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Abstract

This thesis deals with the modelling and control problems for the multi-mode motion

wave energy converters (WECs). This type of WEC has a higher potential power

capture capability but involves hydrodynamic models of increased complexity. A

typical multi-mode motion WEC, namely M4, is chosen for this case study.

In the first part, the hydrodynamics of M4 are analysed. A control-oriented

state-space model is then built for the purpose of controller design. This is done

by firstly using the Euler-Lagrangian equation to derive the motion equation on

a constrained coordinate. A system identification method is then introduced to

model the radiation effects, and a model order reduction method is used to reduce

the order of the radiation subsystems. The fidelity of the derived state-space model

is validated against experimental data.

In the second part, the linear non-causal optimal control (LNOC) framework is

designed to tackle the energy maximising problem of the M4 WEC. This frame-

work has three key components: a linear optimal controller, a Kalman filter with

a random-walk wave-force model to estimate the system states and wave excita-

tion force and an excitation-force predictor based on an autoregressive (AR) model.

Their mathematical formulations are presented, followed by numerical simulations

to demonstrate the control performance of the integrated framework. The results

show that the AR wave excitation force predictor can provide preview wave force

information accurately for around 2 peak periods of time, which is sufficient for

control. The LNOC framework can effectively improve the energy conversion of M4

without introducing significant costs in terms of extra hardware components and
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computational loads.

In the last part, a variation of the M4 design, with four power take-offs (PTOs)

instead of one, is studied. The goal is to showcase that the energy conversion

capacity of a multi-PTO M-WEC, integrated with the LNOC framework, can be

similar to that of an offshore wind turbine, which is desirable for electricity supply

to the power grid. The effect of off-design, arbitrary WEC headings in various

incoming wave direction is investigated as a vital sensitivity check to provide useful

quantification for implementing the LNOC framework in practice. The improvement

of captured power by the LNOC framework in all cases is shown to be substantial.
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Chapter 1

Introduction

This thesis is concerned with the modelling and control of a raft-type wave energy

converter, which can be referred to as an attenuator. This multi-mode motion at-

tenuator’s idealised power capture is higher than that of a single-mode motion point

absorber. However, the dynamic modelling and control design is more challenging in

a multi-mode attenuator. In this thesis, a time-domain control-oriented modelling

method is introduced. Based on this model, a generic linear non-causal optimal con-

trol framework is proposed to tackle the attenuator’s energy maximisation control

problem. Three of the key components in this framework (the optimal controller,

the state and wave force estimator and the wave force predictor) are investigated.

In this chapter, the motivation for this work is addressed. Also, the thesis structure

is presented.

1.1 Motivation

To meet the increasing demand of electricity globally and slow down global warming

caused by coal power generation, renewable energy technology has been developed

rapidly in the past few decades. In 2018, 25.8% of world electricity was generated

by renewable sources; this number was only 18.7% in 2000 [1]. This number has

continued to increase rapidly, reaching 27.3% in 2019 [2], due mainly to contributions

from hydro and wind power.
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1.1 Motivation

Ocean wave energy has an untapped potential to contribute even more as a

renewable energy source. Ocean wave power has a worldwide average of about 2

TW [3], which is similar to wind and largely unexploited. Wave energy converter

(WEC) device capacities have been much smaller than those of wind turbines [4]

and with higher levelised cost of electricity (LCOE). Research in wave energy and

wave energy harnessing technology have been actively conducted in recent years.

The design of wave energy harnessing devices with higher potential capacities and

their integration with advanced control strategies are believed to be two key factors

for reducing the LCOE of wave energy.

WECs are devices of various design that can turn the motion of ocean waves

into usable electrical power. This conversion process can usually be divided into two

phases: (1) the WEC captures the power contained in the ocean wave and turns it

into mechanical power with the WEC body or a hydro turbine; (2) an electricity

generation system, also known as the power-take-off (PTO) system, utilizes this

mechanical power to generate electricity that can be stored or transferred directly to

the power grid. Power conversion efficiency is vital at either phase, and technologies

from various disciplines are needed to improve them.

Control has been found to be critically important to improve the power con-

version efficiency of WECs. One reason is that a WEC device, as a mechanical

oscillator, has a fixed natural frequency of vibration, while the frequencies of ocean

waves are subject to change. Without active control, it is difficult to match the

WEC’s natural frequency to the dominant frequency of the ocean waves; thus, a

resonance effect, which would imply maximal power conversion, cannot be achieved.

Moreover, WECs operate in a harsh ocean environment. Introducing active control

strategies to WECs enable them to handle tough operational constraints and protect

themselves against destructive sea conditions, which helps reduce their operational

costs and thus the LCOE. The power conversion of WECs also benefits from a pre-

diction of future wave status, which cannot be achieved without active control. Like

most of the studies conducted in the WEC control domain, this thesis’s primary fo-

cus is maximizing the power conversion efficiency of phase one (i.e., the conversion

Chapter 1 18



1.1 Motivation

of wave power to the mechanical power of the WEC).

Unlike wind or solar energy, the development of wave energy technology tends

to be very diversified. There are a remarkable number of design concepts of WECs

that can be classified in different ways, such as by their operation location, working

principle, degrees of freedom (DOFs) of body motions, etc. Figure 1.1 shows five

typical types of WECs classified by their working principle of converting wave power.

A point absorber converts wave power into a heave motion of the float. Attenuator

and inverted pendulum designs convert wave power into rotational motion of the

bodies. Overtopping devices and oscillating water columns convert wave power to

the kinetic power of their turbines.

Figure 1.1: Typical types of wave energy converters classified by working principle

[5].

In this thesis, WECs are distinguished based on the DOFs their body motion

has because this determines their theoretical limit of power conversion [6]. WECs

with motion with only one DOF are termed single-mode motion WECs (S-WEC),

such as single-mode point absorber. WECs with more than one DOF of motion are
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1.2 Thesis layout

termed multi-mode motion WECs (M-WEC). Two types of WECs will be discussed

primarily: the single-mode motion point absorber and the multi-mode motion at-

tenuator. Although attenuators have higher power conversion efficiency due to their

added DOFs of motion, most control research for WEC still focusses on S-WECs,

such as point absorbers. This is probably because the dynamics of M-WECs are

more complicated, which makes modelling and controller design more challenging.

We aim to fill this gap by investigating the difficulties in modelling and control

design for M-WECs. A generic linear non-causal optimal control (LNOC) framework

is proposed to tackle the energy maximising problem of M-WECs. Although this

framework can also be applied to S-WEC, an M-WEC called M4 is chosen as a case

study. This involves introducing a time-domain control-oriented modelling method

to deal with the high- order dynamics modelling problem, whose efficacy is quantified

against experimental data. The enabling components of the LNOC framework,

including the non-causal optimal controller, a state and wave force estimator and

a wave force predictor are introduced in proper order. Numerical simulations are

used to demonstrate the efficacy of the control framework. Unlike the symmetrical

S-WEC point absorber, various incoming wave directions have a greater impact on

the performance of the asymmetric M-WEC. This effect is also examined within the

LNOC framework by applying it to a multiple PTO M4 WEC as a sensitivity study.

1.2 Thesis layout

The content of this thesis is organised as follows.

In Chapter 2, more technical background on WECs is introduced. Firstly, the

differences between a single-mode motion point absorber WEC and a multi-mode

motion raft-type WEC is briefly explained. Then, the multiple floats multi-mode

motion WEC M4 is introduced. Finally, existing control strategies from the litera-

ture are reviewed.

In Chapter 3, based on the linear wave assumption, the control-oriented model

of the M4 WEC is built. A time-domain method is adopted, and the model is
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1.2 Thesis layout

presented in state-space form, which is idealised for controller design. Experimental

data from tank testing of the M4 WEC are used to validate model fidelity.

In Chapter 4, the LNOC framework is proposed with details. The control prob-

lem is formulated in a classical optimal control fashion using the control-oriented

state-space model in discrete time. The control policy is then derived using dynamic

programming. A Kalman observer is designed to provide state information in real

time. At this stage, the wave force prediction information is assumed to be ideal.

This allows numerical simulations to be run to quantify the performance of this

non-causal optimal controller.

In Chapter 5, the LNOC framework is completed by introducing a short-term

wave predictor using the autoregressive model. Since this is a relatively indepen-

dent research area, an introduction is presented to clarify some important concepts,

and then the existing wave prediction techniques are surveyed. Subsequently, the

autoregressive wave force predictor and the Kalman state and wave force estimator

are proposed to accomplish the LNOC framework, followed by more numerical sim-

ulation results to demonstrate its efficacy. The computational effectiveness is briefly

discussed as well.

