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Abstract—Playing techniques contain distinctive information
about musical expressivity and interpretation. Yet, current re-
search in music signal analysis suffers from a scarcity of compu-
tational models for playing techniques, especially in the context of
live performance. To address this problem, our paper develops a
general framework for playing technique recognition. We propose
the adaptive scattering transform, which refers to any scattering
transform that includes a stage of data-driven dimensionality
reduction over at least one of its wavelet variables, for repre-
senting playing techniques. Two adaptive scattering features are
presented: frequency-adaptive scattering and direction-adaptive
scattering. We analyse seven playing techniques: vibrato, tremolo,
trill, flutter-tongue, acciaccatura, portamento, and glissando. To
evaluate the proposed methodology, we create a new dataset
containing full-length Chinese bamboo flute performances (CBF-
dataset) with expert playing technique annotations. Once trained
on the proposed scattering representations, a support vector
classifier achieves state-of-the-art results. We provide explanatory
visualisations of scattering coefficients for each technique and
verify the system over three additional datasets with various
instrumental and vocal techniques: VPset, SOL, and VocalSet.

Index Terms—Music signal analysis, music performance anal-
ysis, scattering transform.

I. INTRODUCTION

Performance analysis plays a crucial role in music infor-
mation retrieval (MIR) and presents valuable information for
applications such as genre classification, performance style
recognition, and performer identification. A typical example
of expressive music performance is the application of playing
techniques, such as vibratos and tremolos. The modelling and
detection of playing techniques find potential applications in
the automatic transcription of musical ornaments [1], realistic
music generation [2], computer-aided music pedagogy [3],
instrument classification [4], [5], and performance analysis [6].

In this article, we propose a general framework based on the
scattering transform [7] for playing technique recognition in
music signals. The approach is motivated by the observation,
when displaying playing techniques in the time–frequency
domain, that each technique has a distinctive spectro-temporal
pattern. Due to the physical characteristics of certain instru-
ments, some playing techniques are instrument-specific. We
focus on seven commonly-used playing techniques in music
signals: vibrato, tremolo, trill, flutter-tongue, acciaccatura,
portamento, and glissando. Fig. 1 shows the examples of these
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Fig. 1. Spectrograms of commonly-used playing techniques in music signals:
(a) pitch modulation-based techniques (PMTs) and (b) pitch evolution-based
techniques (PETs).

playing techniques on the Chinese bamboo flute (CBF). The
four playing techniques in Fig. 1 (a)—vibrato, tremolo, trill,
and flutter-tongue—are periodic modulations that elaborate on
stable notes and are temporally symmetric. The modulation
patterns in their harmonic partials move in parallel. The
difference between them exists in the rate, frequency depth,
and shape of the modulations. We refer to these playing
techniques as pitch modulation-based techniques (PMTs).

However, as with playing techniques containing mono-
tonic pitch changes, finding an appropriate representation
that captures discriminative information is a challenging task.
Fig. 1 (b) shows three examples from this group of playing
techniques: acciaccatura, portamento, and glissando. For the
CBF, these playing techniques are known as 垛音 (duoyin), 滑音
(huayin), and 历音 (liyin), respectively. Acciaccatura includes a
sharp attack and strong air flow on the first note followed by a
rapid transition to the second note, and is a characteristic CBF
playing technique. Portamento is a continuous slide between
two notes. Glissando is a slide across a series of discrete
tones. We call this group of playing techniques pitch evolution-
based techniques (PETs), because they contain monotonic
pitch changes over time and are temporally asymmetric.

Patterns of regularity within each playing technique family,
PMTs or PETs, motivate us to build a general-purpose model
for playing technique recognition. The representation should
be stable to local time-shifts, time-warps, and frequency-
transpositions. We find that the scattering transform [7], a
signal representation with many successful applications [8]–
[10], provides such invariance properties with mathematical
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guarantees. Specifically within the scattering framework, the
time–frequency scattering [11] applies frequency scattering
along the log-frequency axis. This operation offers frequency-
transposition invariance and captures spectral regularities,
besides the local invariance to translation and stability to
deformation of the standard scattering transform.

This paper builds upon two conference papers, [12] and
[13], and extends them in three directions: a broader literature
review on computational playing technique analysis; mathe-
matical definitions of the adaptive scattering transforms; and
an evaluation of the proposed method on existing datasets with
a variety of instrumental and vocal techniques. Overall, this
paper presents contributions from three aspects:

• Representation: we propose a new branch of the scat-
tering transform, the adaptive scattering, for representing
playing techniques. We define the adaptive scattering as
any scattering transform that includes a stage of data-
driven dimensionality reduction over at least one of its
wavelet variables. Two adaptive scattering representa-
tions, the frequency-adaptive scattering and the direction-
adaptive joint time–frequency scattering (dJTFS), are
introduced and are mathematically defined. Both rep-
resentations are locally invariant to time-shifts, time-
warps, frequency-transpositions, and time-reversal of the
signal. The frequency-adaptive scattering [12] represents
PMTs by calculating the second-order transform adap-
tively around the frequency band with maximum acoustic
energy. In contrast, the dJTFS [13] captures PET patterns
by extracting the joint time–frequency scattering via a
pooling operation over its direction variable.

• Dataset: we publicly release a new dataset for compu-
tational analysis of playing techniques in a performance
context. The dataset, called CBFdataset, is the first dataset
on the Chinese bamboo flute, comprising full-length per-
formances and playing technique annotations by musical
experts. The data collection process takes into account the
diversity of performers, flute types, pieces, and styles.

• Application: we develop a supervised learning system
for detecting and classifying playing techniques, which
is robust to frequency-transpositions, variations in instru-
ments, performers, and regional musical styles. Using the
proposed representations as input, we evaluate the system
on different datasets with a variety of playing techniques.
We provide a formal interpretation of the role of each
component in the proposed scattering transform feature
extractor, confirmed by explanatory visualisations.

The paper is organised as follows: Sections II and III review
related work and introduce the fundamentals of the scattering
transform, respectively. Sections IV and V describe the char-
acteristics of PMTs and PETs, respectively, and demonstrate
how the proposed representations capture these characteristics.
Section VI presents the recognition system. Evaluation and
recognition results are provided in Sections VII and VIII,
respectively. Section IX discusses the strengths, weaknesses,
and possible applications of the system, followed by the
conclusions in Section X.

II. RELATED WORK

Due to the annotation-intensive nature and scarcity of
playing techniques in real-world performances, prior computa-
tional research on playing techniques was typically instrument-
or technique-specific, or focused on playing techniques
recorded in highly controlled environments. We summarise
existing research from three fronts below, and provide a com-
plete list of playing techniques analysed and the corresponding
methodologies applied in the supplementary material [14].

Instruments: Prior research has focused mainly on Western
instruments. Guitar playing techniques were most frequently
explored [15]–[21]. These techniques were commonly cate-
gorised by the active hand: expression-style (left-hand) and
plucking-style (right-hand). Piano technique recognition only
included trills [22] and pedalling techniques [23]. Playing
technique analysis on other Western instruments covered vi-
olin [24], [25], drums [26], [27], cello [28], Irish flute [29]
and the highland pipe [30]. Non-Western instruments studied
included erhu [6], guqin [31], ney [32], and the CBF [33].
Due to their similarity with instrumental playing techniques,
we also include vocal techniques [34], [35] for completeness.

Playing techniques: While a small number of playing
techniques are shared across instruments, such as vibrato,
tremolo, and trill, many others are instrument-specific. For
example, pedalling techniques are part of piano playing while
airflow techniques are not. We thus narrow the scope to playing
techniques that are relevant to multiple types of instruments:
vibrato, tremolo, trill, flutter-tongue, acciaccatura, portamento,
and glissando.

Methodologies: Early research on playing technique recog-
nition often fed a large set of features, such as the fundamental
frequency (F0), mel-frequency cepstral coefficients (MFCCs),
and spectral flux, to machine learning classifiers [20], [21].
Other methodologies focused on specific playing techniques to
explicitly incorporate prior knowledge. The filter diagonalisa-
tion method (FDM), which efficiently extracts high resolution
spectral information for short time signals, was first applied to
vibrato detection in erhu performances [6]. It was based on the
F0 estimated by pYIN [36], an error-prone stage prior to detec-
tion for some instruments. The auditory temporal modulations
(ATM) [37] and modulation power spectrum (MPS) [38] are
representations which capture temporal and spectro-temporal
modulation information, respectively, in audio signals. Typical
applications of ATM and MPS include genre classification [37]
and instrument recognition [38] but both representations have
not yet been used for playing technique recognition. Hidden
Markov models (HMMs) were used in [33] for detecting CBF
glissando and in [6] to recognise erhu portamento. There is not
yet any general framework that explicitly recognises multiple
types of playing techniques in real-world music performances.

