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Abstract

There is an increasing demand for developing intelligence and aware-

ness in artificial agents in recent days to improve autonomy, robustness, and

scalability, and it has been investigated in various research fields such as

machine learning, robotics, software engineering, etc. Moreover, it is crucial

to model such an agent’s interaction with the surrounding environment and

other agents to represent collaborative tasks. In this thesis, we have pro-

posed several approaches to developing multi-modal self-awareness in agents

and multi-modal collective awareness (CA) for multiple networked intelligent

agents by focusing on the functionality to detect abnormal situations.

The first part of the thesis is proposed a novel approach to build self-

awareness in dynamic agents to detect abnormalities based on multi-sensory

data and feature selection. By considering several sensory data features,

learned multiple inference models and facilitated obtaining the most distinct

features for predicting future instances and detecting possible abnormali-

ties. The proposed method can select the optimal set features to be shared

in networking operations such that state prediction, decision-making, and

abnormality detection processes are favored.

In the second part, proposed different approaches for developing collec-

tive awareness in an agents network. Each agent of a network is considered

an Internet of Things (IoT) node equipped with machine learning capabil-

ities. The collective awareness aims to provide the network with updated

causal knowledge of the state of execution of actions of each node performing

a joint task, with particular attention to anomalies that can arise. Data-

driven dynamic Bayesian models learned from multi-sensory data recorded

during the normal realization of a joint task (agent network experience) are

used for distributed state estimation of agents and detection of abnormali-

ties. Moreover, the effects of networking protocols and communications in

the estimation of state and abnormalities are analyzed.

Finally, the abnormality estimation is performed at the model’s different

abstraction levels and explained the models’ interpretability. In this work,

interpretability is the capability to use anomaly data to modify the model

to make inferences accurately in the future.
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Chapter 1

Introduction

This chapter presents the motivation of this thesis, objectives of the research,

the main contributions, Ph.D. publications, and the thesis structure.

1.1 The importance of self-awareness and collec-

tive awareness in agents network

The Internet of things (IoT) related technologies has advanced well beyond

our imaginations in the past few years. At present, billions of physical

devices worldwide are connected to the Internet, and most of them can

collect and share large amounts of data. In general, any device can be

thought of as an IoT device if it has networking capabilities. A usual IoT

device can vary from a child’s toy to a driver-less vehicle. An IoT with smart

objects has many applications in the field of surveillance [30], transportation

[46], crowd monitoring [45], etc.

In general, the IoT has not yet reached a desired level of maturity, and

challenges are still open, such as computation constraints, heterogeneity,

data storage, autonomous capabilities, security, etc. In this thesis, we refer

to smart IoT objects as agents as they present different behavior charac-

teristics and interactions with other objects and/or humans. One of the

most crucial challenges is the lack of proper models representing the agent

behaviors and their causal relationships to the surrounding environments

and other objects [89]. Modeling dynamic agents’ interaction with the sur-

rounding environment and other agents is vital for predicting future unseen

dynamics accurately to avoid unwanted situations.

12



The interaction model should be capable of spanning over variables at

different abstraction levels to allow, for example, better explainability of

autonomous agent’s choices both online and offline (ex-post). Moreover,

the learning of representation can perform in a data-driven way from ob-

served sensory data when the agent performs an experience for the first

time (possibly driven by an external control) [54]. With machine learning

algorithms and signal processing techniques, the IoT nodes can include such

learning capabilities. Artificial self-awareness (SA) has an essential role in

this framework.

The term Internet of Vehicles (IoV) has been defined whenever smart

physical objects are vehicles [40]. Due to the rise of the population in the

cities, the number of vehicles has grown exponentially, leading to conges-

tion and pollution. Consequently, road accidents have increased dramati-

cally for numerous reasons such as lack of contextual data, distracted and

reckless driving, adverse weather conditions, animal crossing, unsafe lane

changes, etc. These factors show the importance of making the vehicles

“self-aware” to ensure safety in driving. Future autonomous vehicles will

use these self-awareness processes to solve different tasks in different en-

vironments that never were considered previously for decision making or

problem-solving, such as trajectory planning or collision avoidance, or ab-

normality detection. The new learning capabilities from observing the en-

vironment or the autonomous vehicles’ own states of behavior create new

possibilities for problem-solving in new situations of real traffic scenarios.

Therefore, developing self-aware models will improve the general decision

and the navigation in autonomous vehicles facilitating the improvement of

the incremental self-capabilities, such as fault-tolerant decisions based on

own perception or communication capabilities in dynamic environments.

Self-awareness is a broad concept that defines the agent’s ability to focus

on the inner self-state in relation to the external environment (i.e., cognitive

property) [84]. In the case of artificial agents like intelligent vehicles (IVs)

[104], the concept of SA is an ability to observe themselves and the sur-

rounding environment through the various exteroceptive and proprioceptive

sensors and process the sensory data to learn and maintain a contextual

representation of the system [84]. The physical architecture for a single self-

aware autonomous agent, i.e., ego-thing, is shown in Fig. 1.1. Ego-thing

can be defined as intelligent autonomous entities that can perceive their

13



Figure 1.1: Physical architecture for a self aware agent (ego-thing.)

internal as well as external parameters and adapt themselves when they

face abnormal situations [51]. In this thesis, ego-thing, agent, object, and

vehicle are used as synonymous. Nowadays, machine learning provides an

extensive set of methods and techniques to estimate SA models from data

sequences. This work firstly considered developing self-awareness in agents

and provided a methodology by which collective awareness (CA) of a group

of agents could be defined and achieved. The interacting agents’ network

is shown in Fig. 1.2. Each dynamic agent interacts with the surrounding

environment and other agents in the network. Moreover, the methodology

shows how the proposed techniques can be suitable for jointly building the

individual and collective representation of the state of development of a task

concerning SA models learned from previous experiences.

Bayesian Network (BN) techniques are the reference approach used in this

work to represent awareness models. Models are composed of multiple vari-

ables, hierarchically organized into layers. The sensors perceive the layers

associated with the observed variables. In contrast, hidden layers represent

variables with direct or indirect causal relationships with observations at

different abstraction levels.

Dynamic BNs introduce temporal links that connect BNs variables at succes-

sive time instants, allowing to describe causal and temporal relationships,

i.e., behaviors of the same object as represented by a dynamic series of

14



Figure 1.2: Interacting agents network (ego-things network).

probability states of variables in time. DBNs allow an agent to explain the

temporal series of observed sensor data at different abstraction levels thanks

to the global model’s generative property. The same property can apply for

simultaneous observation of objects doing collaborative tasks. Links among

DBNs related to each object can explain coupling conditional probabilities

describing reciprocal influences among such objects. This generative capa-

bility makes coupled DBNs attractive for composing the basis of SA repre-

sentation in an agent. However, as SA models are data-driven, i.e., learnable

from the data inference, DBNs’ generative capabilities must be augmented

by incrementally learning new DBNs from sensor observations when such

observations correspond to new experiences. This implies that inference on

such models also includes anomaly detection and incremental learning steps

in addition to classical Bayesian prediction-estimation filtering.

Let us suppose that SA knowledge at a certain point of an agent’s life

is defined using DBN models learned from sensorial data connected to the

agent’s past experiences. The next step is to define a Bayesian inference

process capable of allowing the agents to continuously check and monitor

whether available DBN generative models can predict well the current ob-

servations in doing the current task. When a new experience comes that

the agent cannot use the embedded knowledge of learned models to predict

and reliably estimate its own context state (abnormal situations), it requires

incremental learning of new models to enrich its own SA memory.

Another important area to be focused on is to assess the impact of re-

15



alistic information exchange among objects on the abnormality detection

feature of collective awareness. With reliable and efficient communication,

agents should share ground truth observations acquired in a distributed way

by each of them with all other agents in the network. Each agent should

appropriately dispatch the ground truth observations received from each re-

mote transmitting agent to estimate the possible presence of abnormalities.

In this way, each agent can estimate local and global abnormality conditions

that can arise in any of the agents that compose the network. Self-awareness

of single agents can become collective awareness of the agent’s network. Dif-

ferent distributed communication schemes at increasing complexity can be

devised to reach such a collective awareness.

1.2 Research questions

This thesis provides different approaches to building self-awareness in agents

and collective awareness for an agent’s network for state estimation and

abnormality detection, discussed in the next chapters. The work aims to

answer the following research questions:

1.2.1 Can an artificial agent be self-aware?

Self-awareness (SA) is a broad concept that describes the cognitive property

of a biological agent. In artificial agents, the concept of SA is an ability to

observe themselves and the surrounding environment through the various

exteroceptive and proprioceptive sensors and process the sensory data to

learn and maintain a contextual representation of the system [84]. Nowa-

days, the emergent techniques and algorithms in Machine learning allow for

the learning of data-driven models that can provide self-awareness function-

alities.

The first part of this thesis presents an implementation example that achieves

self-awareness. The DBN models are learned from multi-sensory observed

data sequences; such a model can predict the agents’ future unseen dynamics

and detect abnormal situations.
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1.2.2 Distributed state estimation in network of agents

Distributed state estimation and tracking are fundamental collaborative in-

formation processing problems in wireless sensor networks (WSNs). Multi-

sensor fusion and tracking problems have a long history in signal processing,

control theory, and robotics [6, 12, 11, 36]. Moreover, the distributed state

estimation issues in wireless networks with packet-loss have been the center

of much attention lately [92, 47, 87]. There has been a significant develop-

ment in the study of Kalman filtering in the presence of data packet drops

[61, 68, 79, 87]. The recent advances in the WSN technology also boost the

study of a distributed Kalman filter (DKF) [5, 3, 74, 94], where each sensor

node in the WSN can compute local estimates via Kalman filtering based on

its own observations and the information sent from its neighboring sensors.

The existing literature shows that it lacked a proper model to represent a

group of agents’ behavior and underlying reasons in different situations.

This work investigates and proposes solutions for distributed state esti-

mation in an agents’ network with the help of machine learning algorithms,

signal processing techniques, and dynamic Bayesian filter.

1.2.3 Can collective awareness be implemented in an agents’

network?

This thesis proposes that a ‘self-awareness’ functionality of agents can be

extended to ‘collective awareness’ by utilizing the exteroceptive and propri-

oceptive sensory data shared among the agents in the network performing

co-operative tasks. This thesis proposes various approaches to learn col-

lective awareness models that represent agents’ joint tasks. A co-operative

communication scheme is used in the experimental scenarios to exchange

sensory data among agents.

1.3 Contribution of the thesis

Different methodologies are presented in order to achieve the learning and

testing of self-awareness and collective awareness in an ego-things’ network.

The first part of the thesis proposes and tests a method for agents to learn

self-awareness models in relation to specific exteroceptive and proprioceptive

sensory data. The second part presents how agents can learn multi-modal
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collective awareness models for agents’ networks.

The main contributions of this thesis can be summarized as follows.

1. A method is proposed for learning multi-modal self-awareness models

from low dimensional data sequences collected by intelligent agents’

various exteroceptive and proprioceptive sensors. The proposed strat-

egy recognizes the different features from a sensory data set and selects

the considered task’s best feature.

2. Several approaches for learning multi-modal collective awareness mod-

els from low dimensional data sequences of a network of intelligent

entities are proposed and tested. For the inferences, a Markov jump

particle filter (MJPF) based on generalized DBN models is used for

distributed state estimation and extended to become able to detect

abnormalities at different abstraction levels. The metrics considered

to estimate abnormalities at different abstraction levels are Hellinger

distance, innovation metric, and Kullback Leibler (KL) distance.

3. The robustness of the distributed state estimation and abnormality

detection feature of the models is investigated in a network built us-

ing a realistic communication channel model. Firstly, the reliability

and accuracy of the abnormality detection are measured under the

hypothesis of perfect communication (i.e., no data loss and transmis-

sion delays). Secondly, the reliability and accuracy of the abnormality

detection is measured under the use of different protocols and chan-

nel conditions (i.e., in the presence of packet losses and transmission

delays of the communication channel among objects.

4. Finally, interpretability features of interactive machine learning models

have been exploited by presenting and discussing multiple abstraction

level results and the models’ incremental learning capability.

1.4 PhD publications

1. Divya Thekke Kanapram, Lucio Marcenaro , David Martin Gomez,

Carlo Regazzoni, “Interpretable Machine learning models for abnor-

mality detection in Ego-things network,” in IEEE Internet of Things

Journal, status: Submitted on 31-01-2021.
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Gómez, Carlo Regazzoni, “Collective Awareness for Abnormality De-

tection in Connected Autonomous Vehicles,” in IEEE Internet of Things

Journal, vol. 7, no. 5, pp. 3774-3789, May 2020, doi: 10.1109/JIOT.2020.2974680.

3. Divya Thekke Kanapram, Pablo Marin-Plaza, Lucio Marcenaro,

David Martin, Arturo de la Escalera, Carlo Regazzoni, “Self-awareness

in intelligent vehicles: Feature based dynamic Bayesian models for

abnormality detection,” Robotics and Autonomous Systems, Volume

134, 2020, 103652, ISSN 0921-8890, https://doi.org/10.1016/j.robot.2020.103652.
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in Intelligent Vehicles: Experience Based Abnormality Detection,”
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Advances in Intelligent Systems and Computing, vol 1092. Springer,

Cham, Online ISBN 978-3-030-35990-4, https://doi.org/10.1007/978-

3-030-35990-418.

5. M. Baydoun, D. Campo, D. Kanapram, L. Marcenaro and C. S.

Regazzoni, “Prediction of Multi-target Dynamics Using Discrete De-

scriptors: an Interactive Approach,” ICASSP 2019 - 2019 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brighton, United Kingdom, 2019, pp. 3342-3346, doi:

10.1109/ICASSP.2019.8682272.

6. Divya Kanapram, Damian Campo, Mohamad Baydoun, Lucio Marce-

naro, Eliane L. Bodanese, Carlo Regazzoni, Mario Marchese, “Dy-

namic Bayesian Approach for decision-making in Ego-Things,” 2019

IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick,

Ireland, 2019, pp. 909-914, doi: 10.1109/WF-IoT.2019.8767204.

1.5 Limitations of scope

1. The proposed approach of learning self-awareness and collective aware-

ness is tested using the data sets from vehicle co-operative driving task
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scenarios. Therefore, the ego-things in this work are vehicles. The pro-

posed methods are not tested in other ego-things, such as drones and

other IoT devices. Therefore, it is difficult to say that the methods can

be easily applicable in general settings without modifying the frame-

work. It requires further work and modifications to make an optimized

model representing individual and collaborative tasks of ego-things in

general.

2. The developed dynamic Bayesian self-awareness and collective aware-

ness models require that ego-things communicate or share all the

ground truth sensory observed data. In practical applications, it could

be challenging to share a massive amount of data as there are con-

straints for the data packet size by considering different communica-

tion protocols. Therefore, further work is required to improve the

model to share only specific parameters rather than sharing all the

observations.

3. The developed data-driven models are mainly used to detect abnor-

mal situations are happening either around a single agent or in the

network of agents. The work should be further focused to develop an

autonomous decision-making system based on the detected anomaly.

Moreover, abnormality classification should be added to improve the

reliability of the system.

4. Another limitation is the criteria to select modalities that provide bet-

ter abnormality detection, i.e., the requirements to choose the best

data combinations among many sensory data. It is essential to de-

velop a generalized approach to pick the sensor’s characteristics and

the dynamic models to have good abnormality detection.

5. It is also essential to add a module for incrementally learning of new

models automatically whenever the existing models produce errors as

an anomaly. However, in this work, it is proposed an initial level

approach for emergent learning.
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1.6 Thesis structure

The structure of the thesis is outlined below. Each chapter aims to address

parts of the research questions described above. The logical progression of

work is illustrated graphically in Fig. 1.3.

Figure 1.3: Thesis progression.

Chapter 1 - Introduction: This chapter explains the importance of this

research work, the research questions, a summary of the main contri-

butions, and the list of published papers during the Ph.D.

Chapter 2 - State of the art: This chapter discusses the background

and state of the art related to the topic. At first, it highlighted the

importance of the data-driven model learning approach by comparing

it against the model-driven approach. Then explained the work done

in the field of self-awareness in agents. Finally, the work done in the

field of collective awareness in agents network have been discussed.

Chapter 3 Background techniques: This chapter presents the back-

ground techniques used in this work: BNs, DBNs, GNG algorithm,

MJPF. Moreover, the last part of this chapter included the important

definitions and concepts used in this work.

Chapter 4 - Implementing multi-modal Self-Awareness in agents:

This chapter proposes the representation and modeling of the dynamic

behavior of a single agent. DBN models are learned from sensory

data (features), and a MJPF is used to make inferences on the learned

DBN models and detect abnormal situations. Finally, the multi-modal

abnormality detection results are presented and discussed.
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Chapter 5 - Implementing Collective Awareness in a network of

Ego-things: Phase I : This chapter presents the initial approach to

build and test multi-modal collective awareness (CA) for a network of

agents. The MJPF is employed to infer the future states of the entities

and detect abnormal situations. Moreover, the performance metrics

are discussed to assess the algorithm’s reliability and accuracy. Fur-

thermore, this chapter discussed the dynamic Bayesian model-based

abnormality detection performances under the different channel and

source conditions. The effects of distances among agents and of the

delays and packet losses are analyzed in different scenario categories.

Chapter 6 - Implementing interactive Collective Awareness in a

network of Ego-things: Phase II: This chapter presents the im-

plementation and testing of a multi-modal collective awareness (CA)

model for a network of ego-things where different communication pro-

tocols are considered in order to evaluate the model’s performance

under different parameter values and environmental conditions.

Chapter 7 - Interpretable Machine learning models for abnormal-

ity detection in Ego-things network: This chapter concentrates

on developing and testing interpretable data-driven machine learn-

ing (ML) techniques to detect local and global abnormal situations

in agents’ networks. The proposed approach assumes that the data-

driven models to be chosen should support emergent self-awareness

of the agents at multiple abstraction levels. It is demonstrated that

incrementally updating the learned representation of models based on

the agent’s progressive experiences is strictly related to interpretability

capability.

Chapter 8 - Conclusions and Future work: This chapter concludes

the research achievements and discusses the propositions of future re-

search.
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Chapter 2

State of the art

This chapter firstly focuses on making a comparison between data-driven

and model-driven approaches covering their advantages and drawbacks. Sec-

ondly, the main state-of-the-art contributions regarding the development of

self-awareness in agents and collective awareness in agents’ networks are

discussed.

2.1 Model driven and data driven approach

There are mainly two paradigms for solving the classification and state esti-

mation problem in sensor data: Model-driven and Data-driven. The model-

driven approach starts with a solid idea of how a physical system works.

It considers the desired states or events to be detected, and then it gener-

ates a hypothesis about what aspects might be detectable from the outside

and what the target signal will look like. It finds a correlation between

the recorded, collected samples from a task and what it is trying to de-

tect. Then a detector by hand finds those hard-won features out in the real

world automatically. On the other hand, data-driven is a new approach en-

abled by machine learning. In this approach, learning algorithms from the

data can spot connections and correlations not known before. Both of these

approaches have their advantages and drawbacks.

Model-driven approaches are powerful because they rely on a deep un-

derstanding of the system or process and can benefit from scientifically es-

tablished relationships. Models cannot accommodate infinite complexity

and generally must be simplified. They have trouble accounting for noisy
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Table 2.1: Model driven and data driven approaches comparison.

Model driven :
Relies on a-priori model

Data driven:
Learns the model from data

1 Physical model Non-physical model

2 High generalizability Limited generalizability

3 Limited adaptability to data Highly adaptive to data

4 Computationally demanding Computationally efficient

data and non-included variables.

Data-driven approaches based on machine learning tools and techniques

require a fair amount of data to get reliable results. Artificial intelligence

(AI) tools that discover features and train-up classifiers learn from data

samples, and enough data are required to cover the full range of expected

variation and null cases. Some tools are powerful enough to generalize from

limited training data and discover viable feature sets and decision criteria

independently. Still, many machine learning approaches require truly big

data to get meaningful results. Table 2.1 summarises the advantages and

limitations of model-driven and data-driven approaches.

In [99], the authors proposed a data-driven model for generating a sketch

from an input image. Then made a comparison to the existing model-

driven approaches. The work, [28], proposed and compared the model-

driven methods and data-driven techniques of prediction models for crop

growth in interaction with their environment as dynamical systems. This

thesis proposed various data-driven approaches in developing self-awareness

and collective awareness in agents with a particular functionality to detect

abnormal situations.

2.2 Self-awareness in agents

Artificial intelligence (AI) is the concept that allows agents/machines to

perform any task autonomously in any situation. Under the umbrella of AI,

applications such as machine learning, deep learning, etc., are increasingly

used to implement solutions in various fields, including self-driving vehicles.

The intense use of machine learning techniques applied to the sensory data

helps deal with the system’s uncertainty to a certain extent. Such multi-

sensory data used to build models that can make predictions of the agents’
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future states.

Self-awareness (SA) is a broad concept that describes a cognitive prop-

erty of a biological agent. SA can be defined as an agent’s quality to become

its own reflective observer by processing information about the self. It oc-

curs when an agent focuses not only on the external environment but also on

the internal milieu [69]. Over many years, self-awareness has been studied

in multiple research disciplines, such as cognitive sciences, psychology, and

philosophy [8, 7, 9, 95]. Moreover, according to the definition in [34], the

circumstantial cues remind the agents of themselves and lead to give more

attention to self and away from the environment. On the other hand, [44]

proposed the idea of private and public self-awareness. Authors of [34, 44],

examine the impact of private self-awareness in decision making. The self-

awareness concept is widely studied in biology, which has been reproduced

in artificial systems to enrich the capability of autonomy in different fields,

including machine learning and robotics [85, 101]. The main challenge in

most of these approaches is how self-awareness capabilities integrate into

artificial agents.

An artificial agent can be considered self-aware if it can dynamically

observe itself and surrounding environment through different exteroceptive

and proprioceptive sensors and learn and maintain a contextual representa-

tion by processing the observed multi-sensorial data [84]. Developing self-

awareness in artificial agents may reduce human efforts in different areas,

and in some fields, the human operator can be entirely replaced by machine

intelligence.

In [17], the authors propose an approach to develop a multilevel self-

awareness model by focusing on one agent. The developed self-awareness

approach is learned by using multisensory data of a vehicle normally in-

teracting in an environment. The model allows the agent to become able

to detect abnormal situations present in its surrounding environment. The

learning process of the self-awareness model for autonomous vehicles based

on data collected from human driving is described in another work [83].

Other related works in this direction aim to enrich the experience of co-

operative and secure driving [63, 76].

In this thesis, dynamic Bayesian networks (DBNs) learned using senso-

rial data are considered. The data is recorded during training experiences

as generative models capable of allowing a SA agent to predict states in
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future similar testing experiences. Additional probabilistic inference fea-

tures related to DBN models allow the SA of the agent to detect possible

abnormalities in new experiences. Prediction, estimation, and abnormality

detection are the emergent (i.e., data-driven) SA features discussed in this

thesis as a collective property of a set of agents aiming to perform the same

task.

Developing self-awareness in agents has been shown to increase agent

confidence when executing autonomously tasks and explainability of its own

actions in terms of emergent SA models learned. Human efforts in different

areas can take advantage, and in some fields, this can increase confidence in

autonomous systems, allowing the human to reduce its overcontrol work. An

intelligent vehicle [IV] [22] can be seen as a straightforward example of an

agent: it firstly perceives information from the surrounding environment. It

then uses obtained information to make decisions autonomously in different

situations. However, this does not always imply that the intelligent vehicle

can explain to itself and the human user the causal sequence of events that

carried it to make decisions. Self-awareness addresses within AI the set of

techniques/models that allow agents/machines to describe the relationship

between perceptions and actions the agent has to do to perform a task. In

this context, machine learning and deep learning, etc., are increasingly used

to obtain SA models in a data-driven way, and self-driving vehicles [20] can

benefit from such methods. Machine Learning techniques capable of dealing

with uncertainty to learn the SA model from multisensory signals coming

from the vehicle’s sensors are particularly useful. Such models can be of the

generative type, allowing predictions of future or lower-level states of the

agent in consideration to be made when analyzing new data sequences.

Research in intelligent and autonomous vehicles occupies a prominent

place in intelligent transportation systems (ITS) in recent years. In [15], the

authors propose an approach to develop a multilevel self-awareness model

learned from an agent’s multisensory data. Such a learned model allows the

agent to detect abnormal situations present in the surrounding environment.

In another work, [83], the learning of self-awareness models for autonomous

vehicles is based on the data collected by different maneuvering tasks per-

formed by a human driver. In [83], the visual perception and position data

are used as different modalities, and the cross-correlation between modal-

ities is analyzed for detecting abnormal situations. On the other hand, in
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[25], the authors propose a new architecture for mobile robots with a model

for risk assessment and decision making when detecting difficulties in the

autonomous robot design. In [103], the authors proposed a model of driv-

ing behavior awareness (DBA) that can infer driving behaviors such as lane

change. In [51], an approach to detect abnormalities in dynamic systems

by the models learned from the different features of an agent is presented.

Moreover, it examines the most precise model to detect abnormal situations.

However, it involves one agent and doesn’t highlight the issue of co-operative

driving.

In most of the related works, either the data from one entity is used, or

the objective was limited; for example, in [103], the aim was to detect lane

changes left or right side of the considered vehicles.

The first part of this thesis used the real vehicle data to build multi-modal

data-driven switching DBN models, and, finally, a performance comparison

is made among the models.

2.3 Collective awareness for an agents’ network

collective awareness is an extension of the self-awareness concept to a net-

work of ego-things that co-operate to perform a given task with different

interdependent roles. collective awareness allows the network to understand

whether the perception-action information processing models agents are pro-

vided with allow them to predict the dynamic evolution of the current situ-

ation, as well as to coherently detect global anomalies in a distributed way

[53].

Studies have been conducted in the field of collective awareness or col-

lective consciousness. The collective consciousness was a term coined by

the French sociologist Émile Durkheim (1858–1917) to refer to the shared

beliefs and moral attitudes that operate as a unifying force within soci-

ety [73]. Collective consciousness or collective awareness plays a significant

role when a group of agents needs to perform a task by co-operating and

communicating together to achieve common or individual goals. In [24]

the authors investigated the key requirements to achieve collective action

in decentralized community energy systems (dCES); collective awareness to

enhance the sense of collective responsibility, social networking to promote

self-organization.
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Each agent in the multi-agent system can take autonomic actions to a

certain extent along with the ability to interact with other agents [102]. A

group of such self-aware agents can form a network that has collective aware-

ness capabilities. With such an ability, each agent in the system should be

aware of itself and other agents’ activities. Distributed state estimation and

tracking are fundamental collaborative information processing problems in

wireless sensor networks (WSNs).

