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Abstract

This work considers problems pertaining to the regularity theory and the analysis of

singularities of geometric partial differential equations that stem from the theory of

isometric immersions and geometric flows.

In the first of two largely independent parts, we employ the Uhlenbeck–Rivière theory of

Coulomb gauges to prove that a Pfaffian system with coefficients in the critical space

L2
loc on a simply connected open subset of R2 has a non-trivial solution in the Sobolev

space W 1,2
loc if the coefficients are antisymmetric and satisfy a compatibility condition. As

an application of this result, we show that the fundamental theorem of surface theory

holds for prescribed first and second fundamental forms of optimal regularity in the

classes W 1,2
loc and L2

loc, respectively, that satisfy a compatibility condition equivalent to

the Gauss–Codazzi–Mainardi equations. Finally, we give a weak compactness theorem

for surface immersions in the class W 2,2
loc .

The second part of this work is concerned with the analysis of singularities of the curve

shortening and mean curvature flows. In particular, we show a cylindrical estimate for the

mean curvature flow of k-convex hypersurfaces, extending estimates that had previously

been introduced in the context of Huisken–Sinestrari’s surgery procedure for 2-convex

flows. Furthermore, we consider curve shortening flow of arbitrary codimension in an

Euclidean background. For type-II singularities, we prove the existence of a sequence of

space-time points along which the curvature tends to infinity such that a rescaling of the

solution along it converges to the Grim Reaper solution, paralleling Altschuler’s work in

the case of space curves. Finally, we demonstrate that the curve shortening flow of initial

curves with an entropy bound converges to a round point in finite time.
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Chapter 1

Introduction

Ever since the development of modern differential geometry, the worlds of analysis and

geometry have been firmly intertwined. Indeed, the possibilities of either treating a

geometric problem with the machinery of contemporary analysis or gaining valuable

insight into the analysis of partial differential equations by geometric analogies have

proven incredibly fruitful. It is thus no surprise that despite being one of the most active

areas of the mathematics of today, new and interesting problems continue to surface in

geometric analysis.

A common challenge in this interdisciplinary field is to deal with non-smooth objects.

While many applications, in mathematics itself and further afield, require the study of

geometric, often non-linear, partial differential equations allowing functions outside of

the realm of classical differentiability, geometric flows are likely to produce objects for

which some geometric quantities tend to infinity, thus breaking down their description in

terms of differential geometry. Nevertheless, in order to obtain meaningful statements,

one must endeavour to salvage as much as possible of what can still be said. Therefore,

the regularity theory for solutions of partial differential equations and the analysis of

singularities of evolving geometric objects remain at the forefront of research in geometric

analysis.

9



Chapter 1. Introduction 10

The isometric immersion problem lies firmly at the core of Riemannian geometry; as

the availability of an isometric immersion of any Riemannian manifold into an Euclidean

space of some dimension instantly makes a breadth of knowledge about the arguably

simplest manifold, Euclidean space, available for the study of more complicated objects.

For example, in the case of immersions of two-dimensional surfaces into three-space, the

fundamental theorem of surface theory, that is, the existence of an immersion of a surface

with prescribed metric and second fundamental form, is of great importance in the theory

of non-linear elasticity. In this context, the functions under consideration are naturally

merely weakly differentiable.

Meanwhile, the general idea of using geometric heat flow to deform an object into a

canonical one can be used to obtain topological consequences to the greatest effect, as

is nowadays well-known. Even though such a flow often exhibits a certain smoothing

behaviour common to heat-type flows, geometric singularities are likely to occur due

to its non-linear nature. However, thorough analysis and classification of the kinds of

singularities that can possibly develop might nevertheless still allow making a posteriori

statements about the initial object. A successful approach are geometric surgery proced-

ures, which enable the continuation of the flow past a singularity while keeping track of

the changes in its topology.

1.1 Historical overview

In this section, we give a short historical introduction to both sets of problems that are

central to this work.

Isometric immersions

The isometric immersion problem is a classical problem of differential geometry [And02;

HH06]. Given a smooth manifold (Mn, g), it is a natural question whether M can be

isometrically immersed (or even embedded) into Euclidean space RN for some dimension

N . A related problem is to determine the minimal dimension N for which this is possible.
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Naturally, these problems are at the heart of geometric analysis in the sense that they

are geometric problems that lend themselves to a treatment by means of analysis.

In this framework, the problem is the following: Find a smooth immersion u : Mn →

RN such that

du2 = g,

that is, u : (Mn, g) → u(M) is an isometry, where u(M) is equipped with the induced

(Euclidean) metric. Once a system of local coordinates in some neighbourhood U is given

such that

g = gij dxi⊗dxj ,

we need to find a local immersion u : U → RN such that

N∑
k=1

∂iuk∂juk = gij

in U for 1 ≤ i, j ≤ n. Since the number of first-order partial differential equations in this

non-linear system is sn = n(n+1)
2 , we must have N ≥ sn.

Indeed, Schläfli [Sch71] conjectured that for every smooth manifold (Mn, g) of di-

mension n, there exists a smooth local isometric immersion into Euclidean space RN

of dimension N = sn, which was proved for analytic manifolds by Janet [Jan26; see

also Bur31] for n = 2, using the Cauchy–Kovalevskaya theorem, and by Cartan [Car27]

for general n using his work on exterior differential systems. (The number sn is called

Janet dimension.) In the smooth domain, the main difficulty lies in substituting the

Cauchy–Kovalevskaya theorem [Gro86].

The global embedding problem, without requiring isometry, was first considered by

Whitney [Whi44a; Whi44b], who showed that any compact manifold Mn of dimension

n can be embedded into R2n and immersed into R2n−1. The most celebrated result on

isometric immersions as a whole is certainly the Nash embedding theorem: Any smooth,

compact, n-dimensional Riemannian manifold can be smoothly isometrically embedded
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into RN for some dimension N [Nas54; cf. Kui55; Nas56, for the C1-problem]. The

precise number N has been subject to improvements due to Gromov [Gro86] and then

Günther [Gün91], who achieved N = max{sn+ 2n, sn+n+ 5}. The importance of Nash’s

work goes beyond its result in that he pioneered a novel technique that has come into

widespread use and is now known as Nash–Moser iteration. Interestingly, Günther was

able to circumvent the problem that required its use altogether in his improvement of

the embedding dimension N .

In the case of surfaces, i. e., in dimension n = 2, it is well-known that a necessary

condition for the existence of an isometric immersion of (M, g)→ R3 is that the second

fundamental form A = (hij) satisfies the Gauss–Codazzi–Mainardi equations,

Rijk` = hikhj` − hi`hjk (Gauss),

∇ihjk = ∇jhik (Codazzi–Mainardi),

where R denotes the Riemannian curvature tensor and ∇ is the covariant derivative

induced by the Levi–Civita connection. Assuming thatM is simply connected, the Gauss–

Codazzi–Mainardi equations are also a sufficient condition for an isometric immersion

to exist. In that sense, the equations can be seen as compatibility equations for the

isometric immersion problem in this case. The first proof of this fact was given by Bonnet

[Bon67] (see Tenenblat [Ten71] for a similar result in higher dimension and codimension,

which introduces an additional condition related to the induced connection on the normal

bundle). The statement that an immersion of a surface with prescribed first and second

fundamental forms exists and is uniquely determined if the prescribed forms satisfy a set

of compatibility conditions is now known as Bonnet’s theorem or fundamental theorem of

surface theory.

The proof of the fundamental theorem of surface theory relies on the construction of

a suitable frame on the surface that is orthonormal with respect to the prescribed metric.

Analytically, this amounts to the solution of a Pfaffian system of partial differential
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equations of the form

∇P + ΩP = 0

for the unknown matrix-valued function P given a matrix-valued 1-form Ω of coefficients

satisfying a compatibility condition of the form

dΩ + Ω ∧ Ω = 0.

In the smooth case, supposing for the moment that P be invertible, the fact that second

derivatives of P commute implies that the compatibility conditions are necessary.

In the literature, one then finds several iterations of the following proto-theorem for

Pfaffian systems of any dimension:

Theorem (Existence and uniqueness for Pfaffian systems). Let U ⊂ Rn be a simply

connected domain. Suppose that Ω ∈ Y (U,L(m) ⊗ ∧1Rn) satisfies the compatibility

condition

dΩ + Ω ∧ Ω = 0

in an appropriate sense. Then there exists P ∈ X(U,K(m)) such that

∇P + ΩP = 0.

Moreover, P is unique up to a constant factor in K(m).

In order to assess the validity of the above, the function spaces X and Y as well as

the matrix subgroups K(m), L(m) ⊂ gl(m) need to be specified. Classically, going back

to the work of Cartan [Car27; Car83] and Thomas [Tho34], the theorem is known to

hold for X = C2, Y = C1, and K(m) = L(m) = gl(m). In the two-dimensional case,

n = 2, Hartman and Wintner [HW50b] proved it for X = C1, Y = C0, considering the

compatibility equation in an integrated sense, while S. Mardare, in a series of papers

[Mar03b; Mar05; Mar07], improved it to X = W 1,∞, Y = L∞ and finally X = W 1,p,
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Y = Lp, p > n = 2. (In higher dimensions, see C. Mardare [Mar03a], S. Mardare [Mar04],

and Szopos [Szo08].) Indeed, without any further assumptions on the coefficients Ω, this

is optimal [Mar05].

Further recent developments on the isometric immersion problem for surfaces and

applications, particularly in non-linear elasticity, include the work by Ciarlet and coworkers

[CL02; Cia03; CM05; CGM08; Cia13; CM16; CM19a], Chen–Li [CL18], and Li [Li19;

Li20]. We should also mention the related subject of immersions with L2-bounded second

fundamental form, which is particularly relevant in the context of Willmore surfaces

[Lan85; Tor94; Riv14; Bre15; Riv16; LR18].

Curve shortening and mean curvature flow

The mean curvature flow and its one-dimensional analogue, the curve shortening flow, are

the most studied examples of extrinsic geometric flows [ACGL20]. Brakke’s influential

work [Bra78] was the first to mathematically consider and thoroughly analyse mean

curvature flow from the viewpoint of geometric measure theory. Since then, mean

curvature flow has enjoyed continued attention from many geometers and analysts alike

in the hope of obtaining profound topological results through it. Both flows evolve a

geometric object (a curve or a hypersurface) in normal direction with speed proportional

to the (mean) curvature.

For curve shortening flow of embedded curves in the plane, Gage and Hamilton

[Gag84; GH86] showed that convex curves eventually become circular and shrink to a

point. In particular, the flow stays smooth throughout the evolution until the curvature

tends to infinity at the final time. Grayson [Gra87; Gra89b; see also Hui98] showed

that any embedded curve continues to be embedded and eventually becomes convex

without developing singularities in the process, thus completing the analysis of the flow

of embedded curves in the plane. Immersed curves, on the other hand, can exhibit much

more complex behaviour [Gra89b]. A particular type of solutions, namely those that

move self-similarly under the flow, has been classified [AL86; Hal12].
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One of the most prominent applications of curve shortening flow, following an idea of

Uhlenbeck, is a proof of the theorem of the three geodesics [Gra89a] which states that

any 2-sphere with a smooth metric admits at least three simple closed geodesics. Other

applications even include Perelman’s implementation of a surgery procedure for Ricci

flow [Per03].

In higher dimension, Huisken [Hui84; see also Hui86] proved a result analogous to the

Gage–Hamilton theorem, namely, that convex hypersurfaces converge to a round point

under mean curvature flow, that is, a rescaling of the solution eventually produces the

round sphere. Moreover, he introduced his influential monotonicity formula [Hui90]. In

the following decades, the body of literature on various aspects of mean curvature flow,

such as the analysis of singularities, special solutions, topological applications, and related

flows, has grown immensely. For an extensive overview of both mean curvature and curve

shortening flow, we refer to Ecker’s book [Eck04], lectures by Mantegazza [Man11], White

[Whi15], Haslhofer [Has16], and Schulze [Sch17] as well as the comprehensive book by

Andrews et al. [ACGL20].

Since the formation of singularities of the flow, that is, points where the differential

geometric description breaks down, is an inevitable phenomenon, several approaches have

been developed to define an extension of mean curvature flow past the first singular time,

including Brakke [Bra78] in the GMT sense; Chen–Giga–Goto [CGG91], Evans–Spruck

[ES91], and Ilmanen [Ilm92] by considering a flow of level sets; and Huisken–Sinestrari

[HS09], Brendle–Huisken [BH16], Haslhofer–Kleiner [HK17], and Mramor–Wang [MW21]

by defining a mean curvature flow with surgery.

Recently, both curve shortening and mean curvature flow have been increasingly

considered in codimensions greater than one. While Altschuler had studied singularities

of space curves [Alt91] and Altschuler–Grayson defined a flow through singularities for

planar curves by means of a special class of space curves [AG92] in the early 1990s, more

results concerning also the flow of curves immersed in arbitrarily dimensional spaces

have begun to appear [YJ05; MC07; He12; AAAW13; Hät15; Kha15; Cor16; MB20]. In
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mean curvature flow, Ambrosio and Soner [AS97] developed an approach in arbitrary

codimension using a varifold ansatz, while the more traditional submanifold approach

has been followed as well [Smo05; Bak10; Coo11; see also Wan08; Smo12]. Most notably,

a notion of mean curvature flow with surgery in any codimension has been introduced by

Nguyen [Ngu20].

More and more attention has also been paid to the study of mean curvature flow

with entropy bounds. The entropy is a quantity that is monotone non-increasing under

the flow and is particularly attractive in higher codimension in order to cope with new

technical difficulties that arise when the codimension is greater than one, such as the

lack of a maximum principle and the resulting fact that an initially embedded surface

need not stay embedded. Due to the monotonicity, upper bounds that are imposed on

the entropy of the initial surface will continue to hold throughout the flow.

In particular, entropy has been employed in the study of generic singularities of mean

curvature flow by Colding–Minicozzi [CM12] and Chodosh et al. [CCMS20; CCMS21]

and in Bernstein–Wang’s low-entropy Schoenflies theorem [BW20]. Colding et al. showed

that the round sphere minimises entropy among closed self-shrinkers [CIMW13], while

Bernstein–Wang [BW16; BW17; see also BW18b] and Ketover–Zhou [KZ18] proved the

same statement for closed embedded surfaces in R3. An extension to higher dimensions

is due to Zhu [Zhu20]. Hershkovits–White proved sharp entropy bounds for self-shrinkers

of any dimension [HW19]. Bernstein–Wang [BW18a] and S. Wang [Wan20] proved the

Hausdorff stability of round spheres under small perturbations of the entropy. Moreover,

in any codimension, Colding and Minicozzi [CM19b] gave uniform bounds on the entropy

and codimension of generic singularities.

1.2 Main results

We now give a short summary of the main results presented herein.
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Pfaffian systems and the fundamental theorem of surface theory

The original results in the first part of the thesis previously appeared in JGA [Lit21].

In an open set U ⊂ R2, we consider a Pfaffian system of the form

∇P = PΩ, (1.1)

where P is a matrix-valued function and Ω is a given matrix-valued 1-form. Local existence

of a non-trivial solution P to this partial differential equation, and its regularity, manifestly

depend on the regularity properties of the coefficients. It is a classical result that a

twice continuously differentiable solution exists if every component Ωi is continuously

differentiable and they satisfy the compatibility condition

∂iΩj − ∂jΩi = ΩjΩi − ΩiΩj . (1.2)

In this work, we show the corresponding result for solutions P ∈W 1,2
loc and coefficients

Ω ∈ L2 satisfying an additional structural assumption. This is the case of least possible

regularity for an equation such as (1.2) to make sense in an integrated form. We then

have the following

Theorem. Let U ⊂ R2 be a connected and simply connected open set and let Ω ∈

L2(U, so(m)⊗ ∧1R2) satisfy the compatibility condition (1.2) in the distributional sense.

Then there exists P ∈ W 1,2
loc (U,SO(m)) such that ∇P = PΩ in U . Moreover, any two

such solutions P0, P1 are related by P0 = CP1 with a constant C ∈ SO(m).

Over the years, there have been several incremental improvements to the classical

theory. In particular, Hartman and Wintner [HW50b] showed that the above existence

result holds if the given form Ω is continuous, with a continuously differentiable solution

P . Following this, Mardare [Mar03b; Mar05] first showed the existence of a solution P

to (1.1) in the Sobolev class W 1,∞
loc for locally essentially bounded coefficients and later

improved the theorem to hold in the class W 1,p
loc for Ω ∈ Lploc, where p > 2. It is important
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to note that without any further structural assumptions on the coefficients Ω, this result

has been demonstrated to be optimal [Mar05]. However, once one supposes that the

components of the matrix-valued 1-form Ω be antisymmetric, it is possible to improve

the regularity to the critical case above.

Meanwhile, there have been developments in the theory of non-linear PDE that

attempt to exploit a particular structure of the equation in order to gain additional

regularity of the solution beyond what would usually be expected; and these compensated

compactness methods [CLMS93; Riv07; Wen69] have been markedly successful in that

regard. In particular, in his 2007 paper, Rivière [Riv07] provided a proof of the regularity

of two-dimensional weakly harmonic maps, from which we recall an important intermediate

result:

Lemma (Uhlenbeck–Rivière decomposition [Riv07, Lemma A.3; Sch10]). Let U ⊂ R2 be

a contractible bounded regular domain and let Ω ∈ L2(U, so(m)⊗∧1R2). Then there exist

ξ ∈W 1,2
0 (U, so(m)) and P ∈W 1,2(U,SO(m)) such that

P−1∇P + P−1ΩP = ∇⊥ξ,

‖∇ξ‖2L2 + ‖∇P‖2L2 ≤ 5 ‖Ω‖2L2 .

Thanks to the Riemann mapping theorem, this also holds true if U ⊂ R2 is an open,

connected, and simply connected bounded set with sufficiently smooth boundary. While

the techniques employed in the original proof [Riv07] are quite involved, Schikorra [Sch10]

gave an alternative proof using variational methods, which in addition removes the need

for a smallness condition on Ω.

The above result is of particular interest to us because the given form Ω is only

assumed to be square-integrable. In order to achieve existence and regularity of the

solution P ∈W 1,2, the additional structure assumed, that is, the antisymmetry of each

Ωi, is utilised in a crucial way. In the same vein, it is this additional structural assumption
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that enables us to employ Rivière’s lemma to extend the previous results on the solvability

of the above Pfaffian system in (1.1) to the critical p = 2 case.

The possibility of finding a solution to this Pfaffian system, in turn, has been an

essential ingredient in the proof of weak versions of the fundamental theorem of surface

theory. As for Pfaffian systems, there have been incremental improvements to this

classical geometric result. The theorem answers the question of whether it is possible

to find an immersion of a surface in three-dimensional space with prescribed first and

second fundamental forms—this turns out to be true if, and only if, the fundamental

forms satisfy the Gauss–Codazzi–Mainardi equations. We obtain the following

Theorem. Let U be a connected and simply connected open subset of R2 and let (aij) ∈

W 1,2
loc (U,Sym+(2))∩L∞loc(U,Sym+(2)) and (bij) ∈ L2

loc(U,Sym(2)) be given. Suppose that

the eigenvalues of (aij) are locally uniformly bounded from below and that the matrix

fields (aij), (bij) are such that

∂1Ω2 − ∂2Ω1 = Ω2Ω1 − Ω1Ω2,

where Ω ∈ L2
loc(U, so(3)⊗∧1R2) is given by the following sequence of definitions, see also

Section 4.4.2:

(aij) = 1
a11a22 − a12a21

 a22 −a12

−a21 a11

 ,
bji = ajkbik,

Γkij = 1
2a

k`(∂jai` + ∂iaj` − ∂`aij),

G =


a11 a12 0

a21 a22 0

0 0 1



1
2

,
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Γi =


Γ1
i1 Γ1

i2 −b1i

Γ2
i1 Γ2

i2 −b2i

bi1 bi2 0

 ,

Ωi = (GΓi − ∂iG)G−1.

Then there exists an immersion θ ∈W 2,2
loc (U,R3) such that

aij = ∂iθ · ∂jθ in W 1,2
loc (U),

bij = ∂ijθ ·
∂1θ × ∂2θ

|∂1θ × ∂2θ|
in L2

loc(U).

Moreover, the map θ is unique in W 2,2
loc (U,R3) up to proper isometries of R3.

We remark that the compatibility condition assumed in the theorem is in fact equivalent

to the Gauss–Codazzi–Mainardi equations, see Proposition 4.27. As for the Pfaffian system

mentioned above, one needs to consider the compatibility equations in the distributional

sense.

In the works mentioned above [HW50b; Mar03b; Mar05], the fundamental theorem of

surface theory has been extended to hold true for, finally, first and second fundamental

forms in the classes W 1,p
loc and Lploc, respectively, where p > 2. The method of proof,

whose lines we also follow in this work, is the following: First, a Pfaffian system as

in (1.1) is solved for a proper orthogonal matrix field P , and then the sought-after

surface immersion is found by means of a weak version of the Poincaré lemma, solving

the equation ∇θ = PG, where G is the matrix square root of the three-dimensional

extension of the given metric. Since the Poincaré lemma is known to hold for all p ≥ 1

(see Lemma 4.22), the premier challenge in extending the fundamental theorem of surface

theory to the critical exponent p = 2 lies in the extension of the corresponding existence

theorem on Pfaffian systems.
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Therefore, in order to be able to apply our optimal regularity theorem, an appropriate

antisymmetric matrix-valued 1-form Ω of coefficients of the Pfaffian system has to be

constructed as above. While the connection form Γ does not possess this property in

an arbitrary frame, it is known to be antisymmetric in an orthonormal frame. This

approach to the fundamental theorem of surface theory, via an antisymmetric field of

coefficients, has previously been introduced by Ciarlet, Gratie, and C. Mardare [CGM08],

who identified the solution P of the Pfaffian system as the rotation field appearing in the

polar factorisation of the gradient of the three-dimensional extension of the immersion θ.

As a consequence of our approach, we finally obtain a weak rigidity of the compatibility

equation and a weak compactness theorem for surface immersions in the class W 2,2
loc .

Theorem. Let {θk} ⊂W 2,2
loc (U,R3) be a uniformly bounded sequence of immersions with

corresponding sequences of first and second fundamental forms denoted by {(aij)k} and

{(bij)k}, respectively. Suppose that ∂iθk ∈ W 1,2
loc ∩ L∞loc and that the first fundamental

forms (aij)k, akij = ∂iθ
k ·∂jθk, have eigenvalues bounded from below by a positive constant

uniformly in the domain U and in k. Then, after passing to subsequences, {θk} converges

weakly in W 2,2
loc to an immersion θ ∈ W 2,2

loc (U,R3), whose first and second fundamental

forms (aij), (bij) are limit points of the sequences {(aij)k}, {(bij)k} in the weak W 1,2
loc -

and L2
loc-topologies, respectively.

In the context of immersions of Riemannian manifolds, results in this spirit already

appeared in a recent work by Chen and Li [CL18]. Moreover, sequences of weak immersions

have previously been investigated without any assumptions about the first fundamental

form, supposing instead a uniform bound on the L2-norm of the second fundamental

form—see the paper of Laurain and Rivière [LR18] and the references therein.

Curve shortening and mean curvature flow

In the second part of the thesis, we first consider k-convex solutions of mean curvature

flow. A k-convex surface is one whose smallest k principal curvatures λ1, . . . , λk satisfy

λ1 + · · ·+ λk ≥ 0. The k-convexity property is preserved by mean curvature flow, hence
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it is a natural curvature condition to consider. In the past, the convex (k = 1) and

mean convex cases (k = n) have been of particular interest. However, in their 2009 work,

Huisken and Sinestrari introduced a surgery procedure for 2-convex mean curvature flow

[HS09]. Central to their analysis are the convexity and cylindrical estimates. They proved

the former using an induction argument on symmetric polynomials and then obtained

the latter from it. Denoting the mean curvature by H, their results read as follows:

Theorem (Convexity estimate [HS99a; see also HS09, Thm. 1.4]). Let {Mt} be a closed

mean convex mean curvature flow. Then for any η > 0 there exists Cη = C(η,M0) > 0

such that

λ1 ≥ −ηH − Cη (1.3)

on Mt for any t ∈ [0, T ).

Theorem (Cylindrical estimate [HS09, Thm. 1.5]). Let {Mt} be a closed 2-convex mean

curvature flow. Then for any η > 0 there exist constants Cη = C(η,M0) > 0 and c = c(n)

such that

|λ1| ≤ ηH =⇒ |λi − λj | ≤ cηH + Cη (1.4)

for any 1 < i, j ≤ n on Mt for any t ∈ [0, T ).

In essence, these estimates are used to find regions, so-called necks, on the hypersurface

that are suitable for surgery. Moreover, it has to be ensured that the estimates continue

to hold after the surgery while maintaining control on the relevant constants in them.

We describe the procedure in a bit more detail in Chapter 7.

Recently, a new proof strategy for these estimates has been devised by Nguyen [Sch17]

according to which one first proves the cylindrical estimate directly from the 2-convexity

assumption. Then the convexity estimate can be shown to be a consequence of the

cylindrical one. We carry out this strategy in the general k-convex case by means of a

careful analysis of the terms in Simons’ identity, combined with a Poincaré-type inequality,
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which then leads to the derivation of Lp-bounds for the function

Gσ,η =
|A| −

(
1√

n−(k−1)
+ η

)
H

H1−σ ,

where η > 0 and σ ∈ [0, 1] and A denotes the second fundamental form. Using the

well-established method via the Michael–Simon Sobolev inequality and Stampacchia

iteration, used by Huisken [Hui84] to great effect, we can obtain a L∞-bound on this

function, which gives our main theorem of this section:

Theorem. Let {Mt} be a mean curvature flow of closed n-dimensional k-convex hy-

persurfaces in Rn+1, n ≥ 3. Then for any η > 0 there exists Cη = C(η,M0) > 0 such

that

|A|2 − 1
n− (k − 1)H

2 ≤ ηH2 + Cη.

We note that a similar result has been obtained by Andrews and Langford [AL14]

for a more general class of flows with different methods. In the 2-convex case, we then

indicate how to recover Huisken–Sinestrari’s estimates (1.3) and (1.4).

Finally, we study singularities of curve shortening flow in arbitrary codimension.

Throughout, let a one-parameter family of immersions γ : S1 × [0, T )→ Rn satisfy

∂γ

∂t
(p, t) = (κN)(p, t),

γ(p, 0) = γ0(p),
(CSF)

where κ denotes the curvature and N a choice of normal vector of the time-dependent

curve and γ0 is a smooth initial curve. While the planar and, to a lesser extent, the space

curve case have historically garnered most of the attention, recently, as in mean curvature

flow, the higher codimension case has been subject to more detailed investigation. Since

common tools such as the maximum principle are not as applicable as in the codimension

one case, one commonly resorts to Huisken’s monotonicity formula. In particular, it

implies that the entropy λ(γ) of a curve γ, which is a functional that can be seen as a
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measure for geometric complexity and is defined by

λ(γ) = sup
x0∈Rn, t0>0

(4πt0)−
1
2

∫
γ

e−
|x−x0|

2
4t0 ,

is monotone under curve shortening flow. This property makes the entropy particularly

interesting for the study of singularities, since a bound on this quantity for the initial

curve propagates with the flow.

