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Abstract

We aim to explore the validity of recently proposed ‘thermodynamic

uncertainty relations’ (universal entropic bounds on current fluctuations)

in non-Markovian systems. First, we obtain a modified bound for the

special case of a biased random walk model with one-step memory which

resembles a variant of one-dimensional run-and-tumble motion widely

used to model bacterial motility. The chief result of our work involves

the extension of such modified bound for a general class of run-and-

tumble type processes. In particular, we derive a new bound based

on the mathematical machinery of renewal-reward theory which can be

extended to non-Markovian as well as Markovian systems. We illustrate

our results for single-particle random walk models and an interacting-

particle system with collective tumbles. For a broad parameter regime,

our new bound is seen to provide a useful constraint even though its

expression involves only run-statistics and the mean entropy associated

with tumbles. Lastly, we also present a preliminary investigation of the

validity of other universal relations such as infimum law and stopping-

time symmetry relation for entropy production and position variables in

run-and-tumble-type processes.
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Chapter 1

Introduction

Our universe is full of complexities and uncertainties, and against all odds, sci-

entists attempt to make some sense of it by using the tools of mathematics and

natural sciences. In particular, physicists try to look for the underlying fundamen-

tal laws in the phenomena under consideration. Undoubtedly, such an approach

has been fruitful and unravelled numerous secrets of the universe. However, one of

the biggest challenges comes in the form of establishing consistency among different

levels of description in physics, namely macroscopic, mesoscopic and microscopic.

The macroscopic scale corresponds to objects visible to the naked eye, whereas the

microscopic scale corresponds to the world of atoms and molecules. Even though the

boundaries are not sharply defined, the dimension of mesoscopic level (∼ 10−9 m)

lies in between macroscopic and microscopic scales. The problem arises because one

cannot use the same language (formalism) to describe physics at different levels or

scales. The difference between classical thermodynamics [1] and statistical mechan-

ics [2, 3] is a good case in point. The former describes the thermal properties of a

macroscopic system, whereas the latter recovers the same results using microscopic

laws of physics.

Throughout this thesis, we are interested only in stochastic systems where char-

acteristic dynamics is probabilistic. Such systems are considered equilibrium or

nonequilibrium systems1, and statistical mechanics usually refers to equilibrium sta-

tistical mechanics (ESM). An isolated system is said to reach a stationary state

1One can also consider equilibrium and nonequilibrium systems purely from the perspective of
deterministic dynamical systems.
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if its properties do not vary with time, generally, this requires transition rates in

state/configuration/phase space to be time-homogeneous. However, the systems at

thermodynamic equilibrium satisfy a much more stringent condition called detailed

balance which involves a pairwise balance of transition rates between any two mi-

croscopic configurations (microstates) of the system [4, 5]. Such a balance between

transition rates ensures the absence of probability fluxes or currents in equilibrium

systems whereas an imbalance characterises an out-of-equilibrium or nonequilibrium

system. In reality, thermodynamic equilibrium is an idealisation, and time-varying

phenomena are the rule rather than the exception. Moreover, most physical, bio-

logical and chemical systems are open systems which operate far from equilibrium

and violate the condition of detailed balance at the molecular scale. Furthermore,

the transport processes such as diffusion, electronic transport, and heat conduction

typically display nonequilibrium dynamics. In general, out-of-equilibrium systems

and time-dependent phenomena fall under the umbrella of nonequilibrium statistical

mechanics (NESM) which is the focus of our work (see Fig. 1.1). Another character-

istic property of an equilibrium system is the time-reversal symmetry. To understand

this, one can imagine a system passing through a sequence of microstates which is

analogous to playing a ‘movie’ containing a sequence of ‘frames’ (here microstates).

In the equilibrium systems, the movie is time-reversal invariant; in other words, the

movie played backwards is statistically indistinguishable from its forward version.

However, time-reversal symmetry is generally broken in nonequilibrium systems and

these systems are irreversible. Apart from non-vanishing current and irreversibil-

ity, other nonequilibrium characteristic features are dissipation (entropy production)

and the presence of external forces.

Now, let us turn our attention to the significance of system size in statistical

mechanics. In ESM, physicists usually look for fundamental laws in processes which

commonly involve a large number of constituent elements. However, an interesting

question arises: what happens if the system size is small? By small systems we

mean the objects are made up of a limited or small number of particles which gen-

erally demonstrate the molecular-scale violations of detailed balance. The recent

surge of interest in small systems [7] is also due to the advent of nanotechnology

and manipulation techniques which have made these systems more accessible to

experimental physicists. However, direct application of standard methods of sta-

2
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Figure 1.1: Some examples of non-equilibrium systems: (a) heat-flux in a rod due
to temperature gradient, (b) particle current in a one-dimensional channel due to
imbalance in reservoirs densities, (c) velocity (or net bias in the direction of motion)
of a molecular motor due to the hydrolysis of ATP (adenosine triphosphate) into
ADP (adenosine diphosphate) and a phosphate group (P), (d) a quantum dot cou-
pled to two electron reservoirs, and (e) A colloidal particle on a sawtooth periodic
potential driven by an external force (based on [6]).
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tistical and thermal physics to small systems is not feasible as those methods are

based on the presupposition of a large number of degrees of freedom. Most of the

mesoscopic (living or artificial) systems are examples of small nonequilibrium sys-

tems (see Fig. 1.1) such as molecular motors, quantum dots, ribonucleic acid (RNA)

strand coupled with optical tweezers and colloidal particles in moving optical traps.

Like other open systems, small systems ultimately reach a nonequilibrium sta-

tionary (or steady) state (NESS) if kept in contact with different chemical potentials

or different temperatures (see Fig. 1.1 (a)). These stationary/steady states are de-

scribed in terms of statistical distributions. Due to a highly stochastic environment,

the physical observables such as work, heat or current fluctuate violently around

their average value to the extent that the magnitude of a few of these fluctuations

is comparable to their mean. Thus, fluctuations become relevant at small scale and

can no longer be neglected. These fluctuations are also described by nonequilibrium

probability distributions and satisfy unexpected properties such as the celebrated

‘fluctuation relations’ [8–11]. Fluctuation relations are some of the few general

principles in nonequilibrium physics which have revealed the fundamental property

hidden in fluctuations. A vast body of follow-up work has quantitatively established

that forward realisations with positive entropy production or particle current are

exponentially more probable than the backward realisations with negative entropy

production. For small systems, one can occasionally observe the current or entropy

production to take negative values. However, these negative fluctuations do not vio-

late the second law of thermodynamics (entropy production always increases), as the

average over all the realisations ensures that the mean entropy production is always

positive. Another remarkable achievement of such relations is that their validity is

independent of the proximity to equilibrium state (close/far from equilibrium) as

the derivation solely relies on the underlying dynamics.

Recently, a new addition to such universal relations have arrived; a set of in-

equalities called ‘thermodynamic uncertainty relations’ (TURs) have shed light on

the basic principles of nonequilibrium behaviour [12]. These uncertainty relations

provide constraints on the current fluctuations in nonequilibrium steady states. The

TUR is a trade-off relation between precision in steady-state currents (inverse of

uncertainty or ratio of variance to mean) and entropy production rate (sometimes

manifested in the form of dissipation) in which current fluctuations are universally

4



Uncertainty

Figure 1.2: A molecular motor walking along a filament is subjected to a volatile
and stochastic environment. If we let the motor run from an initial point and for a
fixed duration, then in each run, the motor will end up at different final positions on
filament. The snapshots of each run are superimposed together which characterises
the uncertainty (or lack of precision) in position. Based on reference [15]

bounded by the average entropy production. The TUR implies that the system

requires large dissipation or entropic cost to achieve small fluctuations (more preci-

sion), and conversely, low dissipation implies large fluctuations (less precision) in the

physical observables. The TUR is known to hold in a wide variety of processes, and

a vast body of new research continues to pour in confirming its status as a universal

relation. In this thesis, we only mention the major works and a few excellent review

articles which provide a broader significance of TURs in stochastic thermodynamics

(see [13, 14] and references therein).

We can understand TUR via the example of a cargo-pulling molecular motor

walking on a filament. Molecular motors utilise various energy sources to gener-

ate a unidirectional movement along the filament. Here, the motor velocity can

be construed as the current observable which can also yield the final position on

the filament. Now, we let the motor repeatedly run from a fixed initial point for

a fixed duration. Due to the highly stochastic environment, the motor in differ-

ent runs or realisations (system evolving through the microstates or movie frames)

ends up at slightly different final positions. Therefore, the final position on the

filament fluctuates around the mean value and those fluctuations are characterised

by the uncertainty (see the overlaid snapshots in Fig. 1.2). Such a generation of

a directed mechanical motion (or a bias) is achieved via consumption of energy

molecules which also causes dissipation of heat (quantified by entropy production

rate) in the system. Then, as per TUR, the increase in dissipation rate suppresses

5



the fluctuations in current observable, i.e., the fluctuations become smaller. In other

words, the uncertainty is regulated by entropy production rate. Both fluctuation

relations and TURs provide constraints on the distribution of current in nonequi-

librium systems. They are not only important from a theoretical point of view but

also help in studying design principles and thermodynamic efficiency in mesoscopic

systems.

The nonequilibrium systems can be studied using the theoretical framework of

‘stochastic thermodynamics’. Specifically, a large majority of nonequilibrium sys-

tems in stochastic thermodynamics are modelled by Markov processes which are

known for their memoryless property (the future state is only influenced by the

current microstate or state). For example, a (Markovian) biased random walk is

employed to model the motion of a molecular motor. However, the memoryless as-

sumption may not be appropriate for modelling many nonequilibrium systems where

the memory effects or correlations are an important consideration. For instance, the

molecular motor generally displays unidirectional motion, but in some cases, it may

exhibit bidirectional motion and depend on the history of the process [16]. More-

over, bacterial chemotaxis is another example of a persistent (or correlated) system

which also exhibits run-and-tumble motion (runs punctuated by random resets in

direction). Given this context, the main objective of our research is to explore the

validity of TURs in simple non-Markovian systems.

To achieve such an objective, we first provide a brief overview of mathematical

tools (Markov chains, large deviation theory) and important notions in stochastic

thermodynamics in chapter 2. In chapter 3, we explore the validity of TUR in sim-

ple abstract models exhibiting non-Markovian dynamics. Specifically, we work with

one-step memory which can be modelled using a persistent random walk. Working

with simple toy models paves the way for our central result for which we employ the

mathematical framework of renewal-reward theory (RRT). In chapter 4, using RRT,

we derive a new bound on current fluctuations for a general class of run-and-tumble

processes (e.g., bacterial motility, search strategies, animal locomotion) in discrete-

time setting [17]. In comparison with the discrete-time version of TUR [18], our

bound is relatively tight for a broad parameter regime and only requires knowledge

of the statistics of run lengths and the mean entropy production rate of tumbles

(as opposed to the mean entropy production of combined run-and-tumble process).

6



Moreover, our bound not only takes into account the memory effects but is also

independent of the microscopic details of the run process. Furthermore, the same

bound is also applicable to continuous-time models and many-particle systems. In-

terestingly, stochastic thermodynamics of active matter (presence of active elements

drive the system out of equilibrium, e.g., self-propelled particles) is an emerging field

and run-and-tumble processes are a prominent example of active matter. Hence, our

results do provide some fresh insights into this topical field of research. In chapter 5,

we also skim through the surface of another exciting development in stochastic ther-

modynamics: extreme-value statistics in the context of run-and-tumble processes.

The field of extreme-value statistics is concerned with the study of extreme events in

the stochastic process (e.g., tsunami, earthquakes, stock market crash) and, lately, a

few interesting universal relations have been obtained for extreme values of entropy

production [19–21]. We attempt to extend such studies to the position variable

(exhibits non-Markovian dynamics) in our run-and-tumble model and obtain some

important results which increase our understanding of simple non-Markovian pro-

cesses.

Overall, the results given in this work provide a comprehensive picture of how

memory affects the validity of recently obtained thermodynamic uncertainty rela-

tions in simple non-Markovian systems and aid our understanding of non-Markovian

stochastic thermodynamics.
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Chapter 2

Background

2.1 Discrete-time Markov processes

Markov processes are arguably the most useful and important class of stochastic pro-

cesses in natural sciences and mathematics. They are used to model a wide range

of real-life phenomena [22]. However, in the context of statistical mechanics, the

Markovian property can be seen in the works of Einstein on Brownian motion [23]

in 1905 and Paul Ehrenfest and Tatyana Ehrenfest on as early as 1907 [24]. The

Markov chains (discrete time) and the Markov jump processes (continuous time) are

often used in nonequilibrium statistical mechanics (NESM). Not only that, the com-

prehensive framework of stochastic thermodynamics heavily relies on the Markovian

assumption, i.e., the future of a process only depends on the present rather than the

entire past. We now briefly outline the concepts related to the Markov processes

based on the introductory texts of Ross [25] and Stirzaker [26].

Markov chain: Let {X1, X2 . . .} be a sequence of discrete random variables with

a finite or countable number of possible values.1 The set of all possible values is

called the state space (denoted here as S). Given a state space S and the probability

distribution or probability mass function pX(x) := P (X = x) (or simply p(x)), we

call {X1, X2, . . .} or {Xn, n ≥ 1} a Markov chain if it satisfies the following property:

P (Xn+1 = j|X1 = x1, . . . , Xn = i) = P (Xn+1 = j|Xn = i) = p(j|i). (2.1)

1We represent random variables in upper-case letters (e.g., X,Y ) and their deterministic value
(e.g., x, y) in lower-case letters.
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Figure 2.1: In detailed balance, the net forward and backward probability
flux/current must be balanced exactly between each pair of states.

In other words, the Markovian assumption states that the conditional probability of

any future state Xn+1 is entirely determined by the present state Xn, and unaffected

by the knowledge of whole history of a process. Here, the parameter n denotes time

and the above property is often called Markov or Markovian property. Particularly,

we are interested in time-homogeneous Markov chain where for all n,

P (Xn+1 = j|Xn = i) = p(j|i) = pij or pi→j. (2.2)

Transition matrix: The matrix containing all the possible one-step transition

probabilities pij is called a transition matrix, and is represented as

P = (pij), i, j ∈ S. (2.3)

The elements of transition matrix are non-negative, i.e., pij ≥ 0, and the sum of the

elements in the row in a transition matrix equals 1, i.e.,
∑

j∈S pij = 1, for all i ∈ S.
Stationary distribution: Let π =

(
πj

)
j∈S

be a row vector then π is called a

stationary (invariant) distribution if the following holds:

1. π is a probability vector, i.e., π satisfies πj ≥ 0, for all j ∈ S and
∑

j∈S πj = 1.

2. π = πP , i.e., πj =
∑

i∈S πipij,∀j ∈ S.

Mathematically, we can now define the condition of detailed balance (see Fig. 2.1)

required for equilibrium state as

πipij = πjpji, (2.4)

9



for all i and j. In this work, we shall limit our discussions to finite state Markov

chain (S is finite).

2.2 Large deviation theory

As stated in the introductory chapter, the relative size of fluctuations in small sys-

tems is important. In particular, large fluctuations are realised by rare events which

play a critical role in small systems (equilibrium and nonequilibrium). The theory

of large deviations [27–29] which is the study of exponential decay of probability dis-

tributions effectively deals with such events. The large deviation theory (LDT) pro-

vides a mathematical framework for a rigorous formulation of statistical mechanics

for both equilibrium and nonequilibrium systems. Here, the word ‘deviation’ means

the fluctuations from the typical (or most probable) values. In contrast with central

limit theorem, which only describes the probability distribution of random variables

around their mean, large deviation theory provides insights about distributions not

only near their typical value, but also far away from it. Thus, the description of both

small and large fluctuations of random variables (observables) is possible within the

framework of large deviations.

Large deviation principle (LDP): Let An be a random variable with prob-

ability distribution P (An) where parameter n (e.g., number of particles, number of

time steps) is assumed to be large. Then, P (An) satisfies an LDP if,

P (An = a) ≈ e−nI(a). (2.5)

The existence of an LDP implies that the probability distribution P (An) exponen-

tially decays with speed (no physical connection) n. The approximation sign (≈)
indicates that the decaying exponential term of P (An) dominates in the limit of

large n values. The quantity I(a) controls the rate of decay and is called the rate

function. To be more precise, we say for a random variable An, the LDP holds if

lim
n→∞

− 1

n
lnP (An = a) = I(a). (2.6)

The rate function I(a) determines the behaviour of the small and large fluctuations
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of An around its typical value. I(a) is always positive, and its zeroes yield the

typical or most probable values of An. In general, we use LDT methods to achieve

the following goals:

1. To prove that a large deviation principle exists.

2. To derive the corresponding rate function.

We list two methods which help us to achieve the abovementioned objectives.

The first method involves the direct calculation of the probability distribution of a

random variable and, subsequently, deriving a large deviation form using asymptotic

formulae such as Stirling’s approximation. The same method can be used to obtain

the rate function when An involves n independent and identically distributed (IID)

random variables. For instance, a large deviation approximation holds for the sample

mean of IID random variables. However, this approach may be difficult to implement

in scenarios when An is an arbitrary random variable, i.e., it is not an IID sample

mean or even a sample mean. The second method involves a central result of the

LDT established by J. Gärtner (1977) and Richard S. Ellis (1984), known as the

Gärtner-Ellis Theorem (reviewed in [28]).

Scaled cumulant generating function (SCGF): The scaled cumulant gen-

erating function associated with random variable An is defined as

λ(k) = lim
n→∞

1

n
ln⟨enkAn⟩, (2.7)

where ⟨·⟩ denotes the expected value and k ∈ R.
Gärtner-Ellis Theorem: Loosely speaking, the Gärtner-Ellis (GE) Theorem

states that if the SCGF λ(k) exists and is differentiable for all k ∈ R, then the

random variable An satisfies the LDP with the rate function I(a) which can be

obtained via the Legendre-Fenchel transform (extension of Legendre transform) of

λ(k). Mathematically, we have P (An = a) ≈ e−nI(a) and

I(a) = max
k
{k · a− λ(k)}. (2.8)

If λ(k) is differentiable and strictly convex (contains no linear parts), then rate
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function is simply the Legendre-transform of λ(k):2

I(a) = k(a) · a− λ(k(a)) (2.9)

where k(a) is the unique maximum of ka−λ(k) and satisfies λ′(k) = a. Clearly, GE

Theorem is applicable to both IID and non-IID cases. The GE Theorem enables

one to compute the rate function I(a) without explicitly computing the probability

distribution P (An). The SCGF λ(k) allows one to derive the first two cumulants,

namely the mean (µ) and the variance (σ2) of the random variable An:

λ′(0) = µ ⇐⇒ I(µ) = 0, (Consequence of Legendre duality),

λ′′(0) = σ2. (2.10)

In most of the cases, it is sufficient to derive λ(k) and subsequently compute the

first two cumulants. Before we outline the elements of large deviation theory for

Markov processes, let us illustrate the elements of LDT via a simple example of

sample mean of IID random variables.

Example (Bernoulli sample mean). Let {X1, X2, . . .} be the sequence of IID

random variables taken from the Bernoulli distribution with mean µ and variance

σ2. We are interested in the sample mean which is defined as

Sn =
1

n

n∑
i=1

Xi, n ≥ 1 and P (Xi = x) =

{
1 with probability p,

0 with probability 1− p.
(2.11)

The mean µ and variance σ2 of Xi’s are given by p and p(1− p), respectively. Our

goal is to prove whether an LDP exists for sample mean Sn or not. We shall use the

second method which involves the Gärtner-Ellis Theorem and we shall require the

2In this work, we do not study non-convex rate functions and non-differentiable SCGF. For
details, please see section 4.4 in [28].
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Figure 2.2: Scaled cumulant generating function λ(k) for Bernoulli sample mean for
which the value of mean (µ) is p. Note that λ(0) = 0 and the slope λ′(0) = µ. Based
on references [28,31]

SCGF λ(k):

λ(k) = lim
n→∞

1

n
ln⟨enkSn⟩ = lim

n→∞
ln
〈
ek

∑n
i=1 Xi

〉
= lim

n→∞
1

n
ln
〈
ekX1 · ekX2 . . . · ekXn

〉
(Since Xi’s are IID.)

= lim
n→∞

1

n
ln(pek·1 + (1− p)ek·0)n

= ln(pek + (1− p)), where k ∈ R. (2.12)

The differentiability condition of λ(k) in the case of IID random variables is always

fulfilled as the cumulant generating function of X is a real analytic function for all

k ∈ R (for more details see [30]). Figure 2.2 illustrates the SCGF λ(k) for Bernoulli

sample mean and its properties (2.10). Hence, we can say P (Sn = s) ≈ e−nI(s)

where rate function is the Legendre transform of λ(k). We require the solution of
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Figure 2.3: Corresponding rate function I(s) of λ(k) for Bernoulli sample mean with
mean µ = p. Note that I(s) ≥ 0 and I(µ) = 0 (denoted with “•”). Adapted from
references [28,31].

λ′(k) = s, i.e., k(s) and λ(k(s)) for the Legendre-transform of λ(k) which are:

λ′(k) =
pek

1− p+ pek
,

⇒ k(s) = ln
(1− p)s

p(1− s)
, and

λ(k(s)) = ln

(
1− p+ p · (1− p)s

p(1− s)

)
⇒ λ(k(s)) = ln

1− p

1− s
. (2.13)

Consequently, the rate function looks like

I(s) = k(s) · s− λ(k(s)) = s ln
s

p
+ (1− s) ln

(
1− s

1− p

)
. (2.14)

We can also obtain (2.14) using the direct method which involves calculating P (Sn).

Figure 2.3 illustrates the rate function I(s) where zero of the rate function yields the

mean µ. The rate function I(s) provides insight into the small and large fluctuations

around the mean value.
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A lot of interesting and useful results can be formulated for nonequilibrium

systems using Markovian models. To illustrate this, we consider a sequence {Xn, n ≥
1} of n random variables and an observable

Qn =
1

n

n∑
i=1

f(Xi, Xi+1). (2.15)

The observable Qn consists of a function f which involves two states Xi and Xi+1.

In general, Qn is particularly useful for modelling particle current in nonequilibrium

systems and within this context, f(·) is antisymmetric, i.e., f(x, x′) = −f(x′, x).
For a random walk model, f(·) can take the following form

f(x, x′) =

{
±1 if x′ = x± 1,

0 if x′ = x.
(2.16)

We shall discuss in detail about particle current in the upcoming sections. For the

sake of demonstration of different elements of large deviation formalism, it is easier

to work with a sample mean Sn which is a simpler function of (2.15):

Sn =
1

n

n∑
i=1

f(Xi). (2.17)

In addition, we assume that Xi’s form a Markov chain, that is the joint probability

mass function looks like

P (X1, X2, X3, . . . , Xn) = ρ(X1)
n∏

i=2

P (Xi|Xi−1). (2.18)

Here ρ(X1) denotes the probability distribution of the initial state and the condi-

tional probability P (Xi|Xi−1) is an element of the finite transition matrix P. To

derive a large deviation principle for Sn, we need SCGF λ(k). The generating func-

tion in this case can be written as
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⟨enkSn⟩ =
∑

X1,X2,...,Xn

ρ(X1)e
k·f(X1)P (X2|X1)e

k·f(X2) · · ·P (Xn|Xn−1)e
f(Xn)

=
∑

X1,X2,...,Xn

Pk(Xn|Xn−1) · · ·Pk(X2|X1)ρk(X1) (2.19)

where ρk(X1) = ρ(X1)e
k·f(X1) and Pk(Xi|Xi−1) = P (Xi|Xi−1)ek·f(Xi). The sequence

of matrix products involving transition matrix Pk(Xi|Xi−1) and ρk(X1) can be recog-

nised in the second line of (2.19). Furthermore, ρk can be denoted as the vector of

probabilities ρk(X1 = i), i.e., ρk(X1)i = ρk(X1 = i) and P̃k can be denoted as the

matrix containing the elements Pk(Xi|Xi−1), i.e.,
(
P̃k

)
ji
= Pk(j|i). Hence, we can

rewrite (2.19) in terms of ρk and P̃k as

⟨enkSn⟩ =
∑
j

(
P̃n−1

k ρk

)
j

(2.20)

Tilted transition matrix: We define P̃k as the tilted transition matrix whose

elements are given as P̃k(Xi|Xi−1) = P (Xi|Xi−1)ek·f(Xi). The SCGF λ(k) is ex-

tracted from the asymptotic behaviour of the product P̃n−1
k ρk in (2.20) using the

Perron-Frobenius Theorem [32] of positive matrices (the dominant eigenvalue or

eigenvalue with largest real part, is real) as

λ(k) = ln ζ(P̃k), (2.21)

where ζ(P̃k) is the dominant eigenvalue of the tilted transition matrix.3 For an

observable of the form Qn (2.15) or particle current, the elements of P̃k are defined

as

P̃k(Xi|Xi−1) = P (Xi|Xi−1)e
k·f(Xi−1,Xi). (2.22)

3For more mathematical details, see section 4.3 in [28]. Moreover, in the case of continuous-time
Markov process, P̃k is called a tilted generator whose dominant eigenvalue (no logarithm required)
yields λ(k).
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Note that the above results hold only in the case of finite state space (for a discussion

on infinite state space, see [33–37]. Furthermore, for a finite Markov chain, it can be

shown that λ(k) is real analytic and hence differentiable. Then, the Gärtner-Ellis

Theorem for Markov processes states that Sn satisfies the LDP:

P (Sn = s) ≈ e−nI(s) where (2.23)

I(s) = max
k
{k · s− ln ζ(P̃k)}. (2.24)

In the next section, we briefly review how Markov chains and the large deviation

formalism can be applied to nonequilibrium systems, particularly, small systems.

