Regression 72.92± 9.41% 52.45± 18.22%

LDA 71.34± 10.28% 55.75± 16.85%
SVM 71.81± 8.09% 62.59± 13.87%

XGBoost 72.51± 9.07% 69.81± 12.85%
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Results from the analysis of different supervised learning models for the pre-

diction of the different dimensions of PX. Results show that linear classifiers

(logistic regressions and LDA) do not generalise well to unseen participants.

Among the nonlinear classifiers tested, the XGBoost classifier performs the best

showing a good generalisability to unseen participants. Mastery was the best

performing model as it could be predicted to a reasonably high level of accuracy

followed by immersion and then autonomy. Interest/Enjoyment was the most

difficult to dimension to predict reliably.

5.3.4 Experiment Summary

The experiment described in this section builds on the previous study to inves-

tigate modelling PX within AR exergames as well as explore the relationship

between AR game parameters and dimensions of PX. The results show that

mastery is an important dimension of PX since predictive models created using

the XGBoost classifier perform reliably and generalise to new players. Another

important finding in this chapter is that exergame parameters of the Running

Chickens game such as the number of chickens and the evasion mechanic are

important features for adaptation as they can influence the levels of mastery

and immersion players experience within the game. The results observed here

will allow for the creation of personalised adaptive AR exergames that use the

player models created to maximise a player’s motivations as they play the game.

However, it remains unclear to what extent these models can be used success-

fully for real-time game adaptation. To address this gap, the mastery model

(using the XGBoost classifier) is used to create a dynamic difficulty adaptive

version of the Running Chickens game. This adaptive game is presented section

5.4 and the experimental evaluation of this adaptive game is described in section

5.5 of this chapter. The development details of the game adaptation system are

presented in the next sections.

5.4 Game Adaptation System

This section documents the design and implementation of the adaptation engine

built using the mastery classifier. The mastery model was selected for this as the

previous experiment found that it could be reliable predicted using movement

and game features. The choice of using the mastery model is further justified by

exiting research in PX in games, it is am important component of SDT [181, 188],

self-efficacy [15, 126], the ARCS model [104, 223] and flow in games [43, 36]

(refer to section 5.1 for details). The mastery classifier uses player movement

and game metrics to predict if the player felt a high or a low sense of mastery.
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Data from the previous experiment is used to train the mastery classifier offline.

As a player engages with each level of the game, data from that level is used

by the model to return a prediction for mastery. The prediction is used by

the game adaptation system to modify the difficulty of the game. The data

analytics pipeline for mastery prediction is described in the next subsection.

The adaptation system, described in the subsection below, aims to sustain the

player in an optimal affective state in order to improve the game engagement.

Figure 5.9 shows an overview of the data pipeline that is used for mastery

predictions.

Figure 5.9: The figure shows the overview of the adaption pipeline for Mastery-
based dynamic difficulty adaptation

5.4.1 Analytic Pipeline for Mastery Prediction

The analytics pipeline used for mastery prediction is developed using the XG-

Boost classifier evaluated in the previous study. The model uses 26 features

that are extracted from player movement data, game performance data and

game parameters to return a binary prediction of either high or low mastery.

Only 26 (out of the 65 features) are used for mastery prediction as these are

the main features that be identified through feature selection using the SFFS

algorithm. A benefit of using the XGBoost model (and other ensembles of de-

cision tree models) is that it provides estimates about the importance of the

features the trained model uses for prediction. Figure 5.10 shows the graph

showing the importance of the different features used for prediction. It is ob-

served that the model weights player movement features as most important for

mastery prediction (the time of maximum acceleration and time of maximum

jitter is weighted as most important). The model weights player performance

(measured through the completion feature which is the ratio between the game

score and the maximum possible score from the game) as moderately important.
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Game parameters (number of chickens and the evasion mechanic) are weighted

as least important for mastery prediction.

Figure 5.10: The figure shows the Feature Importance scores for the XGBoost
Mastery Model

The goal of the model is to return a mastery prediction for each level of the

game so that the difficulty of the next game level can be optimised to ensure

the player is sustained in an optimal state of high mastery.

As the player engages with a game level, the position and rotation of the

mobile device are logged at a frequency of 64 Hz. At the end of the game

level the movement data, performance metrics (score and game time) and game

parameters are sent to a web server for mastery predictions. The web server

handles data preprocessing, feature extraction and mastery prediction. The

method for data preprocessing and feature extraction is the same as the one

described in the previous chapter. The main difference is that the webserver

applied this data pipeline for a single game instead of a batch of games as

was the case in the previous studies. Once the 27 features are extracted, it is

used as input to the trained mastery model which returns a mastery prediction

that is sent back to the game client running on the mobile device. The model

was trained offline using data collected from experiment 1 (section 5.3) of this

chapter.

This prediction pipeline has been implemented in python as a rest API using

the Flask library. This web application is hosted on a Heroku server. The data

sent to the server as well as the predictions generated are saved from the server

for analysis of the model. Testing the prediction pipeline showed that the service
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takes 0.72 ± 0.64 seconds to return a prediction from the server. The relatively

high variation observed in the response time is mainly due to the speed of the

internet connection of the mobile device. Since this is an outdoor game, players

would likely use their mobile internet which differs between service providers.

The mastery prediction is used by the game client running on the mobile device

as input for the adaptation engine which is described in the next subsection.

5.4.2 Difficulty Adaptation System

The adaptation system uses the predicted mastery from the model for experience-

based DDA. In order to create an adaptive game, a subset of the game levels are

used such that these levels form a linear difficulty progression. For this 4 (out

of the 8) levels are selected where the difficulty of the game moves from an easy

level to successively more difficult ones. Data from the experiment reported in

chapter 5 is used to select this subset of levels since game challenge is one of

the dependent variables analysed in this study. The game levels used by the

adaption system are:

• Level 1: This level has a small game area with a low number of chickens

that do not evade players.

• Level 2: This level has a large game area with a low number of chickens

that do not evade players.

• Level 3: This level has a large area with a low number of chickens that

evade players.

• Level 4: This level has a large game area with a high number of chickens

that evade players.

The difficulty of the game levels moves from easy to difficult as a player

moves from level 1-4 in the subset of game levels. This is observed from the

Challenge scores (which is one of the subscales of the GEQ) collected from

experiment 2 (chapter 4). This difficulty progression is seen in figure 5.11 which

shows the boxplot of the challenge scores across these 4 levels.

The decision process for difficulty adaptation uses the mastery prediction

that is returned from the webserver to change the game level. All players start

the game in level 1, if the system predicts a high level of mastery after gameplay,

the system increases the difficulty of the game by selecting the next level. If

the system predicts a high level of mastery after the player experiences level 4

of the game, the difficulty remains constant. Similarly, if the system predicts

a low level of mastery, the difficulty is reduced by selecting the previous level.
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Figure 5.11: The figure shows the boxplot of the challenge scores across the 4
levels of the game game. The difficulty progression is shown with the dotted
line.

If the system predicts a low level of mastery from level 1, the difficulty is kept

constant.

The goal of this adaption system is to keep the players in an optimal state of

mastery experienced from the game. This minimises the chances of the player

getting demotivated due to the game being too difficult or easy for them. This

adaptive system is hypothesised to improve player’s confidence and make them

more likely to engage with the physical activities involved in gameplay. This

is further linked to the theory of game flow [43, 36], so it is expected that the

adaptive system will increase the immersive nature of the game by maintaining

an optimal balance between the game’s challenge and the player’s skills. In this

research, skill is measured through perceived mastery in the game.

The Running Chickens game (which was built in Unity) was modified to

create the adaptive game. This version of Running Chickens is the first adaptive

AR game based on body movement. The effectiveness of this adaptation system

in improving player engagement and confidence is evaluated in a user study that

is described in the next section of this chapter.

5.5 Experiment 2

This section describes the experiment conducted to evaluate the effectiveness

of the mastery-based adaptation system. Mastery-based difficulty adaptation is

hypothesised to improve the players’ confidence in the game and increase the
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immersive nature of the game. This study investigates this hypothesis through

a controlled experiment with players.

The experiment compares this adaptive game against a non-Adaptive ver-

sion (used as the control condition) of the Running Chickens game. Participants

played both versions of the game and provided both quantitative (from question-

naires) and qualitative (from semi-structured interviews) about their experience

in each of the study conditions.

Due to COVID-19 social distancing measures, this study was conducted

remotely. Participants were contacted online and requested to travel to a specific

park for the experiment (details provided in the next subsection).

5.5.1 Experiment Design

The experiment followed a within-participant design where each participant

experienced all conditions of the study. The experiment compared the adaptive

version of the Running Chickens game against a non-adaptive version (control

condition), which resulted in 2 study conditions. Details about each condition

are described below:

• Adaptive Condition: In this condition, participants played the adap-

tive version of the game (described in section 5.4) for 8 rounds.

• Non-Adaptive Condition: In this condition participants played the

running chickens game without any DDA techniques applied. Partici-

pants would start the game at level 1 and play each of the levels twice

moving across levels 1-4. This condition is considered as having linear

difficulty since participants start with an easy level of the game and move

progressively to more difficult levels of the game. This linear difficulty is

considered as a control condition since it has been traditionally used in a

number of digital games and best aligns with players’ mental models of

difficulty progression within these types of games (as indicated from quali-

tative data presented in section 5.6.2). Linear difficulty has also been used

by other researchers as a control condition to evaluate the effectiveness of

DDA systems in games[131].

Each session consisted of 8 game rounds, each one took approximately 90

seconds to complete. This included playing the game level for up to a minute

as well as answering a rating based PX questionnaire (about that specific level)

in each game round. At the end of each session, participants filled up a post-

session PX questionnaire evaluating that version of the game (across all game

rounds). Participants were also given a training session on how to play the
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game before they experienced the experiment conditions. The same training

levels from previous studies were used in the experiment.

Similar to previous studies, all experiments were conducted during daylight

and adequate weather conditions to minimise environmental factors from biasing

the data collected. In this case, 2 parks were selected as sites for the study.

One park was the same one used in the previous experiment while the second

park was the Russell Square park (in Bloomsbury, London). An additional

experiment site is used to give participants an option of travelling to a venue

that suits their convenience. The order in which participants experience each

experiment condition was counterbalanced to minimise ordering effects in the

data collected. Participants were anonymised using IDs and were compensated

£15.00 for their participation in the experiment. The sample of participants was

restricted to people who owned or had access to an android device purchased

after 2015. This was done since the Running Chickens game was developed only

for the android platform and due to Covid-19 restrictions lab phones could not

be used.

Procedure

All participants provided informed consent before participating in the study.

Since this was a remote study, participants who provided informed consent were

sent the questionnaires and games used in the study via email. The participants

would need to install 3 applications to the mobile device: 1 training game and 2

versions of the Running chickens game. Participants were also asked to travel to

one of the 2 chosen sites for the experiment in order to participate in the study

during daylight. Participants were also provided with an anonymised ID (which

they would use as an identifier when filling up the questionnaires) and the order

in which they were expected to play the 2 experiment sessions. Participants were

informed to start the study at least 2 hours before sunset to ensure appropriate

lighting conditions for the entire study. They were also advised not to do the

study if it was raining or if the park was slippery (just after rainfall). In addition

to email information, the researcher set up a video call to give them a brief on

what they were expected to do across the study. Participants were also asked

to fill up a pre-experience questionnaire about their background and experience

with MAR games before they arrive at the experiment site.

At the beginning of the study, once they had arrived at the experiment site,

participants were given a training session about the game and the question-

naires used in the study. In the training session, participants were requested

to watch a video provided that shows the researcher demonstrating how the

game is played and how to go about answering the questionnaires in the study.
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Following which participants, were requested to play through 2 levels in the

training game provided to them. Participants were informed that they could

contact the researcher via phone or text if they had any doubts or problems

with the game.

After training, participants played through the two experiment sessions

which were given to them as two different android applications. The order

in which they were expected to do the sessions were assigned to them at the

beginning of the study. In each session, participants played 8 rounds of the

adaptive or non-adaptive version of Running Chickens at the end of each round

participants filled up a short PX questionnaire about their experience in that

level. Participants were asked to take a break of up to 5 min between the rounds

of the game to minimise their physical fatigue across the study. At the end of

the 8 game rounds, participants filled up a longer post-session questionnaire

about their experience across that game version (all 8 game rounds). Once the

participant had completed both experiment conditions, a semi-structured inter-

view was conducted with them to collect qualitative data about their experience

across both conditions of the study.

While playing the game, if the AR algorithm lost environment tracking par-

ticipants were advised to proceed to the next game round. If this happened in

the adaptive game, the same level was given to the participant in the next round

(without any changes to the game difficulty). If a participant experienced 3 or

more instances of this problem, their data was excluded from the analysis.

At the end of the semi-structured interview, participants were debriefed, all

their questions were answered and the study was concluded. The experiment

took approximately 60-90 min for each participant to complete (once they had

arrived at the study site).

5.5.2 Data Collection

The study collected both qualitative and quantitative player experience data

from participants. This data was used to compare differences in PX between

the two study conditions and as ground truth to evaluate model performance.