Multi-sensor fusion and tracking problems have a long history in signal pro-

cessing, control theory, and robotics [6, 12, 11, 36]. For instance, in [36],

the authors presented a survey of Bayes filter implementations and showed

their application to location-estimation in real-world tasks common in per-

vasive computing. Moreover, the distributed state estimation issues in wire-

less networks with packet-loss have been the center of much attention lately

[92, 47, 87]. There has been a significant development in the study of Kalman

filtering in the presence of data packet drops [61, 68, 79, 87]. In [61], the

authors proposed distributed estimation algorithms for linear time-varying

systems by considering packet drops in the observed data sequence. In ad-

dition to that, numerical examples are provided to verify the effectiveness

of the proposed filter.

The recent advances in the WSN technology also boost the study of a dis-

tributed Kalman filter (DKF) [5, 4, 74, 94], where each sensor node in the

WSN can compute local estimates via Kalman filtering based on its own

observations and the information sent from its neighboring sensors. The pa-

per [74] provided a formal derivation of the optimal Kalman-consensus filter

(KCF) and a performance comparison made between the proposed subopti-

mal Kalman-Consensus Filter and the previous distributed Kalman filtering

(DKF) algorithms.

The existing literature either focused on the local estimation of agent states

by a distributed Kalman Filter or state estimation under the data packet

loss by sharing among agents’. It clearly shows that the lack of a model

represents the group of agents’ interaction and behavior globally and under-

lying reasons in different situations.

This work has developed multi-modal collective awareness (CA) models by

considering exteroceptive and proprioceptive sensory data from networked

agents. Each of the considered modalities extracts different system fea-

tures that enrich contextual awareness to detect abnormalities at different
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abstraction levels. The main features of the developed model wrt existing

literature are listed below:

1. Each of the considered modalities extracts different system features

that enrich contextual awareness to detect abnormalities at different

abstraction levels. Different probabilistic distance metrics are used in

the MJPF to estimate the abnormality. To estimate continuous level

abnormlaity, the filter’s innovation and Hellinger distance metrics are

used. For the discrete level anomaly estimation, Kullback Leibler (KL)

divergence, which calculates the probabilistic distance between two

distributions, is considered.

2. The model’s significant feature is that it is data-driven, i.e., different

abstraction levels of the model have been learned from multi-sensory

data.

3. The effects of wireless communication channels on the model perfor-

mance have been analyzed by considering different channel conditions

and communication protocols. Then compared the obtained results by

different performance evaluation metrics.

4. The developed CA model is interpretable; anomaly detection results

have been utilized to learn new models incrementally to represent the

situation. The model can also predict the future states better in case

of similar situation occurs. The interpretability feature will help to

increase the robustness and reliability of the system.

2.4 Concluding remarks

This chapter firstly presented a comparison between data-driven and model-

driven approaches. In this thesis, data-driven approaches are used to learn

and test self-awareness and collective awareness functionality in agents’ net-

works. Then made a study and analysis of existing literature on artificial

agents’ self-awareness and collective awareness. Finally, it highlighted the

importance of this research against existing literature.
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Chapter 3

Background techniques

This chapter explains the major techniques used in this work, such as

Bayesian networks (BNs), dynamic Bayesian networks (DBNs), growing

neural gas (GNG), and Markov jump particle filter (MJPF). Moreover, the

definitions and concepts used in this work are explained in this chapter.

3.1 Bayesian networks (BNs) and dynamic Bayesian

networks (DBNs)

BNs are directed acyclic graphs (DAGs) in which the nodes represent vari-

ables, and the arcs (edges) signify the existence of direct causal influences

between the linked variables. The strength of these influences are expressed

by forward conditional probabilities [78]. For any given edge between the

variables (nodes), if there is a causal relationship between the variables, the

edge will be directional, leading from the cause variable to the effect vari-

able. BNs can be defined as a special case of a more general class called

graphical models in which nodes represent random variables, and the lack

of arc represents conditional independence assumptions between variables.

The vertices of the BN are called nodes and are represented as circles con-

taining the variables. The connections between the nodes represented by

arrows are called edges or arcs and represent dependence between the node

variables.

Fig. 3.1 illustrates examples of BNs encoding different types of depen-

dencies between three variables. The node where the arc originates is called

the parent, while the node where the arc ends is called the child. For exam-
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ple, in Fig. 3.1 (a), X is a parent of Z, and Y is a child of Z.

Figure 3.1: Bayesian networks over three variables, encoding different types
of dependencies: (a,b) cascade, (c) common parent , and (d) v-structure.

Bayesian networks are a type of probabilistic graphical model that uses

Bayesian inference for the computation of probabilities. The probability

theory is based on three basic axioms:

1. 0 6 P (X) 6 1

2. P (X) = 1 if and only if X is certain, and

3. If X and Y are mutually exclusive, then P (X
⋃
Y ) = P (X) + P (Y ),

and and a fundamental rule of probability calculus: P (X,Y ) = P (X/Y )P (Y )

where P (X/Y ) is the probability of the joint event X
⋂
Y . This brings

us to the Bayes’ rule for computing posterior probability: P (X/Y ),

given the prior one P (X), and the likelihood P (Y/X) that Y will

materialize if X is true: P (X/Y ) = P (Y/X)P (X)/P (Y ). Here X

represents hypothesis, Y represents evidence, and P (Y ) denotes the

normalizing factor.

BNs can be thought of as a knowledge base [91] which explicitly rep-

resents our beliefs about the elements in the system and the relationships

that exist between these various elements of the system. Such a knowledge

base aims to infer some belief or make conclusions about some processes or

events in the system.

Similarly, a DBN is a BN which relates variables to each other over ad-

jacent time steps [96]. DBNs are usually defined as a special case of singly
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connected Bayesian networks specifically aimed at time-series modelling like

stated in [77]. All the nodes, edges and probabilities that form a static in-

terpretation of a system is identical to a BN. In the case of DBN, the nodes

can be denoted as the states, because they include a temporal dimension.

The states of any system described as a DBN satisfy the Markovian con-

dition, that is defined as follows: The state of a system at time k depends

only on its immediate past, i.e., its state at time k-1. Also, this property

is frequently considered as a definition of first-order Markov property as in

[71]: the future is independent of the past given the present. Fig. 3.2 shows

the representation of a DBN with the variables at two different time steps,

k-1 and k. The next time step, k, is dependent on time step k-1. There

are two types of edges (dependencies) that can be defined in a DBN such

as intra-slice topology (within a slice) and inter-slice topology(between two

slices). In Fig. 3.2, a0, b0, c0 are initial states and ai, bi, ci are future states

where i=1,2,3,. . . ,n. The probability distribution for this DBN (refer Fig.

3.2) at time k is:

p(xk/xk−1) =

N∏
i=1

p(xik/Pa(xik)) (3.1)

where xik is a node at time instant k and Pa(xik) are the parent nodes of xik

Figure 3.2: DBN representation with two-time steps.

To decide the relation between two variables in a DBN, whether intra-

slice or inter-slice, depends on how tight the coupling is between them. If

the effect of one variable on the other is immediate (much shorter than the
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time granularity), the influence should manifest as an intra-slice edge. On

the other hand, the influence should show as an inter-slice edge if the effect

is slightly longer term. An inter-slice edge connecting two instances of the

same variable is called persistence-edge. Hidden Markov models (HMMs)

and Kalman filter model (KFM) are specific non-trivial examples of DBNs.

HMMs are formed by one hidden variable with persistence links between

time-steps and one observed, as shown in Fig. 3.3. The probabilities in

HMM can be defines as follows:

Figure 3.3: Hidden Markov Model (HMM).

• P (x0) is the initial state distribution and represents the uncertainty

on the state’s initial value.

• P (xk/xk − 1) defines the transition model. It tells how the states

evolve in time.

• P (zk/xk) is the observation model. It represents how the observations

are related and generated by a hidden state. It is also called the

likelihood.

On the other hand, KFM is characterized by one continuous hidden

node. All nodes are assumed to be Linear-Gaussian distributions. The

probabilities in KFM can be defined as:

• P (x0) = N(x0, Q0) is the initial state distribution.

• P (xk/xk − 1) = N(Fxk − 1) + G(uk, Q) defines the state transition

model (u represents the control term and Q is the process noise co-

variance).
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• P (zk/xk) = N(Hx, v) is the observation model (H is the observation

matrix and v is the observation noise). It represents how the observa-

tions are related and generated by a hidden state. It is also called the

likelihood.

3.2 Growing Neural Gas (GNG) algorithm

In this work, the GNG algorithm is used to cluster the input state space to

find the topological structures that closely reflect the structure of the input

distribution.

The purpose of cluster analysis is information retrieval (data-mining) of

a huge amount of data. Therefore, clustering-algorithms use to split the

data into clusters, and the feature of the data contained in each cluster has

a high degree of similarity. In general clustering-algorithms map a set of N

input vectors:

X = {x1, x2, ..., xn|xi} ∈ Rd, i = 1, 2, ..., N into c clusters. Whereby 2

≤ c ≤N.

X represents the input states and c is the number of clusters.

In general, clustering can be described as the process of organizing a

collection of k-dimensional vectors into groups whose members share similar

features in some way. A k-dimensional vector represents each group, called

a code vector (other names used are centroid and node). There are many al-

gorithms available for clustering: K-means [64], self organising map (SOM)

[57], neural gas (NG) [67], growing neural gas (GNG) [39], density-based

spatial clustering of applications with noise (DBSCAN) [35], etc. The SOM

algorithm can compress large multidimensional datasets into a fixed num-

ber of representative units. However, the dimension of the representative

units (clusters) needs to be defined before, and it may sometimes cause not

intuitive for representing the characteristics of data structure.

In contrast to the SOM, GNG is an unsupervised, adaptive, and incre-

mental neural network that learns topologies; it grows during the learning

process and does not require users to define the number of representative

units called nodes beforehand. Such a dynamic property is an advantage over

other clustering algorithms for using it in many applications. DBSCAN is a
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density-based clustering algorithm that finds a number of clusters starting

from the estimated density distribution of corresponding nodes. Although it

has many advantages, such as discovering arbitrarily shaped clusters and ro-

bust detection of outliers, the algorithm sometimes fails to identify clusters

in those situations of varying density of considered data or if the dataset

is too sparse. The dataset considered in this work is sparse and multidi-

mensional, so that we have chosen the GNG algorithm by considering its

advantages over other clustering algorithms.

The GNG algorithm [39] extends the NG algorithm by adding a local

error measure for each node. This error is accumulated based on the node’s

distance to the input samples presented to the network. Regularly, a new

node is inserted between the two nodes that have accumulated the largest

amount of error. The GNG network’s underlying graph starts with two

nodes and expands until it reaches a predefined maximum number of nodes.

Therefore, the number of nodes in the GNG is no longer fixed as it is in the

NG algorithm. A second addition proposed by [38], is the utility measure.

It is used to determine each node’s usefulness by estimating the increase of

the global network error if the node would not be present. Based on their

utility value, the nodes contributing little to reducing the global network

error can be removed. GNG incrementally creates a network of nodes, given

some input distribution in Rn. GNG can be used for vector quantization

by finding the code-vectors in clusters. In GNG, these code vectors are

represented by the reference vectors (the position) of the GNG nodes. It

can also be used for finding topological structures that closely reflects the

structure of the input distribution. GNG has been widely used in recent

years for different applications, mainly for clustering or topology learning.

In this work, GNG is used to segment data collected by various sensors into

a set of regions that facilitate a semantic interpretation of data and defines

local linear models employed for prediction purposes.

In Section 4.1.1, the pseudo-code for the GNG algorithm is presented

with examples.

3.3 Markov Jump Particle Filter (MJPF)

In this phase, a probabilistic switching model called MJPF [33, 51] has been

chosen to make inferences on the DBN models learned in the training phase.
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The filtering algorithms like MJPF [48, 31] and IMM filters [75] allow an

agent to predict and estimate target motion according to multiple probabilis-

tic models. The filters differ in the inference methods they use to perform

prediction and update steps. While MJPF uses particle filters at discrete

levels together with Kalman filters at continuous levels, IMM filters can use

different approaches. For example, in IMM filters [23, 106], a model-driven

approach is performed to fuse Kalman filters. In general, IMM filters can be

coupled with parameter estimation learning methods specific to the inference

approach used that can be used on training sequences. However, parameters

are often chosen by design, and fixed discrete state transition probabilities

are provided offline from the discrete variables switches’ frequency. The

number of models is generally a priori fixed, limiting the descriptors of the

agents’ dynamics. In this work, we used MJPF, a type of Markov jump

linear system (MJLS) that uses a parametrized couple of Particle filter and

Kalman filters that can be learned from data. This allows as in IMM in-

ferences on a Dynamic Bayesian Network jointly at continuous and discrete

levels. However, the data-driven approach used in this work is based on a

free energy minimization approach that allows a varying number of dynamic

models to be estimated together with temporal transition probabilities that

characterize the models’ discrete temporal evolution.

In IMM, model switching is mainly dependant on a time-independent

transition probability matrix; in MJPF here used, co-occurrence probability

and transition models learned are time-dependent, so allowing a time-variant

transition probability, specific for each dynamic model, to be employed. In

MJPF, the number of particles employed at the discrete level is proportional

to the dynamic models. The method explore in parallel an alternative set

of dynamic model predictions by evaluating the best choices depending on

anomaly detection capabilities added.

MJPF is a switching model that describes an object’s behavior changing

from time to time: the object follows one linear behavior and then switches

to another behavior. In this work, MJPF is applied to learned DBN as shown

in Fig. 3.4. The learned three level DBN model is linear with Gaussian

noise to relate discrete and continuous variables, predicting together the

next super state and state. Switching discrete variables describe a set of

behaviors, and such behaviors can be learned from the data. For each region,

we can have different behavior and model to predict the movement of the
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object. In MJPF, use KF in state-space and PF in super state space. Such

filters are used together to make a Bayesian inference. They predict and

estimate the states of a moving agent.

Figure 3.4: Three level DBN model representation.

• Kalman filter (KF): KF is an iterative filter for linear systems with

Gaussian noise. It needs a definition of dynamic model

xk+1 = Axk +BUsk + nk, (3.2)

and observation model

yk = AHxk + ωk, (3.3)

where k is time step, xk is the state, and yk is observation, nk and ωk

are zero mean prediction noise and measurement noise, independent of

each other, white and with normal probability density functions with

covariance matrices Qsk and R [90].

A is the state transition matrix that maps the agent’s position as

constant with respect to the previous state. B is a control input model

that maps the action of an agent to the following states. For each

superstate nodes in DBN (yellow shaded area in Fig. 3.4), we use

different control vector Usk.

37



Kalman filter works with two steps:

- prediction finds p(xk/Zk−1)

x̂k/k−1 = Axk +BUsk + nk, (3.4)

Pk/k−1 = APk−1/k−1A
T +Q (3.5)

- update finds updated estimate with measurement zk, p(xk/Zk) and

updated covariance matrix Pk/k:

zk/k−1 = Hx̂k/k−1 +mk (3.6)

x̂k/k = x̂k/k−1 +Kk(zk −Hx̂k/k−1) (3.7)

Pk/k = Pk/k−1 −KkSK
T
k = [I −KkH]Pk/k−1 (3.8)

Kk = Pk/k−1H
T (HPk/k−1H

T +R)−1 (3.9)

where I is identity matrix, x̂k/k−1 is a priori estimate of the state xk

given measurements until k − 1, x̂k/k is a posteriori estimate of the

state xk given measurements up to time k, Kk is the Kalman gain,

Pk/k−1 is covariance of a priori estimate and Pk/k−1 is covariance of a

posteriori estimate.

The difference vk = zk − Hx̂k/k−1 in Eq. 3.7 is called the measure-

ment innovation or the residual. Residual compares predicted states

Hx̂k/k−1 and actual measurement zk. If they are very far, observation

is used to have a better estimate of the following state.

From Eq. 3.10 we can observe that when measurement error covariance

R is small, the gain is high, and the residual has more weight in Eq.

3.7. The actual measurement zk is more reliable than the prediction.

On the other hand, when Pk/k is small, the Kalman gain doesn’t weigh

residual much, so zk is trusted less [100].
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• Particle filter (PF): PF can be important in the cases when systems are

non-linear, and noise is non-Gaussian. In our case, posterior probabil-

ity density function, p(xk/Zk) estimated at every step isn’t Gaussian.

It is a non-parametric probability density function approximated with

a set of particles in different positions state-space, each particle with

a different weight.

Particle filter with sequential importance resampling (SIR) algorithm

uses as importance function dynamic model p(xk/xk−1) to select parti-

cles. At the beginning of each new iteration, the weight of each particle

is set to 1/N . Then the weights are updated using measurement to

say how much probable is each particle, considering p(zk/xk) and the

values are normalized. At each step in the resampling phase, the par-

ticles with low weights will be deleted, and those with large weights

will be multiplied to have the same number of particles as before.

The MJPF predicts both state and superstate by estimating a poste-

rior probability density function as below:

p(sk, xk/Zk) = p(xk/sk, Zk)p(sk/Zk) (3.10)

p(sk, xk/Zk) can be estimated by a PF. Particles move in superstate

space and are drawn from a proposal function q = p(sk/sk − 1).

Therefore, at the next time step, we predict the particle from the

transition matrix. A different Kalman filter is associated with each

particle s∗k, different for each discrete zone sk, to connect the discrete

state to the continuous state and to make predictions and update of

state. Each filter is described by a different dynamic model and by a

unique shared observation model.

The different versions of MJPF are explained in the next chapters,

where it is used to make inferences on real data observations.

3.4 Definitions and concepts

This section includes some of the definitions found in the existing

literature related to the concepts used in this work.
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– Ego-thing: Ego-thing can be defined as intelligent autonomous

entities that can perceive their internal as well as external param-

eters and adapt themselves when they face abnormal situations

[51]. In this thesis, ego-thing, agent, object, and vehicle are used

as synonymous.

– Self-awareness (SA):

∗ SA can be seen as the capacity to become the object of one’s

own attention. It occurs when an organism focuses not only

on the external environment but on the internal self ; it be-

comes a reflective observer by processing private and public

self-information [69].

∗ SA is a capability of an autonomous system to describe the

acquired knowledge about itself and its surroundings with ap-

propriate models and learn new models incrementally when

it comes to new experiences [84].

– collective awareness (CA): The term collective consciousness

was coined by the French sociologist Émile Durkheim (1858–1917)

to refer to the shared beliefs and moral attitudes that operate as a

unifying force within society [73]. Collective consciousness or col-

lective awareness plays a significant role when a group of agents

needs to perform a task by co-operating and communicating to

achieve collective or individual goals. In [25] the authors investi-

gated the key requirements to achieve collective action in a decen-

tralized community energy systems(dCES); collective awareness

to enhance the sense of collective responsibility, social networking

to promote self-organization.

collective awareness is an extension of self-awareness concept to

a network of ego-things that cooperate to perform a given task

with different interdependent roles. Collective awareness allows

the network to understand whether perception-action informa-

tion processing models they are provided of allow then to predict

the dynamic evolution of the current situation, as well as to co-

herently detect global anomalies in a distributed way [53].

– Multimodality: Different sensor modalities can be used by an

agent to collect information by its own sensors about its own state
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(proprioceptive) and context one (exteroceptive); consequently,

collective awareness makes it necessary to be capable of learning

models from heterogeneous sensor modalities. The capability to

estimate causal dynamic connections of generalized variables re-

lated to different modalities is a key aspect to allow agents to be

provided of collective awareness models related to co-operative

tasks they have to perform.

– Interpretability: In this thesis, interpretability is defined as the

capability to use anomaly data to modify the existing model to

make the future inferences more accurate.
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Chapter 4

Implementing multi-modal

Self-Awareness in agents

This chapter proposed a novel approach to developing multi-modal

self-awareness in agents to detect abnormalities. Several features of

the observed sensory data used learning the multiple inference self-

awareness models. The method is evaluated with real dataset from

a moving vehicle performing different tasks in a closed environment.

The proposed method can be useful for selecting relevant features when

dealing with numerous features in networking operations.

This chapter’s work is highly motivated by models proposed in [14, 17].

In [17], the authors proposed a method to develop a multi-layered self-

awareness in autonomous entities and exploit this feature to detect

abnormal situations in a given context. On the other hand, [14] in-

troduces a MJPF, which consists of continuous and discrete inference

levels that are dynamically estimated by a collection of KFs assem-

bled into a PF algorithm. MJPF enables the prediction of future

states in continuous and discrete levels. Most of the related works

[49, 83] use position-related information to make inferences. However,

the information related to the control of an autonomous entity plays

a significant role in predicting future states and actions of the entity.

Accordingly, it is imperative to consider variables related to control to

develop predictive models for making the system more efficient.

The novelties of this chapter are listed as follows:
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1. A method proposed to learn data-driven self-awareness models in

agents. Low dimensional multi sensory data containing informa-

tion of actuator are divided into different sets of data, generating

multiple inference subsystems.

2. The work includes a novel strategy for segmenting and interpret-

ing clusters of generalized errors. To obtain the clusters, used a

growing neural gas (GNG) algorithm.

3. The proposed strategy selects the set of sensory data (features)

that optimize the prediction of future states and the detection of

abnormalities. A probabilistic anomaly measurement based on

the Hellinger distance is used for the anomaly estimation.

4.1 Proposed methodology

This section firstly describes how the “awareness” can be modeled into

a thing/agent that can become an “ego-thing”. Ego-things can be de-

fined as intelligent autonomous entities that can perceive their internal

as well as external parameters and adapt themselves when they face

abnormal situations.

In general, an ego-thing can be equipped with various exteroceptive

and proprioceptive sensors. Proprioceptive sensors measure values in-

ternally to the agent, e.g. battery level, wheel position, joint angle, etc.

These sensors can be encoders, potentiometers, gyroscopes, compasses,

etc. Exteroceptive sensors are used for the observation of the environ-

ments, objects. Sonar sensors, camera, IR sensitive sensors, ultrasonic

distance sensors are some examples of exteroceptive sensors. In this

work, we mainly considered the control data (i.e., steering angle, rotor

velocity and rotor power) of the ego-thing to develop self-awareness.

The collected sensor data have been initially synchronized to match

their time stamps and then categorized into groups. In addition to

that, the sensor datasets have been normalized to bring the numeric

columns in the datasets to a common scale by not distorting the dif-

ferences in the ranges of values or losing information. The proposed

method can be divided into two parts: offline training and online test-

ing. The purpose of the offline training phase is to learn new DBN
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models from the dynamic data series collected from the reference sit-

uation task. It starts from a set of data series and learns a vocabulary,

transition probability matrices, and finally, we obtain the dynamic

models. On the other hand, in the online testing phase, a filter called

Markov jump particle filter (MJPF) is applied on the learned switch-

ing DBN models by giving a set of new dynamic data series as input.

Switching DBNs are probabilistic models to integrate observations re-

ceived from multiple sensors in order to understand the environment

and take appropriate actions. The output of the switching DBN model

is the future state predictions and abnormality measurements.

4.1.1 Offline training phase

In the training phase, the ego-thing will learn a number of switch-

ing dynamic Bayesian network (DBN) models from the data collected

by the sensors mounted on its body. DBNs are probabilistic models

used to integrate observations received from multiple sensors allows a

system to understand the environment and take appropriate actions.

Moreover, such models allow a system to understand temporal rela-

tionships and analyze time series, a set of sequential observations in

time. The system can make inferences to estimate the probability

density functions of unknown states from given ground truth obser-

vations and initial probability distribution. In this work, ego-thing is

autonomous vehicle, as shown in Fig. 4.8a.

A block diagram representation of the training phase is shown in Fig.

4.1, and the steps followed to learn the switching DBN models are

explained below.

Figure 4.1: DBN model learning (training phase).

– Data preprocessing and state estimation
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Firstly, a set of observations of control data variables are ac-

quired. Then prepossessing techniques are applied to the data,

for example; synchronization, filtering, and smoothing operations

performed to remove outliers and irregularities present in the

datasets.

∗ Data synchronization: The aim of the synchronization oper-

ation is to make a match of the timestamps of data collected

by different sensors. Firstly, calculate the difference between

timestamps of datasets collected from two different sensors.

Then, match the data samples with minimum difference in

timestamp values.

∗ Filtering: A mean filter was used to perform a filtering op-

eration on data. In this filter, the outlier is defined as points

outside three standard deviations from the mean. The outlier

is replaced with the nearest element that is not an outlier.

The default window for mean calculation is five-element win-

dow.

∗ Smoothing: A moving average filter is used to perform a

smoothing operation on data. In this filter, the window size

can be changed to adjust the smoothing. In this work, default

window size is used, i.e.,window size of five.

Additionally, the datasets have been normalized. The goal of

normalization is to change the values of numeric columns in the

dataset to a common scale, without distorting differences in the

ranges of values. From here onwards, we focused only on the

control variables combination steering angle-rotor power (S−P )

to explain the DBN model learning process in detail, and the same

methodology applied to other modalities for learning models.

Let Zmk be the measurements of control variables (i.e., steering

angle s and rotor power p ) in the ego-thing et at the time instant

k and Xm
k be the state associated to the measurement Zmk , such

that Zmk = g(Xm
k ) + ωk. The function g(·) is assumed to be

linear, and it maps states into observations. At the same time,

ωk represents the noise associated with the sensors. Assuming the

function to be linear allows the work to focus on non-linearities in

the learned dynamic models and relates to the agent’s capability
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to predict future states and anomaly detection. As explained

in [37], states’ time derivatives allow predictive models to make

inference dynamically even when some unknown quantities are

constant.

The generalized error (GE) can be defined as the error that con-

sists of coupled information such as a state and the higher-order

derivatives of states. An initial reference generalized filter [27]

could be applied to low dimensional sensory data to produce

generalized error. Each modality data sequence has been used

to produce the generalized error from which to learn the task

model.

The generalized error of data combination m for the ego-thing et

can be written as:

Xm
k = [Xm

k Ẋm
k Ẍm

k · · · X
(L)m
k ]ᵀ, (4.1)

where (L) indexes the L-th time derivative of the state.

The state related to the observations can be be written as :

Xm
k =

[
s

p

]
The l-th time derivative in et at the time k can be approximated

as:

X
(l)m
k =

X
(l−1)m
k −X(l−1)m

k−1
∆k

, (4.2)

where X
(0)m
k = Xm

k and ∆k is the uniform sampling time for all

multi sensory data. In this chapter, the derivatives inside the

generalized error (GE) are limited to 1, i.e., only the states and

its first-order derivatives are considered. Once generalized error

is obtained, the next step is to learn the discrete level of DBN as

explained below.