We concentrate on the pedagogical treatment of essential key concepts of stochastic

thermodynamics which aptly describes the dynamics of such small systems.

2.3 Stochastic thermodynamics: key concepts

Stochastic thermodynamics is an important subfield of statistical mechanics [38].

It interprets thermodynamic concepts in mesoscopic, nonequilibrium (small) sys-

tems [7] in which behaviour is inherently random due to the presence of fluctua-

tions. Some prominent examples of these systems are nanodevices, colloidal parti-

cles, molecular motors, macromolecules, biomolecular networks and quantum dots.

Stochastic dynamics describe the evolution of mesoscopic, physical systems where

the characteristic energies are of the order of kBT (kB is the Boltzmann constant

and T is the temperature). Arguably, one of the defining features of stochastic

thermodynamics is associating thermodynamic quantities (e.g., work, heat, entropy

production) to randomly fluctuating, individual trajectories [39–41]. It also high-

lighted the importance of fluctuations associated with physical observables (e.g.,

entropy production, current) which are governed by general relations (e.g., fluctua-

tion relations [8–11]). The rapid advancement in technology allows experimentalists

to externally manipulate (variation of temperature with time, optical tweezers) these

mesoscopic systems, leading to tests of these relations. We are interested in this the-

oretical framework as it allows us to apply advanced mathematical tools (e.g., large

deviations, probability measures in trajectory space, stochastic process) to study

random processes in small systems.
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Figure 2.4: Record of steps of a molecular motor resemble a Markov process. Based
on [42].

We provide two examples to illustrate how randomness govern the behaviour of

above-described small systems. Figures 2.4 and 2.5 illustrate the records of steps

taken by a molecular motor in an experiment and a protein in water molecule al-

ternating between loose (unfolded) and compact (folded) state, respectively. These

processes can be theoretically modelled as Markov process, e.g., biased random walk,

two-state Markov chain [27, 28]. The first step in this direction is the choice of toy

model which can help us to demonstrate the application of Markov chains and large

deviation formalism. Below we discuss one such toy model of a random walker which

is used extensively to study a variety of small nonequilibrium systems.

2.3.1 Asymmetric random walk model

Here we provide a simple example to demonstrate how the theoretical framework

given in previous sections can be applied to a concrete model— asymmetric (or bi-

ased) random walk (ARW). The ARW model allows one to compactly derive various

elements of the Markov chain (e.g., transition matrix) and LDT (e.g., SCGF and

rate function). It also succinctly demonstrates the established universal relations in

NESM such as fluctuation relations [8–11, 44, 45] and thermodynamic uncertainty

relations [12,46] (to be discussed later).
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Unfolded Folded
Figure 2.5: Schematic of a protein in water alternating between two conformations
(unfolded and folded) which can be modelled as a two-state Markov process. Based
on [43].

1

3 2

Figure 2.6: An asymmetric or biased random walk model with L = 3 on a lattice
with periodic boundary condition. The particle hops to the right with probability
p and to the left with probability q = 1− p.

Let us start with a simple random walker in discrete space and discrete time. The

walker hops on a one-dimensional lattice (L sites) with periodic boundary conditions.

Let Xt denote the particle’s position at time t with the state space S ∈ {1, 2, . . . L}.
The transition matrix P contains all the probabilities pij = P (Xt = j|Xt−1 = i).

We assume the particle jumps to the right (clockwise, ↷) with probability p and

left (anti-clockwise, ↶) with probability q = 1− p as shown in Fig. 2.6. The above

specifications ensure that the trajectory X = {Xt}Tt=1 with T time steps is a Markov

chain. If p = 0.5, then the model reduces to an unbiased or a symmetric Markovian

random walker. We choose L = 3 to illustrate the calculations in a more compact

form. Then, the transition matrix can be written as
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P =

1 2 3
0 p q 1

q 0 p 2

p q 0 3

. (2.25)

Furthermore, let π = (π1, π2, π3) denote the probability vector, then we can find

the stationary distribution by using the relation π = πP. By simple matrix algebra,

we get following system of equations:

qπ2 + pπ3 − π1 = 0

pπ1 + qπ3 − π2 = 0

qπ1 + pπ2 − π3 = 0

π1 + π2 + π3 = 1

p+ q = 1. (2.26)

and solving this system of equations yields

π1 = π2 = π3 =
1

3
. (2.27)

In general, for a lattice of L sites, the Markov chain has a stationary distribution with

probability (1/L) which is not surprising as the system is translationally invariant,

i.e., the transition probabilities are independent of its location on the lattice. This

statement also holds true for both symmetric (p = q) and asymmetric (p ̸= q)

random walks on a periodic lattice. At this point, it is interesting to introduce the

concept of particle current which can be simply thought of as net velocity or heat

flux, although it can be defined in multiple ways (e.g., for a single particle, across a

particular bond). Then, the symmetric and asymmetric random walks represent the

equilibrium (zero mean current) and nonequilibrium (non-zero mean current) cases,

respectively. Below, we shall discuss the particle current which is mostly the chief

observable of interest in this work.
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2.3.2 Stochastic particle current

Fluctuations are present in both equilibrium and nonequilibrium systems. Moreover,

fluctuations are observed in microscopic and macroscopic systems. However, the

fluctuations related to physical observables in small systems may have magnitude

compared to their mean values. Therefore fluctuations arising in small systems

cannot be disregarded as noise. Here we focus on nonequilibrium systems which

have a distinguishing feature of a non-zero flux or current. In small systems, current

is manifested in myriad forms such as the heat flow in a mesoscopic heat engine, the

heat flow due to a thermal gradient, the velocity of a processive molecular motor,

the electric current due to the electron transport in a quantum dot and the particle

current in lattice gas.

Time-integrated current: We are chiefly interested in the aspects of nonequi-

librium systems such as the particle current in ARW. First, we define JT as the

time-integrated current which counts the net number of hops between right and left

steps up to time T . Mathematically, JT =
∑T

t=1∆Jt, i.e., it is the sum of IID current

increments ∆Jt where t = 1, 2, . . . , T . A right hop (↷) corresponds to a positive

current increment (∆J = +1) with probability p whereas a left hop (↶) involves

a negative increment (∆J = −1) with probability q = 1 − p. The time-integrated

current can also be written as

JT = N+ −N−, (2.28)

where N+ and N− correspond to the net number of jumps in right (+) and left

(−) direction up to time T . Furthermore, the mean value ⟨JT ⟩, is always zero in

equilibrium. We are interested in observables of the form mentioned in (2.15), that

is

JT
T

=
1

T

T∑
t=1

∆Jt ∆Jt = ±1. (2.29)

We refer to JT/T as the time-averaged current or simply ‘current’. Below we show

that JT/T satisfies LDP in asymptotic limit, i.e., T → ∞ (see Fig. 2.7). For this

purpose, we need the SCGF λ(k) which can be derived by using the expression
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Figure 2.7: (a) A single realisation of time-integrated current JT (net number of
jumps between right and left steps up to time T ) for an asymmetric random walk
(ARW) (inset). The slope JT/T is the time-averaged current. (b) Multiple realisa-
tions of JT illustrate its stochastic nature. (c) P (JT/T = j) denotes the probability
distribution for time-averaged current, and the important question is whether this
distribution asymptotically satisfies the large deviation principle. Adapted from ref-
erence [47].
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in (2.7) for the current increments ∆J . Alternatively, we can take the logarithm of

the largest eigenvalue of the tilted transition matrix P̃k.

The tilted transition matrix P̃k can be written as

P̃k =

1 2 3
0 pek qe−k 1

qe−k 0 pek 2

pek qe−k 0 3

. (2.30)

The dominant eigenvalue for this tilted transition matrix is

ζ = pek + qe−k,

and the SCGF λ(k) looks like

λ(k) = ln(ζ) = ln(pek + qe−k). (2.31)

Clearly, λ(k) is differentiable and therefore by the Gärtner-Ellis Theorem, we can

say that the time-averaged current JT/T satisfies the LDP

P (JT/T = j) ≈ e−TI(j) (2.32)

with the rate function given by I(j) = k(j) · j−λ(k(j)). Using (2.31), we can easily

compute the λ′(k) and k(j):

λ′(k) =
pek − qe−k

pek + qe−k
,

⇒ k(j) =
1

2
ln

[
(1 + j)q

(1− j)p

]
. (2.33)

Hence, the rate function I(j) takes the following form:

I(j) = j ln

√(
1 + j

1− j

)
q

p
+ ln

√
1− j2 − ln

√
pq − ln 2. (2.34)
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Figure 2.8: Scaled cumulant generating function λ(k) for an asymmetric random
walker given in (2.31), λ′(0) = 2p− 1 denotes the mean current.

The SCGF λ(k) and the rate function I(j) are shown in Figs. 2.8 and 2.9 ,

respectively. For brevity, we denote time-integrated current JT as J ; then the steady-

state mean current j̄ := limT→∞E[J ]/T can be derived by utilising the Legendre

duality property of the SCGF and the rate function as

λ′(0) = j = 2p− 1, and I(j) = 0. (2.35)

Another quantity of equal interest is the variance (σj
2 := limT→∞Var[J ]/T ) of the

particle current which characterises the fluctuations. It can also be easily obtained

using λ(k) as

λ′′(0) = σj
2 = 4p(1− p). (2.36)

Below we introduce the trajectory-level formulation of stochastic entropy which led

to a much-refined understanding of the second law of thermodynamics and the notion

of time-reversibility in nonequilibrium systems.
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Figure 2.9: Rate function I(j) for time-averaged current JT/T in asymmetric ran-
dom walk model given in (2.34). Note that I(j) is zero at j = 2p− 1.

2.3.3 Time-reversibility and stochastic entropy production

The crucial element in the development of stochastic thermodynamics was defining

entropy associated with a specific trajectory. Following the seminal work of Seki-

moto [39], Seifert identified entropy with a fluctuating trajectory [41] and it was also

later confirmed experimentally [48]. He defined the stochastic entropy in a specific

trajectory (at each time) as the negative logarithm of the probability associated

with the observed state at that time.

Time-reversibility: To proceed further, we need the concept of time-reversibility

which is fundamental to understand stochastic entropy. To be more concrete, here

the term ‘time-reversal’ of a stochastic trajectory corresponds to switching of the

starting point and the endpoint (see Fig. 2.10) . Consider a state-space trajectory

Xt = {Xt}τt=0 and its realisation xt = {xt}τt=0 , then its time-reversed version is

X̃t = {X̃t}τt=0 = {Xτ−t}τt=0. Let x̃t = {x̃t}τt=0 = {xτ−t}τt=0 be the sample realisation

of X̃t. Then, the probability of forward (original) trajectory can be written as

P [Xt = xt] = Pstart(x0)P [Xτ = xτ |X0 = x0], (2.37)
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Original 

Time-reversed 

Figure 2.10: Time-reversal of a stochastic trajectory: For a state-space trajectory
Xt (red) its time-reversed version is X̃t (blue) for an observation time T . Based on
reference [49].

where Pstart(x0) and P [Xτ = xτ |X0 = x0] correspond to the initial probability

distribution of the starting point x0 and the probability of rest of the trajectory

respectively. By repeated application of the Markov property, one can rewrite the

above equation as

P [Xt = xt] = Pstart(x0)p(x1|x0)× p(x2|x1)× . . . p(xτ |xτ−1). (2.38)

Analogously, we can write the probability associated with the time-reversed tra-

jectory assuming Pend(x̃0) is the probability distribution at the end of the forward

(original) trajectory:

P [X̃t = x̃t] = Pend(x̃0)P [X̃τ = x̃τ |X̃0 = x̃0]. (2.39)

and

P [X̃t = x̃t] = Pend(xτ )p(x̃1|x̃0) . . .× p(x̃τ |x̃τ−1). (2.40)
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Stochastic entropy production: Mathematically, we can now define the total

entropy production as

Stot = ln
[P [Xt = xt]

P [X̃t = x̃t]

]
= ln

[Pstart(x0)

Pend(xτ )

]
︸ ︷︷ ︸

ssys

+ ln
[ τ∏

i=1

p(xi|xi−1)

p(x̃i|x̃i−1)

]
︸ ︷︷ ︸

smed

(2.41)

where ssys is the system entropy given as the difference between boundary terms:

− lnPend(xτ ) − (− lnPstart(x0)). The other term smed corresponds to the entropy

production due to the medium (rest of the trajectory) which can also be written as

smed = ln
[ τ−1∏

i=0

p(xi+1|xi)

p(xi|xi+1)

]
. (2.42)

Moreover, the mean entropy production rate s̄tot looks like

s̄tot =
1

τ
⟨Stot⟩ =

1

τ

〈
ln
[P [Xt = xt]

P [X̃t = x̃t]

]〉
. (2.43)

In the case of equilibrium systems, we have P [Xt = xt] = P [X̃t = x̃t] which

implies zero entropy production and detailed balance. In other words, one cannot

distinguish whether the movie is being played forwards or backwards. In steady

state, the initial and final probability distributions are equal, i.e., Pstart = Pend.

Usually, in the asymptotic limit the boundary terms are bounded in stochastic pro-

cesses with finite state space; hence entropic contribution ssys is negligible compared

to the second term smed in t → ∞ limit. Consequently, in steady state, the total

entropy production Stot is simply the entropy production due to the medium smed.

However, this argument is not true for stochastic systems with unbounded state

space, for more details on infinite state space, the interested reader is referred to

works given in [35–37,50].

One can think entropy production as a direct measure of the irreversibility in

stochastic systems; however, one has to be careful while constructing a reversed

trajectory for physical observables with a defined parity as the definition of entropy
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production crucially hinges on whether the sign of the observable is reversed (odd,

e.g., momentum) or not (even, e.g., position) [51,52]. We shall briefly discuss differ-

ent prescriptions of time-reversal of a trajectory for a simple non-Markovian model

in the next chapter.

Example (Asymmetric random walk). In our toy model, the Markov chain

consisted of position variables which are even and the state space is also bounded,

so smed is the total entropy production of the system. Recall that the net number

of right and left hops are N+ and N− up to time T , respectively; we can write the

total entropy production Stot (using (2.42)) in asymptotic limit T →∞ as

Stot = N+ ln
p

q
+N− ln

q

p
= (N+ −N−) ln

p

q
, (2.44)

and the mean entropy production rate s̄tot is

s̄tot = lim
T→∞

⟨N+ −N−⟩
T

ln
p

q
= j ln

p

q
= (p− q)× c. (2.45)

where j is asymptotic mean current and c = ln(p/q) denotes the proportional-

ity constant—affinity, which connects entropy production and current in stochastic

systems.

2.4 Universal relations

In this section, we depart from mathematical preliminaries and focus on the physi-

cal applications of large deviations. Despite tremendous difficulties in understanding

the underlying principles in nonequilibrium systems, Markovian modelling indeed

provides some relief. As mentioned earlier, the study of fluctuations related to

nonequilibrium observables such as particle current, heat and work is of paramount

importance. Moreover, the relevance and prominence of statistical fluctuations in-

creases as the system-size decreases. It is established that the fluctuations present

at mesoscopic scale are more than mere background noise [53]. To be more pre-

cise, the fluctuations satisfy some unexpected properties which shed crucial light on

the important universal aspects of NESM like irreversibility and connection with
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macroscopic thermodynamics.

In the next subsections, we give a brief sketch of such universal properties of

the distribution of particle current, namely fluctuation theorem (FT) and thermo-

dynamic uncertainty relation (TUR). Specifically, the thermodynamic uncertainty

relations are central to our research work, and is explored rigorously in simple non-

Markovian toy models and general class of run-and-tumble models in later chapters.

2.4.1 Fluctuation relations

The fluctuation relations (FRs) are crucial to the understanding of important con-

cepts in nonequilibrium statistical mechanics. Moreover, they are applicable to both

microscopic and macroscopic observables. Arguably, fluctuation relations provides

key theoretical insights on second law of thermodynamics and time-reversal proto-

cols in nonequilibrium systems. In particular, we focus on the Gallavotti-Cohen-type

Fluctuation Relation (GCFR) for nonequilibrium observables.

Gallavotti-Cohen-type Fluctuation Relation (GCFR): Let us denote AT as

a nonequilibrium observable (in a finite state space) integrated over a time interval

T and assume P (AT = a) is the probability of an observable of value AT = a. Then,

AT is said to satisfy the GCFR if

P (AT = a)

P (AT = −a) ≈ eTca, (2.46)

in asymptotic limit T → ∞, with affinity c. The physical interpretation of (2.46)

is that the realisations with positive fluctuations are exponentially more probable

than the ones with negative fluctuations of equal magnitude. The fluctuation re-

lations, in general, express the exponential dominance of positive fluctuations over

negative ones. The FRs are universal laws which characterise the fluctuations of

other nonequilibrium observables such as work, heat, entropy production.4 Equa-

tion (2.46) is an example of steady-state fluctuation relation but there are also

transient fluctuation theorems [44, 45] which are valid for finite time. In the spirit

of reference [28], we use ‘fluctuation theorem’ (FT) when we mathematically prove

an asymptotic result (2.46) for a specific observable whereas ‘fluctuation relation’ is

4Although exceptions do exist where FRs are not valid for these observables, e.g., see [33].
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used when the result is numerically or experimentally verified.

Fluctuation relations were first observed in the numerical study of fluctuations

of sheared fluids by Evans et al. [8]. Gallavotti and Cohen [9], later proved the

fluctuation theorem for deterministic systems. Subsequently, FT was extended to

Langevin dynamics by Kurchan [10] and the same for general Markov processes were

accomplished by Lebowitz and Spohn [11]. The mathematical intricacies and validity

of different types of fluctuation relations and theorems was discussed in detail by

Harris and Schütz [36]. Moreover, a detailed discussion on the breakdown of GCFR

in the infinite state space for Markovian case can be found in [35, 37, 50].5 Many

experimental studies of fluctuation relations have also been conducted in context

of colloidal particles in traps, electrical circuits, granular gases and other systems

(see section 6.3 of [36] and references therein). In general, for overall review on

experiments in stochastic thermodynamics can be found in the recent review by

Cilberto [54].

The GCFR also connects the large deviation functions obtained in the earlier

section. For the observable AT/T , the sufficient conditions for having a fluctuation

relation is that the rate function I(a) and λ(k) should satisfy the following symmetry

relations:

I(−a)− I(a) = ca,

λ(k) = λ(−k − c), k ∈ R. (2.47)

Example (GCFR in ARW model). We now illustrate the Gallavotti-Cohen-

type fluctuation relation for the stochastic particle current which is proportional to

entropy production in a simple asymmetric random walk model. In steady state,

GCFR for current takes the following form

P (JT/T = j)

P (JT/T = −j) ≈ eTcj, (2.48)

where c = ln(p/q) is the time-independent affinity for the biased random walker.

Equation (3.25) states that the positive fluctuations of current are exponentially

5For other detailed literature regarding the breakdown in different contexts, please see chapter
8 (and references therein) of [7].
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more likely than the negative ones. In the language of large deviations, we can

verify GCFR by using the symmetry relations given in (2.47). For this purpose, we

use the SCGF λ(k) obtained in (2.31) with the affinity c:

λ(−k − c) = ln(pe−k−c + qek+c) = ln(pe−k · q
p
+ qek · p

q
)

= ln(pek + qe−k) = λ(k). (2.49)

Similarly, we use (2.34) to write the symmetry relation in terms of the rate function

as

I(−j)− I(j) =
[
− j ln

√(
1− j

1 + j

)
q

p
+ ln

√
1− j2 − ln

√
pq − ln 2

]
−
[
j ln

√(
1 + j

1− j

)
q

p
+ ln

√
1− j2 − ln

√
pq − ln 2

]
=

j

2
ln
(p
q

)2
= ln

(p
q

)
j = cj. (2.50)

It confirms the validity of GCFR and expression of affinity in our toy model.

Below we introduce the thermodynamic uncertainty relations which have emerged

as an active area of research in the field.

2.4.2 Thermodynamic uncertainty relation

Fluctuation theorems elucidated that the basic structure of nonequilibrium sta-

tistical mechanics is hidden in the symmetries of the fluctuations associated with

observables. Furthermore, FTs have dominated the landscape of fundamental re-

search in stochastic thermodynamics for the last two decades. Recently, a new class

of inequalities called ‘thermodynamic uncertainty relations’ (TURs) [12–14,46] have

been derived which quantify the universal trade-off between current, its statistical

fluctuations (variance) and entropy production. For brevity, we denote here time-

integrated current as J and time as t.
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Formally, we define the first two scaled cumulants as

j = lim
t→∞

E[J ]

t

σj
2 = lim

t→∞
Var [J ]

t
. (2.51)

Continuous-time version: The TUR was initially proposed (numerically con-

jectured) by Barato and Seifert [12] and subsequently proved by Gingrich et al. [46]

for continuous-time Markovian systems with finite state space. The TUR expresses

the interplay between mean current j, associated variance or fluctuations σj
2 and

the mean entropy production rate s̄tot (involves transition rates instead of transition

probabilities) as

j
2

σj
2
≤ s̄tot

2kB
, (2.52)

where the ratio j
2
/σj

2 corresponds to uncertainty6 of the time-averaged current.

Here and throughout the thesis, we set Boltzmann’s constant kB equal to 1. The

TUR also demonstrates the complementary relation between precision (small un-

certainty) and entropy production rate. In other words, there is a minimum cost of

precision irrespective of the duration of the process. Figure 2.11 helps to build up

a intuition about uncertainty in terms of stochastic trajectories. A better physical

picture of uncertainty associated with particle currents can be build using molecu-

lar motor schematic given in Fig. 1.2. The trajectories in Fig. 2.11 correspond to

the state-space paths taken by molecular motor to reach the final position (overlaid

snapshots) on the filament in different runs. Furthermore, there are two major un-

derlying assumptions: first, the system relaxes to a unique nonequilibrium steady

state (NESS) in the asymptotic limit and second, the system observables do not

change sign (i.e., even variables, no magnetic fields) on applying time-reversal pro-

tocols.

Validity of TUR: The discovery of TUR and numerous subsequent works has

6Many authors define uncertainty as reciprocal of j
2
/σj

2 but throughout this thesis we follow
the convention used by Proesmans and co-authors [18,55].
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Figure 2.11: Schematic illustration of quantities involved in thermodynamic uncer-
tainty relation for a biased random walk model (2.53). If mean current is j (black
solid line) and σj is standard deviation then the length of double arrow denotes 2σj.

The ratio of square of mean current (j
2
) to the variance (σj

2) is always bounded
by the entropy production rate of the process. TUR implies that the precision of a
physical observable is regulated by an entropic bound. Partially based on [56].

established it as one of the universal relations in nonequilibrium statistical physics.

Using large deviation theory researchers have derived TUR for time-homogeneous

Markov processes [18, 57–67] and subsequently extended it to periodically driven

systems [68–70], semi-Markov process [71], time-delayed and underdamped Langevin

dynamics [49,72], multidimensional systems [73], systems with broken-time-reversal

symmetry [55, 74] and quantum systems [71, 75–83]. Interestingly, TUR has been

generalised for finite-time [59,60,84] limit. Similar bounds have also been obtained

using approaches from information theory [85–87]. The intricacies and subtleties of

all versions of TUR have been nicely summed up in a recent review by Horowitz

et al. [14]. However, the given list is non-exhaustive as TURs are an active area of

research.

Applications: Going beyond the validity of uncertainty relations, we can ask

new questions such as how TUR helps us to understand stochastic systems. The

TUR contains uncertainty (square of mean to the variance) of associated current

and entropy production rate where the former is experimentally accessible. The

structure of TUR facilitates the inference of entropy production [88–92]. Another
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important application is the derivation of bounds on efficiency in molecular motors

in terms of motor velocity (current) which can be directly measured experimen-

tally as opposed to the adenosine triphosphate (ATP —‘energy currency’ of life

processes) consumption rate [93, 94]. Such studies also provide crucial insights into

the design principles of mesocopic devices, modelling and analysis of biomolecular

process [95,96]. The TUR can also be extended to other observables such as ‘frenesy’

or ‘traffic’ or ‘activity’, that counts the net number of transitions among different

states regardless of the direction [62,97,98].