III. SCATTERING TRANSFORM

In this section, we introduce the scattering transform and
provide an overview of different scattering operators. Proposed
in [7], the scattering transform has the structure of a con-
volutional neural network (CNN): both comprise a cascade
of convolutions, nonlinearities, and pooling operations. The
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difference is that the filters of the scattering transform are not
learnt but defined as wavelets.

Fig. 2 displays the cascading of scattering operations with
the example of a musical trill. Let x(t) be an audio waveform
and ψλk

(t) with k ∈ N the wavelet filterbank at the kth-
order scattering decomposition. t ∈ R is the time variable
and λk ∈ R is the log-frequency variable of ψλk

(t). Here, an
“order” of the scattering transform is analogous to a “layer” in
terms of CNNs. Take the first order for instance: by convolving
x(t) with each wavelet in ψλ1

(t) and applying complex
modulus, we obtain the first-order wavelet modulus transform
U1x(t, λ1), also known as scalogram. Note that U1x(t, λ1)
is stable to small deformations but not translation-invariant.
The scattering transform aims at an invariance property up
to some time structure T by average-pooling, i.e. applying
to each frequency band in U1x(t, λ1) a lowpass filter φT (t)
of a cutoff frequency T−1, which results in the first-order
scattering transform S1x(t, λ1). Cascading the operations of
wavelet convolutions with ψλk

(t) and complex modulus gen-
erates a “scattering network”, after which the lowpass filtering
of the kth-order wavelet modulus transform Ukx(t, λk) by
φT (t) yields the kth-order scattering transform Skx(t, λk).
For completeness, we also extract the zeroth-order scattering
transform S0x(t) by convolving x(t) with φT (t).

Fig. 2. Diagram of the scattering transform for a trill example. Convolving
waveform x with wavelet filterbank ψλ1

and taking complex modulus yields
the first-order wavelet modulus transform U1x. Averaging U1x by lowpass
filter φT results in the first-order scattering transform S1x. Cascading these
operations, i.e. convolving with ψλk

(k ∈ N), taking complex modulus, and
averaging by φT , generates the kth-order wavelet modulus transform Ukx
and scattering transform Skx, forming a “scattering network”.

Previous studies demonstrated empirically that, for T below
1.5 s, the first- and second-order scattering transform absorb
the majority of the signal energy [39]; thus this paper focuses
on the scattering transform at these two orders only. For sim-
plicity, we denote the log-frequency variables of the wavelet
filterbanks at the first and second order as λ and vt, replacing
λ1 and λ2 above. The corresponding wavelet filterbanks are
then ψλ(t) and ψvt(t). ψλ(t) is obtained by dilation of a
“mother wavelet” ψ(t) with a scaling factor 2−λ, yielding:

ψλ(t) = 2λψ
(
2λt
)
, (1)

and likewise at the second order, ψvt(t) is generated by
replacing λ with vt in Eq. (1). We also use the notation X(t, λ)

as a shorthand for the scalogram of the waveform x(t):

X(t, λ) = U1x(t, λ) =
∣∣x ∗ψλ∣∣(t). (2)

After averaging X(t, λ) along the time axis by a lowpass filter
φT (t), we obtain the first-order scattering transform [7]:

S1x(t, λ) =
(∣∣x ∗ψλ∣∣ ∗ φT)(t), (3)

which is locally invariant to time-shifting and time-warping.
Similarly, we decompose each frequency band of X(t, λ)

by another wavelet filterbank ψvt(t). We denote the log-
frequency variable of this filterbank by vt, where the subscript
t signifies that it captures the temporal variation of the
scalogram. After taking complex modulus and local averaging,
we then obtain the second-order scattering transform [7]:

S2x(t, λ, vt) =
(∣∣X t∗ψvt

∣∣ t∗ φT)(t, λ), (4)

where the symbol
t∗ denotes a one-dimensional (1-D) con-

volution over the time variable t. When applied to the two-
dimensional (2-D) scalogram X(t, λ), this 1-D convolution is
implicitly broadcast over the variable λ.

To capture only the temporal variation regardless of the
absolute energy of the waveform, we normalise the second-
order coefficients S2x(t, λ, vt) over the first-order coefficients
S1x(t, λ). Motivated by auditory perception, the logarithm is
applied to the normalised coefficients [39]. The log-normalised
second-order scattering transform is expressed as [39]:

S̃2x(t, λ, vt) = log2

(
S2x(t, λ, vt)

S1x(t, λ) + ε

)
, (5)

where ε > 0 is a small additive that avoids division by zero.
Note that the above convolutions are carried out in the time

domain only. Thus, we call S1x(t, λ) and S2x(t, λ, vt) the
first- and second-order time scattering (or standard scattering)
coefficients, respectively. Similar to CNNs which may have
horizontal and vertical filters [40], one may apply wavelet con-
volutions along the frequency axis of a given time–frequency
representation. The different ways of applying wavelet convo-
lutions form different scattering operators, as shown in Fig. 3.
Each operator captures a specific signal pattern, thus making
the scattering transform a flexible framework for different
music signal analysis tasks.

Fig. 3. Relationship between different operators in the scattering transform
framework.

The time scattering captures the long-term temporal struc-
ture of the signal. The separable scattering [41] and joint
scattering [11] are different instances of the time–frequency
scattering that apply wavelet convolutions along both the time
and the log-frequency axes. Besides these two convolution
operations, the spiral scattering [42] adds a wavelet convo-
lution across octaves to capture harmonic variations. In this
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paper, we propose the adaptive scattering, which is a new
branch of the scattering transform, apart from the time and
the time–frequency scattering shown in Fig. 3. In the following
sections, we introduce two instances of the adaptive scattering:
the frequency-adaptive scattering and the direction-adaptive
scattering. Hereafter, we use Morlet wavelets throughout the
whole scattering framework for wavelet convolutions. This
is because Morlet wavelets have an exactly null average
while reaching a quasi-optimal tradeoff in time–frequency
localisation [43]. Our source code is based on the Scat-
Net toolbox1 and is publicly available for reproducibility at
c4dm.eecs.qmul.ac.uk/CBFdataset.html.

IV. FREQUENCY-ADAPTIVE SCATTERING FOR PITCH
MODULATION-BASED TECHNIQUES

A. Characteristics of Pitch Modulation-based Techniques

Although PMTs all result in some periodic modulations in
the time–frequency domain, each type of PMT has distinct
characteristics, as listed in Table I. The extent and shape char-
acteristics are based on music theory and the rate information
is summarised from the CBFdataset (see Section VII-A1).
Flutter-tongue has a much higher modulation rate as compared
to the other three modulations. For the other three techniques
with similar modulation rates, the discriminative information
lies in the modulation extent and shape of the modulation
unit. The modulation unit refers to the unit pattern that repeats
periodically within the modulation. It can be either an ampli-
tude modulation (AM), a frequency modulation (FM), or a
spectro-temporal modulation. This can be intuitively observed
from the spectrograms given in Fig. 4. Trills are note-level
modulations, for which the frequency variations are at least
one semitone. This extent of modulation is much larger than
that of vibratos and tremolos. The shape of the modulation
unit for trills is more square-like than vibratos’ sinusoidal
form. The difference between vibrato and tremolo is that
vibratos are FMs, while tremolos are AMs. We show later how
this discriminative information is captured by the proposed
frequency-adaptive scattering representations in Section IV-C.

TABLE I
CHARACTERISTICS OF PITCH MODULATION-BASED TECHNIQUES

Type Rate (Hz) Extent Shape

Flutter-tongue 25-50 < 1 semitone Sawtooth-like
Vibrato 3-10 < 1 semitone Sinusoidal (FM)
Tremolo 3-8 ≈ 0 semitone Sinusoidal (AM)
Trill 3-10 Note level Square-like

B. Frequency-adaptive Scattering

Due to the harmonic nature of PMTs, one harmonic partial
sufficiently captures all the characteristic information: rate, ex-
tent, and shape. Therefore, we propose the frequency-adaptive
scattering for representing PMTs. Instead of decomposing
all frequency bands of the scalogram, the frequency-adaptive
scattering calculates the second-order transform adaptively

1https://www.di.ens.fr/data/software/scatnet

Fig. 4. Visual comparison of PMT characteristics for (a) vibrato, (b) tremolo,
(c) trill, and (d) flutter-tongue, in the time–frequency domain (partially
enlarged from Fig. 1 (a)).

around the dominant frequency band, the band with maximum
acoustic energy. This provides representations that are highly-
compact and are invariant to large frequency-transpositions as
compared to the standard scattering described in Section III.