– Clustering by Growing Neural Gas (GNG) algorithm

In order to learn the discrete level of the DBN i.e. the yellow

shaded area in Fig. 4.6, it is required to map the generalized er-

ror (GE) into a set of nodes. Each node encodes the dynamics of
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generalized error that share a common objective. To group these

GE and to obtain a set of nodes, we have used an unsupervised

clustering approach called GNG [39] .

The GNG algorithm is used for clustering the data to make dis-

cretization of state space. GNG is an unsupervised incremental

clustering algorithm able to segment generalized states of the en-

tity into a set of regions that encode the dynamics and expected

behaviors of the variables considered. Clustering can be described

as the process of organizing a collection of k-dimensional vectors

into groups whose members share similar features in some way.

Each such group is represented by a k-dimensional vector called

a code vector (other names used are centre and node). The goal

of clustering is to reduce significant amounts of raw data by cat-

egorizing smaller sets of similar items.

As described above, the GNG algorithm is used in this work to

obtain regions from GEs produced as outputs by the initial fil-

ter, i.e., sequences of coupled state estimations and errors. Thus,

GNG clusters correspond to coupled compact regions of state

points and errors. Derivative errors cluster encode the descrip-

tion of the expected dynamics that caused the data series to vary

instead of following the hypothesis of the initial filter. Different

ways of changing are coded as behaviors that have been found in

a corresponding compact state region. The compact state region

represents switching variables in the hierarchical DBN. GNG is

not the unique possible clustering algorithm that could have been

employed. K-means clustering [64], self organizing map (SOM)

[56], neural gas (NG) [67], etc are other possible choices. In com-

parison to K-means and SOM, NG converges faster, and also it

has other advantages. The GNG algorithm is an improved version

of the NG algorithm. In comparison to NG, it does not need any

dynamically modifiable parameters. The GNG algorithm extends

the NG algorithm by adding a local error measure for each node.

A second addition here used, first proposed by [38], is the utility

measure. By considering all the advantages mentioned above, we

chose to use the GNG algorithm in this work.

The apriori defined parameters for GNG used in this work, and
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the pseudo-code of different steps involved in the clustering pro-

cess are explained below.

A priori defined parameters for GNG: [39]

In contrast to the NG algorithm, the parameters in GNG are not

modified dynamically. The following parameters have to be de-

termined before launching the algorithm: N, εb, εn, amax, λ, α,

δ.

N: represents the maximal number of nodes

εb , εn : describe the mobility of the winner nodes and its neigh-

bours and we have used the values εb = 0.2 and εn = 0.006.

amax : describes the maximal age of a connection and every λ

iteration a new node will be created.

α : represents the reduction of error counter by inserting a new

node and the value is 0.5.

δ: will reduce the overall value of the error counter every iteration

step and the value is 0.995.

Pseudo-code for GNG algorithm [39]

Figure 4.2: GNG pseudocode.

GNG algorithm example

We have considered the 2D dataset of control variables combi-

nation, steering angle-power (S − P ) to explain the main pro-

cesses involved GNG algorithm. The dataset has been normal-
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ized. Therefore, the values will be between zero and one.

1. Initialization: Create two nodes s1 and s2 with related ran-

domly initialized weight vectors ws1 and ws2 ∈Rn.

where Rn refers to the Cartesian product of n copies of the

set of all real numbers.

Also, matrices are needed to store connection information

and connection age information. In addition to that, each

node has a counter (error counter f), representing the cumu-

lative error.

Node1(ws1) : [0.6324 0.0975]

Node2(ws2) : [0.2785 0.5469]

As stated before, the node values were chosen randomly.

2. Sampling and Matching: Draw an input vector ζ from

the input data sequence and locate the two nodes with the

minimal distance toward ζ with: s1 = minwi∈N (||ζ − wi||) ∧
s2 = minwi∈N\{s1}(||ζ − wi||) where s1 is the nearest node

and s2 is the second nearest node to the input vector.

Increment the age of all connection emanating from s1. Also

sum the error counter with δerror(s1) = ||ws1 − ζ||2.

Input vector, ζ = [0.3587 0.0041]

Distance between input vector and the nearest node s1 is

d1 =
√

(0.3587− 0.6324)2 − (0.0041− 0.0975)2 = 0.2892

Distance between input vector and the nearest node s2 is

d2 =
√

(0.3587− 0.278)2 − (0.0041− 0.5469)2 = 0.5487

δerror(s1) = || − 0.1803||2 = 0.0325

where d1 and d2 are the euclidean distance between the input

vector ζ with the node s1 and node s2 respectively.

3. Adaptation: Compute the displacement of s1 and its direct

topological neighbours in the direction of ζ with δws1 = ws1+

εb(ζ − ws1); δwn = wn + εn(ζ − wn). Whereby εb εn ∈ (0; 1]

represents parameters for adjusting the movement.
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δws1 = [0.6324 0.0975]+0.2∗[(0.3587 0.0041)−(0.6324 0.0975)]]

= [0.6324 0.0975] + 0.2 ∗ [−0.2737 0.0934]

= [0.6324 0.0975] + [−0.0547 0.0187] = [0.5776 0.0788]

δwn = [0 0]

where δwn represents the displacement of the direct topolog-

ical neighboring nodes of the winner node in the direction of

the input vector ζ.

4. Selection: Reset the connections age, if s1 and s2 were con-

nected, otherwise create one. Delete all connections with age

higher than the predefined maximal age amax. Also, delete

nodes that have no emanating connections. Increment the

age of all emanating connection of s1 by one.

If the nodes s1 and s2 are not connected, make a connection

between them as below:

C(s1,s2) = 1

C(s2,s1) = 1

The age of connection between s1 and s2 is incremented. The

value of age starts from zero and updated as below:

t(s1,s2) = 0

t(s2,s1) = 0

5. Recombination: Every λ iteration, locate the node q with

the greatest value of error counter f. Create a new node r

between q and f with weight wr = (wq +wf )/2. Also create

connections among r, q and f and delete the original connec-

tion between q and f. Reduce the error counter of q and f

by a multiplication with α. Initialize the error counter of the

new neuron with the value of f. wq = [0.5948 0.7412]

ws = [0.9004 0.1332]

wr = [(0.5948−0.9004) (0.7412−0.1332)]/2 = [0.7476 0.4372]

6. Ageing: Reduce the error counter of all nodes by multipli-

cation with δ and continue with step one.

7. If a stopping criterion (e.g., net size or some performance

measure) is not reached go to step 1.

In this work, we adapted the parameter values used in [39]. The

number of nodes fixed by visualizing the clusters generated after
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applying GNG on datasets. Although, [81] proposes an algorithm

to choose the optimum parameters for GNG. For the optimiza-

tion of parameters, the authors used the evolutionary algorithm.

The future work of this thesis could include such an algorithm

to assess the performance of clustering of dataset used. GNG

gives as output a certain number of nodes containing data sam-

ples. Then, mean and covariance are calculated for each cluster

from the subset of samples that belong to each cluster. Nodes

inside each GNG can be seen as a set of letters containing the

main behaviours of GEs. Fig. 4.3a shows an example of GNG

clustering of steering-power data; the yellow circles represent the

nodes and blue dots represent the data points associated with

them. Moreover, Fig. 4.3b shows an example of one cluster. The

red cross mark represents the centroid, data points associated to

the cluster are shown in blue circles and the boundary of cluster

is marked by big red circle.

(a) Clustering of steering angle and rotor
power (S & P ).

(b) Example of a cluster.

Figure 4.3: GNG applied on the control dataset (for perimeter monitoring
task).

The nodes produced by each GNG is called a set of letters con-

taining the main behaviours of generalized errors.

The letters/nodes encoding l-th order derivatives in generalized

error for the data combination m (for e.g., S-P) is defined as

follows:
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V m,l = {V1, V2, . . . , Vn}, (4.3)

where n represents the maximum number of nodes produced by

the GNG.

Once performed the clustering operation and obtained the letters

belong to each GNG, the next step is to generate the words. A

word can be defined as the coupled nodes activated simultane-

ously at the same time instance from each GNG. A word can be

represented as:

Wm = [V 0
i V 1

j ]T (4.4)

where Vi represents the ith element of the group of nodes pro-

duced by GNG1 (which is used to cluster states). Likewise, V 1
j

represents the jth element of the list of nodes produced by GNG2

(i.e., the GNG used to cluster first-order derivatives of states).

Then, unique labels assigned for each unique combination of ac-

tivated couples to form a dictionary/codebook.

Figure 4.4: Dictionary (codebook).
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The dictionary (list of words) computed for ego-thing et for the

modality m can be written as:

Dm = {(W (1),m L1), (W
(2),m L2), . . . , (W

(n),m Ln)}, (4.5)

where L represents each word’s unique label, n represents the

index of the maximum number of elements in the dictionary.

The example of dictionary is shown in Fig. 4.4, each row repre-

sents a word and a unique label assigned to it. The first column

consists of the activated nodes belongs, and the activated nodes

belong to GNG2 are the elements of the second column of the

dictionary.

In this work, we considered the states and it’s first order deriva-

tives only, so that the number of GNGs used for the data com-

bination is limited to two. The aim of this step is to learn the

discrete variables of the DBN model which is shown inside the

yellow shaded area in Fig. 4.6.

– Estimation of state transition probability

The letters (see equation 4.3) and the dictionary (list of words)

(see equation 4.5) belong to ego-thing et have been learned based

on the measurements of control variables related to scenario 1

(refer section 4.2). Based on the timely evolution of letters and

words, transition models can be estimated. Such transition mod-

els can expedite the estimation of future letters and words. The

learned letters and words construct the superstates of the DBN

model. Once obtained the superstates, the very next step is to

estimate probabilistic dependencies between the superstates in

DBN (represented as horizontal arrows in yellow shaded area in

Fig. 4.6. It is required to make an approximation of temporal

probabilistic transition matrix to identify a discrete conditional

state transition between nodes for the discrete level of the MJPF.

As a consequence, a set of probabilities p(V m
L,k+1/V

m
L,k)(refer Fig.

4.6) have to be estimated, where L is the total number of clusters

produced by each GNG.

Transition probabilities between nodes are approximated with rel-
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ative frequencies and computed in a transition matrix, which says

how much probable the entity goes from the region of a row into

a region in a column. The transition matrix is a square matrix

whose side is equal to the number of clusters we have found by

GNG. To obtain such matrices, the control data sequences in the

superstate space of our entity have been considered. Firstly, take

one superstate at time instance k and consequent one at time

instance k+ 1, then increase of one element in the row of current

node and column of next node, that corresponds to absolute fre-

quency. At the end for each row, the sum of elements and divide

them by sum, to have the relative frequency of change from su-

perstate Vk to Vk+1. Sum of elements of each row must be 1. Af-

terwards, to see how much time passes from the instant in which

object is in one superstate to when it moves to another one, acti-

vated superstates over time while executing a certain activity are

analyzed to estimate temporal transition matrices encoding the

probabilities of staying or passing between the superstates consid-

ering time spent in current object’s superstate. The probability

that entity moves to future superstate can be written in terms

of its current superstate and time passed in it as p(V i
k+1/V

i
k , t)

where i and j belong to the set of clusters. We observe a series

of crossed nodes and compute histograms of elapsed time steps

between each couple Vk and Vk+1. For each interval of time, there

is a different probability to move to a node considering how much

time an object spent in a certain node. For each possible transi-

tion between superstates, we compute a histogram of how many

seconds the object stayed in a node or after how many steps it

moved to another one. Then we find the maximum time of all

histograms and for each time from 1 to the maximum number

of seconds observed, a temporal square matrix whose side is the

number of nodes can be computed. For each matrix with corre-

sponding time, it is verified considering histograms. For example,

how many times we passed in 5 seconds from node 1 to node 2,

and put this value to element 1, 2 of the matrix corresponding to

elapsed time steps t = 5. Repeat the procedure for each matrix

corresponding to a different number of seconds. After that, we
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compute the sum of elements in a row of each matrix and divide

row by the sum to obtain an approximation of the probability of

passing from the first node to the second one in that number of

steps. We can add to our probabilistic model a variable encod-

ing transition between nodes and time elapsed from the previous

transition. We call this change of superstate event. It is a dis-

crete asynchronous random variable: an entity can stay in the

same superstate, and so we have the null event for many periods,

and only certain changes of superstates are possible. Each event

is characterized by a label and how much time passed from the

event before. An event can be predicted with a bigger time range,

and it is a switching variable for superstates as a superstate is a

switching variable for continuous states. We can compute the

probability of each event knowing the previous event and how

much time has passed from the time it happened. For example

in this trajectory of discrete variables:

5 5 5 5 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 we have two events

ajk1 = (5, 1), ajk2 = (1, 2) and time corresponding to second event

is t(ajk2) = length(1 1 1 1 1 1 1 1 1)− 1 = 8.

Each event has been given a label depending on the previous node

and the following one. Then save sequences of events and cor-

responding times passed between events. To remove null events,

we must not consider cases where an entity remains in the same

region and the transitions that have never happened. So looking

at the transition matrix’s elements, we don’t consider elements

on the diagonal and null elements and give a label to each not

null element. Doing so, we reduce the number of events and the

size of the transition matrix of events. It is build incrementing for

each event transition from event j to event k element (j,k). Then

normalize each line of the matrix to obtain relative frequencies.

For each event, corresponding time is stored so that histograms

of time elapsed between events can be computed as we did with

histograms of transitions between superstates.

An example of the transition matrix is illustrated in Fig. 4.5.

If the observation of s − p activates the node 6 of GNG1, the

transition matrix tells that, 0.35 probability it could belong to
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node1, 0.27 probability to node2 and 0.37 to node 8 from GNG2.

The sum of each row in the matrix will be 1.

Figure 4.5: State transition matrix.

– Learned DBN model

Figure 4.6: Switching DBN model.

All the previous steps are the step by step learning process of the

switching DBN model, as shown in Fig. 4.6. The switching DBN

model can predict the future states of ego-thing in continuous as

well as discrete level.
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subsectionModel testing and abnormality detection

Figure 4.7: Block diagram of online test phase.

Fig. 4.7 shows the block diagram representation of the online test

phase. In this phase, we have proposed to apply a dynamic switching

model called Markov jump particle filter (MJPF) [14, 16] to make

inferences on the DBN models learned in the training phase as shown

in Fig. 4.6. The observed sensory data from a new task that the

ego-thing has never seen in the offline phase are preprocessed (i.e.,

normalized) and given as input for MJPF, which computes as output

abnormality indicators together with the future state estimation of the

Ego-thing.

MJPF is a mixed approach with KF [100] in state space (blue shaded

area) and PF [43] in super state space (yellow shaded area) in Fig. 4.6.

The MJPF can predict and estimate discrete and continuous states

and to detect deviations from the normal model based on anomaly

measurements. At each instant, the ego-thing predicts it’s own future

states by the learned DBN model. By receiving the ground truth

observations, the ego-thing can match with the predicted states and

detect if any anomalies are present. A detailed description of MJPF

is described in Section 3.3 of this thesis and Section II of [14].

Superstates are the total number of clusters obtained by GNG cluster-

ing with mean and co-variance associated to each cluster. Superstate

space is the space made by the nodes and associated mean and covari-

ances of the the nodes. Such superstates are called switching variables

of the DBN model shown in Fig 4.6. Each node is a superstate that

encodes observations into discrete components.

In the proposed approach, the posterior probability density function

associated with a learned switching DBN model related to modality
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m of ego-thing et is :

p(Wk
et,m, X̃et,m

k /Zk
(et,m) = p(X̃et,m

k

/Wk
et,m, Zk

et,m)p(Wk
et,m/Zk

et,m) (4.6)

where Wk
et,m is the superstate random variable that represents words

learned through clustering as the higher hierarchical level vocabulary

of switching variables; X̃et,m
k represents the continuous state of ego-

thing et at time instant k.

The MJPF uses Eq. 4.6 to estimate the posterior at the discrete

and continuous state. The particles’ weight is iteratively computed

and allows to approximate the posterior. The predicted particles that

have good match with observations get more weight.

• Abnormality detection and decision making

At each time instant, the distance between predicted generalized states

and observation evidence of the DBN estimated using probabilistic dis-

tances metric called Hellinger distance [62] and an anomlay is detected

whenever this distance is higher than a threshold.

Let p(Xet,m
k |Xet,m

k−1 ) be the predicted generalized states and p(Zet,mk |Xet,m
k )

be the observation evidence.

The Hellinger distance can be estimated for modality m of ego-thing

et as below:

θet,mk =

√
1− λet,mk , (4.7)

where λet,mk is defined as the Bhattacharyya coefficient [21], such that:

λet,mk =

∫ √
p(Xet,m

k |Xet,m
k−1 )p(Zet,mk |Xet,m

k ) dXet,m
k . (4.8)

The variable θmk ∈ [0, 1], where values close to 0 indicate that groungtruth

observations match with predictions; whereas values close to 1 shows

the presence of an abnormality.

Example:

Predicted state, Xet,m
k = [ -14.5933 5.7686 ]
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Observed ground truth, Zet,mk = [-13.8000 5.7732 ]

Bhattacharya distance, d = 0.3147

Bhattacharya coefficient, λet,mk = 0.7300

Hellinger distance =
√

(1− λet,mk ) = 0.5196

4.1.2 Model selection

After learning a set of DBNs, it is possible to select the model that

detect abnormalities more accurately. Since each DBN produces a set

of abnormality measurements, see equations (4.7) and (4.8), a super-

vised approach where the testing data is already labelled in abnor-

mal/normal samples; is employed for measuring the performance of

the different DBNs when detecting anomalies. Accordingly, the true

positive rate (TPR) and false positive rate (FPR) are obtained mak-

ing it possible to build a set of ROC curves each of them containing

the performance of a given DBNs. As is well known, ROC curves plot

TPR and FPR at different thresholds, where:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(4.9)

In the proposed context, TP is defined as the number of times where

abnormalities are correctly identified. FN consists of the times that

abnormalities are classified incorrectly. Accordingly, FP are the times

where anomalies are wrongly assigned to normal samples and TN rep-

resents the times where normal samples are correctly identified .

This work considers two different measurements for selecting the most

precise DBN. They are: (i) the area under the curve (AUC) of the

ROC curves, which quantifies the performance of the DBNs’ abnormal

detection at several thresholds. (ii) The accuracy (ACC) measure-

ment, which is defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (4.10)

In our context, for each DBN both measurements are obtained and

compared for selecting the most precise DBN for abnormality detection
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purposes.

4.2 Experimental set up

First of all, it is important to mention that the following experiments

were conducted in collaboration with the Intelligent Systems Labo-

ratory, Department of Systems Engineering and Automation of the

University Carlos III de Madrid, Spain.

(a) The autonomous vehicle “iCab”. (b) The environment.

Figure 4.8: The agent and the environment used for the experiments.

4.2.1 Evaluation datasets

We use a dataset collected with the iCab vehicle (see Fig. 4.8a), while

it moves in a closed environment, see Fig. 4.8b. The dimension of the

movement trace in the testing environment is 38m× 33m. This chap-

ter considers the internal information of the autonomous system that

contains data related to the vehicle’s steering angle, rotor velocity, and

power. We aim to detect unseen dynamics learned with the proposed

method with additional functionality to select the best model. Two

following situations are considered:

Perimeter monitoring task. The information collected from the

perimeter monitoring (PM) experience is employed as training data to

learn our models. The vehicle follows a rectangular trajectory along

the proposed environment (see Fig. 4.8b). The trajectory data has

been plotted and is shown in Fig. 4.9a.

Similarly, the steering angle and velocity information are plotted with

respect to position data in Fig. 4.10a and Fig. 4.10b respectively for
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(a) Perimeter monitoring.
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(b) U-turn.

Figure 4.9: Odometry data.
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(a) Steering w.r.t position data.

5.5
40

5.55

5.6

5.65

3030

5.7

5.75

20

5.8

20 10

5.85

5.9

0
10 -10

-200

Rotor velocity trajectory

(b) Rotor velocity w.r.t position data.

Figure 4.10: Steering/ rotor velocity data in a single lap of PM task.

a single lap of the experience. Additionally, The power information is

shown in Fig. 4.11.

U-turn task. The vehicle performs the PM task until it encounters an

obstacle. In such a case, the vehicle performs a U-turn maneuver and

follows its rectangular path in the opposite direction. The trajectory

data of this U-turn manoeuvre is plotted in Fig. 4.9b. The data

sequences collected by this experiment are employed as test data to

check the model’s fitness and detect possible abnormalities.
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Figure 4.11: Power w.r.t position data in a single lap of PM task.

4.2.2 Set of features for DBN learning

In this work, we use different combinations of the collected information

as a set of features from the vehicle. Such features are listed below:

– Steering angle, rotor velocity and power (SV P )

– Steering angle and power (SP )

– Rotor velocity and power (V P )

– Steering angle, rotor velocity (SV )

– Steering angle (S)

– Rotor velocity (V )

– Power (P )

The features above mentioned represent the sensory data (cases) con-

sidered for building DBNs. Accordingly, for prediction and abnor-

mality detection purposes we consider seven DBNs that follow the

architecture shown in Fig. 4.6. All proposed DBNs are trained based
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on the control data from the PM task, see Fig. 4.10 and Fig. 4.11.

For state prediction and detection of abnormalities, the control data

produced by the U-turn experience is taken into consideration.

4.2.3 Abnormality detection and feature analysis

Based on the DBN feature-cases trained with the PM information, we

perform prediction and detection of abnormalities with the features

extracted from the U-turn observations. A manual ground truth (GT)

of the vehicle’s maneuvers is extracted for the U-turn experience. Fig.

4.12 and Fig. 4.13 show the abnormality signals θmk , see equation (4.7),

through time for the different DBN feature-cases. Background colors

of all plots are the same; they encode the GT of the vehicle’s actions

in the following way:

– Yellow: Entering U-turn (normal w.r.t PM)

– Violet: U-turn execution (abnormal w.r.t PM)

– Orange: Exiting U-turn (normal w.r.t PM)

– Blue: Inverse curve (abnormal w.r.t PM)

– Green: Straight motion (normal w.r.t PM)

As can be seen, two new maneuvers w.r.t the PM are introduced in

the U-Turn task. They are i) The U-turn maneuver: which consists

of a closed curve not experienced in the PM. ii) The inverse curve

maneuver: that is present in the lower left/right parts of the trajectory

shown in Fig. 4.9b. Such a maneuver was learned in an anticlockwise

sense in the PM. However, in the U-turn task, the vehicle performs

such a curve also in clockwise direction. Based on the GT explained

above, it is possible to build the ROC curve for each different feature-

case. Fig. 4.14 contains the ROC curves of the seven feature-cases.

It is evident from the plot that SP (curve in blue) performs better

than the rest of the features. Table 4.1 summarizes the performance

comparison of different features based on the calculation of the two

proposed precision measurements, AUC of the ROC and ACC, see

equation (4.10). It can be seen that SP presents the highest accuracy

in both measurements w.r.t others features with values of 78.20% and
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Figure 4.12: Abnormality measurements for single variable features: (a) S,
(b) V , and (c) P
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Figure 4.13: Abnormality measurements for mixed variable features: (a)
SV , (b) SP , (c) V P and (d) SV P

76.11% respectively. Such results suggest that the DBN trained with

the SP information provides the best recognition of abnormalities and

the most accurate predictions of future instances.
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Figure 4.14: ROC for different features.

Feature SV P SP V P SV S V P

AUC (%) 72.99 78.20 64.27 76.76 71.44 70.71 60.44
ACC (%) 69.40 76.11 62.56 73.38 73.38 70.64 62.68

Table 4.1: Precision measurements.

4.3 Chapter summary

This chapter proposes and tests a method for selecting the most precise

DBN when predicting abnormalities in real scenarios where multiple

sensory data is analyzed. The method is evaluated with real data

collected from a moving vehicle performing different tasks in a closed

environment. Moreover, to evaluate and compare the model perfor-

mance, the ROC curve is plotted. The area under the curve (AUC)

and accuracy (ACC) helps to select the best model to predict agents’

future states and detect the abnormality.

Results suggest that the proposed method recognizes the features from

a set of sensory data that facilitates identifying previously unseen ma-

neuvers, i.e., abnormal situations. Thus, the proposed method can be
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useful for selecting relevant features when dealing with many features

in networking operations.
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Chapter 5

Implementing Collective

Awareness in a network of

Ego-things: Phase I

The advancements in connected and autonomous vehicles in these

times demand the availability of tools providing the agents with the

capability to be aware and predict its own states and context dy-

namics. This chapter presents a novel approach to develop an initial

level of collective awareness (CA) in a network of intelligent agents.

A specific collective self-awareness functionality is considered, namely

agent-centred detection of abnormal situations present in the environ-

ment around any agent in the network. Moreover, the agent should be

capable of analyzing how such abnormalities can influence the future

actions of each agent. Data-driven dynamic Bayesian network (DBN)

models learned from time series of sensory data recorded during the

realization of tasks (agent network experiences) is here used for ab-

normality detection and prediction. A set of DBNs, each related to an

agent is used to allow the agents in the network to reach synchronously

aware about possible abnormalities occurring when available models

are used on a new instance of the task for which DBNs have been

learned.

A growing neural gas (GNG) algorithm is used to learn the nodes vari-

ables and conditional probabilities linking nodes in the DBN models;
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a Markov jump particle filter (MJPF) is employed for state estima-

tion and abnormality detection in each agent using learned DBNs as

filter parameters. Performance metrics are discussed to asses the algo-

rithm’s reliability and accuracy. The impact is also evaluated by the

communication channel used by the network to share data sensed in a

distributed way by each agent of the network. The IEEE 802.11p pro-

tocol standard has been considered for communication among agents.

Performances of the DBN based abnormality detection models under

different channel and source conditions are discussed. The effects of

distances among agents and of the delays and packet losses are ana-

lyzed in different scenario categories (urban, suburban, rural). Real

datasets are used acquired by autonomous vehicles performing differ-

ent tasks in a controlled environment.

In the previous chapter (Ch: 4), we have considered only one agent

to develop multi-modal self-awareness to detect abnormal situations.

A Hellinger distance metric is used to estimate the abnormality. The

ROC curve is plotted to evaluate and compare the different models’

performance developed from various exteroceptive and proprioceptive

sensory data. The area under the curve (AUC) and accuracy (ACC)

helps to select the best model to predict agents’ future states and

detect the abnormality.

This chapter focuses on developing collective awareness in an agent

network to detect collective abnormalities. Here, we have considered

only a single modality and different channel conditions and protocols.