Player movement data, scores and timing information was logged from the mo-

bile device (similar to previous studies) for each game level, this data was used

to compute the mastery predictions by the webserver. These mastery predic-

tions were also logged for analysis to evaluate the performance of the model on

unseen players.
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Participants

Participants were recruited using the same mailing lists used in the previous

study. In addition to this participants were also recruited from social me-

dia groups for student accommodations managed by the University of London.

These social media groups were selected since the COVID-19 lockdown measures

in the UK prevented many students from travelling to the university campus.

The locations of the 2 study sites selected for the experiment coincided with

these 2 streams of recruitment. Students who are living around the Queen

Mary campus could select the park that was used in the previous study. While

students living in the University of London accommodations could use the Rus-

sell Square park (which is near the accommodations targeted). This is done

to ensure that participants do not need to travel long distances for the exper-

iment which was in line with health and safety guidelines released by the UK

government at the time the experiment was conducted.

The study sample consisted of 24 volunteers (12 male and 12 female) aged

between 18-34 (9 participants had ages in the range of 18-24, 9 were in the 25-29

age range and 6 were above 30), summarised in table 5.8. When asked about

prior experience playing AR games, 13 participants had no prior experience.

In the remaining 11 subjects, 3 reported having played only one experience in

the past and 8 reported having played a few times in the pasted. None of the

participants in this sample reported playing AR games regularly. Refer to table

5.9 for a summary of the participants’ previous AR experiences.

Table 5.8: Summary of participants’ ages.

Age range Number of participants
18-24 9
25-29 9

Above 30 6

Table 5.9: Summary of Participants’ Previous experience with AR games.

Previous AR experience Number of participants
No experience 13

Played only once before in the past 3
Played only a few times in the past 8

Played AR games regularly 0
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Questionnaires Data

The study used ratings based questionnaires to collect PX data. These ques-

tionnaires were given to players after each level and at the end of each session.

After each level players filled up a questionnaire which comprised of the mas-

tery subscale of the PXI [220, 6] which consisted of 3 questions (rated on a 7

point Likert scale). The participants’ mastery experience was collected for each

level as this data was used as ground truth to evaluate the performance of the

mastery prediction model. Players answered this questionnaire based on their

mastery experience in that level.

At the end of the study, players answered a post-session questionnaire. For

this, the complete version of the PXI [220, 6] was used. This questionnaire con-

sists of 10 subscales that relate to both the functional and psychological conse-

quences of gameplay. The subscales for the functional consequences are ease of

control, (clear) goals and rules, challenge, (clear) progress feedback and audio-

visual appeal. The psychological consequences are meaning, curiosity, mastery,

immersion and autonomy. This data was used to compare PX between the two

game versions.

Qualitative Data

Qualitative data was gathered from participants in the form of a short semi-

structured interview which was conducted once both versions of the game had

been played. Participants were asked to compare the versions of Running Chick-

ens. Participants were also asked about their preferences between the two ver-

sions of the game in terms of enjoyment and challenge. The goal of this interview

is to compare any PX differences between both game versions and to check to

what extent the effects of the mastery-based DDA adaptation could be perceived

by players.

5.5.3 Analysis and Results

The resulting data set from the experiment was used to compare the adaptive

and non-adaptive versions of Running Chickens based on player experience. Sta-

tistical analysis is conducted to compare the game versions using the post-session

PXI data for each game version. Qualitative responses from semi-structured in-

terviews were analysed using thematic analysis to understand PX differences

and individual preferences between both game versions. Finally, data from the

short post-level mastery questionnaire was used as ground truth to test the

performance of the mastery prediction model.
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Statistical Analysis of Game Adaptation

The effects of mastery-based DDA on PX was analysed by comparing PXI scores

from the adaptive game against scores from the non-adaptive game (control

condition). The data set did not meet the assumption of normality which was

evaluated using a Shapiro-Wilk test (conducted for each of the 10 subscales of

the PXI). Since the data was found to be non-normal, non-parametric statistical

tests were used to analyse the data. A Wilcoxon signed-rank test (with a p-value

of 0.05) was used to check for statistical differences between game versions for

each of the 10 sub-scales of the PXI. The results for each of the PXI sub-scales

are reported below:

Ease of Control: The was no significant difference in the scores of ease of

control between both game versions (p = 0.275). The boxplot of the ease of

control scores is shown for both study conditions is shown in figure 5.12, which

shows that scores are similar across both conditions.

Figure 5.12: The figure shows the boxplot plot for the Ease of control
scores across the study conditions. The image shows that scores are similar
across both conditions.

Goals and Rules: There was no significant difference in the scores for Goals

and Rules between both game versions (p = 0.305). The boxplot of the Goals

and Rules scores is shown in figure 5.13, which shows that scores are similar

across both conditions.

Challenge: There was no significant difference in the scores for Challenge

between both game versions (p = 0.837). The boxplot of the Challenge scores is

shown in figure 5.14, which shows that scores are similar across both conditions.
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Figure 5.13: The figure shows the boxplot plot for the Goals and rules
scores across the study conditions. The image shows that scores are similar
across both conditions.

Figure 5.14: The figure shows the boxplot plot for the Challenge scores
across the study conditions. The image shows that scores are similar across
both conditions.
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Progress Feedback: There was no significant difference in the scores for

Progress Feedback between both game versions (p = 0.305). The boxplot of the

Progress Feedback scores is shown in figure 5.15, which shows that scores are

similar across both conditions.

Figure 5.15: The figure shows the boxplot plot for the Progress feedback
scores across the study conditions. The image shows that scores are similar
across both conditions.

Audiovisual Appeal: There was a difference approaching significance in

the scores for Audiovisual Appeal between both game versions (p = 0.055) with

a small effect size (r = 0.394). Participants scored the audiovisual appeal of

the adaptive game higher than the non-adaptive version. The boxplot of the

Audiovisual Appeal scores is shown in figure 5.16, which shows that scores for

the adaptive condition are marginally higher.

Figure 5.16: The figure shows the boxplot plot for the Audiovisual appeal
scores across the study conditions. The image shows that scores in the adaptive
condition are marginally higher.
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Meaning: There was no significant difference in the scores for Meaning

between both game versions (p = 0.948). The boxplot of the Meaning scores is

shown in figure 5.17, which shows that scores are similar across both conditions.

Figure 5.17: The figure shows the boxplot plot for the Meaning scores
across the study conditions. The image shows that scores are similar across
both conditions.

Curiosity: There was no significant difference in the scores for Curiosity

between both game versions (p = 0.118). The boxplot of the Curiosity scores is

shown in figure 5.18, which shows that scores are similar across both conditions.

Figure 5.18: The figure shows the boxplot plot for the Curiosity scores
across the study conditions. The image shows that scores are similar across
both conditions.

Mastery: There was a significant difference in the scores for Mastery be-

tween both game versions (p = 0.011) with a moderate effect size (r = 0.540).

Participants scores their perceived mastery for the adaptive game higher than
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the non-adaptive version. The boxplot of the mastery scores is shown in figure

5.19, which shows that scores for the adaptive condition are higher.

Figure 5.19: The figure shows the boxplot plot for the Mastery scores
across the study conditions. The image shows that mastery scores are higher in
the adaptive condition.

Immersion: There was no significant difference in the scores for Immersion

between both game versions (p = 0.685). The boxplot of the Immersion scores is

shown in figure 5.20, which shows that scores are similar across both conditions.

Figure 5.20: The figure shows the boxplot plot for the Immersion scores
across the study conditions. The image shows that scores are similar across
both conditions.

Autonomy: There was no significant difference in the scores for Autonomy

between both game versions (p = 0.943). The boxplot of the Autonomy scores is

shown in figure 5.21, which shows that scores are similar across both conditions.
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Figure 5.21: The figure shows the boxplot plot for the Autonomy scores
across the study conditions. The image shows that scores are similar across
both conditions.

This subsection reported the results from the statistical comparison of the

adaptive and non-adaptive game versions based on PX. The analysis found

that there was a significant difference in mastery scores between both games

where players felt more masterful in the adaptive game condition. There was

also a difference approaching significance in the audiovisual appeal scores where

players found the audiovisual styling of the adaptive game more appealing.

Qualitative Analysis

A semi-structured interview was conducted once participants had played both

versions of the game to understand how the adaptive game impacts player expe-

rience. The interview lasted about 5-10 min depending on the participant and

focused on the perceived differences between both game versions. Participants

were also asked to compare both game versions based on their experiences of

challenge and enjoyment.

Participants made some general comments about their experience across

both game versions. The most common observation was that players found the

evasion mechanic as highly enjoyable and immersive. One of the participants

reported that ”...when they (chickens) run away, you get really into the game.

When I ran after them, I forgot I was in the park and that there were other

people around me..”. Another common observation was that it was difficult to

navigate around the space when using the mobile’s view-port to navigate around

the space. Finally, one participant said that the audio feedback from the game

made them feel highly self-conscious in the public park. This person preferred

playing the game on mute as they did not want to draw attention to themselves.

This person also noted that they avoid exercising in public spaces as they do
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not want to be judged by other people for their physical inability.

It was interesting to note that most participants could not perceive the

effects of the difficulty adaptation. One of the participants remarked that the

game difficulty in the adaptive version seemed to change depending on how they

performed in the previous level. While another participant reported that the

adaptive game seemed to get easier when they experienced physical fatigue from

gameplay.

The majority of participants (15 out of 24) found the adaptive game less

challenging. Among the remaining participants, 5 found the non-adaptive game

less challenging and 4 found no differences in challenge across both versions.

Participants who found the adaptive game as less challenging reported that

the game would present them with easier levels when they felt either tired to

overwhelmed playing a difficult level in the game. The other participants who

reported the adaptive version as more challenging mainly attributed this due

to the spatial distribution of chickens in each level. When chickens were spaced

far apart from each other participants found the game more challenging as they

needed to increase the amount of physical exertion needed to navigate around

the game level.

Participants responses about game enjoyment showed that 13 (out of 24)

found the adaptive game more enjoyable while 7 (out of 24) found the non-

adaptive game as more enjoyable and the remaining 4 enjoyed both versions

equally. When comparing participant comparisons about game challenge and

enjoyment, to types of players emerged in the sample: Challenge seekers and

Reward Seekers. In the sample of participants, 10 were found to be Challenge

seekers while 8 were found to be Reward seekers and 6 participants could not

be categorised into either of these groups.

Challenge seekers preferred the difficulty to increase constantly as the game

progressed. When the adaptive game presented this player type with easier lev-

els (if low mastery was predicted), they found this mechanic frustrating as they

wanted to continue experiencing the game at a high level of difficulty (irrespec-

tive of their performance in the difficult levels of the game). One participant

in this group reported, ”...the first session (adaptive game) was a lot easier but

I don’t like that, I prefer these games to keep giving me difficult levels so that

I can push myself and improve my fitness...” This group of people had a high

sense of self-efficacy towards physical activity. Participants sense of self-efficacy

was inferred by asking about their relationship towards physical activity. If

participants regularly engaged in physical activity and enjoyed such activities

were considered as having high self-efficacy. These participants reported either

being physically active or motivated towards improving their physical fitness.

Reward seekers as the name implies seemed highly motivated by game re-
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wards. This group reported being overwhelmed or discouraged when game dif-

ficulty constantly increased. These players found the adaptive condition more

enjoyable since easier levels were presented to them when they felt frustrated

with their performance. This group was motivated by getting as high a score as

possible with the least effort. This group of people had a comparatively lower

sense of self-efficacy toward physical fitness and tended to be less physically

active in their daily lives.

A final observation was the importance of players physical fatigue during

gameplay. In spite of being encouraged to take breaks between levels, some

players reported feeling fatigued towards the end of each experiment session.

They reported that they were not able to play as effectively when they were

tired. When player fatigue was high the adaptation rules helped keep players

motivated to game-play. It is important to note that this observation was made

by Reward Seekers. This group found linear difficulty progression as frustrating

as it had a negative impact on their game enjoyment. One of the participants

remarked, ”...the second session (non-adaptive game) was really bad for me, I

was really tired in the last few rounds but the game seemed to get more difficult.

I felt really out of shape and was barely able to survive the last level...”

Analysis of Classification Performance of Mastery Model

To evaluate the performance of real-time mastery prediction, participants were

asked to evaluate their sense of mastery using (using the sub-scale of the PXI)

at the end of each level. The mastery scores for each level of the adaptive

condition was used as ground truth and compared to the predictions logged

from the XGBoost model for that level. The ratings-based mastery scores were

transformed to binary labels using the player based transformation technique

introduced in the previous chapter. The resulting data-set consisted of mastery

labels from 187 games (data from 5 games were discarded due to loss of tracking

during the game). In these games, 107 were labelled as high mastery and 80 as

low mastery which showed a mild imbalance between both classes in the data set.

Based on the distribution of these labels, random chance classification accuracy

was computed at 51.04%. The classification accuracy of the mastery model was

69.51% which is higher than random chance. The confusion matrix illustrated

in figure 5.22 shows that the models perform well at identifying true positives

(cases where the participant and classifier reported a high level of mastery).