From the first-order scattering coefficients S1x(t, λ) shown
in Fig. 5 (b), we extract the frame-wise index of the frequency
band with maximum acoustic energy:

λmax(t) = arg max
λ

(
S1x(t, λ)

)
. (6)

This forms the dominant band trajectory, a 1-D time series.
PMTs are spectro-temporal patterns normally spread over
several frequency bands. To extract information of the full
modulation pattern, we introduce an L-band tolerance sym-
metrically centred at the dominant band trajectory. L is the
total number of frequency bands decomposed. We then define
the decomposition trajectory as:

Λ(t) =

{
λmax(t) + l

∣∣∣ − L

2
≤ l ≤ L

2

}
. (7)

We locate the L-band decomposition trajectory of the scalo-
gram (Fig. 5 (a)) by expressing its log-frequency axis in local
coordinates with respect to the dominant band trajectory:

XΛ(t, l) = X
(
t,Λ
)
. (8)

Then, we define the frequency-adaptive time scattering
(AdaTS) by convolving XΛ(t, l) with all wavelets in ψvt(t),
applying complex modulus, and averaging locally with φT (t):

SAdaTS
2 x(t, l, vt) =

(∣∣XΛ
t∗ψvt

∣∣ t∗ φT)(t, l). (9)

In the equation above, SAdaTS
2 x(t, l, vt) is a three-dimensional

(3-D) representation along t, l, and vt. On the flip side, its
number of log-frequency bins l is equal to L, i.e. much less
than the number of log-frequency bins λ for the second-
order time scattering S2x(t, λ, vt). We then log-normalise
the AdaTS via Eq. (5) and obtain S̃AdaTS

2 x(t, l, vt). Fig. 5
(c) shows the log-normalised AdaTS decomposed from the
dominant band trajectory of Fig. 5 (a).

Besides the difference on the fundamental modulation rate,
the AdaTS of PMTs exhibits different spectral characteristics
along the modulation rate axis, as observed from Fig. 5 (c).
Tremolo has only the fundamental modulation rate while trill
and vibrato carry upper harmonic partials. Trill has a richer
harmonic structure than vibrato. These characteristics may
provide additional information for the recognition of PMTs.
Therefore, we propose to apply frequency scattering along

http://c4dm.eecs.qmul.ac.uk/CBFdataset.html
https://www.di.ens.fr/data/software/scatnet
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Fig. 5. Extracting the frequency-adaptive scattering representations for PMTs:
vibrato, tremolo, trill, flutter-tongue, variable rate trill, variable extent trill, and
variable pitch flutter-tongue. (a) scalogram; (b) dominant band trajectory in
the first-order time scattering; (c) adaptive time scattering (AdaTS) obtained
by localising and decomposing the scalogram trajectory; (d) adaptive time–
rate scattering (AdaTRS) obtained by applying a spectral filterbank. The
AdaTS+AdaTRS is the frame-wise concatenation of (c) and (d).

the modulation rate axis of S̃AdaTS
2 x(t, l, vt) with a wavelet

filterbank ψvf (vt) and define the frequency-adaptive time–rate
scattering (AdaTRS) as:

SAdaTRS
2 x(t, l, vt, vf) =

(∣∣S̃AdaTS
2 x

vt∗ ψvf
∣∣ vt∗ φF)(t, l, vt),

(10)
where φF (vt) is a lowpass filter. Frequency scattering has a
similar form as time scattering where the former generally
applies a wavelet filterbank along the acoustic frequency axis,
i.e. ψvf (λ), such as the time–frequency scattering operators
shown in Fig. 3. In such cases, it generates representations that
are invariant to frequency-transpositions and captures modu-
lation information along the log-frequency axis of the scalo-
gram. In this paper, the proposed AdaTS itself is frequency-
transposition invariant due to the adaptive operation. Applying
frequency scattering on top of the AdaTS is to capture its char-
acteristics along the modulation rate axis. Fig. 5 (d) displays
the AdaTRS obtained from (c). We define AdaTS+AdaTRS as
the concatenation of AdaTS and AdaTRS:

SAdaTS+AdaTRS
2 x(t, l, vt, vf) ={

S̃AdaTS
2 x(t, l, vt),S

AdaTRS
2 x(t, l, vt, vf)

}
, (11)

which is the input representation to our recognition system for
PMTs in Section VI.

C. Scattering for Pitch Modulation-based Techniques

From the analysis in Section IV-A, the core information
for PMT recognition lies in the modulation rate, extent,
and shape. Fig. 5 shows (a) the scalogram, (b) the first-
order time scattering, (c) the AdaTS, and (d) the AdaTRS
representations of a series of PMT examples in the CBFdataset
(see Section VII-A1). The first four are modulations based on
stable pitches or constant parameters: vibrato, tremolo, trill,
and flutter-tongue. The last three are cases with time-varying
parameters: trills with variable rate and with variable extent,
and flutter-tongue with time-varying pitch.

Fig. 5 (c) is the AdaTS decomposed only from the dominant
band trajectory. Flutter-tongue is the most discriminative one
with the highest modulation rate. Dominant band decompo-
sition also captures trills because of their large modulation
extent. This can be interpreted by filters with a bandwidth
larger than one semitone, which blurs other subtle modula-
tions. To specifically detect vibratos and tremolos, we use
frequency bands less than one semitone and concatenate the
decompositions of multiple bands. Ideally, the AdaTS of
tremolo should display only the fundamental modulation rate
with no upper harmonics since tremolo is an AM. This is
verified by the second example in Fig. 5 (c). However, vibratos
are FMs with modulations spread over neighbouring frequency
bands. Decomposing neighbouring frequency bands above or
below the dominant band provides additional information to
distinguish vibratos from tremolos. All this discriminative
information can be visualised from the fundamental modu-
lation rate and the richness of the harmonics of the AdaTS
in Fig. 5 (c). Although the last example is flutter-tongue with
time-varying pitch, its modulation rate is relatively stable. The
trills with variable rate and extent are also captured. To capture
the spectral structure of the AdaTS (Fig. 5 (c)), we apply
frequency scattering along the modulation rate axis and obtain
the AdaTRS (Fig. 5 (d)), which provides extra information for
the discrimination between PMTs.

V. DIRECTION-ADAPTIVE JOINT TIME–FREQUENCY
SCATTERING FOR PITCH EVOLUTION-BASED TECHNIQUES

A. Characteristics of Pitch Evolution-based Techniques

Similarly to Section IV-A, we analyse characteristics of
PETs and calculate statistical information from the CBFdataset
(see Section VII-A1), as shown in Table II. Each playing
technique has a specific duration range: 0.1–0.4 s for acciac-
catura, 0.2–1.2 s for portamento, and 0.2–1.1 s for glissando.
For temporal variations, although all three playing techniques
contain monotonic pitch changes over time, portamento ex-
hibits smooth pitch changes while the pitch changes within
acciaccatura and glissando are both at the note level. Acciac-
catura contains only one note change, while glissando spans a
series of note changes. For spectral variations, acciaccatura
has a noisy attack while glissando and portamento exhibit
clear harmonic structures. The possible directions of their pitch
changes are different: acciaccatura in CBF playing only occurs
downwards, while the other two techniques can exhibit both
upward and downward directions.
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TABLE II
CHARACTERISTICS OF PITCH EVOLUTION-BASED TECHNIQUES

Characteristics Acciaccatura Portamento Glissando

Duration (s) 0.1-0.4 0.2-1.2 0.2-1.1

Temporal variation One note
change

Smooth pitch
changes

Consecutive
note changes

Spectral variation Noisy attack Harmonic Harmonic
Pitch direction ↘ ↗ or ↘ ↗ or ↘

B. Direction-adaptive Joint Time–Frequency Scattering

Different from separable scattering [41], which calculates
time and frequency scattering in separate steps, the joint
scattering [11] applies them jointly. The interaction of the
two types of wavelet convolutions captures spectro-temporal
variations in the time–frequency domain. Motivated by the
recognition task for PETs, we interpret the definition of the
joint scattering in [11] from a new perspective. Rather than
formulating a 2-D mother wavelet, we consider the temporal
and spectral wavelet convolutions in a sequential manner. This
is more precise in terms of the computations performed and
provides explicit information of what has been captured at
each step.