In this work, we first follow the strategy of Altschuler’s work on space curves to show

that singularity formation is an essentially planar phenomenon. That is, we show that

blow-up limits of the flow are confined to two-dimensional subspaces of Rn. Moreover, we

argue that, as in the n = 3 case, for any blow-up sequence of a type-I singularity (that is,

the curvature does not grow faster than (T − t)
1
2 ) there exists a subsequence such that a

rescaling of the curve along it converges to a planar self-similarly shrinking solution, while

for a type-II singularity (that is, it is not of type-I), there exists an essential blow-up

sequence such that a sequence of rescalings along it converges to the translating Grim

Reaper solution. Since the entropy of the Grim Reaper is known [Gua19], we are thus

able to rule out the occurrence of type-II singularities altogether, and combined with the

classification of self-similarly shrinking curves in the plane [AL86; see also Hal12], we

can show that for curve shortening flows with initially ‘small’ entropy, the only possible

singularity is the round circle:

Theorem. Suppose that γ : S1× [0, T )→ Rn is a smooth solution of the curve shortening

flow with initial data γ(·, 0) = γ0 and assume that the entropy of γ0 satisfies

λ(γ0) ≤ 2.

Then T is finite, and the rescaled flow converges to the round circle.
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1.3 Outline of the thesis

This thesis is divided into two largely independent parts.

In the first part (Chapters 2 to 4), we are concerned with regularity theory for some

exterior differential systems, specifically Pfaffian systems and isometric immersions. In

Chapter 2, we introduce Cartan’s moving frame method for submanifolds of Euclidean

space, which is a convenient formalism to express the isometric immersion problem

in. Moreover, we avail ourselves of ideas from the theory of compensated compactness,

particularly the Uhlenbeck–Rivière decomposition, a very short summary of which is

provided in Chapter 3.

These methods are key for the regularity theory for Pfaffian systems in two dimensions

carried out in Chapter 4. After collecting some facts about the moving frame method

in the case of surfaces in R3, we summarise the smooth theory of Pfaffian systems and

the fundamental theorem of surface theory and previous efforts in the regularity theory

thereof. In what follows, we show an optimal regularity theorem for Pfaffian systems

with antisymmetric coefficients that satisfy a natural compatibility condition. Then we

apply this result to the fundamental theorem of surface theory, for which we can easily

show that the connection form satisfies the requirements of the regularity theorem in

a suitable frame. We also show that the compatibility conditions are equivalent to the

Gauss–Codazzi–Mainardi equations in the distributional sense. In the final section of the

chapter, we use our previous result to obtain a weak compactness theorem for sequences

of W 2,2-immersions.

The second part of the thesis (Chapters 5 to 8) deals with singularities of extrinsic

curvature flows, i. e., mean curvature and curve shortening flow. In Chapter 5, we

summarise well-known results about submanifolds of Euclidean space, in particular

n-dimensional hypersurfaces in Rn+1 and curves in arbitrary codimension. We then

give a short introduction to the theory of curve shortening and mean curvature flow

in Chapter 6 with particular attention to the classification of singularities of the flow,
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Huisken’s monotonicity formula and the entropy functional. We list basic properties of

the entropy which will be used in the sequel.

Chapter 7 deals with two particular estimates that are relevant in Huisken–Sinestrari’s

surgery procedure for 2-convex mean curvature flow, one of the known techniques to

continue the flow past the first singular time. We first give a brief introduction to

Huisken–Sinestrari’s work, particularly where the cylindrical and convexity estimates are

relevant. We then prove the cylindrical estimate in the general k-convex case by means

of a generalisation of a recently introduced technique to directly prove this estimate from

the assumptions, considerably simplifying the original method. We then indicate how the

estimates in the 2-convex case can be recovered from our result.

Finally, in Chapter 8, we are concerned with singularities of the curve shortening flow

in arbitrary codimension. The first two sections parallel Altschuler’s work on singularities

of space curves, showing estimates for derivatives of the curvature as well as results

on blow-up limits of solutions of the flow. In the final section of the chapter, we then

prove our main theorem, which combines the previous results on singularities of the

curve shortening flow with an entropy bound on the initial curve to show that the flow

converges to a round circle in finite time.

1.4 General notation

While most of our notation is standard, we give a few definitions for clarity.

Throughout the thesis, the summation convention will be employed, such that sum-

mation over repeated ‘upper’ and ‘lower’ indices is implied. If not stated otherwise, we

will be working with differentiable, i. e., smooth, objects.

We denote the set of real matrices of size n× n by gl(n), the set of invertible matrices

by GL(n), the set of symmetric matrices by Sym(n), the set of symmetric positive definite

matrices by Sym+(n), the set of antisymmetric matrices by so(n), the set of orthogonal

matrices by O(n), and the set of proper orthogonal matrices by SO(n).
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Moreover, we denote the elements of a matrix A ∈ gl(n) by aij , i, j = 1, . . . , n, such

that A = (aij), and the j-th column of A is denoted by A(j) = aj . The inverse A−1 of

A is denoted by (aij) and the transpose of A by AT = (aji). We enumerate the real

eigenvalues of A ∈ Sym(n) as λ1(A) ≤ · · · ≤ λn(A) and with any A ∈ Sym+(n) we

associate the unique matrix square root A
1
2 .

Partial derivatives ∂u
∂xi

of a function u : Rn → R are sometimes denoted by ∂iu. For

any function u of two variables, we write ∇⊥u = (−∂2u, ∂1u) for the curl operator (or

orthogonal gradient) of u.



Part I

Exterior differential systems
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Chapter 2

Cartan geometry

The aim of this part is to prove optimal regularity results for a specific form of Pfaffian

system and to treat the optimal regularity case of a corresponding problem in geometry,

the isometric immersion problem for surfaces. In general, a Pfaffian system is an exterior

differential system that is specified solely by 1-forms on a smooth manifold. In particular,

the Pfaffian system we consider arises from the isometric immersion problem, which is, in

the simplest terms, to find an immersion of a surface with prescribed first and second

fundamental forms.

It is convenient to consider the isometric immersion problem in terms of Cartan’s

moving frame formalism. To that end, we summarise the relevant theory of moving

frames for surfaces in Euclidean space below, largely following the excellent exposition in

Clelland’s book [Cle17]. We first define the relevant objects in arbitrary dimension and

later move to the case n = 2 which is the one considered in Chapter 4.

Cartan’s simple, yet brilliant idea is the following: We consider a map on a manifold

(in our case, Rn) that assigns a basis of the tangent space, which is not necessarily a

coordinate basis, to every point of the manifold (this is called a ‘moving frame’). Then we

express the derivatives of the components of the moving frame in terms of the components

themselves. It turns out that the geometric properties of submanifolds of Rn, or indeed

29
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of any manifold, can be expressed rather concisely in this framework. In a sense, this

is a generalisation of the concept of the Frenet–Serret frame for curves. In particular,

we will be considering orthonormal moving frames, which we can always obtain from an

arbitrary frame by means of the Gram–Schmidt orthonormalisation process.

2.1 Orthonormal frames

We denote Euclidean space (Rn, 〈· , ·〉) by En and the Euclidean group by E(n). The

latter is a Lie group and can be represented as the matrix group

E(n) =


1 0

b A

 : A ∈ SO(n), b ∈ En


with the associated Lie algebra

TIE(n) = e(n) =


0 0

b B

 : B ∈ so(n), b ∈ En

 ,
where I ∈ E(n) is the identity matrix. The isotropy groups of E(n) are all isomorphic to

SO(n), and there is the correspondence

En ∼= E(n)/SO(n).

Definition 2.1. Let x ∈ En and (e1, . . . , en) be an oriented orthonormal basis for

TxEn. Then we say that f = (x; e1, . . . , en) is an orthonormal moving frame on En, or,

equivalently, that (e1, . . . , en) is an orthonormal frame based at x.

Remark. We will usually work with orthonormal (moving) frames only and thus just refer

to them as (moving) frames, omitting the adjective.

Note that, as mentioned above, we do not require that a moving frame should arise

naturally from some coordinate system. Indeed, this is one of the strengths of the method



Chapter 2. Cartan geometry 31

of moving frames, as it can be applied to regions that cannot be included in a coordinate

system [Spi99a, p. 260].

Considering the vectors (e1, . . . , en) as columns of a matrix A ∈ SO(n) shows that

there is a bijection between the set of orthonormal frames on En and the Euclidean group

E(n). Thus E(n) is also called the orthonormal frame bundle of En and denoted F(En).

The projection map π : E(n)→ En defined by

π(x; e1, . . . , en) = x

furnishes a description of E(n) as a principal bundle over En with fibre group SO(n).

Using the isomorphisms TxEn ∼= En, we can think of the components x, e1, . . . , en of

a moving frame as En-valued functions on F(En). Their exterior derivatives are then

given by the differentials as such functions; and they map TfF(En) → TxEn for any

f = (x; e1, . . . , en) ∈ F(En) (see [Cle17, p. 76] for details).

In particular, as the set (e1, . . . , en) forms a basis of TxEn for any frame f =

(x; e1, . . . , en), the 1-forms dx, de1, . . . ,den can be written as linear combinations of

(e1, . . . , en), defining scalar-valued differentiable 1-forms (ωi, ωij) on F(En):

dx = eiω
i, (2.1)

dei = ejω
j
i , 1 ≤ i, j ≤ n. (2.2)

Definition 2.2. The 1-forms (ω1, . . . , ωn) are called dual forms to (e1, . . . , en). The

set (ωi) of dual forms is called the coframe associated to the frame f. The 1-forms (ωij),

1 ≤ i, j ≤ n, are called connection forms in the moving frame f.

Remark. Since the 1-forms (ω1, . . . , ωn) satisfy

ωi(ej) = δij , 1 ≤ i, j ≤ n
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for any f ∈ F(En), we see that, at every point x, the basis (ωi) of T ∗xEn is indeed dual to

the basis (ei) of TxEn, hence the name.

Moreover, from (2.2) we see that since dei(vp) is the directional derivative of ei in the

direction vp, the scalar ωji (vp) can be interpreted as the rate at which ei rotates toward

ej(p) as we move along a curve with tangent vector vp [Spi99a, p. 260], eventually giving

rise to a connection ∇ and thus the term ‘connection forms’.

The connection forms (ωij) are not fully independent from each other. Indeed, the

vectors e1, . . . , en ∈ Rn are orthonormal with respect to the inner product 〈· , ·〉, that is,

〈ei, ej〉 = δij , 1 ≤ i, j ≤ n.

We thus obtain

〈dei, ej〉+ 〈ei,dej〉 = 0,

which implies that the connection forms (ωij) are antisymmetric in their indices i and j,

i. e.,

ωij = −ωji , 1 ≤ i, j ≤ n.

However, this is not the only constraint on the dual and connection forms, for they

also necessarily satisfy certain integrability conditions, which are the topic of the following

section.

Meanwhile, it is important to note that the dual and connection forms (ωi, ωij)

are defined relative to the choice of frame (e1, . . . , en) for TxEn. Still, the dual forms

(ω1, . . . , ωn) form a basis for the 1-forms on En. We can rewrite (2.1) and (2.2) as


ω1

...

ωn

 = A−1 dx,
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
ω1

1 · · · ω1
n

...
...

ωn1 · · · ωnn

 = A−1 dA,

where the columns of A ∈ SO(n) are given by e1, . . . , en [Cle17, p. 77].

2.2 The Cartan structure equations

The key property of the method of moving frames is that the derivatives of the dual and

connection forms can be expressed in terms of the dual and connection forms themselves.

This fact is reflected in the Cartan structure equations (or structure equations of Rn).

Proposition 2.3. Let f = (x; e1, . . . , en) be a moving frame on En, (ωi) its coframe and

(ωij) the connection forms in f. Then

dωi = −ωij ∧ ωj , (2.3)

dωij = −ωik ∧ ωkj , 1 ≤ i, j ≤ n. (2.4)

The structure equations can be derived by differentiating (2.1) and (2.2) and applying

the Leibniz rule [Cle17, p. 80]. Intuitively, the defining equations for the dual and

connection forms express how the moving frame f varies along a curve x(t). Then, indeed,

the structure equations are simply a consequence of the fact that d2 = 0 [dCar94, p. 79].

Proof. We interpret ei as an En-valued 0-form. From (2.1) we obtain

0 = d2x = dei ∧ωi + ei ∧ dωi = eiω
i
j ∧ ωj + ei dωi,

which yields (2.3). Similarly, (2.2) implies that

0 = d2ei = dej ∧ωji + ej ∧ dωji = ekω
k
j ∧ ω

j
i + ek dωki ,
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which gives (2.4).

It is interesting to ask about the extent to which the structure equations are sufficient

conditions. This is the content of the following proposition (see also Section 4.2.2).

Proposition 2.4 ([Spi99a, Prop. 7.2]). Let (ωij) be a matrix of 1-forms satisfying the

second structure equation (2.4). Then the following statements are true:

1. In a neighbourhood of 0, for any A0 ∈ Rn×n there exists a matrix-valued function

A = (Aij) such that

dAij = −ωik ∧Akj ,

A(0) = A0.

2. In a neighbourhood of 0, for any basis (e1,0, . . . , en,0) of En there exists a moving

frame (e1, . . . , en) such that it and its coframe (ω1, . . . , ωn) satisfy

dωi = −ωik ∧ ωkj ,

ei(0) = ei,0.

Remark. The second structure equation (2.4) also expresses the fact that En is flat, for

on a general Riemannian manifold Mn the second structure equation reads

dωij = −ωik ∧ ωkj + Ωi
j .

The 2-forms Ωi
j , called curvature forms, vanish if and only if the Riemannian curvature

tensor R does, i. e., Mn is locally isometric to En [Spi99a, Thm. 7.6].
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2.3 The Maurer–Cartan form

We can express the Cartan structure equations in an even more compact form. To that

end, we consider F(En) again as the Lie group E(n) and define the left translation map

Lh : E(n)→ E(n) for any fixed element h ∈ E(n) by

Lh(g) = hg.

Its differential is a map (dLh)g = (Lh)∗ : TgE(n)→ ThgE(n) for any g ∈ E(n).

Definition 2.5. The Maurer–Cartan form is the e(n)-valued 1-form ω on E(n) defined

by

ω(v) = (Lg−1)∗(v)

for any g ∈ E(n), v ∈ TgE(n).

Remark. Recall that TIE(n) = e(n), so that (Lg−1)∗ maps TgE(n)→ e(n). The Maurer–

Cartan form is left-invariant, i. e., L∗hω = ω for any h ∈ E(n) [Cle17, p. 81].

Equivalently, we can define ω extrinsically via the identity map g : E(n) → E(n),

which represents elements of the Lie group E(n) as matrices. For any f = (x; e1, . . . , en)

we have

g(f) =

1 0 · · · 0

x e1 · · · en

 .
Then we can write

ω = g−1 dg . (2.5)

Remark. Here, it is crucial to think of E(n) being realised as a matrix group for the

product in (2.5) to make sense [Cle17, p. 82].

While the previous definitions can be made for other Lie groups than just E(n), we

have the following explicit expression for the Maurer–Cartan form on E(n) in terms of



Chapter 2. Cartan geometry 36

the dual and connection forms on F(En):

ω =



0 0 · · · 0

ω1 ω1
1 · · · ω1

n

...
...

...

ωn ωn1 · · · ωnn


.

As a result, the 1-forms (ωi, ωij) are collectively referred to as Maurer–Cartan forms as

well. Moreover, the expression shows that, indeed, the antisymmetry of the connection

forms implies that for any v ∈ TE(n) we have ω(v) ∈ e(n).

Proposition 2.6. The Cartan structure equations (2.3) and (2.4) are equivalent to the

Maurer–Cartan equation,

dω = −ω ∧ ω. (2.6)

Remark. The term ω ∧ ω in (2.6) does not vanish, as the exterior product of matrix-

valued 1-forms is not antisymmetric. Instead, for a matrix-valued k-form α = (αij) and

a matrix-valued `-form β = (βij), their exterior product γ = α ∧ β as a matrix-valued

(k + `)-form is given by

γij = αik ∧ βkj .

In other words, the product α ∧ β has the structure of the usual matrix product, but the

multiplication of individual terms is done using the exterior product ∧.

If we choose a particular orthonormal frame field on En, that is, a section σ : En →

F(En) of the orthonormal frame bundle π : F(En)→ En, all the pullbacks ω̄i := σ∗ωi,

ω̄ij := σ∗ωij , 1 ≤ i, j ≤ n, are 1-forms on En. Arranging e1(x), . . . , en(x) column-wise into

a matrix field A(x) for x ∈ En, we obtain


ω̄1

...

ω̄n

 = A(x)−1 dx,
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
ω̄1

1 · · · ω̄1
n

...
...

ω̄n1 · · · ω̄nn

 = A(x)−1 dA(x) .

Writing

g(x) =

1 0

x A(x)

 ,
we can define a ‘pulled-back’ Maurer–Cartan form ω̄,

ω̄ :=



0 0 · · · 0

ω̄1 ω̄1
1 · · · ω̄1

n

...
...

...

ω̄n ω̄n1 · · · ω̄nn


,

which satisfies

ω̄ = g(x)−1 dg(x) .

However, note that while the pullbacks of the dual forms are linearly independent on En,

just like both the dual and connection forms on the frame bundle F(En), the pullbacks

of the connection forms can be expressed as linear combinations of the pulled-back dual

forms [Cle17, p. 83].



Chapter 3

Compensated compactness theory

The basic idea behind the concept of compensation is that for some partial differential

equations, their regularity theory can be improved beyond what one would normally

expect if some additional structure is present. Often, the PDE in question is non-linear

and stems from geometry. The first result in this direction was given by Wente [Wen69]

in the context of parametrised constant mean curvature surfaces, who realised that if the

right hand side of Poisson’s equation has the structure of a Jacobian determinant,

∇⊥a · ∇b = (∂1a)(∂2b)− (∂2a)(∂1b),

where a, b ∈W 1,2(D2) and D2 ⊂ R2 is the open unit disk, then ∇⊥a · ∇b does not only

belong to L1(D2), but the solution u of Poisson’s equation is bounded and its gradient is

square-integrable. In fact, it is also true that D2u ∈ L1(D2) [CLMS93]. More results in

this direction followed, and they were systemised by the introduction of the Hardy space

H1, a subspace of L1 [Mül90; CLMS93; Sem94]. A very successful application of these

insights is the regularity theory of weakly harmonic maps [Hél02; Riv07].

Compensated compactness, meanwhile, refers to a concept which sometimes allows to

prove weak continuity of a certain non-linear functional using additional control on the

38
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sequence of arguments. In that sense the latter compensates for the lack of compactness,

allowing conclusions analogous to those of a compactness argument. For example, the

inner product of vector fields turns out to be weakly continuous whenever their divergence

and rotational curl, respectively, are controlled, thus enabling one to pass a sequence

of products to a weak limit which is the product of the weak limits of the individual

sequences.

This technique was pioneered by Murat and Tartar’s div-curl lemma [Mur78; Mur79;

Tar79; Mur81; Tar83; Tar85] and has enjoyed considerable popularity [Eva90; CLMS93;

BCM09; CDM11]. Obviously, this is particularly useful when considering a sequence of

approximating solutions to a partial differential equation to obtain a limit solution to the

equation. In particular, it does not require the system in question to be of a specific type

(such as elliptic or hyperbolic).

Indeed, the Gauss–Codazzi–Ricci equations, which have no type, have recently been

cast in a compensated compactness framework [CSW10a; CSW10b; Chr12; CHW15;

Che15; CS15] and an intrinsic div-curl lemma on Riemannian manifolds of any dimension

n has been used to prove weak rigidity for the Gauss–Codazzi–Ricci equations and

W 2,p-isometric immersions [CL18]. In particular, the critical case n = p = 2 has been

treated in the latter, using a corresponding ‘critical’ div-curl lemma [CDM11] based on a

Lipschitz truncation argument. While the rigidity result is equivalent to the existence of

local isometric immersions in the smooth category, in the lower regularity case this is not

automatic.

In contrast, our approach in Chapter 4 is not based on the div-curl lemma, but

instead on Rivière’s Coulomb gauge construction [Riv07] following Uhlenbeck’s work

[Uhl82]. Essentially, this can be understood as a non-linear decomposition of Ω ∈

L2(D2, so(m)⊗ R2) into ξ ∈W 1,2(D2, so(m)) and P ∈W 1,2(D2,SO(m)) via

∇⊥ξ = P−1∇P + P−1ΩP.
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It turns out that, in fact, for any Ω satisfying an additional compatibility condition we

must have that ξ = 0, so that P solves the corresponding Pfaffian system ∇P + ΩP = 0.

While Rivière’s original proof is based on Wente’s inequality, Theorem 3.1, and the

Poincaré lemma, Schikorra later gave a proof using variational methods [Sch10].

3.1 Wente’s inequality

Wente’s result originally appeared in the context of parametrised constant mean curvature

surfaces [Wen80; BC84]. Since then, it has found applications and inspired similar results

in many other areas of PDE, such as the original proof of Lemma 3.5.

Theorem 3.1 ([Wen69; see also BC84; Hél02; GM12]). Let a, b ∈W 1,2(D2) and suppose

that u ∈W 1,2
0 (D2) is a weak solution of

−∆u = ∇⊥a · ∇b in D2,

u = 0 on ∂D2.

Then u ∈ C0(D2) ∩W 1,2(D2) and there exists a constant C > 0 such that

‖u‖L∞ + ‖∇u‖L2 ≤ C ‖∇a‖L2 ‖∇b‖L2 .

Proof. We sketch the proof from Giaquinta–Martinazzi’s book [GM12, Thm. 7.8].

Assume that a, b ∈ C∞(D2). Note that by an integration by parts, followed by

Hölder’s and Young’s inequalities, it suffices to prove the estimate

‖u‖L∞ ≤ C ‖∇a‖L2 ‖∇b‖L2 .
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Extend a, b to functions ã, b̃ ∈ C∞0 (R2) with compact support such that

‖∇ã‖L2(R2) ≤ C ‖∇a‖L2(D2) ,

‖∇b̃‖L2(R2) ≤ C ‖∇b‖L2(D2)

for some constant C and define

ũ = ψ ∗ (∇⊥ã · ∇b̃),

where ψ(x) = 1
2π log 1

|x| is a fundamental solution of Laplace’s equation. Then ∆ũ = ∆u

in D2.

We introduce polar coordinates (r, θ). Using

∂r = cos θ ∂1 + sin θ ∂2,

∂θ = −r sin θ ∂1 + r cos θ ∂2,

we find

∇⊥ã · ∇b̃ = 1
r

(∂rã)(∂θ b̃)−
1
r

(∂θã)(∂r b̃)

= 1
r
∂r(ã ∂θ b̃)−

1
r
∂θ(ã ∂r b̃).

Therefore,

ũ(0) = 1
2π

∫
R2

log 1
|x|

(∇⊥ã · ∇b̃)(x) dx

= 1
2π

∫ ∞
0

∫ 2π

0
log 1

r

(
∂r(ã ∂θ b̃)− ∂θ(ã ∂r b̃)

)
dθ dr

= 1
2π

∫ ∞
0

∫ 2π

0
log 1

r
∂r(ã ∂θ b̃) dθ dr

= 1
2π

∫ ∞
0

1
r

∫ 2π

0
ã ∂θ b̃dθ dr .
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Define

¯̃a(r) =
∫ 2π

0
ã(r, σ) dσ .

Then we have ∫ 2π

0
ã ∂θ b̃dθ =

∫ 2π

0
(ã− ¯̃a) ∂θ b̃dθ

for any r > 0, which implies that

∣∣∣∣∫ 2π

0
ã ∂θ b̃dθ

∣∣∣∣ ≤ ∥∥ã− ¯̃a
∥∥
L2(0,2π) ‖∂θ b̃‖L2(0,2π) ≤ ‖∂θã‖L2(0,2π) ‖∂θ b̃‖L2(0,2π),

using the Poincaré inequality, whereby

|ũ(0)| ≤ 1
2π

∫ ∞
0
‖∂θã‖L2(0,2π) ‖∂θ b̃‖L2(0,2π)

1
r

dr

≤ 1
2π ‖∇ã‖L2(R2) ‖∇b̃‖L2(R2)

≤ C0 ‖∇a‖L2(D2) ‖∇b‖L2(D2)

with C0 = C2

2π . By translation invariance, we thus obtain

‖ũ‖L∞ ≤ C0 ‖∇a‖L2 ‖∇b‖L2 .

Since v := ũ− u is harmonic, the maximum principle implies

sup
D2
|ũ− u| ≤ sup

∂D2
|ũ| ≤ ‖ũ‖L∞ ,

so that

sup
D2
|u| ≤ 2 ‖ũ‖L∞ ≤ 2C0 ‖∇a‖L2 ‖∇b‖L2 .

The general case follows by a standard approximation argument and Lp-estimates.
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3.2 Uhlenbeck–Rivière decomposition

This non-linear decomposition result is key to our treatment of Pfaffian systems with L2-

coefficients. Instead of the original proof, we sketch Schikorra’s variational construction

[Sch10] of the Uhlenbeck–Rivière Coulomb gauge [Uhl82; Riv07], which is inspired by a

similar technique in Hélein’s moving frame method [Hél02], without requiring a smallness

condition on Ω.

Rivière’s original proof is also summarised in Müller–Schikorra [MS09], and a more

accessible exposition of Uhlenbeck’s work can be found in Wehrheim’s book [Weh04].

Moreover, Goldstein and Zatorska-Goldstein give an overview of the developments and

generalisations that followed Rivière’s work [GZ18].

In the following, let E = EΩ denote the functional on W 1,2(U,SO(m)) defined by

E(Q) =
∫
U

∣∣∣Q−1∇Q−Q−1ΩQ
∣∣∣2 dx, Q ∈W 1,2(U,SO(m)).

Lemma 3.2 ([Sch10, Lemma 2.2; GM12, Lemma 10.49]). Let U ⊂ Rn be a bounded

regular domain and let Ω ∈ L2(U, so(m)⊗∧1Rn). Then there exists P ∈W 1,2(U,SO(m))

minimising the functional E on W 1,2(U,SO(m)). Moreover,

‖∇P‖L2 ≤ 2 ‖Ω‖L2 ,∥∥∥P−1∇P − P−1ΩP
∥∥∥
L2
≤ ‖Ω‖L2 .

Proof. The constant matrix field I = (δij) belongs to the admissible set. Therefore, there

exists a minimising sequence {Qk} ⊂W 1,2(U,SO(m)) such that

E(Qk) ≤ E(I) = ‖Ω‖2L2

for all k ∈ N. Since, for any k, Qk is orthogonal almost everywhere, Qk is bounded a. e.
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and

|∇Qk| =
∣∣∣QTk∇Qk∣∣∣ ≤ ∣∣∣QTk∇Qk −QTk ΩQk

∣∣∣+ |Ω|
a. e., so that

‖∇Qk‖2L2 ≤ 2
(
E(Qk) + ‖Ω‖2L2

)
≤ 4 ‖Ω‖2L2 .