In Chapter 6, a more sophisticated configuration of the M4 WEC, the 8-float M4

with four PTOs, is studied. This aims to showcase that by integrating an M-WEC

with multi-PTO and the advanced LNOC framework, the capacity of wave energy

can be similar or even greater than offshore wind turbines. The performance in

off-design, non-zero headings scenarios for this prototype with LNOC is also studied

as an important sensitivity check.

In Chapter 7, the main results of this thesis will be concluded, and potential

future work is discussed.
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Chapter 2

Wave Energy Conversion: a review

of the current state of the art

Structures that absorb wave power by their body motion also generate waves during

operation, termed radiated waves. Generally speaking, good wave absorbers must

be good wave makers [6]. The upper limit of power conversion of WECs is different,

and this is closely related to their capabilities of radiating waves. To reach a power

absorption of above 50%, asymmetric waves have to be radiated, but this cannot be

done by an S-WEC with a symmetrical body that operating only one DOF. Hence,

WECs that have multiple DOFs of motion have higher idealised power capture.

Most of the existing WEC developments have come from S-WEC of point ab-

sorber form, e.g. AWS [7], Corpower [8], Seabased [9], Ocean Energy [10]. For an

S-WEC operating only in heave mode, the idealised power capture due to body

motion in regular waves is equal to propagating wave power per metre crest width

times wavelength divided by 2π [7, 8, 9]. This value is multiplied by two when

operating in surge or pitch and multiplied by three when operating in heave and

surge and/or pitch. The theory has been reviewed in [6]. For raft-type devices with

two hinged beams, the limit is slightly less, shown theoretically in [11]. There are

hybrid raft-type devices with heave, pitch and surge forcing, such as Seapower [12],

Mocean [13] and the M4 [14, 15] discussed in the next section. Examples of some
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2.1 The M4 WEC

S-WECs are shown in Fig. 2.1 and some M-WECs are shown in Fig. 2.2.

(a) The AWS WEC [7].

(b) The Corpower WEC

[8]. (c) The Seabased WEC [9].

Figure 2.1: Examples of some S-WECs.

(a) The Seapower WEC [12]. (b) The Mocean WEC [13].

Figure 2.2: Examples of some M-WECs.

2.1 The M4 WEC

M4 is a modular hinged raft-type WEC system with multiple floats responding in

multi-mode motion. There are essentially bow, mid and stern floats, with adjacent

floats connected by beams with hinges above the mid floats. There is one bow float
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2.2 Existing Control Strategies

Figure 2.3: Side view of the laboratory scale M4 [15].

and, in its simplest form, one mid and one stern float, of increasing size from bow

to stern, so that wave drift forces cause alignment with the wave direction. There

is one PTO. Figure 2.3 shows the geometry of the three-float 1-1-1 M4 WEC.

The M4 system can be reconfigured with more mid and stern floats and more

hinges, which enable more PTOs, thus greater power capture. Figure 2.4a shows

the top views of some of the M4 multi-float configurations. Figure 2.4b shows a 3-D

view of the 8- float 1-3-4 M4. In this thesis, we mainly consider the modelling and

control problem for the 3-float 1-1-1 M4 WEC. Although increasing the float number

leads to a more sophisticated dynamic, due to the consistent design principle among

the different configurations, there is no loss of generality.

In the M4 system, power from forcing modes associated with each float combine

constructively. There is negligible drag due to the rounded or hemi-spherical bases.

The system has been demonstrated to be essentially linear by comparing modelling

results with tank testing data [15].

2.2 Existing Control Strategies

Control has been widely applied to increase the power capture of WECs. A review

of some existing control strategies are presented is this section.
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2.2 Existing Control Strategies

(a) Top view of various configura-

tions of the M4 system.

(b) 3-D view of the 8 floats 1-3-4 M4

configuration.

Figure 2.4: Examples of different M4 configurations.

In the 1970s a control method based on the impedance matching principle was

developed for regular waves. The method was called reactive control in [16] or

complex-conjugate control in [17]. The idea is to adjust the natural frequency of the

WEC body to match the wave frequency, so that resonant oscillation and optimum

power capture could be achieved. It was tested experimentally on the possibly ear-

liest prototype of WEC, the Salter’s Duck [18] in the mid-1970s. Budal and Falnes

improved this method and reported that it can also be used in realistic irregular

waves provided that the wave spectrum is reasonably narrow [19]. The advantage

of this method is it guarantees optimum power absorption in regular incident wave

and in irregular incident wave with sufficiently narrow spectrum. On-line optimisa-

tion is not required, thus the computational burden is trivial. However, there are

two obvious drawbacks: 1)the controller relies on the assumption of a stationary

sea state, if the sea state change dramatically the control solution need to be recal-

culated to match the impedance of the WEC to the new incident wave frequency.

2)operational constraints cannot be handled, there is no protective mechanism to

avoid unexpected huge actuation given by the control solution, leading to potential

damage of the WEC body. Note that for optimum power absorption forward wave

prediction and reactive power is required.
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2.2 Existing Control Strategies

In recent years, Fusco and Ringwood [20] presented a simple controller with two

layers: the top-level algorithm is of the same reactive type as discussed above, and

it provides the velocity reference to be followed by the low-level velocity tracker.

This method, sometimes can be referred as approximated velocity tracking (AVT)

control, is applied to a M-WEC called WaveSub recently. Up to 80% mean power

improvement has been achieved [21]. By introducing the extra layer velocity track-

ing controller, several drawbacks of the reactive controller can be overcome. For

example, control input constraints can be introduced by either pre-assessing the

optimum velocity trajectory or adjusting the control strategy on the low-level ve-

locity tracker. Stability of the control system can be assured by the well-known

Linear Quadratic Regulator (LQR) state feedback controller used as the velocity

tracker. It will be interesting to see how the controller performs when sea state is

varying, which means the optimum velocity trajectory will change rapidly. Also, the

computational burden of the AVT method is not investigated in this latest study.

Figure 2.5: The idea of latching control [6].

Another method proposed by Budal and Falnes [22] was named latching control

or phase control. Instead of focussing on tuning the device’s mechanical parameters

to reach resonance, this method aims to keep the body velocity in phase with wave

excitation. The idea is to apply a force to lock the motion of the WEC body when

its velocity vanishes and to release the body after a certain time period. Fig. 2.5

shows the basic idea of latching control. Curve a can be viewed as the external

excitation force exerted on the WEC body. Curve b is the displacement of a WEC

body that is at resonance. Curve c shows the displacement of a WEC body with a
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2.2 Existing Control Strategies

non-resonance natural frequency controlled by latching. By restricting the motion

of the WEC body for a certain time period, the velocity of the WEC body can be

manipulated to be in phase with the excitation force in the rest of the time. The

WEC control problem is then transformed into a calculation of the time profile for

locking the WEC. Many studies have been proposed to investigate the strategy of

latching [23, 24]. Marked power capture improvements are obtained by applying this

method, in regular wave three times and in irregular wave two times compared with

no control [25, 26]. However, the practical implementation of latching control is later

questioned due to the requirement of excessive loads on the latching mechanism [27,

28]. The author thinks the inherent sub-optimality of latching control (only phase

but not amplitude optimum condition is met) restrains further research focus onto

this WEC control strategy.

Some other trendy control methods are based on optimisation over a specific ob-

jective function, e.g. model predictive control (MPC). A suitably designed objective

function is vital for these kind of control methods, as it determines the feasibility of

the control problem and the neediness of numerical approximation while solving it.

In [29], a integral objective function representing the negative of absorbed energy

is chosen with an interior penalty term to handle state constraint. The resulting

optimal control problem is not convex, preventing the usage of the well-developed

quadratic programming algorithm. The author approximates the control problem

and resolved it using dynamic programming. Although massive improvement of the

energy output can be seen, it is reported by the author that the computational bur-

den will increased exponentially as the model order increases, which is not ideal for

M-WEC with complicated dynamics. In [30], the same integral objective function is

chosen but with two extra quadratic weighted term to penalize the control input and

system state. It is reported by the author that, with this objective function, convex-

ity of the control problem can be guaranteed, which means the control problem can

be solved efficiently by the well-developed quadratic programming algorithm. The

benefit is that the optimisation process can not only take care of maximising the

power capture, but it can also handle operational constraints explicitly. Note that
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2.2 Existing Control Strategies

these methods often require the WEC model to be written in state-space form. The

performance relies heavily on model fidelity, especially when the control problem

involves higher DOFs. Also, as already mentioned above, real-time optimisation

can be computationally demanding and require high performance microprocessor in

real-time control implementation. The improvement of absorbed energy provided

by on-line optimisation should be great enough to worth the cost. Unfortunately

these are rarely assessed in literatures probably due to lack of experimental data

from real-time. Some of the other relative studies are shown in [31, 32, 33, 34, 29,

30].