Following the notations in Section III, we denote by ψ(t)
and ψ(λ) the mother wavelets along the time and the log-
frequency axes, respectively; ψvt(t) and ψvf (λ) are the corre-
sponding wavelet filterbanks dilated from the mother wavelets.
We introduce an orientation variable θ = ±1 to reflect the
oscillation direction (up or down) of the spectro-temporal
pattern. Specifically, θ = −1 flips the centre frequency of
wavelet ψvf (λ) from 2vf to −2vf . The resulting temporal and
spectral wavelet filterbanks are respectively:

ψvt(t) = 2vtψ(2vtt) and
ψvf ,θ(λ) = 2vfψ(θ2vfλ). (12)

The joint wavelet transform of X(t, λ) computes convolu-
tions of the form:(

(X
t∗ψvt)

λ∗ψvf ,θ
)

(t, λ) =
(
X
t,λ
∗ (ψvt⊗ψvf ,θ)

)
(t, λ), (13)

where the operator ⊗ denotes the outer product between two

1-D wavelets, returning a 2-D wavelet; and the symbol
t,λ
∗

denotes a 2-D convolution over both the time variable t and
the log-frequency variable λ. In practice, we implement the
joint time–frequency convolution via the left-hand side of the
equation above, that is, by a sequence of two 1-D convolutions.
This two-step factorised procedure is more efficient than the
one-step 2-D convolution, described on the right-hand side.
However, the right-hand side of Eq. (13) is useful for the
theoretical understanding of joint scattering as involving a joint
convolutional operator in the time–frequency domain. Indeed,
we may view the outer product between the temporal wavelet
ψvt(t) and the spectral wavelet ψvf ,θ(λ) as the factorisation
of a joint time–frequency wavelet,

Ψvt,vf ,θ(t, λ) = ψvt(t)ψvf ,θ(λ), (14)

which captures the local spectro-temporal modulations of
X(t, λ) around time t and log-frequency λ in terms of the

temporal variability vt, the spectral variability vf , and the
orientation θ.

For a specific recognition task at hand, we typically focus
on a spectro-temporal pattern smaller than a “time–frequency
box” restricted by some time scale T in samples and frequency
interval F in octaves. To ensure local time-shifting invariance,
time-warping stability, frequency-transposition invariance, and
frequency-warping stability, we take the modulus of the output
of Eq. (13) and average it by a 2-D lowpass filter ΦT,F (t, λ).
Following [11], we define the joint time–frequency scattering
(JTFS) of X(t, λ) according to Eqs. (13) and (14) as:

SJTFS
2 x(t, λ, vt, vf , θ) =

(∣∣X t∗ψvt
λ∗ψvf ,θ

∣∣ t,λ∗ ΦT,F

)
(t, λ).

(15)
Fig. 6 shows the calculation process of the JTFS for a

glissando. Convolving (a) the scalogram X(t, λ) with ψvt(t),
we obtain (b) the temporal wavelet transform, which mainly
captures the temporal variations of each frequency band. To
capture correlations across frequency bands, we apply wavelet
convolution with ψvf ,θ(λ) along the log-frequency axis and
obtain (c) the joint wavelet transform. Taking complex modu-
lus of (c) and averaging the resulting coefficients yield (d) the
JTFS. According to Eq. (15), for each “time–frequency” box
around (t, λ), we obtain a 3-D tensor indexed by (vt, vf , θ).
As shown in Fig. 6 (d), this tensor captures the joint activation
of temporal and spectral variations as well as its direction.

Fig. 6. Calculating the joint time–frequency scattering (JTFS) for a glissando:
(a) scalogram; (b) temporal wavelet transform (temporal WT) by convolving
with temporal filterbank ψvt ; (c) spectral wavelet transform (spectral WT) by
applying spectral filterbank ψvf ,θ ; (d) the JTFS, result of modulus operation
and averaging with 2-D lowpass filter ΦT,F .

C. Scattering for Pitch Evolution-based Techniques

As discussed in Section V-A, each PET exhibits one direc-
tion of pitch change, while according to Eq. (15), we obtain
information for both directions. For recognising only the type
of PETs, we modify the JTFS into the direction-adaptive joint
time–frequency scattering (dJTFS), which introduces a pooling
operation over the direction variable of the JTFS. It can be
either max-pooling or average-pooling. We define the former
case as dJTFS-max, extracting only the JTFS corresponding
to θmax:

SdJTFS−max
2 x(t, λ, vt, vf) = SJTFS

2 x(t, λ, vt, vf , θmax).
(16)
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where θmax is the direction with maximum spectro-temporal
modulation energy:

θmax(t) = arg max
θ=±1

∑
λ,vt,vf

SJTFS
2 x(t, λ, vt, vf , θ). (17)

In the latter case, we average the JTFS over both directions,
i.e. θ = 1 and θ = −1, and define the resulting representation
as dJTFS-avg:

SdJTFS−avg
2 x(t, λ, vt, vf) =

1

2

∑
θ=1,−1

SJTFS
2 x(t, λ, vt, vf , θ).

(18)
We compare the performance of dJTFS-max and dJTFS-avg
on PET recognition in Section VIII-A1.

Fig. 7 shows the JTFS of acciaccatura, portamento, and
glissando: (a) is the spectrogram; (b), (c), and (d) are the 2-D
joint activations for each type of PET. As observed, although
both acciaccatura and glissando have high-energy regions
in the JTFS, their energy distributions along the variation
scales are different. From (b) and (d), noisy attacks show
as diffused energy in the JTFS, and the time and frequency
regularity of glissando results in clear slopes. Extracting the
JTFS coefficients via max-pooling or average-pooling over its
direction variable reduces the dimensionality by half without
losing useful information.

Fig. 7. Joint activation of temporal and spectral variations for PETs. (a)
Spectrogram showing acciaccatura, portamento, and glissando; (b), (c), and
(d) are the corresponding JTFS plots for each case.

VI. PLAYING TECHNIQUE RECOGNITION

To develop a general framework for recognising playing
techniques, we investigate two classification schemes: (1)
A recognition system with a set of binary classifiers, each
detecting one type of playing technique. Each classifier takes
as input the proposed frequency-adaptive scattering or dJTFS

coefficients with hyperparameters set according to the charac-
teristics of each technique. (2) A recognition system with a
multiclass classifier, using as input the concatenation of the
AdaTS+AdaTRS and dJTFS-avg, and detecting all playing
techniques simultaneously. The binary classification scheme
exhibits lower feature dimension and is capable of detecting
co-articulations, such as the combination of tremolo and trill,
or glissando co-articulated with flutter-tongue. The multiclass
one provides a confusion matrix between techniques. In this
section, we discuss experimental settings for the binary classi-
fiers; we introduce the multiclass classifier in Section VII-D.

A. Adaptive Scattering Features

Table III gives the hyperparameters of the proposed scat-
tering representations, the frequency-adaptive scattering and
the dJTFS, which capture the discriminative information for
PMT and PET recognition. For detecting PMTs, we calculate
and compare all three frequency-adaptive scattering operators:
the AdaTS, AdaTRS, and AdaTS+AdaTRS. The averaging
scale T (in samples) is useful for discriminating modulations
with large differences on the modulation rate, for example,
for distinguishing flutter-tongue from other low-rate PMTs.
Averaging scales covering at least four unit patterns are
recommended for reliable estimation of the modulation rate.
According to the rate range of PMTs (see Table I), we use
T = 213 (186 ms at a sampling rate Fs = 44.1 kHz)
for flutter-tongue, and T = 215 (743 ms) for other three
techniques. The range M (in Hz) of the modulation rate
narrows the frequency-adaptive scattering to the part that
contains core information of the playing technique. Setting
an interval for M , the frequency-adaptive scattering extracts
only the coefficients corresponding to this range. An interval
larger than the modulation rate provides some harmonics in the
modulation representation. For example, we set M = [0, 150]
Hz for flutter-tongue, and M = [0, 100] Hz for the other
three PMTs. Q(t)

1 is the number of filters per octave of the
temporal filterbank in the first-order time scattering. Here,
we use Q(t)

1 = 16 to support subtly-modulated vibratos and
tremolos, of which the modulation extent is less than one
semitone. Q(t)

1 = 12 is applied to trill due to its note-level
nature. Since the most distinct feature of flutter-tongue is the
modulation rate, we set a small Q(t)

1 = 4 for computation
saving. L is the number of frequency bands centred at the
dominant band in the scalogram. For all modulations, we
use L = 7 according to experimental results. All frequency-
adaptive scattering representations operate with Q(t)

2 = 1 and
Q

(t)
2 = 4 filters per octave for flutter-tongue and the other three

techniques, respectively. Besides the hyperparameters above,
the AdaTRS uses frequency scattering with Q

(f)
1 = 1 filters

per octave and an averaging scale corresponding to the entire
modulation rate axis of the AdaTS.