As in the previous chapter, the Hellinger distance metric is used to

estimate the abnormality. However, in this chapter, the ROC curve is

used to compare the performance of the models under different chan-

nel conditions and data rates. The area under the curve (AUC) and

accuracy (ACC) are the main metrics used to evaluate the model’s

performance to know the performance is under acceptable range or

not.
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5.1 Collective awareness modelling

The collective awareness in a network of ego-things is defined here

as the capability of a set of ego-things in a network to understand

whether perception-action information processing models they are pro-

vided are performing normally. Normality is defined in a Bayesian

inference sense, i.e., as the capability of dynamic models describing

hidden object state characteristics as confirmed by observations of

available agents ego-things’ sensors. Such an ability is provided to

each ego-thing in the network and concerns the whole set of agents.

Communication is available in the network to exchange information

necessary to detect abnormalities of all ego-things by each agent in

the network. Each ego-thing can so achieve awareness not only about

the fitness of its own models when predicting its own state but also

about the possibility that abnormality conditions affect the actions

of other cooperating agents with respect to predictions provided by

their dynamic models. Such a collective awareness can trigger agents’

decision systems to perform emergency routines or switching to other

available modalities.

The collective awareness is based on detecting jointly and synchronously

abnormal situations present in the context. It allows appropriate de-

cisions can be taken to maintain the stability of the entire network of

systems.

The ego-things are equipped with various sensors. The collected data

from each ego-thing have been initially synchronized and then cate-

gorized into different groups. In this work, we mainly consider the

data related to the control part of the ego-things and the trajectory

data to develop collective awareness. The proposed method is divided

into two parts: offline training and online testing. A block diagram

representation of the proposed method where offline training and on-

line processing carried on by each ego-thing in the network is shown

in Fig. 5.1. During the offline training phase, each ego-thing learns

probabilistic filtering models from agent sensors’ dynamic data series

collected while collectively performing a reference situation task. This

implies that all agents perform the task autonomously or in a teleoper-

ated way during the training phase. The collected data series provides
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information of data collected by sensors’ observing exteroceptive and

proprioceptive data. By assuming that observation models can remain

invariant along the process (i.e., the model for estimating state likeli-

hood from sensory observations is given and fixed), a set of dynamic

models is learned, composed by a discrete vocabulary of continuous

conditional probabilities functions and by a transition matrix. Such

models are organized within a DBN. Such a process is repeated for

each agent, and the set of DBNs related to each agent is made avail-

able to the collective ensemble of ego-things. In the online phase,

each DBN is used for filtering agent sensory data within each agent.

The comparison of learned dynamic prediction models with incoming

observations allows each agent to estimate the level of fitness and to

measure abnormality of the collective situation in a distributed way.

However, to this end, communications have to be maintained to allow

each agent to filter and detect abnormalities also of other ego-things in

the network. Filtering is performed using a Bayesian filter appropri-

ate for the type of DBNs learned, i.e., switching models. Markov jump

particle filter (MJPF) has been here chosen as the dynamic probability

models in learned DBNs are here linear and continuous Gaussian, so

allowing Kalman filters to be used at a continuous level in switching

models. In Fig. 5.1, it is highlighted how such filters are here provided

with the additional capability of measuring abnormalities in addition

to filtering, and such capability is at the basis of CA.

5.1.1 Model learning phase: offline

Each ego-thing will learn a switching DBN model for itself in the train-

ing phase, i.e., from the data collected by its own sensors, and one DBN

model for each other ego-thing present in the network by exploiting the

data generated by that ego-thing’s sensors. In this work, ego-things

are autonomous vehicles, and the number of vehicles is limited to two.

In Fig. 5.1, the first part (gray shaded area) represents the training

phase of an ego-thing, and the steps followed to learn the switching

DBN models are explained below.
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Figure 5.1: Block diagram: training phase and test phase.

Data preprocessing and state estimation

First, the collected multisensory data are synchronized by using their

time stamps. In this work, we considered as a case study the data

sequences related to two low dimensionality sensorial data, namely

odometry as representative of ego-thing’s exteroceptive sense of po-

sition and steering as proprioceptive control information of the ego-

thing. An initial basic generalized filter [27] has been applied to the

data sequence for the estimation of generalized errors (GEs). The gen-

eralized error estimation of acquired data is described below.

Let Zenk be the measurements in the ego-thing en at the time instant

k and Xen
k be the state associated to the measurement Zenk , such that

Zenk = g(Xen
k ) +ωk. g(·) is the function that maps states into observa-

tions and ωk represents the noise of the sensors. Similarly, en will also

have measurements from all the other ego-things in the network, which

can be represented as Ze1k , . . . , Z
en
k , . . . , ZeNk , n ∈ N , n 6= n, where N

and N are the number and the set of ego-things in the network, re-

spectively.
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As explained in [37, 10], including time derivatives in hidden object

states allows dynamic probabilistic flow models describing ego-thing

states to be one to one related with descriptors of motion laws coming

from the mechanical statistic, i.e., Lagrangian. Moreover, such flow

models are represented in the moving reference system of each ego-

thing, allowing data series to be described as relative not only to the

estimated state of the object but also to how such a state is instan-

taneously changing. The generalized error (GE) of en by considering

only itself can be defined as:

Xen
k = [Xen

k Ẋen
k Ẍen

k · · · X
(L)en
k ]ᵀ, (5.1)

where (L) indexes the L-th time derivative of the state.

The l-th time derivative in en at the time k by considering only itself

can be approximated as:

X
(l)en
k =

X
(l−1)en
k −X(l−1)en

k−1
∆k

, (5.2)

where X
(0)en
k = Xen

k and ∆k is the uniform sampling time for all

multisensory data.

The generalized error of en by considering all the ego-things in the

network can be written as:

Cen
k = [Xe1

k Xe2
k Xe3

k · · · XeN
k ]ᵀ, (5.3)

Clustering by GNG algorithm

When a data series is available, a generative filter capable of generating

other instances provided of the same statistical properties as well as

predicting future states has to be learned. Generative filters here used

are hierarchical switching 2-Time Slice DBNs (2T-DBN) [58]. This

generative filter, as shown in Fig. 5.2 is composed of hidden states

at continuous and discrete levels. Generalized error are here used at

the continuous level. Discrete hidden states are hierarchically higher
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and represent switching variables. For each value of such random vari-

ables, a different dynamic model has to be learned at the continuous

level capable of predicting in a different way dynamics of states. This

type of DBNs is capable of representing non-linear dynamic models by

using a set of linear dynamic models. In order to learn such DBNs,

the vocabulary of switching variables and the associated set of dy-

namic linear models must be learned from data. To this end, having

used generalized error is particularly useful. In fact, a technique can

be used as in [27] that allows defining an initial basic generalized fil-

ter [37] that operates on data series to produce an estimation of the

dynamic model that should be associated to each sparse state point

obtained by filtering the data sequence. Such technique consists of

an initial filter based on a single value switching variable; such value

corresponds to a unique dynamic model that assumes no state change

should be associated with values in the data series. When a data series

violates this assumption, obtained derivatives of state correspond to

errors with respect to such a hypothesis. Errors can be clustered to

define a set of state-dependent linear dynamic models characterizing

the state as varying according to average derivatives and their covari-

ances. Jointly clustering in an unsupervised way, states and errors

allow one to obtain a vocabulary of regions. Each region is character-

ized by a compact part of the state space and by a compact subspace

of the derivative state space. The average state derivative in the re-

gion subspace defines a different filter for each compact state subspace.

Here we used an unsupervised clustering approach, the Growing Neu-

ral Gas (GNG) [39] method to obtain regions from generalized errors

produced as outputs by the initial filter, i.e., sequences of coupled state

estimations and errors. GNG clusters correspond to coupled compact

regions of state points and errors. Derivative errors cluster encode the

description of the expected dynamics that caused the data series to

vary instead of following the hypothesis of the initial filter. Different

ways of changing are coded as behaviors that have been found in a

corresponding compact state region. The compact state region rep-

resents switching variables in the hierarchical DBN. The reason why

we choose GNG algorithm for clustering, pseudo code with example is

described in Section 4.1.1.
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The output of GNG consists of a set of clusters defined as nodes. A

separate GNG clustering is applied to states and derivatives obtained

from the initial filter in the proposed approach. Each node groups a

subset of samples of states or derivatives with a low distance to the

center of mass of the region associated with the node. Iterative pre-

sentation of the same set of samples allows reorganization of nodes

averages until convergence is reached. Nodes produced by GNG can

be seen as a set of letters forming a vocabulary. A different vocab-

ulary is formed for GNGs working on state and derivative samples

produced by the initial filter. Nodes associated with the GNG work-

ing on derivatives form a vocabulary of dynamic linear models. The

flow model of each dynamic model is defined by the center of mass

of the error in the respective node. On the other side, nodes associ-

ated with the GNG working on states define a vocabulary of regions,

i.e., switching variables of the state space. The set of nodes produced

as output by GNG l, i.e., related to the l-th derivative order, of the

ego-thing en can be defined as:

V (l)en = {V (l)en
1 , V

(l)en
2 , . . . , V

(l)en

G(l)en}, (5.4)

where G(l)en is the set of nodes of the GNG l related to ego-thing en’s

l-th derivative of the state.

V
(l)en
n defines the node, and it is considered as a Gaussian random

variable whose mean value is the average of samples and whose size

corresponds to the variance of the samples themselves. V (l)en can be

seen as a vocabulary of order l composed by the relative nodes. The

switching variables at the highest level of the DBN model learned by

GNGs are so computed in Fig. 5.2 is the switching variable. Such

variable assumes values from the vocabulary learned by GNG working

at the state level l = 0. Each region can so be seen as a switching

variable: Each value of the variable indexes a region in the contin-

uous state space corresponding to a Gaussian having as mean and

covariance associated with the node. The dynamic model associated

with that region is found by identifying a letter in the vocabulary of

higher derivatives GNG nodes that specifies the velocity and higher-

order generalized coordinates of a set of dynamic models that can be
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associated with the state region.

The compact regions of the derivative state space form a vocabulary

composed by symbols associated with different dynamics of general-

ized error Xen
k . In this work, generalized errors include only states

and their first order derivatives such as Xen
k = [Xen

k Ẋen
k ]ᵀ. A generic

element (letter) of the vocabulary describing clusters of state deriva-

tives can be associated with an equation of a dynamic model to be

used by a linear filter. Such a model can be written as:

Xen
k+1 = AXen

k +BUk + wk (5.5)

where

A =

[
Ij 0j,j

0j,j 0j,j

]
; B =

[
0j,j

Ij∆k

]

The variable j is related to the dimensionality of the state vector for

data under consideration. Ij is an identity matrix of dimension j. 0j,j

is a zero j×j matrix. wk ∼ N (0, σ), encodes the noise produced by the

system. Uk is a control vector that is defined from the average deriva-

tive of states obtained by GNG within a dynamic model region, The

dynamic model to be chosen is one of the state regions to which Xen
k

belongs. A different dynamic model can be associated with different

letters describing the same state space region.

By combining letters of nodes produced by GNG working on different

derivatives, it is possible to obtain a set of words which define discrete

states combined with dynamic models, so providing a semantic vocab-

ulary whose elements combine centroids of different derivative orders.

A word computed at ego-thing en is defined as:

W en = [V 0
i V 1

j ]T (5.6)

where V 0
i represents the ith element of the group of nodes produced by

GNG1 (which is used to cluster states). Likewise, V 1
j represents the

jth element of the list of nodes produced by GNG2 (i.e., the GNG used

to cluster first-order derivatives of states). A unique label is assigned

to each coupled nodes and formed a dictionary and can be written as:
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Den = {(W (1),en L1), (W
(2),en L2), . . . , (W

(n),en Ln)}, (5.7)

where L represents each word’s unique label, n represents the index of

the maximum number of elements in the dictionary.

The switching variable acts as a variable at a higher hierarchical level

that explains the states from a semantic viewpoint. The discrete

switching variables (i.e., letters and words) of the learned DBN model

shown in the pink shaded area in Fig. 5.2.

Estimation of state transition

The vocabularies are learned by applying initial filters and GNG clus-

tering to each ego-thing en sensory data acquired along a coopera-

tive task performed with other ego-things. For example, in scenario

1 (refer section 5.2) a cooperative driving task of two autonomous

cars is considered. In order to allow each ego-thing to develop mod-

els that consider time evolution not only at continuous level but also

as probabilistic transitions among words in the learned vocabularies,

timestamps are assumed to be provided to data series, and transition

models to be used at the discrete level of DBNs are estimated. Such

transition models allow switching variables to be predicted probabilis-

tically at each moment by the DBN. Moreover, as the DBNs estimate

at each time a joint posterior probability over switching models and

continuous states, the predictions provided by the transition model

can be used as a source to obtain a further measurement of semantic

abnormality. In particular, if predicted words do not match with evi-

dence supported by observations of one agent, then such an agent can

occur in a semantic abnormality.

The probabilistic transition matrix has been estimated from the data

sequence by considering the transitions in time, and such matrix can

tell the mapping of the variables in discrete space (i.e., word space).

In other words, it can tell the probability of transition from word W en
k

at time instance k to the word W en
k+1 in next time instance k+1 shown

in Fig. 5.2. We use this information for the prediction purpose in the

word level.
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DBN model for all the agents

All the previous steps are the step-by-step learning process of the

switching DBN models. Each ego-thing learns a total number of N

switching DBN models to predict the future states of each entity in

continuous and discrete levels. The set of DBNs learned by each ego-

thing ei and ej is the same for each other ego-thing in the network

and can be written as:

DBN ei = {DBNe1, · · · , DBNeN} = DBN ej ,∀i, j ∈ N (5.8)

O
b

se
rv

a
ti

o
n

s
K

a
lm

a
n

 F
ilt

er
(K

F)
P

a
rt

ic
le

 F
ilt

er
(P

F)

𝑍𝑘
𝑒1 𝑍𝑘+1

𝑒1

𝑿𝑘
𝑒1 𝑿𝑘+1

𝑒1

𝑉0,𝑘
𝑒1 𝑉𝐿,𝑘

𝑒1 𝑉0,𝑘+1
𝑒1 𝑉𝐿,𝑘+1

𝑒1

𝑊𝑘
𝑒1 𝑊𝑘+1

𝑒1

𝑍𝑘
𝑒𝑁 𝑍𝑘+1

𝑒𝑁

𝑿𝑘
𝑒𝑁 𝑿𝑘+1

𝑒𝑁

𝑉0,𝑘
𝑒𝑁 𝑉𝐿,𝑘

𝑒𝑁 𝑉0,𝑘+1
𝑒𝑁 𝑉𝐿,𝑘+1

𝑒𝑁

𝑊𝑘
𝑒𝑁 𝑊𝑘+1

𝑒𝑁

Figure 5.2: CDBN model.

The number of DBNs learned can be represented as shown in the Fig.

5.2. In each DBN, there are three levels such as measurements, con-

tinuous and discrete levels. The lowest level of the model is the mea-

surement/observation level, and blue nodes represent the variables.

The gray shaded area belongs to the continuous level, and the orange

shaded areas represent the discrete level of the model. The arrows

and links (coloured in black) of such DBN are learned based the Sce-

nario 1 task (see section 5.2). The horizontal arrows in black represent

the conditional probability between two consecutive time instances at

continuous and discrete levels. The vertical arrows describe the causal-

ities between inferences of ego-things at discrete, continuous states and
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observation levels. Moreover, the red and blue dotted arrows repre-

sent the influence of one ego-thing's action on the future states of the

other ego-things in the network. The dotted arrows represent how one

ego-things action can be influenced by the future actions of the other

ego-things in the network and vice versa.

5.1.2 Online state prediction and anomaly detection

In Fig. 5.1, the second part (shaded in blue) shows the block diagram

representation of the online test phase. In this phase, we have proposed

to apply a dynamic switching model called MJPF [14, 51] to make

inferences on the DBN models learned in the training phase as shown

in Fig. 5.2. MJPF is a Bayesian filter with a Kalman filter (KF) is

associated with each particle. In MJPF we use Kalman filter (KF)

[100] in state space (grey shaded area) and particle filter (PF) [43]

in higher hierarchical level called word level (pink shaded area) in

Fig. 5.2. The blue and red arrows in Fig. 5.2 depict the information

exchange between two ego-things, and, as a consequence, two DBN

models. Those arrows tell how the future states of one ego-thing can

influence the next states of the other one.

Estimation of future states

The MJPF is able to predict and estimate discrete and continuous

states of the ego-things. In addition to that, it produces another in-

formation, i.e., abnormality measurements.

The data sequence (experience) never seen in the online training step is

pre-processed and given as input to the MJPF applied on learned DBN

models. The output of each MJPF is the estimation of future states of

the associated ego-thing along with the probabilistic and spatial ab-

normality measurements. A detailed description of MJPF is described

in Section 3.3 of this thesis and Section II of [14].

MJPF uses PF for discrete variables, here corresponding to word vari-

ables; each particle used to approximate the joint posterior in MJPF

is augmented with an associated continuous random variable charac-

terized by a Gaussian probability. In our case, the dynamic model
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describing changes of the continuous variable associated with a given

word value is represented as in Eq. 5.5, while the transition model is

used as a dynamic model at the word level. In the prediction step of

the MJPF, a SIR [105] PF approach is used to predict new candidate

particles at the next step using the transition model at the discrete

level. Each particle is also enriched by a Gaussian prediction of the

continuous associated variable. This is done as in Kalman filter, be-

ing dynamic models and observation models are linear, and variables

are Gaussian. Each predicted particle is so characterized as a word

of given valued with an associated prior probability at a continuous

level. In the update step, the ground truth observations (belonging to

each ego-thing) are used to first update the prior at continuous level,

so obtaining the new posterior, and then providing a new weight to

the particle word, based on the evidence that such a posterior provides

to the specific word itself. In our approach, these traditional MJPF

are enriched by the computation of abnormality measurements as de-

scribed in the next section to allow agents to be aware of the fitness

of their dynamic models to the observed sequences.

The posterior probability density function of MJPF belongs to ego-

thing en can be written as:

p(Wk
en,Xk

en/Zk
en) = p(Xk

en/Wk
en, Zk

en)p(Wk
en/Zk

en) (5.9)

where Wk
en is the word in the higher hierarchical level and Xk

en is

the continuous state in the state space belongs to ego-thing en at time

instant k .

As stated above, a different Kalman filter is associated with each par-

ticle Wk
∗ and is different for each discrete zone (cluster). The Eq. 5.9

shows the link between the discrete state (i.e. words) and continuous

state estimation. The KF associated to particle Wk
∗ is used to es-

timate the prediction on the continuous state Xk
en and to estimate

p(Xk
en/Wk

en, Zk
en).

As explained before, each ego-thing has its own switching model as

well as the model of other ego-things. At each instant, the ego-thing

predicts its own future states and future states of the other ego-things
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by the learned switching DBN models. By receiving the ground truth

observations, the ego-thing can match with the predicted states and

detect if any anomalies present. The observations from other ego-

things can be received through the established wireless channel with

a certain delay and loss. By making efficient communication between

the ego-things, we can develop collective awareness in the entire net-

work of ego-things. Such collective awareness can tell if any abnormal

situations happen anywhere in the network. Moreover, the collective

DBN models can handle the uncertainty of the environment and the

variability of observations.

Abnormality detection

Posterior probability estimation in MJPF is here enriched with compu-

tation of additional information useful for self-awareness of individual

ego-things. i.e., abnormality measurements. Such information is es-

timated to instantaneously allow each ego-thing to measure how well

the learned models fit the currently observed sequence. To estimate

the abnormality of a sequence, a statistical distance metric is here

proposed that estimates the distance between predictions performed

within MJPF at discrete and continuous levels and the sensory obser-

vations produced along with an ego-things experience. In this work

Hellinger distance (HD) [19] is proposed as the metric to evaluate se-

quence abnormality.

Some important statistical distances include Bhattacharya distance

[21], Hellinger distance [19], total variation distance [98], etc. The

Bhattacharyya distance measures the similarity of two probability dis-

tributions. It is closely related to the Bhattacharyya coefficient, which

is a measure of the amount of overlap between two statistical sam-

ples or populations. Similarly, the Hellinger distance (closely related

to, although different from, the Bhattacharyya distance) is used to

quantify the similarity between two probability distributions. The

Hellinger distance is defined between vectors having only positive or

zero elements [2]. The datasets used in this chapter are normalized,

so the values vary between zero and one; there aren’t any negative

values. For this reason, Hellinger distance is more appropriate than
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using other distance metrics as abnormality measures. The works in

[51] and [62] used Hellinger distance as an abnormality measurement.

In this work, Hellinger distance is used as an abnormality measurement

between predicted generalized errors and observation evidence.

The Hellinger distance related to the ego-thing en can be written as:

θenk =
√

1− λenk , (5.10)

where λenk is defined as the Bhattacharyya coefficient [21], such that:

λenk =

∫ √
p(Xen

k |Xen
k−1)p(Z

en
k |X

en
k ) dXen

k . (5.11)

The variable θmk ∈ [0, 1], where values close to 0 indicate that groungtruth

observations match with predictions; whereas values close to 1 shows

the presence of an abnormality.

Once detected abnormal situations, the ego-thing has to take appropri-

ate actions either by stopping itself or reducing the speed, etc. How-

ever, the decision-making part is not included in this work.

5.1.3 Evaluating the model performance after the packet

loss

Each ego-thing has its own model for prediction of the future states

and the ground truth observations received from the sensors to check

whether if any anomalies present in the environment around it. At

the same time, the models for other ego-things can predict the future

states and receive ground truth observations from the corresponding

ego-things with a certain delay and loss in transmission. The DBN

model of each agent is updated sequentially (with a certain delay)

using the shared information. The delay and the loss depend on vari-

ous factors such as the distance between the ego-things, the employed

communication protocol, modulation scheme, and frequency, scenario

conditions (urban, rural, ...), etc.

To check the model performance in predicting abnormal situations the

true positive rate (TPR) and false positive rate (FPR) are calculated
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to build a set of ROC curves [50] corresponds to different K factor

values [108]. The ROC curves plot TPR and FPR at different thresh-

olds, where:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(5.12)

The true positive (TP ) is defined as the number of times where abnor-

malities are correctly identified. False-negative (FN) consists of the

times that abnormalities are classified incorrectly. Accordingly, false

positive (FP ) are the times where anomalies are wrongly assigned to

normal samples, and true negative (TN) represents the times where

normal samples are correctly identified. In this work, mainly con-

sidered two parameters of ROC for measuring the performance of the

model before and after the transmission loss are: (i) the area under the

curve (AUC) of the ROC curves, which quantifies the performance of

the DBNs’ abnormal detection at several thresholds; (ii) the accuracy

(ACC) measurement, which is defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (5.13)

Communications among ego-things

In the training phase, we assumed that each ego-thing has available all

the required data describing all the other ego-things’ status. However,

in a real scenario, data exchange among ego-things through a wireless

mean has to be considered. Different variables affect communication

performance over time. They are mainly related to:

– objects’ movement, such as object’s velocity, acceleration, and

moving direction;

– environment where the objects are located, such as urban or rural

scenario, presence of obstacles, Line of Sight (LoS) or Non-LoS

(NLoS) conditions;

– chosen communication parameters, such as employed communica-

tion protocol and modulation, exploited frequency band, achiev-

able data rate, transmission power, and received signal strength.
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The channel among ego-things has to be properly modeled to con-

sider all the effects that can affect the obtained performance, such as

scattering, diffraction, reflection, shadowing, and fading.

The effects on the wireless channel are addressed by large-scale and

small-scale channel models. Large scale models cover effects such as

path loss and the effects of the propagation environment over large

distances. Small scale models, on the contrary, describe the behavior

in the time domain, taking into account the fast fading effects, i.e.,

multipath propagation. Large and small-scale models are combined to

shape channel behaviors realistically. Received power Pr is composed

of the transmit power Pt, the large scale effects, i.e., path loss PL, and

the small scale effects ζ:

Pr = PtPLζ (5.14)

The path loss is the radio attenuation due to the communication mean.

It is mainly affected by the communication frequency f and the dis-

tance d between source and destination. It can be computed as:

PL =

(
λ2

(4π)2dα

)
GRGT (5.15)

where λ = 2πf , α is the attenuation factor, GR and GT are the recep-

tion and transmission antenna gains, respectively.

The presence of objects and obstacles in the environment originates

multiple copies of each transmitted signal, which can strengthen (if

ζ > 1) or weaken (if ζ < 1) the original signal. This effect is called

multipath fading and can be modeled as a Rayleigh, Rician, or Nak-

agami distribution.

Considering the current state-of-the-art, we focus on a Rician channel

model based on a Rice distribution when LoS is present. Rice dis-

tribution can be expressed with parameters K and Pr, which are the

Rician K factor and the received power, respectively, or as a function

of ρ and σ, which are field strength of the LoS component and the

field strength of scattered components, respectively.
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The Rice distribution is:

pZ(z) =
z

σ2
exp

(
−z2 − ρ2

2σ2

)
I0

(
zρ

σ2

)
(5.16)

where z ≥ 0, ρ and σ are the signal strength of the dominant and of the

scattered paths, respectively. Therefore, ρ2 and 2σ2 are the average

power of the LoS and NLoS multipath components, respectively. As

the direct wave weakens, the Rice distribution becomes Rayleigh.

Rician K factor is defines as :

K =
ρ2

2σ20
(5.17)

It expresses the ratio between the dominant component to scattered

waves. The stronger the line of sight component, the greater the K

factor. In this way, the Rice distribution in eq. (5.16) can be expressed

in terms of linear K factor as:

pZ(z) =
2z(K + 1)

Pr
exp

(
−K − (K + 1)z2

Pr

)
·

· I0

(
2z

√
K(K + 1)

Pr

) (5.18)

where I0 is the modified Bessel function of first kind and zero order

[41]. When K → ∞, the Rice distribution tends to a Gaussian one,

and when K → 0, i.e. in case no dominant direct path exists (ρ = 0),

the Rician fading reduces to a Rayleigh fading defined by:

pZ(z) =
z

σ2
exp(− z2

2σ2
) (5.19)

A more general fading distribution was developed whose parameters

can be adjusted to fit empirical measurements. This distribution is

called the Nakagami and is given by:

pZ(z) =
2mmx2m−1

Γ(m)Pmr
exp(

−mz2

Pr
) (5.20)

The Nakagami distribution is parametrized by Pr and the fading pa-
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rameter m. For m = 1 it becomes Rayleigh fading, instead for m =
(K + 1)2

2K + 1
the distribution is approximately Rician with parameter K.