However, the classifier tended to misclassify cases of low mastery as indicated

by the high false-positive rate. Due to class imbalance, the analysis of the

precision and recall scores of the mastery classifier was also computed. In this

case, precision is the measure of how well the classifier performs at identifying
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cases of high mastery that were actually high mastery cases which was found

to be 0.702. While recall is the measure of how well the classifier performs at

predicting cases of high mastery over all actual cases of high mastery which

was found to be 0.813. The comparatively low score of precision confirms the

model’s bias of misclassifying true cases low mastery as high. The F1 score,

which combines the precision and recall measures was found to be 0.753 for the

mastery model. Overall the analysis indicated the prediction model works well

for unseen players. However, there were a number of cases to misclassification in

low mastery. This causes the adaptation system to increase the game difficulty

for already overwhelmed players.

Figure 5.22: The figure shows the confusion matrix for Mastery predictions

5.5.4 Experiment Summary

The experiment described in this section builds on the previous one by evalu-

ating the potential of using player experience models to dynamically adjust the

difficulty of MAR exergames. This involved the creation of a game adaptation

engine that uses mastery-based predictions to adjust the game’s difficulty. The

goal of this adaptation is to gradually increase game difficulty while maintain-

ing an optimal balance of player mastery. This experience-based adaptation

mechanic is evaluated against the non-adaptive game (with linear difficulty pro-

gression) in a controlled experiment with players. Statistical analysis indicated

that players felt a significantly higher sense of mastery in the adaptive game and
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found the audio and visuals of the adaptive game more appealing (difference was

approaching significance). Qualitative analysis of the participants’ interviews

indicated that the adaptive game was less challenging for players however, two

distinct player types emerged. Challenge Seekers, who preferred the game to

constantly increase the game difficulty and felt a sense of failure/frustration

when adaptive game decreased the game difficulty. Reward Seekers, preferred

the adaptive game as they were highly motivated by getting a high score in

games and reported that game adaptations prevented them from feeling over-

whelmed during gameplay. Qualitative results also indicated that the most

significant determinant of player type was a person’s self-efficacy towards phys-

ical activity. Challenge Seekers had a high self-efficacy to physical activity and

enjoyed engaging with high-intensity physical activity. While Reward Seekers

had a low self-efficacy for physical activity and avoided heavy physical activity.

Finally, analysis of the classification performance of the mastery model showed

that the model was good at predicting cases of high mastery however, tended

to misclassify cases of low mastery as false positives.

5.6 Discussion

This chapter reports the results of 2 experiments that explore the impacts of

experience-based difficulty adaptation in a MAR exergame. In the first exper-

iment, a user-centric evaluation of the Running Chickens exergame parameters

on dimensions of player experience is conducted. Additionally, player data is

used to create models that can predict several dimensions of player motivations.

This study builds on the study reported in the previous chapter by exploring

player measures that are important in motivating players in engaging with the

game. The mastery model created from data collected in the first experiment is

used to create an adaptive game. The adaptive system adjusts difficulty based

on predicted mastery. The goal of the adaptive mechanic is to keep players in an

optimal state of mastery in the game, keeping them motivated towards game-

play. The second experiment reported evaluates this experience-based adaptive

mechanic in a controlled experiment with players. This experiment showed that

players models constructed from player movement and game-based data can be

used to meaningfully personalise PX in MAR exergames.

5.6.1 Game Parameters impact on Player Experience

While the previous chapter explored broader dimensions of PX, the first ex-

periment of this chapter takes a more focused approach of exploring player

experience dimensions that are relevant to game motivations, which were: in-

166



terest/enjoyment, mastery, autonomy and immersion.

Interest/enjoyment here is considered as a measure of intrinsic motivation

for the player. This measure is considered as qualitative interviews with players

in the previous study indicated that they found game interactions enjoyable and

motivating. The study did not find any significant impact of game parameters

on a player’s interest/enjoyment. These results could mean that these game

parameters do not directly influence intrinsic motivation however, they act as

extrinsic motivators. Additionally, it can be argued that the study design of a

controlled experiment used here is not the best way to assess intrinsic motiva-

tion. It would be useful to consider longitudinal study designs to understand

how these game parameters can impact intrinsic motivations over time.

Mastery is the second measure considered as it is similar to competence

which is an important factor for player motivations. Competence was explored

in the previous chapter, the studies in this chapter explored mastery to in-

vestigate to what extent results of the previous chapter are generalizable and

reproducible. It is important to note, that mastery is contextualized as ‘A

sense of competence and mastery derived from playing the game’[6], this is a

psychosocial consequence of gameplay. This is different from the mastery of

controls referred to by Przybylski et. al. [181] which refers to the learned abil-

ity to effortlessly control game interactions through a digital interface. In the

first experiment, the number of chickens and the evasion mechanic parameter

had a significant impact on a player’s sense of mastery. It is observed that as

the number of chickens increase the perceived mastery decreases. Additionally,

when chickens evade players mastery significantly decreases. These results sup-

port the analysis of competence from the previous chapter. The results indicate

that players feel masterful in simpler game levels (eg: levels with a small number

of chickens that are stationary). However, qualitative data from the previous

study indicated that participants enjoyed the evasion mechanic and expected

the game progression to increase in challenge. The results here suggest that

simple levels can be used at any point during the progression of the game to

satisfy a player’s need for competence from the game system. This would ensure

that players remain engaged in the game.

Autonomy is the next measure considered as it is another important dimen-

sion of motivation in games. This measure is explored in this study since it is

our hypothesis that some game parameters (specifically, the number of chickens

and the evasion mechanic) can modulate the number of choices and sense of

freedom a player experiences during gameplay. Understanding the impact of

game parameters on autonomy would further explain how dimensions of PX

such as immersion and flow were modulated in the previous study. However,

this study was unable to validate this hypothesis as no significant effects were
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observed from the game parameters on autonomy.

Finally, immersion is the last measure considered as it was explored in the

previous study. The impact of game parameters on player immersion would

be important for designing game progression systems to keep players immersed

in the game. In this study, results show that the number of chickens has a

significant impact on player immersion. The immersion scores increase when the

number of chickens is high. These results suggest that the number of chickens is

an important parameter for game design; while a high number can lead to more

challenging levels, it is important in keeping players immersed in the game. This

is because when chicken numbers are high, players are kept more involved in the

game since there are more game objects for players to interact within a level.

It is possible that players enjoy physical interactions with AR content closer to

their location as opposed to needing to travel across large areas to interact with

AR content.

In the previous chapter, it was found that participants were more immersed

in the AR world when they were collecting chickens that were close to them

however, when they had to navigate through the space they shifted their atten-

tion to the non-AR world (which tended to happen in larger areas). Since a

high number of chickens leads to a higher density of chickens within the space,

players are more focused within the AR world with fewer attention shifts to the

non-AR world. This could be another reason for higher immersion scores for

the conditions with the high number of chickens, fewer attention shifts would

allow for players to be more immersed within the game world.

5.6.2 Modelling Player Experience

Predictive models evaluated in the first experiment show that some dimensions

of player experience evaluated here can be used to create experience-based adap-

tive games. Similar to the previous chapter it is observed that the XGBoost

classifier performed the best for both 10-fold CV and LOSO-CV evaluation met-

rics. However, LOSO-CV scores across all dimensions showed a higher variance

which indicates that the predictive models show a high accuracy only for a few

participants.

The dimensions of interest/enjoyment showed low accuracy which is similar

to results observed for Valence from the previous chapter. While previous stud-

ies do not explore interest/enjoyment, it is similar to dimension Fun in the first

study and the dimensions of Positive Affect and Valence in the second study.

It was previously shown that these dimensions of experience were difficult to

model reliably based on movement and game-based data.

Autonomy and Immersion could be modelled with higher accuracy. However,
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in both cases, the logistic regression model does not generalise well to new

players which are observed by the LOSO-CV scores for each performing close to

random chance. For the LDA models, immersion does not generalise well (with

accuracy scores for LOSO-CV performing close to random chance), however,

autonomy shows a better performance with LOSO-CV scores performing higher

than random chance. In both cases, the SVM (which is a nonlinear classifier) and

the XGBoost (which is an ensemble classifier) performs well. This shows that for

Autonomy and Immersion dimensions simple linear classifiers are not sufficient

to create reliable predictive models. The previous study investigated modelling

immersion, in both studies, it is observed that the XGBoost model performs

the best and produces the most generalisable predictive models. However, the

linear classifiers (Logistic regression and LDA) perform better in the previous

chapter. This is possibly due to the larger dataset used.

Finally, predictive models for mastery performed well producing models that

generalise to unseen players (as indicated by the LOSO-CV scores for each of

the models evaluated). The results observed here are similar to results from the

competence models investigated in the previous study. It is interesting to note

that the models for mastery perform marginally better than models for compe-

tence despite the larger dataset used in the previous study. This could be the

case since the results for mastery from the PXI showed high reliability (shown

by the Cronbach’s α) as compared to the competence measured from the GEQ.

This shows that when using the ground truth transformation method proposed

in this research to convert Likert ratings to binary categorical variables, it is

important that that the ratings responses show high reliability. However, it is

unclear what is the ideal reliability of responses needed for the categorical trans-

formation of the data, future work must investigate this. Analysis of the feature

importance of the XGBoost mastery classifier showed that game features were

least important in predicting mastery as compared to movement and perfor-

mance features, this is particularly interesting as it suggests that with enough

data, mastery can be predicted irrespective of game parameters. This is an

important aspect in the development of general PX models that can be applied

across several MAR games. The results of the second experiment showed that

the XGBoost model for mastery generalises well to new players, however, the

model tended to be biassed towards predicting a high level of mastery. This

is meant that the model was good at predicting true positives cases (where

participants felt high mastery and the model predicted the same) however, it

tended to falsely classify participants who felt low mastery as feeling masterful.

This has serious implications for experience-based adaptation since incorrectly

increasing the difficulty for players who do not feel competent in a level could

further overwhelm them.
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5.6.3 Mastery-based Dynamic Difficult Adaptation

The effects of mastery-based adaption was explored in the second study of this

chapter. The adaptive mechanic ensured that a player’s experience was per-

sonalised based on their mastery while playing the game. The results indicated

that players feel more masterful when this adaptation is applied which was con-

firmed by both qualitative and quantitative data. It was also interesting to

observe that players found the game aesthetics more appealing in the adaptive

condition (as indicated from the audiovisual appeal scores). However, this ef-

fect was only approaching significance. It is possible that when players feel more

masterful in the game, they are more receptive to game aesthetics as they are

less overwhelmed by game objectives. This potential of using difficulty adaption

to influence the aesthetic appreciation of the game must be further investigated

in future work.

The results confirmed the hypothesis that mastery-based game adaptation

leads to players feeling a high sense of competence in the game. However, an-

other hypothesis that this game adaptation would lead to players being more

engaged or immersed in the game could not be validated since the statistical

analysis of immersion scores was not significant. Additionally, the extent to

which players enjoyed the adaptive game was dependant on their self-efficacy

towards physical activity. For players with low self-efficacy named Reward Seek-

ers the adaptation mechanics worked as expected. The difficulty of the adaptive

game was adjusted depending on their predicted mastery, this ensured that their

sense of confidence during gameplay was maintained. This group of players do

not tend to engage in physical activity and were overwhelmed in more difficult

game levels. Linear difficulty progression tended to have a negative impact on

game enjoyment for this group and it was important for them to experience low

difficulty levels after facing difficult levels. This group of people were highly

influenced by the score at the end of the level, they felt their performance in

the adaptive game were much better than the non-adaptive one.

People with high self-efficacy to physical activity named Challenge Seekers

did not respond as intended to the mastery-based game adaptation. This group

was less influenced by the game score. They were motivated to push themselves

to higher levels of physical exertion through gameplay. They interpreted the

difficulty adaptation as the game pandering to them. When presented with an

easy level after a more challenging one, they felt it was a result of their failure in

the previous level. This group was more interested in personal improvement in

difficult levels of the game. This shows that for this group of players the existing

rules for game adaptation cannot be used to improve game engagement. For

these players, it would be better to maintain game difficulty if low mastery was
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predicted giving them the chance to improve their performance. Reducing the

game’s difficulty should only be considered if repeated plays of the same level

resulting in low mastery being predicted by the classifier. The optimal rules for

game adaptation for Challenge Seekers is an open research question that must

be investigated in future work.

Finally, when considering these player types that have been observed in this

study, it is important to note that players need not be only Challenge seekers

and not Reward seekers (or vice-versa). In reality, a specific player can be a

mix of both these player types, or they can oscillate between these two player

types depending on their motivations for play or situational and environmental

context.

This experiment shows that for exergames it is essential for adaptive systems

to consider peoples preference for physical activity and their motivations for

game-play. For real-time game adaptation, this is an important factor to be

considered. It would be useful for these systems if predictive models could use

player behaviour data from gameplay to automatically classify the player type

(Challenge vs. Reward Seekers). This would allow for different adaptation rules

to be applied that can better engage that player type.

5.6.4 Limitations of the Study

The most notable limitation of both experiments in this chapter was the limited

sample of participants in each study. The sample comprised of mainly university

students which makes the results difficult to generalise to other demographics

of players.