It is also important to point out that most of the control strategies mentioned

above focus on S-WECs. It is questionable if these controllers cope with the in-

creased complexity of M-WECs. For example, for latching control, determining the

locking time profile and implementing a multiple DOFs latching mechanism into

the M-WEC would be challenging. This issue is briefly addressed by [27, 35] on an

M-WEC of point absorber type and studied very recently on a raft-type M-WEC

by [36].

As almost all the control methods proposed are based on linear wave assumptions,

the issue of non-linear effects in WEC dynamics are also worthy of attention. Since

control generally increases response to improve power capture, the importance of

non-linear effects increases, as discussed for example in [37]. However, including

fully non-linear effects can be excessively computationally demanding [38].

In rough conclusion, all the proposed control methods have their own advantages

in resolving control problems for specific S-WEC system. However, when it comes

to M-WEC system with multi-DOF and high model orders (usually more than a

hundred), these control methods are not ideal. A new control strategy needs to be

developed to tackle the M-WEC control problem. This strategy should at least has

the below features: 1)guarantee optimum or near-optimum energy output. Theo-

retically this requires forward wave information to be incorporated, which means

the designed controller need to interact with wave prediction constructively; 2)has

tractable computational burden, preferably an off-line optimisation controller, as
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2.2 Existing Control Strategies

the high model order of M-WEC will inevitably increase the computational load on

on-line optimisation process; 3)can handle harsh or soft constraints in WEC opera-

tion, if not, it should prove its robustness when constraints (e.g. actuation torque

limit) are active. A control-oriented model that can maintain high fidelity of the

M-WEC dynamic while suitable for designing controller that meets the aforemen-

tioned requirements is preliminarily needed. These can all be viewed as the main

research objective in this thesis.

In the following chapters, a generic linear non-causal optimal control framework

is proposed for the introduced M-WEC M4. It is essentially a reactive type of

controller derived in a time-domain and discrete-time manner. A quadratic cost

function is introduced and solved using dynamic programming. The stabilizable

feature of the control-oriented enables the control policy to be obtained off-line, so

that the resultant control law does not require on-line optimisation, which means the

computational load is trivial. The quadratic cost function taken from [30] not only

assures feasibility of the control solution, but also introduces two tunable control

parameter Q and r (see Chapter 4) to handle soft operational constraints. The

control framework can cope with sea wave prediction and utilize these non-causal

information to achieve optimum power conversion. The details of this framework

are presented in Chapter 4 and 5 after the control-oriented model for the M4 WEC

being introduced in Chapter 3.
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Chapter 3

Control-oriented modelling for the

raft-type M-WEC: M4

In order to describe the WEC control problem in a mathematical way, the WEC

dynamic model needs to be presented. In this chapter, an energy-based Lagrangian

method is used to derived the motion equation for the M-WEC M4, using the

simplest 1-1-1 format as an example. Then, the hydrodynamic is analysed using

the linear wave forces theory. The final control-oriented model for the M4 WEC is

presented in state-space equations form. Although only the 1-1-1 format of the M4

WEC is modelled, this modelling method can also be used for other formats of the

M4 WEC as well as other raft-type M-WECs.

Some useful notations for this chapter are shown in Table 3.1.

3.0.1 M4 dynamic modelling

An energy-based Lagrangian modelling method is presented in [39] for a two-raft-

type wave energy converter. This method is adopted and extended for the time

domain dynamic modelling of the 1-1-1 type M4 with 3 floats. In this section the

motion equation is deduced and the process to derive the final state-space model is

demonstrated.

The six DOFs surge, sway, heave, roll, pitch and yaw of a float are denoted as
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Table 3.1: Chapter 3 Notation List

Symbol Description

i index of each part

ri radius of float i

xi surge motion of i

zi heave motion of i

x0 surge motion of hinge O

z0 heave motion of hinge O

θ1 pitch of i which are on the left of the hinge O

θ2 pitch of i which are on the right of the hinge O

hi horizontal distance from COG of i to hinge O

vi vertical distance from COG of i to hinge O

mi mass of i, including ballast if it’s a float

Ii inertia of i relative to its own COG

ρ water density

g gravitational constant

mode from 1 to 6, respectively. The device is moored from the bow float and it

aligns naturally with the wave direction. Roll motion of the device is prevented

by outrigger buoys added to the bow float (see Fig. 3.1). Then for simplicity and

consistency, the concern will be only motion in x-o-z plane. Therefore, the linear

wave forces are also considered only in mode 1, 3 and 5.

The Euler-Lagrangian equation is used to derive the motion equation for this

multi-float device with displacement and rotation about the hinge point. First, the

generalized coordinate is chosen as q = [x0 z0 θ1 θ2]T . This generalized coordinate
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Figure 3.1: Tank experiment of M4 in Manchester [15].

is proven to be independent, complete and holonomic to describe the plane motion

of the system. Then for each part of the device, the surge and heave motion can

be expressed by the generalized coordinate, as shown in (3.1). Since θ is small,

approximations sin θ ≈ θ is used in the following coordinate transformation:

x1 = x0 − v1θ1, z1 = z0 + h1θ1

x2 = x0 − v2θ1, z2 = z0 + h2θ1

x3 = x0 − v3θ2, z3 = z0 − h3θ2

x4 = x0 − v4θ1, z4 = z0 + h4θ1

x5 = x0 − v5θ2, z5 = z0 − h5θ2

x6 = x0 − v6θ2, z6 = z0 − h6θ2

(3.1)

The dynamics of the M4 device can be expressed by a generic Euler-Lagrangian

equation
d
dt(

∂L

∂q̇
)− ∂L

∂q
= Q (3.2)
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M =


∑6

i=1 mi 0 −m1v1−m2v2−m4v4 −m3v3−m5v5−m6v6

0
∑6

i=1 mi m1h1+m2h2+m4h4 −m3h3−m5h5−m6h6

−m1v1−m2v2−m4v4 m1h1+m2h2+m4h4
∑

i=1,2,4(Ii+mi(h2
i+v2

i )) 0
−m3v3−m5v5−m6v6 −m3h3−m5h5−m6h6 0

∑
i=3,5,6(Ii+mi(h2

i+v2
i ))


(3.7)

where the Lagrangian L := T − V , with T as the total kinetic energy

T =
∑

i=1,2,4

[1
2mi(ẋ2

i + ż2
i ) + 1

2Iiθ̇
2
1

]

+
∑

i=3,5,6

[1
2mi(ẋ2

i + ż2
i ) + 1

2Iiθ̇
2
2

]
(3.3)

and V is the total potential energy:

V =
6∑
i=1

migzi (3.4)

Q is the generalized force acting on the system, and represents the virtual work done

by all non-conservative forces when the system is displaced by an infinitesimal value

of the generalized coordinate:

Q = fb,q + fw,q + fmoor,q + fdrag,q + fpto,q (3.5)

where fb,q denotes buoyancy force, fw,q denotes linear wave forces, and fpto,q denotes

PTO unit moment. fmoor,q denotes the mooring force which has a negligible influence

on the energy conversion, and is neglected here. fdrag,q denotes the drag force on

the device, which is also negligible for M4 because of its rounded float base design.

These are supported by experiment and computational fluid dynamics and drag is

reduced further at full scale [40].

From the Lagrangian equation, we derive

Mq̈(t) + C = fb,q(t) + fw,q(t) + fpto,q(t) (3.6)

Here M is from the kinetic energy derivative, shown in (3.7). Diagonal terms are

summation of mass and inertia with the hinge pointO as the reference. Non-diagonal

terms account for the coupling dynamics between displacement and rotation. C is
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from the potential energy derivative, and is expressed by

C =



0∑6
i=1 mi

m1h1 +m2h2 +m4h4

−m3h3 −m5h5 −m6h6


g (3.8)

C indicates the gravity force acting on the system, and it is cancelled by the gener-

alized buoyancy force fb,q at equilibrium [6].

