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Abstract
Cardiomyocytes generate force for the contraction of the heart to pump blood into the lungs and body. At the same time, they are
exquisitely tuned to the mechanical environment and react to e.g. changes in cell and extracellular matrix stiffness or altered
stretching due to reduced ejection fraction in heart disease, by adapting their cytoskeleton, force generation and cell mechanics.
Both mechanical sensing and cell mechanical adaptations are multiscale processes. Receptor interactions with the extracellular
matrix at the nanoscale will lead to clustering of receptors and modification of the cytoskeleton. This in turn alters
mechanosensing, force generation, cell and nuclear stiffness and viscoelasticity at the microscale. Further, this affects cell shape,
orientation, maturation and tissue integration at the microscale to macroscale. A variety of tools have been developed and adapted
to measure cardiomyocyte receptor-ligand interactions and forces or mechanics at the different ranges, resulting in a wealth of
new information about cardiomyocyte mechanobiology. Here, we take stock at the different tools for exploring cardiomyocyte
mechanosensing and cell mechanics at the different scales from the nanoscale to microscale and macroscale.
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Introduction

It is now clear that mechano-regulation is an integral part of
cells and tissues in both physiological and pathological con-
ditions (Beedle et al. 2017; Rivas-Pardo et al. 2016). Along
with the recognition of mechanobiology as an indispensable
partner of biological samples studies, new techniques emerge
to address this topic. The advent of new tools advanced our
fundamental knowledge of mechano-regulation in a range of
ce l l and t i s sue types . L ikewise , unders tand ing
mechanosensing and transduction processes is pivotal for
explaining cardiovascular physiology and pathology (Sit
et al. 2019; Ward and Iskratsch 2020). The heart is experienc-
ing different types of forces such as shear stress and tensile
force (Lu and Kassab 2011; Lunkenheimer et al. 2004).
Structural and mechanical hierarchies span from nanoscale

to macroscale. The interconnection through the extracellular
matrix leads to sensing of macroscale forces at specific
mechanosensor molecules, which again leads to mechanical
control of cell fate switching and tissue development (Ingber
2008).Most (mechanobiology) studies focus on a single scale,
and mechanical measurements of single myofibrils,
cardiomyocytes, trabeculae or cardiac tissue individually shed
more light on the overall cardiac mechanobiology (Brady
et al. 1979; Carson et al. 2016; Kim et al. 2006; Saleem
et al. 2020). Here, we allocated various approaches that map
cardiac mechanical alterations based on the scale of operation,
nano, micro and macro (Fig. 1). We will progressively intro-
duce tools in their respective range of action, subsequently
illustrating the obtained outcome. This review will dissemi-
nate the different techniques and newest data that have been
gained from these studies. Work carried out at different scales
and by different techniques resulted in confounding results
every so often (examples are the different mechanical mea-
surements of the cardiac stiffness, different forces necessary to
unfold monomers or higher ordered structures, such as fila-
ments or fibrils, or different types of forces measured with
nano vs micropillars) (Ghassemi et al. 2012; Meacci et al.
2016; Roca-Cusachs et al. 2012; Ward and Iskratsch 2020).
Therefore, it is becoming ever clearer that approaches, models

* Thomas Iskratsch
t.iskratsch@qmul.ac.uk

1 School of Engineering and Materials Science, Queen Mary
University of London, London, UK

https://doi.org/10.1007/s12551-021-00837-2

/ Published online: 5 September 2021

Biophysical Reviews (2021) 13:611–623

http://crossmark.crossref.org/dialog/?doi=10.1007/s12551-021-00837-2&domain=pdf
https://orcid.org/0000-0002-3705-7495
http://orcid.org/0000-0002-3738-7830
mailto:t.iskratsch@qmul.ac.uk


and theories are needed that bridge the scales in cardiovascular
mechanobiology and mechanobiology in general (Regazzoni
et al. 2020). In the last paragraph, we will discuss the chal-
lenges and future perspectives for the cardiac mechanobiology
techniques, including attempts to integrate the data from the
different scales for an improved understanding of cardiomyo-
cyte mechanical sensing.

