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Abstract

Drug repurposing presents an opportunity to quickly produce new medications in a cost

effective manner. This is especially important in rare diseases where patients are

frequently underserved. Here, we apply various methods to first select good targets for

repurposing. We analyse loss-of-function (LoF) data, and assess its role in informing

drug discovery. We achieve this by curating, aggregating and labelling LoF data and

then building a model to predict genes that may harbour homozygous LoF with no

negative associated phenotypes. We produce a model with a relatively high degree of

accuracy and recall (F-score 0.7), generating 442 predicted genes in addition to 1,744

from aggregation. Following this, we assess whether such data could inform drug

discovery in collaboration with AbbVie, an industrial partner. Through the study of

historic drug data, comparing our LoF labels with data from previous studies detailing

the effect of genetic knowledge on drug discovery, and against the loss-of-function

observed/expected upper bound fraction (LOEUF) score, a metric of constraint, we

demonstrate that this data adds significant value to drug discovery. Finally, we build a

database focussing on rare diseases, and use LoF data, in addition to drug data and

expertly curated gene panels to nominate candidates for repurposing. This database

will be made available for researchers within the GEL community, such that avenues

for repurposing can be further explored.
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1.1 Introduction

1.1.1 An introduction to drug discovery

The process of drug discovery is long, complex, very expensive and requires the input

of stakeholders from academia, industry and patient groups. The first step is the

establishment of a molecular target of interest, generally stemming from an

understanding of disease aetiology. This basic science requires the use of model

systems such as animal models and human cell lines, genetic data, epidemiological

data and many other fields of biology. Upon the identification of this target, a 12 year

process (on average) begins, with molecule screening, lead molecule optimisation,

preclinical trials and finally 4 phase human clinical trials (see Fig. 1.1).

Figure 1.1 - The drug development pipeline. Adapted from Nosengo (2016).

The process from pre-clinical trials onwards costs a median of $985 million, although

estimates range from $314 million to as high as $2.8 billion 1–3. This cost accounts for

failed drug development attempts, which represents 96% of cases 4–8. This severe

attrition rate has led to an examination of the crisis in pharmaceutical productivity, and

attempts to improve methodology at each stage of the development pipeline. Here we

will discuss some of the reasons for failure, and attempts to ameliorate the problem,

including target validation, what we can learn from side effects, the role of genetics,

and finally, drug repurposing.
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1.1.1.2 Target discovery and validation

A drug can only be as good as its target. Failure to show efficacy is the most common

reason for clinical trial failure with between 57-90% of trials falling at this hurdle 5,9,10.

The reasons for this are multifactorial, with ill-considered trial design, including not

recruiting a large enough trial group and improper selection of clinical and statistical

end-points, and improper target selection both playing important roles. This is why

target discovery and validation is so critical to the probability of success of any drug

development pipeline. The classical approach to this is a basic science, classical

(forward) genetics one, in which genes of interest are identified by studying the disease

models and phenotypes of interest in model organisms, and identifying genes that are

responsible for this phenotype 11. This approach has been invaluable for the

understanding of normal and aberrant biology, however it has proven to be a poor

predictor of efficacy in drug development 12–14. The second approach is reverse

genetics, in which genes are targeted for inhibition or deletion, and then the phenotypic

effects are studied. This approach has been particularly driven by the rise of genomics

and bioinformatics in the early 2000s, and huge breakthroughs in technologies such as

RNA interference and CRISPR-CAS9. Upon identification of a gene, e.g. through a

genome-wide association study, the ‘discovery’ phase of drug development proceeds to

‘validation’. Targets of interest are systematically perturbed in in vivo and in vitro model

systems allowing for the delineation of a gene's functional effect 15,16. If the knockout of

a target generates a phenotype of interest such as a model of diabetes, then

modulation of this target may ameliorate the disease of interest. Then a ligand must be

identified for this target to recapitulate this effect. A classical example of this approach

can be found with PCSK9 17. Identification of a PCSK9 gain-of-function variant in a

patient with familial hypercholesterolemia began to uncover the underlying biology of

low-density lipoprotein (LDL) metabolism18. Subsequently, individuals with rare

homozygous loss-of-function variants in this gene were found 19. These individuals

exhibited very low LDL levels but no tangible evidence of related health problems.

These observations of naturally occurring biology led to a rapid translation of basic

science to clinically approved drugs in the form of PCSK9 inhibitors. The ability to

rapidly move from observations in humans, to defined models, with compounds

following shortly after, demonstrates the power of reverse genetics for target validation
17.
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Over the last few decades, high-throughput screening (HTS) has predominated the

search for a ligand 20. HTS aims to screen large numbers of compounds for bioactivity

against a small panel of target proteins. Small to medium size screens may evaluate

hundreds of compounds, but advancements in robotics and computing now allow for

ultra-high throughput experiments to conduct in the order of 105 compound assays a

day 21. The libraries of compounds are generated from combinatorial chemistry

methods that generate many different permutations of chemical compounds. This

process allows for a staggering number of possible combinations, with an estimated

1060 22 compounds meeting Lipinski’s “rule of five”, a set of rules designed to identify

potential drugs 23. However, this search space proves to be intractable, with drug

development driven in this manner having limited success. Factors associated with this

will be discussed in more detail later in this chapter.

1.1.1.3 Side effects in drug design

1.1.1.3.1 A background to side effects

Side effects (SEs) are the effect of a drug that is not intended as the primary effect.

They can be either therapeutic (potentially highlighting repositioning opportunities -

which will be covered later in the introduction) or adverse, and in common parlance the

latter meaning is often implied. SEs can be wide ranging in form and severity and

number, with an average of 69.8 side effects per drug reported on FDA drug labels 24.

However, such numbers may be the result of over-reporting that has occured due to

increasingly high regulatory demands, with newer and more commonly prescribed

drugs having very high SE burdens 24.

SEs can greatly affect a patient’s quality of life, and represent a significant burden on

healthcare. The willingness to tolerate SEs varies depending on the condition. Where

acute and/or life-threatening diseases can be aggressively treated even in the

knowledge of probable serious SEs (such as in cancer treatment); other conditions

such as chronic and/or minor conditions can not accept SE profiles in which a patient’s

quality of life is too adversely affected. Patient groups including psychiatric and

hypertension patients must often take drugs for a significant period, and in both cases,

studies have shown that adherence to medication regimens are reduced in patients
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suffering SEs. This leads to worse outcomes for patients as their disorders are less well

managed, and increases health care costs due to increased use of healthcare

resources 25,26.

Rare diseases frequently fall within this latter group, as severe but chronic disorders

which may require life-time courses of treatment. As such, minimising SE profiles must

be a key consideration when seeking to develop or repurpose new drugs for such a

disease group.

SEs result in a significant proportion of hospital admissions, however heterogeneous

evaluation of this subject makes it almost impossible to provide accurate figures on the

resulting cost 27. Estimates range from a cost of £466m per year for patients admitted

to hospital in the NHS 28, to €943.40 to €7,192.36 per patient hospital admission across

various other countries 29.  The real cost will be significantly higher due to most studies

being limited to hospital based statistics, thereby not factoring economic cost due to

increased sick-leave and poor adherence to treatment or increased engagement with

primary care services. SE related mortality is similarly difficult to measure 30, but has

been shown to be significant, especially as many such fatalities are clustered amongst

a small group of drugs and may also demonstrate inappropriate drug prescribing or

dosing by physicians 31.

In addition to the impact on patient health, SEs are a significant cause of drug

development failure, with safety and efficacy concerns being the main culprits.

Furthermore, 90% of drugs withdrawn in phase IV monitoring (after a drug has been

approved) are withdrawn due to toxicity concerns 32,33. Therefore understanding the

cause of side effects, how to mitigate them, and what we might learn from them, is an

important avenue of research.

1.1.1.3.2 The causes of side effects

SEs arise from both intended and unintended consequences of drug administration.

Broadly SEs are either pharmacodynamic or pharmacokinetic in nature, the former

describes what the drug does to the body, in a target mediated manner, the later

describes what the body does to the drug, usually mediated by processes of

adsorption, dissemination, metabolism and excretion (ADME).  The processes

mediating ADME-related side effects are not the focus of this research so they are not

explored further here, but should always be considered in the investigation of SEs.
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Type A SEs make up a large proportion of side effects and are the result of the

intended consequence of the drug having a knock-on, negative impact. For example,

the blocking of coagulation by Warfarin to reduce risk of atrial fibrillation may also lead

to severe bleeding and increased bruising. Such SEs are generally managed through

dose control, whereby physicians will aim to achieve a dose that allows for maximal

clinical impact with minimal SEs.

Type B, or idiosyncratic SEs are responses that are unexpected based on knowledge

of the drug, and are less predictable as they may be rare or population dependent.

Figure 1.2 - A diagrammatic representation of on target side effect causation. A)

A simplified model of protein-protein interaction leading to an intended biological
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outcome, followed by the perturbation of this process using a drug. B) A more complex

version of this model, illustrating why perturbation of a target may lead to unforeseen

side effects through the disruption of other processes that may also be mediated via

the target protein B.

The classical approach to drug design has been very target-centric and operated on an

oversimplified model of protein interaction. As shown in Fig. 1.2A, targeting a process

resulting from the interaction of protein A with protein B is hypothetically simple,

requiring simply the blocking of that interaction, for example by chemically blocking

interaction with the latter. The reality is that the interaction of proteins A and B is

context dependent, and protein B may be involved in numerous processes with multiple

possible binding proteins depending on factors such as substrate concentration or

tissue localisation (Fig. 1.2B). For example, systematically targeting the interaction of A

and B in the lung may also result in the disruption of other processes in other tissues

such as the skin in ways that are unintended. Additionally, drug interactions at different

domains on the same protein target could lead to differing outcomes.  Such SEs are

termed on-target SEs, in which the correct protein is targeted, but an unintended

process is perturbed.
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Figure 1.3 - A diagrammatic representation of the effect of homologs in drug
promiscuity. Structurally similar proteins (Proteins B.2 + B.3) may also bind to the

drug, resulting in the unintended blocking or modulation of related processes. This

blocking may occur at differing potencies, such as for Protein B.3, where the dotted line

denotes reduced efficacy.

To further complicate matters, proteins frequently share structural or sequence

homology, and therefore, when designing a drug to target a particular domain, it may

also target other proteins sharing this domain usually with reduced potency (see Fig.

1.3). This may also result in unintended processes being perturbed. This mechanism

represents a common form of off-target SEs, in which unintended proteins are targeted,

an outcome made probable due to the promiscuity of drugs. This latter class of side

effects however provides us with an opportunity, as these similar proteins may be

important in modulating disease pathways aside from the intended indication. Study of

side effects has led to the successful repurposing of drugs, in which existing drugs are

used in novel indications 34,35.
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1.1.1.3.3 The problem with side effect data

Despite the fact that SEs are detrimental to human health, expensive to healthcare

services, and a great source of failure within the pharmaceutical industry, SE data are

relatively scarce, and generally lacking in quality, possibly reflecting industrial over

incentivisation of success at the expense of greater understanding derived from failure,

or potentially the competitive nature of data on drug failure. This presents some major

hurdles when researching this area.

In order for a drug to be licensed, regulatory agencies such as the FDA and the EMA

require data on SEs collected within clinical trials. However, reports filed by drug

companies to the FDA are often incomplete, with variables when reporting serious or

fatal SEs often left blank, with completion of reports ranging from 24.4% to 67% (data

reported refers to FDA data from 2014 36. Transparency is challenged with a lack of

reporting of commercial sponsors of trials by academic investigators. Additional areas

of concern include missing data such as the name of the investigational product, the

number, type and severity of SEs and other data necessary to inform any proper

assessments of the SE reporting data 37.

SEs are also reported at a national level through initiatives such as the Yellow Card

Scheme in the UK and the FDA’s Adverse Event Reporting System. However, over 100

of these systems exist globally. Due to the lack of standardisation, comparing SE

profiles for drugs beyond that ascertained at trial stages, across territories is

challenging. This is problematic due to the fact that drugs are known to exhibit different

effects in different ethnic groups, as the genetic underpinning of a disease may be

ethnicity dependent. Such an example can be found in the Framingham heart study

cohort, in which it was observed that South Asians do not respond to heart medication

in the same manner as white Caucasians 38.

With SEs being responsible for the failure of such a high percentage of clinical trials, in

addition to reducing patient medication adherence, prioritising compounds and targets

with a low risk of having severe SE profiles is an important consideration. Furthermore,

SEs are direct evidence that the one drug to one target paradigm is reductive, and that

drugs affect systems in broader terms than just the indication of interest. A more

thorough accumulation of data surrounding SEs may help fill in the gaps in knowledge

around how current and future drugs act. This could help to reduce the percentage of

candidate compounds that are shelved as their full target complement is not

understood, or stop trials from starting if deleterious cross-targeting can be accurately

predicted.

17

https://paperpile.com/c/UCWbc5/gTxp
https://paperpile.com/c/UCWbc5/1jGW
https://paperpile.com/c/UCWbc5/VEeH


1.1.1.4 Moving away from target centric drug design

Historically, drug design has been conducted by identifying a target, such as a disease

modifying gene, and then screening this target against compounds. However, due to

the large number of combinations of targets and compounds previously described, this

search space is intractable for either chemical synthesis or in silico predictions. Thus

even with the great increases in HTS scale, only a small fraction of possible

compounds have been synthesised and tested.

Figure 1.4 - The drug-target landscape. Red nodes in the bipartite network are
approved drugs from DrugBank 3.0, blue nodes are drug targets with edges
representing known interactions. The distribution of the degree of approved drugs is
shown in the inset bar plot. Adapted from Hu et al. (2014).

The HTS model primarily concerns itself with identifying a compound with bioactivity

against a single target. However, compounds are themselves promiscuous and

increasingly have been shown to interact with a multitude of proteins. Drug-Target

networks show that over 50% of approved drugs have more than 5 targets, whereas

only 15% have one known target (see Fig. 1.4, it remains to be seen whether this

number will decrease as more data becomes available) 39,40. Drug-interaction data has
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been collected in a target-centric manner, leading to incomplete data about the full

complement of targets of any drug. One possible explanation for this is that there is

little incentive to investigate data about these additional targets if they are not

implicated in your disease area of interest. A second, more substantial explanation

originates in the design of these HTS experiments, where only small panels of targets

are actually screened against. Publicly available resources such as Drugbank,

PubChem and PharmGKB seek to catalog drug interaction data, thereby allowing a

more complete picture of this landscape to be formed 41–43. However much data is

proprietary and therefore remains undisclosed implying there still exists a data

“missingness” problem. Historically, drug companies have little incentive to release data

that may aid their competitors in a febrile market, however in recent years, companies

have started being more open with their data realising that this will benefit their

business as well as patients 44. Fully exploring the range of drug-target interactions

may lead to the repurposing of many drugs that are currently underutilised.

1.1.2 The case for drug repurposing

Drug repurposing is the use of existing drugs for new indications. There are numerous

different definitions representing slightly different objectives in drug repurposing. For

example, drug repurposing is the identification and development of new indications for

abandoned compounds, whereas repositioning focuses on approved drugs only 45.

However generally (and within this document unless explicitly stated) these terms are

used interchangeably and reflect the broader definition given and could equally apply to

new indications for old drugs or additional indications for compounds in development.

Drug repurposing presents an opportunity to de-risk drug discovery. The cost of

research and development  for bringing a drug to market increased exponentially for

much of the 20th century and into the 2010s (Fig. 1.1a), in a trend known as Eroom’s

law (a reference to Moore’s law in computing) 46,47.
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Figure 1.5 - Breaking Eroom’s law. a) Count of new molecular entities (NMEs) per

billion $US R&D spending. b) Aggregate peak sales ($US billions) of NMEs per billion

$US R&D spending. c) All-in cost of development ($US billions) per NME. Copied, with

permission, from Ringel et al. 2020 47.

Whilst the number of drugs achieving approval each year remained relatively flat, the

increase in expenditure to develop them increased by several orders of magnitude.

This process was thought to be driven by four main factors 46. The ‘better than the

beatles’ problem stems from drugs competing within the same disease area only

achieving marginal benefits over each other.  In order to prove its worth to regulators, a
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drug would have to demonstrate higher efficacy (or better side effect profiles) than a

competitor. However, this causes an issue of power, as effect sizes are reduced when

comparing drug vs drug instead of vs placebo, resulting in a need for larger sample

sizes. The ‘cautious regulator’ problem reflects the fact that drugs have had to pass

ever more stringent pre-clinical safety evaluations in various animal models, and

increased scrutiny of phase 1 safety trials. This increase in regulatory burden followed

several instances of unforeseen side effects in approved drugs. The most famous of

these cases occurred in the 1960s with Thalidomide, in which pregnant women using

the drug bore children with severe teratogenic side effects. The ‘basic research-brute

force’ bias mirrors the rise of high-throughput approaches to drug discovery, in which

the screening of compound libraries against targets became a primary focus. This

approach, whilst offering the opportunity to test orders of magnitude more compounds,

resulted in lower success rates 46–48. Other possible factors include the idea that most

of the easy to develop drugs for ‘good’ targets have already been developed, and

therefore new indications must be found in diseases with complex aetiologies 48.

Intellectual property laws also present a challenge to drug companies. With the

average drug taking 12-16 years to arrive to market, this leaves little time for a

company to recoup its costs and profit from any drug before generics and biosimilars

can be produced by competitors. This is compounded by the fact that for every 10,000

compounds evaluated for an indication, only 1 will make it to market. This extraordinary

rate of attrition and limited market exclusivity presents a grave financial challenge for

drug companies who must price drugs at a level that makes such expensive research

profitable. This cost is in turn passed on to national health providers or private

consumers, thereby contributing to the ever increasing cost of healthcare delivery.

The turn-around that has been witnessed (Fig. 1.5B+C) in the past decade and some

of the factors that have contributed to it will be discussed later in the introduction.
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Figure 1.6 - Comparing traditional drug discovery pipelines to drug repurposing.
This infographic timeline highlights the shorter timescales and reduced costs involved

in bringing a repositioned drug to market when compared to a new molecular entity.

Adapted from Nosengo (2016).

With the preceding factors in mind, the central value of drug-repurposing can be

summarised as the de-risking of drug discovery. Firstly, the cost of repurposing is

substantially lower than that of novel drug development (Fig. 1.6). This is because

repositioned drugs have already been through a round of successful drug

development. Thus, much more information is known about the drug, such as

pharmacokinetic and pharmacodynamic profiles and the safety profile, both in a clinical

trial setting, and in a real-world, polypharmacy setting. This information allows for the

design of more specific trials with better patient and end-point selection. Additionally,

the repurposed drug may only have to repeat efficacy trials to display efficacy in the

new indication. This means that the drug development pipeline is reduced to

approximately 6 years, at a cost of only ~$300 million 49. It must be stated that this is

true in the instance of repositioning a drug, but, to draw on the more formal definitions

previously mentioned, repositioned drugs are drugs that have previously been

approved in other indications. The same is not true of repurposed drugs, that are

generally understood to have failed in clinical development. In this case, evidence

suggests that success rates are much lower, with one study showing that of 667 failed

drugs, only 10-16% were tested in another indication with a success rate of around 9%
50. However, the reasons for why only this small percentage of drugs were tested in

other areas are difficult to divine. Reasons for failure may be key, failure driven by the

drug safety profile would be more difficult to overcome than limited therapeutic efficacy.

In an ideal case a “failed drug” might be safe and highly potent on target, but the target
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could be of marginal importance to the drug indication. Thus such failures of target

validation could represent excellent repurposing opportunities. But as discussed

earlier, access to data on early development failure is generally limited. A major

consideration is that companies are generally unwilling to share data on proprietary

compounds, and this limits the analysis of such compounds to the therapeutic areas of

interest of the company. It is probable that other successes would arise if more

systematic approaches to repurposing were regularly employed.

1.1.2.1 Examples of drug repurposing

Figure 1.7 - Methods and examples of drug repurposing. Most repositioned drugs
so far have been discovered through serendipitous treatment or unexpected side
effects observed during clinical trials (path 1, path 6). More rational approaches to the
identification of drug repositioning candidates involve finding existing drugs that can
modulate specific disease phenotypes (path 2), finding new drug-target interactions
(path 3), finding new roles for existing targets (path 4), or finding new pathways in
disease (path 5). Adapted from Li & Jones (2012)

There exist numerous successful examples of drug repurposing, the most famous of

which are Sildenafil (Viagra) and Minoxidil (Regaine) (see Fig. 1.7). Both of these drugs
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were initially aimed to target hypertension, but presented very marketable side effects,

treating erectile dysfunction and hair loss respectively. These are both examples of

serendipitous findings rather than any systematic approach. Other such instances

include of the aforementioned Thalidomide, which is now used to treat leprosy and

multiple myeloma, and Imatinib, a blockbuster Chronic Myeloid Leukemia drug

targeting the BCR-ABL fusion protein which has also been shown to inhibit key driver

proteins in gastrointestinal stromal tumours, and finally metformin, a diabetes

medication now being investigated in over 100 cancer based clinical trials. As such

successes have been uncovered, a need to systematically uncover more opportunities

has arisen. This can occur at various stages of a drug’s lifespan. Early stage

repurposing, in which multiple indications are discovered prior to market approval allow

for the maximisation of a drug’s target market and protect against the risk of large,

late-stage trial failures. Repurposing of approved drugs is also a method

pharmaceutical companies use to extend patent life on their blockbuster drugs

(although this is not possible in all markets). For example, the biologic Humira (AbbVie)

has been repurposed several times (from rheumatoid arthritis to ulcerative colitis and

Crohn’s disease amongst others) to extend patent life in the US. Other repurposing

approaches include the screening of a drug against targets implicated in other

diseases, for example Nelfinavir, an anti-HIV drug was screened against cancer cell

lines and displayed potent inhibition of proliferation 51. To date, 31 clinical trials have

been registered investigating the efficacy of Nelfinavir in numerous cancer settings.

Other simple approaches involve identifying whether the target protein is implicated in

other diseases, as was the case with the immunosuppressant Everolimus, an mTOR

inhibitor repurposed to treat Pancreatic neuroendocrine tumors driven by aberrant

mTOR signalling 52.

1.1.2.2 Drug repurposing using guilt-by-association (GBA)

As discussed, there are a myriad of approaches to in silico drug repurposing of varying

complexity. These range from machine learning and network based inference, to

compound based sub-structure searches 53–59. One of the most simple, yet productive

approaches is GBA 53,60–62.
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Figure 1.8 - A diagrammatic representation of the GBA principle. A novel

gene-drug link is inferred by making the assumption that drugs that share gene targets

are likely to share targets that may not have been associated with one of the drug pair.

This approach is predicated on the incompleteness of biological data, and simply aims

to fill in the gaps. Simply put, if two diseases share a therapeutic, then it is possible that

a therapeutic that is known to modulate disease 1 may also modulate disease 2 (see

Fig. 1.8) 60. In a fully observed model, we would already know that these potential links

exist, however in reality, research groups and companies are focussed on their domain

of interest, and (reasonably) would not seek to find a drug’s full complement of

interaction partners beyond their targets of interest. Furthermore, it is important to

remember that many FDA-approved drugs were developed without knowledge of their

mechanism of action, further compounding this lack of knowledge that would be

required to identify alternate targets 35. The GBA concept will be revisited in chapter 5,

where examples relating to our work can be found.

1.1.2.3 Drug repurposing in the context of rare disease

Within the EU, rare diseases are defined as diseases affecting fewer than 1 in 2,000

people (the U.S. defines it as diseases affecting fewer than 200,000 people), and it is

estimated that between 7-10% of the population will suffer from a rare disease in their

lifetime. This translates to roughly 30 million people across Europe 63. Currently there

are roughly 10,000 rare diseases, with around 260 new ones being characterised each

year 64,65. As many as 80% of rare diseases may be genetic in cause, and therefore

sequencing of affected individuals and their close family members offers the

opportunity to identify new causal variants, and possibly an avenue to treatment 66.
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However, this oft cited figure of 80% is contentious, as there is no clear analysis to

point to as the source of this number, with other data suggesting the number may

actually be as low as 40% 67. Of the  > 10,000 known rare diseases, only ~400 have

licensed treatments, representing a significant area of unmet need 68.

Despite the number of people who will be affected by a rare disease being high, the

small number of patients within any one disease group presents a challenge in finding

treatments. This, compounded with the unclear pathology of many diseases makes

drug development in this area uneconomical. The drugs targeting rare diseases

(orphan drugs) that have been produced in recent decades have come at a prohibitive

cost for health services and patients 69. For example, the recently FDA approved spinal

muscular atrophy medication Nusinersen (Spinraza, Biogen) is being marketed at a

cost of $750,000 for the first year and $375,000 per year subsequently, for the lifetime

of the patient. Further examples of high expense costs targeting rare diseases can be

seen in table 1.1. Orphan drug sales account for roughly 16% of all non-generic

prescription drug sales, with mean costs per patient per year for orphan drugs totalling

4.8x more than those for non-orphan drugs 67. This places an undue burden on

healthcare systems and is clearly unsustainable. Drug repurposing offers a pragmatic

solution to this issue due to the aforementioned reduction in development costs.
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Drug Disorder
Affected

population

Estimated
price
($US) Manufacturer

Eculizumab
(Soliris)

Paroxysmal nocturnal
haemoglobinuria;

atypical
haemolytic-uremic

syndrome

2000 409,500 Alexion
Pharmaceuticals

Idursulfase
(Elaprase)

Mucopolysaccharidosis
II

2000 375,000 Shire

Galsulfase
(Naglazyme)

Mucopolysaccharidosis
VI

1100 365,000 BioMarin
Pharmaceuticals

Alglucosidase
alpha

(Myozyme)

Pompe disease 900 300,000 Genzyme, BioMarin
Pharmaceuticals

Rilonacept
(Arkalyst)

Muckle-Wells disease 2000 250,000 Regeneron

Table 1.1 - The most expensive drugs. Affected population sizes are estimates and

drug names are followed by brand names in parentheses. Adapted from Luzzatto et al.

(2018).

The problem of finding treatments for rare diseases is further compounded by the need

for large clinical trials to prove efficacy and safety within patient populations that may

be fewer than 100 people. Recognising this, regulatory bodies will accept trials

involving fewer people for compounds that have passed safety trials in other

indications. For example, repurposing of the approved contraceptive drug mifepristone

for Cushing’s Syndrome was possible with a trial cohort of only 30 patients. For

comparison, a new chemical entity being tested for the same indication required more

than 90 patients due to the requirement for both safety and efficacy to be demonstrated
70.

1.1.3 Using human genetics to inform drug discovery
In addition to sequencing allowing for the diagnosis of genetic disorders, human

genetics also contributes to various elements of the drug development process. As
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previously discussed, there is a high attrition rate within drug discovery, with

compounds failing at numerous phases of development. However, despite extensive

preclinical research, fewer than 5% make it to phase 1 clinical trials reach the market,

of which at least 50% fail due to lack of efficacy 5,7,8,46,71. Human genetics allows for a

reduction in the reliance on in vitro and in vivo animal model data, which evidently

have limited predictive value 4,12,72–77. This is in part due to the fact that preclinical

studies are effective in demonstrating that a given target is perturbed by a compound,

but are less able to assess whether the target is a causal disease gene in the human

context (which is especially true in complex diseases). Despite this, the power of these

preclinical models has been in their ability to interrogate gene function through the

disruption of their function at a systems or organism level, an approach which clearly

cannot be attempted in humans. Thankfully, large scale exome and genome

sequencing projects have revealed variants across the genome that may aid in

illuminating hitherto unknown functions of genes.

Whilst we have spent much of the chapter discussing reasons for the increase in drug

development cost highlighted in Eroom’s law. We have not addressed the increase in

success visible from the 2010 through to 2020 (Fig. 1.5 A-C). Such increases in the

number of drugs produced per billion $US, whilst multifactoral in origin, have been

partly attributed to the inclusion of genetic evidence in the process of drug development
78–80. The growth of genetic association studies such as the genome-wide association

study (GWAS) has provided a better route to interrogating disease biology. This has led

to a rapid increase in what is understood about diseases and the genes that modulate

them 81. This evidence in turn provides a solid scientific foundation on which to select

targets for drug discovery 71,78, helping to reduce the steep attrition rate in clinical

development associated with lack of efficacy 48,82,83. Analysis of success rates in drug

development show that drugs with genetic evidence are twice as likely to obtain market

approval than those without such evidence 78,79. Databases such as the GWAS catalog

(MacArthur et al. 2017) and the Online Mendelian Inheritance in Man (OMIM) amongst

others, provide valuable repositories of information; information which help to build

evidence for the targeting of specific genes and their products. This increased use of

genetic evidence will hopefully perpetuate the improvement in drug discovery efficiency

that we are currently witnessing.

The utility of human genetics in aiding drug discovery is not limited to the target

identification stage. Genomics also aids in the diagnosis of disease, clinical trial

recruitment, and in the proper assignment of treatments, otherwise referred to as
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personalised medicine. A key challenge in providing drugs for rare disease patients, is

not having an understanding of the genes driving their diseases, or of having a clear

diagnosis of their disease at all.

1.1.3.1 Loss of function variation

Loss of function (LoF) variants are variants that result in the aberration of the protein

function. The causes for this LoF can be wide-ranging, with the possibility for variants

to affect non-coding regulatory regions, or disrupt secondary, tertiary or quaternary

protein structure through missense mutation 84. However within this thesis we will

narrow the definition to variants resulting in the substantial truncation of protein-coding

transcript, as is standard in the literature 84–91. These protein truncating variants can be

categorised as either stop-gained variants, in which a non-synonymous variant leads

to a premature stop-codon; essential splice site variants in which splicing of the

transcript fails due to disruption of splice donor or acceptor sites; and frameshift
variants caused by insertions or deletions (indels) resulting in a change to the reading

frame (Fig. 1.9). LoF variants typically result in negative phenotypes, which places

them under heavy negative selection. This is relatively intuitive, as a lack of phenotype

resulting from the partial or complete knockout of a gene implies that the gene itself is

not necessary for survival. This means that LoF variants should only be seen at very

low allele frequencies 84. This has borne to be true, however a surprising number of

LoF variants have been identified when sequencing human populations, even in

healthy individuals 89,92.
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Figure 1.9 - Diagram of LoF causing variants. The first row shows an intact

three-exon gene, with each subsequent row highlighting a protein truncating variant (in

red, indicated with red triangles). The resulting effect is shown on the right, with red

boxes indicating lost protein-coding functionality. Adapted from Macarthur &

Tyler-Smith. 2010.

These appear in heterozygous, and more rarely, homozygous forms. Homozygous

knockouts are especially interesting for their ability to highlight the phenotypic

consequences of knocking out human genes within humans, and therefore serve as a

model of life-long inhibition of a gene 93. The possible implications of such information

can be hugely valuable. Such a case exists with PCSK9, a protein responsible for

increasing serum low-density-lipoprotein (LDL) serum levels, sometimes leading to an

increased cardiovascular disease risk. Study of this gene uncovered both

gain-of-function mutants with a commensurate increase in both LDL serum levels and

cardiovascular risk, and LoF variants resulting in the opposite effect 18,94. This indicates

a causative relationship that can be modulated using a targeted therapy 71. However,

this case also illustrates a second useful indicator in the context of drug discovery. An

individual was discovered who was a compound heterozygote for two LoF variants in

PCSK9, with no discernable negative associated phenotype 95. This indicates that

inhibition of the target is not only likely to be effective, but also safe, thereby alleviating

toxicity concerns 96. Many other studies have since begun to uncover the surprisingly

high number of total knockouts that exist within the human population. Study of outbred

populations revealed 1775 genes with homozygous predicted LoF (pLoF) genotypes 85,

and study of bottleneck or founder populations in Iceland and Finland revealed

enrichment for homozygous pLoF individuals 86,91. Despite accumulating relatively large

sample sizes, only pLoF variants of moderate allele frequency could be discovered and

30

https://paperpile.com/c/UCWbc5/JTdUc
https://paperpile.com/c/UCWbc5/G1VB+6xBw
https://paperpile.com/c/UCWbc5/lwQTx
https://paperpile.com/c/UCWbc5/zRqfi
https://paperpile.com/c/UCWbc5/J1m2Q
https://paperpile.com/c/UCWbc5/WsKlN
https://paperpile.com/c/UCWbc5/iXwMm+zk0xh


a true map of the human LoF landscape, incorporating variants of significant rarity,

would be difficult to draw without rarer variants 92. Indeed, for 38% of genes, not finding

a homozygous LoF genotype within all the outbred individuals on the planet would still

not provide statistical evidence that a homozygous LoF genotype will not be tolerated
93. However, study of consanguineous populations increases the probability of

identifying these rare variants in a homozygous state. This is due to the increased

proportion of runs of autozygosity within the genome, i.e. regions of chromosomal

identity stemming from a recent common ancestor 92. Autozygous regions containing a

pLoF will necessarily be homozygous for this variant. The Born in Bradford cohort (BiB)

represents such a population, comprising 3,222 British-Pakistanis. Upon sequencing of

this population, 781 protein-coding genes were identified as complete knock-outs.

Significantly, this work took place in healthy individuals, and no correlation was

observed between the presence of null LoF genotypes and engagement with health

services 92. Further efforts in consanguineous populations have continued to reveal

more homozygous LoF genes in adult populations including the East London Genes

and Health (ELGH), an expansion of the BiB cohort, and the Pakistan Risk of

Myocardial Infarction Study (PROMIS) cohort 87.  ELGH aims to sequence 100,000

people of Bangladeshi and Pakistani origin living in East London, and link this data with

health records (as was done with the BiB cohort). Similarly, the PROMIS study is

sequencing 30,000 Pakistani’s (50% who have suffered myocardial infarction, and 50%

controls) living in Pakistan, with further demographic and environmental questionnaires
87. Such studies are addressing an imbalance in genetic data available to researchers,

whereby the vast majority of genetic studies have occurred in European populations
97–99. Furthermore, as previously mentioned these populations are enriched for the

offspring of consanguineous couplings, leading to an enrichment for rare homozygous

LoF variants.

The use of LoF variation in drug discovery will be covered in chapters 2, 3 and 4.
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1.1.3.2 Genetic datasets relevant to this thesis
In order for human genetics data to be widely used, they need to be aggregated and

made available for research. Two large scale collections of genomic data, the genome

aggregation database, and the 100,000 genomes project are of particular relevance in

this thesis, and therefore will be briefly introduced here.

1.1.3.2.1 The Genome Aggregation Database (gnomAD)
GnomAD (v2.1) is a collection of genomic and exonic data covering 141,456 unrelated

individuals. The project is managed out of the Broad Institute of MIT and Harvard, but

reflects the work of a global assortment of principal investigators and their groups.

Summary statistics of the data have been made readily available through the gnomAD

browser, which is accessed by researchers across the world.

The generation of these data required the collection of raw data from each of the

contributing projects, followed by sample quality control (QC), joint-calling of the

variants and site QC. Then statistics such as allele frequencies and gene constraint

were calculated. In order to make the statistics more generalisable, data from closely

related individuals and individuals known to suffer from severe pediatric diseases were

removed. This dataset features heavily in chapters 2, 3 and 4, with data on constraint

playing a key role in the analyses therein.
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1.1.3.2.2 The 100,000 Genomes Project

Figure 1.10 - An infographic overview of the 100KGP.
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The 100KGP is a flagship genomics project launched by David Cameron in 2012.