According to linear wave theory, the linear wave force fw,q is composed of the

excitation force, radiation damping force and hydrostatic restoring force [41], and is

denoted by

fw,q = fe,q + frd,q + frs,q (3.9)

The dynamic equation (3.6) can now be written as,

Mq̈(t) = fe,q(t) + frd,q(t) + frs,q(t) + fpto,q(t) (3.10)

We replace the generalized coordinate index q by i,j to denote the forces or torques

acting on float i in j mode, with j = 1, 3, 5 denoting surge, heave and pitch mode,

respectively. Thus, the generalized linear wave forces can be calculated as (3.11),

(3.12), and (3.13). Note that all ‘f ’s are functions of time. Linear wave forces

act only on floats. Beams and the PTO unit are above the water surface and

have no interaction with waves. In reality, floats can have big heave motion and

rise above water surface, especially for the bow and stern float. This will violate the

linear assumption in the modelling and introduce non-linearity that is not modelled.

However, these effects are not often seen in previous experiment [42]. Without active

control response of the floats are not significant and the dynamic of the WEC are

reasonably linear. Even with extreme wave height the bow and stern floats will not

rise above the water by a huge margin, thanks to the dunking effect of the mid float

[42].

Chapter 3 34



fe,q(t) =



fe,1,1 + fe,2,1 + fe,3,1

fe,1,3 + fe,2,3 + fe,3,3

fe,1,5 + fe,2,5 − fe,1,1v1 − fe,2,1v2 + fe,1,3h1 + fe,2,3h2

fe,3,5 − fe,3,1v3 − fe,3,3h3


(3.11)

frd,q(t) =



frd,1,1 + frd,2,1 + frd,3,1

frd,1,3 + frd,2,3 + frd,3,3

frd,1,5 + frd,2,5 − frd,1,1v1 − frd,2,1v2 + frd,1,3h1 + frd,2,3h2

frd,3,5 − frd,3,1v3 − frd,3,3h3


(3.12)

frs,q(t) =



frs,1,1 + frs,2,1 + frs,3,1

frs,1,3 + frs,2,3 + frs,3,3

frs,1,5 + frs,2,5 − frs,1,1v1 − frs,2,1v2 + frs,1,3h1 + frs,2,3h2

frs,3,5 − frs,3,1v3 − frs,3,3h3


(3.13)

3.0.2 Hydrodynamic coefficients and linear wave forces

Hydrodynamic coefficients, derived from hydrodynamic software WAMIT, are used

to calculate the linear wave forces for each float. WAMIT is a computer program for

analyzing floating or submerged bodies based on linear and second-order potential

theory [43] The coefficients include excitation force amplitude Fex, excitation force

phase φ, infinity added mass matrix Ainf and radiation damping coefficient Bmn(ω).

These forces are calculated as follows:

Wave excitation force

Wave excitation force is independent of the system, and it is treated as a disturbance

input to the control system. We use the JONSWAP (Joint North Sea Wave Project)

wave model to generate irregular wave spectrum with a frequency intervals 200,

which is the same as the wave profile used in [15]. Thus, Fex and φ are matrices of

size 200×18 (here 18 = 3 floats × 6 DOFs). The excitation force for float i in mode

Chapter 3 35



j is

fe,i,j =
200∑
n=1

H(ωn)Fex(n, 6(i− 1) + j)

cos(φ(n, 6(i− 1) + j) + φ(ωn)) (3.14)

where H(ωn) and φ(ωn) are the amplitude and random phase of JONSWAP wave

spectrum, of size 200× 1. Substituting all the ‘f ’ terms in (3.11) by the expression

of (3.14) yields the final generalized excitation force, which is a 4× 1 vector.

Radiation damping force

Radiation damping force can be expressed by Cummins equation which is a convo-

lution of impulse response function (IRF) and the first derivative of a motion. The

IRF Lmn is calculated by the radiation damping matrix Bmn for m, n = 1 . . . 18,

Lmn(t) = 2
π

∫ ∞
0

Bmn(ω) cos(ωt)dω (3.15)

Thus the radiation damping force for float i in mode j in time domain can be

calculated as,

frd,i,j =
3∑

n=1
ẋn ∗ L6(i−1)+j,6(n−1)+1(t)

+
3∑

n=1
żn ∗ L6(i−1)+j,6(n−1)+3(t)

+
2∑

n=1
θ̇1 ∗ L6(i−1)+j,6(n−1)+5(t)

+ θ̇2 ∗ L6(i−1)+j,6(n−1)+5|n=3(t) (3.16)

Here the summation index n refers to each float. Notation ‘∗’ denotes convolution

with upper and lower limits for integration as t and −∞. For example, the portion

of radiation damping force acting on float 1 in surge direction caused by the heave

motion of float 2 is,

f(t) =
∫ t

−∞
L1,9(t− τ)ż2(τ)dτ (3.17)

The lower limit can be set to t − 4Tp with sufficient accuracy [15], where Tp is the

wave peak period.
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Convolution calculation is time-consuming, and there are 81 convolutions in total

to be calculated according to the above analysis. Substituting all ‘f ’s in (3.12) with

(3.16), applying the linear property of convolution and introducing the motions

of each float into the generalized variable by (3.1), we can write the generalized

radiation force in a matrix form

frd,q(t) =
∫ t

t−4Tp
Frd(t− τ)q̇(τ)dτ (3.18)

where Frd is a 4 × 4 matrix with an IRF of length 4Tp in each entry. q̇ is first

derivative of the generalized coordinate vector. Now the number of convolutions

need to be calculated is reduced to 16.

A state-space model can be derived from each convolution term, as shown in

[44]. The Hankel singular value decomposition algorithm is used to convert each

convolution term to a state-space model. The order of the model is proportional to

the length of the IRF Frd,mn and can be very high; in this case study, it is around

400. Then assembling the 16 converted state-space models into one state-space

model with with an order of around 6400 × 6400, which is too high for model-

based control algorithms. Thus, model order reduction is necessary for reducing

each state-space model. The truncated balanced reduction method [45] is employed

to reduce the originally converted state-space model with an order of around 400

to a model with an order of 3 to 8. System identification and truncated balanced

reduction method are implemented using MATLAB routines imp2ss() and balmr(),

respectively. A generic way to decide the order of the reduced radiation model is

by performing a convergence check. This can be done by repeatedly simulate the

final state-space model with increasing radiation order using the same input wave

profile. The average absorbed power should converge to a fixed value as the radiation

order increases, meaning the lose of model fidelity caused by model order reduction

is minimized. In this specific case, the average power converges at order 20 and

order 8 for each subsystem is chosen for the final state-space model with acceptable

accuracy.

Chapter 3 37



Now the generalized radiation damping force can be expressed as,

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (3.19)

where żs is the state variable of the identified and assembled system with an order of

128 and has no physical meaning. As, Bs, Cs, Ds are the state-space representation

matrixes. Their sizes are 128× 128, 128× 4, 4× 128, 4× 4, respectively.

The added mass matrix Ainf when the frequency approaches infinity is of size

18 × 18, with only a constant value in each entry. The added mass term can be

viewed as a force relative to second derivative of the generalized variable, q̈(t). It

can also be added to the matrix M , after reassembled to a 4×4 matrix m∞ following

the same way of radiation damping force in (3.12), which is adopted here.

Hydrostatic restoring force

Hydrostatic restoring force is dependent on the heave displacement and pitch ro-

tation, but not on surge, i.e. frs,i,1 = 0. The heave restoring force for float i is

frs,i,3 = −ρgπr2
i zi, and the pitch restoring torque for float i is frs,i,5 = −ρgπ r

4
i

4 θ1or2.

From (3.13), the generalized hydrostatic restoring force can be written in a matrix

form

frs,q(t) = Kq(t) (3.20)

where K is the 4× 4 hydrostatic restoring force matrix,

K =



0 0 0 0

0 ∑3
i=1 kzi kz1h1 + kz2h2 −kz3h3

0 kz1h1 + kz2h2
∑2
i=1 kri + kzih

2
i 0

0 −kz3h3 0 kr3 + kz3h
2
3


(3.21)

kzi = −ρgπr2
i , kri = −ρgπ r

4
i

4 are respectively the restoring coefficients for heave

force and pitch moment of float i.
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To sum up, the motion equation for M4 can be written as,

(M +m∞)q̈(t) + frd,q(t) +Kq(t) = fe,q(t) + fpto,q(t)

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (3.22)

Modelling the PTO

The PTO moment Mmech is modelled as Mmech = −Bmechθ̇r, where Bmech is a

constant coefficient and θ̇r := θ̇1− θ̇2 is the relative pitch rotation velocity. However,

the generalized PTO force can be viewed as a manipulable control input to the whole

system at the controller design stage and takes the form of

fpto,q(t) =



0

0

−Mmech(t)

Mmech(t)


(3.23)

By defining a new state vector x := [q, q̇, zs]T , the final state-space representation

of the M4 control-oriented model can be written as

ẋ = Ax+Bwfe,q(t) +Bufpto,q(t)

y = Cx+Du

(3.24)
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where the system matrices are

A =


04×4 I4×4 04×n

−(M +m∞)−1K −(M +m∞)−1Ds −(M +m∞)−1Cs

0n×4 Bs As



Bw =


04×4

(M +m∞)−1

0n×4



Bu =


04×1

(M +m∞)−1[0, 0, 1,−1]>

0n×1


C =

[
I8×8 0n×8

]
D =

[
08×8

]
with A ∈ R136×136.

