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Abstract

There is plenty of evidence that humans disagree on the interpretation of many
tasks in Natural Language Processing (nlp) and Computer Vision (cv), from objective
tasks rooted in linguistics such as part-of-speech tagging to more subjective (observer-
dependent) tasks such as classifying an image or deciding whether a proposition fol-
lows from a certain premise. While most learning in Artificial Intelligence (ai) still relies
on the assumption that a single interpretation, captured by the gold label, exists for
each item, a growing research body in recent years has focused on learning methods
that do not rely on this assumption. Rather, they aim to learn ranges of truth amidst
disagreement. This PhD research makes a contribution to this field of study.

Firstly, we analytically review the evidence for disagreement on nlp and cv tasks,
focusing on tasks where substantial datasets with such information have been cre-
ated. As part of this review, we also discuss the most popular approaches to train-
ing models from datasets containing multiple judgments and group these methods
together according to their handling of disagreement. Secondly, we make three pro-
posals for learning with disagreement; soft-loss, multi-task learning from gold and
crowds, and automatic temperature-scaled soft-loss. Thirdly, we address one gap in
this field of study – the prevalence of hard metrics for model evaluation even when
the gold assumption is shown to be an idealization – by proposing several previously
existing metrics and novel soft metrics that do not make this assumption and ana-
lyzing the merits and assumptions of all the metrics, hard and soft. Finally, we carry
out a systematic investigation of the key proposals in learning with disagreement by
training them across several tasks, considering several ways to evaluate the resulting
models and assessing the conditions under which each approach is effective. This is
a key contribution of this research as research in learning with disagreement do not
often test proposals across tasks, compare proposals with a variety of approaches, or
evaluate using both soft metrics and hard metrics.

The results obtained suggest, first of all, that it is essential to reach a consensus
on how to evaluate models. This is because the relative performance of the various
training methods is critically affected by the chosen form of evaluation. Secondly,
we observed a strong dataset effect. With substantial datasets, providing many judg-
ments by high-quality coders for each item, training directly with soft labels achieved
better results than training from aggregated or even gold labels. This result holds for
both hard and soft evaluation. But when the above conditions do not hold, leveraging
both gold and soft labels generally achieved the best results in the hard evaluation.
All datasets and models employed in this paper are freely available as supplementary
materials.
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Chapter 1

Introduction

1.1 Motivation

Modern research in Cognitive Science and Artificial Intelligence (ai) is driven by the
availability of large datasets annotated with human judgments [Ide and Pustejovsky,
2017]. These data instances and their corresponding labels are not only used to train
and test computational models, but also to provide data-driven evidence of linguistic
phenomena, complementing a linguist’s intuition. In addition, they can be used to
compute statistics about the frequencies of certain phenomena [deMarneffe and Potts,
2017].

The simplest way to create an annotated dataset is to appoint a single expert, pro-
ficient at the task and motivated either by altruism or a financial incentive, to provide
the labels for all the data instances (or items). This person is often a project member
or a (trained) hired student. This approach, however, is only feasible for the small-
to-medium scale annotations that were the norm until ten years ago but not for the
much larger datasets required now. In addition, the quality of the data produced this
way is overly dependent on the level of expertise of this sole annotator and their skill-
fulness at annotation. Furthermore, the data is implicitly encoded with any bias the
annotator may have about the subject matter. To mitigate these limitations of sole
annotation, the approach adopted in most large-scale annotation projects is for sev-
eral experts to carry out the annotations. Typically, 2-3 annotations for each item are
provided by a few experts, and a final adjudication step is carried out to produce a
single label for each item called the gold label. This was the strategy used to anno-
tated the best known nlp corpora ontonotes [Pradhan et al., 2011, Hovy et al., 2006].
However, using experts is very expensive, prohibitively so for large-scale annotation
projects. Thus, a third alternative has gained increasing popularity: to source the
annotations from a “crowd” of people, typically (but not always) non-experts. This ap-
proach is called crowdsourcing [Snow et al., 2008, Poesio et al., 2017]. This crowd
can be recruited by offering small financial pay-outs (in which case the approach is
sometimes known as microtask crowdsourcing), or by redressing the task as a game
(so-called game-with-a-purpose) that people are willing to play for fun without being
coerced to do so [von Ahn and Dabbish, 2008]. Using crowdsourcing, the annotations
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can be collected faster and at the fraction of the cost that it takes to collect them from
an expert or a few experts.

Notwithstanding these differences, most annotation projects assume that a single
preferred interpretation (an objective truth) exists for each instance to be annotated;
and that where available, the gold label captures this objective truth. But research has
shown this gold assumption to be an idealization at best, both in natural language
processing and computer vision. Every large-scale annotation project frequently en-
counters cases on which humans disagree. In some cases, these disagreements are
due to misunderstandings or problems with the annotation interface. In other cases,
they are due to poorly specified annotation schemes, or a result of the difficulty of
the task, which causes annotators to stumble. In yet more cases, disagreements
arise because the interpretation is inherently ambiguous or unclear. For example, for
anaphoric / coreference annotation, Poesio et al. [2007] discussed justified sloppi-
ness in anaphoric reference, illustrated in example (1.1).

(1.1) 3.1 M: can we .. kindly hook up
3.2 : uh
3.3 : engine E2 to the boxcar at ..

Elmira
4.1 S: ok
5.1 M: +and+ send it to Corning
5.2 : as soon as possible please
6.1 S: okay

[2sec]
7.1 M: do let me know when it gets

there
8.1 S: okay it’ll /
8.2 : it should get there at 2 AM
9.1 M: great
9.2 : uh can you give the
9.3 : manager at Corning instructions

that
9.4 : as soon as it arrives
9.5 : it should be filled with

oranges
10.1 S: okay
10.2 : then we can get that filled

In this example, it is not clear whether the pronoun it in 5.1 (in blue) refers to the
engine E2 which has been hooked up to the boxcar at Elmira, to the boxcar itself, or
indeed whether that matters. It’s only at utterance 9.5 that we get evidence that it
probably referred to the boxcar at Elmira, since it is only boxcars that can be filled
with oranges. Evidence that subjects disagree on such cases was discussed, e.g., in
Poesio and Artstein [2005] and Poesio et al. [2006], and similar cases of disagreements
on anaphoric labels have been found in all large-scale anaphoric annotation projects
[Versley, 2008, Recasens et al., 2011, Pradhan et al., 2012].

Indeed, disagreements are frequent in all areas of nlp and in all large-scale anno-
tation projects. The nlp community has realized from the start that it makes no sense
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to consider gold labels/targets as objective truth in applications such as machine
translation, summarization, and natural language generation, where human creativ-
ity plays a role and has developed specialized training and evaluation methods for
such applications. Recently, the field has tackled classification tasks that involve la-
belling text according to inherently subjective judgments, such as sentiment analysis
[Kenyon-Dean et al., 2018] or offensive language detection [Basile, 2020]. It would be
clearly misguided to rely on gold labels for training or evaluation in such tasks, as do-
ing so would set one subjective interpretation over all alternatives. Disagreements in
interpretation have also been found in annotation projects, such as natural language
inference, that ask annotators to make complex judgements [Pavlick and Kwiatkowski,
2019]. But disagreements in interpretation are not limited to these complex cases;
in fact, they are commonly found even in annotation projects concerned with what
might have been thought of as objective and “simple” aspects of language, from part-
of-speech tagging [Plank et al., 2014b] to wordsenses [Passonneau et al., 2012] and
semantic role labelling [Dumitrache et al., 2019]: These aspects of language are what
this thesis focuses on.

In computer vision as well, the assumption that an objective true class exists for all
items to be classified has proven an idealization. In many widely used crowdsourced
datasets for computer vision, different coders assign equally plausible labels to the
same items. Consider for instance the task of object identification in images. Ex-
amples (a), (b), and (c) in Figure 1.1, discussed in [Rodrigues et al., 2017], are from
the LabelMe dataset [Russell et al., 2008]. Due to the overlap between the labels, the
judgments of coders are highly subjective. The gold label for (a) is ‘inside city’, and one
annotator chose that label as well, but two other annotators chose ‘tall building’. The
gold label for (b) is ‘street’, and again, this was produced by one of the annotators, but
two others chose ‘inside city’. The same is true for (c). For (d), none of the annotators
chose the gold, ’street’; all chose ’inside city’. Clearly, in all of these cases, annotator
labels can be considered acceptable even if they differ from the gold. In these and
similar cases, the gold label though treated like an objective truth is shown to be the
bias of the expert or an arbitrary choice among plausible alternatives.

(a) (b) (c) (d)

Figure 1.1: Examples from the LabelMe dataset [Russell et al., 2008]

Possibly the most widely adopted approach to dealing with disagreements in crowd-
sourced data is a source-filter model, i.e., persist in the assumption that there exists a
single objective truth that is merely obfuscated by the disagreements, and use an ag-
gregation method over the noisy annotations to find the true label, a latent parameter
[Dawid and Skene, 1979, Carpenter, 2008, Whitehill et al., 2009, Hovy et al., 2013,
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Passonneau and Carpenter, 2013]. Another approach, also based on the idealization
of gold labels is to filter away items with substantial disagreements; exclude them
from the training set or at the very least from the evaluation set [Beigman-Klebanov
and Beigman, 2009]). Some researchers though, have that disagreement is signal, not
noise to be filtered out or evened out by aggregation [Aroyo and Welty, 2015, Jamison
and Gurevych, 2015, Sharmanska et al., 2016, Plank et al., 2014a]–i.e., that disagree-
ments provide information that is useful for learning. And, various models have been
proposed to leverage all of the information provided by annotators, including informa-
tion about disagreements [Plank et al., 2014a, Aroyo and Welty, 2015, Jamison and
Gurevych, 2015, Sharmanska et al., 2016]; some models do not rely on gold labels at
all [Sheng et al., 2008, Sharmanska et al., 2016, Guan et al., 2018, Rodrigues and
Pereira, 2018, Firman et al., 2018, Peterson et al., 2019, Uma et al., 2020].

Most research in learning to classify from crowds involve proposing a novel method
for learning from crowds amidst disagreements. Usually, the proposed method is
targeted at a specific task (exemplified by a crowdsourced dataset) and shown to be
successful in learning that task from crowds – usually (1) the scope of the method is
limited to this dataset alone and the ability of the method to generalize across tasks
is not tested [Plank et al., 2014a, Albarqouni et al., 2016, Dumitrache et al., 2018a,
Pavlick and Kwiatkowski, 2019]; (2) often there is little investigation into how the suc-
cess of the method is impacted by the nature of the task and the levels and sources
of disagreement in the dataset [Rodrigues and Pereira, 2018]; and (3) in nearly all
the proposals, model success is measured using hard metrics like accuracy or f1 in
relation to gold labels. This PhD seeks to address these limitations. In addition to
proposing new ways of learning with disagreement, this work comprehensively sur-
veys the evidence for disagreements on judgments required from ai systems and the
range of approaches that have emerged in computational linguistics and in computer
vision. Beyond reviewing them, this research categorizes these methods based on
their approach to handling disagreement, and compares them with each other on
some of the key datasets providing evidence about disagreement. In this thesis, the
discussion is limited to datasets for tasks usually considered objective. The conditions
under which these methods are effective are assessed using not only hard evaluation
metrics, but soft evaluation metrics are proposed and used - this is a key contribution
of this work

1.2 Aim and Thesis Structure

Thus, the aim of this PhD is to study the evidence for disagreements on annotation
judgements and the range of approaches to learning from such disagreements that
have emerged in computer vision and computational linguistics systems, and, having
systematically and comprehensively undertaken such a study, develop state-of-the art
disagreement-aware models. Importantly, this work also proposes metrics for evalu-
ating these models without assuming a single correct label per item. To advance this
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aim, this PhD addresses several research questions:

• RQ1: What is the evidence for the presence of label uncertainty and ambiguity
in nlp and Computer Vision and is disagreement in crowd annotations evidence
of ambiguity? chapter 2 summarizes arguments and theories highlighting un-
certainty, vagueness and ambiguity in classification. It also summarizes the
analysis of crowd-annotated datasets carried out by several key researchers on
the incidence of disagreement and its relationship with uncertainty and ambi-
guity. This chapter also contains an overview of the methods for learning from
crowd annotations and groups them into approaches based on their philosophy
of noise, label uncertainty and ambiguity.

• RQ2: What is the most appropriate way of evaluating a model on datasets which
provide the whole range of crowd opinions, if we don’t assume that every item can
be interpreted in a single way? Chapter 3 contains a case for soft evaluation.
The metrics explored in this Chapter are used throughout this work, providing
insights to RQ2. Chapter 6 analyzes the results of the various evaluation metrics
across methods and datasets.

• RQ3: Can models trained using multiple annotations/interpretations, without as-
suming gold labels, achieve similar or better performance as methods that rely on
gold labels alone? Chapter 4 makes the case for a soft loss method of training
models using crowd labels. It provides further evidence to the findings of Peter-
son et al. [2019], that training using crowd labels can outperform training using
gold labels under certain conditions.

• RQ4: (a) Can information from crowd annotations be used in conjunction with gold
labels to build better models compared to learning from gold labels only? (b) In case
the answer to (a) is positive, what is the best way of leveraging crowd information
in addition to gold labels? Chapter 5 contains two proposals for augmenting gold
training with crowd information using the multi-task learning paradigm.

• RQ5: Among the approaches for learning from crowds, is there an absolute best
method for every task? Chapter 6 provides a detailed analysis and experimental
survey of the methods for learning from crowds, comparing the methods with
each other and with learning from gold labels.

To further this line of inquiry in the wider research community, we propose a
shared task at the "The 15th International Workshop on Semantic Evaluation". The
proceedings from this shared task were published in Uma et al. [2021a] and are in-
cluded as Chapter 7 of this work.
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1.3 Published Work

A lot of the material in this thesis has been published in national and international
publications. While the copyright to these published works belong to the various
publishers (copyright quoted below), I, as author of these publications, retained the
right to use the material in future works of my own authorship such as this thesis.
The chapters and their associated publications are listed below (journal publications
are highlighted in bold):

• Sections of Chapters 1 to 6 were written up as a journal paper to appear in Jour-
nal of Artificial Intelligence Research (JAIR) [Uma et al., 2021b]. Copyright ©
2020, AI Access Foundation.

• A shorter version of Chapter 4 was presented at the AAAI Conference on Human
Computation and Crowdsourcing (HCOMP) [Uma et al., 2020]. Copyright © 2020,
Association for the Advancement of Artificial Intelligence.

• Sections of Chapter 5 was published in the Proceedings of the North American
Chapter of the Association for Computational Linguistics (NAACL) [Fornaciari
et al., 2021]. Copyright © 1963–2021 ACL.

• Chapter 7 was published in The 15th International Workshop on Semantic Eval-
uation at ACL-IJCNLP 2021 [Uma et al., 2021a]. Copyright © 1963–2021 ACL.

• An extended version of Chapter 8 was submitted to the Human-Centered AI:
Crowd Computing topic of the Frontiers Journal. Copyright © 2007-2021
Frontiers Media SA (pending).

Other Publications

• “Anaphora Resolution with the ARRAU Corpus" [Poesio et al., 2018]

• “A Crowdsourced Corpus of Multiple Judgments and Disagreement on Anaphoric
Interpretation" [Poesio et al., 2019]

• “A Cluster Ranking Model for Full Anaphora Resolution" [Yu et al., 2020]

• “We Need to Consider Disagreement in Evaluation"[Basile et al., 2021]
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Chapter 2

Background

In the introductory chapter, we motivated the problem of learning from crowdsourced
data containing disagreement. In this Chapter, we study the evidence of and approaches
to learning from disagreement. We highlight various crowdsourced datasets containing
disagreement and analyse the data for evidence of disagreement as useful information
about the nature of the task. We also provide systematic review overview of methods
for learning from crowds, categorizing them according to their approach to dealing with
disagreement.

2.1 Overview

In this Chapter, we study the evidence of and approaches to learning from disagree-
ment. Section 2.2 reviews several tasks and datasets that provide evidence for dis-
agreement in human interpretation. In doing this we provide answers to RQ1: What is
the evidence for the presence of label uncertainty and ambiguity in nlp and Computer
Vision and is disagreement in crowd annotations evidence of ambiguity? Section 2.3
describes the patterns and sources of disagreement, Finally, Section 2.4 contains and
in-depth analysis of the the methods of learning from crowd annotations in literature,
grouping them in to approaches based on how they handle disagreement.

2.2 Disagreements in NLP and Computer Vision: evidence
and resources

As already mentioned, there is extensive literature demonstrating the extent to which
humans disagree on many aspects of interpretation in nlp and cv. In this Section,
we review some of this evidence, focusing on work that also created datasets that
preserved these disagreements. Our discussion is thus structured around nlp and
cv research on learning from disagreements: This thesis limits the discussion on
learning with disagreement to tasks for which the gold assumption is usually held
(i.e. tasks assumed to be objective rather than subjective tasks such as offensive
language detection and opinion classification). The datasets analyzed here form the
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basis of the studies written up in the rest of this thesis.
We chose tasks with the aim of using deep learningmethods that reflect the current

state of the art to improve upon previous experimental studies on learning from dis-
agreement, in particular Jamison and Gurevych [2015]. This constraint restricted us
to tasks for which datasets large enough to train such models exist; our rule of thumb
was to consider only datasets with at least 1,000 items. The one exception was the
area of Recognizing Textual Entailment (rte) / Natural Language Inference, which in-
cludes some vital work on disagreements in interpretation [Pavlick and Kwiatkowski,
2019], as well as the dataset by [Snow et al., 2008]. This dataset consists of only 800
items, but was included due to its ubiquitous use in research on crowdsourcing and
aggregation 1.

The nlp tasks we selected include Part-of-Speech (pos) tagging, which originated
the Gimpel corpus [Plank et al., 2014b,a, Jamison and Gurevych, 2015]); Informa-
tion status (is) classification, a simplified version of the anaphoric interpretation task
studied in some of the early work on disagreements [Poesio and Artstein, 2005, Poesio
et al., 2006] and for which we could leverage the largest nlp corpus providing multiply
annotated data, Phrase Detectives [Poesio et al., 2019]; (Medical) Relation Extraction
(mre), extensively studied in the CrowdTruth project [Aroyo and Welty, 2015, Dumitra-
che, 2019, Dumitrache et al., 2019] which resulted in the creation of several datasets
including the dataset used in this study [Dumitrache et al., 2018a]; and Recogniz-
ing Textual Entailment (rte), which led to the development of the Snow et al. corpus
used, e.g., in [Snow et al., 2008, Jamison and Gurevych, 2015]. Among the cv tasks,
we studied Image Classification (ic), in which two important datasets originated for
the study of learning from disagreement: the LabelMe corpus (ic-labelme), a crowd-
sourced version which was created by Rodrigues and Pereira [2018], and the cifar-10h
corpus recently crowdsourced by Peterson et al. [2019]. This Section briefly discusses
each of these tasks, their respective datasets, and the evidence about disagreement
resulting from them. We use a standardized format for the task descriptions to facili-
tate comparison, and summarize the characteristics of the datasets in Section 2.2.6.

2.2.1 Part-of-Speech Tagging

pos tagging is the task of assigning Part-Of-Speech tags such as noun or verb to every
word in a text. It is thought of as reflecting a very basic aspect of human lexical
/ syntactic competence, and as such, little or no disagreement is expected on the
judgments of coders asked to carry out this type of annotation. Contrary to this
expectation, one of the best-known studies in the area of learning from disagreements
was motivated by the observation that annotators systematically disagreed even on
such a supposedly simple linguistic task such as part-of-speech tagging [Plank et al.,
2014b].2

1the mre dataset falls slightly short of the mark with 975 examples but was central to the Crowd
Truth Project, a leading research of learning with disagreement as noise Dumitrache et al. [2018b]

2See also [Manning, 2011] for an earlier discussion of the same issue.
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Plank et al. found systematic disagreements between, e.g., adpositions (adp) and
particles (prt) as in get out; adjectives (adj) and nouns, as in stone lion; and adjectives
and adverbs (adv), e.g., in see you later. They found the same disagreements between
experts and non-experts, and across text types. Plank et al. investigated the nature of
these disagreements, finding that while some disagreements are a result of annotation
error, others are evidence that the category of certain items is linguistically debatable.
They further discovered that making the annotation guidelines increasingly more de-
tailed did not eliminate these linguistically debatable disagreements or “hard cases”
[Plank et al., 2014b]. They thus hypothesized that these disagreements are a result
of label uncertainty and can be used to inform the learning process.

The dataset The analysis by Plank et al. [2014b] was carried out as part of the
creation of one of the best known dataset for research on learning from disagreement,
and the first dataset chosen for this study. This dataset–henceforth, abbreviated as
gimpel-pos–builds upon the [Gimpel et al., 2011] corpus of pos labels for Twitter posts.
Plank et al. [2014b] mapped the Gimpel tags to the universal tag set [Petrov et al.,
2012], using these tags as gold, and collected at least 5 crowdsourced label per token
from 177 annotators. The dataset consists of over 14 thousand examples, and was
already used in [Plank et al., 2014a, Jamison and Gurevych, 2015].

Annotations and annotators The size of the crowd employed to collect judgments is
essential to ensure sufficient quality for the crowdsourced labels [Snow et al., 2008].
Additionally, a number of studies [Poesio and Artstein, 2005, Dumitrache, 2019, Pe-
terson et al., 2019] have demonstrated that the number of annotations collected is also
of key importance for studying disagreement. For instance, Poesio and Artstein [2005]
showed that what they called implicit ambiguity–the ambiguity emerging from dis-
agreements among annotators, rather than from annotators explicitly marking items
as ambiguous–only start to emerge for the task of anaphoric annotation when at least
5 annotations per item are collected. (The precise number of annotations appears to
depend on the task.). Each item in the Gimpel dataset was annotated 5 times, apart
from 946 items with a much greater number of annotations, most likely tutorial items
[Gimpel et al., 2011]. The percentage of items annotated for each coder ranges from
2.64% to 5.29%. Given that there are 12 possible categories, the ratio number of
coders / possible categories (the coder:label ratio) is 5:12 or 0.42.

Also important is the level of agreement between these annotators; the observed
agreement, computed using the Fleiss multi-annotator version of the kappa statistic
[Fleiss et al., 2004] is 0.725 overall. We also note the performance of the annotator
with respect to the gold label, as a way to measure the degree of alignment between
the experts and the annotators. This measurement is an indicator of how much the
gold stands apart from the crowd. We use accuracy for this measure and in this
dataset, the average accuracy per annotator in the gimpel-pos dataset is 67.81%,
with over 38.98% of coders falling below this average. Only about 29% of annotators
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have a near-gold performance, achieving 75% or more accuracy with respect to gold
labels. As shown by Snow et al. [2008], the quality of the annotators in relation to
the expert is an important predictor of the quality of the classifier trained from the
crowd-annotated data.

Quality of aggregated labels We also measure the accuracy of aggregated labels
with respect to the gold as it indicates how much the crowd consensus aligns with
the expert label. There is substantial disagreement in this dataset: 48.09% of the
items received annotations assigning them to more than one category. Majority voting
accuracy with the gold label is 79.69%; the [Dawid and Skene, 1979] and mace ag-
gregation methods [Hovy et al., 2013] discussed later produce labels that are 79.13%
and 79.83% accurate with respect to the gold respectively.

2.2.2 (Anaphora and) Information Status Classification

Possibly the first type of disagreement systematically studied in nlp is disagreement
on anaphoric annotation (coreference). Already identified by Artstein and Poesio [Poe-
sio and Artstein, 2005, Poesio et al., 2006], further evidence has been unearthed as
part of the annotation of virtually every modern corpus of anaphoric information:
ancora [Recasens et al., 2011], arrau [Poesio and Artstein, 2008, Uryupina et al.,
2020], ontonotes [Pradhan et al., 2012], The Potsdam Commentary Corpus [Krasav-
ina and Chiarcos, 2007], the Prague Dependency Treebank [Nedoluzhko et al., 2016]
and tuba/dz [Versley, 2008]. Anaphora is a more complex task than pos tagging, but
it is still considered a basic aspect of semantic interpretation; yet, in the course of this
research, it was discovered that depending on the genre and the range of anaphoric
phenomena, annotators disagreed on 12% to 40% of all mentions. Besides the exam-
ples of ambiguity as to the antecedent of an anaphoric expression discussed in the
Chapter 1 and Section 2.3, this research found subjects disagreeing as to whether
the nominal form it is anaphoric or expletive (as in when she [Alice] thought it over
afterwards, it occurred to her that she ought to have wondered about this ...);whether
a nominal introduced a new entity or referred to an old one; and more complex cases
of ambiguity to the antecedent, e.g., in cases of reference to ’split antecedent’, plurals
and discourse deixis [Recasens et al., 2011].

Because of the complexity of adapting models of learning from disagreement to
full anaphora / coreference resolution, this study was constrained to the study of
disagreements on a simplified form of the task, Information Status Classification (is),
which involves identifying the information status of a noun phrase: whether that noun
phrase refers to a new entity or to an already introduced entity.

Dataset There are different annotation schemes for annotating information status
[Prince, 1981, 1992, Nissim et al., 2004, Riester et al., 2010]. The dataset used in this
work, named pdis, is extracted from a binary version of the Phrase Detectives 2 corpus
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for coreference resolution,3 in which a simplified, binary definition of the is task was
used, derived from the annotation scheme used in Phrase Detectives. In pdis, only
markables classified as introducing a new entity (discourse new - dn) , or as referring to
a previously introduced entity (discourse old - do) are considered. Markables classified
as expletives or as predicative are not considered, and information about coreference
chains is ignored.

The Phrase Detectives 2 corpus appears to be the largest nlp corpus coming with
multiple annotations. It consists of a total of 542 documents containing 408K tokens
and about 108K markables. 497 documents were used for training and development.
These documents were annotated by over 1,828 annotators producing at least 8 anno-
tations permarkable. There are no expert annotations for the 497 training documents.
45 documents contain both expert and crowd annotations and these documents are
designated as the test set. The train, development and test data each contain 97,040,
4753 and 5,855 markables respectively.

Annotations and annotators The full Phrase Detectives 2 corpus contains a total of
2,235,664 judgments, for an average of 20.6 annotations + validations per item. After
restricting the judgments to only the binary dn/do labels, and excluding validations4,
the average number of annotations was 11.87 per item for the pdis binary subset (or
7.01 if only one annotation is counted for each annotator). The average observed
agreement per item is 0.809. Each coder annotated 413.75 items on average, and the
average coder accuracy is 78.13%. At least 71.25% of coders have an accuracy of 75%
or more.

Quality of aggregated labels In pdis, considering only the subset of data for which
gold labels are available, the labels aggregated using Majority Voting are 89.54% ac-
curate, whereas the labels aggregated using Dawid and Skene [1979] and mace are
98.14 % and 97.89 % accurate respectively.

2.2.3 Relation Extraction and Frame Disambiguation

Another aspect of semantic interpretation for which there is extensive evidence of dis-
agreements among annotators is relation extraction: the task of deciding, given two
mentions and a segment of text (clause or sentence), whether that segment expresses
one among a fixed number of relations between the entities referred to by those men-
tions. This was one of the two tasks studied most extensively in the CrowdTruth
project [Aroyo and Welty, 2015, Dumitrache et al., 2018b, 2019]. Aroyo and Welty
[2015] during examples encountered in projects for crowdsourcing medical relation
extraction such as (2.1).

3The Phrase Detectives 2 corpus is freely available from the ldc and from https://github.com/
dali-ambiguity.

4super-judgements aimed at validating or invalidating initial judgements [Poesio et al., 2019]
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(2.1) GADOLINIUM AGENTS used for patients with severe renal failure show signs of
NEPHROGENIC SYSTEMIC FIBROSIS.

Annotators asked to label the relation between underlined pairs with one of the
umls relations systematically disagreed on whether pairs such as the one in the ex-
ample were instances of the cause (strict sufficient causality) relation or the side-effect
(possibility of a condition arising) relation. Again, both experts and novice annotators
were unable to systematically make the distinction.

Two types of relation extraction were studied in the project: Medical Relation Ex-
traction (mre), the application to medical texts, and Frame Disambiguation, the ver-
sion of the task in which the repertoire of relations is provided by FrameNet [Dumi-
trache et al., 2019]. This research focuses on mre.

Dataset In this research, Dumitrache et al. created a dataset of 3,984 English sen-
tences extracted from PubMed article abstracts for medical relation extraction cen-
tered on two main relations, the cause and treat relations, that have been processed
with disagreement analysis to capture ambiguity. The sentences were sampled from
the set collected byWang and Fan [2014] using distant supervision [Mintz et al., 2009].

Dumitrache et al. [2018a] collected expert-annotations for a randomly sampled set
of 975 sentences from the distant supervision dataset with each sentence being an-
notated by a single expert. The annotation task involved deciding whether or not the
UMLS seed relation discovered by distant supervision was existent between two high-
lighted terms in a given sentence [Dumitrache et al., 2018a]. The crowdsourcing was
carried out using so-called disagreement-aware crowdsourcing [Aroyo and Welty,
2015]. For every sentence, the crowd was asked to choose any number of relations
from 14 possible relations, (including ’other’ and ’none’) applicable to the highlighted
terms in the sentence.5

For comparability with their research. Only the subset of the cause relation with
gold labels was studied for this research. The task was reframed as a binary classi-
fication task as done by Dumitrache et al. [2018a]. The gold label for each sentence
given the highlighted terms is 1 if the expert agreed that the cause relation was exis-
tent and 0 otherwise. Similarly, for each annotator who annotated the sentence, the
assigned label is 1 if the annotator selected the cause amongst his/her choices and 0
otherwise.

Annotations and annotators Each of the 975 sentences was annotated by at least
15 annotators (and a maximum of 30). On average, each coder annotated 5% of the
items (a minimum of 0.1% and a maximum of 43.58%) and the average annotator
accuracy is 76.1% (minimum of 0% and maximum of 100%). 58% of the annotators
had an accuracy of 75% or more. The observed agreement per item is 0.857.

5The dataset by Dumitrache et al. [2018a] is available from https://github.com/CrowdTruth/
Medical-Relation-Extraction.

23

https://github.com/CrowdTruth/Medical-Relation-Extraction
https://github.com/CrowdTruth/Medical-Relation-Extraction


Quality of aggregated labels Majority Voting was aggregated by counting the num-
ber of workers who selected the cause relation as a valid relation for the sentence.
Labels aggregated using Majority Voting are 74.6% accurate with respect to the gold la-
bels. Labels aggregated using Dawid and Skene [1979] and mace are 76% and 76.61%
respectively. Dumitrache et al. [2018a] also provide labels aggregation metrics using
the CrowdTruth approach (discussed in section 3). These labels are 80.51% accurate
with respect to the gold labels.

2.2.4 Recognizing Textual Entailment / Natural Language Inference

Another aspect of language interpretation for which there is systematic evidence of dis-
agreement among subjects is Recognizing Textual Entailment (henceforth, rte) [Dagan
et al., 2006]6 Recognizing textual entailment / natural language inference is deciding
whether the proposition conveyed by a text (the hypothesis h) can be inferred from
another proposition (the premise p) [Dagan et al., 2006]. In nlp this task is typically
formulated as a binary classification task, in which a pair p/h is classified as True if
the hypothesis can be inferred from the premise, False otherwise.

rte attempts to model what is arguably the foundation of semantics [Cooper et al.,
1996], but rte judgments have proven hard for humans to agree on. Lalor et al.
[2017] discuss examples like (2.2), in which it is not clear whether the hypothesis that
the child plays / intends to play with the balloon follows from the premise that he’s
reaching for it and laughing.

(2.2)a. Premise: A young boy in a beige jacket laughs as he reaches for a teal balloon.

b. Hypothesis: The boy plays with the balloon.

In a recent and systematic analysis of disagreement on rte judgments, Pavlick and
Kwiatkowski [2019] found that workers disagreed on at least 20% of the p/h pairs they
were asked to classify, and that mixture Gaussian models generalized better to unseen
examples than single-component Gaussians.

Dataset To study the effect of disagreements on learning rte models, we used the
classic pascal rte-1 challenge dataset [Dagan et al., 2006] containing 800 text-hypothesis
pairs [Dagan et al., 2006]. Crowdsourced annotations for this corpus were collected
by Snow et al. [2008]; 164 annotators produced 10 annotations for each sentence-
pair. Gold labels are also provided for each sentence-pair. This dataset was chosen as
it’s substantially larger than the datasets produced by Lalor et al. [2017] and Pavlick
and Kwiatkowski [2019] and allowed us to compare our results with those of other
researchers who used this dataset to test methods for learning from disagreement, in
particular Jamison and Gurevych [2015]7.

6The term Natural Language Inference is now also used [Bowman et al., 2015, Pavlick and
Kwiatkowski, 2019] but we will mainly use the term rte given that this is the name of the dataset
we used.