Genomics England (GEL), a subsidiary of the Department of Health and Social Care,

was set up to deliver this project which focussed on rare diseases, cancers and

infectious diseases 100. The central aim of the 100KGP was to combine genomic data,

along with medical records and other data sources to uncover the drivers of these

diseases, provide diagnoses to individuals who as of yet did not have one, and to aid in

the personalisation of healthcare.

The 100KGP finished sequencing the 100,000 genomes across ~75,000 individuals

(cancer patients supplied two samples, one cancer genome and one of healthy tissue,

see Fig. 1.10) in October of 2018. With genomics coming to the fore in scientific

research, the 100KGP aimed to kickstart the development and use of genomic

medicine in the NHS, an organisation that already contains a wealth of various forms of

data about patients. This ambition was realised with the creation of the NHS genomic

medicine service in December 2018.

The ‘diagnosis odyssey’ is a term used to describe the journey rare disease patients

must navigate through the healthcare sector before receiving a diagnosis and the hope

of treatment. This journey takes on average 4-8 years, with the involvement of multiple

specialists, and a battery of invasive tests 101. During this time, the patient will likely be

receiving suboptimal care, despite involvement of healthcare services, simply because

not enough is known about their diseases. The 100KGP recruited such patients, using

WGS to remove the reliance on gene-panel tests focussing on only a few genes at a

time that are commonly used in such difficult to solve cases 102,103. Of this group, GEL

has returned actionable findings (those that result in an impact in clinical care) for

20-25% of participants. These patient genomes, along with unaffected relatives and

healthcare records are now available for researchers to use freely within a trusted

research environment, and therefore the hope remains that with time, more clinically

actionable findings will be uncovered.

Within the course of this thesis, any reference made to GEL data will be synonymous
with 100KGP data.
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1.1.4 An introduction to networks

Network science is a recently emerging domain which lends itself to study of biological

systems and their complex interactions. Networks describe the relationship between

entities, for example a protein-protein interaction network describes the interaction

between proteins. Many other types of biological networks exist such as metabolic,

transcriptional regulatory and cell signalling networks. In networks, the entities are

termed nodes, and their relationships (which can be either direct or indirect) are edges.

More than one type of entity can be represented in a network, for example a

drug-target interaction network features interactions between drugs and proteins in a

bipartite network.

Networks appear at various points through this thesis, so we introduce basic concepts

and examples of their use in biology here.

1.1.4.1 A brief history of network science

Graph theory, the mathematical representation of networks, first originated in the 18th

century with Euler and the ‘Seven bridge of Konigsberg’ problem. Konigsberg was the

capital of Prussia, and had seven bridges crossing the river Pregel. The particular

configuration of bridges led to the question of whether it was possible to traverse each

of the seven bridges once, whilst never crossing any one more than once. Euler

negatively solved (i.e. proved it was not possible) this problem using the first example

of graph theory. The important observation resulting from this work is that graphical

representation results in a simplification of the problem, and that there are inherent

properties in the graph that dictate their behaviour. In other words, it doesn’t matter

how hard you try, there is no way of (positively) solving this problem 104. Little occurred

in the development of graph theory in the following years, until the study of real world

networks in the mid-20th century. Real world networks often appear random, and

therefore early network science attempted to establish the random properties of these

networks. Early work in the field of the random network model includes that of Erdos

and Renyi. They examined the mathematical consequences of throwing a random

number of buttons on the floor and then randomly connecting them with a random

number of links. They found that resulting networks will have a Poisson distribution with

35

https://paperpile.com/c/UCWbc5/sjqAg


small clustering coefficients (measures of how densely interconnected nodes

neighbours are). Clustering coefficients approaching zero indicate that none of the

nodes connected to a ‘subject’ node are connected to each other. This class of random

networks were termed ‘small world’ networks, as the average distance between any

two nodes is small (an extension of this is the six-degrees of separation theory, that all

people are connected by a relatively small number of acquaintances). Further work on

small world networks by Watts and Strogatz in 1998 sought to further investigate

random networks. Their contribution (greatly summarised) solved a limitation of

Erdos-Renyi graphs that meant that triadic closures did not occur (e.g. in a network, if

A and B are connected, then C can only be connected to one or the other).

Examination of simple real world networks such as the power grid show that such

triadic closures are in fact common occurrences. With this came the understanding that

networks are less random than initially thought, and therefore do not follow such

distributions. This led to the work of Barabasi and Albert (1999) which describes

scale-free networks, networks in which the degree distribution (the number of

neighbours a node has) follows a power-law 105. Most observed real-world networks are

scale-free (i.e. have power-law distributions) including the world wide web, citation

networks, and protein regulatory networks 106–108. The hypothesised reason for the

formation of networks of this class are, that as networks grow, new entities

preferentially attach to existing entities with a high degree in a process often dubbed

‘the rich get richer’.

Network science aims to characterise complex systems. Systems are described as

such because of the challenging aspect of trying to divine collective behaviour of

entities even with knowledge of each constituent entity 104. Many of the methods

currently used in analysing biological networks stem from work on other complex

networks. Here I will describe some approaches to analysing networks that whilst

originating in other domains, have found application in biological networks.

Network theory allows us to explore which nodes are key to resilience of the local or

global network, a property referred to as its robustness. Small networks, such as a

network composed of the components of a truck, may no longer function at all if a

component such as the engine or spark plugs fail. However in general, real world

networks are surprisingly resilient to component failures; the breakdown of a single

truck would not stop the whole delivery company from functioning. This notion of

robustness was first explored in the context of the internet 109, where the

interconnectedness of nodes (the average shortest path between any two nodes, also
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called the network diameter) was studied before and after the removal of fractions of

nodes. Scale-free networks, by virtue of few nodes having very many connections, are

resilient as very few nodes are able to drastically alter the interconnectedness of the

network to any substantial degree. As the probability of removing a node with many

connections is low, even the failure of 5% of nodes was shown to not result in

communication between the nodes being affected. Conversely, the removal of the top

5% of the most connected nodes resulted in a doubling of the network diameter. It is

important to note that this study also showed that the type of network is critical to the

observed robustness of the network 106. That is to say, networks following an

Erdos-Renyi model (networks in which edges are randomly assigned to nodes without

preferential attachment to highly connected nodes) display much less resilience to

random removal of nodes, as each removal of a node represents a higher probability of

removing more edges, whereas they exhibit more resilience to targeted attacks in

which the highest degree nodes are removed. Such properties have important

consequences when considering biological networks as it will greatly impact your

targeting strategy. It asks the question of whether it is better to target a single point of

weakness in a pathway, or instead better to target as much of the pathway as you can.

Another feature of importance within networks is the formation of communities, groups

in which nodes are more likely to connect to each other than they are to other nodes.

Community detection aims to partition the graph based on some notion of an inherent

community structure denoted by the graph topology. Whilst this alludes to an objective

truth of community organisation, the reality is that communities can be defined in a

range of ways depending on what restrictions you place upon the nature of the

community. For example, limiting to ‘strong’ communities, in which all nodes interact

with all other nodes, may be overly restrictive, especially if you cannot be sure that you

have complete information for a network. In this instance, you may choose to identify

‘weak’ communities - subgraphs in which the total degree within the subgraph is

greater than the total degree of connections from nodes within the subgraph to nodes

outside the subgraph. However this can increase the noise in your network. Further to

this, the computational power required to brute force a search of possible communities

is astronomical due to this being an NP-complete problem. Therefore, various

algorithmic approaches have been developed to approximate underlying community

structure. The main approaches include both agglomerative and divisive hierarchical

clustering, and modularity maximising approaches. All approaches have drawbacks

that will be discussed at the point at which they become relevant within the context of
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this thesis. Further information relating to the topics covered here can be found in

Network Science by Albert Barabasi 104.

1.1.4.2 Biological networks

Since the completion of the human genome project and the birth of the era of

genomics, the classical view of protein function as being the action of a protein on

another single protein to perform a discrete action has evolved. The understanding of a

protein’s function cannot be achieved without exploring its wider network as proteins

function cooperatively with other entities, and seldom in isolation (Fig 1.11) 110–112. This

holds true for other biological systems and components such as the genome,

transcriptome, and metabolome.

Figure 1.11 - A schematic of protein interactions, comparing a historic, linear view

of protein interaction (top) to an updated, network view of protein interaction below.

Protein action is often contextual and can be influenced by numerous other proteins.

Biological networks have grown in popularity as the scale of biological data has grown

across all domains. This is because graph theory provides a common language with

which to describe the complex interactions observed. This allows for the integration of

data across different biological levels, for example, gene-disease networks, in which

information on multiple genes can be incorporated to identify the underlying causes of
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the disease 113,114. This is critical to understanding diseases that are frequently the

result of the action of several genetic variants 115 and can highlight previously unknown

shared genetic aetiologies of diseases 114. Applications of this have uncovered

aetiologies of rare diseases such as systemic sclerosis and congenital hyperinsulinism
116,117, predicted a further 128 disease-causing genes in a variety of rare diseases 118,

and aided in areas of drug development ranging from target identification 119,120 to target

validation 121 and even side effect prediction 122,123, amongst others.

Network theory allows us to explore which nodes are key to resilience of the local or

global network. For example, the degree of a node has been shown to be positively

correlated with the essentiality of the gene 124, or the role of the gene in disease such

as cancer 125, with disease related proteins as a whole having on average 32% more

connections than other proteins 114. This also has important implications in drug-target

identification, with networks highlighting unexplored opportunities made apparent by

the joining of DrugBank data on drug-target interactions, and approved indications for

medications 35,54.
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1.2 Thesis aims

The aim of this PhD is to use large, publicly available genomic data from sources

including with the 100KGP and gnomAD, combined with other public resources to

identify targets for therapeutic intervention. We aim to use the genomic data to identify

homozygous loss-of-function variants of neutral effect, and use features derived from

wider data sources to predict more of this class of loss-of-function variant. Following

this, we will assess the value of these variants in the prediction of drug development

probability of success. Finally, we will aim to identify therapeutic targets specifically for

the rare diseases studied by the 100KGP. We will highlight targets for which drug

repurposing opportunities may exist, and facilitate research into these areas by

creating a database with the data necessary to make such inferences.
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Chapter Commentary
As discussed in chapter 1, the use of human genetics in drug discovery is increasing

rates of drug development success 1,2. One particular area of interest is the analysis of

loss of function (LoF) mutations. Protein truncating variants (PTVs) resulting in the LoF

of a gene-product can serve as a model of acute or life-long inhibition of the gene in

question. Such information can shed light on the function of a gene 3, as well as

indicate whether pharmacological inhibition of this gene could be tolerated 4. PTVs

have long been studied in model organisms, with groundbreaking work in C.elegans 5–7,

Drosophila 8–10 and Zebrafish 11–13 providing ample examples of the utility of this

approach. However with the rise of large-scale genome sequencing projects including

the UK Biobank, the 100,000 Genomes Project, and coordinating efforts, like the

Genome Aggregation Database (gnomAD), it has become possible to study the

consequences of LoF mutations in humans, and at scale.

The work described in this chapter is work arising from a secondment within the

MacArthur group at the Broad Institute. Much of the work referred to stems from my

analytical contribution to two papers:

1. Karczewski et al. 2020, Nature

Contribution:

a. Association of network measures of centrality and measures of

constraint

b. Curation of homozygous LoF variants as described within this chapter

2. Minikel et al. 2020 Nature

Contribution:

a. Generalised analytical insight and interrogation of datasets

The following reflects either work that I directly worked on, or information that is

necessary in understanding the context of this work. Exact author contributions are

located within each of the relevant papers.
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2.1 Introduction
The accumulation of sequencing data has uncovered a much larger number of LoF

variants across the genome than previously thought feasible. Individuals can sustain

partial or total LoF in many genes and still remain relatively healthy. However there still

exists a strong selective pressure against most LoF variants that one could

hypothetically find. Due to this there is a high error rate for LoF variants sequenced,

and it can often be difficult to tell those that are real from those that are spurious. In this

chapter we will discuss curation efforts in a specific class of LoF variants, homozygous

variants.

2.1.1 Measuring tolerance to gene inactivation

The Genome Aggregation Database (gnomAD, v2) is a resource providing summary

data for 141,456 human exomes and genomes 14. Analysis of a dataset of this

magnitude has allowed for the development of a continuous metric of LoF intolerance

across all genes 15. This metric - the Loss-of-function Observed/Expected Upper bound

Fraction (LOEUF) 14 builds on previous constraint metrics to create a continuous

measure of tolerance to gene inactivation across the human transcriptome 16,17.

Previously, data from the exome aggregation consortium (ExAC) were used to

generate a set of 3,230 genes likely to be intolerant to heterozygous predicted loss of

function (pLoF) variation (pLI) 16. ExAC was a progenitor of gnomAD, and the majority

of the 60,706 individuals represented in ExAC are also found within gnomAD. A

dichotomous metric was developed using these data 17. The pLI was calculated by first

estimating the mutability of a gene based on factors such as gene length and sequence

context, with scores developed per gene and per mutation type, including synonymous,

missense, nonsense, essential splice site and frameshift mutations. These values were

then compared to observed mutational frequency within a sequenced population.

Genes with far fewer observed missense variants than expected are considered

constrained 16,17.

Despite the scale achieved in ExAC, it was not possible to calculate a continuous

metric as the low frequency of many LoF variants requires very large sample sizes to

be sufficiently powered. The more than doubling of samples in the collation of gnomAD
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v2.1 provides sufficient power, with 72.1% of genes having more than 10 pLoF variants.

From the mutational model described, a ratio of the observed/expected pLoF is

calculated. In order to mitigate the effect of gene size on the score, the upper bound of

the confidence interval was then calculated to give the LOEUF score. LOEUF scores

closer to 0 indicate constraint, i.e. pLoF variants being selected against due to their

detrimental impact on fitness. Therefore, we expect genes with high LOEUF scores to

be enriched for homozygous pLoF variants 15.

The identification of pLoF variation is focussed on the study of several major classes of

variant. Stop-gained, frame-shift and splice-site variants are amongst the types of

variation known as protein-truncating variants (PTVs) that result in the disruption of

transcription and the partial or total loss of protein function. Structural variation is also

an important contributor to PTVs 18, but due to the challenges in resolving such variants

with short-read sequencing 18–20, they are not considered in this, or subsequent

chapters. Therefore, our PTVs are defined as stop-gained variants, in which a

non-synonymous variant leads to a premature stop-codon; essential splice site variants

in which splicing of the transcript fails due to disruption of splice donor or acceptor

sites; and frameshift variants caused by insertions or deletions (indels) resulting in a

change to the reading frame 21.

2.1.2 Filtering of spurious LoF calls

A challenge when identifying LoF mutations arises in the form of systematic enrichment

for false positives. These errors are inherent in sequencing technology and the

following analysis steps such as variant calling. However due to the depletion of true

positive LoF variants due to negative selection, pLoF variants are enriched for false

positives 21. Previous studies have identified that as many as 50% of SNP based pLoF

variants may be spurious 4,21,22. It is for this reason that the Loss-of-Function Transcript

Effect Estimator (LOFTEE) was developed. This pipeline was inspired by earlier work

on LoF variation 16,21, and focuses on the automated curation of stop-gained, splice site

disrupting and frameshift variants. As previously described in the introduction, these

variants are known as protein truncating variants, and result in the abrogation of

functioning gene-product. LOFTEE aims to filter out several forms of identifiable error

modes and therefore can serve as an important step in variant annotation.

The LOFTEE pipeline is described in detail in 14, but the filters applied at each stage to

pLoF variants are as follows. Stop-gained and frame-shift variants are filtered to

55

https://paperpile.com/c/Kjoal8/ucpj5
https://paperpile.com/c/Kjoal8/vu6Y
https://paperpile.com/c/Kjoal8/Iuh5+BvQU+vu6Y
https://paperpile.com/c/Kjoal8/wwzHM
https://paperpile.com/c/Kjoal8/wwzHM
https://paperpile.com/c/Kjoal8/wwzHM+n7hk+rCTXO
https://paperpile.com/c/Kjoal8/wwzHM+bfDHr
https://paperpile.com/c/Kjoal8/EWuP


remove variants found in the last exon or within 50bp of the 3’ end of the penultimate

exon (a rule derived from 23). Variants failing this filter are assessed for the proportion of

the transcript affected, and a score of the base-pairs deleted weighted by their

evolutionary constraint as determined using the Genomic Evolutionary Rate Profiling

(GERP) score 24. Variants resulting in the loss of constrained genic regions can still be

deleterious, and therefore these variants are kept as pLoF. Variants found in exons

flanked by non-canonical splice sites are also filtered out. Splice-site variants are

filtered out if they were found in the splice sites of UTRs, or not predicted to affect a

donor site, or if an in-frame rescue splice site could be identified. Variants are further

assessed using a logistic regression model centred around scores from MaxEntScan
25,26 and other scores, such that variants not predicted to affect splicing are filtered out.

Finally, variants in introns of fewer than 15bp are discarded.

LOFTEE is a relatively conservative approach to variant filtering, favouring precision

over recall 14. However due to the large number of spurious pLoF variants, such an

approach is warranted when working at genome-wide scales. This does not necessarily

hold for single gene analysis, where it is possible for a curator to analyse all pLoFs of

interest. Although labour intensive, such analyses can provide important information to

inform machine learning approaches to the same problem. Understanding the reasons

for incorrect annotation will be crucial for understanding how to build models to better

capture the true state of LoF variation across the genome.

In this chapter we describe the manual curation process performed to filter out such

false positives to derive a high confidence set of homozygous pLoF variants. Further

work done to functionally categorise such homozygous pLoF containing genes, such as

studying their protein-protein interaction network properties will then be described.

56

https://paperpile.com/c/Kjoal8/STACU
https://paperpile.com/c/Kjoal8/NJJS0
https://paperpile.com/c/Kjoal8/8cdAT+1qPZd
https://paperpile.com/c/Kjoal8/EWuP


2.2 Methods

2.2.1 Homozygous variant curation

All data were derived from the gnomAD V2.1 dataset, and were sample and site QC’d

as described in 14. Following this, LoF variants were further assessed with LOFTEE.

From the 345,458 variants with the most stringent set of LOFTEE criteria (no filters or

warning flags), we further filtered to 4,379 variants where at least one homozygous

individual was observed. Of these, we further removed variants with low evidence of

expression (as described in 27), resulting in 3,385 variants spanning 2,166 genes, which

we subjected to extensive manual curation, in order to filter technical errors commonly

found in homozygous LoF variant prediction. These technical errors comprise three

main groups: technical errors, rescue events, and transcript errors. Combinations of

errors detected within these categories were used to determine if a variant was likely to

ablate gene function. After reviewing each variant for technical artifacts, the variant was

scored using a five point scale: not LoF, likely not LoF, uncertain, likely LoF, and LoF

(see Table 2.1).
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(1) LoF (2) Likely LoF
(3)

Uncertain
(4) Likely not

LoF (5) Not LoF

Absence of any
evidence to refute a
LOF consequence

Weak exon
conservation with
somewhat high

expression

Conflicting
evidence/

Ambiguous
evidence

Predicted
methionine

rescue

Multiple errors

Weak exon
conservation with
high expression

Partial loss of
exon

conservation

Homopolymer Frame
restoring indel

Minority of
transcripts but has

high expression

Minority of
transcripts with
somewhat high

expression

Predicted
splice rescue

MNV

Predicted weak
splice rescue

Complex
mapping

Predicted
strong splice

rescue

Weak exon
conservation

and poor
expression

Reference
error

Table 2.1 - The scoring scheme for homozygous variant curation. Variants are

individually assessed according to the criteria in this table. The variant is assessed

according to its worst flag.

Multiple factors were considered for each level of categorisation, reflecting the level of

certainty in the flag assigned.

Technical errors included mapping errors and genotyping errors from sequencing

issues, as well as misalignment of reads that could be detected in the Integrated

Genome Viewer (IGV) and the UCSC genome browser. Mapping errors are evident

when reads around the variant harbored many other variants, especially those with

abnormal allele balances. Furthermore, UCSC tracks for large segmental duplications,

self chain alignments, and simple tandem repeats were used to determine mapping

error status. Genotyping errors were partially eliminated by upstream filtering for read

depth, genotype quality, and allele balance (see above). Additional hallmarks for

genotyping errors included homopolymer repeats (defined as an insertion or deletion

within or directly neighboring a sequence of five or more of the same nucleotide), GC
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rich regions, and repetitive regions in which sequencing errors would be more

common.

Rescue events include multi-nucleotide variants (MNVs), frame-restoring indels, and

essential splice site rescues. MNVs visually identified in IGV and resulting in incorrectly

called stop-gained mutations were classified as not LoF. Frame-restoring indels were

verified by counting the length of the insertions and deletions to determine if the

resulting variation disrupted the frame of the gene. The window used to detect

surrounding indels was 80 bp in length. Lastly, splice site rescues were verified by

visually inspecting the +/- 20 bp region for an inframe splice site that could rescue the

essential splice site. Any inframe splice site within 6 bp of the essential splice site was

automatically considered a rescue with a loss/gain of at most two amino acids. Other

possible in-frame splice site rescues between the six to 20 bp region of the essential

splice site were filtered using Alamut (v.2.11), an alternative splice site prediction tool.

Splice sites were classified as rescues if the majority of the splice predictors agreed

with an alternative splice site and if the new splice site was not a predicted alternative

splice site in the reference transcript.

Finally, transcript errors were described as variants that occur in an exon found in a

minority of transcripts for that gene or that occur in a poorly conserved exon. The

UCSC genome browser was used to detect both of these situational errors. For an

exon to be considered in a minority of transcripts, it had to be present in fewer than

50% of that gene’s coding Ensembl transcripts. Exon conservation was determined by

looking at the nucleotide bp conservation based on PhyloP. When the variant was

found in an exon that occurred in fewer than 50% of transcripts and was not well

conserved, it was hypothesized that this exon may be spurious and was therefore

curated as likely not LoF or not LoF. If these error modes were found in singular cases,

such as when the exon was well conserved but only found in one of four transcripts,

then the variant was curated as likely LoF or LoF (these cases were not weighted as

heavily due to the transcript filtering that was used before manual curation).

In order for a variant to be considered as LoF, it had to have no major error modes

selected (such as LoF rescue). If a single minor error mode was noted for a variant,

which include some genotyping or mapping errors, exon conservation, or minority of

transcripts, it would be classified as likely LoF. In contrast, rescue errors were

automatically classified as likely not LoF or not LoF. Multiple error modes (>= 3)

resulted in a “not LoF” curation of the variant. Variants in which there was inconclusive

evidence supporting the variant as LoF or not LoF were curated as unknown.
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2.2.2 Functional categorization

We assessed the correlation between the LOEUF metric and a proxy measure for

biological knowledge, the target development level (TDL) from the Pharos database

(v5.4.0) 28. A full definition of the TDL and the associated categories can be found at

https://pharos.nih.gov. In brief, gene-products can be categorised into one of four

categories based on the drugs and small molecules that target them:

● Tclin - targets with approved drugs

● Tchem - targets with drug activities in ChEMBL that are not approved for

market

● Tbio - targets with weaker drug activities that do not meet the required activity

thresholds to be classified as Tchem

● Tdark - targets about which little is known

For each class, we counted the number of genes in the list in each LOEUF decile and

normalized according to the number of genes in the list.

2.2.3 Network analysis of gnomAD

Protein-protein interaction networks were used to compare the LOEUF metric to

gene-product functional importance. The STRING database 29 was queried using the R

API (STRINGdb, v1.22.0) for the protein-protein interactions of all genes with at least

10 expected pLoFs. We then filtered interactions based on their combined scores 30

such that only high confidence interactions (score > 0.7) remained. From this, we

generated a directed acyclic graph and kept the largest component resulting in a

protein-protein interaction network of 14,955 nodes (proteins) and 315,217 edges

(interactions). We then calculated the degree (the number of nodes a node is

connected to) of each node. Lastly, we binned proteins based on their gene LOEUF

deciles and computed the within decile mean degree with 95% confidence intervals

(Fig. 2.2a). These results are discussed in detail in the next chapter.
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2.3 Results

2.3.1 Homozygous variant curation
Using aggregated human sequencing data derived from gnomAD(v2.1), we examined

homozygous pLoF variants found in at least 1 individual. To reduce the effect of

sequencing and annotation artifacts, these variants were filtered using the

Loss-Of-Function Transcript Effect Estimator (LOFTEE) as described in 14. In addition

to this, variants in exons that are unlikely to be expressed in adult tissue were removed

(pext score < 0.1 31). This left a set of 3,514 homozygous pLoF variants in 2,166

individual genes for deep manual curation. Of these, 73% of variants passed curation

filters, leaving 1,752 genes that are likely tolerant to biallelic inactivation (see Table

2.2).

Verdict
Number of

variants Mean # of flags

LoF 1413 0.59

Likely LoF 1163 1.65

Uncertain 292 1.69

Likely Not LoF 252 2.46

Not LoF 394 2.37

Table 2.2 - The results of manual curation of homozygous pLoF variants and the

mean number of curation flags for each variant within each verdict class.

Of those confirmed as LoF, 1163 (45%) had some evidence suggesting they may be

erroneous, but not enough to overturn a LoF verdict. 292 were marked as ‘Uncertain’

indicating that no clear decision could be made. The mean number of flags per variant

increased as the certainty over the LoF designation decreased, with Not LoF variants

having on average 4 fold more flags than confirmed LoF variants.

The most common error flag was ‘Genotyping error’, and the least common was

‘Reference error’ (see Fig. 2.1A). LoF verdict variants were significantly depleted for all
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error modes (odds ratio < 1, Bonferonni adjusted p.value < 0.05, Fisher’s exact test)

with the exception of strand bias, for which no enrichment or depletion was present,

and the last exon flag, for which they were significantly enriched.

Figure 2.1 Examining the error modes in LoF and Not LoF variants. A) Table of the

total number of each class of flag for 3,514 homozygous pLoF variants, broken down

by LoF and Uncertain or not LoF variants respectively (see within brackets). *Adjusted

p.val < 0.05, Fisher’s Exact test (Bonferroni correction). B) The odds ratio of error

modes, with values above one indicating variants with this flag are more likely to be
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LoF. Points are coloured according to their adjusted p-value (as in A), and error bars

show 95% confidence interval boundaries.

2.3.2 Functional characterisation of LOEUF across the

transcriptome

We compared LOEUF to various orthologous measures of functional characteristics.

LOEUF was inversely correlated to the degree centrality of the PPI indicating that more

constrained genes had more protein interactions (Fig. 2.2A). LOEUF was also inversely

correlated to the ‘Target development level’, an indicator of accumulated knowledge

about a target, suggesting that unconstrained genes are less studied than their

constrained counterparts (Fig. 2.2B).
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Figure 2.2 - Biological properties of constrained genes and transcripts. A) The

mean number of protein-protein interactions is plotted as a function of LOEUF decile:

more constrained genes have more interaction partners (LOEUF r = -0.14, p = 1.7 x

10-51). Error bars correspond to 95% confidence intervals. B) The percentage of genes

in each functional category from Pharos is broken down by LOEUF decile.
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2.4 Discussion

2.4.1 Manual pLoF variant curation

Studying gene tolerance to LoF within the human population allows to study the real

effects of protein knockdown without having to resort to model organisms. Identifying

LoF variants allows for the study of the phenotypic consequences of gene disruption,

and therefore provides information on their function and essentiality. This exploration of

‘the human lab’ is contingent on having sufficient sample size to effectively capture

variation within the population.

In this chapter we describe work completed whilst embedded at the Genome

Aggregation Database (gnomAD) Macarthur group. The broader work in question has

involved the aggregation of over 140,000 individual’s genetic data followed by the

calculation of a continuous metric to describe the spectrum of tolerance to pLoF

variants across all protein-coding genes. Due to the high probability of pLoF variants

being spurious, careful curation must be completed to produce high-confidence pLoF

variants. This was completed both automatically, through the use of the LOFTEE

pipeline, and manually, through curation. Due to there being over 400,000 pLoF

variants being discovered after filtering using LOFTEE, only homozygous variants were

curated in this first instance.

Previous reports have suggested that the pLoF error rate is as high as 50% 21. The

manual curation of the homozygous pLoF variants in gnomAD indicates an effective

error rate of 25% (with a further 8% where no decision could be reached after curation)

after filtering with LOFTEE. Systematically identifying erroneous pLoF variants is

important, as false functional inferences could be drawn from such variants. This is

especially important in the context of rare disease analysis, where pLoF variants may

be used to diagnose a patient. Due to the complexity inherent in interpreting such

variants, tools such as LOFTEE that filter easy to identify error modes are valuable in

reducing subsequent curation workload. However, there still remains much room for

improvement before pLoF variants can be taken with confidence, immediately post

automated analysis.

The rules developed for the manual curation of the homozygous pLoF variants (Table

2.1) were, and still are being designed iteratively, and therefore will be improved upon.
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Manual curation exercises such as that described in this chapter will lead to the

identification of more error modes, and allow for us to target those that are most

pervasive.

Of the variants we curated, we see that the most common error mode is variants that

occur in poorly expressed transcripts (variants with a pext score < 0.2 27). Following

this, the most common error mode was that the variant occurred on a minority of

transcripts. Both of these are error modes that it should be possible to

programmatically filter in future iterations of LOFTEE (or any alternative pipelines).

Another easy to correct mode should be multi-nucleotide variants (MNVs), where SNVs

causing a stop codon are proximate to a secondary SNV within the same codon that

prevents the formation of a stop-codon 32.

The remaining error modes are less amenable to automated filtering. Splice rescue

variants are more challenging to assess, as elements such as cryptic splice sites,

reading frame and upstream polypyrimidine tracts must all be assessed. We assessed

such variants in two steps, by first considering any in-frame splice site within 6bp as

rescues, and then checking any possible in-frame rescues within 20bp with the splice

site prediction tool Alamut. The first step can be relatively trivially automated. The

second presents a possible route to automation, however Alamut can not be integrated

in its present state as the criteria for splice site rescue in the context of pLoF are

different from more general splice site rescue. In other words, it is not enough that a

splice site rescue occurs, it must also be true that this rescue preserves the function of

the original gene.

In order to achieve better automated filtering, it is likely that artificial intelligence (AI)

approaches will need to be used. AI is especially suited to problems such as this,

where multiple forms of data must be incorporated to classify an outcome variable.

Here the integration of sequence, expression and conservation data from various

sources would be used to classify a pLoF variant as either valid or spurious. Such an

approach may also highlight features that are important in drawing such distinctions

that had previously not been considered. Deep learning approaches in particular are

likely to present much benefit in this area. Currently, the manual curation required

involves analysis of various visual forms of information. This combined with domain

knowledge of various forms of artifacts identifiable when examining sequence data lead

to decisions being made. Deep learning approaches have shown the ability to

outperform humans in similar tasks. As displayed with the variant filtering deep learning

model DeepVariant, visual data such as read data from genome browsers can be
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incorporated to outperform other best in class classifiers. In reality, the problem of pLoF

curation is highly analogous.

Even with such a classifier, as each pLoF variant curated may have multiple error

flags, the automated filtering of some of the flags will not necessarily remove the need

for manual curation. It is likely that until the maturation and adoption of sequencing

technologies better equipped to deal with challenging low-complexity regions or

structural variants, manual curation will remain a feature of pLoF analysis.

2.4.2 LOEUF functional and network based characterisation

The development of the LOEUF metric represents a significant improvement over the

previously used dichotomous pLI score. However such information is only useful if it

actually correlates with other biological properties of genes. In keeping with previous

work 21,33,34, we find that LOEUF inversely correlates with the gene’s degree of

connection within STRING based protein interaction networks. This suggests that key

pathway genes are more essential and therefore less tolerant to pLoF. Separate to this,

we also show that various other measures of centrality correlate to LOEUF, with

integration centrality being the most strongly inversely correlated. Numerous studies

have used degree centrality as a measure of choice when studying network properties
14,33,35–39, likely due to the intuitive understanding of what this measure means. However,

the best measure is dependent on the type of network studied and the complexity of

biological networks can likely not be captured using simple measures of local

connectivity 40–42. In this case, we purport that integration centrality, a shortest path

based method similar to closeness centrality, better captures what is biologically

relevant (see chapter 3.4.2). Integration centrality describes how easily a node is

reached from another node 43, and therefore actually provides a more useful measure

of information flow through a network than simply how many connections a node has,

which is by definition only descriptive of local neighbourhoods. As network measures

become more widely incorporated into biological analyses, care must be taken not to

simply use some measures purely on the basis of their simplicity 44.

Analysis of target development level, a measure of how studied a gene is, reveals that

unconstrained genes are less studied than those that are constrained (Fig. 2.2B). This

is expected due to the strong association between constraint and disease gene
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membership 14. As much of basic and translational science is driven by a need to

uncover the mechanisms for what ails us, disease causing genes are an obvious

starting point for research. This has left many parts of the genome understudied. Such

an example is the Olfactory Receptors (OR) protein family, a family of roughly 400

proteins (a further ~460 are pseudogenes with interrupted open reading frames 45)

deriving their name from their role in odour detection. These proteins, initially

discovered in the 1990s, were thought to be expressed solely in olfactory epithelium 46.

However mounting evidence shows not only that these can be found ectopically

expressed 47–50, but also that they may play important roles in processes such as

immune regulation and diseases such as cancer, Alzheimer’s, Creutzfeldt-Jakob and

schizophrenia 51–53. Such an example is OR51E2, a ubiquitously expressed gene that

is enriched in prostate tissue, both healthy and cancerous with expression levels

exceeding those found in olfactory epithelium in the latter case 45. Inhibition of this OR

has been shown to inhibit the proliferation of prostate cancer cells 54, and it has been

further implicated in the development of metastatic disease 55. However this gene is

unconstrained, with an O/E of 0.9. This indicates that whilst clearly LOEUF (and the

concept of constraint more generally) is strongly correlated with disease causation, it

should not preclude a gene from being considered in disease causation or as a drug

target. Factors that may confound the relationship between drug target status and

constraint are discussed further in Minikel et al. 4.
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2.5 Conclusion

The sequencing of humans at large scale has exposed the preponderance of pLoF

variation within the genome. Despite the ever increasing accuracy of sequencing

technologies and variant calling algorithms, pLoF variants are called with a high degree

of false positives. This makes the analysis of such variants problematic, an issue

further compounded by the importance of pLoF variants for the diagnosis and

understanding of disease. With the number of pLoF found in the population increasing,

finding ways to systematically filter out such false positives will pay dividends in related

research. LOFTEE follows the basic principles of variant curation outlined by earlier

research, and is effective at removing a large number of likely spurious pLoF variants.

However even after filtering with LOFTEE, manual curation reveals a large number of

variants that are likely spurious. Whilst manual curation efforts are valuable, especially

in the study of specific diseases 4,22, this approach is not viable at population scale.