Discrete-time version: We work mostly in discrete-time setting and the TUR

given in (2.52) is not directly applicable in asymptotic limit. Moreover, the finite-

time version [59,60] of TUR also does not hold for discrete-time case [99]. Proesmans

and Van den Broeck proposed a discrete-time TUR [18]:

j
2

σj
2
≤ 1

2∆t
(es̄tot − 1) . (2.53)

To be more precise, the right hand side of above equation is referred to as the

‘Proesmans-Van den Broeck (PV) bound’ [66]. The above inequality provides a

constraint on the uncertainty j
2
/σj

2 of any current J in terms of the mean total

entropy production rate s̄tot of the process; ∆t is the time step which we can set to

1 without loss of generality.

Example (ARW toy model). In case of biased random walker, the mean current,

variance and mean entropy production rate are as follows:

j = 2p− 1, σj
2 = 4p(1− p), s̄tot = j × ln

( p

1− p

)
. (2.54)

Then, the discrete-time TUR or PV bound (2.53) takes the following form:

j
2

σj
2
=

(2p− 1)2

4p(1− p)
≤ 1

2

(
es̄tot − 1

)
. (2.55)

Figure 2.12 shows that the uncertainty relation holds for all values of p.

In the last two sections, we have successfully illustrated fluctuation theorem and

TUR for the ARW model which is the paradigmatic model for Markovian dynamics.

The central objective of this thesis is to extend TUR to non-Markovian systems.
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Figure 2.12: Discrete-time thermodynamic uncertainty relation for asymmetric
random walk (ARW) model: uncertainty (solid blue), PV bound (dashed red),
continuous-time TUR (dotted black).

We end this chapter with a brief summary of non-Markovian processes and their

significance in physical systems.

2.5 Remarks on non-Markovian processes

We conclude this chapter with a summary of different ways a non-Markovian system

can be defined in stochastic thermodynamics. The physicist N.G. Van Kampen once

remarked on the role of memory in physical systems [100]: “Non-Markov is the rule,

Markov is the exception.” Many random processes are non-Markovian, but some of

the processes can be treated as Markovian at the appropriate timescales. Moreover,

most of the interesting results in nonequilibrium physics are obtained by modelling

systems as Markov processes. Although, Markovian assumption is extremely use-

ful and widely applicable, we must not forget it is an idealised scenario. In real

life, the history of a process or the memory matters and cannot be always ignored.

For instance, polymers exhibit properties such as persistence (monomers are corre-

lated) and self-avoidance (two monomers cannot occupy the same site) and therefore,
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self-avoiding random walk models [101–103] are ubiquitous in the polymer science.

Similarly, protein numbers are affected by the presence of molecular memory in the

phenomenon of gene expression [104–106]. All these interesting observations cannot

be answered using traditional models with Markovian (or memoryless) assumptions.

In general, memory plays a crucial role in various systems which involve ‘non-

Markovian’ processes, and often require intricate models to capture the dynamics.

Below we provide a brief list of systems exhibiting non-Markovian dynamics:

• Biological systems [105, 107–115], e.g., single-molecule enzyme kinetics [110–

114], ion-transport [115].

• Physical systems [116–125], e.g., single molecule experiments [115,117], diffu-

sion based models [118, 120, 121], quantum systems [122, 123], hydrodynam-

ics [116,125].

• Climate-related [126] and financial [127] systems.

• Temporal networks, e.g., online social interactions at a specific point in time,

functional brain networks [128,129].

Speaking of non-Markovian behaviour, one must include the interesting case of

anomalous dynamics which is displayed by a wide variety of systems, e.g., amor-

phous semiconductors, biological cell migration, glassy materials etc. For references

and more details, see [130–133]. The paradigmatic continuous-time random walks

(CTRW) [134] are widely used to model systems exhibiting anomalous dynamical

behaviour and systems with memory in general.

There are numerous methods of encoding memory in a stochastic model. Here,

we briefly list only a few of such methods: (a) addition of correlated random noise to

a stochastic differential equation (generalised Langevin equation) and memory ker-

nel in Fokker-Planck equations [100, 135–138], (b) semi-Markov processes (renewal

processes with non-exponential waiting/interarrival times) [113, 114, 139–143], and

(c) hidden Markov models (HMMs) [43, 144–153]. One class of relevant examples

in the context of nonequilibrium system is of non-Markovian models of interacting

particle systems based in discrete lattice. In these models, memory effects have been

studied in the form of non-Poissonian dynamics [141,142] and HMMs [149,152,153].
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Moreover, HMMs have also been employed to estimate entropy production [150,151]

and to analyse observations from stochastic thermodynamics in the presence of mea-

surement errors and feedback [43].

The other class of examples involve memory or history-dependent random walk

models [154–160] which are used to incorporate finite or infinite memory in a system.

These models also find application in other fields such as ecology (animal foraging

and mobility) [154, 155, 161], finance [158] and probability [159]. Similarly, there

are microscopic approaches to incorporate long-range memory in statistical physics:

(a) history-dependent step-length [160] and (b) transition probabilities or rates such

as in the ‘elephant’ (complete history) [162–165] and ‘Alzheimer’ (partial memory)

random walk models [156,157].

In stochastic thermodynamics, one of the important questions is the effect of

memory on the distribution of current in stochastic models. Such questions mo-

tivated stochastic particle models where rates depend on the history of the cur-

rent [166, 167]. These models facilitate the calculation of the large deviations of

current fluctuations and test the validity of fluctuation theorems in non-Markovian

models. Furthermore, the validity of fluctuation theorems along with the concept

of entropy production in non-Markovian systems (with varied definition) have also

been studied to some extent [137,138,169–179].7 In the next chapter, we shall check

the validity of recently obtained thermodynamic uncertainty relation for current

observable in one of the simplest non-Markovian microscopic models with one-step

memory.

7We reiterate that the given list of references is non-exhaustive and fluctuation relations in
non-Markov processes are still an active area of research (see [168] and references therein).
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Chapter 3

Toy model: asymmetric persistent

random walk

3.1 Introduction

In the previous chapter, we have seen that in many real-life processes [105, 107–

129, 154, 155, 158, 159], particularly, in small systems where memory effects become

essential, the Markovian assumption is no longer valid. Therefore, there is need for

new models which incorporate non-Markovian effects for studying various systems.

In addition, we summarised in that chapter the memory effects in the mesoscopic and

the microscopic systems which require the theoretical framework of non-Markovian

stochastic thermodynamics [43,100,113,114,135–142,144–153,156,157,160,162–167,

169–176]. We generally use toy models comprising of simple random walkers with

finite or infinite memory (short-range or long-range correlations) to model memory

effects. For example, there are models which take into account the entire history

of a process such as the elephant random walk [162–164, 180]. There also exists a

Alzheimer random walk model which deals with the case of partial memory [156,157].

All these examples belong to a specific class of non-Markovian stochastic models.

In this thesis, we are primarily interested in the effects of finite memory on

asymptotic distribution of current in simple toy models [38, 181]. Few studies have

documented these memory effects on the distribution of the particle current and

its fluctuations [139, 166, 167]. In particular, these studies have showed that the
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universal relations such as the fluctuation theorems can be extended to specific

non-Markovian systems [137, 138, 169–178]. As noted earlier, one of the necessary

underlying assumptions for the derivation of recently discovered thermodynamic

uncertainty relations (TURs) is the Markovian approximation [12,14,46]. Therefore,

a crucial question arises regarding the validity of TUR in models exhibiting non-

Markovian dynamics.

In contrast to non-Markovian models, in an uncorrelated random walk model, the

assumption of statistical independence of steps is crucial. However, such an assump-

tion is often unrealistic as living organisms (say animals) have a tendency to move

in the same direction, i.e., animal movements exhibit some amount of ‘directional

persistence’ [182–184]. One way to model directional persistence is to introducing a

finite memory in our toy model of biased random walk. In particular, we focus on

a persistent random walk (PRW) [134] model which is an extremely useful class of

random walks. The PRW model have been applied to diffusive-transport systems

and optical imaging [185], self-propelled particles (e.g., bird-flocking, Janus parti-

cles) [186], molecular motor transport [16], animal movement [182–184, 187] and

many others (see [188], and references therein). As a starting point, we introduce

a variant of persistent random walk to investigate the memory effects on TURs.

Our toy model consists of simple random walk with one-step memory. The one-step

memory corresponds to the tendency of following the previous hopping direction or

‘persistence’ in a biased random walker model (on a ring) based in discrete-time and

discrete-space setting. In the next section, we explore our toy model in the context

of stochastic thermodynamics.

3.2 Simple persistent random walker

In this section, we begin with a simple case in which the particle on a ring (with

three sites) only exhibits persistence. We call such a construction a simple persistent

random walker or persistent-only model (see Fig. 3.1). Mathematically, we introduce

parameter α, which denotes the probability of following the previous step (“persists”

in the same direction) whereas 1−α is the probability of reversing its direction. The

particle often tends to follow the direction of the previous step for large α whereas

particle frequently reverses its direction for small values of α. Lastly, for α = 0.5,
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Figure 3.1: Simple persistent random walk: particle follows the previous step (con-
tinues to move in the same direction) with probability α and exhibits anti-persistence
(reverses direction) with 1−α. Here, the particle starts at site 2 and hops clockwise
to 3, then it can either hop to site 1 (persistence with α) or site 2 (anti-persistence
with 1− α).

the dynamics reduces to a symmetric or unbiased random walk.

Before we dive into the construction of the mathematical set-up for our toy

model, we recall an important statement of Van Kampen1 regarding the usage of

word ‘Markov’ along with ‘process’:

‘ ‘When a physicist talks about a ‘process’ he normally refers to a certain

phenomenon involving time. Concerning a process defined in this way it

is meaningless to ask whether or not it is Markovian, unless one specifies

the variables to be used for its description. The art of physicist is to find

those variables that are needed to make the description (approximately)

Markovian.”

Therefore, declaring whether a process is Markovian or non-Markovian completely

depends on the choice of observables or state-space variables. The dynamics in

persistent-only case is Markovian on the extended state space of pairs (present

site, previous site). Such random walks belong to the class of multistate random

walks [134]. The transitions in extended state space do not correspond to change

1Page 77, reference [22].
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Figure 3.2: Transitions in extended state space: clockwise (green, C), anti-clockwise
(blue, A). The internal states corresponds to the tuples of (present site, previous
site). The persistent and anti-persistent hops occur with probability α and 1 − α,
respectively. For instance, the clockwise state (3,2) cannot directly go to anti-
clockwise state (1,2). The quickest way is via an anti-persistent hop to anti-clockwise
state (2,3) and then A→ A transition to (1,2).

in position on the lattice. Moreover, each of these states in extended state space

belongs to a fixed location on the ring. Therefore, the corresponding states to lattice

sites L = {1, 2, 3} in the extended state-space are (1,3), (1,2), (2,1), (2,3), (3,2) and

(3,1). The possible transitions among these states are:

Clockwise to Clockwise (C → C) : (1, 3)→ (2, 1)→ (3, 2)→ (1, 3)

Anti-clockwise to Anti-clockwise (A→ A) : (1, 2)→ (3, 1)→ (2, 3)→ (1, 2)

Anti-persistence: (1, 2) ⇆ (2, 1), (1, 3) ⇆ (3, 1), (2, 3) ⇆ (3, 2)

which can also be seen in Fig. 3.2 where the sites and arrows shown in green and blue

represent the clockwise and anti-clockwise transitions, respectively. The persistent

hops (C → C and A → A) occur with probability α whereas the anti-persistent

hops (C → A and A→ C) happen with probability 1− α. To illustrate this point,

we take a look at a sample transition (1, 3)[C]→ (2, 3)[A]; the particle here cannot
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directly jump from a clockwise state (1, 3) to (2, 3) and it has to first switch to (3, 1)

via an anti-persistent hop to reach (2, 3).

As a matter of fact, the extension of state-space (in some cases also referred to as

‘Markovian embedding’) is a simple yet powerful procedure to model memory. The

conversion to Markovian dynamics using appropriate state-space variables enables

one to investigate key properties related to the underlying non-Markovian process.

Interestingly, a similar approach was used to prove time-reversibility and direction-

time independence (DTI)2 conditions in case of a semi-Markov process [114,140].

Given that the specifications of model are properly outlined, we now proceed to

describe the components of underlying Markov process on the extended state space

of present and past sites. We begin with the transition matrix P:

P =

(1, 2) (1, 3) (2, 3) (2, 1) (3, 1) (3, 2)



0 0 0 1− α α 0 (1, 2)

0 0 0 α 1− α 0 (1, 3)

α 0 0 0 0 1− α (2, 3)

1− α 0 0 0 0 α (2, 1)

0 1− α α 0 0 0 (3, 1)

0 α 1− α 0 0 0 (3, 2)

. (3.1)

Next we take a look at the current fluctuations in persistent-only case. For this

purpose, we recall the definition of the time-averaged current JT/T introduced in

section 2.3.2, it includes

1. time-integrated current JT : net number of clockwise jumps up to time T , and

2. JT =
∑T

i ∆Ji, i.e., JT is the cumulative sum of IID current increments ∆Ji’s

and ∆Ji = ±1.

Asymptotically, the net number of persistent and anti-persistent hops cancel out

and therefore, in steady-state time-averaged current is zero. However, we can still

obtain the large deviation function which encode the current fluctuations, namely

2DTI refers to the statistical independence between transition probabilities and waiting times.
We discuss this condition briefly in chapter 4.
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the scaled cumulant generating function (SCGF) λ(s) of JT/T . Specifically, we

shall use the Gärtner-Ellis (GE) Theorem to prove the existence of large deviation

principle. We first need the tilted transition matrix of P whose dominant eigenvalue

yields the SCGF λ(s). The tilted transition matrix P̃s here takes the following form:

(1, 2) (1, 3) (2, 3) (2, 1) (3, 1) (3, 2)



0 0 0 (1− α)e−s αe+s 0 (1, 2)

0 0 0 αe−s (1− α)e+s 0 (1, 3)

αe+s 0 0 0 0 (1− α)e−s (2, 3)

(1− α)e+s 0 0 0 0 αe−s (2, 1)

0 (1− α)e−s αe+s 0 0 0 (3, 1)

0 αe−s (1− α)e+s 0 0 0 (3, 2)

.

(3.2)

As outlined in the previous chapter, the largest eigenvalue of the tilted transition

matrix (3.2) yields the SCGF λ(s) as

λ(s) = ln
[1
2
e−s
(
α + αe2s +

√
(α + αe2s)2 − 4(2α− 1)e2s

)]
. (3.3)

We observe here that λ(s) is real analytic function for all s ∈ R which implies λ(s)

is differentiable (see Fig. 3.3). Hence, by GE Theorem, the time-averaged current

JT/T obeys the large deviation principle with speed T and the rate function I(j):

P (JT/T = j) ≈ e−TI(j). (3.4)

In this case, the first order derivative λ′(s) of SCGF with respect to s is

λ′(s) =
(u− 1)α√

(u+ 1)2α2 − 4u(2α− 1)
, (3.5)

where u = e2s. Hence, the mean current (λ′(0)) is equal to zero which is consistent

with our heuristic argument. The GE Theorem also implies that the rate function
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Figure 3.3: Scaled cumulant generating function λ(s) for the persistent-only case
derived in (3.3) for α = 0.75 and 0.2.

I(j) can be obtained from the Legendre transform of λ(s), that is

I(j) = js(j)− λ(s(j)) (3.6)

where s(j) is the solution of λ′(s) = j. In this case, s(j) takes the following form:

s±(j) =
1

2
ln
[−B ±√B2 − 4

2

]
where B =

4(2α− 1)j2

α2 (1− j2)
− 2 (j2 + 1)

1− j2
. (3.7)

The above equation is valid for α ̸= 0 and j ∈ (−1, 1). Therefore, the rate function

I(j) for persistent-only random walker is

I(j) =

{
s+(j)j − λ(s+(j)) ifj ≥ 0,

s−(j)j − λ(s−(j)) ifj < 0
(3.8)

where s±(j) is given in (3.7). For α = 1 (particle always persists in the same
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Figure 3.4: Variation of I(j) with α as described in (3.8). Small persistence values
induces anti-persistent behaviour (more alternate strings of +1 or −1 , narrow rate
function) whereas large α values cause strong persistent behaviour (repeated strings
of +1 or −1, broad rate function).

direction), s±(j) reduces to 0 which in turn implies that I(j) also vanishes as λ(0) =

0 (see Fig. 3.4).

Let us take a closer look at the rate function and its variation with the persis-

tence parameter (see Fig. 3.4). The tuning of persistence parameter α affects the

fluctuations which, in turn, modifies the shape of the rate function. The Fig. 3.4

contains the following interesting regions:

• α close to 1: As per the definition of α, this limit indicates a strong persis-

tence in the system. Consequently, at each time step, the particle often tends

to follow the direction of the previous step. As a result, there are repeated

sequences of current increments of the same values (either of +1 or−1). There-
fore, the time-integrated current deviates from its mean value (zero current)

and yields a broad rate function.

• α close to 0: In this limit, there is a strong anti-persistence in the system.

Often the particle hops in the opposite direction to the previous step which

implies the particle is stuck in a back and forth hopping situation, i.e., a
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clockwise jump (+1) is subsequently followed by an anticlockwise jump (−1)
and vice-versa. Consequently, the current has small fluctuations around the

mean current implying a narrow rate function when α is close to 0.

• If α = 0.5: The model reduces to the symmetric Markovian random walk case

(see Fig. 2.6).

In the next section, we explore a mixed-strategy case which is the combination

of persistence and biased random walk strategies.

3.3 Asymmetric persistent random walker

The persistence-only model introduced earlier allows one to derive the large devi-

ation functions and study the interplay of noise (fluctuations) and memory. Now,

we add a layer of complexity and integrate our persistent-only model with an addi-

tional strategy of performing a biased random walk. Let us recall our simple biased

random walker on a ring with a finite number of sites (say L = 3). To be more

concrete, in addition to unequal hopping probabilities, we now introduce persis-

tence in the form of one-step memory, i.e., the particle has a finite probability of

following the previous step. This model will help us understand the behaviour of

current fluctuations in the presence of a non-zero current in a simple non-Markovian

system. Specifically, we employ two hopping strategies for the particle, namely the

persistence and the asymmetric random walk. We refer to this mixed-strategy case

as asymmetric persistent random walk (APRW) model (see Fig. 3.5).

Mathematically, we assume at each step, the particle chooses asymmetric random

walk dynamics with probability f and persistent dynamics (with probability α to

follow the previous step and 1 − α to do the opposite) with 1 − f . The method

of extension of state space is also applicable to APRW and hence, the extended

state space remains unchanged (Fig. 3.6). Analogously to the persistent-only case,

APRW exhibits Markovian dynamics on the extended state-space of pairs containing

present site and previous site. There are two possible directions, namely clockwise

(C) and anti-clockwise (A), and we can write the conditional probabilities for all
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Figure 3.5: Schematic for asymmetric persistent random walker (APRW): The par-
ticle can take either an asymmetric random walker (ARW) step (with probability
f) or a ‘persistent’ step (with probability 1 − f). The parameter α quantifies the
tendency to follow the direction of last step whereas 1 − α quantifies the opposite.
The probability p and q = 1 − p denote the hopping probabilities to the clockwise
and anti-clockwise directions, respectively. Here, the particle starts at site 2 and
hops clockwise to 3 (ARW step) then as per the persistence strategy, it can either
hop to site 1 (with probability α) or site 2 (with probability 1− α). Alternatively,
it can simple take a ARW step towards site 1 with probability p.

2,3

2,1

1,2

1,3

3,1

3,2

C|A

A|C

Clockwise (C)Anti-clockwise (A)

C|C

A|A

1

23

Figure 3.6: State space diagram for APRW: same as given for Fig. 3.2 except that
in this case the clockwise (C) to clockwise hops (green) occur with probability β; C
to anticlockwise (A) hops (black) with 1 − β; A → A hops (blue) with probability
γ, and A→ C hops (black) with 1− γ.
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possible hops in the lattice:

P (C|C) = fp+ (1− f)α =: β,

P (A|C) = 1− β,

P (A|A) = f(1− p) + (1− f)α =: γ,

P (C|A) = 1− γ. (3.9)

Note that when f = 0, the conditional probabilities reduce to the simple case

of persistence-only strategy. The transition probability of a clockwise to clock-

wise jump
[
say, (1, 3) → (2, 1)

]
is β; clockwise to an anticlockwise state

[
say,

(1, 3)→ (3, 1)
]
is 1−β; anticlockwise to an anticlockwise state

[
say, (1, 2)→ (3, 1)

]
is γ; and lastly, anticlockwise to clockwise jump

[
say, (3, 1)→ (1, 3)

]
is 1− γ. Fig-

ure 3.6 displays the possible transitions and associated hopping probabilities; then

the transition matrix P for mixed-strategy case takes the following form:

P =

(1, 2) (1, 3) (2, 3) (2, 1) (3, 1) (3, 2)



0 0 0 1− γ γ 0 (1, 2)

0 0 0 β 1− β 0 (1, 3)

γ 0 0 0 0 1− γ (2, 3)

1− β 0 0 0 0 β (2, 1)

0 1− γ γ 0 0 0 (3, 1)

0 β 1− β 0 0 0 (3, 2)

. (3.10)

In analogy with the persistent-only random walk, we proceed to calculate the

SCGF and the rate function associated with the time-averaged current. As defined

earlier, a clockwise jump (from any direction) constitutes a positive current incre-

ment (+1) whereas an anticlockwise jump corresponds to a negative increment (−1).
Using this information, we can write the tilted transition matrix P̃s whose largest

eigenvalue yields the SCGF λ(s) as
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(1, 2) (1, 3) (2, 3) (2, 1) (3, 1) (3, 2)



0 0 0 (1− γ)e+s γe−s 0 (1, 2)

0 0 0 βe+s (1− β)e−s 0 (1, 3)

γe−s 0 0 0 0 (1− γ)e+s (2, 3)

(1− β)e−s 0 0 0 0 βe+s (2, 1)

0 (1− γ)e+s γe−s 0 0 0 (3, 1)

0 βe+s (1− β)e−s 0 0 0 (3, 2)

.

(3.11)

In this case, the scaled cumulant generating function λ(s) is:

λ(s) = ln
[1
2
e−s
{
βe2s + γ +

√
β2e4s + 2e2s(2 + β(γ − 2)− 2γ) + γ2

}]
(3.12)

where again β = fp + (1 − f)α and γ = f(1 − p) + (1 − f)α. Figure 3.7 shows

λ(s) for fixed f and different values of α. For f = 0. as expected, we recover

the expression of the persistence-only SCGF (3.3). Furthermore, application of the

Gärtner-Ellis Theorem confirms the existence of the large deviation principle for the

time-averaged current, JT/T , in APRW. Therefore, the rate function I(j) for the

APRW model can be derived by taking Legendre transform of λ(s) which yields

I(j) = j · s(j)− λ(s(j)) (3.13)

where

s(j) =


1

2
ln
−B +

√
B2 − 4AC

2A
if j ≥ 0,

1

2
ln
−B −

√
B2 − 4AC

2A
if j < 0,

A = β2
(
1− j2

)
̸= 0, C = γ2

(
1− j2

)
, and

B = −2
(
βγ + j2(2(−β − γ + 1) + βγ)

)
.
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Figure 3.7: Scaled cumulant generating function (SCGF) λ(s) (3.12) of APRW
model (f = 0.6, p = 0.7) for α = 0.1 (black) and α = 0.8 (blue).

We now turn attention to the cumulants of time-averaged current JT/T in the

APRW model. The SCGF easily yields the mean current j as

j = λ′(0) =
β − γ

2− (β + γ)
=

f(2p− 1)

2− (f + 2(1− f)α)
, (3.14)

and Legendre-duality implies that I(j) = 0. Contrary to persistent-only case,

APRW model exhibits non-zero mean current because of bias in hopping probabili-

ties. In a similar fashion to the persistent-only case, the small and large deviations

from the mean value j can be explained with the help of the rate function. The

crucial difference between APRW and the persistent-only case is that zero of the

rate function (mean current) will be shifted from origin depending on the values

of f, p, and α. The limiting cases can provide a better understanding of the rate

function. In the case of small f− values (frequent persistent dynamics), the rate

function resembles persistent-only case for all values of α (see Figs. 3.4 and 3.8).

However, in the limit of f → 1 (biased random walk becomes the dominant mode of

hopping), the rate function mirrors the Markovian case (see Fig. 3.9). Both strate-
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Figure 3.8: Variation of I(j) with α for f = 0.25. The zero of the rate function is
at j and shape of I(j) resembles the simple case shown in Fig. 3.4.