7http://sites.google.com/site/nlpannotations
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Annotations and annotators In pascal rte-1, each item received exactly 10 anno-
tations from one of the 164 coders. This is a binary classification dataset, and the
coder:label ratio is 10:2 (5). The average item observed agreement, computed using
the Fleiss multi-annotator version of the kappa statistic [Fleiss et al., 2004], is 0.629.

Each coder annotated from 2.5% to 100%; an average of 6.09% of the items. The
average accuracy per annotator is 83.70%, and only 35.37% of annotators fall below
this average - 82.93% of them have near-gold performance, with an accuracy of at
least 75%.

Quality of aggregated labels There is a substantial amount of disagreement prior to
aggregation, much higher than with the pos dataset: 91.88% of the items have more
than one unique interpretation. However, the alignment between aggregated silver
labels and gold label is much higher than with pos. Majority voting aligns with the
gold label in 90.25% of the cases, while using the Dawid and Skene [1979] and mace
aggregation methods produces labels that align with the gold labels in 92.88% and
92.63 % of the cases respectively.

2.2.5 Image Classification

Image classification is a very general term for the task of assigning an image to the
category that best describes it among a fixed set of categories that depends on the ap-
plication. Historically, it is possibly the area of ai that has given rise to the most work
on methods for learning from disagreement. It provided the motivation for much work
on methods for aggregating multiple expert-produced labels particularly for medical
images [Dawid and Skene, 1979, Smyth et al., 1994, Whitehill et al., 2009]. More re-
cently, researchers working on applications of this type have started to develop meth-
ods that learn classifiers directly from the labels produced by the crowd [Raykar et al.,
2010, Albarqouni et al., 2016, Guan et al., 2018, Rodrigues and Pereira, 2018, Peter-
son et al., 2019]. We therefore considered it essential to include datasets used in this
type of research for a proper assessment of methods for learning from disagreement,
many of which originated from this area. Specifically, we employed two datasets, both
of which extensively used in the literature.

LabelMe

Dataset LabelMe8 [Russell et al., 2008] is a widely used, community-created image
classification dataset where images are assigned to one of 8 categories: highway, in-
side city, tall building, street, forest, coast, mountain, and open country. Rodrigues
and Pereira [2018] collected crowd labels for 10000 of the images using Amazon Me-
chanical Turk from 59 annotators producing at least one label for each image. In this
study we used this version of LabelMe.

8http://labelme.csail.mit.edu/
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Annotations and annotators Each item in the ic-labelme dataset was annotated at
least once and a maximum of 3 times, and the average number of annotations per item
is 2.55. With 8 classes for this dataset, the average ratio number of coders / possible
categories is 2.55:8, or 0.318. The average item observed agreement, computed using
the Fleiss multi-annotator version of the kappa statistic [Fleiss et al., 2004], is 0.732.

Each coder annotated from 0.3% to 18.2%; an average of 6.09% of items. The
average accuracy per annotator is 69.16%, and over 38.98% of coders fall below this
average. 42.37% of the coders have an accuracy of 75% or more.

Quality of aggregated labels For this dataset, majority voting aggregation produces
labels with 76.9% accuracy with respect to the gold labels while applying [Dawid and
Skene, 1979] and mace aggregation methods generates labels with 79.9 % accuracy
and 78.3 % accuracy respectively.

CIFAR-10

Dataset The cifar-10 dataset9 is another image classification dataset used in cur-
rent state-of-art research [Springenberg et al., 2015, Graham, 2014, Ghosh et al.,
2017, Gastaldi, 2016]. The entire dataset consists of 60k 32x32 colour images in 10
categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck) with
6k images per class. There are 50k training images and 10k test images.

Recently, this dataset has also been used in research into learning from crowd-
sourced data. In particular, Peterson et al. [2019] collected human annotations for
the test portion of the cifar-10 using Amazon Mechanical Turk, creating the cifar-
10h dataset10. This dataset consists of 511,400 human categorization decisions over
the 10k-images with an average of 50 annotations per image. This dataset was used
for training training and testing using a 70:30 random split, but ensuring that the
number of images per class remained balanced as in the original dataset. A subset of
the cifar-10 training dataset (3k images) was used as the development set.

Annotations and annotators Each item was annotated an average of 51.1 times (a
minimum of 47 and a maximum of 63). Given that there are 10 possible classes,
the average coder:label ratio is 5.11. The average observed agreement per item is
0.924. Peterson et al. [2019] report that annotators with less than 75% accuracy
were removed from the dataset, resulting in an average annotator accuracy of such
that 100% of annotators have an accuracy of 75% or more.

Quality of aggregated labels Majority voting produces labels with 99.21% accuracy
with respect to the gold labels while applying Dawid and Skene and mace aggregation
methods generates labels with 99.27% accuracy and 99.24% accuracy respectively.

9https://www.cs.toronto.edu/~kriz/cifar.html
10https://github.com/jcpeterson/cifar-10h
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2.2.6 A summary of the datasets used in this study

Table 2.1 summarizes the statistics about the datasets discussed in this Section.

Table 2.1: Annotations and Annotators

pos pdis mre rte ic-labelme ic-cifar10h

Number of items 14,439 96,305 975 800 10,000 10,000
Number of crowd workers 177 1,741 304 164 59 2,457
Number of Labels 17 2 2 2 8 10
Average annotations per item 16.37 11.87 15.30 10.00 2.50 51.10
Median annotations per item 5 10 15 10 3 51
Average number of items annotated per coder 1335.48 381.75749.08 48.78 431.69 200
Median number of annotations per coder 1276 20 14 20 270 200
Average coder accuracy 0.93 0.82 0.76 0.84 0.69 0.95
Coder accuracy variance 0.003 0.062 0.0530.015 0.033 0.001
Percentage of coders with accuracy above 0.75 1.00 0.77 0.58 0.83 0.42 1.00
Average observed agreement per item 0.73 0.81 0.86 0.63 0.73 0.92
Average item entropy using raw distribution 0.13 0.38 0.31 0.72 0.10 0.07
Average item entropy (best-performing distribution, bde) 0.39 0.09 0.31 0.22 0.76 0.07

Table 2.2: Quality of Aggregated Labels

pos pdis mre rte ic-labelme ic-cifar10h

Percentage accuracy of mv aggregated labels 0.80 0.89 0.75 0.90 0.77 0.99
Percentage accuracy of d&s aggregated labels 0.79 0.98 0.76 0.93 0.80 0.99
Percentage accuracy of mace aggregated labels 0.79 0.98 0.77 0.93 0.78 0.99

As the Tables show, the datasets differ under a number of dimensions, from the
average number of annotations per item to the average number of annotations per
coder to the accuracy of coders to the degree of confusion, measured in terms of
observed agreement and of entropy. Chapters 4 and 6 experiments with how these
differences are important in understanding the differences in performance between
training methods on a dataset and the same training method on different datasets.

2.2.7 Other tasks

Although only the six tasks / datasets discussed above were studied in our experi-
ments, judgment disagreements have been observed by virtually every major annota-
tion project for virtually all language and vision interpretation tasks. In this Section
we briefly review some of the literature on the presence of systematic disagreement in
other aspects of language interpretation.

Syntactic interpretation Martínez Alonso et al. [2015] observed that the disagree-
ments observed by Plank et al. [2014b] were characteristic of dependency parsingmore
in general, and applied the method proposed by Plank et al. [2014a], with promising
results as well.

Wordsense disambiguation and supersenses Historically, the other early work on
disagreements in nlp in addition to research on anaphoric disagreement arose from
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projects on wordsense annotation. Possibly the best known in this area is the semi-
nal work by Passonneau and colleagues on wordsense disambiguation in the Ameri-
can National Corpus (see, e..g, [Passonneau et al., 2012, Passonneau and Carpenter,
2013]). Passonneau et al. [2012] carried out a systematic analysis of the disagree-
ments for different types of words (nouns, verbs, and adjectives), and investigating
the extent to which disagreements depended on annotator quality, instructions, and
context. Further investigations of the practice of word sense annotation were carried
out by Jurgens [2013]. Moreover, Martínez Alonso et al. [2016] showed that disagree-
ment arises also in supersense tagging and they performed experiments using the
method by Plank et al. [2014b] on English and Danish supersense datasets.

Named entity resolution The other nlp task systematically explored in the CrowdTruth
project is Named Entity Resolution [Inel and Aroyo, 2017].

Discourse structure More disagreement is to be expected when considering tasks
requiring more complex judgments, such as analyzing discourse structure. This in-
tuition was already confirmed in early work by Stede [2008]. More recently, further
evidence has been provided by work on argument structure annotation. The aurc-
8 corpus [Trautmann et al., 2019] contains gold-standard annotations for argument
component spans derived from crowdsourced labels. As well as disagreement over
whether a span is argumentative or not, the starts and ends of argument compo-
nents are often ambiguous, leading to significant disagreements between annotators.
Simpson and Gurevych [2019] used a subset of the crowdsourced annotations from
AURC-8, containing 8000 sentences, each with five judgements from 105 annotators.

Sentiment analysis Even more disagreement is to be expected with subjective tasks
such as sentiment analysis. This intuition, too, is confirmed by evidence, such as
the study by Kenyon-Dean et al. [2018] in support of the annotation of the McGill
Twitter Sentiment Analysis corpus. Kenyon-Dean and colleagues found that over 30%
of the instances in the corpus are “controversial” or “complicated” cases over which
annotators disagree.

2.3 Sources of Disagreement - Errors, Imprecise Annotation
Scheme, Ambiguity and Difficulty

In Section 2.2, we discussed the evidence of disagreement in several nlp and Computer
Vision tasks. While all disagreements result in label uncertainty, some disagreement
is intrinsic to the task and hence unavoidable; others are as a result of annotator or
annotation interface errors and introduce noise to the data. To harness the disagree-
ment in building machine learning models, some effort must be made to understand
the nature and sources of the disagreements. Several annotation projects have de-
fined and discussed various sources of disagreement. In this Section, we outline these

28



sources of disagreement, noting their definitions in our context and highlighting their
occurrences in the six datasets we explore in this research.

2.3.1 Errors

Disagreement can result from annotator errors or problems with the annotation in-
terface. Several annotation projects have highlighted this source of disagreement;
Nedoluzhko et al. [2016] found that 15% of annotator disagreement was as a result
of annotator mistakes, Pradhan et al. [2012] attributed 25% of the disagreements in
ontonotes to annotator error, and Plank et al. [2014b] found that while the ratio of
noise:genuine ambiguity differed based on the level of confusion of label pairs, anno-
tation errors made up about 30% of the disagreement for difficult items. Annotator
error disagreement, while not informative about the task itself, provides information
about the reliability of the annotator; their level of attention or their level of knowledge
about the task.

Errors resulting in disagreement could also be as a result of interface prob-
lems/limitations. In coreference resolution annotation for example, errors in the
markable extraction process (i.e. incorrectly defined span boundaries for markable
noun phrases) often introduces annotation errors; annotators, unable to select the ap-
propriate span either select a preceding antecedent in the same chain, a span which
is a subset of the correct span, or annotate the markable as problematic. These differ-
ing judgements lead to unnecessary disagreements. Consider the following sentence
from the Phrase Detectives corpus; the (automatically) extracted markable is in bold
font and surrounded by square brackets:

“Once upon a time there was a dear little girl who was loved by everyone who looked at her

but [most of all by her grandmother]"

The only valid markable in that span is the noun phrase ‘her grandmother ’. When
presented with ‘most of all by her grandmother ’, annotators disagree on that the most
suitable - majority of the annotators marked it as a new markable, “Discourse New",
while the others annotators marked it as a “Predicative". Our analysis of the corpus
showed that interface limitations and problems account for a majority of the disagree-
ment in validated Phrase Detectives corpus. Similarly, in the ontonotes, another
coreference resolution corpus. interface and annotation scheme limitations account
for 43% of the disagreements. As with annotator errors, disagreements resulting from
interface errors are not informative about the tasks but are useful information about
the annotation project.

2.3.2 Imprecise Annotation Scheme

Imprecise or vague annotation schemes also lead to annotator disagreements. Such
annotation schemes may contain ill-defined classes or overlapping classes and/or
may not cover all items, leaving an annotator unsure as to the best label for an item
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Figure 2.1: Confusion matrix between gold labels and major-
ity voting consensus for LabelMe

[Nedoluzhko et al., 2016]. Russell et al.’s [2008] is a prime example of a task with
an imprecise annotation scheme resulting from vague class names and descriptions.
The classes inside city, street and tall building are not necessarily mutually exclusive
so that an annotator forced to choose a category amongst them will likely be making
an arbitrary choice; Figure 2.2 shows three images with buildings, each assigned a
different gold label. Such examples show that even gold labels for such items are not
standard but subject to the biases of the expert annotators.

(a) inside city (b) street (c) tall building

Figure 2.2: Examples showing similar images from LabelMe captioned with their gold label [Russell
et al., 2008, Rodrigues and Pereira, 2018]

With cases like this it is not surprising that annotators would disagree on such
items. Figure 2.1 shows the confusion between majority voting consensus and gold
labels for the crowdsourced LabelMe collected by Rodrigues and Pereira [2018]. The
figure shows that images classified as inside city by the gold label are assigned to the
category tall building by the majority 22% of the time; while images classified by gold
as street are assigned the label inside city by a majority of annotators 26% of the time.
This is unsurprising considering Figure 2.2. Also justifiably, images classified as open
country by the gold are assigned the class mountains by the majority 23% of the time;
this is justifiable as open country sometimes contain mountains. Figure 2.3 gives an
illustration of this.
Similar overlap exists among other label pairs. Merging the overly fine 8 categories of
LabelMe into 3 categories - (1) coast, (2)inside city + street + tall building and (3) forest
+ mountain + open country - results in majority voting aggregated labels of 95%, 18%
more than the accuracy when the labels are left unmerged.
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(a) open country (b) mountain (c) open country (d) mountain

Figure 2.3: More examples showing similar images from LabelMe, each assigned a different gold la-
bel [Russell et al., 2008, Rodrigues and Pereira, 2018]

2.3.3 Ambiguity

Like imprecise annotation schemes, ambiguity is a source of disagreement resulting
in a multiplicity of interpretation. The difference between the two sources of disagree-
ment lies in the fact that genuine (linguistic) ambiguity is not a consequence of a poor
annotation scheme but of inherent complexity in (language) understanding and inter-
pretation. Several studies have found genuine ambiguity to be a leading source of
disagreement.

Figure 2.4: Figure showing the proportion of hard cases that make up 880 pos
items (dark gray) and the proportion of these hard cases that are linguistically mo-
tivated (light gray) [Plank et al., 2014b]

A seminal work studying disagreement as evidence for ambiguity is the research
conducted by Poesio and Artstein [2005] that studied annotation of anaphora in di-
alogue data. They employ 18 students to annotate the same pieces of dialogue 3.2
from the TRAINS 91 corpus by selecting the all valid antecedents for every markable
expression the annotator perceived to be ambiguous. They found that at least 10% of
the 72 markables annotated were marked explicitly ambiguous by at least one anno-
tator [Poesio and Artstein, 2005]. They also found cases on implicity ambiguity, were
markable items were not marked as ambiguous by annotators but different annota-
tors chose different equally valid labels [Poesio and Artstein, 2005]. An analysis of
some documents from the Phrase Detectives showed similar results. We found that
while a majority of the disagreements are as a result of interface problems, 9.1% could
plausibly belong to more than one coreference chain Poesio et al. [2019].
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Even more evidence of disagreement as ambiguity can be found in the Part-of-
Speech tagging dataset explored in this research. Plank et al. [2014b] analyse the
inter-annotator disagreements and demonstrate that some disagreements are consis-
tent across domains and languages; and certain label pairs are more confusing than
others [Plank et al., 2014b]. They further employ both expert linguists to annotate
880 items from the Gimpel et al. dataset and find that a majority of the disagreement
for certain label pairs stem from linguistically debatable cases [Plank et al., 2014b].
For example, Plank et al. found that all the NOUN-PRON disagreements are always
linguistically debatable cases; and the same is true for 70% of the ADP-ADV disagree-
ments. Figure 2.4 shows the the result of Plank et al.’s analysis the disagreement in
involving these label pairs; the dark gray bars show the relative occurrence of a pair
confusion in the dataset while light gray bars show the proportion of disagreement
that is due to linguistic ambiguity. These results are further validated when 10 lin-
guistic faculty members are asked to select the right label for 10 items in the dataset;
in 8 out of 10 cases, these experts disagreed on the right tag.

It should be noted that disagreement sometimes can be innocuous ambiguity
i.e. ambiguity that often goes undetected by a group of annotators owing to shared
context; these sort of ambiguity do not impede understanding. As an illustration of
the distinction between innocuous and nocuous ambiguity, consider the examples
from Yang et al. [2011] in Table 2.3 (the underlined text are the possible antecedents
of the pronoun in bold):

Table 2.3: Nocous and Innocuous examples of anaphoric ambiguity

E1: Another feature of GRASS is its ability to use raster, or cell, data.
E2: Table data is dumped into a delimited text file, which is sent to the remote site

where it is loaded into the destination database.

Both examples are ambiguous as there are multiple ways of choosing the right an-
tecedent for the pronouns. However, in the study conducted by Yang et al. [2011], 12
out of 13 readers interpreted the pronoun ‘its’ in example E1 as referring to ‘GRASS’;
whereas the readers were split almost in half regarding the antecedent selection for
E2. E1 ia an example of innocuous ambiguity where despite the presence of ambi-
guity, a single reading of the sentence emerges [Yang et al., 2011] as all the readers
prefer the same interpretation.

2.3.4 Difficulty

As seen in Section 2.3.3, in linguistic tasks like pos tagging, high disagreement might
be due to genuine linguistic ambiguity, implying the validity of more than one class.
As is the case with imprecise annotation schemes, ambiguity shows the gold label to
be an arbitrary choice among equally valid alternatives. We make the distinction be-
tween disagreement due to genuine ambiguity and disagreement due to task difficulty
based on where or not the disagreement is resolvable. While ambiguity disagreement
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Table 2.4: 10 randomly selected polarizing items in rte

Premise Hypothesis Gold Observed Agreement

1 MSF was unnerved by a Taliban accu-
sation that its members were spying
for the U.S.

Taliban spies on U.S. False 0.44

2 Al Thawra added, “Lahoud is well
aware of that and realizes that Israeli
challenges have never stopped for one
moment; and that escalation will not
hamper him from undertaking his na-
tional duties, relying on the support
of all of Lebanon with all of its fac-
tions, as well as on the full support
of Syria in order to achieve his na-
tional tasks and deliver on his com-
mitments."

The newspaper added that regard-
less of the Israeli challenges, Lahoud
would still be able to deliver on his du-
ties, supported by Syria and a united
Lebanon.

True 0.44

3 Al-Koshah’s events had surfaced af-
ter the British “Sunday Telegraph";
newspaper published last October 25
an article in which it accused Egyp-
tian police of “;crucifying and raping
Copts"

Was events Al Kusheh case emerged
after the publication; newspaper
Sunday Telegraph; “the British on
25 last October writes an accused in
which the Egyptian police"; with steel
Copts and rape of their Families

False 0.44

4 Seiler was reported missing March 27
and was found four days later in a
marsh near her campus apartment.

Abducted Audrey Seiler found four
days after missing.

True 0.46

5 The Bugbear virus infects computers
running the Windows operating sys-
tem and an unpatched version of In-
ternet Explorer 5.5.

Virus infects thousands of comput-
ers.

False 0.46

6 Britney Spears is getting hitched for
the second time this year - this time
to a professional dancer father whose
girlfriend of three years is pregnant.

Britney Spears is pregnant False 0.46

7 In turn, the Editor-in-Chief of Al
Jumhoria Newspaper was appointed
Ambassador of Iraq to India.

Al Jumhoria is the Iraqi Ambassador
to India.

False 0.46

8 Two Western citizens, one of whom is
British, three policemen and two kid-
nappers were wounded in the attack
that ended in the arrest of 13 kidnap-
pers.

Wounded nationals statement one
British and three police and in the at-
tack which ended the arrest 13

False 0.46

9 German Chancellor Gerhard
Schroeder accused U.K. Prime
Minister Tony Blair and Italian Prime
Minister Silvio Berlusconi of allying
with European conservative parties
in a “blockade" of the German and
French-backed candidate, Belgian
Prime Minister Guy Verhofstadt.

Schroeder doesn’t support Vershoft-
stadt as a candidate.

False 0.46

10 Johnston is the seventh person to be
killed in sectarian violence this year
in Northern Ireland where the out-
lawed IRA is fighting to end British
rule in the province.

IRA killed Johnston. False 0.46
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Table 2.5: 10 randomly selected high agreement items in rte

Premise Hypothesis GoldObserved Agreement

1 Iraq has been under a stringent eco-
nomic embargo since its August 1990
invasion of Kuwait and relief workers
are increasingly concerned about the
health of its population.

An embargo was imposed on Iraq in
1990.

True 1.0

2 The three-day G8 summit will take
place in Scotland.

The G8 summit will last three days. True 1.0

3 Kidnappings in Argentina have in-
creased more than fivefold in the last
two years, official figures show.

Argentina sees upsurge in kidnap-
pings.

True 1.0

4 But even in light of this unparalleled
decline, the SPD’s result in the June
13 European elections is of a qualita-
tively different character.

European elections took place on
June 13.

True 1.0

5 A federal jury needed just four hours
to return a death sentence against
Chadrick Fulks, who pleaded guilty
to kidnapping and carjacking result-
ing in the death of an Horry County
woman.

Chadrick Fulks gets the death
penalty

True 1.0

6 The G8 summit, held June 8-10,
brought together leaders of the
world’s major industrial democracies,
including Canada, France, Germany,
Italy, Japan, Russia, United King-
dom, European Union and United
States.

Canada, France, Germany, Italy,
Japan, Russia, United Kingdom and
European Union participated in the
G8 summit.

True 1.0

7 Crude Oil Prices Slump Oil prices drop True 1.0
8 Last July, a 12-year-old boy in Na-

gasaki - a city just north of Sasebo
- was accused of kidnapping, molest-
ing and killing a 4-year-old by shoving
him off the roof of a car garage.

Last year a 12-year-old boy in Na-
gasaki was accused of murdering a
four-year-old boy by pushing him off
a roof.

True 1.0

9 Shrek 2 retained the top spot with
$92.2 million over the long Memorial
Day weekend, fending off the global-
catastrophe tale ‘The Day After To-
morrow’ which debuted with $86 mil-
lion, according to studio estimates
Monday.

Shrek 2 retained the top spot with
$92.2 million over the long Memorial
Day weekend, fending off the global-
catastrophe tale ‘The Day After To-
morrow’ which debuted with $86 mil-
lion, according to studio estimates
Monday.

True 1.0

10Ghazi Yawar, a Sunni Muslim who
lived for years in Saudi Arabia, has
been picked as president of Iraq af-
ter the favored U.S. choice, Adnan
Pachachi, declined to take the job.

Yawer is a Sunni Muslim. True 1.0
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(and imprecise annotation scheme disagreement) result in plausible alternatives to the
gold interpretation, instance difficulty disagreement like noise disagreement only ob-
scure the gold label. For these difficult instances, gold labels do exist but annotator
disagreements are “understandable".

While difficulty is a factor in all annotation projects, for the two of the datasets used
for this research - the rte dataset and the cifar-10h dataset - difficulty is a leading
cause of disagreement. As an illustration of this, consider some randomly selected
polarizing (high disagreement) and non-polarizing (perfect agreement) instances in
rte shown in Tables 2.4 and 2.5 respectively. We observe Table 2.4 that the examples
annotators disagree on contain convoluted premises (2 and 9), convoluted hypothesis
(3 and 8), or require latent information which annotators supply based on their real
world biases (1,4,5,6,7,10), It is also interesting to see that the randomly selected
perfect agreement instances are all True according to the gold standard. Statistics
show that the observed agreement for the gold True class is on average higher than
that of the False; annotators found it easier to identify entailment than to identify
non-entailment. We arguably attribute these sorts of disagreement in rte to difficulty
rather than ambiguity because entailment is usually True or False except in cases
where the hypothesis or premise is unsatisfiable. For example, instance 7 is difficult
as it is unclear whether or not the newly appointed Editor-in-Chief has assumed his
role; however the fact “Al Jumhoria is the Iraqi Ambassador to India" is either True or
False and cannot be both.

The nature of difficulty revealed in cifar-10h can be observed by contrasting the
examples image in Figure 2.6, for which the annotators perfectly agree, with the exam-
ple images in Figure 2.5, for which observed agreement is less than 0.3. The images
presented for annotation are tiny images each containing a single object among the
categories under consideration11. In the easy cases, the objects to be identified are
clearly seen; in the difficult cases the images are hard to identify. As with rte, we
largely attribute the disagreement in this task to item difficulty because even when
the images are tiny or distorted, they still refer to real world objects with distinct labels.

Several researchers have also shown evidence of disagreement as arising from diffi-
culty [Beigman and Beigman Klebanov, 2009, Reidsma and Carletta, 2008, Beigman Kle-
banov and Beigman, 2014].

(a) cat (b) airplane (c) deer

Figure 2.5: Some images in cifar-10h with less than 0.3 observed agreement

11some images contain people or scenery neither of which is a category in CIFAR10
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(a) horse (b) ship (c) dog

Figure 2.6: Some images in cifar-10h with perfect observed agreement

2.3.5 Subjectivity

Although we limit our investigations and analysis in this thesis to tasks usually as-
sumed to be objective, this section briefly discusses disagreement arising from subjec-
tivity. As discussed in Section 2.2.7, in tasks such as offensive language identification,
annotators may disagree on whether a segment of text is offensive or not, not because
of interface issues, an overlap between categories, or because they are not paying suf-
ficient attention, nor because the items are difficult to understand, but because they
have different views on whether a segment counts as offensive or not [Akhtar et al.,
2019]. For instance, the Sexism dataset from Waseem [2016] consists of tweets such
as (2.3) (reported by Akhtar et al. [2019]) classified by expert annotators and the crowd
as either sexist or not.
(2.3) @ XXX uh... did you watch the video? one of the women talked about how it’s

assumed she’s angry because she’s latina.

Very low intercoder agreement is observed for such items, which are also flagged as
being polarized by methods such as those proposed by Akhtar et al. [2019]. This is
because people have different subjective views on what counts as sexist or not.

As mentioned above, this thesis focused on “objective” judgments, and thus none
of the datasets studied here cover this type of disagreement; we mention it here only
for completeness. But it should be clear that such cases present the most serious
challenge to the gold assumption as any single label assigned to items such as (2.3)
would be purely a matter of opinion.

2.4 Approaches to Learning from Disagreement

Current methods for learning from crowd annotations can be divided in four broad
categories, summarized in Table 2.6:

1. Methods that automatically aggregate crowd annotations into (typically, one) sin-
gle label for each instance. Most, although not all, of these models operate under
the assumption that a single objective truth (a ‘gold’) exist for every instance and
aim to produce the best estimate of this truth, but without requiring manual
adjudication and ideally not even expert judgments. (The term silver truth is
sometime used for these automatically aggregated labels.)

2. Methods that still assume that a gold label exists for every item, but relax the
assumption that this true label is always recoverable, and use information about
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disagreement to either eliminate (filter) items whose gold label does not appear
to be recoverable due to excessive disagreement among coders (hard items).

3. Methods that can be used to learn a classifier directly from the crowd annota-
tions, implicitly or explicitly assigning a score to each possible label for a given
item. In this research, these approaches are collectively called (‘soft-labelling’)
approaches.

4. Methods that involve training a classifier using a combination of hard labels
(gold or estimated ground truth) and information from crowd annotations e.g.,
to weight an item by its estimated difficulty, or the ability of its annotators.

Category Example approaches Filter Hard Soft
Aggregation of coder judgements Dawid & Skene, CrowdTruth 3

Filtering hard items Reidsma & op den Akker 3 3

Learning directly from crowd annotations DLC, Soft loss, CrowdTruth 3

Augmenting hard labels w/ disagreements Plank et al., Multi-task learning 3 3

Table 2.6: Taxonomy of learning from disagreement. Filter: whether items are filtered out; hard labels
(single ground truth); soft labels: learning from multiple annotations.

The rest of this section reviews the research that has been carried out in each
of these directions. For each of these categories, a few key research projects and
papers will be briefly discussed, with emphasis on the details of a method and its
underlying assumption about truth. The evaluation criterion for a model will also
be noted. Chapter 6 presents experiments and analysis carried out using the state-
of-the-art and commonly used methods and compares these methods with the novel
methods resulting from this PhD research.

2.4.1 Aggregating coder judgments

The simplest way to automatically aggregate a multiplicity of annotations is Majority
Voting (mv). Using this method, the estimated label for a given item is simply the
label which receives the most annotations. Majority Voting is simple to understand
and implement, and can produce good results when the annotators are in agreement
with each other and with the experts but it makes one key assumption that does not
always apply: that all annotators are equally adept at the task. Further, Majority
Voting does not take the level of difficulty of an instance into account in producing an
aggregated label. These limitations are well known, and literature has been devoted
to addressing them.

Probabilistic aggregation methods Possibly the first and definitely the most widely
used method to address the limitations of Majority Voting was proposed by Dawid and
Skene [1979]. Their approach (henceforth, d&s) estimates the posterior probability of
a label li for instance i conditioned on the observed label y, the prevalence of the
labels π, and the probability that an annotator assigns a particular label to an item
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given its actual label (this latter probability is estimated for each coder from his/her
annotations):

p(li|y, θ, π) ∝ p(zi|π)p(y|li, θ)

Numerous other probabilistic models for estimating ground truth have been pro-
posed after [Dawid and Skene, 1979]. Some of the most widely used include [Smyth
et al., 1994, Carpenter, 2008, Whitehill et al., 2009, Hovy et al., 2013, Kamar et al.,
2015, Moreno et al., 2015, Felt et al., 2015, Li et al., 2019] (see [Paun et al., 2018]
for an overview and comparison of some of these models for nlp applications).12 A
model which has proven effective in many nlp applications is the simpler mace model
by Hovy et al. [2013], in which the θ parameter of d&s is replaced by a parameter
Sij specifying the probability that coder j is spamming on i. Some of the models,
such as [Carpenter, 2008, Whitehill et al., 2009, Kamar et al., 2015], also model item
difficulty (see below).

A non-probabilistic approach to aggregation particularly motivated by the intuition
that disagreements are informative and not making the assumption that a gold truth
exists was developed within the CrowdTruth project [Aroyo and Welty, 2015, Dumi-
trache et al., 2018c, 2019]; this approach is discussed in the next paragraph.

The CrowdTruth approach to aggregation The aim of the CrowdTruth project [Aroyo
and Welty, 2015] was to investigate the hypothesis that ‘disagreement is signal, not
noise’. Research within this project led to the development of newmetrics for assessing
the quality of annotators, agreement on instances (a measure of item difficulty) and
agreement on labels [Inel et al., 2014, Dumitrache et al., 2018c, Dumitrache, 2019]
and based on these metrics, novel open and closed aggregation methods were pro-
posed. These methods were applied to relation extraction [Dumitrache, 2019], named
entity recognition [Inel et al., 2014], and a variety of other tasks with both a closed
and an open number of labels [Dumitrache, 2019].

Two versions of the metrics were proposed. In both versions, the computation of
the metrics is based on two basic ingredients: a worker vector ww,i recording the
answers of worker w on instance i, and a media unit vector Vi summing up all the
annotations of all the workers on instance i. These vectors are then used to compute
quality metrics for workers, items (‘media units’) and classes (‘annotations’):

annotator quality: (WQS(i)) - the overall agreement of one worker with the other
workers;

media unit quality: (UQS(u)) - the overall worker agreement on media unit u; and

‘annotation quality’: (AQS(a)) - the overall agreement over an ‘annotation’, i.e., label,
across all units in which it appears.

12A great many other surveys of aggregation methods exist. including those of Zhang et al. [2016] and
Zheng et al. [2017]
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In the original version of the metrics, used e.g., in Chapters 2 and 3 of Dumitrache’s
dissertation, these quality metrics were computed using cosine similarity to ‘stan-
dards’ (e.g., the ‘media quality’–the extent to which an instance was a good example
of a particular class–was computed by measuring the cosine similarity between that
instance’s media unit vector and the unit vector with a 1 for the class and 0 for all
other classes). In version 2.0, all scores are mutually dependent on each other, and
are therefore computed through an iterative process.

In Dumitrache’s work in particular, these quality metrics were then used to assign
one or more classes to an instance i: every label whose score for i is higher than
a certain (empirically established) threshold is considered a label for that instance.
These metrics were shown to work better than mv in Dumitrache’s work, but were
not compared against other aggregation methods or other methods for using crowd
annotations; in Chapter 6, this comparison is made.