Up to a subsequence, we can thus assume that {Qk} converges weakly in W 1,2 to

P ∈ W 1,2(U, gl(m)), strongly in L2, and pointwise almost everywhere. Thus P TP = 1

and detP = 1, so that P (x) ∈ SO(m) for a. e. x ∈ U .

Let ΩP = P T∇P − P TΩP and denote the Hilbert–Schmidt inner product for tensors

by 〈·, ·〉. A computation then shows that

E(Qk) =
∫
U

∣∣∣∇(P TQk)
∣∣∣2 + 2

∫
U
〈∇(P TQk),ΩPP TQk〉+ E(P )

≥
∫
U

∣∣∣∇(P TQk)
∣∣∣2 + 2

∫
U
〈∇(P TQk),ΩPP TQk〉+ inf

Q
E(Q).

One can then show that the second integral above converges to zero as k →∞. Therefore,

since {Qk} is a minimising sequence, P TQk must converge to I in W 1,2, so that Qk

converges to P , which implies that P is minimal.

Lemma 3.3 ([Sch10, Lemma 2.4; GM12, Lemma 10.50]). Let U ⊂ Rn be a bounded regular

domain. Critical points P ∈W 1,2(U,SO(m)) of the functional E on W 1,2(U,SO(m)) with

Ω ∈ L2(U, so(m)⊗ ∧1Rn) satisfy

div(P−1∇P − P−1ΩP ) = 0 in U,

and, denoting the unit normal to ∂U by ν,

ν · (P−1∇P − P−1ΩP ) = 0 on ∂U.

Depending on the regularity of P−1∇P − P−1ΩP , these equations have to be understood

in the distributional sense.
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Proof. Let P be a critical point of E(Q) and consider the perturbation

Pε = P eεϕα = P + εϕPα+ o(ε) ∈W 1,2(U,SO(m)),

where ϕ ∈ C∞(Ū), α ∈ so(m) and ε small. Geometrically speaking, this uses the fact

that so(m) = TISO(m). Then we have that

P Tε = P T − εϕαP T + o(ε),

∇Pε = ∇P + εϕ∇Pα+ ε∇ϕPα+ o(ε),

so that, with ΩP = P T∇P − P TΩP , we obtain

ΩPε = ΩP + εϕ(ΩPα− αΩP ) + ε∇ϕα+ o(ε).

Since ΩP is antisymmetric, we have that

m∑
i,j=1

(ΩP )i`j(ΩPα− αΩP )i`j = 0

almost everywhere, 1 ≤ ` ≤ n. Therefore,

∣∣∣ΩPε
∣∣∣2 =

∣∣∣ΩP
∣∣∣2 + 2ε(ΩP )ijαij∇ϕ+ o(ε),

which gives

0 = d

dε

∣∣∣∣
ε=0

E(Pε) =
∫
U

(ΩP )ijαij∇ϕ

for any ϕ ∈ C∞(Ū) and α ∈ so(m). Once we define αij = δisδ
t
j − δsjδ

i
t for arbitrary

1 ≤ s, t ≤ m, we obtain

∫
U

(P−1∇P − P−1ΩP ) · ∇ϕ = 0, ϕ ∈ C∞(Ū , gl(m)),

proving the claim.
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From the Hodge–Morrey decomposition of k-forms in L2 [GM12, Thm. 10.66], we

have the following decomposition of L2-vector fields:

Proposition 3.4 ([GM12, Cor. 10.70]). Let U ⊂ R2 be a contractible bounded regular

domain. Then any vector field X ∈ L2(U) can be decomposed as

X = ∇p+∇⊥ξ,

where p ∈W 1,2
0 (U) and ξ ∈W 1,2(U). If in addition it holds that divX = 0 then p ≡ 0.

Together, Lemmas 3.2 and 3.3 and Proposition 3.4 immediately imply Rivière’s lemma

and thus the existence of an Uhlenbeck–Rivière decomposition.

Lemma 3.5 ([Riv07, Lemma A.3; see also Sch10, Thm. 2.1; GM12, Thm. 10.48]). Let

U ⊂ R2 be a contractible bounded regular domain and let Ω ∈ L2(U, so(m)⊗∧1R2). Then

there exist ξ ∈W 1,2
0 (U, so(m)) and P ∈W 1,2(U,SO(m)) such that

P−1∇P + P−1ΩP = ∇⊥ξ,

‖∇ξ‖2L2 + ‖∇P‖2L2 ≤ 5 ‖Ω‖2L2 .



Chapter 4

Regularity theory for

two-dimensional Pfaffian systems

This chapter is devoted to proving optimal regularity results for the fundamental theorem

of surface theory and the related two-dimensional Pfaffian system. In particular, in

Theorem 4.25 we prove that a Pfaffian system over a simply connected domain with

antisymmetric coefficients in the critical space L2 has a unique solution in W 1,2
loc as long

as the coefficients satisfy a compatibility condition. To this end, in a novel approach we

utilise the additional structural assumption on the coefficients, that is, their antisymmetry,

to cast the problem in the Coulomb gauge à la Uhlenbeck–Rivière and thus extend the

previously known results due to Hartman–Wintner [HW50a] and Mardare [Mar05] on

weak solutions of Pfaffian systems. We then apply the optimal regularity theorem for

Pfaffian systems to improve the fundamental theorem of surface theory to its optimal

regularity case in Theorem 4.26. The latter is then used to prove Theorem 4.29, which

states that the space of W 2,2
loc -immersions is weakly compact.

In addition to the general notation laid out in Chapter 1, we make some further

arrangements.
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Throughout the chapter, let U be an open, connected and simply connected subset

of R2. A continuously differentiable mapping θ : U → R3 is called an immersion if the

vectors ∂iθ(y), i = 1, 2, are linearly independent for all y ∈ U .

We write the space of so(n)-valued 1-forms on R2 as so(n)⊗ ∧1R2. The components

of Ω ∈ so(n)⊗ ∧1R2 are denoted by Ωi, i = 1, 2, such that Ωi ∈ so(n).

Therefore, we remark that a Pfaffian system of the form ∇P = PΩ as studied in this

chapter can be understood in the following way: We interpret Ω ∈ so(m) ⊗ ∧1R2 as a

tensor Ωi
j` that is antisymmetric in i and j. The above equation then reads, for ` = 1, 2,

∂`P = PΩ`,

that is, assuming the summation convention,

∂`P
i
j = P ikΩk

j`.

We write D(U) for the space of smooth functions with compact support contained in

U and D′(U) for the space of distributions over U . As usual, we denote the Lebesgue

spaces by Lp(U), 1 ≤ p ≤ ∞, and the Sobolev spaces of (equivalence classes of) weakly

differentiable functions by W k,p(U), k = 0, 1, . . . , 1 ≤ p ≤ ∞. The closure of D(U) in

W 1,2(U) is denoted by W 1,2
0 (U). Furthermore, we write

W k,p
loc (U) = {T ∈ D′(U) : T ∈W k,p(V ) for all open sets V ⊂⊂ U}.

Whenever X is a finite-dimensional space, let D(U,X), Lp(U,X), and W k,p(U,X) des-

ignate the spaces of X-valued objects whose components belong to D(U), Lp(U), and

W k,p(U), respectively. We shall omit the additional symbol if it is implied by the context.

In passing, we note that the space W 1,2(B) ∩ L∞(B) is an algebra for all open balls

B ⊂⊂ U , so that fg ∈W 1,2
loc (U) ∩ L∞loc(U) whenever f, g ∈W 1,2

loc (U) ∩ L∞loc(U).
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4.1 Moving frames for hypersurfaces

In this section we consider moving frames in the special case of two-dimensional subman-

ifolds of three-space, that is, hypersurfaces in E3.

Let U ⊂ R2 be open, connected, and simply connected and let θ : U → E3 be a

smooth immersion whose image Σ = θ(U) is a regular surface. In particular, the rank of

the differential Dθ is two at every point. We choose a frame on E3 along Σ by defining a

lifting θ̃ : U → E(3),

θ̃(u) = (θ(u); e1(u), e2(u), e3(u)),

such that for each u ∈ U , (e1(u), e2(u), e3(u)) is an oriented orthonormal basis of Tθ(u)E3.

We have, for any u ∈ U ,

(π ◦ θ̃)(u) = θ(u) ∈ E(3)/SO(3) ∼= E3,

where π : E(3)→ E3 is the projection map (cf. Section 2.1). We then let θ̃ be adapted,

that is, e3(u) is orthogonal to Tθ(u)Σ.

As before, associated to the frame (e1, e2, e3) on E3 we have dual and connection

1-forms (ωi, ωij), 1 ≤ i, j ≤ 3 on F(E3). Recall that they have the properties that

ωi(ej) = δij ,

ωji = −ωij , 1 ≤ i, j ≤ 3,

and they satisfy the Cartan structure equations,

dω1 = −ω1
2 ∧ ω2 − ω1

3 ∧ ω3, (4.1)

dω2 = −ω2
1 ∧ ω1 − ω2

3 ∧ ω3, (4.2)

dω3 = −ω3
1 ∧ ω1 − ω3

2 ∧ ω2, (4.3)

dω1
2 = −ω1

3 ∧ ω3
2, (4.4)
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dω1
3 = −ω1

2 ∧ ω2
3, (4.5)

dω2
3 = −ω2

1 ∧ ω1
3. (4.6)

Furthermore, the Maurer–Cartan form on F(E3) is given by

ω =



0 0 0 0

ω1 0 ω1
2 ω1

3

ω2 ω2
1 0 ω2

3

ω3 ω3
1 ω3

2 0


and the Cartan structure equations are equivalent to the Maurer–Cartan equation

dω = −ω ∧ ω. (4.7)

For later use, we state the following general technical lemma due to Cartan.

Lemma 4.1 (Cartan’s lemma [dCar94, Lemma 5.1; see also Cle17, Lemma 2.49]).

Let α1, . . . , αr, r ≤ n be linearly independent differentiable 1-forms on a manifold Mn.

Suppose that β1, . . . , βr are differentiable 1-forms on M such that

r∑
i=1

αi ∧ βi = 0.

Then there exist differentiable functions cij : M → R, 1 ≤ i, j ≤ r such that cij = cji and

βi = cij α
j .

A direct consequence of Cartan’s lemma is that a set of antisymmetric 1-forms (ωij)

satisfying the first structure equation (2.3) is unique.

Lemma 4.2 ([dCar94, Lemma 5.2]). Let U ⊂ Rn and let ω1, . . . , ωn be linearly inde-

pendent differential 1-forms in U. Suppose that there exists a set of differential 1-forms



Chapter 4. Regularity theory for two-dimensional Pfaffian systems 51

(ωij), 1 ≤ i, j ≤ n such that

ωij = −ωji ,

dωi = −ωij ∧ ωj .

Then the set (ωij) is unique.

Let us return to the hypersurface case. Using the lifting θ̃, we can pull the dual and

connection forms (ωi, ωij) back to U . We will denote them by (ω̄i, ω̄ij) = (θ̃∗ωi, θ̃∗ωij).

Immediately, we have

Proposition 4.3 ([Cle17, Prop. 4.18; see also dCar94, p. 82]). Let U ⊂ R2 be open,

connected, and simply connected and let θ : U → E3 be an immersion. Moreover, suppose

that (e1, e2, e3) is an adapted moving frame along Σ = θ(U) with dual and connection

forms (ω̄i, ω̄ij), 1 ≤ i, j ≤ 3 on U . Then (ω̄i, ω̄ij) satisfy the Cartan structure equations

and furthermore, we have that (ω̄1, ω̄2) form a basis for the 1-forms in U and

ω̄3 = 0.

From ω̄3 = 0 and the structure equation (4.3) we immediately obtain

0 = dω̄3 = −ω̄3
1 ∧ ω̄1 − ω̄3

2 ∧ ω̄2.

By Cartan’s lemma, there exist differentiable functions hij = hji, 1 ≤ i, j ≤ 2 on U such

that ω̄3
1

ω̄3
2

 =

h11 h12

h12 h22


ω̄1

ω̄2

 . (4.8)

Geometrically, from our interpretation of the connection forms (ωij) (see page 32) we can

infer that hij can be interpreted as the rate at which e3 rotates towards ei if we move in

the direction ej .
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Moreover, the first two structure equations (4.1) and (4.2) imply, together with ω̄3 = 0,

that

dω̄1 = −ω̄1
2 ∧ ω̄2,

dω̄2 = ω̄1
2 ∧ ω̄1.

Writing dω̄1 = aω̄1 ∧ ω̄2, dω̄2 = bω̄1 ∧ ω̄2 for some real-valued functions a, b we obtain

aω̄1 ∧ ω̄2 = −ω̄1
2 ∧ ω̄2,

bω̄1 ∧ ω̄2 = −ω̄1 ∧ ω̄1
2.

Therefore, ω̄1
2 is completely determined by ω̄1, ω̄2:

ω̄1
2 = −aω̄1 − bω̄2.

Definition 4.4. The 1-form ω̄1
2 is called Levi–Civita connection form.

Remark. The reason for the name ‘Levi–Civita form’ will become apparent later.

It turns out that the Gauss curvature is determined by the Levi–Civita connection

form ω̄1
2. Since ω̄1

2 is itself determined by ω̄1, ω̄2, this implies that the Gauss curvature

belongs to the inner geometry of the surface, confirming Gauss’ remarkable theorem (see

do Carmo [dCar94, p. 84] and Agricola–Friedrich [AF02, Section 5.4] for details).

So far, we have used the first three structure equations. The remaining equations

(4.4) to (4.6) read

dω̄1
2 = −ω̄1

3 ∧ ω̄3
2, (4.9)

dω̄1
3 = −ω̄1

2 ∧ ω̄2
3, (4.10)

dω̄2
3 = −ω̄2

1 ∧ ω̄1
3. (4.11)



Chapter 4. Regularity theory for two-dimensional Pfaffian systems 53

Definition 4.5. We call (4.9) the Gauss equation and (4.10) and (4.11) the Codazzi–

Mainardi equations.

Continuing our quest to formulate the basic geometric quantities of the hypersurface

Σ in the language of moving frames and differential forms, we define another product

operation on forms.

Definition 4.6. Let α, β be 1-forms on a manifold M . Then their symmetric product is

a symmetric bilinear form αβ : TM × TM → R defined by

αβ(v, w) = 1
2(α(v)β(w) + α(w)β(v)), v, w ∈ TM.

The square α2 of a 1-form α is meant to be the symmetric product of α with itself.

We then have concise descriptions of the first and second fundamental forms of the

surface Σ.

Definition 4.7. The first fundamental form of Σ is the quadratic form I : TU → R

defined by

I(v) = 〈dθ(v),dθ(v)〉, v ∈ TuU.

From the definition of the dual forms (2.2), we find that the first fundamental form

can be written as

I = (ω̄1)2 + (ω̄2)2.

Remark. By polarisation, we can think of I as a symmetric positive definite bilinear form

on TU × TU [Cle17, p. 119].

Definition 4.8. The Gauss map N : Σ→ S2 of Σ is defined by

N(θ(u)) = e3(u), u ∈ U.

The differential dN = e1ω̄
1
3 + e2ω̄

2
3 of the Gauss map is called shape operator of Σ.
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Remark. As such, the Gauss map is only well-defined up to a sign. Once we have fixed

orientations on U and R3, however, we can choose a moving frame (e1, e2, e3) so that

(e1, e2) is in the orientation of U and (e1, e2, e3) is in the orientation of R3. Then the

Gauss map is well-defined and independent of our choice of moving frame [dCar94, p. 83].

Definition 4.9. The second fundamental form of Σ is the quadratic form II : TU → R

defined by

II(v) = −〈de3(v), dθ(v)〉, v ∈ TuU.

The definition of the dual and connection forms then implies that, using (4.8),

II = ω̄3
1ω̄

1 + ω̄3
2ω̄

2

= h11(ω̄1)2 + 2h12ω̄
1ω̄2 + h22(ω̄2)2.

The next geometric object we will write in terms of moving frames is the covariant

derivative.

Definition 4.10. Given two vector fields v, w on Σ, we define the covariant derivative of

w with respect to v as the tangential part of the Euclidean directional derivative dv(w),

∇vw = dw(v)− 〈dw(v), e3〉e3.

Then the induced Levi–Civita connection ∇ on Σ is given once we define the TU -valued

1-forms ∇w via

∇w(v) = ∇vw.

We have that

∇ve1 = de1(v) + 〈de1(v), e3〉e3 = e2ω̄
2
1(v),

∇ve2 = de2(v) + 〈de2(v), e3〉e3 = e1ω̄
1
2(v),
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so that, writing the vector field w as w = w1e1 +w2e2 for some functions w1, w2 : U → R,

we obtain

∇vw = (dw1(v) + ω̄2
1(v)) e1 + (dw2(v) + ω̄1

2(v)) e2.

Thus the covariant derivative is determined by the Levi–Civita connection form ω̄1
2,

which also explains its name. Recall that ω̄1
2 only depends on the dual forms ω̄1, ω̄2 and

therefore the covariant derivative is a quantity belonging to the inner geometry of the

surface.

Remark. The covariant derivative ∇ thus defined has the usual properties of a covariant

derivative [AF02, Thm. 5.13].

Finally, we define the curvature tensor of the surface.

Definition 4.11. The curvature tensor of Σ is a map R : TU × TU × TU → TU defined

by

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

where u, v, w are vector fields and [u, v] denotes the commutator of u and v.

As for the covariant derivative, we can write the curvature tensor in terms of a moving

frame, its coframe and the Levi–Civita connection form [AF02, Thm. 5.16]:

R(u, v)w = dω̄2
1(u, v)(e2ω

1(w)− e1ω
2(w)).

Since the first fundamental form is positive definite, we can represent the second

fundamental form as a symmetric bilinear form II on TU × TU by the self-adjoint shape

operator S = de3, that is,

II(v, w) = I(v, S(w)).

The covariant exterior derivative of the shape operator S : TU → TU (or any endomorph-
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ism of TU , for that matter) is the 2-form ∇S : TU × TU → TU given by

∇S(v, w) = ∇v(S(w))−∇w(S(v))− S([v, w]),

where v, w are vector fields.

We then have

Proposition 4.12 ([AF02, Thm. 5.17]). The shape operator S, the curvature tensor R

and the second fundamental form II satisfy the Gauss and Codazzi–Mainardi equations,

R(u, v)w = II(v, w)S(u)− II(u,w)S(v),

∇S = 0,

for any vector fields u, v, w.

4.2 Smooth theory and previous regularity results

As an introduction to Pfaffian systems and the fundamental theorem of surface theory, in

this section we review the classical smooth case. We also summarise the previous efforts

of Hartman and Wintner [HW50a; HW50b] and Mardare [Mar03b; Mar05; Mar07] in the

regularity theory of these equations.

4.2.1 Pfaffian systems

In order not to have to deal with too much abstract theory of exterior differential systems,

in this and the following subsections on the smooth theory we follow closely the nice

exposition by Agricola and Friedrich [AF02].

Suppose that we are given m − k smooth functions f1, . . . , fm−k on Rm such that

their differentials df1, . . . ,dfm−k are linearly independent. Then the level set

{x ∈ Rm : f1(x) = c1, . . . , fm−k(x) = cm−k}
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is a k-dimensional manifold with tangent bundle

{ν ∈ TRm : df1(ν) = 0, . . . ,dfm(ν) = 0}.

Equivalently, we can describe these k-dimensional subspaces of TRm as the zero level

sets of any set of 1-forms {ω1, . . . , ωm−k} defined by ωi = hji dfj for any gl(m− k)-valued

function h = (hji ).

We are thus interested in the compatibility conditions that allow the recovery of

a family of k-dimensional manifolds from a set of m − k linearly independent 1-forms

{ω1, . . . , ωm−k} via the exterior differential system

ω1 = · · · = ωm−k = 0.

Definition 4.13. A k-dimensional Pfaffian system (or geometric distribution) on a

manifold Mm is a family

Ek = {Ek(x) ⊂ TxM : x ∈M}

such that the subspaces Ek(x) depend smoothly on x in the sense that for each point

x0 ∈M , there exist a neighbourhood U ⊂M containing x0 and vector fields v1, . . . , vk

on U such that

Ek(x) = span{v1(x), . . . , vk(x)}, x ∈ U.

In the above setting, a Pfaffian system is determined by linearly independent 1-forms

{ω1, . . . , ωm−k} on a manifold Mm via

Ek(x) = {ν ∈ TxM : ω1(ν) = · · · = ωm−k(ν) = 0}.
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Definition 4.14. Let Ek be a k-dimensional Pfaffian system on Mm. A k-dimensional

submanifold Nk ⊂Mm is called an integral manifold of Ek if

TxN = Ek(x), x ∈ N.

Definition 4.15. A k-dimensional Pfaffian system Ek on Mm is called integrable if for

every point x ∈M , there exists an integral manifold through x.

If Ek is defined by {ω1, . . . , ωm−k} as above, an immersed submanifold θ : Nk →Mm

is an integral manifold of Ek precisely when the pullbacks θ∗ω1, . . . , θ∗ωm−k vanish.

4.2.2 Frobenius’ theorem

The main ingredient of the proof of the smooth fundamental theorem of surface theory,

besides the Poincaré lemma for differential forms, is Frobenius’ theorem of involutive

distributions.

Definition 4.16. A k-dimensional Pfaffian system Ek = {Ek(x)} on Mm is called

involutive if for every two vector fields v, w on M such that v(x), w(x) ∈ Ek(x), their

commutator satisfies [v, w](x) ∈ Ek(x).

Theorem 4.17 ([Fro77; AF02, Thm. 4.1]). Let Ek be a k-dimensional distribution on

the manifold Mm defined by m− k linearly independent 1-forms ω1, . . . , ωm−k, that is,

Ek = {ν ∈ TM : ω1(ν) = · · · = ωm−k(ν) = 0}.

Then the following statements are equivalent:

1. Ek is integrable,

2. Ek is involutive,

3. for every x0 ∈M , there exist a neighbourhood U ⊂M containing x0 and 1-forms
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θij, 1 ≤ i, j ≤ m− k on U such that

dωi = θij ∧ ωj , 1 ≤ i ≤ m− k,

4. for all 1 ≤ i ≤ m− k,

dωi ∧ω1 ∧ · · · ∧ ωm−k = 0.

Specifically, we will use a consequence of the implication ‘3. ⇒ 1.’ of Frobenius’

theorem. Indeed, we will later be concerned with generalisations of this type of theorem,

referred to as an existence and uniqueness theorem for Pfaffian systems, to the case of

merely integrable coefficients.

Theorem 4.18 ([AF02, Thm. 4.6]). Let Ω = (ωij) ∈ gl(k)⊗ ∧1Rm be a matrix-valued

1-form defined on a neighbourhood of 0 ∈ Rm and let A0 ∈ GL(k) be an invertible matrix.

Then the following statements are equivalent:

1. In a connected neighbourhood V ⊂ Rm of 0 there exists a matrix-valued function

A = (aij) of size k × k such that

Ω = dA ·A−1,

A(0) = A0.

2. The matrix-valued 1-form Ω satisfies the compatibility condition,

dΩ = Ω ∧ Ω.

If such a function A exists, it is uniquely determined. If in addition Ω ∈ so(k)⊗ ∧1Rm

and A0 ∈ SO(k), then A(x) ∈ SO(k) for any x ∈ V .
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4.2.3 The fundamental theorem of surface theory

We give two formulations of the fundamental theorem. The first is in terms of differential

forms.

Theorem 4.19 (Fundamental theorem of surface theory I [AF02, Thm. 5.11; Cle17,

Thm. 4.39]). Let U ⊂ R2 be open, connected and simply connected. Suppose that four

differential 1-forms ω̃1, ω̃2, ω̃3
1, ω̃3

2 on U are given such that the forms ω̃1 and ω̃2 are

linearly independent and that they define a 1-form ω̃2
1 via

dω̃1 = ω̃2
1 ∧ ω̃2,

dω̃2 = −ω̃2
1 ∧ ω̃1.

Moreover, define ω̃ij = −ω̃ji . Assume that the system (ω̃i, ω̃ji ) of 1-forms satisfies the

structure equations,

0 = ω̃1 ∧ ω̃3
1 + ω̃2 ∧ ω̃3

2,

dω̃1
2 = −ω̃1

3 ∧ ω̃3
2,

dω̃1
3 = −ω̃1

2 ∧ ω̃2
3,

dω̃2
3 = −ω̃2

1 ∧ ω̃1
3.

Then there exists an immersion θ : U → R3 of a surface Σ and an orthonormal frame

of vector fields tangent to Σ such that the induced dual and connection forms (ω̄i, ω̄ji )

coincide with (ω̃i, ω̃ji ). The surface Σ and its orthonormal frame are uniquely determined

up to proper isometries of R3.

The proof proceeds as follows: First, we construct an orthonormal frame on U such

that the given forms are its dual and connection forms, respectively, using Theorem 4.18.

Then, using the Poincaré lemma, we construct an immersion of U into R3 from this

orthonormal frame.
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Proof. By assumption, the matrix-valued function Ω̃ = (ω̃ji ) satisfies Ω̃ ∈ so(3) ∧1 R2

as well as dΩ̃ = Ω̃ ∧ Ω̃. By Theorem 4.18, therefore, for any A0 ∈ SO(3) we have a

matrix-valued function Ã such that dÃ = Ω̃Ã and Ã ∈ SO(3) at every point. Thus the

rows of Ã define an orthonormal frame ẽ1, ẽ2, ẽ3 : U → R3 such that

dẽi = ω̃ji ẽj .

Define the 1-form φ by

φ = ω̃1ẽ1 + ω̃2ẽ2.

Then dφ = 0 and by the Poincaré lemma the 1-form φ is exact, so there exists θ : U → R3

such that

dθ = φ.

We note that θ is an immersion by construction. Observe that the solution Ã of dÃ = Ω̃Ã

is unique up to the prescribed initial condition A0 ∈ SO(3), and the solution θ of dθ = φ

is unique up to a constant a ∈ R3. As a result, the surface thus obtained is uniquely

determined up to an Euclidean motion in R3.

The second formulation of the fundamental theorem is in terms of the first and second

fundamental forms. Its proof can be reduced to follow from the first formulation of the

theorem.

Theorem 4.20 (Fundamental theorem of surface theory II [AF02, Thm. 5.18]). Let

U ⊂ R2 be open, connected and simply connected. Suppose that two symmetric bilinear

forms Ĩ, ĨI : TU × TU → R are given such that Ĩ is positive definite at each point. Define

a covariant derivative ∇̃ on vector fields via

2Ĩ(∇̃uv, w) = u(̃I(v, w)) + v(̃I(u,w))− w(̃I(u, v)) (4.12)

+ Ĩ([u, v], w) + Ĩ(v, [w, u])− Ĩ(u, [v, w]),
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and a curvature tensor R̃ via

R̃(u, v)w = ∇̃u∇̃vw − ∇̃v∇̃uw − ∇̃[u,v]w. (4.13)

Assume that the symmetric endomorphism S̃ : TU → TU induced by ĨI via ĨI(u, v) =

Ĩ(u, S̃(v)) satisfies

∇̃S̃ = 0, (4.14)

R̃(u, v)w = ĨI(v, w)S̃(u)− ĨI(u,w)S̃(v). (4.15)

Then there exists an immersion θ : U → R3 of a surface Σ such that the induced first

and second fundamental forms I, II coincide with Ĩ, ĨI, respectively, that is,

Ĩ = θ∗(I),

ĨI = θ∗(II).