For recognising PETs, we encode the characteristics of
each playing technique into the dJTFS representations by
setting appropriate transform parameters in a similar way.
The averaging scale T carries duration information via setting
T approximately equivalent to the mean duration of each
playing technique. According to the duration range of PETs
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TABLE III
HYPERPARAMETERS OF THE PROPOSED SCATTERING REPRESENTATIONS THAT CAPTURE DISCRIMINATIVE INFORMATION FOR PMTS AND PETS

Frequency-adaptive scattering for PMTs Direction-adaptive joint time–frequency scattering for PETs

Hyperparameter Notation Characteristics Hyperparameter Notation Characteristics

Averaging scale T Modulation rate Averaging scale T Duration
Temporal filters per octave Q

(t)
1 Modulation extent Temporal filters per octave Q

(t)
1 Pitch change

Spectral filters per octave Q
(f)
1 Spectral structure Spectral filters per octave Q

(f)
1 Spectral structure

Number of bands decomposed L Modulation shape Orientation variable θ Direction of pitch change
Feature dimension reduction M Modulation rate range Feature dimension reduction M Temporal variation range

in Table II, we use T = 213 (186 ms) for acciaccatura, and
T = 214 (372 ms) for portamento and glissando. Here, Q(t)

1

is useful for distinguishing note changes from smooth pitch
changes. For acciaccatura and glissando, we set Q(t)

1 = 12
due to their note-change property. To capture the smooth
pitch evolution within portamento, Q(t)

1 > 12 is required, and
we set Q(t)

1 = 16 for this case. We use Q
(t)
2 = 2 due to

the less oscillatory nature of audio signals at this order of
decomposition. One may observe from Fig. 7 (a) the different
harmonic structures between the selected PETs. This timbral
information can be captured by applying frequency scattering
with Q

(f)
1 filters per octave. Here we use Q

(f)
1 = 2 filters

per octave and average the coefficients along the whole log-
frequency axis. We then obtain the dJTFS of PETs for each
time frame according to Eq. (16) or Eq. (18). Similar to the
frequency-adaptive scattering, we also use a range M = [0, 50]
Hz to extract meaningful temporal modulation information.
The evolutionary nature of PETs suggests the importance of
temporal context. Here we calculate the mean and standard
deviation of 5 frames centred at the current frame to represent
contextual information. All scattering features used in this
paper are log-normalised coefficients by Eq. (5).

B. Recognition System

We use support vector machines (SVMs) [44] with Gaussian
kernels as classifiers throughout the paper due to their good
generalisability based on a limited amount of training data
[45]. The SVM hyperparameters to be optimised are the error
penalty parameter C and the width of the Gaussian kernel γ.
We use consistent parameter grids of 2{3:1:8} and 2{−12:1:−7}

for C and γ, respectively, during training and select the best
hyperparameters for testing. In the recognition process, the
CBFdataset (see Section VII-A1) is split into training and
test sets according to an 8:2 ratio by performers (performers
are randomly initialised). We create 5 splits in the same way,
with no performer overlap between the test sets across splits
and between the training-test sets in each split. Within each
split, we run a 3-fold cross-validation, sampling on the training
set such that each fold includes approximately the same ratio
of positive and negative class instances for a given playing
technique. This is to avoid the case where there is no instance
or too few instances of a given playing technique class in
the validation set if we further split the training set based on
performer identity.

The classifiers take as input the frequency-adaptive scatter-
ing or the dJTFS features and output frame-wise predictions

of playing technique type. All features are z-score normalised.
As introduced in Section III, the scattering coefficients are
the results of convolving the wavelet modulus transform with
a lowpass filter. The original frame size of the scattering
coefficients equals the averaging scale T , ranging from 186
to 743 ms for the techniques discussed in Section VI-A. To
compensate for the low temporal resolution resulting from
the large averaging scales, we use an oversampling parameter
α [39] which introduces overlaps to neighbouring averaging
windows. The frame size h is then inversely log-proportional
to α by h = T/(Fs × 2α). We set α = 2 consistently for
all classifiers, which yields frame sizes for flutter-tongue, trill,
vibrato, tremolo, acciaccatura, portamento, and glissando of
46, 186, 186, 186, 46, 93, and 93, respectively (all in ms).
Besides the proposed scattering operators, we also investigate
the performance of two existing scattering representations, i.e.
the standard scattering for PMT detection and the JTFS for
PET recognition. We list the frame sizes and dimensionalities
of the scattering representations for each type of playing
technique in the supplementary material [14].

VII. EVALUATION

A. Datasets

Most existing datasets for playing technique analysis in-
clude only techniques recorded in isolation, without consid-
ering the variations of techniques in real-world performances.
We release publicly a new dataset of Chinese bamboo flute
performances (CBFdataset) for analysing playing techniques
recorded in context. To further verify the methodology, we test
the proposed system on three existing datasets with a variety
of playing techniques: vibrato/portamento dataset (VPset) [6],
Studio On Line (SOL) dataset [5], and vocal technique dataset
(VocalSet) [35]. We call these three datasets the additional
datasets. The types of playing techniques and number of
samples in each dataset are summarised in Fig. 10.

1) CBFdataset: The CBFdataset comprises monophonic
Chinese bamboo flute performances and expert annotations of
seven playing techniques: vibrato, tremolo, trill, flutter-tongue,
acciaccatura, portamento, and glissando. The performances
were recorded by 10 professional CBF performers from the
China Conservatory of Music. All data was recorded in
acoustically treated environments of professional recording
studios using a Zoom H6 recorder with its stock micro-
phones, in xy stereo configuration, at 44.1kHz/24-bits. Each
performer played both isolated playing techniques covering
all notes on the CBF and two full-length pieces selected
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from Busy Delivering Harvest «扬鞭催马运粮忙», Jolly Meeting
«喜相逢», Morning «早晨», and Flying Partridge «鹧鸪飞».
Performers were grouped by flute type (C and G, the most
representative types for Southern and Northern styles, respec-
tively) with each performer used their own flute. The dataset
was originally published as two subsets, CBF-periDB [12]
and CBF-petsDB [13]; in this paper, we use the complete
CBFdataset for all experiments. All recordings and playing
technique annotations in the CBFdataset can be downloaded
from c4dm.eecs.qmul.ac.uk/CBFdataset.html.

2) Additional datasets: To provide additional evidence on
the generalisability of the proposed framework for recognising
playing techniques, we examine the existing datasets and focus
on three datasets below based on their diversity of playing
techniques, performers, or instruments.

VPset: Proposed in [6], the vibrato2/portamento3 dataset
(VPset) includes two separate subsets. The vibrato subset
comprises 4 full-length pieces played on the Chinese instru-
ment erhu and Western instrument violin, 64 short excerpts of
solo instrument playing, and vibrato annotations. The duration
of this subset is 25 minutes. Besides having the same erhu
and violin recordings as the vibrato subset, the portamento
subset also includes recordings of Beijing opera singing and
portamento annotations; the total duration is 55 minutes. It is
not applicable to concatenate the two subsets into one since
there are no vibrato (portamento) annotations for Beijing opera
singing (solo instrument playing) in the portamento (vibrato)
subset. For simplicity, we hereafter denote these two subsets as
the VPset. When it comes specifically to vibrato (portamento)
detection, we refer to the vibrato (portamento) subset.

SOL4: Studio On Line [5] (version 0.9HL) is a multi-
instrument dataset, comprising 12 categories of instruments
playing isolated tones. It covers 140 types of playing tech-
niques; total duration is 27.1 hours. To focus on commonly-
used playing techniques, we consider only playing techniques
with over 100 excerpts. Non-techniques like crescendos and
decrescendos are beyond the scope of this paper. The list of
playing techniques is shown in Fig. 10 (c); audio with the
considered data total 9.8 hours. For the playing technique
labels, we follow the original annotations except for five labels
resulting from merging similar patterns: sul-tasto/ponticello,
pizzicato, glissando, trill, and flatterzunge. For example, we
merge the labels trill-major-second-up and trill-minor-second-
up into one label, trill. Note that glissando in the SOL dataset
corresponds to portamento in the CBFdataset, both consisting
of smooth pitch changes.