The CrowdTruth project also resulted in revised versions of the standard precision
/ recall / F evaluation metrics Dumitrache et al. [2018c]. This metric still relies on a
‘hard’ label, but doesn’t given the same weight to all items. Chapter 3 contains details
of this metric.

Heuristic and metric-based aggregation methods Many heuristic-based aggrega-
tion methods were proposed (for a review see, e.g., for example Quoc Viet Hung et al.
[2013], Sheshadri and Lease [2013], Daniel et al. [2018]), but none of these have been
shown to outperform d&s when the estimated ground truth is compared to gold labels.

2.4.2 Filtering hard items

Automatic aggregation results in a single gold or estimated (silver) label for all in-
stances in a dataset which can then be fed to a supervised classifier. Models trained
using such data are usually also evaluated assuming that a single label exists for each
instance in the data. In this traditional approach, even substantial disagreement on
a training / testing instance does not result the removal of that instance. Several
researchers have argued that information about disagreement should be used to filter
the dataset: items on which there is substantial disagreement should not be used to
train or evaluate models.

Reidsma and op den Akker [2008] consider inter-annotator disagreement to be
an indicator of how easy or difficult an item is. They consider two ways of using
disagreement to improve the performance of a classifier. The first method is to filter
the data by training on the high agreement subset of the data only, i.e., treating the
other items as noise. The second, softer approach is to train several classifiers, one for
each annotator, and to build a ‘Voting classifier’ that makes a prediction when all the
classifiers agree on the class label. Both methods were shown to have a high precision
but low recall when evaluated on test data containing instances with varying levels of
agreement.
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A more systematic analysis of the effect of noisy items was carried out by Beigman-
Klebanov and colleagues (see, e.g., [Beigman Klebanov et al., 2008, Beigman-Klebanov
and Beigman, 2009, Beigman and Beigman Klebanov, 2009, Beigman Klebanov and
Beigman, 2014]). Beigman-Klebanov et al. argue that low agreement on an item
suggests this item is not a good example for the phenomenon at hand, as it introduces
noise in a model at training time and does not allow for a fair assessment of it at
test time; and should therefore be filtered from the training and test data, or at the
very least Beigman-Klebanov and Beigman [2009], Beigman and Beigman Klebanov
[2009] recommend that the low agreement (hard) instances should be separated from
the high agreement (easy) cases and trained and evaluated on separately. Beigman-
Klebanov and Beigman [2009] propose a model of ‘hardness’ that can be used to carry
out this filtering or separation, but did not test this model. Beigman Klebanov and
Beigman [2014] propose a simpler model based on a categorization of items ranging
from ‘very easy’ to ‘very hard’ depending on the extent of disagreement, and compare
the effect of selecting subsets of items at training and test time.

One noteworthy issue concerning ‘hardness’ is the observation by Reidsma and
Carletta [2008] that not all disagreements are equally problematic for a machine learn-
ing algorithm. Disagreements are unproblematic as long as they can be viewed as ran-
dom noise; they become an issue when they reveal the existence of different annotator
biases, which, according to Reidsma and Carletta, is revealed by the appearance of
patterns of disagreement. A proper model of ‘hardness’ ought to capture this finding.

Several models of ‘hardness’ have been explored in the literature in addition to
Klebanov et al.’s. Arguably, the theoretically most developed approaches are the mod-
els of item difficulty incorporated in popular probabilistic aggregation models such as
Carpenter’s [Carpenter, 2008] and specially Whitehill’s glad model [Whitehill et al.,
2009]. Chapter 6 presenting filtering experiments using two models of item diffi-
culty/hardness: high inter-annotator disagreement as in Reidsma and op den Akker
[2008] and item difficulty computed using Whitehill’s glad model.

2.4.3 Learning a classifier directly from the crowd annotations

The third category of approaches one can find in the literature includes methods that
do not make the assumption that a single gold label exists or is recoverable (thus do
not aim to identify a silver label, although they may weight labels according to various
factors), and/or aim to capture the intuition that the distribution of labels produced by
the crowd provides useful information (thus, do not attempt to filter items on which
substantial disagreement was observed). Such methods, then, attempt to learn a
model directly from the crowd’s annotations.

Broadly speaking, one can find three varieties of this class of methods in the liter-
ature:

(1) methods that treat each annotation as a separate learning instance;

(2) methods that aggregate the annotations into a probabilistic (soft) label, then
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learn directly from that distribution using a soft loss function;

(3) methods that implicitly estimate a probabilistic soft label jointly with learning a
classifier.

Exemplary approaches for each of these sub-categories are discussed next.

Multiplied examples The first type of approach is exemplified by one of the best-
known proposals in this area, by Sheng et al. [2008], who developed a multiplied
examples approach as part of their study of the effect of repeated labelling. Sheng
et al. [2008] propose that for each instance x, replicas of x are created for each unique
label j assigned by the crowd to x. A distinct replica may be created for each annota-
tion, or a replica may be created for each label, but weighed appropriately (e.g., it can
receive a weight of 1

|xj | or a weight of |xj |, where |xj | is the number of annotations of x
with label j).

Soft loss functions A second but equally intuitive way to train directly from the
annotations is to use the probability distributions of labels for items as soft targets
in a loss function that can be used with such labels, such as cross-entropy (hence-
forth, ce), mean square error (mse) or KL Divergence ((kl). This research explores this
approach (see Chapters 4 and 6).

Inducing a Classifier from Crowds Raykar et al. [2010] pionereed the Learning
from Crowds approach of carrying out aggregation while jointly training a model.
Following the work of Dawid and Skene [1979], Raykar et al. [2010] use the Expecta-
tion Maximization algorithm to jointly learn estimated gold label, annotator reliability,
and a classifier to predict whether a suspicious region on a medical image from an
X-ray, CT scan, or MRI is malignant or benign. For their experiments, the multiplicity
of annotations was provided several experts, radiologists and exemplified using a lo-
gistic classifier, but they also argue that the model can be used for any classifier and
in a multi-class setting.

Such an extension in a deep learning setting was later proposed by, Albarqouni
et al. [2016], who developed a multi-scale CNN, AggNet, to handle data aggregation
directly as part of the learning process via an additional ’crowdsourcing layer’. Al-
barqouni et al. [2016] also exemplified their method also using histology image in a
binary classification setting. Guan et al. [2018] also propose a neural network model
for learning from medical experts (in this case, learning diabetic retinopathy sever-
ity on a 5-point scale). However, their model learns from multiple annotators (also
experts) by modeling them individually with a shared net that produces unique out-
puts for each expert, and also learns averaging weights for combining their modeled
predictions [Guan et al., 2018].

Most recently, Rodrigues and Pereira [2018] propose a similar approach to Guan
et al. [2018] that they called Deep Learning from Crowds, that not only learns to
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combine the votes of multiple annotators, but also captures and corrects their biases
while remaining computationally less complex than Guan et al. [2018]. Deep Learning
from Crowds (henceforth: dlc) was also shown to work for binary classification, multi-
class classification, regression and structured prediction problems, both in computer
and nlp. In their paper, Rodrigues and Pereira [2018] show that their model outper-
forms existing models including [Guan et al., 2018] when evaluated against gold truth
(see below).

2.4.4 Using both hard labels and information about disagreements

Finally, a range of methods have been proposed that assume the existence of a gold or
silver hard label for each item, but also use information from the crowd annotations
to improve the performance of the model. Such methods can be further subdivided
into:

(1) methods that use the crowd annotations to estimate the uncertainty on the label,
and use this estimate to weight the loss associated to an item; and

(2) methods that jointly learn from the hard labels and the additional information
(soft labels or item difficulty).

Plank et al. One of the best known proposals regarding learning with disagreements
in nlp, the method by Plank et al. [2014a], falls under the first sub-category. Plank
et al. [2014a] compute the extent of confusion on a label from inter-annotator agree-
ment between two expert annotators, and use that overall degree of confusion between
labels to weight items while learning a part-of-speech (pos) tagging model from gold
labels. They tested two different ways to quantify this label uncertainty, F1-score
and tag confusion probability, finding that tag confusion probability outperformed F1
score Plank et al. [2014a].

Sharmanska et al A number of alternative approaches also using label confusion
or item difficulty to weight the hard label have been proposed. For instance, Shar-
manska et al. [2016] use inter-annotator agreement to discriminate between easy and
difficult examples, but like Plank et al. [2014a], they integrate this information into
their classifier as a measure of confidence in the usefulness of the data instance, in-
stead of using it to filter the instance. They do this using a model based on Gaussian
Processes in which ‘annotation ambiguities’ inform the likelihood function of the clas-
sifier regarding whether the influence of a given item should be retained, reduced or
ignored. Their work was not concerned with the availability or lack of ground truth;
rather, they focused on instance weighting and attempted to use disagreement to in-
form how much importance the learner should ascribe to each instance in the data
[Sharmanska et al., 2016].
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Jointly learning from gold and disagreements Lalor et al. [2017] proposed training
algorithms in which both gold labels and soft labels were used at different times–either
using gold labels for one epoch and soft labels for the next, or training using gold labels
and then fine-tuning using soft labels.

As part of this research, in Chapter 5, we propose two 2 novel approaches to learn-
ing jointly from gold and crowd annotations. We propose the mtlsl model, an ap-
proach that uses a Multi-Task Learning (mtl) framework to which jointly learn to clas-
sify the hard labels (that is the gold label classes) and the soft labels, that is the coders’
annotations, represented as a probability distribution [Fornaciari et al., 2021]. A sim-
ilar approach mtloa jointly learns the gold label and item confusion (as measured by
observed agreement). The third approach is a pretraining approach, similar to Lalor
et al. [2017] - we train the model twice, first targeting the soft labels (using the best
soft loss function) and then on the gold labels, thus pre-informing the gold.

2.4.5 Coming to soft labels from another direction: Learning from noisy
labels and distillation

As mentioned in the Introduction, a very active line of research in ai in general and
computer vision / nlp in particular is devoted to the study of methods to learn from
noisy labels above and beyond the noise due to disagreements between annotators
[Mnih and Hinton, 2012, Northcutt et al., 2021]. A particular relevant line of work
focuses on methods that introduce a measure of noise in the labels in order in order
to improve generalization. Among such methods, best known is perhaps distillation,
proposed by Hinton et al. [2015]. Distillation is a technique for transferring knowledge
from a more complex, ‘teacher’ model to a smaller, ‘pupil’ model. One of the key ideas
is that distillation works best when the student learns from the entire probability
distribution assigned by the teacher to an item, instead of a single output.

Although there is a connection between learning from soft labels containing dis-
agreements because they originate from human judgments, and learning from (natu-
rally or artificial) noisy labels in general (also highlighted e.g., by Peterson et al. [2019],
who compare their models for learning from disagreement with models learning via
distillation), this work is outside the scope of this study, which focuses on learning
from naturally generated soft labels.
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Chapter 3

Evaluation, hard and soft

In this Chapter, hard evaluation metrics used for this research will be mentioned and
soft evaluation metrics will be proposed (cosine similarity and entropy correlation have
never been used for such purposes prior to this work) along with theoretical justifications
for their appropriateness - in other words, this Chapter will make a case for the use of
these soft evaluation metrics in standard research. Each time the metrics are used in
later chapters, references will be made to this chapter, strengthening the arguments for
them.

3.1 Overview

As seen in Chapter 2, there is an extensive literature concerning how to use disagree-
ment information in learning. Much, although not all, of this work is motivated by
empirical findings such as those discussed in Sections 2.3 and 2.2 suggesting that
gold labels are only an idealization, at least for cognitive tasks. Yet, much less research
has been devoted to the study of how to evaluate models in such circumstances, es-
pecially when it is not known what the ’true’ label is.

Two forms of evaluations have been used in the literature on learning from crowd-
sourced data. Hard evaluation metrics such as Accuracy or F1 are traditionally used
when it is assumed that a true label exists notwithstanding the disagreement between
annotators. These hard metrics are briefly discussed next. More recently, however,
evidence such as that presented in Section 2.2 led researchers to question the va-
lidity of evaluating models trained with data collected without assuming a gold label
against test data with gold labels (e.g., using accuracy). This research takes the view
that this calls for a soft evaluation approach that takes the validity of the multiplicity
of opinions into account. As there is no widely accepted soft evaluation metrics, this
research proposes several soft evaluation metrics. Two of these, (ce and jsd) have
already used in the literature but not yet established. The others, Entropy Similarity
and Entropy Correlation are novel.

The discussion of the hard evaluation metrics and the proposal of soft evaluation
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metrics is laid out in three sections. Sections 3.2 and 3.3 presents the hard and
soft evaluation metrics - their assumptions, what they measure, and how to compute
them. Section 3.4 makes comparisons between the metrics that measure the same
phenomena, providing theoretical and hypothetical discussions of their appropriate-
ness and outlining the expected behaviour of the metrics on models trained with and
without the assumption of gold labels.

3.2 Hard evaluation

Evaluation metrics that assume a gold label are categorized as hard evaluation met-
rics. Hard metrics are used to evaluate a model’s predictions along two criteria:

1. How well the model predicts gold labels when all items are treated equally:
This is the traditional ‘hard’ way of measuring model performance, and although
many proposals for learning from multiple judgements argue against idealizing
classification tasks by assuming a gold label, these proposals are still evaluated
in this way. [Sheng et al., 2008, Plank et al., 2014a, Martínez Alonso et al., 2015,
Sharmanska et al., 2016, Rodrigues and Pereira, 2018]. The most frequently
used hard measures include percentage AccuracyAccuracyAccuracy and and class-weighted f1f1f1.
Both of this metrics were used in this thesis. Accuracy is used to measure the
proportion of “correct predictions” a model makes — i.e. the proportion of pre-
dictions the model makes in agreement with gold labels — and can be formally
expressed as:

Accuracy =
Number of correct predictions

Total number of predictions
(3.1)

f1 is especially used for evaluating models trained on imbalanced datasets – i.e.
when the number of items stated to belong to each class varies widely. f1 is
computed for each class and then averaged across classes. There are different
ways of summing up the f1 scores across classes depending on the desired effect
of the class-imbalance. A class-weighted f1 is computed by weighting f1 score
of each class by the number of items in that class, and then these scores: In
doing this, each class contributes to the final score, relative to its prevalence in
the dataset.

f1 is computed as follows:

f1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(3.2)

where
Precision, P =

TruePositives

TruePositives + False Positives
(3.3)

and
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Recall, R =
TruePositives

TruePositives + FalseNegatives
(3.4)

True positives (henceforth tp) for a given class is the proportion of items that
the gold standard judged as belonging to that class that the model predicts as
belonging to that class. False positives (fp) for a class is the proportion of items
judged by the gold standard as not belonging to that class which the model pre-
dicts to belong to that class. Finally, False negatives (fn) ) is the proportion of
items judged by the gold standard as belonging to that class which the model
predicts as not belonging to that class.

2. How well the model captures truth when items are weighed depending on
disagreement: Dumitrache et al. [2018c] propose the Crowd Truth Weighted
F-measure, an alternative hard evaluation metric that assumes a gold label but
weights each items contribution to the final score by the level of disagreement
experienced by the crowd. The idea behind Crowd Truth Weighted F-measure
(henceforth, ct f1ct f1ct f1) is that disagreement is a signal about the level of difficulty of
an item, and that a ‘fair’ assessment of a model’s prediction ability comes from
taking this difficulty into account. The intuition is that items on which there is
a lot of disagreement (‘difficult’ or ‘confusing’ items) should be weighed less than
‘easy items.

Dumitrache et al. [2018c] quantify item confusion/difficulty using a ‘sentence
relation score’, which we will call here the ‘item relation score’ (irs) for the sake
of generality. irs(i) is an inverse-confusion score defined as the cosine similar-
ity between the item annotation vector and the unit vector for the label under
consideration; a higher irs implies that a majority of annotators agreed with the
gold labelling. Formally, irs(i) = cos(VVV i, r̂) where VVV i is the annotation unit vector
discussed in Section 2.4.1 (the item’s label distribution) and r̂ is the unit vector
whose dimension is the number of labels, with 0 values for all components except
for the component corresponding to relation r.

The irs(i) is used to weigh the standard precision and recall scores, resulting
in the weighted precision, P ′, and weighted recall, R′, defined as:

P
′
=

∑
i irs(i) ∗ tp(i)∑

i irs(i) ∗ tp(i) + (1− irs(i)) ∗ fp(i)
(3.5)

R
′
=

∑
i irs(i) ∗ tp(i)∑

i irs(i) ∗ tp(i) + irs(i) ∗ fn(i)
(3.6)

where tp, fp and fn are the true positives, false positives, and false negatives
defined above. The weighted f-measure, ct f1, is then defined as usual as the
harmonic mean of the weighted precision, P ′, and weighted recall, R′ as in Equa-
tion 3.2 [Dumitrache et al., 2018c].
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3.3 Soft Evaluation

In this research, evaluation metrics that do not assume the existence of a gold label
are categorized as soft evaluation metrics. This research makes a case for evaluating
models that learn from multiple interpretations based on the faithfulness of their
reproduction of those interpretations. No generally accepted form of soft evaluation
exists if the existence of a gold label is not assumed. Therefore, we considered a variety
of approaches, measuring:

1. How similar the distribution of labels assigned by the model to an item
is to the distribution of judgments produced by the annotators for that
item: This type of evaluation captures the ability of the model to learn the prob-
abilities of each label relative to the others for a given instance. The underlying
assumption is that the item label distribution produced by the annotators is
representative of the implicit ambiguity of each item.

Given set of inputs, x = {xi}mi , if we define phum(xi) to be the probability distri-
bution of the crowd annotations over the set of labels for that item and pθ(xi) as
the probability distribution for that item produced by a model with parameters
θ, we measured this similarity in two ways:

• Peterson et al. [2019] proposed to evaluate the trained models using the
Cross EntropyCross EntropyCross Entropy (ce) function, in order to capture how confident the model
is in its top prediction compared to humans and reasonableness of of its
distribution over alternative categories.

ce(phum(x), pθ(x)) =
m∑
i=1

phum(xi) log pθ(xi). (3.7)

• Jensen-Shannon Divergence (jsd) [Lin, 1991] is a standard method for
measuring the similarity between two probability distributions. It is based
on the Kullback-Leibler divergence [Kullback and Leibler, 1951] (kl), but is
symmetric and always has a finite value (see discussion below).

The Jensen-Shannon Divergence between two probabilities a and b can be
expressed in terms of kl divergence as follows:

JSD(phum(xi) ‖ pθ(xi)) =
1

2
DKL(phum(xi) ‖M) +

1

2
DKL(pθ(xi) ‖M) (3.8)

where M = phum(xi)+ pθ(xi)
2 .

DKL(phum(xi) ‖ pθ(xi)) denotes the kl divergence between the two distribu-
tions and is computed as:

DKL(phum(xi) ‖ pθ(xi)) = phum(xi) log
phum(xi)

pθ(xi)
(3.9)
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Using Jensen-Shannon Divergence, the similarity can be expressed as:

JSD(phum(x), pθ(x)) =
m∑
i=1

JSD(phum(xi) ‖ pθ(xi)) (3.10)

2. How well the model captures human uncertainty in its prediction: An alter-
native approach to evaluating a model’s ability to reproduce human judgments is
to evaluate that model’s ability to capture the disagreements among annotators
in annotating the item, as measured using normalized entropy. The assump-
tion is that the entropy of the annotators’ distribution is a good measure of how
confusing the annotators find the item.

To measure the ability of a trained model θ to capture annotators’ confusion,
first, we compute on an item basis the normalized entropy of the probability
distribution produced by the model, Hnorm(pθ(xi)), and the normalized entropy
of the soft labels, Hnorm(phum(xi)), for each item i. I then compute the vectors of
the entropy values over all the items, HHHnorm_hum and HHHnorm_θ. Finally, the model
is evaluated using:

• the cosine similarity between the two vectors, which we call the
Entropy SimilarityEntropy SimilarityEntropy Similarity metric

sim(HHHnorm_hum,HHHnorm_θ) =
HHHnorm_hum ···HHHnorm_θ
||HHHnorm_hum||||HHHnorm_θ||

(3.11)

• the coefficient of Pearson [1896]’s correlation between the two vectors, which
I call the Entropy CorrelationEntropy CorrelationEntropy Correlation metric. It is given as:

corr(HHHnorm_hum,HHHnorm_θ) (3.12)

3.4 Comparisons of the evaluation metrics

In this section, the evaluation metrics for each evaluation approach are compared,
providing insight into their appropriateness and expected results when used on mod-
els trained with/without assuming a gold label.

3.4.1 Accuracy vs f1 vs ct f1

As discussed in Section 3.2, three ‘hard evaluation’ metrics can be used to capture
the degree of correctness of the predictions of a model/method on a task wrt the ex-
pert provided target labels: Accuracy, f1 and ct f1. The first two metrics do not take
disagreement into account; the ct f1 metric on the other end weighs each item’s con-
tribution to the overall score by how confusing the annotators find that item. Hence,
we have three expectations for the metrics. Firstly, we expect the relative rankings
of the models to be largely similar using both Accuracy and f1, except that because
the f1 metric is class weighted, we expect that in datasets with class imbalances, the
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Table 3.1: The predictions, f1 and ct f1 of hypothetical models on a hypothetical binary task

Model id Model predictions f1 ct f1

m1 [1, 1, 1, 1] 1.0 1.0
m2 [0, 0, 1, 1] 0.5 0.53
m3 [1, 1, 0, 0] 0.5 0.28

rank of the methods may be different as it will be based on their performance on the
majority class.

A second and third expectations about the hardmetrics were set out by Dumitrache
et al. [2018c,b]. To illustrate this, we’ll use a simplified example. Consider a binary
task with items belonging to either category 0 or 1 and let’s assume that for 4 items
in the dataset, item relation scores (irs) of [0.2, 0.2, 1, 0.8] respectively1 and the gold
labels are [1, 1, 1, 1]. Then, consider three models m1, m2 and m3. The predictions of
these models and their f1 and ct f1 for class 1 on the hypothetical data subset are
shown in Table 3.1. Model 1, m1 is a perfect model, retrieving all the relevant items;
m2 retrieves the items with high irs (i.e., the items for which the annotators highly
agree with the gold label) and m3 retrieved the low irs items. Two observations can be
made from the table: (1) the margin between m2 and m1 is narrower for ct f1 than
for f1 and (2) for m2, its ct f1 score is higher than its f1 score. The ct f1 score
by de-emphasizing ‘hard’ items allows models that perform well on ‘easy’ items to
achieve more competitive scores. This in line with the hypothesis of Dumitrache et al.
[2018b]; making the assumption that for all items, the gold label is always perfectly
suited/related to the item underscores the models’ performance. Dumitrache et al.
[2018b] further state that low(er) f1 scores for models are caused by these ‘hard’ items.
If their hypothesis stand, we do not expect to see models behave like m3 i.e. have a
negative differential between their ct f1 and f1 scores.

3.4.2 JSD vs Cross Entropy

As mentioned in Section 3.3, the jsd function is a standard way of measuring the
difference between two distributions. In coding theory, kl divergence (also known as
relative entropy) is often interpreted as the number of extra bits required to send mes-
sages using the distribution, Q, when the optimal distribution is P . In the machine
learning and statistical literature, kl is often used to measure the amount of infor-
mation lost when Q is proposed as an approximation of P (P typically represents the
‘true’ distribution and Q a model’s prediction). Mathematically, the relative entropy
from Q to P (i.e. the relative entropy of Q with respective to P ) is defined as follows:

DKL(P ‖ Q) = −
∑
x∈X

p(x) log q(x) +
∑
x∈X

p(x) log p(x) (3.13)

This implies that when p(x) = q(x), DKL(P ‖ Q) = 0.
1Given the definition for irs, the more annotators agree with the gold interpretation, the higher the

irs score.
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Cross Entropy can also be interpreted using coding theory. While kl measures the
number of extra bits per message, Cross Entropy is the average or expected number
of bits needed to send messages using Q when the optimal distribution is P . Mathe-
matically, the Cross Entropy of Q with respect to P is given as:

H(P,Q) = −
∑
x∈X

p(x) log q(x) (3.14)

Consequently, when p(x) = q(x), H(P,Q) = −
∑

x∈X p(x) log p(x), which is the entropy of
P – H(P ). In other words, the lower bound of HKL(P,Q) is not necessarily 0 but the
entropy of P 2. We can also re-formulate DKL(P ‖ Q) as follows:

H(P,Q) = DKL(P ‖ Q) +H(P ) (3.15)

where H(Q) denotes the entropy of P .
The implications of these observations for the purposes of evaluating models by

comparing their predicted distributions with the distribution produced by the anno-
tators are as follows. Firstly, when a model’s predictions are perfectly identical to the
human’s distribution, the kl divergence (and the jsd) is always zero– i.e., both kl and
jsd but not ce are lower bounded at zero. Secondly, we see from equations (3.13) and
(3.14) that neither kl divergence nor ce have an upper bound. The Jensen-Shannon
Divergence function, however, is upper bounded at 1 ln 2 for the log base e, or 1 if
using the base 2 logarithm [Lin, 1991]. This upper and lower boundedness makes
jsd desirable as a metric, as the results are more easily comparable across datasets,
and perhaps, hard and soft metric score can be combined (for instance by taking the
sum of half of each). This is the reason we chose jsd as one of our soft evaluation
metrics.3

Finally, the fact that jsd scores are bounded within a small range, unlike ce and kl,
also means that all the results are confined with a small range than kl divergence or
ce scores. This might have implications for checking the significance between results
for the same dataset across models; a narrower range means the results might seem
to converge to a point, making it difficult to tell, at a glance which results significantly
differ from each other. For this reason, we also keep the widely known/used howbeit
not bounded ce metric as a soft evaluation metric. We do, however, expect the model
rankings of both ce and jsd to be largely similar.

3.4.3 Entropy Similarity vs Entropy Correlation

We use (normalized) entropy to measure the degree of uncertainty in the prediction
of the crowd or the model for any any given item. To compare the uncertainty of a
model with respect to the uncertainty of the crowd, we use Pearson correlation [Pear-

2In our context, the lower bound of HKL(P,Q) is only 0 when a given item belongs exclusively to a
single classes

3There has been some discussion in the literature about normalized cross entropy [Stemmer et al.,
2002, Sohn, 2016], but this is not yet as widely accepted as jsd
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son, 1896] and cosine similarity (see section 3). While neither satisfies the triangle
of inequality and cannot be considered metrics in the mathematical sense, they both
measure important relationships. With Entropy Correlation, we can measure the lin-
ear relationship between the two vectors. In other words, we can answer the question
“Is the model uncertainty high when the crowd uncertainty is high, and low when
crowd uncertainty is low ?”. With Entropy Similarity, bounded between [0, 1], we can
get a sense of how similar the vector of model entropy is to the vector of crowd entropy.

It is worth noting that cosine similarity is correlated with correlation; the more
similar vectors are, the higher their correlation. As such, we expect the models’ rank-
ing by Entropy Similarity and Entropy Correlation to be largely the same. It is also
worth noting that since we use the normalized version of entropy, the results using
these two “metrics”4 are comparable across datasets.

3.4.4 Entropy Similarity/Entropy Correlation vs Cross Entropy/JSD

The reason for using both distribution distance/divergence (using Cross Entropy/jsd)
and entropy similarity/correlation (using Entropy Similarity/Entropy Correlation),
can be illustrated by the following hypothetical example.

Consider a scenario where:

• phum(xi) = [0.8, 0.2, 0.0, 0.0] for a given item i, and

• two models m1, and m2 produce a pθ1(xi) and pθ2(xi) of [0.6, 0.2, 0.2, 0.0] and
[0.0, 0.0.0.8, 0.2], respectively.

We can make two observations from this example. First, model m1 agrees more
with the crowd on where probability mass should be assigned to item i; and second,
model m2 totally disagrees with the crowd on which classes are valid for item i, but
has the same general level of uncertainty about its prediction as the crowd does. With
Cross Entropy and jsd we can capture the first type of similarity: the Cross Entropy
and jsd scores for m1 and m2 are (0.73, 0.33) and (27.63, 1.0) respectively5. By contrast,
with Entropy Similarity and Entropy Correlation we can capture the second type of
similarity: Hnorm(phum(xi)) = Hnorm(pθ1(xi)) = 0.36 while Hnorm(pθ2(xi)) = 0.69.

4We refer to them as metrics for the purposes of this dissertation
5we avoid infinite values by adding by clipping the predictions using a small epsilon, 1e-12
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Chapter 4

Soft-loss functions

In this chapter, practical evidence is provided that learning from crowds can outperform
training from experts but only under certain conditions. Theories and methods put forth
in literature are evaluated using various datasets and tasks and with different char-
acteristics, and in a variety of evaluation contexts (also, practical arguments for soft
evaluation made in Chapter 2 are buttressed here). In short, research questions 3 and
4 are answered here.

4.1 Introduction

In Chapter 2, we saw evidence that training ai models directly from the distributions
of judgments produced by a crowd, not only provides a better account of the empirical
data in nlp [Poesio and Artstein, 2005, Recasens et al., 2011, Pradhan et al., 2012,
Plank et al., 2014b, Dumitrache, 2019] and computer vision [Sharmanska et al., 2016,
Rodrigues and Pereira, 2018], but can also outperform models trained using ideal
(gold) labels [Peterson et al., 2019]. We also discussed several methods for training
directly from annotator distributions [Sheng et al., 2008, Raykar et al., 2010, Albar-
qouni et al., 2016, Guan et al., 2018, Rodrigues and Pereira, 2018]. As mentioned in
Section 2.4.3, one intuitive way to learn from multiple judgements is to train directly
on all the judgements by targeting the probability distributions of labels for each item;
the training is carried out using a probability-comparing loss function. This combi-
nation of target soft labels and a probability-comparing loss function is what we call
the soft loss function.

Recently, Peterson et al. have provided evidence of the benefits obtained using a
soft loss function, applied to training a Computer Vision model for image classification
and argued that such a function using ce) is the optimal loss function when the goal
is to generalize well to unseen data. They showed that training using soft loss out-
performs training on the gold labels. They hypothesize that the benefits are affected
by the features of the dataset, and they provided an elegant demonstration that using
a traditional loss function such as cross-entropy as a ‘soft loss’ function is optimal
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when the objective is to maximize performance on unseen data. However, Peterson
et al. did not evaluate this proposal for other types of assessment and for other tasks.
They focused on a single image classification dataset, and only compared training from
human-produced probabilistic soft labels with other techniques for probabilistic label
generation such as knowledge distillation Hinton et al. [2015]. They did not consider
other methods for learning from crowd annotations, and evaluation was restricted to
hard metrics and the ability to produce a distribution with minimal cross-entropy
with respect to the human distribution.

In this chapter, the research into the soft-loss proposal is extended in several di-
rections. Firstly, we carry out a systematic testing of the hypothesis that soft loss (and
by extension learning from crowds) can outperform gold training using crowdsourced
datasets for several ai tasks and with different characteristics, and in a variety of eval-
uation contexts. Precisely, we test the hypothesis on the 3 binary classification tasks
- Information Status Classification using the Phrase Detectives corpus, Recognizing
Textual Entailment and Medical Relation Extraction - and 3 multi-class classification
tasks - pos tagging, LabelMe image classification and cifar10h image classification
tasks - used in this research. For evaluation, we use accuracy, cross-entropy and
entropy correlation; one metric for each approach to evaluation discussed in Section
3. Secondly, we carry out an extensive investigation into the hypothesis that the
method used to extract a probability distribution from the raw annotations matters,
the choice depending on the characteristics and amount of annotators. Finally, we
carry out an analytical comparison of the soft loss and the hard loss counterparts
In carrying out these experiments, this Chapter provides answers to one research
question put forth in Chapter 1 namely: RQ3: Can models trained using multiple
annotations/interpretations, without assuming gold labels, achieve similar or better
performance as methods that rely on gold labels alone?

4.2 Methodology

4.2.1 Defining Soft-loss Functions

Peterson et al. [2019] proposed to train models on crowd annotated data using ‘soft
labels’ derived from the annotations as target distributions in a cross-entropy loss
function. Given some observed data {xi, yi}ni=1 at training time we want to minimize
its expected loss:

n∑
i=1

∑
c

L(fθ, xi, yi = c)p(yi = c|xi). (4.1)

The second term in (4.1) using hard labels (from some consensus (adjudicated ‘gold’
label or aggregated ‘silver’ label) only yields the optimal classifier if p(y|x) is 1 for a
single category and 0 for all other categories, but this has been shown to be an ideal-
ization [Poesio et al., 2019, Pradhan et al., 2012, Sharmanska et al., 2016].