This multi-input-multi-output state-space model has 4 inputs including the wave

excitation the manipulable PTO control inputs and 8 outputs which are the gener-

alized motion and its velocity.

3.0.3 Validation by numerical simulations

In order to validate the fidelity of the control-oriented model for the M4 WEC,

numerical simulations are run.

Radiation subsystems

It has been discussed in the previous sections that the radiation forces calculated by

convolutions are replaced by state-space subsystems through system identification

and model order reduction methods. Here, the IRF and bode diagram of the iden-

tified subsystems with different orders are compared, with the original convolution

kernel Frd as a benchmark. Note that only mode 1, 1 and 3, 3 in the kernel Frd are

investigated as an example. Fig. 3.2 and Fig. 3.3 show these results.
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Figure 3.2: Validation of subsystems fidelity using impulse response function.
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Figure 3.3: Validation of subsystems fidelity using bode diagram.

It can be observed that, a subsystem with order reduced to 20 (from hundreds)

preserve the radiation dynamics relatively well, compared with the IRFs of the iden-

tified system. If the order is reduced to 8, the IRF perturbation is still acceptable.

However, if the order is reduced to 3, significant perturbation can be observed from

the IRF, which means the error caused by model order reduction is relatively huge.

The same result can be noticed from the bode diagram plot as well. For the sub-

system of order 3, the perturbation of both magnitude and phase response are huge

for lower frequency range. Based on these analysis, a subsystem of order 8 can be

picked for the radiation in mode (1, 1) and (3, 3). The same comparison has to be
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Figure 3.4: Time responses comparison between the state-space model and linear

diffraction model of the M4 WEC.

made for all of the 16 modes of the convolution kernel Frd. Note that reducing the

number of concerned DOFs from 18 to 4 clearly ease the efforts to be made here, as

otherwise there will be 324 modes to be analysed.

Model fidelity

In order to further validate the fidelity of the final control-oriented model, the model

responses with JONSWAP irregular wave profile as an input are presented and shown

in Fig. 3.4. Note that for this specific simulation, the sea condition is chosen as

significant wave height Hs = 0.04m and peak period Tp = 1.8s.

Here, comparison is made between the state-space model and the linear diffrac-

tion model used in [15] where comparisons are made with experimental data. The

differences between the state-space model and the linear diffraction model exist

because in the linear diffraction model the radiation effects are calculated via con-

volutions based on Cummin’s method.

It can be observed from Fig. 3.4 that the responses in all the considered DOFs

are almost identical for both of these time domain model. In other words, there is

negligible model error brought in by approximating the radiation force and reducing
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the order of the subsystems.

(a) capture width ratio from state-space

model

(b) capture width ratio from tank experi-

ment [15].

Figure 3.5: CWR comparisons between the state-space model, linear diffraction

model and experimental results.

Fig. 3.5 validates the control-oriented state-space model against the experi-

mental data from [15]. Here the performance index capture width ratio (CWR) is

utilized to show results in various sea conditions. CWR is defined as the captured

power Pav divided by the wave power per meter wave crest Pw again divided by the

wavelength Le associated with the energy period Te. This definition will be used

across this thesis and the benefit of using this definition is that the performance of

WEC can be compared with theoretical limits shown in [6].

Fig. 3.5b shows the CWR from experimental data (dotted plot) as well as the

CWR from the linear diffraction model (solid linear plot). In comparison, the CWR

from the state-space model are shown in Fig. 3.5a. Note that simulations are run

in Matlab for Tp ranges from 0.7s to 1.8s with 0.1s interval. Hs are selected to be

0.035m, 0.05m and 0.07m, to be consistent with the experimental data. Theoreti-

cally speaking, the CWR curves should be independent of Hs for constant passive

damping ratio Bmech. Fig. 3.5a shows that the state-space model has good fidelity in

this regard. The CWR for the linear diffraction model does not collapse because dif-

ferent damp ratio is used for simulation to match with experiment results. In terms

of the model fidelity, the CWR from the state-space model have good agreement
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with the experimental results for most of the sea conditions except for higher wave

height (Hs = 0.7s) in low frequencies (Tp = 0.7s, 0.8s). A reason for this maybe

the ignored non-linear effects occur when responses are huge. Overall, the state-

space model works well and this pave the way for developing model-based control

strategies for the M4 WEC.

In conclusion, a control-oriented model is presented for the 3-float M-WEC M4.

State-space representation is adopted as it serves the purpose for developing model-

based advanced control methods. System identification and model order reduction

method are used to derive the final state-space model. The model order reduction

method is necessary for obtaining a low order state space representation, which

can benefit controller design in regard of computational effectiveness. The way of

choosing the best model order (a balance point between model fidelity and model

order) is briefly discussed. The fidelity of the final control-oriented model is validated

against experimental data. These pay the way for designing advance control method

for M-WECs.
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Chapter 4

The linear non-causal optimal

controller

Based on the derived dynamic model presented in the last chapter, the energy-

maximizing control problem for M-WECs can be formulated. In this chapter, this

optimal control problem for M-WECs is solved in discrete-time using dynamic pro-

gramming method based on the Bellman optimality principle, taking the introduced

3-float M4 WEC as a case study. Similar to the modelling method discussed in the

last chapter, the control method can also be applied to other M-WECs.

4.1 Control policy derivation

Firstly, the control-oriented dynamic model presented in (6.7) is discretized using the

Zero-Order Hold (ZOH) method. The discrete-time dynamic model can be written

as:

xk+1 = Axk +Bwwk +Buuk

zk = Cxk

(4.1)

where xk, uk represent the states and input of the system, wk represents the incoming

wave excitation force, zk represents the system output which is defined as the hinge
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4.1 Control policy derivation

velocity of the M4 WEC.

Therefore, the absorbed instant power can be written as: Pk = −zkuk. The

energy-maximizing control problem can then be formulated as:

min
u0,...,uN

ΣN
k=0

{
zkuk + 1

2x
T
kQxk + 1

2Ru
2
k

}
(4.2)

subject to (4.1).

Here, N is the length of the control horizon. The goal is to find a control sequence

{u0, . . . , uN} that minimizes the cost function. The cost function consists of three

parts: 1) the negative of the instant power zkuk, minimizing this is equivalent to

maximizing the power; 2) 1
2x

T
kQxk which is used to penalize the system state xk;

3) 1
2Ru

2
k which is used to penalize the control input uk. The reason for including

these two penalization terms in the cost function is that at optimality the control

policy for energy-maximizing problem is of ”bang-bang” type, which means the

control input only takes the maximal and minimal possible value. This can cause

extremely large response at hinge rotation for the M-WECs, which is not ideal for

the operation of these WECs. By adding these soft constraints in the cost function

and tuning the weight Q and R for different sea conditions the safe operation of

M-WECs can be achieved. Note that operational constraints, e.g. position/velocity

limits, control torque limits, etc, are not explicitly dealt with in this controller.

Dealing with these constraints has meaningful impact in WEC control problem but

will inevitably increase computational burden of the controller. Here I focus on

designing a simple controller that can sufficiently improve the power absorption of

M4.

This optimization problem is solved here using dynamic programming based on

the Bellman’s principle of optimality:

An optimal policy has the property that whatever the initial state and initial

decisions are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision [46].

Rewrite the cost function in (4.2) as

Lk = zkuk + 1
2x

T
kQxk + 1

2ru
2
k (4.3)
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4.1 Control policy derivation

and define an optimal cost-to-go function as:

v(x, k) = 1
2x
>
k Vkxk + x>k sk + ak (4.4)

As there is no constraint on the final state xN , we can also add that:

v(x,N) = 1
2x
>
k VNxk + x>k sN + aN = 0 (4.5)

Thus, the boundary conditions are VN = 0, sN = 0 and aN = 0.