We suggest that pLoF variant curation must follow the same path as other variant

filtering, and embrace machine learning based solutions. Previous efforts in manual

curation will provide important truth sets and clues to which features will accurately

weed out specific error modes. This will lead to faster, more systematic,

comprehensive, and hopefully in time, more accurate curation of pLoF variation.
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Chapter Commentary
In chapter 2 we discussed aspects of LoF that result in spurious LoF assignment. Data

on LoF are valuable for an array of reasons, and the identification of all LoF variation

across the genome will greatly increase our understanding of human biology. However

this task is one that will require sequencing of the majority of the population on the

planet in order to have enough power to detect a relatively rare form of variation. As

this task is one that will require the overcoming of significant technical, ethical and

financial challenges, predicting variants that may contain LoF may serve as a useful

alternative. This chapter describes work we completed to try to predict a specific subset

of LoF variants, homozygous LoF. As will be explained, these variants may be of

particular interest in drug development, and therefore warrant further investigation.

Papers contributing to this chapter:

Karczewski, K.J., Francioli, L.C., Tiao, G. et al. The mutational constraint spectrum

quantified from variation in 141,456 humans. Nature 581, 434–443 (2020)

Minikel, E.V., Karczewski, K.J., Martin, H.C. et al. Evaluating drug targets through human

loss-of-function genetic variation. Nature 581, 459–464 (2020)
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3.1 Introduction

The observation that using genetic information to inform drug discovery increases rates

of success in drug development has led to a push within the pharmaceutical industry to

utilise this information1,2. This push is evidenced by the increasing investment of

companies such as GSK, Biogen and Takeda in projects such as OpenTargets,

sequencing the UK Biobank and partnerships with direct to consumer testing

companies like 23andMe.

LoF variation is one form of genetic information with a high potential impact on drug

discovery. Genes containing rare homozygous LoF variants are nearly twice as likely to

reach approval from phase 1 trials (11.4% versus 6.7%, 𝝌2 test; p = 0.046)3. This may

be in part driven by LoF variation serving as a proxy for lifelong partial or complete

inhibition of a protein target 4, thus providing us with evidence of potential safety

profiles: genes harbouring LoF variants with no associated negative phenotype should

be similarly able to be targeted in another individual with limited side effects.

The development of a near transcriptome-wide pLoF constraint metric will likely be

useful for target prioritisation. The LOEUF metric introduced in the previous chapter is

a measure of heterozygous LoF selection. Upon examination of the constraint of all

approved drug targets, we find that on average, drug targets are actually more

constrained than ‘all genes’ 4. The mean observed/expected pLoF constraint of

successful drug targets is 44%, versus a global score of 52%. There are many possible

confounders to this score, with the inclusion of spurious pLoF calls, and drug class

being amongst them; but there is clearly an apparent discrepancy with the previous

finding of drug target success in homozygous pLoF containing genes. We will revisit

these issues in the next chapter, however it is important to frame this chapter in the

light of this information. Identifying homozoygous (or compound heterozygous) LoF

harbouring genes may be powerful as a predictor of drug development success.

However, this presents another challenge; finding all instances of homozygous LoF

tolerant genes will require an extensive effort in sequencing genetically bottle-necked

or consanguineous populations 4. Our projections suggest that a full map of

homozygous LoF in outbred populations would require a 1,000-fold increase in sample

size, the increased autozygosity present in consanguineous populations makes

identification of homozygous LoF individuals more probable 4. Regardless, wide-spread

and exhaustive sequencing of these populations will be challenging and expensive.

Whilst such a dataset, when it comes into existence will no doubt be the gold-standard
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dataset; attempts to predict such genes using other approaches will be beneficial in the

medium-term. Here we describe such an effort, whereby we will use gene-level and

protein-level data to identify features that allow for the classification of homozygous

pLoF tolerant genes.

Machine learning as a field is well suited to such classification problems. However

there exist a myriad of possible approaches to feature selection, hyperparameter

optimization and algorithm selection. With this in mind, we chose to use the Tree-based

Pipeline Optimization Tool (TPOT), a python based automatic ML platform 5. TPOT

simplifies the selection of an ML model by automating processes such as feature

selection, preprocessing and construction, model selection and parameter optimization.

It is based on genetic programming, a subclass of evolutionary algorithms. This family

of algorithms automate aspects of problem solving using principles borrowed from

natural evolution. In brief, a series of starting ‘unfit’ models are generated, upon which

a heuristic search is applied to maximise model performance. The most successful (or

‘fittest’) models are selected according to their performance, and then aspects of these

models are randomly substituted between each other in a process akin to reproduction.

These offspring of the first models become a new generation, from which more

offspring are derived. Such methods have been shown to be more effective than

humans in tasks including software repair and the study of finite algebra 5–7.

In this chapter we will outline the aggregation of available data for homozygous LoF in

humans. Then we will cover the process of selecting and assessing machine learning

models designed to predict which genes might contain homozygous LoF with no

associated negative phenotypes.
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3.2 Methods

3.2.1 Dataset compilation

Figure 3.1 summarises the process used to classify LOF for this study. LOEUF

statistics across the protein-coding genome were derived from work described in 8 The

number of pLoF homozygotes were binarised to 1 if a homozygous pLoF existed, and 0

if not. Further studies were queried for the presence of homozygous pLoFs and the

data was updated to reflect this. Data from the Born in Bradford (BiB) cohort 3,

deCODE 9 and the PROMIS cohort 10 were used as filters for benign homozygous LoF

genes, meaning that genes harbouring homozygous LoF variants identified in these

cohorts (and any additional criteria described below) were labelled as benign. Where

appropriate data were available, variants were filtered to rare variants (minor allele

frequency < 2%) where Variant Effect Predictor (VEP) variant consequence was

reported to be either frameshift, splice acceptor, splice donor or stop-gained.

Gene phenotypes were initially all listed as Not Determined (ND) and then

recategorised based on the following. All homozygous LoF genes from the BiB cohort

were considered benign, homozygous LoF genes from deCODE in which the first

recorded death of an individual carrying the LoF was after the age of 50 were

considered benign and homozygous LoF genes within the PROMIS cohort identified in

one or more individuals and with no association to any one of 250 disease traits tested

were considered benign. Genes not found within these gene lists, and listed within the

OMIM gene lists were considered deleterious. Gene membership of various other gene

lists were also included as binary variables. These lists included genes essential in

mice, essential and non-essential genes in human culture from a CRISPR/CAS9

screen, genes near GWAS catalog peaks (MacArthur et al. 2017) and genes

designated as haploinsufficient in ClinGen (see

https://github.com/macarthur-lab/gene_lists/ for access to gene lists, accessed

13/02/2019). Genes found within the essential culture and haploinsufficient gene lists

without a prior benign designation were classified as deleterious. All such

classifications are summarised in Fig. 3.1.

We then added various other features to enrich the dataset including:

● Gene ontology (GO) terms, terms covering molecular function, cellular

component and biological process.
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● Genotype-Tissue Expression (GTEx) data - featuring data on gene expression

across 53 tissues. TPM scores were added as features for all tissues.

● Interactome INSIDER (INtegrated Structural Interactome and genomic Data

browsER) - This data integrates genomic and structural data to predict whether

genomic variants occur within amino acids involved in protein binding. This has

been summarised to the gene level, simply stating whether this gene contains

variants in the protein-binding domain or not.

● Paralog data - Data from Ensembl BioMart have been included to show the

number of paralogs for each gene in the network. GO molecular function and

protein sequence based similarity scores have also been calculated within each

paralog group.

● Online Mendelian Inheritance in Man (OMIM) - Genes found within the OMIM

database have been highlighted. We subsetted the dataset based on the

geneMap file (date downloaded 07/08/2018) such that phenotype IDs indicating

non-disease phenotypes, mutations contributing to multifactorial disorders or

infections and cases in which the relationship between the gene and phenotype

are provisional were all removed.

● Druggability data (PHAROS) - data on target druggability and target

development level are included.

Two versions of this dataset were compiled, a loose-deleterious and strict-deleterious

set, (l-dS and s-dS respectively). The main difference concerns how deleterious genes

are classified based on filtering of OMIM genes. The l-dS seeks to be inclusive of

OMIM genes that are linked to disease phenotypes, but are not necessarily disease

causing. The s-dS is limited to genes more likely to be directly disease causing. Both

datasets are available upon request. All results relate to the s-dS unless specifically

stated otherwise, although most database characteristics will be explicitly explored for

both sets.
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Figure 3.1 - Schematic outlining the creation of the LoF dataset. We took the total
complement of protein coding genes from gnomAD, and classified genes as benign
based on filters specific to each study. Genes were then further classified as
deleterious if they were not previously characterised as benign, and belonged to either
haploinsufficient, essential gene or OMIM gene lists. This dataset was then enriched
with annotations from various different databases, and network measures based on
protein-protein interaction data were calculated for genes for which such information
was available. The LOEUF score was then used to impute missing network measure
information using predictive mean matching imputation.
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3.2.2 Calculating network metrics

We queried StringDB to identify all protein-protein interactions for the genes in the LoF

dataset. Low confidence interactions (combined score < 700) were removed. From this

a network of 14,791 nodes and 312,099 edges was created comprising 105

components (disconnected subgraphs). Of these the largest component was kept

resulting in a network of 14,546 nodes and 311,9213 edges comprising 815 benign,

3327 deleterious and 10,404 ND (s-dS dataset) nodes. Network metrics were

subsequently computed using the R package Tidygraph (v1.2.2), including various

measures of centrality such as degree, closeness, betweenness, eigenvector,

integration and hub.

3.2.3 Visualising GO embedding

We visualised the GO embeddings generated using Opa2vec through t-Distributed

Stochastic Neighbor Embedding (t-SNE), a method for non-linear dimensionality

reduction. We generated a feature matrix containing all GO embeddings, and then ran

t-SNE using Rtsne (v0.15), with theta set at the default 0.5 and dimensions set to 2

with no prior PCA step. Due to the stochastic nature of the method, embeddings were

calculated 5 times each and using a range of perplexity values (2, 5, 10, 20, 30, 40, 60,

80 and 100). Outputs were plotted using ggplot2 and we visually inspected the plots to

decide which perplexity value we would use for further visualisation.

3.2.4 Machine Learning protocol

3.2.4.1 Data preparation

We dropped redundant columns, those containing unique identifiers, or those that were

used to define the phenotype class. This included columns related to transcript ID,

gene name, protein identifiers, OMIM accession numbers, data source and gene list

membership.
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GO terms were embedded into a lower dimension feature space using the python

pipeline opa2vec 11. In brief, this method uses the neural-network based tools

Word2Vec 12 to generate vector representations of words from corpora (the whole gene

ontology). It then combines the multiple annotations that may be assigned to each

gene to create a per entity (gene) set of 200 features.

We applied predictive mean matching imputation (R package MICE, version 3.8.0) to fill

missing network measures due to genes not being represented in the network. Due to

the gnomAD results described previously showing correlation between centrality

measures and LOEUF, we used the LOEUF score as the explanatory variable in the

imputation model.

We then binarized categorical columns including those detailing the chromosome, the

target development level data and network clustering based group membership.

We defined the target column for the ML algorithm as the phenotype column, with the

positive target being ‘Benign’. We dropped all ‘ND’ phenotype rows such that only

labelled data remained. We then split the data into training and test data (80% training,

20% test) by splitting each label group into 80/20 subsets to ensure we maintained

class distributions. The training data was then used as the input data for TPOT.

3.2.4.2 Model Identification using TPOT

As previously discussed, TPOT is a python based genetic algorithm designed to

programmatically identify and test possible ML models. This pipeline includes feature

selection and engineering, and hyperparameter optimization. We limited the number of

possible generations to 300, with 100 offspring in each generation. We allowed a

maximum run-time of 2 weeks, with an early break upon convergence of model

performance (defined as 50 generations with no offspring improvement). We defined

that models should be evaluated for accuracy after 10-fold cross validation. The best

performing pipeline was then saved as a standalone python script. We evaluated this

model by classifying the data in the 20% test set. We report accuracy, precision and

recall scores, along with the harmonic mean of the latter 2 scores, known as the F1

score.

Finally, we applied the model to the unlabelled ‘ND’ genes. Genes were assigned a 1 if

they were predicted to be Benign (pBenign), and 0 otherwise (pNotBenign). We also

report label confidence scores ranging from 0 to 1, in which values approaching 1
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indicate high confidence in the label prediction. Values above 0.5 are indicative of a

positive prediction.

A third dataset derived from the l-dS was created in which all gnomAD derived data

was removed. This includes all allele frequency data and LOEUF scores. All other

parameters were as described above.

In order to provide multiple model types for comparison, we also ran two iterations of

TPOT in which the possible model types were restricted to logistic regression and

decision tree. These models are included in the standard runs of TPOT, and therefore

we only ran these options for 25 generations (additionally, the high numbers of

generations are less important in cases where the model space is so restricted). Aside

from these differences, the model was run as above, allowing for feature selection and

engineering to be carried out to increase model performance. This was performed for

the l-dS only.

Finally, in order to ascertain whether we were achieving an optimal model for the

feature space, we ran multiple iterations of the entire pipeline. As TPOT is a stochastic

pipeline, it is probable that any one solution may be reflecting a local minimum point,

rather than a global minimum. Due to time and computational constraints, we ran 3

runs on the s-dS only. Label stability was measured by gene membership concordance

between each of the solutions.

3.2.4.3 Feature importance estimation

We sought to estimate the importance of each of the model features as this can often

shed light on the biology driving the predictions. Due to the models created above

largely being ensemble models, with complex feature engineering and selection

resulting in profound abstraction from the original dataset, we built an entirely separate

model. To retain as much explainability as possible, we used all 316 features in the

cleaned dataset (see Appendix 3.2.4.3 ), with no feature engineering steps. As the

preferred models from the TPOT model were based on random forests, we also

elected to build a random forest model using the R package randomForest (v1.4-2). We

first performed a parameter grid search, in which the number of trees was allowed to

vary from 1, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 700, 800, 900 to 1000 trees.
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These were then compared on the basis of their out-of-bag error rate (OOB). We

selected the model with the lowest overall OOB. Following this, we ran a random forest

cross-validation, in order to ascertain the optimal number of features to include within

the model. We started with all features, and halved the number included at random for

each iteration. From this we ascertained that the optimal number of features was 20.

We subsequently calculated the feature importance of the chosen random forest

model, and selected the top 20 features. Using just these features as input, we built

another random forest model.
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3.3 Results

3.3.1 Dataset generation
We generated a dataset of 19,623 genes based on protein-coding genes reported in

gnomAD. These were then classified based on whether the genes have been found in

human populations with homozygous pLoF in at least one individual with evidence of

no associated phenotype. We report 1,744 such genes, labeled as ‘Benign’ due to the

apparent lack of phenotype associated with their inactivation in humans. This is true for

both the l-dS and s-dS as benign genes were defined in the same way across both

datasets. The l-dS had a total of 12,228 deleterious genes leaving 5,905 ‘ND’ (Fig.

3.3A). The s-dS had 3,469 genes  reported as ‘deleterious’ with 14,426 ‘ND’ (Fig.

3.2A). Two iterations of the TPOT pipeline were run to label both sets of ‘ND’ genes.

3.3.2 Group characteristics

As reported in 13, the median o/e constraint score across the transcriptome was 0.48.

Within groups we report a median score 0.79, 0.37 and 0.47 for Benign, Deleterious

and ND genes respectively for the s-dS (Fig. 3.2C) and 0.79, 0.39 and 0.57 for the l-dS

(Fig. 3.3C). Comparison of the phenotype assignments to the gnomAD LOEUF bins

show concordance, with 63% of Benign genes in the s-dS being found in the top 40th

percentile of transcriptome-wide scores, and 54% of Deleterious genes in the bottom

40th percentile. ND genes are more evenly spread, with no significantly different

percentage across any of the deciles (One-way anova p-value > 0.1, Fig. 3.2B). The

l-dS has a near identical distribution for the Benign genes, but a more evenly

distributed deleterious set, with 50% of Deleterious genes occurring in the bottom 40th

percentile (Fig. 3.3B). This difference is most marked in the 90th percentile, with only

~3% of s-dS deleterious genes being found here, compared to ~6% of l-dS genes. The

unknown genes are much more right-skewed with over 17% of genes belonging to the

90 percentile, compared to 11% in the s-dS.

Overall, between both sets there is concordance between the phenotype classifications

and existing constraint metrics, however the difference in the assignment results in a

marked shift in the ND class genes, with those being enriched for less constrained

genes. This would indicate that the l-dS captures more of the disease causing, or

disease related genes.
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Figure 3.2 - Dataset characteristics of the strict deleterious set. A) Stacked bar plot
showing the percentage of the total 19,623 genes in each phenotype category. The
majority of genes are classified as ND, indicating that they are neither found as
Mendelian disease causing genes within OMIM, nor are they found in homozygous
pLoF form in the studies examined. B) A Bar plot showing the percentage of each
phenotype found in each LOEUF bin. Few genes found in homozygous pLoF state are
found within the more constrained bins, with the majority being found in bins 5 and
above; the inverse is true for the deleterious genes. ND genes are relatively evenly
distributed. Colours are as in panel A. C) Forrest plot of the mean O/E LoF with 95%
confidence intervals for each phenotype and all genes collectively. The clear diamond
denotes the median value for each.
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Figure 3.3 - Dataset characteristics of the loose deleterious set. A) Stacked bar
plot plot showing the percentage of the total 19,623 genes in each phenotype category.
The broadening of the genes considered deleterious has means deleterious genes now
make the majority class. B) Bar plot showing the percentage of each phenotype found
in each LOEUF bin. The expansion of the deleterious class means that more
deleterious genes are found in higher LOEUF bins. However, fewer ND genes are
found in the lower LOEUF bins, with the distribution mirroring that of the benign genes.
Colours are as in panel A. C) Forrest plot of the mean O/E LoF with 95% confidence
intervals for each phenotype and all genes collectively. Compared to Fig. 3.2, the
average ND LOEUF score has increased, indicating that fewer constrained genes are
found within this set. The clear diamond denotes the median value for each.

Comparison of our phenotypes to mouse essential genes and International Mouse

Phenotype Consortium (IMPC) developmental phenotypes shows conservation of
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essentiality across the species (Fig. 3.4 and Fig. 3.5). The Target Development Level

(Fig. 3.4) from the Target Central Resource Database (TCRD) categorises targets

based on the development of ligands for the related protein and other markers of

knowledge about the target. The categories are Tclin - targets that have approved

drugs with known mechanism of action, Tchem - targets with ligand activities that may

not be approved, Tbio - targets with no known ligands that satisfy activity thresholds,

and finally Tdark - targets about which little is known.

Tbio constitutes the largest group in all categories, although this group is enriched

within the Deleterious targets. The Benign and ND targets are enriched for Tdark

compounds, representing 39% and 30% of the groups respectively compared to only

4% of the Deleterious targets. Of the 613 Tclin targets, 222 are found within the

Deleterious group, 42 in the Benign group and 332 in the ND group.

Figure 3.4 - Biological and functional characteristics associated with the
phenotype groups. Panels A and B relate to the s-dS and l-dS respectively. The left
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hand graphs show the percentage of each phenotype group that is also a mouse
essential gene. The right hand graphs display the distribution of target development
level by phenotype group.

Figure 3.5 - Alluvial plot showing phenotype gene membership to IMPC
developmental phenotypes for the s-dS (A) and l-dS (B) datasets. Human genes
were 1-1 matched to orthologous mouse genes, n=3,845. Mouse developmental
phenotypes are in three categories as defined by the IMPC that serve as roughly
analogous comparisons to our human phenotypes. We observe considerable
conservation across genes compared, with Benign genes in humans predominantly
falling within the Viable mouse phenotype.
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3.3.2.1 Network characteristics

We evaluated several measures of network centrality (Figure 3.6). Generally all metrics

show that the groups share similar shaped distributions indicating that it is unlikely that

LoF drives network properties. The degree centrality, a measure of the number of

connections a node has, reveals that the Deleterious group has a more heavy-tailed

distribution with a median score of 9 vs 4 and 5 for the Benign and ND groups

respectively. This echoes results reported in 14,15, although these refer more directly to

genes with respect to their constraint. All other centrality measures show similar effects

to varying degrees. This is true within both the s-dS and l-dS.

Figure 3.6 - Density diagrams displaying the distributions of network metrics
according to phenotype. Degree Centrality has been truncated at 250 degrees along
the X axis. Colour codes remain consistent throughout each.

As shown in Fig. 3.7, all measures are positively correlated to each other, and inversely

correlated to the O/E LoF. Whilst the degree of centrality has previously been reported
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with regards to constraint, we report that the strength of correlation is relatively weak

(Spearman correlation, ρ -0.11), with the strongest inverse correlation being found with

the integration centrality (Spearman correlation, ρ -0.27). In fact the degree distribution

is the most weakly correlated of the centrality measures.

Figure 3.7 - Correlation plot comparing the Spearman rank correlation between
measures of centrality and the O/E LoF score. The lower triangle contains the
correlation coefficients, positive correlations are in blue and inverse correlations in red,
with alpha increasing with increased magnitude. All correlations were significant
(p<0.05).

3.3.2.3 Imputation of network metrics

When creating the PPI network, we limited interactions to those with high combined

confidence scores (> 700). This resulted in the loss of many genes, with 5,077 genes

not being represented. To prevent the loss of these in the machine learning pipeline,
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we performed multiple imputation to assign network metrics using the O/E LoF score

as an explanatory variable.

Figure 3.8 - Comparison of imputed to non-imputed data across various network
centrality metrics. Graphs on the left are density plots of each of the metrics, on the
right are scatter plots adding the dimension of the explanatory variable, O/E LoF.
Imputed values are shown in red and original values in teal.

Figure 3.8 displays the distribution of imputed to original data both in isolation, and in

reference to the explanatory variable, O/E LoF. Across all metrics we see close

replication of the original data distribution, albeit with some increased density around

peaks, such as the integration centrality distribution in which the second peak of the

bimodal distribution is slightly accentuated upon imputation. This is consistent with the

reduction in standard error commonly seen in mean imputation and it is not a cause for

concern in this case.
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3.3.3 Apparent phenotype disparities

Genes were labelled as deleterious based on:

● The gene was not previously labelled as Benign

AND Present in the Clingen haploinsufficient (HI) list

OR Present in the OMIM disease gene list

OR Present in the essential culture list

Here we examine cases in which genes were Benign despite membership of the

previous three lists. As there is no difference in the way Benign genes were classified

between datasets, all following observations are true for both. 294 genes were listed as

haploinsufficient (HI) in Clingen. Of these, 6 had a designation of Benign due to their

being present in the BiB cohort (Table 3.1). Of these, FLG (Fillaggrin) and PXMP2

(peroxisomal membrane protein 2) have LOEUF scores indicating that they are

unconstrained or under relatively mild selection. The remaining 4 all have LOEUF

scores indicating LoF constraint, with ZEB2 being part of the most constrained bin of

the transcriptome.

Following from this, of the 3062 OMIM disease genes, 174 were also labelled as

benign, with 81, 45 and 48 genes found in a homozoygous state in the BiB, PROMIS

and deCODE cohorts respectively. This subset is less constrained with a median

LOEUF score of 0.99, compared to 0.91 for the whole transcriptome.

Finally, of the 682 genes report to be essential in cell culture, 16 were within the Benign

set with a median constraint of 0.77. Combined, this represents a set of 190 unique

genes in which there appears to be a disparity between gene list membership and

given phenotype according to study membership. Further curation of these genes may

indicate that the LoF variants are in fact spurious, but this is beyond the scope of this

work.
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Gene Name O/E LoF LOEUF LOEUF Decile Clingen HI Source

FLG 2.42 1.96 9 1 BIB

PXMP2 0.56 1.27 7 1 BIB

MLH1 0.37 0.57 2 1 BIB

NF1 0.22 0.29 1 1 BIB

GLI2 0.18 0.31 1 1 BIB

ZEB2 0.02 0.11 0 1 BIB

Table 3.1 - Examples of homozygous pLoF containing genes. Genes are labelled

as haploinsufficient in Clingen, or with a LOEUF score or point-estimate O/E LoF score

indicating constraint. All pLoF variants were identified from the BIB cohort in this case.

The LOEUF Decile are bins of equal size binnings of genes according to their LOEUF

score.

Despite not being used as a measure of whether a gene should be reported as Benign

or not, the O/E LoF score is a direct measure of constraint. Therefore we would a priori

expect the number of genes found in the homozygous state or listed as benign to be

depleted for genes with a score of < 1 with decreasing numbers being found as O/E

approaches 0. Within this dataset we report 4247 genes to have been found in the

homozygous state in at least 1 individual. Of these, 1,020 have an O/E LoF of < 0.5, of

which 306 were classified as benign, 141 as deleterious and the remaining 573 as ND.

3.3.4 Visualising GO embedding

In order to generate a dataset suitable for machine learning algorithms, categorical

variables must be binarised or converted into a continuous metric. Efforts to binarise

the gene ontology resulted in the generation of > 17,000 features. To avoid such

expansion of our feature set we performed feature embedding. The pipeline Onto2Vec

was used to generate a set of 200 features as a lower dimensionality representation of

the gene ontology across all levels (molecular function, cellular compartment and
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biological process) 11. We visualised this data using t-SNE, a non-linear technique that

projects our featureset to 2 dimensions 16. Due to the inherent variability in representing

the data with t-SNE, we ran 5 iterations at multiple perplexity scores. As a rule t-SNE

plots emphasise local structure, however, alteration of perplexity (defined as 2 to the

power of the Shannon entropy, a measure of the amount of information within a

system) changes the balance between the importance of local and global structure in

the resulting t-SNE plot. This in effect changes the number of nearest neighbours for

each point, a key component in collapsing our high dimensional data to 2 dimensions.

Generally we expect data with high entropy to require a higher perplexity, but this is not

necessarily easy to divine, and is best explored through running multiple different

perplexity scores, as in Fig. 3.9. t-SNE is thought to produce the best results using

perplexities ranging from 5-50, however numerous examples exist of greater

perplexities being required 16.
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Figure 3.9 - t-SNE visualisation of the Onto2Vec embedding of the Gene
Ontology. Gene ontology terms were embedded into 200 features, which are then
projected as a 2-dimensional representation. Each panel displays the same data
visualised with differing perplexities (plx). Only perplexities ranging from 2-40 are
displayed, although perplexities up to 100 were explored. Other hyper-parameters were
run with default settings. The colour relates to the phenotype as labelled, the order is
maintained from left to right, as in the key.

Figure 3.9 contains the first run of each of the tested perplexity scores. We display

them as the overall shape across all genes, and then a separate layer for each of the

phenotypes. We find that as we increase perplexity the plots map the topology of the

data differently, with shared motifs appearing between perplexities 2, 5 and 10; 20, 30,

40 and 100; and finally 60 and 80 (not all perplexities are shown). Overall, we observed

relatively good stability between the varying parameter settings, with the shapes being

similar (once inversions are accounted for), indicating that we are likely capturing some

element of real topology, rather than arbitrary noise. With this in mind, a perplexity of 30
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was chosen for further visualisation. Repeat runs and plots of the same perplexity

scores runs were relatively stable, similarly indicating that the underlying data topology

is not overly complex. Exceptions to this occurred at perplexities of 60 and 80, where

sizeable differences in the output plots could be observed between multiple runs.

Figure 3.10 - t-SNE visualisation of the Onto2Vec embedding of the Gene
Ontology. The different density of points across the different layers of the embedding
show that functional annotation mirrors constraint, with areas of high constraint
occupying different regions of this representation of gene function. Gene ontology
terms were embedded into 200 features, which are then projected as a 2-dimensional
representation. Perplexity was set at 30, with other hyper-parameters set to default
settings. The colour relates to the phenotype as labelled. Teal boxes outline an
exemplar of the differing density of points across the phenotypes.

Focusing on the 30 perplexity plot (Fig. 3.10), it is possible to see areas of different

local density between phenotypes, such as in the areas outlined in Fig. 3.10 (the head

of the ‘sea-horse’ structure). In these teal boxes we observe a dense collection of

genes that are almost totally devoid of deleterious genes. The inverse of this is visible

in the bottom-most right of the plot (the tail of the sea-horse), where relatively few

genes are observed in the benign layer, with the greatest density of genes being

observed in the deleterious layer. Each of the groups conform to the global shape of

the ontology, indicating that all genes are present in all areas of the ontology, but local

differences are visible. Similar plots were produced using LOEUF bin to create the
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layers (see Fig. 3.11). This shows similar results, with local densities of the GO

changing across bins from more to less constrained. As in Fig. 3.10, the head of the

sea-horse is less populated in the more constrained layers, with density steadily

increasing until the 5th LOEUF bin. The overall topology of the data for these plots

looks different, however this is largely due to compression of the available plotting

space in order to fit the multiple layers in.

Figure 3.11 - t-SNE visualisation of the Onto2Vec embedding of the Gene
Ontology. As in Fig. 3.10, we observe different densities of points as we move from
more constrained bins to less constrained bins. This indicates a link between constraint
and wider function. Gene ontology terms were embedded into 200 features, which are
then projected as a 2-dimensional representation. Perplexity was set at 30, with other
hyper-parameters set to default settings. Layers refer to LOEUF bins, with bins 0-9
followed by All bins combined from left to right.

The key message of these visualisations is that despite the examination of

conceptually orthogonal data sources, the genetically derived LOEUF score and the

functionally derived GO; we observe structure that is indicative of the linkage of these

two data types. This indicates that the addition of such features to our model may help

to explain variation in our data that are not purely genetically derived.
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3.3.5 Classification models

We ran TPOT to classify ND genes within both the s-dS and l-dS datasets. Each model

run took up to two weeks to complete, due to this only the iterations of the dataset

previously described were tested. For each model we report the precision, recall and

F1 score, a balanced average of the former scores. ROC AUC scores will not be

reported due to the unbalanced nature of the classes in the dataset 17.  Please note

that numbers we report for the l-dS and s-dS are dependent on data cleaning steps,

therefore genes with incomplete data may be dropped resulting in fewer of any of the

phenotypes in the reported results.

3.3.5.1 Baseline models

We ran logistic regression and decision tree 18 algorithms as comparators to any

eventual model suggested by TPOT. We did this explicitly for the benefit of downstream

comparisons, but we highlight that these models are run as standard within the TPOT

pipeline used. For this reason we ran TPOT for 25 generations on the l-dS only.

The logistic regression pipeline produced is a feedback classifier in which multiple

iterations of logistic regression are stacked and added to the cleaned data before

undergoing one final round of logistic regression (see Code block 3.1).

exported_pipeline = make_pipeline(

make_union(

StackingEstimator(estimator=make_pipeline(

make_union(

FunctionTransformer(copy),

FunctionTransformer(copy)

),

LogisticRegression(C=0.1, dual=False, penalty="l1")

)),

FunctionTransformer(copy)

),

StackingEstimator(estimator=LogisticRegression(C=0.0001,

dual=True, penalty="l2")),

LogisticRegression(C=5.0, dual=False, penalty="l1")

)

Code block 3.1 - The output pipeline of a TPOT run in which possible models were
restricted to logistic regression only.
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The average balanced-accuracy cross-validation score for this pipeline was 0.908.

Upon validation, scores of 0.626 and 0.627 were achieved for accuracy and recall

respectively with an F1 score of 0.627 (Table 3.2).

Similarly, the decision tree pipeline produced is a stacking estimator in which multiple

trees are run with outputs being fed back to the data before running a final decision

tree for classification (see Code block 3.2). The average cross-validation balanced

accuracy score achieved was 0.92, with accuracy and recall scores of 0.62 and 0.90

respectively. The F1 score was 0.737 (Table 3.2).

exported_pipeline = make_pipeline(

make_union(

make_union(

StackingEstimator(estimator=make_pipeline(

StackingEstimator(estimator=DecisionTreeClassifier(criterion="entrop

y", max_depth=4, min_samples_leaf=18, min_samples_split=8)),

DecisionTreeClassifier(criterion="gini",

max_depth=4, min_samples_leaf=2, min_samples_split=16)

)),

FunctionTransformer(copy)

),

FunctionTransformer(copy)

),

DecisionTreeClassifier(criterion="gini", max_depth=3,

min_samples_leaf=5, min_samples_split=8)

)

Code block 3.2 - The output pipeline of a TPOT run in which possible models were
restricted to decision trees only.

3.2.5.2 s-dS model
After 158 generations, TPOT converged on a Random Forest classifier 19. The pipeline

is fully outlined in Code block 3.3, but in brief first applies two recursive feature

elimination (RFE) steps followed by a Random Forest classifier. Both RFEs use an

ExtraTrees Classifier as the estimator, which in turn use 100 estimators (i.e. the

number of trees) each considering 10% of the features. The bottom scoring 45% of the

features are then dropped. The second round of RFE then uses a similar model but

with 20% of the features tested in each estimator. The worst performing 50% of these
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features are then removed. The remaining features are then used to train the Random

Forest classifier.

exported_pipeline = make_pipeline(

RFE(estimator=ExtraTreesClassifier(criterion="entropy",

max_features=0.1, n_estimators=100), step=0.45),

RFE(estimator=ExtraTreesClassifier(criterion="entropy",

max_features=0.2, n_estimators=100), step=0.5),

RandomForestClassifier(bootstrap=False, criterion="gini",

max_features=0.3, min_samples_leaf=5, min_samples_split=9,

n_estimators=100)

)

Code block 3.3 - The model output of a TPOT run to identify a classifier for the s-dS.

The average accuracy resulting from 10 cross-fold validation with the training data was

0.95. We generated model metrics by applying the model to the 20% test set. We

report an accuracy of 0.95, with precision and recall of 0.87 and 0.988 respectively. The

F1 score was 0.925 (Table 3.2).

3.3.5.3 l-dS model

Model convergence was achieved after 173 generations, the suggested model for the

l-dS dataset was a Gradient Boosting Classifier. The pipeline comprises several

transformation and scaling steps, followed by the gradient boosting classifier (see Code

block 3.4).

exported_pipeline = make_pipeline(

make_union(

make_pipeline(

ZeroCount(),

StandardScaler()

),

FunctionTransformer(copy)

),

GradientBoostingClassifier(learning_rate=0.1, max_depth=3,

max_features=0.15000000000000002, min_samples_leaf=2,

min_samples_split=12, n_estimators=100,

subsample=0.8500000000000001)

)

Code block 3.4 - The model output of a TPOT run to identify a classifier for the l-dS.
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The average 10-fold cross-validation accuracy score was 0.927. We again validated

the model using the 20% validation set, achieving a precision and recall of 0.69 and

0.71 respectively, with a balanced F1 score of 0.702 (Table 3.2). Of the 4906 ND genes

in this set, 442 were classified as benign, with a mean probability of 0.7 (Table 3.3).

The mean LOEUF for this set was 1.33 vs 1.10 for ND genes predicted as not benign

and 0.95 for the cleaned dataset as a whole.

3.3.5.4 No gnomAD model

We constructed a final model in which all gnomAD related data were removed from the

input data. This reduced the number of features to 296. After 179 generations, the

pipeline converged on an ExtraTreesClassifier based model (see Code block 3.5).

Preprocessing of the features in this pipeline include the scaling of features according

to their maximum absolute value followed by the filtering of low variance features and

the rescaling of remaining features.

exported_pipeline = make_pipeline(

MaxAbsScaler(),

VarianceThreshold(threshold=0.005),

MinMaxScaler(),

ExtraTreesClassifier(bootstrap=True, criterion="gini",

max_features=0.3, min_samples_leaf=8, min_samples_split=19,

n_estimators=100)

)

Code block 3.5 - The model output of a TPOT run to identify a classifier for the l-dS.