A more natural label categorization that factors in the uncertainty in annotation
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and label categorization would be the human label distribution phum(y|x). Using a
negative log-likelihood, this loss reduces to the cross entropy loss function ce:

−
n∑
i=1

∑
c

phum(yi|xi) log pθ(yi = c|xi), (4.2)

where pθ(x|y) is obtained by applying a probability function (softmax) over the log-
its produced by the classifier. This combination of probabilistic soft labels with a
probability-comparing loss function is what we call the soft loss function approach.
In particular, we call the function expressed in Equation 4.2 the cross entropy soft
loss function (or simply soft loss).

We explore three methods of generating phum(y|x) from the crowd annotations. The
first is the standard normalization function, also used by Peterson et al.. Peterson
et al. estimate phum(y|x) by applying a standard normalization function over the crowd
annotations for each item. Given C classes, let di = [d1i , d

2
i , ...d

C
i ] be a vector where some

dji entry stores the number of times the coders chose the j-th class for the i-th training
example, using normalization,

phum(yi = j|xi) =
dji∑
a(d

a
i )

(4.3)

This implies that any class j for which the annotators provide no annotations will have
a probability of 0. For datasets with numerous annotations this is a desirable effect,
but for datasets with fewer annotations where some valid classes were not selected
by any annotators, we hypothesize that using a softmax for normalization would be
more appropriate, since exp(dji ) = 1 when dji = 0:

phum(yi = j|xi) =
exp(dji )∑
a exp(d

a
i )

(4.4)

We hypothesize that although this transformation might introduce some noise, it is
a more representative distribution for datasets with fewer and/or lower quality an-
notations. Furthermore, we also hypothesize that the posterior of a probabilistic
aggregation function (prior to the use of argmax to get a single label) is a good soft
label approximate for datasets with a mixed quality of annotators annotating a varying
number of items. Thus, we compared soft labels generated using the standard normal-
ization function used by Peterson et al. with soft labels generated using the softmax
function and soft labels generating from the posterior distribution of two widely used
probabilistic aggregation models, mace and d&s (see Section 4.2.2).

4.2.2 Other Methods Tested

We test the soft loss method against hard label training methods. Hard label training
involves training by targeting labels aggregated using aggregation methods. Previ-
ously, in Section 2.4.1 of Chapter 2, we discuss the theory and assumptions of 3
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aggregation methods - Majority Voting, Dawid and Skene and mace. In this section,
we outline the details of training using these hard labels.

• Majority Voting Training: For a given data instance, majority voting selects the
class with the highest number of annotations as the hard label for the instance.
Majority voting training (henceforth mv training) involves training by targeting
hard labels gotten by majority voting aggregation. It should be noted that ag-
gregating soft labels generated using softmax or standard normalization results
gives the majority voting aggregate for those labels.

• Dawid and Skene Training: As mentioned in Section 2.4, the Dawid and Skene
aggregation method estimates the posterior probability of a label for a given item
as a function of the prevalence of labels and the computed reliability of the
coders; the label with the highest posterior probability is chosen as hard/aggregate
label. Dawid and Skene training (hence d&s training) is training by targeting hard
labels aggregated using Dawid and Skene aggregation method. We used a pub-
licly available implementation of the Dawid and Skene algorithm1 but unlike the
paper which uses random initialization, we obtain initial estimates of the ground
truth using majority voting.

• MACE Training: mace training is training by targeting hard labels aggregated
using mace aggregation method Hovy et al. [2013], proposed as a simpler yet
effective alternative to Dawid and Skene aggregation. While Dawid and Skene
aggregation which learns a per-class model of annotator reliability, mace aggrega-
tion method, only learns whether an annotator is spamming on a given instance.
We use the freely available implementation of mace provided by the authors2

We also compare soft loss against gold training, training by targeting expert-provided
gold labels without the addition of crowd information.

4.2.3 Datasets

As mentioned from 3.1, we experiment using 6 datasets described in Chapter 2, 3
multi-class datasets - Gimpel et al.’s pos, Rodrigues and Pereira’s subset of LabelMe
and Peterson et al.’s cifar10h - and 3 binary classification datasets - pdis, Dagan
et al.’s rte, and Dumitrache et al.’s mre.

The smaller datasets, rte and mre consist of less than 1000 examples each and
were trained using 10-fold cross validation. We split the larger datasets, gimpel-pos,
pdis, LabelMe and cifar10h into train:development:test sets:

• pos - gimpel-pos consists of over 14,000 examples with crowdsourced labels for
each token. We used 12,000 examples for training and the remaining examples
for testing. We used a similar dataset released by Plank et al. as a development
set - this development dataset did not contain any crowd annotations.

1https://github.com/sukrutrao/Fast-Dawid-Skene
2https://github.com/dirkhovy/MACE
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• LabelMe - For LabelMe, we randomly split the 10,000 images collected by Ro-
drigues and Pereira into training and test data (8,882 and 1,118 images respec-
tively) to allow for ground truth and probabilistic evaluation. 500 images from
Russell et al.’s original dataset having only gold labels were used as development
set.

• cifar10h - For ic-cifar10h, we used the 10,000 image cifar-10h dataset for train-
ing and testing using a 70:30 random split, ensuring that the number of images
per class remained balanced as in the original dataset. We used a subset of the
cifar-10 training dataset (3,000 images with only gold labels) as our development
set.

4.2.4 Base Models

This section briefly outlines near-state-of-the-art models used for each of these tasks.
This models were implemented or adapted for training using the methods outlined in
Sections 4.2.1 and 4.2.2 and are available online at https://github.com/AlexandraUma/
dali-learning-with-disagreement. The training details are included below.

Part-of-Speech Tagging (POS) Model For pos tagging, we implemented our own pos
tagger, inspired by Plank et al. [2016], but with an attention over two kinds of input
representations, the character and the word level, with each level of representation
encoded using a separate rnn architecture. On a character level, each word is encoded
as a sequence of characters–using a ‘sequence rnn’– and the final states for each
sequence of characters are used as representations. To get word-level representations,
each word is encoded by passing the word embeddings through a ‘context bi-rnn’; the
word embeddings are initialized from pretrained Glove embeddings [Pennington et al.,
2014]. Each representation is passed through a separate attention mechanism [Yang
et al., 2016]. The final representation, a concatenation of these outputs, is passed
through a ffn with one ReLU hidden layer and an output layer with softmax activation
so that the output of the model is the probabilities for each word belonging to each of
the the 12 universal pos tags.

The model was always trained for 20 epochs using the Adam optimizer [Kingma
and Ba, 2015] at a learning rate of 0.001 with the the model with best development
F1 saved at each epoch. This best model was used for evaluation on the test data.

Information Status Classification Model The model for pdis classification3 was
developed by comparing architectures from two models: the state-of-art coreference
model and the state-of-art is classification model. The state-of-the-art model for is
classification at the time we started these experiments [Hou, 2016], was developed for
the isnotes corpus [Markert et al., 2012, Hou et al., 2013] and achieves a performance

3henceforth I use pdis to refer to both the task and the dataset, specifying the difference where nec-
essary
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of 78.9% on that corpus. The state-of-art coreference resolution system at that time
[Lee et al., 2018], included a mention representation component. I developed our
model by sorting the mentions using the algorithm outlined by [Hou, 2016] and a span
representation similar to Lee et al. [2018] but also including the non-syntactic features
from [Hou, 2016]. The model was trained for 10 epochs with training parameters set
according to [Lee et al., 2018]. For each experiment, the best model based on the
development set was chosen.

Relation Extraction For the medical relation extraction task (henceforth mre), I
fine-tuned a bert sentence classifier [Devlin et al., 2019]. The predicted probability
for a sentence is obtained by applying a softmax function over the 2D output of the
classifier. The model was trained for 4 epochs using a 10-fold cross-validation at a
learning rate of 2e-5. The performance of this model is much better than that of
the original model by Dumitrache et al. [2018a], which only achieved an F1 of 0.638,
whereas our model achieves an F1 of 0.847.

Recognizing Textual Entailment The rte system described by [Dagan et al., 2006]
is no longer state-of-the-art, so a new model was developed for the task. Given the
small size of the dataset, the model had to be concise, with as few parameters as
possible without sacrificing performance. For each item, the hypothesis and the text
were each encoded using bert [Devlin et al., 2019] and concatenated the encoded pair.
This concatenation is the sentence-pair representation and is passed through a feed-
forward neural network with 3 ReLU activated hidden layers and an output layer. The
predicted probability for each example pair is obtained by applying a softmax function
over the outputs.

The model was trained for 20 epochs using 10-fold cross-validation using Adam
optimizer [Kingma and Ba, 2015] at a learning rate of 0.0001. This model trained
on gold labels outperforms the model in [Jamison and Gurevych, 2015]. While the
[Jamison and Gurevych, 2015] rte achieves 51.3 micro F1, our model achieves 61.31
micro F1.

LabelMe Image Classification Model The model from [Rodrigues and Pereira, 2018]
was replicated for learning to classify images in LabelMe (henceforth ic-cifar10h).
Rodrigues and Pereira [2018] encoded the images using pretrained cnn layers of the
VGG-16 deep neural network [Simonyan et al., 2013]. This encoding is passed into
a feed-forward neural network layer with a ReLU activated hidden layer and a single
output layer. Output probabilities are obtained by applying a softmax function to these
outputs. Training was carried out for 50 epochs using the Adam optimizer Kingma
and Ba [2015] at a learning rate of 0.001. The model with the best development result
was saved and used for testing.
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CIFAR-10H Image Classification Model The model trained for cifar10 image clas-
sification (henceforth ic-cifar10h), is the publicly available4 Pytorch implementation
of the ResNet-34A model He et al. [2016], a deep residual framework which is one
of the best performing systems for the cifar-10 image classification. The model was
trained for a total of 65 epochs divided into segments of 50, 5 and 10, using a learn-
ing rate of 0.1 and decaying the learning rate by 1e-4 at the end of every segment.
The model used for the evaluation phase was the model with the best development
performance.

4.3 Experiment Design

To achieve the goals of this chapter, the experiments are conducted in two stages.
First, soft-loss models (base models discussed in Section 4.2.4 targeting soft labels)
are trained for each task using probabilistic soft labels generated using (1) standard
normalization and (2) softmax and evaluated with the assumption of a gold label (using
accuracy). The best performing probabilistic soft label is designated as the ‘true soft
label’. The second stage involves training using the other training approaches outline
in Section 4.2.2 and evaluating all the models using Accuracy, Cross Entropy and
Entropy Correlation metrics. For soft evaluation, the models’ outputs are compared
to the true soft label.

4.4 Results

Table 4.1 compares the two methods of generating soft labels from the crowd annota-
tions: softmax and standard normalization. To account for non-deterministic model
training effects, we average over 30 runs, except for ic-cifar10h and mre which were
run 10 times each due to model complexity. The mean results were reported as well
as the standard deviation from the mean to show the stability of the results. The
soft label generation approach that results in the best soft loss model for each task
is highlighted in bold. This ‘best soft loss’ is what we compare with hard loss in 4.2
and 4.3.

Tables 4.2 and 4.3 show the results of training hard and soft loss models using the
various approaches for the multi-class classification and binary classification tasks
respectively. Again, the models are run several times to account for non-deterministic
model training effects and report the mean results were reported. We also carry signif-
icance via bootstrap sampling, following Berg-Kirkpatrick et al. [2012], Søgaard et al.
[2014] to allow for a precise comparison of the methods. The in superscript rank the
models in increasing order from best to worst based on significance. Models without
significance differences in performance are equally ranked.

4https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10
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Table 4.1: Different Methods for Generating Probabilistic Labels from Crowd Annotations and their
effect on Accuracy

pos is mre rte ic-labelme ic-cifar10h
Standard Norm 78.99 ± 0.36 90.68 ± 0.43 75.79 ± 0.29 60.24 ± 0.99 83.46 ± 0.82 66.54 ± 0.95
Softmax 79.80 ± 0.28 90.50 ± 0.55 75.27 ± 0.18 60.87 ± 0.84 84.66 ± 0.52 65.50 ± 1.10
D&S posterior 77.95 ± 0.61 92.74 ± 0.22 74.78 ± 0.26 60.51 ± 0.86 83.27 ± 0.76 65.16 ± 1.34
MACE posterior 78.27 ± 0.94 92.81 ± 0.26 75.32 ± 0.36 60.53 ± 0.83 83.53 ± 0.56 65.28 ± 1.02

4.5 Discussion

This section discusses several observations from the Tables 4.1, 4.2 and 4.3. Subsec-
tion 4.5.1 discusses the effects of experimenting with various approaches to generat-
ing soft labels on the accuracy of the soft loss model. Following from this discussion,
‘best soft loss model’ for each dataset is the best result from this table.

Subsection 4.5.2 discussions the performance of the soft loss function on multi-
class datasets while Subsection 4.5.3 discusses soft loss on binary datasets. We
compare the soft loss function with hard loss training on (1) silver (aggregated) labels
and (2) gold labels but reserve a nuanced discussion of the different approaches to
silver hard loss training for Chapter 6.

4.5.1 Generating Probabilistic Labels from Crowds

The results in Table 4.1 illustrate the effect on Accuracy of these different ways of ob-
taining the probabilistic labels. As we can see from that Table, how the probabilistic
distribution is obtained does affect the results. For the mre and ic-cifar10h tasks,
using standard normalization to generate the soft labels yielded the most models ac-
curate models; the softmax function yielded the best soft loss model for pos, rte and
ic-labelme; using the posterior of the mace aggregation model as a soft label yielded
the best results for pdis. We hypothesize that these differences can be attributed to the
fact that the standard normalization function does not change the class proportions
(as the softmax function does) or under-count disagreement (as the mace and d&s
posteriors do) but retains the richness of the original representation. The differences
between the datasets explains why these properties of these functions matter.

We hypothesize that the standard normalization function is a better choice for high
agreement datasets also having a large distribution of good quality annotations. This
hypothesis is supported by the result on the tasks trained using datasets that meet
this criteria: ic-cifar10h and mre. For these datasets, which are characterized by
a combination of (1) relatively higher observed agreement of 0.92 and 0.86 respec-
tively (2) a median of 50 and 15 annotators per item respectively (3) annotators with
an average accuracy of 0.95 and 0.76 respectively, and (4) a majority of good quality
annotators (see Table 2.1), soft-loss training targeting standard normalization proba-
bilistic labels yield the most accurate results. In general, the trend seems to be that
the higher the observed agreement, the higher the accuracy of training by targeting
standard normalized soft labels over targeting softmaxed soft labels (see Figure 4.1).
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Figure 4.1: Graph of observed agreement against the difference in accuracy training with standard
normalization (stdn) soft labels and training with softmax soft labels.

By contrast, the softmax worked best for low agreement datasets as it exacerbates
disagreement and assigns a mass to to all items, even ones receiving no annotations.
This affects performance with some datasets. Consider the following example from
the pos dataset with the token to be tagged in bold:

Sentence:"Journalists and Social Media experts alike will appreciate this spoof out of Dallas

: url"

Gold Label: Determinant

Crowd annotations: {Noun: 1, Pronoun:1, Adjective:1, Adposition:2}

The observed agreement for the item is 0.1, indicating that annotators found the item
confusing. The standard normalization only assigns a probability to the four labels
produced by annotators - {Noun:0.2, Pronoun:0.2, Adjective:0.2, Adposition:0.4}, while
softmax assigns probabilities to these four labels {Noun:0.11, Pronoun:0.11, Adjec-
tive:0.11, Adposition:0.30} but also assigns a small probability of 0.04 to each of the
other labels not selected by any annotators (including the Determinant class). So for
this low agreement item, although normalization and softmax produce distributions
with the same mode (i.e., the majority vote), the softmax function unlike the standard
normalization function (1) assigns a smaller mass to the modal class (which according
to the gold is not the correct label for that item) and (2) assigns a small mass to the
class chosen by the experts. Thus, for datasets like rte having a relatively low ob-
served agreement of 0.63, and datasets like pos and ic-labelme also having relatively
low agreement of 0.73 and additionally having over 11% for which the gold label did
not receive any annotations, the softmax function proves to be the best option.

The pdis dataset is a mixed bag, with an observed agreement closer to mre and ic-
cifar10h than to that of pos and ic-labelme; the results reflect that. The difference
in Accuracy between training with standard normalized soft labels and training with
softmaxed soft labels is smallest for the pdis dataset. However, soft-loss methods
for this task benefit from using the mace and d&s models that try to discriminate
between annotators and eliminate noise, likely because of the relatively lower observed
agreement (leaving room for improvement) and high number of annotations annotated
per annotator (availability of ample examples to learn annotator characteristics from).
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As a result of this analysis, in our experiments the ‘true soft labels’ used in the
rest of this chapter is standard normalized soft labels for ic-cifar10h and mre, mace
posterior for is, and softmax soft labels for pos, rte and ic-labelme.

Table 4.2: Table showing the Accuracy (Acc), Cross Entropy (CE) and Entropy Correlation (Corr) results
of soft loss and hard label training across methods for the multi-class classification tasks. Superscript
indicates significance ranking of methods from best to worst - 1 being the best method for the particular
task evaluated using a particular metric. Equally ranked methods are not significantly different

pos ic-labelme ic-cifar10h
Acc↑ CE ↓ Corr↑ Acc ↑ CE ↓ Corr↑ Acc↑ CE↓ Corr↑

Gold training 89.221 3.343 0.413 97.211 4.864 -0.013 65.222 2.612 0.1311

mv training 77.903 2.582 0.522 80.365 3.073 0.152 65.682 2.632 0.132

d&s training 77.463 2.522 0.502 83.433 2.902 0.112 65.652 2.551 0.132

mace training 78.083 2.512 0.522 82.534 2.922 0.142 65.522 2.652 0.112

Best Soft-loss 79.802 1.351 0.661 84.662 1.641 0.411 66.641 1.111 0.221

4.5.2 Soft Loss for Multi-class Classification

Two observations are apparent from Table 4.2: (i) soft-loss learning achieved better
results at learning to predict gold labels than learning from silver labels (mv, d&s
and mace); (ii) soft-loss outperforms gold training in a single task, cifar-10h image
classification (ic-cifar10h). The first observation suggests that a soft aggregation of
labels from annotators that retains the uncertainty of the crowd is beneficial over a
hard consensus that aims to ‘even out the noise’, irrespective of the level of expertise
of the annotators or their level of disagreement. ic-cifar10h, annotated by highly
accurate (‘expert’) annotators and pos and ic-labelme annotated by a mixed crowd of
annotators, all benefit from probabilistic soft labelling over hard labelling from crowds
(see Table 2.1 for dataset characteristics).

Secondly, gold labels are usually the aggregate or adjudicated consensus of expert
annotators, and as such can be very useful during learning, but as noted several times
in the literature, they may present an idealization of the task which may be excessive
in cases when the disagreement is real [Poesio et al., 2019, Pradhan et al., 2012, Shar-
manska et al., 2016]. As seen in Figure 4.2, in a complex task like image classification
disagreements in annotation can be information about the underlying difficulty of a
given example. Although several annotators chose dog as the label for that image, deer
and horse also received substantial amounts of votes, and the diverging opinions are
clearly an indication of the confusing nature of the image. Probabilistic soft labels
preserve label uncertainty without detracting from hard aggregated accuracy: in this
case, the probabilistic soft label combines the high accuracy of majority voting with
uncertainty preservation. The higher accuracy of soft-loss training compared to gold
training for this task seems to suggest that particularly when the annotators are of ex-
pert quality, training using all expert annotations rather than a consensus gold label
yields better results.
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Figure 4.2: An example of disagreement from cifar10h
gold: deer, label with most votes (mass): dog, crowd counts: [dog:33, deer:13, horse:4];

4.5.3 Soft Loss for Binary Classification

One clear observation from Table 4.3 is that the soft-loss method does not signifi-
cantly outperform hard loss ‘silver’ training for any of the datasets when evaluated
using Accuracy, but rather remains on par with the best silver method. This seems
to indicate that the benefits of retaining uncertainty in labelling does not apply for
binary classification. This could be for one of two reasons. Firstly, it could be because
there is less overlap between the labels as the classes are less fine-grained. Secondly,
it could be that a different approach to soft label training is required for binary classi-
fication. Further research requiring the measurement of expected label overlap would
be required to validate this line of reasoning.

The table also shows that although soft loss does not yield the most accurate mod-
els, soft loss models outperform all the hard loss counterparts when evaluated using
soft metrics.

Table 4.3: Table showing the Accuracy (Acc), Cross Entropy (CE) results of soft loss and hard label
training across methods for the binary classification tasks. Superscript indicates significance ranking
of methods from best to worst

pdis mre rte
Acc↑ CE ↓ Corr↑ Acc ↑ CE ↓ Corr↑ Acc↑ CE↓ Corr↑

Gold training na 5 na na 84.881 0.575 0.224 61.371 0.772 0.042

mv training 90.712 0.403 -0.103 75.172 0.524 0.214 60.672 0.793 0.042

d&s training 92.802 0.302 0.032 75.202 0.352 0.382 60.373 0.772 0.042

mace training 92.901 0.302 0.032 75.152 0.463 0.273 60.552 0.803 0.022

Best Soft-loss 92.961 0.271 0.051 75.662 0.311 0.441 60.871 0.741 0.051

4.6 Conclusions (Answering RQ3)

In this Chapter we make the following contributions (i) test the hypothesis that soft
loss is beneficial systematically in a variety of evaluation contexts, using crowdsourced
datasets for several ai tasks and with different characteristics, and comparing the
results with those obtained with state-of-the-art methods for learning from crowd-
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sourced data; and (ii) we show that the method used to extract a probability distribu-
tion from the raw annotations matters, the choice depending on the characteristics
and amount of annotators.

We found that training using a cross entropy soft loss function works well not
only to train models that generalize well to unseen data, as demonstrated by Peterson
et al., and not only on datasets with the characteristics of ic-cifar10h, but in general
as a method for training models from soft labels and for a variety of tasks, subject to
some conditions. We also found that although this type of training does not in general
outperform gold with respect to hard evaluation metrics, it does so with datasets with
a substantial number of annotations per item and high quality annotations, such as
ic-cifar10h. Also, soft-loss training systematically outperforms gold training when
the objective is to achieve a model whose output mimics most closely the distribution
of labels produced by the annotators, either in respect to relative ranking or in terms
of uncertainty. Thus, in making these contributions, we provide an answer to the
research question ‘ What is the evidence that training models using crowd annotations
helps building better models in comparison with learning from expert-provided gold
labels only?’

63



Chapter 5

Informing Gold Labels

In this chapter, we answer the question ‘what is the evidence that adding crowd annota-
tion information to gold label can be beneficial over using gold models alone?’ (i.e. RQ4).
To answer this, two new methods for augmenting gold labels with crowd information,
mtlsl and mtloa, are introduced. Both methods are based on the Multi-Task learning
paradigm. We evaluate these models using Accuracy, Cross Entropy and Entropy Cor-
relation, comparing their results with learning using gold labels alone.

5.1 Motivation

In Chapter 4, we discussed the benefits of soft loss training – training by targeting
a probabilistic distribution generated from annotators – over training with gold or
silver labels only. We saw that although training with gold labels might yield the most
accurate models wrt to the gold standard, soft loss models are better at predicting
labels with a distribution similar to the human (crowd) distribution as measured using
metrics like cross entropy and entropy correlation. In other words, training models
using crowd distribution gives them access to information that training using hard
labels alone does not provide.

In this Chapter, we seek to answer the question ‘Can information from crowd an-
notations be used in conjunction with gold labels to build better models compared to
learning from gold labels only?’ i.e. RQ4. To do this, we propose two novel models
based on the Multi-Task (MTL) paradigm [Caruana, 1997].

5.2 Multi-Task Learning

In Chapter 4, we saw that more often than not, especially for noisy datasets, gold train-
ing achieves the best performance when the goal is to learn to accurately predict gold
labels. However, this form of training ignores the information and signals available
in crowdsourced data, evidenced in disagreement among annotators (see Chapter 2).
The multi-task learning framework provides a way train a model that learns the most
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appropriate ‘gold’ label as specified by an expert or group of experts, while also inform-
ing the model about the nuances and uncertainty present in the data. MTL works by
jointly learning auxiliary tasks in addition to the main task so that by leveraging the
information contained in the training signals of the auxiliary tasks, the main task can
be better optimized thereby improving generalization [Caruana, 1997].

For our purposes we use a hard parameter sharing architecture for our multi-task
learning models. Hard parameter sharing is applied by sharing the hidden layers
between all tasks, while also keeping task-specific layer(s) Ruder [2017]. This archi-
tecture, shown in Figure 5.1 has been shown to greatly reduce the risk of overvitting
on the main task Ruder [2017].

Figure 5.1: Hard parameter sharing MTL

For both of the MTL models proposed in this work, we use a hard parameter sharing
architecture to learn the main task (gold training) and a single auxiliary task using a
single task-specific layer.

The choice of an auxiliary task is rooted in the premise that the auxiliary task
should be related to the main task in some way and that it should be helpful for pre-
dicting the main task. This auxiliary task is usually chosen with one or more of the
following goals in mind: as an implicit form of data augmentation, to provide repre-
sentation bias to the main task, to focus the attention of the model on the relevant
features, as a form of eavesdropping/hinting, and/or to regularize the model by in-
troducing an inductive bias Ruder [2017]. We propose two MTL models – mtlsl and
mtloa – that differ in the choice of auxiliary function.

5.2.1 Multi-Task Learning with Gold and Soft Labels (MTLSL)

The main task for this model is to learn the gold labels and the loss function for this is
the negative log-likelihood loss function between the models predictions and the gold
labels. The auxiliary task is to learn the probability distribution of the crowd labels
i.e. probabilistic soft labels. This task was chosen to act as a regularizer to the main
function; to introduce an inductive bias thereby challenges the hard assumptions of
the main task. The auxiliary loss is necessarily a probability comparing loss function
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and for this we chose the KL-divergence as it is a natural choice to measure the differ-
ence between the prediction distribution Q and the distribution of soft labels P . (The
architecture for this model is illustrated in the Figure 5.2)

Figure 5.2: An illustration of the MTLSL architecture

There are two ways of using the KL-divergence function depending on the learning
goal. The standard KL-divergence is:

DKL(P ||Q) =
∑
i

P (i) log2

(
P (i)

Q(i)

)
, (5.1)

This measures the divergence from Q to P and encourages a wide Q, because if the
model overestimates the regions of small mass from P it will be heavily penalised. The
reverse KL-divergence is:

DKL(Q||P ) =
∑
i

Q(i) log2

(
Q(i)

P (i)

)
(5.2)

This measures the divergence from P to Q and encourages a narrow Q distribution
because the model will try to allocate mass to Q in all the places where P has mass;
otherwise, it will get a strong penalty.

Since the purpose of the auxiliary function is to regularize the main task, thereby
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reducing overfitting, we expect equation 5.2 to be more effective as it encourages the
model to learn a distribution that pays attention to the classes where the annotations
possibly agree. As overall loss of the main and of the auxiliary task, we backpropagate
each loss in turn, the auxiliary loss warm-up loss, then the main loss.

5.2.2 Multi-Task Learning with Gold and Observed Agreement (MTLOA)

The auxiliary task for this MTL model is to learn the per item observed agreement.
(This is illustrated in Figure 5.3). This task was chosen as an eavesdropping tech-
nique, a way to provide a hint to the model about which items to focus on during
training by directly training the model to predict such items. The assumption under-
lying this approach is that high observed agreement is an indication of the exemplary
nature of the item; in other words, high agreement items are typical of the tasks. As
such, focusing on these typical examples would result in a model less attuned to the
noisiness of the rare, atypical items signaled by low agreement.

Figure 5.3: An illustration of the MTLOA architecture

The loss for the auxiliary function is computed by calculating the Mean-Squared
Error between the predicted agreement (a Sigmoid squashed output of the task-specific
layer) and the [Fleiss et al., 2004] observed agreement for all items.
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5.2.3 Other Approaches Tested: Plank et al. [2014a]

Plank et al. propose to learn from annotator confusion by weighting the loss of each
training example by the inverse of how ‘confusing’ the annotators find an item. They
characterized the confusion using two metrics: f1-scores between annotators on in-
dividual pos tags, and tag confusion probabilities derived from confusion matrices,
computed using 500 doubly-annotated tweets distinct from the dataset to be trained
on [Plank et al., 2014a]. We use here the tag confusion probability which was shown
by Plank et al. to have better performance than the f1-scores metrics.

To compute the tag confusion probabilities, a confusion matrix cm over all the pos
tags is first generated; and from this matrix, the probability of confusing two tags, t1
and t2 for a given item, i, is computed as the mean of the probability that annotator
A1 assigns one tag and A2 another, and vice versa, i.e. {t1, t2} is the mean of cm[t1, t2]

and cm[t2, t1] [Plank et al., 2014a]. Having computed these values for every pair of
tags (labels), the loss function of the classifier is augmented by multiplying the loss
for each item by 1− {yg, yp}, where yg is the gold label for the given item, and yp is the
predicted label [Plank et al., 2014a].

We adapt this idea to a multi-annotator scenario using the multiple annotations
collected for each dataset. First, for each item, we compute the confusion matrix
between all pairs of annotators and calculate the average confusion matrix across all
the annotator, then we compute the average confusion matrix across all the items. We
do this for each task independently. Using this matrix, for each we augment the loss
function of each base classifier as Plank et al. do.

5.3 Experiment Setup

We train and evaluate the mtlsl and mtloa models on 5 of the tasks used in this
research - pos, mre, rte, ic-labelme and ic-cifar10h - but not on pdis as gold labels
are not available for training pdis models. We use the same base models from section
4.2.4 of Chapter 4 for these experiments and evaluate using Accuracy, Cross Entropy
and Entropy Correlation as we do in Chapter 4. For mtlsl soft evaluation, we use
the predictions on the auxiliary task rather than the main task. The results of these
experiments are included in Section 5.4

Table 5.1: Accuracy results for gold and MTL methods for all tasks. Superscript indicates significance
ranking of methods from best to worst - 1 being the best method for the particular task evaluated using
a particular metric. Equally ranked methods are not significantly different

pos↑ mre↑ rte↑ ic-labelme↑ ic-cifar10h↑
Gold 89.08 2 84.88 1 61.37 1 97.18 1 65.57 1

MTLOA 89.26 2 85.41 1 61.00 1 96.13 3 65.23 1

MTLSL 90.11 1 85.42 1 61.43 1 96.82 2 62.33 2
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5.4 Results

Each of Tables 5.1, 5.2 and 5.3 shows the result of mtlsl and mtloa using one evalu-
ation metric. The results on gold training are also included in each table for compar-
ison. As in Chapter 4, the results are the means of 10 runs for ic-cifar10h and mre
and 30 runs for the other models, to account for non-deterministic model training
effects. We also carry significance via bootstrap sampling, following Berg-Kirkpatrick
et al. [2012], Søgaard et al. [2014] to allow for a precise comparison of the meth-
ods. The in superscript rank the models in increasing order from best to worst based
on significance. Models without significance differences in performance are equally
ranked.

5.5 Discussion

This section discusses several observations from the Tables, with Section 5.5.1 dis-
cussing the hard (accuracy) results and Section 5.5.2 and 5.5.3 discusses the soft
evaluation results using cross entropy and entropy correlation.

5.5.1 Evaluating using Accuracy

From Table 5.1, we two key observations. Firstly, we see that the mtlsl method out-
performs mtloa in 4 of the 5 tasks. This seems to indicate that a more informative
auxiliary task for learning gold labels is learning the diversity of interpretations avail-
able in the crowd distribution rather than learning item difficulty as defined by ob-
served agreement. The second key observation is that there is only one dataset for
which a gold-plus method, specifically mtlsl outperforms gold training – pos. The
fact that the training methods leveraging crowd information improve over gold train-
ing suggest that the crowd provides information that usefully supplements the gold
labels. The pos dataset is characterized by a combination of relatively high number
of judgments per item, accurate coders, relatively low observed agreement between
them, and moderate ‘Best Distribution Entropy’. It would seem then plausible that
it is the quality, quantity and diversity of crowd judgments that leads to the crowd
information improving over gold– which in turn suggests that the low agreement is
indeed due to the fact that more than one interpretation is possible for several items
in this dataset [Plank et al., 2014b].

mtlsl also yields the best accuracy results for mre and rte, though the result is
not significantly better than the results on training using gold only or mtloa. The fact
that we see a small but not significant improvement is, we believe, consistent with the
hypothesis proposed to explain the conditions under which this happens for pos. mre
has a fairly high bde, indicative of a good level of diversity, but not as high as that of
pos; it has a good number of annotations per item; but the size of the dataset is likely
too small to observe an effect, and coder accuracy is also fairly low. rte also has a
fairly high diversity as measure by the bde.
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For ic-labelme and ic-cifar10h however, mtlsl results in significantly reduced
hard evaluation performance with respect to gold on this dataset. We hypothesize that
the reason is that the crowd annotations do not provide useful additional information
for gold augmentation/regularization due to a lack of diversity. In ic-labelme, this is
observed in the low number of annotations per item (only 2.5 on average, with a over
4% of the items having only have a single annotation. For ic-cifar10h, however, the
reason is that the crowd annotations do not provide enough diversity in comparison
with the gold labels, as they appear to be drawn from the same distribution; there
is little disagreement between gold labels and soft labels. This can be seen from the
combination of high accuracy and high observed agreement of the crowd labels with
respect to the gold, and extremely low bde the lowest among all the datasets.

