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Abstract

Lithium-ion batteries have emerged as major energy storage devices over the last few

decades. For enhanced battery life, understanding the relevant degradation mecha-

nisms and their control has been a significant area of research interest. The disserta-

tion explores the state of health in lithium-ion batteries in terms of solid electrolyte

interface layer growth. The proposed optimal strategy gives a quantitative approach

to measure the interface layer. A novel non-linear model predictive control algo-

rithm is devised for online optimal charging by explicitly incorporating degradation

mechanisms into control to reduce the degradation process. Chemical and mechan-

ical degradation mechanisms have been considered separately for the growth of the

interface layer. The work addresses the challenge of minimising layer growth during

charging using the first-order model in chemical degradation. However, the interface

layer is modelled based on the break and repair effect in mechanical degradation. A

single particle model is used for optimal charging using orthogonal projection-based

model reformulation. Gauss pseudo-spectral method is used for the optimisation of

charging trajectories. Results of the optimal algorithm are compared with the tradi-

tional constant current constant voltage approach without considering the interface

layer growth. The aim of using different degradation concepts is to find similarities

in charging patterns in lithium-ion batteries. Moreover, it is ensured that overpo-

tential caused by lithium plating remains in a healthy regime considering chemical

degradation, i.e. it must be positive during charging. Simulation results have been

presented to demonstrate the advantages of the proposed charging method dealing

with two side reactions simultaneously. The dissertation extends the results of the

proposed non-linear model predictive control strategy considering chemical degrada-

tion in two ways. First, the single particle model with temperature dynamics was

adopted to examine the thermal behaviour of lithium-ion batteries and temperature

control. Second, the differential flatness method is applied to examine its computa-

tional benefits over pseudo-spectral methods. A brief discussion on implementing the

proposed algorithm in a battery management system of electric vehicles is presented.
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Chapter 1

Introduction

1.1 Motivation of the work

The dissertation explores the estimations of the state of health of lithium-ion bat-

teries using an online model-based control considering degradation mechanisms. The

degradation mechanisms in lithium-ion batteries can be chemical or mechanical and

should be accounted for while modelling the battery system [1]. Lithium-ion batteries

are commonly used in a wide range of applications, such as electric vehicles, cheap

and expensive electronic devices, and the smart grid [2]. These batteries are chosen

over their competitors, lead-acid and nickel-metal hydride batteries, due to their high

power and energy densities, low memory effects, and low self-discharge rates [3, 4].

However, capacity fade can be expected in lithium-ion batteries from inaccurate use

and if proper safety procedures are not applied [5].

Moreover, a significant amount of work has done to understand capacity fade using

experimental and numerical studies [6]-[14]. A comprehensive capacity fade analysis is

carried out on Sony 18650 cells for hundred of cycles [6]. The proposed model divides

the fade behaviour into primary and secondary material losses to better understand

the concept [6]. However, the model lacks the quantification of capacity under differ-

ent mechanisms. [7] presents a capacity fade model suggesting different stages in a

lithium-ion battery, but the model lacks the degradation process. A prediction model

based on a life test can easily estimate the capacity loss [8]. However, these mod-

els can be coupled with factors that influence the battery’s ageing [9]. Researchers
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have established a relationship of the capacity with one or a combination of factors,

such as discharge rate and temperature versus capacity [10], the effect of current

rates, working temperature, and depth of discharge (DOD) on capacity [11]. Also,

the quantification of the battery capacity fade model has been done using capacity

degradation in dynamic processes. However, researchers do not account for all factors

that can influence a battery’s life [6]-[11].

In contrast, at higher discharge rates, the effect of the depth of discharge (DOD) is

more significant [12]. Battery life is estimated using the fatigue approach by taking

a complex current profile and considering the growth of the SEI at the anode [13].

Many authors have formulated the capacity fade models using mechanical degradation

alone, but a coupled chemical and mechanical degradation model has been developed

by [7, 14] to predict the battery’s life. In these models, the authors have considered

all the possible effects that might influence the battery life [7, 14]. Moreover, bat-

teries can undergo thermal runaway under abnormal environmental conditions. The

Chevy Volt caught fire [15], and the Boeing 787 Dreamliner explosion [16] are two

popular examples of thermal runaway accidents. It can initiate by localised heating

and by overcharging the batteries [17]. The uncontrolled release of potential energy

can easily cause a fire in the lithium-ion batteries [18]. One of the most common

examples of unwanted initial energy release is short circuits inside a cell [19]. The

components of batteries are toxic, so overheating can cause thermal runaway prob-

lems due to auto-catalytic reaction with the electrolytes [20, 21]. Therefore, battery

manufacturers must take safety considerations to prevent high internal temperatures

because of the low melting point of lithium [22].

A battery management system (BMS) is an integral part of lithium-ion battery appli-

cations to estimate and control internal states [23]. According to battery university,

the purpose of a BMS is to ”provide battery safety and longevity, reveal state-of-

function in the form of state-of-charge and state-of-health, prompt caution and service

and indicate end-of-life when the capacity falls below the user-set target threshold”

[23]. The control part of a BMS is crucial as it is responsible for optimised charging

without violating protocols of safety [24]. Control is a trade-off between minimising

degradation mechanisms (optimised charging) and user demand (fast charging) [25].
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The estimation of the state of charge (SOC) and other internal variables is the main

functions of a BMS [24, 25]. A proper estimation algorithm (observer) is needed to

accurately estimate the states of the battery as no internal states can be measured

directly through the sensors [25].

A traditional BMS uses model-free control methodologies, which can not incorporate

variables responsible for ageing [26]. The algorithm is unable to constrain the side

reaction overpotentials of lithium-ion batteries, resulting in low performance. Overall,

traditional BMSs restrict the battery’s performance, cause safety risk, and unneces-

sarily increase the cost of the system [26]. However, it does not mean that traditional

BMSs have no mechanism to avoid battery degradation, usually performed by impos-

ing constraints on external variables such as voltage, current, and temperature [27].

All of these battery variables are externally measured and can not control the battery

degradation solely [27]. Conventional control strategies are easy to use as they do not

need a battery model or constraints, and the safety of battery application establishes

the use of measured signals [28]. However, the literature shows that these conven-

tional control methodologies are under-par for fresh batteries and over-par for used

batteries [29]. A fresh battery can reach the voltage limit early during constant cell

voltage bounds, but there is still a margin for safe operation. However, it is dangerous

to use the same voltage bounds when the battery ages [29].

The primary reason is the inability of the aged electrodes to cope with dangerous side

reactions within those bounds [28]. Apart from control, the estimation of states is

another challenging issue for BMS engineers [31]. Coulomb counting is the most pop-

ular method for estimating the SOC in traditional BMSs [30]. Although it is simple

to use and has a model-free algorithm, this method has serious disadvantages, which

can lead to estimation errors [31]. An incorrect initial SOC, current sensor bias, and

inaccurate capacity estimates are sources of estimation errors [32].

To overcome these challenges in traditional BMSs, battery packs are typically over-

sized to ensure optimal battery safety and life [33]. The battery packs’ size directly

links to the thermal management system (TMS) or cooling system for battery elec-

trified vehicles [33]. The primary aim of cooling systems is to keep the batteries

temperature in the prescribed range, but their size increases the cost of battery packs

3



[34]. Lithium-ion batteries perform in an operating range that dictates the size de-

pending on the power and energy fade rate [33]. In modern electric vehicles, active and

passive cooling systems are employed [34]. The traditional thermal management sys-

tems include Air cooling [35, 36], Liquid cooling [37, 38], Refrigerant cooling [39, 40],

PCM cooling [41, 42], Heat pipe TMS [43, 44], and Thermo-electric coolers [45, 46].

Liquid cooling has the highest cooling efficiency than air cooling but increases the

size of the battery pack [37, 38]. However, modern cooling system such as Hybrid

cooling [47, 48], improved air cooling [49, 50], improved liquid cooling [51, 52] help to

minimise the size of overall battery packs.

Model-based control is always preferred to the traditional model-free techniques due

to the battery’s performance, life longevity, and price [53]-[55]. It is possible to esti-

mate internal battery variables that directly link to battery ageing mechanisms [53].

Two of the most crucial battery ageing mechanisms are solid electrolyte interface

(SEI) layer growth and lithium plating, stifling the ion transfer between electrodes

and electrolyte [53]. Battery life can be easily extended by 20-40% by using model-

based control [54, 55]. It improves safety and energy storage capacity and decreases

the degradation of batteries [54].

Moreover, batteries can easily be charged more quickly and safely by using model-

based control because of their capability to adapt to variations [55]. An online BMS

monitors, controls and optimises the performance of battery modules’ performance

[56]. The battery function does not limit to providing power to the wheels but also

manages on-board power requirements such as sensing and communication [57]. The

most important component of BMS is the power module [58]. The basic task of the

module is to charge the battery and controls the battery charging [58, 59]. The bat-

tery pack is a part of BMS for energy storage and to power electric vehicles [57]-[66].

BMS should approach various battery systems differently using specialised charging

algorithms [60, 61]. The DC/DC converter is needed to power the various system

parts in high or low battery voltage [62, 63]. The load such as supply voltages, power

consumption of system parts and other portable products need the power from the

battery [57, 64]. The communication channel in a BMS monitors and controls the

intra-processing of signals [65, 66]. The communication in BMS mostly works in a

4



master-slave architecture form where one central processing unit serves as a master

control module, while every battery module is connected to a slave control module

[67]. All slave control modules are connected to the main module, which makes deci-

sion considering all variables [67].

1.2 Aims and objectives

1.2.1 Aims of the thesis

The main aim of the thesis is to develop novel control algorithms for online charging

of lithium-ion batteries by explicitly incorporating degradation mechanisms. Both

chemical and mechanical degradation theories are considered separately to optimise

the charging trajectory. The proposed algorithm is designed to charge the battery

in electric vehicles. For this purpose, lithium iron phosphate (LFP) and lithium

cobalt oxide (LCO) has been used. Both battery types are extensively used in electric

vehicles. The following key items as learning objectives are studied from the literature

and incorporated in the dissertation to achieve the goal.

1.2.2 Objective I: Dynamics of the battery

The dissertation uses a Legendre polynomial-based orthogonal projection technique to

estimate the state of each electrode of the battery [68]. This model-order reformulation

uses a smaller number of state equations [68]. The concentration of lithium ions in

an electrode is represented as the sum of the Legendre spatial basis functions [69].

The dynamics of the battery electrode influenced by temperature are modelled by

Chebyshev polynomials [70]. In both reformulation models, three state variables

represent the dynamics of an electrode. Note that the mentioned reformulation models

are not the only candidates to estimate battery dynamics; authors came up with other

proposed methods, which will be discussed further.
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1.2.3 Objective II: Pseudo-spectral methods

Pseudo-spectral methods are used to optimise the charging trajectory due to their

high convergence rates [71]. Also, these methods are computationally efficient and

can quickly solve non-linear, and non-convex optimisation problems [72, 73]. Pseudo-

spectral methods are widely used to solve complex differential equations, but control

engineers also adopted these to solve optimal control problems [73]. These methods

rebuild an optimisation problem into non-linear programming (NLP) problem, which

can further be solved using different algorithms [74].

1.2.4 Objective III: Chemical/Mechanical degradation

Chemical and mechanical degradation effects are studied in this work [75]. Irrespective

of the type of degradation (chemical or mechanical), the work aims to minimise the

growth of the SEI layer. Two schools of thought formulated SEI layer growth in their

respective ways: (i) the SEI layer passively forms on the negative electrode due to the

side reaction [75]. Due to the intercalation in a battery, volume of the anode increases.

This volume change causes the surface film to break and exposes more carbon to the

electrolyte solution [76]. This will act as a barrier for lithium-ion intercalation, leading

to the capacity fade [76] and (ii) diffusion-induced stresses (DISs) that are produced

during the charging/discharging of lithium-ion batteries due to the graphite expansion

[77]. It is assumed that active material is not the weakest material (does not go in to

plastic range in charging/discharging loads), but it is the SEI that breaks and repairs

during cycling [78].

1.2.5 Objective IV: Differential flatness

The computational benefits of the differential flatness method are compared with the

proposed non-linear model predictive control (NMPC) strategy [80]. A dynamic sys-

tem is differentially flat if a state can be interpreted as a flat output [84]. Consequently,

all remaining states and inputs are expressed in terms of flat output derivatives. Flat-

ness is a form of controllability from linear to non-linear systems [84]. The differential

flatness technique can easily solve optimisation, trajectory planning, and control de-
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sign problems [85, 86].

A non-linear framework constitutes all of the above key items to solve an optimisation

problem. It has two agendas: (i) to minimise the growth of the SEI layer considering

the mechanical or chemical degradation mechanism and (ii) to run the lithium-ion

batteries in a healthy regime (chemical degradation only). A non-linear model predic-

tive control (MPC) algorithm is presented using an online receding-horizon approach.

1.3 Challenges

There are obvious benefits of model-based control and state estimation, but the com-

putational cost and estimation accuracy are the critical challenges [54, 55]. MPC

is used to improve the above mentioned problems [87]-[104]. MPC is not a specific

algorithm, but an intuitive approach [87]. However, MPC stands alone among all of

the constrained optimal control strategies due to two reason. 1) It can easily handle

hard constraints [88]-[92]. 2) It can optimise various objectives functions based on

different charging algorithms [93]-[98]. The former reason dictates that MPC can eas-

ily deal with constraints directly linked to the health of the batteries [88]-[98]. The

later reason implies the inclusion of non-linear systems while optimisation [99]-[101].

At every sampling interval in an MPC-based algorithm, the optimisation process runs

for a new charging trajectory, thus introducing some degree of robustness [102]. MPC

takes the lead among different approaches due to its computational efficiency, partic-

ularly in model-based control methodologies [103, 104]. The designed/proposed MPC

controller must guarantee the optimal solution without violating any constraints [104].

Moreover, it is recommended that optimisation must be completed in less time. This

is quite challenging, due to the non-linearity of physics-based battery models and in-

accurate state estimation.

Physics-based battery models are difficult to handle in real-time applications [118].

Model-based control might not be a computationally viable solution due to the high

computational cost of physics-based battery models [121]. Model-based control must

fulfil two criteria: (i) it can represent battery dynamics, and (ii) accurately estimates

ageing in the battery [118]-[127]. There is a broad range of lithium-ion battery models
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in the existing literature with different levels of veracity and complexity [105]-[112].

Equivalent circuit models (ECMs) are the first kind of battery models, which represent

battery dynamics using resistors and capacitors [105]. The simple circuit models with

different variations based on the number of elements deal with externally measured

variables without any insight into diffusion dynamics [105]. These electrical mod-

els are computationally fast, but researchers aimed for electrochemical alternatives

that depict a battery’s internal configuration [106]-[109]. This leads to a well-known

Doyle-Fuller-Newman (DFN) model [106, 107], which represents battery dynamics in

full detail. The DFN model deals with each aspect of dynamics occurring in a par-

ticular electrode, across two electrodes, and between an electrolyte and an electrode

[107].

One of the significant drawbacks of the DFN model is the low computational efficiency

for implementation in control applications [108]. A pseudo-two dimensional (P2D) is

another candidate with reasonable computational efficiency, accounted for solid-phase

and solution-phase diffusion dynamics in the batteries [108]. Unlike the DFN model,

the P2D model has two dimensions; diffusion is assumed to occur through the thick-

ness of the electrode and the radius of each particle [109]. One-dimensional partial

differential equations (PDEs) represent these diffusion processes. The P2D model is

used widely by the control community, but it is not yet applicable for modern BMS

[109], mainly due to computational issues.

Researchers came up with a battery model which does not consider electrolyte dy-

namics [110]-[112]. The model is known as the single particle model (SPM), which

assumes that a battery electrode can be represented as a single spherical particle

[110]. Electrolyte dynamics is a significant feature, which is an important parameter

to estimate ageing in a battery [110, 111]. The SPM is further developed to extended

single particle models (ESPMs) with a reasonable representation of electrolytic diffu-

sion between two electrodes [111]. Both SPM and ESPM can be extended to consider

the thermal aspects of battery dynamics, leading to the temperature-enhanced single

particle model (SPM-T)[112].

All of the above battery models can be used for optimal control problems with some

advantages and disadvantages. However, ECMs rule out because of their inability to
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cope with internal variables of batteries [107]. The controller needs a physics-based

model to explicitly incorporate the SEI layer growth and lithium plating effects by

imposing constraints on the side reaction overpotentials. All of the mentioned elec-

trochemical battery models represent diffusion dynamics via PDEs [106]-[112]. These

equations make the models dimensionally infinite, leading to challenging model-based

control in computation and complexity.

Model reformulation or discretising involves converting non-linear models to linear

approximations with reasonable accuracy [113]. Likewise, lithium-ion battery models

based on PDEs can be reformulated to the finite number of state variables [114]-[117].

In SPM, concentrations are dependent on time and spatial dimensions [110]. A fi-

nite difference or finite element methods can be used to discretise spatial dimensions,

having a drawback of higher-order reformulated models [114]. Researchers also try to

approximate lithium-ion concentration profiles using polynomials, e.g., parabolic and

quadratic, but these are battery specific [115]. A finite volume approach works well

even when model order is high; however, an orthogonal collocation of finite elements

with reduced battery model states has shown better results with equal discretisation

points [116]. An excellent spatial resolution approximation is recorded at low-order

models using the residue grouping method [117].

Any of the mentioned model-reformulation techniques [113]-[117] can be an essen-

tial part of the optimal control problem because an accurate model with reasonable

state estimation accuracy is necessary to optimise the charging process. These tech-

niques convert the complex PDEs to known differential equations, reducing the overall

computation time [114]-[117]. Model reformulation is a vital aspect of the work in

the dissertation, as SPM and SPM-T do not give satisfactory results using the same

polynomial. An accurate battery state model is the main pillar for optimisation and

control applications, so model validation is also an important feature of this work.

Another reason why battery-related optimisation problems are challenging is that

battery dynamics are non-linear [106]-[112]. In the SPM, molar flux rates in two elec-

trodes are governed by the non-linear Butler-Volmer equation [118]. The electrodes

reference potentials and overpotential equations relate non-linear solid and solution

phases [118]. If temperature effects are considered (SPM-T), this adds to non-linearity
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in terms of the battery’s internal states and inputs [119]. The overall non-linearity

and non-convexity of the control problems related to battery applications can make

optimisation challenging even for low-order battery models [118, 119].

Battery charge/discharge trajectory problems are solved by researchers using different

algorithms [120]-[127]. Dynamic programming is used for non-convex optimisation,

but high computation time limits its use in online control problems [120]. A Genetic

algorithm [121, 122], the reference governor method [123], and direct transcription

[124, 125] are either computationally inefficient or have flaws when dealing with an

online model-based control problem. For instance, the computational cost restricts

the use of these algorithms in online control applications [97, 179]. Researchers also

proposed pseudo-spectral methods [126] using orthogonal collocation to optimise bat-

tery charging trajectory [127]. A key feature of the dissertation is to extend already

published works on optimal charging with ageing effects. This work does not give

any information about stability or global control optimality. However, it explores the

limitations of the different key items used in finding the optimal solution.