The average 10-fold cross-validation accuracy score was 0.915. We achieved a

Precision and recall of 0.65 and 0.55 respectively with a balanced F1 score of 0.59

upon validation (Table 3.2).
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Model Dataset Metric Score

Logistic
regression

l-dS Precision
Recall

F1

0.625
0.629
0.627

Decision tree l-dS Precision
Recall

F1

0.627
0.896
0.737

Ensemble
model

l-dS Precision
Recall

F1

0.691
0.714
0.702

Ensemble/Ran
dom forest
model

s-dS Precision
Recall

F1

0.87
0.988
0.925

ExtraTrees
Classifier (no
gnomAD)

l-dS Precision
Recall

F1

0.65
0.55
0.59

Table 3.2 - The output metrics of the 5 different models resolved for the l-dS and
s-dS. Precision and recall are reported, alongside the F1 score, the harmonic mean of

the precision and recall. The overall highest performing model is the

Ensemble/Random forest model for the s-dS. Of the l-dS models, the best performing

is the Decision tree, followed by the Ensemble model. Across all metrics, a score of 1

would indicate a perfect score. Each of the models referred to are described in more

detail in Code blocks 3.1,3.2, 3.3, 3.4 and 3.5 respectively.
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3.3.6 Gene predictions
Each of the l-dS models had the same number of ND genes with the exception of the

‘no gnomAD’ set. This is due to a number of genes having missing gnomAD data and

therefore being filtered out of any dataset containing gnomAD data due to

incompleteness. All l-dS models predict that 10% (range 9-12.1%) of the ND genes are

benign (pBenign) with a mean certainty of 0.7 (range 0.7-0.72). The s-dS ensemble

model labelled 1782 genes of a possible 13,081 genes as pBenign. The mean

probability for prediction was 0.83 indicating much greater certainty in labelling (Fig.

3.12). A set of 692 genes were predicted with a probability of >0.9, of which 74% of

l-dS ensemble model pBenign genes were present.

Model Dataset Not Determined
Prediction

pBenign/pNotBenign
Total (p)Benign

Genes

Logistic regression l-dS 4906 522/4384 2266

Decision tree l-dS 4906 595/4311 2339

Ensemble model l-dS 4906 442/4464 2186

Ensemble/Random
forest model

s-dS 13081 1782/11308 3510

ExtraTrees Classifier
(no gnomAD)

l-dS 5196 506/4690 2250

Table 3.3 - The breakdown of predicted benign genes. For each of the five models,
the ‘Not Determined’ column shows size of the test set of genes on which the models
predicted pBenign status. The prediction column displays the outcomes of the
prediction, with pBenign genes followed by pNotBenign genes. The ‘Total (p)Benign
Genes’ column is the sum of model assigned pBenign genes, and initial label
classification (as in Fig. 3.1).
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Figure 3.12 - Density distributions of positively labelled predicted genes. All
distributions are derived from predictions made on ND genes. Probabilities of > 0.5 are
classed as Benign.This reflects the certainty of a label classification, where genes of
probability 1 show the model has complete confidence in the assignment. The variety
of distributions show that modifying thresholds between models would yield different
output numbers of genes. Few models outside of the s-dS Random Forest model have
high certainty (>0.9) in the majority of their predictions, as is reflected in the output
metrics (Table 3.2).

Gene parity is very high between the two highest performing models of the l-dS

dataset, the Decision tree and the Ensemble model. 96% of pBenign genes from the

Ensemble model are also found in the Decision tree (Fig. 3.13). The l-dS Ensemble

model keeps relatively high similarity with all models, with 82% parity with the Logistic

regression and No gnomAD models. We also see high similarity between all the l-dS

models and the s-dS Random Forest model, with 441 of 442 pBenign genes in the l-dS

Ensemble model also labelled as pBenign in the s-dS model. A further 75% of these

are found within the high probability (>0.9) pBenign genes of the s-dS model. We find

this to be the case across all l-dS models.
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Figure 3.13 - Alluvial plot showing shared gene membership between models.
Each line represents a gene where green lines are pBenign genes as predicted from
the model on the left of the line. Genes not present in the left hand model are marked
as grey. All genes represented in this plot were labelled as pBenign in at least 1 model.
There is high consistency between models, with nearly all genes predicted as pBenign
also being predicted as such in the s-dS model. Within the l-dS models, the most
conservative model is the Ensemble model, with the most pBenign genes predicted by
the Decision tree.
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3.3.7 l-dS Ensemble Model gene characteristics

Of the 442 pBenign genes in the l-dS Ensemble Model, 120 are members of the

druggable genome. Reactome pathway analysis of the 172 pBenign genes that could

be mapped to the Reactome database show relatively widespread coverage of

pathways within the gene sets (Fig. 3.14.1). However significant enrichment (FDR <

0.05) is much more localised to just 5 immune system specific pathways (Table 3.4,

Fig. 3.14.2). Examination of the same gene set using The Database for Annotation,

Visualization and Integrated Discovery (DAVID) shows significant enrichment for

olfactory receptors across several other pathway-based databases including KEGG

and Interpro (FDR < 0.001).

Pathway name
Entity pathway

overlap p-value FDR

Endosomal/Vacuolar pathway 15/82 5.4E-07 2.3E-04

Antigen Presentation: Folding, assembly
and peptide loading of class I MHC

15/102 7.5E-06 1.6E-03

Antigen processing-Cross presentation 18/187 2.3E-04 3.2E-02

Interferon gamma signaling 21/250 4.3E-04 3.2E-02

ER-Phagosome pathway 16/165 4.6E-04 3.2E-02

Interferon alpha/beta signaling 17/164 5.3E-04 3.2E-02

Table 3.4 - The 5 Reactome pathways for which an FDR < 0.05 is achieved. The
entity pathway overlap shows the number of genes from our dataset that overlap with
the pathway superset of genes.
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68% of genes are labelled as ‘Tdark’ by the Pharos database, indicating that little

information is known about these targets. Of the remainder, 21% have limited evidence

of some compound interaction or meet the threshold of having either GO leaf terms or

an associated OMIM phenotype. Only ~5% of pBenign genes have existing therapies

targeting them, or strong evidence of compounds with therapeutic action. The final 6%

of pBenign genes could not be mapped.

Mean centrality measures indicate that genes in this subset are less connected than

the pNotBenign genes and the global (all genes across the dataset) median degree

(degree centrality 3 v 5 and 5 respectively). This is true for all measures of centrality

tested (data not shown).

The median O/E score reflected this pattern, with pBenign genes having a considerably

higher median value of 0.84 compared to 0.54 and 0.48 for pNotBenign and global

respectively.

Across all databases with the exception of the PharosDB, considerable proportions of

genes were lost due to lack of representation within the database.

3.3.8 s-dS Random Forest gene characteristics

The s-dS Random Forest model labels a total of 1,782 genes as pBenign. Of these,

615 are known to be members of the druggable genome. Analysis of this gene set

using Enrichr reveals no significant associations (after Benjamini-Hochberg correction)

to either GWAS catalog 2019 traits, UK biobank GWAS v1 traits, DisGeNet diseases or

any OMIM diseases.

The median O/E score was 0.77 and 0.837 for the pBenign and high confidence

pBenign genes respectively, and 0.402 for pNotBenign.

3.3.9 Feature importance estimation

Following the creation of a simplified random forest approach for the l-dS dataset, the

feature importance was estimated. This showed the most important feature to be

‘atleast1Hom’, an indicator of whether a gene is found in a homozygous pLoF state or

not. This was the most important feature by a wide margin. Running a similar model,

omitting this variable leads to a decrease in accuracy, with a notable increase in

misclassification of benign genes as deleterious. However, more variants are

mislabelled from deleterious to benign when not including “atleast1Hom”, indicating
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that we actually reduce false positives when ignoring this feature (Appendix table 1).

Due to the fact that this is a different model that has undergone different feature

selection and engineering steps, it is difficult to link this to the models previously

described in this chapter. Plots displaying summaries of the feature importance across

both model types (with and without atleast1Hom), for the 30 most important features

can be found in the supplementary data (Appendix figure 3.3.9).

3.4 Discussion

3.4.1 Predicting pLoF pathogenicity

Whilst there are strong indications that LOEUF and various biological factors relating to

pathogenicity are correlated, it is clear that LOEUF alone does not tell the whole

picture. This is exemplified by the fact that 310 genes are found in a homozygous pLoF

state within various sequenced cohorts, despite being constrained (o/e LoF < 0.5), with

45 being severely so (o/e LoF < 0.1). There are numerous reasons for why such

examples exist. Firstly, without deep curation of each of these genes, it is not possible

to say that these are definitely confirmed LoF variants. For example, the gene Filaggrin

is identified as a rhLoF harbouring gene from the BiB cohort. Two variants are found,

with a total of 2 and 26 ALT alleles counted. Both of these are reported in the gnomAD

cohort, with both being presented as low confidence pLoF, due to proximity to the gene

terminus (recall from chapter 2, pLoF found in a terminal region are less likely to induce

functional LoF). Additionally one of the variants is only found in a single instance in

heterozygous form, and whilst the latter is actually common within the Finnish

population (MAF ~ 2%), it is found on a non-coding transcript. Both of these variants

are examples of pLoF that are unlikely to be functional LoF inducing. Secondly, there

may be compensatory mechanisms at play, such as additional rescue variants, or novel

nonsense-mediated decay mechanisms 20. In addition to this, the ability to fully

examine the pLoF burden within human populations is challenging due to the sheer

scale of the necessary sample size. The LOEUF metric is currently underpowered to

detect constraint in around 30% of coding genes, primarily due to gene length 15. As

previously mentioned, targeting consanguineous and bottlenecked populations will

increase the probability of identifying the full spectrum of constraint 4. However, such

projects are costly and will take years to complete. It is for this reason that finding other

measures that may indicate which genes are tolerant to inactivation may be beneficial.
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To do this, it is important to try to consider as broad a range of possible contributing

data sources as is feasible. It is probable that other layers of the biological dogma will

be indicative of what is occurring at the genetic level. Such indicators, from areas such

as protein-protein interactions and tissue expression could provide a rough estimate of

the likely effect of pLoF in genes for which the ground truth is unavailable. However it is

clear that such efforts may suffer from some of the same inherent biases in the data

driven by undersampling of an array of ethnic groups. Or put differently, the

overrepresentation of a single group.

In order to simplify prediction slightly, we sought solely to attempt to identify proteins for

which no phenotype would be expected in spite of total LoF. We emphasise that the

binary classification of Benign and Deleterious is reductive, and especially, that genes

not predicted to be Benign should not be seen as truly Deleterious. It is for this reason

that we have defined negative labels as pNotBenign.

As the overarching intention in this project is to find suitable and safer drug targets, it is

important to note that the reality is that a degree of negative impact from drug

perturbation of a target is tolerable, as long as this effect represents a net gain in a

patient’s quality of life and/or disease management. We chose such a narrow group of

genes, namely those for which there is strong evidence of tolerated LoF observed

within 1 or more humans, in order to try to identify those genes that are least likely to

cause side effects. However, it should not be inferred from this that the remaining

genes should not be examined for drug targeting and, as we show in 4, most successful

drug targets are in fact constrained, or associated with negative phenotypes.

Defining Benign pLoF within the data is not necessarily trivial. We had to draw several

assumptions in order to proceed. First of all, it is certain that a number of the variants

found within any of the cohorts are spurious 14,15. Without follow-up of detected pLoF,

including manual curation of pLoF variants, functional assays and deep-phenotyping 21,

it is not possible to be certain of the assertion that these pLoFs are real.  Our work in

Minikel et al. (Nature, 2020) provides a clear example in the examination of MAPT

pLoF variants. MAPT gain of function variants are implicated in tauopathies, and drugs

are in active development for this target. Therefore this serves as a case study of

where knowledge of LoF may lead to a natural experiment to assess the viability of this

target. However, when examining variants found within MAPT, all pLoF variants either

occurred in exons not expressed in the brain (based on data from GTEx), or were the

result of identifiable annotation errors 4.
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This example illustrates the issue with the generation of our LoF phenotypes

categories. A mitigating factor in this is that the papers used to define Benign pLoF all

used LOFTEE, and therefore the probability of false positives was reduced 15. However

versions of LOFTEE used were older than that reported in Karcweski et al. (2020), and

therefore it is likely that error rates of greater than 25% still persist. One of the largest

differences is the lack of pext score based filtering 22. In spite of this, such an approach

is the only available way to attain a list of human-derived homozygous pLoF data.

The inclusion of the GO data allows for the contextualisation of single gene data into

the greater surrounding system, such as cellular pathways and functional groups 23.

This is exemplified by the t-SNE visualisations in Fig. 3.10, where the differing

phenotypes exhibit differing local patterns of density whilst maintaining the same

overall global shape. We infer from this that all areas of the GO are covered by genes

of each phenotype, but it is clear that there are some functional groups with much less

tolerance to perturbation. This is further exemplified by the LOEUF bin view of this data

(Fig. 3.11), where we observe more gradual gradation in said densities. As previously

discussed, GO annotations have been used in a wide range of predictive contexts,

such as gene function prediction 24–26, drug discovery 27 and disease gene identification
28–30. This draws us to conclude that GO and possibly other functional annotations may

be informative in discerning genes tolerant to inactivation. In future efforts, it may be

worthwhile to embed other ontologies and include these as features within the input

feature set, however steps would have to be taken to prevent excessive collinearity

between features (or at least account for them in any feature selection and engineering

steps).

Ensemble models can be powerful ways of increasing performance in complex

datasets, however they are inherently poor at providing explainability in a model.

Explainability refers to the ability to trace back from a model prediction to the features

that led to that prediction being made. This is something that can glean useful insights

into our dataset. Take for the example the case where we are trying to predict which

plants will grow best in a garden based on knowledge of related species of plant. The

model telling us that the amount of sunlight in the afternoon is a strong predictor of the

plant’s health is a useful insight that reveals further information about the data that

might not have been immediately obvious (albeit in this example you would imagine

that was an obvious one).

Our dataset comprises 316 features, and it is almost certain that these features will not

contribute equal weight in the prediction problem at hand. It is for this reason that we
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decided to create another, simplified random forest. Here we didn’t include feature

engineering steps, which construct abstractions of the original data. However, this

resulted in reduced model performance, and the results from this model have to be

treated with caution. The features that are important in this model will likely be related

to those that are important in the random forest ensemble model, but we do not assert

in any way that they are the same. With these caveats stated, it is interesting to note

that the single most important feature of this simplified model was the ‘atleast1Hom’

feature, a binary indication of whether a homozygous LoF variant had been identified in

any of the datasets considered. This is a relatively intuitive  finding, as the rarity of such

variants is likely a driving confounding variable. As previously described, homozygous

LoF variants are rare, and all of our benign LoF labelled genes by definition must be a

1 for ‘atleast1Hom’. This is more of a problem within the l-DS than the s-DS due to the

imbalance nature of the l-DS set. However, in considering this, it is also important to

note that genes predicted benign by these models are generally also predicted by so

by the s-DS random forest approach. This model, with an F1-score of 0.93 predicts 441

of the 442 genes predicted as benign by the l-DS ensemble model. Additionally,

examination of the confusion matrices produced in our simplified random forest models

suggests that error drives misclassification of benign genes as deleterious. Due to our

emphasis being on the correct identification of benign genes, false negatives are less

problematic.

Future iterations of this work would surely require us to first update the list of benign

genes to mirror the increasing sequencing-based knowledge available, and specify

more features that may be of use. We would especially like to include features such as

network specificity, and identify approaches to integrating group network clustering

algorithms data into the prediction model. We would also seek to include more up to

date sources of LoF data. We limited the choices to papers already published prior to

January 2019, and therefore there would be scope to expand upon this dataset with

more up to date data.

3.4.2 Network analysis

As significant genetic data is imparted by the use of the LOEUF score, we sought to

broaden the range of data by including network metrics. We built these measures

based on stringDB protein-protein interactions. Through this approach we see that

some measures are better at differentiating between the different phenotypes to others.
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Previous studies have shown the utility of degree centrality metrics in biological

inference, whether it pertains to cell essentiality 31–34, disease gene identification 35 and

correlation to constraint 3,14,15. However, the applicability of many other network

approaches to biology have also been demonstrated. This includes other measures of

centrality such as closeness 36 and betweenness 37 32,35,38,39.

Whilst we have explored a greater range of network centrality measures - it remains

clear that more measures remain untouched. We believe that these should be

explored, and that special attention should be paid to measures such as integration

centrality, that lend weight to total network dynamics, rather than purely locally based

measures such as degree centrality. In addition to these, measures of network

modularity require proper integration into the featureset, although the value of these is

currently unclear, and therefore this would be on a more exploratory basis.

3.4.3 Gene predictions

We generated several models based on three iterations of data. From these iterations

we report five models, three based on the l-dS, 1 on the s-dS and 1 on the l-dS in

which gnomAD data has been removed. As the classes are unbalanced, we reported

precision and recall scores with a balanced F1-score to summarise these (Table. 3.2).

The s-dS ensemble model clearly out-performs all other models, however this is likely

indicative of the nature of the problem it is being asked to solve. The strict definition of

the deleterious genes in the s-dS means that we are essentially defining our positive

and negative labels as the extremes of the distribution. That is to say, the positive

labels, tolerated homozygous pLoF genes are the best case scenario, and the negative

labels, Mendelian disease genes and essential genes are the worst, in which damaging

effects are all but certain upon knockout of the gene. This is reflected in the probability

of prediction for the labels where we see ~40% of genes predicted with a probability of

> 0.9 and ~70% at > 0.75 (Fig. 3.12). Such certainty in labelling is in stark contrast to

what we see when examining the l-dS Ensemble classifier data, where only 39% of

genes have a probability of > 0.75. This implies that the data are less clear here, as we

would expect from introducing a wider range of damaging effects. However we feel

doing so is important due to the question at hand; to identify those genes that will not

result in negative phenotypes upon total or partial inhibition.

As is exemplified by the poor scores achieved upon removal of gnomAD data (Table

3.2), the inclusion of O/E data (and allele frequencies and population specific
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frequencies) is informative for classification. Using this score as an indicator of how

closely we replicate the original set Benign genes serves as a rough measure of how

successfully we have labelled the unlabelled genes. Whilst we observe close similarity

between the deleterious sets for the l-dS and s-dS, there is a marked difference in the

O/E scores for the ND sets, with the s-dS ND closely mirroring the global O/E score of

0.48, versus the l-dS ND set which is markedly less constrained. As we have

previously stated, we posit that this indicates better capturing of genes which would

cause negative phenotypes upon knockout.

Both models predict pBenign genes with a median O/E score that is similar to that of

the Benign genes (as defined by actual observation of homozygous knockout in

humans). Whilst the O/E ratio is a useful indicator, we caution against

overinterpretation of information derived from this, as the ratio is explicitly a measure of

tolerance to heterozygous, not homozygous pLoF inactivation.

3.5 Conclusion
The identification of homozygous LoF genes in healthy individuals could lead to a new

source of otherwise unexplored targets for drug development. Such genes may provide

safe targets with fewer side effects and a greater chance of reaching the market. The

accumulation of current knowledge shows that we have already uncovered more than

1,700 such genes of which 204 are predicted druggable or Biopharmable, with more to

be discovered as sequencing efforts are expanded globally.

In this and the previous chapter we have covered many areas relating to LoF

specifically. We have seen how the measure of tolerance to heterozygous pLoF,

LOEUF, is a functionally relevant metric with effects that can be seen at the protein

level in addition to the genetic.

Following from this, we have explored the possibility of using features such as LOEUF

amongst many others to try to predict genes in which homozygous pLoF will be

tolerated. The underlying assumption in this endeavour is that such genes will make

attractive drug targets. We describe several such models, based on different versions

of data. The best performing model overall is a Random Forest model, although we feel

that this model and the accompanying dataset is less reflective of the hypothesis we

are aiming to test. For this reason, we promote the Ensemble model built on the data

with a less stringent definition for deleterious genes. This model proposes an additional

117



442 pBenign genes. Of this group, a further 180 genes are predicted druggable, nearly

doubling the pool of theoretically ‘safe’ drug targets.

The information preceding is built on the premise that the identification of homozygous

LoF containing genes will lead to opportunities in drug development. The following

chapter will examine the utility of these assignments as predictors of drug development

success, and therefore aim to clarify whether there is merit in this approach.
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Chapter commentary

The work in chapter 3 sought to catalog benign pLoF in sequenced cohorts, and then

predict more benign genes.The initial motivation for this work was that such benign and

pBenign genes would make better drug targets due to their tolerable safety profiles.

This hypothesis was guided by the observation that genes harbouring LoF mutations

were twice as likely to succeed from phase 1 to clinical approval 1. Seeking to expand

on this finding, and in order to test the validity of the machine learning labels we

introduced in the last chapter, we sought to ascertain the probability of success of

drugs in clinical trials based on LoF phenotype. We also expanded this into a more

general exploration of the use of pLoF genetic information for drug discovery. The work

following was completed in collaboration with the dermatological research team at

AbbVie in Worcester, MA, with all work described herein being the product of that

collaboration. Work from this chapter were also combined to produce a paper, sharing

the name of this chapter (manuscript in preparation).
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4.1 Introduction

4.1.1 Using loss-of-function variation data to aid drug target
selection

Genetics has proved to be a powerful tool to inform drug discovery, offering direct

biological insights from humans to complement those from model organisms. The

analysis of historic drug data development data by Nelson et al. (2015) and King et al.

(2019) both show that drug-targets genetically associated with disease are more than

twice as likely to obtain market approval 2,3. More specific evaluation of drug-targets

harbouring rare homozygous loss of function (rhLoF) variants reveals a similar

association, with such targets being twice as likely to reach approval from phase 1

trials (11.4% versus 6.7%, 𝝌2 test; p = 0.046) 1. Here, we further delineate this

relationship, and explore whether the phenotype labels we generated in chapter 3 yield

similar results. We use the data from the l-dS model for the duration of this chapter, and

any reference to predicted benign or pBenign data refer to these data.

LoF variants, arising from stop-gained, essential splice and frameshift variants, provide

insight to the essentiality of a drug-target. The deleterious nature of such variants

means they are generally rare as variants that reduce fitness are selected against.

However, with increasingly large-scale sequencing projects the prospect of an

accumulating and ever more comprehensive catalogue of such variation is imminent
4–6.  LoF variation has a high potential to inform drug discovery, by serving as a proxy

for lifelong partial or complete inhibition of a protein target 7, thus providing us with

evidence of potential safety profiles. Genes harbouring LoF variants with no associated

negative phenotype, are consistently over-represented among targets with a successful

history of drug development and hence are more likely to represent safer targets for

long term modulation 1.

Here we investigate the value of rhLoF information in the context of drug discovery,

using our preliminary catalog of the known homozygous predicted LoF (pLoF) variation

observed in sequenced populations (see chapter 3 for details) in addition to our

predicted genes that may harbour benign rhLoF variation. We examine the probability

of success in drug development associated with these data, and report that benign

pLoF data is predictive of drug target success in non-oncological indications (ordered

logistic regression, beta 0.41, p-value = 3.4e-4) to a greater extent than genetic data

previously studied, and other measures of constraint 2,3,7. We also highlight that
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underexplored groups of protein-coding genes, in particular olfactory receptors (ORs),

may provide functionally relevant targets with favourable safety profiles. Our findings

support the wider use of rhLoF data for the selection of targets with an improved

chance of success in drug discovery.

4.1.2 Looking beyond canonical G-coupled protein

receptors (GPCRs) as drug targets

GPCRs are the most widely studied and drugged target family, serving as the primary

targets of 34% of all FDA approved drugs 8. The interest in this family is driven by their

involvement in a wide-range of physiological processes as key signalling proteins.

GPCRs are the largest of the membrane-protein families, with over 800 characterised

so far, and interact with a large range of ligand types 8–10. Of these proteins, a large

proportion are olfactory receptors (ORs), accounting for around 400 genes (with a

further 600 pseudogenes) 11. ORs gained their name due to their role in our sense of

smell and the historic belief that they were solely expressed in olfactory tissues 12,13.

However, further study into ORs has revealed widespread ectopic expression, as well

as involvement in human disease (this will be examined in more detail within this

chapter). Of the remaining GPCRs, 108 are the targets of approved drugs, with each

target having a median of 4 unique approved agents 8,14. This signifies a saturation of

these targets has been achieved, and that other GPCRs should be explored 15,16.

One of the most significant hurdles in designing drugs for GPCRs is cross-reactivity,

caused by the drug binding with other GPCRs resulting in adverse effects 17. This issue

is also observed in the targeting of other protein super-families such as kinases and is

largely driven by the high degrees of sequence homology observed in these highly

diversified families. The core mechanism of action of GPCRs remains the same; the

extracellular domain of the protein binds to a ligand, causing a conformational change

in the protein that exposes a guanine nucleotide exchange factor. This then activates

the associated G-protein, which propagates downstream signalling. Whilst the ligands

and G-proteins are hugely varied, the fundamentals are not, and therefore the active

sites responsible for this activity are highly homologous. In addition, functional effects

of GPCRs are difficult to delineate, a point highlighted by the increased observation of

pleiotropy across multiple signalling pathways 18–21. These similarities in structure and
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overlap of function make targeting the active sites of the protein challenging, as

selectivity is difficult to accomplish. Clinical data suggests that GPCRs are the most

enriched of the 5 major target protein-families for side effects 22. A significant proportion

of these effects are caused by inter-paralog cross-reactivity, much as with kinases 17. In

order to ameliorate this problem, more specific drugs must be created, however doing

this in the narrow band of GPCRs currently targeted will be challenging 15,16. Therefore

other, less studied, more functionally divergent GPCRs should be investigated in the

hopes that allosteric inhibitors exploiting sequence differences between homologs can

be found 23.
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4.2 Methods

All methods relating to the generation of the LoF dataset are fully described in chapter

3. This includes the generation of the pLoF variation dataset, with additional

enrichment of features and the generation of predictive benign pLoF models (see

Chapter 3.2).

4.2.1 Statistical modeling of LoF benign genes and drug

target approval

We used the drug target approval dataset and genetic evidence dataset assembled by

King et al. (2019). In brief, a latest historical development phase was inferred for

target-indication pairs that are not in active development, as listed in the

Pharmaprojects database. Information on causal links between targets and diseases

were obtained from GWAS catalog (MacArthur et al. 2017) and OMIM and were linked

to Pharmaprojects indications based on medical subject heading (MeSH) similarity. To

evaluate the clinical performance of LoF benign genes we selected all targets with the

latest development stages of Phase I, Phase II, Phase III, and Approved. 589 unique

indications were represented in this dataset, including 78 oncology indications. We then

annotated all genes in this drug target dataset of pLoF benign status. Based on manual

annotation we have 435 and 5592 target-indication pairs with a benign or deleterious

gene respectively. Based on statistical prediction of benign pLoF labels we have 65 and

1589 target-indication pairs with a benign or deleterious gene respectively.

We first separated oncology from non-oncology indications and manually annotated

benign pLoF genes from the supervised model predictions. To model the ordered

progression from Phase I to Approval we fitted ordered logistic regression models on

these four subsets of the data using benign LoF status, genetic support and LOEUF as

covariates (Table 4.1). To improve statistical power, we also ran an ordered logistic

regression on the full dataset, which included indicator terms for oncology indications

and genes labeled manually versus predicted by the statistical model as LoF benign

(Table 4.1). Ordered logistic regressions are a sub-class of logistic regression that

account for the ordinal nature of the outcome data by calculating the probability that a

value will fall between a defined threshold. No intercept term was added in this
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instance. To model the progression between individual clinical trial phases we fitted

twelve separate logistic regression models (Table 4.2), again separating oncology from

non-oncology indications and manually annotated benign LoF genes from the

supervised model predictions, and including benign LoF status, genetic support and

LOEUF as covariates.

4.2.2 Gene expression analysis of Benign and pBenign

genes

Gene expression data for the olfactory receptors OR2T10 and ORT211 were assessed

using GTEx (GRCh37) and associated data contained within the ArrayStudio human

DiseaseLand dataset. Data were also queried for  gene expression in atopic dermatitis

and psoriasis specifically using data from GSE121212. This dataset was chosen

specifically as it was generated by the collaborating group at AbbVie.

4.2.3 Gene set enrichment analysis

We conducted gene set enrichment analysis to further understand the properties of the

gene lists. This was conducted using the Enrichr web interface 24. Gene lists were

uploaded and pathway, ontology and disease data were queried. This was done across

the pBenign gene list.

129

https://paperpile.com/c/Zg9J5L/Qmm1


4.3 Results

4.3.1 Estimated effect of pLoF benign status on drug target

success

With the ever increasing cost of drug design and development, exacerbated by the high

attrition rate in early and late-stage development 25, the need to select good targets is

clear. Nelson et al. 2015 and King et al. 2019 illustrated a beneficial effect of GWAS

and OMIM genetic evidence on drug target approval probability 2,3. We replicate this

finding in our dataset (Tables 4.1 and 4.2): presence of genetic support is significantly

associated with higher drug target success probability in both oncology and

non-oncology indications. Minikel et al. identified a small increase in LoF constraint (as

reflected in lower observed/expected LoF ratios) among targets of approved drugs

versus all protein-coding genes 7. We replicate this finding in our dataset: lower LOEUF

scores are associated with increased probability of drug target success, even after

controlling for genetic evidence.

We found that our benign pLoF annotation is also significantly associated with drug

target success in the ordered logistic regression models even after controlling for

genetic support and LoF constraint based on the LOEUF metric (Table 4.1). Under

these models, genes with benign LoF variants have an increased probability of clinical

success. In the analysis of individual phase transitions (Table 4.2) we also find that

genes with benign pLoF variants (based on manual labeling) have a higher probability

of transitioning from Phase II to Phase III.
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Table 4.1 - Estimated effect of benign LoF status on the probability of advancing
in clinical development. Indications are partitioned into oncology and non-oncology
indications. Genes are partitioned based on the source of their benign LoF annotation:
manual labeling versus statistical prediction. An ordered logistic regression model is
fitted to estimate the effect of the benign LoF annotation on clinical trial success, while
controlling for genetic support and intolerance to LoF variation (as measured by the
LOEUF metric). A combined ordered logistic regression model is also fitted to improve
statistical power by analyzing the full dataset jointly. Indicator variables are used in this
combined model to label the oncology versus non-oncology indications, and the
manual versus statistically predicted benign LoF annotations. Regression terms that
pass the 0.05 significance level are highlighted in each model. Statistical significance
can be affected by sample size, so we also record the number of unique target genes
and unique target-indication pairs for each regression. The sign of the beta coefficient
for each feature records whether the feature has a positive or negative impact on drug
target success probability. When statistically significant, benign LoF status increases
the probability of target success, even when controlling for genetic support and LOEUF
scores.
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Table 4.2 - Effect of benign LoF status on the probability of advancing from
individual clinical trial phases. Indications are partitioned into oncology and
non-oncology indications. Genes are partitioned based on the source of their benign
LoF annotation: manual labeling versus statistical prediction. Twelve logistic regression
models are fitted to estimate the effect of the benign LoF annotation on transition from
individual clinical trial stages, while controlling for genetic support and intolerance to
LoF variation (as measured by the LOEUF metric). Regression terms that pass the
0.05 significance level are highlighted in each model. Statistical significance can be
affected by sample size, so we also record the number of unique target genes for each
regression. The sign of the beta coefficient for each feature records whether the feature
has a positive or negative impact on clinical trial transition probability. When statistically
significant, benign LoF status increases the probability of target success, even when
controlling for genetic support and LOEUF scores.

We then queried our Benign and pBenign genes for overlaps with current successful

drug targets, as well as genes predicted to be promising future drug targets. We

leveraged the genetics-based target prioritization framework developed in Fang et al.

(2019, Priority Index) 26. The Priority Index approach has curated historic drug target

success data for 30 immune traits, generating prioritized novel target gene lists based

on integrated analysis of multiple genetic lines of evidence. We identified highly

statistically significant overlaps between the top Priority Index hits across immune

indications and Benign and pBenign genes (p = 8.26e-07 and p = 9.55e-05 respectively

based on hypergeometric tests, Fig. 4.1A). In addition, we have identified multiple

Benign and pBenign genes that are current successful drug targets in the immunology

space (Figure 4.1B).
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Figure 4.1 - Overlap between LoF benign genes and genes highlighted by the
Priority Index pipeline as higher probability of clinical success (A) or already
approved drug targets (B) across 30 immune indications. Overlaps with already
approved targets highlight the potential of LoF benign genes to serve as successful
drug targets. Overlaps with top gene hits from the Priority Index model highlight
potentially new target opportunities in the immunology space that lie at the interface
between the Priority Index genetic and epigenetic evidence and the benign LoF
annotation. Asterisks denote statistical significance based on a hypergeometric test,
p-value < 0.0001.
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4.3.2 Gene set enrichment
Gene set enrichment analysis of the 442 pBenign genes reveals significant enrichment
of ORs (see table 4.3) in both KEGG and BioPlanet pathways. Similarly, the only
significantly enriched ontology terms are biological processes related to olfactory
receptor activity (GO:0004984).

Term
Overl

ap p-value
Adjusted
p-value Odds Ratio

Olfactory transduction 25/44
4

2.06E-05 2.59E-03 2.74

Herpes simplex virus 1
infection

20/49
2

6.89E-03 4.34E-01 1.92

Ether lipid metabolism 3/47 8.53E-02 1.00E+00 3.03

alpha-Linolenic acid
metabolism

2/25 1.05E-01 1.00E+00 3.86

Phenylalanine, tyrosine
and tryptophan

biosynthesis

1/5 1.06E-01 1.00E+00 11.08

Table 4.3 - Gene set enrichment analysis of KEGG pathways. Table of the top five
enriched KEGG pathways across 442 pBenign genes, ordered by adjusted p-value.

Similar results are shown when examining ontology data, with OR activity from GO
biological pathways showing enrichment with an adjusted p-value of 0.005 (Table 4.4).
Ontologies queried included the other levels of the GO (cellular compartments and
molecular function), the Jensen tissues, compartments and diseases ontologies, and
the Human Phenotype Ontology. These results are presented in addition to the DAVID
based enrichment analysis conducted in chapter 3.3.8.
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Term Overlap p-value
Adjusted
p-value Odds Ratio

olfactory receptor activity
(GO:0004984)

20/311 2.17E-05 0.0051 3.14

epinephrine binding (GO:0051379) 2/8 1.25E-02 0.85 1.48

triglyceride lipase activity
(GO:0004806)

3/25 1.72E-02 0.85 14.8

organic anion transmembrane
transporter activity (GO:0008514)

5/70 1.93E-02 0.85 3.43

complement receptor activity
(GO:0004875)

2/11 2.35E-02 0.85 9.87

Table 4.4 - Gene set enrichment analysis of GO biological pathways. The top five
most enriched gene ontology biological pathway terms across the 442 pBenign genes,
ordered by adjusted p-value.

No other significant associations were found using the full set of pBenign genes.