Figure 3.9: Variation of I(j) with α for f = 0.9 (shape similar to Markovian biased
random walker case).
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Figure 3.10: Variation of I(j) with α for f = 0.6. The presence of strong persistent
(α→ 1) or anti-persistent dynamics (α→ 0) affects the current fluctuations which
is captured in rate function.

gies affect the rate function for intermediate values of f (see Fig. 3.10) and our

simple toy-model elegantly elucidates the interplay of one-step memory and current

fluctuations. We discuss the definition of the stochastic entropy production in the

context of APRW in the next section.

3.3.1 Stochastic entropy production and fluctuation rela-

tions

As stated earlier in the background chapter, the mathematical definition of total

entropy production associated with a single trajectory is the logarithm of the ratio

of forward and backward (time-reversed) paths in state space. However, we also

mentioned that the construction of time-reversed trajectory crucially depends on

the parity of the observable. The observable in the present case is made up of

position and direction as APRW is a Markovian process in the extended state space

of present and previous site. The position is an even variable and hence remains

unchanged but what happens with the direction observable?

There are different prescriptions of time-reversal symmetry in stochastic sys-
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tems [51]. To be more concrete, we describe the structure of extended state space

(see Fig. 3.6) in terms of present position X and the hopping direction Ω of the

previous step where X ∈ {1, 2, 3} and Ω ∈ {C,A}. Furthermore, we assume the

particle starts at X0 at t = 0 and randomly chooses its direction as either C or A

with equal probability. To avoid further ambiguity we omit the first hopping direc-

tion in our trajectory notation since Ω is the direction of the previous step. Hence,

an extended-state-space trajectory Π and its sample realisation π look like

Π = [X0, (X1,Ω1), . . . (XT ,ΩT )]

π = [x0, (x1, ω1), . . . (xT , ωT )] (3.15)

Before we proceed further, it is worth noting that the time-reversal prescriptions

in the above-described extended state space is ambiguous and might induce confu-

sion in the physical meaning of Ωt in the reversed trajectory. Following the same

convention as before, we can write the time-reversed version of Π and π as

Π̃ =
[
XT , (XT−1, Ω̃T−1), . . . (X0, Ω̃0)

]
π̃ = [xT , (xT−1, ω̃T−1), . . . (x0, ω̃0)] (3.16)

where position being a spatial variable remains unchanged under the time-reversal

operation. In general, the time-reversed direction variable Ω̃t can have the following

parities:

• odd parity: Ω̃t = −Ωt, signs of all variables are reversed or flipped, e.g.,

velocity.

• even parity: Ω̃t = Ωt, signs of all variables are left invariant, e.g., spatial

variables.

To illustrate the above prescriptions of odd and even parity, we consider a sample

trajectory π and its time-reversed version π̃ in the extended state space of our toy

model (see Fig. 3.11) given as

53



1

3 2

1

3 2

CClockwise

Time-reversal 
   in APRW

A

1

3 2

1

3 2

Anti-clockwise

A

Sample forward 
trajectory 11 2 3 2 2

C

Direction of the previous step

C A CPosition

11 2 3 2 2

?????

Time-reversed 
trajectory

Odd or Even?  

Figure 3.11: Schematic illustrating the time-reversal on the extended state space
of position and direction of previous step. During time-reversal position remains
unchanged but the construction of reversed trajectory depends on whether hopping
direction is treated as odd (flipped) or even (not flipped).

π = 1 −→ (2, C) −→ (3, C) −→ (2, A) −→ (1, A) −→ (2, C)

π̃ = 2 −→ (1, ω̃2→1) −→ (2, ω̃1→2) −→ (3, ω̃2→3) −→ (2, ω̃3→2) −→ (1, ω̃2→1) (3.17)

where transitions have been added in the subscript to highlight the direction of the

hops. The ambiguity here comes as to whether one should reverse all the clockwise

jumps to anti-clockwise or not? Both odd and even choices are possible; and these

choices define different entropy-like quantities.3 In APRW model, the odd and even

3See discussion on entropy production of run-and-tumble process in section 4.3 of chapter 4.
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possibilities takes the following form:

Original: ω =
(

C︸︷︷︸
1→2

−→ C︸︷︷︸
2→3

−→ A︸︷︷︸
3→2

−→ A︸︷︷︸
2→1

−→ C︸︷︷︸
1→2

)
, (3.18)

Odd: ω̃odd =
(

A︸︷︷︸
1←2

←− A︸︷︷︸
2←3

←− C︸︷︷︸
3←2

←− C︸︷︷︸
2←1

←− A︸︷︷︸
1←2

)
(read R to L),

(3.19)

Even: ω̃even =
(

C︸︷︷︸
1←2

←− C︸︷︷︸
2←3

←− A︸︷︷︸
3←2

←− A︸︷︷︸
2←1

←− C︸︷︷︸
1←2

)
(read R to L),

(3.20)

where R = Right and L = Left.

We see here that ω and ω̃odd constitute the case where the directions are flipped

(A ↔ C) while applying time-reversal protocol whereas in the case of ω and ω̃even,

both trajectories contains the same realisation of random variables but in reverse

order (for comparison, read ω in (3.19) from right to left or backwards). However, the

ω̃even is physically impossible as the transitions from 2 −→ 1 or 3 −→ 2 cannot be a

clockwise jump which implies that a time-reversed Π̃ with even parity does not exist.

Consequently, the corresponding entropy production Seven is infinite and therefore

TUR holds trivially as the entropic bound is infinitely loose here. The validity

argument follows from the simple fact that the process is Markovian on extended

state space of (present site, past site) where the variables are position only and thus

even by construction (see Fig. 3.12). Consequently, it is natural thing to investigate

the case of odd parity and calculate the corresponding entropy production Sodd to

investigate the applicability in TUR.4 The total entropy production Sodd up to time

T can be written in terms of affinities of all possible transitions in the extended state

4The effect of odd parity on stochastic entropy and fluctuation theorems have been studied in
detail in references [51,52,189].
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Figure 3.12: The possible time-reversed trajectories in extended state space using
both odd-(directions flipped, A ↔ C) and even (no flipping) parities for a sample
forward trajectory. The even-parity case involves jumps which are prohibited by
construction (e.g., 2 −→ 1 via a clockwise jump). The time-reversed trajectory
in even case does not exist and as a consequence entropy production is infinite,
and results in an infinitely loose entropic bound. Hence, odd-parity emerges as an
interesting case to study the effect of one-step memory on TUR.

space as

Sodd = NC→C ln
P (C|C)

P (A|A) + NA→A ln
P (A|A)
P (C|C)

+ NA→C ln
P (A|C)

P (C|A)

+ NC→A ln
P (C|A)
P (A|C)

= NC→C ln
β

γ
+NA→A ln

γ

β
+NC→A ln

1− β

1− γ
+NA→C ln

1− γ

1− β
. (3.21)

The random variables Nω→ω′ with ω, ω′ ∈ {C,A} are the net number of directional

hops from ω to ω′ up to time T . In the long-time limit, the number of transitions

from C −→ A is equal to that of A −→ C, i.e., NA→C ≃ NC→A. Therefore, the

mean entropy production rate in steady state can be written as

s̄odd = lim
T→∞

〈
NC→C −NA→A

〉
T

ln
β

γ
= j × c (3.22)
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where j and c = ln β/γ are mean of the time-averaged current and the corresponding

affinity of APRW, respectively. Since we already have the expression of j from the

SCGF (3.14), s̄odd becomes

s̄odd =
β − γ

2− (β + γ)
ln

β

γ
. (3.23)

In the Markovian limit, i.e., f = 1, s̄odd reduces to the mean entropy production of

asymmetric random walk (2.45):

s̄odd = s̄ARW = (2p− 1) ln
p

1− p
. (3.24)

Up to this point, we have set up the stage for exploring the universal properties

of current in persistent systems. We first turn to the validity of the Gallavotti-

Cohen-type fluctuation relation (GCFR) for time-averaged current in APRW. We

recall from the last chapter (section 2.4.1), GCFR has the following form:

P (JT/T = j)

P (JT/T = −j) ≈ eTcj, (3.25)

and the GCFR symmetry has the following form:

I(−j)− I(j) = cj, (3.26)

λ(s) = λ(−s− c),

where c = ln β/γ is the affinity (constant) obtained earlier. The following calcula-
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Figure 3.13: Symmetry relation for the Gallavotti-Cohen-type fluctuation relation
in terms of the rate function: I(j)− I(−j) = cj where c = ln(β/γ).

tions shows that c satisfies the fluctuation relation symmetry in λ(s):

λ(−s− c) = ln
[1
2
es+c

{
βe−2(s+c) + γ +

(
β2e−4(s+c) + 2e−2(s+c)

× (2 + β(γ − 2)− 2γ) + γ2
)1/2}]

= ln
[1
2
es
{
γe−2s + β +

β

γ

(
β2e−4s

γ4

β4
+ 2e−2s

γ2

β2

× (2 + β(γ − 2)− 2γ) + γ2
)1/2}]

= ln
[1
2
es
{
γe−2s + β +

β

γ

(
β2e−4s

γ4

β4
+ 2e−2s

γ2

β2

× (2 + β(γ − 2)− 2γ) + γ2
)1/2}]

= ln
[1
2
e−s
{
γ + βe2s +

β

γ
e2s
(
β2e−4s

γ4

β4
+ 2e−2s

γ2

β2

× (2 + β(γ − 2)− 2γ) + γ2
)1/2}]

= λ(s). (3.27)

Furthermore, the plots given in Figs. 3.13 and 3.14 also confirm the validity of GCFR

in APRW model.

The above result is not surprising as the APRW model exhibits Markovian dy-
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Figure 3.14: Symmetry relation for Gallavotti-Cohen-type fluctuation relation in
terms of scaled cumulant generating function: λ(s), λ(−s − ln β/γ) for α = 0.1
(black, red lines) and α = 0.8 (blue, green lines). Both lines within a pair lie on top
of each other. Parameter values: f = 0.6 and p = 0.7.

namics on the extended state space which is finite. Nonetheless, such results shed

light on the properties of current fluctuations in simple non-Markovian toy models

and encourage further exploration of other universal relations such as thermody-

namic uncertainty relation (TUR). To be more precise, we want to investigate how

exactly one-step memory affects the TUR in APRW model.

3.3.2 Thermodynamic uncertainty relation for APRW

In our simple set-up for a non-Markovian system, we observed the effects of persis-

tence on current fluctuations. Moreover, the current fluctuations in APRW model

satisfies the Gallavotti-Cohen-type fluctuation relation. We now turn to investigate

the effect of persistent dynamics on the thermodynamic uncertainty relations [12,46]

generally referred to as TURs.

To recall, TURs are the catalogue of general inequalities comprising of entropic

bounds which constrain the current fluctuations in nonequilibrium systems. The ap-

plicability of TURs have been gradually extended to a variety of systems [14]. How-
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ever, the derivation of such inequalities requires a Markovian assumption which leads

to the question: what are the possible implications of including memory (short-range

or long-range) in nonequilibrium systems? Recall that the APRW is only Markovian

in the extended state space and we aim to explore the validity of TUR with mean

entropy production rate s̄odd (3.23) in the presence of persistence parameter α.

Let us first rewrite the discrete-time version of TUR [18] which has the following

form (2.53):

j
2

σj
2
≤ 1

2

(
es̄odd − 1

)
(3.28)

where j, σj
2, and s̄odd are mean current, scaled variance (2.51) and mean entropy

production rate, respectively. As before, the ratio j
2
/σj

2 is the uncertainty or rela-

tive fluctuations and the right hand side of (3.28) is known as ‘Proesmans-Van den

Broeck bound’ or ‘PV bound’ [66].

The analytical expressions of mean current (j) and average entropy production

rate (s̄odd) have already been obtained in (3.14) and (3.23) respectively. The variance

(σj
2) of time-averaged current can also be calculated via scaled cumulant generating

function λ(s) derived in (3.12):

λ′′(0) = σj
2 =

4(β − 1)(β + γ)(γ − 1)

(2− β − γ)3
. (3.29)

Thus, the required uncertainty is

j
2

σj
2
=

(β − γ)2(2− β − γ)

4(β − 1)(γ − 1)(β + γ)
, (3.30)

where β = fp+(1−f)α and γ = f(1−p)+(1−f)α. Equation (3.30) also highlights

the dependence of uncertainty on strategy propensity (f) and persistence parameter

(α).

To obtain the right hand side of TUR, we use (3.23) in TUR (3.28) which yields

1

2

(
es̄odd − 1

)
=

1

2

[(β
γ

)(β−γ)/(2−β−γ)

− 1
]
. (3.31)
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Figure 3.15: 3-D plot of uncertainty relation with α and p at f = 0.5. The uncer-
tainty (orange) is not constrained by the entropic bound (blue) for all values of p
and α.

If TUR is valid in APRW, then the following inequality holds:

(β − γ)2(2− β − γ)

4(β − 1)(γ − 1)(β + γ)
≤ 1

2

[(β
γ

)(β−γ)/(2−β−γ)

− 1
]
. (3.32)

Therefore, we need to check whether the uncertainty and entropic bound satisfy the

TUR for all values of f , p and α. The first clue comes from the Fig. 3.15 which

illustrates the three-dimensional plot of TUR with α and p at fixed f . Clearly,

the uncertainty (orange) is not always bounded by the entropic bound (blue) for

all values of α and p. There exists a crossover region after which the uncertainty

(orange) is no longer bounded by the entropic bound (blue).

Furthermore, we can take a closer look at the crossover region in Fig. 3.16 by

plotting two-dimensional curves of TUR versus p for fixed values of α and f . These

plots confirm the presence of a critical value of persistence parameter αc) after which

TUR does not hold. The critical value αc corresponds to the solutions when equality

of uncertainty and entropic bound holds, that is

(β − γ)2(2− β − γ)

4(β − 1)(γ − 1)(β + γ)
=

1

2

[(β
γ

)(β−γ)/(2−β−γ)

− 1
]
. (3.33)
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Figure 3.16: TUR at f = 0.6 for different α values. TUR does not hold for all values
of α at fixed f .

The structure of (3.33) makes it difficult to implement analytical techniques to find a

solution. We resort to numerical methods for further investigation of the parameter

space of f and α. Intuitively, we know that the variation of f will affect the validity

regime of TUR in APRW models. The reason is when f → 1, the system reaches

Markovian limit. However, for a fixed p, we can numerically check the variation

of αc with f . Figure 3.17 shows that the αc increase with large f values. This

reiterates the notion that TUR must hold in the Markovian limit (f → 1).

The above results demand a natural question: Why does not TUR hold in APRW

case even if the dynamics is Markovian in the extended state space? The answer

to such a question can be traced back to one of the necessary assumptions required

for the original formulation of TUR (section (2.4.2) which states that state-space

variables must be even (sign unchanged under time-reversal).5 We observe here

that Sodd-entropic bound does not constrain the current fluctuations for all involved

parameters but then what about Seven-entropic bound? The TUR does hold in

the even parity case, i.e., Seven-bound constrains the current fluctuations for all

5Recently, a modified TUR have been obtained for cases with odd-variables such as magnetic
fields [55,74].
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Figure 3.17: Variation of αc (which corresponds to the solution of (3.33)) with f for
p = 0.1 and p = 0.7.

involved parameters, however, such a bound is infinite as the even-parity time-

reversal trajectory does not exist for APRW (hence infinite Seven). This infinite

entropy production argument is model specific, not a general observation. In fact,

there can be different toy models in which both odd- and even-parity time-reversed

trajectories exist. Then there are two different choices for entropic bounds and TUR

generally does not hold for the Sodd case. We deal with a similar scenario for the

toy model discussed in next chapter.

Interestingly, one can ask what happens when α = 1? This limiting case hints

at the physical relevance of APRW model as it corresponds to the one-dimensional

realisation of the run-and-tumble motion. In the next section, we explore whether

(or not) a modified TUR is feasible for APRW version of run-and-tumble motion.

3.4 Special case: α = 1 and run-and-tumble mo-

tion

In the last section, we saw that even for a simple non-Markovian model like APRW,

the extension of thermodynamic uncertainty relation becomes challenging. Setting
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Figure 3.18: Bacterial locomotion is a paradigmatic example of run-and-tumble
motion in two-dimension. Runs are stretches of movement punctuated by random
resets called tumbles.

α = 1 implies whenever persistent strategy is chosen (quantified by 1 − f), the

particle will always move in the same direction set in the previous step, and the

asymmetric random walk (ARW) dynamics (chosen with probability f) will act

as a reset event to guide the direction. The whole dynamics closely resembles an

one-dimensional version of a persistent run-and-tumble motion in discrete-time and

discrete-space setting. Here, ‘run’ and ‘tumble’ correspond to persistent and ARW

dynamics, respectively. The run-and-tumble motion is commonly found in bacterial

locomotion (see Fig. 3.18) [190] and also used to model search-strategies [191]. We

shall discuss in detail about the general class of run-and-tumble processes in the

next chapter. In the present chapter, we aim to work with this simplified version of

APRW and explore the validity of thermodynamic uncertainty relations.

When α = 1, the particle continues to move in the persistent direction unless the

motion is interrupted by a tumble event, i.e., ARW dynamics with probability f .

The large f−values correspond to frequent tumbles and more interruptions during

runs whereas the small f−values correspond to infrequent tumbles or longer runs.

In this sense, the parameter f determines the duration of a run and APRW model

can be rewritten with simplified probabilities:

β = fp+ (1− f), and γ = f(1− p) + (1− f). (3.34)
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Figure 3.19: TUR for persistent run-and-tumble motion (α = 1) for different f
values. TUR is only valid for a range of values.

Moreover, the simplified expressions for the mean current and scaled variance are

j = 2p− 1,

σj
2 =

2− f

f
× (4pq) =

2− f

f
× 4p(1− p). (3.35)

Interestingly, for α = 1, the scaled cumulant generating function obtained in (3.12)

can also be obtained using a resetting framework (see Appendix A). The next step

is to simplify equations (3.30) and (3.31) to get the run-and-tumble version of un-

certainty and entropic bound, respectively. Similar to APRW case, if TUR is valid,

then ( f

2− f

) (2p− 1)2

4p(1− p)
≤ 1

2

[(β
γ

)2p−1
− 1
]
. (3.36)

Figure 3.19 indicates that even this particular version of TUR is only valid for a

range of f values. We seek to obtain a modified entropic bound which can constrain

the current fluctuations in run-and-tumble model. A careful examination of (3.36)

implies that the left-hand side (uncertainty) expression is a product of f -dependent
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prefactor and the uncertainty of asymmetric random walker (ARW):

j
2

σj
2
=
( f

2− f

) (2p− 1)2

4p(1− p)︸ ︷︷ ︸
ARW uncertainty

. (3.37)

Moreover, (3.35) shows that this prefactor solely comes from the new variance term

(for α = 1) as the mean current is same in both toy models (j = jARW). To elucidate

this point, we express run-and-tumble variance given in (3.35) as

σj
2 =

(2− f

f

)
4p(1− p)︸ ︷︷ ︸
ARW variance

. (3.38)

The above observation is crucial to construct a modified bound in terms of the

moments of a known Markovian process with a standard entropic bound such as

ARW. A similar method was used by Chiuchiù et al. to obtain mapped uncertainty

relations between continuous and discrete time processes [66].

We now recall the standard TUR for ARW:

(2p− 1)2

4p(1− p)
≤ 1

2

(
es̄ARW − 1

)
(3.39)

where s̄ARW = (2p − 1) ln(p/q) and q = 1 − p, is the mean entropy production for

a biased random walker (2.45). Multiplying both sides of above equation with the

prefactor f/(2− f) yields

( f

2− f

) (2p− 1)2

4p(1− p)
≤ 1

2

(
es̄ARW − 1

)( f

2− f

)
. (3.40)

The inequality remains unchanged because 0 ≤ f ≤ 1 and the left-hand side of (3.40)

contains the uncertainty of the run -and-tumble case. Most importantly, the un-

certainty is bounded by the standard ARW entropic bound with a f−dependent
correction factor. We call this a modified TUR which uses the standard entropic

bound for ARW with a correction factor (see Fig. 3.20). The final form of modified
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Figure 3.20: Modified thermodynamic uncertainty relation for APRW model for
f = 0.2 and f = 0.7.

TUR is

j
2

σj
2
≤ 1

2

[(p
q

)2p−1
− 1
]

︸ ︷︷ ︸
ARW entropic bound

( f

2− f

)
︸ ︷︷ ︸

Correction factor

, (3.41)

which holds for all values of f . Hence, at least in case of α = 1, we have successfully

derived (or constructed) a modified version of standard TUR. The different com-

ponents of modified TUR and the method of construction provides significant clues

to pursue validity of TUR in non-Markovian systems which are summarised in the

final section.

3.5 Conclusion

We started with an objective to explore the validity of thermodynamic uncertainty

relation in toy models exhibiting non-Markovian dynamics. The inclusion of one-

step memory with biased random walk in a toy model called asymmetric persistent

random walk (APRW) exhibited Markovian dynamics in the extended state space
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of present and past site (or the pair of position and hopping direction). However,

our attempts to prove TUR for APRW was unsuccessful and prompted us to explore

the limiting case (α = 1) of run-and-tumble motion. The construction of modified

bound in run-and-tumble model gave us some important clues about the structure

of the prefactor (dependent on the strategy propensity parameter f) and ways to

utilise the entropy production of a known Markov process. However, this particular

approach also required the knowledge of the exact uncertainty beforehand. Despite

such a shortcoming, the modified bound is a significant step towards extension of

TUR in systems with memory. Based on our analysis, we can ask some further

questions:

• We observed that the TUR with odd-entropic bound is not valid for our APRW

model whereas the even-entropic bound is infinite, hence not much useful. We

resolved this ambiguity for APRW by constructing modified bound containing

entropy of a Markovian process. Is it possible to use this approach for a similar

class of processes where sufficient or full information about the dynamics is

absent?

• Can we obtain similar modified bounds for models with longer than one-step

memory?

• Is it possible to find a general structure of the prefactor (or correction factor)

for a general class of physically-relevant run-and-tumble models with memory

effects?

We address these questions in the next chapter.
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Chapter 4

Thermodynamic uncertainty for

run-and-tumble type processes

4.1 Introduction

The central theme of our research work is to explore the validity of thermodynamic

uncertainty relations (TURs) in non-Markovian processes. The first step towards

achieving such an objective comes from the analysis of asymmetric persistent random

walk (APRW) model, which contains biased random walk and persistent dynamics

as hopping strategies. We have also seen that the APRW model exhibits Markovian

dynamics in the extended state space of pairs made up of the present site and

previous site (or incoming direction). Moreover, the Prosemans-Van den Broeck

(PV) bound in the extended state space is not generally very useful as it crucially

depends on the construction of entropy production. However, we can construct

modified bounds for the limiting case of APRW, i.e., one-dimensional version of

the run-and-tumble model. As alluded to in the conclusion of the last chapter, one

important question arises regarding the possible generalisation of modified bounds

to a broader class of run-and-tumble processes.

Here, we extend the notion of thermodynamic uncertainty of currents to the

run-and-tumble process which is a general class of process in which random dy-

namics (runs) are punctuated by stochastic resets (tumbles). A particular example

is the eponymous run-and-tumble motion (see Fig. 4.1) which provides a standard
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Figure 4.1: Typical bacterial motility pattern in E.coli, S. typhimurium and B. sub-
tilis where aligned bundle of hair-like projections (flagella) causes directed propul-
sion (runs) whereas spread-out bundle results in random reorientation (tumbles).

paradigm for bacterial motility [190, 192, 193]. In the limiting case of APRW, the

particle continues to move in the persistent direction until asymmetric random walk

(tumble) strategy is chosen. Therefore, one can construe the run-and-tumble motion

as runs with intermittent resets of persistent direction. Moreover, run-and-tumble

processes are also used in modelling: search-strategies [194], large-scale animal lo-

comotion [187], bidirectional transport in molecular motors [16], and various other

systems (see [191] and references therein).

Interestingly, a run-and-tumble particle (RTP) is also an example of active par-

ticle, which means that RTP possesses an internal state which decides its direction

of motion [195,196]. The representative examples of biological and synthetic active

matter systems are bacterial chemotaxis and colloidal Janus particles [197,198], re-

spectively. Hence, our work to extend TUR to the run-and-tumble class of models

can be classified within the purview of stochastic thermodynamics of active matter.

In general, the active matter systems violate the condition of detailed balance due to

self-propulsion at the microscopic scale. The study of active matter through the lens

of stochastic thermodynamics is a topical field of research [199–207]. This chapter is

based on the publication [17], which seems to be the first work connecting TUR and

active matter.1 Recently, a few other works on uncertainty relations in the active

matter have appeared in literature [208,209].

1The fluctuation theorem in active matter (continuous time) is discussed in Dabelow et al. [179].
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We follow the same notations introduced in section 2.4.2 throughout this chapter.