According to the Bellman’s principle of optimality, the optimality condition for

this energy-maximizing control problem is:

v(x, k) = min
uk
{L(xk, uk) + v(x, k + 1)} (4.6)

In other words, the optimal control input uk at time k is the uk that achieves the

minimum in (4.6). To solve for uk, let ∂(L(xk,uk)+v(x,k+1))
∂uk

= 0, we can get:

uk = −(R +B>u Vk+1Bu)−1[(B>u Vk+1A+ C)xk +B>u Vk+1Bwwk +B>u sk+1]

= Kx,kxk +Kw,kwk +Ks,ksk+1 (4.7)

where

Kx = −(R +B>u Vk+1Bu)−1(B>u Vk+1A+ C) (4.8)

Kw = −(R +B>u Vk+1Bu)−1B>u Vk+1Bw (4.9)

Ks = −(R +B>u Vk+1Bu)−1B>u (4.10)

Obviously, the optimal input uk has to be determined by working backward in

time from the final stage k = N . The so called discrete-time Riccati equations

(DARE) for backward iterations can be found by substituting (4.7) into (4.6):

Vk = Q+ A>Vk+1A− (C +B>u Vk+1A)>(R +B>u Vk+1Bu)−1(C +B>u Vk+1A) (4.11)

and

sk = (A+BuKx,k)>(Vk+1Bwwk + sk+1) (4.12)

For infinite horizon optimal control problem, i.e. N →∞, a steady state solution

for the DARE is required. This solution exists when the original dynamic system is
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4.1 Control policy derivation

stabilizable and the tuning parameters Q are R are positive definite, in which case

the time index k can be dropped for the DARE [47]. With these results, the control

policy (4.7) can be further simplified. Define Φ = (A+BuKx)>, notice that:

sk+1 = Φsk+2 + ΦV Bwwk+1 (4.13)

sk+2 = Φsk+3 + ΦV Bwwk+2 (4.14)

sk+1 = Φ2sk+3 + Φ2V Bwwk+2 + ΦV Bwwk+1 (4.15)

Suppose the wave excitation force sequence are available for np steps into the future,

sk+1 = Φnp−1snp + [0,ΦV Bw, . . . ,Φnp−1V Bw][wk, wk+1, . . . , wk+np−1]> (4.16)

Also notice that Kw = KsV Bw, define Ψ = [V Bw,ΦV Bw, . . . ,Φnp−1V Bw], the con-

trol policy (4.7) can be rewritten as:

uk = Kxxk +Kdwk,np (4.17)

whereKd = −(r+B>u V Bu)−1B>u Ψ is the control gain and wk,np = [wk, wk+1, . . . , wk+np−1]>

is the sequence of predicted wave excitation forces.

The resulting control policy is naturally divided into two parts: a feedback part

with regard to the system states xk through a constant gain Kx and a feed-forward

part with regard to the future incoming excitation forces through a constant gain

Kd. The fact that Kx and Kd can be pre-calculated once the dynamic system is

fixed is ideal for real-time implementation of the controller. In the following section,

the technique for realizing feedback is discussed. Note that in this chapter, without

further notice, the wave prediction sequence wk,np is assumed to be perfect, which

means no matter how long the prediction horizon np is, there is no error in the

prediction. Practical wave prediction techniques will be introduced in the next

chapter.

Since mooring is not modelled, the state-space model is not stable in surge mode.

In order to have a steady state solution from the DARE, a small stiffness term is

added to the surge mode of the restoring matrix K mentioned in the last chapter.
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4.2 Observer design

This will not affect the power performance of the WEC model but guarantee that a

control solution to be obtained. In practice, the eigenvalue of the close loop control

system given from matrix (A−Bu ∗Kx) need to be checked and all the eigenvalues

should be located within the unit circle.

4.2 Observer design

In order to realize feedback control the state information xk is required. However,

as discussed in Chapter 2, some of the states in xk (e.g. the states representing

the radiation sub-systems) do not have any physical meaning, which means these

information can not be measured with sensors in reality. To get the full knowledge

of the state information xk in real-time, an observer has to be designed. Here

a standard Kalman filter is adopted and its structure will be discussed as it is

necessary for completing the simulations. Simulation results to demonstrate the

efficacy of control are shown in the next section. Note that in the next chapter this

observer will be altered to also serve the purpose of short term wave prediction.

This standard Kalman observer has the M4 control input uk and output yk from

measurement as the observer’s inputs and an estimated state information x̂k as the

output. In the simulations it runs at every time step for the state estimation.

We denote the former input of non-causal controller with observer ûk−1, and

the estimated state x̂k−1. The Kalman observer algorithm runs as follows: firstly,

calculate a priori estimation with the former state information

x̂−k = Ax̂k−1 +Buûk−1 +Bwwk−1 (4.18)

and then the error covariance P−k of this priori estimation is calculated with the

predefined model error covariance Qkal

P−k = APk−1A
T +Qkal (4.19)

The Kalman observer gain is

Kkal = P−k C
T (CP−k CT +Rkal)−1 (4.20)
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4.3 Numerical simulations

where Rkal is the covariance of the measurement. The estimated state information

can be calculated as

x̂k = x̂−k +Kkal(yk − Cx−k ) (4.21)

The last step in a Kalman algorithm loop is to update the error covariance matrix

Pk for the next time step

Pk = (I −KkalC)P−k (4.22)

The non-causal optimal control policy with the states estimated by a Kalman ob-

server can be rewritten as

ûk = Kxx̂k +Kdwk,np (4.23)

In simulation, the measurement of system output yk is set to be the state space

model output zk = yk = Cxk with added random measurement errors which have a

pre-defined error covariance.

4.3 Numerical simulations

Numerical simulations are carried out to demonstrate the efficacy of the proposed

LNOC algorithm. Comparisons are made between the designed non-causal optimal

controller and a well-tuned passive damper. The passive damper ratio is obtained

by trial and error the value that offers most energy output is Bmech = 6. For each

simulation, the JONSWAP wave spectrum with specific significant wave height Hs,

peak period Tp and enhancement factor γ is used to generate the irregular wave

excitation force profile. At each time step the excitation force wk is applied to the

state equation and the prediction sequence wk,np is utilized for the LNOC. Since

wk,np is pre-calculated in this case it is ideal. The same excitation force profile is

used for both passive damper and the LNOC. The sampling rate Ts is set to be

dependent on the peak period as Ts = Tp/200 so that 200 times steps are run for

each peak period regardless of its actual length. Simulation time is set as 700 seconds

for calculating the average absorbed power.
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Figure 4.1: Trial and error for tuning the optimal passive damping ratio, specifically

for sea state Hs = 0.04m, Tp = 1.0s.

Here a demonstration of finding the optimal passive damping ratio using trial and

error method is shown in Fig. 4.1. For this specific sea state, Hs = 0.04m, Tp = 1.0s,

the damping ratio is varied from 1 to 20 to simulate for average absorbed power. It

can be noticed that for this sea state the optimal damping ratio is 5. However, as

the WEC is designed to operate in a range of wave periods, the damping ratio need

to be tuned to give the best absorbed power across all the wave periods, in this case

from Tp = 0.7s to 1.8s. The overall best fit value of damping ratio is found to be 6.

The tuning curve for other sea states are not shown here for the sake of space.

4.3.1 Energy conversion improvement

Firstly, simulation with a JONSWAP wave profile (Hs = 0.04m,Tp = 1.8s, γ = 1) is

used to demonstrate the controller performance. Controller is implemented with the

pre-tuned parameters Q, R and fixed wave prediction horizon np. Energy, power,

control input and relative pitch angle of the device are all plotted to give complete

observation and comparison.

Fig. 4.2 and Fig. 4.3 show that with the same wave profile (Hs = 0.04m,Tp =

1.8s) as in the modelling stage, the non-causal optimal controller with a 3.6 sec-
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Figure 4.2: Relative pitch and input torque, JONSWAP wave Hs = 0.04m, Tp =

1.8s, γ = 1, prediction horizon 2Tp = 3.6s (np = 400).

onds (2Tp) forward wave excitation force prediction remarkably improves the energy

output by around 80% (at 50 seconds going from 6.06J with a well-tuned passive

damper to 10.89J with the controller). The relative pitch angle also has an increase

from 1.54◦ to 3.74◦ (RMS value). Note that negative value can be seen in Fig. 4.3

for the non-causal controller. These are reactive power that required to improve

the performance of the WEC. A mechanical or electrical design to realize this bi-

directional power flow is needed in practice. These are practical aspects that will

not be discussed at this stage.