The surface Σ is uniquely determined up to proper isometries of R3.

Proof. Since Ĩ is a positive definite symmetric bilinear form, we can choose a frame

{ẽ1, ẽ2} on U that is orthonormal with respect to Ĩ. Denote the corresponding dual frame

of 1-forms by {ω̃1, ω̃2}, and define the 1-forms ω̃2
1, ω̃

3
1, ω̃

3
2 by

ω̃2
1(v) = Ĩ(∇̃v ẽ1, ẽ2),

ω̃3
1(v) = ĨI(v, ẽ1),

ω̃3
2(v) = ĨI(v, ẽ2).

We extend these 1-forms (ω̃ji ) antisymmetrically by requiring ω̃ji = −ω̃ij . After some com-

putation, our assumptions (4.12) to (4.15) then imply that (ω̃ji ) satisfy the requirements

of Theorem 4.19.
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4.2.4 Regularity theory

Recall that for a given surface immersion θ : U → R3, if we introduce coordinates

(x1, x2, x3), its first and second fundamental forms (gij), (hij), 1 ≤ i, j ≤ 3 are given by

gij = ∂iθ · ∂jθ, (4.16)

hij = ∂ijθ ·
∂1θ × ∂2θ

|∂1θ × ∂2θ|
. (4.17)

The Levi–Civita connection on Σ = θ(U) is represented by the Christoffel symbols Γkij ,

Γkij = 1
2g

k` (∂jgi` + ∂igj` − ∂`gij) . (4.18)

Clearly, whenever θ ∈ C2(U,R3), it follows that gij ∈ C1, hij ∈ C0, and Γkij ∈ C0.

However, conversely, once we are given symmetric matrices of functions gij , hij and define

Γkij by (4.18), writing the Gauss–Codazzi–Mainardi equations in coordinates,

∂`Γkij − ∂jΓki` + ΓmijΓkm` − Γmi`Γkmj = hijh
k
` − hi`hkj , (4.19)

∂`hij − ∂jhi` + Γkijhk` − Γki`hkj = 0, (4.20)

shows that in order for them to hold, we need to require that gij ∈ C2, hij ∈ C1. Indeed,

the classical proof of the fundamental theorem of surface theory succeeds in this case,

yielding an immersion θ ∈ C3(U,R3).

This regularity paradox had been identified by Hartman and Wintner [HW50a],

who then proved the fundamental theorem of surface theory [HW50b] for first and

second fundamental forms in C1 and C0, respectively, by considering the Gauss–Codazzi–

Mainardi equations in an integrated form, that is,

∫
J
(Γki1 dx1 +Γki2 dx2) =

∫
dom J

(Γmi1Γkm2 − Γmi2Γkm1 − hi1hk2 − hi2hk1) dx,∫
J
(hi1 dx1 +hi2 dx2) =

∫
dom J

(Γmi1hm2 − Γmi2hm1) dx
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for all C1-Jordan curves J in U , where dom J is the bounded open set with boundary

J . Their method of proof paralleled the smooth case in the sense that they proved and

used a corresponding generalised version of the existence theorem for systems of total

differential equations.

The results of Hartman and Wintner have been generalised further to the realm of

weakly differentiable functions in a series of papers by Mardare [Mar03b; Mar05] (see

also [Mar07] for the theory of weak solutions of more general systems). Specifically, he

proved the following

Theorem 4.21 ([Mar03b; Mar05]). Let U ⊂ R2 be a connected and simply connected open

set and let 2 < p ≤ ∞. Suppose that (aij) ∈ W 1,p
loc (U,Sym+(2)), (bij) ∈ Lploc(U,Sym(2))

are given such that the Gauss–Codazzi–Mainardi equations (4.19) and (4.20) are satisfied

in the distributional sense, i. e.,

∫
U

(Γki`∂jφ− Γkij∂`φ+ ΓmijΓkm`φ− Γmi`Γkm`φ) dx =
∫
U

(bijbk` − bi`bkj )φ dx,∫
U

(bi`∂jφ− bij∂`φ+ Γmij bm`φ− Γmi` bmjφ) dx = 0

for any φ ∈ D(U). Then there exists an immersion θ ∈W 2,p
loc (U,R3), unique up to proper

isometries of R3, such that the first and second fundamental forms of the surface Σ = θ(U)

are given by (aij) and (bij), respectively, as in (4.16) and (4.17).

In order to prove this result, first for p =∞ and then for any p > 2, Mardare utilised

the fact that the Gauss–Codazzi–Mainardi equations are equivalent to the equation

∂iΓj + ΓiΓj = ∂jΓi + ΓjΓi, 1 ≤ i, j ≤ 2
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being satisfied in the distributional sense. Here, Γi : U → gl(3) is given by

Γi =


Γ1
i1 Γ1

i2 −b1i

Γ2
i1 Γ2

i2 −b2i

bi1 bi2 0

 ,

where Γkij is computed from (aij) via (4.18). Then, Theorem 4.21 could be proved much

in the same way as in the smooth case, that is, by solving the Pfaffian system

∂iP = PΓi, 1 ≤ i ≤ 2,

and applying the Poincaré lemma.

Generalisations of the Poincaré lemma to right hand sides in Lp are well-known in

the literature [e. g., BBM00; GM12], even for p ≥ 1.

Lemma 4.22 (Weak Poincaré lemma [Mar07, Thm. 6.5]). Let U ⊂ R2 be a connected

and simply connected open set and let p ≥ 1. Let fi ∈ Lploc(U), i = 1, 2, be functions that

satisfy

∂1f2 = ∂2f1 in D′(U).

Then there exists a function θ ∈W 1,p
loc (U), unique up to an additive constant, such that

∂iθ = fi in Lploc(U).

Hence, to prove Theorem 4.21, Mardare proved a corresponding existence and unique-

ness theorem for two-dimensional Pfaffian systems with coefficients in Lp, 2 < p ≤ ∞:

Theorem 4.23 ([Mar03b; Mar05]). Let U ⊂ R2 be a connected and simply connected

open set, x0 ∈ U , P0 ∈ gl(k), and let 2 < p ≤ ∞. Suppose that Γi ∈ Lploc(U, gl(k)),

i = 1, 2, satisfy

∂1Γ2 + Γ1Γ2 = ∂2Γ1 + Γ2Γ1 (4.21)
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in D′(U, gl(k)). Then the Pfaffian system

∂iP = PΓi in D′(U, gl(k)),

P (x0) = P0

has a unique solution P ∈W 1,p
loc (U, gl(k)).

The method of proof of this theorem in the p =∞ case [Mar03b] is to solve the system

of differential equations locally by integrating the equations along a set of ‘admissible’

straight lines, using an approximation argument. The existence of such ‘admissible’ lines

is ensured by a Lebesgue–Besicovitch-type theorem for locally integrable functions. The

local solutions are then extended to a global solution on U using a gluing procedure,

where the uniqueness of the global solution is implied by the fact that the domain is

simply connected. Meanwhile, for 2 < p <∞ [Mar05] an intricate smoothing argument

based on a stability result for Pfaffian systems with Lp-coefficients is carried out.

4.3 Optimal regularity theorem

In view of Mardare’s results, an immediate question is whether they are optimal as far

as the requirements on the regularity of the prescribed first and second fundamental

forms (in Theorem 4.21), or, respectively, the coefficients of the Pfaffian system (in

Theorem 4.23) are concerned. Starting with the latter [Mar05], we see immediately that

in order for the compatibility conditions as in (4.21) to make sense distributionally we

need to require that Γi ∈ L2
loc so that the product terms are integrable.

Moreover, in the scalar case, in which we seek a solution q : U → R of

∂iq = γiq, i = 1, 2,
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the compatibility condition for γ1, γ2 : U → R reads

∂1γ2 − ∂2γ1 = 0.

Therefore, whenever γi ∈ Lploc(U), p ≥ 1, the weak Poincaré lemma 4.22 ensures the

existence of a solution θ ∈W 1,p
loc (U) of

∂iθ = γi,

whereby a solution to the Pfaffian system is given by

q(x) = Ceθ(x)

for almost every x ∈ U and any constant C ∈ R. Now, in order for q to be integrable,

we need to assume that p > 2 so that θ ∈ L∞loc(U) by virtue of the Sobolev embedding

W 1,p
loc (U) ⊂ L∞loc(U) [Mar05]. Finally, in order to consider the Cauchy problem as in

Theorem 4.23, the embedding W 1,p
loc (U) ⊂ C0(U) is necessary. Therefore, under the given

assumptions, Theorem 4.23 is indeed optimal.

In order to bridge the gap between the result for p > 2 and the endpoint case

p = 2, in the spirit of compensated compactness theory, we are thus led to search for

additional algebraic structure to improve the regularity properties of the equation. As

far as the application to the fundamental theorem of surface theory that we have in

mind is concerned, the key insight is that in an orthonormal frame, the connection forms

ωij are antisymmetric. Consequently, we consider Pfaffian systems with antisymmetric

coefficients Ωi ∈ L2(U, so(m)). It then turns out that Rivière’s lemma 3.5 on Coulomb

gauges is precisely the ingredient we need to prove the existence and uniqueness theorem

for Pfaffian systems in the optimal regularity case. First, we prove the local result.
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Proposition 4.24. Let U ⊂ R2 be a contractible bounded regular domain and let

Ω ∈ L2(U, so(m)⊗ ∧1R2). Suppose that Ω satisfies the compatibility equation

∂iΩj − ∂jΩi = ΩjΩi − ΩiΩj (4.22)

in the distributional sense. Then there exists P ∈W 1,2(U,SO(m)) such that

∇P + ΩP = 0. (4.23)

Moreover, if P0 and P1 are two such solutions then there exists a constant C ∈ SO(m)

such that

P0 = P1C.

Proof. By Lemma 3.5, there exist ξ ∈W 1,2
0 (U, so(m)) and P ∈W 1,2(U,SO(m)) such that

P−1∇P + P−1ΩP = ∇⊥ξ.

Recall that we write Ω1, Ω2 for the components of the so(m)-valued 1-form Ω. We rewrite

the above equation as

∂1P + Ω1P = −P∂2ξ,

∂2P + Ω2P = P∂1ξ,

so that

−∂2∂1P − (∂2Ω1)P − Ω1(∂2P ) = (∂2P )(∂2ξ) + P∂2∂2ξ,

∂1∂2P + (∂1Ω2)P + Ω2(∂1P ) = (∂1P )(∂1ξ) + P∂1∂1ξ.
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We obtain, using the compatibility equation (4.22),

(∂1P )(∂1ξ) + (∂2P )(∂2ξ) + P∆ξ = (Ω2Ω1 − Ω1Ω2)P + Ω2(∂1P )− Ω1(∂2P )

= Ω2(−∂1P − P∂2ξ)− Ω1(−∂2P + P∂1ξ)

+ Ω2(∂1P )− Ω1(∂2P )

= − Ω2P (∂2ξ)− Ω1P (∂1ξ).

Note that we can rewrite this equation more succinctly as

P∆ξ = −∇⊥P · ∇⊥ξ − (ΩP ) · ∇ξ.

On the right hand side, we get

−∇⊥P · ∇⊥ξ − (ΩP ) · ∇ξ = − (∂1P )(∂1ξ)− (∂2P )(∂2ξ)

− (−P∂2ξ − ∂1P )(∂1ξ)− (P∂1ξ − ∂2P )(∂2ξ)

= P (∂2ξ)(∂1ξ)− P (∂1ξ)(∂2ξ),

and thus

P∆ξ = −P∇⊥ξ · ∇ξ,

or equivalently

∆ξ = (∂2ξ)(∂1ξ)− (∂1ξ)(∂2ξ). (4.24)

While the right hand side of this equation is not necessarily equal to zero, we claim that

(4.24) does imply that ξ ≡ 0, using that ξ|∂U = 0.

We follow an argument by Wente [Wen75]. We may assume that U = B1(0) ⊂ R2. By

Theorem 3.1, ξ ∈W 1,2
0 is continuous in Ū and, indeed, ξ ∈ C∞ in the interior. Extend ξ

to R2 ∼= C by inversion in the unit circle, which is a conformal map, and let the same
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letter now refer to the extension. It satisfies ξ ∈ C∞(R2, so(m)), (4.24), ξ|S1 = 0, and

‖∇ξ‖2L2 ≤ C ‖Ω‖2L2(U) .

Now, denoting by 〈· , ·〉 the standard inner product on real matrices, extended complex

linearly to complex matrices, and writing ξz := ∂zξ = 1
2(ξx − iξy) and ξz̄ := 1

2(ξx + iξy),

define

Φ = 〈ξz, ξz〉 = 1
4
(
|ξx|2 − 2i〈ξx, ξy〉 − |ξy|2

)
.

In order to show that Φ is holomorphic, we compute

Φz̄ = 2〈ξzz̄, ξz〉

= 1
2 tr

(
(∆ξ)(ξz)T

)
= 1

4 tr
(
(ξyξx − ξxξy)ξx − i(ξyξx − ξxξy)ξy

)
= 1

4 tr
(
(ξxξyξx − ξxξyξx)− i(ξyξxξy − ξyξxξy)

)
= 0,

where we have used ∆ξ = 4ξzz̄, (4.24), and tr(AB) = tr(BA). But we also have that

Φ ∈ L1(C) and hence Φ ≡ 0.

As a result, in addition to (4.24), ξ satisfies

|ξx|2 − |ξy|2 = 〈ξx, ξy〉 = 0.

Let us view ξ as a map into Rm2 , which is smooth and conformal. By the Hartman–

Wintner lemma [Jos11, Lemma 9.1.7] and (4.24), we deduce that the points where

|ξx| = |ξy| = 0 are isolated whenever ξ is non-constant. However, we know that ξ = ∇ξ = 0

on the unit circle. Therefore, ξ must be constant, and as ξ|S1 = 0, we conclude that

ξ ≡ 0. This yields (4.23).



Chapter 4. Regularity theory for two-dimensional Pfaffian systems 71

Now suppose that P0, P1 ∈W 1,2(U,SO(m)) solve

∇P0 + ΩP0 = 0,

∇P1 + ΩP1 = 0

in U , respectively. Since ∇(P−1
1 ) = −P−1

1 (∇P1)P−1
1 , we have

∇(P−1
1 P0) = ∇(P 1

1 )P0 + P−1
1 ∇P0

= −P−1
1 (∇P1)P−1

1 P0 + P−1
1 ∇P0

= P−1
1 ΩP1P

−1
1 P0 − P−1

1 ΩP0

= 0.

Thus P−1
1 P0 = C, a constant invertible matrix, so that P0 = P1C. We also have

CTC = P−1
0 P1P

−1
1 P0 = I and detC = (detP1)−1 detP0 = 1, whereby C ∈ SO(m).

Using the local existence and uniqueness, we can then prove the corresponding global

result on simply connected domains by means of a gluing procedure.

Theorem 4.25. Let U ⊂ R2 be a connected and simply connected open set and let

Ω ∈ L2(U, so(m)⊗ ∧1R2) satisfy the compatibility condition (4.22) in the distributional

sense. Then there exists P ∈W 1,2
loc (U,SO(m)) such that ∇P = PΩ in U . Moreover, any

two such solutions P0, P1 are related by P0 = CP1 with a constant C ∈ SO(m).

Proof. Equipped with the local existence result in Proposition 4.24, we intend to leverage

the simple-connectedness of U to construct P ∈ W 1,2
loc (U,SO(m)). While this type of

construction can be found in various places in the literature, we reproduce such a proof

[Mar08, Thm. 2.1] here almost verbatim, adapting where necessary, for the sake of

completeness. In particular, we do not claim any originality.
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Note that instead of solving the equation

∇P = PΩ,

we solve

∇P + ΩP = 0.

Once a solution P to the latter equation is given, a solution to the former is readily found

by transposition and using that Ωi ∈ so(m).

Let x0 ∈ U , Br0(x0) ⊂ U , r0 < 1
2 dist(x0,R2 \ U). Then there exists P0 ∈

W 1,2(Br0(x0),SO(m)) such that

∇P0 + ΩP0 = 0 in Br0(x0).

Let x ∈ U be arbitrary and (γ,∆, (Bj)) a triple such that γ : [0, 1]→ U is continuous,

γ(0) = x0, γ(1) = x, ∆ = (t0, t1, . . . , tn, tn+1), 0 = t0 < t1 < · · · < tn < tn+1 = 1,

and (Bj)nj=0 a sequence of open balls contained in U such that B0 = Br0(x0) and

γ([tj , tj+1]) ⊂ Bj , j = 1, . . . , n.

An example of such a triple can be constructed in the following way: Given any

continuous path γ as above, choose r < 1
2 dist(γ([0, 1]),R2 \ U) and ∆ such that

|tj+1 − tj | ≤ δr, where δr is such that |γ(t)− γ(s)| < min{r, r0} whenever |t− s| ≤ δr.

Then set B0 = Br0(x0), Bj = Br(γ(tj)), j = 1, . . . , n.

Define recursively Pj ∈W 1,2(Bj ,SO(m)), j = 1, . . . , n, such that

∇Pj + ΩPj = 0 in Bj ,

Pj = Pj−1 in Bj ∩Bj−1.

By Proposition 4.24, we know that Pj = Pj−1C in Bj ∩ Bj−1, so we can, if necessary,

replace Pj by PjC
−1 to ensure the validity of the second equation. We retain Pn ∈
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W 1,2(Bn, SO(m)) and claim that it is independent of our choice of (γ,∆, (Bj)).

Fix γ, ∆ and consider two sequences of balls (Bj), (B̃j). We know that P0 = P̃0 in

B0 = B̃0 by definition. Now assume that Pj = P̃j in Bj ∩ B̃j . Then we have that

Pj+1 = Pj = P̃j = P̃j+1

in the open set Bj+1 ∩Bj ∩ B̃j ∩ B̃j+1. Note that this set is non-empty since γ(tj+1) is

contained in it. Therefore, we must have Pj+1 = P̃j+1 in Bj+1 ∩ B̃j+1.

In order to prove that Pn is independent of the division of the unit interval ∆, first

consider two divisions ∆, ∆̃ that differ only by an additional point t∗ inserted between

tk and tk+1 in ∆̃. Let (Bj)nj=0 be an admissible family of open balls for ∆ and define

the family (B̃j)n+1
j=0 for ∆̃ by B̃j = Bj , j = 0, . . . , k and B̃j+1 = Bj , j = k, . . . , n. By

definition, this family is admissible and P̃j = Pj in Bj for j = 0, . . . , k. According to the

recursive definition of P̃j , we then have P̃k+1 = P̃k = Pk in B̃k+1 ∩ B̃k = Bk. Therefore,

P̃j = Pj in Bj for j = k, . . . , n.

Now let ∆ and ∆̃ be two arbitrary divisions of the unit interval with associated

admissible families of open balls (Bj)nj=0 and (B̃j)ñj=0, respectively. In addition, consider

the joint division ∆̄ = (s0, . . . , sm+1) with

{s0, . . . , sm+1} = {t0, . . . , tn+1} ∪ {t̃0, . . . , t̃ñ+1}, m ≤ n+ ñ.

Then, applying the above argument (m − n) times, one obtains P̄m = Pn in Bn, and

similarly, after (m− ñ) steps, P̄m = P̃ñ in B̃ñ. As we have already shown that the solution

P̄m does not depend on the family of admissible open balls, we get

Pn = P̃ñ in Bn ∩ B̃ñ.
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Lastly, in proving that the final solution is independent of the path γ, we make use

of the fact that U is simply connected. Let (γ,∆, (Bj)nj=0) and (γ̃, ∆̃, (B̃j)ñj=0) be two

admissible triples associated with x ∈ U . Then there exists H ∈ C0([0, 1]2, U) such that

H(0, ·) = γ, H(1, ·) = γ̃,

H(·, 0) = x0, H(·, 1) = x.

For each s ∈ [0, 1], choose (γs,∆s, (Bs
j )
ns
j=0) to be an admissible triple associated with x

such that

γs = H(s, ·)

and that they agree with those already chosen at s = 0 and s = 1, respectively. Denoting

s∗ := sup{s ∈ [0, 1] : P sns = P 0
n0 in Bs

ns ∩B
0
n0},

we thus need to prove that s∗ = 1 and the supremum is attained.

First, we show that for small enough s > 0, we have that

P sns = P 0
n0 in Bs

ns ∩B
0
n0 .

This implies that s∗ > 0. We note that the triple (γs,∆, (Bj)) associated with x is

admissible if s is small enough. This results from the fact that for such s, γs([tj , tj+1]) ⊂

Bj , j = 0, . . . , n. Suppose that this is not the case and there exist sequences (sm), (tm)

with sm → 0 as m→∞ and tm ∈ [tj , tj+1] such that γsm(tm) = H(sm, tm) 6∈ Bj . Then,

up to the choice of a subsequence, we have that tm → t ∈ [tj , tj+1]. By the continuity of

H, we conclude that H(sm, tm) converges to γ(t) ∈ Bj . However, this contradicts our

assumption that H(sm, tm) 6∈ Bj for all m. Therefore, since we have already shown that

solutions are independent of the choice of a division and a family of open balls, the claim

follows.
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Second, in the same vein we also have that for α > 0 sufficiently small and ε ∈ [0, α),

the triple (γs∗−ε,∆s∗ , (Bs∗
j )) is admissible for x and thus

P s
∗
ns∗

= P s
∗−ε
ns∗−ε

in Bs∗
ns∗
∩Bs∗−ε

ns∗−ε
.

On the other hand, since s∗ is a supremum, it holds for some δ ∈ [0, α) that

P s
∗−δ
ns∗−δ

= P 0
n0 in Bs∗−δ

ns∗−δ
∩B0

n0 ,

whereby

P s
∗
ns∗

= P 0
n0 in Bs∗

ns∗
∩B0

n0

and s∗ is a maximum.

Finally, if s∗ < 1 then in a similar fashion one concludes that for ε > 0 sufficiently

small the triple (γs∗+ε,∆s∗ , (Bs∗
j )) is admissible, contradicting the definition of s∗. Thus

P 0
n0 = P 1

n1 .

It is then possible to define a global solution by means of a gluing procedure. For

any x ∈ U , let (γ,∆, (Bj)nj=0) be an admissible triple and let Bx = Bn and Px = Pn ∈

W 1,2(Bx,SO(m)), constructed as above. We claim that for any x, y ∈ U such that

Bx ∩By is non-empty it holds that

Px = Py in Bx ∩By.

Let z ∈ Bx∩By and let (γ,∆, (Bj)nj=0) and (γ̃, ∆̃, (B̃j)ñj=0) be two admissible triples for x

and y, respectively. If we define γ∗ to be the path obtained by joining γ and the segment

[x.z], which lies entirely within Bx, parametrised such that γ∗(1
2) = x and γ∗(1) = z,
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then we obtain an admissible triple for z by letting, for j ≤ n,

∆∗ :=
(
t0
2 , . . . ,

tn+1
2 , tn+1

)
,

B∗j := Bj ,

B∗n+1 := Bn = Bx.

The same construction applied to γ̃ yields another admissible triple for z and we thus

obtain

P ∗n+1 = P̃ ∗ñ+1 in Bx ∩By,

P ∗n+1 = Pn = Px in Bx,

P̃ ∗ñ+1 = P̃ñ = Py in By,

proving the claim.

Therefore, we define a distribution P on the set U =
⋃
x∈U Bx as follows: Let

φ ∈ D(U). Since φ has compact support, there is a finite number of points xi ∈ U such

that sptφ ⊂
⋃m
i=1Bxi . Moreover, let (θi)mi=1 be a partition of unity subordinate to the

covering (Bxi)mi=1 of sptφ. We then define

〈P, φ〉 :=
m∑
i=1
〈Pxi , θiφ〉.

By the gluing principle of Schwartz [Mar08, Thm. 1.2], the result is a distribution P on

U that satisfies P = Px in Bx for all x ∈ U .

In order to show that P solves ∇P + ΩP = 0 in the distributional sense, we let

φ ∈ D(U) and K ⊂ U be a compact neighbourhood of sptφ such that K ⊂
⋃m
i=1Bxi

for some family of open balls (Bxi)mi=1. As above, let (θi)mi=1 be a partition of unity
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subordinate to the covering (Bxi). We compute

〈P,∇φ〉 =
m∑
i=1
〈Pxi , θi∇φ〉

=
m∑
i=1
〈Pxi ,∇(θiφ)− (∇θi)φ〉

=
m∑
i=1
〈−ΩPxi , θiφ〉 − 〈Pxi , (∇θi)φ〉

= 〈−ΩP, φ〉.

Here, we have used that
∑m
i=1 θi = 1 in K and hence ∇(

∑m
i=1 θi)φ = 0 in U .

Since, by construction, P = Pxi in Bxi and Pxi ∈ W 1,2(Bxi ,SO(m)), it follows that

P ∈W 1,2
loc (U,SO(m)). Furthermore, we may repeat the same calculation as in the proof

of Proposition 4.24 to infer that any two such solutions differ by a multiplicative constant

in SO(m).

4.4 Application to surfaces

In this section, we shall apply Theorem 4.25 in order to prove the existence of a W 2,2
loc -

immersion of a surface with prescribed first and second fundamental forms in the classes

W 1,2
loc and L2

loc, respectively. First, we motivate the definition of appropriate antisymmetric

matrix fields Ωi that serve as the coefficients of a Pfaffian system. After that, we show that

the quantities derived from the given matrix fields that are to be realised as fundamental

forms of a surface possess the required regularity. We then prove Theorem 4.26. Lastly, we

demonstrate that the compatibility equation satisfied by the matrix fields Ωi is equivalent

to the Gauss–Codazzi–Mainardi equations in the present setting.

4.4.1 Derivation of antisymmetric coefficients

There is no reason to believe that the connection form should be antisymmetric in an

arbitrarily given frame. However, we can always arrange for an antisymmetric matrix

of connection forms in a frame that is orthonormal with respect to a given Riemannian
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metric on Σ, as we now show. While these antisymmetric matrix fields have previously

been introduced [CGM08] in the context of the fundamental theorem, the viewpoint

of Cartan geometry is advantageous in that the antisymmetric connection form arises

naturally from the change of frame.

As in Section 4.1, let θ : U → E3 be a smooth immersion whose image Σ = θ(U) is

a regular surface for some open, connected, and simply connected subset U of R2, and

let (e1, e2, e3) be an adapted frame. Again, we denote the pullbacks of the dual and

connection forms by (ω̄i, ω̄ij). We then write the connection form as

ω =


0 ω̄1

2 ω̄1
3

ω̄2
1 0 ω̄2

3

ω̄3
1 ω̄3

2 0

 ,

and define

Γi := ω(ei) =


0 Γ1

i2 −h1i

Γ2
i1 0 −h2i

h1i h2i 0

 .