The particle current is the observable of interest. To be more precise, we focus on

the time-integrated current J or J(t) up to time t which typically obeys the large

deviation principle which means that the cumulants scale with time t (section 2.2).

As before, we are chiefly interested in the scaled mean and scaled variance defined

as

j = lim
t→∞

E[J ]

t
, σj

2 = lim
t→∞

Var [J ]

t
. (4.1)

Specifically, we are interested in discrete-time version of TUR (2.53), [18]:

j
2

σj
2
≤ 1

2∆t
(es̄tot − 1) . (4.2)

In literature (also in chapter 3), the right hand side of (4.2) is referred to as the ‘PV

bound’ [66]. We repeat that TUR provides a constraint on the uncertainty j
2
/σj

2 of

any current J in terms of the mean total entropy production rate s̄tot of the process;

∆t is the Markovian time step which we can equate to 1 without loss of generality. In

section 4.2, we construct a simple one-dimensional toy model for the run-and-tumble

motion and derive the cumulants of time-integrated current J . Next, in section 4.3,

we analyse the toy model within the stochastic thermodynamics framework and

derive important quantities such as current and mean entropy production.

We use the mathematical framework of renewal-reward theory (RRT) to derive a

new bound on thermodynamic uncertainty which is structurally similar to (4.2) for a

general class of run-and-tumble processes. RRT has previously been used in opera-

tions research models [210] as well as biological systems (molecular motors [211,212],

stem-cell differentiation [213]).2 We explain the connection between RRT and the in-

tegrated current in the run-and-tumble type processes in section 4.4. Moreover, the

RRT framework allows one to derive bounds for geometric as well as non-geometric

run-lengths for single-particle models. In addition, RRT also allows us to extend

our formulation to many-particle systems like asymmetric simple exclusion process

(ASEP) with collective tumble (reset) in continuous-time setting. The derivation

2A discipline in which applied mathematics is used to aid decision-makers in business, manage-
rial and administrative problems.
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of uncertainty bound, applications to geometric and non-geometric run-lengths are

discussed in sections 4.5, 4.6 and 4.7 respectively. The extension of our formulation

to ASEP is given in section 4.8 followed by a discussion in the last section 4.9.

4.2 Toy model: run-and-tumble process

Run-and-tumble (RT) motion constitutes a general class of processes which involves

alternating runs and instantaneous changes in orientations called tumbles. We here

introduce a one-dimensional run-and-tumble model, which is different from the

model (explained below) given in section 3.4. Our toy model based in discrete

time and discrete space. We describe the definitional features of RT model below:

1. Tumble: The event in which the particle sets its preferred direction with

probability p to the right (positive) and q = 1− p to the left (negative). It is

important to note that a tumble does not involve a change in the position on

the lattice. Moreover, we assume our process starts with a tumble at t = 0.

2. Run: The run step involves movement of a biased random walker in the ‘for-

ward’ (relative to set preferred direction in the previous tumble) and ‘back-

ward’ direction with probability p′ and q′ = 1− p′, respectively.

3. Run or tumble: We start our process with a tumble at t = 0 and for all

subsequent time steps t = 1, 2, 3, . . . , T , the particle tumbles with probability

f (resetting the preferred direction) and runs with probability 1 − f . This

set-up generates the dynamics of a one-dimensional run-and-tumble motion in

discrete space and discrete-time setting (see subfigures (a) and (b) in Fig. 4.2).

4. Duration: We define the time between successive tumbles as the duration of

a combined run-and-tumble event which is a random variable taking values

n = 1, 2, 3, . . .. Here the tumble occupies one time step and the run has length

n − 1; the case n = 1 corresponds to tumbles at consecutive time steps and

zero run length. The above-described dynamics can be generated by picking

up n’s from geometric distribution with parameter f ; however, dynamics with

other distributions is also considered in later sections.
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Figure 4.2: Summary of run-and-tumble model: (a) At t = 0, the particle always
tumbles [red], i.e., orients accordingly with probabilities p (+) or q = 1 − p (−).
Preferred direction denotes the direction set in the last tumble. During a run event
[blue], the walker moves ‘forward’ with probability p′ and ‘backward’ with probabil-
ity q′ = 1− p′ in the preferred direction. (b) Schematic for run-and-tumble sample
trajectory given in (4.4). (c) The same trajectory visualised as a position versus
time plot.
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5. Extended state space: We consider an extended state space of the position

and preferred direction. We denote the random variables for the position and

the preferred direction by Xi and Ωi, respectively. The variable Ωi ∈ {+,−}
represents the possible values of tumble orientations and the extended state

space can be represented as (Xi,Ωi).

6. Comparison with APRW version: The run-and-tumble (RT) model de-

scribed in this chapter has the following similarities/differences with the APRW-

run-and-tumble (APRW-RT) model (section 3.4):

• The extended state space in the RT model does not consist of the position

and direction of the last jump; but position and ‘preferred direction’, i.e.,

the direction set in the last tumble.

• In persistent limit of the RT model (i.e., p′ = 1), the direction set in

the last jump and the direction set in the tumble are the same. In other

words, for p′ = 1, the RT model reduces to a type of persistent random

walk where the particle only changes direction when it tumbles.

• The APRW-RT model has the memory only of the last step, while the

RT model has memory of the last tumble which can take place at an

arbitrary number of steps in the past.

The position increments can shed more light on the workings of our toy model.

The increments Ki corresponding to the transitions in this extended state space

occur with the following probabilities:

Ki =



+1, (X,+)→ (X+ 1,+) with probability (1− f)p′,

+1, (X,−)→ (X+ 1,−) with probability (1− f)q′,

−1, (X,+)→ (X− 1,+) with probability (1− f)q′,

−1, (X,−)→ (X− 1,−) with probability (1− f)p′,

0, (X,∓)→ (X,+) with probability fp,

0, (X,±)→ (X,−) with probability fq = f(1− p).

(4.3)

We also provide two sample trajectories for the run-and-tumble motion for illus-

tration purposes:
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Figure 4.3: Sample trajectory for p = 0.1 (tumbles are mostly in left/negative direc-
tion), p′ = 0.1 (runs often consist of backward steps relative to preferred direction)
and f = 0.1 (infrequent tumbles/frequent runs).

(x,+)︸ ︷︷ ︸
t = 0

(1−f)p′−→ (x+ 1,+)︸ ︷︷ ︸
t = 1

fp−→ (x+ 1,+)︸ ︷︷ ︸
t = 2

(1−f)p′−→ (x+ 2,+)︸ ︷︷ ︸
t = 3

(1−f)p′−→ (x+ 3,+)︸ ︷︷ ︸
t = 4

(1−f)q′−→ (x+ 2,+)︸ ︷︷ ︸
t = 5

.

(4.4)

(x,−)︸ ︷︷ ︸
t = 0

(1−f)q′−→ (x+ 1,−)︸ ︷︷ ︸
t = 1

fq−→ (x+ 1,−)︸ ︷︷ ︸
t = 2

(1−f)p′−→ (x,−)︸ ︷︷ ︸
t = 3

(1−f)p′−→ (x− 1,−)︸ ︷︷ ︸
t = 4

fp−→ (x− 1,+)︸ ︷︷ ︸
t = 5

.

(4.5)

The subfigures (b) and (c) in Fig. 4.2 illustrate the sample trajectory given in (4.4).

The main takeaway is that a tumble does not contribute to change in position,

and the particle can take either forward or backward step relative to the preferred

direction. In addition, Figs 4.3, 4.4, 4.5 and 4.6 show a few numerical simulations

which can help us to build intuition about how different parameters work in our

75



0 5 10 15
time

−1

0

1

2
P

os
it

io
n

f = 0.9, p′ = 0.1, p = 0.1

Figure 4.4: Same as Fig. 4.3 with f = 0.9 (frequent tumbles/infrequent runs).
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Figure 4.5: Sample trajectory for p = 0.7, p′ = 0.6 and f = 0.1 (infrequent tum-
bles/frequent runs).
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Figure 4.6: Same as Fig. 4.5 with f = 0.9 (frequent tumbles/infrequent runs).

model.

4.3 Stochastic thermodynamics of RT model

In this section, we take a closer look at nonequilibrium aspects of the RT model. We

begin with the time-integrated particle current J(t) which is our chief observable

of interest, defined here as the net difference between the number of right and left

steps up to time t. Since a tumble event serves only to set the preferred direction,

there is no current increment due to the tumble. Furthermore, the RT process is

Markovian on the extended state space of the position and preferred direction; by

construction these variables are even, i.e., the sign of preferred direction is invariant

under time-reversal. The fluctuations of J(t) in the long-time limit are encoded in

the scaled cumulant generating function or SCGF (section 2.2) [28]:

ϕ(s) = lim
t→∞

1

t
lnE[esJ ], (4.6)
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which can be obtained via an eigenvalue problem in the extended state space, or

within a reset framework [214] as outlined in the Appendix A. The SCGF yields the

first two scaled cumulants of current J(t):

j = ϕ′(0) = (p− q)(p′ − q′)(1− f), (4.7)

σj
2 = ϕ′′(0) = (1− f)[f(p′ − q′)2 + 4p′q′] +

(1− f)2(f + 2)

f

[
4pq(p′ − q′)2

]
. (4.8)

A bound on uncertainty j
2
/σj

2 is obtained from the inequality (4.2) by constructing

the total entropy production (Stot) as the logarithm of the ratio of probabilities for a

trajectory in extended state space and its time reversal (section 3.11). From our past

discussions on time-reversal and entropy production in APRW model (section 3.3.1),

we already know that the entropy production can be written for both odd (Sodd)

and even (Seven) variables. Here, in the present extended state space picture, we are

considering Seven as we know that this is necessary for the derivation of TUR (see

section 2.4.2). We shall return to this discussion shortly. The total (even) entropy

production Stot up to time t can be written as

Stot(t) = T+ ln
p

q
+ T− ln

q

p
+N+ ln

p′

q′
+N− ln

q′

p′
. (4.9)

The terms T+ and T− denote the net number of changes from positive to negative

preferred direction and negative to positive preferred direction up to time t, respec-

tively. Similarly, N+ and N− are the net number of run steps in forward (positive)

and backward (negative) steps with respect to the set preferred direction up to time

t. Hence, in steady-state (t → ∞) for our discrete-time Markov chain with time

step ∆t (set to unity), mean entropy production per time step becomes

s̄tot = lim
t→∞

〈
N+ −N−

〉
t

ln
p′

q′
= (1− f)(p′ − q′)︸ ︷︷ ︸

current due
to runs

ln

(
p′

q′

)
. (4.10)
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The quantity s̄tot (calculated in the extended state space) when combined with (4.2)

leads to a ‘naive’ PV bound. Note that (4.10) has no p-dependence as here the

entropic contributions associated with tumbles do not contribute to the average

(because in the extended state space the number of changes from positive to negative

preferred direction is asymptotically equal to that from negative to positive, i.e.,

T+ ≃ T−). As we shall see the PV bound turns out to be very loose in many regions

of parameter space (in particular, for intermediate p values); indeed as p′ → 1,

s̄tot →∞.

Now we return to the issue of entropy production in odd and even case. Let us

ask a simple question: what happens to entropy production and TUR if preferred

direction is treated as an odd-parity variable?3 In odd-parity case, signs are flipped

in the reversed trajectory and consequently, one obtains a p-dependent mean en-

tropy production rate which does not always bound the uncertainty. For further

clarification, we can compare the validity of TUR in both RT model and APRW

model using the following table:

Model TUR (even) TUR (odd)

RT ✓ Loose ✗

APRW ✓ Infinitely loose ✗

. (4.11)

Clearly, the TUR is always valid for observables of even-parity but is often loose.

Hence, we need a new bound which not only constrains the current fluctuations but

also remains tight for a broader parameter regime.

Within this picture, renewal-reward theory (RRT) comes as an extremely helpful

tool to construct such a bound. The time-integrated current can be described by

a renewal-reward process (a type of cumulative process) [217] in which tumbles are

renewal events, and current increments from each run are rewards. In the next two

sections, we work within the mathematical framework of RRT which allows us to

construct a general run-and-tumble bound on the uncertainty. Significantly, this

bound also applies to non-geometric run lengths and is often considerably tighter

than the PV bound.

3The issue of time-reversal operation on variables involved in the context of active matter is
debatable. For a related discussion on entropy production in active matter, see [215,216].

79



4.4 Renewal-reward theory

Our approach in this section is to mould our run-and-tumble process into the math-

ematical framework of renewal-reward theory [26, 217] (for a brief overview, see

Appendix B). For this purpose, we focus on the statistics of tumble events:

• Let M(t) be the total number of tumbles during the whole RT process, i.e.,

from time step 1 to t.

• We assume that the interoccurrence times between tumbles are non-negative,

independent and identically distributed (IID) random variables drawn from a

discrete probability distribution. Moreover, we denote the random variables

as Ni (i ≥ 1).

For the toy model of the previous section the Ni’s are geometrically distributed

but, in principle, we can take any distribution with finite mean (0 < E[Ni] < ∞);

this is a major advantage of our new approach. Under these assumptions, M(t)

represents a renewal process (see lower part of Fig. 4.7) where

M(t) = max{m :
m∑
j=1

Nj ≤ t}. (4.12)

We now turn our attention to the current J(t) which consists of the sum of current

increments ∆Ji from completed runs and ∆JF from the residual (uncompleted) run

between the last tumble and time step t:

J(t) =

M(t)∑
i=1

∆Ji +∆JF. (4.13)

In the case of geometric run lengths ∆JF is from the same distribution as the ∆Ji’s

but in general, this will not be true. However, at least in the case where all moments

of N are finite, we expect that J(t) is well approximated in the long-time limit by

J̃(t) =

M(t)∑
i=1

∆Ji. (4.14)
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Figure 4.7: Sample realisation of renewal process and corresponding renewal-reward
process with tumbles (renewals) at 0, t1, t2, . . . and current increments (rewards)
∆J1,∆J2,∆J3 . . ..
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If the current increments are independent of one another (as in the random walk

model), then J̃(t) is a so-called renewal-reward process where we can consider the

current increment ∆Ji to be a terminal ‘reward’ added at the end of the ith run

(see upper part of Fig. 4.7). Note that each ∆Ji is a random variable which can be

negative and depends on the history since the last tumble. Hence, both the time

and direction of the last tumble are important.

Our focus in this study is, particularly, on the processes in which current in-

crement ∆Ji can be factorised as the product of two independent random variables

namely, Xi (set in the tumble) and Ri (depending only on the run length ni − 1):

∆Ji = XiRi. (4.15)

For instance, in our toy model, Xi = ±1, and for a run of length ni − 1, Ri =

2R̃i − (ni − 1) where R̃i (number of forward steps) has a binomial distribution

B(ni − 1, p′). We are chiefly interested in the long-time behaviour of J̃(t) although

finite-time uncertainty relations have been established for a few systems [59, 60].

Undoubtedly, this asymptotic behaviour of J̃(t) is associated with the moments of

run length (Ni) and the distribution of current increments (∆Ji). For brevity, in

what follows we drop the subscript ‘i’ in all the notation pertaining to the moments

of IID random variables. We define:

µk = E[Nk], λk = E[∆Jk], and clk = E[N l∆Jk] (4.16)

whenever these expectations exist. We now use the RRT theorems which are the are

standard asymptotic results for the computation of mean and variance of current

in the long-time limit. Given the assumptions (0 < E[N ] < ∞, E[|∆Jm|] < ∞)

and using the RRT theorems (see Appendix B), we can write the long-time mean of

J̃(t):

lim
t→∞

E[J̃(t)]

t
=

λ1

µ1

=
E[X]E[R]

E[N ]
. (4.17)
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Here, we utilise the fact that Xi and Ri are independent for all i. This is the

mathematical expression of the intuition that the time-averaged mean current is

asymptotically given by the expected current accumulated in one run divided by

the expected time between tumbles. Moreover, renewal-reward theory also provides

us the exact expression for long-time scaled variance of J̃(t) [218,219]:

lim
t→∞

Var[J̃(t)]

t
= µ1

−3µ2λ1
2 − 2µ1

−2c11λ1

+ µ1
−1λ2, (4.18)

where in our set-up, µ2 = E[N2], λ2 = E[X2]E[R2] and c11 = E[X]E[RN ].

Given the assumption that the long-time statistics of J̃(t) and J(t) are the same,

renewal-reward theory provides a natural structure to obtain the exact asymptotic

uncertainty in terms of moments of the underlying random variables R, X, and N .

We also see that although X and R are independent random variables, the same is

not true for R and N . Therefore, we must take the conditional dependence of R and

N into account while constructing uncertainty bounds. In the next section, we shall

see that useful bounds on the uncertainty can still be obtained without knowledge of

the distribution of R. The key step is to use the result (4.18) to relate the variance

of the current to that of a simpler Markovian process (associated with the tumbles)

with known entropic bounds.

4.5 Uncertainty bounds

In this section, we outline the procedure to derive an entropic bound on the particle

current fluctuations for a general class of run-and-tumble-type processes. We now

assume:

E[R|N = n] = r̄(n− 1), Var[R|N = n] = σr
2(n− 1), (4.19)

where r̄ and σr
2 are constants depend on the details of the run process. We use

these assumptions to calculate the involved moments4 in (4.18):

4For details, see Appendix B.
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E[R] = r̄ (E[N ]− 1)

E[R2] = σr
2(E[N ]− 1) + r̄2(σN

2 + E[N ]2 − 2E[N ] + 1)

E[RN ] = r̄(E[N2]− E[N ]). (4.20)

For instance, in our toy model, r̄ and σr
2 correspond to the moments of the run pro-

cess made up of biased random walk. The scaling in (4.19) is clearly exact for ran-

dom walks with IID step lengths, such as the toy model above. The scaling may still

hold asymptotically for other random walks including some non-Markovian models.

However, such a scaling is not generally exact for non-IID step sizes (although there

might be some special cases). We return to this discussion in section 4.8. The next

step is to mould the RRT theorems described in (4.17) and (4.18) in terms of the

following notations:

σj
2 = lim

t→∞
Var[J̃(t)]

t
, j = lim

t→∞
E[J̃(t)]

t
, N̄ = E[N ], (4.21)

σN
2 = Var[N ], X̄ = E[X], σX

2 = Var[X]. (4.22)

Hence, RRT theorems can be rewritten in terms of j, σj
2, r̄, N̄ , σN

2, X̄, and σX
2 as

j =
X̄r̄(N̄ − 1)

N̄
, (4.23)

σj
2 = σN

2
[X̄2 · r̄2 · (N̄ − 1)2

N̄3

]
− σN

2
[2X̄2r̄2(N̄ − 1)

N̄2

]
+ σN

2
[ r̄2X̄2

N̄

]
+ σX

2

[
r̄2(N̄ − 1)2

N̄

]
+ σr

2

[
X̄2(N̄ − 1)

N̄

]
+ σX

2σr
2

[
(N̄ − 1)

N̄

]
+ σX

2σN
2 r̄

2

N̄

+
X̄2 · r̄2 · (N̄ − 1)2

N̄
− 2X̄2r̄2 (N̄ − 1)2

N̄
+

X̄2r̄2(N̄ − 1)2

N̄

= σX
2

[
r̄2(N̄ − 1)2

N̄

]
+ σr

2

[
X̄2(N̄ − 1)

N̄

]
+ σN

2

[
X̄2r̄2

N̄3

]
+ σX

2σr
2

[
(N̄ − 1)

N̄

]
+σX

2σN
2 r̄

2

N̄
. (4.24)
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Crucially, we note that all terms in (4.23) and (4.24) are positive which implies

that by considering only some subset of them we can get a bound on σj
2. In

particular, we have

σj
2 ≥

[
r̄2
(
(N̄ − 1)2 + σN

2
)

N̄

]
σX

2. (4.25)

Clearly, the tightness of this bound depends on the relative contribution of terms

involved in (4.24). We expect this bound to be useful in the case of long run-lengths

and infrequent tumbles. We can now obtain a direct uncertainty bound from (4.23)

and (4.25):

j
2

σj
2
≤
[

(N̄ − 1)2

N̄((N̄ − 1)2 + σN
2)

]
X̄2

σX
2
. (4.26)

Clearly, the quantities in above equation have straightforward physical interpreta-

tions. The direct bound contains a prefactor (from runs) and uncertainty (from

tumbles). By inclusion of more terms, one can improve the tightness of this bound

as RRT gives exact uncertainty. However, there is not much structural similarity

with standard entropic bounds given in literature. Therefore, to make a connection

with standard results of thermodynamic uncertainty relations, we now construct an

auxiliary process by summing IID random variables

X(M) =
M∑
i=1

Xi. (4.27)

Note that X̄ and σX
2 are also the scaled cumulants of X(M). Some important

remarks and assumptions about X(M):

• It exhibits discrete-time Markovian dynamics.

• We assume the so-called ‘microscopic reversibility’, i.e., if transition probabil-

ity P (Xi = +x) is non-zero, then the same is true for P (Xi = −x).

Hence, we can obtain the entropy production by taking the log-ratio of probabilities

of state-space trajectories. We denote the mean entropy production rate (or per
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tumble step) as s̄X , and since X(M) is a Markovian process, we can construct a

standard PV bound (4.2) on the uncertainty of X as

X̄2

σX
2
≤ 1

2
(es̄X − 1) . (4.28)

The above equation combined with (4.26) leads us to the following inequality:

j
2

σj
2
≤ (N̄ − 1)2

2N̄
[
(N̄ − 1)2 + σN

2
]︸ ︷︷ ︸

Run

(es̄X − 1)︸ ︷︷ ︸
Tumble

. (4.29)

We see on the right hand side of (4.29) contributions from two different sub-

processes: run-length statistics from run (prefactor) and mean entropy production

from tumble (standard PV bound). We dub (4.29) the ‘RT bound’ and it can be

represented in the form of (4.2). Arguably, RT bound is more useful than the PV

bound in situations where the microscopic dynamics of the run process is not read-

ily accessible as the latter requires the knowledge of full statistics of the process.

A weaker bound can also be obtained when the variance of the run lengths is not

known, using only their mean:

σj
2 ≥ σX

2

[
r̄2(N̄ − 1)2

N̄

]
. (4.30)

An interesting case to look at is what happens when we pick run-distribution

from an extreme delta-like distribution (fixed N̄). In this case, there is no variance

(σN
2 = 0) and (4.29) reduces to

j
2

σj
2
≤ 1

2N̄
(es̄X − 1) , (4.31)

which is exactly the form of PV bound (4.2) with ∆t = N̄ . This is intuitively rea-

sonable since our process now resembles a random walk with a longer time step and

large contribution in the variance comes from σr
2 terms in (4.24). In the next sec-

tions, we use RT bound for geometric and non-geometric run lengths, and compare

its tightness with the PV bound.
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4.6 Geometrically distributed runs

In this section, we put our newly derived bound and central result (4.29) to test by

considering tumbles of the specific form:

Xi =

{
1 with probability p,

−1 with probability q = 1− p.
(4.32)

Moreover, associated mean auxiliary-entropy production rate is

s̄X = (p− q) ln

(
p

q

)
. (4.33)

First, we consider our toy model with geometrically distributed run lengths. Math-

ematically, we write

P (N = n) = f(1− f)n−1 (4.34)

where f is the probability of tumbling and n = 1, 2, 3. . . .. Now, recalling the

structure of RT bound (4.29), we need s̄X (already defined) and first two cumulants

of N . Thus, plugging s̄X and

N̄ =
1

f
, σN

2 =
1− f

f 2
, (4.35)

into (4.29), we get

j
2

σj
2
≤ f (1− f)

2 (2− f)

[(
p

q

)p−q
− 1

]
. (4.36)

We are chiefly interested in the behaviour of RT bound for relatively long mean

run lengths (corresponding to small f) because the inequality (4.25) is more useful

for large N̄ . In Fig. 4.8 , we plot the behaviour of RT bound with respect to

parameter p for f = 0.1 (corresponding mean run length N̄ − 1 = 9) and compare

it to exact asymptotic uncertainty (obtained from RRT) as well as Monte Carlo

simulation. Additionally, we also plot the direct bound given in (4.26). There are

following important observations:
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Figure 4.8: RT bound [dashed red, (4.29)], direct bound [dashed violet, (4.26)], PV
bound [thin black, (4.2)], and RRT prediction [solid blue, ((4.23),(4.24))] for geo-
metrically distributed runs with f = 0.1, p′ = 0.75. Green triangles show simulation
results for T = 20000 averaged over 10000 realisations.

1. The numerics and exact asymptotics agree as expected. Both obey the RT

bound for geometrically distributed runs given in (4.36).

2. The RT bound is close to direct bound (4.26) and relatively tight for the

intermediate p−values but becomes loose as p→ 0 or 1. These limiting cases

in the model resemble lazy random walker where the walker always tends to

tumble in one preferred direction, and the tumble step consumes one time step

without any net movement or change in the preferred direction.