Another limitation is that the sample of participants has a limited experience

with mobile AR games. Since this genre of games is not yet a well-established

type of consumer games, the PX impact of the AR game mechanics tested in

this research could change as players become more familiar with this medium

of gameplay. This increased familiarity could also have an impact on their in-

game behaviour (or the way players move in the game). Since this behaviour

data is the main input for the predictive models of player experience, it is un-

clear to what extent model performance could change. Future work can take

two potential approaches to overcome this limitation. Either, participants can

be pre-screened to ensure that there is a good balance of experienced vs non-

experienced players in the sample with respect to AR games, this approach

would have the advantage of being able to investigate the difference between

these two categories of players. The second approach could use longitudinal

studies where the participant sample would play the game across several ses-

sions, this approach would help investigate how these game mechanics can mo-

171



tivate players as they get more familiar with the game.

Another limitation of this study is that participants’ existing level of physi-

cal fitness could be a confounding variable. Since player motivations for a game

that promotes physical exertion are dependant on their levels of physical fitness.

This aspect of motivation is of interest to exergame research and is referred to

as the idea of self-efficacy [126]. Self-efficacy can be understood as a person’s

belief in their ability to succeed in a particular situation [15]. The impact of

players’ different levels of physical fitness and self-efficacy towards physical ex-

ertion in mobile AR exergames should be investigated to find out how different

game mechanics can impact experiential outcomes and motivations to play for

different types of people. This would be beneficial for the design of personalised

exergame experiences for these different types of players. While the qualita-

tive analysis of data from the second study showed that a players self-efficacy

towards physical activity was an important factor that mediated their enjoy-

ment in adaptive AR exergames, it is unclear how this difference in self-efficacy

would impact the statistical analysis conducted to understand game parameters

impact on player experience (in experiment 1) and for experience-based game

adaptation (in experiment 2).

The predictive models created in the first experiment are evaluated using 10-

fold CV and LOSO-CV from the dataset collected in experiment 1. It is unclear

how these models will generalise to unseen players. The second experiment

addresses this limitation (to some extent) by evaluating the mastery model

with new players. However, since the sample consisted of university students

in both experiments it is unclear how these models will perform with a more

generalised sample of participants.

The second experiment validated the mastery model for experience-based

difficulty adaptation. However, the adaptive system was simple as it considered

only 4 game levels. It is unclear to what extent this mastery-based adaption

would perform when applied to a complex game design space.

Finally, it is worth considering the limitations of conducting this research

work during the COVID-19 pandemic which had implications on both of the

experiments reported in this chapter. In the first experiment, data collection

had to be stopped after 25 participants which fell short of the intended goal

of 40 participants. The second study had to be conducted remotely which had

implications on the data collected. It was noticed that some participants did

not take sufficient breaks across the experiment (as they were instructed) which

increased their physical fatigue. This physical fatigue had severe implications

on the PX data since these players had more energy in the first session of the

study. Having a researcher present would have ensured more consistency in the

experience of the second study across all participants.
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5.7 Chapter Summary

The 2 experiments conducted in this chapter builds on the previous study to in-

vestigate approaches to player experience modelling for dynamic difficulty adap-

tion in mobile AR exergames. The first experiment explored modelling player

motivations within AR exergames as well as exploring the relationship between

AR exergames and dimensions of player motivations. The results observed are

used for the creation of personalised adaptive AR exergames that use player

models created to maximise a player’s motivations as they play the game. The

results show that mastery is an important dimension of player motivations since

it can be predicted through player models and these models generalise well to

new players. Another important finding from the experiment is that exergame

parameters of the Running Chickens game such as the number of chickens and

the evasion mechanic are important features for adaptation as they can influ-

ence the levels of mastery and immersion player experience within a game. The

second experiment investigated the application of the mastery model for dy-

namic difficulty adaptation. The experiment found that the mastery adaption

improved people’s sense of mastery in the game and the adaptive game’s audio

and visuals were more appealing for players. However, the adaptation was en-

joyable and rewarding for players with a low sense of self-efficacy for physical

activity. Players with a high sense of self-efficacy for physical activity found

the adaptation frustrating as they disliked the game getting easier. In the sec-

ond study, it is observed that mastery-based adaptation can perform well and

generalise to new players however, it is clear that different player types require

different adaption techniques respectively. The current adaptation system pro-

posed in this chapter is ideal for people who do not engage in physical activity

as it keeps them feeling confident while playing the game.
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Chapter 6

Discussion and Conclusions

This last chapter summarises the main findings and contributions made in this

thesis. The chapter is structured as follows: section 6.1 summarises the main

findings across the four experiments conducted in this research work, putting

the main findings in context with previous relevant research. Section 6.2 sum-

marises the main contributions of this research work. Section 6.3 details the

main limitations of the studies described in this thesis. Section 6.4 proposes

directions of future research work. Finally, section 6.5 concludes with some re-

flections and lessons learned while researching player experience modelling in

mobile AR games.

6.1 Discussion and Implications

This thesis aimed to address three research questions:

RQ1: To what extent can player movement and game metric data be used to

predict PX in mobile AR games?

RQ2: What is the impact of commonly used AR exergame parameters on PX?

RQ3: Can these predictive models of PX be used for dynamic difficulty adap-

tation in mobile games to improve PX?

These research questions were addressed across the four experiments re-

ported in this thesis. First, RQ1 was investigated using two mobile AR games:

AR Treasure Hunt which is an exploration-based game, and Running Chickens

which is an exertion game. This RQ was addressed in the first three experiments

(chapters 3, 4 and 5), which collected PX and corresponding player movement

and game metric data to build and evaluate supervised learning models that pre-

dict several dimensions of PX. Second, RQ2 was investigated using the Running
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Chickens exergame across two studies (chapters 4, 5), using both quantitative

and qualitative methods. In these studies, statistical tests were conducted to

evaluate the effects of the game area, the number of rewards and evasiveness of

the chickens (independent variables) on player experience (dependent variable).

Additionally, qualitative data from player interviews (conducted as part of one

of the studies reported in chapter 4) further contributed to this investigation.

Finally, RQ3 was addressed in the final study reported in this thesis (chapter

5), where the mastery model built in the previous experiment was used to de-

velop an adaptive version of the Running Chickens game. The model is used to

adjust the difficulty of the game to ensure that players are not overwhelmed by

the game difficulty using the principles of Flow theory [44, 46, 208, 209, 43, 36].

This adaptive game was evaluated against a non-adaptive version of Running

Chickens using both qualitative and quantitative approaches. Statistical analy-

sis was conducted to evaluate mastery-driven game adaption (independent vari-

able) effects on PX (dependent variable). At the same time, qualitative analysis

of interviews was used to understand the experiential differences between the

adaptive and non-adaptive versions for players.

The rest of this section discusses the main findings of the research, which

has been grouped into the following topics: 1) Player Experience Modelling in

mobile AR games, 2) Impact of Exergame parameters on Player Experience,

and 3) Experience-driven Dynamic Difficulty Adaptation in Mobile AR games.

These topics closely map to the three research questions investigated in this

thesis and are discussed in the subsections below.

6.1.1 Player Experience Modelling in mobile AR games

During the first three studies reported in this thesis, player movement and game

metrics data was used to predict several dimensions of player experience. The

first study took a preference learning approach which aimed to model a number

of emotion preferences: Fun, Excitement, Boredom, Challenge and Frustration.

Player experience modelling was formulated as a preference learning problem

where given data from two games; the model would predict which game the

player felt the specific emotion more, e.g., Did the player find the first game

more fun than the second game? or vice-versa. Results from the study indicated

the Challenge and Frustration could be modelled to a high degree of accuracy

while Fun, Boredom and Excitement were more difficult to predict reliably.

These results are similar to findings from [167], who investigated predicting

these emotion preferences in the Super Mario game. Interestingly, this pattern of

challenge and frustration experiences being more predictable exists across both

traditional (non-AR) games and movement-based mobile AR games. Given the

175



difference in interactions and immersive nature of MAR games compared to non-

AR games, it was expected that the emotion dimensions for player preference

investigated in the first experiment would result in different dimensions being

more predictable. However, it was found that similar patterns emerge as to

findings from preference modelling in non-AR games, which is likely due to the

experimental method selected. This method was selected following advice from

researchers in affective computing [135, 238] who argue for the use of ranking

based measures over rating based measures. Martinez and Yannakakis [135]

suggest that due to the subjectivity and non-linear nature of ratings based

measures makes the treatment of ratings as real value numbers fundamentally

flawed. However, it is worth noting that while this is a strong case to use

ranking approaches for research in affective computing, the emotion ranking-

based measures have several limitations when applied to the domain of PX.

For instance, a possible explanation for the high predictability of challenge and

frustration is that when players were asked to evaluate a game task, they often

find it difficult to disassociate game challenge and frustration. This overlap

between emotion dimensions of preference has disadvantages for applications of

these player models for game adaptation since it would be impossible to create

a challenging but not frustrating game. As discussed in chapter 3, people are

different in their ability ‘to represent their experiences as categorically distinct

events’ [17] and this ability is influenced by context and language abilities. This

highlights the difficulty in defining emotions in social communication, which has

further implications for PX models that rely on a participant’s understanding

of these emotion definitions for ground truth. Thus this thesis advises other

researchers to consider using traditional ratings-based approaches to establish

ground truth for PX models.

For this reason, the next two experiments used theories developed by HCI

researchers to understand PX. Instead of using constructs based on emotions,

PX is often investigated using experiential constructs such as game competence,

immersion, flow. However, these PX constructs are conventionally measured us-

ing ratings based questionnaires that have been developed and validated using

exploratory and confirmatory factor analysis. The ratings are not treated as real

values to overcome the disadvantage of applying ratings-based measures for pre-

dictive modelling. Instead, they are transformed into categorical variables. This

approach is similar to [139] and [65]. In [139] the authors transformed ratings

based measures into rank-based measures; however, their approach was devel-

oped to make comparisons between two different players, not different games

played by the same person (which is the problem domain investigated in this

thesis). In [65] the author transforms ratings-based measured into categorical

variables to predict experiential differences of the same player across different
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levels of a game. However, they note that this transformation does not account

for inter-player subjectivity when using the rating scale. For this reason, this

research work proposed a new system of numerical transformation of rating

measures that used the median statistic of each player to transform ratings into

categorical variables, which were then modelled as a classification problem. This

transformation technique was applied in the second and third experiments of

this thesis, and the results from the leave-one-subject-out evaluation scores show

that models built using this data can be generalised to new players. However,

formal comparative evaluations of this transformation technique versus previous

ones have not been conducted and must be addressed in future work. Finally,

it is worth noting that the chosen questionnaire must be comprehensively vali-

dated for PX analysis. The need for questionnaire validation was observed and

discussed in chapter 4 where the internal inconsistencies of the GEQ’s structure

negatively impacted model performance in that study.

Experiment 2 (chapter 4) aimed to model the player experience dimensions

from the affective slider [22] and the GEQ [86]. The affective slider measures

affect dimensions of arousal and valence, while the GEQ is made up of several

dimensions relevant to PX: Competence, Sensory and Imaginative Immersion,

Flow, Tension, Challenge, Negative Affect and Positive Affect. Results show

that all these experiential dimensions can be predicted better than random

chance levels. The predictive models of Competence, Challenge and Tension

were the best performing models, while models for valence, positive affect and

negative affect perform poorly.

Competence, Challenge and Tension, while being different experiences, are

similar in that they depend on the player’s response to game difficulty. These re-

sults are further validated by observations from the first study where frustration

and challenge (the best performing models) are also related to game difficulty.

This hypothesis is further validated in experiment 3 (chapter 6), which aimed

to model 4 dimensions of PX: Interest/Enjoyment, Immersion, Mastery and

Autonomy. This study showed that mastery was the best performing model,

while Interest/Enjoyment and Autonomy performed poorly. This study further

confirms that experiences associated with game difficulty can be predicted using

player movement and game metrics data in mobile AR games.

Comparing results across the first three experiments conducted indicate that

experiences related to a player’s perceived skills in the game can be predicted

to a reliable extent. For example, experiences such as mastery and (high) com-

petence usually indicate that the player perceives themselves as highly skilled

in the game task. While experiences such as tension, frustration and (high)

challenge usually indicate that the player perceived themselves as lacking skill

for the game task. These findings are particularly relevant for applications in
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game adaptation since these models can be used to put the player in a state of

flow. Since one of the core requirements for flow is an optimal balance between

task difficulty and skill. Reliably predicting a player’s perceived skill from a

game level allows the game system to tune difficulty to reach this optimal bal-

ance between player skill and game difficulty. This will ensure that players have

an engaging experience without getting overwhelmed (or underwhelmed) by the

game experience.

It is worth noting that this approach to game adaptation is potentially ad-

vantageous compared to performance-based adaptation since performance met-

rics such as game score are objective measures that do not account for player

subjectivity. For instance, two different players with the same game score from

a specific level may have very different perceptions of the game’s difficulty or

their skill at that level, so they will require different game adaptation steps to

put them in a flow state. This approach is tested in the final experiment (chap-

ter 6), which uses the mastery model developed in the previous experiment, the

results of which are discussed in the final subsection of the section.