Inaccurate state estimation of battery models is another reason which makes model-

based optimisation more challenging [128]-[145]. Battery life decreases due to the

inaccurate estimation of internal states caused by accidental damage [128]. State es-

timation is crucial in the battery pack, where improper cell balancing violates safety

protocols [129]. The internal state variables in a battery can not be measured di-

rectly, so an observer is needed to estimate it [137]. For instance, the accumulation

of charge, an algebraic output of internal state variables, is a critical parameter in a

battery [130]. SOC gives the information of charge accumulation in any battery at a

specific time and is defined as the amount of charge available in the battery divided

by maximum charge capacity [129, 130]. SOC, by far, is the most critical functional

variable which needs to be estimated accurately [130]-[145]. Literature shows a signifi-

cant amount of work done on estimating SOC [130]. Researchers pinpoint some of the

factors that can affect SOC estimation accuracies like sensor noise, model mismatch,

and inaccurate parameter estimation [131]. Open-loop and closed-loop algorithms

are used to estimate SOC [132, 134]. Open-loop SOC estimation is not an appro-

priate candidate because of incorrect initial SOC, current sensor bias, and problems
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in estimating the charging capacity of a cell [132]. Closed-loop algorithms typically

deal with these sources of errors [133]-[145]. Luenberger filtering [133, 134], backstep-

ping [135], recursive least squares estimation [136], Kalman filtering [137]-[143], and

optimisation-based estimation [144, 145] are some examples of closed-loop estimation

algorithms.

Although the literature on SOC estimation is quite mature for control problems, it is

essential to validate the model with experimental data. The Legendre-based orthog-

onal projection technique is used to approximate the concentration of lithium ions.

However, no analysis has been done on sensor noise, which can add disturbance to

the system. The next goal is to validate the resulting optimal charging profiles ex-

perimentally. However, in this work, the use of the non-linear MPC framework gives

insight into the growth of the SEI layer both in chemical and mechanical forms. Also,

some works reported an empirical solution to estimate the SOC [146]. These results

are fine for a specific battery but can not handle other battery dynamics.

1.4 Contributions

The main contribution is to develop a novel control algorithm for online optimal

charging of lithium-ion batteries by explicitly incorporating degradation mechanisms

into control, to reduce the degradation process. This work can be seen as an exten-

sion of published works on health-conscious NMPC of lithium-ion batteries [80, 283].

Moreover, a computational efficient approach has been used to compare the opti-

mal algorithm with the pseudo-spectral method solely [86]. Following are the key

contributions compared to already published research articles.

• This work minimises the SEI layer growth during charging.

• A quantitative approach to measure the growth of the SEI layer has been con-

ducted.

• The proposed optimal framework deals with two side reactions simultaneously,

i.e. SEI layer growth and lithium plating considering chemical degradation.
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• To find similarities in charging patterns considering chemical and mechanical

degradation concepts

• Computational complexity of the system has been analysed and minimised via

the proposed algorithm.

1.5 Organisation of the dissertation

The dissertation uses the proposed NMPC framework to minimise the degradation

effects (chemical and mechanical), incorporating a model-based control. The main

contributions to the literature are as follows:

• Chapter 2 explains the modelling of battery dynamics in terms of a single par-

ticle. Model reformulation technique is also employed to reduce the number of

states in the battery model. The SEI layer growth model has been discussed

and modelled using chemical and mechanical degradation concepts separately.

The purpose to considering separate degradation concepts is to find similarities

in optimised charging scenario.

• Chapter 3 proposes a non-linear optimisation strategy for an optimal charg-

ing profile to minimise the growth of the SEI layer. This chapter uses Gauss

pseudo-spectral optimisation and model reformulation for diffusion. The con-

trol problems are formulated for charging trajectory considering chemical and

mechanical degradation theories.

• Chapter 4 presents results of the optimisation problems explained in Chapter 3.

The optimal charging scenario considering chemical degradation are discussed

in terms of the SEI layer growth, charging time, and maximum current upper

bound. Computational efficiency is also recorded for proposed and benchmark

methodologies. However, in mechanical degradation, it is assumed that battery

life affects the SEI repair/break phenomenon rather than the failure of an ac-

tive material of graphite at room temperature. The results are compared with

already published data.

12



• Chapter 5 extends the results of the optimisation problem considering chemical

degradation. The thermal SPM is used, considering the SEI layer growth and

lithium plating. The NMPC strategy is the same as in Chapter 3 with ad-

ditional temperature constraints and a temperature-controlled battery model.

An optimal charging profile is proposed, which successfully minimises the SEI

layer growth and operates the battery in a healthy regime. The differential

flatness method is compared with the proposed NMPC strategy to examine the

computational burden.

A summary is presented in Chapter 6, which concludes the dissertation.
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Chapter 2

Physics-based Modelling for LiBs

2.1 Introduction

The control target of the dissertation is to reach the reference state of charge (SOC)

with minimum SEI layer resistance. The battery operation in a healthy regime is an-

other aspect of this chapter, i.e., to avoid lithium plating during the charging process.

Physics-based constraints are employed on internal variables such as overpotential,

along with voltage and current upper limits. This chapter presents the physics-based

modelling for lithium-ion batteries (LiBs) and solid electrolyte interface (SEI) layer

considering chemical and mechanical degradation concepts separately. As the work

employees model-based charging method, the correct models for batteries and associ-

ated degradation mechanisms are necessary to optimise the charging trajectory.

Model-based charging algorithms are the first choice of BMS engineers nowadays to

incorporate an equivalent circuit model (ECM) or electrochemical model [105]-[112].

The main objective is to optimise the battery’s charging trajectory by controlling the

polarisation voltage [147]. A suitable ECM method can be chosen for battery dynam-

ics using a certain number of circuit elements [147, 148]. Temperature effects can be

incorporated into ECM using the Fourier thermodynamics formula (ECM-T model)

[148]. Researchers tried various optimisation problems with a range of objective func-

tions [149]-[151]. The optimisation results show significant improvements in charging

time and temperature rise with the objective function defined as the sum of these two

variables [149]. Another optimisation problem is solved based on the ECM-T with an
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objective function that minimises energy loss along with constraining charging time

and other external variables [150]. Results show a significant increase in energy and

power densities of lithium-ion batteries [150]. The researchers also tried to optimise

the ageing of a battery with ECM-T models [151]. The objective function is the sum of

charging time and capacity loss [151]. These optimisation results are not trustworthy

as circuit models give no information about the internal variables of batteries. Re-

garding ECMs, there is no information about lithium intercalation/de-intercalation,

potential change between electrodes, and other chemical reactions [152]-[155].

Due to the inability of ECMs to estimate internal variables, electrochemical models

(EMs) are an obvious choice to deal with the ageing of lithium-ion batteries [149]-

[151]. The single particle model (SPM)[152], extended single particle model (ESPM)

[153], temperature-based SPM (SPM-T) [107], pseudo-two dimensional (P2D)[154],

and Doyle-Fuller-Newman (DFN) [155] are some electrochemical models used for opti-

misation purposes. The choice of a particular EM is based solely on the computation

time and accuracy of the estimated states [144, 145]. These EMs can differentiate

internal chemical and physical parameters influenced by side reactions due to the fast

charging [156, 157]. The heat generation during fast charging impacts the battery life

due to charge transfer reactions, diffusion and migration of lithium ions in the elec-

trolyte interfaces and electrodes [156]-[161]. Moreover, lithium plating [162]-[166] and

mechanical pulverisation [167]-[174] can also increase degradation at fast charging.

The main objective of an EM-based optimised charging method is to impose con-

straints on side reactions so that it effectively restricts the loss of lithium ions during

battery cycling [175]. Different optimal charging strategies are presented with various

objective functions. Charging time minimisation, along with imposing constraints on

voltage, current, temperature, and side reaction overpotential, is one of the many

optimisation problems used by researchers [176]. Non-linear model predictive control

(NMPC) [177] and control vector parametrisation (CVP) [125] are used to optimise

the charging trajectory. All of these EM-based optimisation strategies are ideal for

the depiction of ageing of the lithium-ion batteries [178], but computational time is a

real issue [179]. The differential flatness-based pseudo-spectral control method is also

used to reduce the computational time [86].
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There are many side reactions responsible for the degradation of batteries. The for-

mation of the SEI layer [180] is by far the most influential factor in battery chemistry.

A fresh battery undergoes the first charging cycle, forming an initial layer of SEI on

the graphite (anode) surface [180]. The initially formed surface is mainly due to or-

ganic and inorganic decomposed products resulting from solvent reduction processes

[180, 181]. The thickness of the SEI layer is an important parameter, though it can

not be easily measured [180]-[190]. There are many theories on the composition of the

SEI, which highly varies depending on the type of batteries. The thickness of the SEI

increases during cycling at elevated temperatures [181]. The SEI behaves differently

at lower or higher potentials, but more noticeable changes happen at elevated tem-

peratures [182]. The transformation of the SEI and the reaction of active material or

electrolyte with the SEI occurs at high temperatures [183]. Battery performance is

profoundly affected by composition, thickness, morphology, and compactness of the

SEI layer [184]. When the SEI layer successfully passivates the active material surface,

self-discharge can occur [185]. It means one can easily link the shelf life of the battery

to the SEI layer [185]. Although during cycling, a stable SEI layer is necessary to pro-

vide kinetic stability [188]. However, exfoliation of the graphite is a common feature

that damages the formation of the SEI layer [186]. One of the main reasons for this

desquamation of graphite is the intercalation of solvent molecules with lithium-ion,

leading to the graphite’s order [187]. However, apart from stable graphite electrode

[188], the overpotential due to SEI layer formation influences the graphite exfoliation

[189]. The passivation process of graphite electrodes in mixed electrolytes is affected

due to local current density caused by these overpotentials [190].

The SEI layer is influenced by many factors which contribute to its properties [191]-

[196]. Unfortunately, none of the factors independently identify the SEI layer’s prop-

erties, quality, and efficiency [247]. It is always a functional approach to understand

the formation of the SEI layer [191]-[193]. The SEI layer dominates the area between

the active material and the electrolyte, acquiring the properties of both phases [191].

It is usually formed on the surface of negative active material influenced by the type

of carbon [192]. Authors proved that irreversible charge loss due to SEI formation is

directly proportional to the Brunauer–Emmett–Teller (BET) specific surface area of
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the carbon [193]. Apart from the BET surface area, crystallographic structure and

particle morphology also influence the SEI formation [194]. Surface defects and active

sites can act as sources of solvent reduction [194, 195]. In general, the SEI is composed

of both inorganic and organic products [195]. Inorganic products are mostly found on

the edges of graphite particles, while organic products are deposited on the surface of

graphene sheets [195]. Another critical factor, the crystallographic structure of car-

bon, should not be obliterated as exfoliation increases in the presence of highly ordered

carbons [196]. Pretreatment of carbon in the form of reduction, oxidation, electroless

plating, and thermal treatment is done to enhance the surface properties [196, 197].

Electrolyte composition is another factor that affects the formation of the SEI due

to thermodynamic instability, and kinetic reactivity [197]. Various techniques are

used to analyse the SEI, ranging from spectroscopy to microscopy, diffraction, and

thermo-analysis [198]-[209]. X-ray photoelectron spectroscopy (XFS) [198], Auger

electron microscopy(AES) [199], atomic force microscopy (AFM) [200], and scanning

tunnelling microscopy (STM) [201] are used for SEI layer surface analysis. Scanning

electron microscopy (SEM) [202] and transmission electron microscopy (TEM) [203]

are used for image analysis of the SEI film. Fourier transform infrared spectroscopy

(FTIR) [204], infrared absorption spectroscopy (IRAS) [205], and Raman [206] are

some examples of vibration spectroscopies used to understand the composition of the

SEI film. Differential scanning calorimetry (DSC) [207], accelerated rate calorime-

try (ARC) [208], and temperature-programmed desorption (TPD) [209] are popular

examples of thermo-analysis. However, in this work, we focus on modelling the SEI

layer formation, which will be discussed further.

Another side reaction incorporated in this work is lithium plating. In a normal bat-

tery cyclic condition, lithium ions are reversible [210]-[213]. A part of the intercalated

lithium ions is lost, mainly due to the reaction with the electrolyte [214]-[217]. Lithium

plating is the side reaction that occurs on the surface of a negative electrode [210]. It

affects the electrode by forming the metallic lithium pigments and mostly occurs at

low temperatures, high charging currents, and a high SOC during charging [210, 211].

Lithium plating should be avoided because dendrites growing at the surface of the

electrode penetrate into the separator, causing a short circuit [211]. Lithium plating
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may cause the exothermic reactions of lithium metal with the electrolyte, which affects

the thermal balance of the battery [211]. It can occur after prolonged cycling in the

porous electrode due to clogging [210]-[212]. Physio-chemical models are useful to pre-

dict the behaviour of lithium plating [212]-[215]. Arora et al. [212] studied the lithium

plating effect during overcharge and also extended the well-known DFN model with

the side reaction on the negative electrode. This side reaction is incorporated in the

Butler-Volmer equation [212]. One can easily investigate the lithium plating effects

under different operating conditions and charging protocols [213]-[216]. Perkins et al.

[213] used their reduced-order model to show the degradation effect in lithium-ion

batteries. Hein and Latz [214] proved via simulations that lithium plating depends

on the distribution of lithium particles in the electrode. Ge et al. added tempera-

ture effects in Aroroa’s model [215]. Yang et al. [216] predicted the behaviour of the

ageing model after prolonged cycling. The authors also presented the mathematical

depiction of lithium plating and stripping by introducing the concentration-dependent

Butler-Volmer equation [217]. The common aspect in the mentioned references [210]-

[217] is that side reaction overpotential must be greater than zero to avoid lithium

plating. In this work, lithium plating must be avoided during charging along with

minimising the thickness of the SEI layer.

Chemical and mechanical approaches separately give insight into the degradation of

lithium-ion batteries, resulting in the capacity fade [75]. In contrast to chemical degra-

dation, mechanical degradation mechanisms are linked to the changes in volumes and

generation of stresses due to the repetitive intercalation of lithium ions in the active

material [218]-[226]. In the thesis, the control problem employs the SEI layer growth

from the mechanical degradation concept, considering the SEI layer as a weaker ma-

terial (can go into the plastic region) compared to an active material [78]. Thus,

the SEI layer breaks and repairs during the intercalation/de-intercalation of lithium

ions [78]. The main aim of introducing mechanical degradation is to investigate the

optimisation of the charging trajectory of the lithium-ion batteries separately from

chemical degradation and find the similarities.

The oxidation of metals, hydrogen transport, and lithium diffusion are reasons for

compositional non-uniformity in different mediums, ultimately generating diffusion-
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induced stresses (DISs) [218]. Several authors have introduced modelling strategies

to depict the behaviour of DISs [219]-[226]. During the mass transfer, the relation-

ship between thermal stress and DIS is discussed by Prussin et al. [219]. Li [220]

presents the analytical solution of the DIS phenomenon considering different geome-

tries. A detailed study on the behaviour of DIS in thin plates, hollow cylinders, and

composites is presented by Lee et al. [221]. Yang and Li [222] investigate the effect

of DISs on the beam bending in sensing applications. Many researchers published

articles addressing the modelling of lithium-ion batteries regarding electrochemical

energy storage [223, 224]. The main areas of focus are kinetics and transport phe-

nomena that govern the electrochemical behaviour of the system [225, 226]. Garcia et

al. examine the generation of stresses during the diffusion of lithium under constant

current control [223]. The same authors also explore linear sweep voltammetry along

with heat generation effect on the single particle model (SPM) [224]. Most of these

investigations are carried out on spherical and ellipsoidal particles [225]. Zhang et al.

present the analysis of lithium-ion intercalation in the SPM [226].

It is believed in the battery research community that mechanical degradation can

be chosen as a critical element to depict the insight of cyclic ageing of lithium-ion

batteries [227, 228]. The DISs principle gives some information about cyclic ageing

and factors affecting the battery’s parameters [229, 230]. Christensen derive a for-

mulation for particle fracture in anode and cathode particles [227]. According to the

author’s investigation, there is a direct relationship between maximum stress and c-

rate [229]. Later on, researchers also investigated DIS phenomena in porous electrodes

[228]-[230]. The DISs can be affected by the particle size [228], phase changes [229],

and variable Young modulus [230]. Apart from DIS phenomena alone, several works

have been carried out that merge the DIS with the fatigue theory [231]. The new

modelling approach, which links DIS and fatigue, is a better depiction of the capac-

ity fade during cycling [232]. This model does not consider the fracture of the SEI

layer [232]. However, particle fracture has not happened quickly unless the battery

operates at severe temperatures, i.e., below zero [232]. Hence, in normal conditions,

it might be the SEI which fractures during intercalation/de-intercalation [232]. The

electrolyte solution penetrates through the cracks of a particle, reproducing the SEI
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layer and increasing the thickness [231, 232]. Due to the non-homogeneous nature of

the SEI layer, it is safe to assume that the chances of fracture in the SEI layer are

far higher than in graphite [228][232]. Purewal et al. [233] present the model showing

the effects of the SEI layer with slightly different mechanical properties than of the

graphite material. However, stresses on active material and the SEI layer must be

investigated separately [78].

The remainder of this chapter is structured as follows. Section 2.2 presents the gov-

erning equations and model reformulation for the SPM. Section 2.3 gives the mathe-

matical description of the formation and growth of the SEI layer considering chemical

degradation. Section 2.4 presents the modelling of mechanical degradation concept, in

which Subsection 2.4.1 demonstrates the analytical model of SEI and active particle.

Subsections 2.4.2 and 2.4.3 discuss the fatigue and capacity loss as a result of SEI

propagation.

2.2 Single particle model

Model-based control needs a model which represents the dynamics of lithium-ion

batteries [53]-[67]. ECM, SPM, ESPM, P2D and DFN are commonly used lithium-

ion battery models in the literature [105]-[112]. In the dissertation, SPM is used

primarily to accomplish a trade-off between accuracy and computational efficiency

[110]-[112]. In this section, the governing equations and assumptions of the SPM are

briefly described [234]. The conversion of partial differential equations (PDEs) into

ordinary differential equations using model order reduction techniques is also part of

this section [69]. The battery used in this chapter is the A123 LFP 26650 2.3 Ah cell,

where battery parameters and reference potential curve are obtained from [235]. It is

assumed that the concentration of electrolyte ce is constant, both in space and time

domains [234]. A single lumped resistance can be represented for ohmic losses in both

solid and electrolyte phases. Moreover, charge across the thickness of each electrode

is distributed uniformly, which justifies the approximation of an electrode as a single

spherical particle [234].
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2.2.1 Governing equations

SPM’s central equation is solid-phase diffusion dynamics, represented by Fick’s second

law of diffusion. The governing differential equation, considering time and radius as

an independent variable, with boundary conditions at centre and particle surface are

as follows:

∂cs,i(r, t)

∂r
=
Ds,i

r2

∂

∂r

(
r2∂cs,i(r, t)

∂r

)
(2.1)

∂ci(r, t)

∂r
|r=0 = 0 (2.2)

∂ci(r, t)

∂r
|r=R = ± Ji(t)

FDs,iai
(2.3)

where cs,i, Ds,i, ai and Ji are the solid state concentration, diffusion constant, inter-

facial surface area and molar flux of lithium ions of corresponding electrode (negative

or positive) respectively. F is Faraday constant, i = p and i = n correspond to

positive and negative electrodes respectively. Inter-facial area of electrode can be

defined as:

ai =
3εi
Ri

(2.4)

Ri is the particle radius and εi is active volume fraction of material. The molar flux

of lithium ions Ji is defined as:

Jn(t) = − I(t)

SnLn
(2.5)

Jp(t) =
I(t)

SpLp
(2.6)

where I is the input current , + for charging, Si is the sheet area of electrode i and Li

is the thickness of the corresponding electrode respectively. The bulk SOC is defined

as:

SOCi(t) =
cs,i,avg(t)

cs,i,max
(2.7)

where cs,i,avg(t) is the average lithium-ion concentration of the electrode and cs,max

is the maximum concentration of lithium ions of electrode. Average lithium ions

21



concentration of the electrode is represented as:

cs,i,avg(t) =

∫ Ri

0

cs,i dr (2.8)

The surface SOC is defined as:

SOCsurf
i (t) =

csurfs,i (t)

cs,i,max
(2.9)

where csurfs,i (t) = cs,i(Ri, t) is the surface lithium-ion concentration of electrode. Bat-

tery SOC, SOCcell, is defined as:

SOCcell =
SOCn(t)− θn,0
θn,100 − θn,0

(2.10)

SOCcell =
θp,0 − SOCp(t)
θp,100 − θp,0

(2.11)

where the stoichiometry values θi,0 and θi,100 are defined as follow

θi,0 =
cs,i,avg,0%(t)

cs,i,max
(2.12)

θi,100 =
cs,i,avg,100%(t)

cs,i,max
(2.13)

where cs,i,avg,0%(t), cs,i,avg,100%(t) are the minimum and maximum average concentra-

tion of electrode i respectively. The relationship between molar flux of lithium ions

and the potential difference between the solid and solution phases using Butler-Volmer

equation.