3. The p−independent PV bound, obtained by substituting (4.10) in (4.2)), is

relatively tight when p approaches 0 or 1.

For completeness, we also compare in Fig. 4.9 the RT and PV bounds at fixed

p as a function of p′ (although, we anticipate our results to be most useful when

p′ is unknown); again we see that the bounds are tight in complementary regions.

By construction, the RT bound is not suitable for shorter run length cases and

hence is a less informative constraint for larger f (shorter run length) since the

inequality (4.25) becomes looser. However, even for f = 0.25 (mean run length 3)
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Figure 4.9: Same as Fig. 4.8 but for fixed p = 0.75 and varying p′.

we see from the three-dimensional plot in Fig. 4.10 that the bound is reasonably

tight in much of the parameter space. We now extend our analysis to non-geometric

runs as may be relevant in applications.

4.7 Other run distributions

The duration of combined run-and-tumble event in our toy model (section 4.2)

corresponds to geometric run-lengths. The resulting dynamics is Markovian on the

extended state space of the preferred direction and position since the probability of

tumbling is independent of the time elapsed since the last tumble. As mentioned

in the section 2.5, the Markovian approximation may not be good for modelling

real-life situations. For instance, there can be cases where energy needs to build

via a sequence of internal chemical reactions before the occurrence of a tumble.

Moreover, there is a significant theoretical interest in the study of fluctuations in non-

Markovian processes; therefore, the application of RT bound to arbitrary discrete

run distributions becomes important. Since for n = 1, the corresponding run-length

is zero, we consider arbitrary discrete-run distributions with support on strictly

positive integers. There is one big hurdle in implementing the previous analysis

for non-Markovian processes— the computation of entropy production. Although
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Figure 4.10: RT bound (blue) and theoretical RRT uncertainty (orange) as a func-
tion of p and p′ for geometric runs with f = 0.25.

entropy production is in general difficult to compute for non-Markovian dynamics,

the trajectory reversal argument for our class of models (where the tumbles form

a semi-Markov process with ‘direction-time independence’5 [113, 114, 139, 140, 220–

222]) suggests that the analogue of (4.10), i.e., mean entropy production for non-

geometric run lengths is now

s̄tot =

(
N̄ − 1

N̄

)
(p′ − q′) ln

(
p′

q′

)
. (4.37)

The prefactor only contains contribution from runs because the length of the run

stays the same in the forward and backward paths of a corresponding trajectory and

the tumble part still cancels out. This results in dependence of current increments

on run-length as well as the parameters p′ and q′ and yields the prefactor as the

5The ‘direction-time independence’ refers to a semi-Markov process where the embedded Markov
chain and the non-exponential waiting-time distributions correspond to tumbles and the interoc-
currence times between tumbles, respectively. Here, we assume the transition probabilities (related
to tumbles) are independent of interoccurence times. For mathematical details, see [113, 114, 140]
and for other applications in nonequilibrium statistical mechanics, see [139,220–222].
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ratio of run-length to the total duration of the combined run-and-tumble event.

Equation (4.37) allows us to test PV bound (4.2) in non-geometric cases. For

comparison purposes of different run-distributions, we choose parameter in such a

way that non-geometric run distributions have same N̄ as the geometric case with

f = 0.1.

4.7.1 Negative binomial distributions

We know that negative binomial distribution can be defined as a sum of geometric

random variables and can serve as a natural starting point to model a sequence

of intermediate steps required for the occurrence of a tumble event. We can write

probability mass function for run distribution as

P (N = n) =

(
n− 1

k − 1

)
fk(1− f)n−k (4.38)

where n = k, k + 1, k + 2, . . . . When k = 1, P (N = n) reduces to the geometric

distribution. The mean and variance of N are:

N̄ =
k

f
, σN

2 =
k(1− f)

f 2
. (4.39)

Hence, (4.29) takes the form

j
2

σj
2
≤ f(k − f)2

2k (f 2 − 3fk + k2 + k)
·
[(

p

q

)p−q
− 1

]
. (4.40)

In Fig. 4.11, we show the RT bound and exact RRT results as a function of p

for k = 3 and f = 0.3 (mean run length 9). We observe similar features as noted

for geometric case, particularly, the fact that RT bound is tighter than PV bound

for the intermediate p−range.

4.7.2 Log-series distribution

We now repeat our analysis on some special distributions (or ‘exotic’) distributions

with support on positive integers, namely log-series distribution and zero-truncated

91



Poisson distribution. The log-series distribution is used to model relative species

abundance [223]. The basis of this distribution is power series expansion of natural

logarithm and sometimes it is also referred to as simply logarithmic distribution.

The probability mass function (PMF) with shape parameter f ′ can be written as

P (N = n) =
−(1− f ′)n

n ln f ′
, 0 < f ′ < 1. (4.41)

The required moments are

N̄ =
(f ′ − 1)

(f ′ ln f ′)
, σN

2 =
(f ′ − 1)(ln f ′ − f ′ + 1)

(f ′2(ln f ′)2)
. (4.42)

Hence, RT bound for log-series distribution takes the form:

j
2

σj
2
≤ f ′(1− f ′ + f ′ ln f ′)2

2(1− f ′) (1− 3f ′ + 2f ′2 − f ′2 ln f ′)
·
[(

p

q

)p−q
− 1

]
. (4.43)

Figure 4.11 shows that this bound also yields a useful constraint on the uncertainty

exhibiting the same features as geometric and negative-binomial cases.

4.7.3 Zero-truncated Poisson distribution

Lastly, we discuss our RT bound in the context of zero-truncated Poisson (ZTP)

or positive Poisson distribution [224,225] which excludes zero from its support. We

define run-length PMF as

P (N = n) =
(exp(ν)− 1)−1νn

n!
, ν > 0, n = 1, 2, . . . . (4.44)

The moments for ZTP are

N̄ =
ν

(1− e−ν)
, σN

2 = N̄(1 + ν − N̄). (4.45)

Then, the RT bound (see Fig. 4.11) can be given as
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Figure 4.11: RT bound (dashed), RRT prediction (thick solid) and PV bound (thin
black) for (i) negative binomial distribution with f = 0.3, p′ = 0.7 and k = 3 (red
and blue), (ii) log-series distribution with f ′ = 0.0269 (brown and orange), and (iii)
zero-truncated Poisson distribution with ν ≈ 9.995 (green and yellow). Blue and
yellow lines overlap as they are indistinguishable at this scale.

j
2

σj
2
≤ V 2

2νeν(ν2eν − V )
·
[(p

q

)p−q
− 1
]
, (4.46)

where V = νeν − eν +1. In the next section, we extend RT bound to many-particle

systems and continuous-time models.

4.8 Many-particle systems and continuous-time

models

At this point, we attempt to go beyond the single-particle models in discrete-time

setting. Since the renewal-reward framework on which the derivation is based also

holds in a continuous-time setting [219] and the auxiliary process is discrete-time

by construction, the same bound (4.29) should apply to continuous-time models

as well. Significantly, we also anticipate it is applicable to many-particle systems
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where the preferred direction is stochastically reset at random times which can be

construed as a ‘collective tumble’ for all the particles. In a similar manner, the run

between resets can be interpreted as ‘generalised runs’. The assumptions required

for our asymptotic bound that current increments are IID random variables with

the form (4.15), and the mean and variance of the ‘generalised run’ process scale

as in (4.19). In fact, for many-particle systems this scaling approximation may not

hold exactly but it is generically true in the large n limit. Therefore, the RT bound

is expected to be useful when the collective tumbles are infrequent (small f values).

As an example of an interacting particle system, we show results for a paradig-

matic model: the asymmetric simple exclusion process (ASEP) [226] on a ring.

ASEP is a many-particle system defined in discrete space and continuous time.

Although there are many variants of ASEP, the basic set-up consists of particles

jumping stochastically from one site to another site on an one-dimensional lattice

of finite or infinite size. Both ends are connected to the particle reservoirs and

the particles are subjected to an exclusion constraint that they cannot jump to a

pre-occupied site (see Fig. 4.12 (b)) . The asymmetry or bias in the system comes

from the presence of preferred direction (say right) which imitates a field driving the

particles in the system. Consequently, the current or particle flux is manifested in

the system. The ASEP is used in modelling ribosome-dynamics in messenger-RNA

(mRNA) [229,230], motor protein transport (see Fig. 4.12 (c)), electronic transport

in carbon nanotubes, vehicular traffic and various other systems (see [227,231] and

references therein).

In this study, we work with ASEP with periodic boundary condition. Math-

ematically, we can define a one-dimensional lattice having L sites labelled by i =

1, 2, . . . , L. The exclusion constraint ensures that each site can only contain one par-

ticle or remain empty. The particle jumps from site i to i+1 with rate p′ (clockwise);

the rate is q′ (anticlockwise), if the jump is from site i to i− 1. Since p′ and q′ are

hopping rates not transition probabilities, here p′+ q′ ̸= 1. The number of particles

(n′) is conserved due to the absence of reservoirs and n′ ≤ L (see Fig. 4.12 (a)). In

totally asymmetric simple exclusion process (TASEP), q′ = 0 and the particles hop

unidirectionally subject to the exclusion constraint.

In the light of our run-and-tumble framework, here a collective tumble can be

thought of as an internal countdown timer. We assume that all the particles have
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(a)

(b)

(c)

(b)

Figure 4.12: (a) Asymmetric simple exclusion process (ASEP) on a ring with L = 8
sites and n′ = 4 particles with hopping rates p′ (right) and q′ (left) where p′+q′ ̸= 1.
Based on [227]. (b) ASEP (bidirectional) with open boundaries and L = 8 sites.
Here, for left boundary, α and γ are input and exit rates, respectively. Similarly, δ
and γ are the input and exit rates for the right boundary. (c) Application of totally
asymmetric simple exclusion process (TASEP) (q′ = γ = δ = 0) to model biological
transport (movement of molecular motors carrying protein) along a filament. Figures
(b) and (c) are partially based on [228].
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the same preferred direction at any given time. When the timer rings all particles

individually reset their preferred directions. In direct analogy with our discrete-time

single-particle models, we assume that this stochastic reset event consumes one unit

of time. In this case, r̄ is the mean displacement per time step in the preferred

direction during a run summed over all the particles. A theoretical expression for

exact uncertainty can be derived by using established results in literature [232,233]

for r̄ and σr
2. In particular, the mean current of the run process r̄ is given as

r̄ = (p′ − q′)
n′(L− n′)

L− 1
(4.47)

where p′ and q′ are forward and backward jumping rates on a lattice of L sites

and n′ particles, respectively. Similarly, the known result for variance σr
2 takes the

following form:

σr
2 = 2(p′ − q′)

L

L− 1

n′∑
k=1

k2

(
L

n′+k

)(
L

n′−k
)(

L
n′

)2 1 + xk

1− xk
(4.48)

where x = q′/p′. We choose the generalised run from a continuous distribution

namely exponential distribution with parameter f and probability distribution func-

tion:

g(n) =

{
fe−fn n ≥ 0,

0 n < 0
. (4.49)

The required moments are N̄ = 1/f and σN
2 = 1/f 2. We can obtain the exact

uncertainty for ASEP by plugging in the above expressions of r̄, σr
2, N̄ and σN

2

in (4.23) and (4.24). The expression for RT bound can be written as

j
2

σj
2
≤ f(1− f)2

2 ((1− f)2 + 1)

[(
p

q

)p−q
− 1

]
. (4.50)

Figure 4.13 confirms that theoretical uncertainty indeed obeys the RT bound for

exponential jumps (memoryless). To incorporate memory effects (non-exponentially

distributed generalised runs) of chapter 2, there are other ways to model memory
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Figure 4.13: RT bound for ASEP with 5 particles on a 10-site ring. p′ = 0.75, q′ =
0.5. The preferred direction itself is stochastically reset (clockwise with probability
p) and the generalised run is exponential with N̄ −1 = 9. RT bound (dashed), RRT
prediction (thick solid) (i) Gamma distributed generalised runs with f = 0.3 and
α = 3 (red and blue) which can be compared with (ii) exponential distribution with
f = 0.1 (brown and orange). Simulation results for T = 20000 averaged over 2000
realisations and only shown for exponential distribution (green).
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in a stochastic system.6, we can use gamma distribution which is the continuous

analogue of negative-binomial distribution. The probability distribution function of

gamma distribution with parameters f and α is

g(n) =


fe−fn(fn)α−1

Γ(α)
n ≥ 0,

0 n < 0

. (4.51)

where f > 0, α > 0 and Γ(α) is gamma function which is simply Γ(k) = (k−1)!. For
α = 1, gamma distribution reduces to the exponential distribution. N̄ = α/f and

σN
2 = α/f 2 yield mean and variance respectively. Similarly, the exact uncertainty

of the associated run-process on ASEP (solid blue line in Fig. 4.13) can be also

derived. In this case, RT bound becomes

j
2

σj
2
≤ f(α− f)2

2α ((α− f)2 + α)

[(
p

q

)p−q
− 1

]
. (4.52)

Figure 4.13 confirms that even in the cases with non-exponential distributions, the

theoretical uncertainty is constrained by our RT bound.

4.9 Conclusion

To conclude, we derived an alternate bound on current fluctuations using renewal-

reward theory for a general class of run-and-tumble-type processes. The tightness

of our run-and-tumble (RT) bound can be improved by incorporating more terms

in (4.24). The salient features of our RT bound are as follows:

1. It holds for single-particle models based in the discrete-time setting with geo-

metric and non-geometric run distributions.

2. The inference of constraints on current fluctuations is possible without the

information of full statistics of the run-and-tumble process. The knowledge of

only the mean and variance of runs, and the mean entropy production rate

6As stated in section 2.5 One can consider a non-Markovian exclusion process where the hopping
rates depend on particle current. For details, see references [143,167]
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associated with tumbles is enough to construct the bound. This implies that

our bound is independent of the parameters of the underlying run process,

e.g., hop rates in the asymmetric simple exclusion process (ASEP).

3. It is also applicable in continuous-time models, many-particle systems such as

ASEP with collective tumbles.

If more information about the microscopic dynamics is available, one could po-

tentially derive other similar bounds (in the spirit of [46,61]) using the large deviation

formalism [234]. Since we only considered the relative tightness of RT bound and PV

bound, a finer analysis can be done in future by taking the ratio between the bounds.

Recently, multidimensional thermodynamic uncertainty relations (MTUR) [73] were

also proposed and it would be an interesting project to investigate the link between

MTUR and multivariate renewal-reward theory [235]. Other unexplored domains

include the applicability of the bound in the models exhibiting dynamical phase

transitions [214]. Recent works [236–238] suggest that this is relevant for various

run-and-tumble applications.

We know that the run-and-tumble models are a prominent example of an active

particle system (e.g., self-propelled particles, bird-flocking, self-organisation) and

stochastic thermodynamics of active particle systems is an emerging field. Our

work links uncertainty relations and current fluctuations in the active matter It

provides an opportunity to explore memory effects and other universal properties

in active matter systems. Along these lines, in the next chapter, we try to explore

another emerging universal feature—extreme-value statistics [19–21, 239–241]— in

stochastic thermodynamics in the context of our RT toy model.
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Chapter 5

Extreme-value statistics of

run-and-tumble process

5.1 Introduction

Extreme events are found ubiquitously in nature, and their rare occurrences gen-

erally bring catastrophic consequences [242]. The list of prominent examples of

extreme events includes earthquakes, extreme heatwaves, tsunami, extreme flood-

ing, stock market crash and excessive heating in small electronic devices. Conse-

quently, extreme events are the focus of many investigations in various fields such

as physics, biology, finance, earth sciences, computer science, and climate science

(see references in reviews [243] and [244]). The systematic study of extreme events

constitutes a field called extreme-value statistics (EVS) [245], and it helps us un-

derstand and predict the dynamics of extreme fluctuations in various systems. The

importance of extreme fluctuations or EVS can be understood via a biological ex-

ample of gene expression.1 During the phenomenon of gene expression, the number

of protein molecules fluctuates over time, and an interesting question is the pre-

diction of the time taken by protein molecules to reach a critical threshold for the

first time (first-passage time). Such questions are not only of theoretical interest

but also has significant biological consequences [246]. Since the time taken to reach

the threshold differs for each realisation, one is chiefly interested in the first-passage

1DNA → RNA → Protein. DNA: deoxyribonucleic acid and RNA: ribonucleic acid
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time distribution of the protein numbers [247]. More generally, first-passage times

are examples of stopping times. A stopping time is a random time when a stochas-

tic process fulfils a specific criterion. Following the course of fluctuation theorems

and uncertainty relations, we can ask whether (or not) there exist similar universal

laws governing extreme events and stopping-time statistics for stochastic entropy

production Stot in nonequilibrium systems.

In stochastic thermodynamics, the fluctuations of entropy production in indi-

vidual realisations can be negative [41]. Remarkably, such an observation reconciles

with the second law of thermodynamics, which states that the average of entropy

production taken over many realisations always increases in time, i.e., ⟨Stot(t)⟩ ≥ 0

where Stot is the total entropy production up to time t. This particular interpretation

of the second law demonstrates the statistical nature of the second law and provides

a fundamental bound on the statistics of entropy production. Apart from the second

law, the fluctuation theorems introduced in chapter 2 (section 2.4.1) provide a set

of crucial insights on the statistics of entropy-production fluctuations [36, 248]. In

addition to second law and fluctuation theorems, an important question is to anal-

yse the statistics of the extreme records of entropy production. Despite negative

realisations in individual trajectories, the second law ensures that the average of

the total entropy production always increases. Hence, it is interesting to study the

negative fluctuations of entropy production during a finite time interval.

Recently, Neri et al. showed that the average of the finite-time infimum of en-

tropy production is always greater than or equal to −1 [19]. Moreover, they derived

a fluctuation theorem-like symmetry relation for stopping times of entropy pro-

duction where first-passage probabilities were considered for positive and negative

thresholds. Crucially, these derivations were based on martingale theory [249–251]—

a common theoretical framework used to study fair games [252] or stock market

prices [253–255]. Subsequently, Neri et al. also derived integral fluctuation theorem

⟨e−Stot(T )⟩ = 1 for entropy production [41] at random stopping times T for sta-

tionary systems [20]. Lately, Neri extended a few of those results to nonstationary

systems [21].

The bounds on extreme values and stopping-time symmetry relations were de-

rived for Markovian processes (e.g., biased random walk). However, such questions

are not investigated yet in the context of a non-Markovian process. We know that
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non-Markovian are found in various real-life processes, as discussed in the intro-

ductory chapter (section 2.5). Interestingly, one of the prominent examples of non-

Markovian random walk—the elephant random walk has recently been analysed

within a martingale framework [256]. In this chapter, we plan to explore the ex-

istence of symmetry relations in our run-and-tumble process [17]. Specifically, we

focus on the numerical investigation of symmetry relations for the position variable,

which exhibits non-Markovian dynamics. We also attempt to understand under

which mathematical conditions, exponentiated position is a martingale.

In section 5.2, we describe the mathematical concepts such as the theory of mar-

tingales and Kullback-Leibler divergence. In section 5.3, we revisit some concepts

of stochastic thermodynamics with a focus on universal properties related to EVS.

In section 5.4, we briefly discuss entropy production in the run-and-tumble process

as a martingale. In section 5.5, we explore the martingality of the position and the

existence of symmetry relations in our run-and-tumble model. We conclude with a

discussion and open questions in section 5.7.

5.2 Mathematical preliminaries

We need the concept of martingales and Kullback–Leibler (KL) divergence to inves-

tigate the recent theoretical results [19–21,241] in our run-and-tumble model. Below

we briefly describe the martingale theory and KL divergence quantifying asymmetry

between two different probability distributions.

5.2.1 Martingales, stopping times and optional stopping the-

orem

Martingale: A discrete-time stochastic process {Xt, t = 0, 1, 2, . . .} is called a

martingale [249–251] if,

1. E[|Xt|] <∞, for all t (Xt is integrable).

2. E[Xt+1|X0, X1, . . . , Xt] = Xt.

The last condition defines the notion of martingales: if one knows the history of

Xt up to time t (i.e., X0, X1, . . . , Xt), then its expectation at time t+ 1 is equal to
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its value at time t (i.e., Xt). Therefore, the expected value remains the same after

time t and martingales have zero drift. Moreover, martingales can also be defined

with respect to an auxiliary process.2 To be more concrete, apart from Xt is called

a martingale relative to a stochastic process {Yt, t = 0, 1, . . .} if

1. Xt is a function of the trajectories {Yτ , τ = 0, 1, . . .};

2. Xt is integrable:

E[|Xt|] <∞, for all t ≥ 0, (5.1)

3. and the conditional expectation of Xt satisfies

E[Xt|Y0, Y1, . . . , Ys] = Xs, for all s < t. (5.2)

Furthermore, Xt is called a submartingale if

E[Xt|Y0, Y1, . . . , Ys] ≥ Xs, for all s < t (5.3)

whereas it is a supermartingale if

E[Xt|Y0, Y1, . . . , Ys] ≤ Xs, for all s < t. (5.4)

Martingales are used to analyse a variety of random processes and represent a

mathematical version of a fair game of chance with zero net gain or loss. Tradition-

ally, martingales have been used to understand fundamental problems in gambling

and betting strategies [252, 257–259]. In the gambling context, martingale denotes

a fair game, and submartingale represents a game that is superfair to a gambler

as the gambler’s fortune is either greater than or equal to his/her current fortune.

Similarly, a supermartingale represents a subfair game for a gambler.

Martingales are of central in quantitative finance [254, 255] (stock price mod-

elling in efficient capital markets [253]) and decision theory [260]. Martingale the-

ory has also been employed in physical systems, e.g., classical quenched [261] and

2For a summary of technical details and standard measure-theoretic description of martingales,
see section 2.9 in [217] and section 3 in [20].
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quantum-mechanical systems [262]. Next, we discuss the application of martingales

in stochastic thermodynamics [19–21,239–241] in terms of stopping times which are

used to study fluctuations associated with martingales.

Stopping times: Formally, a stopping time T is defined when a trajectory of a

stochastic process {Xt, t = 0, 1, . . .} satisfies a (arbitrary) specific criterion for the

first time. Naturally, the stopping time is stochastic (nonnegative discrete random

variable) and differs for each realisation of the process. Moreover, the value of T

does not depend on the outcomes of the process after the stopping time. In other

words, we do not take into account what happens after the stopping time. The

waiting time and first-passage time are prominent examples of stopping time.

An important property of martingales is Doob’s optional stopping theorem [217]

which states that for a martingale {Xt, t ≥ 0} (relative to a process Yt) with a

stopping time T , we have

E[XT ] = E[X0]. (5.5)

In other words, the expected value at stopping time T is equal to the expected value

at the initial time. In literature, several versions of optional stopping theorem exist

based on slightly different assumptions. Commonly, it requires the stopping time T

to satisfy at least one of the following conditions:

1. The stopping time T is bounded.

2. The expectation of stopping time T is finite, E[T ] <∞ and the increments of

the process Xt are bounded for some constant k <∞, i.e.,

E[|Xt+1 −Xt||X0, . . . Xt] < k. (5.6)

3. The martingale Xt is itself bounded, or Xt is uniformly integrable.

We reiterate that other conditions also exist, and these conditions should be seen

as demonstrative examples, not as an exhaustive list. In the context of gambling,

Doob’s optional stopping theorem implies that a gambler cannot make a fortune in

a fair game of chance by quitting at stopping time T as the expected values of final

and initial fortune remain equal.
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5.2.2 Kullback-Leibler divergence

Let pX and qX be two probability distributions of a discrete random variable X.

The Kullback-Leibler divergence or KL divergence [263] between pX(x) and qX(x)

can be written as

DKL(pX(x)||qX(x)) =
∑
x

pX(x) ln
pX(x)

qX(x)
. (5.7)

In a nutshell, KL divergence is a measure of asymmetry between two probability

distributions and it is not symmetric, i.e.,

DKL(pX(x)||qX(x)) ̸= DKL(qX(x)||pX(x)). (5.8)

Moreover, DKL(pX(x)||qX(x)) ≥ 0 andDKL(pX(x)||qX(x)) = 0 if and only if pX(x) =

qX(x) for all x. In the next section, we briefly summarise the recent results in

stochastic thermodynamics which utilise the mathematical concepts of martingales

and KL divergence.