Cardiovascular mechanosensing
at the nanoscale: from single molecules
to single adhesions

In recent years, a surge in new nanoscale approaches can be
observed that aim to study forces and mechanosensitive dy-
namics at single molecule, single adhesion or single adhesion
cluster level (Fig. 2). Despite the dimensions, the final effect
can be likewise observed at a bigger scale (Sanchez-Alonso
et al. 2020). These approaches include studies applying forces
at single molecules using magnetic tweezers, laser traps or
atomic force microscopes; or measurement of forces
and protein dynamics at the single adhesion level using
nanofabricated tools such as nanopillars or nanopatterns.
Other nanofabrication techniques are being employed to
study the effect of topography or ligand presentation on
cell behaviour (nanopatterns, nanofibers, nanotubes or
nanowires).

Single-molecule studies—magnetic tweezers, optical
tweezers and atomic force microscopy (AFM)

Applying forces onto single molecules gives insights into
nanoscale mechanics, including force-dependent domain fold-
ing and unfolding events, opening of catalytic domains or

cryptic binding sites that change protein–protein interactions
and ultimately determine mechanosensitive responses at the
cellular scale. The main techniques in general and especially
for cardiovascular mechanobiology are AFM, magnetic and
optical tweezers. The details of the techniques have been
discussed elsewhere (e.g. by Neuman and Nagy 2008) and
are out of scope for this short review, but briefly, all tech-
niques measure force-dependent change in length of a single
molecule that is attached to either the tip of the cantilever
(AFM) or a bead (magnetic tweezer, optical tweezer) on one
side and a solid surface or another bead on the other end.
Depending on the technique, forces are applied through a
piezo controlled cantilever (AFM), a magnetic field on para-
magnetic beads (magnetic tweezers), or a focused laser beam
onto a dielectric bead (optical tweezers) (Neuman and Nagy
2008).

Notable studies that are pertinent for the cardiovascular
field are especially experiments exploring the mechanics of
titin, which is a major contributor to cardiomyocyte mechan-
ics. Here, recent studies investigated the unfolding and the
refolding of titin domains that could contribute to the force
generation in muscle cells (Mártonfalvi et al. 2017;
Rivas-Pardo et al. 2016), although the relevance for cardiac
muscle might be limited due to much smaller amount of force
generated through this mechanism, compared to muscle my-
osin contractions, as well as a 60-fold slower shortening ve-
locity (Bianco et al. 2016). Other single-molecule studies on
titin observed the modulation of titin stiffness through ox-
idative folding (Beedle et al. 2017) or mechanical activa-
tion of ATP binding to the titin kinase domain (Puchner
et al. 2008), albeit this has been since identified as a
pseudokinase, which nonetheless is involved in scaffold-
ing processes of regulatory significance (Bogomolovas
et al. 2014; Lange et al. 2005).

Fig. 1 Studying cardiac biology
across the scales. Nanoscale
platforms enable the study of
forces and mechanosensitive
dynamics at single molecule,
single adhesion or single adhesion
cluster level that effectively cause
protein activation, cluster
formation or protein (domain)
unfolding. Microscale and mac-
roscale tools allow studying in-
tracellular changes, the cell–cell
or cell–ECM cross-talk
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Looking at the cell-matrix interface, especially two mole-
cules of relevance have been studied using such
single-molecule approaches: talin and dystrophin (del Rio
et al. 2009; Haining et al. 2018; Le et al. 2018; Yao et al.
2016). Talin was first identified to unfold cryptic binding sites
to enable vinculin binding (del Rio et al. 2009) and later also
to regulate the interaction with the Rho GTPase activating
protein DLC1 (Haining et al. 2018) and potentially additional
binding partners (Yao et al. 2016). Recently, magnetic

tweezer studies suggested dystrophin, which is the central
component of the dystrophin–glycoprotein complex that links
the extracellular matrix with the actin cytoskeleton, to act as
molecular shock adsorber through force-dependent unfolding
and refolding of its spectrin domains (Le et al. 2018). Overall,
these studies reinforce the idea that cells such as
cardiomyocytes are finely tuned to a specific mechanical en-
vironment and use mechanosensitive proteins to react to small
changes in the force landscape.