Ji(t) = i0,i(t)

[
exp

(
αaF

RT
ηi(t)

)
− exp

(
αcF

RT
ηi(t)

)]
(2.14)

i0,i(t) = aiki(cs,i,max − csurfs,i )αa (c
surf(t)
s,i )αc cαae (2.15)

ki is reaction rate constant and i0,i is current density of the respective electrode. αa

and αc are electrode transfer coefficients in anode and cathode respectively. cs,max

and csurfs are maximum and surface concentrations in electrode. R is gas constant,
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while T is temperature which is 298 K unless otherwise stated. The overpotential ηi

is defined as difference between solid and electrolyte potential and it can be expressed

for negative electrode as follows:

ηi(t) = φ1,i(t)− φ2,i(t)− Ui(t) (2.16)

where φ1,i is the solid phase potential, φ2,i is the solution phase potential, and Ui

is open circuit potential of the electrode. The potential drop in the solution phase

between two electrodes is

φ2,p(t)− φ2,n(t) = I(t)Rcell (2.17)

where Rcell is a lumped parameter to define resistance in the cell. The potential

difference between positive and negative electrodes is defined as cell voltage. It can

be expressed as:

Vcell(t) = ηp − ηn + Up − Un + I(t)Rcell (2.18)

In this chapter, while optimisation of charging, side reaction is considered which

represents lithium plating. This side reaction affects the negative electrode while

charging. The overpotential due to side reaction can be written as follows [212] :

ηsr = ηn + Un (2.19)

where ηsr is the side reaction overpotential and it must be greater than or equal to

zero for healthy operation of lithium-ion batteries [236, 237].

2.2.2 Model reformulation

Time-scale separation of SPM is employed in the dissertation for efficient optimisation.

The dynamics of a negative electrode, which has slower dynamics, is represented by

Fick’s law, while a pure integrator is used to define the dynamics of the positive

electrode. In this regard, differential equation (2.1) and boundary conditions (2.2)

are considered only for the negative electrode. The law of conservation of lithium
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ions is used to recover the concentration of the positive electrode. The total number

of state variables reduces to half without lacking accuracy .

Fick’s law of diffusion (2.1) is a PDE and difficult to solve mathematically. A model-

reformulation process is needed to convert it into an ordinary differential equation.

This model-reduction is achieved by using the Galerkin method, as presented by Kehs

et al. [69]. Legendre polynomials are used as basis functions to represent spatial

dynamics. Diffusion dynamics are computed by using only three state variables. The

detail on the implementation of Legendre polynomials and orthogonal projection can

be found in [238].

The lithium-ion concentration in the negative electrode cn(r, t) can be approximated

by a linear combination of Legendre polynomials, separately defines the time and

spatial dynamics:

cn(r, t) ≈ φ0(r)β0,n(t) + φ2(r)β2,n(t) + φ4(r)β4,n(t) + φ6(r)β6,n(t) (2.20)

where φi(r) are even Legendre polynomials and βi,n(t) represents the time dynamics

of negative electrode. The differential of even polynomials at collocation point is

zero, thus satisfying the boundary condition at center of particle. The Legendre

polynomials can be normalised [74]

∫ Rn

0

φi(r)φj(r)dr =

 0 if i 6= j

1 if i = j

where Rn is the radius of particle. Substituting (2.20) into eq. (2.1), gives

4∑
i=0

φi(r) ˙βi,n = Ds

[
2

r

4∑
i=0

dφi(r)

dr
βi,n(t) +

4∑
i=0

d2φi(r)

dr2
βi,n((t)

]
(2.21)

where β̇i is differentiation of βi with respect to time. Orthogonal projection techniques

is used further by multiplying both sides of (2.21) by [φ0, φ2, φ4, φ6]T and then inte-

grating both sides from 0 to R. The diffusion dynamics (2.1) can then be expressed
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as the following:



β.0(t)

β.2(t)

β.4(t)

β.6(t)


=
Ds,n

R2
n



0 9
√

5 20 29.4
√

13

0 0 35
√

5 16.8
√

65

0 0 0 46.2
√

13

0 0 0 0





β0(t)

β2(t)

β4(t)

β6(t)


(2.22)

Similarly the boundary condition in (2.2) can be expressed as:

3

R

√
5

R
β2 +

10

R

√
9

R
β4 +

21

R

√
13

R
β6 = − Jn(t)

DsaF
(2.23)

Putting the value of Jn in (2.23), we get

3

R

√
5

R
β2 +

10

R

√
9

R
β4 +

21

R

√
13

R
β6 = − I(t)

SnLnDsaF
(2.24)

β6 does not have dynamics (2.22), and thus can be discarded. Hence, dynamics of

a negative electrode can be expressed as a function of β0,n, β2,n and β4,n. The final

dynamics of negative electrode is derived in the form of state space model using (2.22)

and (2.24).

ẋn = Anxn +Bnu (2.25)

where x = [β0n , β2n , β4,n]T and input u is the current I. Any other variables like β6,n

, the electrode surface concentration csurfn (r, t), can be computed algebraically from

the solution of state space model (2.25).

2.3 Modelling of the SEI layer in chemical degra-

dation

In the chemical degradation concept, the first-principles capacity fade model for

lithium-ion batteries has been used [239]. Darling et al. were the first researchers

who modelled the parasitic reactions by considering the solvent oxidation side reac-

tion [239]. An analytical approach to quantify reversible and irreversible capacity loss
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was developed by Spotnitz et al. [240] though the model does not handle the temper-

ature changes successfully. Any side reaction in lithium-ion batteries leads to capacity

loss [239, 240]. Researchers also model side reactions considering the composition of

the electrolyte solution [241], the semi-empirical capacity fade model [242], and the

solvent diffusion model under storage [243].

The model used in this chapter has some assumptions [244]: (i) ethylene carbonate

is assumed to be an electrolyte; (ii) it is assumed that a solvent reduction reaction

occurs only in charging; (iii) due to the side reaction on the surface of the active

material, the product can be of any form, organic and inorganic or both; (iv) an irre-

versible side reaction is assumed with an open-circuit voltage of 0.4 V [244]; (v) the

initial SEI layer resistance is taken as 100 Ω cm2; and (vi) any other side reaction such

as lithium deposition is not considered. In contrast to the SPM model described in

Section 2.2, certain changes in the negative electrode are proposed. Firstly equivalent

molar flux at the negative electrode is equal to intercalation (Jn) plus side reaction

(Js).

Jeq,n = Jn + Js (2.26)

Moreover the equation of overpotential (2.16) is expressed by

ηn = φ1,n − φ2,n − Un −
Jeq,n
an

Rfilm (2.27)

where Rfilm is the resistance of the SEI film. Side reaction molar flux can be expressed

as

Js = −io,sane−
RgTηs

2F (2.28)

where io,s is exchange current density for side reaction and ηs is side reaction overpo-

tential which is represented as

ηs = φ1,n − φ2,n − Uref,s −
Jeq,n
an

Rfilm (2.29)
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where Uref,s is open circuit potential for side reaction and is equal to 0.4 V [245]. For

the first cycle, film resistance, Rfilm, is defined as

Rfilm = RSEI +Rp(t) (2.30)

where RSEI is initial film resistance, 0.01 Ωm2 in this work, while Rp(t) is the resis-

tance of the products formed during charging and is defined as

Rp(t) =
δfilm
κp

(2.31)

where κp is the conductivity of electrolyte. The mathematical expression of rate of

SEI film resistance (δfilm) is written as

∂δfilm
∂t

= − JsMp

anρpF
(2.32)

where Mp, ρp are molecular weight and density of products formed during side reaction

respectively. From (2.30)-(2.32), time rate change of SEI film resistance is written as

∂Rfilm

∂t
=
io,sMp

κpρpF
e−

RgTηs
2F (2.33)

The equation (2.33) represents the dynamics of SEI film growth.

2.4 Mechanical degradation modelling

2.4.1 Analytical model of SEI and active particle

The SEI layer is a porous material formed due to the irreversible dissolution of the

electrolyte with active materials of the electrode [246, 247]. However, the exact con-

figuration of the SEI layer is not entirely explicable agreement on non-homogeneous

nature [246]. During intercalation and de-intercalation of the lithium ions, the active

material particle is surrounded by a thick layer of SEI due to a volume change [247].

The cycle life of the lithium-ion batteries can be reduced due to continuous expansion

and compression of the material [247, 248]. The stresses generated due to charg-
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ing/discharging are known as diffusion-induced stresses (DISs), which are thoroughly

explained in [248]. The stress and strain for an elastic spherical body can be related

by following mathematical expressions [249].

εr =
1

E

[
(1 + ν)σr − νσt

]
+
cΩ

3
(2.34)

εt =
1

E

[
(1 + ν)σt − νσr

]
+
cΩ

3
(2.35)

where εr and σr are the stress and strain in radial direction, while εt and σt are

tangential strain and stress, respectively, E is the young modulus, ν is the poisson’s

ratio, c denotes active material particle concentration and Ω is the partial volume of

solute in the solid material. It is assumed that elastic properties do not change with

lithium concentration and also no external forces act on the particle. It means stress

tensor can be defined by evaluating the following equilibrium equation [250].

dσ

dr
+

2(σr − σt
r

= 0 (2.36)

Both stress and displacement tensor is related by the following equations.

εr =
du

dr
, εt =

u

r
(2.37)

Substituting (2.37) in to (2.34) and (2.35) and replacing σr, σt in (2.36), gives the

following second order differential equation [224].

d2u

dr2
+

2

r
− 2

u

r2
=

1 + ν

1− ν
Ω

3

dc

dr
(2.38)

The analytical solutions for the above differential equation in particle and SEI are as

follows [78]:

uP (r) =
(1 + νP )

(1− νP )

ΩP

3

1

r2

∫ r

0

CP r
2dr + aP r +

bP
r2

(2.39)

uSEI(r) =
(1 + νSEI)

(1− νSEI)
ΩSEI

3

1

r2

∫ r

0

CSEI r
2dr + aSEI r +

bSEI
r2

(2.40)
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where sub-index P stands for active particle. Integration constants aP , bP , aSEI and

bSEI are computed using boundary conditions. The final mathematical expressions

for stresses in active material and SEI layer are as follows [78]

σrP (r) = − 2ΩPEP
3(1− νP ))

1

r3

∫ r

0

CP r
2dr +

EP
(1− 2νP )

aP −
2

r3

EP
(1 + νP )

bP (2.41)

σtP (r) = − ΩPEP
3(1− νP ))

1

r3

∫ r

0

CP r
2dr +

EP
(1− 2νP )

aP −
1

r3

EP
(1 + νP )

bP −
ΩPEPCP
3(1− νP )

(2.42)

where σrP and σtP are radial and tangential stresses in the active particle respec-

tively. it is assumed that there is no expansion in the SEI layer due to charging and

discharging. It means the first terms of (2.41) and (2.42) are zero, formulating the

final form of stress in SEI as follows.

σr,SEI(r) =
ESEI

(1− 2νSEI)
aSEI −

2

r3

ESEI
(1 + νSEI)

bSEI (2.43)

σt,SEI(r) =
ESEI

(1− 2νSEI)
aSEI −

1

r3

ESEI
(1 + νSEI)

bSEI −
ΩSEIESEICP
3(1− νSEI)

(2.44)

The boundary conditions must be applied to find the integration constants. These

are as under:

uP (r = 0) = 0, σr,SEI(r = RSEI) = 0, (2.45)

uP (r = RP ) = uSEI(r = RP ), σrP (r = RP ) = σr,SEI(r = RP ) (2.46)

Putting uP (r = 0) = 0 in (2.39)gives bP = 0. For σr,SEI(r = RSEI) = 0, (2.43)

becomes:

aSEI
1− 2νSEI

− 2

R3
SEI

bSEI
(1 + νSEI)

= 0 (2.47)
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The displacement must be continuous for active and SEI materials. Applying bound-

ary condition gives:

uP (r = RP ) = uSEI(r = RP ) (2.48)

aP RP − aSEI RP −
bSEI
R2
P

= −(1 + νP )

(1− νP )

ΩP

3

1

R2
P

∫ RP

0

CP r
2dr (2.49)

Finally radial stresses in active particle and SEI must be continuous throughout the

boundary. It means equating σrP (r = RP ) = σr,SEI(r = RP ), gives:

ESEI
1− 2νSEI

aSEI −
2

R3
P

ESEI
(1 + νSEI)

bSEI = − 2ΩPEP
3(1− νP ))

1

R3
P

∫ RP

0

CP r
2dr +

EP
(1− 2νP )

aP

(2.50)

A set of linear equations are formulated comprising of (2.47)-(2.50). Introducing

constants a1 = 1
(1−2νSEI)

, a2 = Ep
(1−2νP )

, a3 = ESEI
(1−2νSEI)

, a4 = 2ESEI
R3
P (1+νSEI)

, a5 =

− (1+νP )
(1−νP )

ΩP
3

1
R2
P

, a6 = − 2ΩPEP
3(1−νP ))

1
R3
P

and b1 = 2
R3
SEI(1+νSEI)

. Using given constants, in-

tegration constants can be computed as:

bSEI =
C2

C1

∫ RP

0

CP r
2dr (2.51)

aSEI = C3

∫ RP

0

CP r
2dr (2.52)

aP = C4

∫ RP

0

CP r
2dr (2.53)

whereas C1 =
a3b1R3

P−a1a4R
3
P−a2b1R

3
P−a2

a1R3
P

, C2 = a6 + a2a5, C3 = b1C2

a1C1
and C4 = C2

C1

(
b1
a1

+

1
R3
P

)
+ a5. Putting all constants in (2.41)-(2.44), we get

σrP (r) = d1

∫ r

0

CP r
2dr + a2C4

∫ RP

0

CP r
2dr (2.54)

σtP (r) = d2

∫ r

0

CP r
2dr + a2C4

∫ RP

0

CP r
2dr + d3 (2.55)
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Stresses in SEI are:

σr,SEI(r) =

(
a3C1C3 − d4C2

C1

)∫ RP

0

CP r
2dr (2.56)

σt,SEI(r) =

(
a3C1C3 + d5C2

C1

)∫ RP

0

CP r
2dr (2.57)

where d1 = − 2ΩPEP
3(1−νP ))

1
r3

, d2 = − ΩPEP
3(1−νP ))

1
r3

, d3 = −ΩPEPCP
3(1−νP )

, d4 = 2
r3

ESEI
1+νSEI

and

d5 = 2
r3

ESEI
1+νSEI

are constants. Strain energy can be calculated from the stresses stored

as a result of elastic deformation [218].

e(r, t) =
σ2
r(r, t) + 2σ2

t (r, t)− 2νσt(r, t)[2σr(r, t) + σt(r, t)]

2E
(2.58)

2.4.2 Fatigue approach

It has been observed that volume expansion due to intercalation does not usually cross

the limit of the yield point [251]. The yield point is defined as the barrier, after which

solid material attain permanent deformation. It is also known as elastic limit [252].

However, this does not exclude the possibility of damage to the battery during cycling.

The fracture can occur even if the cyclic loads are lower than the critical point due

to the continuous loading, causing microscopic structural damage to the battery. The

Wohler curves [253] are empirical results of specific materials which relate the number

of life cycles to the amplitude of the cycle stress. The mathematical expression of the

amplitude of cycle stress is as follows:

σampl =
σmax − σmin

2
(2.59)

To calculate the maximum number of cycles to failure (Nmax), Basquin power law is

used [253],

Nmax =

(
σyield
σampl

) 1
m

(2.60)

where σyield is the critical stress for static failure and m the slope of σampl vs N curve

in the bi-logarithmic diagram. One of the limitations of S-N curves is its availability
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for known materials, so we need to take the best approximate for graphite or SEI.

The parameters of battery and SEI are taken from [78]. If the material is subjected

to varying cyclic stresses, this means every charging event is independent [254]. The

cumulative damage Dg relates to load and number of cycles by:

Dg =
k∑
i=1

ni
(
σampl i

)
Nmax i

(2.61)

where ni
(
σampl i

)
is the number of applied cycles due to amplitude stress and Nmax i

is the number of cycles to failure at amplitude stress. Thus each term after a cycle,

contributes to degradation. Substituting (2.60) in (2.61):

Dg =
k∑
i=1

(
σampl i
σyield

) 1
m

ni
(
σampl i

)
(2.62)

Ageing tests can be performed by assuming uniform stress conditions, means am-

plitude stress remain constant throughout the cycling. This simplifies (2.62) to the

following form:

Dg

cycle
=

(
σampl
σyield

) 1
m

(2.63)

Thus, any damage to the battery in a cycle is independent to number of applied cycles.

2.4.3 Capacity loss

In normal cyclic conditions, battery’s resistance increases slowly. It means capacity

loss can be the only variable to predict lifetime of battery. Due to this fact, damage

is directly proportional to the capacity loss and can be written as:

Dg

cycle
=

(
σampl
σyield

) 1
m

∝ Caploss(%)

cycle
(2.64)

The capacity fade does not occur only due to cycling but it happens only in storage

conditions (calendar ageing). Total capacity loss can be expressed as :

Caploss(%)

cycle
=
Capcalloss(%)

cycle(hrs)
+
Capcycloss(%)

cycle
(2.65)
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where cal, cyc refer to calendar and cyclic ageing respectively. In this chapter, calender

ageing can be neglected due to continuous cyclic pattern. Thus total capacity can be

approximated as:

Caploss(%)

cycle
≈ Capcycloss(%)

cycle
(2.66)

Capacity loss relates to the stress amplitude by using (2.63):

Caploss(%)

cycle
≈ Capcycleloss (%)

cycle
= AI

(
σyield
σampl

) 1
m

(2.67)

where AI is a quantification factor of capacity loss and it’s value can be determined

from [78]. It is worth noting here that if stress amplitude σampl becomes zero, as-

sumption of no calendar ageing effect does not valid any more.

The presented model has been integrated to SPM discussed in Section 2.2. Both an-

ode and cathode are assumed to be a single spherical particles, without considering

the dynamics of electrolyte.
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Chapter 3

Optimisation and Model Predictive

Control to reduce Degradation

3.1 Introduction

The dissertation addresses the challenge of optimising the charging trajectory of a

lithium-ion battery cell to meet the desired target while avoiding the side reactions

responsible for ageing. The work aims to propose an optimal charging profile that

decreases the SEI layer’s growth and operates the battery in a healthy regime. This

chapter presents the non-linear model predictive control (NMPC) strategy to optimise

the charging trajectory. The proposed strategy can be a feasible solution in modern

battery management systems (BMSs) to reduce degradation.