Similar analysis of the manually labelled benign targets reveals enrichment for terms
related to drug metabolism, with seven of the top ten pathways relating to ligand
related processes. The results shown in table 4.5 related to the BioPlanet pathway
data, however similar results were also found in the WikiPathways Human data and
KEGG data. No results reached adjusted p-value significance (adjusted p-value <
0.05), however this search involved a large number of genes, with 1,728 tested, and
therefore we consider the nominal p-values to be worth acknowledging.
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Term p-value

Cytochrome P450 metabolism of
xenobiotics

0.00012

Generic transcription pathway 0.00016

Drug metabolism: cytochrome
P450

0.0063

Linoleic acid metabolism 0.0023

Hydrolysis of
lysophosphatidylcholine (LPC)

0.004

Retinol metabolism 0.0033

Tamoxifen metabolism 0.0042

Drug metabolism: other enzymes 0.0043

Taste transduction 0.0043

ABC transporters 0.006

Table 4.5 - Gene set enrichment analysis of BioPlanet pathways. 1728 benign
genes were assessed, all p-values are nominal, adjusted p-values did not reach
significance.
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4.4 Discussion

Retrospective analyses of drug-development efforts highlight that genetic information is

predictive of development success 2,3. In particular, OMIM and GWAS data supporting

target-indication links are positively associated with successful clinical development.

We sought to expand on this work by examining the value of homozygous LoF variation

in predicting drug-development success. Analysis of pLoF within drug targets reveals

elevated levels of constraint, despite drug-targets found to harbour rare-homozygous

pLoF being twice as likely to make successful targets 1,7.  Our work clarifies the

relationship between LoF variation and drug-development success, showing it provides

the strongest predictive value of features tested in non-oncology indications.

4.4.1 LoF labelling to predict trial probability of success

First we catalogued data relating to rhLoF, from large-scale genomic studies in diverse

populations, classifying variants as either benign, deleterious or not determined. The

rarity of homozygous LoF variation means finding all such variants will require orders of

magnitude more sequencing, and in particular, the targeting of bottlenecked and

consanguineous populations 7. Thus we built an ensemble random forest approach to

predict 492 benign genes, in addition to the cataloguing of 1744 benign rhLoF genes

within sequenced cohorts. Of these, 818 are likely druggable (of which 120 are

pBenign).

Our findings recapitulate that genetic information adds to the probability of

drug-development success. However we uncover greater subtlety in this association by

applying a more granular approach. Reasoning that more severe safety profiles are

tolerated for oncological indications, we split target-indication pairs into non-oncology

and oncology groups. Our findings indicate that our benign LoF annotation is more

informative than both LOEUF and genetic support annotations for non-oncology

target-indication pairs (beta = 0.41 vs -0.27 and 0.29 respectively, Table 1)  .

Additionally, through a phase-specific ordered logistic regression, we observe that none

of the information classes predict success in phase I-II or phase III-approval in

non-oncology indications. Due to a lack of data on the reason for drug failures, we can

only broadly infer that efficacy and safety may be positively predicted using these data.
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Divergence occurs when examining oncology classes, where benign pLoF adds no

value for oncology-target pairs either in the combined model, or in any constituent

phase-transition. Conversely, LOEUF scores and genetic support labels are informative

in oncology indications. This difference in effect, also observed in Naramsimhan et al.

(2016) and Minikel et al. (2020), appears contradictory. It is important to note that whilst

benign status and LOEUF value are both ascertained through the identification of pLoF

variation, the former measures tolerance to homozygous LoF inactivation, whereas the

latter is primarily a measure of intolerance to heterozygous LoF. Further study may

reveal that effects are in part due to incomplete penetrance, or unidentified rescue

effects, however this remains outside the scope of this work.

Despite relatively high performance in predicting pBenign pLoF genes, we observed no

effect on drug target probability of success. However, we highlight that the number of

genes within these sets are small, and as these genes are by definition understudied,

we likely suffer from a lack of power.

4.4.2 Olfactory receptors and the dark genome

Within both our benign and predicted gene sets, we see a heavy enrichment for

understudied genes (‘Tdark’ genes, Fig.3B, Tables 3.3 and 3.4). Of note within this

group are the OR genes. Historically understudied, more recent work has shown that

over half of ORs are expressed beyond olfactory tissues. With only 10% of ORs being

functional characterised, they have already been shown to be a potentially untapped

pool of therapeutic targets or biomarkers in cancer 27–38, heart disease39, blood pressure

and kidney function40 , hair loss 41 and more general metabolic processes (see 42 and 43

for detailed reviews). We add to this growing list OR2T10 and OR2T11.  Despite low

overall levels of expression across tissues, studies have previously linked these ORs

with autism spectrum disorder 44–46. OR2T10 and OR2T11 are both significantly

downregulated in psoriasis and upregulated  in the synovium of rheumatoid arthritis

patients (log2FC 2.7 and 1.9 respectively, with adjusted p-value < 0.05, Fig. 4.2A).

OR2T11 is additionally upregulated in B cells and neutrophils of Systemic lupus

erythematosus patients, and in cell models of kidney disease (Fig. 4.2B).

138

https://paperpile.com/c/Zg9J5L/r3sp1+5U1KP+3y2lz+H1Joy+pYNdn+78Wtj+AlKSl+Ccx2J+xknCu+B0DXm+nELHQ+YAKhz
https://paperpile.com/c/Zg9J5L/sf0zt
https://paperpile.com/c/Zg9J5L/uFD7B
https://paperpile.com/c/Zg9J5L/6SFAh
https://paperpile.com/c/Zg9J5L/w8XPD
https://paperpile.com/c/Zg9J5L/mFWHp
https://paperpile.com/c/Zg9J5L/3Jzrf+pgkbq+pRHHL


Figure 4.2 - Gene expression of OR2T10 and OR2T11 in healthy and diseased tissue.

A) Gene expression data for OR2T10 and OR2T11 across all tissues in the Tissue_GTEx

B_37 dataset in ArrayStudio. Expression in skin is highlighted by blue boxes. B) Boxplots

showing the significant levels of downregulated expression of OR2T10 and OR2T11
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when comparing healthy volunteers (HV), and atopic dermatitis  and psoriasis patients,

from non-lesional (NL) to legional skin (LS).

We saw limited benefit in analysing the pBenign targets in this context, with no

significant betas arising from the models fit. However it must be noted that the numbers

of pBenign genes are much smaller, with only 177 unique genes at phase 1 versus 697

of the manually labelled genes in non-oncology indications. Additionally, the average

number of indications for each gene was greater in the pBenign group, with 6.5

indications per gene vs 4/7 indications per gene in the manually labelled genes.

Therefore, poor target selection, in which the target would not work regardless of the

indication may affect the pBenign genes more. As covered in chapter 3, the genes

originating in the ND set are less well studied, and less likely to be targets of approved

drugs. This means that this sort of analysis, in which we review historic drug targeting

may similarly suffer from this lack of knowledge. Targets that are less known may not

be tested in a variety of other indications, as areas of the dark genome remain

unexplored 15. Similarly, as discussed in chapter 3, this lack of information may just

mean that our predicted labels are not reliable, and that as sequencing efforts proceed,

we will see that different features are important for prediction of LoF status. This

knowledge may lead us to more clearly understand specifically what data relating to

LoF is predictive of drug probability of success.

Gene set enrichment analysis is a widely used approach to associate biological and

functional information with a list of genes. In this case, examination of the benign genes

within our dataset shows the relative enrichment of drug-metabolism based pathways

(see table 4.5), although this did not reach significance after multiple-testing correction.

Given the evidence that suggests that these benign genes may be better targets, this

association should be further investigated, as it may offer a functional explanation for

the positive association between benign LoF status and drug development success.

To our knowledge, we are the first to examine drug development probability of success

genetic associations in this detail. We demonstrate the heterogeneity of predictive

power associated with differing forms of genetic information at different stages of drug

development and highlight that pLoF can inform both non-oncological and oncological

drug discovery efforts. This work also highlights the reasons to further explore the dark

genome, as many viable, safe and effective targets may be contained in these

oft-ignored genes.
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4.5 Conclusion
In this chapter we demonstrate the utility of our LoF phenotype classification. The

classification of genes based on observed homozygous LoF is predictive of probability

of success in historic drug data. We also show that different types of genetic

information contribute value at different stages of drug development, likely indicating

that our LoF labels are indicative of tolerable safety in clinical trials. This supports the

notion that gene LoF is a model for lifelong inhibition, and that it could impart

information that would greatly aid in target selection. Exploring the targets that we

hypothesise to be safer targets, we see an enrichment for GPCRs and oGPCRs, and

particularly within this group we find the understudied olfactory receptors. As members

of the druggable genome, there is value in studying these genes further, especially as

their involvement in disease is more fully appreciated.

Our work contributes to the growing body of evidence on the value of human genetics

in all stages of drug development, in particular highlighting the value of cataloguing

homozygous LoF variation.
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Chapter commentary
The data included in the 100,000 genome project (100KGP) are broad and diffuse, with

many different sources of information from many different fields being collected.

Representing such an array of data in a consistent manner is a challenge across many

areas of biology. This is further compounded by the need for said data to be machine

readable, thus allowing application of a full computational toolkit to fully explore the

data. In this chapter I will describe efforts to structure and standardise data into a

simple GEL disease database. Following this, I will outline the ways in which I have

facilitated visualising the database in a number of different ways with useful helper

functions and output pages to provide salient information about a disease and its

phenotypes and genes. Much of this work reflects the original direction of this thesis, in

which downstream repurposing would occur from this database. However due to the

opportunity to complete a placement at the Broad Institute, the focus of this thesis

pivoted to an in depth analysis of how human genetics can be used to inform drug

discovery. As I outlined in the introduction, human genetics has become key to the

increasing success of drug development in recent years, and plays an important role in

deciding which targets we should prioritise for development. As such, the data and

insights generated from the preceding chapters are directly applicable to the database

described herein.
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5.1 Introduction

5.1.1 The use of ontologies as a tool for disease
understanding

The explosion of data generated within the biological sciences since the turn of the

century has led to the need to develop new data handling and storage approaches.

The emergence of ‘Omics’ has generated a wide array of data, ranging from genome

and transcriptome sequencing data to metabolome mass-spectrometry, imaging and

electronic health record data. The proper representation of such heterogeneous data in

a form that allows for knowledge to be gleaned from not just one area, but between

different fields, is an important and challenging task. A successful approach to such a

problem is the generation of ontologies.

Definitions for ontologies are relatively broad (in itself a point of irony), which is largely

reflective of their universal application to any field. In the broadest sense, they are a

structured vocabulary of a knowledge-base - a formal way of representing knowledge

in which concepts are described both by their meaning and their relationship to each

other. Generally shared key features of ontologies include a domain-specific

vocabulary, objects (individual objects, for example a gene) classes and relations (sets

of objects and the way they can be related to each other) and attributes (a feature of

the objects and classes). The source of data used to derive this knowledge-base can

be diverse, representing meta-data, experimental data and data from disparate

organisms, among others. Reflecting this, the data forms themselves can be

recalcitrant to harmonisation, with some taking forms such as strings, integers, and

floating-points. However, what can be more easily derived is the relationship between

them, such as the statement that DBN1 ‘is a’ gene, the product of which ‘colocalises

with’ actin. The words in inverted commas are standardised relationship terms and are

the links between different sources of information.

The main aim in the construction of such data forms is the ability to link diverse

datasets in a machine-readable way. The Semantic Web, an extension of the World

Wide Web in which data structures are tagged to allow for machine integration,

represents a key development in the field of knowledge integration.  The more specific

use in the field of Biological Science is referred to as Semantic Biology 1. Here
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knowledge is reduced to the form of a semantic “triple” of a subject - predicate - object

(DBN1-colocalises with-actin). The classical example of a biological ontology is the

Gene Ontology (GO) 2. First developed at the turn of the millenium, this ontology

structures data as directed acyclic graphs (graphs in which the direction of relationship

between nodes is defined and unidirectional) relating to gene and protein roles across

many organisms (Fig. 5.1). In the intervening years, many more ontologies have

emerged covering many different areas of interest, including the Human Phenotype

Ontology 3 (HPO) and the Online Mendelian Inheritance in Man 4 (OMIM) ontology.

Figure 5.1 - An example of a DAG from the Gene Ontology. Here the term ‘myoblast

development’ is described by its relationships (denoted by arrows between entities) to

other entities 5. Relationships are directed, and lead from the most specific term to the

least specific.
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5.1.2 Databases as repositories of biological knowledge

5.1.2.1 Database design

Databases are used to store data in a structured manner in order to increase both

query and computation efficiency, while reducing duplication of data, thus  minimising

storage requirements. Databases are ubiquitous in the modern world, with all forms of

data being stored in this manner. However in reality there are a large number of

different databases that can be chosen, with structures varying depending on how the

database may be used or what form the original data take. For this project, we used the

most commonly used database type 6, the relational database management system

(RDBMS). In an RDBMS, data are stored in tables as rows and columns, with each

table representing an entity, columns representing an attribute of the entity, and rows

are data of an entity 7. Querying of RDMSs is achieved using a Structured Query

Language (SQL), where commands and statements are used to build, query, edit or

delete data stored within the database. An open source variant, known as MySQL, was

our language of choice for this project.

In order to build our database, we needed to first normalise our data (see Fig. 5.2). In

the context of database construction, normalisation is the process of imposing order on

the data, such that data integrity is maintained, and that storage and querying efficiency

is maximised. In brief, the first normal form (1NF) ensures that repeated groups are

reduced to atomic (indivisible) representations, that each set of data has its own table,

and that each of those sets can be identified with a primary key. So for example, a list

of genes and their proteins would be separated into table 1 - Genes, and table 2 -

Proteins. Only one instance of each gene or protein would be included within their

respective tables. Each gene or protein would be assigned a key, for example G1 and

P1 for the first gene and protein in the table respectively. Now to identify a row from our

original table of genes and proteins, we would combine a gene and protein ID, which

due to their being atomic, would be unique. The next step, or the second normal form
(2NF), creates a single column primary key. So for example, if you wish to include

functional properties of a gene and protein, the only way to avoid repeated

gene/protein lines and keep data atomic (i.e. not have multiple functions in a single

row), would be to separate the functional data into a separate table. Following this is

third normal form (3NF), which breaks transitive dependencies. Values that may

change need to be separated so that the value only needs to be changed in one place,

rather than in each record where it is used. Each of these forms are dependent on the
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form before, so 2NF depends on 1NF, and 3NF on 2NF. Whilst there are more normal

forms than the 3 used in this database, we did not think them necessary for our

particular use-case.

Figure 5.2 - An overview of data normalisation. Key considerations when
normalising data are listed as questions, followed by the actions required to satisfy
them. This is followed by a simple example to illustrate these principles in action.
Adapted from Introduction to Modern Database Systems 8.

5.1.2.2 Key component databases

We use various different biological datasets to enrich the existing disease data from the

GEL ontology. These are intended to add additional information, and possibly reveal

other associations between the diseases. Examples of how such enrichment of data

can be useful are seen in chapters 3 and 4, where we use these data as additional

features for machine learning. Here we will outline the most important in terms of

gene-disease associations, drug data and gene function.
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5.1.2.2.1 Gene Ontology (GO)
GO is a resource produced by the Gene Ontology Consortium, with the stated aim of

comprehensively modelling biological systems. It is the largest database regarding the

function of genes, with a current tally of ~44 thousand GO terms for over 1.5 million

gene products across 4,666 species. GO terms describe biology in three ways;

molecular function, cellular component or biological process. For example a cell

surface transporter protein will have the molecular function of transport, alongside the

cellular component of membrane, and the biological process anion transmembrane

transporter activity. Relationships between terms are represented using logical

definitions or equivalence axioms and are both computer and human-readable,

allowing for inference through logical reasoning to be performed.

5.1.2.2.2 PanelApp
This database is an integral part of our dataset, as it forms the foundation for

gene-disease associations that we go on to enrich with other datasets. PanelApp is a

database produced by Genomics England with the central aim of crowdsourcing

diagnostic quality, standardised gene panels for diagnostic purposes 9. Genes and

other genetic units such as short tandem repeats and copy number variants that are

suspected to have a causative association with a condition are submitted by

researchers or sourced from groups such as the UK Genetic Testing Network. These

are then reviewed by approved researchers and experts, further evaluated and

reviewed by the Genomics England clinical team, and then published as a gene panel.

Gene panels categorise submitted genes as either ‘green’ genes which may be used

diagnostically in the clinic, ‘amber’ genes where there is a moderate level of confidence

in disease association, and ‘red’ genes, indicating a gene should not be used for

clinical interpretation.

There are currently 326 panels, of which the majority are related to 100KGP diseases,

comprising 5870 genes and genomic entities. Examining 100KGP diseases exclusively,

there are 969 green genes averaging to roughly 5.6 genes per disease 9. The data are

all accessible via a publicly accessible API and are browsable via the PanelApp

website.
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Whilst this resource is intended for use in diagnostic clinical settings, it also provides a

valuable set of high confidence genes upon which to build an expanded disease

knowledge-base.

5.1.2.2.3 Drug-Gene interaction Database (DGiDB)
The DGiDB brings data together from ~30 different sources focussing on drug-gene

interaction and druggability data. These data are normalised and provided with a web

UI and an API for programmatic access. This resource is valuable for target related

data, such as identifying targets that are members of the druggable genome and

targets of approved drugs.
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5.2 Methods

We sought to automate the entirety of the database building and updating process.

This required the use of R for data wrangling, Python for specific API calling, and Bash

wrapper scripts to reduce this to a single command process. Here we introduce each of

the scripts individually brief descriptions of intended function and a link to the Github

repository for reference.

5.2.1 Building the database
5.2.1.1 Clinical phenotypes
A datasheet containing GEL disease phenotypes under study  were received by

personal communication from GEL. We built the GEL disease database on and around

information contained within this document. We included other data with the aim of

enriching and expanding upon this core of data. The data were as described previously

(see Introduction). We normalised the data according to database architecture

principles up to 3NF.

5.2.1.2 MySQL schema
We built the database using MySQL Workbench Community (v6.3, Oracle

Corporation), a graphical user interface (GUI) for SQL development and database

design. We dumped the final schema to file using the schema export tool for porting

and backup purposes. The resulting schema can be viewed as an entity relationship

diagram in  Fig. 5.3, or as a SQL script in the appendix.

5.2.1.3 Database build scripts

5.2.1.3.1 Db_update.sh

We created a bash script to build and maintain the database. We built this script with

semi-interactive features to simplify maintenance of the database for novice

command-line users. The script depends on there being an existing database set up in

MySQL, and requires the presence of all other scripts mentioned below in the same

working directory.
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Upon invoking the script, the user is asked to enter the username and password for the

MySQL database. The passwords are not hashed or encrypted as they are intended to

be run in a secure and limited environment. The user is then prompted to enter a file

path to a python environment they may already have configured. This process is

optional, and is designed simply to prevent a user having to reinstall python packages

required for API calling if they already have them. The user is then prompted to enter

the file path to the clinical phenotypes file already described. Failure to provide a

proper file path, or an incorrect MySQL DB user and password combination will result

in a failure message and the script terminating. Following this, the script calls the

clinical phenotypes script.

5.2.1.3.2 Clinical_phenotypes_add.R

This script adds clinical phenotype data from the GEL supplied datasheet to the

MySQL database instance. First the existing data from the database is pulled and

compared to the new input table to check for new data. If there is no existing data, all

data from the clinical phenotypes datasheet will be added. We reduce each column of

data to unique values, and then create mapping tables to specify relationships between

each object. We then upload these data to their relevant MySQL DB tables.

5.2.1.3.3 PanelApp_prep.R

This script largely deals with pulling and cleaning data from the PanelApp website. We

pull data in JSON format, and then clean it and add it to the MySQL DB. We add

disease data found in PanelApp but not currently existing in the DB, and include

relevant disease subgroup and group data. Following this, we filtered out low

confidence genes, such that only the highest confidence associations were

represented from this dataset. This script then generates gene to disease mappings

and writes to the DB.

5.2.1.3.4 dis_to_pheno_mapping.R

This script adds HPO data above what is already included in the GEL datasheet. This

includes  adding genes associated to GEL phenotypes to the gene DB table. We
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downloaded the data from the HPO website (file:

ALL_SOURCES_ALL_FREQUENCIES_phenotype_to_genes.txt, date accessed

10-03-2017).

We sourced gene-disease associations from Panelapp, a crowd-sourced and expertly

curated database managed by GEL. Subsequently, gene to drug associations were

derived from DGIdb, an open source and open access database which brings data

together from numerous sources such as DrugBank and PharmGKB. Further drug

information was mined from OpenTargets and the National Cancer Institutes

chemoinformatics tools.

5.2.1.3.5 DGIdb_api.R

Prior to this script running, the python environment command is invoked if a file path is

provided for said environment. The R script first calls the python script DBIdb_API.py,

which handles API calls to the DGIdb. Drug-gene data are pulled in json format and

written to a temporary ‘.txt’ file. This is then read by the R script and cross-checked

against existing data in the database. Drug interaction data are then simplified to

simply ‘agonist’, ‘inhibitor’, ‘unknown’ or ‘other’ and drug names are harmonized. New

drugs and their associated data are then written to the database.

5.2.1.3.6 SMILE.R

This calls the National Cancer Institute chemical structure database for Simplified

molecular-input line-entry system (SMILES) data. This data simplifies drug structure

data into an ASCII string vector. Such data can be readily converted into 2D graphical

representations of drug structure, but is more amenable to storage in string format.

5.2.1.3.7 drugbank_parse.R

We first download structure data from DrugBank release 5.1.1. This script then cleans

and subsets the structure data. Additional fields added from this data include structure

data-file (SDF) drug representations, an alternate format to the SMILES format (SDF

includes 3D coordinates and is less ambiguous than SMILES), FASTA data on

biologics, and various IDs for mapping to other databases. Much of this data is
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intended for interoperability, to allow for users to quickly locate more drug data in a

database of their choice.

5.2.1.3.8 drug_pheno_disease_mappings.R

This script simply creates mapping tables between disease-drug, and phenotype-drug

tables. These links are inferred from other relationships established in previous scripts.

I.e. A panelapp  gene that is targeted by a drug will lead to an inferred link between the

drug and the relevant disease for that gene. These are explicitly not approved

indications, and should not be interpreted as such.

Following the completion of these processes, the shell script then engages foreign key

constraints, to ensure data stability, and terminates. The script should only need to be

invoked when new data are to be added, for example if there is an update in

gene-disease associations, or new targets are added to a constituent database.

However, due to the rapid runtime of the script, it could be feasibly updated everyday.

First time use of this script to create the database will take ~1 hour to complete, with

subsequent updates taking 1-5 minutes (although this is dependent on the size of the

required update).
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5.3 Results
Much of the work described herein is intended to facilitate research. Therefore there

will not be in depth investigation of all disease areas in their various forms, but rather

exemplars of the way in which this database can reveal disease relationships. To do

this, we have concentrated on aspects of visualisation and summation of the database.

We will however examine some examples of drug repurposing opportunities that are

revealed via this approach later in the chapter. Many of the graphs that follow are static

representations of interactive graphs, or the output of functions with simple inputs to

allow for user defined customisations.

5.3.1 GEL disease database (GELDdb) schema

We created GELDdb with 16 tables totalling 56 columns and 295,453 rows. The entity

relationship diagram shows the interlinking nature of the tables where we bring

together data on phenotypes, genes and drugs. The gene categories table (gene_cats)

and the corresponding mapping table (gene_to_genecat) are yet to be populated and

therefore have 0 rows. Row numbers correspond to unique data entries, therefore

conforming to normalisation standards. The colours of the rows in the table indicate the

primary key (light green) and foreign keys (yellow/green), with all non-constrained data

fields in white.
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Figure 5.3 - GELDdb schema. Entity relationships are described with table names in
dark green at the top of the table, followed by primary keys in light green, and foreign
keys in yellow/green.

5.3.2 Visualising disease spaces

The term “disease space” approximates the sum total of information contributed by all

entities in our knowledge store, including genes, diseases and drugs, adhering to a given

set of construction principles and boundary conditions. This space, much like that within an

ontology, is limited by the observations we make, and therefore is not complete. The

addition of new dimensions (for example - symptoms associated with a disease) adds to

this disease space and increases the accuracy of this simulacrum of real-world

phenomena.

In order to better understand the interaction of different elements of the database, we

sought to visualise the conceptual disease space represented by the entities in

GELDdb. We created various customisable functions to view different elements of the

database in graph form. It is possible to make such graphs for any of the tables for

which there are mapping tables (Fig. 5.3). N-partite graphs can be created simply by

joining on the existing dataframe. We also allow for the projection of bipartite graphs

such that one node is represented as a link between the other type of node. For

example, a disease-gene network would be projected into a unipartite network in which

diseases are joined by genes that are shared between them.
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5.3.2.1 Disease-Gene Network

Figure 5.4 - A network visualisation of the GEL disease space and their
associated genes. Genes (teal, triangles) and diseases (orange, circles) links are

derived from GELDdb, with disease node size reflecting the degree of connectivity.

Figure 5.4 shows the mapping of diseases to their associated genes and how these

interconnect. This is an example of a bipartite network, therefore genes have no direct

relationship with each other, but instead are linked via the diseases in which they are

implicated. Due to the size and density of this representation it is difficult to glean much

human interpretable information, however the network itself is made interactive through

the use of Plotly (https://plotly.com/). This means that the graph is zoomable, and

hovering over a node will display a pop-up with key information about the node listed.

As a set of entity relationships this data is machine readable and could potentially be

used for further analysis using a range of statistical and machine learning approaches.
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Figure 5.5 - Unipartite projections of the GELDdb Gene-Disease bipartite network
with either diseases as nodes (A) or genes as nodes (B). A) The ten highest degree

disease nodes are labelled, signifying the diseases with the most associated genes. B)

Only edges for genes with more than 3 shared diseases are displayed.
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Another way of simplifying the visualisation is to project the network into a unipartite

network. From a bipartite network there are two possible projections, one in which the

diseases are the nodes and the genes are the edges (Fig. 5.5A) and vice versa

(Fig.5.5B). As there are close to 1 million edges for the latter graph, we only plotted

edges of weight greater than 3, indicating at least 4 diseases are found in common

between any two genes.

There exist many forms of layout that are available through existing R plotting

packages (such as in ggraph). Depending on the intended use of the graph, this can be

useful, for example when wanting to view the relationship between different highly

connected nodes, such as in Fig. 5.5A. Most force-directed layout algorithms (such as

Fruchterman-Reingold or Kamadi-Kawai) will place densely connected nodes in the

centre of the graph, making viewing their interaction relatively challenging. However,

imposing a grid structure on the graph allows for greater clarity with the added benefit

of considerably faster rendering time. However, such a grid layout is less feasible when

the number of nodes increases to a much greater degree, and if you are more

concerned with less connected components of the graph, the alternative spacing

algorithms are far better.

5.3.2.2 Visualising specific disease environments

As previously mentioned, it is possible to zoom in on areas of the graph above,

however it can also be advantageous to filter out unwanted nodes. For this, we have

produced a function to limit any graph to a specific neighbourhood around a nominated

node or nodes. This allows for a narrower view of a disease area and allows for more

human readable/interpretable plots to be rendered. It is also possible to project any

networks for subsets of greater than or equal to the 2nd order, however, as visible in

Figure 5.6 panels A through C, increasing orders (especially if highly connected nodes

are present) quickly leads to “hairball” plots. As previously discussed, this can be

ameliorated through the projection of plots into their unipartite form. Additionally, we

would expect a standard use-case of such graphs to be to examine small, concise

gene/disease lists, therefore naturally producing clearer plots.
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Figure 5.6 - Bipartite network graphs of 1st (A), 2nd (B) and 3rd (C) order
neighbourhoods of the dysmorphic disorder “Clefting”. Disease node (in orange)

size is scaled according to the number of genes (in teal) associated with it and its

associated phenotypes.

Further to this, it is possible to highlight areas of the network that are of interest. For

example, in the case above, it may be advantageous to explore which genes may

already be the targets of approved medications. These can then be recoloured within

the network graph through each order of interaction. Figure 5.7A + B shows such

examples, using data from the druggable gene database, Pharos DB

(https://pharos.nih.gov/). These data are not stored within the database itself to reduce

maintenance overhead, and as we consider this to be an unnecessary duplication of

data. However, given the array of different identifiers stored in the GELdb, it is possible

to map to other databases with ease.
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Figure 5.7 - Bipartite network graphs of 1st (A), 2nd (B) order neighbourhoods of
the dysmorphic disorder “Clefting”. As in Figure 5.6, disease node size is scaled

according to the number of associated genes. Here, genes that are the target of

approved drugs (according to Pharos DB) are named and labelled in green, the rest in

teal.

5.3.2.3 Building summary data pages

Due to the difficulty in visualising the data in a graphical way across the entire dataset,

we decided to create disease-based summary pages. These are HTML documents, in

which interactive graphs are embedded with additional summary statistics and data

regarding the disease in question. These are all early development stage documents,

that would require additional work to be production ready, but serve as illustrative

conceptual examples.
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Figure 5.8 shows an example of such a page. Here we display information on the

dental disorder Amelogenesis Imperfecta. The first pieces of information displayed in

this data page are the disease groups and subgroups.

Following this, we display all ‘green’ genes from PanelApp in a scrollable table.
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Figure 5.8 - An example of a disease summary page. A) The example shown is for

Amelogenesis imperfecta. B) Summaries on the gene-disease network across the GEL

ontology, and in relation to amelogenesis imperfecta are shown. C) A visualisation of

the gene-disease network for this disease is displayed, with genes as teal triangles and

diseases as orange circles. The size of the node denotes the centrality degree, and the

ten most connected diseases are labelled in blue.
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Figure 5.8 provides an example of the output in a simple report form generated about a

disease. The user needs to simply change the input disease in Fig. 5.8B (labelled as

‘nodes’), and then run the script as is. Panel A shows the packages and paths to helper

functions that are required for the proper running of the script. When invoked, the script

will ask for the user’s username and password for access to the database. A brief

overview of what is contained within the database is then displayed (this has been

truncated to save space within this figure). Following this, a generic function is called to

build a bipartite network comprising diseases and their associated genes (Fig. 5.8B).

The “local neighbourhoods” functions restrict the network to the node of interest, in this

case, the disease ‘amelogenesis imperfecta’, and produces related tables and

networks. The “order” argument of the functions defines how restricted the relationship

must be. E.g. - 1 will give only immediate neighbours to the disease, or the genes that

are implicated with it, and 2 will expand to include the diseases that share these genes.

The output table will list nodes by their degree, so in this case, the most connected

gene,  peroxisomal biogenesis factor 1 (PEX1,‘ENSG00000127980’) has eight

connections, meaning it is linked to the disease ‘amelogenesis imperfecta’ and 7 other

diseases within the GELDdb. Following this, Fig. 8C expands the network to include

3rd order relationships, with disease node size scaled according to the number of

edges it has. In this example we can see that the “intellectual disability” and

“undiagnosed metabolic disorders” provide the lion’s share of gene connections. A

further command could be included to remove these nodes from the network, thereby

restricting to diseases that may be more specific than these relatively generalised

disorders.

Other prebuilt networks that are included in a standard report are drug-disease

networks, a table built on inferred relationships between drugs and diseases, and

disease-phenotype networks. The aim of including these is to quickly identify potentially

interesting compounds or phenotypes to investigate. In the case of amelogenesis

imperfecta, the first order drug with the highest degree is Marimastat, a broad spectrum

metalloproteinase inhibitor which phenocopies (mimics the disease presentation)

amelogenesis imperfecta 10,11.
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Figure 5.9 - A continuation of the disease summary page - visualisations of
drug-gene network clustering. A) Two implementations of network clustering

algorithms are displayed. The number of clusters along with the implementation name

are given as titles. The user can hover over nodes to identify specific drugs and zoom

on specific areas. Nodes are coloured according to their clusters. B) Upon identification

of drugs of interest, a subgraph and resulting network can be plotted using predefined

functions.
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Following this, optional clustering algorithms can be run via their igraph (R package, v

1.2.1) implementations. For example the walktrap or fast greedy algorithm can be used

to cluster groups of genes based on the drug interactions they share. All such

algorithms are run exclusively on projected networks, as the majority of algorithms do

not account for bipartite structures. Fig. 5.9A shows a generalised version of such a

network, with all genes associated with diseases that have drug associations in DGIdb.

Fig. 5.9B shows a subgraph derived from this graph. It is clear from this example that

the drugs pentoxifylline and dipyridamole share many of the same interaction partners,

namely, members of the phosphodiesterase family. However both drugs show unique

partners too, in the form of ADA and NT5E. This could make either drug a good

candidate to also target the ‘missing spokes’ in this wheel.

GEL disease Drug name Number of genes

Mitochondrial disorders metformin 19

Undiagnosed metabolic
disorders

metformin 19

Inherited white matter
disorders

metformin 8

Structural basal ganglia
disorders

metformin 7

Arthrogryposis rapacuronium 5

Arthrogryposis suxamethonium 5

Congenital myaesthenia rapacuronium 5

Congenital myaesthenia suxamethonium 5

Epileptic encephalopathy acamprosate 5

Epileptic encephalopathy amifampridine 4

Epileptic encephalopathy fampridine 4

Epileptic encephalopathy guanidine 4

Table 5.1 - A Summary table of GeL disease-drug pairings ordered by the number
of shared genes. Genes shared are genes associated with GeL diseases through
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PanelApp curation that are also targets of approved drugs with indications in other
conditions. Only the first 12 sets of associations are displayed here.

Table 5.1 shows data not included within the example data page, namely, a cohort-wide

view of drug-gene-disease associations. Here, diseases and drugs are linked if they

share PanelApp ‘green’ genes that are targeted by approved drugs for other

indications. This simple guilt-by-association (GBA) approach opens possibilities for

drug repurposing, based on very simple queries of the database. The associations from

Table 5.1 will be explored in the discussion.

5.3.3 LoF labelling of PanelApp genes

Linking of this data to the LoF data collated in chapters 3 and 4 has the potential to

highlight targets that could be prioritised for drug development. We matched genes

according to gene symbols, selecting all genes with associations to GEL diseases from

GELDdb.
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Phenotype N

Benign 192

Deleterious 2737

pBenign 23

pNotBenign 450

Figure 5.10 - The breakdown of constraint within GELDdb disease genes. Genes
associated with GEL diseases from GELDdb were labelled according to phenotypes
from Chapters 3 and 4. The majority of genes are deleterious genes, with increased
levels of constraint.

As expected, Benign and pBenign genes make up the minority of genes in our

gene-set. (Fig. 5.10) As genes are classified as benign if they are found within specific

sequenced cohorts in healthy individuals, as previously discussed in chapter 3, it is

possible for a benign gene to have a disease association. Nearly all of the benign and

pBenign genes (e.g. ATR, BLM, SYNE1 and NPC2) are listed as green genes in

multiple PanelApp disorders, for generally more complex disorders. This could explain

the appearance of benign genes in a list of genes derived primarily from patients with

monogenic rare diseases.
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Target Approved Drug

ADRA2B Carvedilol, Apraclonidine
hydrochloride, Bromocriptine,
Cabergoline, Yohimbine [...]

AKR1D1 Finasteride

ALDH2 Disulfiram, Guanidine

ALK Ceritinib, Crizotinib, Gilteritinib,
Fostamatinib, Alectinib [...]