6.1.2 Impact of Exergame parameters on Player Experi-

ence

While several mobile AR exergames have been investigated in previous research

[112, 119], these activities have been mainly case studies that validate these

exergames with players. It is observed that these games use similar game pa-

rameters, which were: game area and the number of rewards in a level. Each

of these game parameters can be varied to create a spectrum of player experi-

ences across different levels of these games. While these research activities show

the potential benefit of exergames, they do not provide information on how

varying these game parameters will impact PX. This information is especially

relevant to game designers working on similar games and designing adaptation

systems. This research work addressed this gap in Experiments 2 (chapter 3)

and 3 (chapter 4), which used the Running Chickens game where these game

parameters were used to generate different game levels. Each of these experi-

ments had players evaluating their experience across various game levels (with

different settings of these game parameters) using ratings based questionnaires

and qualitative interviews.

Experiment 2 found that game area had an impact on a player’s experience

of Tension and Challenge. Increasing the game area results in an increase in

tension and challenge scores. At the same time, the number of game rewards

impacted a player’s experience of Valence, Competence, Flow, Tension, Chal-

lenge, and Positive Affect. Increasing the number of game rewards in a level
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was generally associated with positive experiences such as Valence and Flow.

However, a large number of game rewards also results in an increased perceived

challenge and tension due to the physical exertion required to obtain these re-

wards. Qualitative analysis of player interviews shows that PX was largely me-

diated by their preferences around each of the game parameter settings, which

were in turn mediated by their self-efficacy towards physical activity. Players

with a high self-efficacy towards physical activity preferred larger game areas as

they enjoyed the increased physical exertion required to engage in these types

of levels. In contrast, players with a low self-efficacy towards physical activity

preferred smaller game areas and had a mixed response about their preference

towards the number of game rewards. A portion of this group reported enjoying

a high number of rewards in smaller levels and a low number of rewards in larger

levels. This indicates that although this group does not enjoy physical activity,

they are still motivated by the rewards of the game. They feel rewarded when

they physically exerted themselves to obtain game rewards; however, they can

get easily overwhelmed if the amount of physical exertion required to play the

game becomes too high (which is the case when the game area is large and there

are a high number of rewards). These observations were further validated in ex-

periment 3 (chapter 5), which found that game area impacts a player’s sense

of mastery, where increasing the game area reduced a player’s sense of mastery

in the game level. The number of game rewards impacted a player’s sense of

mastery and immersion in the game. Increasing the number of game rewards

resulted in a higher sense of immersion and decreased perceived mastery.

These experiments show that exergame designers must consider their play-

ers’ attitudes, motivations and self-efficacy towards physical activity. People

who enjoy physical activity will enjoy challenging levels with a large game area

and a high number of rewards. While people who do not engage in physical

activity prefer easier levels, it is worth noting that this group reported enjoying

the game despite needing to physically exert themselves. However, they were

motivated by the game’s reward system. These results are similar to results from

Mcvean and Robertson [126] who investigate mobile exergames motivations and

behaviour in school children. While the authors explored location-based games

not in AR, it is interesting to observe the similarity in-game motivations be-

tween players. Additionally, the number of rewards in game levels is an im-

portant mediator of player immersion and perceived competence in the game.

While increasing the number of rewards tends to get players more engaged in

the game, if the player has a low self-efficacy to physical activity or if they are

reaching exhaustion (from the physical exertion), it could have a negative re-

sult by overwhelming players resulting in experiences of frustration or tension.

However, the number of rewards can be varied across levels to ensure that the

179



player does not get overwhelmed during the game. Increases in the game area

parameter generally tended to increase experiences of challenge, tension and

decreases in perceived competence. However, this is an important game param-

eter for controlling the amount of physical exertion required to play the game.

For mobile AR exergames to result in positive fitness outcomes for players, the

game area parameter must be increased over time, so players gradually increase

their physical activity over longitudinal game-play. It is advisable to make

small gradual increases to this parameter over time to not overwhelm players.

Qualitative results suggest that for players with high self-efficacy for physical

activity, this gradual increase in the game area can be faster than players with

low self-efficacy towards physical activity. Exergame adaptation techniques that

successfully increase physical activity are important for future work that will

further benefit designers.

Finally, in addition to the mobile AR game parameters discussed above,

this research work investigated a novel parameter referred to as the evasion

mechanic, the speed at which game collectables could evade capture. This is an

important feature of target acquisition games, such as Running Chickens. The

mechanic was found to have a highly immersive and enjoyable effect on players

despite their self-efficacy towards physical activity. This could be mainly due

to the novelty of the mobile AR platform. It is worth noting that players who

volunteered in the studies found the game objective of capturing chickens that

run away from them unique and pleasurable. However, it is unclear how this

mechanic can engage with players over time once novelty effects have depleted.

From the results observed in this research, it can be concluded that in mobile

AR exergames, mechanics that increase the level of presence and immersion a

player experiences can motivate them towards high levels of physical exertion

in short-term play sessions.

6.1.3 Experience-driven Dynamic Difficulty Adaptation in

Mobile AR games

From the discussion in subsection 6.1.1, it can be concluded that PX models

built using supervised learning algorithms can be used to predict experiential

constructs related to a player’s perceived skill in the game to a reliable extent.

Given this conclusion, this subsection reflects on findings from experiment 4

(chapter 5), which evaluates the use of these PX models for DDA in mobile AR

games. The mastery model developed was applied to a game adaptation engine

that personalised the experience for individuals.

Research into player motivations in games has shown that a player’s sense of

mastery or competence is an important factor to keep players motivated to play
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the game[181, 188]. While this previous work has primarily focused on non-AR

games, this research extends these findings to MAR games. The results from the

statistical analysis of mastery-based game adaption demonstrated that the play-

ers in the adaptive game felt a higher sense of mastery for the adaptive version

and tended to find audiovisual aesthetics in the adaptive game more appealing.

These results suggest that players feel more confident in the adaptive game and

do not feel overwhelmed by the game environment, reducing the cognitive load

on players and allowing them a higher sense of aesthetic appreciation of the

game. These findings are important since they show that mastery-based game

adaption can ensure that players feel competent.

This research work investigated a simple adaptation system that is built

based on Flow theory[44, 46, 208, 209, 43, 36], where the mastery prediction

is used to adjust the difficulty of the game in such a way that difficulty is

increased if the player feels a high sense of mastery and decreased if the predicted

mastery is low. This mechanic aims to keep players in a flow channel, which

previous research suggests should be more immersive for players. However, these

findings could not be validated since the statistical analysis conducted did not

show any differences in immersion scores across the adaptive and non-adaptive

versions of the game. This can be explained by the qualitative insights from

player interviews which revealed two different player types: Challenge Seekers

and Reward Seekers. Challenge Seekers had high self-efficacy toward physical

activity and perceived themselves as being physically active. In comparison,

Reward Seekers had a low sense of self-efficacy for physical activity and generally

tended to perceive themselves as unskilled in physical activity. These two diverse

types of players had different experiential responses to the adaption system. For

the Reward Seeker group, the adaptation system seems to work as desired. They

reported finding the adaptive game more enjoyable and engaging than the non-

adaptive version (which tended to result in an overwhelming experience). While

Challenge Seekers, did not find the game adaptation enjoyable. This group was

more focused on increasing their physical exertion through game-play; thus, they

found decreases in difficulty frustrating. They attributed the game reducing

difficulty (usually after a challenging level) to their inability to perform well at

the game level. These results show that this adaption system based on Flow

theory can engage players who are not physically active. Adaptive mobile AR

exergames can engage these types of players in casual play, resulting in improved

physical benefits for this group. However, exergame adaptive mechanics for

physically active players by translating principles of Flow theory does not appear

to engage them in the same way as the other group. This is because peoples

perception of skill in exergames is related to their self-efficacy towards physical

activity. So people with a high-self efficacy will perceive themselves as being
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highly skilled in the game level, so decreases in difficulty will result in a negative

or frustrating experience for them.

6.2 Contributions

This work contributes towards the advancement of mobile AR games and shows

that these games can leverage several data streams such as sensor data and

game metrics to model player experience. Furthermore, this work investigates

movement data extracted from mobile IMU sensors and game data for real-

time player experience prediction and personalisation. This personalisation is

especially important for exergames that promote physical fitness. This PhD

thesis makes novel contributions to the existing literature in player modelling,

mobile AR exergames and Dynamic Difficulty Adaptation in games.

This research evaluates two commonly used AR exergame patterns: area of

the game level and the number of rewards (e.g., collectables). Experiment results

showed that game area positively impacted experiences of tension and challenge.

In general, when playing local AR games, players find navigating over large areas

challenging, leading to a negative experience if they are already overwhelmed

or do not generally engage in physical activities. This research showed that the

number of rewards positively impacts experiences of Arousal, Flow, Tension,

Challenge, Positive Affect and Immersion. In general, participants found a

high number of rewards motivating as it enabled them to get immersed in the

game world; however, if they are approaching fatigue or overwhelmed by the

game difficulty, this can have a negative experience on players. Finally, both

game patterns impact the amount players must navigate around a physical area

during gameplay. This research found that as players move around a space,

their attention switches between the AR world (through the mobile viewport)

and the non-AR world (using their peripheral vision). This attention switching

occurs to enable safe movement through the physical space during gameplay.

However, this attention switching can break a player’s immersion in the game.

This work proposes a novel methodology for Player Experience Prediction

in mobile AR games. The player experience prediction system measures the

player’s movement, game parameters (e.g., the settings of different game me-

chanics) and player performance to infer their player experience in the game.

Investigations of these modelling techniques suggest that experiences related to

competence or perceived mastery can be predicted to a high degree of reliability.

This research further contributes a novel adaptation engine that uses a

player’s predicted mastery in a game level to adjust the game’s difficulty. The

adaption system shows how player models can be used in real-time to provide

a personalised experience in MAR exertion games. User evaluations of this
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adaption system showed that this system is more beneficial for players who do

not usually engage in physical activity. However, this is not the case for phys-

ically active people, as they are motivated by self-improvement since they do

not respond positively to reductions in in-game difficulty.

6.3 Limitations

This section describes the main limitations of the research presented in this

thesis and recommendations to overcome them.

6.3.1 Challenges in game type and interactions

Player experience modelling in mobile AR games is highly dependent on be-

haviour cues from players. This research work uses player movement as a source

for player behaviour. It is important to note that different types of games and

interactions afforded by the experience will influence player movements within

the game. In this work, AR Treasure Hunt (exploration game) and Running

Chickens (exergame) cause players to move around their physical spaces in very

different ways despite using similar game parameters (area and number of re-

wards) to generate game levels. The experiment results suggest that the player

experience prediction pipeline does generalise to both these game types. How-

ever, genres of mobile AR games exist that involve minimal player movement,

a popular type of such games are referred to as AR table-top games. As the

name suggests, the game experience is usually overlaid onto a physical table in

the real world. The player would stand or sit around the table and use their

mobile devices as a magic window to the game. In this case, it is unclear to

what extent the modelling techniques introduced in this thesis will successfully

generalise to these table-top games. Future work must investigate the potential

of this player experience modelling pipeline on table-top games. Additionally,

this thesis does not explore location-based MAR games, where players usually

move between locations without using the mobile’s viewport until they arrive

at their desired destination. While modelling approaches used presented in this

thesis can be used to model PX during AR gameplay events (when the player

uses the device viewport to interact with the game), it does not account for

travelling between game event locations which would have a significant impact

on PX in location-based MAR games.

6.3.2 Challenges to user studies for AR games

This research work relied on conducting experiments with human participants

to collect PX and related behaviour data. Opportunity sampling was used to
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recruit participants for the studies. To investigate the impact of game parame-

ters on player experience, it is desirable to get a sample of participants of varied

experiences with mobile AR games. However, it was a common observation that

most participants found through opportunity sampling either do not have any

experience or have very limited (tried these types of games once or twice in the

past). This imbalance in the sample of participants has impacted the results of

these studies. It is worth considering that when using mixed reality interfaces,

there is a novelty effect that influences PX. The main influence of this novelty

effect is observed in the investigations around game parameters and immersion.

For instance, players found the evasion game mechanic in Running Chickens

highly immersive. It is unclear how PX will change as novelty effects reduce

over time and players get more familiar with gameplay and interactions. It is

possible that as novelty effects decrease, player behaviour will also change. This

will impact the predictive models of PX since it relies on this behaviour data.

There are two ways this limitation can be overcome in future work. First, a

pre-screening questionnaire can be used to ensure a study sample covers a uni-

form distribution of experienced and new players. Second, a longitudinal study

design that involves players logging their experience and behaviour over some

time (e.g., over several weeks) would allow for data collection as novelty effects

decrease. This second approach is particularly interesting as it can inform re-

searchers about how PX and behaviours change over time. This is particularly

important for the design of exertion games that require regular gameplay for

positive physical health outcomes.

Another limitation of this work is related to the investigation of exergames.

Findings from this work suggest that player experience in exergames largely

depends on people’s self-efficacy towards physical activity. Different levels of

self-efficacy towards physical activity influence the experiential impact of the

game parameters investigated and the impact of game adaptation on player

experience. However, the quantitative analysis conducted in this research work

does not consider self-efficacy as a control variable in the analysis. This is mainly

because inferences around player self-efficacy were made using qualitative data

from participants. Future work must consider self-efficacy in the quantitative

analysis of PX by gathering ratings-based measures about self-efficacy towards

physical activity from players. The Self-Efficacy for Physical Activity (SEPA)

scale [142] is an example of such a questionnaire that can be used in future work.