5.3 Stochastic thermodynamics revisited

We now take a brief look at some new results in stochastic thermodynamics which

provide fresh insight into the universal properties of entropy-production fluctuations

in Markov processes. In this direction, the central finding is that in a steady state,

the negative exponential of stochastic entropy production e−Stot(t)/kB is a martin-

gale [19–21, 239–241]. For a mesoscopic system, if there exists a stochastic entropy

production Stot(t) conditioned on a set of trajectories {X0, X1, . . . , Xt}, then

E[e−Stot(t)|X0, . . . , Xs] = e−Stot(s) (5.9)

for all s < t. As earlier, we set kB = 1 without any loss of generality. Then, the

fluctuations of entropy production Stot(t) obey the following universal properties

which were derived using the martingality of e−Stot(t) and other properties of Stot(t):

• Infimum law: The second law dictates that the expected entropy production
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Figure 5.1: Illustration of the infimum law for stochastic entropy production. The
solid lines represent the different stochastic trajectories and filled circles (red) indi-
cate their respective infima. The infimum law (5.11) states that the mean value of
the infimum is bounded from below by −kB (here set to unity).

is non-negative, i.e.,

⟨Stot(t)⟩ ≥ 0 (5.10)

where ⟨Stot(t)⟩ represent that average is taken over steady-state ensemble.3

Such an interpretation of the second law provides a simple explanation for the

observation of negative fluctuations in the individual trajectories of entropy

production [38]. The analysis of finite-time negative records can provide fur-

ther insight into the properties of entropy-production fluctuations. Formally,

we define the finite-time infimum which denotes the most negative value of

the entropy production as Sinf(t) ≡ infτ∈[0,t] Stot(τ) in an individual realisation

over an interval [0, t]. In recent work, Neri et al. showed that the mean value

of finite-time infimum of entropy production is bounded from below by −1 [19]

(see Fig. 5.1):

⟨Sinf(t)⟩ ≥ −1. (5.11)

3In this section, we use ⟨·⟩ instead of E[·] for notational consistency with the standard results
in the literature.
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• Stopping-time fluctuation theorem: One of the prominent results in

stochastic thermodynamics is the transient fluctuation theorem (TFT) (also

called sometimes as detailed fluctuation theorem) [44, 45] which applies to

entropy-production trajectories of any duration:

pent(Stot; t)

pent(−Stot; t)
= eStot (5.12)

where pent(Stot; t) is the probability distribution of Stot at a given time t. Re-

cently, a symmetry relation similar to TFT has been obtained for the stopping

times of entropy production along with the infimum law by Neri and co-authors

in reference [19].

For this purpose, we define stopping time T+ as the time at which entropy

production first reaches the positive threshold value stot, i.e., Stot(T+) = stot

(where stot > 0). Analogously, T− denotes the stopping time at which en-

tropy production first reaches negative threshold −stot, i.e., Stot(T−) = −stot.
Therefore, stopping time in this context is the first-passage time of entropy

production with absorbing boundaries. Notably, the mean stopping time to

reach the positive threshold is equal to the mean stopping time to reach the

negative threshold:

⟨T+⟩ = ⟨T−⟩. (5.13)

Moreover, the above symmetry relation is applicable to all higher order mo-

ments. Equation (5.13) follows from the following central result [19]:

pT+(t; stot)

pT−(t;−stot)
= estot , (5.14)

and its corollary:

pT+(t|stot) = pT−(t| − stot) (5.15)
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Figure 5.2: Schematic of stopping-time-fluctuation theorem or first-passage-time
fluctuation theorem for entropy production. We illustrate a few sample trajectories
of entropy production in finite time which terminate at two absorbing boundaries,
namely negative threshold−stot (horizontal thick red line) and positive threshold stot
(horizontal thick cyan line). The first-passage times recorded at these boundaries are
T− and T+ respectively. The probability distributions pT−(t;−stot) and pT+(t; stot)
are related by (5.14). Schematic based on reference [19]

which are valid for steady-state stochastic processes. Here, pT+(t; stot) and

pT−(t;−stot) denote the probability distribution functions for stopping times

T+ and T−, respectively. The pT+(t|stot) and pT−(t| − stot) represent the

normalised stopping-time distributions for positive and negative threshold,

respectively.4 The stopping-time- fluctuation theorem (or first-passage-time

fluctuation theorem) is illustrated in Fig. 5.2. Both infimum law (5.11) and

stopping-time- fluctuation theorem (5.14) have been applied to the dynamics

of molecular motor and colloidal particles [19] and later verified experimentally

using an electronic quantum dot set-up [264].

• Stopping-time integral fluctuation theorem: In his seminal work, Seifert

4pT+
(t|stot) ≡ pT+

(t; stot)/
∫∞
0

dtpT+
(t; stot) and pT−(t| − stot) ≡

pT−(t;−stot)/
∫∞
0

dtpT−(t;−stot).
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derived the integral fluctuation theorem (IFT) for entropy production [41,48]:

⟨e−Stot(t)⟩ = 1 (5.16)

using which one can easily obtain the second law of thermodynamics (5.10)

by applying Jensen inequality.5 Lately, Neri et al. derived a version of IFT

for a (stochastic) stopping time T which directly follows from the fact that

e−Stot(t) is a martingale [20]. Then, Doob’s optional stopping theorem (5.5)

straightforwardly yields (5.16):

⟨e−Stot(T )⟩ = ⟨e−Stot(0)⟩ = 1. (5.17)

The second law of thermodynamics for stopping-time immediately follows

from (5.17), i.e., ⟨Stot(T )⟩ ≥ 0. It implies that the mean entropy produc-

tion always increases, even in the scenario where the (stationary) process is

stopped at an intelligently chosen stochastic time T . Remarkably, these results

also hold for nonstationary process [21].

5.4 Run-and-tumble model: entropy production

In this section, we intend to analyse our toy model of the run-and-tumble (RT) pro-

cess (chapter 4) using the theoretical framework of martingales. We will solely focus

on investigating whether (or not) the negative exponential of entropy production in

the RT process is a martingale relative to the history of the process. Recall from

section 4.3 (for a summary of the RT model, see Fig. 4.2) that a tumble only serves

to set the preferred direction with no increment in position or current. On the other

hand, the run-step consists of a random walker moving ‘forwards’ or ‘backwards’

relative to the preferred direction set in the last tumble. The other crucial assump-

tion is that preferred direction is treated as an even variable under time reversal.

5Since exp(−Stot(t)) is a convex function of Stot(t), we can write 1 = ⟨exp(−Stot(t))⟩ ≥
exp⟨−Stot(t)⟩ ⇒ ⟨Stot(t)⟩ ≥ 0.
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The entropy production in the toy model is the logarithm of the ratio of probabili-

ties for an extended state-space trajectory and its time-reversed version. The total

entropy production consists of increments from both subprocesses: run and tumble

in the extended state space of position and preferred direction (which is either + or

−). Even for a finite time, the entropic contributions due to the tumbles cancel out

exactly. The number of changes from + → − preferred direction is roughly equal

to that from − → +, and the boundary terms exactly cancel any remaining terms.

Therefore, the entropy production of the run-and-tumble process solely comes from

the run part.

For notational clarity in the discrete-time setting, we now denote the total en-

tropy production of the RT process up to time t as St. As mentioned above St only

consists of entropic increments from the run events. Mathematically, St is simply a

biased random walker on entropy space:

St =
t∑

i=1

Xi (5.18)

where Xi’s are given as

Xi =


ln(p′/q′) with probability (1− f)p′,

− ln(p′/q′) with probability (1− f)q′ = (1− f)(1− p′),

0 with probability f.

(5.19)

Next, the main task is to show that the entropy production conditioned on a

trajectory up to time t is a martingale. Following the definition of martingale, the

negative exponential of entropy production e−St with respect trajectory {Xt, t =

0, 1, . . .} is a martingale, if

E[e−St |X0, . . . , Xτ ] = e−Sτ (5.20)

where τ < t. The proof is as follows:
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E[e−St |X0, . . . , Xτ ] = E[e−(Sτ+St−τ )|X0, . . . , Xτ ]

= e−Sτ · E[e−St−τ ] (entropic increments are i.i.d.)

= e−Sτ · E[e−
∑t−τ

i=1 Xi ]

= e−Sτ · E[e−X1 · e−X2 · . . . e−Xt−τ ]

= e−Sτ ·
(
E[e−Xi ]

)t−τ
= e−Sτ ·

[
(1− f)p′e−Xi + (1− f)q′eXi + fp+ fq

]t−τ
= e−Sτ ·

[
(1− f)(p′ + q′) + f

]t−τ
= e−Sτ . (5.21)

Alternatively, one can also utilise the integral-fluctuation theorem E[eSt−τ ] = 1

(valid for τ ≤ t) (5.16) in the second line and reduce the number of steps. It

follows from the above proof that the entropy production St relative to Xt in the RT

process is a martingale. Consequently, we anticipate the corresponding fluctuations

of entropy production to obey the recently obtained universal relations (infimum law,

symmetry-relation and IFT for stopping times) outlined in the previous section. In

the next section, we shift our attention to the position variable in the run-and-tumble

process and investigate whether it possesses the martingale property or not.

5.5 Run-and-tumble model: position

In this section, we investigate whether or not the position in the RT process is a

martingale process. Interestingly, the position displays non-Markovian dynamics

because it depends on the last tumble (not on the last step) which can occur at an

arbitrary number of steps in the past. This observation is an important departure

from all the previous analyses as most of the work in stochastic thermodynamics

has been done on the Markovian process. Furthermore, it has been shown that the

paradigmatic example of non-Markovian random walk—elephant random walk [162]

can be treated via a martingale approach [256]. We want to explore the existence of

first-passage-time fluctuation relations or symmetry relations in the case of position,
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and proving its martingality will be a crucial component.

We now refer back to position increments K ′is on the extended-state space of

position (X) and preferred direction (Ω) introduced in chapter 4 (section 4.2) in

(4.3).6 We reproduce it here for convenience of the reader:

Ki =



+1, (X,+)→ (X + 1,+) with probability (1− f)p′,

+1, (X,−)→ (X + 1,−) with probability (1− f)q′,

−1, (X,+)→ (X − 1,+) with probability (1− f)q′,

−1, (X,−)→ (X − 1,−) with probability (1− f)p′,

0, (X,±)→ (X,±) with probability f

(5.22)

Clearly, Ki’s are non-IID random variables, and the net position Xt (X0 = 0,

the process starts with a tumble) is the cumulative sum of the increments Ki’s:

Xt =
t∑

i=1

Ki. (5.23)

The increments Ki’s are different from Xi (entropic increments due to run) be-

cause the increments Xi’s only take into account steps along the preferred direction

in the entropy space whereas Ki’s correspond to position increments on extended

state space. To prove that eaXt is a martingale conditioned on its history, we need

to show the following condition:

E[eaXt | X0, . . . , Xτ ] = eaXτ , where τ < t. (5.24)

Given the fact that hereKi’s are non-IID, it is hard to prove that eaXt is a martingale.

However, we can alternatively investigate a simple case (say t = τ + 1) and try to

prove that eaXt is not a martingale which will enable us to make some general

statement. Substituting t = τ + 1 in (5.24) yields

6In Eq. (4.3), we used symbol X for the position as other variants X and X were used later in
the context of renewal-reward theory and uncertainty bounds, respectively. Here, for notational
consistency, we simply use X to denote position.
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E[eaXt | X0, . . . , Xτ ] = E[eaXτ+1|X0, . . . , Xτ ]

= E[ea(Xτ+Kτ+1)|X0, . . . , Xτ ]

= E[eaXτ · eaKτ+1|X0, . . . , Xτ ]

= eaXτE[eaKτ+1|X0, . . . , Xτ ]

(since E[eaXτ |X0, . . . , Xτ ] = eaXτ ). (5.25)

Furthermore, the non-Markovian nature of the process, i.e., the dependence of

increments on the last tumble (which can be an arbitrary number of steps behind),

can be expressed in terms of conditional expectations:

eaXτE[eaKτ+1|X0, . . . , Xτ ] = eaXτ

[
E[eaKτ+1 |(X0, . . . , Xτ ,+)]P (+|X0, . . . , Xτ )

+ E[eaKτ+1|(X0, . . . , Xτ ,−)]P (−|X0, . . . , Xτ )
]
. (5.26)

The probability of having a positive preferred direction (in the last tumble) given

the trajectory X0, . . . Xτ is P (+|X0, . . . , Xτ ) and that of a negative preferred direc-

tion is P (−|X0, . . . , Xτ ). Moreover, the respective values of P (+|X0, . . . , Xτ ) and

P (−|X0, . . . , Xτ ) are not simply p and 1−p due to dependence on the whole history

of the trajectory since the last tumble. We can further proceed and expand the

conditional expectation terms in (5.26) as

E[eaKτ+1|(X0, . . . , Xτ ,+)] =
[
(1− f)p′e+a + (1− f)q′e−a + f

]
(5.27)

and

E[eaKτ+1|(X0, . . . , Xτ ,−)] =
[
(1− f)q′e+a + (1− f)p′e−a + f

]
. (5.28)

Moreover, using (5.26) we can say the condition for eaXt to be a martingale for
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t = τ + 1 is

E[eaKτ+1|(X0, . . . , Xτ ,+)]P (+|X0, . . . , Xτ ) +

E[eaKτ+1|(X0, . . . , Xτ ,−)]P (−|X0, . . . , Xτ ) = 1 (5.29)

A cursory look suggests that the obvious solution (to prove the martingality of

position) is that both equations (5.27) and (5.28) are equal to 1 but other solu-

tions also exist. However, other possible solutions are ruled out due to the de-

pendence of conditional probabilities P (+|X0, . . . , Xτ ) and P (−|X0, . . . , Xτ ) on the

whole trajectory (since the last tumble). This happens because for a particular

history X0, X1, . . . , Xτ , the conditional probabilities will take particular values and

we can obtain a solution with a specific value of a. However, for a different his-

tory, the conditional probabilities will, in general, change values and the solution

will no longer will be valid. Therefore, in general, the obvious solution (i.e., setting

eqs. (5.27) and (5.28) to unity) will only work. This choice leads us to the solu-

tions: a = ln(q′/p′) and a = ln(p′/q′). Both solutions imply that a special case:

p′ = q′ ⇒ a = 0, which is not interesting as it corresponds to a zero mean scenario.

In other words, there cannot be a solution for any non-zero value of a. Nonetheless,

we cannot conclude that we have a martingale in general because we only showed it

for the simple case of t = τ +1. Here, we demonstrated that we cannot have a mar-

tingale (except perhaps with respect to some other auxiliary process, e.g., current

and entropy production) for a non-zero a.

We are mainly interested in exploring the validity of stopping-time symmetry

relations for position variable in the RT model. Martingality of negative exponen-

tiated entropy was a crucial element along with other properties while proving the

symmetry relations for the case of entropy production [19]. Here, we cannot say

that eaXt is a martingale conditioned on its history for a ̸= 0. Hence, we now resort

to numerical simulations to investigate the existence of symmetry relations for the

position variable in the RT model.
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5.6 Symmetry relations in conditional distribu-

tions for first-passage times

As discussed earlier, researchers have found a remarkable symmetry in stopping-time

distributions of entropy production [19] (see Fig. 5.2). Here, we explore the validity

of symmetry relations for the position (Xt) in our run-and-tumble toy model using

numerics. For this purpose, we consider two absorbing boundaries: L (positive)

and −L (negative) associated with stopping times (first-passage times): T+ and T−,

respectively. Moreover, the probability distribution to reach the positive boundary L

at time t is pT+(t;L) and the probability distribution to reach the negative boundary

−L is pT−(t;−L). The first-passage-time (FPT) symmetry relation for the position

exists if probability distributions are related by:

pT+(t;L)

pT−(t;−L)
= eaL. (5.30)

The corollary of symmetry relation (5.30) states that the normalised conditional

distributions will be also equal, that is

pT+(t|L) = pT−(t| − L). (5.31)

Here, we investigate the validity of the conditional symmetry relation (5.31) numer-

ically in the following parameter regimes:

p = 0.5 p ̸= 0.5

p′ = 0.5 ? ?

p′ ̸= 0.5 ? ?

. (5.32)

If runs are symmetric, i.e., p′ = 0.5 both the probability distributions and

normalised conditional distributions are symmetrical and we expect the symme-

try conditions to hold. Intuitively, we also expect the FPT symmetry relations

to be valid when tumbles are spatially symmetric, i.e., p = 0.5. Figures (log-log

plots) 5.3, 5.4, 5.5, and 5.6 show the probability distribution pT+(t|L) to reach the

positive boundary (blue circles) along with probability distribution pT−(t| − L) to
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Figure 5.3: Log-log plot of pT+(t|L) (blue triangles) with pT−(t| − L) (orange dia-
monds) for p = p′ = 0.5, T = 1000, f = 0.1 and N = 106. Symmetry relation is
valid.
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Figure 5.4: Same as Fig. 5.3 but for p ̸= 0.5, p′ = 0.5 (p = 0.8), L = 5, T = 1000,
f = 0.1 and N = 106. Symmetry relation is valid.
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Figure 5.5: Same as Fig. 5.3 but for p = 0.5, p′ ̸= 0.5 (p′ = 0.7), T = 1000, f = 0.1
and N = 106. Symmetry relation is valid.
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Figure 5.6: Same as Fig. 5.3 but for p ̸= 0.5, p′ ̸= 0.5 (p = 0.8, p′ = 0.7), T = 1000,
f = 0.1 and N = 106. No symmetry.
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reach the negative boundary (orange squares) for different combinations of parame-

ter values given in table 5.32. In particular, Figs. 5.3, and 5.4 confirm the theoretical

prediction whereas Fig. 5.5 is also consistent with our intuitive argument. Based on

the above results the updated table 5.32 looks like:

p = 0.5 p ̸= 0.5

p′ = 0.5 ✓ ✓

p′ ̸= 0.5 ✓ ?

. (5.33)

Now, we focus on the remaining case of (p′ ̸= 0.5, p ̸= 0.5). For this case,

we are sure about the lack of full symmetry at the probability distribution level,

i.e., pT+(t;L) ̸= pT−(t;−L). Even in an ordinary biased random walk model, the

probability distributions are not symmetrical; however, the symmetry in normalised

conditional distributions still exists which is indeed surprising! Do we have a similar

observation in the RT model? Intuitively, we do not expect the existence of sym-

metry in conditional distributions for the case when p′ ̸= 0.5 and p ̸= 0.5. Numerics

also confirm the asymmetry in conditional distributions (see Fig. 5.6). To better un-

derstand, we now try to quantify the asymmetry between conditional distributions

and their dependence on involved parameters.

Next, we quantify the asymmetry between different conditional distributions by

measuring the associated KL divergence. Denoting the probability distributions

pT+(t|L) ≡ P+ and pT−(t| −L) ≡ P−, the KL divergence between P− and P+ can be

written as

DKL(P−|| P+) =
∑
t

P− ln
P−
P+

. (5.34)

We are chiefly interested here in the dependence of KL divergence on the parame-

ters involved. In Fig. 5.7, we plot KL divergence DKL(P−|| P+) as a function of p

for different f at fixed p′. Using the spatial-symmetry argument again, we can say

that for p = 0.5 and p′ = 0.5, the value of KL divergence DKL(P−|| P+) will always

be zero (see Fig. 5.8). However, we do not know the effect of f on the observed

asymmetry. Recall that f quantifies the frequency of tumbles in the combined RT

process. Therefore, a large f implies frequent tumbles and short run-lengths; con-

118



When p 6= 0.5 and p′ 6= 0.5

100 101

T

103

104

105

F
ir

st
P

as
sa

ge
P

ro
b

ab
ili

ty

T = 400, f = 0.1
p = 0.7, p′ = 0.7

L = 5.0

L = −5.0

Figure 6: T = 400, f = 0.1, p = 0.3, p′ = 0.7 N = 106
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Figure 5.7: Variation of KLD (DKL(P−|| P+)) with f at fixed p′(= 0.7), T = 50 and
N = 106.

versely, infrequent tumbles and long run-lengths imply a small f . In the limiting

case of f close to 1, our RT model resembles a lazy random walker.7 Interestingly,

the process ebXt associated with a lazy random walker for a specific value of b as

calculated in Appendix C is a martingale (see Appendix C). The numerics shown

in Fig. 5.7 show that the KL divergence approaches zero with increasing f (at fixed

p′). Moreover, the numerical simulations clearly suggest asymmetry in conditional

distributions for all f ̸= 1. Furthermore, the combination of persistence and bias

in run steps (see Fig. 5.8) breaks the symmetry in conditional distributions. One

can obtain symmetry relations if these effects are suppressed, as done in the case

of a lazy random walker and spatial symmetric runs. We now study the effect of

threshold value on KL divergence. Only a few run steps are required for a small

L to reach both the positive and negative threshold. In other words, runs have

little or no effect on symmetry relations for a small threshold value. However, for a

large L, the effect of run events is strong and one expects asymmetry between con-

ditional distributions. Figure 5.9 illustrates the effect of different threshold values

7An ordinary biased random walk model in which the particle can remain stationary with a
finite probability in a given time step.
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Figure 5.8: Variation of KLD with p′ at fixed f(= 0.1), T = 50 and N = 106.
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Figure 5.9: Variation of KLD with L at fixed f(= 0.1) and p′(= 0.7), T = 200 and
N = 106.
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Figure 5.10: Log-series distribution: Log-log plot for p = 0.5, p′ ̸= 0.5 (p = 0.5,
p′ = 0.8), T = 1000, f = 0.0269 and N = 106. The f−value here correspond to the
geometric case (same mean run length, f = 0.1). Symmetry relations hold.

(varying L, at fixed f and p′) on KL divergence. Our predictions are numerically

confirmed as we observe a decrease in KL divergence with decreasing L. Lastly,

we note that similar trends will exist for DKL(P+|| P−) variation with parameter p

for different f, p′ and L. From the previous chapter, we know that the geometric

run-length distributions correspond to Markovian dynamics on the extended state

space of the preferred direction and the position. But, what happens to the asym-

metry between conditional distributions for non-geometric run-length distributions

which correspond to non-Markovian dynamics? As a concrete illustration, we pro-

vide similar results (Figs. 5.10, 5.11, 5.12) for a non-geometric run distribution,

namely log-series distribution (see section 4.7.2) for symmetry relations and KLD

plots (Figs. 5.13, 5.14). The results mirror the plots obtained for the geometric case.

We observe that even for log-series distribution the KL divergence curve has similar

behaviour with varying f (at fixed p′) and varying p (at fixed f). Since both bias in

runs and persistence affect the symmetry of conditional distributions, therefore, it

does not matter whether runs are drawn from geometric or non-geometric distribu-

tions and one can anticipate that similar trends will exist for other non-geometric
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Figure 5.11: Same as Fig. 5.10 but for p ̸= 0.5, p′ = 0.5 (p = 0.8, p′ = 0.5). Symmetry
relations hold.
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Figure 5.12: Same as Fig. 5.10 but for p ̸= 0.5, p′ ̸= 0.5 (p = 0.8, p′ = 0.7). Symmetry
relations do not hold.
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Figure 12: T = 50, N = 106, p′ = 0.7, f values are corresponding to parameter values used in
geometric case (f = 0.1, 0.4, 0.7 and 0.9 respectively).
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Figure 5.13: Log-series distribution: Variation of KLD with f at fixed p′(= 0.7),
T = 50 and N = 106 for log-series distribution. The f−values here correspond to
the geometric case (same mean run length): f = 0.1, 0.4, 0.7 and 0.9, respectively.
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Figure 12: T = 50, N = 106, p′ = 0.7, f values are corresponding to parameter values used in
geometric case (f = 0.1, 0.4, 0.7 and 0.9 respectively).
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Figure 5.14: Log-series distribution: Variation of KLD with p′ at fixed f(= 0.812),
T = 50 and N = 106 for log-series distribution.
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run-distributions.

5.7 Open questions and discussion

In this chapter, we explored the validity of stopping-time symmetry relations for the

position variable (a non-Markovian process) in our run-and-tumble toy model. The

summary of our findings for different parameter values is given below:

p = 0.5 p ̸= 0.5

p′ = 0.5 ✓ ✓

p′ ̸= 0.5 ✓ ✗

. (5.35)

The validity of symmetry relations is linked with the martingality of the exponential

of the position variable eaXt and more work is needed to construct a formal proof.

We showed that eaXt cannot be a martingale for a nonzero a even for a simple case

t = τ + 1. The spatial symmetry (unbiased runs or tumbles) argument accounts for

the existence of stopping-time symmetry relations when either p′ = 0.5 or p = 0.5

(top row and left cell in bottom row in table 5.35). Here, the interesting case is

when p′ ̸= 0.5 and p ̸= 0.5 where one does not expect the symmetry relations to

hold. The numerical results confirmed this prediction and the calculation of KL

divergence quantified the asymmetry. We further concluded that a combination of

persistence and bias (in run events) affects the validity of symmetry relations in the

RT model. Our numerical analysis leads us to ask a few open questions:

• Can we construct some process of the suitable form (case of p-martingales)

which can be a martingale and used to prove a few of the numerical results

obtained for symmetry relations for the position variable?

• More generally, can we find biased systems (i.e., those without spatial symme-

try) where symmetry relations hold, but no martingality exists?