Fig. 2 Selected nanoscale tools that have been employed for the
investigation of cardiovascular mechanobiology (first column), as well
as their applications (second column) and respective references (third
column). (A) DNA origami, (B) nanogrid topography, (C) gelatin
methacryloyl (GelMa)-coated carbon nanotubes, (D) nanopillars, (E)

atomic force microscopy and (F) mechano-scanning ion conductance
microscopy. The increasing number of available tools, as well as the
number of studies using these tools, reflects the importance of the pro-
cesses happening at the nanoscale
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Measuring cellular forces at the nanoscale —
nanopillars

Nanopillars, typically fabricated by using e-beam lithography
to make a negative master, followed by PDMS soft lithogra-
phy, have been shown to be a very practical tool in the me-
chanical characterization of different cell types, including
cardiomyocytes. These can at the same time mimic substrate
stiffness— typically modulated by adjusting the pillar aspect
ratio — and be used to measure the cellular forces. Together,
this allows obtaining detailed information of cell–ECM inter-
actions and cell mechanics. Compared to micropillars,
nanopillars are recognised by cells as uniform surfaces and
fibroblast adhesions spread over multiple pillars instead of
forming around individual posts. Therefore, nanopillars can
be used to pick up forces that are generated e.g. during early
adhesion formation (Iskratsch et al. 2013; Wolfenson et al.
2014; Haguy Wolfenson et al. 2015). Applied to a study of
cardiovascular mechanosensing, our previous work could
demonstrate cardiomyocyte rigidity sensing depending on
slow non-muscle myosin and fast muscle myosin contrac-
tions. This results in oscillating stretching of talin protein on
physiological substrates but continuous stretching on fibrotic
stiffness (Pandey et al. 2018). Other groups used nanopillars
to further study the effect on cardiomyocyte differentiation
and behaviour. Nanoscaled gradient pillar patterned plates
used by Seo et al. increased cardiomyocyte differentiation,
showing highly organised sarcomere formation and mature
cardiac gene expression on 200–280 nm-sized pillars. This
process was associated with phospho-cofilin mediated actin
cytoskeleton reorganisation (Seo et al. 2017). Nanopillar plat-
forms were also applied to neonatal rat cardiomyocytes cul-
tures. Poly(ethylene glycol) (PEG) hydrogel pillars have
shown lower cell adhesion but higher action potential ampli-
tude (Kim et al. 2006).

Contact points between the cell and extracellular matrix
serve as anchoring points and mechanotransduction nodes ac-
tivating further signalling pathways. The cell mechanosensing
is influenced not only by stiffness but also by the type and
organisation of the extracellular matrix molecules or respec-
tive receptors and e.g. different integrins show different
mechanosensing behaviours (Elosegui-Artola et al. 2014;
Schvartzman et al. 2011; Ward and Iskratsch 2020). To study
the organisation of receptors, for instance integrins, DNA ori-
gami nanoarrays functionalized with peptides have been
employed to examine cardiomyocyte–ECM interaction at the
single receptor (cluster) level. Studies on neonatal rat
cardiomyocytes demonstrated that both the distance between
individual integrin ligands and the density of the ligands in-
fluence cardiomyocyte adhesion — in contrast to fibroblasts
which only respond to the inter-ligand distance (Hawkes et al.
2019). Since costameres connect the cytoskeleton to the ECM
not only through integrins and associated proteins, but also

through the dystrophin–glycoprotein complex (DGC), it will
be intriguing to expand these studies onto different adhesion
systems or to study the cross-talk between the receptors as
done e.g. between EGF and integrins in cancer cells (Huang
et al. 2018).

Measuring cardiomyocytemechanics at the nanoscale
— AFM and scanning ion conductance microscopy
(SICM)

AFM

Application of atomic force microscopy (AFM) for biological
sample studies, including cardiomyocytes, started in the 90s.
First reports showed a link between regional cell stiffness to
changes in the cytoskeleton. Moreover, AFM was employed
to measure cell contractile activity by following the cantilever
deflection over time with nanoscale resolution (Domke et al.
1999; Shroff et al. 1995). These first studies sparked interest in
this method and inspired researchers to use it for a range of
different research questions. To date, AFM has been
employed to study cardiomyocyte properties, such as topo-
graphical changes, contraction activity and mechanics (Borin
et al. 2018). The elastic modulus was assessed in different
states (diastole and systole) to assess chemically induced cel-
lular changes, effects of knockouts or disease-causing muta-
tions. These studies pointed out key proteins that regulate the
elastic modulus, such as actin and vinculin, or whole mem-
brane microdomains (Azeloglu and Costa 2010; Benech et al.
2014; Dague et al. 2014; Lanzicher et al. 2015). Using AFM,
age was also shown to be an important determinant of the
elastic modulus, whereby cardiomyocytes isolated from
30-month-old rats were stiffer than cells from 4-month-old
animals, suggesting that change in single cardiomyocyte me-
chanical properties can also contribute to left ventricular dia-
stolic dysfunction observed in elder patients (Lieber et al.
2004).