VocalSet5: a singing voice dataset [35]. It has recordings
of 10.1 hours of 20 professional singers (11 male, 9 female)
performing 17 different vocal techniques. To make the results
comparable to that obtained in [35], we focus on the same
ten techniques: straight, vibrato, belt, lip trill, breathy, vocal
fry, trillo, inhaled, trill, and spoken, as shown in Fig. 10 (d).
The number of trills and spoken techniques in this dataset are
below 100, with 95 and 20 examples, respectively.

2https://github.com/skx300/vibrato_dataset
3https://github.com/skx300/portamento_dataset
4https://forum.ircam.fr/projects/detil/orchids/
5https://zenodo.org/record/1193957

We order playing techniques in each dataset by number of
samples and group them into PMTs and PETs, as shown by the
top subfigures of Fig. 10. Here PMTs and PETs are not limited
to the CBF playing techniques discussed in Sections IV-A
and V-A; they include similar acoustic patterns that follow
the definitions of PMTs and PETs.

B. Metrics

Playing techniques are typically music events with certain
durations. Due to the heterogeneous structure of the datasets,
three ways of evaluation are considered for performance com-
parison: frame-based, event-based, and clip-based evaluation.
We use precision P = TP

TP+FP , recall R = TP
TP+FN , and F-

measure F = 2PR
P+R as the metrics for each evaluation method,

where TP,FP,FN are true positives, false positives, and false
negatives, respectively [46].

Frame-based: Labels assigned by the classifier are com-
pared to the ground truth in a frame-wise manner. The
frame sizes are different from technique to technique. When
evaluating for a specific technique over different methods, we
resample the detection result to the same frame sizes that we
use for CBF technique evaluation. The CBFdataset, VPset, and
VocalSet are evaluated in this way.

Event-based: The CBFdataset includes mainly full-length
performances. To investigate the recognition result at the event
level, we merge frame labels into events and evaluate each type
of playing technique based on the onset and duration of its
instances in the test set. Frame labels are merged into events
according to the mir_eval [47] Python library. Considering
the duration range of each playing technique, the events are
postprocessed by minimum duration pruning and gap filling.
We fill the gaps between neighbouring events when the gaps
are shorter than the shortest event in the training set; and
prune the events that have durations smaller than the minimum
duration event in the training set. The minimum duration is
automatically calculated subject to the technique, dataset, and
training-test split during recognition. Onsets of events are also
evaluated using mir_eval [47], which computes a maximum
match between reference and estimated onsets, subject to a
window constraint. An event is considered to be detected only
when its onset falls within a 200 ms window of the ground
truth and its duration is at least 50% of the ground truth.

Clip-based: This method of evaluation is considered for
the SOL dataset, which comprises short audio clips with one
technique per clip. To each clip, one label is assigned based
on the majority vote of its frame labels.

C. Baselines

There does not yet exist any general framework for detecting
all seven types of playing techniques although methods for
detecting specific playing techniques can be found in the
literature, such as FDM for vibrato detection [6], and HMMs
for portamento [6] and glissando [33] recognition. Therefore,
we compare the proposed system with these methods for
vibrato, portamento, and glissando detection in the CBFdataset
for the binary classification scheme (see Section VIII-A1). All
detection systems take as input the frame-wise F0 estimated

http://c4dm.eecs.qmul.ac.uk/CBFdataset.html
https://github.com/skx300/vibrato_dataset
https://github.com/skx300/portamento_dataset
https://forum.ircam.fr/projects/detil/orchids/
https://zenodo.org/record/1193957
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TABLE IV
FRAME-BASED BINARY CLASSIFICATION RESULTS FOR THE SEVEN CBF PLAYING TECHNIQUES USING THE PROPOSED ADAPTIVE SCATTERING

TRANSFORMS, EXISTING SCATTERING REPRESENTATIONS, AND BASELINE METHODS. ALL NUMBERS ARE F-MEASURE SCORES (%).

PMT Recognition PET Recognition

PMTs AdaTS AdaTRS AdaTS+AdaTRS Standard FDM PETs dJTFS-max dJTFS-avg JTFS HMM

Flutter-tongue 88.8 80.6 89.2 91.6 NA Acciaccatura 70.4 74.8 73.0 NA
Trill 89.8 83.6 90.4 85.6 NA Portamento 66.4 66.0 63.6 30.0
Vibrato 71.2 60.6 72.0 65.0 67.7 Glissando 81.4 86.4 86.8 12.7
Tremolo 42.6 30.0 42.2 48.8 NA

Average 73.1 63.7 73.5 72.8 NA Average 72.7 75.7 74.5 NA

TABLE V
EVENT-BASED BINARY CLASSIFICATION RESULTS FOR THE SEVEN CBF PLAYING TECHNIQUES USING THE PROPOSED ADAPTIVE SCATTERING

TRANSFORMS, EXISTING SCATTERING REPRESENTATIONS, AND BASELINE METHODS.

PMT Recognition PET Recognition

PMTs AdaTS AdaTRS AdaTS+AdaTRS Standard FDM PETs dJTFS-max dJTFS-avg JTFS HMM

Flutter-tongue 72.0 54.3 71.3 84.5 NA Acciaccatura 74.1 78.2 76.1 NA
Trill 71.5 56.2 73.3 42.7 NA Portamento 65.7 65.6 63.5 22.4
Vibrato 50.1 35.9 50.1 32.0 58.9 Glissando 75.6 83.1 84.6 14.8
Tremolo 25.2 16.7 25.9 25.1 NA

Average 54.7 40.8 55.2 46.1 NA Average 71.8 75.6 74.7 NA

by pYIN [36]. The FDM feature is then computed and fed
into a naive Bayes classifier for vibrato detection. Portamento
and glissando recognition are both based on HMMs. For fair
comparisons, we resample the detection results into the same
frame sizes as that used for CBF vibrato, portamento, and glis-
sando evaluation (see Section VI-B). Different hyperparameter
ranges are experimented for FDM and HMMs based on the
characteristics of these three techniques. The best frame-based
F-measures obtained for vibrato, portamento, and glissando
detection in the CBFdataset are 67.7%, 30.0%, and 12.7%;
while the event-based ones are 58.9%, 22.4%, and 14.8%.

To detect all seven playing techniques simultaneously via
the multiclass classification scheme (see Section VIII-A2),
we compare the proposed representations with commonly
used features such as MFCCs and MPS for the CBFdataset.
Macro F-measures obtained using MFCCs and MPS are 35.9%
and 52.0%, respectively. Fig. 10 displays the F-measure for
recognising each playing technique in the CBFdataset based
on these two features. “Other” refers to frames that are none
of the discussed seven playing techniques. The supplementary
material [14] compares the performance of MFCCs and MPS
on the CBFdataset in terms of confusion matrices.

For the additional datasets, we compare the proposed sys-
tem with FDM for vibrato detection and with HMMs for
portamento recognition in the VPset [6]; and with CNNs
for detecting vocal techniques in the VocalSet [35]. This is
because these methods were originally used for detecting
playing techniques in the corresponding datasets. Frame-based
F-measures for vibrato and portamento recognition are 77.7%
and 50.6% for the VPset. CNNs were used in [35] for vocal
technique classification with a frame size of 3 s. A macro
F-measure of 65.2% for the 10 techniques were reported. For
the SOL dataset, we also compare the proposed representations
with MFCCs and MPS. Macro F-measures for detecting the 17

playing techniques in the SOL dataset using MFCCs and MPS
are 27.1% and 26.6%, respectively. The bottom subfigures of
Fig. 10 display frame-based F-measures for recognising each
type of playing technique in these three additional datasets.

D. Experimental Settings

In this section, we build a recognition system with a
multiclass classifier for all the datasets in Section VII-A. The
binary classifiers discussed in the previous section detect co-
articulations. However, cases of co-articulation form only a
small portion of the CBFdataset (details can be found in
the supplementary material [14]) and do not exist in other
datasets. In the multiclass classification for CBF techniques,
we discard all co-articulation samples. This not only enables
us to generate a confusion matrix between techniques, but also
to provide comparable results across datasets.