Now, given a metric ḡ on Σ and an orthonormal frame f = (e1, e2, e3), we set

g =


ḡ11 ḡ12 0

ḡ21 ḡ22 0

0 0 1



1
2

.

Defining the frame f ′ = fg−1, which is orthonormal with respect to g2, the Maurer–Cartan

form in this frame is given by means of the gauge transformation

ω′ = (gω + dg)g−1,
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which implies in components that

Γ′i = (gΓi − ∂ig)g−1.

4.4.2 Regularity of coefficients

Let (aij) ∈W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)) and (bij) ∈ L2

loc(U,Sym(2)) and define

(aij) = 1
a11a22 − a12a21

 a22 −a12

−a21 a11

 ,
bji = ajkbik,

Γkij = 1
2a

k`(∂jai` + ∂iaj` − ∂`aij),

G =


a11 a12 0

a21 a22 0

0 0 1



1
2

,

Γi =


Γ1
i1 Γ1

i2 −b1i

Γ2
i1 Γ2

i2 −b2i

bi1 bi2 0

 ,

Ωi = (GΓi − ∂iG)G−1.

Since W 1,2
loc ∩ L∞loc is an algebra, we see that

det(aij) = a11a22 − a12a21 ∈W 1,2
loc ∩ L

∞
loc.

Now assume in addition that the (positive) eigenvalues of (aij) are locally uniformly

bounded away from zero, i. e., there exists C > 0 such that 0 < C < λ1 < λ2 almost

everywhere in K ⊂⊂ U . Then det(aij)−1 ∈ L∞loc. Therefore, we have that (aij) ∈ L∞loc.

Moreover, the fact that

D(det(aij)−1) = −D(det(aij))
det(aij)2
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implies that

det(aij)−1 ∈W 1,2
loc ∩ L

∞
loc.

Hence

(aij) ∈W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)).

Furthermore, by the boundedness of (aij) and as (aij) ∈W 1,2
loc , we obtain that

Γkij ∈ L2
loc(U).

From the formula

A
1
2 = 1√

trA+ 2
√

detA
(A+

√
detAI),

valid for any A ∈ Sym+(2), we infer, using again (aij) ∈W 1,2
loc ∩L∞loc and the boundedness

of the eigenvalues away from zero, that

(aij)
1
2 , (aij)−

1
2 ∈W 1,2

loc ∩ L
∞
loc.

Finally, as Γi ∈ L2
loc we conclude that

Ωi ∈ L2
loc(U, gl(3)).

It remains to show that each matrix Ωi is antisymmetric. (The following argument

is taken from the proof of Theorem 7 in Ciarlet, Gratie, and C. Mardare [CGM08].)

Equivalently, we may show that

GΩiG = G2Γi −G∂iG
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is antisymmetric. By a direct computation, using the symmetry of (aij), we find that

G2Γi + ΓTi G2 =


2Γi11 Γi12 + Γi21 0

Γi21 + Γi12 2Γi22 0

0 0 0

 = ∂iG
2.

Here, as usual, Γijk = ak`Γ`ij . We thus compute

GΩiG = G2Γi −G∂iG

= 1
2G

2Γi + 1
2(∂iG2 − ΓTi G2)−G∂iG

= 1
2(G2Γi − ΓTi G2) + 1

2
(
(∂iG)G+G∂iG

)
−G∂iG

= 1
2(G2Γi − ΓTi G2) + 1

2
(
(∂iG)G−G∂iG

)
,

whereby, indeed, Ωi ∈ so(3).

Therefore, we have shown that if (aij) ∈ W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)) and

(bij) ∈ L2
loc(U,Sym(2)) are given and the eigenvalues of (aij) are locally uniformly bounded

from below then Ω ∈ L2
loc(U, so(3)⊗ ∧1R2).

4.4.3 Optimal regularity for the fundamental theorem

We are now in a position to state and prove the optimal regularity case of the fundamental

theorem of surface theory. By and large, we follow the structure of the proof of the

corresponding Theorem 7 in Ciarlet, Gratie, and C. Mardare [CGM08].

Theorem 4.26. Let U be a connected and simply connected open subset of R2 and

let (aij) ∈ W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)) and (bij) ∈ L2

loc(U,Sym(2)) be given.

Suppose that the eigenvalues of (aij) are locally uniformly bounded from below and that

the matrix fields (aij), (bij) are such that

∂1Ω2 − ∂2Ω1 = Ω2Ω1 − Ω1Ω2, (4.25)
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where Ω ∈ L2
loc(U, so(3)⊗∧1R2) is given by the following sequence of definitions, see also

Section 4.4.2:

(aij) = 1
a11a22 − a12a21

 a22 −a12

−a21 a11

 ,
bji = ajkbik,

Γkij = 1
2a

k`(∂jai` + ∂iaj` − ∂`aij),

G =


a11 a12 0

a21 a22 0

0 0 1



1
2

,

Γi =


Γ1
i1 Γ1

i2 −b1i

Γ2
i1 Γ2

i2 −b2i

bi1 bi2 0

 ,

Ωi = (GΓi − ∂iG)G−1.

Then there exists an immersion θ ∈W 2,2
loc (U,R3) such that

aij = ∂iθ · ∂jθ in W 1,2
loc (U),

bij = ∂ijθ ·
∂1θ × ∂2θ

|∂1θ × ∂2θ|
in L2

loc(U).

Moreover, the map θ is unique in W 2,2
loc (U,R3) up to proper isometries of R3.

Proof. We have shown in the previous section that Ω ∈ L2(U, so(3) ⊗ ∧1R2) and by

assumption the compatibility equation is satisfied. Therefore, by Theorem 4.25, there

exists P ∈W 1,2
loc (U,SO(3)) such that

∂iP = PΩi.
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Let G(i) = gi denote the i-th column of G. We know that P ∈ W 1,2
loc and G ∈

W 1,2
loc ∩ L∞loc. Furthermore, as P ∈ SO(3), P is essentially bounded. Thus we conclude

that Pgi ∈W 1,2
loc ∩ L∞loc.

In order to apply Lemma 4.22, we require that

∂j(Pgi) = ∂i(Pgj).

As ∂iP = PΩi and P ∈ SO(3), we obtain

∂j(Pgi)− ∂i(Pgj) = (∂jP )gi + P∂jgi − (∂iP )gj − P∂igj

= PΩjgi + P∂jgi − PΩigj − P∂igj ,

which is equal to zero if and only if

0 = Ωjgi + ∂jgi − Ωigj − ∂igj

= (GΓj − ∂jG)G−1gi + ∂jgi − (GΓi − ∂iG)G−1gj + ∂igj

= (GΓj − ∂jG)ei + ∂jgi − (GΓi − ∂iG)ej + ∂igj

= (GΓj)(i) − (GΓi)(j)

= G


Γ1
ji

Γ2
ji

bji

−G


Γ1
ij

Γ2
ij

bij

 ,

where ei denotes the i-th unit vector in R3. Since Γkij = Γkji and bij = bji, it follows that

∂j(Pgi)− ∂i(Pgj) = 0.

As a result, by Lemma 4.22, there exists θ ∈W 1,2
loc (U,R3) such that

∂iθ = Pgi
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in L2
loc. Since Pgi ∈ W 1,2

loc , we conclude that in fact θ ∈ W 2,2
loc (U,R3). Moreover, as the

vectors Pgi are linearly independent, the map θ is an immersion.

Defining F := PG ∈W 1,2
loc ∩ L∞loc and fi = F(i) (here, i = 1, 2, 3), we have that

∂iθ = fi,

F TF = G2 =


a11 a12 0

a21 a22 0

0 0 1

 .

Thus

fTi fj = aij ,

whence

∂iθ · ∂jθ = aij ,

and the matrix field (aij) is indeed the first fundamental form of the surface θ(U).

Furthermore, it is clear that fTi f3 = δi3, i = 1, 2, 3. Therefore, taking into account

that F is positive definite almost everywhere, it follows that

f3 = f1 × f2
|f1 × f2|

.

Meanwhile, we compute

∂ijθ = ∂j(Pgi)

= (∂jP )gi + P∂jgi

= P (Ωjgi + ∂jgi)

= P (ΩjG+ ∂jG)(i)

= P (GΓj)(i)

= F (Γj)(i).
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As a result, we obtain that

∂ijθ · f3 = (∂ijθ)T f3

=
(
(Γj)(i)

)T
F T f3

=
(

Γ1
ji Γ2

ji bji

)
· e3

= bji,

whereby the matrix field (bij) is the second fundamental form of θ(U).

Regarding the question of uniqueness of the immersion thus obtained, we note that

by Theorem 4.25, the matrix field P is unique up to a multiplicative constant C ∈ SO(3),

while the function θ that results from the application of Lemma 4.22 is unique up to an

additive constant b ∈ R3. Therefore, any two immersions θ, θ̃ constructed by means of

the above procedure are related by

θ = Cθ̃ + b,

and the proof is complete.

4.4.4 Equivalence of compatibility conditions

By means of a direct computation, we argue that the compatibility condition (4.25) is

equivalent to the Gauss–Codazzi–Mainardi equations.

Proposition 4.27. In the W 2,2
loc -setting of Theorem 4.26, the compatibility condition

(4.25) is necessary and sufficient for the Gauss–Codazzi–Mainardi equations to hold.

Proof. Assuming the compatibility condition, we have shown the existence of a W 2,2
loc -

immersion with associated first and second fundamental forms (aij), (bij) which necessarily

satisfy the Gauss–Codazzi–Mainardi equations in the distributional sense.
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Moreover, we have

0 = ∂1Ω2 − ∂2Ω1 − Ω2Ω1 + Ω1Ω2

= ∂1
(
(GΓ2 − ∂2G)G−1)

− ∂2
(
(GΓ1 − ∂1G)G−1)

− (GΓ2 − ∂2G)G−1(GΓ1 − ∂1G)G−1

+ (GΓ1 − ∂1G)G−1(GΓ2 − ∂2G)G−1

=
(
∂1(GΓ2)− ∂1∂2G

)
G−1 − (GΓ2 − ∂2G)G−1(∂1G)G−1

−
(
∂2(GΓ1)− ∂2∂1G

)
G−1 + (GΓ1 − ∂1G)G−1(∂2G)G−1

− (GΓ2 − ∂2G)G−1(GΓ1 − ∂1G)G−1

+ (GΓ1 − ∂1G)G−1(GΓ2 − ∂2G)G−1

if and only if

0 = ∂1(GΓ2)− ∂1∂2G− (GΓ2 − ∂2G)G−1(∂1G)

− ∂2(GΓ1) + ∂2∂1G+ (GΓ1 − ∂1G)G−1(∂2G)

− (GΓ2 − ∂2G)(Γ1 −G−1∂1G)

+ (GΓ1 − ∂1G)(Γ2 −G−1∂2G)

= (∂1G)Γ2 +G∂1Γ2 −GΓ2G
−1(∂1G) + (∂2G)G−1(∂1G)

− (∂2G)Γ1 −G∂2Γ1 +GΓ1G
−1(∂2G)− (∂1G)G−1(∂2G)

−GΓ2Γ1 +GΓ2G
−1(∂1G) + (∂2G)Γ1 − (∂2G)G−1(∂1G)

+GΓ1Γ2 −GΓ1G
−1(∂2G)− (∂1G)Γ2 + (∂1G)G−1(∂2G)

= G(∂1Γ2 − ∂2Γ1 − Γ2Γ1 + Γ1Γ2).

Therefore, the compatibility condition is equivalent to

∂iΓj + ΓiΓj = ∂jΓi + ΓjΓi.
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On the other hand, in Mardare [Mar05], it has been shown that these equations are

indeed equivalent to the Gauss–Codazzi–Mainardi equations, understood in the sense

of distributions. We note that their argument readily carries over to the present p = 2

case.

4.5 Weak compactness theorem

In order to prove the weak compactness theorem, we first show a corresponding statement

for the Pfaffian system ∇P = PΩ.

Lemma 4.28. Let {Ωk} ⊂ L2(U, so(3)⊗ ∧1R2) be a sequence such that Ωk ⇀ Ω in L2

as k → ∞ and suppose that Ωk satisfies the compatibility condition (4.22) for every k.

Then, up to the choice of a subsequence, there exists a sequence {P k} ⊂W 1,2
loc (U,SO(3))

of solutions to the equation ∇P k = P kΩk such that P k ⇀ P in W 1,2
loc as k → ∞ and

∇P = PΩ.

Proof. By Theorem 4.25, there exists a sequence {P k} ⊂W 1,2
loc (U,SO(3)) such that, for

each k, ∂iP k = P kΩk
i and ∥∥∥∇P k∥∥∥

L2
loc
≤ C

∥∥∥Ωk
∥∥∥
L2

loc
.

Then, as P k ∈ SO(3) and {Ωk} is uniformly bounded in L2
loc, so are {P k} and {∇P k}.

As a result, there exists a subsequence, still denoted {P k}, that converges weakly to

some P in W 1,2
loc , and strongly in L2

loc. It remains to show that ∇P = PΩ. We know

that ∇P k ⇀ ∇P in L2
loc. Moreover, since P k → P and Ωk ⇀ Ω in L2

loc we infer that the

product sequence P kΩk is weakly convergent to some v in L1
loc. On the other hand, since

P kΩk = ∇P k for every k, we must have for every ϕ ∈ L∞loc ⊂ L2
loc that

∫
P kΩkϕ =

∫
∇P kϕ→

∫
∇Pϕ =

∫
PΩϕ,

whereby v = PΩ, by the uniqueness of weak limits, and thus ∇P = PΩ.
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Finally, we have the weak compactness theorem.

Theorem 4.29. Let {θk} ⊂W 2,2
loc (U,R3) be a uniformly bounded sequence of immersions

with corresponding sequences of first and second fundamental forms denoted by {(aij)k}

and {(bij)k}, respectively. Suppose that ∂iθk ∈W 1,2
loc ∩ L∞loc and that the first fundamental

forms (aij)k, akij = ∂iθ
k ·∂jθk, have eigenvalues bounded from below by a positive constant

uniformly in the domain U and in k. Then, after passing to subsequences, {θk} converges

weakly in W 2,2
loc to an immersion θ ∈ W 2,2

loc (U,R3), whose first and second fundamental

forms (aij), (bij) are limit points of the sequences {(aij)k}, {(bij)k} in the weak W 1,2
loc -

and L2
loc-topologies, respectively.

Proof. Let such a sequence {θk} of immersions be given. Then we denote the corres-

ponding sequences of first and second fundamental forms by {(aij)k}, {(bij)k}, respect-

ively. By assumption, we have that (aij)k ∈ W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)) and

(bij)k ∈ L2
loc(U,Sym(2)). Moreover, for each k, we may define Ωk

i ∈ L2
loc(U, so(3)) as in

Section 4.4.2.

For each k, the Ωk
i necessarily satisfy the compatibility equation (4.25) (the proof

of Theorem 1 of Ciarlet, Gratie, and C. Mardare [CGM08] carries over to the present

p = 2 case). Furthermore, it is straightforward to see from the estimates in Section 4.4.2

that the sequence {Ωk
i } is uniformly bounded in L2

loc and thus subsequentially weakly

convergent to some limit Ωi ∈ L2
loc(U, so(3)). By Lemma 4.28, therefore, up to the

choice of a subsequence, there exists a sequence {P k} ⊂ W 1,2
loc (U,SO(3)) of solutions

to the equation ∇P k = P kΩk such that P k ⇀ P in W 1,2
loc as k → ∞ and ∇P = PΩ.

Since ∂j∂iP = ∂i∂jP we thus have that ∂j(PΩi) = ∂i(PΩj), which shows after a short

computation that the compatibility equation is satisfied by the weak limit Ωi.

At the same time, the uniformly bounded sequences {(aij)k}, {(bij)k} possess sub-

sequences that are weakly convergent to some (aij), (bij) in W 1,2
loc and L2

loc, respectively.

They satisfy (aij) ∈ W 1,2
loc (U,Sym+(2)) ∩ L∞loc(U,Sym+(2)) and (bij) ∈ L2

loc(U,Sym(2))

and the eigenvalues of (aij) are uniformly bounded from below in U . As a result, we have
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that Ωi and the components of the connection form induced by (aij) and (bij) coincide.

Hence we obtain from Theorem 4.26 an immersion θ ∈W 2,2
loc (U,R3) with first and second

fundamental forms (aij) and (bij), respectively. On the other hand, the given sequence

{θk} must have a weakly convergent subsequence in W 2,2
loc with a weak limit θ̄, which

coincides with the immersion θ modulo an ambient isometry due to the uniqueness of

distributional limits.



Part II

Extrinsic curvature flows
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Chapter 5

Geometry of submanifolds

In this chapter, we briefly summarise the geometric objects associated to submanifolds of

Euclidean space that are relevant to their flow by curvature.

5.1 Submanifolds of arbitrary codimension

We follow and use the notation of Smoczyk’s survey paper [Smo12; see also Smo05] in

this and the following section.

Let F : Mm → Rn be a smooth immersion of an m-dimensional manifold M into Rn.

We call k = n−m the codimension of M in Rn. Local coordinates on M are denoted

by (xi)i=1,...,m and Cartesian coordinates on Rn by (yα)α=1,...,n, with summation over

doubled indices implied.

In local coordinates, we write Fα = yα(F ) and Fαi = ∂Fα

∂xi
. Then the differential DF

of F can be written as

DF = Fαi
∂

∂yα
⊗ dxi .

The Euclidean metric δ on Rn induces a Riemannian metric F ∗δ = gij dxi⊗dxj on M ,
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the first fundamental form, with coefficients

gij = 〈Fi, Fj〉 = δαβF
α
i F

β
j .

Therefore, TM , T ∗M , F ∗TRn and their product bundles are equipped with Riemannian

metrics. A connection ∇ on TM is given as the Levi–Civita connection of the induced

metric gij with the usual Christoffel symbols,

Γkij = 1
2g

k`
(
∂gj`
∂xi

+ ∂gi`
∂xj

− ∂gij
∂x`

)
.

The induced connections on bundles over M are also denoted by ∇.

Given p ∈M , we denote the normal space of M at p by

T⊥p M := {ν ∈ TF (p)Rn ∼= Rn : g(ν,DF |p(W )) = 0 ∀W ∈ TpM}

and the normal bundle of M by

T⊥M = ∪p∈MT⊥p M.

The normal bundle is a rank-k subbundle of F ∗TRn. The connection on T⊥M is denoted

by ∇⊥.

We define the second fundamental form A ∈ Γ(F ∗TRn ⊗ T ∗M ⊗ T ∗M) by

A := ∇DF = Aij dxi⊗dxj = Aαij
∂

∂yα
⊗ dxi⊗dxj ,

or in local coordinates

Aαij = Fαij − ΓkijFαk ,

where Fαij = ∂2Fα

∂xi∂xj
, Fαk = ∂Fα

∂xk
. The second fundamental form is symmetric,

Aαij = Aαji,
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and normal, that is,

〈Fk, Aij〉 := δαβF
α
k A

β
ij = 0 ∀i, j, k = 1, . . . ,m,

so that A ∈ Γ(T⊥M⊗T ∗M⊗T ∗M). Finally, the mean curvature vector field ~H = Hα ∂
∂yα

is defined as the trace of the second fundamental form, that is,

~H = gijAij = gijAαij
∂

∂yα
.

Since A is normal, this gives a section ~H ∈ Γ(T⊥M) of the normal bundle of M .

The Riemannian curvature tensor is denoted by Rijk` = R
(

∂
∂xi

, ∂
∂xj

, ∂
∂xk

, ∂
∂x`

)
, where

R(T,U, V,W ) = 〈T, (∇V∇W −∇W∇V −∇[V,W ])U〉

for any T,U, V,W ∈ TM . The curvature tensor R⊥ij on the normal bundle is defined

analogously. The covariant derivative∇A of the second fundamental form A ∈ Γ(F ∗TRn⊗

T ∗M ⊗ T ∗M) is given by

(∇UA)(V,W ) = ∇U (A(V,W ))−A(∇UV,W )−A(V,∇UW ).

Using the connection ∇⊥ on the normal bundle T⊥M , we can write

(∇⊥UA)(V,W ) = ((∇UA)(V,W ))⊥.

In local coordinates, the components of the tensor ∇A are given by ∇iAαjk, where

(
∇ ∂

∂xi
A

)(
∂

∂xj
,
∂

∂xk

)
= ∇iAαjk

∂

∂yα
.
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The structure equations can then be written as follows:

Rijk` = 〈Aik, Aj`〉 − 〈Ai`, Ajk〉 (Gauss),

∇⊥i Ajk = ∇⊥j Aik (Codazzi),

R⊥ij = Aik ∧Akj (Ricci).

Moreover, we have Simons’ identity,

∇⊥k∇⊥` ~H = ∆⊥Ak` +Rki`jA
ij −RikAi` +Qi`Aik − Ski`jAij ,

where the Ricci curvature is given by Rij = gk`Rikj` and we define Qij = 〈Aki , Akj〉 and

Sijk` = 〈Aij , Akl〉 [Smo05].

5.2 The hypersurface case

In the special case of an immersion of an orientable hypersurface F : Mm → Rm+1,

some of the above quantities simplify [Smo12]. In particular, there exists a unique

unit normal vector field ν ∈ Γ(T⊥M), the principal normal, such that at any p ∈ M ,

DF (e1), . . . , DF (em), ν|p form a basis of TF (p)Rm of positive orientation for any basis

e1, . . . , em of TpM of positive orientation.

The scalar second fundamental form h ∈ Γ(T ∗M ⊗ T ∗M) is defined by

h(U, V ) = 〈A(U, V ), ν〉, U, V ∈ TM.

The components of h are denoted by hij . The scalar mean curvature is its trace, H = trh,

so that ~H = Hν. Using the bundle isomorphism ] : T ∗M → TM , the shape operator

S : TM → TM is given by

S(U) = (h(U, ·))], U ∈ TM.
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The shape operator is self-adjoint, so its eigenvalues are real numbers λ1, . . . , λm, called

principal curvatures. Then H = λ1 + · · ·+ λm.

Since Aαij = ναhij , the Gauss–Codazzi equations simplify [Smo12], while the Ricci

equation is vacuous (as the codimension is equal to one):

Rijk` = hikhj` − hi`hjk (Gauss),

∇ihjk = ∇jhik (Codazzi).

Moreover, Simons’ identity simplifies to

∇k∇`hij −∇i∇jhk` = hk`h
p
ihjp − hi`h

p
jhkp + hjkh

p
ih`p − hijh

p
kh`p.

5.3 Curves in Rn

In Chapters 6 and 8, we consider curve shortening flow of curves in Rn. It is convenient

to work in the Frenet–Serret frame, and we will largely adopt the notation from Gage–

Hamilton’s work on planar curves [GH86].

Let γ : S1 → Rn, p 7→ γ(p) be an immersion of the unit circle into Rn with the

parameter p taken to be modulo 2π. We always assume that γ is smooth and rectifiable.

We define the velocity of the parametrisation by

v =
∣∣∣∣∂γ∂p

∣∣∣∣ .
Since γ is rectifiable, we can parametrise it by arclength. The length s of γ is given by

s(p) =
∫ p

0
v(q) dq,
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and by the fundamental theorem of calculus we have that

ds

dp
(p) = v(p).

Then there exists an inverse function p such that

dp

ds
(s) = 1

v(p) .

Now if γ(p(s)) is parametrised by arclength, it follows that

v(s) = dγ(p(s))
dp

dp

ds
= v(p)
v(p) = 1.

Moreover, the operator ∂
∂s is given by

∂

∂s
= 1
v(p)

∂

∂p
,

and for any U ⊂ S1, the induced measure ds is given by

∫
U

ds =
∫
U
v(p) dp .

In the following, we will usually assume that γ is parametrised by arclength.

A Frenet–Serret frame is a moving frame of orthonormal vectors (T,N,B1, . . . , Bn−2),

where T is called the tangent vector, N the normal vector and B1, . . . , Bn−2 the binormal

vectors. Define the tangent vector by

T = ∂γ

∂s

and note that T has unit length since γ is parametrised by arclength. By differentiating

the equation 〈T, T 〉 = 1, we find that the curvature vector ∂T
∂s is orthogonal to T . The



Chapter 5. Geometry of submanifolds 97

curvature κ is given by

κ =
∣∣∣∣∂T∂s

∣∣∣∣ =
∣∣∣∣∣∂2γ

∂s2

∣∣∣∣∣ .
Assuming that the curvature does not vanish, let

N = κ−1∂T

∂s

be the unit normal vector, which is orthogonal to T . Once again, the fact that N has

unit length implies that ∂N
∂s is orthogonal to N , and 〈T,N〉 = 0 gives

κ+
〈
T,
∂N

∂s

〉
= 0.

Hence ∂N
∂s + κT must be a vector that is orthogonal to both T and N . We let

τ1 =
∣∣∣∣∂N∂s + κT

∣∣∣∣
denote the first torsion and, assuming that τ1 6= 0, define the first binormal vector by

B1 = τ−1
1

(
∂N

∂s
+ κT

)
.

Continuing this process inductively, we obtain the binormal vectors B2, . . . , Bn−2 and

the torsions τ2, . . . , τn−2 [Spi99b]. If none of κ, τ1, . . . , τn−2 vanish, the frame is uniquely

defined. In particular, we have

Theorem 5.1. The generalised Frenet–Serret equations hold:

∂

∂s



T

N

B1

B2
...

Bn−2


=



0 κ 0 0 . . . 0

−κ 0 τ1 0 . . . 0

0 −τ1 0 τ2 . . . 0

0 0 −τ2 0 . . . 0
...

...
...

... . . . τn−2

0 0 0 0 −τn−2 0





T

N

B1

B2
...

Bn−2


. (5.1)
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So, for example,
∂T

∂s
= κN.

In the following chapter, we will consider time-dependent immersions γt = γ(·, t) moving

in the direction N with speed κ and compute the evolution equations for the Frenet–Serret

frame.

Finally, in order to show that a blow-up limit of a solution of curve shortening flow is

planar, we require the following theorem. It generalises the well-known fact that a space

curve with vanishing torsion is planar to the case of curves in Rn.

Theorem 5.2 ([Spi99b, Thm. 7.B.5]). Let γ : S1 → Rn be a curve parametrised by

arclength such that κ, τ1, . . . , τj−2 do not vanish at any point and τj−1 vanishes everywhere.

Then γ lies in some (j − 1)-dimensional plane in Rn.



Chapter 6

Curve shortening and mean

curvature flow

In this chapter, we consider both mean curvature flow (MCF) and its one-dimensional

variant, the curve shortening flow (CSF). We state some classical results, in particular

Huisken’s monotonicity formula. Due to the extensive body of literature spanning more

than three decades, we merely present a small subset of known results.