AFM as an imaging tool was applied to resolve
high-resolution sarcolemma features in adult guinea pig
cardiomyocytes (Davis et al. 2001), aldosterone-mediated sar-
colemma changes in mouse neonatal cardiomyocytes (Kliche
et al. 2006) and used to demonstrate lack of t-tubular cardio-
myocyte membrane invaginations in mouse and human em-
bryonic stem cell-derived cardiomyocytes (ESC-CMs) (Lieu
et al. 2009). Moreover, since the cardiomyocyte membrane
presents a rich repertoire of different receptors that play a
major role in the overall cell physiology, coating the AFM
tip with specific protein allowed to measure adhesion forces
that were shown to be disrupted in mutant cardiomyocytes
(Lanzicher et al. 2015; Wu et al. 2010).

When AFM was used to measure contraction dynamics of
hiPSC-derived cardiomyocytes from control and myotonic
dystrophy type 1 patients, a higher mechanical resistance
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was observed based on altered beating impulse or beat dura-
tion (Dinarelli et al. 2018). Similarly, a multi-parameter
AFM-based study measured contraction force, rate and dura-
tion as well as elastic modulus in hESC-CM and iPSC-CM,
allowing to map spatial heterogeneity of height, elastic mod-
ulus and contraction force, together demonstrating aberrant
contracti l i ty and mechanical properties in iPSC–
cardiomyocytes from dilated cardiomyopathy patients
(DCM) patients (Liu et al. 2012). Also, AFM was also used
to stimulate cell contraction in a cardiac microtissue in vitro
(Galie et al. 2015), by applying oscillating indentations to train
the cells. Further modifications to the system present the pos-
sibility to study depolarization and repolarization wavefronts.

SICM

A non-contact, high-resolution mechano-scanning ion con-
ductance microscopy (mechano-SICM) technique, measuring
the transverse Young’s modulus (tYM) by a constant pressure
application through a nanopipette was recently used to inves-
tigate specific membrane subdomains, enabled by the excel-
lent resolution in all dimensions (Swiatlowska et al. 2020a;
Swiatlowska et al. 2020b). When applying pressure, the
probe’s vertical position is recorded, and a deformation map
is generated from which the tYM can be calculated and
corrected for the uneven geometry. Both tYM and topog-
raphy maps are recorded simultaneously and non-invasive-
ly, leaving the cell intact in non-contact mode. This work
demonstrated increased tYM in cardiomyocytes from a
myocardial infarction (MI) rat model, where the mechani-
cal load is high compared to control animals. On the other
hand, in cardiomyocytes from a load-deficient MI model,
the tYM was reduced. Observed changes were due to an
altered microtubular network that has also been shown to
regulate the modified tYM in the Angiotensin II-treated
adult rat cardiomyocytes (Swiatlowska et al. 2020a;
Swiatlowska et al. 2020b). The high resolution and
non-invasive nature of the contactless scanning mode are
major benefits of this platform, suggesting great potential
for expanding the use to other mechano-regulatory cell
measurements.

Nanotopography sensing and tools for controlling
cardiomyocyte differentiation and behaviour

Different tools have been employed to study topography sens-
ing at the nanoscale. Fundamental knowledge of the topogra-
phy sensing mechanisms has further influenced the design of
nanotopographies that mimic the native tissue in vitro and thus
improve the maturity and function of cardiomyocytes. These
include nanofibers or nanowires.