5.2 Experimental set up

The scenario considered to validate the proposed methodology consists

of two intelligent vehicles called iCab (Intelligent Campus Automo-

bile), shown in Fig. 5.3b, with the capabilities of autonomous driving

[66]. The following experiments were conducted in collaboration with

the Intelligent Systems Laboratory, Department of Systems Engineer-

ing and Automation of the University Carlos III de Madrid, Spain.

The vehicles are equipped with different sensors such as one lidar, a

stereo camera, and encoders. The iCab vehicles follow the same move-

ment trace marked as red in Fig. 5.3a, keeping their position one after

the other. For this reason, the iCab1 vehicle is called leader and the

iCab2 vehicle is called follower. The dimension of the movement trace

in the testing environment is 38mX33m. Information about the con-

trol of the vehicles, i.e., steering angle (s) and power (p), along with

the odometry data (x and y positions), are the data exchanged during

the operative process. The sampling rate of the sensory observations

is 0.33 seconds. After collecting the datasets, a synchronization op-

eration is performed in order to perfectly synchronize the collected

datasets.

(a) Testing environment. (b) iCab platforms.

Figure 5.3: The vehicles and the environment used for the experiments.

To test the anomaly detection model, we used the vehicles’ data while

performing two different actions in the same test environment. The
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scenarios are:

– Scenario I Perimeter monitoring : iCab vehicles perform platoon-

ing operation in a closed environment, as shown in Fig. 5.6. In

total, four laps (i.e., the platooning operation has been performed

four times, one after the other) have been performed and collected

the data. The follower vehicle mimics the actions of the leader

vehicle. This is the scenario used in the training phase to learn

the switching DBN models.

– Scenario II Emergency stop: while both vehicles are moving along

the rectangular trajectory of the perimeter monitoring task, a

pedestrian suddenly crosses in front of the leader vehicle. As soon

as the leader detects the presence of the pedestrian, the vehicle

automatically executes an emergency brake and waits until the

pedestrian crosses, and then continues the task. At the same

time, the follower detects the anomaly in the state of the leader,

and it also performs a stop operation until the leader starts its

movement again. The datasets from this scenario have been used

to test the switching DBN models learned in the training phase.

We have used about 30% of the datasets to test the learned DBN

models.
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Figure 5.4: Position data for perimeter monitoring task.
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(a) Steering angle w.r.t position. (b) Power w.r.t position.

Figure 5.5: Control variables plotted w.r.t position.

Fig. 5.4 plots the one lap (from the four laps) odometry (x and y

positions) data for the perimeter monitoring task. Fig. 5.5 shows the

steering angle w.r.t the vehicle’s position (Fig. 5.5a) and the rotor

power w.r.t the vehicle’s position (Fig. 5.5b). For simplicity, in Fig

5.5, plotted only the data from one lap (i.e., about 800 data points).

To test the reliability and quantify the expected delay of the data

exchange between the two vehicles, we have used the ONE simulator

[55]. It is a network simulator designed for testing communications

among moving objects. The real trajectory data (of size 38mX33m)

of the PM task (refer Scenario I in Fig. 5.6) has been doubled the size

i.e., 76mX66m and is inserted in the simulator as the Well Known Text

(WKT) file format and created two dynamic nodes that represent the

header (iCab1) and follower (iCab2) vehicles. The trajectory has been

doubled inorder to make the simulation closer to real situations.

Moreover, we have analyzed how the packet loss and delay affect the

proposed learned DBN models for abnormality detection. The delay

for data communication in an ego-things network is defined as the

time taken to transmit a data packet from the sender ego-thing to the

receiver ego-thing through the transmission medium.

Considering the current state-of-the-art, the IEEE 802.11p protocol is

one of the most feasible and widely considered in the inter-vehicles
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Figure 5.6: Scenarios considered for the anomaly detection test.

communication scenario, especially in the autonomous vehicle net-

works [97].

A new interface has been created in the ONE simulator in order to

be able to model the inter-vehicle channel as a Rician channel and to

set different values for its parameters, including transmitted power,

central frequency, and Rician K factor.

We assumed that the data to be communicated between the ego-things

are: XY position, steering angle (s), and power (p) of the rotor of the

iCab vehicles together with a time stamp. In this way, we assume that

the amount of data to be sent is 4 Bytes for the position + 2 Bytes

for the steering angle + 2 Bytes for the rotor power + 4 Bytes for

the time stamp. The total data payload size is 12 Bytes. Assuming

UDP, IP, and IEEE 802.11p as transport, network, and data link layer

protocols, respectively, the overall size of each data packet is 12 + 8 +

20 + 28 + 6 = 74 Bytes. The total number of data packets that need

to be transferred to the wireless channel during the online test phase

is 800 (with each data packet size of 74 Bytes.)
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5.3 Results

Results of offline learning of DBN models are here not described in

all their steps but just providing some general overview. Then, the

application of models learned in the online test phase is described in

more detail to highlight their application to the agents of the ego-thing

network.

5.3.1 Offline model learning phase

In order to collect training and test datasets, the vehicles performed

platooning operations four times, one after another. The size of each

data sequence is about 3200 (i.e., 800 samples per each). The null force

filter [27] with a single switching variable corresponds to a unique dy-

namic model that assumes no state change produces an error sequence

when the data sequence violates this rule. The DBN model in the

discrete level (i.e., word level) has been learned separately for each

ego-thing while they were doing the same cooperative task. The ini-

tial filter [27] has been applied to all the agents in the network. The

error sequence produced by this initial filter has been clustered to de-

fine state-dependent linear dynamic models characterizing the state as

varying according to average derivatives and their covariance.

The total number of clusters (nodes) obtained by clustering the states

and errors (obtained from the initial filter) was 35 for state space and

also 35 clusters for state derivatives with corresponding dynamic mod-

els. The GNG reached convergence in this number. Each node cluster

corresponds to a letter with respect to respective vocabularies, and

the word list has been composed of the different possible combinations

of letters from state and state derivative vocabularies (i.e., switching

variables and related dynamic models). Then a unique label is given to

each letter combination, and at last, 442 such unique combinations of

letters (i.e., words) were kept. A transition matrix at the discrete level

was then estimated for each agent whose size was 442X442. This in-

formation constitutes the DBN model of the MJPF filter to be applied

to each agent.
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5.3.2 Online test phase

In the online test phase, the dataset of scenario II, i.e. emergency stop

(refer Sec. 5.2), has been employed to check the prediction capability

of switching DBN models learned in the training phase and to detect

the presence of abnormal situations in the environment. The model

was able to detect the abnormality situation due to the emergency

brake obtaining high values of the Hellinger distance metric, as shown

by cyan shaded area in Fig. 5.7 (iCab1 - leader) and 5.8 (iCab2 -

follower).

As can be seen in both figures, there is a significant rise in the Hellinger

distance abnormality measures during the abnormality intervals. How-

ever, the abnormality peak of the follower vehicle is not as high as the

leader’s. The main reason is that after the emergency stop of the

leader, the follower gradually decreased its speed rather than doing an

emergency brake. We set the abnormality threshold to 0.4 (indicated

by the blue dotted line in Fig. 5.7 and 5.8) considering the average

Hellinger distance value of 0.2 when vehicles operate in normal condi-

tions.
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Figure 5.7: Abnormality measurements plot for iCab 1.
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Figure 5.8: Abnormality measurements plot for iCab 2.
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As described before, both vehicles have their own DBN model as well

as the model for other vehicles. We have shown the DBN model’s

performance for the leader vehicle in the leader itself and the follower

by plotting ROC curves and comparing AUC and ACC parameters.

The model for the leader in the follower vehicle can predict the future

states of the leader vehicle and detect any abnormal situations present

in the environment around the leader vehicle. Once the follower vehicle

detects the abnormal situation of the leader, it should adapt its own

behavior by changing its future action by appropriate decisions. It

should be pointed out that in this work, the focus is on abnormality

detection as a basic step of collective awareness, while the impact on

such additional information on decision making and online learning of

new actions will be made in the future. The important factor that

needs to be considered here is the effect of the communication channel

over the transmitted data between the vehicles. Such transmission

loss causes the degradation of performance of the DBN model and

consequently the abnormality detection capability as well.

The DBN model for the leader vehicle inside the follower vehicle esti-

mates the abnormality situation of the leader after receiving real-time

observed data (i.e., steering angle and power) from the leader over

the wireless channel. Due to the impact of the communication chan-

nel over the transmitted data, the DBN model performance decreases,

and we have investigated how it affects the capability of detecting ab-

normal situations. The performance measure we used in this work is

ROC curve parameters such as AUC and ACC. The main factors that

affect the transmission loss are the data rate of different modulation

schemes, the distance between the vehicles, and the Rician K-factor.

The IEEE 802.11p standard operates at 5.9 GHz central frequency,

Table 5.1: Simulation parameters.

Data rate (Mbits/sec) Modulation Sensitivity (dBm) K factor

3 BPSK -85 0,1.8,2.6,3
9 QPSK -80 0,1.8,2.6,3
18 16QAM -73 0,1.8,2.6,3
27 64QAM -68 0,1.8,2.6,3
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offers 10 MHz bandwidth, and allows sending data with different mod-

ulations, and data rates range from 3 to 27 Mb/s [1]. We have fixed a

maximum communication range to 100 m, considering that the data

loss is considerable and beyond a possible realistic reliability require-

ment if the distance is higher. Table 5.1 summarizes the simulation

parameters [18] we have used. Different tests have been conducted by

changing the values of data rate, modulation, and K-factor to evaluate

the model’s performance. High K-factor values refer to rural scenarios

where the presence of obstacles, buildings, etc., has a lower impact on

the achieved performance. The sensitivity column shows the minimum

values of the signal-to-noise ratio (SNR) at the receiver to guarantee

successful data reception [18].

Figure 5.9: Receiver operating curve (18 Mb/s)

The DBN model performance in terms of ROC curve has been plotted

for the leader vehicle for data rates 18 Mb/s in Fig. 5.9 and 27 Mb/s

in Fig. 5.10, respectively. These figures show the reliability of the

communications in different scenarios, from completely rural (K = 3)

to urban (K = 0). The blue curve refers to the case without transmis-
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sion among ego-things, i.e., the ideal case of complete knowledge, and

has been inserted as a comparison.

Figure 5.10: Receiver operating curve (27 Mb/s)

When the data rate is 18Mb/s, our learned DBN model performance

is not degrading much compared to the no transmission loss case. The

performance is in the acceptable range, and the model well predicts

abnormal situations. The performance degradation (in terms of AUC)

and the accuracy in prediction (in terms of ACC) for 18 Mb/s and 27

Mb/s data rates are summarized in Tables 5.2 and 5.3, respectively.

When the environment changes from rural to suburban to urban, the

performance of the model again degrades. Finally, when in case of no

line of sight component (LOS) (K = 3), the value of AUC and ACC

in the ROC curve is further reduced.
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Table 5.2: ROC features: Data rate = 18Mb/s

K-factor Area under the curve(AUC) Accuracy(ACC)

No loss 0.9039 0.9826
3 0.86665 0.9814

2.6 0.8444 0.9814
1.8 0.7788 0.9764
0 0.7059 0.9764

Table 5.3: ROC features: Data rate = 27Mb/s

K-factor Area under the curve(AUC) Accuracy(ACC)

No loss 0.9039 0.9826
3 0.8653 0.9801

2.6 0.8409 0.9777
1.8 0.7743 0.9764
0 0.6994 0.9764

Moreover, the distance between the vehicles plays a role in packet

losses. To analyze the relationship between distance, delay, and data

packet loss, we focused on Scenario I by changing the follower’s velocity

trace to let the distance among them change during the simulation.

Figure 5.11: Distance versus time.

Fig. 5.11 and 5.12 show how the distance between the two vehicles and

the communication delay between them change over time, respectively,

while the received SNR (blue plot) and the data packet losses (green

dots) are shown in Fig. 5.13. It is evident from the figures that

when the distance increases, the delay as well as the packet loss also

increases. The maximum delay occurred was 24 µs when the distance
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Figure 5.12: Delay versus time.

Figure 5.13: Received power and packet losses.

between the ego-things were maximum which is about 83m. The delay

of 24 µs is relevant for the presented approach even though there was

a degradation in performance of the model.

Fig. 5.13 also shows the power in free space (red line), and sensitivity

threshold (light blue line) of the power corresponds to the data rates

we considered and finally, the lost packets as it did not satisfy the

threshold limit of the minimum received power. The overall amount

of packets lost is shown in Table 5.4.

Table 5.4: Packet loss ratio for different K values and different data rates

K-factor Packet loss ratio (18 Mb/s) Packet loss ratio (27 Mb/s)

3 0.0025 0.0037
2.6 0.0037 0.0074
1.8 0.0099 0.0160
0 0.0310 0.0410

Considering the shown results, different considerations can be pointed
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out about which data ego-things should exchange to increase the re-

liability of the described system. For example, if the current distance

between vehicles allows obtaining a packet loss ratio below a certain

threshold, the vehicles can decide to communicate the ground truth

observations to the other vehicles in the network to better detect if

there are any abnormalities in the environment. Otherwise, if the ve-

hicle approaches to the border of transmission range or the distance

between them exceed a certain threshold, it would be more appropri-

ate to communicate only the abnormality measurements as soon as

it detected rather than communicating all the ground truth observa-

tions. The transmission loss is directly proportional to the distance,

such that if we transmit more data the loss also increases. To reduce

the impact of false alarm or missed detection in sensing the abnor-

mal situation, in such situations (higher distances), communicate only

abnormality measurements could be more appropriate to give an indi-

cation to other ego-things in the network. Although in small distances

it is recommended to exchange the observed data itself to detect ab-

normalities with an acceptable delay.

5.4 Chapter summary

This chapter proposed a method to recognize abnormal situations in

smart object networks. Each entity learns a set of DBN models de-

scribing the normal behaviour of itself and all the other entities in the

network. The considered abnormality metric is based on the Hellinger

distance between objects. A MJPF is employed to infer the future

states of the entities.

The abnormality metric values calculated in each of the DBN models

suggest that our method provides good performance in detecting the

environmental abnormalities. Moreover, information exchange among

entities has been considered in order to enhance the proposed strategy.

The considered test scenario is composed of two smart vehicles, one

(the follower) following the other (the leader), which move along a

predefined track. Communication performance has been collected in

order to verify the reliability of the data exchange, quantify the ex-

96



pected performance in terms of delay and loss and consider how these

performances could affect the abnormality detection process. We in-

vestigated the DBN model performance in the case where each object

communicates the ground truth observations to the other entities in

the network. To compare the performance with different parameters

of the considered channel model (Rician model), such as K-factor,

distance, and data rates, we have plotted ROC curves and calculated

reliability (AUC) and ACC metrics.
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Chapter 6

Implementing interactive

Collective Awareness in a

network of Ego-things:

Phase II

The previous chapter (Ch: 5) presented a method to develop an initial

level of collective awareness (CA) in a network of intelligent agents.

Moreover, to assess the developed models’ reliability and accuracy,

different channel conditions such as packet loss, delay, data rate, envi-

ronment, etc., are considered. IEEE 802.11p protocol is used for the

communication among the ego-things to exchange data. To develop

a collective awareness model, only considered a single modality of the

ego-things. The models are learned separately for each ego-things in

the network, and the metric used to estimate abnormality is Hellinger

distance. The ROC curve plotted and measured AUC and ACC to

compare the models’ performance and check whether it comes under

the acceptable range or not.

This chapter (Ch: 6) is an extension of the work proposed in the pre-

vious chapter, and it is focused on developing multimodal collective

awareness models by treating the sensory data from all the ego-things

in the network. In addition, this chapter considered two communica-

tion protocols such as IEEE 802.11p and IEEE 802.15.4, to compare
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the models’ performance. The model performance evaluation metrics

used are MSE, ACC, and F1-score.

The main objective of this chapter is to develop multi-modal CA of

multiple networked intelligent agents. Each agent is here considered

as an Internet of Things (IoT) node equipped with machine learning

capabilities; collective awareness aims to provide the network with up-

dated causal knowledge of the state of execution of actions of each

node performing a joint task, with particular attention to anomalies

that can arise. Data-driven dynamic Bayesian models learned from

multi-sensory data recorded during the normal realization of a joint

task (agent network experience) are used for distributed state esti-

mation of agents and detection of abnormalities. A set of switching

DBN models collectively learned in a training phase, each related to

a particular sensorial modality, is used to allow each agent in the

network to perform synchronous estimation of possible abnormalities

occurring when a new task of the same type is jointly performed. Col-

lective DBN (CDBN) models are associated with a Bayesian inference

method, namely Distributed markov jump particle filter (D-MJPF),

employed for joint state estimation and abnormality detection.

The effects of networking protocols and of communications in the esti-

mation of state and abnormalities are analyzed. Performance is eval-

uated using a small network of two autonomous vehicles performing

joint navigation tasks in a controlled environment. In the proposed

method, firstly, the sharing of observations is considered in ideal con-

dition, and then the effects of a wireless communication channel have

been analyzed for the collective abnormality estimation of the agents.

The main contributions can be summarized as follows:

– A method is proposed to learn models from low dimensional data

sequences representing collective awareness of a network of intel-

ligent entities. For the inferences, a MJPF based on generalized

DBN models is used and extended to become able to detect ab-

normalities at different abstraction levels. An analysis performed

to show how the learned models can not only provide a global es-

timation of anomalies based on the whole set of multidimensional

variables (used in the models) but can also provide an explain-
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able insight of anomaly related to single specific components of

the model. This is considered as an additional explainability fea-

ture of the model.

– The robustness of the distributed abnormality detection feature

of models concerning a realistic communication channel model

is investigated. Evaluated the performance in order to estimate,

on the one hand, the reliability and accuracy of abnormality de-

tection under the hypothesis of perfect communication (i.e., no

data loss and transmission delays), and, on the other hand, an-

alyzed the robustness of the system model against packet losses

and transmission delays of the communication channel among ob-

jects by considering different protocols and channel conditions.

6.1 Design and Implementation

The data-driven method introduced to learn collective awareness mod-

els for a network of ego-things considers low dimensional multimodal

sensor data. The selection of modalities is related to the tasks to be

performed; generalized features observed by ego-things should be ca-

pable of representing the dynamics of the interaction they have with

the environment and other objects during the task. Low-dimensional

data here consists of exteroceptive sensor data related to the position

of entities in an environment and two different combinations of propri-

oceptive control information that are causally connected to the motion

(i,e, derivatives of position) of ego-things.

Dynamic Bayesian data-driven model learning is used for abstracting

at different levels of dynamic rules driving the collective behavior of a

group of ego-things in a training phase. Ego-things’ training happens

when they perform a connected and collaborative specific task. The

model learning process initially performed consists of the estimation of

a generative model and its component pieces. This includes learning

continuous dynamic conditional probabilities, semantic vocabularies

at discrete levels. The necessity of establishing in the model condi-

tion bidirectional probabilities among exteroceptive and propriocep-

tive DBNs also implies estimating co-occurrence matrices.
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The generative nature of DBN models allows probabilistic inference

methods to be defined that differ also depending on the type of DBN

chosen to represent data. For example, KFs, HMMs, and PFs can be

used for Bayesian inference on simpler DBNs containing only observa-

tion and hidden state nodes [13, 88]. A MJPF [31, 33] works instead of

on DBNs with three levels of variables, i.e., including discrete switch-

ing variables. MJPF Bayesian inference can enrich to make available

beyond prediction and state joint estimates at discrete and continu-

ous levels, also probabilistic anomaly estimation as a Self-awareness

component.

In collective awareness, multiple DBNs related to multiple agents should

become coupled to represent collective interactions. In this case, in-

ference methods like MJPF can still apply, despite the inference steps

have to manage the higher complexity of prediction models. In this

latter case, as agents on the field sparsely collect observations used

by MJPF, the important aspect is determining the impact of using

communication schemes to share such observations among agents in

the network. Sharing allows collective awareness to be possible simul-

taneously in each agent in a distributed way. Effects of the wireless

channel due to packet loss over the model performances so become

important to be modeled and analyzed as done in this chapter.

The description of the proposed method is divided into two parts:

learning of collective awareness models (offline phase) and testing the

fitness models (online inference phase) and the following sections ex-

plain the various steps involved in the process.

6.1.1 Collective awareness model learning (Offline)

This work considers three different modalities, each of them able to

capture a part of the essential information necessary to provide CA

to the network of ego-things. The possibility to estimate direct causal

relationships between the environment state and the network of agent

states when they perform a co-operative task is considered to select

such modalities. The model learning steps are the same for all the

modalities and assumed that the multimodal acquired data sequences

are available for all the networked ego-things. The block diagram
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Figure 6.1: Block diagram: training phase.

representation of the training phase is shown in Fig. 6.1.

Pre-processing and estimation of generalized errors (GEs)

Once the sequences of multimodal data samples are available, time

alignment is performed to match their timestamps. The first level

of synchronization occurs between heterogeneous data of every sin-

gle ego-thing (intra-synchronization). Ad-hoc inter-synchronization is

also necessary among the data collected by different ego-things that

are part of the considered network as they can be of different clocks.

Three sensor modalities here considered are odometry (X-Y positions)

as exteroceptive data, control steering angle-power (S-P) and control

steering angle-velocity (S-V) as proprioceptive data. The chosen sen-

sor data are low dimensional, i.e., each provided a 2D vector of observa-

tions for a single ego-thing. In this chapter, with no lack of generality,

a network of two ego-things is considered to provide experimental re-

sults on collective awareness, so 4D sensor data sequences are used for

collective model learning for each modality.

Let Z
(e1,e2,...,en),c
k be the measurements from all the ego-things related

to modality ‘c’ at the time instant k andX
(e1,e2,...,en),c
k be the associated

joint latent state variables. The measured observations can be mapped

to the latent states by the following observation model:

Z
(e1,e2,...,en),c
k = g(X

(e1,e2,...,en),c
k ) + εk (6.1)
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where εk represents the vector composed of measurement errors (for

each ego-things) at a time step k. g() is a function that, in this chapter,

is assumed to be linear.

This assumption meets easily by considering low-dimensional exte-

roceptive and proprioceptive sensory data to learn switching DBN

models. The sensors can design to calibrate to acquire these features

around working points, so allow statistical linearization of the relation

between observation and hidden, latent variables. This assumption

here allows the work to focus on non-linearities in the dynamic models

that DBNs can learn through switching models and can be related

to the agent’s capability to predict and detect anomalies in their dy-

namic behaviors. However, the proposed method already proved to

be extendable to situations where it used high dimensional data (like

videos) and non-linear observation models. In this case, the problem

is more complex because sometimes the function g() is also not known

as has to be estimated jointly with prediction components of the gen-

erative model. Tools like Generalized Adversarial Networks (GANs)

and Variational Autoencoders (VAEs) have to be integrated into the

DBN to map observed sensory data into generalized state variables of

the DBN model [93, 82]. This goes beyond the scope of this work, as

explained.

Learning a DBN model is a recursive incremental process. In fact, the

input information to the learning steps consists of a state grounded set

of deviations of observed data from predictions provided by the infer-

ence process associated with an already existing generative model, i.e.,

an initial DBN. Generalized error is used as the definition of an error

that consists of coupled information, including a state and the devia-

tion found in the state for higher-order derivatives (e.g., in this chapter

limited to first-order state derivative). The detection of generalized er-

rors (e.g., a mismatch between Bayesian predictions and updates) is

done through anomaly detection. At the same time, learning is a pro-

cess of finding a new DBN that minimizes the presence of GEs in a

given sequence. It showed that an initial reference generalized filter

[27] could be applied low dimensional data to produce generalized er-

rors. In this chapter, this is done with each modality data sequence

to produce the generalized errors (GEs) from which to learn the task
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model.

The initial model is based on a null force filter (Unmotivated Kalman

filter in this work) that assumes the absence of forces between consec-

utive time instances. It is equivalent to suppose that the agent’s state

vector at a time instant k+1 will remain unchanged w.r.t the previous

time instant k except for low variance Gaussian perturbations. When

the observed data series do not follow this rule, record the deriva-

tives’ errors in a given position (i.e., generalized errors associated with

anomalies) and post-process to learn a new model. This corresponds

to obtain a new DBN where the associated inference model (in our case

a MJPF) will generate minimal GEs if applied to similar sequences as

those from which the model was learned.

The generalized error (GEs) related to modality ‘c’ can be written as:

X̃
c
k = [Xc

k Ẋc
k Ẍc

k · · · X
d,c
k ]ᵀ, (6.2)

where d indexes the d-th time derivative of the state. In Eq. 6.2,

all components are random vectors. To describe errors jointly from

different entities, one can organize such vectors in different ways. Here,

for example, a vector in Eq. 6.2 is described below in Eq. 6.3 that

includes all vectors of all the entities for a certain fixed derivative order,

i.e., d = 0. Other similar vectors can write for higher-level derivatives.

Xc
k = [Xe1

k , X
e2
k , ..., X

en
k ]ᵀ (6.3)

In this work, we have limited the generalized errors to first-order

derivatives, and models have been learned accordingly.

Joint vocabulary learning and feature extraction

Once the generalized errors are estimated, the very next step is to

perform unsupervised clustering as part of the learning process of the

CDBN generative model (refer Fig. 6.4). The probabilistic links that

connect variables in the CDBN are also estimated within this process.

A hierarchical switching 2-Time Slice DBN (2T-DBN) [58] is chosen as
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the Generative model, and it is shown in Fig. 6.4. The model is com-

posed of two levels beyond the observation level: a continuous and a

discrete generalized state level. Unsupervised clustering allows learn-

ing a semantic vocabulary consisting of clusters of GEs with similar

state and derivative values. A different switching variable assigns to

each cluster, and this variable represents the discrete switching vari-

able. As each cluster is characterized by its own average derivative,

a different linear dynamic model at a continuous level associate with

each cluster label, so specifying a further element for the generative

model. Such local conditional elements of the generalized model are

useful for allowing the model to represent a piece-wise linear dynamic

behavior (one way of approximating nonlinear models) for each modal-

ity.

The sequential probabilistic trajectories of multiple switching vari-

ables, i.e., modes of behavior of the dynamic system, can be repre-

sented by transition matrices at the discrete level. Switching models

are associated with inference methods: For example, Markov Jump

Particle Filters can be seen as composite joint filters, where KFM is

used at the continuous level to allow inferences on local linear com-

ponents of a dynamic model. The PF acts as a second filter on the

discrete switching variables to regulate switches among successive ele-

ments of the piece-wise linear discrete dynamics).