5.5.2 Evaluating using Cross Entropy

One thing is clear from Table 5.3; no single gold or gold-plus method achieves the
best Cross Entropy results for all the tasks. For the tasks with the most diversity (as
measured by bde) – pos, mre and ic-labelme, the mtlsl outperforms mtloa and gold
entropy in learning the probability distribution of the crowd (as measured by Cross
Entropy. This is not surprising as the auxiliary predictions of the mtlsl is to learn
these crowd distributions. mtloa always lies between gold training and mtlsl when
evaluating using this metric.

Table 5.2: Cross entropy results for gold and MTL methods for all tasks. Superscript indicates signifi-
cance ranking of methods from best to worst(Lower is better)

pos↓ mre↓ rte↓ ic-labelme↓ ic-cifar10h↓
Gold 3.346 3 0.574 2 0.771 1 5.159 3 2.607 2

MTLOA 3.288 2 0.579 2 0.796 3 3.926 2 2.505 1

MTLSL 1.382 1 0.569 1 0.786 2 1.642 1 4.032 3

5.5.3 Evaluating using Entropy Correlation

As was the case for Cross Entropy evaluation, no single method was the best across all
tasks for learning to predict the perceived item difficulty of the crowd distribution as
measured using Entropy Correlation. As in the other forms of evaluation, the mtlsl
approach also stands out here, outperforming mtloa and gold training in 3 of the 5
tasks examined.

Table 5.3: Entropy Correlation results for gold and MTL methods for all tasks. Superscript indicates
significance ranking of methods from best to worst.

pos↑ mre↑ rte↑ ic-labelme↑ ic-cifar10h↑
Gold 0.399 3 0.223 1 0.037 1 -0.016 2 0.127 1

MTLOA 0.408 2 0.215 1 0.035 1 -0.016 2 0.124 1

MTLSL 0.612 1 0.120 2 0.047 1 0.376 1 0.105 2
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5.6 Conclusions (Answering RQ4)

In response to the research question ‘(a) Can information from crowd annotations
be used in conjunction with gold labels to build better models compared to learning
from gold labels only? (b) In case the answer to (a) is positive, what is the best way
of leveraging crowd information in addition to gold labels?’, we introduced two novel
methods, mtlsl and mtloa, developed in the course of this research. Our results
on training using these methods provides evidence that augmenting gold labels with
crowd information during training can improve on gold performance depending on the
characteristics of the dataset and the form of evaluation used. With soft evaluation
using cross entropy, one of mtlsl or mtloa significantly outperforms training on gold
alone for 4 of the 5 tasks –pos, mre and ic-labelme – but is outperformed by gold
for ic-cifar10h; whereas using entropy correlation, at least one gold-plus methods
outperform gold training for pos and ic-labelme but is mtloa, is always at least on
par with gold training.

With hard evaluation using accuracy, there are three datasets in which using in-
formation from the crowd (‘leveraging the soft label’) in conjunction with gold or hard
labels helps: significantly so with pos (1 p.p. gain), marginally with pdis and mre.
With rte, again there is no significant difference, and which method achieves better
performance depends on the metric. But with ic-labelme and ic-cifar10h, using soft
labels in addition to gold hurts performance. This last point is particularly surprising
at the light of the fact that with ic-cifar10h using crowd information only achieves
much better results than using gold.

We suggested that the explanation for these hard evaluation results is that soft
labels help gold label training ‘when the soft label provides useful information beyond
the preferred label that leads to a better model’–i.e., when the soft label helps reg-
ularizing gold label training. In order for this to happen, two conditions must hold.
First of all, the decision on the best label for an item must be sufficiently complex,
on average. We proposed that this complexity can be measured using average Best
Distribution Entropy (bde): if the bde is too low, leveraging soft labels in addition to
hard labels doesn’t help - which is why, say, mtlsl outperforms gold with pos, but not
with ic-cifar10h, whose bde is nearly 0, even though coder accuracy with ic-cifar10h
in particular is very high. In other words, where the soft labels mostly reproduce the
gold standard, their informative contribution lessens.

Second, there have to be enough judgments for the soft label to be sufficiently
reliable. This explains why we only see marginal improvements with ic-labelme (too
few annotations per item) and rte (too few annotations).
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Chapter 6

A Systematic Comparison of
Approaches to Learning to Classify
from Crowds

Chapter 2 reviewed the best-known evidence about disagreements on nlp and cv tasks
focusing on tasks for which substantial datasets containing such information have been
created and discussing the most popular approaches to training models from dataset
containing multiple judgments. Chapter 3 considered how models trained on multiple
judgements could be evaluated, proposing novel evaluation approaches. Chapters 4
and 5, we proposed and explored novel methods for learning from crowds and experts
- soft loss, mtloa, mtlsl and sequential fine-tuning. In this Chapter, we systematically
review all the approaches discussed in Chapter 2, experimenting with the best-known
and most successful method from each approach (including our proposals). We do this
by training key methods under each approach for all the tasks and evaluating these
methods with all the evaluation metrics discussed in Chapter 3. The goal of this line
of inquiry is to answer the research questions "Among the approaches for learning from
crowds, is there an absolute best method for every task?" Armed with further results,
we also revisit the suitability of various evaluation metrics for evaluating the trained
models.

6.1 Overview

In Chapter 4, we discussed a simple yet effective method for learning from crowd
annotation – the soft loss function – with proposals and experiments on how the ef-
fectiveness of the method depends on the dataset characteristics and the method used
for generating soft labels from the crowd annotations. In this Chapter, we experiment
with best-known and most successful method from each approach by training and
evaluating models for the six datasets discussed in Section 2.2. In carrying out these
experiments and analyzing the results obtained, we address RQ5 – "Among the ap-
proaches for learning from crowds, is there an absolute best method for every task?"–

72



and revisit the suitability of various metrics for evaluating the disagreement-aware
models.

6.2 Methodology

As mentioned in Section 6.1, this Chapter is a systematic comparison of the ap-
proaches to learning with disagreement across 6 datasets and tasks – pos, pdis, rte,
mre, ic-labelme and ic-cifar10h – having strong evidence for disagreement as evi-
dence of uncertainty (see Section 2.2). This section contains a practical discussion of
these approaches to learning from disagreement. It also contains a discussion of the
base models used for the various tasks.

6.2.1 Approaches Tested

In this section, I outline the methods for learning from disagreement we tested, pro-
viding the essential details about how they were implemented or used. Some of these
methods were proposed by this research have been discussed in Chapters 4 and 5; this
Chapter outlines those methods for the purposes of the systematic comparison. The
methods not previously introduced in this work are discussed in full in this section.
The methods are grouped according to the same categories as in Section 2.4.

Aggregating coder judgments

As discussed in Section 2.4, possibly the most common approach to using the labels
produced by the crowd is to go through a step in which the labels used for learning
are obtained either through manual adjudication or through automatic aggregation.
This process is normally based on the assumption that each item belongs to a single
category, but the result of this preliminary step may also be a graded ranking of the
labels.

To experiment with a method in this approach, base models are trained with loss
functions targeting labels aggregated using that method. The aggregation approaches
evaluated in this work include:

1. Gold Training:
This is training using a single gold label per instance, usually obtained through
manual adjudication of annotations produced by at least two manual annotators.
(All the datasets employed provided gold labels, with the exception of pdis, which
only includes gold labels for the test data.)

2. Majority Voting:
This is training using for each instance the label chosen by the majority of coders.

3. Dawid and Skene:
This is training using for each instance a single label produced by choosing the
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label with the highest posterior probability as assigned by the Dawid and Skene
[1979] algorithm which infers a per-class model of an annotator’s expertise. We
used a publicly available implementation of the Dawid and Skene [1979] algo-
rithm1 but unlike the paper which uses random initialization, we obtain initial
estimates of the ground truth using majority voting.

4. MACE: As a probabilistic alternative to d&s, we also tested the simpler mace
item-response model [Hovy et al., 2013] which only learns whether an annotator
is spamming on a given instance. This approach was shown by Hovy et al. [2013]
to result in aggregated labels of higher accuracy with respect to gold labels. We
used the freely available implementation of mace provided by the authors. 2

5. CrowdTruth As a final aggregation method, we tested the quasi-probabilistic
approaches developed in the CrowdTruth project, which involves computing sev-
eral ‘quality metrics’–annotator, item, and label–to assign a label to an instance
[Dumitrache et al., 2018c].

The quasi-probabilistic approach as used in [Dumitrache et al., 2018d,b, Dumi-
trache, 2019] was used for Twitter Event Identification, News Event Extraction,
Sound Interpretation and Medical Relation Extraction (mre), which we experi-
ment with in this thesis. As discussed in Section 2.2, Dumitrache et al. [2018b]
collected annotations for these tasks using disagreement-aware crowdsourcing
i.e. the task wasmultiple choice, workers were able to choose more than one rela-
tion(label) from the 14 possible relations for each item at the same time. Because
the mre dataset used here is the one used by Dumitrache et al. [2018b], and they
provide the aggregated labels,3 we use the provided labels for the CrowdTruth ex-
periments on the mre task. Dumitrache et al. [2018b] generate labels from mre
crowd annotations computing the following metrics:

(a) worker vector, Ws,i : For each worker, i, annotating a sentence s, the vector
cell for each relation the worker selects is marked with ’1,’ whereas the vector
cell for the relations not selected are marked with ’0’.

(b) sentence vector, Vs: The sentence vector for each sentence is computed by
summing up the worker/annotation vectors for all the workers. Vs =

∑
iWs,i

(c) sentence-relation score: The sentence-relation score is computed as the
cosine similarity between the sentence vector and the unit vector for that
relation, srs(s, r) = cos(Vs, r̂), where r̂ is a one-hot vector with size the number
of relations, with ‘0’ values in all cells except for the cell corresponding to
the relation being computed for. The idea is that the higher the sentence-
relation score, the more clearly the relation is expressed in the sentence;
hence the lower the level of ambiguity.

1https://github.com/sukrutrao/Fast-Dawid-Skene
2https://github.com/dirkhovy/MACE
3https://github.com/CrowdTruth/Medical-Relation-Extraction
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(d) sentence-relation score threshold: This is a fixed value in the [0, 1] in-
terval used to differentiate between a negative and positive relations for a
sentence. Given a sentence-relation score threshold, t, sentences with an
srs threshold less above t were given a positive label, while sentences with
srs below t received a negative label.

Given the srs score for the sentences, Dumitrache et al. [2018b] produce weighted
labels for the sentences by (1) separating the sentences into negative an posi-
tive sets based on the srs threshold (which they chose after experimenting with
several thresholds) and (2) re-scaling the labels of sentences in the negative cat-
egories in the [-1, 0] interval. They do this because the manifold model [Wang
and Fan, 2014], used in the paper required either labels in the [-1, 1] interval.
For our binary mre classifier, we assign sentences in the negative set the label ’0’
and sentences in the positive set the label ‘1’. We also experimented with using
corresponding weighted labels (using the srs score as weights for training) but
found that it led to a slight decrease in accuracy and f1 so we report the training
on the unweighted binary labels.

The annotations for the other datasets experimented with in this thesis (pos, rte,
ic-labelme, ic-cifar10h and pdis) were not collected using disagreement-aware
crowdsourcing; instead, for each item to be annotated, annotators could only
select one of the available categories.

Extracting a single crowd ground truth using the methodology discussed above
(i.e. computing the srs score and a 0.5 threshold) is equivalent to majority voting,
as the label with the most annotations will still be selected as the preferred label.
Thus, CrowdTruth methodology to a multi-class, multi-label scenario by using a
vector with as many components as the number of labels, where the components
are the srs scores of the corresponding labels. (A similar approach was used by
Dumitrache et al. [2019] to adapt the methods to a multi-class setting.) For this
reason, we consider the Crowd Truth approach for other tasks apart from mre
as a soft label method.

Filtering and weighting by perceived difficulty

A second group of methods uses information about disagreements to exclude or at
least weigh instances4. The following methods were tested:

1. Agreement Filtering:
This involves training using an aggregated label but first filtering away examples
with low observed agreement [Artstein and Poesio, 2008]. This was proposed by
Beigman and Beigman Klebanov [2009] but there was no specific recommenda-
tion as to what the agreement cut-off ought to be. Jamison and Gurevych [2015]

4Instance weighing can also be categorized in the third category ’Learning Directly from the Crowd
Annotations’
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tested heuristically chosen two thresholds for each task: low agreement and high
agreement.

In our experiments with this approach, several cut-offs were tried and the re-
sults were the same - a decline in performance for all tasks except ic-labelme
image classification. In the end, we report results obtained by filtering items
with observed agreement below the average observed agreement for that dataset
(which differed from task to task, as done by Jamison and Gurevych).

The formula for computing the observed agreement was computed as in [Artstein
and Poesio, 2008]. Given a set of items I indexed by i, a set of categories K indexed
by k, and a set of coders C indexed by c, the observed agreement for each item,
agri is given as:

agri =
1

ci(ci − 1)

K∑
k=1

nik(nik − 1) (6.1)

where nik is the number of times item i is classified as category k. This formula
was designed under the assumption that the C is the same for each item and
this does not hold true for three of the four datasets used here. To accommodate
this, c is adjusted to mean the number of coders annotating the given item.

agri =
1(
ci
2

) K∑
k=1

(
nik
2

)
=

1

ci(ci − 1)

K∑
k=1

nik(nik − 1) (6.2)

2. Weighting by Observed Agreement

A soft version of filtering was also tested, which involves weighting items by their
degree of item difficulty instead of removing them. The idea is to weigh difficult
items less, so that the model learns to pay less attention to those items and does
not overfit on items for which the labels are difficult/ambiguous.

We tried two versions of this approach. In the first version, the loss of each item
is weighted by the observed agreement of that item. Learning using mv as the
aggregated label, this has the effect of possibly down-weighing items on which
majority voting differs from the gold interpretation. No previous references were
found for this model and this work is possibly the first use of this observed
agreement weighting method.

3. Weighting by Inverse Difficulty
A second version of the weighing uses the inverse-difficulty predictions generated
by the Whitehill et al. [2009]’s glad (Generative model of Labels, Abilities, and
Difficulties) aggregationmodel. Themodel uses aMaximum Likelihood algorithm
to simultaneously infer the annotator expertise, image difficulty and the most
probable label and was exemplified for binary image classification tasks (‘male’
vs ‘female’ image categorization and ‘Duchenne’ or ‘Non-Duchenne’ smile image
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categorization).

We implemented this model and used our implementation to make item predic-
tions for the binary classification tasks - rte, mre and pdis. During training,
we weigh the loss for each item by the the item’s probability of correctness, an
estimate that takes image difficulty and labeler quality into account Whitehill
et al. [2009]’s model.

Learning directly from the crowd annotations

The methods grouped in this category in Section 2.4 seek to train a model directly from
the annotations provided by the workers, without going first through an aggregation
step. The methods evaluated under this approaches are outlined below, each one a
state-of-art method exemplifying a different paradigm.

1. Repeated labelling [Sheng et al., 2008]
Sheng et al. [2008] proposed to train a model directly from multiple annotations
by passing each annotation as input to the network as if it was a separate item.
This was done as specified for 4 of the 6 tasks - pos, ic-labelme, rte, and mre.
Because pdis has over 90K markables, each annotated 7 times on average, and
cifar10H has 10K items annotated an average of 51 times and the classification
model is quite complex, treating each annotation as a separate item for these
tasks becomes unfeasible. Thus with these datasets the models were fed each
unique label only once, but the loss for each label was weighted by the number
of times that label was chosen.

2. Soft loss functions
In Chapter 4 we defined the soft loss function as training by targeting the prob-
abilistic distribution of labels obtained from the crowd annotations (aka prob-
abilistic soft labels) as a target and show that this approach yields state-of-art
hard and soft results when tested on multi-class classification tasks with vary-
ing annotator and annotation characteristics. In this Chapter, we systemati-
cally compare the best soft loss result on each dataset from Chapter 4 with the
results from other approaches learning with disagreement. In addition to the
cross-entropy (ce) loss function we used in Chapter 4, we also tested other loss
functions that can be used to minimize the difference between probability dis-
tributions. In particular, we tested using as loss functions Mean-Squared Error
(mse) and Kullback-Leibler [Kullback and Leibler, 1951] (kl).

3. Inducing a Classifier from Crowds A number of methods exist to learn a model
directly from the annotations by learning to weight each annotator’s contribu-
tions according to their reliability Raykar et al. [2010], Albarqouni et al. [2016],
Guan et al. [2018], Rodrigues and Pereira [2018]. One of the most recent such
models is the Deep Learning from Crowds (dlc) approach, proposed by Rodrigues
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and Pereira [2018]. dlc not only learns to combine the votes of multiple annota-
tors, but also captures and corrects their biases while remaining computationally
less complex than previous methods. Rodrigues and Pereira [2018] showed that
their model outperforms several existing models when evaluated against gold
truth. For these reasons, we select dlc as the representative method for this
kind of approach. The dlc approach involves adding a bottleneck layer, called a
“crowd layer”, after the output layer during training, so that the model learns how
much weight to assign to each label by learning the annotator matrix. Suppose
the output of a neural network model is denoted by σ, such that σc corresponds
to the score assigned by the model to the input instance belonging to class c, the
activation of the crowd layer for each annotator, r is defined as ar = fr(σ), where
fr is an annotator-specific function [Rodrigues and Pereira, 2018]. This way, the
output of the crowd layer is simply the softmax of the activations [Rodrigues and
Pereira, 2018]. An illustration of this is shown in Figure 6.1.

Figure 6.1: Label Crowd layer for the image classification task

dlc training involves adding a crowd layer to the base models for each task (see
section 4.2.4). In particular, we used the dl-mw variant that achieved the most
accurate predictions in Rodrigues and Pereira [2018]. In this variant, fr(σ) is
defined asW r(σ) whereW r is an annotator-specific matrix of the estimated sen-
sitivities and specificities of the annotators, which was initialized to an Identity
matrix that is a trainable parameter of the neural network model. As Rodrigues
and Pereira [2018] do, at test time the crowd layer is removed and evaluation
was carried out using the softmax output of each base model. This approach
involves adding a bottleneck layer, called a “crowd layer”, after the output layer
during training, so that the model learns howmuch weight to assign to each label
by learning the annotator matrix (see Section 3 of Chapter 4). As this approach
was the state-of-art approach for learning from crowds at the time of these exper-
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iments, we compared the dlc method with the novel soft loss method in Chapter
4. The results of this comparison are included here for a more systematic com-
parison across approaches.

Using both gold labels and information about disagreement

This approach, introduced in Chapter 5, is comprised of methods that learn a classifier
using both the gold labels and additional information extracted from disagreements.
These methods were introduced in Chapter 5 but in this section, an in-depth compar-
ison is made between them and other approaches to learning from crowds in other
to provide insight into the research question 5, ‘what is the best method for learning
from crowds?’. The methods include:

1. Plank Style Weighting [Plank et al., 2014a] learning with inter-annotator agree-
ment loss,

2. Multi-task Learning with soft labels [Fornaciari et al., 2021] learning from
gold labels and soft labels using a multi-task learning paradigm, and

3. Multi-task Learning with observed agreement jointly learning ground truth as
you learn a item difficulty as specified by observed agreement using the multi-
task learning.

6.2.2 Base Models

The experiments in learning with disagreement involve extending base models for the
various tasks to learn from multiple judgements, as specified by the particular ap-
proach. 5 For example, using Majority Voting approach to learning from crowd dis-
cussed in Section 2.4, the Majority Voting training approach implies targeting hard
labels aggregated by majority voting using a negative likelihood loss function. In this
section, I describe the base models used for the various tasks.

The base models used for the experiments in this Chapter were discussed in Chap-
ter 4.

6.3 Results

As anticipated, in this Chapter, we carry out an in-depth analysis of the approaches to
training from disagreement discussed in Section 2.4 by using them to train the models
for the datasets discussed in Section 2.2, and evaluating the resulting models using
the metrics discussed in Section 3. The results are summarized here, and analyzed
in greater detail in the next two.

Tables 6.1 to 6.7 present the results for all the methods on all the tasks using a
distinct evaluation metric. For comparison, we also include the results obtained by

5Code for this is available online at https://github.com/AlexandraUma/
dali-learning-with-disagreement
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Table 6.1: Accuracy results for all the methods on all the tasks

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 89.0817 na 84.88 61.37 97.18 65.57 7

2 Majority Voting Silver 78.09 9 90.71 5 75.17 12 60.67 1 80.23 4 65.31 7

3 Dawid and Skene Silver 77.67 4 92.80 75.20 12 60.37 7 83.58 9 65.65 7

4 MACE Silver 78.08 9 92.90 75.15 12 60.55 1 82.53 6 65.52 7

5 Crowd Truth Silver 79.33 7 91.30 6 75.17 12 60.37 13 84.50 13 64.09 4

6 Sheng Repeated Labelling 79.23 7 92.11 15 75.66 12 60.01 2 83.46 9 68.46
7 CE loss + probabilistic labels 79.80 1 92.86 75.55 12 60.87 84.66 13 66.54 10

8 KL loss + probabilistic labels 79.96 1 92.86 75.53 12 60.68 1 84.73 13 66.58 10

9 MSE loss + probabilistic labels 79.20 7 92.90 75.50 12 60.70 16 84.21 7 63.49 4

10DLFC 77.87 4 92.82 74.67 4 59.75 5 83.69 9 68.25
11MV + OA Hard Filter 72.20 3 68.51 12 74.85 4 54.77 12 86.05 12 63.98 4

12Gold + OA Hard Filter 79.84 1 73.28 14 83.18 1 55.77 10 94.60 16 63.54 4

13MV + OA Weighting 78.17 9 90.44 6 75.29 12 61.04 85.54 12 65.99 10

14MV + WH Weighting na 90.31 5 75.25 12 58.76 6 na na
15Gold + Plank et al weighting 89.26 17 92.70 85.43 61.15 96.37 17 64.78 13

16MTLOA 89.26 17 92.86 85.41 61.00 96.13 17 65.23 7

17MTLSL 90.11 92.95 85.42 61.43 96.82 1 62.33 5

training the same architectures using gold labels (with a cross entropy loss function).
In these Tables there is one row for each learning from disagreement method, and
one column for each dataset used in the evaluation. Double lines are used to group
closely related methods in sections, one for each of the class of methods in Section
6.2.1 (e.g., aggregation methods).

The best result for each dataset is highlighted in bold, whereas the best result
among the training methods not using gold information is underlined. In each cell
(i.e. for the result of a given training method on a particular dataset), we also include
in superscript the row number of the method with minimum significant improvement
over the method in the cell, if any. To account for non-deterministic model training
effects, each model was re-run 30 times, except for (i) is, which was only run 10 times
owing to the size of the dataset and model complexity, and (ii) ic-cifar10h and mre,
also run 10 times due to model complexity.

6.3.1 Evaluation against gold or hard labels

Tables 6.1, 6.2 and 6.3 show the results of evaluation against gold labels, using Accu-
racy, f1 and the weighted version of f1 developed in the Crowd Truth project, ct f1.
Figures 6.2 summarizes these results by displaying for each category of methods the
results obtained by the best performing approach in that category for each dataset.

The first broad conclusion we can reach from these Tables and from Figure 6.2
is that the answer to RQ3 is in most cases negative if we use ‘hard’ evaluation: for
three of the five datasets for which gold information is available for training (pos,
ic-labelme, and mre) training using gold information (alone, or in conjunction with
crowd information) gives better results for hard evaluation than training with crowd
information only, irrespective of whichmeasure is used. In fact, the difference between
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Table 6.2: f1 on all the tasks using all the methods

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 88.99 17 na 84.46 61.28 97.18 65.54 7

2 Majority Voting Silver 76.86 5 90.55 5 65.24 9 60.63 1 79.52 4 65.13 7

3 Dawid and Skene Silver 76.64 2 92.78 67.80 5 60.32 15 83.03 9 65.53 7

4 MACE Silver 77.08 5 92.87 65.28 9 60.45 15 81.87 6 65.40 7

5 Crowd Truth Silver 78.14 7 91.13 6 76.11 12 59.52 3 83.99 13 63.90 4

6 Sheng Repeated Labelling 78.21 7 92.00 15 67.19 5 58.66 5 82.96 9 68.36
7 CE loss + probabilistic labels 78.75 1 92.84 66.44 3 60.68 84.02 13 66.43 10

8 KL loss + probabilistic labels 78.92 1 92.84 66.44 3 60.43 15 84.09 13 66.45 10

9 MSE loss + probabilistic labels 78.14 7 92.88 66.38 3 60.51 15 83.61 13 63.33 4

10DLFC 76.27 2 92.74 63.87 2 58.42 5 83.19 9 67.99
11MV + OA Hard Filter 68.85 10 57.56 64.34 2 46.76 12 85.37 12 63.69 4

12Gold + OA Hard Filter 76.99 9 65.50 82.38 1 49.55 10 94.59 16 63.17 15

13MV + OA Weighting 76.86 9 90.21 5 65.16 9 60.74 84.88 12 65.89 10

14MV + WH Weighting na 90.13 5 65.34 9 58.53 6 na na
15Gold + Plank et al weighting 89.18 17 92.65 85.07 61.12 96.37 17 64.67 13

16MTLOA 89.15 17 92.82 84.95 60.99 96.13 17 65.18 7

17MTLSL 90.06 92.92 84.87 61.13 96.82 1 62.34 15

Table 6.3: Crowd Truth Weighted f1 for all tasks using all the methods

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 92.46 17 na 86.94 74.05 98.25 78.48 10

2 Majority Voting Silver 85.40 6 94.54 5 70.02 7 73.39 15 87.33 4 78.14 7

3 Dawid and Skene Silver 85.27 2 96.00 75.34 5 73.24 15 89.23 9 78.50 10

4 MACE Silver 85.69 6 96.02 70.13 7 73.46 1 88.80 6 78.43 10

5 Crowd Truth Silver 86.58 7 94.84 6 82.17 12 72.15 4 90.11 7 77.21 4

6 Sheng Repeated Labelling 86.51 7 95.43 10 74.89 5 71.19 5 89.48 9 80.56
7 CE loss + probabilistic labels 87.15 1 96.03 72.80 6 73.40 1 90.17 13 79.17 10

8 KL loss + probabilistic labels 87.27 1 96.01 73.10 6 73.17 16 90.20 13 79.09 10

9 MSE loss + probabilistic labels 86.61 7 96.04 73.21 6 73.27 15 89.90 13 76.74 15

10DLFC 84.76 2 95.87 3 66.11 2 71.06 5 89.57 9 80.30
11MV + OA Hard Filter 78.54 12 67.76 12 66.47 2 59.20 12 91.04 12 77.11 4

12Gold + OA Hard filter 82.96 3 74.18 6 84.76 1 62.12 10 96.47 16 76.65 15

13MV + OA Weighting 85.31 6 94.26 2 70.63 7 73.37 15 90.76 12 78.80 10

14MV + WH Weighting na 94.29 2 70.26 7 71.63 8 na na
15Gold + Plank et al weighting 92.60 17 95.87 87.53 73.87 97.76 17 77.76 13

16MTLOA 92.56 17 95.98 87.42 73.83 97.60 17 78.17 7

17MTLSL 93.07 96.05 87.65 73.66 98.02 1 76.00 15
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Figure 6.2: Graph showing the f1 scores of the best performing training approach for each category on
all the datasets

the best method using gold and the best method only using crowd annotations can
be quite large for these three datasets, up to 10 points in some cases (e.g., pos).

However, the answer to RQ3 is not entirely negative, because with rte and ic-
cifar10h it is the other way around: with ic-cifar10h, the best results are obtained
using crowd information only and with rte there is no significant difference between
training with gold and training using silver labels aggregated with mv. But we will
already anticipate that the situation is completely reversed when soft evaluation met-
rics are employed; in this case, using crowd information always improves results over
using gold only, as shown in Section 6.3.2.

Another finding emerging very clearly from the Tables and the Figure is that there
is no evidence that the approach to using disagreement information that may appear
most intuitive, filtering– using this information to remove hard items–helps with hard
evaluation. With none of these datasets the best results are obtained by filtering
difficult items; on the contrary, filtering typically leads to worse results, sometimes
substantially so. The one exception is ic-labelme: in this case the results obtained
by filtering, while much worse than those obtained by using gold without filtering, are
on par with those obtained with other ways of using crowd information.

A third observation is that the answer to RQ4a is mixed when using hard evalua-
tion: leveraging crowd information in addition to gold sometimes helps, although not
by much, sometimes doesn’t. With two of the five datasets for which we have gold– pos
and mre– using information from the soft label to supplement gold according to the
mtlsl method does improve performance over using gold labels only with all tree hard
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metrics; this difference is small– typically around one percentage point–but signifi-
cant in the case of pos. With rte, the best performing method depends on the metric,
but the difference are never significant. In line with Card et al. [2020] who discuss
statistical power in relation to dataset size, it might be worth to consider retiring this
small dataset. With the two ic datasets, however, using gold only leads to significantly
better results than using gold in combination with crowd information–substantially
so in the case of the ic-cifar10h dataset. Using crowd information in addition to the
hard label also helps a little bit in the is task, when the hard label is an aggregated
silver label, although the difference is not significant. Again, we must immediately
point out that the situation is reversed with soft evaluation.

The answer to RQ4b–what is the best way to leverage crowd information in addition
to gold information–is that with most datasets mtlsl is either significantly better, bet-
ter, or indistinguishable from other approaches, in particular the approach by Plank
et al.. The one exception is ic-cifar10h, where mtlsl performs rather poorly–but in
this case the best among the approaches leveraging both gold and crowd information
is the other multi-task learning approach we tested, mtloa using observed agreement
as auxiliary function.

The final observation is that the answer to RQ5 is that there isn’t a clear ‘winner’
among the methods not using a gold label: different methods achieve the best results
depending on the task. We summarize the differences as follows, using A >> B to
signify that most methods of category A are significantly better than most methods of
category B; A ∼ B to signify that most methods of category A are statistically indistin-
guishable from most methods of category B; and A ≥ B to signify that some methods
of category A are significantly better than somemethods of category B, whereas others
are equivalent.