Nanofibers

Obtaining induced pluripotent s tem cell-derived
cardiomyocytes (iPSC-CM) functionally and structurally sim-
ilar to adult cardiomyocytes is still very challenging.
Moreover, one of the overlooked aspects in graft implantation
is the maintenance of cell directionality. If poorly performed,
region-specific alterations are observed, and myofiber orien-
tation differences between the transplant and diseased tissue
occur. However, carefully designed topographies can be
harnessed for improved maturation. This was shown for in-
stance when iPSC-CM were plated on nanogrooved topogra-
phies, which were mimicking ECM fibre orientation and
were functionalised with RGD as cell adhesive peptides
(Carson et al. 2016). Morphological analysis of cell align-
ment and area, as well as sarcomere length, suggested that
cells plated on 800-nm diameter grooves improved matu-
ration of the cardiomyocytes and showed the strongest
resemblance to adult- l ike phenotypes among all
nanotopographic patterns that were studied (Carson et al.
2016). In order to recapitulate the extracellular matrix
(ECM) organisational structure, Lin et al. (2014) pro-
duced aligned and randomly oriented electrospun patches.
Cardiomyocytes plated on aligned substrates demonstrat-
ed improved beating capabilities and, after patching onto
infarcted hearts, showed significantly enhanced perfor-
mance in vivo, as measured by improved hemodynamics,
electrocardiography, optical mapping or reduced infarct
size, as well as demonstrated by cell morphology with
aligned anisotropic cardiomyocytes present after implan-
tation; all are important features for therapeutic applica-
tion (Lin et al. 2014). Similarly, when aligned nanofiber
scaffolds were used to mimic ECM organisation,
iPSC-cardiac progenitor cells showed improved cardiac
maturation as shown by increased cTnt-positive cells,
elongated nuclei and synchronised Ca2+ fluctuations
(Ding et al. 2020).

Nanotubes

The advent of carbon nanotubes (CNTs) sparked a lot of in-
terest in the biological field, opening doors for new
cross-discipline studies. These 1–100 nm diameter graphene,
cylindrically shaped structures offer good mechanical, electri-
cal and thermal properties that enabled to use them in scaf-
folds in different forms. Although typically not used tomodify
the topography but rather for electrical excitation or sensing, it
is noted in several studies that cardiomyocytes interact specif-
ically with the nanotubes, forming a nanofibrous network
(Martinelli et al. 2013b; Shin et al. 2013), and hence, this is
discussed here as well. Studies on neonatal cardiomyocytes
show that CNT substrates had a positive outcome on cell
physiology, presenting higher cell viability, proliferation,
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tighter cell–cell contacts and improved electrophysiological
parameters (Martinelli et al. 2013b). In a different study from
the same group, CNTs also showed a protective effect from
pathological hypertrophy by demonstrating no change in the
gene expression profiles following phenylephrine stimulation.
Together, this work illustrates the higher maturity of
cardiomyocytes and disease preventive properties of CNTs
(Gerwig et al. 2012; Martinelli et al. 2013a; Martinelli et al.
2013b). Also, an improvement towards cardiomyocyte line-
age differentiation from mesenchymal stem cells (MSCs) was
observed using CNT platforms. Here, by taking the advantage
of the electrical properties, stimulated MSCs re-oriented and
showed elongated morphology. Additionally, an increase in
GATA-4, Nkx2.5, connexin43 and cardiac troponin T was
observed (Mooney et al. 2012). To improve biocompatibility,
biodegradability, electrical and mechanical properties, a CNT
platform was developed, in which the nanostructures were
homogenously embedded in gelatin methacrylate (GelMA)
hydrogels with highly porous structures for tissue develop-
ment. This new platform demonstrated improved cell adhe-
sion, organisation, cell–cell coupling, mechanical integrity
and electrophysiological properties in neonatal rat
cardiomyocytes when compared to GelMA only arrays
(Shin et al. 2013). Also, a protective effect from doxorubicin
and heptanol was detected, together demonstrating the poten-
tial of CNT containing scaffolds for cardiovascular
applications.

Nanowires

By looking at the specific nature of myocardial tissue archi-
tecture, it is noticeable that cellular orientation in the tissue is
not random. Different techniques have been employed to ad-
dress cardiomyocyte alignment in vitro cultures.
Laser-patterned linear nanowires resulted in human cardio-
myocyte alignment (Kiefer et al. 2014). In another study, fab-
ricated gold nanowires (AuNWs) were incorporated in
hydrogels, such as alginate or GelMA. Both studies showed
that neonatal rat cardiomyocytes had a more mature state
when cultured on NW hydrogels versus hydrogels alone
(Dvir et al. 2011; Li et al. 2020).