AURKC Fostamatinib

BCR Ponatinib, Dasatinib, Imatinib,
Bosutinib, Ponatinib hydrochloride

BDNF Esketamine

CYP2C9 Benzbromarone, Diacerein

GHRHR Tesamorelin, Sermorelin acetate

GJB2 Carbenoxolone

Table 5.2 - Opportunities for repurposing within the GELDdb. The first ten pBenign
or Benign targets with approved drugs (data from GDIdb) are listed. Targets with more
than 5 approved drugs are concatenated for brevity.

The 215 observed or predicted benign genes present an opportunity to identify drug

targets for which perturbation is more likely to be tolerated than other targets within the

database.

Furthermore, of these targets, 100 are druggable and 27 are clinically actionable (data

from DGIdb). Therefore there exists in this set of genes a large pool of tractable drug

targets, which are likely safer than deleterious drug targets. Of these targets, some are

already drugged; table 5.2 shows examples of these drug repurposing opportunities,

with targets from our benign and pBenign categories listed if they have interacting,

approved drugs already in the market. A total of 33 such targets exist and this could

present an opportunity to rapidly bring medications to currently unserved patients and

their diseases. However, as previously stated in chapters 2,3 and 4, this information is

intended for hypothesis formation and target prioritisation only, and would require

extensive validation.
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5.4 Discussion

In this chapter, we have sought to create a dataset to facilitate drug repurposing. By

pulling data together from different levels of the biological dogma, we hope to more

closely reflect biological truth within a system, i.e. to capture a degree of the

interconnectedness of biological processes. Such databases exist elsewhere, however

we chose here to focus on the rare disease space, and more specifically on diseases

that are part of the Genomics England 100KGP cohort. The additional benefit of this

group of diseases is the ancillary database PanelApp, which has generated a curated

list of high confidence disease-causing genes 9.

This dataset is intended to facilitate drug repurposing and therefore has focussed on

drug related datasets such as SMILEs and drug interaction data, as well as the

interaction networks of drug targets. Currently the methods of actual drug repurposing

that have been applied are limited to GBA approaches. This simplistic method however

can still yield results, as it seeks to find lines of evidence for associations between

genes, their products, and diseases across multiple levels of biological dogma. As

much of the results discussed thus far show the implementation and output of this

database, the discussion will pick some examples of drugs that show promise due to

their GBA. Additional work would build on this foundation to produce more

sophisticated approaches to drug repurposing, however we aim here to merely

illustrate a proof of concept.

In addition to this database, we have focussed on providing helper functions in order to

query the database. We designed these functions with a focus on networks, as

networks provide a powerful way of combining disparate data of this type.
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5.4.1 Literature supporting GBA targets

5.4.1.1 Acamprosate

An association between epileptic encephalopathy and the antidipsotropic (anti-alcohol

dependence) drug acamprosate is observed in Table 5.1. Genes shared are genes

associated with GEL diseases through PanelApp curation that are also targets of

approved drugs with indications in other conditions. Epileptic encephalopathies are a

group of brain disorders in which continuing seizures during the course of brain

maturation are thought to lead to a progressive cognitive deterioration 12. Despite the

devastating impact on neurological function incurred, there are only limited treatment

options 13. Overall, epilepsies are one of the most common neurological disorders;

often characterised by recurrent synchronous discharges of the brain. With as many as

eighty percent of cases thought to be due to genetic factors, increases in genetic

testing has led to a deeper understanding of the underlying biology of this spectrum of

disorders 14–16. A large number of genes have associations with epilepsy (there are

currently 425 green genes listed in the “Genetic epilepsy syndromes” panel (version

2.280) on PanelApp), reflecting the heterogeneity of the disorder. Numerous variants of

interest have been found in N-methyl-D-aspartate receptors (NMDAR), particularly in

childhood epilepsy 17–19. These ionotropic glutamate receptors are generally composed

of four subunits, encoded by 3 differing gene families. Each of these subunits and

genes have been found to have likely causative variants in epilepsy 19–28. Of these, the

GRIN3b gene is labelled as benign according to our chapter 3 definition. This gene,

with a LOEUF score of 0.98 also has several homozygous pLoF confirmed through

manual curation (see chapter 2) and is the only gene target of acamprosate with this

benign designation. This likely makes it the safest target of this functional group, and

drugs with high affinity for this target could be prioritised. However we are unable to

comment on what level of efficacy a drug targeting this GRIN3B as its primary target

would have.

Despite being approved for the maintenance of abstinence in alcohol dependent

individuals, the mechanism of action (MoA) of acamprosate is not fully understood. It is

thought to reduce urges to drink through the reduction of alcohol withdrawal induced

excitotoxic neuronal cell death 29,30. This is likely achieved by blocking NMDAR as

already discussed, although acamprosate is also thought to indirectly modulate

γ-aminobutyric acid type A receptor transmission 31. There are currently no clinical trials
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investigating the use of acamprosate in epileptic encephalopathies, or any epileptic

disorders, however it is currently being investigated for neurological disorders such as

autism spectrum disorders (phase III, trial NCT01813318) and Fragile X syndrome

(phase III, trial NCT01911455) and schizophrenia (phase IV biomarker study, trial

NCT00688324) amongst others. Evidence also suggests acamprosate, in combination

with baclofen (also a repurposed drug) may be promising in the treatment of

Parkinson’s disease 32–34.

Acamprosate is the most prescribed drug by the NHS for the treatment of alcohol

dependence in combination with counselling 35 . Furthermore, the side effect profile of

acamprosate is well understood, and this drug is well tolerated at therapeutic doses
36–38. All of the factors listed above suggest acamprosate may be a viable therapeutic

agent in the treatment of epileptic encephalopathies.

5.4.2. Phenocopies

A phenocopy is defined as a non-hereditary, environmentally induced phenotype that

mimics that of a genotype-induced phenotype in another individual . Phenocopies have

been invaluable in understanding the biology of living organisms, with technologies

such as RNAi, and small molecule inhibitors having allowed for the study of diseases.

They can also be used to assist in lead-optimisation, and therefore are worthy of

consideration when identifying compounds of interest 39.

5.4.2.1.1 Metformin
Our largest hit with respect to shared gene interaction is the drug Metformin and the

GEL diseases ‘Mitochondrial disorders’ and ‘Undiagnosed metabolic disorders’. Both of

these share 19 genes with PanelApp genes with approved drugs for other indications.

Metformin is a widely used type 2 diabetes drug prescribed as a first-line drug for

people not responding to dietary change. It is widely used, with over 120 million people

taking the drug world-wide 40. It reduces the risk of hyperglycemia by reducing hepatic

gluconeogenesis, and increasing insulin sensitivity through the increase in peripheral

glucose uptake 41. It functions by accumulating within the mitochondria and inhibiting

the Complex 1 of the respiratory chain, a process key in the production of ATP 42, which

is in turn, required in large quantities for gluconeogenesis. Other possible mechanisms

have also been proposed, however all are similar in their site of action, with effects due

to activity within mitochondria 41.
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Side effects of Metformin often reflect this MoA, with type A reactions including physical

weakness, muscle pain and hypoglycemia 41,43. With this in mind, it is clear why

Metformin shares so many genes with mitochondrial and metabolic disorders. This

association is an example of a drug phenocopying the disease of interest. As such, this

indicates that such a drug may only serve to exacerbate the conditions in question.

However, this also indicates that an agonist may, in this context, serve to ameliorate

these disorders. The GEL diseases ‘Inherited white matter disorders’ and ‘Structural

basal ganglia disorders’ share fewer genes with Metformin, with 8 and 7 total genes

respectively. This cluster of disorders also stem from improper mitochondrial function

and therefore this also likely reflects an instance of metformin phenocopying a genetic

disorder through type A adverse events.

Further examples of phenocopying drugs exist in Rapacuronium bromide and other

non-depolarising and polarising neuromuscular blocking drugs, including

Suxamethonium, Doxacurium, Mivacurium, Pancuronium, Rocuronium, Atracurium,

and Vecuronium which are linked to arthrogryposis multiplex congenita (AMC). This

condition, characterised by muscle weakness and fibrosis 44, is a nonprogressive

congenital disorder resulting in joint contractures in numerous body areas 45.  The

drugs in question act through the competitive antagonism of post-junctional

acetylcholine binding (or other related mechanisms), resulting in muscle relaxation 46.

Study of the effect of such drugs on chick embryonic development induces flaccid

paralysis and induces deformities in limb development in ways that resemble AMC 47–49.

Despite this, these drugs are considered safe to use, even in neonatal contexts, such

as in caesarian section deliveries.

Whilst examples of phenocopying drugs are not useful in the effort to find drugs that

may provide benefit to a patient, they are important as a proof of concept. As many of

these drugs produce side effects through intended MoA, a lack of overlap between

these disorders and these drugs would simply indicate that we are not capable of

identifying mechanistically related associations. Whilst in a drug screening exercise,

one may wish to filter out such drugs, here we have explored them to illustrate this

broader point. Finally, phenocopies provide the opportunity to explore designing drugs

to produce the opposite effect, e.g. and agonist in place of an antagonist, in order to

treat the disease in question.
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5.4.3 Future directions

The database will be introduced to the Genomics England research environment,

where it will be freely available for researchers. The exact form of the database has not

yet been decided, however it will likely be adapted to a graph database to facilitate

further inference of previously unobserved connections. It will be further integrated with

genomic data through the addition of variant data to the gene data supplied by

PanelApp. This means predicted effects of variants could be used to further narrow

down avenues of interest. For example, a gain-of-function variant causing a disease

phenotype would be better treated with an antagonist, as opposed to a loss-of-function

variant which may require a target agonist. There is much that can be added to the

database to increase its utility, including adding the outputs of additional, more complex

approaches to drug repurposing. This would include ML approaches to link inference,

allowing for some ‘filling in of the gaps’, where data are not necessarily currently

available. The continuation of this work remains beyond the scope of this work.
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5.5 Conclusion

Due to the target centric nature of drug discovery over the last 60 years, there exist

many gaps in our knowledge about our drugs, and their full complement of targets. This

presents us with an opportunity to fill these gaps in, simply by further examining the

data we already have. This is particularly valuable in the context of rare diseases, as it

presents a cost effective and relatively rapid approach to find new promising targets. In

this chapter, we assembled GELDdb, a database focussed on the disease space from

the GEL rare disease programme. By enriching these data, specifically around areas of

druggability, and existing medications, we have uncovered novel possible indications

for approved drugs. Examples such as acamprosate for the treatment of epilepsies

may show promise, and should be explored further. Whilst all of the information

contained within is for hypothesis formation, inclusion of this dataset within the GEL

research environment may point researchers to targets that had not previously been

considered for their disease of interest.
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Chapter 6: Conclusion

In this thesis we have explored the role of human genetics in drug discovery, and ways

in which we can use disparate forms of data to infer potential new targets for drug

development and repurposing.

First we started with a question of data integrity, how can we trust the variants that we

see in sequenced cohorts? The rarity of LoF variation, combined with its generally

deleterious nature means that this class of variants is enriched for sequencing artifacts.

Tools such as LOFTEE attempt to tackle this problem by applying rules to discern

variants that are likely to be real versus those that are not. This tool has been relatively

widely adopted, as is shown by its use in the PROMIS, gnomAD and DeCODE studies

discussed in this thesis. However, this tool is limited by its rule-base, and does not

attempt to capture all of the classes of artifacts one can expect to find. Currently, the

gold-standard approach to filtering spurious LoF variants is manual curation. This

requires domain knowledge and a lot of time, and is therefore not necessarily the most

efficient of approaches. However, beginning with this approach will allow for the

generation of positive control datasets, and a greater understanding of the artifacts we

can expect to find with these data. Chapter 2 covered the manual curation of

homozygous predicted LoF variants that had already been filtered using LOFTEE. This

was completed during my placement with the gnomAD team at the Broad Institute in

the first of several collaborations in this thesis, and represents a small part of the

curation work occurring there. Of the 4,379 variants assessed, 25% were deemed to be

spurious (with a further 8% being undetermined); a vast improvement on the 50% that

has previously been reported, indicating that LOFTEE is a valuable addition to any

curation pipeline. However, the possibility of manually curating all pLoF variants

identified is remote, and therefore machine learning approaches to complete this

curation must be actively sought. These will build upon such manual curation efforts by

using the data gleaned to prioritise specific features for prediction, and providing a

gold-standard dataset for testing. The observation from the manual curation that strand

bias and last exon do not tend to result in the ruling out of a candidate LoF could be

instructive for this. It is also clear that multinucleotide polymorphisms (MNPs) need to

be handled as a special case, as pLoF variants that are simply one position in an MNP

are almost never truly LoF. Following this work, we continued our investigation of

homozygous pLoF variants.
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Whilst chapter 2 sought to increase data integrity, chapter 3 aimed to increase data

coverage. The number of LoF variants discovered is limited by the number of

individuals sequenced. Furthermore, the individuals must be sequenced from diverse

backgrounds in order to capture as broad a genetic sample as possible. There are

many reasons to want to identify all possible homozygous LoF variants, including the

understanding of disease and normal biology. Our interest lies in the hypothesis that

homozygous LoF variation is a model of lifelong inhibition of a gene. This is of

particular interest in drug development, where we might aim to artificially inhibit a

gene-product, and knowledge of the phenotypes associated with such knockouts may

be valuable. Additionally, evidence suggests that drug development efforts against

targets with homozygous benign LoF are twice as likely to succeed. Therefore in

chapter 3, we first catalogued known instances of homozygous LoF in cohorts. As our

interest is in drug development, we created a label based on whether the gene was

found knocked-out in an apparently healthy individual. These benign knockouts were

compared to genes known to be associated with disease and additional features were

used to predict which of the remainder could be assigned to this benign group.

Features added included data from protein-protein interaction data, and ontology data

from the gene ontology. We generated numerous models through the use of a genetic

algorithm, finding high degrees of concordance between them (i.e. they selected the

same genes as likely benign). The best performing models were an ensemble model

and a decision tree model, but we prioritised further investigation in the former model

as it had higher recall, a factor we sought to prioritise. Overall, we found a total of 1,744

benign genes in existing literature, and predicted a further 442 pBenign with a relatively

high degree of specificity and sensitivity (F-score 0.7). It remains to be seen which of

these predictions will hold, and this will no doubt become clear as more sequencing

data become available.

With this additional set of potential targets defined, in chapter 4 we aimed to identify

whether benign and pBenign genes were good drug targets. We did this in

collaboration with Abbvie, an industrial partner, by studying historic drug data, and

comparing our labels with data from previous studies detailing the effect of genetic

knowledge on drug discovery, and against the LOEUF score, a metric of constraint. We

showed that benign LoF labels are indeed predictive of drug development success, and

that it is more predictive of success than either of the other metrics when looking at

non-oncology indications only. The splitting of non-oncological and oncological targets

into separate models showed that the constraint metric LOEUF is strongly predictive of
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oncology indication probability of success at all trial phases of development. This is in

contrast to benign LoF labels, which provide no additional information in oncological

indications. This highlights that these two complementary features, both based on

analysis of LoF variation, inform drug discovery in distinct ways. We then studied the

properties of manually and predicted genes to show enrichment of olfactory receptors

within our pBenign data. This class of genes is historically understudied, despite being

part of the highly druggable GPCR family, and growing evidence suggesting they may

modulate numerous physiological processes. We highlight two possible olfactory

receptors, OR2T10 and OR2T11, which our data suggest should be safe to target, and

may modulate disease pathology in both psoriasis and atopic dermatitis. This chapter

serves to further confirm that genetic information is valuable in the drug discovery

process, and demonstrates the value of LoF data in this process in a clinical trial phase

dependent manner. It also highlights a possible rich seam of putatively safe drug

targets in the less explored members of the GPCR family.

In Chapter 5, we incorporated all the data from previous chapters and applied it to the

rare disease programme of the 100KGP. By building on a primitive disease ontology

describing diseases in broad classes, we built a relational database to approximate the

disease space in question. We first enriched this ontology with data from the PanelApp

website, providing an expertly curated set of associated genes for each of the rare

diseases included. We then added data relating to protein-protein interaction, approved

medications, drug structures and more. In particular we focussed on data that may be

of use for target identification and drug repurposing. We then wrote a series of

functions and tools to simplify the querying of this database, so that data germain to

any one disease or area of interest could be easily accessed and analysed. We

demonstrated the value of assembling such data in this manner with this example of

acamprosate. This drug was highlighted due to it sharing targets with multiple diseases

of interest, however these other diseases currently have no available treatments.

Evidence in the literature supports the case for acamprosate, but investigations outside

the scope of this thesis would need to be conducted to confirm this as a possibly viable

drug for epilepsies. The inclusion of this database in the GEL research environment will

fulfil the aim of this chapter to facilitate the discovery of such drug-disease

associations. The form it will take is still in consideration, as database forms such as

graph databases allow for more inference to be drawn from the data in question, but at

the cost of requiring queries to be conducted in less familiar query languages. We will

also focus on ensuring that this database is machine-learning ready, so that more

189



advanced tools for association inference can be used. This will be achieved by

expanding data linkage to other datasets, and ensuring completeness of data as much

as is possible. We believe that this dataset is already a long way towards being

machine-learning ready, but we will add alternate representations of ontology derived

data, such as exhibited in the embedding of the Gene Ontology in chapter 3, to ensure

that data are of a suitable type. The continuation of this work should result in more

repurposing hypotheses to be formed, in addition to those already suggested. This

could bring a fast and pragmatic way to help address the significant unmet need that is

found in the search for new drug treatments for rare disease.

Manuscripts contributed to or authored during this PhD:

Karczewski et al. 2020, Nature - The mutational constraint spectrum quantified from

variation in 141,456 humans

Minikel et al. 2020, Nature - Evaluating drug targets through human loss-of-function

genetic variation

Rhodes et al. - Leveraging loss-of-function genetic variant data from population cohorts

for drug target prioritization (manuscript in preparation)
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Appendix

3.2.4.3 Cleaned feature set
The following 316 features were provided for the machine learning algorithms. All data
were either integer or numeric classes.

tdl.pharos_Tbio GO_embed_45 GO_embed_150 MouseEssential GO_embed_97 oe_syn

tdl.pharos_nan GO_embed_46 GO_embed_151 gwasCatalog GO_embed_98
Adipose -
Subcutaneous

tdl.pharos_Tdark GO_embed_47 GO_embed_152
NonEssentialCultu
re GO_embed_99

Adipose - Visceral
(Omentum)

tdl.pharos_Tchem GO_embed_48 GO_embed_153 insider GO_embed_100 Adrenal Gland

tdl.pharos_Tclin GO_embed_49 GO_embed_154
centrality_betwee
nness GO_embed_101 Artery - Aorta

chromosome_6 GO_embed_50 GO_embed_155 centrality_degree GO_embed_102 Artery - Coronary

chromosome_7 GO_embed_51 GO_embed_156 centrality_eigen GO_embed_103 Artery - Tibial

chromosome_13 GO_embed_52 GO_embed_157 centrality_hub GO_embed_104 Bladder

chromosome_12 GO_embed_53 GO_embed_158
centrality_integrati
on GO_embed_105 Brain - Amygdala

chromosome_1 GO_embed_54 GO_embed_159 GO_embed_1 GO_embed_106

Brain - Anterior
cingulate cortex
(BA24)

chromosome_19 GO_embed_55 GO_embed_160 GO_embed_2 GO_embed_107
Brain - Caudate
(basal ganglia)

chromosome_8 GO_embed_56 GO_embed_161 GO_embed_3 GO_embed_108
Brain - Cerebellar
Hemisphere

chromosome_20 GO_embed_57 GO_embed_162 GO_embed_4 GO_embed_109
Brain -
Cerebellum

chromosome_11 GO_embed_58 GO_embed_163 GO_embed_5 GO_embed_110 Brain - Cortex

chromosome_4 GO_embed_59 GO_embed_164 GO_embed_6 GO_embed_111
Brain - Frontal
Cortex (BA9)

chromosome_21 GO_embed_60 GO_embed_165 GO_embed_7 GO_embed_112
Brain -
Hippocampus

chromosome_16 GO_embed_61 GO_embed_166 GO_embed_8 GO_embed_113
Brain -
Hypothalamus

chromosome_9 GO_embed_62 GO_embed_167 GO_embed_9 GO_embed_114

Brain - Nucleus
accumbens (basal
ganglia)

chromosome_17 GO_embed_63 GO_embed_168 GO_embed_10 GO_embed_115
Brain - Putamen
(basal ganglia)

chromosome_3 GO_embed_64 GO_embed_169 GO_embed_11 GO_embed_116
Brain - Spinal cord
(cervical c-1)

chromosome_10 GO_embed_65 GO_embed_170 GO_embed_12 GO_embed_117
Brain - Substantia
nigra

chromosome_22 GO_embed_66 GO_embed_171 GO_embed_13 GO_embed_118
Breast - Mammary
Tissue

chromosome_2 GO_embed_67 GO_embed_172 GO_embed_14 GO_embed_119
Cells -
EBV-transformed
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lymphocytes

chromosome_15 GO_embed_68 GO_embed_173 GO_embed_15 GO_embed_120

Cells -
Transformed
fibroblasts

chromosome_14 GO_embed_69 GO_embed_174 GO_embed_16 GO_embed_121
Cervix -
Ectocervix

chromosome_5 GO_embed_70 GO_embed_175 GO_embed_17 GO_embed_122
Cervix -
Endocervix

chromosome_18 GO_embed_71 GO_embed_176 GO_embed_18 GO_embed_123 Colon - Sigmoid

chromosome_X GO_embed_72 GO_embed_177 GO_embed_19 GO_embed_124
Colon -
Transverse

chromosome_Y GO_embed_73 GO_embed_178 GO_embed_20 GO_embed_125

Esophagus -
Gastroesophageal
Junction

oe_lof_upper GO_embed_74 GO_embed_179 GO_embed_21 GO_embed_126
Esophagus -
Mucosa

classic_caf GO_embed_75 GO_embed_180 GO_embed_22 GO_embed_127
Esophagus -
Muscularis

classic_caf_afr GO_embed_76 GO_embed_181 GO_embed_23 GO_embed_128 Fallopian Tube

classic_caf_amr GO_embed_77 GO_embed_182 GO_embed_24 GO_embed_129
Heart - Atrial
Appendage

classic_caf_asj GO_embed_78 GO_embed_183 GO_embed_25 GO_embed_130
Heart - Left
Ventricle

classic_caf_eas GO_embed_79 GO_embed_184 GO_embed_26 GO_embed_131 Kidney - Cortex

classic_caf_fin GO_embed_80 GO_embed_185 GO_embed_27 GO_embed_132 Liver

classic_caf_nfe GO_embed_81 GO_embed_186 GO_embed_28 GO_embed_133 Lung

classic_caf_oth GO_embed_82 GO_embed_187 GO_embed_29 GO_embed_134
Minor Salivary
Gland

classic_caf_sas GO_embed_83 GO_embed_188 GO_embed_30 GO_embed_135 Muscle - Skeletal

p_afr GO_embed_84 GO_embed_189 GO_embed_31 GO_embed_136 Nerve - Tibial

p_amr GO_embed_85 GO_embed_190 GO_embed_32 GO_embed_137 Ovary

p_asj GO_embed_86 GO_embed_191 GO_embed_33 GO_embed_138 Pancreas

p_eas GO_embed_87 GO_embed_192 GO_embed_34 GO_embed_139 Pituitary

p_fin GO_embed_88 GO_embed_193 GO_embed_35 GO_embed_140 Prostate

p_nfe GO_embed_89 GO_embed_194 GO_embed_36 GO_embed_141

Skin - Not Sun
Exposed
(Suprapubic)

p_oth GO_embed_90 GO_embed_195 GO_embed_37 GO_embed_142

Skin - Sun
Exposed (Lower
leg)

p_sas GO_embed_91 GO_embed_196 GO_embed_38 GO_embed_143
Small Intestine -
Terminal Ileum

cds_length GO_embed_92 GO_embed_197 GO_embed_39 GO_embed_144 Spleen

gene_length GO_embed_93 GO_embed_198 GO_embed_40 GO_embed_145 Stomach

obs_hom_lof GO_embed_94 GO_embed_199 GO_embed_41 GO_embed_146 Testis

obs_het_lof GO_embed_95 GO_embed_200 GO_embed_42 GO_embed_147 Thyroid

least1Hom GO_embed_96 oe_mis GO_embed_43 GO_embed_148 Uterus

GO_embed_44 GO_embed_149 Vagina

Whole Blood
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3.2.1 Dataset compilation script

#NOTE

# There is some redundancy in this script (e.g. multiple calls to

biomart),

# this is a choice to.

#1) reduce memory burden.

#2) keep things a little clearer in workflow

# Setup

------------------------------------------------------------------

-

pkgs <- c('dplyr',

'tidyr',

'data.table',

'magrittr',

'stringr',

'splitstackshape',

'RMySQL',

'HGNChelper',

'STRINGdb',

'gdata')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

setwd('/mnt/volume/GEL_DB/LOF_DB/Data/Dataset_compilation')

# Funcs

------------------------------------------------------------------

-

## INSIDER functions ##

insider_parse <- function(x){

#Further parsing of insider data

tmp <- as.data.frame(str_split_fixed(x$V1, "_ppi_", 2)) %>%
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mutate(Source = gsub('SOURCE: ', '', x$V2))

names(tmp) <- c('Protein1','Protein2','Source')

tmp[c('Protein1','Protein2')] <-

lapply(tmp[,c('Protein1','Protein2')],

as.character)

return(tmp)

}

###

##########

# START

##########

dat <-

fread('/mnt/volume/GEL_DB/LOF_DB/Data/gnomAD/Constraint/full_lof_m

etrics_by_transcript_an_adj_by_gene.txt',

stringsAsFactors = F, header = T) %>%

as_tibble() %>%

group_by(gene) %>%

arrange(desc(oe_lof)) %>%

distinct(gene,.keep_all = T) %>%

ungroup()

# Let's get rid of unwanted cols

dat %<>% dplyr::select(gene, transcript, oe_lof,

oe_lof_upper, oe_lof_upper_bin,

chromosome, starts_with("classic"),

starts_with("p_"),

cds_length, gene_length, obs_hom_lof, obs_het_lof)

%>%

mutate(pheno = 'ND',

least1Hom = ifelse(obs_hom_lof > 0, 1, 0),

Source = 'gnomAD') %>%

select(gene, transcript, pheno, chromosome, everything())
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#Lets also change those as NAs to 0 for least1Hom instead of na

dat %<>% mutate(least1Hom = ifelse(is.na(least1Hom), 0,

least1Hom))

#Lets update the names of the genes. We know that gnomAD uses some

old symbols

hgnc <- dat$gene %>% unique()

#Using HGNChelper - this seems like the most sensible route.

appGen <- checkGeneSymbols(x = hgnc) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol))

#Some return more than one gene symbol. I think for now just go

through and

#check these manually as there are not that many.

appMult <- appGen[grep('/', appGen$Suggested.Symbol),]

appMult$Suggested.Symbol[grep('CXXC11', appMult$x)] <- 'RTP5'

appMult$Suggested.Symbol[grep('CEA', appMult$x)] <- 'CEACAM5'

appMult$Suggested.Symbol[grep('AGPAT9', appMult$x)] <- 'GPAT3'

appMult$Suggested.Symbol[grep('C11orf48', appMult$x)] <- 'LBHD1'

appMult$Suggested.Symbol[grep('B3GNT1', appMult$x)] <- 'B4GAT1'

appMult$Suggested.Symbol[grep('STRA13', appMult$x)] <- 'CENPX'

appMult$Suggested.Symbol[grep('ATP6C', appMult$x)] <- 'ATP6V1C1'

appMult$Suggested.Symbol[grep('CSRP2BP', appMult$x)] <- 'KAT14'

#Filter out then add back into other sets

appGen %<>% filter(!(x %in% appMult$x)) %>%

bind_rows(appMult) %>%

select(-Approved)

rm(appMult)

#Update gnomAD symbols
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dat %<>%

left_join(appGen, by=c('gene' = 'x')) %>%

mutate(gene = ifelse(!is.na(Suggested.Symbol), Suggested.Symbol,

gene)) %>%

select(-Suggested.Symbol)

#Now gather all the other genes seen in the other datasets - add

data if they

#are new. There shouldn't be any missing from the gnomAD set.

However, the other

#datasets will how us if the vars are found in a homozygous state.

# ELGH

------------------------------------------------------------------

--

#Only genes found in homozygous state included in this set. ELGH

currently not

#included within gnomAD.

#NOTE - ELGH did use LOFTEE

elgh <-

read.table('ELGH/all_LoFs.gatk_PASS.FS_30.DP_0.GQ_20.AB_0.01.LoFs.

missingness_lt_0.genotype_counts.present_in_ELGH.n_transcripts_cor

rected.all_transcripts_printed.annotation_not_in_last_exon_and_pre

sent_in_all_transcripts.txt',

stringsAsFactors = F, sep = '\t',

comment.char = '', header = T) %>%

as_tibble()

#Add revised phenotype column to data

elgh %<>% mutate(pheno = 'ND',

Source = 'ELGH')

#Let's check out the ones that don't overlap - these will likely

be due to

#synonyms. gnomAD uses some old gene symbols
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hgnc <- elgh$SYMBOL[which(!elgh$SYMBOL %in% dat$gene)] %>%

unique()

appGen <- checkGeneSymbols(x = hgnc) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

#Thankully none have multiple suggested.

#Update ELGH to match

elgh %<>%

left_join(appGen, by=c('SYMBOL' = 'x')) %>%

mutate(SYMBOL =

ifelse(!is.na(Suggested.Symbol), Suggested.Symbol,

SYMBOL)) %>%

select(-Suggested.Symbol)

#Now check again for lack of overlap

hgnc <- elgh$SYMBOL[which(!elgh$SYMBOL %in% dat$gene)] %>%

unique()

#Going to leave these for now. Potentially try and cover these

later. I imagine

#some will be pseudogenes.

#All ELGH seen in a homozygous state - update main data to show

this, keep track

#of where the hom came from

dat %<>% mutate(least1Hom = ifelse(least1Hom != 1 &

gene %in% elgh$SYMBOL, 2,

least1Hom))

dat %<>% mutate(Source = ifelse(least1Hom == 2, 'ELGH',Source),

least1Hom = ifelse(least1Hom > 0, 1, 0))

rm(elgh, appGen, hgnc)
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#Now we have recorded homs as found in ELGH in the main dataset

# Benign

------------------------------------------------------------------

#Add those included in the Narasimhan 2016 paper. These are all

benign LoF

#as they are found in healthy adults.