1. On pos, the best results among the methods only using crowd information are
obtained by the three methods using a soft loss function, then by using aggre-
gation, then weighting and filtering. The performance ranking for pos shown
in Figure 6.2 can be schematically summarized as follows, where HARDGOLD

is gold training, SOFT includes the Crowd Truth method, and categories are
ranked by the performance of the best performing method in the category:
AUGMENTEDGOLD >> HARDGOLD >> SOFT ≥ FILTERGOLD >> HARDSILV ER ≥
WEIGHTSILV ER >> FILTERSILV ER

2. On pdis, no gold labels are available, so the silver label achieving the best results
(aggregated with mace) was used as hard label. The best results are obtained
using mtlsl using this hard silver label, but augmenting hard silver with crowd
information, using hard silver only, or using crowd information only with soft
label methods achieve statistically indistinguishable results on this dataset. The
only significant differences are between any of these methods and weighting, and
between weighting and hard filtering, which gives really bad results.
AUGMENTEDSILV ER ∼ HARDSILV ER ∼ SOFT >>

WEIGHTSILV ER >> FILTER
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3. mre is the one dataset on which different methods achieve the best results de-
pending on which hard evaluation metric is used. Methods exploiting both gold
and crowd information achieve the best results with all three hard metrics, sys-
tematically outperforming training with gold only although the difference is not
significant. But among the methods not relying on gold labels, CrowdTruth ag-
gregation obtains by far the best results in terms of f1 and especially of ct f1,
with a margin of 10 points or more over other methods. Soft label methods
achieve the best accuracy results, although the difference is not significant.
AUGMENTEDGOLD ∼ HARDGOLD >> FILTERGOLD >>

CT ∼ACCURACY / >>F1 SOFT ∼ACCURACY / >>F1 HARDSILV ER ≥WEIGHTSILV ER ≥
FILTERSILV ER

4. rte is one of the datasets for which using gold information does not yield better
results than using crowd information only. The results using gold information,
gold augmented with crowd, silver weighing, and some of the soft loss functions
are all statistically equivalent. Among the soft labelling methods, the best results
are obtained by oa weighting, then soft loss using ce, then agregation. But all
methods achieve roughly comparable results with all metrics, with a maximum
1-2 percentage points between the worse and the best result; again the only
exception is hard filtering, that performs substantially worse.
AUGMENTEDGOLD ∼ HARDGOLD ∼WEIGHTSILV ER ∼ SOFT >>

HARDSILV ER ∼>> FILTER

5. The best results with ic-labelme are obtained using gold information alone (which
does very slightly, but significantly, better than combining gold with crowd in-
formation). The next best results are obtained using oa for filtering or weighing
silver labels–this is the only dataset in which filtering / weighing silver items
proves a competitive approach. Soft labels are next, then aggregation. Using
hard silver labels yields the worse results in terms of hard evaluation metrics,
but this is the dataset in which probabilistic aggregation outperforms mv by the
largest margin: training over the ct-aggregated labels, while not resulting in the
best f1, improves performance over training with the mv labels by more than 4
points.
HARDGOLD >> AUGMENTEDGOLD >> FILTERGOLD >>

FILTERSILV ER ∼WEIGHSILV ER >> SOFT >> HARDSILV ER

6. Finally, ic-cifar10h is the one dataset in which using crowd information only
yields significantly better results than using gold. The best results are obtained
using Sheng et al.-style repeated labelling—the improvement is of around three
points in this case—but soft-loss training also significantly outperforms gold
training, which is statistically indistinguishable from silver training and from
mtloa.
SOFT >> WEIGHSILV ER >> HARDSILV ER ∼ HARDGOLD >>

AUGMENTEDGOLD >> FILTER
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Table 6.4: Cross entropy between produced probabilities and and the soft labels for all tasks using all
the methods. (Smaller is better)

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 3.346 16 na 0.574 17 0.771 8 5.159 12 2.607 5

2 Majority Voting Silver 2.583 4 0.397 14 0.522 11 0.785 3 3.065 4 2.627 5

3 Dawid and Skene Silver 2.524 4 0.300 9 0.350 6 0.772 8 2.902 10 2.554 5

4 MACE Silver 2.506 10 0.297 9 0.460 3 0.797 13 2.906 10 2.646 5

5 Crowd Truth Silver 1.482 9 0.403 14 0.610 16 0.673 6 2.717 6 1.763 9

6 Sheng Repeated Labelling 1.787 5 0.359 9 0.310 0.669 2.572 9 1.062
7 CE loss + probabilistic labels 1.358 0.273 16 0.310 0.740 9 1.638 1.112
8 KL loss + probabilistic labels 1.279 0.265 16 0.309 0.742 9 1.638 1.109
9 MSE loss + probabilistic labels 1.442 7 0.289 8 0.309 0.717 5 1.747 7 1.491 8

10DLFC 2.136 6 0.275 16 0.715 15 0.668 2.798 5 3.507 11

11MV + OA Hard Filter 3.243 15 2.246 12 0.490 4 0.879 14 3.684 13 2.961 15

12Gold + OA Hard Filter 3.115 13 1.863 17 0.495 4 0.879 14 4.612 15 2.844 15

13MV + OA Weighting 2.759 2 0.372 6 0.527 14 0.787 3 3.121 2 2.615 5

14MV + WH Weighting na 0.379 6 0.516 11 0.842 4 na na
15Gold + Plank et al Weighting 3.432 1 0.261 16 0.621 16 0.779 3 4.198 16 2.691 15

16MTLOA 3.288 12 0.245 0.579 17 0.796 13 3.926 11 2.505 5

17MTLSL 1.382 0.618 5 0.569 13 0.786 3 1.642 4.032 1

We further analyse these results on a task-by-task basis in Section 6.4, with the aim
to explain these dataset-dependent differences.

One final consideration: it can be observed that the three evaluation metrics tend
to be aligned, in the sense that the methods performing best on a given task are the
same irrespective of the evaluation used, with the few exceptions noted.

6.3.2 Evaluation against soft labels

Given the empirical evidence challenging the assumption that it is always possible to
assign a unique label to items in cognitive tasks reviewed in Chapter 2, the form of
evaluation discussed in the previous subsection –testing models against gold labels –
while standard in nlp and in ai, does not tell the complete story. In this dissertation,
therefore, we also evaluate current methods for training with disagreement using the
‘soft’ evaluation metrics discussed in Section 3.3. The results are shown in Tables 6.4
to 6.7.

Arguably, the main result of this work is that the answer to RQ3, which as seen in
Section 6.3.1 is mainly negative when using hard evaluation metrics, becomes posi-
tive with soft evaluation metrics: i.e., the ranking among methods for learning from
disagreement seen in the previous Section is to a large extent reversed when these
methods are evaluated using a soft evaluation metric, so that methods not using gold
information generally outperform hard-training methods for all tasks and all metrics.

The answer to RQ5–which of these methods performs best–again depends on the
task and, to a lesser extent, on the metric, but for almost all metrics and almost all
tasks the best results are obtained by some form of soft loss trainin g or repeated
labelling.
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Table 6.5: Jensen-Shannon Divergence results on all tasks using all the methods. (Smaller is better.)

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 0.413 11 na 0.251 12 0.415 7 0.547 12 0.405 10

2 Majority Voting Silver 0.353 4 0.218 16 0.166 4 0.416 7 0.452 4 0.399 10

3 Dawid and Skene Silver 0.353 4 0.129 17 0.156 7 0.416 7 0.449 5 0.404 10

4 MACE Silver 0.351 10 0.129 17 0.163 3 0.415 7 0.448 10 0.395 10

5 Crowd Truth Silver 0.236 7 0.243 13 0.297 15 0.425 12 0.428 6 0.417 1

6 Sheng Repeated Labelling 0.318 9 0.268 10 0.136 0.426 11 0.417 9 0.415 1

7 CE loss + probabilistic labels 0.207 0.146 9 0.148 6 0.413 13 0.201 0.427 1

8 KL loss + probabilistic labels 0.206 0.150 7 0.148 6 0.413 13 0.201 0.428 1

9 MSE loss + probabilistic labels 0.280 17 0.128 17 0.148 6 0.416 7 0.208 7 0.431 1

10DLFC 0.342 6 0.220 2 0.177 17 0.426 11 0.430 6 0.368
11MV + OA Hard Filter 0.397 13 0.351 12 0.169 14 0.430 12 0.489 13 0.407 2

12Gold + OA Hard Filter 0.426 15 0.303 5 0.241 10 0.421 1 0.539 15 0.412 2

13MV + OA Weighting 0.353 4 0.232 10 0.166 4 0.410 17 0.464 2 0.392 10

14MV + WH Weighting na 0.256 10 0.167 4 0.422 16 na na
15Gold + Plank et al Weighting 0.415 11 0.163 8 0.258 1 0.417 1 0.537 16 0.407 2

16MTLOA 0.413 11 0.178 15 0.250 12 0.418 1 0.531 11 0.401 10

17MTLSL 0.236 7 0.096 0.172 11 0.404 0.201 0.415 1

Table 6.6: Cosine Similarity between the entropy of the produced distribution and the annotation label
distribution for all tasks using all the methods

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 0.659 11 na 0.655 12 0.567 3 0.551 16 0.389 5

2 Majority Voting Silver 0.758 10 0.115 13 0.478 4 0.570 7 0.778 3 0.383 5

3 Dawid and Skene Silver 0.762 10 0.176 9 0.700 7 0.571 7 0.797 10 0.391 5

4 MACE Silver 0.750 10 0.183 9 0.548 15 0.560 2 0.777 3 0.379 5

5 Crowd Truth Silver 0.885 7 0.116 13 0.717 7 0.589 6 0.840 10 0.472 9

6 Sheng Repeated Labelling 0.873 7 0.167 4 0.772 0.590 0.860 17 0.546
7 CE loss + probabilistic labels 0.899 0.204 15 0.761 6 0.579 9 0.979 0.546
8 KL loss + probabilistic labels 0.907 0.211 15 0.763 6 0.579 9 0.978 7 0.547
9 MSE loss + probabilistic labels 0.888 7 0.191 7 0.761 6 0.584 5 0.978 7 0.506 6

10DLFC 0.849 6 0.207 15 0.688 3 0.589 6 0.852 6 0.331 13

11MV + OA Hard Filter 0.698 13 0.065 5 0.590 15 0.517 4 0.697 14 0.390 5

12Gold + OA Hard Filter 0.729 4 0.071 5 0.678 5 0.518 4 0.592 12 0.379 5

13MV + OA Weighting 0.720 4 0.136 14 0.455 2 0.570 7 0.755 4 0.372 5

14MV + WH Weighting na 0.161 4 0.501 4 0.571 7 na na
15Gold + Plank et al Weighting 0.650 16 0.241 16 0.641 1 0.570 7 0.597 16 0.391 5

16MTLOA 0.667 11 0.264 0.655 12 0.567 3 0.625 11 0.393 5

17MTLSL 0.876 5 0.071 5 0.433 2 0.563 1 0.976 7 0.352 13

86



Table 6.7: Pearson correlation between the entropy of the produced distribution and the annotation
label distribution for all tasks using all the methods

pos pdis mre rte ic-labelme ic-cifar10h
1 Gold 0.399 11 na 0.223 4 0.037 7 -0.016 2 0.127 5

2 Majority Voting Silver 0.517 10 -0.104 11 0.214 4 0.043 7 0.026 11 0.118 5

3 Dawid and Skene Silver 0.504 10 0.029 9 0.382 7 0.039 7 0.111 11 0.125 5

4 MACE Silver 0.513 10 0.032 9 0.265 3 0.022 1 0.139 11 0.112 5

5 Crowd Truth Silver 0.642 7 -0.113 2 0.293 7 0.037 7 0.194 10 0.160 9

6 Sheng Repeated Labelling 0.635 7 -0.098 10 0.511 0.030 2 0.284 8 0.217
7 CE loss + probabilistic labels 0.656 0.051 15 0.444 6 0.056 0.407 9 0.215
8 KL loss + probabilistic labels 0.663 0.053 15 0.450 6 0.059 0.403 9 0.217
9 MSE loss + probabilistic labels 0.640 7 0.047 15 0.435 6 0.058 0.425 0.190 6

10DLFC 0.603 6 -0.040 17 0.010 17 0.025 3 0.263 6 0.119 5

11MV + OA Hard Filter 0.411 12 -0.023 17 0.208 4 -0.061 12 0.192 10 0.121 5

12Gold + OA Hard Filter 0.451 6 -0.029 17 0.227 3 -0.046 4 0.130 11 0.107 5

13MV + OA Weighting 0.517 10 -0.102 10 0.211 4 0.056 0.195 10 0.100 5

14MV + WH Weighting na -0.091 10 0.217 4 0.065 na na
15Gold + Plank et al Weighting 0.395 11 0.067 0.217 4 0.030 3 -0.020 2 0.129 5

16MTLOA 0.408 12 0.079 0.215 4 0.035 7 -0.016 2 0.124 5

17MTLSL 0.612 6 0.020 7 0.120 13 0.047 7 0.376 7 0.105 5

The answer to RQ3 is also uniformly positive: using crowd information always
helps improving the results over training using gold only, for all evaluation metrics
and all datasets. In answer to RQ4, some form of Multi-Task Learning with an aux-
iliary function capturing disagreements is usually the best approach, with mtlsl in
particular achieving pretty good results in many cases.

• Almost all training methods using gold information, except for mtlsl, achieve
significantly worse performance under all soft metrics with pos, as with all other
datasets. Soft-loss training methods perform best, with ce and kl loss train-
ing performing significantly better than all other methods according to all soft
evaluation metrics. Interestingly, mtlsl performs better than most soft-labelling
methods, whereas mtloa doesn’t. Also worth noting that CrowdTruth aggrega-
tion achieves better results than the other aggregation methods. This can be
loosely summarized as follows:
SOFTCE,KL ∼CE / >>JSD,CS MTLSL ≥ CT ∼ SOFT ≥
HARDSILV ER >> WEIGHT ∼ FILTER >> HARDGOLD

• With pdis, mtl methods (using silver as the hard label) perform best according
to all four soft evaluation metrics, but the type of mtl that works best depends
on the evaluation, and sometimes the difference in results is quite substantial.
E.g., with cross entropy, mtloa is the best type of training, but mtlsl is the worst.
Soft loss methods are next best, then methods that rely on a prior aggregation.
It should be noted that the best results with soft-loss functions with this dataset
are obtained using the posterior of probabilistic aggregation methods as target.
It should also be noted that all methods do pretty badly at predicting the entropy
of the annotator labels distribution with this dataset, whether computed using
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Figure 6.3: Graph showing the Cross Entropy scores of the best performing training approach for each
category on all the datasets (lower is better)

cosine similarity or, even worse, using Pearson correlation.
MTLOA/MTLSL >> SOFT >> HARDSILV ER ≥
WEIGHT ≥ FILTER.

• With mre, soft-labelling methods perform best, but different types of training
achieve the best results depending on the evaluation used. Repeated labelling
generally performs best, followed by soft-loss methods, except for cross-entropy
where it is the other way around; but the difference is typically not significant.
SHENG >> SOFTLOSS ≥ HARDSILV ER ≥ FILTER,WEIGHT ≥
AUGMENTEDGOLD ≥ HARDGOLD.

• One striking aspect of the results with rte is that the results of the different
methods are much closer than with other datasets, although significant differ-
ences do emerge. In particular, although the methods relying only on crowd
information outperform gold training and training on aggregated silver labels
according to most soft metrics, the differences are much smaller, and mtlsl out-
performs the soft-labelling methods in terms of jsd. For this dataset, Sheng et
al.’s repeated labelling and dlc achieve the best results in terms of cross-entropy
(there is a small difference, but it is not significant) and cosine similarity; the dif-
ference from other soft-loss methods is significant. Another noticeable result is
that the Pearson correlation between the entropy of the produced distribution
and that of the target distribution is mostly near 0. The results with this dataset
are difficult to summarize because the soft metrics do not all point to the same
ranking, but as a first approximation, we can say that:
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SOFTSHENG,DLFC ≥ CT ≥MTLSL ≥ HARDSILV ER ≥
WEIGHT,FILTER ≥ HARDGOLD.

• With ic-labelme, the best performing method on all metrics is training using a
soft loss function with softmax distribution, although again mtlsl is a very close
second best in most cases, and is equivalent to soft-loss training when evaluated
using Cross Entropy or jsd. Unsurprisingly perhaps, for this task using gold
only for training results in a really bad match regarding predicted entropy.
SOFT ≥MTLSL >> CT ≥ HARDSILV ER >>

WEIGHT >> FILTER ≥ HARDGOLD.

• And finally, for ic-cifar10h soft-labellingmethods perform clearly better although
again which method performs best–soft-loss, repeated labelling - depends on the
measure used.
SOFT >> CT,HARDSILV ER ≥ FILTER,WEIGHT ≥ HARDGOLD.

6.4 A Dataset-by-Dataset Analysis of the Results

We just saw in Section 6.3 that the relative performance of current methods for learn-
ing from disagreement varies greatly from dataset to dataset, both with hard and with
soft evaluation metrics. The aim of this Section is to analyse in greater depth these
differences, looking at each dataset in isolation, aiming to explain how the pattern of
results observed in that dataset relate to its characteristics.

Each subsection includes sections devoted to the results obtained on a dataset
by training with gold (with or without supplemented with crowd information), with
aggregated labels, and with soft labels only.

6.4.1 Part-of-Speech Tagging

The key characteristics of the pos dataset (see Tables 2.1 and 2.2) are that it has
the second highest number of items (14,439), average coder accuracy is high (.93),
and the mean number of annotations per item is also fairly high (16.37). However,
observed agreement is relatively low (.73),and the quality of aggregated labels is low as
well. Finally, while the raw annotator entropy is fairly low (.13), the Best Distribution
Entropy (bde) is fairly high (.39).

Gold vs. non-gold

As discussed in Section 6.3, with the pos dataset we see clear differences in perfor-
mance between the models using gold labels and those using silver or soft labels, in
both directions. Methods using gold labels do clearly better in terms of hard evalua-
tion metrics, although using soft information helps; whereas methods only using soft
labels do clearly better in terms of soft evaluation metrics.
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This substantial difference between using and not using gold is surprising given the
high coder accuracy and the substantial number of annotations per item, and the well-
known findings of, e.g., [Snow et al., 2008, Sheng et al., 2008] that the quality of labels
produced by the crowd is comparable to that of labels produced by experts provided
that sufficient coders of sufficient quality are employed. To understand this surprising
result, we carried out a more in-depth analysis of the data, whose results are shown
in Table 2.1 and Table 6.8. First of all, the high mean number of annotators per item is
deceptive: whereas several items have a high number of annotations (177), for others
the number of annotations is much lower, so that the median of this figure is only 5.
Second, Table 6.8 shows that this dataset is not uniform, but can be partitioned in
two subsets with very different characteristics. 80% of the judgments in the dataset
are about nouns, even though the constitute only 27.7% of the total number of items.
The coder accuracy for these items is very high, almost 98%, and so is the average
number of annotations per item. By contrast, only 20% of the judgments are about
the remaining 72% of items, and coder accuracy on these is much lower. This suggests
that the quality of crowd information for the great majority of items is not high enough.
As we will see, Snow et al.’s hypothesis does hold with datasets with uniformly high
coder accuracy and number of annotations per item.

Table 6.8: Nouns vs Non-Nouns in the pos dataset

Nouns Others
Percentage of items in the subset 27.72 72.28
Percentage of judgments in category per 80.13 19.87
Average number of annotations per item 12.57 3.80
Average annotator accuracy 97.89 69.08
Average item observed agreement 0.804 0.695
mv aggregated label accuracy 85.94 77.52

Using soft Labels to supplement gold labels

In Chapter 5, we saw that for this dataset using crowd information in addition to gold
improves upon using gold alone when the models are evaluated using one metric from
each evaluation paradigm (see Chapter 3.3); accuracy, and cross entropy entropy cor-
relation. This finding also holds for the other evaluation metrics used in this research.
mtlsl stands out as the best method for learning hard or weighted truth for the pos
dataset under all three hard evaluation metrics. This method, which targets the soft
label distribution as an auxiliary task to supplement the gold labels, achieves +1.03,
+1.06, and +0.61 significant points over training over gold alone when evaluated using
accuracy, f1 and ct f1 respectively. The other methods that augment gold labels with
information from the crowd, mtloa and [Plank et al., 2014a], also outperform the gold,
although not by a significant margin.

The fact that the training methods leveraging crowd information improve over gold
training suggest that the crowd provides information that usefully supplements the
gold labels. As alreadymentioned, the pos dataset is characterized by a combination of
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relatively high number of judgments per item, accurate coders, relatively low observed
agreement between them, and moderate ‘Best Distribution Entropy’. It would seem
then plausible that it is the quality, quantity and diversity of crowd judgments that
leads to the crowd information improving over gold– which in turn suggests that the
low agreement is indeed due to the fact that more than one interpretation is possible
for several items in this dataset [Plank et al., 2014b]. As we will see, this hypothesis
that these are the conditions under which using soft labels in addition to gold labels
improves performance holds for the other datasets as well.

It is less surprising that mtlsl also outperforms gold training according to all four
soft evaluation metrics: it produces a distribution less divergent from the annotators’
distribution (as measured using cross entropy and Jensen-Shannon Divergence) and
better captures item confusion (as measured by Cosine similarity and Pearson corre-
lation). Of the other approaches to using crowd information to supplement gold labels
(mtloa and Plank et al. [2014a]), mtloa always outperforms gold training, sometimes
significantly so, but Plank et al. [2014a] falls behind gold training, significantly so
when evaluated using cross entropy and cosine similarity.

The fact that the mtlsl method for supplementing gold labels is more effective than
mtloa and the Plank et al. [2014a] method suggests that targeting the distribution of
labels is more useful than targeting observed agreement or confusion among labels
with this dataset.6

Learning from aggregated labels

With hard evaluation, training using aggregated labels produces results significantly
worse than training from gold labels with this dataset, and slightly worse than training
from soft labels. With soft evaluation, training with aggregated labels gets worse or
significantly worse results than training with soft labels, but better or substantially
better than training with gold labels. Majority Voting (mv), Dawid and Skene (d&s)
and mace achieve comparable results according to all metrics.

As we will see, this result is not unusual: training against the entire ‘soft label’
yields as good or better results than training against aggregated silver labels with
all of our datasets. This suggests that the distribution of labels produced by the
annotators provides useful information, which is lost when the label is aggregated.
Training with aggregated labels only matches training with soft labels with datasets
such as pdis, where average coder accuracy is relatively low, yet there is an abundance
of annotations per item, allowing an aggregation method to learn accurate models,
reflected in a high quality of the aggregated labels, much higher than obtained with
mv. With pos, aggregation methods do not outperform mv on this task for most of the
evaluation metrics, and also aggregation methods perform about the same wrt hard

6It should however be noted that in Plank et al. [2014a] where the label confusion is computing using
the annotations of two expert annotators, the Plank et al. method outperformed gold training. Perhaps,
a better way exists to extend the Plank et al. [2014a] method to a multi-annotator scenario than the one
used here.
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evaluation as the dlc method [Rodrigues and Pereira, 2018], which also attempts to
learn models of the coders and uses them to weigh interpretations.

Learning from soft labels

The best results for this dataset without using gold labels for training are obtained
by two soft-loss methods using as target the distribution obtained by softmaxing the
raw proportions, rather than standard normalization or the output of probabilistic ag-
gregation. The best results are obtained by using kl as a soft loss function; training
using ce as a soft loss function achieves slightly worse results but but not significantly
different. These two methods also obtain the best results according to soft evaluation
metrics, both in producing a probability distribution least divergent from the annota-
tors’ label distribution, and for capturing confusion as measured by entropy. These
results provide further evidence that the crowd information included with this dataset
provides useful information for learning.

The next best results are obtained by a cluster of methods including mse soft-
loss, the Repeated labelling method by Sheng et al., and the soft approximate of the
Crowd Truth aggregation method (see section 6.2.1. These methods are significantly
outperformed by the kl and ce soft-loss methods, but significantly outperform the
other soft-label method, dlc. All soft labelling methods outperform training methods
using aggregated labels.

Filtering and weighting by inverse difficulty

Using crowd information (specifically, Observed Agreement on an item) to filter ‘hard’
items generally results in significantly worse hard evaluation performance: training
with gold data with hard items filtered always results in worse performance than
training with all the gold data, and training with mv silver labels with hard items
filtered always results in worse performance than training with the entire dataset
with one exception discussed below, ic-labelme. pos is a clear illustration of this
finding. For f1 evaluation for example, filtering then training on gold labels falls 12
f1 points below Gold training without pre-filtering, and training on labels aggregated
using Majority Voting, then filtered falls 8 f1 points below training using mv Silver
without pre-filtering. With soft evaluation, however– with which hard label methods
generally perform worse anyway– the effect of filtering is less clear-cut: in some cases
we see an improvement, in other ones we don’t. With pos, training on gold labels
after filtering hard items (Gold + oa Filter) leads to significantly better soft evaluation
results than training on Gold labels without pre-filtering; however, the reverse is the
case for mv + oa Filter and mv training.

Augmenting silver (mv) labels by weighting the loss of each item according to some
measure of confusion, such as the observed agreement for that item (oa weighting)
generally works better than filtering in terms of hard evaluation: besides again yielding
much better results with ic-labelme, it also achieves better results than training with
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unweighted mv labels on mre, rte and ic-cifar10h, although the difference is generally
not significant. But typically weighing doesn’t affect soft evaluation results. With pos
we do not see an improvement over using mv labels alone according to either hard
or soft metrics; in fact we find significantly worse cosine similarity and cross entropy
results. This may suggest that given the complexity of the annotations as discussed
above, oa alone is not informative about the nature of disagreements for this task pos.
(Note that the probabilistic model of item difficulty annotation proposed by Whitehill
et al. [2009] is not applicable to this dataset as it only applies to binary tasks.)

6.4.2 Information Status Classification

In the pdis dataset, gold labels are only available for testing, not for training, so it
is not possible to report results for training with gold, and our discussion will focus
on the results obtained with aggregated labels and soft labels. We did evaluate the
performance on this dataset of ‘hybrid’ methods relying both on a hard label and on
information from soft labels (Plank et al., mtlsl), but using as the hard label the most
accurate aggregated label (obtained with mace, but the same accuracy is obtained
using d&s), instead of a gold label as in other datasets. So the results with ‘gold’ and
’augmented gold’ are not directly comparable to those obtained with other datasets.

The key characteristics of pdis (see Tables 2.1 and 2.2) are that it has the high-
est number of items (96,305), and the average number of annotations per item is
also fairly high (11.87). Observed agreement is medium high (.81). However, average
coder accuracy is mediocre (.78), and the percentage of ‘expert’ coders is low (.71).
Notwithstanding this, the quality of aggregated labels is high, .98. Finally, the en-
tropy statistics are the opposite as with pos: while the raw annotator entropy is fairly
high (.38), the Best Distribution Entropy (bde) is one of the lowest (.09).

Using soft labels to supplement (silver) hard labels

As with pos, mtlsl is the best method for learning hard or weighted truth for the pdis
under all three hard evaluation metrics; unlike with pos, however, the improvement
is not significant. mtloa and [Plank et al., 2014a] also perform on par with mace.
We would argue that the explanation proposed when discussing pos in the previous
subsection–that soft labels provide information that can lead to improvements over
the hard labels when the dataset contains sufficient quality, quantity, and diversity
in the soft labels–explains the results with pdis as well. In the case of pdis, while we
have a high number of crowd judgments, their quality is lower than with pos (aver-
age accuracy .78, percentage of ‘expert’ coders .71) and above all we have much less
diversity, as measured by our Best Distribution Entropy measure: .09, as opposed to
.39 with pos.

With soft evaluation, augmenting mace with crowd information generally improves
results. mtloa and the [Plank et al., 2014a] method outperform mace and in fact all
the aggregated and soft labelling methods according to three out of the four evaluation
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metrics (all except Jensen-Shannon Divergence). However, mace outperforms mtlsl
using all evaluation metrics except Jensen-Shannon Divergence. This suggests that
information about label and/or annotator confusion are more useful for this dataset
than the probabilistic output of the mace aggregation model used as soft label for this
dataset (see section 4.5.1).

Learning from aggregated labels

As shown in Table 2.1, pdis is a very mixed dataset in terms of annotator performance.
Average annotator accuracy is not very high, 78%, and the variation is much wider
than in the datasets. In addition, the annotators did very varying amounts of work,
annotating from about 1% to 13% of the dataset; but the majority of the annotations
was produced by the annotators doing the most work. We would therefore expect,
first of all, probabilistic aggregation methods to perform much better than Majority
Voting wrt hard evaluation, as mv’s assumption that all annotators have similar ability
clearly doesn’t hold, while probabilistic aggregation methods have enough evidence to
learn accurate characterizations of the annotators that produced most of the labels,
unlike with pos. This prediction is borne out, first, by the fact that the quality of
probabilistically aggregated labels (98%) is much higher than the quality of mv labels
(89%) (see Table 2.2) and the quality of aggregated labels in pos (at most 80%). And
second, by the fact that training with probabilistically aggregated labels outscores
training with mv labels by at least 2 percentage points with all three hard evaluation
metrics (see results in Tables 6.1, 6.2, and 6.3).

A second expectation is that having access to the entire distribution of labels pro-
duced by the crowd should be less informative in terms of predicting the most likely
label than in the case of pos, primarily because the diversity of labels as estimated by
the Best Distribution Entropy is so low (.09) but also because the quality of coders as
estimated in terms of observed agreement is much lower and we also have high vari-
ance in coder ability. (One could also think that given that probabilistic aggregation
methods achieve such high accuracy it would be difficult to improve upon it, but this
is not the case e.g., with ic-cifar10h, as we will see.) And indeed, for this dataset,
training using aggregated labels performs on par with training using soft labelling
methods.

Learning from soft labels

The soft label does not appear to be entirely uninformative, however. mtlsl, making
use of both the hard aggregated silver and the soft label, still marginally outperforms
training with aggregated silver only. Also, and as importantly, soft-labelling meth-
ods and/or versions of mtl outperform pure aggregated label training with all soft
evaluation metrics.

While using aggregated labels performs on par with augmented methods and most
of the soft labelling methods (the ce/kl/mse soft loss methods) with hard metrics,
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they are outperformed by these soft-loss methods when it comes to learning the en-
tropy of the annotator-produced distributions, a proxy for labelling uncertainty that
we measured using cosine similarity and the Pearson correlation of the entropy.

However, it is striking that all methods are quite bad at predicting entropy with this
dataset. This is also the only dataset for which the best distribution was obtained from
the posterior of a probabilistic aggregation method (mace), rather than directly from
raw annotations using softmax or standard normalization. The likely explanation
for these two findings is that crowd information for this dataset is very noisy, so no
method can learn to predict them accurately. The second finding also likely explains
why none of the soft loss methods (ce/kl/mse) improve over their hard label counter-
part for this dataset, even insignificantly: the soft labels obtained via mace have had
too much disagreement information removed to be useful.

As mentioned above, the ce/kl/mse soft loss methods are on par with the aggre-
gated (and augmented) methods when it comes to hard evaluation metrics. These
methods are also on par with the dlc method when evaluating using Accuracy and
f1 and slightly outperform it when evaluating using ct f1. Like the mace d&s ag-
gregation models, dlc learns ground truth by learning annotator reliability. But the
ce/kl/mse soft loss methods and the dlc method all significantly outperform the
Sheng Repeated Labelling method, which is based on raw coder annotations. This
again shows that for pdis, gains in hard evaluation performance are seen with models
that discriminate between annotators/annotations. Further evidence is the fact that
although the ct soft aggregation method outperforms mv, it is the least performing
soft label method when it comes to hard evaluation. While the best of the ce/kl/mse
always outperforms the best aggregated method when evaluated using soft metrics,
the same cannot be said of dlc, Sheng Repeated Labelling and ct soft aggregation
method, as we will see when discussing other datasets.

Filtering and weighting by inverse difficulty

As with pos, pre-filtering then training resulted in lower performance then training
on mv labels alone when evaluated using all the metrics. While we did not have Gold
labels for training, we observed that pre-filtering and training using the very high
quality mace aggregated labels also leads to a worsened performance using all the
metrics.

While weighting using Observed Agreement or using the item difficulty scores pro-
duced by the Whitehill et al. [2009] method outperformed training using mv alone
using soft metrics, it did not lead to a higher hard evaluation performance. One
interesting finding is that weighing with probabilistically inferred inverse difficulty
generally results in worse performance than weighing with oa.
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6.4.3 (Medical) Relation Extraction

The key characteristics of mre (see Tables 2.1 and 2.2) are that it is one of the smallest
datasets we studied, with only 975 items, and coder accuracy is also pretty low– av-
erage coder accuracy is even lower than with pdis (.76), and the percentage of ‘expert’
coders is much lower (.58), although observed agreement among annotators is rea-
sonably high (.86). The average number of annotations per item is fairly high (15.3),
but the quality of aggregated labels is the lowest among all of our datasets (highest is
.77). Both raw annotator entropy and Best Distribution Entropy are fairly high, .31.

Another interesting observation about the dataset is that, going by the gold label,
the dataset is very imbalanced, with a ratio of 2.94:1 between class 0 (false) and class
1 (true).As a result, Accuracy ranking often differs from f1 or ct f1 ranking. Because
we use the class weighted version of the f1 metric, it is expected that the results
will differ, as the metric will assign a higher score to the model that produces more
correct answers of class 0. And, on this note, a striking result is that if the goal was to
learn the majority class (i.e. evaluated using f1 or the weighted f1 metric), the Crowd
Truth method outperforms all other methods for learning from crowds, confirming the
results obtained by Dumitrache et al. [2018b].

Gold vs. non-gold

With mre, as with pos, we find a large difference in performance between the results
obtained training from the crowd only and training using gold, when measured using
hard evaluation metrics. We observed a similar difference with pos (Section 6.4.1),
and pointed out that the most likely explanation was poor annotator accuracy for
nearly all of the classes except Nouns and Pronouns. The same explanation applies
to mre, and we can see this without digging in the dataset: mre (and ic-labelme, dis-
cussed in Section 6.4.5) are the datasets with the lowest average annotator accuracy
and the lowest proportion of ‘good’ annotators when assessed against gold. In other
words, these are the datasets where the crowd produced labels least like the gold. It
is therefore not surprising that the models trained on these labels also produce labels
that substantially differ from the gold labels.

Using Soft Labels to Supplement Gold labels

As noted above, using gold in training yields the best results for mre with hard eval-
uation. The best results with all hard metrics are obtained by supplementing gold
with soft labels, but the improvement over using gold only is typically not significant.
(mtlsl works slightly better according to Accuracy and ct f1, Plank et al. according
to f1.) The fact that we see a small but not significant improvement is, we believe,
consistent with the hypothesis proposed in Section 6.4.1 about the conditions under
which this happens: mre has a fairly high bde, indicative of a good level of diversity,
but not as high as that of pos; it has a good number of annotations per item; but the
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size of the dataset is likely too small to observe an effect, and coder accuracy is also
fairly low.