Conventional BMSs usually impose constraints on externally measured variables such

as voltage and current [26]-[29]. The main objective of a BMS is to charge the battery

as fast as possible [23]. This leads to the design of a popular constant current con-

stant voltage (CCCV) strategy, which is easy to implement [255]. One of the so-called

advantages of CCCV is that it does not have a battery model to operate, which makes

charging circuit design easy [255]. This easy-to-use policy affects the battery’s health

in subsequent cycles of charging/discharging due to higher polarisation voltage [256].

The constant voltage phase is highly time-consuming, and the constant current phase

increases the side reactions, ultimately enhancing the degradation processes [257].

The CCCV strategy is independent of the battery model, so it can not differentiate
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individual cells of a battery [256, 257]. Charging efficiency tends to drop in CCCV

due to neglecting internal resistance [258].

Researchers presented many possible solutions to improve the effectiveness of the

CCCV methodology [259]-[266]. Trickle charge constant current constant voltage

(TC-CCCV) involves the addition of two trickle charging stages [259]. One is acti-

vated before the CC phase in case of a deep discharge level, and the second occurs

after the CV phase to complete charging at a reduced current level [259]. It certainly

prolongs the battery cycle-life, but charging time is considerably increased. The multi-

stage constant current (CC) charging strategy is proposed to reduce the charging time

in the CV phas [260]. The battery is charged in different stages at different current

values. The current in the next stage is always lower than in the previous stage [260].

At every stage, the current is lowered to a predefined limit, even after achieving the

maximum voltage [261].

Although a multi-stage CC enhances the battery life, an incorrect initial SOC estima-

tion can increase the degradation [262]. The accumulation of errors at each step of the

estimation process can cause rapid battery ageing [263]. Pulse charging is proposed

to reduce the polarisation voltage that occurs in CCCV [264]. It can be discontinuous

CC or CV pulses of a higher-order current, reducing the charging time significantly

[264]. Pulse charging, however, has some advantages, but higher current rates lead

to a thicker SEI layer, which acts as a barrier for intercalated lithium particles [24].

Battery temperature is quite high in the case of pulse charging as compared to CCCV.

The boost charging [265] concept is also used to charge the battery, approximately

one-third of a discharged battery in five minutes. It operates on a higher current which

severely impacts the battery life [55]. Apart from the mentioned traditional charging

methods, other strategies reported in the literature on externally measured variables.

Constant power constant voltage (CPCV) and constant voltage constant current con-

stant voltage (CV-CCCV) [266] are some popular charging strategies. These charging

approaches are model-free, operating only with predefined limits on current, voltage,

and power without considering the battery dynamics [266]. All of these approaches

are easy to implement, but the corresponding charging trajectory may not be suitable

for the health of a battery.

35



The remainder of this chapter is organised as follows. Section 3.2 briefly introduces

Gauss pseudo-spectral method. Section 3.3 demonstrates the proposed NMPC strat-

egy. Sections 3.4 and 3.5 formulate the optimisation problem in chemical and mechan-

ical degradations respectively, along with the definition of benchmark methodology.

3.2 Gauss pseudo-spectral method (GPM)

Implementation of online optimal charging strategies based on electrochemical battery

models can be challenging due to two reasons: 1) online method can be computation-

ally expensive, 2) problem is non-linear, particularly due to constraints [95]-[103].

This section describes briefly about Gauss pseudo-spectral method (GPM) which is

employed as an efficient optimization method to resolve the online optimization prob-

lem. The first requirement in GPM is to change the time interval from arbitrary

bounds t ∈ [t0, tf ] to the interval τ ∈ [−1, 1] by

t =
(tf − t0)τ + (tf + t0)

2
(3.1)

The Legendre-Gauss (LG) collocation points used in GPM are all interior to the

interval [−1, 1] [267]. The initial point τ0 = 0 and final point τf = 1 are also taken

into account. The Lagrange interpolating polynomials at a set of collocation points are

building blocks for the integration approximation matrix in (3.6). These polynomials

can be expressed as [268].

Lk(t) =
w(t)

(t− tk) w′(tk)
, (3.2)

where t1, t2, .... are the roots of polynomial while w(t) is a Gauss weight and defined

as

w(t) =
N∏
i=1

(t− ti) (3.3)

A function can be approximated using Lagrange interpolation formula as

f(t) ≈
N∑
k=1

f(tk) Lk(t) (3.4)
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The dynamic constraints are discretised using an integration approximation matrix:

X(ti) = X(t0) +
tf − t0

2

N∑
k=1

Aik f
(
X(tk), tk

)
, i = 1, ...., N (3.5)

where ti(s) are set of collocation points, Aik is the integral approximation matrix and

X(t0) = x0 is the initial value. The approximation of function (3.4) is simplified due

to a unique property of Lagrange polynomials, expressed as [267]:

Lj(τi) =

 0 if i 6= j

1 if i = j

The elements in the integral approximation matrix for Gauss points can be approxi-

mated by using Axelsson’s algorithm [269].

Aik =
wi
2

(
1+ti+

n−2∑
v=1

Pv(tk)
[
Pv+1(ti)−Pv−1(ti)

]
+PN−1(tk)

[
PN(ti)−PN−2(ti)

])
(3.6)

where wi is the ith Gauss weight and Pj is the jth Legendre polynomial. Finally, cost

J can be approximated using pseudo-spectral transcription [74]:

J = Φ(X(tf ), tf ) +
tf − t0

2

N∑
k=1

g(Xk, Uk, tk)wk (3.7)

where Φ relates to terminal condition and g(.) is a function of state, input and time

at kth collocation point. The non-linear boundary constraints can be approximated

as

φ
(
X(t0), t0, X(tf ), tf

)
= 0 (3.8)

The final state X(tf ) is defined as

X(tf ) = X(t0) +
tf − t0

2

N∑
k=1

wk f(Xk, Uk, τk), (3.9)

The above equation is a Gauss quadrature approximation to the continuous definition

of final states. The cost function can be discretised using the quadrature rule, written
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as ∫ b

a

f(t)dt ≈
N∑
i=1

αi f(ti) (3.10)

where αi and ti are ith quadrature weight and point (or node) respectively. The cost

(3.7) and non-linear boundary constraints (3.8) form the NLP problem which can be

solved by mature optimisation routines.

3.3 Non-linear model predictive control strategy

In this section, we address how to formulate and implement the NMPC control algo-

rithm based on the optimization problem set up in Sections 3.4 and 3.5.

3.3.1 Prediction

A dynamic model predicts future responses of the controlled plant. The system can

be represented as a discrete state-space representation form as

x(k + 1) = A x(k) +B u(k) (3.11)

where x(k) and u(k) are prediction model state and input vectors at kth sampling

instant respectively. A and B are system matrices. The prediction of states is gener-

ated by solving the model over N sampling intervals (prediction horizon), generating

an optimal control sequence. Define the state and input sequences for N steps as

u(k) =



u(k|k)

u(k + 1|k)

u(k + 2|k)

.

.

u(k +N − 1|k)


, x(k) =



x(k + 1|k)

x(k + 2|k)

x(k + 3|k)

.

.

x(k +N |k)


(3.12)
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where u(k+j|k) and x(k+j|k) denote input and state at time k+j, predicted at time

k respectively. It means that x(k+ j|k) evolves according to the prediction model as

x(k + j + 1|k) = A x(k + j|k) +B u(k + j|k), j = 0, 1, 2, ...... (3.13)

with initial condition defined as x(k|k) = x(k). In this particular work, there are three

states and one input, as discussed in subsection 2.2.2. The final dynamic prediction

model in the form of state space is shown below


β̇0(t)

β̇2(t)

β̇4(t)

 =


0 10.15 −20.80

0 −11.35 23.26

0 −13.96 −62.42



β0(t)

β2(t)

β4(t)

+ 10−3 ×


0.22

0.28

0.35

 I(t) (3.14)

whereas time coefficient β6(t) is redundant because of zero dynamics, but must be

known to find the SOC of battery. It can be algebraically calculated using the follow-

ing output equation.

[
β6(t)

]
=

[
0 −0.088 −0.39

]
β0(t)

β2(t)

β4(t)

+

[
0.22

]
I(t) (3.15)

Finally, from section 3.2 we know that, the output of the system is approximated by

βj(τ) ≈ βj(τ) =
N∑
k=0

Lk(τ)βj(τk) (3.16)

where βj is the corresponding output in any electrode and Lk(τ) is the Lagrange

polynomial.

3.3.2 Optimisation

The future predictions are computed by minimising predicted performance cost, de-

fined in terms of states and inputs sequences. Cost function J(k) as defined in (3.7),

is a function of u(k) and optimal input sequence for the problem denoted as u∗(k).
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It can be written as

u∗(k) = arg minu J(k) (3.17)

In this work, the cost function as defined in (3.25), is discretised using Legendre Gauss

quadrature rule ( 3.10). It can be written as

J =

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q R

′

film(t)

]
dt

J ≈ tf − t0
2

N∑
i=1

[
wi
(
SOCn(τi)− SOCref )2 + q R

′

film(τi)

]
(3.18)

where wi is Gauss weight and computed using (3.3). R
′

film(τi) can be solved using

(3.30). SOC at Legendre Gauss point is written as

SOCn(τi) =
φ0(r)β0(τi) + φ2(r)β2(τi) + φ4(r)β4(τi) + φ6(r)β6(τi)

cmax,n
(3.19)

3.3.3 Receding horizon implementation

In all of the future optimal input sequence u∗(k), only the first value is taken as a

input to the plant:

u(k) = u∗(k|k) (3.20)

The process of evaluating u∗(k) and implementing the first element of u∗ is then

repeated at each sampling instance k = 0, 1, 2, ..... Due to this repetition of prediction

at every instance, it is known as an online optimisation. The prediction horizon keeps

its constant length throughout the optimisation process, and therefore the approach

is known as a receding horizon strategy. In this work, the term (tf − t0) denotes

the prediction horizon as seen in the above discretised cost function (3.18). Future

N states [β0(t), β2(t), β4(t)]T and N inputs I(t) are predicted at a current sampling

instant. In the next sampling instant, tf − t0 will be the same as in last instant but

initial values of the system is changed.
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3.3.4 Constraints

Apart from any obvious equality constraints that satisfy the dynamics of the model,

every control problem encounters inequality constraints on input and state variables.

As noted from the problem (3.25), one input (current) and two non-linear constraints

(voltage and side reaction overpotential) are part of this optimisation exercise. The

linear inequality constraint is of the form

Aeq x ≤ beq (3.21)

Using eq. (3.5), we get the following form of linear inequality constraint



IN −Tt× A(1, 2)×MN −Tt× A(1, 3)×MN −Tt×B(1, 1)×MN

0N IN − Tt× A(2, 2)×MN −Tt× A(2, 3)×MN −Tt×B(2, 1)×MN

0N −Tt× A(3, 2)×MN IN − Tt× A(3, 3)×MN −Tt×B(3, 1)×MN





β0N×1

β2N×1

β4N×1


<=



β0,i × 1N×1

β2,i × 1N×1

β4,i × 1N×1


(3.22)

where IN ,0N are N×N identity and zero matrices respectively. MN is an integration

approximation matrix of order N × N , as defined in (3.6). A and B are system

matrices, taken from (2.25). According to Gauss pseudo-spectral notation, xjN×1

means [xj(τ1), xj(τ2), xj(τ3), ., ., ., xj(τN)]T . This size of Aeq and beq matrices depends

on the chosen prediction horizon. The two non-linear constraints are voltage Vcell

and side reaction overpotential ηsr; both are function of states and input. In pseudo-
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spectral notation using eqs. (2.18) and (2.19), it can be written as

V (τi)) =
RgasT

F

[
ln

(
Jp(τi)

io,p(τi)ap

)
−ln

(
Jn(τi)

io,n(τi)an

)]
+Up

(
SOCref

p (τi)

)
−Un

(
SOCref

n (τi)

)
+I(τi)Rcell

(3.23)

ηsr(τi) =
RgasT

F
ln

(
Jn(τi)

io,n(τi)an

)
+ Un

(
SOCref

n (τi)

)
(3.24)

Finally, the algebraic cost (3.18), along with linear (3.21) and non-linear constraints

(3.23 , 3.24) make up the NLP problem. It is further solved by MATLAB function

”fmincon” in this work.

3.4 Problem formulation: chemical degradation

The main aim of the control problem is to minimise SEI film resistance during charg-

ing. We adopt the receding horizon control concept to conduct online optimization

at each sampling time. The optimization problem to be resolved is expressed as

minimize
I(t)

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q R

′

film(t)

]
dt

subject to

model Eq.(2.7)− (2.19), (2.25),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax,

ηsr ≥ 0

(3.25)

where q is control parameter, R
′

film(t) is the time rate change of film resistance,

SOCref is reference state of charge, ηsr is side reaction overpotential, and Imax, Vmax

are the maximum current and voltage respectively. The goal of this problem is to

charge the cell to the desired SOC, SOCref , and minimize the growth of SEI film

resistance. Also, the battery should operate in the healthy regime defined by the

constraints on current, voltage and overpotential. Please note that side reaction

overpotentials ηs and ηsr are not similar. ηs is side reaction based upon diffusion of
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the organic solvent present in electrolyte, while ηsr is due to the lithium plating which

should be greater than or equal to zero for the safe operation of the battery. SOC in

a negative electrode can be written, using equation (2.7), as

SOCn(t) =
φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t)

cmax,n
(3.26)

R
′

film(t) is a function of intercalation and side reaction overpotentials in the negative

electrode (2.33). Equating (2.27) and (2.29), we get

ηs = ηn + Un,ref − Uref,s (3.27)

where ηn(t) can be written, using (2.5), (2.14) and (2.16), as

ηn(t) =
RgasT

F
ln

(
Jn(t)

io,n(t)an

)
(3.28)

Overpotential is a function of surface concentration csurfn (t), which can be approxi-

mated by

csurfn (t) = φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t) (3.29)

Finally R
′

film(t) can be formulated as

R
′

film(t) = X exp

{
−
(
RgasT

2F

)[(
RgasT

F

)
ln

(
−I(t)

AnLnkn
√
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)− cmax,n

1√
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)

√
ce

)
+

Un,ref

(
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)

cmax,n

)
− 0.4

]}
(3.30)

where X is a constant with value of 5.4× 10−10 . Moreover, pseudo-spectral method

discretise the cost function (3.25) using (3.7) to form a NLP problem. The proposed

approach is compared against the optimal charging method without incorporating the
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SEI layer growth rate, which aims to resolve the online optimization problem:

minimize
I(t)

∫ tf

to

(
SOCn(t)− SOCref

)2
dt

subject to

model Eq.(2.7)− (2.18), (2.25),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax

(3.31)

3.5 Problem Formulation: mechanical degradation

The main aim of this control problem is to minimise strain energy during charging. For

this purpose, an optimal charging problem is used for demonstration of the concept.

To charge a battery healthily, the optimal problem is used to minimise the degradation

effects. The term ”healthily” relates capacity fade with optimised charging range of

the battery. Stress amplitude must be lowered to reduce the damage to the battery

caused by cyclic loading. Mathematically problem can be formulated as:

minimize
I(t)

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q e(r, t)

]
dt

subject to

model Eq.(2.7)− (2.18), (2.25),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax

(3.32)

where q is control parameter, e(r, t) (2.58) is the time rate change of strain energy,

SOCref is reference SOC, Imax, Vmax are the maximum current and voltage, respec-

tively. The goal of this problem is to charge the cell to a desired SOC, SOCref , along

with minimising stress amplitude. Using equation (2.7), SOC in negative electrode

can be written as

SOCn(t) =
φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t)

cmax,n
(3.33)
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Two terms are important to understand the problem formulation in diffusion-induced

stresses i.e.
∫ Rp

0
CP r2dr and

∫ r
0
CP r2dr. First is the integral part of radial and

tangential stresses in SEI while later evaluates the lithium concentration in whole

active particle. The concentration in any electrode can be represented as (2.20)

CP (r, t) ≈ φ0(r)β0,n(t) + φ2(r)β2,n(t) + φ4(r)β4,n(t) + φ6(r)β6,n(t) (3.34)

where φi(r) is the known Legendre polynomial and βi(t) is the time coefficient to

depict the dynamics of electrode. The first four even Legendre polynomials used in

this chapter are as follows:

φ0(r) =

√
1

RP

φ2(r) =
1

2

√
5

RP

[
3
r2

R2
P

− 1

]
φ4(r) =

1

8

√
9

RP

[
35

r4

R4
P

− 30
r2

R2
P

+ 3

]
φ6(r) =

1

16

√
13

RP

[
231

r6

R6
P

− 315
r4

R4
P

+ 105
r2

R2
P

− 5

]
(3.35)

Solving
∫ Rp

0
CP r

2dr and
∫ r

0
CP r

2dr to evaluate (2.54)-(2.58):

∫ r

0

CP r
2dr =

∫ r

0

r2

(
φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t)

)
dr

∫ r

0

CP r
2dr =

∫ r

0

[
r2

√
RP

β0(t) +
1

2

√
5

RP

(
3r4

R2
P

− r2

)
β2(t) +

1

8

√
9

RP

(
35r6

R4
P

− 30r4

R2
P

+ 3r2

)
β4(t)

+
1

16

√
13

RP

(
231r8

R6
P

− 315r6

R4
P

+
105r4

R2
P

− 5r2

)
β6(t)

]
dr

∫ r

0

CP r
2dr =

[
r3

3
√
RP

β0(t) +
1

2

√
5

RP

(
3r5

5R2
P

− r3

3

)
β2(t) +

1

8

√
9

RP

(
35r7

7R4
P

− 30r5

5R2
P

+
3r3

3

)
β4(t)

+
1

16

√
13

RP

(
231r9

9R6
P

− 315r7

7R4
P

+
105r5

5R2
P

− 5r3

3

)
β6(t)

]
(3.36)
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Multiply both sides with 1
r3

and simplify to get:

1

r3

∫ r

0

CP r
2dr =

1

3
√
RP

β0(t) +
1

2

√
5

RP

(
3r2

5R2
P

− 1

3

)
β2(t) +

1

8

√
9

RP

(
5r4

R4
P

− 6r2

R2
P

+ 1

)
β4(t)

+
1

16

√
13

RP

(
77r6

3R6
P

− 45r4

R4
P

+
21r2

R2
P

− 5

3

)
β6(t)

(3.37)

Similarly
∫ Rp

0
CP r

2dr can be written as

1

R3
P

∫ Rp

0

CP r
2dr =

1

3
√
R
β0(t) +

1

2

√
5

R

(
3

5
− 1

3

)
β2(t) +

1

8

√
9

R

(
5− 6 + 1

)
β4(t)

+
1

16

√
13

R

(
77

3
− 45 + 21− 5

3

)
β6(t)

=
1

3
√
R
β0(t) +

2

3
√

5R
β2(t)

(3.38)

To compare the results with proposed optimal control problem, this article uses stan-

dard CCCV charging problem defined in (3.31) This work is also compared with

experimental results published in [78]. High energy 18650 lithium-ion battery with a

nominal capacity of 2.05 has been used. All the cycling tests simulations are recorded

at 35 ◦C with 1C as maximum current. In the experimental work, voltage adjust-

ment is made after 100 cycles while in the simulation procedure is adjusted every ten

cycles. The relationship between the open-circuit voltage and SOC is critical in this

optimisations framework for accurate adjustment of voltage levels. The experimental

curve is given by Laresgoiti et al. [79], to calculate the overpotential at the current

SOC of the battery.
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Chapter 4

Optimal Charging: Results and

Discussion

4.1 Optimal charging: chemical degradation

The control problem (3.25) in Section 3.4 formulates the charging trajectory in lithium-

ion batteries. The control target is to reach reference state of charge with minimum

possible SEI layer growth and avoiding side reaction overpotential due to lithium

plating. The literature survey reports several published works on health-conscious

NMPC of lithium-ion batteries, where the effect of lithium plating consider in the

online optimal charging of battery management system (BMS) such as [86]. Bat-

tery charge/trajectory is expressed in terms of one flat output trajectory to reduce

computational burden by a factor of 5 compared with pseudo-spectral optimisation

alone. Moreover, the proposed constant current constant side reaction overpoten-

tial (CCCη) strategy ensured the side reaction constraint to remain in a healthy

regime during charging, i.e. positive or zero. However, in [86], authors considered

only one side reaction with no quantification of SOH. Optimal charging trajectories

are calculated in a healthy regime without estimation of degradation effects [80, 81].