#These data are included in the ELGH set - but we KNOW that the

ones from this

#subset are healthy hence why we are treating them separately

nar <- read.xls('aac8624_Data_S1.xlsx') %>%

as_tibble() %>%

mutate(Gene.Name = as.character(Gene.Name))

hgnc <- nar$Gene.Name[which(!nar$Gene.Name %in% dat$gene)] %>%

unique()

appGen <- checkGeneSymbols(x = hgnc) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

#We have one with multiple options

appGen$Suggested.Symbol[grep('AGPAT9', appGen$x)] <- 'GPAT3'

nar %<>%

left_join(appGen, by=c('Gene.Name' = 'x')) %>%

mutate(Gene.Name =

ifelse(!is.na(Suggested.Symbol), Suggested.Symbol,

Gene.Name)) %>%

select(-Suggested.Symbol)
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hgnc <- nar$Gene.Name[which(!nar$Gene.Name %in% dat$gene)] %>%

unique() #only loss of three

#Update to include narasimhan - slight change in how it is done

here, we want

#to overwrite the previous set if found here.

dat %<>% mutate(least1Hom = ifelse(gene %in% nar$Gene.Name, 2,

least1Hom))

dat %<>% mutate(Source = ifelse(least1Hom == 2, 'BIB', Source),

least1Hom = ifelse(least1Hom > 0, 1, 0),

pheno = ifelse(Source == 'BIB', 'BENIGN', pheno))

rm(nar, appGen, hgnc)

#From Identification of a large set of rare complete human

knockouts, Sulem 2015

sulem <- read.csv('Sulem_supp_data.csv', header = T,

stringsAsFactors = F) %>%

as_tibble()

#Subset to those where earliest death is 50

sulem %<>% filter(Earliest.death.among.homozygotes..years. > 50)

hgnc <- sulem$Gene[which(!sulem$Gene %in% dat$gene)] %>%

unique()

appGen <- checkGeneSymbols(x = hgnc) %>%

filter(Approved != 'TRUE') %>%

199



filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

#Drop AGPAT9 - this is covered by BIB

appGen %<>% filter(x == 'AGPAT9')

sulem %<>%

left_join(appGen, by=c('Gene' = 'x')) %>%

mutate(Gene.Name = ifelse(!is.na(Suggested.Symbol),

Suggested.Symbol, Gene)) %>%

select(-Suggested.Symbol)

#Change genes in our data that are found in this set to benign

dat %<>% mutate(least1Hom = ifelse((gene %in% sulem$Gene & Source

== 'gnomAD'),

2, least1Hom))

dat %<>% mutate(Source = ifelse(least1Hom == 2, 'Sulem', Source),

pheno = ifelse(Source == 'Sulem', 'BENIGN', pheno),

least1Hom = ifelse(least1Hom > 0, 1, 0))

rm(sulem)

# PROMIS cohort https://doi.org/10.1038/nature22034

# For this set we are accepting those genes that have don't have

an association

#to the 250 odd diseases tested, and where there are two or more

homs -

#using 2 instead of 1 (as in the nar) because we don't have links

to health

#records.

prom <- read.xls('nature22034-s2.xlsx') %>% as_tibble()

prom$Gene[prom$Gene==''] <- NA
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prom$GWAS..Traits[prom$GWAS..Traits==''] <- NA

prom %<>% fill(Gene.Number, Gene, Gene..Homozygous.pLoF.Count,

GWAS..Number.of.Traits, GWAS..Traits,

.direction = 'down')

prom %<>%

filter(Confident.pLoF. == 'Yes') %>%

filter(GWAS..Number.of.Traits == 0) %>%

filter(Gene..Homozygous.pLoF.Count > 1) %>%

distinct(Gene, .keep_all = T)

#This gives us a total of 237 unique genes

#Check the symbols

hgnc <- prom$Gene[which(!prom$Gene %in% dat$gene)] %>%

unique()

appGen <- checkGeneSymbols(x = hgnc) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

#Dropping AGPAT9 + CXXC11 as already covered, otherwise all fine

prom %<>% filter(!(Gene %in% c('AGPAT9','CXXC11')))

prom %<>%

left_join(appGen, by=c('Gene' = 'x')) %>%

mutate(Gene.Name = ifelse(!is.na(Suggested.Symbol),

Suggested.Symbol, Gene)) %>%

select(-Suggested.Symbol)

dat %<>% mutate(least1Hom = ifelse((gene %in% prom$Gene & Source

== 'gnomAD'),

2, least1Hom))
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dat %<>% mutate(Source = ifelse(least1Hom == 2, 'PROMIS', Source),

pheno = ifelse(Source == 'PROMIS', 'BENIGN',

pheno),

least1Hom = ifelse(least1Hom > 0, 1, 0))

rm(appGen, hgnc)

#Next have a deeper look at the Lim paper - see what to do wiht

this

# Gene lists

--------------------------------------------------------------

#Switching to using gene lists from Macarthur lab

# wget -L

https://github.com/macarthur-lab/gene_lists/raw/master/lists/mgi_e

ssential.tsv

# wget -L

https://github.com/macarthur-lab/gene_lists/raw/master/lists/gwasc

atalog.tsv

# wget -L

https://github.com/macarthur-lab/gene_lists/raw/master/lists/NEGv1

_subset_universe.tsv

# wget -L

https://github.com/macarthur-lab/gene_lists/raw/master/lists/CEGv2

_subset_universe.tsv

# wget -L

https://github.com/macarthur-lab/gene_lists/raw/master/lists/cling

en_level3_genes_2018_09_13.tsv

#last downloaded 13/03/2018

#Mouse essential genes

meg <- fread('Macarthur_genelists/mgi_essential.tsv', header = F)

%>%

as_tibble()

appGen <- checkGeneSymbols(x = meg$V1) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

appGen$Suggested.Symbol[grep('CSRP2BP', appGen$x)] <- 'KAT14'
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meg %<>%

left_join(appGen, by=c('V1' = 'x')) %>%

mutate(V1 = ifelse(!is.na(Suggested.Symbol),

Suggested.Symbol, V1)) %>%

select(-Suggested.Symbol)

dat %<>% mutate(MouseEssential = ifelse(gene %in% meg$V1, 1, 0))

rm(appGen, meg)

#Gwas catalog - genes near GWAS peaks

gwas <- fread('Macarthur_genelists/gwascatalog.tsv', header = F)

%>%

as_tibble()

appGen <- checkGeneSymbols(x = gwas$V1) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

rm(appGen, gwas)

dat %<>% mutate(gwasCatalog = ifelse(dat$gene %in% gwas$V1, 1, 0))

#Non-essential genes in culture (CRISPR/CAS9)

neg <- fread('Macarthur_genelists/NEGv1_subset_universe.tsv',

header = F) %>%

as_tibble()

appGen <- checkGeneSymbols(x = neg$V1) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%
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select(-Approved)

dat %<>% mutate(NonEssentialCulture = ifelse(dat$gene %in% neg$V1,

1, 0))

rm(appGen, neg)

#Essential in culture (CRISPR/CAS9)

ceg <- fread('Macarthur_genelists/CEGv2_subset_universe.tsv',

header = F) %>%

as_tibble()

appGen <- checkGeneSymbols(x = ceg$V1) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

dat %<>% mutate(EssentialCulture = ifelse(dat$gene %in% ceg$V1, 1,

0))

rm(ceg, appGen)

#Clingen Haploinsufficient genes

clin <-

fread('Macarthur_genelists/clingen_level3_genes_2018_09_13.tsv',

header = F) %>%

as_tibble()

appGen <- checkGeneSymbols(x = clin$V1) %>%

filter(Approved != 'TRUE') %>%

filter(!is.na(Suggested.Symbol)) %>%

select(-Approved)

dat %<>% mutate(clingenHI = ifelse(gene %in% clin$V1, 1, 0))
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rm(appGen, clin)

#Now change the phenotypes for the essential culture to

deleterious and

#clingen HI if not already listed as benign. Doing separately for

clarity.

dat %<>%

mutate(pheno =

ifelse((pheno != 'BENIGN' & clingenHI == 1),

'DELETERIOUS', pheno),

pheno =

ifelse((pheno != 'BENIGN' & EssentialCulture == 1),

'DELETERIOUS', pheno))

# Biomart

-----------------------------------------------------------------

library('biomaRt')

hgnc <- dat$gene %>% unique()

ensembl <- useMart("ensembl",dataset="hsapiens_gene_ensembl")

res.go <- getBM(attributes = c('hgnc_symbol' ,'go_id','name_1006',

'namespace_1003' ),

filters = 'hgnc_symbol',

values = hgnc,

mart = ensembl) %>%

as_tibble()

#Switching up how I store these. Will now just have all GO terms

stored

res.mf <- res.go[res.go$namespace_1003 == 'molecular_function',]

%>%

group_by(hgnc_symbol) %>%

summarize(MF_GO_ID = paste(go_id, collapse = '|'),

MF_GO = paste(name_1006, collapse = '|'))
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res.cc <- res.go[res.go$namespace_1003 == 'cellular_component',]

%>%

group_by(hgnc_symbol) %>%

summarize(CC_GO_ID = paste(go_id, collapse = '|'),

CC_GO = paste(name_1006, collapse = '|'))

res.bp <- res.go[res.go$namespace_1003 == 'biological_process',]

%>%

group_by(hgnc_symbol) %>%

summarize(BP_GO_ID = paste(go_id, collapse = '|'),

BP_GO = paste(name_1006, collapse = '|'))

dat %<>% left_join(res.mf, by=c('gene' = 'hgnc_symbol')) %>%

left_join(res.bp, by=c('gene' = 'hgnc_symbol')) %>%

left_join(res.cc, by=c('gene' = 'hgnc_symbol'))

res.mf %<>%

group_by(hgnc_symbol) %>%

summarize(MF_GO_ID = paste(go_id, collapse = '|'),

MF_GO = paste(name_1006, collapse = '|'))

rm(list=ls(pattern = 'res.*'))

#OMIM genes

res.mim <- getBM(attributes = c('hgnc_symbol',

"mim_gene_accession"),

filters = 'hgnc_symbol',

values = hgnc,

mart = ensembl) %>%

as_tibble()
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res.mim %<>% mutate(OMIM = ifelse(!is.na(mim_gene_accession),

1,0)) %>%

arrange(desc(OMIM)) %>%

distinct(hgnc_symbol, .keep_all = T)

dat %<>% left_join(res.mim, by = c('gene'='hgnc_symbol'))

protein <- getBM(attributes=c("hgnc_symbol", "uniprotswissprot"),

filters='hgnc_symbol', mart = ensembl, values =

hgnc) %>%

as_tibble()

protein %<>% arrange(desc(uniprotswissprot)) %>%

distinct(hgnc_symbol, .keep_all = T)

dat %<>% left_join(protein, by=c('gene'='hgnc_symbol'))

rm(protein, res.mim, ensembl, hgnc)

detach('package:biomaRt', unload = T)

#Any that are omim and not benign = DELETERIOUS

#This is introducing NAs - these should really just become NDs too

dat %<>%

mutate(pheno = ifelse((pheno != 'BENIGN' & OMIM == 1),

'DELETERIOUS',pheno))

#I'm not sure I'm happy about this step. It basically makes a

tonne of them

#deleterious that I'm not sure SHOULD be
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# INSIDER

-----------------------------------------------------------------

ins <- fread('Insider/07-02-19_interactions.txt', sep = ',',

header = F) %>%

insider_parse() %>%

as_tibble()

#Reset index

rownames(ins) <- NULL

#If there is more than one source, keep the best source

# CoCystal > Homology > Predicted

ins %<>%

mutate(Source =  factor(Source, levels = c('CoCrystal Structure',

'Homology Model',

'Predicted

Interface'))) %>%

arrange(Source) %>%

distinct(Protein1,Protein2,.keep_all = T)

#This data can probably only be added to the protein model. Think

about this.

dat %<>% mutate(insider =

ifelse(uniprotswissprot %in%

unique(c(ins$Protein1, ins$Protein2)),

1, 0))

#Keep ins for the stringDB stuff later.

# Add Pharos

--------------------------------------------------------------

#Remote connection to pharosDB, then pull relevant features

pharos.ids <- dat$uniprotswissprot %>% unique
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pharos.ids <- paste0("'", pharos.ids, "'")

pharos.db = dbConnect(dbDriver("MySQL"), user='tcrd',

dbname='tcrd520',

host='tcrd.kmc.io')

query <-

paste0('SELECT id, uniprot, family, dtoid FROM protein WHERE

uniprot IN (',

paste0(pharos.ids, collapse = ', '), ');')

rm(pharos.ids)

ids <- dbGetQuery(pharos.db, query)

ids$dtoid <- paste0("'", ids$dtoid, "'")

query2 <- paste0('SELECT id, name, ttype, tdl, fam FROM target

WHERE id IN (',

paste0(ids$id, collapse = ', '), ');')

query3 <- paste0('SELECT * FROM dto WHERE id IN (',

paste0(ids$dtoid[!is.na(ids$dtoid)], collapse = ',

'), ');')

targs <- dbGetQuery(pharos.db, query2)

dto <- dbGetQuery(pharos.db, query3)

names(targs)[2] <- 'protein_name'

names(dto)[2] <- 'dto_name'

#Need to drop "'" from data

ids$dtoid <- gsub("\'",'',ids$dtoid)

pharos.dat <- left_join(ids, targs, by='id') %>%

left_join(dto, by=c('dtoid'='id')) %>%

dplyr::select(-id)

names(pharos.dat) <- paste0(names(pharos.dat), '.pharos')

#Add to main data/cleanup

dbDisconnect(pharos.db)

dat %<>%
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left_join(pharos.dat, by=c('uniprotswissprot'='uniprot.pharos'))

rm(pharos.dat, query, query2, query3, ids, dto, pharos.db, targs)

# Consistency check

-------------------------------------------------------

#Group and arrange, then replace with the first one (this works

because alphabetical

# order gives me the correct order of phenotypes)

dat %<>%

group_by(gene) %>%

arrange(pheno) %>%

ungroup() %>%

distinct(gene, .keep_all = T)

#This occurs because a small number of genes are represented twice

in the

#constraint doc

# Write to file

-----------------------------------------------------------

filename <- paste0('Clean/', Sys.Date(),'_LOFdb.txt')

write.table(dat, filename, sep='\t', row.names = F)

filename <- paste0('Clean/', Sys.Date(),'_insider_edges.txt')

write.table(ins, filename, sep = '\t', row.names = F)

# StringDB links

----------------------------------------------------------

#Reworking to just use the stringDB package - this is now good

string_db <- STRINGdb$new( version="10",

species=9606,

score_threshold=0,
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input_directory="/mnt/volume/GEL_DB/LOF_DB/Data/Dataset_compilatio

n/StringDB" )

#This just adds a STRING_id column

dat %<>% as.data.frame %>% #function doesn't work with tibbles

string_db$map('gene', removeUnmappedRows = F)

#Now just add gene names

ints <- string_db$get_interactions(dat$STRING_id)

dim(ints)

ints %<>%

as_tibble %>%

left_join(dplyr::select(dat, gene, STRING_id),

by=c('from'='STRING_id')) %>%

rename('gene1'='gene') %>%

left_join(dplyr::select(dat, gene, STRING_id),

by=c('to'='STRING_id')) %>%

rename('gene2'='gene')

#Write these to file

filename <- paste0('../Network/',

Sys.Date(),'_StringDB_links.txt')

write.table(ints, filename, sep = '\t', row.names = F)

##########

# END

##########
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3.3.9 Table 1

Benign Deleterious Class.error With
“atleast1Ho
m”

Out of bag
error (%)

Benign 454 850 0.65 Y 9.37

Deleterious 157 9284 0.017 Y

Benign 352 952 0.73 N 10.23

Deleterious 147 9249 0.016 N

Appendix Table 1 - A confusion matrix showing the class assignments based on two

random forest models, one with and one without the feature “atleast1Hom”. The class

error shows the proportion of genes mislabelled from the training data. The out of bag

error provides an estimate of the prediction error of the model. By this measure, the

model omitting the “atleast1Hom” feature performs worse than the model including it.

Removal of the “atleast1Hom” feature results in reduced performance of the model,

with positive benign labels being more likely to be classified as deleterious.

212



3.3.9 Feature importance estimation

Appendix Figure 3.3.9 - Dotcharts showing the feature importance as measured by a

Random Forest model. The left hand plots show the mean decrease in the number of

observations that are correctly classified (accuracy) upon removal of a feature, the right

hand plot show the mean decrease in Gini importance index  A) Data for the random

forest model including the “atleast1Hom feature”. B) Data for the random forest model

omitting the “atleast1Hom” feature.
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5.2.1 Database build scripts

Db_update.sh

#!/bin/bash

#title          :db_update.sh

#description    :Call R scripts to run updates on the GEL DB

#author         :Dan Rhodes

#date           :20180321

#version        :v0.1

#usage          :./db_update.sh

#notes          :

#bash_version   :4.3.11(1)-release

#===================================================================

=========

read -p "Enter Username: " usr

read -s -p "Enter Password: " pwrd

RESULT=`mysqlshow --user=$usr --password=$pwrd GEL| grep -v Wildcard

| grep -o GEL` #2>&1 >/dev/null

[ "$RESULT" == "GEL" ] && echo "Database Found" || exit "GEL

database not found"

read -p "Enter path for python env (if applicable), e.g.

./envs/bin/activate: " pyth

read -p "Enter path with filename to clinical phenotypes: `echo

$'\n> '`" PhenPath

[ -z "$PhenPath" ] && { echo "Need to set filepath"; exit 1; }

[ ! -e "$PhenPath" ] && { echo "File doesn't exist"; exit 1; }

#Order of scripts

s1='Clinical_phenotypes_add.R'
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s2='PanelApp_prep.R'

s3='dis_pheno_mapping.R'

s4='DGIdb_api.R'

#s5='SMILE.R' Replaced with new set

s5='drugbank_parse.R'

s6='drug_pheno_disease_mappings.R'

echo "Suspending GEL database foreign keys"

mysql --user=$usr --password=$pwrd GEL -Bse "SET foreign_key_checks

= 0;"

echo "Cutting rows containing 'Genomic medicine service

indications'"

sed -i '/Genomic medicine service indications/d' $PhenPath

echo "####################################################"

echo "Adding GEL disease data"

# Args to script - filepath, db password

echo "Running $s1"

Rscript $s1 $PhenPath $pwrd

echo "####################################################"

echo "Adding panelapp gene data"

echo "Running $s2"

Rscript $s2 $PhenPath $pwrd

echo "####################################################"

echo "Creating disease to phenotype mapping tables"

echo "Running $s3"

Rscript $s3 $PhenPath $pwrd

echo "####################################################"

[[ ! -z "${pyth// }" ]] && { echo "Starting pyenv"; source $pyth; }

echo "Grabbing gene-drug data from DGIdb"

echo "Running $s4"

Rscript $s4 $PhenPath $pwrd

echo "####################################################"

echo "Adding SMILE drug data"

echo "Running $s5"

Rscript $s5 $PhenPath $pwrd

echo "####################################################"

echo "Adding mapping tables data"
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echo "Running $s6"

Rscript $s6 $PhenPath $pwrd

echo "####################################################"

echo "Re-engaging foreign key constraints on GEL database"

mysql --user=$usr --password=$pwrd GEL -Bse "SET foreign_key_checks

= 1;"

echo "Complete"
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Clinical_phenotypes_add.R

#!/usr/bin/env r

####################################################################

#

## Project: GEL_DB

## Script purpose: Add or update data from clinical phenotypes list

## Date: 2018-03-22

## Author: Dan Rhodes

####################################################################

#

# Libs

--------------------------------------------------------------------

pkgs <- c('dplyr',

'RMySQL',

'magrittr',

'tidyr',

'data.table')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Functions

---------------------------------------------------------------

cleanNA <- function(x){

#Function to remove all blanks and NAs

x[x==''] <- NA

x <- na.omit(x)

return(x)

}

check_data <- function(gel.tables){

#Check existing data and only keep new data

query.list <- list()

existing.list <- list()

for(x in names(gel.tables)){

query.list[[x]] <- paste0('select * from ', x)

existing.list[[x]] <- dbGetQuery(con1, query.list[[x]])

if(x == 'disease'){

existing.list[[x]] %<>%

select(names(gel.tables[[x]])[names(gel.tables[[x]]) !=

'last_updated'])
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} else {

existing.list[[x]] %<>% select(names(gel.tables[[x]]))

}

#Convert all data types to char for joining

existing.list[[x]] %<>% mutate_all(as.character)

gelchar <- gel.tables[[x]] %>% mutate_all(as.character)

tmp <- anti_join(gelchar, existing.list[[x]])

gel.tables[[x]] <- tmp

}

return(gel.tables)

}

# Data import

-------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

if(Sys.info()["nodename"] == 'dan-XPS-13-9350'){

source('/home/dan/Documents/Data/Visible/QMUL/GeL/Disease_ontology/G

EL_DB/DB_setup/Scripts/db_connect.R')

} else {

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

}

inter <- ifelse(length(BashArgs) > 0, 0, 1)

if(inter == 1){

if(Sys.info()["nodename"] == 'dan-XPS-13-9350'){

gel.dat <-

read.csv('/home/dan/Documents/Data/Visible/QMUL/GeL/Disease_ontology

/GEL_DB/DB_setup/Clinical_phenotypes/v1.9.0/v1.9.0.csv',

header = T, stringsAsFactors = F, row.names

= NULL)

} else {

gel.dat <-

read.csv('/mnt/volume/GEL_DB/DB_setup/Clinical_phenotypes/v1.9.0/v1.

9.0.csv',

header = T, stringsAsFactors = F, row.names

= NULL)

}

} else{

gel.dat <- read.csv(BashArgs[1], header = T, stringsAsFactors = F,

row.names = NULL)

}
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con1 <- start_con(BashArgs)

db.tabs <- dbListTables(con1)

# Clean

-------------------------------------------------------------------

gelnames <- names(gel.dat)

gelnames <- gelnames[2:length(gelnames)]

gel.dat$Test.ID <- NULL

names(gel.dat) <- gelnames

rm(gelnames)

# Create input tables

-----------------------------------------------------

gel.tables <- list()

##Disease group

tmp <- dbListFields(con1, 'disease_group')

gel.tables[['disease_group']] <-

unique(gel.dat[c('id','Level.2.Disease.Group')])

names(gel.tables[['disease_group']]) <- tmp

##Disease subgroup

tmp <- dbListFields(con1, 'disease_subgroup')

gel.tables[['disease_subgroup']] <-

unique(gel.dat[c('id.1','id','Level.3.Disease.Subgroup')])

names(gel.tables[['disease_subgroup']]) <- tmp

##Specific disease

tmp <- dbListFields(con1, 'disease')

gel.tables[['disease']] <-

unique(gel.dat[c('id.2','id.1','Level.4.Specific.Disorder')])

names(gel.tables[['disease']]) <- tmp[!tmp %in%

c('panelapp_v','last_updated')] # panelapp data added in later

script

gel.tables$disease$disease <-

Hmisc::capitalize(tolower(gel.tables$disease$disease))

##Phenotype

tmp <- dbListFields(con1, 'phenotype')

gel.tables[['phenotype']] <-

unique(gel.dat[c('Phenotype.ID','Phenotype')])

names(gel.tables[['phenotype']]) <- tmp

219



##Test

tmp <- dbListFields(con1, 'test')

gel.tables[['test']] <- unique(gel.dat[c('Test.ID','Test')])

names(gel.tables[['test']]) <- tmp

gel.tables <- lapply(gel.tables, cleanNA)

gel.tables <- lapply(gel.tables,`rownames<-` , NULL ) #reset index

# Add to DB

---------------------------------------------------------------

to_upload <- check_data(gel.tables)

#Upload

for(n in names(to_upload)){

dbWriteTable(conn = con1, name = n, value = to_upload[[n]],

row.names=FALSE, append=T, overwrite = F)

cat(dim(to_upload[[n]])[1], 'records updated in table ', n, '\n')

}

rm(to_upload, gel.tables)

# Read data back

----------------------------------------------------------

db.list <- list()

db.list[['gene']] <- dbGetQuery(con1, 'select * from gene')

db.list[['disease']] <- dbGetQuery(con1, 'select * from disease')

db.list[['pheno']] <- dbGetQuery(con1, 'select * from phenotype')

db.list[['gene_dis']] <- dbGetQuery(con1, 'select * from

gene_to_disease')

db.list[['test']] <- dbGetQuery(con1, 'select * from test')

db.list[['dis_to_pheno']] <-dbGetQuery(con1, 'select * from

dis_to_pheno')

# Test to disease mapping

-------------------------------------------------

td <- gel.dat[,c('Level.4.Specific.Disorder','Test', 'Test.ID')] %>%

unique

td$Test[td$Test== ''] <- NA

td %<>% drop_na(-Test.ID)

td %<>% left_join(db.list$disease,

by=c("Level.4.Specific.Disorder"="disease"))

td[,c('id_dis_sub','Test','Level.4.Specific.Disorder')] <- NULL

td$id_test_to_disease <- NA

td$id_test_to_disease <- paste(td$id_disease,td$Test.ID, sep='_')

names(td)[grep('test.id',names(td),ignore.case = T)] <- 'id_test'

td <- td[,c(dbListFields(con1,'test_to_disease'))]
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td$id_test_to_disease <- paste(td$id_disease, td$id_test, sep ='_')

# Disease to phenotype mapping

--------------------------------------------

dp <- gel.dat[,c('id.2','Phenotype.ID')] %>% unique

dp$id.2[dp$id.2 == ''] <- NA

dp$Phenotype.ID[dp$Phenotype.ID== ''] <- NA

dp %<>% drop_na()

names(dp) <- c('id_disease','id_phenotype')

dp$id_dis_pheno <- paste(dp$id_phenotype, dp$id_disease, sep='.')

dp <- dp[,c(dbListFields(con1,'dis_to_pheno'))]

maps <- list(test_to_disease = td, dis_to_pheno = dp)

to_upload <- check_data(maps)

#Upload

for(n in names(to_upload)){

dbWriteTable(conn = con1, name = n, value = to_upload[[n]],

row.names=FALSE, append=T, overwrite = F)

cat(dim(to_upload[[n]])[1], 'records updated in table ', n, '\n')

}

#Disconnect from DB

dbDisconnect(con1)

quit()

### END ###
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PanelApp_prep.R

############################################

# Take Panelapp data harmonise with GEL DB  #

############################################

# Take panelapp data and add to mysql database, adds to tables

disease, gene and gene_to_disease

# Libs

--------------------------------------------------------------------

pkgs <- c('RMySQL',

'httr',

'tidyjson',

'jsonlite',

'dplyr',

'tidyr',

'stringr',

'Hmisc',

'magrittr',

'magrittr'

#'biomaRt', this is loaded later due to conflicts in

commands with tidyr

)

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Functions

---------------------------------------------------------------

clean_json <- function(x){

#Prep disease data for entry to main database

#Take a query response, parse JSON and extract relevant info,

returns df

pan <- httr::content(x, 'text', encoding = 'UTF-8') %>%

as.tbl_json

#Check genes are present

if(length(attr(pan,'JSON')[[1]][[1]]$Genes) < 1){

disease <- pan %>%

enter_object("result") %>%

spread_values(jstring("SpecificDiseaseName") ) %>%

as.data.frame

print(paste(disease[,2] , "has no genes in panel", sep= ' '))
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} else{

#Temporary names for genes

gene_tmp <-

paste("Gene",c(seq(length(attr(pan,'JSON')[[1]][[1]]$Genes))),sep=''

)

names(attr(pan,"JSON")[[1]][[1]]$Genes) <- gene_tmp

genes <- pan %>%

enter_object("result") %>%

enter_object("Genes")

genekeys <- gather_keys(genes)$key

#Pull gene info from each object

genedf <- genepull_json(genekeys = genekeys, genes = genes)

#Pull all other info

otherdf <- pan %>%

enter_object("result") %>%

spread_values(

Dis = jstring("SpecificDiseaseName"),

Dis_sub = jstring("DiseaseSubGroup"),

NV = jstring("version"),

Dis_group = jstring("DiseaseGroup") ) %>%

mutate( NV = as.numeric(NV)) %>%

tbl_df

total <- cbind(otherdf,genedf)

return(total)

}

}

genepull_json <- function(genekeys, genes){

#Take keys from json and genes object, pull data from each gene

object and return as df

outdf <- data.frame(LevelOfConfidence = NA,

Penetrance = NA,

MoI = NA,

Gene = NA,

Ensembl = NA,

Pheno = NA,

MoP = NA)

for(x in genekeys){

tmp <- genes %>% enter_object(x) %>%

spread_values(

Gene = jstring("GeneSymbol"),

Ensembl = jstring("EnsembleGeneIds"),

MoI = jstring("ModeOfInheritance"),

MoP = jstring("ModeOfPathogenicity"),

Penetrance = jstring("Penetrance"),

Pheno = jstring("Phenotypes"),
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LevelOfConfidence = jstring("LevelOfConfidence") ) %>%

tbl_df

outdf <- bind_rows(outdf,tmp) %>% tbl_df

}

#Remove NA rows

idx <- apply(outdf, 1, function(x) all(is.na(x)))

outdf <- outdf[ !idx, ]

return(outdf)

}

# MySQL db

----------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

if(Sys.info()["nodename"] == 'dan-XPS-13-9350'){

source('/home/dan/Documents/Data/Visible/QMUL/GeL/Disease_ontology/G

EL_DB/DB_setup/Scripts/db_connect.R')

} else {

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

}

con1 <- start_con(BashArgs)

db.tabs <- dbListTables(con1)

# Pull disease and gene information from mysql db

pull_data <- function(tablist, con){

db.list <- list()

for(tab in tablist){

query <- paste0('SELECT * FROM ', tab, ';')

db.list[[tab]] <- dbGetQuery(con, query)

}

return(db.list)

}

db.list <- pull_data(db.tabs, con1)

# Panelapp info

-----------------------------------------------------------

#Pull version numbers for disease from panelapp

# All panel app info

panelapp <-

GET('https://panelapp.genomicsengland.co.uk/WebServices/list_panels/

')
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if(panelapp$status_code != 200){

errm <- paste0("Panelapp API response code: ",

panelapp$status_code)

stop(errm)

}

# Parse and subset json, output as df

pa.json <- httr::content(panelapp,'text')

pa <- pa.json %>% as.tbl_json

pa.sub <- pa %>%

enter_object("result") %>%

gather_array %>%

spread_values(

panel_id = jstring("Panel_Id"),

Disease = jstring("Name"),

CV = jstring("CurrentVersion"),

Dis_sub = jstring("DiseaseSubGroup"),

Dis_group = jstring("DiseaseGroup") ) %>%

mutate( CV = as.numeric(CV) ) %>%

tbl_df()

#Create table showing those which don't need updating

#Init output table

update.df <- as.data.frame(matrix(ncol = ncol(pa.sub))) %>%

as_tibble()

names(update.df) <- names(pa.sub)

#Find those where version in db matches version in panelapp

for(i in 1:nrow(pa.sub)){

x <- db.list$disease[i, c('disease','panelapp_v')]

pa.x <- pa.sub[grep(tolower(x$disease), tolower(pa.sub$Disease),

fixed = T),]

if(nrow(pa.x) > 0){

if((x$panelapp_v == pa.x$CV)|(is.na(x$panelapp_v))){

update.df[i,] <- pa.x

pa.x <- NULL

x <- NULL

}

}

}

#Drop these

update.df <- update.df[rowSums(is.na(update.df)) != ncol(update.df),

]

pa.sub %<>% filter(!panel_id %in% update.df$panel_id)
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#Cleanup

rm(i,x,pa.x)

# Panelapp data pull

------------------------------------------------------

#Loop through diseases, GET json, only taking high confidence genes

panels.ls <- c()

for(x in pa.sub$panel_id){

y <- URLencode(x)

com <-

paste('https://panelapp.genomicsengland.co.uk/WebServices/get_panel/

',y,'/?LevelOfConfidence=HighEvidence', sep = '')

panels.ls[[x]] <- GET(com)

}

# Clean json

----------------------------------------------------------

tidy_panels.ls <- lapply(panels.ls, clean_json)

#Drop panels with no genes

tonull <- c()

for(i in 1:length(tidy_panels.ls)){

if(grepl('has no genes in panel$', tidy_panels.ls[[i]][1]) ==

TRUE){

tonull <- c(tonull,i)

}

}

tidy_panels.ls[tonull] <- NULL

#Bind into one df

panels.df <- as.data.frame(matrix(ncol = 13)) %>% tbl_df

names(panels.df) <- names(tidy_panels.ls[[1]])

for(x in tidy_panels.ls){

if(typeof(x)=='list'){

panels.df <- bind_rows(panels.df, x)

}

}

idx <- apply(panels.df, 1, function(x) all(is.na(x)))

panels.df <- panels.df[!idx, ]

#Remove any punctuation from Gene names

panels.df$Gene <- sub('[[:punct:]]','',panels.df$Gene)

#Capitalise each word for diseases

panels.df$Dis <- Hmisc::capitalize(tolower(panels.df$Dis))
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#Some don't have any group or subgroup disease information. This

will break

#our data hierarchy, so drop them

panels.df %<>% filter(Dis_group != '' & Dis_sub != '')

# Integrate data

----------------------------------------------------------

## GENES ##

#Now need to separate all cases containing multiple phenotypes for

phenotype mapping

## Ensembl IDs

#Panelapp uses Ensembl IDs so sticking to these, ignore entrez for

now for simplicity

ensembl.df <- panels.df[,c('Dis','Gene','Ensembl')] %>% as_tibble()

ensembl.df[,'Ensembl'] <-

apply(ensembl.df[,'Ensembl'], 1, function(x)

str_extract(x,'ENSG[[:digit:]]*'))

#Limit to new genes for gene table, limit to new disease/gene

combination for disease/gene mapping

tmp_gene <- ensembl.df[,c('Ensembl','Gene')]

tmp_gene <- tmp_gene[!(toupper(tmp_gene$Gene) %in%

toupper(db.list$gene$hgnc_symbol)), ]

names(tmp_gene) <- names(db.list$gene)[2:3]

if(nrow(tmp_gene) > 0){

tmp_gene$id_gene <- NA

tmp_gene <- tmp_gene[,names(db.list$gene)]

tmp_gene <- unique(tmp_gene)

#Add unique key

if(nrow(db.list$gene) > 0){

start.idx <- max(db.list$gene$id_gene)

} else {

start.idx <- 0

}

tmp_gene$id_gene <- seq(start.idx + 1, (start.idx + 1) +

nrow(tmp_gene)-1)

#Add to gene.db

dbWriteTable(conn = con1, name = "gene", value = tmp_gene,

row.names=FALSE, append=TRUE, overwrite = F)

} else {

print('No new genes')

}
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rm(x, tmp_gene, update.df, tidy_panels.ls, panels.ls, i, idx,

db.tabs, com,

y, tonull, ensembl.df, pa, panelapp)

## GENES END ##

## DISEASE ##

#Add any new diseases not in clin phen

toadd <- panels.df %>%

filter(!tolower(Dis) %in% tolower(db.list$disease$disease)) %>%

select(Dis, Dis_sub, Dis_group, NV) %>%

distinct() %>%

mutate(id_disease = NA,

id_dis_group = NA,

id_dis_sub= NA)

#Prep the tables

#Disease tab

distab <- toadd %>%

select('disease'='Dis') %>%

filter(!disease == '') %>%

mutate(id_disease = NA)

#Disease_Subgroup tab

subtab <- toadd %>%

select('disease_subgroup' = 'Dis_sub') %>%

distinct() %>%

filter(!tolower(disease_subgroup)

%in% tolower(db.list$disease_subgroup$disease_subgroup))

%>%

filter(!disease_subgroup == '') %>%

mutate(id_dis_sub = NA)

#We know there is a special case with haematological disorders

#edit this manually

toadd %<>% mutate(Dis_group =

ifelse(Dis_group == 'Haematological disorders',

'Haematological and immunological

disorders',

Dis_group))

# Group tab

grptab <- toadd %>%

select('disease_group'='Dis_group') %>%

distinct() %>%

filter(!disease_group %in% db.list$disease_group$disease_group)
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%>%

filter(!disease_group == '') %>%

mutate(id_dis_group = NA) %>%

select(id_dis_group, disease_group)

#Now have to deal with the lack of appropriate IDs for the new sets

#Add a prefix and start new numbering convention

idx_start <- function(x){

#Given column in specific table, which is most recent identifier

#Just testing to see if previous PA vs added, NOT GENERAL USE

if(length(grep('^PA',x))> 0){

existgrp <- grep('^PA',x, value = T)

existgrp <- gsub('PA','',existgrp)

existgrp <- as.numeric(existgrp[which.max(existgrp)])

existgrp <- sprintf("99%03d", existgrp + 1)

} else {

existgrp <- 1

existgrp <- sprintf("99%03d", existgrp)

}

return(existgrp)

}

add_ids <- function(table, start_id){

#Add IDs to whichever column is necessary

n <- as.numeric(gsub('^99','',start_id))

newids <- sprintf("99%03d",

seq(from = n,

to = nrow(table)))

return(newids)

}

#Now we need to fill in the missing data that is already found in

the DB

#So first we need the mapping for group to subgroup.

grpadd <- toadd %>%

filter(is.na(id_dis_group)) %>%

left_join(db.list$disease_group, by =

c('Dis_group'='disease_group')) %>%

mutate(id_dis_group = coalesce(as.character(id_dis_group.x),

as.character(id_dis_group.y))) %>%

select(-id_dis_group.x,-id_dis_group.y)

sbgrpadd <- toadd %>%

filter(is.na(id_dis_sub)) %>%
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left_join(select(db.list$disease_subgroup,

disease_subgroup, id_dis_sub),

by=c('Dis_sub'='disease_subgroup')) %>%

mutate(id_dis_sub = coalesce(as.character(id_dis_sub.x),

as.character(id_dis_sub.y))) %>%

select(-id_dis_sub.x,-id_dis_sub.y)

#None of the diseases will need adding

#Add these to the toadd tab

sbgrpadd %<>%

select(-id_dis_group) %>%

left_join(select(grpadd,

Dis_group,

id_dis_group), by ='Dis_group') %>%

distinct()

rm(grpadd)

toadd %<>%

select(-id_dis_group, -id_dis_sub) %>%

left_join(select(sbgrpadd,

Dis,

id_dis_sub,

id_dis_group), by =c('Dis'))

rm(sbgrpadd)

#now actually replace those of the NAs

toadd$id_dis_sub[is.na(toadd$id_dis_sub)] <-

idx_start(db.list$disease_group$id_dis_sub) %>%

add_ids(table = filter(toadd, is.na(id_dis_sub)))

toadd$id_disease[is.na(toadd$id_disease)] <-

idx_start(db.list$disease$id_disease) %>%

add_ids(table = filter(toadd, is.na(id_disease)))

#Now redefine the tables that need to be added with their IDs

#Disease tab

distab <- toadd %>%

select('disease'='Dis',

'panelapp_v'='NV',

id_disease,

id_dis_sub) %>%

mutate(last_updated = NA) %>%
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filter(!disease == '') %>%

select(id_disease,id_dis_sub, disease, last_updated, panelapp_v)

#Disease_Subgroup tab

subtab <- toadd %>%

select('disease_subgroup' = 'Dis_sub',

id_dis_sub,

id_dis_group) %>%

distinct() %>%

filter(!disease_subgroup %in%

db.list$disease_subgroup$disease_subgroup) %>%

filter(!disease_subgroup == '') %>%

select(id_dis_sub, id_dis_group, disease_subgroup)

# Group tab

grptab <- toadd %>%

select('disease_group'='Dis_group') %>%

distinct() %>%

filter(!disease_group %in% db.list$disease_group$disease_group)

%>%

filter(!disease_group == '') %>%

mutate(id_dis_group = NA) %>%

select(id_dis_group, disease_group)

#Write to db

dbWriteTable(conn = con1,

name = "disease_subgroup",

value = subtab,

row.names=FALSE,

append=TRUE,

overwrite = F)

dbWriteTable(conn = con1,

name = "disease",

value = distab,

row.names=FALSE,

append=TRUE,

overwrite = F)

#Just need to update the panelapp v

tmp_disease <-

unique(panels.df[,c('Dis','Dis_sub','Dis_group','NV')])

#For now removing any new diseases from panelapp api but not

included in the master list received from Damian

tmp_disease <- tmp_disease[tolower(tmp_disease$Dis) %in%

tolower(db.list$disease$disease),]
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#Create index for looping through only those changed

if(dim(tmp_disease)[1] > 0){

updated.idx <- c()

for(i in 1:nrow(tmp_disease)){

d.idx <- grep(tolower(tmp_disease$Dis[i]),

tolower(db.list$disease$disease), fixed = T)

if((db.list$disease$panelapp_v[d.idx] !=

tmp_disease$NV[i])|(is.na(db.list$disease$panelapp_v[d.idx]))){

db.list$disease$panelapp_v[d.idx] <- tmp_disease$NV[i]

updated.idx <- c(updated.idx,d.idx)

}

}

#Overwrite panelapp_v

#Can't do this in one dbWriteTable, just loop as won't be updating

that many in any one go

for(x in updated.idx){

id <- db.list$disease$id_disease[x]

v <- db.list$disease$panelapp_v[x]

s.sql <- paste("UPDATE disease SET panelapp_v = ", v, " WHERE

id_disease = ", id, ";", sep='')

dbSendQuery(con1,statement= s.sql)

}

}

## DISEASE END ##

## GENE TO DISEASE

#Get updated version of the tables

db.list2 <- list()

db.list2[['gene']] <- dbGetQuery(con1, 'select * from gene')

db.list2[['disease']] <- dbGetQuery(con1, 'select * from disease')

#Get IDs of any genes and disease combos

g_d <- panels.df[,c('Dis','Gene')]

g_d %<>% left_join(db.list2$disease, by=c('Dis'='disease')) %>%

left_join(db.list2$gene, by=c('Gene'='hgnc_symbol')) %>%

select('Dis','Gene','panelapp_v','id_gene','id_disease')

g_d %<>% drop_na(id_gene,id_disease)

g_d %<>% mutate(Check = ifelse(is.na(match(paste0(g_d$id_disease,

g_d$id_gene),

paste0(db.list$gene_dis$id_disease,
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db.list$gene_dis$id_gene))),"No", "Yes")) %>%

filter(Check == 'No') %>%

select('id_disease','id_gene')

g_d$id_gene_to_disease <- NA

g_d <- g_d[,c('id_gene_to_disease','id_disease','id_gene')]

#Unique ID, composite of disease ID and gene ID

g_d$id_gene_to_disease <- paste(g_d$id_disease,g_d$id_gene,sep='.')