With soft evaluation, we find that one of the gold + soft label methods achieves
slightly better results than training with gold only according to ce or jsd, but slightly
worse when measured using cosine similarity and entropy correlation. The most likely
explanation is that in the mre dataset the annotators have a low average accuracy, so
the entropy may not be predictable; but it may be again a matter of size.

Learning from aggregated labels

Several interesting observations can be made from the hard evaluation tables in Sec-
tion 6.3.1. First of all, we can see that unlike with pos, where soft labelling training
generally outperformed training with aggregated labels, pretty much all crowd-only
training methods achieve about the same results in terms of Accuracy (Table 6.1),
although some interesting differences can be seen with f1 and ct f1. Second, we find
that again the comparison between probabilistic agggregation methods and mv is very
much affected by the hard evaluation metrics. With Accuracy, all aggregation meth-
ods perform about the same. With f1 and ct f1, however, d&s performs much better
than both mv and mace both in terms of hard and of soft evaluation–this is the only
dataset where we find a substantial difference between d&s and mace under either
form of evaluation. Together with the finding about the performance of ct aggrega-
tion, this result suggests that d&s is better than either mv or mace at modelling the
main class.

Third, we find that the one crowd-only method that strikingly outperforms the
other methods for this dataset is Crowd-Truth aggregation, which achieves a perfor-
mance higher by almost ten points than all other methods in terms of f1 and ct f1.
As this method is best considered a soft label method, we discuss this finding next.

With soft evaluation, silver training with d&s outperforms gold training both in
learning the distribution of the annotations (i.e. evaluation using jsd and ce) and ac-
cording to the Entropy Similarity metrics, but is outperformed by soft labelling meth-
ods.

Learning from soft labels

The difference in f1 and ct f1 performance between ct ‘aggregation’ and all other
crowd-only methods with this dataset is, we believe, due to the same reason which
explains the better performance of d&s over mace aggregation: the focus on the True
class. d&s aggregation learns models of the coders’ sensitivity and specificity to the
True class; the objective of ct aggregation is to find good examples for the True class.

However, other soft label methods apart from ct aggregation do not improve results
over silver training when evaluating using the hard metrics. This is most likely due to
the fact that this dataset does not satisfy any of the conditions under which soft label
methods achieve good performance: it is the second smallest, and the quality of the
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annotations is the second lowest. However, soft label training does outperform hard
label (silver and gold and augmented) training when evaluating using soft evaluation
metrics.

Filtering and weighting by inverse difficulty

One clear result for filtering and weighting on this task is that both approaches leads to
significantly worse Accuracy than non-filtering/non-weighting using hard evaluation
metrics. And, while filtering leads to better soft evaluation results, weighting largely
remains on par with the non-weighting counterparts. Neither method leads to gold-
level hard evaluation performance.

6.4.4 Recognizing Textual Entailment

The key characteristics of the rte dataset are that it’s the smallest dataset, counting
only about 800 items, but it has a good number of annotations per item (10). The
quality of the coders, as measured by average coder accuracy (0.84) and percentage
of expert coders (0.83) is quite good, although not as high as that of ic-cifar10h in
particular. The average number of annotations per coder is not very high however, at
48.78.

Gold vs. Non-Gold

One obvious characteristics of rte is that although using gold labels still yields the
best hard evaluation results (with gold or gold+soft achieving the best results depend-
ing on themetric) themargin between training with gold labels and training with crowd
labels only is much smaller than with the two datasets we have seen so far, pos and
mre–in fact, soft-loss and weighing methods achieve equivalent results to using gold
with Accuracy and f1. (We cannot make a direct comparison to pdis as that dataset
has no gold labels.) This result was already reported by the creators of this dataset,
Snow et al. [2008], but without explanation; we believe it can be straightforwardly
explained in terms of quality of coders. In rte, the coders have a much higher aver-
age accuracy with respect to gold labels, and the percentage of expert coders is very
much higher, than with mre in particular; as for pos, as discussed in Section 6.4.1,
the headline coder accuracy and expert percentage figures are deceptive, in that accu-
racy is only high with one category, but for the other categories is pretty low. Further
evidence for this explanation is the fact that the quality of aggregated labels is very
high even though each annotator only produced relatively few annotations. The ma-
jority voting accuracy is already 90% with respect to gold (or 93% depending on how
the ties are broken). The other hard aggregation methods also produce labels with
93% Accuracy. It is therefore not surprising that the margin between performance of
gold training and crowd-based training is virtually nil.
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Using soft labels to supplement gold labels

The hard evaluation performance of gold-plus methods with rte is slightly worse than
that with mre. Supplementing the gold labels with crowd information leads to non-
significant improvements over gold training in terms of Accuracy, to equivalent results
with the othermetrics. This is due in our view to the fact that the diversity of the labels,
as measured with bde, is lower than with mre (and half that with pos, where gold+soft
methods do significantly improve over gold). As for soft evaluation, we find that mtlsl
achieves significant improvements over gold in terms of jsd, but otherwise the results
obtained supplementing gold labels with crowd information are comparable to those
obtained training with gold labels alone.

Learning from aggregated labels

Training using any silver label achieves slightly lower results with rte than training
with gold, less than one Accuracy/f1/ ct f1 points–a margin that is significant but
much lower than that observed with pos and mre. This would seem surprising given
the relatively small number of annotations per coder, but as already discussed, we
think it is due to the high quality of coders; this hypothesis is confirmed by the fact
that mv achieves comparable results to the probabilistic aggregation methods. None of
the silver label methods is significantly outperformed by any other method for learning
from crowds only. For soft evaluation, in most cases, there is no significant difference
between training using gold labels and training using silver labels: both gold and silver
label training methods are outperformed by soft labelling and augmented methods.

Learning from soft labels

When discussing the results with pos in Section 6.4.1 we pointed out how soft labelling
training achieves as good or better results in terms of hard evaluation than aggregate
labels with all datasets. Specifically, there are three datasets with which soft label
training gives better results–pos, ic-labelme, and ic-cifar10h–and three with which
the results are equivalent–pdis, mre, and rte. What characteristics do these last three
datasets have in common?

In Section 6.4.1 we argued that training with aggregated labels matches perfor-
mance with soft labels when average coder accuracy is relatively low, yet there are
enough annotations per item and per coder to allow the aggregation method to ac-
quire good models of the coders, resulting in high quality aggregated labels. We saw
in Section 6.4.2 that these conditions hold for pdis; they hold for rte as well. They do
not however hold for mre.

But there are two additional characteristics in common to these three datasets.
The first is that these three datasets for which soft labelling training doesn’t improve
over silver aggregate training are all binary classification tasks. It may be that in
terms of hard evaluation, a model trained for binary tasks is always better off ‘taking
a stand’ as opposed to taking a probabilistic approach to truth. Another characteristic
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these datasets have in common is that these are the datasets with the highest raw
distribution entropy (see Table 2.1). Perhaps, soft-loss training is not tolerant to too
much confusion. Digging a bit further we find that it is the soft loss methods that
perform on par with silver training methods on this dataset; they outperform Repeated
Labelling and dlc. In fact, the Repeated Labelling method proposed by Sheng et al.
achieves on this dataset worse results than training using mv labels with all hard
metrics–this is the only dataset for which this happens. rte is also the dataset with
the highest item entropy (0.72, 0.34 points higher than the next highest one, pdis).
Taken together, these facts suggest that the Sheng Repeated Labelling method is not
suited for datasets with such characteristics. This hypothesis is further strengthened
by the fact that the next method for which Repeated labelling achieves much worse
results than the best silver or soft-loss method is pdis, the dataset with the next
highest entropy.

With soft evaluation, the results are somewhat mixed. However, we can definitively
say that with all soft evaluation methods except for Jensen-Shannon Divergence, soft
labelling methods always achieve the best results.

Filtering and weighting by inverse difficulty

As with the other datasets, filtering items with low agreement did not yield any im-
provements over training using all the items in terms of hard evaluation, and weighting
by observed agreement did not achieve better results than using majority voting labels
without weighing items. However, unlike what we observed with pdis and with mre,
weighting using the inverse difficulty scores inferred by the Whitehill et al. [2009] ag-
gregation model resulted in a substantially worse performance when evaluated using
hard metrics.

6.4.5 Image Classification 1: LabelMe

ic-labelme’s most distinctive features are the low number of annotations per item
(2.5 on average), the extremely low coder accuracy with respect to gold (.69 average
accuracy, and only 42% of coders achieving expert accuracy levels), and the extremely
high bde (.76, almost double the next highest).

Gold vs. non-gold

With ic-labelme we find again a large difference between methods using gold and
methods using crowd information only. With hard evaluation, we find that using gold
results in more than ten percentage points for Accuracy and f1 and slightly less for ct
f1, similar to what we observed with mre and pos. The same explanation we proposed
for mre and, after some analysis, for pos–that the reason for the large difference is the
poor quality of annotators, or, more accurate, the substantial difference between their
judgments and gold judgments—applies to ic-labelme as well: these are the datasets
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with the lowest annotator accuracy and the lowest percentage of expert-quality anno-
tators.

By contrast, with soft evaluation, the situation is exactly reversed, and we find
a large difference with all soft evaluation metrics in favour of methods using crowd
information, either by itself in soft labelling methods—in particular, soft loss methods,
but also training with aggregated labels—or in combination with gold labels: mtlsl
performs on par with soft-loss methods when measure by cross-entropy and jsd, and
only slightly worse in terms of the entropy similarity measures.

This reversal confirms what was already obvious from the example from previous
discussions, namely, that gold judgments are very different from crowd judgments in
this dataset. The low accuracy of coders wrt to gold may then indicate the extreme
subjectivity of judgments rather than carelessness–further evidence for this being
provided by the extremely high bde, by far the highest in any of the datasets we used.

Using soft labels to supplement gold labels

As already mentioned regarding the discussion of gold vs. non-gold, very different
results are achieved with this dataset by leveraging crowd information in addition to
gold labels depending on which form of evaluation is used.

The best hard evaluation results for this task are obtained by training with gold
labels alone: supplementing gold labels with crowd information leads to a decline in
performance wrt to training with gold alone which is significant in all cases except
with f1 evaluation of the mtlsl method; and the difference between gold only and
augmented gold is only small with mtlsl.

But whereas crowd information doesn’t improve upon gold for learning hard truth,
mtlsl always significantly outperforms gold-only training with soft evaluation, and the
other gold-plus training almost always do–the exception being the entropy correlation
results, where Plank et al. [2014a] and mtloa only remain on par with gold training.
(Gold-plus methods are however generally outperformed by soft loss methods with
this type of evaluation, except again for mtlsl that achieves equal-top performance
with the soft-loss methods in terms of cross-entropy and jsd and near-top with the
entropy correlation metrics.)

There are at least two clear reasons for this difference. First of all–although train-
ing over crowd information only can match or indeed outperform gold training, this
only happens when certain conditions are met, as already discussed–which is not
the case with ic-labelme. In ic-labelme, the average number of annotations per
item is only 2.5, with a maximum of 3, and over 4% of the items only have a sin-
gle annotation. In other words, the number of annotators per item is insufficient,
so that the crowd annotations do not contain additional information for gold aug-
mentation/regularization. And second, crowd judgments are very different from gold
judgments with this dataset, as already noted above. As a result, methods relying
on one type of judgments generally perform badly when evaluating against the other
type, and viceversa–the one exception being mtlsl, which optimizes for both.
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Learning from aggregated labels

With this dataset, as with pdis, probabilistic aggregation methods outperformmajority
vote aggregation by a substantial margin when evaluated against the gold label, and
for the same reason: the poor quality of coders, or better the low similarity between
their judgments and the gold, or between each other’s judgments.

But while training with probabilistically aggregated labels outperforms mv, all silver
methods are outperformed by soft labelling, weighting and filtering methods using all
the evaluation metrics.

Learning from soft labels

Soft-loss training significantly outperforms all other soft labelling methods with ic-
labelme in terms of hard evaluation, except for weighing and filtering (see next sub-
section). These soft loss methods also almost always produce the best soft evaluation
results.

Filtering and weighting by item agreement

ic-labelme is the only dataset for which filtering items by observed agreement, and
then training over the remaining items, leads to an improvement over training without
pre-filtering. In fact, with this dataset filtering + mv labels is the best approach to
learning from crowds. We believe that this is because this dataset is the one with the
poorest quality annotators (or perhaps the annotators that disagree with most with
the gold labels), as shown by the low oa figures and also by the fact this is the only
dataset in which the expert annotators do not constitute a majority in the annotator
population. Because the base model for this task was pre-trained with already learned
and encoded images, the model loses nothing by discarding low observed agreement
and perhaps mislabelled items.

6.4.6 Image Classification 2: CIFAR-10H

ic-cifar10h is not particularly big in size–it is comparable to pos or ic-labelme–but
it has very high annotator accuracy, with all annotators having an accuracy of 75%
or more.The only other dataset with a percentage of expert coders this high is pos;
but, unlike in pos, the annotators did not overwhelmingly label only one category.
ic-cifar10h also has the highest number of annotations per item–over 50. Also, each
coder annotated about 200 items on average. As a result of coder quality, high number
of annotations per item, and good number of items per annotator, the quality of the
aggregated labels is the highest, .99–and this irrespective of the type of aggregation
used. Finally, this is a dataset with very high oa and very low entropy, both raw and
bde.
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Gold vs. non-gold

Another result of the high quality of coders and high number of annotations is that this
is the one dataset with which training with crowd information outperforms training
with gold labels, regardless of the method used. We already mentioned in connection
with rte the finding in [Sheng et al., 2008, Snow et al., 2008] that a large enough
crowd may produce labels of quality comparable to that of gold labels produced by
experts when the crowd workers are of sufficient quality; this dataset shows that in
fact the crowd can outperform experts.

Using soft labels to supplement gold labels

Two out the three methods for augmenting gold labels, the Plank et al. [2014a] method
and mtlsl, result in significantly reduced hard evaluation performance with respect
to gold on this dataset; only mtloa achieves a performance on par with gold training.
We saw the same result with ic-labelme, and again we hypothesize that the reason
is that the crowd annotations do not provide useful additional information for gold
augmentation/regularization; but the reason is not the same as with ic-labelme. With
ic-labelme, the motivation was the low number of annotations and the low quality
of the annotators wrt gold. For ic-cifar10h, however, the reason is that the crowd
annotations do not provide enough diversity in comparison with the gold labels, as
they appear to be drawn from the same distribution; there is little disagreeent between
gold labels and soft labels. This can be seen from the combination of high accuracy
and high observed agreement of the crowd labels with respect to the gold. We can also
see that both the raw annotation entropy and the bde are extremely low, the lowest
among all the datasets. Further evidence is that the gold+soft methods do not even
outperform gold training in terms of soft evaluation–again, the only dataset for which
this is the case.

Learning with aggregated labels

d&s and mace do not significantly improve over mv for this dataset, regardless of the
evaluation metric. This is unsurprising given the quality of the coders–labels aggre-
gated using majority voting already achieve the same accuracy (over 99% with respect
to gold labels) as probabilistically aggregated labels accuracy, a sign that discriminat-
ing between annotators cannot offer much improvement over majority with respect
to learning ground truth. For that matter, gold training and silver training are not
significantly distinguishable.

Learning with soft labels

As already said earlier, with ic-cifar10h we find that a large crowd providing high
quality annotations can not only match, but outperform gold training. For this task,
the soft labelling methods outperform all types of hard label training, both silver and
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gold. Among soft labelling methods, Repeated Labelling and dlc outperform soft loss
and aggregated methods according to all the hard evaluation metrics, but soft-loss
methods still outperform all hard-label methods, both gold and silver. The results
with soft evaluation are more complex: Repeated Labelling and the soft-loss methods
achieve the best results with cross-entropy by a wide margin over dlc, which however
outperforms all other methods when evaluated using Jensen-Shannon Divergence.
Soft-loss methods achieve the best results in terms of entropy estimation.

Filtering and weighting by item agreement

For this task, training with mv labels but weighting the loss for each item depending
on the observed agreement for that item, leads to an improvement over majority voting
training. This only happens with one other dataset, ic-labelme, and the reason for
this is not immediately apparent. In the case of ic-labelme, one could argue that the
dataset contains lots of hard items, as shown by the low overall agreement, and that
the observed agreement works well at identifying confusing items. Removing items
with below average observed agreement results in an average observed agreement
greater than .98 for ic-cifar10h. The only other datasets for which this is true are
pdis, ic-labelme and pos, and of the three, ic-labelme is the only dataset/task in
which the label of a given item is independent of the labels of the previous items.
We conclude that mv with oa weighting is particularly suited for datasets with these
characteristics.

Given the above discussion, one would expect that filtering would work for ic-
cifar10h as well, but it does not. This is likely due to the fact that with filtering the
model suffers from excessive data sparsity.

6.5 Discussion (Answering RQ5 and Revisiting RQ2)

6.5.1 Which method for learning from disagreement achieves the best
results (RQ5)?

One of the key results of this PhD research is that the answer to RQ5 is more complex
that one would expect based on the previous literature. For one thing, new proposals
do not unequivocally outperform previous proposals. A proposal like dlc while state-
of-art is not the best method for training across all datasets with varying levels of
disagreement. In fact, the results indicate that disagreement characteristics of the
datasets (which reveal the nature of the task) and the form of evaluation (which is
indicative of which model characteristics the ML practitioner/researcher values) are
important consideration in choosing a method for learning from crowds.

Despite the complexity of the answer, one point stands out; soft labelling methods
outperform hard labelling methods regardless of the level or source of disagreement
and regardless whether hard or soft evaluation is used. Which soft labelling method
performs best very much depends on the form of evaluation and the characteristics of
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the dataset. With soft evaluation, some form of soft-label training achieves best results
with virtually all datasets and all metrics, except with Pearson correlation of entropy
with rte, the smallest dataset. Specifically: some form of soft-loss training achieves
the best results with all datasets except for rte and mre; Repeated Labelling achieves
the best results with mre (all metrics) and rte (Entropy Similarity); and Deep Learning
from Crowds generally achieves worse results than the other soft-label methods except
with rte (ce) and ic-cifar10h (jsd).

With hard evaluation metrics, while soft loss training achieves competitive results
for all the datasets, it is only the significantly best method for learning from crowds on
pos, a dataset for which the average annotator (gold) accuracy is high but the accuracy
of aggregated labels is unexpectedly low. For this dataset, as evidenced by the discus-
sion in Subsection 6.4.1 and supported by Plank et al. [2014b], the disagreements are
indicative of the complexity of the items for which annotators disagree, hence, soft loss
training which informs the model of the possibility of alternative interpretation is well
suited to learning on the datasets. For pdis, soft loss training using probabilistic soft
labels from mace posterior has best results but this result is not significantly different
that results from training with hard mace and d&s labels. Clearly pdis, which has a
large number of coders of varying ability (and biases when labelling items subject to
interface errors), benefits from the discriminatory power of probabilistic aggregation
techniques.

For ic-labelme, pre-filtering low agreement items and training on the rest using
Majority Voting Training, achieves the best results. On examining the filtered items,
60% of these were assigned labels inside city, open country, or street gold labels. These
are categories for which the majority consensus disagrees the most with gold labels
(see Figure 2.1), categories with the highest level of annotator confusion (see, Figure
6.4, and going by our analysis, these categories act as garbage categories as they
are poorly defined and open-ended (see the discussion in Section 2.3.2). ic-labelme
training benefits most from removing images for which the annotators detect overlap
and hence disagree with the arbitrary gold interpretation. The next best results on
hard evaluation of ic-labelme are obtained by mv + oa weighting which down-weights
these items so that the model pays less attention to them during training.

mv + oa weighting also works well for rte; in fact, it has the best results amongst
the non-gold methods, and as we noted, this is the dataset for which the annotator
disagreements largely reflect the difficulty of the item. For ic-cifar10h, characterized
by a high number of per-item annotations produced by high quality coders, Sheng Re-
peated Labelling and dlc methods, both of which multiply examples, outperform other
methods. It is worth noting that although for this dataset annotators most resemble
the gold, taking a soft approach to training is still beneficial over hard labelling; soft
loss outperforms majority voting, dlc outperforms mace and d&s.
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Figure 6.4: Observed agreement for images based on their gold categories

6.5.2 How can we best evaluate models on datasets that provide a range
of judgments? (RQ2)

Finally, we return to RQ2. Throughout this discussion we have highlighted how much
the relative ranking of the methods for learning with disagreement depends on the
form of evaluation. The inevitable conclusion is that only using hard evaluation met-
rics such as Accuracy or f1, or only using soft metrics such as Cross-Entropy, will
only provide a partial picture of how well a model performs on a dataset. So we would
argue that only using a hard evaluation metric may only be considered appropriate
for datasets on the low subjectivity end of the spectrum, the best predictor of which
we found being what we called Best Distribution Entropy, or bde. In all other cases,
also reporting the results with a soft evaluation metric is arguably more accurate. At
the other extreme, in the case of tasks where the labels are highly subjective, such as
hate speech detection, it may be argued that using a hard metric makes little sense.
On the other end, we can ask ourselves whether all of the metrics we studied in this
thesis are required.

With regards to hard metrics, we can see that Accuracy, f1 and ct f1 rank the
learning methods similarly, except on the mre dataset which is highly imbalanced
(see section 6.4.3). Also, while f1 and ct f1 rank the methods in a very similar way,
we can see that the f1 metric increases the scores of all the methods. Comparing the
f1 and ct f1 scores in Tables 6.2 and 6.3,7 we can observe that for any given method,
including the ones that do not take disagreement into account during training, the
ct f1 score is always higher than the f1 score. This finding is consistent with the
claim by Dumitrache et al. [2018c] that evaluating models under the assumption of
a single correct answer underestimates a model’s performance. We can also observe
that using ct f1, the gains of highly accurate (typically, gold-trained) models over the
less accurate models are reduced. This can be observed in the results with five of

7We compare ct f1 with f1 rather than with Accuracy as the two metrics differ only in the down-
weighing of confusing items by ct f1 (see section 7.2.2)
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the six datasets, the one exception being rte. To appreciate this point, consider the
difference between the best gold/gold-plus method and the best crowd-only method
on the pos dataset in Tables 6.2 and 6.3. The f1 difference between gold training and
training using the kl soft loss method is 11.14 points, while the ct f1 difference is 5.8.
In other words, the difference we observed between the performance of the kl soft loss
method and the performance of the gold model is much reduced when confusion is
factored in. One interpretation would be that if we prefer to report only one metric, ct
f1 may give a picture of the differences among methods less affected by hard items.

The differences among the results according to soft evaluation metrics are more
substantial. Both ce and jsd measure the distance between the probability distri-
bution outputted by a model and the target distribution, and the two measures are
closely related, but apart from pos and ic-labelme, these metrics yield very different
results. More research is required in order to understand which of the two methods
more accurately reflects intuition, but given that cross-entropy is already widely used
in practice, it would certainly be reasonable to interpret our results as not provid-
ing sufficient reason for adopting jsd instead. The results with ce and jsd are also
substantially different from those obtained with the two entropy-based measures, but
these also differ with each other to a large degree. Again, no conclusion can be reached
as to which of these metrics is more appropriate for the purposes of assessing how
well models capture the uncertainty among human judgments.

6.6 Conclusion

In this Chapter we experimentally compared various methods (and approaches) to
learning from the multiplicity of crowd annotations, by training key methods under
each approach for all the tasks and evaluating these methods with soft and hard eval-
uation metrics discussed in Chapter 3. Our results suggest, first of all, that reaching
a consensus on how to evaluate models if we abandon the gold standard is an essen-
tial prerequisite for this research, as the relative performance of the training methods
under consideration is critically affected by the chosen evaluation. Our experiments
do not allow us to reach a definitive conclusion in this matter as no metric was found
to be more appropriate than any other. Until such consensus is reached, however, we
found no issues with simply using cross-entropy to compare the output of a system
to a soft label.

Secondly, regarding the identification of an overall ‘best’ approach, we observed a
strong effect of dataset. With datasets of a substantial size and providing large num-
bers of judgments for each item, annotated by high quality coders, training directly
from the soft labels achieved better results than training from aggregated labels, or
even from gold labels, both when using hard evaluation and when using soft evalua-
tion. When those conditions do not hold, leveraging gold labels generally achieved the
best results in terms of hard evaluation. And leveraging soft labels in addition to gold
labels generally achieved the best overall results, greatly improving performance when
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measured using soft metrics, and leading to as good or better results than using gold
only in terms of hard evaluation with datasets not satisfying the conditions discussed
above. Among the methods not relying on a gold label, it was notable that aggregation
generally resulted in worse performance than training directly from the soft label, and
particularly using repeated labelling or soft-loss methods.
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Chapter 7

A Shared Task on Learning from
Crowds

Following the investigation into the different approaches to learning from crowds and
how the performance of variousmethods are affected by the characteristics of the datasets,
we organized a shared-task (competition) https: // sites. google. com/ view/ semeval2021-task12/
home . Participants were invited to submit novel models to learn these 6 datasets/tasks
from crowds. This chapter summarizes the outcomes of the competition, relating them
to the discussions and research questions.

7.1 Motivation

The aim of the SemEval-2021 shared task on Learning with Disagreements (Le-wi-
Di) was to provide a unified testing framework for methods for learning from data
containing multiple and possibly contradictory annotations covering the best-known
datasets containing information about disagreements for interpreting language and
classifying images. The expectation being that unifying research on disagreement
from different fields may lead to novel insights and impact ai widely. In this Chapter
I describe the shared task and its outcomes.

7.2 Task Organization

In order to provide a thorough benchmark for methods for learning from disagree-
ments, we used five well-known datasets for very different Natural Language Process-
ingnlp and Computer Vision (cv) tasks, all characterized by providing a multiplicity
of labels for each instance, by having a size sufficient to train state-of-the-art mod-
els, and by evincing different characteristics in terms of the crowd annotators and
data collection procedure. We found or developed near–state-of-the-art models for the
tasks represented by these datasets. Both ‘hard’ and ‘soft’ evaluation metrics - f1 and
Cross Entropy (see Chapter 7.2.2).
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The shared task was set up on the CodaLab Competitions platform,1 which en-
ables training and uniform evaluation on these datasets, such that the crowd learning
adaptations of the base models proposed by participants to the task would be directly
comparable.

In this section, we briefly introduce the five datasets. The dataset for Humour
Preference Learning is described in detail. The datasets for the other four tasks (pos,
pdis, ic-labelme, and ic-cifar10h) were introduced in Section 2.2, so they are merely
outlined in this section, and the train:test:dev split used for this shared task is noted.
For pos, ic-labelme, and ic-cifar10h, the train:test:dev split differs from that used in
the experiments in Chapters 4 to 6. This new split was necessary to provide ‘true soft
labels’ soft evaluation in the development stage (since the development sets used in
the preceding chapters did not contain crowd annotations). The new shuffle and split
also serves to show that the results obtained in Chapters 4.2.3 to 6 are not peculiar
to the particular partition used for those series of experiments.

This section also contains a description of the setup of the shared task.

7.2.1 Data

There are quite a few datasets preserving disagreements, and covering many levels of
language interpretation; remarkably, none of these has ever been used for a shared
task like this one, and the majority of them have never been used for a shared task at
all. Our shared task has aimed at leveraging this diversity. The datasets included are
outlined in this section. For a detailed outline of the first four datasets, see Section
2.2.

The Gimpel et al. pos corpus For gimpel-pos, consisting of over 14k examples
(words/tokens) annotated by a median of 5 annotators per item, we selected 8.3K,
3K, and 3.1K tokens as training, development and test sets respectively. This is a
departure from the split used in the previous experiments - 12K for training, 2.4k for
testing and as development dataset introduced by Plank et al. [2014a] and used in the
previous Chapters does not contain crowd labels.

The pdis corpus The Phrase Detectives corpus [Poesio et al., 2019] is a crowdsourced
coreference corpus collected with the Phrase Detectives gamified online platform [Poe-
sio et al., 2013] 2. We use pdis, a simplified version of the corpus containing only
binary information status labels. The training and development datasets consist of
473 documents (and 86.9K markables) and 24 documents (4.2K markables) respec-
tively.

1https://www.microsoft.com/en-us/research/project/codalab/
2https://github.com/dali-ambiguity
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The Humour dataset

The comprehension and appreciation of humour is known to vary across individu-
als [Ruch, 2008], making disagreement over the perceived funniness of jokes an ap-
pealing subject of study. For our training data, we used the corpus of Simpson et al.
[2019], which consists of 4,030 short texts (3398 jokes, mostly based on puns, and
632 non-jokes such as proverbs and aphorisms). 28,210 unique pairings of these
texts were presented to five annotators each, who indicated which text in the pair (if
either) they found to be funnier. The goal is to learn a model that can predict binary
pairwise labels that can predict which of two short texts is funnier.

The 4,030 text instances were split into 60% (2,418 texts, 9,916 unique pairs) for
the training set and 20% (806 texts, 1,086 unique pairs) for the development set.
Since this dataset has already been published, we constructed a new test dataset
along similar lines: 1,000 short texts (all punning jokes) were paired in 7,000 different
ways, and each of these 7,000 pairs was then presented to five crowd workers for a
preference judgement3.

The LabelMe dataset

Much research on learning from disagreements was motivated by computer vision
datasets, so we intended to include some of these, too. We used the LabelMe dataset
(see Section 2.2. For this shared task, we randomly selected 5K, 2.5K, and 2.5K
images for training, development, and testing respectively, careful to keep the label
proportions in each subset close to the proportions in the 10K dataset.

The cifar-10h dataset

We used cifar-10h dataset, the subset of cifar-10 for which Peterson et al. [2019]
collected and median of 51 annotations per image (see Section 2.2). We randomly
selected 7K, 1K, and 2K images for training, development and testing respectively.
We kept as much data as we could for training without jeopardizing the evaluation
process, as the base model was found to be sensitive to data size. As with the original
dataset, each subset we created contains an equal number of images per category.

7.2.2 Evaluation metrics

As in the rest of this PhD research, the models submitted for this shared task were
evaluated using both hard and soft evaluation metrics. Owing to the constraints of
a shared task, we used the two most commonly used metrics across nlp and cv -
Cross Entropy and f1 - the details of which are contained in Chapter 3. For the
hard evaluation using f1, we evaluated the models’ ability to predict the ’gold’ label.
And for soft evaluation using Cross Entropy, we evaluate the models by their ability

3us-based workers from Amazon Mechanical Turk were employed, paid in line with the federal mini-
mum wage.
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to predict a distribution similar to the best soft label - standard normalization soft
labels ic-cifar10h and Humour Preference Learning, softmax soft labels for pos and
ic-labelme and the mace posterior soft labels for pdis (see Chapter 4 for discussions
on the best soft label)

7.2.3 Task setup

CodaLab was the designated site for hosting SemEval-2021 competitions 4. Le-wi-Di
was run in two main phases:

Practice phase. In the practice phase, the goal was to train models for each task to
learn from crowd annotations, given (1) the training data (consisting of raw and pre-
processed input data and crowd annotations), (2) the development data with no labels,
and (3) the base models (discussed in Section 7.3). While participants were encour-
aged to start with the base models and extend them, we did not make this mandatory.
Participants could test the performance of their models on the development set by
making predictions on the given development input data and then uploading their
submissions to CodaLab for preliminary testing. We permitted up to 999 submis-
sions in this phase. The ‘leader board’ was made public to allow participants not
only to see how their models performed, but also to compare the performance of their
model to those submitted by other participants.

Evaluation phase. The evaluation phase was the official testing phase of the com-
petition. In this phase, we released test data (without labels) but we also released the
gold labels and crowd annotations for the development set to facilitate quick offline
testing and refining of models and model selection. The number of submissions for
this phase was limited to ten submissions per participant to prevent the participants
from fine-tuning their models on the test data.5 The allowed number of submissions
was later increased to 999 to more encourage submission attempts. The leader board
was also kept public in this phase. Each participant could see the best model of each
of the tasks using each of the evaluation metrics.

Post-campaign evaluation. As our aim was to make this benchmark available be-
yond the competition to researchers developing disagreement-aware models, we in-
cluded a third, post-evaluation phase to allow lifetime access to the data. Researchers
participating in this phase will be able to access the same data as in the evaluation
phase and test their models on the test data for the various tasks.

4Our competition can be found at https://competitions.codalab.org/competitions/25748
5This proved unnecessary as the inherent difficulty of the shared task was enough of a deterrent.
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7.3 Base Models

In order to encourage the participants to focus on the development of methods for
learning from disagreement, as opposed to achieving higher performance by devel-
oping better models, we provided base models for each of the tasks represented by
the aforementioned corpora. Details of the base models used for pos, ic-labelme, ic-
cifar10h can be found in Section 4.2.4. The paragraph below contains details for the
model used for humour preference learning.