Finally, it is worth noting that the results observed and contributions made

across this research mainly apply to people with normative physical and mental

abilities. This does not include players with specific accessibility needs, such as

players with reduced motor abilities (due to ageing, physical injury or diseases)

or players with developmental challenges such as Autism Spectrum Disorder.
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Players with these types of special needs would potentially have different bodily

expressions in response to physical mobile AR experiences. Thus PX models

driven by mobile device movement need to be optimised for each of these player

types. This is a challenging problem since there isn’t a one-size-fits-all approach

to making these PX models accessible for non-normative players. Future work

must involve these groups of players to understand their bodily expression in

MAR games and improve the generalisability of PX models by using data col-

lected from such research activities. Interesting questions emerge here about

effective ways of making PX models more generalisable to all groups of players.

For instance, can a single model be trained for all player types (given enough

data), or would individual PX models for each player type be a more optimal

strategy? These research challenges must be addressed in order to make PX

models effective for sensitive player groups and for serious applications of MAR

games.

6.3.3 Challenges in PX prediction

An important limitation of this work is the use of subject-independent mod-

els used for player experience prediction. Parsons and Reinebold[163] discuss

that subject-independent methods are harder to create than subject-dependent

methods as they have to work for all subjects. This limitation is observed in ex-

periments 2 (chapter 3) and 3 (chapter 4), in which model accuracies were highly

varied between participants. Exploring subject-dependant models (trained on

data from a single participant) would overcome this limitation. However, it

is worth noting that this is an expensive solution as it would require a large

amount of data to be collected for each participant. An interesting alternative

would be to take a hybrid approach, where subject-independent models are used

for new players, and reinforcement techniques would be built into the system so

that models can be personalised over time for different players. Finally, models

created in this research work were built using limited data. The performance of

these models is expected to improve with larger training data sets.

Additionally, modelling experiences and emotions are especially challenging,

due to the difficulty in defining and measuring these experiential constructs.

While a simple way to overcome this issue would be to model objective aspects of

players i.e. their behaviour, this approach does not help game designers under-

stand the experiential impact of their design decisions. This research explored

the ranking of simple emotions, and traditional ratings-based questionnaires to

measure player experience - the specific advantages and disadvantages of each

have been discussed in section 6.1.1. Measuring and defining PX is an active

field of research, the modelling techniques introduced in this research would
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further benefit from advancements in our ability to reliably measure PX.

Finally, it is worth considering the particular challenges with creating player

models from movement data, since bodily expression is highly subjective. Ad-

ditionally, in a video game context, the player’s expression of their experience

through body movement is often very subtle making it hard for even a human

observer to be able to describe the player’s experience. While this research did

not use observational studies as a formal methodology, a researcher was present

for the first 3 experiments. Observations of participant behaviour confirm this

difficulty in recognising a player’s emotion-state during gameplay. This is fur-

ther confirmed by previous background research in this domain [193]. Based

on this research the author advises interested readers to consider using players’

self-reported measures of PX as compared to observer agreement for this do-

main. Additionally, the movement data measured from this type of gameplay

has limited information about PX, while this research has demonstrated that

experiences related to skill and mastery can be effectively modelled for predic-

tive purposes, more complex experiences such as happiness are more difficult to

model using this information medium.

6.3.4 Challenges to adaptation for AR exergames

Similar to the previous section, an important limitation of this work is that

the game adaptation system was designed in a subject independent approach.

Therefore, the adaptation rules do not take the inter-subject difference into

account. From the evaluation of the game adaption system conducted in exper-

iment 4 (chapter 5), it is clear that even a small opportunity sample consists of

2 types of players: Challenge seekers with high self-efficacy for physical activity

and Reward seekers with low efficacy for physical activity. The adaption rules

work well for Reward seekers who found mastery-based adaption enjoyable and

rewarding. However, this adaptation system had a negative effect on Challenge

seekers. Future work must address this limitation by exploring custom adap-

tion rules for each of these player types. This approach has implications for

the design of the adaption engine since it would be essential for the system to

automatically classify player types from behaviour and game-based data. While

this research work has identified two categories of player types in mobile AR

exergames, future studies must explore this problem space to discover an ap-

propriate player archetype and corresponding adaption principles in mobile AR

exergames.
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6.4 Future Work

This section outlines directions of future work following the findings in this the-

sis. The previous section outlined the limitations of the current work along with

suggestions to overcome them. Future work needs to address these limitations

to further increase the generalise-ability of the thesis findings.

It is also important to investigate more complex game design spaces. Across

the research work presented in this thesis, game parameters are considered as

discrete categorical variables; this results in relatively small game spaces as

compared to consumer games: AR treasure hunt comprised of 4 game levels

and Running Chickens comprised of 8 levels. When increasing the complexity

of these game spaces, game parameters can be treated as continuous variables

instead of categorical ones. Future work must investigate to what extent the

player modelling techniques developed can be used for continuous game param-

eter representations. In addition to this, using continuous game parameters

can extend the DDA system proposed in this work since difficulty adjustments

would need to optimise the continuous game parameters instead of increasing

or decreasing discretised difficulty levels.

In addition to this, future work must incorporate learning from physical

exercise training programs into the exergame design and adaptation strategy

to further improve the effectiveness of the exergame as a physical intervention.

One such popular program that yields itself well to the Running Chickens game

design is High-intensity Interval Training (HIIT). A HIIT program is generally

characterised by bursts of high-intensity physical activity followed by bursts

of rest intervals. However, there are no universal rules for optimal work and

rest intervals for HIIT training; these factors are usually dependent on the

individual’s fitness. Research in exercise and physiology has found that HIIT

programs can reduce cardiovascular risk factors [77, 35, 124]. Additionally,

repeated periods of exercise followed by periods of recovery may be a more

achievable and enjoyable alternative to high volume continuous exercise [124,

123]. Thus, the Running Chickens game can be extended to include principles

of HIIT, where the time a player spends running around collecting chickens and

time of rest between levels can be optimised for maximum physical improvement

outcomes. However, research into HIIT based exergames is still in its early days.

Nevertheless, early research shows that exergames that incorporate HIIT can

reduce the amount of perceived exertion and can improve enjoyment, flow and

motivation as compared to traditional HIIT training [132].

Additionally, the player modelling techniques investigated in this research

can be used to optimise the exertion and rest interval timings to best suit the

physical objectives of the player. While player mastery recognition can ensure
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that players feel confident while engaging with the exergame, it would be further

beneficial if mobile sensors can be used to detect player fatigue. Since HIIT

training requires participants to continue periods of exercise and rest until they

reach physical fatigue, it would be useful for exergame systems to detect player

fatigue in real-time so that the game experience can be tailored to players’ level

of fatigue. While some research exists in fatigue detection of drivers [78, 218],

and factory works [117], this problem has not been investigated within the

domain of mobile exergames.

Finally, this thesis has investigated player modelling applications in mobile

AR games; it is important to extend this work to HMD based AR games. Since

current AR HMDs have similar sensors to mobile devices, this thesis’s player

modelling pipeline can be applied to these environments. However, it is unclear

how differences in the movement data captured from HMDs (instead of mobiles)

will affect the findings of this research work. Additionally, player experiences

of immersion and flow will change for HMD based experiences. This thesis

found that it is difficult for players to navigate the physical environment due

to attention switching between the device view-port and their peripheral vision;

HMDs may improve player performance since the AR view-port is overlaid onto

the player players field of vision.

6.5 Closing Remarks

This thesis focuses on applications of player experience modelling for DDA in

mobile AR games, especially focusing on exergames aimed at making a posi-

tive impact on players’ physical health. This research finds that experiences

of player competence or mastery can be modelled to a reasonable degree of

reliability, and these models can be used to personalise mobile AR games expe-

riences using DDA techniques. Furthermore, this research work highlights the

importance of using mobile sensor data to measure player behaviour in these

types of games since this behaviour data can be used to get real-time feedback

on a player’s experience as they engage with the game. Finally, this research

involved the design and development of 2 mobile AR games. It is worth not-

ing that designing a video game experience is not a trivial task. It is a long

process that involves many professionals such as graphic designers, sound engi-

neers, developers and interaction designers. Due to the complexity of creating

a high-quality game, the researcher encourages collaboration between experts

to create a successful, engaging game. In the case of exergames, it is especially

important to involve fitness experts while designing the game and the adapta-

tion mechanics. Finally, it is worth considering the challenges in conducting

research that involves machine learning techniques that require large amounts
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of data. In these cases, the researcher must either rely on existing data-sets

or gather this data themselves - which is even more challenging for mobile AR

games research due to the challenges discussed. Due to these challenges, it is

important for strong collaborations between researchers and the game industry.
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Appendix A

Experiment-1 materiel

This appendix contains materials used for experiment-1 reported in chapter 3.

A.1 Ethics Approval

        Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Dr Laurissa Tokarchuk 
CS 302, Peter Landin Building 
School of Electronic Engineering  
& Computer Science 
Queen Mary University of London 
Mile End 
London         17th August 2018 
    

To Whom It May Concern: 

Re: QMREC1935 - Modelling Player Preferences in AR mobile games. 

I can confirm that Vivek Warriar has completed a Research Ethics Questionnaire 
with regard to the above research. 

The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

Yours faithfully  

 

Mr Jack Biddle – Research Approvals Advisor   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London
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A.2 Participant Information Sheet

Pro forma information sheet and consent form 
 

 
 
 

Information sheet 
 
 

User Driven Virtual Overlays: information for participants 

 

We would like to invite you to be part of this research project, if you would like to.  You 
should only agree to take part if you want to, it is entirely up to you. If you choose not to 
take part there won’t be any disadvantages for you and you will hear no more about it. 
[If appropriate: Choosing not to take part will not affect your access to treatment or 
services in any way]. 

Please read the following information carefully before you decide to take part; this will tell 
you why the research is being done and what you will be asked to do if you take part. 
Please ask if there is anything that is not clear or if you would like more information.  

If you decide to take part you will be asked to sign the attached form to say that you 
agree. 

You are still free to withdraw at any time and without giving a reason. 
 

This study explores Augmented Reality games exploring the interactions of a mixed 
reality treasure hunt game.The experiments will take from 60-90 min and you will be 
asked to play a number of rounds of the game and responding to a few experience 
related questionnaires. These games involve exploring a physical space and solving 
simple puzzles. Any personal data recorded about you will be kept anonymous. 

 

It is up to you to decide whether or not to take part. If you do decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form.  

 

If you have any questions or concerns about the manner in which the study was 
conducted please, in the first instance, contact the researcher responsible for the study. 
If this is unsuccessful, or not appropriate, please contact the Secretary at the Queen 
Mary Ethics of Research Committee, Room W104, Queen’s Building, Mile End Campus, 
Mile End Road, London or research-ethics@qmul.ac.uk. 
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Consent form 
 
Please complete this form after you have read the Information Sheet and/or listened to 

an explanation about the research. 
 

Title of Study: Experience Driven Procedural Content Generation for Exploration in 
Augmented Reality 
Queen Mary Ethics of Research Committee Ref: <REF> 
 

● Thank you for considering taking part in this research. The person organizing the 
research must explain the project to you before you agree to take part.  

● If you have any questions arising from the Information Sheet or explanation 
already given to you, please ask the researcher before you decide whether to join 
in. You will be given a copy of this Consent Form to keep and refer to at any time.  

● I understand that if I decide at any other time during the research that I no longer 
wish to participate in this project, I can notify the researchers involved and be 
withdrawn from it immediately.  

● I consent to the processing of my personal information for the purposes of this 
research study. I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection 
Act 1998.  

Participant’s Statement:  
I ___________________________________________ agree that the research 
project named above has been explained to me to my satisfaction and I agree to take 
part in the study. I have read both the notes written above and the Information Sheet 
about the project, and understand what the research study involves.  