Moreover, researchers also proposed a health-aware fast-charging methodology using

model predictive control. For example, [179] explored the moving horizon approach

incorporating chemical degradation effects, but the SEI film resistance is not esti-

mated. Due to ageing effects, battery SOH does not follow a specified trajectory.
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This deviation is minimised by proposing the balancing control method [82]. The ef-

fect of temperature and degradation effects also alter the voltage and state of energy

responses [83]. All of the above research works do not contribute to quantifying the

ageing effect represented by the thickness of the SEI layer.

4.1.1 Results and Discussion

The initial SOC is set to 0.4 while two upper current limits are considered in this

work, i.e. Imax = 5A and 7A. Reference state of charge, SOCref is taken as 0.96,

and the voltage limit is set to 4.2 volts. Problem (3.25) is set to start at to = 0,

using a NMPC approach. At each time step, the solver predicts future instances with

a prediction horizon of 100s using four collocation points. The initial guess of the

solution at the present time step is a solution at the last sampling instance. Figure

4.1 shows the pictorial representation of algorithm.

SOC in the negative electrode is shown in Figure 4.2(a) and (d) for Imax = 5A and

7A, respectively. SOC is compared for two charging methods: the proposed method

(3.25) and the method (3.31) presented in [86]. It can be seen that the reference

SOC is achieved in each methodology but charging time in the proposed optimal

case is higher than the method (3.31) for both upper limits of current. In the case of

Imax = 5A, a 9.6% increase in charging time is recorded in the proposed method (3.25)

while at Imax = 7A, charging time difference is 22%. The higher difference in case

of Imax = 7A is understandable because the CCCV methodology charges the battery

in constant current (CC) scenario for maximum time. As we increase the maximum

current for both methodologies, the difference in charging time becomes larger. Note

that longer charging time using the proposed SEI optimal charging method can sig-

nificantly reduce the SEI layer growth as demonstrated below.

It is a known practice that CCCV charging terminates at fairly low current i.e. 5 mA

or 50 mA. In this work, the later current value is used. In Figure 4.2(a), SOC reaches

the reference value at t1 while it stays at same value until t2. This is due to the

current profile in CCCV charging. The optimal CCCV algorithm charges the battery

48



Figure 4.1: Proposed Algorithm to minimise SEI layer growth considering chemical
degradation

using constant current (CC) approach from t = 0 to t = t1. At t1, it switches to

constant voltage (CV) approach which means current needs to be lower down to keep

the voltage constant. Reference SOC is achieved at t1 which needs to be same till t2.

Current value drops from Imax to 50 mA in time span of t1 − t2.

Figure 4.2(b) and (e) depict the results of optimal CCCV charging for Imax = 5A and

7A, respectively. CCCV charging splits into two phases; CC from t = 0 to t = t1 and

CV from t = t1 to t = t2. In both cases for SEI reduction optimal charging method,

charging starts at fairly low value to reduce the rate of lithium plating. This is be-

cause, at low SOCs, the reference potential of the negative electrode is quite high, i.e.

the possibility of ηsr to be negative. Thus to be in the healthy regime, the charging

current needs to increase slowly, since higher current can lead to lower resistance of

the SEI layer. The proposed SEI reduction optimal charging profile finishes, in either

of the maximum current limits, at higher current value as compared to the optimal

49



Figure 4.2: Comparison of state of charge (a,d), current profile (b,e) and SEI film
resistance (c,f) vs charging time at current upper bounds of Imax = 5A(a-c) and
Imax = 7A(d-f)-Optimal CCCV charging( ), Proposed SEI optimal charging( )

CCCV charging method. Termination of SEI optimal charging at higher current value

has two advantages, (i) it compensates for charging time which considerably increases

due to low SOC regime (where ηsr can be negative), and (ii) It reduces the growth of

SEI layer which increases at low values of current.

The growth of SEI film resistance is shown in Figure 4.2(c) and (f) for Imax =

5A and 7A, respectively. It is evident from the figures that SEI film resistance is

quite high in optimal CCCV and SEI optimal charging cases when maximum current

is 5A. The primary reason is that lower current takes more time to complete charging.

SEI film resistance drops significantly in proposed SEI optimal charging compared to

the optimal CCCV charging at given maximum current value. The overall optimal

charging time increases but SEI film resistance decreased. This can be explained as

at higher SOCs the algorithm uses a maximum value of current, so that molar flux

is high. In case of Imax = 5A (Figure 4.2(e)), SEI layer resistance is recorded as
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0.0118 Ωm2 in optimal CCCV case, reduced to 0.0112 Ωm2 in proposed SEI optimal

formulation scenario. The percentage increase of SEI layer resistance from initial value

(0.01 Ωm2) is 18% and 12% in optimal CCCV and the proposed SEI reduction optimal

charging method, respectively, which represents a 5.2% decrease of SEI layer growth

using the proposed charging method. Lower percentage difference is recorded (4.95%)

in case of Imax = 7A (Figure 4.2(f)) between two strategies. The main difference is

in the final phase of optimal CCCV charging, where it uses low current as compared

to the proposed optimal approach. The maximum value of surface concentration and

negative ηsr increase the SEI layer resistance to a fairly high value in optimal CCCV

approach.

The profile of SEI layer in optimal CCCV charging can be categorised on the basis of

SOC regimes, i.e. low or high. At low SOC regime, the current is high, which acts as

a source of lithium plating. At maximum current, overpotential of negative electrode

(3.28) is high, which makes side reaction overpotential ηsr (3.24) negative. This is not

desirable as only positive ηsr guarantees the reduction of lithium plating side effects.

Termination of optimal CCCV charging usually happens at low current, which is 50

mA in this work. Due to low current at the end stage of charging (t1 to t2), side

reaction overpotential for SEI layer ηs (2.29) is very low. The exponential term in

(2.33) ultimately leads to spike in SEI layer profile at the final stage of optimal CCCV

charging.

Another added advantage of the proposed algorithm is to charge batteries in the

healthy regime, which means side reaction overpotential of lithium plating is posi-

tive during the whole process. Note that cost function does not always guarantee

the desired result. It can be argued that side reaction overpotential will always be

positive to decrease the value of the exponential term in the cost function. However,

this cannot be extrapolated for an entire range of possible values of current which

indicates that limit on ηsr is necessary in this work. Figure 4.3 shows side reaction

overpotential ηsr in optimal CCCV and SEI optimal charging. It is evident from the

figure that in optimal CCCV charging, ηsr is negative while it is positive in proposed

SEI optimal charging, successfully avoiding lithium plating. Hence, It means that the

proposed charging algorithm runs in a healthy regime along with reducing SEI film
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Figure 4.3: Relationship between charging time and side reaction overpotential(ηsr) in
the proposed SEI optimal charging ( ) and optimal CCCV charging ( ) approaches,
Imax = 5A(solid) and Imax = 7A(dashed)

resistance.

Total charging time and maximum charging current value affect the resistance of the

SEI layer growth. In optimal CCCV charging, higher current upper bound means fast

charging and lesser growth of the SEI layer. However, the optimal algorithm makes

sure that SEI layer resistance is as low as possible along-with successfully avoiding

lithium plating during the whole process of charging. If the current upper bound

is constant, charging time is higher in the SEI optimal charging case than optimal

CCCV but quite low SEI film resistance. Next, we compare the two methods in two

scenarios to investigate: (i) At what conditions, is charging time for both methodolo-

gies the same? (ii) If SEI film resistance is the same, how does charging time relate

to current upper bound?

Scenario I: Same Charging time

In optimal CCCV strategy, the upper bound current is inversely proportional to the

charging time and SEI layer resistance. To get the same charging time for both

methodologies, the maximum current limit of SEI optimal strategy should be higher
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than optimal CCCV. Two cases are recorded in this analysis, where charging time is

the same in both strategies.

It is evident from Table 4.1 that in order to get the same charging time, current

Table 4.1: Same Charging Time Cases

Case Charging Current upper bound in Current upper bound in
No. time (s) SEI optimal charging, Imax(A) optimal CCCV charging, Imax(A)
1 1125 5 4.55
2 902 7 5.7

upper bounds in both strategies are not the same. Consider case 2 of Table 4.1, the

charging time is set to 902 seconds which is charging time for SEI optimal strategy

at Imax = 7A (Figure 4.2(d), (e) and (f)). To get same charging time for optimal

CCCV, current upper bound needs to decrease because at Imax = 7A, charging time

is 740 seconds. Figures 4.4 and 4.5 show the relationship between SOC, current and

SEI layer resistance versus time.

Figure 4.4(a) shows the SOC of the negative electrode. Reference SOC is attained in

both methods at the same time. The optimal SOC profile initially has a slightly low

slope as compared to optimal CCCV. This is because of the optimal charge current

profile (Figure 4.4(b)), which starts at a reasonably low value. The primary reason is

to control side reaction overpotential at a low SOC, ultimately avoiding the effects of

lithium plating.

At Imax = 5.7A, SEI layer resistance is recorded as 0.01155 Ωm2(15.5% increase)

compared to the SEI layer growth in the proposed SEI optimal charging method, as

shown in Figure 4.5. The percentage increase in the SEI layer at Imax = 5.7A, goes

up to approximately 2.5% compared to charging at Imax = 7A. Hence, the percentage

difference of SEI layer resistance between proposed SEI optimal and optimal CCCV

strategies climbs up to 8.6% keeping similar charging time.

Similar results are found for case 1 of Table 4.1, which shows that to get the similar

charging time of 1125 seconds, the current upper bounds must be 5A and 4.55A in

proposed SEI optimal and optimal CCCV strategies, respectively. The SEI layer

resistance in optimal CCCV is increased to 0.01211 Ωm2(21.1% increase) which is

0.0118 Ωm2 at Imax = 5A. An overall percentage increase of 3.1% is recorded as
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Figure 4.4: State of charge (a) and current profile (b) for same charging time-
Case 2 of Table 4.1- Optimal CCCV Charging(Imax = 5.7A), Proposed SEI optimal
charging(Imax = 7A)- Optimal CCCV charging( ), Proposed SEI optimal charging( )

at Imax = 4.55A compared to optimal CCCV at Imax = 5A. Thus, the percentage

difference of SEI layer resistance between proposed SEI optimal and optimal CCCV

strategies climbs up to 7.8% keeping similar charging time.

Scenario I analysis is summarised in Figure 4.6. It shows a relationship between

charging time versus maximum current upper bound. Maximum current is taken

from 2.3A(1C) to 9.2A(4C). Understandably, optimal CCCV charging is fast at a

specific current upper bound value. For example, at Imax = 7A, proposed SEI optimal
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Figure 4.5: Same Charging time- Comparison of SEI film resistance in optimal CCCV
charging (Imax = 5.7A) and proposed SEI optimal charging (Imax = 5.7A)-Optimal
CCCV charging( ), Proposed SEI optimal charging( )

Figure 4.6: Relationship between charging time and current upper bound (Imax) in
optimal CCCV and proposed SEI optimal charging methodologies-Optimal CCCV
charging( ), Proposed SEI optimal charging( )
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charging takes almost three extra minutes. In order to find the same charging time

for both methods, one can get values of current upper bounds by drawing vertical

and horizontal lines from data labels. For charging time of 1100 seconds, maximum

current values of optimal CCCV and proposed SEI optimal methodologies should be

4.7A and 5.1A, respectively. As the maximum value of current increases, charging time

difference between optimal CCCV and the proposed SEI optimal charging strategies

also increases.

The conclusion from the scenario I is that charging time for proposed SEI optimal and

optimal CCCV strategies can be the same, but on the cost of higher SEI layer growth.

The proposed method outperforms the optimal CCCV because of two reasons; (i) SEI

layer growth is low and (ii) it successfully avoids side reaction overpotential to attain

value less than zero. Thus by keeping current upper bound or charging time same,

the proposed SEI optimal framework is far better than optimal CCCV as it minimises

SEI layer growth and tackles lithium plating too.

Scenario II: Same SEI layer Resistance

Figure 4.7: Relationship between SEI film resistance and current upper bound (Imax)
in optimal CCCV and proposed SEI optimal charging methodologies-Optimal CCCV
charging( ), Proposed SEI optimal charging( )
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Figure 4.8: Percentage difference in SEI layer resistances between optimal CCCV and
proposed SEI optimal charging methodologies from Imax =1C (2.3A) to Imax =4C
(9.2A)

Figure 4.9: SEI film resistance versus charging time in optimal CCCV and proposed
SEI optimal charging methodologies-Optimal CCCV charging( ), Proposed SEI op-
timal charging( )
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Figure 4.7 shows the relationship between SEI layer growth and maximum current

in both methodologies. It can be seen that at low current rating, the difference in

the SEI layer resistances corresponding to optimal CCCV and proposed SEI optimal

strategies is high. As the value of the maximum current increases, the difference in

the SEI layer resistances decreases. The primary reason for a more significant dif-

ference in the SEI layer at low current, is the high charging time. To get SEI layer

resistance of 0.011 Ωm2, the maximum current in optimal CCCV and proposed SEI

optimal methodologies should be 8.1A and 5.6A, respectively. Thus, a proposed op-

timal framework uses a low current upper bound along with generating small value

of SEI layer resistance. It has been noted that there is no significant change in SEI

layer resistance from Imax = 7A to 9.2A in proposed optimal charging framework.

The percentage difference in SEI layer resistance between optimal CCCV and pro-

posed SEI Optimal methodologies is shown in Figure 4.8. The highest percentage

difference is recorded as 61% at the current rating of 1C. This difference kept on

decreasing from 1C to 2C and 3C to 4C. The percentage difference fluctuates around

5% from 2C to 3C. Because of the minimum range of work from 3C to 4C, % differ-

ence in SEI layer growth is almost constant.

Charging time is not the only factor that influences SEI layer growth, but higher

current can contribute to exfoliation of graphite. It leads to a loss of active anode

material which can be a source of capacity and power fade. Hence, it can be concluded

from the above analysis that battery charging is a trade-off between optimal charging

time and the current upper bound.

Scenario II analysis is summarised in Figure 4.9. It shows the relationship between

SEI layer resistance and charging time at the current upper bound range of 1C to 4C.

It is evident from Figure 4.9 that at any charging time, SEI layer resistance is higher

in optimal CCCV than the proposed SEI optimal charging. SEI layer resistance is

recorded as 0.0117 Ωm2 (proposed SEI optimal) and 0.0132 Ωm2(optimal CCCV), at

the charging time of 1500 seconds. The percentage difference in SEI layer resistance

is 12 % whereas the corresponding maximum current Imax is 3.2 A and 3.6 A in the

proposed SEI optimal and optimal CCCV strategies, respectively. The proposed al-

gorithm guarantees that the optimal approach can give the bounded output as far as
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Table 4.2: Overall computational times of optimal CCCV and proposed SEI optimal
charging strategies at different current rates

Current Upper Bound (Imax) CCCV (s) NMPC (s)
1 C (2.3 A) 242 285
2 C (4.6 A) 132 164
3 C (6.9 A) 54 78
4 C (9.2 A) 39 58

SEI film resistance is concerned. Figures 4.7 and 4.9 explains that under low charging

times (or high charging current) there is no decrement in SEI film resistance.

Another critical aspect of online control strategies is computational time. Although

the proposed NMPC successfully minimises the SEI layer resistance, it must be practi-

cally implementable. Computational times of both optimal and CCCV methodologies

are presented in Table 4.2 at different maximum current upper bounds using MAT-

LAB R2016b on DELL laptop with intel (R) Core (TM) i-7-8650U CPU @ 1.90GHz

2.11 GHz processor. A 2.3 Ah A123 26650 lithium iron phosphate (LFP) is used. The

simulations of optimisation problems (3.25) and (3.31) are conducted using 4 colloca-

tion points, same SPM model and a prediction horizon of 200 seconds. Moreover, a

more significant range of SOC (10% to 96%) is considered to evaluate the full charg-

ing process. Overall computational time is defined as the time taken by an algorithm

to charge the battery from initial to final SOC. The overall computational times of

optimal CCCV and the proposed SEI optimal strategies at 1C rating are 242 and 285

seconds, respectively. The percentage difference in computational times between both

strategies tends to increase as the current rate increases. The higher current decreases

the simulation time, keeping all other parameters constant. At 1C, the difference in

computational time between both strategies is 43 seconds. The difference keeps on

decreasing as current upper bound increases, 19 seconds at 4C. As computational

time difference between two strategies is not significant; it can be concluded that the

proposed SEI optimal charging strategy is suitable for real-time implementation in

BMSs.

The summary of the comparison of proposed methodolgy (NMPC) to benchmark

approach (CCCη) [86] is shown in Table 4.3.
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Table 4.3: Comparison of the proposed strategy to the benchmark approach

CCCη NMPC

Battery state eqs. Linear Linear

Battery output eqs. Non-linear Non-linear

Lithium plating Yes Yes

SEI model No Yes

Solution approach MPC MPC

Reduction in SEI layer
(Compared to CCCV, Imax = 1C) 0% 61%
Reduction in SEI layer
(Compared to CCCV, Imax = 4C) 0% 24%
Side reaction overpotential zero positive

Evaluating computational time No Yes

4.2 Optimal Charging: mechanical degradation

This section employs an approach to model the mechanical degradation effects solely

based on the SEI layer formation. As mentioned, the fracture of active material

is less significant than SEI layer damage. Hence, the SEI repair and break effects

have been considered the main ageing mechanisms that influence the capacity fade.

A unique contribution is the formulation of a non-linear model predictive control

(NMPC) framework, which considers the effects of mechanical degradation. A dy-

namic model predicts the future instances of the controlled plant by optimising the

performance cost. The cost of the problem is defined in terms of states and input

arrays. Receding horizon approach is used to optimise the control actions at every

sampling instance. Physics-based constraints handling throughout the charging pro-

cess is the critical element for the proposed strategy. The optimisation results of the

NMPC framework are compared with the traditional CCCV approach. The results of

the proposed strategy are also compared with experimental results published in [78].
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4.2.1 Results and Discussion

The proposed optimal strategy does not consider the effect of voltage on the Young’s

modulus, assumed to be constant throughout the charging process. Moreover, stress

(radial or tangential ) is zero in the case of an empty particle (zero concentration).

The proposed algorithm is shown in Figure 4.10. Fresh battery cell undergoes a

formation cycle, resulting an initial SEI layer on the surface of graphite. In each

battery cycle (charging and discharging), optimiser runs for charging only. After the

charging process, algorithm runs for constant current discharging. Amplitude stress

can be estimated in each cycle by the DISs generated in charging and discharging.

The voltage check is performed before each cycle to maintain a constant level. The

NMPC strategy is implemented with the initial state of charge (SOC) as 0.4. At

the same time, maximum current upper bounds vary from 0.5 C to 4 C. Reference

SOC, SOCref is taken as 0.90, and the maximum voltage must not exceeds 4.2 volts.