Translational approaches based on nanofabrication

Nanoscale techniques have been increasingly applied for drug
testing purposes. Hart et al. generated a new in vitro platform
that employed nanostructured interdigitated electrodes
(nIDEs) patterned on polyacrylonitrile. The long-term culture
of iPSC cardiomyocytes demonstrated that these
nanopatterned arrays are highly sensitive and suitable for
cardiotoxicity testing (Hart et al. 2018). On the other hand,
inotropic and chronotropic drug effects were tested using
AFM contractility measurements (Chang et al. 2013; Liu

et al. 2012). The same technique was used to demonstrate an
increase in membrane roughness in neonatal rat
cardiomyocytes, following a hypertrophy protective drug up-
take (Yang et al. 2013).

Microscale tools

At the microscale, cardiomyocytes apply forces onto (and
sense forces from) neighbouring cardiomyocytes and the ex-
tracellular matrix. Notably, the maturity and function of
cardiomyocytes are affected at this scale by cell shape and
extracellular matrix elasticity; hence, tools have been devel-
oped and applied to mimic and correlate between these
healthy and diseased hearts. Early studies by the Discher lab
established a clear correlation between cell differentiation and
function with the substrate elasticity of polyacrylamide gels,
whereby myogenic differentiation of MSCs and optimal work
of quail cardiomyocytes were observed at a stiffness found in
the native heart (~10 kPa) (Engler et al. 2004, 2008).
Subsequently, similar results were obtained with a range of
other materials and fabrication techniques, including PDMS,
poly-e-caprolactone or PEG (Forte et al. 2012; Pandey et al.
2018; Wan et al. 2019), whereby the latter was also used to
pattern the surface at the same time and found that patterning
and stiffness together affected gene expression. Similarly,
micropatterning was used to look at both healthy and fibrotic
elastic moduli in combination with cardiomyocyte shape (i.e.
aspect ratios of cardiomyocytes in healthy hearts, ~ 7:1; hy-
pertrophic hearts, ~ 5:1; or dilated hearts, ~ 11:1), which sug-
gests that the ECM elastic modulus regulates cardiomyocyte
shape in order to obtain the most efficient contractile proper-
ties (McCain et al. 2014). Physiological shape and stiffness
(10 kPa) were also shown to improve the cellular function of
hPSC-CM. Defects in the myofibrils accumulated when in-
creasing the substrates Young’s modulus, while keeping the
aspect ratio constant at 7:1 (Ribeiro et al. 2015).
Consequently, using patterned surfaces that impose biophys-
ical cues such as geometrical constraint in 2D or 3D (eventu-
ally regulating cell shape) and substrate stiffness demonstrates
a suitable approach to increase cardiomyocyte maturation and
improve electrophysiological properties (Guo and Pu 2020).

Compared to nanopillars (see previous text), micropillars
have been more widely used to study the mechanobiology of
cardiomyocytes at different developmental stages. Micropost
arrays coated with different ECM proteins showed no differ-
ence in contractile properties of hiPSC-CMs between laminin,
fibronectin and collagen coatings. However, higher contractile
properties were observed after thyroid hormone T3 treatment
(Beussman et al. 2016; Rodriguez et al. 2014). HiPSC-CM
cultured on micropillars exhibited different beating frequen-
cies, elastic modulus, calcium signalling and sarcomere and
integrin organisation compared to planar substrates (Palankar
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et al. 2016). Also, a more mature state of cultured neonatal rat
myocytes was observed when these were cultured on
microposts, inferred from higher twitch force, correlating with
improved sarcomere organisation and intracellular calcium
(Rodriguez et al. 2011).

Equally important to cell–ECM interaction is the cell–cell
communication that includes a mechano-electrical activity.
Using controlled substrate deformation similar to those
exerted by neighbouring cardiomyocytes, microenvironment
mechanical properties influenced cell mechanical coupling
and hence led to synchronisation of the electrical function-
ality (Nitsan et al. 2016). Similarly, neonatal cardiomyo-
cyte pairs on micropatterned surfaces demonstrated regu-
larly repeating Ca2+ transients. These homogeneous car-
diomyocyte pairs formed high traction stresses that were
distributed at the lateral ends of the islands. In contrast,
heterogeneous cell pairs of neonatal cardiomyocytes and
stem cell-derived cardiomyocytes resulted in a tension var-
iability with region-specific differences, with additional
high stresses at the cell–cell junction (Aratyn-Schaus
et al. 2016).