The humour preference learning model. We use as base model for this task Gaus-
sian process preference learning (gppl) with stochastic variational inference, as de-
scribed and implemented by Simpson and Gurevych [2020]. As an input vector to gppl,
we first take the mean word embedding of a text, using 300-dimensional word2vec em-
beddings trained on the Google News corpus [Mikolov et al., 2013]. Then, we compute
the frequency of each unigram in the text in a 2017 Wikipedia dump, and each bi-
gram in the text in a Google Books Ngram dataset. Finally, we concatenate the mean
unigram and bigram frequencies with the mean word embedding vector to obtain the
input vector representation for each short text. The gppl model is trained on pairwise
labels from the training set to obtain a ranking function that can be used to score test
instances or output pairwise label probabilities. As a Bayesian model, it takes into
account sparsity and noise in the crowdsourced training labels, and moderates its
confidence accordingly. Hence, it is a strong baseline for accounting for disagreement
among annotators. This same gppl approach set the previous state of the art on the
humour dataset [Simpson et al., 2019].

7.4 Participating systems

Unfortunately, we observed a dramatic difference in the number of participants that
signed up to the competition (over 100 groups), the number of groups that participated
in the trial phase, and the number of groups that submitted a run for official eval-
uation.6 Only one group, uor, submitted in the evaluation phase [Osei-Brefo et al.,
2021]. However, they did submit models for each of the tasks, and did adopt a learning
from disagreements approach.

pos tagging For pos tagging, uor developed a novel pos tagging model by fine-tuning
the bert language model Devlin et al. [2019]. The (tweet, token) pairs were encoded
in the form

[cls] Tweeted text [sep] Token [sep]

where the ‘[cls]’ token was added for classification and the ‘[sep]’ token separated
the tweet from the token under consideration. To learn the class for the token, the

6Two participating groups cited an inability to come up with a novel crowd learning paradigm as the
reason they did not submit for official evaluation.
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learned classification token was passed through a single feed-forward neural network
layer with softmax activation. The output of this layer represented the probabilities of
the token belonging to each of the 12 classes.

To extend this model for crowd learning, uor added an adaptation of the crowd
layer from Rodrigues and Pereira [2018]. Rather than compute a single loss from the
crowd layer as Rodrigues and Pereira [2018] do, uor compute a joint loss from both
the crowd layer and the base model (without the crowd layer bottleneck).

pdis classification. For this task, uor also used a fine-tuned bert together with
Rodrigues and Pereira’s [2018] crowd layer. Each (document, markable) pair was
encoded as follows:

[cls] + Document + [sep] + Markable + [sep]

where the ‘[cls]’ and ‘[sep]’ tokens are used in the same manner as in pos tagging.

Humour preference learning For humour preference learning, the participant sub-
mitted predictions using the basemodel withoutmodifications butmade some changes
to the training parameters [Osei-Brefo et al., 2021].

LabelMe image classification (ic-labelme). For this task, uor adapted the Ro-
drigues and Pereira [2018] crowd layer to the base model.

cifar-10h image classification (ic-cifar10h). For ic-cifar10h, the crowd labels
were aggregated into hard labels usingmajority voting. However, uor combined Zagoruyko
and Komodakis’s [2016] WideResNet model, which has been shown to outperform He
et al.’s [2016] ResNet with the novel Sharpness-Aware Minimization (sam) optimization
technique, proposed by Foret et al. [2020], that has been shown to efficiently improve
model generalization, especially on noisy, singly labelled data.

7.5 Results and discussion

7.5.1 A summary of uor results

Table 7.1 contains the results of the participating system on this shared task when
evaluated using the f1 metric with respect to the gold labels and the cross-entropy
between the true soft labels for each task and the model prediction for that task). To
place participant’s result in context, we also report baseline results using two crowd
learning approaches: majority voting and the soft loss (see Chapter 4). The best results
for each task are highlighted in bold.

uor concentrated their effort on the ic-cifar10h dataset, on which they did achieve
good results and outperformed the baseline (see below). In the other datasets, their
official results at the end of the evaluation phase were less competitive.
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Task Model f1 Cross Entropy
pos base model + mv 0.753 2.263
pos base model + soft loss 0.767 1.084
pos uor (bert + Crowd Layer) 0.125 2.331
pdis base model + mv 0.906 0.397
pdis base model + soft loss 0.928 0.273
pdis uor (bert + Crowd Layer) 0.474 0.830

humour base model (gppl) 0.557 0.728
humour uor 0.513 3.697

ic-labelme base model + mv 0.806 2.833
ic-labelme base model + soft loss 0.833 1.691
ic-labelme uor (base model + Crowd Layer) 0.784 1.769
ic-cifar10h base model + mv 0.646 2.610
ic-cifar10h base model + soft loss 0.698 1.052
ic-cifar10h uor (WideResNet + sam) 0.769 0.827

Table 7.1: Results on the benchmarks and participant submissions on all the tasks using f1 (higher is
better) and Cross Entropy (lower is better)

With the pos task, the model proposed by uor, a bert classification model with a
modified crowd layer, achieved substantially worse results than training from a label
aggregated using majority voting or training using a soft-loss function, both accord-
ing to the hard evaluation metric (f1) and the soft metric (ce). While the ranking
between soft-loss method, aggregation, and crowd layer with pos is consistent with
that obtained in Chapter 6, the differential between soft-loss/mv training and the re-
sults obtained by uor is much higher than anticipated given the result in Chapter
4.2.4. This suggests that the uor’s crowd layer is not effective as the dl-mw variant
of Rodrigues and Pereira’s [2018] crowd layer used in the previous Chapters. This
suggestion is supported by uor’s result on ic-labelme and pdis - unlike the results
on the dlc model in Chapters 4 and 6, uor’s crowd layer was outperformed by mv
training for both tasks. The pos and pdis results also suggest that the bert model
proposed by uor yielded much lower results than the base models provided for those
tasks.

For the humour preference learning task, again, the base model outperforms uor’s
submission on both metrics,but in this case the difference in performance between
gppl and uor is much less substantial with the hard metric, although it remains large
according to the soft metric. As uor’s submission was also produced by the same base
system, this large difference is possibly due to the choice of training hyper-parameters.
A possible reason for poor cross-entropy error is the use of discrete labels, which are
heavily penalized for overconfidence by cross-entropy error. On this soft metric, the
Bayesian probabilistic approach of gppl may have advantages over approaches with
poorer calibration, which remains to be explored in future work. The gppl approach
therefore remains the state of the art with this dataset.

115



7.5.2 Learning ic-cifar10h from Noisy Single Labels

There is one dataset, however, on which uor outperformed the two baselines: ic-
cifar10h. For this dataset, the WideResNet image classifieruor [Zagoruyko and Ko-
modakis, 2016] and trained on majority voting aggregated labels and optimized using
Foret et al.’s [2020] sam optimization technique. The results show that WideResNet
outperforms ResNet with this task both according to the hard metric and the soft
metric. Interestingly, this is the one dataset in which the Deep Learning from Crowds
approach of Rodrigues and Pereira [2018] works best as seen in Chapter 6, outper-
forming both soft-loss training and majority voting training. It would thus be inter-
esting to understand if the performance of uor’s model could be further increased by
adopting one of these methods.7.

7.6 Conclusion

This shared task presented the first unified testing framework for learning with dis-
agreements. The datasets include sequence labelling, three classification tasks, and
preference learning, hence provide a test-bed for a wide range of challenges when
learning from multiple annotators. We proposed to evaluate not just the ‘hard’ per-
formance against a gold standard, but also the ability to predict the distribution of
different interpretations of the data—that is, the alternative labelling provided by dif-
ferent annotators. The results show the benefit of soft loss functions that account for
the distribution of labels in the training data. However, modelling alternative inter-
pretations of data remains an under-researched topic in nlp and computer vision. To
encourage future work on learning with disagreements, the shared task and datasets
will remain available for evaluating new methods.

7As a postscript, we should note that after the end of the official competition we did carry out an in-
vestigation of the reasons for the poor performance of uor’s models on the tasks other than ic-cifar10h.
Some points emerging from the discussion are presented in the participants’ paper for the shared task
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Chapter 8

What Models Know about Arbitrary
Targets

One of the observations emerging from this work is that different methods appear to
work best depending on characteristics of the dataset such as the level of noise, for
which different measures have been proposed. In this Chapter, I propose to learn the
ground truth label and the model’s opinion of the level of noise in an item via automated
temperature scaling; learning a soft-loss function jointly with a temperature scaling pa-
rameter. We test this approach across five classification datasets with varying levels
of noise from different sources. The results show that model calibration via automatic
temperature scaling is a simple yet effective approach to learning accurate ground truth
predictions in high disagreement datasets with overlapping labels and yields state-of-
art results. Further, we analyze the model’s per item temperature predictions and find
that it correlates with several measures of noise such as reversed entropy and observed
agreement.

8.1 Introduction

As we discussed in Section 2.3 of Chapter 2, there are a number of reasons for this
disagreement, ranging from ambiguity–items being interpretable in different plausible
ways [Poesio and Artstein, 2005, Plank et al., 2014b, Poesio et al., 2019]–to subjectiv-
ity–different people having different views, e.g. on a particular text, e.g., on whether a
review is positive or negative [Kenyon-Dean et al., 2018] or a tweet is offensive or not
[Caselli et al., 2020]–to overlapping labels due to imprecise annotation schemes as in
ic-labelme – to difficulty experienced by annotators in annotating the item [Beigman
and Beigman Klebanov, 2009], to simple errors, i.e., errors made by coders or caused
by problems in the interface.

In this Chapter, we present preliminary results on a proposal, automatic temperature-
scaled soft loss. This approach to learning with disagreement seeks to flatten or
heighten the entropy of a model’s predicted probability distribution depending on
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whether or not the model perceives the instance under consideration to have high
data uncertainty resulting in arbitrary training targets or multi-modal label distri-
butions. Section 8.2 outlines the methodology of this method. Section 8.3 provides
the setup of the experiments conducting. Sections 8.4 and 8.5 discuss the results
and analyze the temperature predictions of the model. Finally, Section 8.6 contains
concluding thoughts.

8.2 Methodology: Temperature-scaled Soft Loss

In this Section, we explain the workings of our proposal, temperature-scaled soft loss
- the combination of soft loss learning with automatic temperature scaling. Firstly,
we recap the soft-loss function; then we extend the soft-loss proposal by including
exploration of the suitability of various standard loss functions for soft-loss training.
Finally, we detail the (automatic) temperature-scaled soft-loss methodology which in-
volves weighting the soft loss for each item by a learned temperature parameter.

8.2.1 Soft Loss Learning; Finding the Suitable Loss Function

In Chapter 4, we defined a soft loss function as a standard (probability comparing) loss
function targeting a soft label (generated from a crowd label distribution), yi = phum

rather than a hard gold or aggregated label. This concept was also explored by Pe-
terson et al. [2019]. We also saw that the (gold) accuracy of the predictions made
by a soft loss model is dependent on the method used in generating the probabilis-
tic soft labels, which in turn is dependent on the annotation characteristics of the
dataset. We examined two standard generation functions – the softmax function and
the standard normalization function – and found that while standard normalization
soft labels are preferable datasets like cifar-10h-10H annotated by by a large number
of gold-quality with high observed agreement a high-agreement datasets like dataset
annotated annotators, the softmax loss function is more suitable for datasets that
do not meet these criteria like Gimpel et al.’s pos and LabelMe. [Uma et al., 2021b]
further showed that for mixed quality datasets like pdis, the best generation method
is using a probabilistic aggregation model like mace [Hovy et al., 2013]. We then des-
ignated these best performing soft labels to be our ‘best soft labels’ which we use in
the rest of the experiments.

A Suitable Loss Function

Although we state that the loss function used in soft loss training can be any proba-
bility comparing loss function, we constrained to use the cross entropy loss function
following the hypothesis by Peterson et al. [2019], that it was uniquely suitable for the
task. Recently, Malinin and Gales [2018] showed that for datasets with high data un-
certainty resulting from class overlap and leading to a multi-modal label distribution,
the reverse KL-divergence function is the appropriate loss function if the goal is to
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maximize prediction accuracy. They test their hypothesis on synthetic data, compar-
ing the reverse KL-divergence loss function with the (forward) KL divergence function
and show that while a KL-divergence loss function is a sensible choice for datasets
with low data uncertainty, the reverse KL-divergence is more suitable when this is not
the case.

Thus, a preliminary experiment, we test the hypothesis of Malinin and Gales by
training soft-loss functions for each task using the best soft label and each of the diver-
gence functions. We additionally test the other two well known probability-comparing
loss functions - the cross entropy loss function (ce) already used in the previous Chap-
ters and the Mean-squared error function (mse). Soft loss functions using each of the
stated functions can be expressed using simplified notation:

• Cross Entropy Soft loss1:

CE(yhum, yθ) = −
n∑
i=1

yihum log yiθ (8.1)

• kl Soft loss:

DKL(yhum || yθ) =
n∑
i=1

yhum log(
yiθ
yihum

) (8.2)

• Reverse kl Soft loss:

DRKL(yθ || yhum) = DKL(yhum || yθ) =
n∑
i=1

yiθ log(
yihum
yiθ

) (8.3)

• mse Soft loss:

MSE(yhum, yθ) =
n∑
i=1

(yihum − yiθ)2 (8.4)

where yihum is the target label for an item i, the best soft label; yiθ is themodel’s predicted
probability distribution for that item; and n is the number of items in the training set.

We experiment with these variations of the soft loss function and note the predic-
tion accuracy of the trainedmodels, especially in reaction toMalinin and Gales’s [2018]
hypothesis. The best soft loss function is used for experiments in automatic temper-
ature scaling.

8.2.2 Item Weighting through Automatic Temperature Scaling

Automatic temperature scaling combines ideas from both temperature scaling and Platt
scaling. Platt scaling was proposed to calibrate a logistic regression model i.e. adjust
its parameters to reflect uncertainty [Platt, 1999]. To calibrate a model, Platt proposes
that two scalar parameters, a and b ∈ R, be learned by optimizing the negative log-
likelihood function over the validation set while keeping the model’s parameters fixed.

1observe that the reverse kl reverses the direction of the forward kl divergence function
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The learned parameters are used to rescale the logits of the model, zi resulting in
outputs, f(xi) = σ(azi + b).

Temperature scaling is single parameter variant of Platt scaling [Guo et al., 2017],
where the same scalar parameter, T , called the temperature, is used to rescale logit
scores for all the classes, zi, before applying the softmax function. This way, the
model’s recalibrated probabilities are given as:

f(xi) = σ(zi/T ) (8.5)

where σ(·) is the softmax function. T > 1 raises the entropy of the output probabilities,
hence "softening the softmax" and evening out the probability distribution; T < 1

hardens the softmax resulting in a peakier (more modal) probability distribution; and
T = 1 recovers the unscaled probabilities [Guo et al., 2017]. The value of T is obtained
by minimizing the negative log likelihood on a held-out validation dataset. Because
T is independent of the class, j and the item, i, temperature scaling does not affect
which class is predicted and hence does not affect prediction accuracy.

Automatic temperature scaling is a natural extension of temperature scaling. It
differs from temperature scaling in three key ways. Firstly, rather than optimizing
T on a held-out validation set, automatic temperature scaling learns parameter T ,
jointly as it learns to predict the classes. It does this by learning a network of weights
wT and biases bT such that

Ti = softplus(WTxi + bT ) (8.6)

This expression of temperature is similar to matrix scaling, an alternative temperature
scaling proposal of Guo et al. [2017] 2 and also similar Platt scaling which also learns
two parameters instead of one but unlike both methods, the parameters are not tuned
on a held-out validation set. Rather, during training, the model’s outputs, ŷi = f(xi)

are computed as:
f(xi) = σ(zi ∗ Ti) (8.7)

and the model’s loss is computed using the appropriate soft loss function. In this way,
the model jointly learns classifier and scaling parameters.

The second key difference is practical in nature but has notable implications. Un-
like temperature scaling where the logits are divided by the temperature, T , in auto-
matic temperature scaling, the logits are multiplied by the temperature as we found
this to work better in practice. The implication is that in automatic temperature scal-
ing (and conversely to temperature scaling), a warmer temperature (higher values of T )
indicate lower uncertainty resulting in peakier probabilities while colder temperatures
indicate higher uncertainty resulting in a more even distribution.

The third key difference can be observed from the definition of Ti in Equation
8.5. Unlike temperature scaling, the model does not have a single temperature value,

2Guo et al. propose the use of the max(·) function, rather than softplus(·)
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rather, the temperature of any given item is a function of the input vector for the item
and the temperature weights of the model, WT - the logits for each instance are scaled
a different temperature, determined by the model and learned as a function of the
input features of the instance. We hypothesize that if the model is able to perceive
uncertainty from the input data, it will respond by producing a lower temperature
value for that item. The converse is also true. Thus, by considering each instance
separately, the model is able to produce temperature values depending on how much
data uncertainty it perceives for each item.

This third key is vital to understanding the anticipated improvement in predic-
tive accuracy using automatic temperature scaling. Lowering the temperature on
instances with high data uncertainty (i.e. instances perceived to be prone to over-
lapping labels) will result in a flatter distribution for such items, increasing the loss
contribution of that item to the overall loss. This both draws the model’s attention to
such items and adds arbitrariness of the target labels for such items, a desired effect
as overlapping labels imply arbitrary targets. For a low data uncertainty instance,
the model would produce a higher temperature resulting in a peakier distribution,
reflecting how confident the model is in the absoluteness of the target label.

8.3 Experiment Setup

We conduct the experiments in this Chapter in two phases. Firstly, we experimentally
compare the suitability of various standard loss functions for soft loss training as
outlined in Section 8.2.1 on several tasks. Then, we extend the best performing loss
function into an automatic temperature-scaled soft loss. For both experiments, we
evaluate the models based solely on predictive accuracy.

Following the observations from Chapter 6, we restrict our experiments to the tasks
with the larger datasets - pos, pdis, ic-labelme, and ic-cifar10h. The training details
for the base models are the same as we outline in Chapter 4.

8.4 Results

Table 8.1 contains results accuracy results of comparing the performance of differ-
ent probability-comparing loss functions for making gold predictions. And, Table 8.2
outlines the results on adding automatic temperature scaling to the best soft loss func-
tion from Table 8.1, also evaluated using prediction accuracy. As in the other exper-
iments, we measure significance via bootstrap sampling, following Berg-Kirkpatrick
et al. [2012] and Søgaard et al. [2014]. The rest of this section discusses the results
from these tables, noting the significant results.

8.4.1 Choosing the loss function

In Section 2.3 of Chapter 4, we highlighted the Russell et al.’s [2008]’s LabelMe dataset
as the dataset for which the primary cause of disagreement is overlapping labels. If

121



pos pdis ic-labelme ic-cifar10h
mse soft loss 79.20 92.90 84.21 63.49
ce soft loss 79.80 92.86 84.66 66.54
kl soft loss 79.96 92.86 84.73 66.58
Reverse kl soft loss 79.81 92.95 84.97 63.71

Table 8.1: Different Loss Functions for Soft Loss Training and their effect on Accuracy

Malinin and Gales’s hypothesis that reverse kl divergence is uniquely suitable loss
function for training on such datasets, we expect to see that on this dataset, reverse
kl soft loss would have the highest accuracy of all the soft loss function; and indeed we
do. From Table 8.1, we see that training with reverse kl as a loss function outperforms
all other soft loss function by at least 0.25 accuracy points on ic-labelme, though this
margin is not significant.

For pdis, reverse kl also remains on par with kl divergence according to signifi-
cance tests, only outperforming it by a 0.9 point margin. For pos and ic-cifar10h,
reverse kl soft loss do not outperform forward kl soft loss in-fact for ic-cifar10h falls
nearly 3 significant points below kl soft loss. These results are not surprising given
the disagreement analysis carried out in Section 2.3 and the dataset characteristics
shown in Table 2.2.6; our disagreement analysis do not reveal the predominance of
overlapping labels in the pos and ic-cifar10h datasets, and the table shows that in
these two datasets of the four used in this Chapter, annotators have near-gold accu-
racy.

The results also show that while ce soft loss remains on par with forward and
reverse kl soft loss, mse falls below the other functions in every task but the binary
classification task mse. This again, is unsurprising as mse pays a lot of attention
to the other classes besides the modal class, and for a task like cifar-10h shown to
have the least amount to disagreement on what the modal class should be, this is
undesirable. Hence, following from these results, we use kl soft loss as the starting
point for automatic temperature-scaled soft loss for pos and ic-cifar10h; and reverse
kl soft loss for pdis and ic-labelme.

8.4.2 Temperature Scaling Soft-Loss Learning

The first point we make in Table 8.4 is that automatic temperature scaling significantly
improves upon soft loss training in one task: ic-labelme. This confirms our hypoth-
esis that when the main source of disagreement is fully observable from the input,
the model is able to learn useful information and calibrate itself through automatic
temperature scaling. In other words, automatic temperature scaling works when the
source of disagreement is data uncertainty brought on by overlapping labels and re-
sulting in the arbitrariness of ground truth.

On pos and pdis, the effect of temperature scaling on the pos and pdis models is
not significant. These are the datasets for which we as well as Plank et al. [2014b]
and Poesio et al. [2019] have shown that the disagreements in these datasets are
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Task Model Accuracy
pos kl soft loss 79.96
pos kl soft loss + Ti 80.01
pdis Reverse kl soft loss 92.95
pdis Reverse kl soft loss + Ti 93.00

ic-labelme Reverse kl soft loss 84.97
ic-labelme Reverse kl soft loss + Ti 86.51
ic-cifar10h kl soft loss 66.58
ic-cifar10h kl soft loss + Ti 63.89

Table 8.2: Results showing the Accuracy and f1

largely due to linguistic ambiguity and/or interface limitations. As stated in these
works, linguistic ambiguity is often contextual and implicit and hence neither linearly
separable from other sources of disagreement nor fully observable Plank et al. [2014b],
Poesio et al. [2019]. Therefore, it is not surprising that the models do not benefit from
automatic temperature scaling. For ic-cifar10h with 0.92 observed agreement, we
showed that the disagreements are due to difficulty experienced by annotators when
labelling blurry images. These disagreements are not systematic or a result of an
imprecise annotation scheme.

It is worth noting that recalling the results from Table 6.1 in Chapter 6, temperature-
scaled soft loss outperforms state-of-art systems like Rodrigues and Pereira’s dlc on
ic-labelme, and is at least on-par with the best disagreement aware method from the
table i.e. Filtering.

8.5 Interpreting Ti

In this section, we examine the temperature predictions of the model to understand
what the model knows about label arbitrariness.

One way to do this is to measure the correlation of the temperature values to known
measures of item agreement/uncertainty/difficulty. Figure 8.5 shows the [Pearson,
1896] correlation of temperature to two of such metrics used throughout this research
- observed agreement and normalized entropy.

The results show that for ic-labelme, the only dataset for which our method pro-
duces a significant improvement over the soft-loss baseline, the model’s ξ predictions
has the strongest positive correlation to observed agreement. This means that the
model tended to make higher ξ predictions for items with high observed agreement
and lower ξ predictions for items with a low observed agreement.

Since we posit that automatic temperature scaling works on LabelMe dataset be-
cause it contains overlapping labels, we also examine the label distribution of the
instances with the lowest temperature predictions, i.e. the label distribution of the
instances the model considers most arbitrary. Figure 8.3 is a bar chart showing this
distribution. We compare this figure with the confusion matrix between the majority
and the gold (shown in Chapter 4 and repeated here in Figure 8.2 for easy access).
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Figure 8.1: Graph showing the correlation of Ti with observed agreement, entropy and percentage
agreement with gold.

Figure 8.2: Confusion matrix between gold labels and major-
ity voting consensus for LabelMe
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Figure 8.3: Bar chart showing the gold label distribution of the images with the lowest temperature i.e.
images in the 1st quartile range of temperature

Considering both figures, we can see that the model captures some of the confusion
of the annotators; the model assigned the lowest temperatures to images belonging
mostly to the tall building, street, or inside city, capturing the overlap between these
three categories.

8.6 Conclusions & Future Work

In this this we reported on the use of temperature scaling in a learning-from-disagreements
setting. Our results show that model calibration via automatic temperature scaling
is a simple yet effective approach to learning accurate ground truth predictions in
high disagreement datasets with overlapping labels and yields state-of-art results.
Further, we analyze the temperature values of the successful model to find that the
temperature values have some correlation with two known measures of item disagree-
ment/uncertainty – a positive correlation of about 0.3 with observed agreement and a
negative correlation of about 0.3 with entropy. We also observe that the model assigns
the lowest temperature to instances with one of the three labels inside city, street, tall
building which we show in Section 2.3 to be overlapping. Future work would involve
further probing the model to quantify what it captures in its temperature predictions.
We will also investigate the effect of temperature scaling on more ‘subjective’ tasks like
hate speech detection.
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Chapter 9

Conclusion

9.1 Summary of our Contributions

With the growth in size and quality of annotated resources, and the increasing prac-
tice of employing several annotators to produce them, the idealization that a ‘gold’
interpretation can be specified for every item in the dataset and used as target during
learning / evaluation, underlying much practice in supervised learning, has become
untenable. Also increasing is the evidence that training with noisy labels results in
better performance of the obtained models on unseen data; and the realization that
for several observer dependent/subjective tasks, the gold standard is an arbitrary tar-
get. Abandoning this idealization requires the development of new paradigms both for
training and for evaluating models. This research makes several contributions that
are useful in this line of research.

Firstly, in Chapter 2, we examine crowd collected datasets for several ai tasks and
show (with evidence and with reference to an extensive literature) that to varying de-
grees the gold standard idealization does not hold for these datasets. Further, we also
examine various proposals for training models for these tasks and create a taxonomy
of these method based on their handling of disagreement.

Having shown the evidence for disagreement as more than noise, we present a
case for soft evaluation, an alternative to hard evaluation– evaluating models with an
assumption a gold standard. We highlight several hard and soft evaluation metrics
proposed in literature – accuracy, f1, ct f1, cross entropy, Jensen-Shannon Diver-
gence and propose two of our own – entropy similarity and entropy correlation; and
in doing this we compare the metrics and make a case for soft evaluation.

In Chapter 4, we address the question of whether models trained without the use of
gold standard labels can compete with models trained on (the multiplicity of opinions
available in) crowd data. We find that although the answer depends very much on the
form of evaluation used, under certain conditions, models trained without assuming
a gold truth can achieve better performance than models that leverage gold labels
across all forms of evaluation. Our results and analysis revealed that when a dataset
is annotated by a large number of high quality coders who agree amongst themselves,
training a disagreement-aware soft loss model from the variety of crowd labels pro-
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duces better results than training on gold labels. However, even when these conditions
are not met, we find that training models with an awareness of disagreement is over-
whelmingly better than training using a crowd consensus (an aggregate/silver label).

In Chapter 5, we answer the question ‘Can information from crowd annotations be
used in conjunction with gold labels to build better models compared to learning from
gold labels only?’ by proposing twomulti-taskmethods that do this - mtlsl and mtloa.
Each of these proposals learn the gold label as a main task but additional information
is provided to the model by means of an auxiliary task; learning the probability dis-
tribution of over the crowd annotations (for mtlsl) or learning the instance confusion
as defined by observed agreement (for mtloa), thus incorporating useful information
about label uncertainly even while learning the prescribed/preferred interpretation.
We found that while mtloa remains largely equivalent to training on gold alone for hard
evaluation, it often outperforms gold training when evaluated using soft metrics. The
mtlsl however was shown to outperform gold training on a majority of tasks, using
hard and soft evaluation metrics, thus providing evidence that even when the goal is
to learn the gold labels, crowd information is still very useful.

In Chapter 6, we carried out an extensive experimental comparison of the ap-
proaches to learning from crowds, asking the question ‘what is the absolute best
method for leveraging crowd information?’. In answer to this question, we find a
strong effect of dataset (disagreement) characteristic; there isn’t an overall best method
across tasks and datasets, rather the degree to which each approach works on a given
dataset depends largely on the nature of the tasks reflected in the disagreement char-
acteristics of the task. Overall, we found that soft labelling approaches overwhelm-
ingly outperform hard labelling approaches across datasets using a variety of evalua-
tion metrics. Regarding the choice of ideal evaluation metric, our experiments do not
allow us to reach a definitive conclusion in this matter as no metric was found to be
more appropriate than any other; perhaps the choice of metric is dependent on the
target use of the trained models. Until such consensus is reached, however, we found
no issues with simply using cross-entropy to compare the output of a system to a soft
label.

9.2 Recommendations

In terms of outcomes from this thesis, the results suggest that the best way to achieve
high-quality and empirically grounded datasets is to collect a substantial number
of judgments from high-quality coders. This is what we observe from learning from
the ic-cifar10h dataset—see Section 2.2.5 for a discussion of this dataset and Sec-
tion 6.4.6 for a discussion of experiments on ic-cifar10h. With a dataset meeting
such standards, the soft loss function would be the recommended approach, provid-
ing the most computationally efficient model with competitive hard and soft results:
The Sheng et al. soft labelling approach while producing a slightly higher accuracy
computationally more expensive due to repeated labelling; and dlc produces one of
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the worst cross entropy scores due to it’s exaggerated trust (and higher weighting)
of judgements by annotators it deems most reliable annotators (the majority of the
coders).

For researchers working with already curated datasets that do not meet this stan-
dard, the choice of model and approach would be dependent on the evaluation goals
or the intended end-use for the model. If the goal is to train a model to predict gold
labels, such a model would be evaluated using a hard metric like accuracy or f1 de-
pending on the need to control class-imbalance and the best form of training would
be depend on the availability of gold labels for training. When gold labels are available
and the crowd annotations represents a rich but not stochastic diversity of opinions
(as indicated by a moderate best distribution entropy (bde) as observed in pos, mre,
rte), training on both gold and crowd labels using mtlsl offers the best of both worlds
– competitive hard and soft results. However, if the task is poorly defined in a way that
gives rise to random labelling (as indicated by a combination of a high bde coupled
with low alignment between the gold and the crowd as measured by average accuracy
of annotators with respect to gold) as in ic-labelme in Section 6.4.5, training on gold
labels alone would provide the best results. Where the dataset does not meet the ic-
cifar10h standard and gold labels are unavailable, the soft loss approach offers the
best results using both hard and soft evaluation metrics. If the crowd is of mixed
quality, the soft labels should be derived using a probabilistic aggregation method;
otherwise, softmax soft labels offer the best hard evaluation results.

These recommendations are summarized in the somewhat simplified decision tree
in Figure 9.1.

9.3 Future Directions

More andmore the questions we put forth in this research are being asked in the larger
research community. To consolidate efforts in this regard, we proposed and carried
out a shared task on ‘learning with disagreement’, the proceedings of which we include
as Chapter 7 of this thesis. By consolidating several datasets into one framework and
allowing for hard and soft evaluation across these datasets, we anticipate that further
work will be carried out to further address our research questions.

We also carry out preliminary experiments in another direction. In Chapter 8, we
propose the automatic temperature scaled soft loss function, a model that can itself
predict the arbitrariness of the target given the input and the probabilistic soft label.
We find that our model’s intuition about how confusing an item is not highly correlated
to knownmetrics of annotator confusion (observed agreement or entropy). Rather, our
model’s confusion scores (temperature) is indicative of label/category overlap. This
model shows promise in the direction of item uncertainty detection.
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Figure 9.1: A guide to choosing a best-performing model given the characteristics of one’s dataset and
hard or soft evaluation
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Glossary

best-performing distribution the probability distribution generated from crowd la-
bels using the extraction approach that results in the most accurate soft-loss
model. 27

crowdsourcing the collection of annotations from a group of people, usually via the
internet. 12

disagree to differ in judgement. 13

disagreement-aware crowdsourcing an annotation technique where annotators are
asked to choose all labels that apply rather than a single label for each item. 23

expert an individual proficient at a (n annotation) task and motivated either by altru-
ism or a financial incentive to provide labels for data instances that exemplify the
task. Expertise in annotation tasks is often an acceptability judgement made by
of the data. 12

game-with-a-purpose an annotation task redressed as a game or imbued with ele-
ments of a game so as to reduce the drudgery of the task. 12

gold assumption the assumption that a single preferred interpretation (an objective
truth) exists for each instance to be annotated; and that where available, the
gold label captures this objective truth. 13

gold label the final consensus of expert judgements usually obtained either by thor-
oughly discussing disagreements until a resolution is reached or by aggregating
expert judgements. 12

implicit ambiguity ambiguity emerging from disagreements among annotators, rather
than from annotators explicitly marking items as ambiguous. 20

microtask crowdsourcing recruiting a crowd of people to annotate small parts of a
larger overarching task by offering small financial pay-outs. 12
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