The learning of a DBN switching model from GEs implies the capa-

bility to cluster GEs into groups that show similar properties (similar

dynamic linear behavior in state regions). To this end, unsupervised

clustering is necessary. The unsupervised clustering approach used to

obtain clusters from GEs is the GNG algorithm [39]. The input multi-

modal GEs data sequences provided to each GNG here consists of GEs

computed separately, applying an initial filter to different agents’ data

collected when performing a collective task. In this chapter, the algo-

rithm used implies separate clustering to be applied to different vectors

associated with a given derivative (refer Eq. 6.2). A successive hier-

archical clustering step is applied to obtain GEs clustering thanks to

synchronization information. Two ego-things are here considered for

simplicity so that the input of each GNG consists of a four-dimensional

(4D) vector. Therefore, for each modality, two GNGs have to be per-
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formed, one for the GE’s state component in Eq. 6.2, noted as GE0,

and the second for the derivative component GE1 as provided by the

initial filter. For example, the input vectors to the GNGs belong to

the odometry modality are in the form as below.

GNG1, Xc
1,k = [x1 y1 x2 y2]

ᵀ (6.4)

GNG2, Xc
2,k = [ẋ1 ẏ1 ẋ2 ẏ2]

ᵀ (6.5)

The output of each GNG consists of a set of clusters, each one charac-

terized by the mean and the covariance matrix of GEs being attributed

to that cluster, so providing an uncertainty based boundary of each

cluster. A cluster can see as nodes nodes of a graph of switching vari-

ables. Each node groups a subset of samples of GEs (i.e., GE0 or GE1)

that have a low distance wrt the mean of the region associated with

the node. The nodes produced by GNGs are the discrete components

or switching random variables of the CDBN model. For instance, the

group of nodes created by a GNG of modality ‘c’ of lth order time

derivative vector of GEs written as:

Sc,l = {S1, S2, . . . , Sm}, (6.6)

where m represents the maximum number of nodes produced by the

GNG. An example of the group of nodes produced by the GNG belongs

to ego things states are shown in Fig. 6.2. Each row represents the

cluster centroid or node produced by the GNG. In this example, the

total nodes produced is 35, and the dimension is 4D.

The co-occurrence matrix requires a further post-clustering step tak-

ing into account relationships between different GE spaces to find the

temporal correlation between the switching variables. The nodes acti-

vating at the same time instance from GE0 and GE1 discrete cluster

spaces are grouped as part of the hierarchical successive clustering step

to form words. A word can be represented as:

W c = [S0
i S1

j ]T (6.7)

where Si represents the ith element of the group of nodes produced
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Figure 6.2: Example of the group of nodes produced by the GNG clustering
of ego-things’ states.

by GNG1 belongs to GE0. Likewise, S1
j represents the jth element of

the list of nodes produced by GNG2 (i.e., the GNG belongs to GE1

space).

In Fig.6.3, the first two columns represents the coupled nodes belong

to GNG1 and GNG2 respectively. Total 114 unique coupled nodes

produced and for each couple assigned a label. A unique label assigned

for each word or combination of nodes and the complete list of formed

words is called dictionary. The resulting dictionary is:

Dc = {(W (1),c L1), (W
(2),c L2), . . . , (W

(m),c Lm)}, (6.8)

where L represents each word’s unique label, m represents the index

of the maximum number of elements in the dictionary. An example of

dictionary is shown in Fig.6.3. The dictionary information is used in

MJPF for the joint prediction and estimation of future states of the
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Figure 6.3: Dictionary or group of words generated from the coupled nodes.

ego-things.

Then the co-occurrence probability matrix has been estimated from

the complete list of words. It provides the information about the

GNG nodes enable in GE1 space corresponds to nodes in GE0 space.

The co-occurrence matrix for modality c can be represented as below:

Tc =


θ11 θ12 . . . θ1n
...

. . .

θm1 θm2 . . . θmn

 (6.9)

The rows of the matrix 1-m called transitional elements correspond to

the total number of nodes generated from generalized error 0 (GE0)

by GNG1. Similarly, the columns of the matrix 1-n are absorbing

elements represent the total nodes produced by GNG2 of generalized

error 1(GE1). Each of the matrix elements θ is an estimation of the

probability of occurrence between GE0 and GE1 spaces. For example,
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θ13 is a co-occurrence probability value between the first node of GNG

1 to the third node of GNG 2. The causal relationships between dif-

ferent GE spaces help extract various features of the discrete cluster

level from each modality’s viewpoint and summarised below.

– Odometry X-Y : The initial generalized filter produces gener-

alized errors (GEs) from the exteroceptive sensory data of odom-

etry. Then discretized the GEs by GNGs and obtained GE0 and

GE1 cluster spaces. The generalized GE0 encodes the location

information of the ego-things, and at the same time, GE1 gives

focus to the direction of movements. Then, the co-occurrence

matrix is estimated; it provides information about the causal re-

lationships between GE0 and GE1 cluster spaces. In other words,

for a given node in GE0 space (embed the position information),

the co-occurrence matrix tells the possible future direction of

movements of ego-things (i.e., the possible nodes enable in the

GE1 space) in probabilistic terms. All the information extracted

from the GE0 and GE1 clusters, along with the help of the co-

occurrence matrix, was used to learn a filter. This filter produces

errors or abnormalities when the prediction deviates from the

actual measurements. Inside the filter, the spatial features are

embedded. Therefore, it can differentiate the types of dynamics

of the ego-things based on spatial coordinates in the provided

context.

When an agent network experience different from the one used to

learn the filter, it will produce abnormality errors. That means

anomaly detection occurs when the existing filter fails to represent

the new situation with the knowledge it already has. A new

filter will be learned in this situation to embed the knowledge

acquired from the current experience. If a similar experience

happens in the future, the filter will represent the situation, and

the knowledge will help in the joint decision-making of ego-things.

This is an evolving concept; more details and results are provided

in Section 6.3.1. The extracted feature from the exteroceptive

odometry data will enrich each ego-things’ contextual awareness

in the network. In this level of abstraction, it can detect spatial
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anomalies.

– Control S-P : Contrary to odometry modality, the control S-

P modality extracts a slightly different feature of the networked

system of ego-things. The filter differentiates the agents’ types of

dynamics, and the location doesn’t play any role. The activated

GNG nodes in the cluster space of generalized error zero (GE0)

during the ego-things’ linear movement enable a specific subset

of nodes in the GE1 (derivative) space. Similarly, the dynamics

in the curved part of the trajectory activates another subset of

nodes in both GE0 and GE1 discrete spaces. The filter produces

abnormality if the network goes through a different movement

pattern than the one used for learning the filter. This feature

helps to enrich the self-awareness of each agent in the network.

– Control S-V : In line with the S-P modality, S-V modality also

identifies the different types of dynamics of the agents’ network.

Nevertheless, the performance differs based on the joint behavior

of the proprioceptive low dimensional data used for learning the

filter. When the joint nature of the low-dimensional variables,

i.e., steering and velocity, varies while performing a different task

and movement patterns, the filter detects the abnormality. This

is considered self-awareness property as the used proprioceptive

sensory data sequences represent the ego-things’ internal behav-

iors.

Some of the important results of this discrete level filter, along with

continual learning, are presented in Section 6.3.1.

Finally, the availability of words ( estimated from clusters of GEs ) al-

lows the final step to learn the prediction models at the discrete level.

To this end, the temporal transition probability between the discrete

vocabulary of words can be computed by looking at the relative fre-

quency of time transitions of data. The time sequence is analyzed

again to this end to label each observation with words found by clus-

tering and the frequency of changes estimated to complete the DBN

model transition probabilities at the discrete switching variable level.

110



CDBN models

The previous sections present all the necessary steps involved in learn-

ing collective DBN models. Each agent in the network learns three

CDBN models in total, and each of them represents a particular sen-

sory modality. As states before, all learned models are replica inside

each ego-things in the network.
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Figure 6.4: A single CDBN model for a two agent network.

The set of CDBN models learned by ego-thing ep and eq is the same

for each other ego-thing in the system and can be written as:

CDBN ep = {CDBN c1, CDBN c2, CDBN c3}

= CDBN eq,∀p, q ∈ N (6.10)

where c1,c2 and c3 represents the odometry, control S-P and control

S-V modalities respectively.

Fig. 6.4 shows the representation of learned CDBN model( by consid-

ering two ego-things). The square nodes represent the discrete vari-
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ables, orange and green shaded area represents discrete abstraction

level of the CDBN. The round nodes represent continuous variable and

are belong to the continuous abstraction level of the CDBN model (i.e.,

cyan shaded area). The horizontal arrows that are in green and blue

colors represent the conditional probability between two consecutive

time instances at continuous as well as discrete levels. Moreover, the

vertical arrows (orange and black in color) describe the causalities be-

tween inferences of different ego-things at discrete, continuous states

and observation levels.

6.1.2 Model testing (Online phase)

Figure 6.5: General block diagram of CBDN model testing for a two ego-
things network. The processes involved in this test phase are common for all
the filters learned during the training phase. The red dotted lines indicate
communication over the wireless channel.

This part explains the inference process applied to sequences when a

given DBN model has been learned and is available. The inference

process occurs at different levels of the collective awareness models

learned in the training phase. All the filters in this work are using the

same method shown in Fig. 6.5, so they can produce new GEs that can

be potentially useful for the continual learning of new models. Despite

here, we describe a single step in this direction.
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The filters produced at the intermediate level (i.e., Filter(s) A in Fig.

6.1) have tested and analyzed the obtained results. The features ex-

tracted of the ego-thing by the estimation of the co-occurrence prob-

ability matrix used for this purpose. Each of the filters learned in

the training phase will pass through the process shown in Fig. 6.5

(during the test phase) to detect anomalies and to learn new filters

whenever abnormalities occur. The results of the evolving emergent

concept have been presented in Section 6.3.1.

Joint states estimation and abnormality measurements

The process flow diagram of the filter testing is shown in Fig. 6.5.

We have proposed to apply a dynamic switching model called Markov

Jump Particle Filter (MJPF) [32, 51] to make inferences on the CDBN

models learned in the training phase (refer Fig. 6.4). In MJPF, we

use KF [100] in continuous state space and PF [43] in a higher hier-

archical discrete level. Each dynamic model in the continuous state

is associated with one of the discrete set of vocabulary variable. The

co-occurrence and transition probability matrices model the switching

probability from one mode to another. A detailed description of MJPF

is described in Section II of [14]. Here we provide a brief description

to understand better how generative DBN models learned can drive

the inference process and the related anomaly detection and fixing of

GEs.

The objective of MJPF is to iteratively estimate the joint posterior

of discrete variables together with continuous states based on an ob-

servation sequence. The joint posterior decomposes into a categorical

distribution, represented through a set of weighted particles and a set

of continuous distributions assumed to be constituted by linear and

gaussian variables. The different continuous distribution is associated

with different values of discrete variables. A MJPF is an inference

mechanism associated with a switching DBN model, consists of pre-

diction/update steps. The particles are predicted using the Gaus-

sian proposal function q = p(Wk + 1/Wk) using Monte Carlo chain

concepts associated with a specific algorithm (for example, SIR PF

[86]). To this end, the part of the generative model named temporal
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transition probability, estimated in the training phase, can be used.

However, each particle prediction can perform at the continuous level

by the Kalman filter applied to the different linear dynamic models

learned during the training phase (using each cluster information).

The propagation of particles allows the prediction of joint continu-

ous/discrete posterior. The update step provides the new observed

sensory data sample to the filter; this generates a message passing

through the DBN, allowing to update before continuous state variable

inside the KF of a particle by means of innovation. Then the mes-

sage reaches the discrete level where the difference wrt the transition

model prediction introduces a new update. Updating allows the global

weight of particles to be estimated to represent the new posterior.

In the case of the proposed approach, the posterior probability density

function associated with a switching model learned DBN related to

modality c is :

p(Wk
c, X̃

(e1,e2,...,en),c
k /Zk

(e1,e2,...,en),c) = p(X̃
(e1,e2,...,en),c
k

/Wk
c, Zk

(e1,e2,...,en),c)p(Wk
c/Zk

(e1,e2,...,en),c) (6.11)

where Wk
c is the superstate random variable that represents words

learned through clustering as the higher hierarchical level vocabulary

of switching variables; X̃
(e1,e2,...,en),c
k represents the joint continuous

state of all the ego-things at time instant k.

D-MJPF uses Eq. 6.11 as the target posterior to be iteratively es-

timated jointly at the discrete and continuous state. The particles’

weight is iteratively computed and allows to approximate the poste-

rior. The predicted particles that better match observations obtain

the maximum weight, and their positions indicate where the higher

probability mass of the posterior is concentrated. D-MJPF can ap-

ply to the sensory observed data variables of each modality. However,

classical MJPF not having anomaly detection capability. To this end,

an additional functionally has to be added to the D-MJPF.

At each time instant, evaluates the distance between prediction and

update messages within each level of the DBN of whatever modality,

using probabilistic distances like Bhattacharya and Kullback Lieber.
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An anomaly is detected whenever this distance is higher than a thresh-

old that reflects the abnormality level definition. Generalized errors

correspond to deviations from the prediction found at those continu-

ous states where anomalies present. Therefore a D-MJPF inside each

ego-thing can match the currently observed sensory data samples by

own sensors and evaluate local abnormalities. The data samples from

the other ego-things allow each other ego-thing to perform the same

operation on DBNs associated with other agents. The abnormality es-

timation collectively computed in each ego thing constitutes the collec-

tive anomaly detection step.The abnormality information allows each

ego-thing to measure how well the learned models fit the currently

observed sequence. The anomaly metric used in this work is the filters

innovation and estimated by the formula:

δk,c = Z
(e1,e2,...,en)
k,c −HX(e1,e2,...,en)

k,c (6.12)

where δk,c represents the innovation term, Z
(e1,e2,...,en)
k,c is the obser-

vations from all the ego-things that belong to modality c, H is the

observation matrix and X
(e1,e2,...,en)
k,c is the states estimated by the

MJPF at time instant k.

In MJPF, we treated the states of all the ego-things together. Each

discrete zone has a number of Kalman filters associated with it. The

total number of Kalman filters associated with each zone depends upon

the number of particles assigned by the discrete level vocabulary. Each

Kalman filter will calculate the innovation term and average for the

estimation of abnormality. Suppose the model detects abnormal situ-

ation by testing with dataset from a different experience than the one

used in the training phase. In that case, the system stores the abnor-

mality data and then learn a new model from the data. If no abnormal-

ity is detected (the innovation metric elements are zero), higher-level

state estimation will be performed, and the process is repeated. By

learning a new model from the abnormality data, the system can rep-

resent the new situation. If the system encounters similar experiences

in the future, it will infer with the stored representation.

115



Wireless channel effects over the model performance

The network model of the ego-things is shown in Fig. 6.6. It shows

the connections from the sender ego-thing (ego-thing 1) to the receiver

ego-thing (ego-thing 2); the same is assumed for the receiver ego-thing

to the sender. There are three environmental conditions, such as ideal

(no loss), urban and rural, with two protocol standards implemented

in the simulator. This work considered only the PHY and MAC layers

of the protocols (IEEE 802.15.4 and IEEE 802.11p).

Figure 6.6: A network model for two ego-things. The communication shown
is from the ego-thing 1 (sender) to ego-thing 2 (receiver), and the same is
for the receiver to the sender.

The throughput of IEEE 802.15.4 is minimal and is less than the PHY

bit rate of 50 Kbps. Continuous transmission of packets is not possible

as the PHY layer needs to wait for Acks and the CSMA/CA has many

timers. By taking into account the PHY layer and MAC layer over-

heads, the applications have only access to a theoretical maximum

of about 50Kbps. Therefore we used a data rate of 50Kbps in this

work. When using IEEE 802.15.4, the type of network is an unslotted

CSMA for the MAC layer, and the network is PAN with the first node

(that starts the network) is the coordinator. Therefore, the connectiv-

ity type is ad-hoc if the number of ego-things is more than two. But
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IEEE 802.11p supports Device-to-Device (D2D) connectivity among

ego-things even if it consists of many IoT nodes.

The data gathered by the exteroceptive and proprioceptive is encoded

for transmission over the wireless channel. The encoded data is sent

over the channel, the receiver ego-thing collects this data and performs

a decoding operation. Then, the joint data (of the sender and receiver

ego-things) synchronize to match their data-acquisition time-stamps.

A D-MJPF makes inferences, matches the predicted collective states

with the observed sensory data to detect the abnormality.

The theoretical analysis of the channel’s impact on the data is analyzed

in this part. Then the metrics introduced in the next section are used

to evaluate the model performance packet loss and delays occurring in

the channel.

The wireless channel influences the transmitting data in terms of packet

loss, and sometimes a considerable delay in receiving it. Such factors

cause a degradation in the performance of the models, and this needs

to be analyzed.

In Fig. 6.5, the red dotted lines indicate the data exchange between

the ego-things. The D-MJPF will behave differently in situations like

lost or delayed packets than how it behaved in an ideal (no loss) situ-

ation. The prediction step of the filter will perform jointly, and in the

updating step, estimates the posterior for each ego-thing separately.

Then estimate the innovation metric separately for each ego-thing.

For instance, if the ego-thing 1 (e1) is not received packets from ego-

thing n (en) within an allowed time frame or the packets lost in the

channel, the filter will continue prediction based on the previous prior

state estimate. Therefore, the co-variance uncertainty increase more

until the next observation arrives. As a result, the filter’s innovation

term will become higher during those intervals of packets loss. In case

the delay is more than the allowed time, the system will treat this

situation as equivalent to lost packets. An example plot of the filter

behavior in the presence of lost packets is shown in Fig. 6.7. The

confidence interval increases when the model performs the prediction,

and no observed data sequences arrive.

The delay and the loss depend on various factors such as the distance
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Figure 6.7: Example of model behavior over lost packets. The confidence
interval becomes high when the model was not receiving real observations
from the agents in the network.

between the ego-things, the communication protocol in consideration,

transmission power, the frequency, environmental factors, etc. In this

work, we have considered a Rician channel for the study of fading

between two ego-things. We have chosen this channel model by con-

sidering the distance between the two vehicles not being too high, and

the Line of Sight (LOS) component exists between the objects. How-

ever, we also investigated the case where no Line of Sight (NLOS)

elements exist.

The probability density function of Rician distribution is:

f(x|υ, σ) =
x

σ2
exp

(
−(x2 + υ)2

2σ2

)
I0

(
xυ

σ2

)
(6.13)

where I0

(
xυ

σ2

)
is the modified Bessel function of the first kind and

order zero, υ and σ are the signal strength of the dominant and of the

scattered paths, respectively. Rician K factor is:

K =
υ2

2σ20
(6.14)

It expresses the ratio between the LOS path power component to the

remaining multi-path components. Therefore, υ2 and 2σ2 are the av-

erage power of the LOS and NLOS multi-path components. As the

direct wave weakens, the Rice distribution becomes Rayleigh. The K-

factor value zero is equivalent to Rayleigh distribution.
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Model performance evaluation metrics

The matching and verification operation was performed after estimat-

ing abnormality estimation by the models inside each of the networked

ego-things (refer Fig. 6.5).

In all circumstances, models inside each ego-thing can ensure perfect

observations from its own sensors, and it can predict its own future

state and abnormality measurements without any problems. Simulta-

neously, the ground truth sensory data sent to other ego-things under-

goes the channel effects such as packet loss or delay while transmitting

through the wireless channel.

Consider an ego-thing e1, the CDBN models inside estimate the ab-

normality for itself by the ground truth observations collected by own

sensors. This abnormality measurement we considered as a reference

signal. Simultaneously, the same sensory data from ego-thing e1 has

been communicated to a second ego-thing e2, and the abnormality

estimation for ego-thing e2 is performed. This time, the transmitted

observations were affected by the loss and delay and, consequently, also

the models’ state prediction and abnormality estimation capability.

To measure the models’ performance degradation, firstly, we have es-

timated the MSE [60] between the reference abnormality signal and

the estimated abnormality after the influence of wireless channel. The

MSE values presents the discrepancy between the two abnormality sig-

nals estimates for the same ego-thing; first one by the models inside

itself and the second abnormality signal estimated by the model inside

other ego-things in the network. When more packets are lost in the

channel or the delay becomes more than expected, the MSE values

increases. In the future, the estimation of MSE values can be used to

define further the threshold of how much loss the model can accept to

assure a certain level of quality in performance.

The formula to estimate Mean Squared Error (MSE) is as follows :

MSE =
1

n

n∑
i=1

(ψi − ψ̂i)2 (6.15)

where ψi is the reference signal, and ψ̂i is the signal to be compared.
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In our case, the reference signal (i.e., ψi) is the abnormality estimated

without delay or loss, and ψ̂i is the anomaly estimated after the packet

loss or delay occurred. The estimated error value tells the reliability of

the model for determining an abnormality under the channel’s effects.

For an in-depth analysis of the model performance by considering the

impact of the communication channel, we have considered metrics such

as accuracy and F1 score [80] in addition to MSE estimation. The

accuracy is a measure of all the correctly identified samples in the

anomaly measurements and is calculated by the Eq. 6.16:

ACC =
TP + TN

TP + FP + TN + FN
, (6.16)

Where TP (true positive) is an outcome when the model correctly pre-

dicts the anomaly and a TN (true negative) is an outcome where the

model correctly predicts the normal situation. Similarly, FP (false pos-

itive) is an outcome where the model incorrectly predicts the anomaly,

and FN (false negative) is an outcome where the model incorrectly pre-

dicts the normal situation.

On the other hand, the F1 score is the harmonic mean of precision

and recall and gives a better measure of the incorrectly classified cases

than the accuracy. The estimation formula is:

F1 score = 2 ∗ (Precision ∗ Recall)

(Precision + Recall)
(6.17)

where Precision is give by

Precision =
TP

TP + FP
, (6.18)

and Recall can be estimated by the below formula:

Recall =
TP

TP + FN
(6.19)

The accuracy metric is used when TP and TN are more important,

while the F1 score becomes an important measure when FP and FN

are crucial.
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We have used the above evaluation metrics to compare the model per-

formance under the communication channel’s influence by considering

different protocols and presented the results and analysis in Section

6.3.

6.2 Experimental study

This section explains the case study and the datasets used to vali-

date the proposed methodology. The dataset was collected by con-

ducting real experiments in collaboration with the Intelligent Sys-

tems Laboratory, Department of Systems Engineering and Automa-

tion of the University Carlos III de Madrid, Spain. Two intelligent

autonomous vehicles named iCab (Intelligent Campus Automobile)

having the same setup [42] used in this work and shown in Fig 6.8b.

Each vehicle is equipped with sensors, such as one lidar, a stereo cam-

era, laser rangefinder, and encoders. This work concentrated on the

low-dimensional data of control, i.e., steering angle (s), velocity (v),

and power (p), along with the odometry data (x and y positions) of

the vehicles. The collected data is synchronized (intra and Ad-hoc in-

ter synchronization) to align their timestamps. The two iCab vehicles

perform joint navigation tasks in the rectangular trajectory shown in

Fig. 6.8a by keeping their position one after the other with a minimum

distance among them. The vehicle navigates in the front called header

(iCab1) and the one follows is the assistant (iCab2).

To train and validate the performance of the collective awareness mod-

els, mainly used three low dimensional data combinations such as

odometry (X−Y ), steering-power (S−P ), and steering-velocity(S−V )

from Scenario I and Scenario II described below.

– Scenario I Perimeter monitoring (PM): The iCab vehicles jointly

perform platooning operation in a closed environment, as shown

in Fig. 6.8a. The navigation operation performed four times,

one after the other, and collected the multi-sensory exteroceptive

and proprioceptive data. The assistant vehicle (iCab2) mimics

the actions of the header (iCab1) vehicle.
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(a) Testing environment. (b) iCab platforms.

Figure 6.8: The environment and the vehicles used for the experiments.

Fig. 6.9 plots the odometry (x and y positions) data from both

vehicles for the Scenario I perimeter monitoring task, blue and

red circles indicate the starting positions of iCab vehicles. More-

over, Fig. 6.10 shows the example control signal plots of iCab1

vehicle, and the iCab2 control signals are similar as it mimics the

action of the leader vehicle. In Fig. 6.10 (a) and (b), the drop in

values happened when vehicle maneuvering in the curves of the

rectangular trajectory, and during rectilinear motion, the values

of steering and velocity are more steady. In Fig. 6.10 (c) shows

the fluctuations in power values during the curved trajectory mo-

tion.

– Scenario II Emergency stop: While both iCab vehicles jointly

navigate in a rectangular trajectory one after the other, a random

pedestrian suddenly crosses in front of the header vehicle. As

soon as the header detects the pedestrian’s presence, the vehicle

automatically executes an emergency brake and waits until the

pedestrian crosses and then continues the navigation operation.

Subsequently, the assistant vehicle (iCab 2) detects the anomaly

in the header vehicle and performs an emergency brake operation

until the header vehicle starts its movement again. The odometry

(X−Y ) and control data combinations of steering-power (S−P )

and steering-velocity (S − V ) from this scenario used to test the

fitness of switching CDBN models learned in the training phase.
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Figure 6.9: Odometry data for perimeter monitoring task (training data).
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(c)

Figure 6.10: Control signal plots of iCab1 (a) Steering, (b) V elocity, (c)
Power.

There are two sets of data of three combinations (X − Y , S − P
and S − V ) prepared from Scenario II. Fig. 6.11 shows the plot

of Odometry (X −Y ) data. The first one is the emergency brake

operation executed once in the complete navigation in the rectan-

gular trajectory called Emergency stop 1(ES1), as shown in Fig.

6.11a). The second dataset is collected while the pedestrian ap-

peared twice, and an emergency stop was performed twice during

the platooning operation performed in the rectangular trajectory.

This second set of data is named ES2 (Emergency stop 2) and is

shown in Fig. 6.11b.

In the real iCab experiments, the vehicles are connected with a base

station to exchange data between them, not directly connected. We

need an additional simulator for only the connection part to check
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(a) Emergency stop 1 (ES1). (b) Emergency stop 2 (ES2).

Figure 6.11: Odometry data of test scenarios.

how the model performance is affected by packet loss and delays hap-

pen by the wireless communication channel’s influence. For this pur-

pose, we have used a simulated environment to exchange all the sen-

sory data (odometry and two combinations of control data along with

their timestamp information) between the ego-things and measured

the model’s performance by considering various parameters. We have

used the ONE simulator in this work [55], and the graphical user inter-

face (GUI) of the simulator is shown in Fig. 6.19. Simulated dynamic

ego-things scenarios with two different protocols, such as IEEE 802.11p

and IEEE 802.15.4, and compared the performance.

The IEEE 802.11p protocol is one of the most feasible and widely

considered standards in the inter-vehicle communication scenario, es-

pecially in autonomous vehicle networks [97]. On the other hand,

IEEE 802.15.4 is suitable for low-cost, low-speed ubiquitous commu-

nication between connected devices [29]. We have used both of the

standards in this work and made a comparison of the performances.