Problem (3.32) runs from initial time (t = t0) to final time (t = tf ) , when SOC of

battery reaches the predefined value. The solver predicts the future instances with a

prediction horizon of 150 s using four collocation points. The solution of the current

time step is the initial guess of next time instant. After tuning the control parameter

at different values and to varying constraints, a general optimal charging profile can

be obtained to successfully minimise the damage to the batteries. Post-processing

calculations are done for each profile (optimal or CCCV) which will be discussed

further.

Table 4.4: Results of parameters

Current Upper Bound Critical Current td ts Charging times (s)
Umax x (Ucr = x ∗ Umax) (% of Tc) (% of Tc) Optimal Tc CCCV
0.5 C 0.3 15 89 4962 4482
1C 0.36 12 91 2602 2240

1.5 C 0.40 11.3 92.6 2079 1749
2 C 0.45 10.5 93.5 1442 1200

2.5 C 0.49 9.7 94.1 1216 1006
3 C 0.53 8.8 94.3 1085 905

3.5 C 0.55 6.2 94.7 1010 860
4 C 0.56 5.7 95.1 954 834

Figure 4.11 shows the benchmark constant current constant voltage (CCCV) and
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Figure 4.10: Proposed Algorithm to minimise SEI layer considering mechanical degra-
dation

Figure 4.11: Proposed charging profile considering mechanical degradation

the proposed optimal charging profiles. In CCCV strategy, constant current is applied

to the battery until battery achieves the voltage limit. Afterwards, it runs on a

constant voltage scheme in which current keeps on decreasing to a lower predefined

limit. In the proposed optimal strategy, charging is carried out at maximum current
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Figure 4.12: Amplitude stress versus maximum current upper bound, Optimal CCCV
charging( ), Proposed SEI optimal charging( )

for a certain period and then it decreases to a critical current level (Ucr). As σampl

is the key variable in analysing cyclic life, it means maximum and minimum stresses

need to be evaluated for each cycle. The studies [78, 79] shows that maximum stress

reaches around 50% mean SOC while minimum stress is normally found when the

battery is empty or at a low concentration level. The proposed strategy uses the small

current to minimise the peak stress. td and ts are the time instances of decrement

and settling currents respectively. Table 4.4 tabulates charging times, Ucr,td and ts.

The critical current decreases as the maximum current upper bound increases. The

decrement current, td decreases as current upper bound increases because battery

charges more rapidly at higher current rates. However, the settling current, ts is

directly proportional to current upper bound. Optimal and CCCV charging times

are also shown in Table 4.4. It is necessary to investigate the effects of σampl on

charging process to avoid fracture. Figure 4.12 shows the relationship between σampl

and maximum current upper bound (0.5C-4C). The percentage difference in σampl

between CCCV and optimal profiles is evident; with minimum percentage difference

of 2.5 % at 0.5 C while 8.9% is recorded at 4 C. Figure 4.13 shows the relationship
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Figure 4.13: Relationship between amplitude stress and depth of discharge, Optimal
CCCV charging( ), Proposed SEI optimal charging( )

between stress amplitude and various depth of discharge (DOD) levels at different

charging current rates. It is a known fact that current rate is directly proportional to

σampl. However, what happens when DOD levels vary? As the DOD level increases,

σampl also increases. Proposed optimal profile successfully decreases the σampl at every

DOD level.
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Table 4.5: Mean state of charge data

SOCmean SOCi SOCref ∆DOD

50 0 100 100

25 75 50

40 60 20

45 55 10

47.5 52.5 5

90 80 100 20

85 95 10

75 65 85 20

70 80 10

25 15 35 20

20 30 10

10 0 20 20

5 15 10

95 90 100 10

4.2.2 Comparison between the proposed strategy and exper-

imental data

The proposed NMPC framework results are compared with the experimental results

presented in [78]. It was assumed that the SEI break/repair effect is the primary

source of loss of lithium ions. Figure 4.14(a) shows the total capacity loss versus

DOD for the experimental and proposed optimal scenarios. Experimental results

show an exponential increase with the DOD at 50% mean SOC. There is a trivial

difference as far as low DOD levels are concerned. However, the percentage difference

of 11% between two results is recorded in case of 100% DOD. In order to validate the

proposed strategy, simulations have been carried out under the same conditions as

the experiments are performed. Figure 4.14(b) shows the maximum tangential stress

in the SEI at 100% DOD during a cycle of charging/discharging. In the simulation,
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Figure 4.14: Comparing experimental and optimal results. (a) Capacity loss versus
DOD at 50% SOCmean, (b) Maximum tangential stress in a charging/discharging
cycle- Experiment ( ), Proposed SEI optimal charging( )

50% SOCmean has been maintained with varying DOD. Detail of SOCmean is given

in Table 4.5. It can be noted from Figure 4.14(b) that maximum stress in an optimal

scenario is slightly less than the experimental case. At any point in the cycle, the

maximum stress in an optimal case is lower than that of experimental results. Rela-
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Figure 4.15: Comparing experimental and optimal results. (a) Relationship between
stress amplitude and DOD, (b) Stress amplitude versus SOCmean -Experiment ( ),
Proposed SEI optimal charging( )

tionship between stress amplitude and depth of discharge is shown in Figure 4.15(a).

There is no difference recorded at 5, 10, 20 and 50% DOD. The maximum difference

is recorded at 100% DOD, which is 6.9 MPa and 7.4 MPa in optimal and experi-

mental scenarios respectively. At higher DOD level, battery cycles show larger stress

oscillations, led to bigger SEI damage. Figure 4.15(b) shows the relationship between

stress amplitude and depth of discharge at different mean SOCs (20% DOD) for both
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Figure 4.16: Comparison of normalised capacity versus depth of discharge (DOD)
after 750 full cycles-Experiment ( ), Proposed SEI optimal charging( )

optimal and experimental scenarios. There is no difference in values recorded as far

as 50% mean SOC is concerned. The higher differences between simulation and ex-

periment are noted at 10% and 90% mean SOCs. It is understandable because at

50% SOCmean, graphite expansion is minimum. It causes less SEI damage than 10%

and 90% SOCmean values. The influence of DOD on the ageing of battery material is

compared in experimental and optimal scenarios. Simulations are done for 750 cycles,

at 50% SOCmean and average voltage of 3.7 volts (Figure 4.16). The capacity fade

behaves linearly with different levels of DOD. The proposed optimal methodology

minimises the degradation effect, but there is no significant difference recorded at 5%,

10% and 20% DOD. The optimal results show some improvements at 50 and 100 %

DOD, with percentage differences of 2.3% and 10.4%, respectively.

The summary of the comparison of proposed methodology (NMPC) to diffusion in-

duced stress (DIS) [78] approach is shown in Table 4.6.
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Table 4.6: Comparison of the proposed strategy to the experimental approach

DIS NMPC

Single particle model Yes Yes

SEI model DIS based model DIS based model

Ageing cyclic cyclic

Weakest material SEI SEI

Capacity loss/cycle (%) 0.035 0.039

Normalised capacity (750 cycles) 79 70
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Chapter 5

Computational Efficiency of

Differential Flatness over

Pseudo-spectral Methods

5.1 Introduction

This chapter proposes an optimal charging profile by applying a non-linear model pre-

dictive control (NMPC) strategy on a temperature-dependent battery model along

with chemical degradation. This chapter can be seen as an extension of control

problem in Section 3.4, where temperature effects are not accounted for. The main

contribution compared to previous work circles around two points: (i) temperature

is not constant; instead, it changes in every sampling instant, and (ii) the differential

flatness method is applied to examine its computational benefits over pseudo-spectral

control. The results from the optimal control strategy are compared with a standard

constant current constant voltage (CCCV) strategy.

The first change compared to Section 3.4 is the selection of the electrochemical model.

Instead of the SPM, this chapter adopts an extended version of SPM with thermal

effects [285]. This thermal electrochemical SPM with temperature dynamics (SPM-T)

has non-linear diffusion and thermal processes, both of which are coupled [286]. This

makes the control more challenging, and constraints (voltage, current, side reaction

overpotential and temperature) are challenging to handle. Maximum temperature (or
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rise in temperature) control is an additional aspect of the proposed control strategy

in this chapter. To limit the degradation speed, temperature rise can be part of an

objective function along with the thermal model [270]. Some researchers try to reduce

degradation rates and enhance safety by imposing constraints on temperature [271],

which can also minimise the effects of side reactions, such as lithium plating [272].

However, achieving lower capacity fade is optimistic thinking because side reactions

do increase at higher temperatures [6]. Hence, it is challenging to propose a gener-

alised approach to fast-charge the battery by controlling the temperature alone.

The degradation mechanisms considered in this chapter are SEI and lithium plating

[239]-[244]. The main aim is to investigate the effects of temperature on the degra-

dation mechanisms. Researchers explain the dependency or linking of C-rates with

temperatures in [273, 274]. At low charging rates, the degradation rate increases

slowly, typically from 10◦C to 60◦C [273]. However, the degradation rate is directly

proportional to the inverse of temperature at 25 ◦C around 1 C, and constant in a

range of 25◦C to 70◦C [274]. The main reason for this outcome is due to the formation

of particle deposits caused by lithium plating at room temperature [274]. However,

the degradation rate is directly proportional to the charging rates keeping the tem-

perature constant or otherwise [273, 274]. For example, battery degradation rate is

lower at 45◦C than at 25◦C, at slightly higher current rate (2 C) [275]. The degrdation

mechanisms considered are dissolution of transition metal atoms, surface morphology

and enhanced carbonate ratios in surface SEI [275]. It is expected that battery will

deteriorate more rapidly above 45◦C at any current rate [276]. Hence, an optimal

charging profile that minimises the degradation process by actively controlling the

temperatures is needed.

A range of researchers proposed charging methods on temperature-dependent battery

model control techniques with various objective functions, optimisation methods, side

reactions, and most importantly, temperature [93]-[98]. The objective function in most

of the cases is the combination of two variables [105]-[112]. One is charging time, and

others are often temperature or side reactions rates [149]-[151]. SPM [1] or P2D [55]

models with add-on ageing models are used for optimisation purposes. In the past

decade, Pontryagin’s minimum principle [277], the dynamic programming technique
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[278], the Legendre-Gauss-Radau pseudo-spectral method [279], the extended differ-

ential flatness approach [86], the interior-point optimiser [280], Reference Governor

(RG) [123], and model predictive control (MPC) [281] are the optimisation methods

proposed by different researchers. RG [2, 123] and MPC [88]-[92] are the only meth-

ods which can be used for online applications. Due to the non-generalised behaviour

of the RG model, MPC is the preferred solution for online optimisations [87]-[104]. In

this chapter, we use a NMPC framework along with Gauss pseudo-spectral control to

optimise the charging trajectory, which decreases the thickness of the SEI layer and

also operates the battery in a healthy regime.

Computational efficiency is one of the main challenges in online applications [179].

Chapter 4 shows that the proposed optimisation strategy takes more time than the

benchmark CCCV methodology. This is quite understandable as the proposed strat-

egy needs to do more work with an additional term in the objective function and one

more constraint to check in every sampling instant. It is expected that the compu-

tational time difference between proposed and benchmark strategies is quite high, as

the prediction model needs to change at each time instant. The differential flatness

technique is used in this work to improve computational efficiency [282]. Fick’s law

governs the diffusion dynamics in an electrode of the lithium-ion battery, and it is

known to be differentially flat [283]. The concept is to use a single variable as flat

output instead of considering all state and input variables. Hence, one flat output is

enough to model the dynamics of an electrode. However, the flat output of the second

electrode is the function of the first electrode [284]. We use this already advanced

technique with the pseudo-spectral method to reduce the degradation effects.

The remainder of this chapter is organised as follows. The incorporated thermal effects

in SPM and model reformulation are discussed in Section 5.2. Section 5.3 describes

the definition, application and mathematical formulation of differential flatness. Sec-

tion 5.4 formulates the control problem. Results are discussed in Section 5.5 with

subsection 5.5.1 discusses the computational efficiency of proposed algorithm using

differential flatness and pseudo-spectral approaches.
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5.2 Thermal single particle model (SPM-T)

5.2.1 Distinction from SPM

The SPM-T share same equations as of SPM i.e. (2.1)-(2.18), except that all are

temperature-dependent. The diffusion coefficient, reaction rate constant, and cell

resistance need to be re-computed at every sampling interval. The electrochemical

parameters , reference potential curves, and thermal parameters are found in [285,

286]. According to Arrhenius equation, diffusion coefficient Ds,i(t) and reaction rate

constant ki(t) are expressed as:

Ds,i(t) = Dref
s,i exp

(
EaD,i
R

(
1

T (t)
− 1

Tref

))
(5.1)

ki(t) = krefi exp

(
Eak,i
R

(
1

T (t)
− 1

Tref

))
(5.2)

where Dref
s,i and krefi are the diffusion coefficient and reaction rate constant at refer-

ence temperature, respectively. Activation energies of diffusivity and reaction rate is

symbolised as EaD,i and Eak,i respectively. Thermal dynamics of lithium-ion batteries

can be expressed as:

mCpṪ (t) = −hA
(
T (t)− Tref (t)

)
+ I(t)T (t)S + I(t)

(
ηp(t)− ηn(t) + I(t)Rcell

)
(5.3)

where S, battery entropy coefficient ,is defined as :

S =

(
∂Up
∂T

(
SOCsurf

p (t)
)
− ∂Un

∂T

(
SOCsurf

n (t)
))

(5.4)

The term ∂Ui
∂T

(
SOCsurf

i

)
is the entropy coefficient for electrode i. The thermal mass is

represented as mCp in (5.3), h is the convection heat transfer coefficient and A is the

cell surface area. Thermal model is the sum of three terms, represent convection from

battery’s surface to surroundings, reversible heat generation term and irreversible heat

component due to ohmic losses.
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5.2.2 Model reformulation

Partial differential equations govern Fick’s law of diffusion. It needs to be discretised

into ordinary differential equations, as shown in section 2.2. The main difference is

the use of Chebyshev polynomials instead of Legendre polynomials [70]. Also, the

resulting state-space model is temperature-dependent. This makes the SPM-T highly

non-linear. The state-space representation for any electrode is

ẋ∗i(t) = Ai(T )x∗i (t) +Bi(T )I(t) (5.5)

where Ai and Bi are the state and input matrices respectively, while x∗ ε R3×1 and I is

the input current. The state and input matrices are functions of temperature in (5.5)

due to temperature -dependent diffusion coefficient. The state variables representing

full cell dynamics is expressed as:

x∗(t) = [x∗n(t), x∗p]
T (5.6)

The final state matrix can be of the form

A(t) =

 An(T ) 0

0 Ap(T )

 (5.7)

where 0 is a 3 × 3 matrix of zeros. The input matrix is formulated as:

B(t) =

 Bn(T )

Bp(T )

 (5.8)

There is also an additional variable i.e. temperature T , which describes the thermal

cell dynamics. Therefore, the state vector is

x(t) =

 x∗(t)

T (t)

 (5.9)
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The input vector also contains another variable, reference temperature:

u(t) =

 I(t)

Tref (t)

 (5.10)

The state space representation of the full SPM-T model is expressed as

ẋ(t) = f

(
x(t), u(t)

)
(5.11)

y = g

(
x(t), u(t)

)
(5.12)

5.3 Differential flatness

Differential flatness is an enticing tool to optimise charging trajectory with reasonable

computational efficiency. It gives the projection of solid-phase concentrations by

considering only the centre point concentration at any time instant [80, 284]. This

section will be composed of the definition of differentially flat systems, the application

to batteries, and the final mathematical formulation of the control problem.

5.3.1 Definition

There must be a distinct variable, the flat output z, which makes the system differ-

entially flat. It must have following properties.

1. states and inputs can be interpreted in terms of flat output and its derivatives.

x = fx(z, ż, ..., z
α) (5.13)

u = fu(z, ż, ..., z
β) (5.14)

2. Similarly flat output can be written in terms of states, input and input’s derivatives.

z = fz(x, u, u̇, ..., u
γ) (5.15)
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where α, β, γ are constants that depends on individual system [85]. The number of

inputs to the system must be equal to dimension of the flat output vector z.

5.3.2 Application to batteries

The dynamics of lithium-ion batteries contemplates differentially flat by comparing it

to heat dynamics [85]. [284] proved that one-dimensional linear diffusion heat equation

is a subset of Fick’s law of diffusion, thus battery dynamics is flat. Differential flatness

can be interpreted as a tool to control non-linear systems. A linear system must be

controllable to be differentially flat [284]. Hence, the diffusion dynamics in anode or

cathode is controllable. Moreover, one flat output is required to optimise the charging

trajectory. All the other states and input variables can be manipulated algebraically

using the flat output and its derivatives.

The dynamics of the state-space represented by the model(2.25) can be reformulated

into controllable canonical form. The definition of differential flatness (5.13-5.15)

suggests that there must be one flat output for each electrode. The canonical form of

(2.25) in any electrode i is expressed as:

ẋ−i (t) =


0 1 0

0 0 1

−α1,i −α2,i −α3,i

x−i (t) +


0

0

1

u(t) (5.16)

where αj,i are the coefficients of transformed state vector for the electrode. State x

can be defined as

xi(t) = Mi x
−
i (t) (5.17)

The matrix Mi is the similarity transformation matrix to compute state vector. How-

ever the flat output, in this scenario, is defined as:

z(t) = x−1 (t) (5.18)
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The states can be algebraically computed from the flat output and its derivatives.

x(t) = M




1 0 0

0 1 0

0 0 1



z(t)

ż(t)

z̈(t)


 (5.19)

Similarly, input can be written as:

u(t) =

[
−α1 −α2 −α3 1

]


z(t)

ż(t)

z̈(t)

...
z (t)


(5.20)

This completes the application of differential flatness property to depict the dynamics

of any electrode using one flat output.

5.3.3 Flatness with Gauss pseudo-spectral method

Gauss pseudo-spectral method is discussed in detail in section 3.2. The main objective

of the direct transcription method is to transform the non-linear and non-convex prob-

lems into non-linear programming problems that can be easily solved using various

algorithms. Mapping of time is done by eq. (3.1). The flat output zi is approximated

as:

zi(τ) ≈ zi(τ) =
N∑
k=0

Lk(τ)zi(τk) (5.21)

where zi(τ) is the flat output in terms of collocation points and Lk(τ) is the Lagrange

polynomial. Using the property of Lagrange polynomials, flat output must be:

zi(τk) = zi(τk) (5.22)

derivatives of flat output can be computed analytically i.e. by differentiating (5.21).

It can be expressed mathematically as:

z
(j)
i (τi) =

N∑
k=0

L
(j)
k (τi) zi(τk) (5.23)
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where L
(j)
k (τi) represents the ith derivative of Lagrange polynomial and can be ex-

pressed, using differentiation matrix, as

Dj(i, k) = L
(j)
k (τi) (5.24)

Therefore, the jth derivative of the flat output (5.23) can be expressed as

Z
(j)
i = Dj Zi (5.25)

where Zi = [zi(τ0), zi(τ1), zi(τ2), ......., zi(τN)]T and Z
(j)
i is a vector of derivatives. If

a state is expressed as Xi,k = [xi,k(τ1), xi,k(τ2), ...., xi,k(τN)]T , then state variables can

be expressed as:

Xi,1 = Zi, Xi,2 = D1 Zi Xi,3 = D2 Zi

5.3.4 Mathematical formulation of differential flatness of SPM-

T

In a SPM, one flat output is required to depict the dynamics of the electrode. However,

in SPM-T model, two flat outputs are needed to represent the electrochemical and

thermal dynamics. This is because, in differential flatness, number of inputs must

be equal to the number of flat outputs. Therefore, one flat output represents the

diffusion dynamics, and second flat output represents thermal dynamics. Note that

both diffusion and thermal dynamics are not independent. The first flat output is

z1(t) = x−n,1(t) (5.26)

The second flat output is the bulk temperature T ,

z2(t) = T (t) (5.27)
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Therefore, the flat output vector for the thermal model is

z(t) =

 x−d,n,1(t)

T (t)

 (5.28)

State variables xd,i can be computed from flat output and its corresponding deriva-

tives.

x−d,i(t) =


1 0 0

0 1 0

0 0 1



z1(t)

ż1(t)

z̈1(t)

 (5.29)

The original state variables x = [xd,i, T ]T can be written as:

 xd,i(t)

T (t)

 =

 Mi(z2(t)) x−d,i(t)

z2(t)

 (5.30)

where Mi(z2(t)) is the similarity matrix, which transforms the transformed state vari-

ables into original form.