Micropatterned fibronectin islands on hydrogel supports
were further used for the formation of multicellular
‘mini-tissues’, which showed stiffness dependent differences
(Pasqualini et al. 2018). Cells on soft hydrogels (1 kPa) dem-
onstrated shorter sarcomeres length and lower myofibrillar
packing density and consequentially generated reduced con-
tractile stresses in traction force microscopy (TFM) measure-
ments when compared to tissues on normal (13 kPa) and stiff
surfaces (90 kPa). Similar to previous observations (Engler
et al. 2008), stresses increased with stiffness, while maximal
contractile work was observed on normal gel stiffness
(Pasqualini et al. 2018). Interestingly, metabolic measure-
ments of basal respiration and ATP production suggested an
inverse correlation with stiffness, while the spare respiratory
capacity was independent of stiffness, suggesting that the ad-
ditional available ATP was used for non-contractile purposes,
such as cytoskeletal maturation.

In addition to TFM, intracellular and extracellular Förster
resonance energy transfer (FRET) tension sensors have gained
popularity, including cardiovascular research (Pandey et al.
2018). These are included here as microscale tools, due to
optical limitations to the resolution for the detection of the
forces, although super-resolution microscopy has been recent-
ly employed to surpass these limitations (Schlichthaerle et al.
2021). FRET tension sensors build on DNA double strands,
DNA hairpins (both for extracellular application) or elastic
peptides (for intracellular sensors). These force-sensitive ele-
ments are flanked by fluorescent molecules or quenchers that
can be used to quantify the energy transfer as a function of the
distance and after calibration with e.g. magnetic tweezers, as
function of force (recently reviewed together with TFM and
other tools in Lavrenyuk et al. 2021). Especially the

intracellular tension sensors are promising tools to study poor-
ly understood cardiomyocyte Z-disc, M-band or intercalated
discs mechanobiology.

Micro to macro

Employing microscale and nanoscale tools greatly improved
our knowledge of cardiomyocyte mechanobiology. However,
macroscale tools enabling tissue level experiments are needed
for a comprehensive understanding at higher organisational
levels (Fig. 3). Engineered heart tissues (EHTs) have emerged
as a physiological in vitro platform for heart research that is
now widely in use. EHTs are 3D cardiac tissue-like structures
able to generate contractile force. These commonly used plat-
forms are produced in different shapes from different cells,
such as neonatal cardiomyocytes or stem cell-derived
cardiomyocytes, which are undergoing either general or
chamber specific differentiation programmes (Breckwoldt
et al. 2017; Eschenhagen et al. 2002; Goldfracht et al. 2020;
Lemme et al. 2018; Schaaf et al. 2011). Mixed with extracel-
lular matrices, for instance, collagen or fibrinogen, heart tis-
sues mature and allow for the analysis of contractile force in
dependence of mutations (e.g. ANKRD1 or alpha-actinin 2)
(Crocini et al. 2013; Prondzynski et al. 2019), drug treatments
(Mannhardt et al. 2016) or presence of additional cell types,
such as fibroblasts (Liau et al. 2011), or epicardial cells. In this
way, they are used to mimic heart disease or study potential
therapies (Bargehr et al. 2019; Hawkes et al. 2019). EHT
platforms allow for a range of molecular biology, electrophys-
iology and force measurement experiments (Goldfracht et al.
2020; Mannhardt et al. 2016; Saleem et al. 2020; Schaaf et al.
2011). Continuous contractile work and tissue spanning be-
tween the silicone posts is a probable reason for a good cell
alignment and sarcomere organisation based on histological
experiments, indicating structural maturation (Schaaf et al.
2011). EHTs have been studies not only as a potential tool
for cardiac repair but also for toxicology studies and disease
modelling (El-Armouche et al. 2007; Mosqueira et al. 2018;
Mühlhäuser et al. 2006; Zimmermann et al. 2006). Work from
Xu et al. (2015) presented magnetic actuation as a mechanical
stimulator for the microtissue assembled around micropillars,
with a potential application to different cell types. In order to
study mechano-electrical coupling, Galie et al. (2015) de-
signed a 3D in vitro model of neonatal cardiomyocyte-
fibroblast suspended in fibrin-collagen gel (called μTUGs)
with incorporated AFM to mechanically control the stim-
ulation. This system allows for direct quantification of
contraction velocity and force magnitude, defining prop-
erties of striated muscle. Further, Boudou et al. modified
previously generated microfabricated tissue gauges
(μTUG) for cardiac microtissues (CMTs) that are formed
by mixing neonatal cardiomyocytes with collagen-fibrin
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matrices. This platform allowed to investigate electrical
stimulation, mechanical load, matrix stiffness and chemi-
cal stimulation on structural and functional properties of
CMTs with a potential for further drug screening applica-
tion (Boudou et al. 2012).