For the CBFdataset, the system takes the concatenation
of the proposed AdaTS+AdaTRS and dJTFS-avg features
as input. This is based on a comparison of the recognition
results on the CBFdataset using the AdaTS+AdaTRS only,
the dJTFS-avg only, and the concatenation of AdaTS+AdaTRS
and dJTFS-avg as input to the classifier, respectively, where the
concatenated feature yields the best result. We provide details
of this comparison in the supplementary material [14]. We set
T = 215, Q(t)

1 = 16, Q(t)
2 = 4, Q(f)

1 = 1, α = 2, and M =
[0, 100] Hz for calculating the AdaTS+AdaTRS. The dJTFS-
avg is calculated via T = 214, Q(t)

1 = 16, Q(t)
2 = 2, Q(f)

1 = 2,
α = 2, and M = [0, 50] Hz. Due to the different averaging
scales, T = 215 for the AdaTS+AdaTRS and T = 214 for
the dJTFS-avg, we duplicate the AdaTS+AdaTRS coefficients
before concatenation to have the same number of frames as the
dJTFS-avg, with a frame size of 93 ms. The feature dimension
is 613, higher than those in the binary classification. The data
split follows that in the binary classification.
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For the additional datasets, we conduct binary classifica-
tion for the VPset and multiclass classification for the SOL
dataset and VocalSet. This is because vibrato and portamento
techniques are from two separate subsets in the VPset, as
described in Section VII-A2. All experiments for the additional
datasets use the same settings as the CBF binary or multiclass
classification, i.e. hyperparameters of the scattering transform
and hyperparameter grids of SVMs. However, the ways of
splitting data vary according to dataset. Rather than cross-
validating within the same performance for the VPset in [6],
we take into account the performer identity. We use one
performer’s playing for testing and the remaining recordings
for training, and repeat this for all four performers. The
final result is the average of frame-based F-measures over
all performances. After removing silence from the recordings,
a random 8:2 training-test split ratio is used for the SOL
dataset due to a lack of performer information. For the
VocalSet, we keep the data splits as in the original work [35].
Silence is also removed before scattering feature extraction.
All samples from 15 singers are placed in the training set and
the remaining 5 singers in the test set. The frame sizes and
feature dimensionalities on all additional datasets (except the
VocalSet) are the same as those on the CBFdataset.

VIII. RESULTS

A. CBFdataset
1) Binary classification: Tables IV and V show the frame-

and event-based binary classification results for the four PMTs
and the three PETs in the CBFdataset using the proposed
adaptive scattering transforms, existing scattering representa-
tions (standard scattering and JTFS), and baseline methods
(FDM and HMM). We compare these results from three fronts:
the performance of different scattering representations, the
recognition results on different playing techniques, and the
comparison between the proposed scattering representations
and the baseline methods.

In both frame- and event-based evaluation, the AdaTS+
AdaTRS and the dJTFS-avg achieve the best overall perfor-
mance for PMT and PET recognition, respectively, measured
by the average F-measure over the playing techniques in each
group (see the last row of Tables IV and V). For example,
in the frame-based evaluation, the AdaTS+AdaTRS yields
an average F-measure over the four PMTs of 73.5% against
72.8% from the standard scattering; and the dJTFS-avg returns
an average F-measure over the three PETs of 75.7% versus
74.5% from the JTFS. Similar trends take place in the event-
based evaluation. Besides the performance difference, the
proposed representations have much lower dimensionalities
than the standard scattering and the JTFS (see [14]). Nar-
rowing the scope with the three frequency-adaptive scattering
representations—AdaTS, AdaTRS, and AdaTS+AdaTRS—we
notice that the AdaTS+AdaTRS slightly outperforms the other
two. The average F-measure improves 0.4% and 0.5% in the
frame- and event-based evaluation, respectively, as compared
to the AdaTS only. With regard to the two direction-adaptive
scattering representations, i.e. dJTFS-max and dJTFS-avg, the
latter achieves frame- and event-based average F-measure of
3.0% and 3.8% higher than that of the former.

Comparing the recognition performance of different meth-
ods for specific playing techniques, we observe that although
the proposed system does not achieve the best results for
all techniques, it yields considerably higher F-measures for
some techniques. Among the four PMTs, the AdaTS+AdaTRS
generates frame-based F-measure improvement of 4.8% and
7.0% for trill and vibrato detection, and event-based F-
measure increase of 30.6%, 18.1%, 0.8% for trill, vibrato,
and tremolo detection, respectively, as compared to the stan-
dard scattering. For flutter-tongue and tremolo detection, the
AdaTS+AdaTRS yields frame-based F-measures that are 2.4%
and 6.6% lower than the standard scattering; and returns an
event-based F-measure of 13.2% less than the standard scat-
tering for flutter-tongue recognition. The poorer performance
of the AdaTS+AdaTRS over the standard scattering for these
two techniques may be attributed to the timbre or energy
variations within the technique. As shown in Fig. 1 (a), there
exists upper harmonic fading within the tremolo technique
and energy variation within the flutter-tongue technique. The
timbral variation in the former may not be captured when we
extract only the frequency bands around the dominant band
for calculating the second-order scattering coefficients and the
energy variation in the latter may introduce instabilities to the
dominant band trajectory.

Switching to the recognition results on the three PETs,
we observe that the dJTFS-max outperforms the dJTFS-avg
and the JTFS for portamento recognition. It yields frame-
and event-based F-measures of 0.4% and 0.1% higher than
that of the dJTFS-avg; and generates frame- and event-based
F-measure improvement of 2.8% and 2.2% as compared to
the JTFS. However, it underperforms both the dJTFS-avg
and the JTFS for acciaccatura and glissando recognition. For
example, the dJTFS-max returns frame-based F-measures of
4.4% and 5.0%, and event-based F-measures of 4.1% and
7.5%, respectively, lower than those of the dJTFS-avg. One
possible reason for the better performance of the dJTFS-avg
and the JTFS over the dJTFS-max on these two techniques
may be the instability of the dJTFS-max to noisy pitch changes
within the technique. Take the glissando technique in Fig. 7 (a)
for instance: although the direction of the glissando is upward,
downward note changes exist inside the technique, e.g. the
note change at around 2.5 s. For such cases, the dJTFS-
max which extracts the direction with maximum spectral-
temporal modulation energy may oscillate between upward
and downward directions within the playing technique. In
contrast, the portamento technique comprises smooth pitch
changes where a direction change within the playing technique
is less likely to happen. The dJTF-avg detects PETs regardless
of their directions and meanwhile mitigates this instability.

For the comparison between the scattering representations
and the baselines, the AdaTS+AdaTRS achieves frame-based
F-measures of 4.3% higher and event-based F-measures of
8.8% lower than the FDM for detecting vibratos. The dJTFS-
avg considerably outperforms the HMMs for portamento and
glissando recognition, with frame-based F-measures improv-
ing 36.0% and 73.7%, and with event-based F-measures
increasing 43.2% and 68.3%, respectively. Apart from the per-
formance comparison of different methods, we also investigate
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Fig. 8. Flutter-tongue detection result for an excerpt in the performance of
Morning by Player 9. Top: log-frequency spectrogram; middle: comparison
between the ground truth and frame-based classification output (frame-based
P=96%, R=85%, F=90%); bottom: comparison between the ground truth
and obtained events after gap filling and minimum duration pruning (frame-
based P=99%, R=85%, F=91%; event-based P=62%, R=68%, F=65%).
The P , R, F values above are the results on this example.

Fig. 9. Portamento detection result for an excerpt in Player 3’s performance
of Busy Delivering Harvest. Top: log-frequency spectrogram; bottom: com-
parison between the ground truth (upper half) and frame-based classification
output (lower half). For this example, frame-based P=85%,R=52%, F=65%.

the influence of gap filling and minimum duration pruning
on the event-based evaluation by visualising the detection
result. Fig. 8 top shows the log-frequency spectrogram of an
excerpt in the CBFdataset; the middle and bottom subfigures
display the detected flutter-tongue events before and after
postprocessing, compared with the ground truth. Although the
two gaps at around 3 s are not filled due to their long durations,
the frame-based F-measure for this excerpt increases 1% after
pruning the events at around 14 s and 16 s.

Cross checking the detection results with the original audio,
we summarise the typical errors into three types below.

• Co-articulation: Fig. 9 shows an example portamento
detection result in the CBFdataset compared to the ground
truth. The false negative at around 9 s is an instance
of portamento and flutter-tongue co-articulation. In such
cases, portamento is no longer smooth but modulated with
small ripples, making it hard to detect, even with 16 filters
per octave in the first-order scattering transform.