Let Mm be an m-dimensional smooth manifold, T > 0, and let F : M × [0, T )→ Rn

be a smooth 1-parameter family of immersions with codimension k = n−m. This means

that every Ft := F (·, t), t ∈ [0, T ) is an immersion of M into Rn. Then F evolves by

mean curvature flow with initial data F0 : M → Rn if

∂F

∂t
(p, t) = ~H(p, t),

F (p, 0) = F0(p),
(MCF)

where ~H(·, t) is the mean curvature vector field of Ft. In codimension one, it is common

to choose the normal vector so that ~H = −Hν. Writing Mt := Ft(M), we call the set

{Mt : t ∈ [0, T )} a mean curvature flow.
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Meanwhile, in the one-dimensional case m = 1 we consider a family of smooth

immersions γ : S1 × [0, T )→ Rn of the unit circle satisfying curve shortening flow with

initial data γ0 : S1 → Rn:

∂γ

∂t
(p, t) = (κN)(p, t),

γ(p, 0) = γ0(p).
(CSF)

Here, κ(·, t) is the curvature of γt := γ(·, t) and N(·, t) our choice of unit normal vector

field. While in the planar case, n = 2, there is a notion of the normal vector pointing

inwards or outwards, in arbitrary codimension every curve γt still has two well-defined

orientations. We can thus choose the sign of the orientation to make (CSF) (weakly)

parabolic forward in time. In particular, the product κN makes sense even at the points

where N is not defined. We also assume that every curve γt is smooth and rectifiable.

It is well-known that the mean curvature flow equation is a quasilinear weakly

parabolic evolution equation [Smo12]. The existence of null directions stems from the

diffeomorphism invariance of the flow, i. e., if φ : M → M is a diffeomorphism and

F : M × [0, T )→ Rn a solution of (MCF) then F̃ : M × [0, T )→ Rn, F̃ (p, t) = F (φ(p), t)

is also a solution, and the submanifolds M̃t and Mt coincide [Smo12, Prop. 3.1].

6.1 Evolution equations

Mean curvature flow

Given a smooth solution F : Mm×[0, T )→ Rn of (MCF), we note the evolution equations

of the basic geometric quantities. In codimension one, these are well-known, and in full

generality they are derived in detail in Smoczyk’s survey paper [Smo12].

Proposition 6.1 ([Smo12]). The induced Riemannian metric g = g(t) satisfies

d

dt
gij = −2〈 ~H,Aij〉.
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Thus, the induced volume form dµt =
√

det g dx1 ∧ · · · ∧ dxm evolves by

d

dt
dµt = −

∣∣∣ ~H∣∣∣2 dµt .

Moreover, the Christoffel symbols of the Levi–Civita connection on M satisfy

Ckij := d

dt
Γkij = −gk`

(
∇i〈 ~H,Aj`〉+∇j〈 ~H,Ai`〉 − ∇`〈 ~H,Aij〉

)
.

The second fundamental form A evolves according to

∇ d
dt
Aαij = ∇i∇jHα − CkijFαk .

Finally, the mean curvature vector ~H satisfies

∇ d
dt
Hα = ∆Hα − gijCkijFαk + 2〈Ak`, ~H〉Aαk`.

For a mean curvature flow of hypersurfaces in codimension one, the evolution equations

simplify [Hui84].

Proposition 6.2. Let F : Mm × [0, T )→ Rm+1 be a smooth solution of (MCF). Then

the following equations hold:

∂

∂t
gij = −2Hhij , (6.1)

∂

∂t
dµt = −H2 dµt, (6.2)

∂

∂t
hij = ∆hij − 2Hhikgk`hj` + |A|2 hij , (6.3)

∂

∂t
H = ∆H + |A|2H, (6.4)

∂

∂t
|A|2 = ∆ |A|2 − 2 |∇A|2 + 2 |A|4 . (6.5)

Therefore, by the evolution equation for H and the maximum principle, we conclude

that the condition H > 0 is preserved under the flow. The evolution equation for the
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measure implies that the total area of Mt is monotonically decreasing.

Curve shortening flow

In the case of curve shortening flow, we have corresponding evolution equations in terms

of the Frenet–Serret frame. They have previously been derived for planar curves by Gage

and Hamilton [GH86] and for space curves by Altschuler [Alt91]; in the general case some

of them appeared in various places in the literature [YJ05; MC07; Hät15].

Let γ : S1× [0, ω)→ Rn be a solution of (CSF). We employ the notation of Section 5.3,

in particular, s is the arclength parameter and v =
∣∣∣∂γ∂p ∣∣∣. In order to avoid notational

ambiguities, the final time of existence of γ is denoted by either T or ω, depending on

the context. The following two statements can be proved exactly as in the planar case

[GH86].

Proposition 6.3. The evolution of v is given by

∂

∂t
v = −κ2v.

Proof. The operators ∂
∂p and ∂

∂t commute, hence

2v ∂
∂t
v = ∂

∂t
(v2) = 2

〈
∂γ

∂p
,
∂2γ

∂p∂t

〉

= 2
〈
vT,

∂

∂p
(κN)

〉
= 2

〈
vT,

∂κ

∂p
N − vκ2T + vκτ1B1

〉
= −2v2κ2,

where we have used the Frenet–Serret equations (5.1), (CSF), and that the vectors

(T,N,B1) are orthonormal.

Thus, the length of the curve is monotonically decreasing under curve shortening flow,

hence the name.
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Since the arclength parameter s depends on t, we cannot expect that the operators
∂
∂s and ∂

∂t commute. Instead, we have

Proposition 6.4. Differentiation with respect to s and t is related by the commutation

formula
∂2

∂t∂s
= ∂2

∂s∂t
+ κ2 ∂

∂s
. (6.6)

Proof. Using ∂
∂s = 1

v
∂
∂p , we obtain

∂

∂t

∂

∂s
= κ2 1

v

∂

∂p
+ 1
v

∂

∂p

∂

∂t
= κ2 ∂

∂s
+ ∂

∂s

∂

∂t
,

proving the claim.

These two propositions and the Frenet–Serret equations (5.1) enable us to derive the

evolution equations for the moving frame and the curvature and torsions.

Proposition 6.5. We have

∂T

∂t
= ∂2T

∂s2 + κ2T = ∂κ

∂s
N + κτ1B1. (6.7)

Proof. Using the commutation formula first, followed by the curve shortening flow

equation (CSF), we compute

∂T

∂t
= ∂2γ

∂t∂s

= ∂2γ

∂s∂t
+ κ2∂γ

∂s

= ∂3γ

∂s3 + κ2T

= ∂2T

∂s2 + κ2T.
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In order to obtain the second equality, observe that

∂2T

∂s2 =
(
∂κ

∂s

)
N + κ

∂N

∂s

= ∂κ

∂s
N + κ (−κT + τ1B1) (6.8)

by (5.1), so that
∂T

∂t
= ∂κ

∂s
N + κτ1B1,

as required.

Proposition 6.6. The evolution of the curvature κ is given by

∂κ

∂t
= ∂2κ

∂s2 + κ3 − κτ2
1 (6.9)

whenever κ > 0.

Proof. We use the fact that κ2 = 〈∂T∂s ,
∂T
∂s 〉 and get, using the Frenet–Serret equations

(5.1) and (6.7), that

κ
∂κ

∂t
=
〈
∂2T

∂t∂s
,
∂T

∂s

〉

=
〈
∂2T

∂s∂t
+ κ3N,κN

〉

=
〈
∂2κ

∂s2N + ∂κ

∂s

∂N

∂s
+ ∂κ

∂s
τ1B1 + κ

∂τ1
∂s

B1 + κτ1
∂B1
∂s

+ κ3N,κN

〉

= κ
∂2κ

∂s2 + κ4 + 〈κ2τ1(−τ1N + τ2B2), N〉

= κ
∂2κ

∂s2 + κ4 − κ2τ2
1 ,

which implies the claim.
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Corollary 6.7. We have

∂κ2

∂t
= ∂2κ

∂s2 − 2
(
∂κ

∂s

)2
+ 2κ4 − 2κ2τ2

1 .

Proposition 6.8. The normal vector field N satisfies

∂N

∂t
= −∂κ

∂s
T +

(
∂τ1
∂s

+ 2τ1
κ

∂κ

∂s

)
B1 + τ1τ2B2. (6.10)

Proof. From the Frenet–Serret equations (5.1) we have ∂T
∂s = κN , so

∂N

∂t
= ∂

∂t

(1
κ

∂T

∂s

)
.

The result then follows by a computation similar to the ones above using the Frenet–Serret

equations (5.1), the commutation formula (6.6), and the evolution equations for T and κ,

(6.7) and (6.9).

Proposition 6.9. The evolution of the first torsion τ1 is given by

∂τ1
∂t

= ∂2τ1
∂s2 + 2

κ

∂κ

∂s

∂τ1
∂s

+ 2τ1
κ

(
∂2κ

∂s2 −
1
κ

(
∂κ

∂s

)2
+ κ3

)
− τ1τ

2
2 .

Proof. Note that, by the Frenet–Serret equations (5.1),

〈
∂N

∂s
,
∂N

∂s

〉
= κ2 + τ2

1 .

Differentiating this equation with respect to t yields [YJ05]

τ1
∂τ1
∂t

+ κ
∂κ

∂t
=
〈
∂2N

∂t∂s
,
∂N

∂s

〉
.

Using (5.1), the commutation formula (6.6) and the evolution equations for N and κ,

(6.9) and (6.10), we obtain the result.
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Proposition 6.10. We have

∂ |γ|2

∂t
= ∂2 |γ|2

∂s2 − 2. (6.11)

Proof. Since ∂T
∂s = κN , the curve shortening flow equation can also be written as

∂γ

∂t
= ∂2γ

∂s2 .

While this resembles a heat equation, note that the arclength parameter s depends on

the time t. This implies that

∂ |γ|2

∂t
= 2

〈
∂γ

∂t
, γ

〉
= 2

〈
∂2γ

∂s2 , γ

〉
.

Finally, note that

∂2 |γ|2

∂s2 = ∂2

∂s2 〈γ, γ〉

= 2
〈
∂2γ

∂s2 , γ

〉
+ 2

〈
∂γ

∂s
,
∂γ

∂s

〉

= 2
〈
∂2γ

∂s2 , γ

〉
+ 2,

which proves the claim.

6.2 Existence and uniqueness

The short-time existence and uniqueness for solutions of the mean curvature flow is

by now classical. The difficulty in proving it lies in the diffeomorphism invariance, as

remarked above. Since the evolution equation is merely weakly parabolic, standard PDE

theory does not apply. Following Hamilton’s approach for the Ricci flow, the theorem can

be proved using the Nash–Moser inverse function theorem [Ham82; GH86]. Alternatively,

the DeTurck trick can be employed to remove the diffeomorphism invariance, transforming
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the system into a strongly parabolic one [Zhu02]. Finally, the surfaces Mt = Ft(M) can

locally be written as normal graphs over M0, which results in a quasilinear parabolic

equation for the height function to which standard theory can be applied [HP99].

Theorem 6.11. Let Mm be a closed smooth manifold and F0 : M → Rn a smooth

immersion. Then there exists a unique smooth solution of (MCF) on [0, T ) for some

0 < T ≤ ∞.

While the above theorem deals with a closed initial manifold, there are also results

in the non-compact case, e. g., for complete hypersurfaces, Ecker and Huisken showed

short-time existence assuming a uniform local Lipschitz condition [EH91].

Examples of simple yet instructive and powerful explicit solutions include the sphere

in any dimension and the Grim Reaper and the Abresch–Langer curves [AL86] in the

plane. If F0 is the standard embedding of the sphere Snr0 ⊂ Rn+1 of radius r0, the mean

curvature flow equation reduces to the ordinary differential equation

dr

dt
= −n

r

for the radius r(t) with r(0) = r0, whereby r(t) =
√
r2

0 − 2nt. The maximal time of

existence T = r2
0

2n is thus indeed finite. Under mean curvature flow, the sphere moves

solely by scaling and is an example of a self-similarly shrinking solution.

More generally, self-shrinking solutions of the mean curvature flow are ancient solutions

{Mt}, t ∈ (−∞, 0) that are completely determined by their time-slice at t = −1, so that

they satisfy

Mt =
√
−tM−1, t < 0.

The surface M−1 is then called a self-shrinker. Examples of self-shrinking solutions

other than the sphere include the flat plane (which is of course wholly unaffected by

mean curvature flow), generalised cylinders Sk × Rm−k, and the Angenent torus [Ang92].
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Equivalently, self-shrinkers Mm ⊂ Rm+1 are characterised by the equation

H = x⊥

2 ,

where x denotes the position vector [CM12], that is, an ancient solution {Mt} is a

self-shrinking solution if and only if H = x⊥

2t for all t < 0.

The Grim Reaper is a non-compact solution of curve shortening flow in the plane

given by Γ(x, t) = (x,− log(cosx) + t), |x| ≤ π
2 and moves solely by translation. Abresch–

Langer curves, on the other hand, are a class of planar self-shrinking convex closed

curves γm,n ⊂ R2 with turning number m and n ‘petals’, that is, 2n critical points of the

curvature, where the coprime integers m,n ∈ N must satisfy

1
2 <

m

n
<

√
2

2 .

In fact, any closed self-shrinker in the plane except the circle is of this form [AL86; see

also Hal12].

These examples suggest that while long-time existence of the flow can occur, it would

be wrong to expect it in general. Indeed, the parabolic maximum principle implies that

the flow of a compact submanifold must cease to exist in finite time.

Theorem 6.12. Let Mm be a closed smooth manifold and F0 : M → Rn a smooth

immersion. Then the maximal time T of existence of the solution F : M × [0, T )→ Rn

of (MCF) starting from F0 is finite.

This follows directly from the evolution equation for |F |. In the one-dimensional case,

(6.11) implies that

max |γt|2 ≤ max |γ0|2 − 2t,

whereby T ≤ 1
2 max |γ0|2. Geometrically, in codimension one this argument can be

rephrased in terms of the avoidance principle: Any two initially disjoint mean curvature
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flows {Mt}, {M ′t} must stay disjoint throughout the evolution. Therefore, enclosing a

compact initial hypersurface M0 in a sphere of sufficiently large radius, we see that M0

must cease to exist before the sphere does.

However, non-compact solutions may exist for arbitrarily long times, for example entire

n-dimensional graphs in Rn+1 exhibit long-term existence [EH89]. In any codimension

there is the result of Wang [Wan02].

In addition, we have that for a closed initial manifold, the curvature must tend to

infinity as we approach the maximal time of existence [Smo12].

Theorem 6.13. Let Mm be a closed smooth manifold and F : M × [0, T )→ Rn a smooth

solution of (MCF) for which the maximal time of existence T is finite. Then we have

that

lim sup
t→T

max
Mt

|A|2 =∞.

In the hypersurface case, this result goes back to Huisken [Hui84; Hui90], whose proof

used the maximum principle and a uniform bound on the derivatives ∇kA of A, given a

uniform bound on A itself.

6.3 Classification of singularities

Since singularities are inevitable in general, it is a worthwhile endeavour to analyse

their geometric structure. To that end, they are commonly classified according to the

growth rate of the curvature. The likely origin of this concept is the fact that under the

assumptions of Theorem 6.13, the growth rate is bounded from below, i. e.,

lim sup
t→T

max
Mt

|A|2 ≥ c

T − t
,

for some constant c > 0 depending on M .
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We thus distinguish singularities by the presence of a bound on the growth rate from

above [Hui90]. Note that the curvature of the sphere realises this growth rate exactly.

Definition 6.14. Let F : M × [0, T )→ Rn, T <∞ be a smooth solution of (MCF) such

that

lim sup
t→T

max
Mt

|A|2 =∞.

If the growth rate is optimal, that is, there exists a constant c > 0 such that

max
Mt

|A|2 ≤ c

T − t

for all t ∈ [0, T ), then M is said to develop a type-I singularity at time T . Otherwise,

that is, if

lim sup
t→T

max
Mt

|A|2 (T − t) =∞

then the singularity is said to be of type-II.

The sphere exhibits a type-I singularity at its final time of existence. In some cases,

it is the only one possible, according to Huisken’s seminal result:

Theorem 6.15 ([Hui84]). Under mean curvature flow, any closed convex hypersurface

immediately becomes strictly convex and converges to a round point in finite time.

The one-dimensional case was treated by Grayson and Gage–Hamilton.

Theorem 6.16 ([GH86; Gra87; cf. Hui98; AB11]). Under curve shortening flow, any

simple closed curve becomes convex and converges to a round point in finite time.

A common technique for the analysis of singularities of curvature flows is to study

sequences of rescalings of the solution along sequences of space-time points with the

property that the curvature tends to infinity. The objective is then to extract, in a

suitable sense, a limit solution, whose classification is still subject to current research

[see, e. g., CM12].
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Definition 6.17. Let F : M × [0, T )→ Rn, T <∞ be a smooth solution of (MCF). If a

sequence (pk, tk) of points pk ∈M and times tk ∈ [0, T ) is such that tk → T and

lim sup
k→∞

|A| (pk, tk) =∞,

it is called a blow-up sequence. A blow-up sequence (pk, tk) is called essential if there

exists a constant δ > 0 such that

|A|2 (pk, tk) ≤
δ

T − tk
.

If there exists a sequence of points pk → p in M and a sequence of times tk → T such

that

lim sup
k→∞

|A| (pk, tk) =∞

then p ∈ M is called a singular point of the flow. If there exists a sequence of times

tk → T such that

lim sup
k→∞

|A| (p, tk) =∞

for some p ∈M then p is called a special singular point.

Given a mean curvature flow {Mt}, λ > 0 and a space-time point (x0, t0), we consider

the parabolic rescalings

Mλ
t′ = λ

(
Mλ−2t′+t0 − x0

)
.

Then {Mλ
t } is again a mean curvature flow with variables x′ = λ(x− x0), t′ = λ2(x− x0).

If (x0, T ) is a type-I singularity and {λj} a sequence of positive numbers with λj →∞,

the bound on |A| can then be used to show that the sequence
{
M

λj
t′

}
subconverges to an

ancient smooth limit flow, which is called type-I blow-up or tangent flow. Note that even

if (x0, T ) is of type-II, one can still carry out the rescaling procedure and obtain a weak

limit as a Brakke flow of rectifiable varifolds [Bra78], which is a weak, non-smooth notion

of mean curvature flow.
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It turns out that, in fact, a type-I blow-up produces a self-similarly shrinking solution

[Hui90]. Therefore, self-shinkers are used as models for type-I singularities. This is a

consequence of Huisken’s monotonicity formula, which is the topic of the following section.

6.4 The monotonicity formula

Introduced by Huisken, the monotonicity formula is one of the central tools in the study

of type-I singularities of mean curvature flow.

Let Mm be a closed manifold and F : M × [0, T )→ Rn a smooth family of immersions

satisfying (MCF). For (x0, t0) ∈ Rn × R the scaled backward heat kernel centered at

(x0, t0) is given by

kx0,t0(x, t) = (4π(t0 − t))−
m
2 e−

|x−x0|
2

4(t0−t) .

Note that kx0,t0 is well defined on Rn × (−∞, t0).

We then have

Theorem 6.18 ([Hui90, Thm. 3.1; see also EH89; Ham93; Eck04]). Let {Mt} be a mean

curvature flow as above and (x0, t0) ∈ Rn × [0, T ). It holds that

d

dt

∫
M
kx0,t0 dµt = −

∫
M

∣∣∣∣∣ ~H + (x− x0)⊥

2(t0 − t)

∣∣∣∣∣
2

kx0,t0 dµt, t < t0,

where (·)⊥ denotes the part of a vector normal to M .

Proof. We can assume (x0, t0) = (0, 0) and set k = k0,0. Recall the evolution equation

for the measure
d

dt
dµt = −| ~H|2 dµt,
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which implies that, by (MCF),

d

dt

∫
M
k(F (p, t), t) dµt(p) =

∫
M

∂k

∂t
(F (p, t), t) +

〈
∂F

∂t
(p, t), Dk(F (p, t), t)

〉
−
∣∣∣ ~H(p, t)

∣∣∣2 k(F (p, t), t) dµt(p)

=
∫
M

∂k

∂t
(F (p, t), t) + 〈 ~H(p, t), Dk(F (p, t), t)〉

−
∣∣∣ ~H(p, t)

∣∣∣2 k(F (p, t), t) dµt(p) .

By the divergence theorem, we have that

∫
M

divM Dk = −
∫
M
〈 ~H,Dk〉.

We compute, denoting by xT the part of x tangential to M ,

∂k

∂t
=
(
−m2t −

|x|2

4t2

)
k,

Dk = k

2tx,

divM Dk =

m2t +

∣∣∣xT ∣∣∣2
4t2

 k,
which gives

d

dt

∫
M
k dµt =

∫
M

∂k

∂t
+ 〈 ~H,Dk〉 −

∣∣∣ ~H∣∣∣2 k dµt

=
∫
M

∂k

∂t
+ divM Dk + 2〈 ~H,Dk〉 −

∣∣∣ ~H∣∣∣2 k dµt

= −
∫
M

 |x|24t2 −

∣∣∣xT ∣∣∣2
4t2 − 2

〈
~H,

x

2t

〉
+
∣∣∣ ~H∣∣∣2

 k dµt .

Therefore, we obtain

d

dt

∫
M
k dµt = −

∫
M

∣∣∣∣∣ ~H − x⊥

2t

∣∣∣∣∣
2

k dµt, t < 0,

completing the proof.
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As mentioned above, the monotonicity formula implies that a type-I blow-up is a

self-shrinker.

Theorem 6.19 ([Hui90, Thm. 3.5]). Let {Mt} be a mean curvature flow of closed

hypersurfaces. Then any tangent flow at a type-I singularity is self-similarly shrinking.

6.5 The entropy functional

Entropy is a functional on the space of surfaces that can be seen as a measure of geometric

complexity. Since it is monotone under mean curvature flow, a bound on the entropy

of the initial surface implies a bound on the entropy for all later singularities. Most

prominently, it has been employed in Colding–Minicozzi’s analysis of generic singularities

of mean curvature flow [CM12].

Let Mm ⊂ Rn be an immersed surface. We define the functional Fx0,t0 , x0 ∈ Rn,

t0 > 0, by [CM12; Gua19]

Fx0,t0(M) = (4πt0)−
m
2

∫
M

e−
|x−x0|

2
4t0 dµ =

∫
M
kx0,t0(x, 0) dµ .

Definition 6.20. The entropy of M is defined by

λ(M) = sup
x0∈Rn, t0>0

Fx0,t0(M).

Suppose that {Mt} is a mean curvature flow of closed surfaces. For any s < t < t0,

the monotonicity formula yields

d

dt

∫
Mt

kx0,t0 dµ ≤ 0,

whereby

Fx0,t0(Mt) ≤ Fx0,t0+(t−s)(Ms),
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which implies that λ(Mt) ≤ λ(Ms) for any s < t.

From these considerations and the definition of the entropy, we thus immediately

obtain [CM12]

Proposition 6.21. The entropy functional λ is non-negative and invariant under dila-

tions, rotations and translations of M . Moreover, if {Mt} is a mean curvature flow,

λ(Mt) is non-increasing in t. Finally, the critical points of λ are self-similarly shrinking

solutions of the mean curvature flow.

In addition, among all closed planar curves, the entropy λ is minimised by the circle.

By the Gage–Hamilton–Grayson theorem 6.16, any closed curve γ in the plane becomes

convex and eventually shrinks to a round point. But the entropy is non-increasing under

curve shortening flow, so we must have λ(γ) ≥ λ(S1). In fact, in any dimension, the

round sphere minimises entropy among all closed self-shrinking solutions [CIMW13].

Note that the entropy of a self-shrinker is equal to the functional F0,1, the Gaussian

area [CM12], since by the monotonicity formula, the critical points of F0,1 are precisely the

self-shrinkers. In other words, self-shrinkers are the minimal hypersurfaces of (Rn+1, gij)

with the conformal metric gij = e−
|x|2
2n δij . Equivalently, self-shrinkers are the critical

points of the functional Fx0,t0(·) with respect to variations in all three parameters [CM12].

For some examples, it is possible to compute the entropy explicitly. A related quantity

is Huisken’s density, which is defined as the limit

Θx0,t0 = lim
t→t0

∫
Mt

kx0,t0 dµ,

which exists thanks to the monotonicity formula. The density of the sphere, and thus its

entropy (as the sphere is a self-shrinker) has been computed by Stone [Sto94]:

2 > λ(S1) =
√

2π
e ≈ 1.52 > 3

2 > λ(S2) = 4
e ≈ 1.47 > · · · > λ(Sn) >

√
2.
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For a cylinder Sk√2k × Rn−k, it holds that

λ
(
Sk√2k × Rn−k

)
= λ(Sk).

In fact, for any hypersurface M , we have λ(M × R) = λ(M). Furthermore, the entropy

of any plane is equal to one. To see this, note that we may rewrite the entropy as the

supremum of the Gaussian area,

λ(M) = sup
x0∈Rn,t0>0

F (t−1
0 M + x0),

where F = F0,1. Therefore, for an m-dimensional plane P ⊂ Rn, which we may assume

to be Rm,

F (Rm) = (4π)−
m
2

∫
Rm

e−
|x|2

4 dx

= (4π)−
m
2

m∏
i=1

∫ ∞
−∞

e−
x2
i

4 dxi

= 1,

by Fubini’s theorem. As a result, we obtain λ(P ) = 1 for any m-dimensional plane

P ⊂ Rn.

In Chapter 8, we will need the explicit value of the entropy of some special solutions

of the curve shortening flow. First, for the translating Grim Reaper solution the entropy

has been computed by Guang:

Proposition 6.22 ([Gua19, Thm. 1.3]). Let Γ : (−π
2 ,

π
2 )× (0,∞)→ R2 denote the Grim

Reaper. For any point (x0, y0) ∈ R2, t0 ∈ (0,∞), we have that

F(x0,y0),t0(Γ) ≤ 2.

In fact,

lim
N→∞

F(0,N),N (Γ) = 2.
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Therefore, the entropy of the Grim Reaper satisfies

λ(Γ) = 2.

Moreover, for the self-shrinking Abresch–Langer solutions [AL86] there is a lower

bound on the entropy due to Baldauf and Sun.

Proposition 6.23 ([BS20]). Let γm,n denote an Abresch–Langer curve, that is, a closed

convex self-shrinking solution to the curve shortening flow with turning number m and

2n critical points of the curvature, where m,n ∈ N are coprime integers such that

1
2 <

m

n
<

√
2

2 .

Then the entropy of γm,n satisfies

λ(γm,n) ≥ mλ(S1) = m

√
2π
e .

As a function of (x0, t0) ∈ Rn+1 × (0,∞), Fx0,t0(M) is a smooth function for any

smooth closed embedded hypersurface Mn ⊂ Rn+1 with polynomial volume growth

[CM12]. However, λ(M) does not depend smoothly on M : In fact, the entropy functional

is not continuous on the space of hypersurfaces, for a sequence of rescalings of the sphere

converges to a hyperplane at any point, but the sphere has entropy greater than
√

2,

while the plane has entropy 1. Still, λ is lower semicontinuous, since it is defined as the

supremum of the collection {Fx0,t0 : (x0, t0) ∈ Rn × (0,∞)} of lower semicontinuous (in

fact continuous) functions on submanifolds.