#Add to the disease/gene mapping tablerm(l)

dbWriteTable(conn = con1, name = "gene_to_disease", value = g_d,

row.names=FALSE, append=TRUE, overwrite = F)

## GENES TO DISEASE END ##

#Disconnect from DB

dbDisconnect(con1)

quit()

### END ###
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dis_to_pheno_mapping.R

#!/usr/bin/env r

####################################################################

#

## Project: GEL_DB

## Script purpose: Create phenotype to gene mapping tables

## Date: 2018-03-22

## Author: Dan Rhodes

####################################################################

#

# Setup

-------------------------------------------------------------------

pkgs <- c('RMySQL',

'dplyr',

'biomaRt')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Data load

---------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

con1 <- start_con(BashArgs)

db.list <- list()

db.list[['pheno']] <- dbGetQuery(con1, 'select * from phenotype')

db.list[['gene']] <- dbGetQuery(con1,'select * from gene')

db.list[['pheno_gene']] <- dbGetQuery(con1,'select * from

pheno_to_gene')

#HPO data

hpo.dat <-

read.table('/mnt/volume/GEL_DB/DB_setup/HPO_files/archive/annotation

/ALL_SOURCES_ALL_FREQUENCIES_phenotype_to_genes.txt', sep='\t')

names(hpo.dat) <- c('HPO.id','Phenotype','Entrez','Gene.symbol')

# Subset

------------------------------------------------------------------
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hpo.sub <- hpo.dat[hpo.dat$HPO.id %in% db.list$pheno$id_phenotype,]

%>%

tbl_df %>%

mutate_at(.,vars(-Entrez), as.character)

rm(hpo.dat)

#Check if new genes

new.genes <- as.character(unique(hpo.sub$Gene.symbol))

new.genes <- new.genes[!(toupper(new.genes) %in%

toupper(db.list$gene$hgnc_symbol))]

#Get ensembl IDs

mart <- useMart(biomart = "ensembl", dataset =

"hsapiens_gene_ensembl")

results <- getBM(attributes = c("hgnc_symbol","ensembl_gene_id"),

filters = "hgnc_symbol",

values = new.genes, mart = mart, uniqueRows = T)

#If multiple ensembl IDs exist, drop all ensembl IDs for this gene

dup.idx <- which(duplicated(results$hgnc_symbol) |

duplicated(results$hgnc_symbol, fromLast = TRUE))

if(length(dup.idx) > 0){

results[dup.idx,'ensembl_gene_id'] <- NA

}

results <- unique(results)

#Add new genes to db

if(dim(results)[1] > 0){

results$id_gene <- NA

results <- results[,c('id_gene','ensembl_gene_id','hgnc_symbol')]

names(results) <- names(db.list$gene)

}

if(nrow(results) > 0){

#Add unique key

if(nrow(db.list$gene) > 0){

start.idx <- max(db.list$gene$id_gene)

} else {

start.idx <- 0

}

results$id_gene <- seq(start.idx + 1, (start.idx + 1) +

nrow(results)-1)

#Add to gene.db

dbWriteTable(conn = con1, name = "gene", value = results,
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row.names=FALSE, append=TRUE, overwrite = F)

}

#Get updated v.

gene.db2 <- dbGetQuery(con1,'select * from gene') %>%

as_tibble()

gene.db2 %<>% left_join(hpo.sub, by =

c('hgnc_symbol'='Gene.symbol')) %>%

unique

### Mapping table

#Check if combo exists

gene.db2$Check <- ifelse(is.na(match(paste0(gene.db2$HPO.id,

gene.db2$id_gene),

paste0(db.list$pheno_gene$id_phenotype,

db.list$pheno_geneb$id_gene))),"No", "Yes")

ptg.map <- gene.db2[gene.db2$Check =='No',c('HPO.id','id_gene')]

ptg.map$id_pheno_to_gene <- paste(ptg.map$HPO.id, ptg.map$id_gene,

sep='.')

ptg.map <- ptg.map[,c('id_pheno_to_gene','HPO.id','id_gene')]

names(ptg.map) <- names(db.list$pheno_gene)

#Write to db

dbWriteTable(conn = con1, name = "pheno_to_gene", value = ptg.map,

row.names=FALSE, append=TRUE, overwrite = F)

quit()

### END ###
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DGIdb_api.R

#!/usr/bin/env r

####################################################################

#

## Project: GEL_DB

## Script purpose: Get data from DGIdb API data haromise with GEL DB

## Date: 2018-03-22

## Author: Dan Rhodes

####################################################################

#

#Takes genes from db, calls DGiDB API and gets drug-gene interaction

info

#Adds new drugs to drug db and new drug/gene combinations to mapping

table

# Setup

-------------------------------------------------------------------

# Specific steps required for rPython install

# If install fails run "sudo apt-get install python-dev" in terminal

# or "sudo apt-get install pip3-python | pip3 install python-dev" if

using pip3

# install.packages("rPython", configure.vars=

"RPYTHON_PYTHON_VERSION=3") # in R

pkgs <- c('data.table',

'dplyr',

'Hmisc',

'rDGIdb',

'RMySQL',

'magrittr',

'rPython',

'tidyr')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Functions

---------------------------------------------------------------
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### Data cleaning funcs ###

drug_names <- function(x){

#Get rid of drug differences caused by punctuation

uni <- unique(x$drug_name)

uni <- sapply(uni, function(x){gsub(pattern =

'[[:punct:][:blank:]]',

replacement = "", x)})

dups <- uni[uni %in% uni[duplicated(uni)]] %>% sort

#Keep the one with more information

while(length(dups) > 0){

d <- 1

#print(names(dups)[d])

idx <- grep(dups[d], dups)

tmp <- x[grep(escapeRegex(paste0(names(dups)[idx], collapse =

'|')), x$drug_name),]

if(any(is.na(tmp$interaction_type))){

#Cases where one interaction type is na

todrop <- tmp$drug_name[which(is.na(tmp$interaction_type))]

} else if(length(table(tmp$interaction_type)) == 1){

#Cases where they are of the same type, keep with punct

todrop <- grep('[[:punct:]]', tmp$drug_name)

if(length(todrop) > 1){

todrop <- todrop[-1]

} else if(length(todrop) == 1){

todrop <- tmp$drug_name[-todrop]

}

x <- x[-grep(todrop, x$drug_name),]

}

#print(paste('Done',names(dups)[d]))

dups <- dups[-idx]

}

return(x)

}

interaction_types <- function(x){

# Lets cut down the interaction types to two main types if known

#adding a look around grep to match agonist but ignore antagonist

for ags, requires perl = t in grep

ags <- c('^(?!.*ant).*agonist','activator', 'stimulator',

'positive allosteric modulator',

'inducer','cofactor', 'allosteric modulator',

'potentiator')

ants <- c('antagonist','blocker','channel blocker', 'inhibitor',

'negative modulator')
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x$clean_interaction_type <- NA

x$clean_interaction_type[grep(paste0(ags,collapse = '|'),

x$interaction_type, ignore.case = T, perl = T) ] <- 'agonist'

x$clean_interaction_type[grep(paste0(ants,collapse = '|'),

x$interaction_type, ignore.case = T) ] <- 'inhibitor'

x$clean_interaction_type[is.na(x$interaction_type)] <- 'unknown'

x$clean_interaction_type[is.na(x$clean_interaction_type)] <-

'other'

x %<>% distinct(gene_name, drug_name, gene_categories,

clean_interaction_type, .keep_all = T)

#Deal with NAs

dups <- x[duplicated(x[,c('drug_name','gene_name')]) |

duplicated(x[,c('drug_name','gene_name')], fromLast=TRUE),]

#Get rid of unknowns in this group first

x <- anti_join(x, dups[dups$clean_interaction_type == 'unknown',])

dups <- x[duplicated(x[,c('drug_name','gene_name')]) |

duplicated(x[,c('drug_name','gene_name')], fromLast=TRUE),]

#Sort conflicts if dups still remain

if(nrow(dups) > 0){

n <- 1

todrop <- list()

while(nrow(dups) > 0){

d <- 1

idx <- grep(paste0(dups$gene_name[d],dups$drug_name[d]),

paste0(dups$gene_name,dups$drug_name))

tmp <- dups[idx,]

if('inhibitor' %in% names(table(tmp$clean_interaction_type))){

todrop[[n]] <-

tmp[-grep('inhibitor',tmp$clean_interaction_type),]

}

if('agonist' %in% names(table(tmp$clean_interaction_type))){

todrop[[n]] <-

tmp[-grep('agonist',tmp$clean_interaction_type),]

}

if('other' %in% names(table(tmp$clean_interaction_type))){

todrop[[n]] <-

tmp[-grep('other',tmp$clean_interaction_type),]

}

dups <- dups[-idx,]

n <- n + 1

}

todrop <- do.call(rbind, todrop)

x <- anti_join(x, todrop)

}

return(x)

}
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drug_clean <- function(x){

cat('Dimensions before cleaning:', dim(x))

x$drug_name <- toupper(x$drug_name)

#Apply cleaning funcs

x <- drug_names(x)

x <- interaction_types(x)

cat('Dimensions after cleaning:', dim(x))

return(x)

}

###

# Data import

-------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

source('/mnt/volume/GEL_DB/DB_setup/Scripts/gene_cats.R')

con1 <- start_con(BashArgs)

# Get DB data

-------------------------------------------------------------

db.tabs <- dbListTables(con1)

db.list <- pull_data(db.tabs, con = con1)

gene.query <- db.list$gene$hgnc_symbol %>% unique

# DGIdb API

---------------------------------------------------------------

#Using python script

py <- 'python3'

script <- '/mnt/volume/GEL_DB/DB_setup/Scripts/DGIdb_API.py'

py.args <- paste0(gene.query, collapse = ',') %>%

paste0("--genes=","'", ., "'")

outter <- " > /mnt/volume/GEL_DB/DB_setup/ResTmp.txt"

outter <- paste(py.args, outter )

# Add path to script as first arg

allArgs = c(script, outter)

system2(py, args=allArgs)
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# Clean data

--------------------------------------------------------------

tmp <- readLines('/mnt/volume/GEL_DB/DB_setup/ResTmp.txt')

if(length(grep('^Possible|^Unmatched', tmp)) > 0){

tmp <- tmp[-grep('^Possible|^Unmatched', tmp)]

}

res <- read.table(textConnection(tmp), stringsAsFactors = F, header

= T, sep = '\t') %>% as_tibble

system('rm ~/GEL_DB/DB_setup/ResTmp.txt')

rm(tmp)

res$source <- NULL

res %<>% unique()

res$interaction_type[res$interaction_type == ''] <- NA

res <- drug_clean(res)

# Cross-check against DB

--------------------------------------------------

###Add new drugs to drug.db

new.drugs <- res[!(res$drug_name %in%

db.list$drug$drug_name),]$drug_name %>%

tbl_df %>%

unique

new.drugs$id_drug <- NA

new.drugs <- new.drugs[,c('id_drug','value')]

names(new.drugs) <- c('id_drug','drug_name')

if(nrow(db.list$drug) > 0){

start.idx <- max(db.list$drug$id_drug)

} else {

start.idx <- 0

}

new.drugs$id_drug <- seq(start.idx + 1, (start.idx + 1) +

nrow(new.drugs)-1)

#Add to drug.db

dbWriteTable(conn = con1, name = "drug", value = new.drugs,

row.names=FALSE, append=TRUE, overwrite = F)

#Read in updated db

drugs.db2 <- dbGetQuery(con1,"SELECT * FROM drug")

###
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## Mapping table ##

#Check that specific drug to gene link is new

dg.df <-

res[,c('gene_name','drug_name','interaction_type','clean_interaction

_type')]

dg.df$id_drug <- NA

dg.df$id_gene <- NA

#Get gene and drug IDs

for(i in 1:nrow(dg.df)){

tryCatch({

#escapeRegex() deals with parentheses therefore allowing str to

be treated as regex and not literal

dg.df[i,'id_drug'] <- drugs.db2[grep(paste('^',

escapeRegex(dg.df$drug_name[i]), '$', sep=''), drugs.db2$drug_name,

ignore.case = T),'id_drug']

},error = function(e){cat('ERROR:', conditionMessage(e), 'For

Drug', dg.df$drug_name[i],'\n')})

tryCatch({

dg.df[i,'id_gene'] <-  db.list$gene[grep(paste('^',

dg.df$gene_name[i], '$', sep=''), db.list$gene$hgnc_symbol,

ignore.case = T),'id_gene']

},error = function(e){cat('ERROR:', conditionMessage(e), 'For

Gene', as.character(dg.df$gene_name)[i],'\n')})

}

#These are all pre-existing genes, so just need to list the new

drugs into the db

dg.df$Check <- ifelse(is.na(match(paste0(dg.df$drug_name,

dg.df$gene_name),

paste0(db.list$drug_gene$id_drug,

db.list$drug_gene$id_gene))),"No", "Yes")

dg_upload <- dg.df[dg.df$Check ==

'No',c('id_drug','id_gene','interaction_type',

'clean_interaction_type')]

dg_upload$id_drug_to_gene <-

paste(dg_upload$id_drug,dg_upload$id_gene,sep='.')

dg_upload <-

dg_upload[,c('id_drug_to_gene','id_drug','id_gene','interaction_type

', 'clean_interaction_type')]
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dbWriteTable(conn = con1, name = "drug_to_gene", value = dg_upload,

row.names=FALSE, append=TRUE, overwrite = F)

### Add DGIdb gene cats to gene data

res.sub <- res %>%

select(gene_name, gene_categories) %>%

distinct()

res.sub$gene_categories[res.sub$gene_categories == ''] <- NA

res.sub %<>% na.omit

#Add new cats if there are any

new_cats(res.sub$gene_categories, source = 'DGIdb')

#Add data

map_cats(res, db.list)

closecon(x)

quit()

### End ###
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SMILE.R

#!/usr/bin/env r

####################################################################

#

## Project: GEL_DB

## Script purpose: Get SMILE data

## Date: 2018-03-22

## Author: Dan Rhodes

####################################################################

#

# Setup

-------------------------------------------------------------------

pkgs <- c('dplyr',

'Hmisc',

'webchem',

'RMySQL',

'httr')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Connection to db

--------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

con1 <- start_con(BashArgs)

db.tabs <- dbListTables(con1)

drugs.db <- dbGetQuery(con1,"SELECT * FROM drug")

drugs.db.orig <- drugs.db

# Query SMILES

------------------------------------------------------------

# Data from

(http://cactus.nci.nih.gov/chemical/structure_documentation)

#Only looking up those with NAs
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to_update <- which(is.na(drugs.db$smile))

updated.idx <- c()

for(i in to_update){

i.query <- drugs.db$drug_name[i] %>% URLencode(reserved = T)

url.query <-

paste0('https://cactus.nci.nih.gov/chemical/structure/',i.query,'/sm

iles')

res <- GET(url.query)

if(http_status(res)$category == "Success"){

drugs.db[i,'smile'] <- content(res)

updated.idx <- c(updated.idx,i)

} else {

print(paste(drugs.db$drug_name[i],'not found'))

}

}

#Update those that have smiles added

for(i in updated.idx){

id <- drugs.db$id_drug[i]

smile <- drugs.db$smile[i]

s.sql <- paste("UPDATE drug SET smile = ",

AnnotationDbi::toSQLStringSet(smile), " WHERE id_drug = ", id, ";",

sep='')

dbSendQuery(con1,statement= s.sql)

}

#Disconnect from DB
dbDisconnect(con1)
quit()
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drugbank_parse.R

#!/usr/bin/env r

##################################################

## Project: GEL_DB

## Script purpose: Parse drugbank data

## Date: 2018-07-10

## Author: Dan Rhodes

##################################################

#Take drugbank data downloaded from website, take what's needed

# e.g. data obtain -

# curl -Lfv -o drug_structure.zip -u username:password

https://www.drugbank.ca/releases/5-1-1/downloads/all-structures

# Setup

-------------------------------------------------------------------

pkgs <- c('dplyr',

'RMySQL',

'Biostrings',

'magrittr')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Data import

-------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

if(Sys.info()["nodename"] == 'dan-XPS-13-9350'){

source('/home/dan/Documents/Data/Visible/QMUL/GeL/Disease_ontology/G

EL_DB/DB_setup/Scripts/db_connect.R')

} else {

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

}

con1 <- start_con(BashArgs)

db.tabs <- dbListTables(con1)

drugs.db <- dbGetQuery(con1,"SELECT * FROM drug")

drugs.db.orig <- drugs.db
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# Import

------------------------------------------------------------------

#Links to other data sources

DatSource <-

read.csv('/mnt/volume/GEL_DB/DB_setup/Drugbank/drug_links.csv',

header = T)

#SDF data for drugs

#datSDF <-

read.csv('/mnt/volume/GEL_DB/DB_setup/Drugbank/structures.sdf',

header = T)

#SMILE data

datSM <-

read.csv('/mnt/volume/GEL_DB/DB_setup/Drugbank/structure_links.csv',

header = T)

#FASTA with biologic sequence data

datFA <-

readAAStringSet('/mnt/volume/GEL_DB/DB_setup/Drugbank/drug_sequences

.fasta')

# Wrangle

-----------------------------------------------------------------

#Data on drug IDs is not available from DGIdb - so try to harmonise

with the drugbank data

harm <- drugs.db[which(is.na(drugs.db$id_drugbank)),]

harm %<>% mutate(d_name = tolower(drug_name))

datSM %<>% mutate(d_name = tolower(Name)) %>% select(Name,

Drug.Groups, SMILES, d_name)

harm %<>% left_join(datSM, by = 'd_name') %>% select(id_drug,

drug_name, d_name, Drug.Groups, smile=SMILES)

#Lets add data from DatSource and match cols with drugs.db

DatSource %<>% mutate(d_name = tolower(Name))

harm %<>% left_join(DatSource, by = 'd_name') %>% select(id_drug,

drug_name,

smile,

drug_type=Drug.Type,

drug_groups=Drug.Groups,

id_drugbank=DrugBank.ID,

cas_number=CAS.Number,

id_pubchem_compound=PubChem.Compound.ID,

id_chebi=ChEBI.ID,

id_chemspider=ChemSpider.ID)

#Get rid of cases that haven't actually been changed (no drugbank

data)
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harm %<>% mutate(na.count = rowSums(is.na(.))) %>%

filter(na.count != 8) %>%

select(-na.count)

harm$smile <- harm$smile %>% as.character()

# Add to DB

---------------------------------------------------------------

#Will have to update rather than overwrite

for(i in 1:nrow(harm)){

smile <- harm$smile[i]

s.sql <- paste("UPDATE drug SET smile = ",

AnnotationDbi::toSQLStringSet(smile),

", drug_type = ", "'", harm$drug_type[i], "'",

", drug_groups = ", "'", harm$drug_groups[i], "'",

", id_drugbank = ", "'", harm$id_drugbank[i], "'",

", cas_number = ", "'", harm$cas_number[i], "'",

", id_pubchem_compound = ", "'",

harm$id_pubchem_compound[i], "'",

", id_chebi = ", "'", harm$id_chebi[i], "'",

", id_chemspider = ", "'", harm$id_chemspider[i],

"'",

" WHERE id_drug = ", "'", harm$id_drug[i], "'",

";", sep='')

s.sql <- gsub("'NA'","NULL", s.sql)

dbSendQuery(con1,statement= s.sql)

}

closecon(X)
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drug_pheno_disease_mappings.R

#!/usr/bin/env r

####################################################################

#

## Project: GEL_DB

## Script purpose: Disease and phenotype to drug mapping tables

## Date: 2018-03-22

## Author: Dan Rhodes

####################################################################

#

# Create mapping tables based on drug information.

# Libs

--------------------------------------------------------------------

pkgs <- c('dplyr',

'RMySQL',

'magrittr',

'tidyr')

if (!require("pacman")) install.packages('pacman')

pacman::p_load(pkgs, character.only = T)

rm(pkgs)

# Data import

-------------------------------------------------------------

BashArgs = commandArgs(trailingOnly=TRUE)

source('/mnt/volume/GEL_DB/DB_setup/Scripts/db_connect.R')

con1 <- start_con(BashArgs)

db.tabs <- dbListTables(con1)

db.list <- list()

db.list[['disease']] <- dbGetQuery(con1, 'select * from disease')

db.list[['pheno']] <- dbGetQuery(con1, 'select * from phenotype')

db.list[['disease']] <- dbGetQuery(con1, 'select * from disease')

db.list[['drug']] <- dbGetQuery(con1, 'select * from drug')

db.list[['drug_to_gene']] <- dbGetQuery(con1, 'select * from

drug_to_gene')
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db.list[['gene']] <- dbGetQuery(con1, 'select * from gene')

db.list[['gene_to_disease']] <- dbGetQuery(con1, 'select * from

gene_to_disease')

db.list[['pheno_to_gene']] <- dbGetQuery(con1, 'select * from

pheno_to_gene')

db.list[['disease_to_drug']] <- dbGetQuery(con1, 'select * from

disease_to_drug')

db.list[['pheno_to_drug']] <- dbGetQuery(con1, 'select * from

pheno_to_drug')

# Disease to drug mapping

-------------------------------------------------

#Need to link the drug to the gene, then that gene to its associated

diseases disease

gd <- db.list$drug_to_gene %>% left_join(db.list$gene_to_disease, by

= c("id_gene"="id_gene")) %>%

select(id_drug, id_disease) %>%

unique

gd$id_disease_to_drug <- paste(gd$id_disease, gd$id_drug, sep = '_')

gd <- gd[,c(dbListFields(con1,'disease_to_drug'))]

gd <- gd[!(gd$id_disease_to_drug %in%

db.list$disease_to_drug$id_disease_to_drug),]

# Phenotype to drug mapping

-----------------------------------------------

pd <- db.list$drug_to_gene %>% left_join(db.list$pheno_to_gene, by =

c("id_gene"="id_gene")) %>%

select(id_drug, id_phenotype) %>%

unique

pd$id_pheno_to_drug <- paste(pd$id_pheno, pd$id_drug, sep = '_')

pd <- pd[,c(dbListFields(con1,'pheno_to_drug'))]

pd <- pd[!(pd$id_pheno_to_drug %in%

db.list$pheno_to_drug$id_pheno_to_drug),]

# Add to db

---------------------------------------------------------------

to_upload <- list()

to_upload[['disease_to_drug']] <- gd

to_upload[['pheno_to_drug']] <- pd

#Upload

for(n in names(to_upload)){

dbWriteTable(conn = con1, name = n, value = to_upload[[n]],
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row.names=FALSE, append=T, overwrite = F)

cat(dim(to_upload[[n]])[1], 'records updated in table ', n, '\n')

}

### END ###

MySQL GEL database schema

-- MySQL dump 10.13  Distrib 5.7.22, for Linux (x86_64)

--

-- Host: localhost    Database: GEL

-- ------------------------------------------------------

-- Server version 5.7.22-0ubuntu0.16.04.1

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;

/*!40103 SET TIME_ZONE='+00:00' */;

/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;

/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,

FOREIGN_KEY_CHECKS=0 */;

/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE,

SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;

/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--

-- Table structure for table `dis_to_pheno`

--

DROP TABLE IF EXISTS `dis_to_pheno`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `dis_to_pheno` (

`id_dis_pheno` varchar(16) NOT NULL,

`id_phenotype` varchar(10) NOT NULL,

`id_disease` int(5) NOT NULL,

PRIMARY KEY (`id_dis_pheno`),

KEY `fk_dis_to_pheno_1_idx` (`id_disease`),

KEY `fk_dis_to_pheno_2_idx` (`id_phenotype`),

CONSTRAINT `fk_dis_to_pheno_1` FOREIGN KEY (`id_disease`)

REFERENCES `disease` (`id_disease`) ON DELETE CASCADE ON UPDATE

CASCADE,

CONSTRAINT `fk_dis_to_pheno_2` FOREIGN KEY (`id_phenotype`)

REFERENCES `phenotype` (`id_phenotype`) ON DELETE CASCADE ON UPDATE

251



CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='Mapping table for many

to many relationship between diseases and phenotypes';

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `disease`

--

DROP TABLE IF EXISTS `disease`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `disease` (

`id_disease` int(5) NOT NULL,

`id_dis_sub` int(5) NOT NULL,

`disease` varchar(100) DEFAULT NULL,

`last_updated` date DEFAULT NULL,

`panelapp_v` varchar(45) DEFAULT '0.0',

PRIMARY KEY (`id_disease`),

KEY `dis_subgroup_idx` (`id_dis_sub`),

CONSTRAINT `dis_subgroup` FOREIGN KEY (`id_dis_sub`) REFERENCES

`disease_subgroup` (`id_dis_sub`) ON DELETE CASCADE ON UPDATE

CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `disease_group`

--

DROP TABLE IF EXISTS `disease_group`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `disease_group` (

`id_dis_group` int(5) NOT NULL,

`disease_group` varchar(100) DEFAULT NULL,

PRIMARY KEY (`id_dis_group`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='Disease groups as

defined by GEL';

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `disease_subgroup`

--

DROP TABLE IF EXISTS `disease_subgroup`;
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/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `disease_subgroup` (

`id_dis_sub` int(5) NOT NULL,

`id_dis_group` int(5) NOT NULL,

`disease_subgroup` varchar(100) DEFAULT NULL,

PRIMARY KEY (`id_dis_sub`),

KEY `fk_disease_subgroup_1_idx` (`id_dis_group`),

CONSTRAINT `fk_disease_subgroup_1` FOREIGN KEY (`id_dis_group`)

REFERENCES `disease_group` (`id_dis_group`) ON DELETE CASCADE ON

UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `disease_to_drug`

--

DROP TABLE IF EXISTS `disease_to_drug`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `disease_to_drug` (

`id_disease_to_drug` varchar(11) NOT NULL,

`id_disease` int(5) DEFAULT NULL,

`id_drug` int(5) DEFAULT NULL,

PRIMARY KEY (`id_disease_to_drug`),

KEY `fk_disease_to_drug_1_idx` (`id_disease`),

KEY `fk_disease_to_drug_2_idx` (`id_drug`),

CONSTRAINT `fk_disease_to_drug_1` FOREIGN KEY (`id_disease`)

REFERENCES `disease` (`id_disease`) ON DELETE CASCADE ON UPDATE

CASCADE,

CONSTRAINT `fk_disease_to_drug_2` FOREIGN KEY (`id_drug`)

REFERENCES `drug` (`id_drug`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `drug`

--

DROP TABLE IF EXISTS `drug`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `drug` (

`id_drug` int(11) NOT NULL,

`drug_name` varchar(200) DEFAULT NULL,
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`smile` varchar(10000) DEFAULT NULL,

`drug_type` varchar(100) DEFAULT NULL,

`drug_groups` varchar(200) DEFAULT NULL,

`id_drugbank` varchar(7) DEFAULT NULL,

`cas_number` varchar(30) DEFAULT NULL,

`id_pubchem_compound` int(20) DEFAULT NULL,

`id_chebi` int(20) DEFAULT NULL,

`id_chemspider` int(20) DEFAULT NULL,

PRIMARY KEY (`id_drug`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `drug_to_gene`

--

DROP TABLE IF EXISTS `drug_to_gene`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `drug_to_gene` (

`id_drug_to_gene` varchar(11) NOT NULL,

`id_drug` int(5) DEFAULT NULL,

`id_gene` int(5) DEFAULT NULL,

`interaction_type` varchar(100) DEFAULT NULL,

`clean_interaction_type` varchar(100) DEFAULT NULL,

PRIMARY KEY (`id_drug_to_gene`),

KEY `fk_drug_to_gene_1_idx` (`id_drug`),

KEY `fk_drug_to_gene_2_idx` (`id_gene`),

CONSTRAINT `fk_drug_to_gene_1` FOREIGN KEY (`id_drug`) REFERENCES

`drug` (`id_drug`) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT `fk_drug_to_gene_2` FOREIGN KEY (`id_gene`) REFERENCES

`gene` (`id_gene`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gene`

--

DROP TABLE IF EXISTS `gene`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gene` (

`id_gene` int(5) NOT NULL,

`ensembl_id` varchar(45) DEFAULT NULL,

`hgnc_symbol` varchar(45) DEFAULT NULL,
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PRIMARY KEY (`id_gene`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gene_cats`

--

DROP TABLE IF EXISTS `gene_cats`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gene_cats` (

`id_cat` int(11) NOT NULL,

`category` varchar(45) DEFAULT NULL,

`source` varchar(45) DEFAULT NULL,

PRIMARY KEY (`id_cat`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gene_to_disease`

--

DROP TABLE IF EXISTS `gene_to_disease`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gene_to_disease` (

`id_gene_to_disease` varchar(11) NOT NULL,

`id_disease` int(5) DEFAULT NULL,

`id_gene` int(5) DEFAULT NULL,

PRIMARY KEY (`id_gene_to_disease`),

KEY `fk_gene_to_disease_1_idx` (`id_disease`),

KEY `fk_gene_to_disease_2_idx` (`id_gene`),

CONSTRAINT `fk_gene_to_disease_1` FOREIGN KEY (`id_disease`)

REFERENCES `disease` (`id_disease`) ON DELETE CASCADE ON UPDATE

CASCADE,

CONSTRAINT `fk_gene_to_disease_2` FOREIGN KEY (`id_gene`)

REFERENCES `gene` (`id_gene`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `gene_to_genecat`

--

DROP TABLE IF EXISTS `gene_to_genecat`;
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/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `gene_to_genecat` (

`id_gene_to_genecat` varchar(11) NOT NULL,

`id_cat` int(5) DEFAULT NULL,

`id_gene` int(5) DEFAULT NULL,

PRIMARY KEY (`id_gene_to_genecat`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `pheno_to_drug`

--

DROP TABLE IF EXISTS `pheno_to_drug`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `pheno_to_drug` (

`id_pheno_to_drug` varchar(16) NOT NULL,

`id_phenotype` varchar(10) DEFAULT NULL,

`id_drug` int(5) DEFAULT NULL,

PRIMARY KEY (`id_pheno_to_drug`),

KEY `fk_pheno_to_drug_1_idx` (`id_phenotype`),

KEY `fk_pheno_to_drug_2_idx` (`id_drug`),

CONSTRAINT `fk_pheno_to_drug_1` FOREIGN KEY (`id_phenotype`)

REFERENCES `phenotype` (`id_phenotype`) ON DELETE CASCADE ON UPDATE

CASCADE,

CONSTRAINT `fk_pheno_to_drug_2` FOREIGN KEY (`id_drug`) REFERENCES

`drug` (`id_drug`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `pheno_to_gene`

--

DROP TABLE IF EXISTS `pheno_to_gene`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `pheno_to_gene` (

`id_pheno_to_gene` varchar(16) NOT NULL,

`id_phenotype` varchar(10) DEFAULT NULL,

`id_gene` int(5) DEFAULT NULL,

PRIMARY KEY (`id_pheno_to_gene`),

KEY `fk_pheno_to_gene_1_idx` (`id_phenotype`),

KEY `fk_pheno_to_gene_2_idx` (`id_gene`),
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CONSTRAINT `fk_pheno_to_gene_1` FOREIGN KEY (`id_phenotype`)

REFERENCES `phenotype` (`id_phenotype`) ON DELETE CASCADE ON UPDATE

CASCADE,

CONSTRAINT `fk_pheno_to_gene_2` FOREIGN KEY (`id_gene`) REFERENCES

`gene` (`id_gene`) ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `phenotype`

--

DROP TABLE IF EXISTS `phenotype`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `phenotype` (

`id_phenotype` varchar(10) NOT NULL,

`phenotype` varchar(100) DEFAULT NULL,

PRIMARY KEY (`id_phenotype`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `test`

--

DROP TABLE IF EXISTS `test`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `test` (

`id_test` float NOT NULL,

`test` varchar(100) DEFAULT NULL,

PRIMARY KEY (`id_test`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table `test_to_disease`

--

DROP TABLE IF EXISTS `test_to_disease`;

/*!40101 SET @saved_cs_client     = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `test_to_disease` (

`id_test_to_disease` varchar(13) NOT NULL,

`id_test` float DEFAULT NULL,
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`id_disease` int(5) DEFAULT NULL,

PRIMARY KEY (`id_test_to_disease`),

KEY `fk_test_to_disease_1_idx` (`id_test`),

KEY `fk_test_to_disease_2_idx` (`id_disease`),

CONSTRAINT `fk_test_to_disease_2` FOREIGN KEY (`id_disease`)

REFERENCES `disease` (`id_disease`) ON DELETE CASCADE ON UPDATE

CASCADE

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;

/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;

/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;
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