Additionally, a new interface has been created in the ONE simulator

to model the channel between the ego-things as a Rician channel and

set different values for its parameters, including transmitted power,

central frequency, receiver sensitivity, and Rician K-factor.

The data to be communicated between the ego-things are: X − Y

position, steering angle (S), rotor velocity (V ), and rotor power (P )

of the iCab vehicles with their respective time stamps. In this way, we
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assume that the amount of data to be sent is 4 Bytes for the position +

2 Bytes for the steering angle + 2 Bytes for the rotor power + 4 Bytes

for the time stamp. By considering only Physical and MAC layers,

the total size of each data packet for IEEE 802.11p is 48 (28+6+14)

Bytes, and for IEEE 802.15.4 is 29 (9+6+14) Bytes.

6.3 Results

This section presents the results obtained by the proposed methodol-

ogy applied to the real experimental datasets. Mainly three-level re-

sults demonstrated: the first two levels treated the model performance

in ideal condition, i.e., without considering channel effects. The final

part includes comparing D-MJPF performance with different evalua-

tion metrics by considering two protocols and channel conditions.

6.3.1 Phase 1: Discrete cluster level anomaly detection

The performance of the initial filters (i.e., Filter(s) A in Fig. 6.1) as-

sessed with the ego-things various features learned by co-occurrence

probability matrices in this phase. All the filters pass through the pro-

cesses shown in Fig. 6.5 during the test phase. Scenario II datasets

(ES1 and ES2) of different modality used in this part. The detailed

analysis of the results is presented only for the Odometry modality to

show the evolution of the emergent concept of continual learning (refer

Section 6.1.1)—a brief description of the results from other modalities

(i.e., control S − P and control S − V ) provided.

– Odometry: An initial filter (i.e., unmotivated Kalman filter) ap-

plied to the Scenario I perimeter monitoring (PM) data of odom-

etry (refer Fig. 6.9) and obtained generalized errors (GEs) as

output. By applying the GNG algorithm on the GEs (i.e.,GE0

and GE1) , discrete cluster space generated as shown in Fig. 6.12a

and Fig. 6.12b respectively. The same colored nodes in plots Fig.

6.12 represent the mapping of GE0 and GE1 space found by the

co-occurrence matrix.
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Each type of dynamics (i.e., horizontal, vertical, and curve mo-

tion) and location co-ordinates (i.e., lower, upper, right, and left)

of the ego-things PM task trajectory (refer Fig. 6.9) enable a

different subset of nodes in GE0 and GE1 cluster space. For ex-

ample, Zone A (horizontal lower) in GE0 space (refer Fig. 6.12a)

maps to Zone A (the cloud of cyan coloured nodes) in GE1 space

(refer Fig. 6.12b). It is evident from the plots that the odometry

modality extracts spatial features to detect a spatial abnormality.

A filter A1 collectively learned from the information acquired

by GEs cluster spaces and co-occurrence matrix of Scenario I

perimeter monitoring (PM) data of odometry can predict the fu-

ture nodes enable in GE0 and GE1 space (refer Section 6.1.1)

and their correlation. This filter A1 tested with Scenario II, ES1

dataset (refer Fig. 6.11a) where the ego-thing pass through a dif-

ferent dynamics (i.e., emergency stop operation). Here the pre-

diction discrete nodes (letters) mismatch with the nodes(letters)

enabled by the observed sensory data sequence everywhere except

the interval where the emergency stop operation performed and

is shown in Fig. 6.13a. The projected segment and the nodes in

red color shows the presence of an anomaly.

Whenever the ego-thing passes through new experience (i.e., de-

tected anomalies), it will automatically execute a new filter model

learning from the new experience dataset. A filter called A2

learned from this data can represent similar scenarios in the fu-

ture with embedded knowledge. In the next step, the filter (A2)

tested with another dataset of Scenario II, ES2 (refer Fig. 6.11b)

where the pedestrian appears at two spatial locations of the ve-

hicle maneuvering trajectory. The estimated anomaly is shown

as the projected segment and nodes in red color in Fig. 6.13b.

The additionally enabled nodes are only in one spatial location

(i.e., on the right side) even though the emergency stop opera-

tion performed twice. It means that the filter A2 was well able to

encode the first emergency stop with the embedded knowledge as

it happened in the same spatial location of the data used to learn

filter A2. But the second emergency stop operation performed in

a different location, and A2 was unable to represent this situation
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and generated an anomaly.

From this anomaly data, the ego-thing will learn a new filter(i.e.,A3)

that can embed this new experience’s knowledge to make infer-

ence in the future when the ego-thing pass through a similar

experience. If we analysed the plots, Fig. 6.12b, Fig. 6.13 (a)

and Fig. 6.13 (b) together, the evolution of emergent concept is

self explanatory. Whenever the system endures new experiences,

automatically learn new filters to represent similar future expe-

riences of ego-things (by the knowledge encoded in the learned

filters). Consequently, contextual awareness and the collective

decision-making process of the system increases.
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Figure 6.12: Clustering of GEs of odometry X-Y (training data). Nodes
indicate the cluster centers of associated data points.

– Control S-P : This modality considers the proprioceptive sen-

sory data of the control steering-power (S−P ) combination.The

generalized errors discrete spaces of produced from the PM task

(Scenario I) control S-P plotted in Fig. 6.14. The clustering of

the GE0 shown in Fig. 6.14a and Fig. 6.14b is the GE1 space

(i.e. Ṡ− Ṗ discrete space).

The nodes marked as Zone B in Fig. 6.14a and Fig. 6.14b shows

the mapping between GE0 and GE1 spaces captured by the co-

occurrence matrix. In GE0 space (refer Fig. 6.14a), the steering

angle values are either zero or near to zero for the linear movement

of the ego-thing, and the values become more negative during
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Figure 6.13: Emergent concept of odometry: GE1 space (a) Test data 1
(ES1); (b) Test data 2 (ES2). The projected segments and the nodes in red
colors indicate the presence of abnormality.

the movement in curves(the considered datasets only consist the

left side curved movements). Simultaneously, the power values

are almost stable during rectilinear movements, and in curves,

it acquires different values. Similarly, in the GE1 space (refer

Fig. 6.14b) Zone B represents the linear movements, Zone A and

Zone C correspond to the nodes activated during the vehicles’

curved motion. Contrary to odometry modality, S-P modality

is good for differentiating the types of ego-things different dy-

namics. The learned filter from the generalized errors detects

abnormalities when the prediction varies from the ground truth

observed data.

We have analyzed the GE spaces of control S-P training and

test datasets in line with odometry. When the learned filter from

generalized errors of training dataset tested with ES1 and ES2

task of Scenario II, few additional nodes activated to represent the

emergency brake operation abnormality. Each of the abnormality

is considered as a new feature to learn new filters. Contrary to

odometry, the concept learned with control S-P able to detect

and differentiate the anomaly during either the ego-things are in

linear motion or the curved trajectory. The spatial location is
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Figure 6.14: Clustering of GEs: Control S-P (training data). Nodes indicate
the cluster centres of associated data points

not significant in this case. This emergent concept learned from

the proprioceptive control modality enriches the self-awareness of

each ego-things in the network.
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Figure 6.15: Clustering of GEs: Control S-V (training data). Nodes indicate
the cluster centers of associated data points.

– Control S-V : The plots of discrete space for control S-V modal-

ity are shown in Fig. 6.15. Zone A in GE0 space (refer Fig. 6.15a)

represents the rectilinear movement of the ego-thing, and it en-

ables the nodes located in Zone B of GE1 space, as shown in the

Fig. 6.15b. Similarly, Zone B in GE0 space activates either Zone

A or Zone C in the GE1 space. During linear movement, the
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steering acquired zero or nearby values, but the velocity would

be maximum. During curves, steering values can be more positive

or more negative. In our considered scenarios to collect datasets,

the vehicles perform only curve to the left side, so that steering

values are more negative. This modality helps to understand the

different movement patterns of the ego-things and this will enrich

the SA of each ego-things .

The concept learned for S-V modality shown similar results of

S-P modality except for the difference in the collective behavior

of the data variables considered.

The continual learning of filters from ego-things new experiences are

self-explainable in this sense. The peculiar features will be encoded in-

side the filter learned from different experiences of ego-things. The fil-

ter models learn and update incrementally whenever the system passes

through new experiences, as shown in Fig. 6.5. In this way, the agents

are more intelligent; they have the functionality of detecting abnor-

mality and describing it at different abstraction levels.

6.3.2 Phase 2: Anomaly detection by D-MJPF

In this part, we have applied D-MJPF on the CDBN models (Filter(s)

B in Fig. 6.5) learned from the data sequences by considering three dif-

ferent modalities. Inside each ego-thing, three models learned in total

from the data of perimeter monitoring task performed by two vehi-

cles by considering three low dimensional data combinations, i.e., X-Y

position odometry data, steering-power (S-P), and steering-velocity

(S-V ).

To test the models’ efficiency, we have used the ES1 dataset of the

aforementioned variable combinations of Scenario II. The models were

able to detect the vehicles’ emergency brake’s abnormal behavior when

a pedestrian appears in front of the header vehicle. Fig. 6.16, Fig.

6.18 and Fig. 6.17 shows the abnormality plots of odometry, control

S − P and control S − V respectively for iCab 1 and iCab 2 vehicles.

The region inside the dotted rectangular box represented the interval

when vehicles performed emergency brake operation. The abnormality
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metric used was the innovation of the D-MJPF. i.e., the difference

between the predicted states and the ground truth observations (refer

Eq. 6.12). As shown in Fig. 6.16, Fig. 6.18 and Fig. 6.17, there is

a significant rise in the innovation measurements during the intervals

when the emergency brake operation executes.
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Figure 6.16: Abnormality measurements for odometry (a) iCab1, (b) iCab2
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Figure 6.17: Abnormality measurements for control (SP): (a) iCab1, (b)
iCab2

(a) 0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1
Control SV iCab1

(b) 0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1
Control SV iCab2

Figure 6.18: Abnormality measurements for control (SV): (a) iCab1, (b)
iCab2

The data-driven models can not only provide a global estimation of

anomalies based on the whole set of multidimensional generalized vari-

ables used in the models but also provide an insight anomaly related

to single specific components of the model. For example, the model
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learned from S-P data sequences was able to estimate the behavior of

only steering (S) or only velocity (V ) of the vehicle efficiently. It is an

additional explainability feature of the model.

6.3.3 Evaluation of model performance after the chan-

nel effects

Inside each vehicle, we have three different CDBN models (represented

as three different colored blocks in Fig. 6.5), and the models inside

each ego-thing are the same. In Phase I and Phase II of DBN model

testing, we assumed all the ground truth observations are available to

all the ego-things without data packet loss and delay. This section

presents the performance comparison results of CDBN models under

the channels influence on transmitted data.

As described before, the Opportunistic Network Environment (ONE)

simulator here used to measure the channel effects over the data trans-

mitting data. A network can be affected by different types of delays,

such as a propagation delay, transmission delay, queuing delay, and

processing delay [59]. However, in this work, we considered the propa-

gation delay, and the packets arrive with a considerable delay and are

considered equivalent to lost packets.

Figure 6.19: GUI of ONE simulator

In ONE simulator, there are six routing protocols included (Direct De-

livery (DD), First Contact (FC), Spray-and-Wait, PRoPHET, Max-

Prop, and Epidemic),and set the movement model as MapBasedMove-

ment [55]. However, we have chosen Direct Delivery (DD) as the
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number of dynamic objects is limited to two in this work. The real

trajectory data of the PM task (Scenario I) described in Section 6.2 is

inserted in the simulator as the Well Known Text (WKT) file format

and created two dynamic nodes that represent the header(iCab1) and

assistant(iCab2) vehicles. Fig. 6.19 shows the simulator environment.

The parameters used in ONE simulator are summarized in Table 6.1.

Both of the protocol have some features and, at the same time, some

limitations. For example, IEEE 802.15.4 protocol allows low power

transmission, but we need to compromise with the low data rate, which

leads to more packet loss. On the contrary, the IEEE 802.11p proto-

col supports a high data rate, but the transmission power is com-

paratively high. Different tests performed with the aforementioned

Table 6.1: Simulation parameters for ONE simulator by considering protocol
IEEE 802.15.4 and IEEE 802.11p

Parameter IEEE 802.11p IEEE 802.15.4

1 Frequency band 5.9GHz (Licenced) 2.4GHz (Unlicensed)

2 Data rate
18 Mb/s (16 QAM)
27Mb/s (64 QAM)

50Kbps

3 Transmission power 2W(33dBm) 3mW(4.77dBm)

4
Receiver sensitivity

(dBm)
-73,-68 -85

5 Transmission range 100m 100m

6 K-values 0,3 0,3

7 Data packet size 48 Bytes 29 Bytes

protocols with different data rates, transmission power, and K-factor,

as shown in Table 6.1. High K-factor values refer to the rural environ-

ment with the presence of obstacles, buildings, etc. that have a lower

impact on the CDBN model performance. The K-factor value of zero

represents an environment where no line of sight (NLOS) components

are available, and such condition negatively affects the model perfor-

mance. The receiver sensitivity column shows the minimum values of

the Signal-to-Noise Ratio (SNR) at the receiver to guarantee successful

data reception [18]. The data delivery probability between the sender

vehicle and receiver vehicle has been estimated and summarised in Ta-

ble 6.2. As expected, the probability values are low where the NLOS

component presents, i.e., K=0 and increased for the LOS scenario, i.e.,
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Table 6.2: Data delivery probability over two different protocols,data rates
and K-values.

K-values
IEEE 802.15.4,

50Kbps
IEEE 802.11p,

18Mb/s
IEEE 802.11p,

27Mb/s

0 0.9796 0.9973 0.9934

3 0.9960 0.9996 0.9990

K=3 (rural environment). When more data packets lose, the CDBN

model performance degrades in the estimation of future sates of the

vehicles, and as a result, abnormality estimation gets affected.

The abnormality estimated in Section 6.3.2 by the D-MJPF in ideal

condition compared with the estimated anomaly in the presence of

channel effects. For the evaluation of models, we have used different

evaluation metrics such as MSE, Accuracy and F1 score(refer Sec.

6.1.2).

We presented here the results for the header vehicle (iCab1) only. The

CDBN models of the header vehicle(iCab1) estimated anomaly by own

multi sensory observed data. Simultaneously, the same data transmit-

ted to the assistant vehicle (iCab2) over the wireless channel. The

CDBN models inside the assistant vehicle estimate the header vehi-

cle’s abnormality along with its own abnormality. We have conducted

the simulation by considering two protocols with three different data

rates, environmental conditions (K-factor values), and three different

modalities. As explained before, the three different modalities extract

different feature of the ego-things to enrich the self/collective aware-

ness of the ego-things network.

Figure 6.20: Model performance evaluation: IEEE 802.15.4

The estimated results (MSE, Accuracy and F1 score) are summarised

in Table 6.20, Table 6.21, and Table 6.22. The models performed
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Figure 6.21: Model performance evaluation: IEEE 802.11p, data rate:
18Mb/s.

Figure 6.22: Model performance evaluation: IEEE 802.11p, data rate:
27Mb/s .

least (highest MSE value) when used the IEEE 802.15.4 protocol (refer

Table 6.20) standard and K-factor value is zero.

However, the MSE metric is not enough to perform an in-depth analy-

sis of the model performance as it doesn’t take into account accuracy,

precision, etc. So that we further estimated the accuracy and F1 score

for better studying and analyzing the model performance. Accuracy

and F1 score were high when used IEEE 802.11p with a data rate of

18 Mb/s as in Table 6.21, and MSE values were least in this case as

expected. This is considered as the best performance under the chan-

nels’ influence. Table 6.22 summarises the model’s performance when

used IEEE 802.11p with a 27Mb/s data rate. The Accuracy and F1

score were better than IEEE 802.15.4 and worse than IEEE 802.11p,

18Mb/s data rate.

In summary, data rates, transmission power, received sensitivity, en-

vironmental conditions, etc. plays a role in the model performance.

We need to carefully set the parameters and choose the appropriate

protocol by studying the application area and the resources available.

In this work, the payload size was not so big, so that the model perfor-

mances didn’t degrade too much. Once the payload size goes high, it

affects the model performance. In the future, we will extend the work
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with a bigger payload size and also include more parameters.

6.4 Chapter summary

This article presented a method to develop multimodal collective aware-

ness for networked IoT nodes performing joint tasks. The IoT nodes in

his work are autonomous vehicles, and each of the vehicles is assumed

to be having machine learning capabilities. The CDBN models learned

from exteroceptive and proprioceptive sensory data have the function-

ality to extract unique features of the system related to self and con-

textual awareness and detect abnormalities happening anywhere in

the networked ego-things. The CDBN models are data-driven and ca-

pable of detecting abnormalities at different abstraction levels. The

distributed state estimation performed by MJPF is associated with

each CDBN model. The models inside each agent can synchronously

estimate the possible abnormalities around any of the agents in the

network. Moreover, the models can describe anomaly related to single

specific components of the vector used for model learning; this is an

additional explainability feature of the models.

In the offline training phase, the multisensory data collected while

the agents performing a joint task used to learn the CDBN models.

In the online test phase, the model’s fitness tested with the datasets

from a different joint task than used in the training phase. The pre-

sented results at different abstraction levels provide evidence for our

method’s efficiency in detecting abnormal situations in the networked

agents. Moreover, we have analyzed the effects of wireless commu-

nication channels on the model performance by considering different

protocols and channel conditions and finally compared the obtained

results by different performance evaluation metrics.
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Chapter 7

Interpretable Machine

learning models for

abnormality detection in

Ego-things network

In recent days, it is becoming important to ensure that the outcomes

of signal processing methods based on machine learning (ML) data-

driven models can provide predictions that can be interpreted. The

interpretability of ML models can be defined as the capability to un-

derstand the reasons that contributed to generate a given outcome in a

complex autonomous or semi-autonomous system. The necessity of in-

terpretability is often related to the evaluation of performances in com-

plex systems as well as to the acceptance of automatization processes

of agents where critical high-risk decisions have to be taken. This chap-

ter concentrates on a functionality of such systems, i.e., abnormality

detection, and on the choice of a model representation modality based

on a data-driven machine learning (ML) technique such that the out-

comes become interpretable. The proposed approach assumes that the

data-driven models to be chosen should support emergent SA of the

agents at multiple abstraction levels. It is demonstrated that the capa-

bility of incrementally update learned representation models based on

progressive experiences of the agent is strictly related to interpretabil-
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ity capability.

As a case study, abnormality detection is analyzed as a basic feature

of the collective CA of a network of vehicles performing cooperative

behaviors. Each of the vehicles is considered as an example of an Inter-

net of Things (IoT) node, so providing results that can be generalized

to an IoT framework where agents have different sensors, actuators,

and tasks to be accomplished.

The capability of a model to allow evaluation of abnormalities at dif-

ferent levels of abstraction in the learned models is addressed as a key

aspect for interpretability.

The main contributions of this chapter can be summarized as follows:

– A novel method is proposed to learn data-driven ML models rep-

resenting self-awareness (SA) and interactive collective awareness

(CA) of agents’ network. The learned model is interpretable, i.e.,

the model is self explainable about the results it produces and

the decisions made in different situations. For the inferences, a

MJPF based on generative DBN models is used and extended to

become able to detect local and global abnormalities.

– The system has the capability of emergent incremental learning

of new models when the agents encounter new experiences, i.e.,

when the model detects abnormal situations. The different ab-

straction level results of abnormalities generated by the models

are presented and compared. In this work, interpretability is de-

fined as the capability to use anomaly data to modify the existing

model used to obtain the anomaly itself.

7.1 Machine learning models and interpretabil-

ity: Design and Implementation

The term ego-thing used in this chapter refers to intelligent agents that

can perceive their internal and external parameters and adapt them-

selves when they face abnormal situations [52]. The below sections

describe the model learning, testing, and interpretability by consider-

ing a two-agent network.
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The generative DBN (GDBN) model learned from low-dimensional

data mainly focuses on detecting local and global abnormalities in the

agents’ network. The model we propose is generative, and it is not

only capable of detecting anomalies at multiple abstraction levels but

also uses the generalized errors (GEs) of produced anomaly data to

incrementally learn new models. The incrementally learned models

allow the interpretation of detected anomalies at different abstraction

levels. At the same time, learning is a process of finding a new DBN

that minimizes the presence of GEs in a given sequence.

In this work, GEs are defined as the mismatch between the Bayesian

predictions and observed evidence, i.e., the states and the deviations

of states’ (i.e., higher-order derivatives) together. The higher-order

derivatives are limited to first-order, and the GEs have been detected

through the anomaly detection process.

In the model training phase, the GEs produced from the sensory

data have been used to learn the model. In the test phase, when

the model produces the anomaly by estimating the probabilistic dis-

tance between prediction and evidence, new models will be learned

incrementally by exploiting the GEs produced from the anomaly data

that correct/minimize those errors. In other words, the model not

only detects anomalies at multiple abstraction levels but also uses the

produced GEs (of an anomaly) to correct or learn a new model.

7.1.1 Offline phase: Model learning

Figure 7.1: DBN model learning process.

This section detailed the processes involved in building a model that

can provide the functionality of awareness and interaction in a network
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of agents. The block diagram of the model learning process is shown

in Fig. 7.1. In this work, we limited the number of agents to two and

assumed all the sensory data collected by the ego-things have been

available for both the agents in the offline and online phases. The

communication part is not considered in this chapter.

The data-driven model has different abstraction levels, such as 1) Con-

tinuous and 2) Discrete. The continuous level focuses on SA function-

ality to detect the local anomaly. This level of the model directly re-

lated to sensory observations at sub-symbolic level. On the other hand,

the discrete level learned at a symbolic level from both agents’ joint

data is dedicated to joint anomaly detection, i.e., a global anomaly.

The peculiarity of the learned model is that it can represent treating

the ego-things separately and jointly. Such SA and joint awareness

functionality can be used to predict the agents’ future states and de-

tect local and global anomalies.

Estimation of generalized errors (GEs)

Firstly the data sequence collected from different agents has been

synchronized to match their time stamps. This work mainly consid-

ered the proprioceptive control data of rotor velocity (V ) to build the

model. The chosen sensory data to develop the model is low dimen-

sional, i.e., 1D vector for one agent. Let Zenk be the measurements

from the ego-thing en at the time instant k and Xen
k be the associated

latent state variable. The measured observations of ego-thing n can

be mapped to the latent states by the following observation model:

Zenk = f(Xen
k ) + δk (7.1)

where δk represents the vector composed of measurement noise at a

time step k. and the function f() is assumed to be linear.

The GEs can be produced by applying Unmotivated Kalman Filter

(UKF) [27] on the considered data sequence. This filter assumes that

the state vector at time instant k+ 1 will be the same as the previous

time instant k. When the observed data sequences violate this rule,

GEs will be produced, and it is equivalent to derivatives of the data.
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In this work, we have limited the GEs to first-order derivatives. The

GEs related to ego-thing en can be written as:

X̃
en
k = [Xk Ẋk ]ᵀ, (7.2)

As shown in Eq. 7.2, we have used states and their first-order deriva-

tives as the GEs. The generalized errors are used in the next section

to learn the discrete state variables of the model.

Transition probability from discrete vocabulary

The model’s discrete abstraction level has been built from the dis-

crete vocabulary variables and different transition matrices. Firstly,

the clustering operation is performed on the GE of each ego-thing sep-

arately. In this work, we have used GNG algorithm [39] for clustering

the GEs. The reason why we choose this algorithm over other cluster-

ing algorithms is described in section 4.1.1. GNG is an unsupervised

incremental neural network to learns typologies and it does not re-

quire users to define the number of nodes /clusters beforehand. This

dynamic property of GNG is an advantage over other clustering algo-

rithms for using it in many applications. By considering the nature of

the dataset used in this work, we have selected the GNG algorithm by

taking into account its advantages over other clustering algorithms.

The GEs that belong to each ego-thing is separately clustered by the

unsupervised clustering algorithm of GNG algorithm [39]. Each cluster

is represented by its centroid/node, a 2D vector, and the centroid is a

mean value of all the GEs belonging to that particular cluster.

The input of each GNG is a 2D vector, i.e., generalized errors of states

and first-order derivatives. Therefore, one GNG is dedicated to each

ego-thing. For example, the input vectors to the GNGs belong to the

ego-things are in the form as below.

Ego thing 1, X1
k = [v1 v̇1]

ᵀ (7.3)

Ego thing 2, X2
k = [v2 v̇2]

ᵀ (7.4)
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For instance, the group of nodes created by a GNG of each ego-thing

can be written as:

Se1 = {P1, P2, . . . , Pm} (7.5)

Se2 = {Q1, Q2, . . . , Qm} (7.6)

where m represents the maximum number of nodes/clusters produced

by the GNG.

W c = [Pa Qb]
T (7.7)

where Pa represents the ath element of the group of nodes produced by

GNG1 belongs to ego-thing 1. Likewise, Qb represents the bth element

of the list of nodes generated by GNG2 (i.e., the GNG belongs to

ego-thing 2). The next step is to estimate the transition probability

matrices for each ego-thing separately and also joint transition links.

The example of the transition probability matrix belong to ego-thing

1 can be written as below:

Te1 =


P11 P12 . . . P1n

...
. . .

Pn1 Pn2 . . . Pnn

 (7.8)

where n represents the total number of nodes produced by the GNG,

each element in the matrix represents the probability of transition

between the discrete random variables (belong to ego-thing 1).

Then estimate the joint transition matrix from the list of words (re-

fer eq. 7.7). This matrix represents the joint transition probability

between the two ego- things as below.

Tjoint =


W11 W12 . . . W1m

...
. . .

Wm1 Wm2 . . . Wmm

 (7.9)

where m represents the total number of joint vocabulary variables (i.e.,

words) and each element represents the transition probability between
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those variables.

Figure 7.2: GDBN model for a two ego-thing network: The cyan and orange
shaded area of the model represents SA and CA respectively. Horizontal and
vertical arrows represent the probabilistic connection between the variables
and different abstraction levels.

7.1.2 Online phase: Model testing

In this phase, a D-MJPF is applied to the learned generative DBN

model to make inferences on the observed data. The block diagram

representation of the model testing and continual incremental learning

of new models shown in Fig. 7.3. The model can detect global as well

as local anomalies arise in the agents’ network. Global anomaly means

the anomaly happens anywhere in the network, and local anomaly
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Figure 7.3: General block diagram of model testing and continual learning.

focuses on the anomaly around a particular agent.