Finally, we have an estimate for the entropy in terms of the Euclidean density at each

point.
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Proposition 6.24 ([Whi15]). Let Mm ⊂ Rn be an immersed surface. Define the

Euclidean density of M at x by

Θm(M,x) = lim
r→0

Hm(Br(x) ∩M)
ωmrm

,

where ωm is the volume of the m-dimensional unit ball. Then, for any x ∈M , we have

that

λ(M) ≥ Θm(M,x)

whenever the limit exists.



Chapter 7

Convexity and cylindrical

estimates for k-convex mean

curvature flow

In this chapter, we consider two estimates that are central to Huisken and Sinestrari’s

surgery procedure for 2-convex mean curvature flow in the more general case of k-convex

mean curvature flow. The asymptotic convexity estimate was originally proved by

Huisken–Sinestrari [HS99a; HS99b] using an intricate argument based on induction on

elementary symmetric polynomials, which was then used to show the cylindrical estimate.

We follow instead an approach introduced by Nguyen (which appeared in Schulze’s

lecture notes [Sch17]) that shares many similarities with the strategy of the proof of

Langford’s very general pinching principle [Lan17]. Our main result, Theorem 7.11,

which gives an estimate akin to the cylindrical estimate of Huisken–Sinestrari, but in the

case of k-convex mean curvature flow, is proved directly from the assumption using the

Stampacchia iteration technique [Hui84]. In the 2-convex case, the convexity estimate

then follows from the cylindrical one, shortening the original proof considerably. Estimates

that are similar in spirit have been employed in higher codimension [Ngu18; LN20b],

119
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which eventually led to a surgery procedure for mean curvature flow of high codimension

with a suitably pinched second fundamental form [Ngu20].

In the following, we denote the principal curvatures of an immersed hypersurface

Mn ⊂ Rn+1 by

λ1 ≤ λ2 ≤ · · · ≤ λn.

Definition 7.1. Let Mn ⊂ Rn+1 be an immersed hypersurface. Suppose that 1 ≤ k ≤ n.

We say that M is k-convex if

λ1 + · · ·+ λk ≥ 0

everywhere in M . In particular, if M is 1-convex it is called convex, and if M is n-convex,

that is, H ≥ 0, it is called mean convex.

By Hamilton’s maximum principle for tensors [Ham86], k-convexity is a property that

is preserved by the flow [Sch17, Prop. 6.0.4].

Proposition 7.2. Suppose that {Mt} is a mean curvature flow of immersed hypersurfaces

for which M0 satisfies

λ1 + · · ·+ λk ≥ αH

for some α ≥ 0 and 1 ≤ k ≤ n. Then this inequality is preserved under mean curvature

flow. In particular, if M0 is k-convex then so is Mt.

7.1 Huisken–Sinestrari’s surgery procedure

One of the main motivations of the study of curvature flows in general is the possibility

of obtaining topological statements from them, as most prominently evidenced by the

Ricci flow of three-manifolds. Obviously, the presence of finite-time singularities in mean

curvature flow prevents a further description of the flow in terms of differential geometry.

The basic idea of a surgery procedure is to be able to continue a smooth flow through

singularities up to errors that are introduced in a controlled manner, so that statements
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about the changes in its topology can be made.

More precisely, assuming that the flow does not completely vanish at a singular

time, at a time shortly before the singular time the flow is stopped and a neck, that

is, a part of the surface close to a cylinder, is removed and replaced by two regions

diffeomorphic to disks such that the resulting surface, possibly disconnected, is again

smooth and the flow can be continued until the next singular time, when the process

is repeated. This enables one to keep track of the topological changes. Since area is

non-increasing along mean curvature flow and every surgery decreases area by a certain

amount, the procedure must terminate eventually. Moreover, one must ensure that the

relevant estimates, such as the ones below, continue to hold through the surgeries with

the same constants. Huisken–Sinestrari showed, in a complex technical work, that this

procedure can be carried out for 2-convex mean curvature flow and stated its topological

implication.

Theorem 7.3 ([HS09, Thm. 1.1]). Let F0 : Mn → Rn+1 be a smooth immersion of a

closed hypersurface with n ≥ 3. Suppose that M0 = F0(M) is 2–convex. Then there exists

a mean curvature flow with surgeries starting from M0 which terminates after a finite

number of steps.

Corollary 7.4 ([HS09, Cor. 1.2]). Any smooth closed 2-convex immersed hypersurface

Mn ⊂ Rn+1 with n ≥ 3 is diffeomorphic either to Sn or to a finite connected sum of

Sn−1 × S1.

Note that these results have been extended to the n = 3 case by Brendle–Huisken

[BH16].

Within the surgery procedure, the convexity and cylindrical estimates are used to

establish the presence of a suitable neck region. In particular, combined with a gradient

estimate for the curvature they quantify the closeness of a high curvature region to a

cylinder or a sphere. In Huisken’s work on mean curvature flow of convex hypersurfaces

[Hui84], he established an umbilic estimate: For any η > 0 there exists Cη = C(η,M0)
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such that

|Å|2 ≤ ηH2 + Cη.

Here Å denotes the trace-free second fundamental form. Therefore, the ratio |Å|
2

H2 is close

to zero wherever H tends to infinity, so that at a singular point the hypersurface is

essentially umbilic. The convexity estimate, meanwhile, shows that an almost singular

region becomes asymptotically convex as one approaches the singular time [HS09].

Theorem 7.5 ([HS99a; see also HS09, Thm. 1.4]). Let {Mt} be a closed mean convex

mean curvature flow. Then for any η > 0 there exists Cη = C(η,M0) > 0 such that

λ1 ≥ −ηH − Cη (7.1)

on Mt for any t ∈ [0, T ).

Clearly, for a cylinder Sn−1 × R we have that |A|2 = 1
n−1H

2. Conversely, if |A|2 =
1

n−1H
2 and λ1 = 0 at a point, then λ2 = · · · = λn. The cylindrical estimate can be seen

as a quantitative version of this statement in the sense that it implies that the curvature

at points with small first principal curvature is close to that of a cylinder.

Theorem 7.6 ([HS09, Thm. 1.5]). Let {Mt} be a closed 2-convex mean curvature flow.

Then for any η > 0 there exist constants Cη = C(η,M0) > 0 and c = c(n) such that

|λ1| ≤ ηH =⇒ |λi − λj | ≤ cηH + Cη (7.2)

for any 1 < i, j ≤ n on Mt for any t ∈ [0, T ).

In particular, we know that the limit of a sequence of rescalings at a type-I singularity

as in Section 6.3 of a mean convex mean curvature flow can only be a shrinking sphere or a

generalised cylinder Sn−m√
2(n−m)

×Rm, by Huisken’s classification of self-similarly shrinking

solutions [Hui90]. The convexity and cylindrical estimates then further constrain these

possibilities, as the former implies that in the mean convex case the limit must be convex,
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while the latter implies that in the 2-convex case the tangent flow is either a shrinking

sphere or a cylinder Sn−1 × R.

7.2 Poincaré-type inequality

The key to the proof of the cylindrical estimate presented here is a careful analysis of

the curvature terms in Simons’ identity [LN20b; cf. BH17]. In the following, we assume

that {Mt} is a mean curvature flow of n-dimensional k-convex immersed hypersurfaces

in Rn+1. Recall

Proposition 7.7 (Simons’ identity). Let Mn ⊂ Rn+1 be a hypersurface. Then it holds

that

∇k∇`hij −∇i∇jhk` = hk`h
p
ihjp − hi`h

p
jhkp + hjkh

p
ih`p − hijh

p
kh`p. (7.3)

We symmetrise (7.3) and obtain

∇k∇`hij +∇`∇khji −∇i∇jhk` −∇j∇ihk` = hk`h
p
ihjp − hi`h

p
jhkp

+ hjkh
p
ih`p − hijh

p
kh`p

+ h`kh
p
jhip − hjkh

p
ih`p

+ hi`h
p
jhkp − hjih

p
`hkp

= 2hk`hpihjp − 2hijhpkh`p.

Defining Cijk` = hk`h
p
ihjp − hijh

p
kh`p, we can write this more compactly as

∇(k∇`)hij −∇(i∇j)hk` = 2Cijk`.

Take the trace on both sides with respect to Cijk` to get

(
∇(k∇`)hij −∇(i∇j)hk`

)
Cijk` = 2 |C|2 .
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However, note that the tensor Cijk` is symmetric in the pairs (i, j) and (k, `), so that

2 (∇k∇`hij −∇i∇jhk`)Cijk` = 2 |C|2 .

The norm of C can be computed as

|C|2 = (hk`h2
ij − hijh2

k`)(hk`(hij)2 − hij(hk`)2)

= 2 |A|2 tr(A4)− 2 tr(A3)2.

Recall that the second fundamental form A can be diagonalised by its eigenvalues

λ1, . . . , λn. We thus have that

n∑
i,j=1

(λi − λj)2λ2
iλ

2
j =

n∑
i,j=1

(λ2
i + λ2

j − 2λiλj)λ2
iλ

2
j

=
n∑

i,j=1
(λ4
iλ

2
j + λ4

jλ
2
i − 2λ3

iλ
3
j )

= 2 |A|2 tr(A4)− 2 tr(A3)2.

Therefore,

2 (∇k∇`hij −∇i∇jhk`)Cijk` = 2
n∑

i,j=1
(λi − λj)2λ2

iλ
2
j .

We claim that at any point where H > 0 and

|A| − 1√
n− (k − 1)

H > 0,

the term |C|2 is strictly positive. To the contrary, assume that |C|2 = 0, that is,

n∑
j=1

n∑
i=1

(λi − λj)2λ2
iλ

2
j = 0,



Chapter 7. Convexity and cylindrical estimates for k-convex mean curvature flow 125

which yields in particular that

n∑
i=1

(λi − λn)2λ2
iλ

2
n = 0.

Since H > 0 implies that λn > 0, we must have either λi = 0 or λi = λn for any

i = 1, . . . , n− 1. Therefore, there exists 0 ≤ i0 ≤ n− 1 such that λi0 = 0, λi0+1 = λn. By

k-convexity, we must have λk > 0, whence i0 ≤ k − 1. We obtain

|A|2 = (n− i0)λ2
n,

H = (n− i0)λn,

and thus

|A| − 1√
n− (k − 1)

H =
(
√
n− i0 −

n− i0√
n− (k − 1)

)
λn.

But as i0 ≤ k − 1, we conclude that |A| − 1√
n−(k−1)

H ≤ 0, which is a contradiction.

Using the claim, we can prove the following Poincaré-type inequality.

Lemma 7.8 ([cf. Lan17, Prop. 2.7; LN20a, Prop. 2.2]). Given n ≥ 3, ε ∈ (0, 1), and

η > 0, there exists γ = γ(n, ε, η) > 0 with the following property: Let F : Mn → Rn+1

be a smoothly immersed k-convex hypersurface and u ∈ W 2,2(M) a function satisfying

sptu ⊂ Uε,η,M , where, introducing the functions

f1,η := |A| − 1√
n− (k − 1)

H − ηH

and

f2,ε :=
k∑
i=1

λi − εH,

the set Uε,η,M ⊂M is defined by

Uε,η,M := {x ∈M : f1,η ≥ 0, f2,ε ≥ 0},
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that is,

Uε,η,M =
{
x ∈M : |A| − 1√

n− (k − 1)
H − ηH ≥ 0,

k∑
i=1

λi − εH ≥ 0
}
⊂M.

Then, for any r ≥ 1,

γ

∫
u2 |A|2 dµ ≤ r−1

∫
|∇u|2 dµ+(1 + r)

∫
u2 |∇A|

2

H2 dµ .

Remark. Note that for strictly k-convex hypersurfaces evolving by mean curvature flow,

f2,ε ≥ 0 follows immediately, so that the condition f2,ε ≥ 0 is automatic in this case.

Proof. We claim that

γ(n, ε, η) |A|2H4 ≤ |C|2 in Uε,η,M (7.4)

for any immersed hypersurface F : Mn → Rn+1. This follows by a rescaling and

compactness argument, as we now show.

Indeed, if this is not the case, then there exists a sequence of points {λm} ⊂ Rn

satisfying

f1,η(λm) := |λm| − 1√
n− (k − 1)

tr(λm)− η tr(λm) ≥ 0

and

f2,ε(λm) :=
k∑
i=1

λmi − ε tr(λm) ≥ 0,

where tr(λ) :=
∑n
i=1 λi, but

|C(λm)|2

|λm|2 tr(λm)4
= |C(λm)|2

W (λm) → 0 (7.5)

as m→∞, with W (λm) := |λm|2 tr(λm)4 and

|C(λ)|2 :=
n∑

i,j=1
(λj − λi)2λ2

iλ
2
j .



Chapter 7. Convexity and cylindrical estimates for k-convex mean curvature flow 127

Now define rm := W (λm)−
1
6 and λ̂m := rmλ

m. Using the inequality [HS99b, (2.5)]

|A|2 ≤ c0H
2,

where c0 is a constant, we observe that

c
− 1

6
0 tr(λm)−1 ≤W (λm)−

1
6 ≤ c

1
3
0 |λ

m|−1 ,

which implies

∣∣∣λ̂m∣∣∣ ≤ c 1
3
0 <∞,

tr(λ̂m) ≥ c−
1
6

0 > 0,

and hence, up to a subsequence, λ̂m → λ̂ ∈ Rn as m→∞. Since

rmf1,η(λm) ≥ 0,

rmf2,ε(λm) ≥ 0,

we find ∣∣∣λ̂∣∣∣− 1√
n− (k − 1)

tr(λ̂) ≥ η tr(λ̂) > 0 (7.6)

and
k∑
i=1

λ̂i ≥ ε tr(λ̂) > 0. (7.7)

On the other hand,

n∑
i,j=1

(
λ̂mi λ̂

m
j (λ̂mj − λ̂mi )

)2
= r6

m |C(λm)|2

so that, by (7.5),
n∑

i,j=1
λ̂2
i λ̂

2
j (λ̂j − λ̂i)2 = 0. (7.8)
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Together, (7.6) to (7.8) are in contradiction by the claim we proved before. This proves

(7.4).

Using (7.4), we can estimate [Lan17]

γ

∫
u2 |A|2 dµ ≤

∫
u2H−4 |C|2 dµ

=
∫
u2H−4Cijk` (∇k∇`hij −∇i∇jhk`) dµ

=
∫
u2
(

2H−4Cijk`
∇ku
u
− 4Cijk`∇kH

H5 +H−4∇kCijk`
)
∇`hij dµ

−
∫
u2
(

2H−4Cijk`
∇iu
u
− 4Cijk`∇iH

H5 +H−4∇iCijk`
)
∇jhk` dµ

≤ c

∫
u2
( |∇u|

u
+ |∇A|

H

) |∇A|
H

dµ,

where c = c(n, ε, η) is a constant. The claim now follows from Young’s inequality.

7.3 Cylindrical estimate

For a uniformly k-convex mean curvature flow, the inequality |A|2 ≥ 1
nH

2 is preserved,

so that |A| is a smooth function along the flow. From the evolution equation (6.5) we

can thus compute

∂

∂t
|A| = ∆ |A| − 1

2 |A|3
|A⊗∇A−∇A⊗A|2 + |A|3 .

The gradient term in this equation has an interesting structure, as it only vanishes if A is

a multiple of the second fundamental form of Rn−1 × S1. However, in the k-convex case,

we bound this term from below.

Lemma 7.9 ([Lan17, Lemma 2.1; cf. Hui84, Lemma 2.3]). Let F : Mn → Rn+1 be a

strictly k-convex hypersurface, i. e.,
∑k
i=1 λi ≥ εH > 0 for some ε ∈ (0, 1]. In the mean

convex case k = n, suppose that |A| −H ≥ ηH for η > 0. Then there exists a constant
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γ = γ(n, ε, η) > 0 such that

|A⊗∇A−∇A⊗A|2 ≥ γ |A|2 |∇A|2 .

Proof. Fix x ∈ M such that |A| |∇A| (x) 6= 0. (If there is no such x, then the claim is

trivially true.) By rescaling, we can assume that |A| |∇A| = 1 at x. Since the set

{(W,T ) ∈ Sym2 × Sym3 :
k∑
i=1

λi(W ) ≥ ε tr(W ) > 0, |W | = |T | = 1},

where Symm denotes the set of totally symmetric (0,m)-tensors is compact, and tr(W )

is uniformly bounded from below for such W , we only need to prove that

|A⊗∇A−∇A⊗A|2 > 0.

Therefore, assume that we have

A⊗∇A = ∇A⊗A.

We choose a diagonalising frame and after applying the Codazzi identity, we get

λiδij∇ph`m = ∇ihjpλ`δ`m

= λ`δ`m∇phij (7.9)

for each i, j, `,m, p. Since λ1 ≤ λ2 ≤ · · · ≤ λn, H > 0 implies that λn > 0. Let i, j, p be

such that ∇phij 6= 0. (If ∇phij = 0 for all i, j, p, then the claim is trivially true.) Then,

in particular,

λiδij∇phnn = λn∇phij 6= 0

and hence i = j. By the same reasoning and the Codazzi identity, we obtain that p = j.
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Thus ∇phij 6= 0 only if i = j = p. Therefore,

0 6= λn∇phpp = λp∇phnn,

so that p = n by the above. That is, λn∇phij 6= 0 only if i = j = p = n. On the other

hand, if we set p = ` = m = n and i = j 6= n in (7.9), we get

λi∇nhnn = ∇nhiiλn = 0,

from which we conclude that λi = 0 for all i = 1, . . . , n− 1. Hence

|A|2 = λ2
n,

H = λn.

Consequently, in the mean convex case our assumption that |A| −H ≥ ηH implies

0 ≥ ηλn,

a contradiction. On the other hand, if k < n then k-convexity directly yields λk > 0.

In order to derive the cylindrical estimate, we first define a suitable function and derive

Lp-bounds [Hui84; Lan17; cf. LN20a]. Consider for η > 0 and σ ∈ [0, 1] the following

function

Gσ,η =
|A| −

(
1√

n−(k−1)
+ η

)
H

H1−σ .

The evolution equation of Gσ,η is given by

∂

∂t
Gσ,η = ∆Gσ,η + 2(1− σ)

H
〈∇Gσ,η,∇H〉

− 1
2H1−σ |A|3

|A⊗∇A−∇A⊗A|2

− σ(1− σ)Gσ,η
H2 |∇H|2 + σ |A|2Gσ,η.
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Therefore, at all points where Gσ,η ≥ 0, we may estimate, using Lemma 7.9, that

∂

∂t
Gσ,η ≤ ∆Gσ,η + 2 |∇Gσ,η|

|∇H|
H
− γ1Gσ,η

H2 |∇A|2 + σ |A|2Gσ,η.

We let Gσ,η,+ = max{Gσ,η, 0} and obtain the evolution equation for its Lp-norm,

d

dt

∫
Gpσ,η,+ dµ = p

∫
Gp−1
σ,η,+

∂

∂t
Gσ,η dµ−

∫
Gpσ,η,+H

2 dµ .

Discarding the second term, we get

d

dt

∫
Gpσ,η,+ dµ ≤ − p(p− 1)

∫
Gp−2
σ,η,+ |∇Gσ,η|

2 dµ−γ1p

∫
Gpσ,η,+

|∇A|2

H2 dµ

+ 2p
∫
Gp−1
σ,η,+ |∇Gσ,η|

|∇H|
H

dµ+σp
∫
Gpσ,η,+ |A|

2 dµ .

We use Young’s inequality and the inequality 3
n+2 |∇H|

2 ≤ |∇A|2 [Hui84, Lemma 2.2]

to divide one of the terms as follows:

2p
∫
Gp−1
σ,η,+ |∇Gσ,η|

|∇H|
H

dµ ≤ p
3
2

∫
Gp−2
σ,η,+ |∇Gσ,η|

2 dµ

+ n+ 2
3 p

1
2

∫
Gpσ,η,+

|∇A|2

H2 dµ .

This implies that

d

dt

∫
Gpσ,η,+ dµ ≤ − (p2 − p

3
2 − p)

∫
Gp−2
σ,η,+ |∇Gσ,η|

2 dµ

−
(
γ1p−

n+ 2
3 p

1
2

)∫
Gpσ,η,+

|∇A|2

H2 dµ

+ σp

∫
Gpσ,η,+ |A|

2 dµ .

We use the Poincaré inequality, Lemma 7.8, with u2 = Gpσ,η,+, r = p
1
2 , so that

|∇u|2 = p2

4 G
p−2
σ,η,+ |∇Gσ,η|

2
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to get

γ2

∫
Gpσ,η,+ |A|

2 dµ ≤ p
3
2

4

∫
Gp−2
σ,η,+ |∇Gσ,η|

2 dµ+(p
1
2 + 1)

∫
Gpσ,η,+

|∇A|2

H2 dµ .

We thus have

d

dt

∫
Gpσ,η,+ dµ ≤ −

(
p2 − p

3
2 − p− 1

γ2
σp

5
2

)∫
Gp−2
σ,η,+ |∇Gσ,η|

2 dµ

−
(
γ1p−

n+ 2
3 p

1
2 − 1

γ2
σ(p

3
2 + p)

)∫
Gpσ,η,+

|∇A|2

H2 dµ .

Therefore, if we choose p large enough and σ ∼ p−
1
2 , we can show that the right hand

side is non-positive.

Proposition 7.10 ([Lan17, Prop. 3.1]). There exists l = l(n, η) > 0 such that

d

dt

∫
Gpσ,η,+ dµ ≤ 0

if p ≥ 1
l , σ ≤

l√
p .

We can then apply the Michael–Simon Sobolev inequality and Stampacchia iteration

to obtain an L∞-bound for Gσ,η,+ from the Lp-bounds [Hui84; Lan17]. That is, we can

show that for all η > 0 there exist σ ∈ (0, 1) and C(η) such that

|A| ≤
(

1√
n− (k − 1)

+ η

)
H + C(η)H1−σ.

Taking the square and applying Young’s inequality gives, with a different constant C(η),

|A|2 ≤
( 1
n− (k − 1) + η

)
H2 + C(η)H2−2σ.

Theorem 7.11 ([cf. HS09, Thm. 5.3; AL14, Thm. 1.3]). Let {Mt} be a mean curvature

flow of closed n-dimensional k-convex hypersurfaces in Rn+1, n ≥ 3. Then for any η > 0
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there exists Cη = C(η,M0) > 0 such that

|A|2 − 1
n− (k − 1)H

2 ≤ ηH2 + Cη.

In the 2-convex case, k = 2, we thus have

|A|2 − 1
n− 1H

2 ≤ ηH2 + Cη. (7.10)

Recall the general identity

|A|2 − 1
n
H2 = 1

n

∑
i<j

(λi − λj)2,

which implies

|A|2 − 1
n− 1H

2 = 1
n− 1

 ∑
1<i<j≤n

(λi − λj)2 + λ1(nλ1 − 2H)

 . (7.11)

As a result, we obtain the cylindrical estimate (7.2).

7.4 Convexity estimate in the 2-convex case

In order to recover the convexity estimate (7.1), we may assume that λ1 ≤ 0, since

otherwise the estimate is trivial. We estimate (7.11) to obtain

|A|2 − 1
n− 1H

2 ≥ |λ1| (n |λ1|+ 2H).

Therefore, the estimate (7.10) gives

|λ1| (n |λ1|+ 2H) ≤ ηH2 + Cη.

This yields the convexity estimate (7.1). It should be noted, however, that Huisken–

Sinestrari’s proof of the convexity estimate only assumed mean convexity, i. e., H > 0.



Chapter 8

Singularity analysis for high

codimension curve shortening flow

In this final chapter, we consider curve shortening flow of curves in Rn. Using the same

methods as in Altschuler’s work in codimension two [Alt91], we extend his results to the

case of arbitrary codimension to show in Theorems 8.6 and 8.7 that close to a singularity

the solution is essentially planar, that is, a subsequential limit of a sequence of rescalings

is a family of convex planar curves. Moreover, close to a type-I singularity, Theorem 8.8

implies that a sequence of rescalings along a blow-up sequence converges to a planar

self-similarly shrinking solution, while for a type-II singularity, we show the existence of

an essential blow-up sequence converging to the Grim Reaper in Theorem 8.9. Finally, we

prove our main result, Theorem 8.10, which analyses the long-time behaviour of solutions

of curve shortening flow with an entropy bound. More precisely, we show that for an

initial curve with entropy less than that of the Grim Reaper, the curve shortening flow

converges to a round point in finite time. This represents the first such convergence result

for curve shortening flow in arbitrary codimension.

134



Chapter 8. Singularity analysis for high codimension curve shortening flow 135

8.1 Curve shortening flow in any codimension

In the following, let γ : S1× [0, T )→ Rn be a one-parameter family of smooth immersions

of curves evolving by curve shortening flow,

∂γ

∂t
(p, t) = (κN)(p, t),

γ(p, 0) = γ0(p).
(CSF)

Throughout, we employ the notation from Chapter 5, with the final time of existence of

the flow denoted by either T or ω. Recall that by Theorem 6.11, for any smooth initial

curve γ0 : S1 → Rn, there exists a unique smooth solution on some time interval [0, T ),

0 < T ≤ ∞. In fact, by Theorem 6.12, we have T <∞.

As in the space curve case, we have scaling-invariant estimates on the derivatives

of the tangent vector, and thus the derivatives of the curvature, depending only on the

maximal curvature at the initial time. The proof proceeds just like Altschuler’s. For

brevity, we write, e. g., ∂T∂s ≡ Ts and T
(m) ≡ ∂mT

∂sm for the derivatives of the tangent vector

T [cf. ACGL20, Ch. 2].

Theorem 8.1 ([cf. Alt91, Thm. 3.1; YJ05, Thm. 3.1; Hät15, Thm. 3.6]). For any m ≥ 1

there exists Cm <∞ such that for t ∈ (0, 1
8K0

], where Kt := supκ2(·, t), it holds that

∣∣∣∣∂mT∂sm

∣∣∣∣2 ≤ CmK0
tm−1 .

Proof. The commutation formula (6.6) implies

Tt = Tss + |Ts|2 T,
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because γ evolves by curve shortening flow. Therefore,

|Ts|2t = 2〈(Ts)t, Ts〉

= 2〈(Tt)s + |Ts|2 Ts, Ts〉

= 2〈(Tss + |Ts|2 T )s, Ts〉+ 2 |Ts|4

= 2〈Tsss, Ts〉+ 2 |Ts|2s 〈T, Ts〉+ 4 |Ts|4

= |Ts|2ss − 2 |Tss|2 + 4 |Ts|4 ,

as |Ts|2ss = 2〈Tsss, Ts〉+ 2 |Tss|2. We thus have the differential inequality

|Ts|2t − |Ts|
2
ss = −2 |Tss|2 + 4 |Ts|4 ≤ 4 |Ts|4 .