It can be seen from the input torque figure that, the control input from LNOC

has phase differences compared to the passive damper who tends to follow the hinge

velocity. A good example can be observed from 0 to 5 seconds of the input torque

figure: the passive damper input is small due to the absence of any wave peak, while

Chapter 4 52



4.3 Numerical simulations

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

3

P
o
w

e
r 

(W
)

passive damper

non-causal controller

0 5 10 15 20 25 30 35 40 45 50

Time (s)

0

5

10

15

E
n
e
rg

y
 (

J
)

Figure 4.3: Power and energy, JONSWAP wave Hs = 0.04m, Tp = 1.8s, γ = 1,

prediction horizon 2Tp = 3.6s (np = 400).

the LNOC input is being relatively active thanks to the prevision of the incoming

wave peak incorporated by the non-causal controller. The input torque maximum

amplitude resulting from the LNOC is however quite similar to the case of a passive

damper. This means the non-causal controller does not require a higher demand on

the torque limit of the actuator, which is very costly in practice.

Instead of looking at only one sea states, simulations are then run for various

sea conditions and the performance index CWR is used to show the control per-

formances. Fig. 4.4 shows the CWR of the device obtained from a wide range

of simulations with JONSWAP wave spectrum of Hs = 0.035m, Hs = 0.05m and

Hs = 0.07m. Wave peak periods range from 0.7s to 1.8s with 0.1s interval. En-

hancement factor γ = 1. Results with a passive damper (dashed line) are close

to the CWR obtained in a tank experiment [15], validating the modelling fidelity
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Figure 4.4: Capture width ratio in different wave height and peak period, prediction

horizon 5Tp.

again. With the non-causal controller (solid line), the CWR of the device improves

across a wide range of peak periods. Within peak wave periods of 1-1.8 seconds

tank scale (6-11 seconds in full scale), the improvement changes from 40% at wave

peak period Tp = 1s to 100% at wave peak period Tp = 1.8s. Note that the same

controller parameters Q and R are used for different wave conditions (significant

heights and peak periods). It can also be seen that CWR is almost independent of

the significant wave height and is determined by the wave peak periods as expected

with this form of non-dimensional CWR.

4.3.2 Non-ideal wave prediction

Secondly, prediction errors are introduced to demonstrate how robust the controller

is against wave prediction errors.

Fig. 4.5 shows the energy conversion when wave predictions are subject to er-

rors.Two types of errors to the prediction are introduced as can be seen in the upper

sub-plot of Fig. 4.5. The black line shows the case when prediction is contaminated

by measurement noise represented by White Gaussian Noise (WGN). For the pink

line a sequence of noises with ramped magnitudes are added to prediction to en-
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Figure 4.5: Energy conversion with prediction error.

large the prediction error with time. The reason for doing this is that most of the

wave prediction techniques can provide better prediction in the near future than for

longer times. Energy conversion of both cases can be seen in the bottom sub-plot

of Fig. 4.5 and compared to the results of Fig. 4.3. For the WGN case energy

conversion is hardly affected. This shows the controller is very robust against this

kind of prediction error, which normally occurs with sensors. When the prediction

error increases with time, the controller performs slightly worse compared with the

WGN case.

4.3.3 The effect of prediction horizon

Thirdly, the length of wave prediction np is varied to show how it affects the control

performance. This is a rather important issue because the assumption of perfect
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4.3 Numerical simulations

wave prediction is unrealistic. Regardless of the techniques adopted for wave pre-

diction, prediction errors exist and generally the prediction error increases with the

length of the prediction horizon.
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Figure 4.6: Capture width ratio with different length of forward wave prediction np
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4.3 Numerical simulations

Fig. 4.6 shows the non-causal optimal controller’s performance with different

prediction horizons. The length of prediction is normalised with the peak wave

period Tp. CWR plot shows that with a longer prediction horizon np, the controller

has better performance. With no prediction (np = 0), the advantage of control is

trivial. The controller tries to improve performance by adjusting the stiffness and

damping of the WEC model. With np increase from 0Tp to 2Tp, the non-causal

controller provides more energy output. However, the influence of the prediction

horizon starts to decrease as np increases to a big enough value. np = 3Tp provides

almost optimal control performance. Fig. 4.7 provides better observation for the

feed-forward gain Kd which decreases to 0 as the prediction horizon prolongs. This

explains the conclusion drawn from Fig. 4.6.

4.3.4 Tuning of control parameters Q and r

Figs. 4.8,4.9,4.10 provide more insights on how to tune the controller weighting

matrices Q and r. Simulations are run using JONSWAP waves with Hs = 0.035m,

and a wave prediction horizon of 3.6 seconds (np = 400). The red line is the CWR

of the device with a passive damper for comparison purpose. The states weighting

matrix Q is divided into two parts which are tuned separately. The first part is for

the first eight states which are the displacement and velocity of the device, denoted

by q1. The second part is for the states without any physical meaning corresponding

to the radiation subsystems, denoted by q2. The structure of Q is in the form of

Q =
[
q1I8 0

0 q2In

]
(4.24)

with In denoting an n by n identity matrix. Control input weighting is denoted by

r. Note that tuning of parameter r should be considered together with the control

actuator torque limit since a smaller value of r can lead to larger control input

magnitude. r = 0.08 is chosen for simulations carried out in this paper after the

tuning procedure.
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Figure 4.8: Tuning of controller parameter Q, for states with physical meanings.
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Figure 4.9: Tuning of controller parameter Q, for states without physical meanings.
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Chapter 5

Short-term sea wave prediction

using an autoregressive model

5.1 Introduction

It has been pointed out in [6] that, for the optimum energy absorption control

of WEC, the future information of either the excitation force or wave elevation is

needed, depending on which is used as the wave input. The analysis has been made

mainly in the frequency domain. The LNOC derivation presented in the last chapter

leads to the same conclusion in the time domain. Recall the control policy of LNOC:

uk = Kxxk +Kdwk,np (5.1)

One can notice that this equation not only states that the future information is

necessary, but is also naturally a way to incorporate this non-causal information.

wk,np is the wave excitation force prediction sequence, from time instance k, np steps

into the future. In this chapter, the autoregressive (AR) model will be introduced

and used to predict the wave excitation force wk,np . Before that, it is valuable to

discuss the relation between wave elevation and wave excitation force, as well as

some other wave prediction techniques.

Ocean waves harvested by WECs are normally generated by wind or storms in
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5.1 Introduction

the distance. With the assumption of linear waves, the wave elevation at the location

of the coordinate (x,y) at time t on the sea surface can be written as the summation

of a series of monochromatic waves:

h(x, y, t) =
N∑
n=1

H(ωn) cos[knx+ kny − ωnt+ φ(ωn)] (5.2)

considering uni-directional wave. ωn represents the angular frequency of the nth

wave component and kn is its corresponding wave number. N is the total number

of frequencies adopted. H(ωn) and φ(ωn) are the amplitude and phase spectrum.

On the other hand, the wave excitation force, under the same linear wave as-

sumption, can be calculated using the same amplitude and phase spectrum. This

has been briefly addressed in chapter 2, where the control-oriented model of the M4

WEC is built but presented here again for clarification. The wave excitation force

w(x, y, t) can be calculated as:

w(x, y, t) =
N∑
n=1

H(ωn)Fex(ωn) cos(knx+ kny − ωnt+ φ(ωn)) (5.3)

where Fex(ωn) is the excitation force exerted by unit amplitude monochromatic

wave of frequency ωn. In hydrodynamic software like WAMIT, when the geometry

of the WEC body is defined, a range of frequency can be selected, in this case from

0.02Hz to 4Hz. Then, unit amplitude monochromatic waves with these frequencies

are generated as input to the linear potential flow solver, by which the hydrodynamic

loads on the WEC body exerted by these waves are solved. These loads are saved

as hydrodynamic coefficients, including radiation and excitation in this case. In

simulations, excitation force exerted by irregular waves with spectral data H(ωn)

and φ(ωn) can be calculated using (5.3) by superposition principle.

Obviously if access to the actual wave spectrum data is possible, it is straight-

forward to transfer these data to the wave elevation or excitation force (under the

linear wave assumption) through Eq. (5.2) or (5.3); however, this is only possible

in numerical simulations. In practice, wave spectrum data have to be estimated

by applying the Fourier transformation to the wave elevation data, which can be

measured by buoys, wave gauges or other wave sensors. However, the excitation
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force is generally more difficult to measure; hence, it is sometimes more preferable

to use the excitation force as the input to the control system.

Given the relation between wave elevation and excitation force, there are basi-

cally three ways to introduce wave prediction to the WEC control system:

1) Instead of using the excitation force as the system input, alter the control-

oriented model to take wave elevation as the system input. This can be

achieved by taking the inverse Fourier transformation of Eq. (5.3) and us-

ing a state-space subsystem to approximate this convolution process with a

non-causal kernel. The subsystem will have the wave elevation as the input

and the excitation force as the output. It has been shown in [41] that a sub-

system order of five is sufficient to represent these excitation force dynamics

for a vertical cylinder in heave. The state-space subsystem can then be eas-

ily combined with the original control-oriented model. As the overall control

model now takes wave elevation as the input, any predicted wave elevation can

easily be incorporated by the controller.