• Mathematically, one can investigate the case: every time we observe symmetry

relations, does it imply an underlying martingale?
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One of the main reasons for studying stopping times in the non-Markovian pro-

cess is that most biological processes operate at random times, which can provide

a useful tool for investigating the timing mechanisms in cells and proteins. Our

study can help in the analysis of those processes where memory effects play a cru-

cial role [104–115]. It will also be interesting to explore the links between our

approach and the previous works on first-passage times in the non-Markovian pro-

cesses [121, 265–268]. Some new studies have also approached non-Markovian pro-

cesses via the martingale route and revealed connections between memory effects and

the martingale property in physical systems [269]. Lastly, we remark that our work

can be classified as one of the early works in the emerging research field: stochastic

thermodynamics of active non-Markovian processes [270–272].
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Chapter 6

Concluding remarks

Since the publication of thermodynamic uncertainty relations (TURs) [12], a plethora

of follow-up extensions has appeared in the literature. Most of these results required

the Markovian (memoryless) assumption, and in this thesis, we have presented an

extension of TUR to small systems with memory, i.e., non-Markovian small systems.

Specifically, we have studied memory effects using a biased random walk model with

one-step memory (quantifying directional persistence) in discrete time and discrete

space also called ‘asymmetric persistent random walk’ (APRW) model. The APRW

displays non-Markovian dynamics but Markovian on the extended state space of

present and previous site (or position and hopping direction) which ultimately en-

abled us to derive the uncertainty associated with the particle current.

Another key advantage of working with APRW is that it highlighted the technical

subtleties in the definition of stochastic entropy production, namely the conceptual

issues surrounding the parity (even or odd) of variables. We have treated our di-

rectional variable as both odd and even and subsequently, concluded that the TUR

only works with even-parity variables (valid for all models). However, the entropic

bound was infinitely loose in APRW model—a trivial result. On the other hand, the

TUR with odd-entropic bound was not valid for all values of parameters involved.

The details about how TUR is exactly related to the symmetry of physical observ-

ables is still an open question and even acknowledged in a recent preprint [273]. We

moved on to the limiting case of APRW model, which resembled a run-and-tumble

(RT) motion (straight runs with random dynamics punctuated by stochastic resets),

and obtained a modified bound. This modified bound was composed of a prefac-
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tor and bound constructed from entropy production of a known Markovian process.

One shortcoming of such modified bounds was that one needed to know the exact

uncertainty of the process beforehand. However, this approach paved the way for

generalisation of such constructions for a broader class of processes with more than

one-step memory.

Taking cues from the analysis of APRW model, we obtained a new bound (‘RT

bound’) on uncertainty for a general class of the run-and-tumble process in chap-

ter 4 [17]. As opposed to other popular approaches such as large deviation for-

malism (LDF), we employed renewal-reward theory to model run-and-tumble-type

processes. For a broad parameter regime, our RT bound is seen to provide a useful

constraint than the traditional discrete-time TUR also dubbed the ‘Proesmans-

Van den Broeck (PV) bound’ [18]. Further, the RT bound holds for discrete-time

single-particle models with geometric and non-geometric run distributions, encoding

memoryless and non-Markovian dynamics, respectively. One of several important

implications of our result is the feasibility of constraint inference on current fluctua-

tions of the combined run-and-tumble process without knowing the full details of the

process. By which we mean that the information of run-statistics and entropy pro-

duction associated with tumble is enough to construct a bound on uncertainty. We

also illustrated the straightforward generalisation of RT bound to continuous-time

models as well as many-particle systems using the example of asymmetric simple

exclusion process (ASEP) with collective tumbles. Furthermore, the RT bound is

independent of parameters of underlying run-process (e.g., hop rates in the ASEP).

The derivation of RT bound is based on many crucial assumptions and revisit-

ing them provides possible avenues of extension and deeper understanding of our

research. The scaling approximation in conditional expectations given in equa-

tion (4.19) is for IID run-step lengths which can also asymptotically hold for estab-

lished non-Markovian random walks, e.g., elephant random walker [162]. Therefore,

similar bounds can be obtained for current fluctuations in complex non-Markovian

random walks. It would also be interesting to investigate the connections between

our RT bound and generalised uncertainty relations which have recently been ob-

tained for the semi-Markov processes [274]. Other potential research works include

derivation of TUR using large deviation formalism in renewal theory [234], connec-

tion between multidimensional TUR [73] and multivariate RRT [235], and applica-
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tion of RT bound in abstract models exhibiting dynamical phase transitions [214,275]

which find relevance, particularly, in the variants of the run-and-tumble toy mod-

els [236–238,276].

As alluded to earlier, our work with the run-and-tumble processes can be situated

in the emerging field: stochastic thermodynamics of active matter systems. Similar

to uncertainty relations, the extreme-value statistics (EVS) of entropy production

also exhibit universality and are a direct consequence of martingale property. In

chapter 5, we also explored the validity of recently discovered universal laws obeyed

by extreme values of entropy production [19–21, 239–241] in our run-and-tumble

model. In particular, we found that the universal properties such as infimum law

and first-passage time (FPT) symmetry relation do hold for entropy production in

the RT model since it is a martingale relative to the history of the process and sat-

isfies other important properties. However, a similar analysis for position variable

(exhibits non-Markovian dynamics) revealed a much more complex picture. The

interesting cases involved parameter values where symmetry relations did not hold,

and further numerical investigation of asymmetry between the first-passage distri-

butions (positive and negative threshold) revealed the combining effect of persis-

tence and bias affecting the validity of symmetry relations. Our preliminary results

on stopping times (e.g., FPT) elucidate how memory affects the processes and the

derivation of universal results become much more involved. There not has been much

work on exploring stopping-time statistics in biological systems with non-Markovian

effects. Interestingly, new results on the interface of non-Markovian stochastic ther-

modynamics, active matter, and EVS have opened new pathways for research. For

instance, it has been pointed out that there are connections between memory ef-

fects and martingale property in physical systems [269]. Another significant exam-

ple is the direct application of EVS in one of the variants of one-dimensional RT

model [270]. Most importantly, the latest research works in this direction combines

all the elements in this thesis, namely thermodynamic constraints (efficiency) and

memory effects in active matter systems at mesoscopic scales [271,272].

To conclude, we hope that our work on the extension of topical universal rela-

tions such as thermodynamic uncertainty relations in simple non-Markovian systems

proves to be a useful contribution to the growing field of non-Markovian stochastic

thermodynamics.
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Appendix A

Reset framework

A.1 Asymmetric persistent random walker model

In sec. 3.4, we have seen how the dynamics of the asymmetric persistent random

walker (APRW) model can resemble that of run-and-tumble motion when persistent

parameter α is set to unity. As stated in the main text, α controls the proportion

of persistent dynamics, i.e., tendency to follow the direction of the previous step.

The limiting case α = 1 implies that whenever the persistent strategy is chosen,

the particle continues to move in the persistent direction. The change of direction

can only come from the biased or asymmetric random walk (ARW) strategy which

acts as tumble. Therefore, run-and-tumble motion can be construed as runs with

intermittent resets of preferred direction.

In non-equilibrium statistical mechanics, reset processes are of topical inter-

est [275, 277–283], and there is now a well-understood framework allowing the cal-

culation of large deviations and the identification of phase transitions [214]. In first

two chapters, we use large deviations to obtain the scaled cumulant generating func-

tion (SCGF) for the time-averaged current JT/T . Here, we derive SCGF given in

(3.12) with α = 1 using the resetting framework. To allow for correlation between

the current in the run and the direction of the preceding tumble, we here adapt

the approach of [214] by considering the current generating function W (s, n) for a
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combined tumble-and-run event of duration n steps.

We choose f to be the probability of performing ARW dynamics with the as-

sumption that the process starts with a tumble at t = 0. A tumble is followed by

n − 1 persistent steps (or run) in the chosen direction. This in turn will generate

a current of either +n or −n (depending on the hopping direction) due to persis-

tence. The resetting happens at the occurrence of each tumble, and resulting current

generating function is

W̃ (s, n) = f(1− f)n−1(pe+ns + qe−ns). (A.1)

We can obtain the generating function for the current JT by summing over all possi-

ble combinations of tumble-and-runs with total duration T . However, this constraint

can be relaxed by switching to Laplace space [284]; the z -transform (discrete-Laplace

transform) of W (s, n) looks like

W̃ (s, z) =
∞∑
n=1

W (s, n)z−n =
∞∑
n=1

f(1− f)n−1(pe+ns + qe−ns)z−n (A.2)

where z is the conjugate parameter to n. This method is equivalent to working

in a grand-canonical ensemble in time (with fugacity z−1) and now any number of

tumble-and-runs is allowed. The z -transformed generating function for J(t) is a

geometric sum with ratio W̃ (s, z). The asymptotic behaviour is controlled by z∗,

the largest real value of z for which the sum diverges. We can set

W̃ (s, z) = 1 (A.3)
∞∑
n=1

f(1− f)n−1(pe+ns + qe−ns)z−n = 1. (A.4)

Simplifying (A.4) yields the following quadratic equation in z:

z2 − z
[
f
(
(1− p)e−s + pes

)
+ (1− f)

(
e−s + e+s

)]
+ (1− f)2 + f(1− f) = 0.

(A.5)
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and its positive root gives the real solution

z∗(s) =
1

2
e−s
(
es
√
−2f 2(p− 1)p+ e2s(f(p− 1) + 1)2 + e−2s(fp− 1)2 + 2f − 2

+ e2s(f(p− 1) + 1)− fp+ 1
)
. (A.6)

Once the largest real solution is derived, the the desired SCGF λ(s) is given by

ln z∗ and the positive root ensures that λ(0) = 0. The SCGF is

λ(s) = ln

[
1

2
e−s
(
es
√
−2f 2(p− 1)p+ e2s(f(p− 1) + 1)2 + e−2s(fp− 1)2 + 2f − 2

+ e2s(f(p− 1) + 1)− fp+ 1
)]

. (A.7)

which is identical to the expression obtained in (3.12).

A.2 Run-and-tumble model

Here, we derive the scaled cumulant generating function for current in RT model

(sec. 4.2). Let ϕ(s) be the required SCGF; applying reset method for geometrically-

distributed runs with parameter f gives

W (s, n) = f(1− f)n−1[p(p′e+s + q′e−s)n−1

+ q(p′e−s + q′e+s)n−1]. (A.8)

The z -transformed generating function looks like

W̃ (s, z) =
∞∑
n=1

f(1− f)n−1[p(p′e+s + q′e−s)n−1 + q(p′e−s + q′e+s)n−1]z−n
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and setting W̃ (s, z) = 1 yields the following quadratic equation:

z2 − z[(1− f)(R +R′) + f ] + f(1− f)(pR′ + qR) + (1− f)2RR′ = 0

where R = p′e+s + q′e−s and R′ = p′e−s + q′e+s. Hence

ϕ(s) = ln
1

2

(
f + 2(1− f) cosh(s) +

{
2(1− f)(p′ − q′)

× [2f(p− q) sinh(s) + (1− f)(p′ − q′) cosh(2s)]

− (f 2 − 4f + 2) + 8(1− f)2p′q′
}1/2

)
, (A.9)

where the positive root is taken to ensure ϕ(0) = 0. For non-geometric run distribu-

tions it may be more difficult to obtain the full SCGF via this resetting approach;

however, the RRT framework given in sec. 4.4 still provides an efficient method to

retrieve the first two cumulants.
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Appendix B

Renewal-reward theorems and

computation of involved moments

B.1 Renewal and renewal-reward processes

Here, we briefly summarise the renewal-reward theorems (based on [217,219]) used

to derive the moments in chapter 4.

Renewal process: Let {Ai; i ≥ 1} be the independent and identically dis-

tributed random variable with a discrete distribution function. Let Sn =
∑n

i=1 Ai,

with S0 = 0, then we define the renewal process N(t) as

N(t) = max{n : Sn ≤ t}, t ≥ 0 (B.1)

and the mean m(t) = E[N(t)] is called the renewal function and Ai’s denote the

times between renewals. In the real world, renewals are often associated with rewards

or costs. To reflect such situations, we denote rewards (can also be negative) with

the sequence {Bj; j ≥ 1}, where Bj is the reward accompanied with the jth renewal.

Moreover, we assume Bj are IID random variable, with finite mean and for each j,
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Bj may depend on Aj, but is independent of (Ai; i ̸= j). For example, Aj be the

interval between successive breakdowns of a machine, and Bj the cost of repairs.

Then, we can call this as an example of renewal-reward process. The cumulative

reward C(t) (up to time t) may accumulate in different ways but here we only

consider the case of terminal rewards where rewards are collected at the end of any

interval. Then, we can write

C(t) =

N(t)∑
n=1

Bn. (B.2)

Renewal-reward theorems. Assuming 0 < E[Ai] < ∞, and E|Bn| < ∞.

Then as t → ∞. For brevity, we drop the subscripts from the notations and then

we can write asymptotic mean [217] as

lim
t→∞

E[C(t)]

t
=

E[B]

E[A]
. (B.3)

The above theorem states that the long-time average of rewards is equal to the

ratio of expected rewards in a cycle (interval between successive renewal events)

to expected duration of a cycle. In case of long-time variance [218, 219], we first

need to define a few expectations (whenever they exist) to compactly write the

renewal-reward theorem for variance:

µi = E[Ai], λi = E[Bi], and cij = E[AiBj]. (B.4)

By existence of expectation of E[g(A,B)], we mean E[|g(A,B)|] < ∞. Then, the

asymptotic variance of accumulated rewards is given by

lim
t→∞

Var[C(t)]

t
= µ1

−3µ2λ1
2 − 2µ1

−2c11λ1

+ µ1
−1λ2. (B.5)
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B.2 Moments involved in asymptotic variance

In sec. 4.4 in the main text, the expression for the long-time scaled variance J̃(t) is:

lim
t→∞

Var[J̃(t)]

t
= µ1

−3µ2λ1
2 − 2µ1

−2c11λ1

+ µ1
−1λ2, (B.6)

where, µ1 = E[N ], λ1 = E[X]E[R], µ2 = E[N2], λ2 = E[X2]E[R2] and c11 =

E[X]E[RN ].

To compute the moments involved in (B.6), we assume:

E[R|N = n] = r̄(n− 1), Var[R|N = n] = σr
2(n− 1), (B.7)

where r̄ and σr
2 are constants. The derivation of E[X2], E[R], E[R2] and E[RN ]

are as follows

E[X2] = Var[X] + (E[X])2 (B.8)

= σX
2 + X̄2, (B.9)

E[R] = E(E[R|N = n]) (R depends on N)

= E[r̄ (n− 1)]

= r̄
∑
n

(n− 1) P (N = n)

= r̄ (E[N ]− 1)

= r̄ (N̄ − 1), (B.10)
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E[R2] = E(E[R2|N = n])

= E[Var[R|N = n] + (E[R|N = n])2]

=
∑
n

[
σr

2 (n− 1) + r̄2 (n− 1)2
]
P (N = n)

= σr
2(E[N ]− 1) + r̄2(E[N2]− 2E[N ] + 1)

= σr
2(N̄ − 1) + r̄2(σN

2 + N̄2 − 2N̄ + 1), (B.11)

and

E[RN ] =
∑
n

∑
r

n r Pr(R = r|N = n) Pr(N = n)

=
∑
n

n
[∑

r

r Pr(R = r|N = n)
]
Pr(N = n)

=
∑
n

n
∑
r

r Pr(R = r|N = n)︸ ︷︷ ︸
E[R|N=n]

Pr(N = n)

=
∑
n

n(n− 1) r̄ P (N = n)

= r̄(E[N2]− E[N ])

= r̄(σN
2 + N̄2 − N̄). (B.12)
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Appendix C

Lazy random walker as a

martingale

Imagine a simple biased random walker which jumps to right (positive) with proba-

bility x (IID increment Di = +1), left (negative) with probability y (Di = −1) and
remains stationary with a finite probability 1 − x − y. Moreover, let us define the

net position as

Zn =
n∑

i=1

Di, (C.1)

where we used the symbol Z for position to avoid confusion with X. Then, ebZn is

a martingale if

E[ebZn | Z1,Z2, . . . ,Zm] = ebZm . (C.2)

Below we prove that ebZn is a martingale:
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E[ebZn | Z1,Z2, . . . ,Zm] = E[ebZm+b
∑n−m

i=1 Di |Z1, . . . ,Zm]

= E[ebZm · eb
∑n−m

i=1 Di ] [ Since Di’s are IID]

= ebZmE[eb
∑n−m

i=1 Di ]

= ebZmE[eb
∑n−m

i=1 Di ]

= ebZmE[eb(D1+D2+...+Dn−m)]

= ebZmE[ebD1 · ebD2 . . . ebDn−m ]

= ebZm{E[ebDi ]}n−m

= ebZm{xe+b + ye−b + 1− x− y}n−m (C.3)

Now, for ebZn to be a martingale, we need

xe+b + ye−b + 1− x− y = 1. (C.4)

Multiplying both sides by eb, we get:

xe+2b − (x+ y)eb + y = 0 (C.5)

Solving which gives us the following solutions:

eb =
(x+ y)±

√
(x+ y)2 − 4xy

2x
(C.6)

which yields two solutions b = 0 or b = ln(y/x). Hence, ebZt is a martingale for

b = 0 (trivial) or b = ln(y/x).
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tions for entropy production at stopping times. J. Stat. Mech.: Theory Exp,

2019(10):104006, 2019.

140



REFERENCES

[21] I. Neri. Second law of thermodynamics at stopping times. Phys. Rev. Lett.,

124:040601, 2020.

[22] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-

Holland Personal Library. Elsevier Science, 2011.

[23] A. Einstein. On the movement of small particles suspended in stationary

liquids required by the molecularkinetic theory of heat. Ann. d. Phys, 17(549-

560):1, 1905.

[24] M. J. Klein. Paul Ehrenfest: Collected Scientific Papers. North-Holland Pub-

lishing Company, 1959.

[25] S.M. Ross. Stochastic Processes. Wiley series in probability and mathematical

statistics. Wiley, 1996.

[26] D. Stirzaker. Stochastic Processes and Models. Stochastic Processes and Mod-

els. Oxford University Press, 2005.

[27] Y. Oono. Large Deviation and Statistical Physics. Prog. Theor. Phys. Supp.,

99:165–205, 1989.

[28] H. Touchette. The large deviation approach to statistical mechanics. Phys.

Rep., 478(1):1–69, 2009.

[29] H. Touchette and R J. Harris. Large deviation approach to nonequilibrium

systems. In R. Klages, W. Just, C. Jarzynski, and H.G. Schuster, editors,

Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations

and Beyond, pages 335–360. John Wiley & Sons, Ltd, 2013.

[30] R.S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. Classics in

Mathematics. Springer, 2006.

[31] H. Touchette. A basic introduction to large deviations: theory, applications,

simulations. arXiv preprint arXiv:1106.4146, 2011.

[32] H. Minc. Nonnegative Matrices. Wiley Series in Discrete Mathematics and

Optimization. Wiley, 1988.

141



REFERENCES

[33] R. van Zon and E. G. D. Cohen. Extension of the fluctuation theorem. Phys.

Rev. Lett., 91:110601, 2003.

[34] F. Bonetto, G. Gallavotti, A. Giuliani, and F. Zamponi. Chaotic hypothesis,

fluctuation theorem and singularities. J. Stat. Phys, 123(1):39, 2006.

[35] R. J. Harris, A. Rákos, and G. M. Schütz. Breakdown of Gallavotti-Cohen
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zero-range process with open boundaries. J. Stat. Mech.: Theory Exp,

2005(08):P08003–P08003, 2005.

[51] R. E. Spinney and I. J. Ford. Nonequilibrium thermodynamics of stochastic

systems with odd and even variables. Phys. Rev. Lett., 108:170603, 2012.

[52] R.E. Spinney. The Use of Stochastic Methods to Explore the Thermal Equi-

librium Distribution and Define Entropy Production out of Equilibrium. PhD

thesis, UCL (University College London), 2012.

[53] L. S. Tsimring. Noise in biology. Rep. Prog. Phys., 77(2):026601, 2014.

[54] S. Ciliberto. Experiments in stochastic thermodynamics: short history and

perspectives. Phys. Rev. X, 7:021051, 2017.

[55] K. Proesmans and J. M. Horowitz. Hysteretic thermodynamic uncertainty re-

lation for systems with broken time-reversal symmetry. J. Stat. Mech.: Theory

Exp, 2019(5):054005, 2019.

[56] K. Liu, Z. Gong, and M. Ueda. Thermodynamic uncertainty relation for

arbitrary initial states. Phys. Rev. Lett., 125:140602, 2020.

143



REFERENCES

[57] P. Pietzonka, A. C. Barato, and U. Seifert. Universal bounds on current

fluctuations. Phys. Rev. E, 93:052145, 2016.

[58] P. T. Nyawo and H. Touchette. Large deviations of the current for driven

periodic diffusions. Phys. Rev. E, 94:032101, 2016.

[59] P. Pietzonka, F. Ritort, and U. Seifert. Finite-time generalization of the ther-

modynamic uncertainty relation. Phys. Rev. E, 96:012101, 2017.

[60] J. M. Horowitz and T. R. Gingrich. Proof of the finite-time thermodynamic

uncertainty relation for steady-state currents. Phys. Rev. E, 96:020103, 2017.

[61] M. Polettini, A. Lazarescu, and M. Esposito. Tightening the uncertainty

principle for stochastic currents. Phys. Rev. E, 94:052104, 2016.

[62] J. P. Garrahan. Simple bounds on fluctuations and uncertainty relations for

first-passage times of counting observables. Phys. Rev. E, 95:032134, 2017.

[63] G. Bisker, M. Polettini, T. R. Gingrich, and J. M. Horowitz. Hierarchical

bounds on entropy production inferred from partial information. J. Stat.

Mech.: Theory Exp., 2017(9):093210, 2017.

[64] T. R. Gingrich and J. M. Horowitz. Fundamental bounds on first passage time

fluctuations for currents. Phys. Rev. Lett., 119:170601, 2017.
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[123] C. Flindt, T. Novotný, A. Braggio, M. Sassetti, and A.P. Jauho. Counting

statistics of non-Markovian quantum stochastic processes. Phys. Rev. Lett.,

100:150601, 2008.

[124] P. P. Rohde, G. K. Brennen, and A. Gilchrist. Quantum walks with memory

provided by recycled coins and a memory of the coin-flip history. Phys. Rev.

A, 87:052302, 2013.

[125] T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and
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correlated zero-range dynamics. Phys. Rev. Lett., 103:090602, 2009.

[150] É. Roldán and J. M. R. Parrondo. Estimating dissipation from single station-

ary trajectories. Phys. Rev. Lett., 105:150607, 2010.

[151] É. Roldán and J. M. R. Parrondo. Entropy production and Kullback-Leibler

divergence between stationary trajectories of discrete systems. Phys. Rev. E,

85:031129, 2012.

[152] O. Hirschberg, D. Mukamel, and G. M. Schütz. Motion of condensates

in non-Markovian zero-range dynamics. J. Stat. Mech.: Theory Exp,

2012(08):P08014, 2012.

[153] M. Cavallaro, R. J. Mondragón, and R. J. Harris. Temporally correlated zero-

range process with open boundaries: steady state and fluctuations. Phys. Rev.

E, 92:022137, 2015.

[154] L. D. Kazimierski, G. Abramson, and M. N. Kuperman. Random-walk model

to study cycles emerging from the exploration-exploitation trade-off. Phys.

Rev. E, 91:012124, 2015.

[155] D. Boyer and C. Solis-Salas. Random walks with preferential relocations to

places visited in the past and their application to biology. Phys. Rev. Lett.,

112:240601, 2014.

[156] J. C. Cressoni, M. A. A. da Silva, and G.M. Viswanathan. Amnestically

induced persistence in random walks. Phys. Rev. Lett., 98(7):070603, 2007.

[157] G.M. Borges, A.S. Ferreira, M.A.A. da Silva, J.C. Cressoni, G.M.

Viswanathan, and A.M. Mariz. Superdiffusion in a non-Markovian random

walk model with a Gaussian memory profile. Eur. Phys. J. B, 85(9):310,

2012.

152



REFERENCES

[158] R. Baviera, M. Pasquini, M. Serva, and A. Vulpiani. Optimal strategies for

prudent investors. Int. J. Theor. Appl. Finance, 01(04):473–486, 1998.

[159] E. Bolthausen and U. Schmock. On self-attracting d-dimensional random

walks. Ann. Probab., 25(2):531–572, 1997.

[160] R. Dickman, F. F. Araujo, and D. ben Avraham. Asymptotic analysis of a

random walk with a history-dependent step length. Phys. Rev. E, 66:051102,

2002.

[161] G. M. Viswanathan, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley.

The Physics of Foraging: An Introduction to Random Searches and Biological

Encounters. Cambridge University Press, 2011.
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