By the ODE comparison principle and |Ts|2 = κ2 ≤ K0 at t = 0, we have

|Ts|2 ≤
K0

1− 4K0t
≤ 2K0,

as t ≤ 1
8K0

by assumption. We thus choose C1 = 2.

We define

Zm := T
(m)
t − T (m)

ss ,

using the notation T (m) = ∂mT
∂sm . Then

Zm+1 = (Zm)s + |Ts|2 T (m+1)

and

∣∣∣T (m)
∣∣∣2
t
−
∣∣∣T (m)

∣∣∣2
ss

= 2〈T (m)
t − T (m)

ss , T (m)〉 − 2
∣∣∣T (m+1)

∣∣∣2
= 2〈Zm, T (m)〉 − 2

∣∣∣T (m+1)
∣∣∣2 .



Chapter 8. Singularity analysis for high codimension curve shortening flow 137

We already know

Z0 = |Ts|2 T,

Z1 = 2〈Tss, Ts〉T + 2 |Ts|2 Ts,

and moreover

Z2 = 2〈Tsss, Ts〉T + 2 |Tss|2 T + 6〈Tss, Ts〉Ts + 3 |Ts|2 Tss.

For m = 2, define Φ := t |Tss|2 + 4 |Ts|2. Then

Φt − Φss = |Tss|2 + 2t〈(Tss)t, Tss〉+ 4(|Ts|2ss − 2 |Tss|2 + 4 |Ts|4)

− (2t〈(Tss)ss, Tss〉+ 2t |Tsss|2 + 4 |Ts|2ss)

= − 7 |Tss|2 + 2t(〈(Tss)t − (Tss)ss, Tss〉 − |Tsss|2) + 16 |Ts|4

= − 7 |Tss|2 + 2t(〈Z2, Tss〉 − |Tsss|2) + 16 |Ts|4

Since

〈Z2, Tss〉 = 2〈Tsss, Ts〉〈T, Tss〉+ 2 |Tss|2 〈T, Tss〉

+ 6〈Tss, Ts〉2 + 3 |Ts|2 |Tss|2

= 2〈Tsss, Ts〉〈T, Tss〉 − 2 |Tss|2 |Ts|2

+ 6〈Tss, Ts〉2 + 3 |Ts|2 |Tss|2 ,

where we have used that Tss = −κ2T + κsN + κτ1B1 (see (6.8)) and κ = |Ts|2 imply that
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〈T, Tss〉 = − |Ts|2, we obtain

Φt − Φss = − 7 |Tss|2 + 4t〈Tsss, Ts〉〈T, Tss〉 − 4t |Tss|2 |Ts|2

+ 12t〈Tss, Ts〉2 + 6t |Ts|2 |Tss|2 − 2t |Tsss|2 + 16 |Ts|4

≤ − 7 |Tss|2 + 4t |Tsss| |Tss| |Ts|+ 14t |Tss|2 |Ts|2 − 2t |Tsss|2 + 16 |Ts|4

= − 7 |Tss|2 − 2t(|Tsss| − |Tss| |Ts|)2 + 16t |Tss|2 |Ts|2 + 16 |Ts|4

≤ 64K2
0 + (32K0t− 7) |Tss|2

≤ 64K2
0 ,

using |Ts|2 ≤ 2K0 and t ≤ 1
8K0

. At t = 0 we have Φ ≤ 4K0, so the ODE comparison

principle implies

Φ ≤ 64K2
0 t+ 4K0 ≤ 12K0

for any t ≤ 1
8K0

. Therefore,

|Tss|2 ≤
12K0
t

,

and we may choose C2 = 12.

In general, for m ≥ 3 we have

Zm = 2〈T (m+1), T (1)〉T (8.1)

+ 2m〈T (m), T (2)〉T

+ 2(m+ 1)〈T (m), T (1)〉T (1)

+ (m+ 1)
∣∣∣T (1)

∣∣∣2 T (m)

+
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j)〉T (k),
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where Nijk = Nijk(m) are non-negative integers. Indeed,

Z3 = (Z2)s +
∣∣∣T (1)

∣∣∣2 T (3)

= 2〈T (4), T (1)〉T

+ 6〈T (3), T (2)〉T

+ 8〈T (3), T (1)〉T (1)

+ 4
∣∣∣T (1)

∣∣∣2 T (3)

+ 8
∣∣∣T (2)

∣∣∣2 T (1)

+ 12〈T (2), T (1)〉T (2).

Now assume that (8.1) holds for some m. Then we have that

Zm+1 = (Zm)s + |Ts|2 T (m+1)

= 2〈T (m+2), T (1)〉T + 2〈T (m+1), T (2)〉T + 2〈T (m+1), T (1)〉T (1)

+ 2m〈T (m+1), T (2)〉T + 2m〈T (m), T (3)〉T + 2m〈T (m), T (2)〉T (1)

+ 2(m+ 1)〈T (m+1), T (1)〉T (1) + 2(m+ 1)〈T (m), T (2)〉T (1)

+ 2(m+ 1)〈T (m), T (1)〉T (2) + 2(m+ 1)〈T (2), T (1)〉T (m)

+ (m+ 1)
∣∣∣T (1)

∣∣∣2 T (m+1)

+
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i+1), T (j)〉T (k)

+
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j+1)〉T (k)

+
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j)〉T (k+1) + |Ts|2 T (m+1)

= 2〈T (m+2), T (1)〉T + 2(m+ 1)〈T (m+1), T (2)〉T

+ 2(m+ 2)〈T (m+1), T (1)〉T (1) + (m+ 2)
∣∣∣T (1)

∣∣∣2 T (m+1)

+
∑

0≤i,j,k<m+1
i+j+k=m+3

Ñijk〈T (i), T (j)〉T (k),
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proving the claim.

We obtain

∣∣∣T (m)
∣∣∣2
t
−
∣∣∣T (m)

∣∣∣2
ss

= 2〈Zm, T (m)〉 − 2
∣∣∣T (m+1)

∣∣∣2
= 4〈T (m+1), T (1)〉〈T, T (m)〉+ 4m〈T (m), T (2)〉〈T, T (m)〉

+ 4(m+ 1)〈T (m), T (1)〉2 + 2(m+ 1)
∣∣∣T (1)

∣∣∣2 ∣∣∣T (m)
∣∣∣2

+ 2
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j)〉〈T (k), T (m)〉

− 2
∣∣∣T (m+1)

∣∣∣2
≤ − 2

∣∣∣T (m+1)
∣∣∣2 + 4

∣∣∣T (m+1)
∣∣∣ ∣∣∣T (1)

∣∣∣ ∣∣∣T (m)
∣∣∣

− 2
∣∣∣T (1)

∣∣∣2 ∣∣∣T (m)
∣∣∣2 + 2(m+ 2)

∣∣∣T (1)
∣∣∣2 ∣∣∣T (m)

∣∣∣2
+ 4m〈T (m), T (2)〉〈T, T (m)〉+ 4(m+ 1)〈T (m), T (1)〉2

+ 2
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j)〉〈T (k), T (m)〉

= − 2
(∣∣∣T (m+1)

∣∣∣− ∣∣∣T (1)
∣∣∣ ∣∣∣T (m)

∣∣∣)2

+ 2(m+ 2)
∣∣∣T (1)

∣∣∣2 ∣∣∣T (m)
∣∣∣2

+ 4m〈T (m), T (2)〉〈T, T (m)〉+ 4(m+ 1)〈T (m), T (1)〉2

+ 2
∑

0≤i,j,k<m
i+j+k=m+2

Nijk〈T (i), T (j)〉〈T (k), T (m)〉.

By the induction hypothesis, we have

∣∣∣T (i)
∣∣∣2 ≤ CiK0

ti−1
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for any i = 1, . . . ,m− 1. Thus

∣∣∣T (m)
∣∣∣2
t
−
∣∣∣T (m)

∣∣∣2
ss
≤ A1K0

∣∣∣T (m)
∣∣∣2 +A2

√
K0
t

∣∣∣T (m)
∣∣∣2

+ 2
∑

0≤i,j,k<m
i+j+k=m+2

Nijk

∣∣∣T (i)
∣∣∣ ∣∣∣T (j)

∣∣∣ ∣∣∣T (k)
∣∣∣ ∣∣∣T (m)

∣∣∣
≤ A3K0

∣∣∣T (m)
∣∣∣2 +A4K

3
0 t
−(m−2) + A5

t

∣∣∣T (m)
∣∣∣2 ,

using the Peter–Paul inequality with ε = t, where the constants Ai depend on m and

C1, . . . , Cm−1. Therefore,

(
tm−1

∣∣∣T (m)
∣∣∣2)

t
−
(
tm−1

∣∣∣T (m)
∣∣∣2)

ss
≤ (m− 1)tm−2

∣∣∣T (m)
∣∣∣2

+A3K0t
m−1

∣∣∣T (m)
∣∣∣2

+A4K
3
0 t+A5t

m−2
∣∣∣T (m)

∣∣∣2 .
For a large enough constant C > 0, we set Φm = tm−1

∣∣∣T (m)
∣∣∣2 + Ctm−2

∣∣∣T (m−1)
∣∣∣2 and

obtain

(Φm)t − (Φm)ss ≤ tm−2(A3K0t+A6 − 2C)
∣∣∣T (m)

∣∣∣2 +A7K
2
0

≤ A7K
2
0 .

We then proceed as in the m = 2 case to obtain Cm.

Using the estimates and the short-time existence, we have long-time existence in the

sense that as long as the curvature stays bounded, the flow can be continued for some

time. In particular, the torsions do not play a role.

Theorem 8.2 ([AG92, Thm. 1.13]). Assume that the curvature κ is bounded on the time

interval [0, t0). Then there exists ε > 0 such that the curve shortening flow {γt} exists

and is smooth on the interval [0, t0 + ε).
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Equivalently, we may say that if T is the maximal time of existence of the flow, the

curvature must tend to infinity as t approaches T .

Corollary 8.3 (cf. Theorem 6.13). Suppose that γ : S1 × [0, T )→ Rn is a solution of

(CSF) with initial data γ(·, 0) = γ0. Then T is finite, and furthermore, maxγt κ2 →∞ as

t→ T .

8.2 Blow-up limits

Recall that we have set Kt = supκ2(·, t). Assume that {γt} is a curve shortening flow

with a singularity forming at time T . If there exists a constant c > 0 such that

Kt ≤
c

T − t
, t < T,

we say that the singularity at T is of type-I (cf. Definition 6.14). Otherwise, that is, if

lim sup
t→T

Kt(T − t) =∞,

we say that it is of type-II.

Analogous to Definition 6.17 [cf. Alt91], we say that {(pj , tj)} ⊂ S1 × [0, T ) is a

blow-up sequence if tj → T as j →∞ and

lim
j→∞

κ2(pj , tj) =∞.

In particular, a blow-up sequence is called essential if there exists a constant ρ > 0 such

that

ρKt ≤ κ2(pj , tj), t < tj .

For any immersed curve γ : S1 → Rn, the total absolute curvature
∫
γ |κ| ds is a

scaling-invariant quantity. In order to show that blow-up limits of the curve shortening

flow are planar, we recall Altschuler’s estimate on the derivative of the total absolute
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curvature, which also holds for evolving curves in Rn.

Theorem 8.4 ([Alt91, Thm. 5.1; see also YJ05]). Let γ : S1 × [0, T )→ Rn be a solution

of (CSF). Then the integral estimate

d

dt

∫
γ
|κ|ds ≤ −

∫
γ
|κ| τ2

1 ds

holds for t ∈ [0, T ).

Proof. From Corollary 6.7, we have that

∂κ2

∂t
= ∂2κ

∂s2 − 2
(
∂κ

∂s

)2
+ 2κ4 − 2κ2τ2

1 .

As in Altschuler’s proof, we then define κε =
√
κ2 + ε, where ε > 0 is arbitrary, and

obtain
d

dt

∫
γ
κε ds ≤ −

∫
γ

1
κε
κ2τ2

1 ds,

which implies the claim.

For a planar curve we obtain the more precise formula

Theorem 8.5 ([Alt91, Thm. 5.14]). For a planar solution γ to the curve shortening flow,

we have
d

dt

∫
γ
|κ| ds = −2

∑
{p : κ(p,·)=0}

∣∣∣∣∂κ∂s
∣∣∣∣ .

Given a blow-up sequence {(pj , tj)}, we define a blow-up procedure as follows: Define

γj : S1 × [αj , ωj)→ Rn, where αj = −λ2
j tj , ωj = λ2

j (ω − tj), by

γj(·, t̄) = λj(Ajγ(·, t) + bj), t̄ = λ2
j (t− tj).

Here, ω denotes the final time of existence of γ. Moreover, λj > 0, Aj ∈ SO(n), bj ∈ Rn
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are such that

γj(pj , 0) = 0 ∈ Rn,

Tj(pj , 0) = (1, 0, . . . , 0) = e1,

Nj(pj , 0) = (0, 1, 0, . . . , 0) = e2,

(Bi)j(pj , 0) = (0, . . . , 0, 1, 0, . . . , 0) = ei+2, i = 1, . . . , n− 2.

In order to parametrise γj by arclength, note that

∣∣∣∣∂γj∂s
∣∣∣∣ = λj

∣∣∣∣Aj ∂γ∂s
∣∣∣∣ = λj .

Therefore, if we let s̄ = λjs then γj is parametrised by arclength s̄ once we define

γj(s̄, t̄) = λj(Ajγ(s, t) + bj).

This then gives
∂γj
∂s̄

= ∂γj
∂s

∂s

∂s̄
= λjAj

∂γ

∂s

1
λj

= Aj
∂γ

∂s
,

that is,

Tj(s̄, t̄) = AjT (s, t), (8.2)

and in the same way we obtain

Nj(s̄, t̄) = AjN(s, t),

(Bi)j(s̄, t̄) = AjBi(s, t),

κj(s̄, t̄) = 1
λj
κ(s, t),

(τi)j(s̄, t̄) = 1
λj
τi(s, t).
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Then γj is indeed parametrised by arclength s̄,

∣∣∣∣∂γj∂s̄
∣∣∣∣ =

∣∣∣∣Aj ∂γ∂s
∣∣∣∣ = 1,

since γ is parametrised by arclength s and |Aj | = 1. As a result, each γj is a solution of

curve shortening flow,
∂γj
∂t̄

(s̄, t̄) = (κjNj)(s̄, t̄).

Indeed,

∂γj
∂t̄

(s̄, t̄) = λjAj
∂γ

∂t
(s, t)∂t

∂t̄

= 1
λj
Aj(κN)(s, t)

= (κjNj)(s̄, t̄).

Using the same technique as Altschuler, we obtain

Theorem 8.6 ([Alt91, Thm. 7.3]). Let γ : S1 × [0, ω) → Rn be a solution of (CSF).

Assume that {(pj , tj)} is an essential blow-up sequence. Then there exists a subsequence

of {(pj , tj)} along which the rescaled solutions γj converge to a smooth nontrivial limit

γ∞ which exists at least on the time interval [−∞, 0].

Proof. Set λj := κ(pj , tj), so that κ2
j (pj , 0) = 1 (note that t̄ = 0⇔ t = tj).

Since {(pj , tj)} is a blow-up sequence, we have that limj→∞ αj = −∞. If a type-I

singularity occurs (that is, limt→ωKt(ω − t) <∞), then limj→∞ ωj <∞, for a type-II

singularity (limt→ωKt(ω − t) =∞), we can choose an essential blow-up sequence such

that limj→∞ ωj =∞, since from the definition of λj we have that λ2
j ≤ Ktj .

As a limit solution might be a family of noncompact curves, we consider the solutions

γj instead as a family of curves γ̃j : R × [αj , ωj) → Rn, periodic in space, such that

γ̃j(0, ·) = γj(pj , ·). Denote the arclength parameter for γ̃j(·, t̄) from the origin 0 ∈ R by s̄
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and recall that, in general, s̄ depends on t̄ in the sense that ∂ s̄
∂t̄
6= 0.

Define the differential operator

δ

δt̄
= ∂

∂t̄
+ φj(s̄)

∂

∂s̄
,

where φj(s̄) =
∫ s̄

0 κ
2
j (σ, t̄) dσ and thus ∂φj

∂s̄ = κ2
j . Then,

[
δ

δt̄
,
∂

∂s̄

]
= ∂

∂t̄

∂

∂s̄
+ φj

∂

∂s̄

∂

∂s̄
− ∂

∂s̄

∂

∂t̄
− ∂φj

∂s̄

∂

∂s̄
− φj

∂

∂s̄

∂

∂s̄

= ∂

∂t̄

∂

∂s̄
− ∂

∂s̄

∂

∂t̄
− κ2

j

∂

∂s̄

= 0.

Therefore, denoting v =
∣∣∣∂γ∂p ∣∣∣ and s̄ =

∫ p
p0
v dq,

δs̄

δt̄
= ∂s̄

∂t̄
+ φj

= −
∫ p

p0
κ2
jv dq+

∫ s̄

0
κ2
j dσ

= 0,

where we have used that ∂v
∂t̄

= −κ2
jv and ds̄ = v dp.

Since {(pj , tj)} is an essential blow-up sequence, there exists ρ > 0 independent

of j such that ρKt ≤ κ2(pj , tj) whenever t ≤ tj . In particular, for the curves γ̃j ,

ρ supκ2
j (·, t̄) ≤ κ2

j (pj , 0) = 1 for t̄ ≤ 0.

Then differentiating (8.2) with respect to s̄ we get

∂Tj
∂s̄

= Aj
∂T

∂s

∂s

∂s̄
= 1
λj
Aj
∂T

∂s
.

Hence, by Theorem 8.1, we have that

∣∣∣∣∂Tj∂s̄

∣∣∣∣2 = 1
λ2
j

∣∣∣∣∂T∂s
∣∣∣∣2 ≤ c̃1Ktj

λ2
j

≤ c1,
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since {(pj , tj)} is an essential blow-up sequence and we have Ktj
λ2
j
≤ 1

ρ <∞.

Taking further derivatives with respect to s̄, we obtain

∂`Tj
∂s̄`

= 1
λ`j
Aj
∂`T

∂s`
,

whereby ∣∣∣∣∣∂`Tj∂s̄`

∣∣∣∣∣
2

= 1
λ2`
j

∣∣∣∣∣∂`T∂s`
∣∣∣∣∣
2

≤ c`.

Using the commutation formula for ∂
∂t̄

and ∂
∂s̄ , we get

∣∣∣∣∂Tj∂t̄
∣∣∣∣2 ≤

∣∣∣∣∣∂2Tj
∂s̄2

∣∣∣∣∣
2

+
∣∣∣∣∂Tj∂s̄

∣∣∣∣4 ≤ c2 + c2
1.

Then, taking derivatives with respect to t̄ and using the commutation formula, we see

that
∣∣∣∂`Tj
∂t̄`

∣∣∣2 is bounded by a sum of products of
∣∣∣∂kTj
∂t̄k

∣∣∣2 for k < ` and
∣∣∣∂mTj∂s̄m

∣∣∣2 for m ≤ 2`

and is thus itself bounded.

By the definition of δ
δt̄
, therefore, the fact that δ

δt̄
and ∂

∂s̄ commute, and the estimate

φj(s̄) ≤ ρ−1s̄ we conclude that
∣∣∣ δ`Tj
δt̄`

∣∣∣2 is bounded for any ` independently of j on compact

subsets of R× [−∞, ω∞), and, again, since δ
δt̄

and ∂
∂s̄ commute, the same is true for all

mixed derivatives
∣∣∣ δj∂kTj
δj t̄ ∂k s̄

∣∣∣2.
By the Arzelà–Ascoli theorem, there exists a subsequence of {(pj , tj)}, denoted the

same, along which the tangent vectors Tj(s̄, t̄) converge uniformly on compact sets of

R× [−∞, τ∞) to a smooth limit T∞(s̄, t̄) as j →∞. We may thus define a smooth limit

solution γ̃∞ by integrating T∞. If γ̃∞ is periodic, we denote by γ∞ one period of γ̃∞, if

not, we set γ∞ = γ̃∞.

Finally, γ∞ cannot be trivial, i. e., a straight line, for

κ2
∞(0, 0) = lim

j→∞
κ̃2
j (0, 0) = lim

j→∞
κ2
j (pj , 0) = 1,
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finishing the proof.

The fact that blow-up limits of evolving space curves are planar goes back to

Altschuler’s work. Using Theorem 8.4 and Huisken’s monotonicity formula, we can

give a simpler proof also in the general case.

Theorem 8.7 ([Alt91, Thm. 7.7]). Let γ : S1 × [0, T ) → Rn be a solution of (CSF).

Then any nontrivial blow-up limit of γ is planar and convex.

Proof. By Huisken’s monotonicity formula, any blow-up limit γ∞ of curve shortening

flow is self-similar. Moreover, the total absolute curvature is scaling-invariant. Therefore,

Theorem 8.4 implies that

0 ≤ −
∫
γ∞
|κ| τ2

1 ds .

This implies that, at almost every point of the smooth limit curve γ∞, we must have

either κ = 0 or τ1 = 0. Then Theorem 5.2 implies that γ∞ must be contained in a

2-dimensional subspace of Rn. Note that γ∞ cannot have any inflection points, since by

Theorem 8.5, any inflection point must be degenerate, that is, κ = ∂κ
∂s = 0, but a result

of Angenent [Ang91] implies that any solution with degenerate inflection points must be

a line.

8.2.1 Type-I singularities

In order to analyse the behaviour of type-I singularities, we can employ Huisken’s argument

for singularities of mean curvature flow [Hui90], which was also used by Altschuler to

prove the corresponding result for curve shortening flow of space curves.

To that end, let γ : S1 × [0, T ) → Rn be a solution of (CSF) and assume that

(0, T ) ∈ Rn × R is a special singular point of type-I reached by the flow. We then define

a continuous rescaling of the flow via

γ̃(s, t̃) = 1√
2(T − t)

γ(s, t),



Chapter 8. Singularity analysis for high codimension curve shortening flow 149

where t̃ = −1
2 log(T − t). The rescaled flow {γ̃t} is thus defined for −1

2 log T ≤ t̃ < ∞,

and in terms of the differential operators

∂

∂t̃
= 2(T − t) ∂

∂t
,

∂

∂s̃
=
√

2(T − t) ∂
∂s
,

it satisfies
∂

∂t̃
γ̃ = ∂2

∂s̃2 γ̃ + γ̃.

The reason to choose this particular rescaling is that the type-I assumption then implies

that the curvature of the rescaled flow is uniformly bounded for all time, since

κ̃(s, t̃) =
√

2(T − t)κ(s, t).

In the rescaled setting, we then have the monotonicity formula, cf. Theorem 6.18,

d

dt̃

∫
γ̃
k̃ ds̃ = −

∫
γ̃

∣∣∣∣∂γ̃∂s̃ + γ̃⊥
∣∣∣∣2 k̃ ds̃, (8.3)

where the rescaled backwards heat kernel on Rn is given by

k̃(x, t̃) = e−|x|
2
.

We can then perform the blow-up procedure as in the proof of Theorem 8.6, noting

that the type-I assumption also implies that any blow-up sequence is necessarily essential,

to obtain a subsequential limit. By the rescaled monotonicity formula (8.3), we conclude

that the limit is self-similarly shrinking [Hui90], and by Theorem 8.7 the limit is planar.

Moreover, by continuity of the total absolute curvature, the winding number cannot

change. We thus have
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Theorem 8.8 ([Alt91, Thm. 8.15]). Suppose that a type-I singularity is forming at time

T . Let {(pj , tj)} be a blow-up sequence. Then there exists a subsequence of {(pj , tj)} such

that a rescaling of γ along it converges to a planar self-similarly shrinking solution γ∞

with the same winding number.

8.2.2 Type-II singularities

We now assume that the special singular point (0, T ) ∈ Rn × R reached by the flow is of

type-II. Since the argument is exactly the same as for space curves, we do not repeat the

details and instead refer to Altschuler’s work [Alt91].

We already know that by Theorem 8.6, a limit of rescalings γ∞ must exist on the

interval [−∞, 0]. Moreover, it is planar and convex. It is then possible to show that,

since the singularity is of type-II, there exists an essential blow-up sequence such that

a limit of rescalings along it is in fact eternal, that is, it exists on the time interval

[−∞,∞]. In addition, the limit solution is embedded and its total curvature is equal to

π. Furthermore, by showing that the curvature and all its derivatives tend to zero at the

ends, one then proves that this limit must be the Grim Reaper. Finally, one has

Theorem 8.9 ([Alt91, Thm. 8.16]). Suppose that a type-II singularity is forming at time

T . Then there exists an essential blow-up sequence {(pj , tj)} such that a sequence of

rescalings along it converges to the Grim Reaper.

8.3 Convergence analysis

We now come to the proof of our main theorem. Simply put, we show that initial curves

with entropy less than that of the Grim Reaper converge to a round point in finite time.

Theorem 8.10. Suppose that γ : S1 × [0, T )→ Rn is a smooth solution of (CSF) with

initial data γ(·, 0) = γ0 and assume that the entropy of γ0 satisfies

λ(γ0) ≤ 2.
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Then T is finite, and the rescaled flow converges to the round circle.

Proof. Since the entropy is non-increasing under curve shortening flow, we may assume

that λ(γ) < 2. For if λ(γ0) was equal to 2, the initial curve γ0 would have to be a

self-shrinker, but λ(S1) < 2.

Assume that a type-II singularity forms at time T . Then by Theorem 8.9, there exists

an essential blow-up sequence such that a limit γ∞ of rescalings along it is the Grim

Reaper. Since the entropy is lower semicontinuous with regard to the locally smooth

convergence, we must have λ(γ∞) < 2, however, we know from Proposition 6.22 that the

entropy of the Grim Reaper equals 2. Thus the singularity cannot be of type-II.

Therefore, assume that a type-I singularity forms, so that by Theorem 8.8, we have

a limit γ∞ of a sequence of rescalings {γj} that is self-similarly shrinking in the plane.

By the classification of Abresch–Langer [AL86], γ∞ could be one or more lines through

the origin, a singly or multiply-covered circle, or one of the Abresch–Langer curves γm,n,

m ≥ 2. Proposition 6.23 implies that λ(γm,n) ≥ m
√

2π
e , so that the latter possibility

cannot occur. Moreover, from Proposition 6.24 we have that λ(γ∞) ≥ Θ2(γ∞, x) for any

point x, which implies that γ∞ is embedded. Hence γ∞ cannot be a multiply-covered

circle or a family of intersecting lines.

By standard theory [Bra78; Whi05], should a single line appear as a limit of rescalings

of the flow, the fact that its Gaussian density is 1 in a suitable space-time region implies

that the curvature is bounded there after all, so that the blow-up point is not a singularity,

which is a contradiction. Therefore, the blow-up limit γ∞ must be the standard circle

around the origin, that is, the tangent flow at the singularity is a smooth, closed, embedded

self-shrinker. Then Schulze’s uniqueness result for compact tangent flows [Sch14] implies

that this is the only possible tangent flow, whereby the rescaled flow converges to the

round circle.
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