Signed: Date:  

 
Investigator’s Statement:  
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer 
 

A.3 Participant Consent Form
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A.4 Pre-Study Questionnaire

Demographic Information 

1. Email: ______________________________________ 

2. Gender:(mark only one option) 
 [  ] Female 
 [  ] Male 
 [  ] Not Listed:_________________________________ 
 [  ] Prefer not to say 

3. Age: (mark only one option) 
 [  ]  18-24 
 [  ]  25-29 
 [  ]  30-34 
 [  ]  35-39 
 [  ]  40-44 
 [  ]  45-49 
 [  ]  50-54 
 [  ]  55-59 
 [  ]  60 and above 
 [  ]  Prefer not to say 

4. Have you player Augmented Reality games before? (mark only one option) 
 [  ]  Never 
 [  ]  I have played less than 3 AR games before 
 [  ]  I have played 3-6 AR games before 
 [  ]  I have played more than 6 AR games before 

5. How often do you play Augmented Reality games? (mark only one option) 
 [  ]  Never 
 [  ]  Once in the past 
 [  ]  A few times in the past 
 [  ]  A few times a month 
 [  ]  A few times a week 

6. Can you name a few Augmented Reality games you have played in the past? (if applicable)  

 ________________________________________________________________ 

 ________________________________________________________________ 
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A.5 Post-Session Questionnaire

01/08/2018, 12(46AR - Treasure Hunt

Page 1 of 4https://docs.google.com/forms/d/1p21dPDNN8mwBAIdU-59TL8fRUG6-NvAjqagmZkYVyH4/printform

AR - Treasure Hunt
Please fill up your participant information

1. Participant ID

2. Session ID

Fun

3. Please select 1 of the following options
Mark only one oval.

 Game 1 felt more FUN than Game 2

 Game 2 felt more FUN than Game 1

 Game 1 and Game 2 felt equally FUN

 Neither of the two games felt FUN

Please rate your level of agreement with the following statements

4. Game 1 felt FUN
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

5. Game 2 felt FUN
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Frustration
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01/08/2018, 12(46AR - Treasure Hunt

Page 2 of 4https://docs.google.com/forms/d/1p21dPDNN8mwBAIdU-59TL8fRUG6-NvAjqagmZkYVyH4/printform

6. Please select 1 of the following options
Mark only one oval.

 Game 1 felt more FRUSTRATING than Game 2

 Game 2 felt more FRUSTRATING than Game 1

 Game 1 and Game 2 felt equally FRUSTRATING

 Neither of the two games felt FRUSTRATING

Please rate your level of agreement with the following statements

7. Game 1 felt FRUSTRATING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

8. Game 2 felt FRUSTRATING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Excitement

9. Please select 1 of the following options
Mark only one oval.

 Game 1 was more EXCITING than Game 2

 Game 2 was more EXCITING than Game 1

 Game 1 and Game 2 were equally EXCITING

 Neither of the two games were EXCITING

Please rate your level of agreement with the following statements

10. Game 1 was EXCITING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree



01/08/2018, 12(46AR - Treasure Hunt

Page 3 of 4https://docs.google.com/forms/d/1p21dPDNN8mwBAIdU-59TL8fRUG6-NvAjqagmZkYVyH4/printform

11. Game 2 was EXCITING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Boredom

12. Please select 1 of the following options
Mark only one oval.

 Game 1 felt more BORING than Game 2

 Game 2 felt more BORING than Game 1

 Game 1 and Game 2 felt equally BORING

 Neither of the two games felt BORING

Please rate your level of agreement with the following statements

13. Game 1 felt BORING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

14. Game 2 felt BORING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Challenge

15. Please select 1 of the following options
Mark only one oval.

 Game 1 felt more CHALLENGING than Game 2

 Game 2 felt more CHALLENGING than Game 1

 Game 1 and Game 2 felt equally CHALLENGING

 Neither of the two games felt CHALLENGING



01/08/2018, 12(46AR - Treasure Hunt

Page 4 of 4https://docs.google.com/forms/d/1p21dPDNN8mwBAIdU-59TL8fRUG6-NvAjqagmZkYVyH4/printform

Powered by

Please rate your level of agreement with the following statements

16. Game 1 felt CHALLENGING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

17. Game 2 felt CHALLENGING
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree



Appendix B

Experiment-2 materiel

This appendix contains materials used for experiment-2 reported in chapter 4.

B.1 Ethics Approval

        Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: h.covill@qmul.ac.uk 

c/o Dr Laurissa Tokarchuk 
CS412 
Department of Computer Science 
Queen Mary University of London 
Mile End Road 
London         24th October 2019 
    
To Whom It May Concern: 

Re: QMREC2204 – Modelling Player Experience in Augmented Reality 
Mobile Games.  
  
I can confirm that Mr Vivek Warriar has completed a Research Ethics 
Questionnaire with regard to the above research. 

The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require the 
scrutiny of the full Research Ethics Committee. 

Yours faithfully  

 

Ms Hazel Covill – Research Ethics Facilitator   Patron: Her Majesty the Queen 
Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London
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B.2 Participant Information Sheet

Pro forma information sheet and consent form 

!  

Information sheet 

Modelling Player Experience in AR Mobile Games: information for participants 

We would like to invite you to be part of this research project, if you would like to.  You 
should only agree to take part if you want to, it is entirely up to you. If you choose not to 
take part there won’t be any disadvantages for you and you will hear no more about it.  

Please read the following information carefully before you decide to take part; this will tell 
you why the research is being done and what you will be asked to do if you take part. 
Please ask if there is anything that is not clear or if you would like more information.   

If you decide to take part you will be asked to sign the attached form to say that you 
agree. 

You are still free to withdraw at any time and without giving a reason. 

This study explores Augmented Reality games by investigating the interactions of a 
mixed reality target acquisition. The study will take up-to 60 min and you will be asked to 
play a number of rounds of the game and respond to a few experience related 
questionnaires. These games involve moving through a physical space and capturing 
creatures within a time limit. Any personal data recorded about you will be kept 
anonymous. It is up to you to decide whether or not to take part. If you do decide to take 
part you will be given this information sheet to keep and be asked to sign a consent 
form. 

It is up to you to decide whether or not to take part. If you do decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form.  

Please read Queen Mary’s privacy notice for research participants  for important 1

information about your personal data and your rights in this respect. 

If you have any questions or concerns about the manner in which the study was 
conducted please, in the first instance, contact Vivek Warriar (v.r.warriar@qmul.ac.uk). If.  
If this is unsuccessful, or not appropriate, please contact the Secretary at the Queen 
Mary Ethics of Research Committee, Room W104, Queens’ Building, Mile End Campus, 
Mile End Road, London, E1 4NS or research-ethics@qmul.ac.uk. If you have any 
questions relating to data protection, please contact Data Protection Officer, Queens’ 
Building, Mile End Road, London, E1 4NS or data-protection@qmul.ac.uk  

 This is found at: http://www.arcs.qmul.ac.uk/media/arcs/policyzone/Privacy-Notice-for-Research-1

Participants.pdf 
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!  

Consent form 

Please complete this form after you have read the Information Sheet and/or listened to 
an explanation about the research. 

Title of Study: Modelling Player Experience in AR Mobile Games 
Queen Mary Ethics of Research Committee Ref: __________________ 

Thank you for considering taking part in this research. The person organizing the 
research must explain the project to you before you agree to take part.  
If you have any questions arising from the Information Sheet or explanation already 
given to you, please ask the researcher before you decide whether to join in. You will be 
given a copy of this Consent Form to keep and refer to at any time. If you are willing to 
participate in this study, please circle the appropriate responses and sign and date the 
declaration underneath.  

Participant’s Signature:_________________________    Date: __________________ 

Investigator’s Statement:  
I ___________________________________________ confirm that I have carefully 
explained the nature, demands and any foreseeable risks (where applicable) of the 
proposed research to the volunteer and provided a copy of this form 

Statement Circle a response

I agree that the research project named above has 
been explained to me to my satisfaction in verbal 
and/or written form

YES     /     NO

I understand that if I decide at any other time during 
the research that I no longer wish to participate in 
this project, I can notify the researchers involved and 
be withdrawn from it immediately

YES     /     NO

I have read both the notes written above and the 
Information Sheet about the project, and understand 
what the research study involves

YES     /     NO

I agree to take part in the study, which will include 
use of my personal data

YES     /     NO

B.3 Participant Consent Form
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B.4 Pre-Study Questionnaire

The same pre-study questionnaire as the previous study (A.4) was was used in

this study.

B.5 Post-Session Questionnaire

Affective Slider

Game Experience Questionnaire
Please rate the following statements according on a scale of 1-7

1. I was interested in the game’s objective

Strongly
Disagree

Neutral Strongly
Agree

2. I felt successful

Strongly
Disagree

Neutral Strongly
Agree

3. I felt bored
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Strongly
Disagree

Neutral Strongly
Agree

4. I found it impressive

Strongly
Disagree

Neutral Strongly
Agree

5. I forgot everything around me

Strongly
Disagree

Neutral Strongly
Agree

6. I felt frustrated

Strongly
Disagree

Neutral Strongly
Agree

7. I found it tiresome

Strongly
Disagree

Neutral Strongly
Agree

8. I felt irritable

Strongly
Disagree

Neutral Strongly
Agree

9. I felt skilful

Strongly
Disagree

Neutral Strongly
Agree



10. I felt completely absorbed

Strongly
Disagree

Neutral Strongly
Agree

11. I felt content

Strongly
Disagree

Neutral Strongly
Agree

12. I felt challenged

Strongly
Disagree

Neutral Strongly
Agree

13. I had to put a lot of effort into it

Strongly
Disagree

Neutral Strongly
Agree

14. I felt good

Strongly
Disagree

Neutral Strongly
Agree



Appendix C

Experiment-3 materiel

This appendix contains materials used for experiment-3 reported in chapter 5.

C.1 Ethics Approval

The same ethics approval as the previous study (B.1) was extended for this one.

C.2 Participant Information Sheet

The same participant information sheet as the previous study (B.2) was used

for this study.

C.3 Participant Consent Form

The same participant consent form as the previous study (B.3) was used for this

study.

C.4 Pre-Study Questionnaire

The same pre-study questionnaire as the first study (A.4) was was used in this

study.
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C.5 Post-Session Questionnaire

Post-Session Questionnaire
Please rate the following statements according on a scale of 1-7

1. This level was fun to play.

Strongly
Disagree

Neutral Strongly
Agree

2. I was no longer aware of my surroundings while I was playing this level.

Strongly
Disagree

Neutral Strongly
Agree

3. I thought this level was quite enjoyable.

Strongly
Disagree

Neutral Strongly
Agree

4. I was immersed in this level.

Strongly
Disagree

Neutral Strongly
Agree

5. I felt a sense of freedom about how I wanted to play this level.

Strongly
Disagree

Neutral Strongly
Agree

6. I thought this was a boring level.
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Strongly
Disagree

Neutral Strongly
Agree

7. I felt I was good at playing this level.

Strongly
Disagree

Neutral Strongly
Agree

8. I would describe this level as very interesting.

Strongly
Disagree

Neutral Strongly
Agree

9. I felt free to play this level in my own way.

Strongly
Disagree

Neutral Strongly
Agree

10. I enjoyed playing this level very much.

Strongly
Disagree

Neutral Strongly
Agree

11. I was fully focused on this level.

Strongly
Disagree

Neutral Strongly
Agree

12. I felt a sense of mastery playing this level.

Strongly
Disagree

Neutral Strongly
Agree

13. I felt like I had choices regarding how I wanted to play this level.



Strongly
Disagree

Neutral Strongly
Agree

14. While I was playing this level, I was thinking about how much I enjoyed it.

Strongly
Disagree

Neutral Strongly
Agree

15. I felt capable while playing the level.

Strongly
Disagree

Neutral Strongly
Agree



Appendix D

Experiment-4 materiel

This appendix contains materials used for experiment-4 reported in chapter 5.

D.1 Ethics Approval

          Queen Mary, University of London 
                  Room W117 
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Ethics of Research Committee 
                  Hazel Covill 
                  Research Ethics Facilitator 
                                                                                                                                 Tel: +44 (0) 20 7882 7915 
                 Email: research-ethics@qmul.ac.uk 

 
 
c/o Dr Laurissa Tokarchuk 

         School of Electronic Engineering and 
         Computer Science 

Queen Mary University of London 
Mile End Road 
London 
E1 4NS 
United Kingdom  

                        18 November 2020 
    

       To Whom It May Concern: 
 
Re: QMERC20.040 - Dynamic Difficulty Adaptation for Augmented Reality 
Mobile Games. 

 
I can confirm that Vivek Ramesh Warriar has completed a Research Ethics 
Application with regard to the above study. 

 
The result of which was the conclusion that the proposed work does not present 
any ethical concerns; is low risk; and thus does not require the scrutiny of the full 
Research Ethics Committee. 

 
 
Yours faithfully  
 
Mantalena Sotiriadou – Research Ethics Facilitator 
 
                                                                                   Patron: Her Majesty the Queen 

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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D.2 Participant Information Sheet

Insert DATE and VERSION NUMBER

 

Participant Information Sheet  

Study title 

Player Experience in Augmented Reality Reality Mobile Games 

Version number and date 

Version 0.1: 09.11.2020 

Researcher’s name 

Vivek Warriar supervised by Dr. Laurissa Tokarchuk 

Queen Mary Ethics of Research Committee reference number:  

[Insert reference number allocated to your study by the Research Ethics Facilitators] 

Invitation paragraph 

You are being invited to participate in a research study. Before you decide whether or not 
you wish to participate in this study, it is important for you to understand why the research is 
being done and what it will involve. Please take time to read the following information care-
fully and discuss it with others if you wish. Ask us questions if there is anything that is not 
clear or if you would like more information. 

What is the purpose of the study and what would taking part involve?  

The purpose of the study is evaluate the experience of playing 2 versions of an Augmented 
Reality Game. If you agree to take part in the study you will be asked to fill in a pre-study 
survey where you will select one (out of two) site where the study will take place. The re-

QMERC ParEcipant InformaEon Sheet template; Version 1.0 – 01 October 2020 
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Insert DATE and VERSION NUMBER

search sites are two parks where you will need to travel to in order to play these games. For 
your reference the sites selected are:  

1. Carlton Square and Gardens 
 Bethnal Green, London 
 This is a park behind the computer science building. Google maps:  
 hPps://goo.gl/maps/61QSDh8y9hW6WqZu6 

2. Russell Square Park 
 Bloomsbury, London WC1B 5BG 
 This is a park next to Russell Square Tube staEon. Google maps:  
 hPps://goo.gl/maps/74qku1YbhfyyejRD9 
  

As part of this study, you will be asked to play a research game titled “Running Chickens” in 
the park you have selected to travel to. In this game, you will use your mobile device to 
move around the park and capture augmented reality chickens. In each level you will be 
presented with a number of chickens, the goal of the game is to collect all the chickens in 
the level or as many as you can before the time limit of the level runs out. 