Anomaly detection: D-MJPF

The MJPF [32] is a hybrid filter; KFs at the continuous level and PFs

at the discrete level to make inferences. The detailed description of the

MJPF is described in [52, 14]. However, in this chapter, we have used

a modified version of it by adding the functionality to detect discrete

level global anomaly along with the local anomaly detection capability.

The inference starts with an initial observed random data point. It

then estimates the discrete node by calculating and selecting the clus-

ter nodes with a minimum distance with the ground truth observation.

The selection of control vector for the future state prediction by the

continuous level part (i.e., Kalman filter) is influenced by the proba-

bility of discrete level variable estimated before. The prediction at the

continuous level is made separately for both agents, which is part of

the model’s SA functionality. The particle filter at the discrete level

makes the inference of joint state prediction and global abnormality

estimation. Moreover, the system can continually learn new models

whenever the ego-things passes through new experiences.

– Local anomaly detection: Self-awareness

The continuous level of the learned DBN model (refer to Fig. 7.2)
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is dedicated to predicting future states of ego-things separately

and detecting anomalies around a specific ego-thing. To estimate

the anomaly at the continuous level, we have used the innovation

term of the D-MJPF and can be estimated as below:

θk,e1 = Z
(e1)
k −HX(e1)

k (7.10)

θk,e2 = Z
(e2)
k −HX(e2)

k (7.11)

where θk represents the innovation terms, Zk term represents the

ground truth sensory observation, and Xk is the predicted states.

The GEs produced (refer Eq. 7.10 and Eq. 7.11) from the

anomaly detection process has been used to incrementally learn

new models to represent the situation.

Once detected anomaly at continuous level (i.e., local abnormal-

ity), the GEs produced from the anomaly signal has been used to

correct the model incrementally. Here the GEs are the predicted

states and the anomaly measurements (i.e., the probabilistic dis-

tance between predicted states and observed evidence). The new

model has to capture the new situation that produced anomalies

and predict the states better when similar situations will occur.

The GEs signal of the anomaly (i.e., a mismatch between model

predictions and updates) has been firstly clustered by applying

the GNG algorithm. These clusters generated from the GEs will

mainly differ from previously generates clusters on those intervals

where the anomaly occurred. Then the information extracted by

the clustering is used to learn vocabulary and transition proba-

bility matrix. The transition probability (shown as green arrows

in Fig. 7.2), which influences the model’s continuous level, will

be improved to predict the situation well and consequently to

produce low or null GEs.

– Global anomaly detection: Collective awareness

The DBN models’ discrete level (shaded in orange color) shown

in Fig.7.2 is dedicated to detecting the global anomaly, i.e., the

anomaly happening anywhere in the network. In co-operative

task scenarios, this metric can detect the anomaly happening
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around other agents in the network. The metric used to estimate

anomaly is Kullback–Leibler divergence [72]. The KL divergence

is a measure of how a probability distribution differs from an-

other probability distribution. This work has used the metric to

estimate the difference between the predicted discrete level vari-

ables distribution and the discrete state’s distribution estimated

from the observed sensory variables. All the variables considered

here in the discrete level are estimated jointly by considering both

ego-things. The below equation can estimate the KL distance:

DKL(λ ‖ π) =
∑
x∈X

π(x) log

(
λ(x)

π(x)

)
(7.12)

where π is the joint distribution of predicted discrete random

variables and λ is the joint distribution of observed discrete state

variables.

Once detected global abnormality, i.e., anomaly happens any-

where in the ego-things network, firstly list out those ego-things

that encountered abnormal situations locally. Then the GEs of

abnormality signals detected by the ego-things continuous level

will be clustered separately. The clustered information will be

used to update the corresponding discrete vocabulary and tran-

sition probability matrices. The very next step is to update the

joint vocabulary (words) and joint transition probability matrix

(represented by the green arrow in Fig. 7.2). Therefore, if a sim-

ilar joint event occurs in the future, the model can represent the

situation to make appropriate decisions.

Continual model learning and interpretability

Model learning is a continuous process whenever the existing mod-

els cannot represent the ego-things current experience, i.e., when the

model detects an abnormality. The developed ML model’s interpretabil-

ity focuses on the model’s intermediate results, such as discrete level

vocabulary and transition probability matrices. Section 7.3 elaborated

the concept of interpretability with results from different abstraction
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levels of the model.

Once the model detected abnormality, the continual model learning

phase will be enabled. The GEs produced from the detected anomaly

signal will be initially clustered. Then a new vocabulary and transition

probability matrices will be learned of the new model. The correction

of the existing model will be performed at the model’s different ab-

straction levels based on the anomaly signal.

7.2 Experimental study

This section explains the case study and the datasets used to vali-

date the proposed methodology. Two intelligent autonomous vehicles

named iCab (Intelligent Campus Automobile) having the same setup

[42] used in this work and shown in Fig. 7.4b.

(a) Testing environment. (b) iCab vehicles.

Figure 7.4: The environment and the vehicles used for the experiments.

Each vehicle is equipped with sensors, such as one lidar, a stereo cam-

era, laser rangefinder, and encoders. This work focused on the low-

dimensional control data, i.e., rotor velocity (v) of the vehicles. The

collected data from both vehicles are synchronized to align their times-

tamps. The two iCab vehicles perform joint navigation tasks in the

rectangular trajectory shown in Fig. 7.4a by keeping their position

one after the other with a minimum distance among them. The vehi-

cle navigates in the front called leader (iCab1 ) and the one follows is

the follower (iCab2 ).
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7.2.1 Training datasets

Figure 7.5: Cooperative driving tasks: The different cooperative driving
scenarios considered. The dataset from Task 1 was used in the training
phase to learn the model, and the remaining tasks (Task 2 to Task 4) were
used in the test phase to check the model’s fitness in detecting local and
global abnormality.

Perimeter monitoring: The vehicles jointly perform platooning oper-

ation in a closed environment, as shown in Fig. 7.5: Task 1. The

navigation operation was performed four times, one after the other,

and collected the data. The follower vehicle (iCab2 ) mimics the ac-

tions of the leader (iCab1 ) vehicle.

7.2.2 Test datasets

The example of rotor velocity test data for iCab1 and iCab2 when

performs joint navigation operation of Task 3 plotted in Fig. 7.6.

During the emergency brake operation (when the vehicle encounter a

pedestrian), the velocity values are reduced compared to the training

data sequence and are marked by the red rectangular box. The rotor
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(a) (b)

Figure 7.6: Test data: Emergency stop (a) iCab1 rotor velocity (b) iCab2
rotor velocity.

velocity data (V ) of both vehicles while performing the below tasks

have been collected and used in the learned model’s test phase.

1. Emergency stop1: While both vehicles jointly navigate a rect-

angular trajectory, a random pedestrian appears in front of the

follower vehicle (iCab2 ), and it performs an emergency brake op-

eration. Since the leader vehicle not encountering any obstacles,

it continues the navigation task. The follower vehicles continue

the navigation once the pedestrian crosses the danger zone. Fig.

7.5: Task2 depicts this scenario of joint navigation.

2. Emergency stop 2: The task is similar to the previous one (Emer-

gency stop1), except the pedestrian appears in front of the leader

vehicle (iCab1 ). As soon the leader detects the presence of a

pedestrian, it performs an emergency brake operation. Subse-

quently the follower (iCab2 ) vehicle also performs emergency

brake (refer Fig. 7.5: Task3). Once the pedestrian crosses, both

the vehicles (iCab1 and iCab2 ) continue the joint perimeter mon-

itoring task.

3. Emergency stop 3: The task is similar to previous scenarios, but

in this case, the pedestrian appears in two locations in the tra-

jectory (refer to Fig. 7.5: Task 4).

7.3 Results and discussion

The anomaly detection results estimated by the D-MJPF at different

abstraction levels, such as continuous and discrete levels, are discussed

in this section. The SA functionality is embedded in the model’s con-

tinuous level to detect the local abnormality. On the other hand, the
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CA functionality to detect global abnormality is modeled into the dis-

crete level.

7.3.1 Abnormality detection by D-MJPF

The area inside red dotted box indicates the 7.7, Fig. 7.8 and Fig. 7.9.

(a)

(b)

Figure 7.7: Abnormality measurements: Task 2 test data (a)Continuous
level anomaly: The blue and orange plots belong to the anomaly estimated
for iCab1 and iCab2, respectively. The highest peaks of the orange plot rep-
resent the situation where the iCab2 performed an emergency stop operation
when it detected a pedestrian’s presence. (b) Discrete level abnormality:
The peaks show the global anomaly detected by the model.

Local abnormality detection: Self-awareness

The learned model is firstly tested with the rotor velocity datasets col-

lected from Task 2 (refer to Fig. 7.5) of vehicles joint navigation. The

continuous level part of the D-MJPF shown in Fig. 7.2 is dedicated

to SA of the ego-things to predict future states and detects a local

abnormality, i.e., the anomaly that happens around an individual ego-

thing. The anomaly estimated by the innovation metric of the filter

when tested with different datasets are plotted in Fig. 7.7 (a), Fig.

7.8 (a) and Fig. 7.9 (a).
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(a)

(b)

Figure 7.8: Abnormality measurements: Task 3 test data (a)Continuous
level anomaly: The blue and orange plots belong to the anomaly estimated
for iCab1 and iCab2, respectively. The blue plot’s highest peaks represent
the situation where the icab1 performed an emergency stop operation when
it detected the presence of a pedestrian. (b) Discrete level abnormality: The
peaks show the global anomaly detected by the model.

In Fig. 7.7 (a), plotted the result obtained by testing the initial model

M0 (learned from Task 1 in Fig. 7.5) with the dataset of Task 2 in Fig.

7.5. When both of the iCab vehicles perform perimeter monitoring

task, a random pedestrian appears in front of the iCab2 vehicle, and

it performs the emergency stop operation. However, iCab1 continues

the task. Therefore the local anomaly detected by the model is only

for the iCab2 vehicle as shown in Fig. 7.7. The highest peak of orange

plot inside the marked region represents the abnormal situation. As

explained before, whenever the model detects an anomaly, a new model

(M1) will learn incrementally to represent the new experience.

In the next step, we have tested the model M1 with another dataset

collected from cooperative driving task 3 (Emergency stop 2) in Fig.

7.5. The anomaly results are shown in Fig. 7.8 (a). The blue and

orange plot indicates the anomaly for iCab1 and iCab2, respectively.

In Task3 cooperative driving scenario, the pedestrian appears in front

of the leader (iCab1 ) vehicle, and both vehicles perform emergency

stop operation. Although both vehicles stopped with a pedestrian’s
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(a)

(b)

Figure 7.9: Abnormality measurements: Task 4 test data (a) The blue and
orange plots belong to the anomaly estimated for iCab1 and iCab2, respec-
tively.(b) Discrete level abnormality: The peaks show the global anomaly
detected by the model.

presence, only the anomaly is detected for iCab1. This is since iCab2

already experienced this situation previously, and the existing part of

the model was able to represent the current situation. This time, the

incremental learning update was only for the iCab1 and learned a new

model called M2.

As a final test phase, the model M2 has been tested with another co-

operative scenario dataset of Task 4 in Fig. 7.5. The anomaly results

are plotted in Fig. 7.9. As expected, the model could represent the

situation even if the pedestrian appeared in two spatial locations of

the joint navigation task’s trajectory. Because the existing model has

experienced a similar situation in the past, there weren’t any higher

peaks in the anomaly signals. The model is learned from propriocep-

tive control data of rotor velocity (V ) so that the models’ performance

is independent of spatial locations.

Global abnormality detection: Collective awareness

The global anomaly detection part belongs to the inference made by

the discrete part of D-MJPF (orange shaded area in Fig. 7.2). The
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model is able to detect the global anomaly that happens anywhere in

the network. The global anomaly has been plotted in Fig. 7.7 (b),

Fig. 7.8 (b) and Fig. 7.9 (b).

At first, the initial model (M0) was tested with the dataset collected

from Task 2 shown in Fig. 7.5. The peaks in Fig. 7.7 (b) indicates

the presence of pedestrian appeared in front of the iCab2 vehicle when

tested with the velocity dataset of Task 2 (refer Fig. 7.5). The dis-

crete level part of the model is updated after the detection of the

anomaly, and the new learned model is called M1. In the next step,

the model (M1) tested with another dataset from Task 3 in Fig. 7.5.

This time the pedestrian appears in front of the leader vehicle, and an

emergency stop operation is performed by both vehicles (iCab1 and

iCab2 ). Therefore the interaction between the vehicles is slightly dif-

ferent than the one learned in the previous step. As a result, the model

detected an anomaly and is plotted in Fig. 7.8 (b), and the model will

be updated to the next version and is called M2.

Finally, the model M2 tested with the data of Task 4 (refer Fig. 7.5),

and the resulting anomaly plotted in Fig. 7.9 (b). This time, there

aren’t any higher peaks as the model could represent this situation

with the existing knowledge learned previously.

7.3.2 Interpretability and discussion

The interpretability module makes the reasoning behind the decision

made by the model. Mainly we consider the model-based interpretabil-

ity, i.e., the development of models that readily give insight into the

relationships they have learned [70]. In this work, interpretability is

defined as the capability of the model to detect the anomaly and use

this information to correct the model incrementally.

The model’s interpretability is explained with the intermediate level

results such as clustering of GEs of anomaly data, vocabulary, and

transition probability matrices. The individually clustered training

data GEs to learn the initial model is shown in Fig. 7.10. The cyan

colored nodes indicate the centroids of each cluster generated by the

GNG algorithm. Each node is a 2D vector, and the values are marked

in the plot.
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(a) iCab1 (b) iCab2

Figure 7.10: Training data: Clustering of GEs.

Continuous level

The model’s continuous level is more focused on SA to detect the local

anomalies. By testing the model with different scenario datasets, the

system extracts knowledge when the model detects abnormalities and

learn new models incrementally by exploiting the anomaly data. As

stated before, the continuous level of the model is concerned about

the individual ego-things experience. The limitation of the continuous

level is, it doesn’t care about the experience of other ego-things in

the network. The discrete level that emphasizes collective awareness

and global anomaly detection will help overcome the continuous level’s

limitations.

In the MJPF, each dynamic model in the continuous state is associated

with one of the vocabulary variables at the discrete level. During the

anomaly interval (when a pedestrian crosses in front of the iCab vehi-

cles), the continuous states predicted by the model (with the chosen

discrete variable’s influence) will be different from the ground truth

observed data. Such a difference is called GEs or abnormality and is

used to learn new models incrementally. The generative DBN model’s

interpretability can be explained with the GEs (i.e., anomaly), discrete

vocabulary, and transition probability matrices.

Once the model detects a local abnormality, the GEs data are stored

(refer Fig. 7.3 and use this data to learn a new model incrementally

by following the steps shown in Fig. 7.1. The main changes in the

model w.r.t previous model will be in the transition probability (green

arrows in Fig. 7.2) between the discrete level vocabulary variables.

The example of interpretability feature focuses on incrementally learn-

ing new models from the GEs of anomaly signal has been explained
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(a) iCab1 (b) iCab2

Figure 7.11: Test data: Clustering of GEs. Node 2 belongs to iCab1and
node 1 belongs to iCab2, represent the abnormality space.

below:

1. When the initial model M0 tested with the data collected from

Task 2 (refer Fig. 7.5), the detected abnormality at the continu-

ous level of the model is plotted in Fig. 7.7. The functionality of

incremental learning of the new model will be enabled in this sit-

uation starting from the GEs/ abnormality signal. The model’s

continuous level detected abnormality only for iCab2. Therefore

the model correction is required only for the part related to iCab2.

The detected anomaly signal or GEs for iCab2 is clustered and

is plotted in Fig. 7.11b. With respect to the clusters produced

of training data GEs as shown in Fig. 7.10b which was used to

learn the initial model (M0), there is additional space activated

GEs belongs to node 1 in Fig. 7.11b when clustered the detected

anomaly.

The discrete state-space belongs to node 1 in Fig. 7.11b encodes

the information related to emergency stop operation when the

pedestrian appeared. The GEs clusters’ information will be used

to learn discrete vocabulary and consequently update the transi-

tion probability matrix to learn the new model M1 incrementally.

2. Next, the model M1 will be tested with the data collected from

Task 3 shown in Fig. 7.5. This time, the continuous abstrac-

tion level of the GDBN model detected anomaly for iCab1 and

is plotted in Fig. 7.8. Although both vehicles perform emer-

gency stop operations, the anomaly was detected only for the

leader vehicle (iCab) because the follower (iCab2) was already

experienced a similar situation previously. Therefore the model
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was well able to represent the behaviors of iCab2. This time the

model correction only required for the part related to iCab1. The

GEs produced from the anomaly data for iCab1 is plotted in Fig.

7.11a. With respect to the GEs cluster for iCab1 in the training

phase as shown in Fig. 7.10a, the GEs clustering produced from

the Task 3 test data enables additional clustering space belongs

to node 2 in Fig. 7.11a. Then the parameters extracted from the

clusters are used to generate discrete vocabulary and transition

probability matrix to learn a new model called M2.

3. Finally, the model M2 tested with the data collected from task

4 (emergency stop 3) in Fig. 7.5. This time, a random pedes-

trian appeared two times in the entire trajectory of the vehicles’

maneuvering operation. However, the model has not detected

anomaly at continuous level (refer Fig. 7.9 (a)) because the ex-

isting model was well able to represent the current situation and

well predicts the state of the vehicles.

Whenever the ego-things experience a new situation that was not seen

in the past, the system extracts knowledge and updates/learns a new

model to represent the new situation. So that if we consider a par-

ticular stage of the filter, it will be able to describe all the previous

experiences passed by the ego-things. If similar situations occur in

the future, the models would easily represent them and help to make

appropriate decisions.

Discrete level

Contrary to the continuous level (sub-symbolic level) of the model

that can detect a local anomaly, the model’s discrete level (symbolic

level) will mainly focus on the global anomaly detection, i.e., the ab-

normality that happens around any ego-thing in the network. The

continual learning of new models when the system passes through new

joint experiences is part of the interpretability feature. With this CA

functionality, the model inside one ego-thing can detect other ego-

thing anomalies in the network. It would help the model to make

appropriate decisions in different situations.
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The interpretability can be visible by checking the intermediate re-

sults. The process of continual learning of new model from the GEs of

anomaly data is similar as explained in section 7.3.2. Once the model

detected the global anomaly at the model’s discrete abstraction level,

the GEs produced from the local anomaly signal will be clustered and

use this information first to update the individual transition probabil-

ity matrices. Then the changes will be updated to the next level of

joint vocabulary (words) and joint transition probability matrix (rep-

resented by green arrows in Fig. 7.2). Therefore, if the system faces

similar situations in the future, the model’s discrete abstraction level

would be well able to represent the interaction between the ego-things.

This chapter has used four different scenario datasets for model learn-

ing and testing the model’s fitness. The proposed method has many

advantages as well as limitations.

Capabilities:

– The proposed method can be used in a large network consists of

more ego-things (< two ego-things).

– In this work, we have mainly considered one data variable, such

as rotor velocity. However, the method can be applied for other

low dimensional exteroceptive and proprioceptive sensory data

variables and combinations of data variables to develop models

representing co-operative tasks of ego-things.

Limitations:

– The proposed method is designed to develop models from low-

dimensional sensory data. To use high dimensional data, need

modifications in the method, and also it may be required to use

deep learning algorithms.

– The interpretability should be improved by presenting the results

obtained from different abstraction levels of the model. Further-

more, the interpretability can be enriched by comparing the dif-

ferences and similarities of the models that are learned continually

when the ego-things pass through new experiences.
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– The ego-things in this work are autonomous vehicles. Therefore,

to use in other ego-things such as drones and other IoT devices

required modifications in the proposed method.

Future research directions could incorporate multi-sensory data to

develop multi-modal interpretable ML models. The interpretability

could be achieved by exploring graph matching techniques which can

be used to compare the models learned incrementally while ego-things

pass through different experiences. The graph matching techniques

[26, 107, 65] can be exploited to compare the intermediate results (such

as discrete vocabulary and transition probability matrices ) obtained

in different models and make the reasoning behind the model detected

abnormal situations.

Another important research direction could be considering different

communication protocols to exchange data/parameters among ego-

things and compare the performances by giving importance to energy

efficiency. Moreover, automatic classification of abnormalities can be

considered in the future to improve the model performance.

7.4 Chapter summary

This chapter presented a method to develop an interpretable machine

learning model for the agents’ network. The data-driven model has

the SA and CA functionalities to detect local and global anomalies. A

D-MJPF is used to make inferences on the generative DBN model at

different abstraction levels. The interpretability is closely related to

the continual incremental learning of the models when an abnormal

situation occurs. The intermediate results which are related to the in-

terpretability are presented as discussed. The interpretability part is

given importance in describing how the models make abnormality de-

tection decisions and how the anomaly data has been exploited to learn

new models incrementally. The model has been tested with different

scenario datasets, and the obtained abnormality detection results at

different abstraction levels are presented and discussed. Finally, a dis-

cussion about the capabilities and limitations of the proposed method

has been conducted.
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Chapter 8

Conclusions and Future

work

This chapter summarizes and evaluates the results of the previous

chapters’ concerning the research objectives set out before. Moreover,

the chapter concludes by discussing the possible future research direc-

tions to the accurate joint prediction of unseen dynamics of a network

of agents.

8.1 Summary of main achievements

With respect to the research questions presented in Chapter 1, the

thesis identifies the below contributions:

1. Chapter 4 of this thesis proposes a methodology to develop agents’

self-awareness by giving particular attention to detect abnormal

situations. The proposed method focuses on selecting the most

precise DBN model when predicting abnormalities in real scenar-

ios where multiple sensory data is analyzed. The learned model

is data-driven, and the method is evaluated with real experimen-

tal data taken from a moving vehicle performing some tasks in a

closed environment. Results suggest that the proposed method

recognizes the features from a set of sensory data that facilitates

the recognition of previously unseen maneuvers, i.e., abnormal
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situations. The proposed method can be useful for selecting rel-

evant features when dealing with a large number of features in

networking operations.

2. Chapter 5 of this thesis proposed several methods to recognize

abnormal situations in an agent network. Each agent learns a set

of DBN models describing the normal behavior of self and all the

other entities in the network. A MJPF is employed to infer the

future states of the entities. The abnormality measurement values

calculated in each of the DBN models suggest that the proposed

method provides good performance in detecting environmental

abnormalities. Moreover, information exchange among entities

has been considered to enhance the proposed strategy.

The considered test scenario comprises two smart vehicles, one

following the other, which move along a predefined track. Com-

munication performance has been collected to verify the relia-

bility of the data exchange, quantify the expected performance

in terms of delay and loss and consider how these performances

could affect the abnormality detection process. The DBN model

performance is investigated when each object communicates the

ground truth observations to the other entities in the network.

To compare the performance with different parameters of the

considered channel model (Rician model), such as K -factor, dis-

tance, and data rates, ROC curves were plotted, and the relia-

bility (AUC) and ACC metrics calculated. The AUC and ACC

values decreased when the data rates increased. Moreover, when

the environment changed from the ideal case (i.e., no loss case)

to an urban scenario, the model’s performance degraded further.

3. Chapter 6 of this thesis presented a method to develop multi-

modal collective awareness for networked IoT nodes performing

collaborative tasks. The IoT nodes in this work are autonomous

vehicles, and each of the vehicles is assumed to be having machine

learning capabilities. The CDBN models learned from exterocep-

tive and proprioceptive sensory data have the functionality to

extract unique features of the system related to self and collec-

tive awareness and detect abnormalities happening anywhere in

the networked ego-things. The CDBN models are data-driven
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and capable of predicting distributed states and detecting ab-

normalities at different abstraction levels. The distributed state

estimation is performed by D-MJPF associated with each CDBN

model.

The models inside each agent can synchronously estimate the

possible abnormalities around any of the agents in the network.

Moreover, the models can describe abnormality related to single

specific components of the vector used for model learning; this

is an additional explainability feature of the models. In the of-

fline training phase, the multi-sensory data collected when the

agents perform a joint task is used to learn the CDBN models.

In the online test phase, the model’s fitness tested with the data

sets from a new collaborative task different than the one used in

the training phase. The presented results at different abstraction

levels provide evidence for the proposed method’s efficiency in de-

tecting abnormal situations in the networked agents. Moreover,

the effects of wireless communication channels on the model per-

formance were analyzed by considering different communication

protocols and channel conditions. Finally, the obtained abnor-

mality results were compared by different performance evaluation

metrics (MSE, ACC, and F1 score).

4. Chapter 7 presents a method to develop an interpretable machine

learning model for the agents’ network. The data-driven model

has the self-awareness and collective awareness functionalities to

detect local and global anomalies. A D-MJPF is used to make

inferences at different abstraction levels of the model.

The interpretability is closely related to the continual incremental

learning of the models when an abnormal situation occurs. The

local and global abnormality detection results are presented and

compared.

8.2 Future work

This section provides the potential future research directions that

could be conducted for the methods described in the previous chapters
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of this thesis.

1. In this thesis, mainly three different metrics to estimate abnor-

mality were investigated using MJPF, such as Innovation, Hellinger

distance, and Kullback Leibler divergence. In the future, it is im-

portant to embed other distance metrics to estimate abnormality

and compare the abnormality results.

2. The collective awareness data-driven models can include more

functionalities to extract more networked ego-things features by

including different cooperative task scenarios and more data vari-

ables and combinations of variables. Moreover, this work mainly

considered low dimensional data to develop models, and it is im-

portant to check what are the changes required in the model to

use it for high dimensional data such as images, lidar, etc

3. Another future work could be developing collective awareness in-

teraction models for an ego-things network by giving importance

to anomaly detection at different abstraction levels.

4. Autonomous decision-making based on the different abnormali-

ties detected by the model is important for future work. Also,

classification of abnormality is an important task to be embed-

ded in the model. The abnormality detection performed by the

models built from the agents’ exteroceptive and proprioceptive

sensory data would focus on the different features and could be

classified into different categories. For instance, the exteroceptive

sensory data focuses on contextual anomaly. On the other hand,

the proprioceptive sensory data gives importance to the agent’s

internal features, and anomaly happens due to internal changes.

Therefore, classifying the anomaly based on the system’s differ-

ent features would help improve the performance while the agents

face an internal or external abnormal situation.

5. Add functionalities to provide energy efficiency using different

communication protocols and parameter settings of the simula-

tion model. The development of an energy-aware module is im-

portant to evaluate the system’s energy efficiency based on differ-

ent parameter settings, communication protocols, etc. Including
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such a module can improve the system’s reliability, and it would

be easier to choose the model for different application areas.

6. The model performance has been evaluated using different com-

munication protocols implemented in a simulated environment in

this thesis. In the future, this could be performed in a real-time

environment to improve the model’s reliability.
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