Similarly, the input vector can also be written in terms of two flat outputs. In SPM-

T, current and ambient temperature are two inputs. The input current u1, can be

mathematically expressed as

u1(t) =

[
−αi,1(z2(t)) −αi,2(z2(t)) −αi,3(z2(t)) 1

]


zi,1(t)

żi,1(t)

z̈i,1(t)

...
z i,1(t)


(5.31)

The coefficients αi,j also change with temperature z2(t). The second flat output can

be expressed as:

u2(t) =
1

hA

(
mCpż2(t)− u1(t)u2(t)S(t)− u1(t)

(
ηp(t)− ηn(t)− u1(t)Rcell

))
+ z2(t)

(5.32)

where the entropy coefficient S and overpotential ηi(t) can be expressed using z2(t).
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5.4 Problem formulation

The main idea is to optimise charging trajectory along-with minimising solid elec-

trolyte interface (SEI) layer resistance. An optimal charging problem is presented to

validate the concept. The side reaction due to lithium plating is also incorporated in

the optimisation problem. Mathematically it can be written as:

minimize
zn(t)

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q R

′

film(t)

]
dt

subject to

x(t) = fx
(
z(t), ż(t), ...., zα(t)

)
,

u(t) = fu
(
z(t), ż(t), ...., zβ(t)

)
,

z(t) = fx
(
x(t), u(t), u̇(t), ...., uγ(t)

)
,

SOCn(t) =
cs,n,avg(t)

cs,n,max
,

SOCsurf (t) =
csurfs (t)

cs,max
,

cs,avg =

∫ R

0

cs dr,

c(r, t) ≈
M∑
i=0

βi(t) φi(r),

J(t) = i0(t)

[
exp

(
αaF

RT
η(t)

)
− exp

(
− αcF

RT
η(t)

)]
,

ηsr(t) = ηn + Un(SOCsurf
n (t)),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax,

Tmin ≤ T (t) ≤ Tmax,

ηsr ≥ 0

(5.33)

where q is the control parameter, R
′

film(t) is the time rate change of SEI film resistance,

SOCref is reference state of charge (SOC), ηsr is the side reaction overpotential, Imax

and Vmax are the maximum current and voltage, respectively. Using equation (2.7),
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SOC in negative electrode can be written as

SOCn(t) =
φ0(r)zn(t) + φ2(r)D1zn(t) + φ4(r)D2zn(t) + φ6(r)β6(t)

cmax,n
(5.34)

R
′

film(t) is function of intercalation and side reaction overpotentials in negative elec-

trode (2.33). It can be ref-formulated as:

R
′

film(t) = P × exp

{
−
(
RgasT

2F

)[(
RgasT

F

)
ln

(
−I(t)

AnLnkn
√
φ0(R)zn(t) + φ2(R)D1zn(t) + φ4(R)D2zn(t) + φ6(R)β6(t)− cmax,n

1√
φ0(R)zn(t) + φ2(R)D1zn(t) + φ4(R)D2zn(t) + φ6(R)β6(t)

√
ce

)
+

Un,ref

(
φ0(R)zn(t) + φ2(R)D1zn(t) + φ4(R)D2zn(t) + φ6(R)β6(t)

cmax,n

)
− 0.4

]}
(5.35)

where P is a constant. To compare the results with proposed optimal control problem,

this chapter uses standard CCCV charging problem defined as follows

minimize
I(t)

∫ tf

to

(
SOCn(t)− SOCref

)2
dt

subject to

ẋ(t) = A(T )x(t) +B(T )u(t),

SOCn(t) =
cs,n,avg(t)

cs,n,max
,

SOCsurf (t) =
csurfs (t)

cs,max
,

cs,avg =

∫ R

0

cs dr,

c(r, t) ≈
M∑
i=0

βi(t) φi(r),

J(t) = i0(t)

[
exp

(
αaF

RT
η(t)

)
− exp

(
− αcF

RT
η(t)

)]
,

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax,

Tmin ≤ T (t) ≤ Tmax

(5.36)
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NMPC strategy is used to optimise trajectory without differential flatness. The overall

mathematical formulation of NMPC strategy is similar to one presented in section 3.3.

One difference is use of temperature-dependent electrode dynamics (5.7) instead of

(2.25 ).

5.5 Results and Discussion

The results of the problem (5.33) with differential flatness and Gauss pseudo-spectral

are almost similar. A minute difference is seen at a high SOC due to numerical errors

and can be ignored. The initial and reference SOCs are taken as 10% and 90% re-

spectively. At every time instant, future responses are recorded using four collocation

points with a prediction horizon of 100 seconds. The solution of the current time step

is taken as an initial guess for the next time interval. The problems are solved in

MATLAB using ”nlmpc” function.

Figure 5.1 depicts the online optimal charging using SPM-T model with maximum

Figure 5.1: State of charge (SOC) in optimal and benchmark strategies (Umax = 2C)-
Optimal CCCV charging( ), Proposed SEI optimal charging( )

current of -4.4 A (2C). SOC profiles in both cases reach the desired goal but takes

more time in case of optimal scenario. This is primarily because optimal charging

needs to satisfy an additional constraint (lithium plating) and also needs to optimise
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an extra term in objective function i.e. to minimise SEI film resistance. The temper-

ature constraint is also added in this chapter. Due to this reason, overall charging

time is increased.

It is necessary to analyse the current profiles in detail, to fully understand the be-

Figure 5.2: Current profiles at Umax = 2C- Optimal CCCV charging( ), Proposed
SEI optimal charging( )

haviour of SOC in both optimal and CCCV scenarios. In the case of CCCV, charging

starts at constant current until a battery reaches to the maximum voltage limit, then

it continues at a constant voltage to the pre-defined current limit. However, proposed

optimal strategy starts with the constant current just like CCCV but relatively at low

SOC, current drops to a minimum level (Figure 5.2). This high current is excellent as

far as side reaction overpotential of lithium plating is concerned because overpotential

is positive at high current even at low SOCs. SEI film resistance keeps on increasing

at low SOCs using higher current. The exponential term in eq. (2.33), gives high

values at low SOCs and low currents. Moreover, it must be noted that temperature

is also changing in a certain defined range.

The profiles of SEI film resistance are shown in Figure 5.3 in both optimal and CCCV

methodologies. It can be easily understood by simultaneously observing the current

profile. As current is the same, SEI film resistance is increasing at the same rate.

However, as charging current decreases in case of an optimal scenario, the SEI film
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Figure 5.3: Resistance of SEI layer versus charging time: Current upper bound=2C-
Temperature range 25 ◦C-35 ◦C- Optimal CCCV charging( ), Proposed SEI optimal
charging( )

resistance tends to decrease. The low current at low SOC has two advantages; (i) SEI

film resistance drops significantly and (ii) temperature is in the desirable range. The

temperature, however, does not high enough to drop. However, this abrupt change

in optimal charging profile is useful in higher charging current rates. At higher SOC,

the current is quite high and finishes at the high value. It has two advantages; higher

current compensates the loss of charging time at low SOC, and it successfully reduces

the SEI film resistance. The overall percentage difference of SEI film resistance in

optimal and CCCV strategies is 6.9 %.

The initial temperature is 25 ◦C while maximum temperature limit sets to 35 ◦C in

case of 2C current upper bound. The profiles of temperature are shown in Figure 5.4.

In the optimal case, the temperature never reaches the maximum limit. However,

in the case of CCCV, temperature eventually passes the maximum limit during the

constant current phase. It eventually comes down to a satisfactory value because of

the low current at final time. The temperature effect can be crucial for battery life

and safety during continuous cycling.

The side reaction overpotential which gives qualitative information about lithium

plating, must be greater than or equal to zero. It is necessary for healthy operation of
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Figure 5.4: Relationship of temperature and charging time at Umax = 2C- Optimal
CCCV charging( ), Proposed SEI optimal charging( )

Figure 5.5: Side reaction overpotential at Umax = 2C- Optimal CCCV charging( ),
Proposed SEI optimal charging( )

battery and its longevity. The comparison of ηsr in optimal and CCCV cases is shown

in Figure 5.5. It is positive at low SOC in CCCV case but eventually it goes down to

negative range. It means at CCCV charging, it is quite a chance that lithium deposits

form on the surface of the electrode. However in optimal case, side reaction constraint

reaches zero and the charging current decreases to satisfy the constraint. Therefore,
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optimal charging strategy successfully operates battery in a healthy regime.

The optimisation problem is repeated with the current upper bound of Umax = 4C

Figure 5.6: Profiles of current (a), resistance of SEI layer (b), temperature (c) and
ηsr at 4C- Optimal CCCV charging( ), Proposed SEI optimal charging( )

(Figure 5.6). The current profiles are similar to Figure 5.2 qualitatively. Charging

time in the optimal case is higher than CCCV. The resistance of the SEI layer sig-

nificantly decreases in an optimal scenario with a percentage difference of 7.23 %.

The maximum temperature sets to 35 ◦C. Temperature is not in the defined range in

CCCV scenario, while proposed optimal strategy restrains it successfully. The side re-

action overpotential goes into the negative range in CCCV as shown in Figure 5.6(d).

The optimal strategy keeps it to zero to avoid lithium plating.

5.5.1 Computational efficiency

The problem (5.33) also solve using Gauss pseudo-spectral method without consid-

ering differential flatness. The aim is to compare the computational complexity of

GPM with and without differential flatness. In this work, computational complexity

is defined in terms of the total number of optimisation variables. The difference in

computational efficiency between the two methods can be recorded with a different

number of collocation points N defined in (3.1). There are two major benefits of us-
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ing differential flatness in pseudo-spectral optimisation. In the case of pseudo-spectral

optimisation alone, the governing battery model equations translate into inequality

constraints (3.3.4). However, the differential flatness removes these constraints as

state (5.19) and input (5.20) profiles are expressed in terms of the flat output (5.18).

The states and input can be computed later once the optimisation complete (5.25).

The second benefit of using the differential flatness approach is that it uses fewer opti-

misation variables. In pseudo-spectral optimisation, state x and input u produces an

NLP problem with N(n+m) optimisation variables, where n and m are the numbers

of state and input variables. The resulting optimisation problem can be computa-

tionally expensive, especially at the high number of collocation points. However, the

NLP problem has only N optimisation variables in the differential flatness approach.

For example in problem (3.25), the number of optimisation variable is 4N in pseudo-

spectral optimisation alone. However, there are three states and two outputs in the

problem (5.33). It means the number of optimisation variables in pseudo-spectral op-

timisation alone is 7N compared to differential flatness which still has N optimisation

variables. The states and inputs profiles are the same using both approaches, but the

computational time difference is significant.

The objective of using differential flatness is to reduce the computational time, which

is quite high in Gauss pseudo-spectral method. It is proved in chapter 2, that pro-

posed strategy takes more computational time because of additional constraint. How-

ever, this difference is quite high in the case of SPM-T, because of the temperature-

dependent diffusion model. Differential flatness method successfully reduces the com-

putational time as compared to Gauss pseudo-spectral method. Figure 5.7 shows the

average simulation time for a single time step at different current rates using four col-

location points. Simulations prove that flatness takes less time as compared to Gauss

pseudo-spectral method (GPM) at each current rate. As the current rate increases,

computational time decreases in both flatness and GPM. The computational time of

optimal scenario in GPM and Differential flatness method at 1C are 0.45 and 0.15

seconds, respectively. The difference is a bit low in the case of 4C, which is 0.24 and

0.03 seconds in GPM and flatness methods, respectively.

The efficiency of flatness method over GPM is also tested by using the different
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Figure 5.7: Average simulation time for one sampling interval at N=4 - GPM( ),
Differential flatness( )

Figure 5.8: Relationship of average simulation time and collocation point (Umax =
2C)- GPM( ), Differential flatness( )

number of collocation points. Both GPM and flatness approaches produce the same

charging profiles (Figure 5.8), but computational efficiency is not similar. Flatness

method outperforms the GPM method at every collocation points. As the number of

collocation points increases, the simulation time of both flatness and GPM increases,
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keeping the current rate constant. The computational time of flatness and GPM is 0.26

and 0.64 seconds respectively at N = 4. Flatness method is efficient mainly for two

reasons. First, the flatness method automatically satisfies the dynamic constraints. It

means the NLP problem does not constitute any active dynamic constraint. Secondly,

this flatness method requires a low number of optimisation variables as compared to

GPM.

The summary of the comparison of proposed differential flatness (DF) method to

Gauss pseudo-spectral methods is shown in Table 5.1.
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Table 5.1: Comparison of the differential flatness with Gauss pseudo-spectral ap-
proaches

GPM-I GPM-II DF

Battery Model SPM SPM SPM

SEI Model Yes Yes Yes

Temperature effects No Yes Yes

Computational complexity Medium High low

Collocation points 4 4 4

Prediction Horizon Receding Receding Receding

states 3 4 1

inputs 1 2 2

Optimisation variables 16 24 4

Solver fmincon fmincon fmincon

Time Consumption high high low

Average simulation time

(N=4, Imax = 1C) 0.37 0.45 0.15
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The dissertation proposes an online NMPC framework that minimises SEI layer

growth during charging considering chemical or mechanical degradation. The work

builds on the literature that highlights the challenges of the computational efficiency

of model-based control in an online optimisation problem and quantifies the state of

health in terms of SEI layer growth. The differential flatness method is also compared

with the pseudo-spectral method to test the computational efficiency using the pro-

posed algorithm approach.

The proposed algorithm uses the integral Gauss pseudo-spectral approach to optimise

battery charging trajectory. In chemical degradation, apart from the SEI layer min-

imisation, the algorithm deals with another side reaction, i.e. lithium plating. The

algorithm guarantees that the battery works in a healthy regime, i.e. positive during

charging. It is evident from the results that SEI film resistance decreases significantly

in proposed SEI optimal charging as compared to optimal CCCV charging. There

is up to 24% difference in SEI layer growth, recorded in the proposed SEI optimal

methodology. SEI layer resistance is higher in the optimal CCCV charging than the

proposed algorithm, considering the same charging time.

The proposed NMPC strategy is also used to optimise charging trajectory by explicitly

incorporated mechanical degradation effects. Diffusion induced stresses are believed

to cause the growth of the SEI layer. The main aim is to find any similarities in charg-
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ing pattern by incorporating chemical or mechanical degradation concepts separately.

The proposed methodology is based on the assumption that the electrode’s active

material is not the weakest material ( elastic range) but the SEI layer, which breaks

and repairs during charging. It is proved that although CCCV is the most popular

method to charge the battery, it increases the amplitude stresses as compared to the

proposed methodology. An optimal charging profile is always preferable to CCCV

over the range of DOD levels. The proposed NMPC framework is also compared with

already published experimental ageing data. Results confirmed that the proposed

strategy outperforms experimental data almost at every level. There is not much

difference recorded at low DOD levels, but the performance of the proposed strategy

is substantial at 50% and 100% depth of discharge levels.

The differential flatness method is also used to compare the computational efficiency

with the Gauss pseudo-spectral method. SPM-T is used to analyse the thermal dy-

namic in lithium-ion batteries instead of SPM. Moreover, optimisation runs in the

predefined temperature range. NMPC framework takes care of two side reactions;

SEI layer growth and lithium plating. The differential flatness method outperforms

the GPM either in terms of collocation points or maximum current upper bounds.

The main improvements compared to existing literature are as follows:

• The SEI layer growth has been quantified considering chemical degradations

(Figures 4.2, 4.5, 4.7 and 4.9).

• The proposed optimal strategy reduces the SEI layer growth compared to opti-

mal CCCV charging considering chemical degradation (Figures 4.2, 4.5, 4.7 and

4.9).

• The proposed optimal framework ensures that battery operates in a healthy

regime, i.e. side reaction overpotential is positive considering chemical degra-

dation along with minimising SEI film resistance (Figures 4.3, 5.5 and 5.6).

• The results shows that charging should not be terminated at low current irre-

spective of degradation concept (Figures 4.2 and 4.11).

• The computational efficiency of proposed charging algorithm is significantly
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improved using differential flatness (Table 4.2, Figures 5.7 and 5.8).

6.2 Future work

The proposed SEI optimal methodology is the best candidate to charge the battery.

This work can be further used to compute cyclic capacity fade, thus estimating the

life of batteries. Model-based control is difficult to implement online but useful as it

computes the internal variables of the batteries. The battery model is an essential part

of online optimisation and should be computationally inexpensive. A homogenised

model of lithium-ion batteries can be used to predict SOC and SOH. In battery packs,

a set of connected models (ECMs and EMs) can estimate various variables in the bat-

teries. The effective control of BMS is the future direction of control engineers.

The testing of the proposed optimal charging profiles is the future step. In the pro-

posed strategies, it is recommended that charging should start at a low current and

ends at a higher current value. It decreases the degradation rate in lithium-ion batter-

ies. Moreover, implementing the proposed NMPC strategy (chemical or mechanical

degradation mechanisms) in BMS is another future research direction. Past data of

batteries is critical for two reasons: empirical modelling and charging trajectory can

be optimised for whole battery life.

A single battery cell’s optimised battery charging profile can be extended to a battery

pack by achieving cell equalisation. The resultant charging strategy is more intelligent

and runs according to user demand. The online optimisation scheme runs for only one

optimal charging trajectory, and the remaining cells should follow this designed cell,

which can initially reduce the computational time. The violation of constraints (e.g.

overcharging) is effectively minimised due to the online management system using

well-defined cell balancing approach. Although this closed optimal scheme slightly

takes more time than an open loop, it over-performs later because of robustness and

real-time errors of the system. Also, it can successfully reduce the degradation effects

on the battery.

The work can be extended to optimise the charging scenario in electric vehicles. A

few areas for further research, specifically for control engineers, include:
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• The proposed algorithm can be implemented using DFN or P2D battery models

to increase the accuracy of estimating the states of charge and health of lithium-

ion batteries.

• The proposed algorithm can be extended to the entire battery pack to estimate

the ageing of batteries.

• An intelligent battery management system using the proposed battery charging

approach can be formulated to quantify the ageing effects of lithium-ion batteries

while cycling.
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[78] Izaro Laresgoiti, Stefan Käbitz, Madeleine Ecker, and Dirk Uwe Sauer. Modeling

mechanical degradation in lithium ion batteries during cycling: Solid electrolyte

interphase fracture. Journal of Power Sources, 300:112–122, 2015.

[79] Ecker, Madeleine and Nieto, Nerea and Käbitz, Stefan and Schmalstieg, Johannes
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lithium-ion battery optimal charging. IEEE/ASME Transactions on Mechatron-

ics, 23(2):947–957, 2018.

[103] Jianhua Guo, Wei Zhang, Cui Liu, and Liang Chu. Adaptive model predic-

tive control strategy of hybrid electric bus based on soc programming. In 2016

IEEE Information Technology, Networking, Electronic and Automation Control

Conference, pages 796–799. IEEE, 2016.