You will be sent 3 games (1 training game and 2 experiment games) to download onto your 
mobile device and the order in which you will need to play them. You will also be sent a tu-
torial video  on how to play the game. The game has been designed such that all game play 
is contained within the park boundaries. Do not leave the boundaries of the park to play this 
game. If it seems that you would need to leave the park to play the game, terminate the 
game immediately and contact the researcher. Once you arrive at the site, you should make 
your way to the approximate centre of the park. Where you will play the games. 

At this point please play the training game to familiarise yourself with how the game works. 
Once the training is done you will take a 5 min break. After this, you will play the first experi-
ment game for 10 levels, after which the game will present you with a post-session ques-
tionnaire where you will rate you experience playing the game across a number of factors of 
interest.  

After the first session is completed, you will take a 10 min break. You will then play the 
second experiment game for 10 levels. You will then be presented with a similar question-
naire while will evaluate your experience playing the second game.  

Once you have played both experiment games and filled in both questionnaires, please noti-
fy the researcher by email: v.r.warriar@qmul.ac.uk. 

The researcher will schedule a post-study call with you for a short post-experiment interview. 
You will then be debriefed and the study will be concluded. You will then be paid £15.00 in 
Amazon vouchers for your participation in the study. The study should take approximately 1 
hour to complete once you have arrived at the study site.  

Why am I being invited? 

You are being invited to participate in this research study because you are over the age of 
16 and have normal ability to walk/jog. 

You should not take part in this study if you are under the age of 16 and if you are not able to 
jog in an outdoor park.  
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Insert DATE and VERSION NUMBER

Do I have to take part?  

This participant information sheet has been written to help you decide if you would like to 
take part. It is up to you whether you wish to take part. If you do decide to take part you will 
be free to withdraw at any time without needing to provide a reason, and with no penalties or 
detrimental effects.  

What are the possible benefits of taking part? 

Taking part in the study will support this PhD research that aims to further our understanding 
of human experiences in movement-based Augmented reality games. The outcome of this 
study will help game designers make more engaging movement-based games which would 
lead to the promotion of physical activity.  

What are the possible disadvantages and risks of taking part?  

Keep in mind that this study involves moving around a park to play the games being evalu-
ated in the study. Please keep your health and safety is the highest priority and do not at-
tempt the study if it is raining or the ground is unsafe for mild jogging in the park. 

Expenses and payments 

Participants will be paid £15.00 in Amazon vouchers for their participation in the study.  

What information about me will you be collecting? 

Data about your age, gender and your previous experience previous experience playing 
Augmented reality mobile games. In addition, you experience playing each version of the 
game will be collected in the form of surveys. Finally, data about your performance in the 
game (eg: game score, gameplay time) will also be collected.  

How will my data be stored and who will have access to it?  

Your data will be stored in fully anonymised format in London, UK, and only the PhD re-
searcher Vivek Warriar will be able to access it. Your data information will be treated as 
strictly confidential and handled in accordance with the provisions of the Data Protection Act 
2018 and comply with the data processing and storage policies of Queen Mary University of 
London 

 Data Protection Policy 

 Information/Data Governance Policy – DG14 – Storage of information 
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Insert DATE and VERSION NUMBER

When and how will my data be destroyed? 

Your data will be saved electronically for 5 years after collection and erased through hard 
drive formatting. 

How will my data be used and shared?  

The results of this study will be part of the PhD thesis that is connected to this research pro-
ject. Results will be mentioned in a future conference or journal paper publication. All data is 
stored locally in an anonymised form and will not be accessible for or shared with  others.   

Research Data Access and Management Policy 

Under what legal basis are you collecting this information? 

Queen Mary University of London processes personal data for research purposes in accord-
ance with the lawful basis of ‘public task’. 

Please read Queen Mary’s privacy notice for research participants containing important in-
formation about your personal data and your rights in this respect. If you have any questions 
relating to data protection, please contact Queen Mary’s Data Protection Officer, Queens’ 
Building, Mile End Road, London, E1 4NS or data-protection@qmul.ac.uk or 020 7882 7596. 

What will happen if I want to withdraw from this study? 

You can withdraw from this study at any time without providing a reason. Withdrawing will 
have no disadvantage for you, and you will hear no more about this study. Your data will only 
be submitted if you complete the study. 

Your data will be saved entirely anonymised and is not possible to link the data to a particu-
lar person. For this reason, it is however not possible to delete the data entry of a specific 
person.   

What should I do if I have any concerns about this study?  

If you have any concerns about the manner in which the study was conducted, in the first 
instance, please contact the researcher(s) responsible for the study Dr. Laurissa Tokarchuk: 
laurissa.tokarchuk@qmul.ac.uk. If you have a complaint which you feel you cannot discuss with 
the researchers then you should contact the Research Ethics Facilitators by e-mail: re-
search-ethics@qmul.ac.uk. When contacting the Research Ethics Facilitators, please 

QMERC ParEcipant InformaEon Sheet template; Version 1.0 – 01 October 2020 



Insert DATE and VERSION NUMBER

provide details of the study title, description of the study and QMERC reference number 
(where possible), the researcher(s) involved, and details of the complaint you wish to make.  

Who can I contact if I have any questions about this study? 

Vivek Warriar 

v.r.warriar@qmul.ac.uk   

07852812239

QMERC ParEcipant InformaEon Sheet template; Version 1.0 – 01 October 2020 



D.3 Participant Consent Form

[Insert DATE and VERSION NUMBER]

 

Consent Form  

Title of Research Study: Player Experience in Augmented Reality Mobile Games  

Principal Investigator: Vivek Warriar supervised by Dr. Laurissa Tokarchuk 

Queen Mary Ethics of Research Committee Ref: [Insert the reference number allocated to 
your research ethics application by the Research Ethics Facilitator]. 

Thank you for your interest in this research.  
Should you wish to participate in the study, please consider the following statements. Before 
signing the consent form, you should initial all or any of the statements that you agree with. Your 
signature confirms that you are willing to participate in this research, however you are reminded 
that you are free to withdraw your participation at any time.   

  

Statement Please 
initial 
box

1. I confirm that I have read the Participant Information Sheet dated 9/11/2020 
version 0.1 for the above study; or it has been read to me. I have had the oppor-
tunity to consider the information, ask questions and have had these answered 
satisfactorily. 

2. I understand that my participation is voluntary and that I am free to stop taking 
part in the study at any time without giving any reason and without my rights being 
affected. 

3. I understand that my data will be accessed by the investigator

QMERC Consent Form template; Version 1.0: 01 October 2020
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[Insert DATE and VERSION NUMBER]

Participants should read Queen Mary’s privacy notice for research participants which contains 
important information about your personal data and your rights in this respect. If you have any 
questions relating to data protection, please contact Data Protection Officer, Queens’ Building, 
Mile End Road, London, E1 4NS or data-protection@qmul.ac.uk or 020 7882 7596. 

Agree button (consent form will be provided online) 

Principal Investigator (or Supervisor                Student Investigator (if applicable)         
for student projects)                       
                                                                        
Dr. Laurissa Tokarchuk                                          Vivek Warriar                                                                                                   

Laurissa.tokarchuk@qmul.ac.uk                    v.r.warriar@qmul.ac.uk               

                 07852812239                                                 

                                 

4. I understand that my data will be securely stored in London, UK and in accord-
ance with the data protection guidelines of the Queen Mary University of London 5 
years in a fully anonymised form.

5. I understand that collected data is completely anonymized and information that 
I have provided can therefore not be withdrawn after submission.

6. I agree to the post-experiment interview being audio recorded. 

7. I understand that the information collected about me will be used to support 
other research in the future, and it may be shared in anonymised form with other 
researchers.

8. I agree to take part in the above study.
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D.4 Pre-Study Questionnaire

Demographic Information 

1. Email: ______________________________________ 

2. Gender:(mark only one option) 
 [  ] Female 
 [  ] Male 
 [  ] Not Listed:_________________________________ 
 [  ] Prefer not to say 

3. Age: (mark only one option) 
 [  ]  18-24 
 [  ]  25-29 
 [  ]  30-34 
 [  ]  35-39 
 [  ]  40-44 
 [  ]  45-49 
 [  ]  50-54 
 [  ]  55-59 
 [  ]  60 and above 
 [  ]  Prefer not to say 

4. Have you player Augmented Reality games before? (mark only one option) 
 [  ]  Never 
 [  ]  I have played less than 3 AR games before 
 [  ]  I have played 3-6 AR games before 
 [  ]  I have played more than 6 AR games before 

5. How often do you play Augmented Reality games? (mark only one option) 
 [  ]  Never 
 [  ]  Once in the past 
 [  ]  A few times in the past 
 [  ]  A few times a month 
 [  ]  A few times a week 

6. Can you name a few Augmented Reality games you have played in the past? (if applicable)  

 ________________________________________________________________ 

 ________________________________________________________________ 

7. Please select which of the study site is the most convenient for you to travel to for this study:  
 [ ] Carlton Square and Gardens 
  Bethnal Green, London 
  This is a park behind the computer science building. Google maps:  
  h8ps://goo.gl/maps/61QSDh8y9hW6WqZu6 

 []  Russell Square Park 
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  Bloomsbury, London WC1B 5BG 
  This is a park next to Russell Square Tube staGon. Google maps:  
  h8ps://goo.gl/maps/74qku1YbhfyyejRD9 

  



D.5 Post-Game Questionnaire

Post-Game Questionnaire
Please rate the following statements according on a scale of 1-7

1. I felt I was good at playing this level.

Strongly
Disagree

Neutral Strongly
Agree

2. I felt a sense of mastery playing this level.

Strongly
Disagree

Neutral Strongly
Agree

3. I felt capable while playing the level.

Strongly
Disagree

Neutral Strongly
Agree
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D.6 Post-Session Questionnaire

Post session Questionnaire
Please rate the following statements according on a scale of 1-7

1. Playing the game was meaningful to me.

Strongly
Disagree

Neutral Strongly
Agree

2. The game felt relevant to me.

Strongly
Disagree

Neutral Strongly
Agree

3. Playing this game was valuable to me.

Strongly
Disagree

Neutral Strongly
Agree

4. I felt capable while playing the game.

Strongly
Disagree

Neutral Strongly
Agree

5. I felt I was good at playing this game.

Strongly
Disagree

Neutral Strongly
Agree

6. I felt a sense of mastery playing this game.

Strongly Neutral Strongly
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Disagree Agree

7. I was no longer aware of my surroundings while I was playing.

Strongly
Disagree

Neutral Strongly
Agree

8. I was immersed in the game.

Strongly
Disagree

Neutral Strongly
Agree

9. I was fully focused on the game.

Strongly
Disagree

Neutral Strongly
Agree

10. I felt a sense of freedom about how I wanted to play this game.

Strongly
Disagree

Neutral Strongly
Agree

11. I felt free to play the game in my own way.

Strongly
Disagree

Neutral Strongly
Agree

12. I felt like I had choices regarding how I wanted to play this game.

Strongly
Disagree

Neutral Strongly
Agree

13. I felt eager to discover how the game continued.



Strongly
Disagree

Neutral Strongly
Agree

14. I wanted to explore how the game evolved.

Strongly
Disagree

Neutral Strongly
Agree

15. I wanted to find out how the game progressed.

Strongly
Disagree

Neutral Strongly
Agree

16. I thought the game was easy to control.

Strongly
Disagree

Neutral Strongly
Agree

17. The actions to control the game were clear to me.

Strongly
Disagree

Neutral Strongly
Agree

18. It was easy to know how to perform actions in the game.

Strongly
Disagree

Neutral Strongly
Agree

19. The game was challenging but not too challenging.

Strongly
Disagree

Neutral Strongly
Agree



20. The game was not too easy and not too hard to play.

Strongly
Disagree

Neutral Strongly
Agree

21. The challenges in the game were at the right level of difficulty for me.

Strongly
Disagree

Neutral Strongly
Agree

22. The game gave clear feedback on my progress towards the goals.

Strongly
Disagree

Neutral Strongly
Agree

23. I could easily assess how I was performing in the game.

Strongly
Disagree

Neutral Strongly
Agree

24. The game informed me of my progress in the game.

Strongly
Disagree

Neutral Strongly
Agree

25. I enjoyed the way the game was styled.

Strongly
Disagree

Neutral Strongly
Agree

26. I liked the look and feel of the game.

Strongly
Disagree

Neutral Strongly
Agree



27. I appreciated the aesthetics of the game.

Strongly
Disagree

Neutral Strongly
Agree

28. The goals of the game were clear to me.

Strongly
Disagree

Neutral Strongly
Agree

29. I grasped the overall goal of the game.

Strongly
Disagree

Neutral Strongly
Agree

30. I understood the objectives of the game.

Strongly
Disagree

Neutral Strongly
Agree
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