• Rapid pitch change: This can be observed from the flutter-
tongue recognition result in Fig. 8. The stable pitch
regions are correctly detected with a precision of 96%.
False negatives mostly happen during rapid note changes
such as the gaps around 3 s.

• Techniques exhibit similar spectro-temporal patterns to
non-techniques: for example, short portamento and note

change. The false negative at 12.5 s in Fig. 9 is an
instance of an undetected short protamento.

2) Multiclass classification: Fig. 10 (a) shows the frame-
based F-measures of multiclass classification on the CBF-
dataset using the proposed adaptive scattering transforms,
the MFCCs baseline, and the MPS baseline. The macro F-
measures over the techniques (including “other” cases) ob-
tained using these three representations are 79.9%, 35.9%, and
52.0%, respectively. Fig. 11 (a) displays the number of frames
detected for each class where “other” cases form the majority
of the CBFdataset. This is because playing techniques are
occasional events in real-world performances. Additionally,
among the seven playing techniques, the number of samples
in each class is highly unbalanced. We thus normalise the
detection result over the number of class instances, as shown
in Fig. 11 (b). The confusion between vibrato and tremolo is
expected since frequency variations are commonly accompa-
nied by amplitude modulations and vice versa, and there is no
clear definition boundary between these two techniques.

B. Additional Datasets

Fig. 10 (b), (c), and (d) display the playing technique
recognition results for the VPset, SOL dataset, and VocalSet,
respectively. Note that these results are based on the same
scattering transform hyperparameters (see Section VII-D) that
we use for the CBFdataset. Parameter tuning for each dataset
could potentially improve the recognition results. In the VPset,
the proposed method yields an F-measure of 12.5% lower
than that of the FDM for vibrato detection and considerably
underperforms the HMMs for portamento detection. The most
frequent errors found in portamento detection are note changes
being detected as portamentos, which is consistent with the
detection errors for CBF portamentos. For the SOL dataset, our
proposed scattering representation achieves a macro F-measure
of 75.5%, improving by 48.4% and 48.9% as compared to that
using the MFCCs and MPS, respectively. For the VocalSet,
our recognition system yields more stable F-measures across
playing techniques than CNNs while generating a lower macro
F-measure, i.e. 62.2% against 65.2% from the CNNs. CNNs
failed to recognise any of the 20 spoken techniques. We
provide confusion matrices on the SOL dataset and VocalSet
in the supplementary material [14].

IX. DISCUSSION AND PERSPECTIVES

A. Discussion

Creating a consistent yet flexible taxonomy for playing
techniques, either for instrumental or vocal techniques, is an
under-explored area of music research. Playing techniques are
musical patterns, which vary over instruments, regions, and
performers. The same technique may exist under a different
name in the context of another instrument or genre. For
example, portamento in the VPset corresponds to glissando in
the SOL dataset. The definition of playing techniques may also
overlap depending on the player or singer performing it, e.g.
trill and vibrato in the VocalSet [35]. Another observation is
that, in the context of a music piece, playing techniques exhibit
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Fig. 10. Multiclass classification results on each dataset (binary classification on VPset). Top: the list of playing techniques and number of samples in
each dataset. The techniques are grouped into pitch modulation-based techniques (PMTs, in blue) and pitch evolution-based techniques (PETs, in light blue).
Bottom: the recognition results by multiclass classifiers for each dataset. The blue triangles are the F-measures obtained by the proposed scattering (Scat)
representation while others are that of the baselines: modulation power spectrum (MPS), mel-frequency cepstral coefficients (MFCC), filter diagonalisation
method (FDM), hidden Markov models (HMM), and convolutional neural networks (CNN).

Fig. 11. Confusion matrices obtained for multiclass classification of the seven CBF techniques. (a): confusion matrix with number of frames detected; (b)
normalised confusion matrix with values in (a) divided by the number of samples per technique.

considerable variations as compared to when they are played in
isolation. Ecologically valid data requires the collection of full-
length performances. We demonstrate the difference between
isolated and performed techniques in the supplementary mate-
rial [14] using glissando as an example. Isolated glissandos
exhibit consecutive note changes with approximately equal
durations, while performed ones possess variations on note
duration, number of notes, and co-articulation. This is also
confirmed by the performance differences of the recognition

system on the SOL dataset (with isolated techniques) and
other datasets (containing full pieces or long passages). The
experiments in this paper all operate on the original datasets
without any data augmentation. However, no evidence is found
that the detection result relies highly on the number of samples
(see Fig. 10). The techniques with many more samples do not
achieve better results, e.g. the portamento technique in the
CBFdataset and the straight technique in the VocalSet.
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B. Limitations

For recognising PMTs, we calculate the frequency-adaptive
scattering representations around the dominant frequency
band, the band with maximum acoustic energy. This may
not be robust when the dominant frequency band is noisy
or not stable, e.g. the octave jumps at around 18 s in
Fig. 5 (b). To suppress this effect, we could improve the
system by smoothing the dominant band trajectory or by
limiting the trajectory to the tonal range of the instrument. We
could also consider other potential decomposition trajectories
such as extracted fundamental frequency [36] or predominant
melody [48]. Due to the lack of datasets with both polyphonic
recordings and playing technique annotations, we have only
evaluated the methodology on monophonic music. However,
the entire pipeline is potentially applicable to polyphonic cases
preprocessed by a source separation technique [49] or using
a multi-pitch detection and instrument recognition method
that could assign a pitch to a specific instrument [50]. Since
co-articulations form a small portion of the CBFdataset, we
conduct single-label multiclass classification by discarding the
samples having more than one label. In practice, a user may
expect a recognition system to detect all playing technique
components in cases of co-articulation. In this case, a multil-
abel classifier would be the most appropriate choice.

C. Future Directions

We summarise the potential directions for future research
into two groups: improvement of the methodology itself, and
application of the methodology to either computational music
analysis or music generation. Trainable scattering [51] is one
example in the first group. We could tune the hyperparameters
of the scattering transform and the classifier jointly for each
type of playing technique, or for a specific instrument or genre.
One may also apply recurrent classifiers such as long short-
term memory units [9] to account for temporal context. The
scattering operators discussed in this paper, the frequency-
adaptive scattering and the dJTFS, capture variations along the
time, modulation rate, and acoustic frequency axes, with the
aim to detect PMTs and PETs. The flexibility of the scattering
transform suggests that another direction would be to expand
the framework by developing new operators or adding other
existing operators to make the system as general-purpose
as possible. For example, spiral scattering [42] is such an
instance which captures variations across harmonics. This may
provide useful information for recognising playing techniques
characterised by harmonic variations, such as multiphonics.

The local invariance of the adaptive scattering transforms to
time-shifts, time-warps, and frequency-transpositions may also
be attractive to other music signal analysis tasks, such as music
structure analysis, genre recognition, instrument recognition,
and music transcription. Motivated by the observation in
Fig. 5 (c) that the second-order scattering transform carries
information on the modulation rate, we can use the scattering
transform as a tool for playing technique modelling. Fig. 12
shows an example of modelling the modulation rate of a trill
played on G6-A6. A clear harmonic partial appears between
5 and 8 Hz, which indicates the range of the modulation rate.

Fig. 12. Example of a trill modelling played on G6-A6. Top: log spectrogram;
bottom: adaptive time scattering feature before log-normalisation.

Playing technique recognition and modelling can greatly
help music synthesis systems generate realistic sounds that
account for acoustic variations due to the exercise of a variety
of instrumental or vocal techniques. A music style trans-
former [52] or note ornamentor is also possible since play-
ing techniques carry important information regarding musical
styles. Remodelling a straight note based on a playing tech-
nique or articulation of a professional player, or synthesising
playing techniques that go beyond real instrument limitations
present other attractive directions for further exploration, for
example creating a flutter-tongue effect for piano.

X. CONCLUSIONS

In this paper, we have proposed a general framework
based on the scattering transform for representing playing
techniques in music signals. Two scattering operators, the
frequency-adaptive scattering and the direction-adaptive joint
time–frequency scattering, are introduced and we publicly
release a new real-world dataset for playing technique anal-
ysis in context. Using the proposed representations as input,
we evaluate the system over different datasets encompassing
a variety of vocal and instrumental techniques and obtain
promising results. We conclude that the scattering transform
offers a versatile and compact representation for analysing
playing techniques in performed music, and opens up new
avenues for computational research in music signal analysis.
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