[104] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM

Scokaert. Constrained model predictive control: Stability and optimality. Auto-

matica, 36(6):789–814, 2000.

[105] Jamie Gomez, Ruben Nelson, Egwu E Kalu, Mark H Weatherspoon, and Jim P

Zheng. Equivalent circuit model parameters of a high-power li-ion battery: Ther-

107



mal and state of charge effects. Journal of Power Sources, 196(10):4826–4831,

2011.

[106] Saehong Park, Dylan Kato, Zach Gima, Reinhardt Klein, and Scott Moura.

Optimal experimental design for parameterization of an electrochemical lithium-

ion battery model. Journal of The Electrochemical Society, 165(7):A1309, 2018.

[107] Tanvir R Tanim, Christopher D Rahn, and Chao-Yang Wang. A temperature

dependent, single particle, lithium ion cell model including electrolyte diffusion.

Journal of Dynamic Systems, Measurement, and Control, 137(1), 2015.

[108] TR Ashwin, Yongmann M Chung, and Jihong Wang. Capacity fade modelling

of lithium-ion battery under cyclic loading conditions. Journal of Power Sources,

328:586–598, 2016.

[109] Xiaosong Hu, Shengbo Li, Huei Peng, and Fengchun Sun. Charging time and

loss optimization for linmc and lifepo4 batteries based on equivalent circuit mod-

els. Journal of Power Sources, 239:449–457, 2013.

[110] R Painter, B Berryhill, L Sharpe, and S Keith Hargrove. A single particle

thermal model for lithium ion batteries. In Proceedings COMSOL Conference,

2014.

[111] Tanvir R Tanim, Christopher D Rahn, and Chao-Yang Wang. State of charge

estimation of a lithium ion cell based on a temperature dependent and electrolyte

enhanced single particle model. Energy, 80:731–739, 2015.

[112] Shu-Xia Tang, Leobardo Camacho-Solorio, Yebin Wang, and Miroslav Krstic.

State-of-charge estimation from a thermal–electrochemical model of lithium-ion

batteries. Automatica, 83:206–219, 2017.

[113] Zhihao Yu, Ruituo Huai, and Linjing Xiao. State-of-charge estimation for

lithium-ion batteries using a kalman filter based on local linearization. Ener-

gies, 8(8):7854–7873, 2015.

108



[114] Kandler A Smith, Christopher D Rahn, and Chao-Yang Wang. Model order

reduction of 1d diffusion systems via residue grouping. Journal of Dynamic

Systems, Measurement, and Control, 130(1), 2008.

[115] Venkat R Subramanian, Vinten D Diwakar, and Deepak Tapriyal. Efficient

macro-micro scale coupled modeling of batteries. Journal of The Electrochemical

Society, 152(10):A2002, 2005.

[116] Long Cai and Ralph E White. Lithium ion cell modeling using orthogonal

collocation on finite elements. Journal of Power Sources, 217:248–255, 2012.

[117] Christopher Mayhew, Wei He, Christoph Kroener, Reinhardt Klein, Nalin
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Appendix A

Approximation of concentration

profile and solid state diffusion

A.0.1 Concentration Profile Approximation

In this work, it is assumed that concentration in any electrode is only a function of

time and radial periphery. The lithium ion concentration c(r, t) can be approximated

by a linear combination of Legendre polynomials and corresponding time variables.

c(r, t) ≈ φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t) =
4∑
i=0

φi(r)β̇i(t) (A.1)

where φi(r) are even Legendre polynomials and βi(t) represents the time dynamics of

battery. The differential of even polynomials at collocation point is zero. Normalising

of Legendre polynomials can be done such that:

∫ R

0

φi(r)φj(r)dr =

 0 if i 6= j

1 if i = j
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where R is the radius of particle. The first four even Legendre polynomials used in

this work are as follows:

φ0(r) =

√
1

R

φ2(r) =
1

2

√
5

R

[
3
r2

R2
− 1

]
φ4(r) =
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8

√
9

R

[
35
r4

R4
− 30

r2

R2
+ 3

]
φ6(r) =

1

16

√
13

R

[
231

r6

R6
− 315

r4

R4
+ 105

r2

R2
− 5

]
(A.2)

A.0.2 Approximation of solid state diffusion

The solid state diffusion is further solved using Legendre polynomials. The governing

differential equation of Fick’s second law of diffusion is:

∂C(r, t)

∂t
=
D

r2

∂

∂r

(
r2∂C(r, t)

∂r

)
(A.3)

∂C(r, t)

∂t
=
D

r2

(
2r

∂C(r, t)

∂r
+ r2 ∂

2C(r, t)

∂r2

)
∂C(r, t)

∂t
= D

(
2

r

∂C(r, t)

∂r
+
∂2C(r, t)

∂r2

)
(A.4)

where D is diffusion constant. Putting (A.1) in (A.4), we get different terms in form

of Legendre polynomials and time variables.

∂C(r, t)

∂t
= φ0(r)β̇0(t) + φ2(r)β̇2(t) + φ4(r)β̇4(t) + φ6(r)β̇6(t)

∂C(r, t)

∂r
= β0(t)

dφ0(r)

dr
+ β2(t)

dφ2(r)

dr
+ β4(t)

dφ4(r)

dr
+ β6(t)

dφ6(r)

dr

∂2C(r, t)

∂r2
= β0(t)

dφ2
0(r)

dr2
+ β2(t)

dφ2
2(r)

dr2
+ β4(t)

dφ2
4(r)

dr2
+ β6(t)

dφ2
6(r)

dr2

(A.5)

Computing differentials

dφ0(r)

dr
=
dφ2

0(r)

dr2
= 0
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Finally eq. (A.4) becomes:

[
φ0 φ2 φ4 φ6
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2D
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(A.6)

To separate β terms from each other, it is important to take advantage of the or-

thonormal property of the Legendre polynomials. By applying Galerkin projections
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∫ R
0
φn(r)dr to above equation, the governing equation then becomes:
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(A.7)

where β̇i is the derivative with respect to the time. After solving integrals, the

diffusion dynamics can be expressed as:
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(A.8)
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Appendix B

State equations using

pseudo-spectral method

The concentration at negative electrode can be approximated as:

cn(r, t) = β0(ti)φ0(ti) + β2(ti)φ2(ti) + β4(ti)φ4(ti) + β6(ti)φ6(ti) (B.1)

State of Charge in negative electrode SOCn = cn,avg
cmax

can be computed as:

SOCn(ti) =
β0(ti)φ0SOC + β2(ti)φ2SOC + β4(ti)φ4SOC + β6(ti)φ6SOC

cmax
(B.2)

As we know that, from the state space model of negative electrode. β6(ti) can be

computed from algebraic equation.

β6(ti) = C(1, 2)β2(ti) + C(1, 3)β4(ti) +D(4, 1)U(ti) (B.3)

where matrices C and D are obtained from state space model of negative electrode.
so state of charge will be

SOCn(ti) =
β0(ti)φ0SOC

+ β2(ti)φ2SOC
+ β4(ti)φ4SOC

+
(
C(1, 2)β2(ti) + C(1, 3)β4(ti) +D(4, 1)U(ti)

)
φ6SOC

cmax

(B.4)

After simplifying the above equation, we get

SOCn(ti) =
β0(ti)φ0SOC

+ β2(ti)
(
φ2SOC

+ C(1, 2)φ6SOC

)
+ β4(ti)

(
φ4SOC

+ C(1, 3)φ6SOC

)
+D(4, 1)φ6SOC

U(ti)

cmax
(B.5)
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So Objective function (J) will be

J =
tf − t0

2

N∑
i=1

wi(SOCn(ti)− SOCref )2 (B.6)

Now the discrete dynamic equations can be written in form as

X(ti) = X(t0) +
tf − t0

2

N∑
k=1

Aik

(
Anxn +BnU

)
(B.7)

As we know that there are three states in the system namely β0, β4andβ6, so writing

individually we have

β0(ti) = β0(t0) +
tf − t0

2

N∑
k=1

Aik

(
A(1, 2)β2 + A(1, 3)β4 +B(1, 1)U(ti)

)
β2(ti) = β2(t0) +

tf − t0
2

N∑
k=1

Aik

(
A(2, 2)β2 + A(2, 3)β4 +B(2, 1)U(ti)

)
β4(ti) = β4(t0) +

tf − t0
2

N∑
k=1

Aik

(
A(3, 2)β2 + A(3, 3)β4 +B(3, 1)U(ti)

)
(B.8)

State of charge at surface of negative electrode will be computed as:

SOCsurf
n (ti) =

β0(ti)φ0Rn
+ β2(ti)φ2Rn

+ β4(ti)φ4Rn
+ β6(ti)φ6Rn

cmax
(B.9)

Eliminating β6(ti) from the above equation, we get

SOC
surf
n (ti) =

β0(ti)φ0Rn
+ β2(ti)

(
φ2Rn

+ C(1, 2)φ6Rn

)
+ β4(ti)

(
φ4Rn

+ C(1, 3)φ6Rn

)
+D(4, 1)φ6Rn

U(ti)

cmax
(B.10)
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Appendix C

State-space canonical form

Consider the system defined by

y(n) + a1y
(n−1) + ...+ an−1ẏ + any = b0u

(n) + b1u
(n−1) + ...+ bn−1u̇+ bnu (C.1)

where u is the input, y is the output and y(n) represents the nth derivative of y with

respect to time. Taking the Laplace transform of both sides:

Y (s)

(
sn + a1s

n−1 + ...+ an−1s+ an

)
= U(s)

(
b0s

n + b1s
n−1 + ...+ bn−1s+ bn

)
(C.2)

which yields the transfer function:

Y (s)

U(s)
=
b0s

n + b1s
n−1 + ...+ bn−1s+ bn

sn + a1sn−1 + ...+ an−1s+ an
(C.3)
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The controllable canonical form arranges the coefficient of the transfer function (C.3)

is:



ẋ1

ẋ2

.

.

.

˙xn−1

ẋn



=



0 1 0 ... 0

0 0 1 ... 0

. . . ... .

. . . ... .

. . . ... .

0 0 0 ... 1

−an −an−1 −an−2 ... −a1
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.

.

.

xn−1
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+



0

0
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1



u (C.4)

y =

[
bn −anb0 bn−1 − an−1b0 ... b1 − a1b0

]



x1

x2

.

.

.

xn−1

xn



+ b0u (C.5)
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Appendix D

Model Parameters: Single Particle

Model (SPM)

Battery: A123 26650 lithium iron phosphate (LFP)

Capacity: 2.3 Ah

Table D.1: Parameters of single particle model

Parameter Negative electrode Positive electrode
Lj (µm) 70 34
Aj (cm2) 1694 17554
Rj (nm) 36.5 3500

cs,j,max (mol/m3) 22806 31370
Ds,j (m2/s) 1.26× 10−15 1.648× 10−15

kj (A/m2) 8.692× 10−7 1.127× 10−7

αj 0.5 0.5
εj 0.35 0.45

ce (mol/L) 1
Rcell (mΩ) 9
F (C/mol) 96487

R (J/(mol.K)) 8.3143
T (◦C) 25
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Appendix E

Model Parameters: Single Particle

Model with Thermal Dynamics

(SPM-T)
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Battery: Lithium cobalt oxide (LCO)

Capacity: 2.2 Ah

Table E.1: Parameters of temperature-dependent single particle model

Parameter Negative electrode Positive electrode
Lj (m) 73.5× 10−6 25× 10−6

Aj (m2) 0.0982 0.0982
Rj (m) 12.5× 10−6 8.5× 10−6

cs,j,max (mol/m3) 30556 51555
Ds,j (m2/s) 3.9× 10−14 1× 10−14

kj (A/m2) 1, 764× 10−11 6.667× 10−11

αj 0.5 0.5
εj 0.5052 0.55

EaD,j (J/mol) 35× 103 29× 103

Eak,j (J/mol) 20× 103 58× 103

ce (mol/L) 1
Rcell (mΩ) 9
F (C/mol) 96487

R (J/(mol.K)) 8.3143
T (◦C) 25

Cp (J/kg/K) 750
ρ (kg/m3) 1626
h (m) 65× 10−3

D (m) 18× 10−3

hconv (W/m2/K) 30
Tamb (K) 298
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Appendix F

Degradation Parameters

Table F.1: Degradation parameters

Chemical degradation: SEI layer parameters
io,s (A/m) 1.5× 10−6

Mp (mol/kg) 7.3× 104
ρp 2.1× 103
κp 1

Mechanical degradation: SEI layer parameters
Es (GPa) 0.5
Rs (µm) 9.2

νs 0.2
σY ield (MPa) 8
Mechanical degradation: Active material parameters
Ep (GPa) 15
Rp (µm) 9

νp 9
Ωp (cm3/mol) 3.1
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Appendix G

MATLAB Code

Included are the MATLAB scripts of open-circuit potentials, first derivative of La-

grange polynomial (D1) and second derivative Lagrange polynomial (D2).

G.1 SPM: Open circuit potentials

function [ Urefp ] = Urefp( SOC )

% Urefp=open circuit potential in the positive %electrode

SOCrefp = [0.992123152271639,0.961428477754598,0.930733803237556,...

0.900039128720515,0.869344454203473,0.838649779686431,....

0.807955105169390,0.777260430652348,0.746565756135307,....

0.715871081618265,0.685176407101224,0.654481732584182,....

0.623787058067141,0.593092383550099,0.562397709033058,....

0.531703034516016,0.501008359998975,0.470313685481933,....

0.439619010964892,0.408924336447850,0.378229661930808,....

0.347534987413767,0.316840312896725,0.286145638379684,....

0.255450963862642,0.224756289345601,0.194061614828559,....

0.163366940311518,0.132672265794476,0.101977591277435,....

0.0712829167603931,0.0405882422433516,0.00989356772630998];

Uref = [-4.45876377749985,-3.66831953352692,-0.249129283851055,....

2.12174572567703,2.14057442441444,2.47159584100923,....

3.34866246217808,3.34394608303872,3.34841168770438,....
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3.35160559328864,3.35963353313868,3.36747935020219,....

3.37087521183173,3.38027849184923,3.38132996606247,....

3.37120971375446,3.36875990967536,3.37675078056148,....

3.38496704178736,3.38769666176123,3.39181276529228,....

3.39258441568394,3.39293700770407,3.39183949519156,...

3.41963690307998,3.42305805055184,3.42807483745323,....

3.44312061856383,3.51335858528314,3.57598548554532,...

3.67964435876334,4.17754313798878,5.14938199709510];

Urefp = interp1(SOCrefp,Uref,SOC);\\

end

function [ Urefn ] = Urefn( SOC )

%Urefn=open circuit potential in the negative %electrode

SOCrefn =[0.0100000000000000,0.0406250000000000,0.0712500000000000,....

0.101875000000000,0.132500000000000,0.163125000000000,....

0.193750000000000,0.224375000000000,0.255000000000000,....

0.285625000000000,0.316250000000000,0.346875000000000,....

0.377500000000000,0.408125000000000,0.438750000000000,....

0.469375000000000,0.500000000000000,0.530625000000000,...

0.561250000000000,0.591875000000000,0.622500000000000,....

0.653125000000000,0.683750000000000,0.714375000000000,....

0.745000000000000,0.775625000000000,0.806250000000000,....

0.836875000000000,0.867500000000000,0.898125000000000,....

0.928750000000000,0.959375000000000,0.990000000000000];

Uref =[1.08545544531486,0.348896890836803,0.203508306925828,....

0.192449482034197,0.178134272244356,0.159829937500000,....

0.141525602755644,0.118336422190100,0.110667417078689,....

0.106673690182914,0.106619993356594,0.106566296530274,....

0.106512599703954,0.101157410858862,0.0913232791296414,....

0.0782548670679943,0.0738254314152955,0.0732014526802732,....
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0.0725774739452509,0.0719534952102286,0.0713295164752063,....

0.0707055377401840,0.0692147878050884,0.0661528160500216,....

0.0630908442949547,0.0592502518124915,0.0538044692230235,....

0.0483586866335556,0.0431912482875277,0.0380457437188909,....

0.0329002391502540,0.0247550516862416,0.0111486952560682];

Urefn = interp1(SOCrefn,Uref,SOC);

end

G.2 SPM-T: Open circuit potentials

function [OCP1,OCP3]=openCircuitPotential(x1,x3)

% This function computes the open-circuit %potential

% INPUTS:

% x1 stoichiometry of anode active material.

% x3 stoichiometry of cathode active material.

%T battery temperature.

% OUTPUTS:

% OCP1 anode open-circuit potential.

% OCP3 cathode open-circuit potential.

% ANODE (Graphite - LiC6)

$OCP1 = 0.7222 + 0.1387*x1 + 0.0290*x1.^(1/2) - 0.0172./x1 + ...

0.0019./(x1.^(1.5)) + 0.2808*exp(0.90-15*x1) - ...

0.7984*exp(0.4465*x1-0.4108);
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%CATHODE (Cobalt oxide - LiCoO2)

OCP3 = ( -4.656 + 88.669*x3.^2 - 401.119*x3.^4 + 342.909*x3.^6 - ...

462.471*x3.^8 + 433.434*x3.^10)./...

( -1 + 18.933*x3.^2 - 79.532*x3.^4 + 37.311*x3.^6 - ...

73.083*x3.^8 + 95.96*x3.^10);

end

G.3 Differential Matrices (D, D1 and D2)

Matrix D can be obtained from [74]

function [Dd1,Dg1,Dbar1] = D1(n)

% Function generates the first derivatives of lagrange polynomials

% Gauss Pts

[x, w] = gauss_points(n);

% Add initial point -1

x = [x; -1];

x = sort(x);

n = n+1;

for j = 1:n

for i = 1:n

prod = 1;

sump=0;
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sum = 0;

if j == i

for k = 1:1:n-1

if k~=i

for kk=k+1:1:n

if kk~=i

sum1 =1/(x(i)-x(k));

sum2= 1/(x(i)x(kk));

sum=sum+(sum1*sum2);

end

end

end

end

D(i,j) = 2*sum;

else

for k = 1:1:n-1

if (k~=i)&&(k~=j)

for kk=k+1:n

if (kk~=i)&&(kk~=j)

sump=sump(x(i)x(k))*((x(i)x(kk)));

end

end

end

end

for k = 1:n

if k~=j

prod = prod/(x(j)-x(k));

end

end
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D(i,j) = 2*sump*prod;

end

end

end

Dd1=D;

Dg1 = D(2:end,2:end);

Dbar1= D(2:end,1);

x = x(2:end);

end

function [Dd2,Dg2,Dbar2] = D2(n)

% Function generates the 2nd derivatives of lagrange polynomials

% Gauss Pts

[x, w] = gauss_points(n);

% Add initial point -1

x = [x; -1];

x = sort(x);

n = n+1;

for j = 1:n

for i = 1:n

prod = 1;

prods=1;

sump=0;

sum = 0;

if j == i
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for k = 1:1:n

if k~=i

sum=sum+(x(i)-x(k));

prods=prods/(x(i)-x(k));

end

end

D(i,j) = 6*sum*prods;

else

for k = 1:1:n

if (k~=i)&&(k~=j)

sump= sump+ (x(i)-x(k));

end

end

for k = 1:n

if k~=j

prod = prod/(x(j)-x(k));

end

end

D(i,j) = 6*sump*prod;

end

end

end

Dd2=D;

Dg2 = D(2:end,2:end);

Dbar2 = D(2:end,1);

x = x(2:end);
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end

Complete code will be available from 30-08-2021 on the following link

https://github.com/Sajjad-Malik/Differential-Flatness-Method.git
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