Recent developments are aimed at reducing the size and
maturity of the tissues. A mini-EHT model was recently de-
veloped, where a reduced cell number (down 16,000 cells
compared to ~500,000 cells in normal EHTs) was needed
for contractile measurement (Dostanić et al. 2020). To im-
prove maturity, Ronaldson-Bouchard et al. (2018) varied the
stimulation frequency during the differentiation, resulting in
an adult-like gene expression profile, electrophysiology and
tissue ultrastructure. Nunes et al. used both hESC- and
hiPSC-derived cardiomyocytes, combining structural and
electrical stimulators to generate biowire platforms. Cell sus-
pension in collagen was seeded into the main channel around
a suture with progressively increasing electrical stimulation.
Biowires exhibited improved organisation, electrophysiologi-
cal and Ca2+ handling properties when compared to a
non-stimulated platform (Nunes et al. 2013).

In addition to EHTs, microfluidic heart-on-a-chip plat-
forms have been developed by different groups to study

multicellular microtissues. Ren et al. investigated the H9c2
embryonic cardiomyocyte-like cell line under hypoxic
conditions, which showed changes in cell size, mitochon-
dria and suggested more cellular apoptotic events (Ren
et al. 2013). The same cell line was also used by Hsiao
et al. to investigate hydraulic pressure application, which
resulted in bigger cell size and higher levels of natriuretic
peptide. This effect could be reversed by a focal adhesion
kinase blocker (Hsiao et al. 2015). A microfluidic
high-throughput platform incorporating microtissues from
small cell numbers (~5000 cells per tissue) and pneumatic
mechanical stimulation was developed as a model for car-
diac hypertrophy with volume overload and recapitulated
the upregulation of the foetal gene programme, associated
with this pathology (Parsa et al. 2017).

Finally, cardiac slices emerged as a good model to bridge
the gap between in vitro and in vivo models (Pitoulis et al.
2021; Watson et al. 2019). These ultrathin 100–400 μm slices
of living myocardium largely maintain tissue architecture,
multicellular structure, physiology and load-induced remodel-
ling and hence are an especially useful tool for cardiovascular
research, at least until a similarly high degree of maturity can
be achieved with in vitro models.

Fig. 3 Selected micro and macro tools that have been employed for the
investigation of cardiovascular mechanobiology (first column), as well as
their applications (second column) and respective references (third
column). (A) ECM-coated micropillars, (B) PDMS substrates, (C)

ECM-coated micropatterns, (D) engineered heart tissues and (E) heart
on a chip. Microscale and macroscale models have allowed the investi-
gation of complex multicellular behaviours, mechanics and
mechanobiology
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Conclusions

Cardiovascular diseases (CVD) are still the leading cause of
death globally, estimated to reach 17.9 million deaths per year
(World Health Organization 2021). Heart failure (HF) is most
prevalent among all CVD diseases, whereby around 50% of
the cases are identified as HF with reduced ejection fraction
and the other half as HF with preserved ejection fraction
(HFpEF). To date, there is no effective treatment for HFpEF.
With the number of cases rising, this heart disease is posing a
significant health burden. However, HF is just at the top of a
long list of other heart diseases that need extensive research
(Virani et al. 2020). Therefore, studying CVD is of utmost
importance. A better understanding of the behaviour of cardi-
ac pathologies is needed but, due to the complexity, requires a
multiscale approach to get to the heart of the matter.

The collection of newly developed techniques and tools led
to an increasing understanding of cardiomyocyte behaviour
and function — temporally and spatially, at different scales.
Applying these techniques led to new insights into cardiomyo-
cyte structural propert ies, electrophysiology and
mechanobiology and showed potential to be used as future
drug screening platforms. Importantly, they also further
established mechanobiology as an integral and crucial part
of cardiomyocyte biology. Further interdisciplinary ap-
proaches and studies, spanning the different scales, will help
to address open questions in cardiovascular research, includ-
ing the identification of novel therapies for heart failure or
how themechanical environment affects pluripotent stem cells
maturation for improved patient-specific models and person-
alized medicine approaches.
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