2) Keep using the excitation force as input to the WEC model. Directly measure

the wave elevation or indirectly predict the elevation at the WEC reference

point. Next, use these measurements to estimate the wave spectrum data,

which can then be used to calculate the future excitation force through Eq.

(5.3).

3) Apply wave prediction algorithms directly to the excitation force data. As

mentioned before, the excitation force is not easy to measure, which means

an alternative way to acquire the excitation force data is needed. This can be

done by introducing a proper observer to observe the excitation force through

the WEC dynamic model and other measurable quantities, e.g. WEC motions

and PTO torques.

Table 5.1 shows a more detailed comparison for these three methods. There is

no obvious advantage in terms of the selection of system input. It is merely the

result of different WEC modelling methods.
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Table 5.1: Comparison between three prediction schemes

method 1 method 2 method 3

model

input
elevation

excitation

force

excitation

force

prediction

on
elevation elevation

excitation

force

neediness of

external

sensor

elevation

sensor

elevation

sensor
none

On the prediction side, most of the existing wave prediction techniques are fo-

cused on elevation prediction, as it is generally more applicable to ocean engineering

applications. As a result, method 1) and method 2) appear more frequently in the

literature on WEC control. Deterministic sea wave prediction (DSWP) is a tech-

nique proposed to predict the future surface elevation at a specific sea location based

on the measured data at a certain distance to the point of interest and a propagation

model for the sea wave whose parameters can be identified from the measurements.

The theory of DSWP as well as some implementation applications can be seen in

[48, 49, 50]. It is reported that the DSWP can provide an accurate prediction for a

few tens of seconds, which is more than enough for the LNOC even at a full scale.

The price to pay is some external sensors to be deployed at a distance for collecting

the elevation measurements. On the other hand, the autoregressive (AR) model

has been studied in recent years for WEC control purposes [51, 52, 53]. The main

differences between the AR and the DSWP are: a) the AR model does not require

upstream wave measurements and; b) the AR model does not need to identify a

wave propagation model like the DSWP does. It is reported that the AR model

can accurately predict up to two wave periods. Overall, the AR model is relatively

simpler and more cost effective. Note that in order to train the AR model, the

surface elevation data at the point of interest are still required.
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5.2 Short-term wave force prediction using autoregressive model

In this thesis, method 3) is investigated. The AR model is adopted but trained

using acquired excitation force data and then used to forecast the future excitation

force sequence necessary for the LNOC energy maximising algorithm. A Kalman

filter with the random walk wave model (KFRW) is employed as the excitation force

estimator. The benefit here is that only WEC body motion sensors are needed for

wave prediction, which are normally also needed for controllers. No extra sensors are

required for elevation measurements, so the cost of the control framework is relatively

low compared to methods 1) and 2) in this regard. Note that these comparisons

are only made under the assumption of linear and unidirectional wave propagation

model, i.e. (5.2) or (5.3). In reality sea waves are multi-directional and non-linear.

That being said, these methods provide a good starting point of developing wave

prediction techniques for WEC control problem. In the next chapter the multi-

directional wave issue will be discussed with a multi-PTO M4 system.

The two key techniques mentioned above (the excitation force estimator and the

AR predictor) are discussed in the following two sections. The overall LNOC control

framework is introduced after this discussion, and its efficacy is demonstrated by

numerical simulations.

5.2 Short-term wave force prediction using au-

toregressive model

The autoregressive model is a simple and accurate model used to predict ocean wave

elevation in a short prediction horizon. As discussed before, the wave elevation and

the exerted excitation force are governed by the same wave spectrum data in reality.

This means that if the AR model can predict the wave elevation, it should also be

able to predict the exerted excitation force equally well.

The fundamental assumption of an AR model is that the value wk depends

linearly on its previous values wk−p, . . . , wk−1, through a set of parameters Λ :=
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5.2 Short-term wave force prediction using autoregressive model

[λ1, . . . , λp]. This assumption can be written in the form of

ŵk =
p∑
i=1

λiwk−i (5.4)

where notation ŵk represents the predicted value of wk. p is the order of the AR

model. An AR model of order p is denoted as AR(p).

To resolve the set of parameters Λ, a set of training data with length N is used

to train the model. Λ can be obtained by minimizing the sum of prediction errors

over the training horizon N ,

J =
N∑

k=p+1
(wk − ŵk)2 (5.5)

which leads to a linear least-square (LLS) problem. The total number of data needed

for one training process is N + p. With these N + p data the AR(p) model training

process can be written as,

wp+1

wp+2

. . .

wp+N


=



w1 w2 . . . wp

w2 w3 . . . wp+1

. . . . . . . . . . . .

wN−p wN−p+1 . . . wN−1





λ1

λ2

. . .

λp


(5.6)

or in matrix form

Y = XΛ (5.7)

Solving the LLS problem gives the AR(p) coefficient set as

Λ = (X>X)−1X>Y (5.8)

The preview wave excitation force term wk,np can then be formed by using this

AR(p) model recursively with the past p estimated wave excitation forces,

wk,np = [ŵk, ŵk+1, . . . , ŵk+np−1]> (5.9)

Although the AR model is simple to derive, there are several critical points

to be addressed for the wave excitation force prediction purpose. Note that the

following analysis are made by training the AR model using generated excitation
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5.2 Short-term wave force prediction using autoregressive model

force sequence from the same JONSWAP spectrum data as used for the LNOC

simulations. The trained AR model is then used to predict the successive excitation

force, compared with the generated ones to show the prediction accuracy.

• Order of the model p

The order of an AR model is the key to its performance. There are several

methods proposed to select a suitable order for an autoregressive model, e.g.

Akaike’s information theoretical criterion [54]. Implementing these methods

will inevitably increase the overall computational load because one needs to

evaluate the fitness of the model repeatedly and change the model order accord-

ingly. For non-causal control applications, the AR model has to be retrained

at a relatively high frequency, so it is more efficient to fix the model order

for a longer time. By trail and error we found p = 100 is a good choice for

predicting wave excitation force with JONSWAP wave profile with significant

wave height Hs = 0.04m and different peak periods; the spectral peakedness

factor is γ = 1 in all cases. Lower order gives worse prediction and high order

does not increase the accuracy. Fig. 5.1 and Fig. 5.2 show the performance

comparison between the reference data, AR(10) and AR(100). Blue vertical

line separates the training set and the prediction set.

• Training data length N

It is reported in [55] that N ≈ 15 × p gives desired performance and longer

training data length does not further improve the prediction accuracy. How-

ever, in a discrete time control application with high sample frequency (in this

case sampling time Ts = 0.009s), the length of training data affects the compu-

tation efficiency. We found that by re-sampling the training data with a lower

sampling rate, which means that fewer training data are used in the training

process, the computation load can be reduced while not losing prediction ac-

curacy. Fig. 5.3 shows an AR(100) model with N = 8000 but re-sampled with

Ts = 0.09s so only 800 sampling data are used. The performance improves to

over 2 seconds prediction while computation time remains the same.
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Figure 5.1: AR model with p = 10, N = 800 to predict wave excitation force in

heave with JONSWAP wave peakedness factor γ = 1, significant height Hs = 0.04m

and peak period Tp = 1.8s.
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Figure 5.2: AR model with p = 100, N = 800 to predict wave excitation force in

heave with JONSWAP wave peakedness factor γ = 1, significant height Hs = 0.04m

and peak period Tp = 1.8s.

• Retrain period L

Theoretically speaking, the best retraining strategy is to retrain the model

every time step since all estimated values are utilized instantly. But technically,
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Figure 5.3: AR model with p = 100, N = 8000 re-sampled to predict wave excitation

force in heave with JONSWAP wave peakedness factor γ = 1, significant height

Hs = 0.04m and peak period Tp = 1.8s.
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Figure 5.4: AR model with p = 100, N = 8000 re-sampled to predict wave excitation

force in heave with JONSWAP wave peakedness factor γ = 1, significant height

Hs = 0.04m and peak period Tp = 1s.

it is not computationally efficient to do so. So a suitable L should be picked

for balancing control performance and computation load. Since the AR(100)

can predict accurately up to 2 seconds (with Ts = 0.009s it means around
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Figure 5.5: AR model with p = 100, N = 800 to predict wave excitation force in

heave, with JONSWAP wave peakedness factor γ = 1, significant height Hs = 0.07m

and peak period Tp = 1s. Comparing real data, directly solving LLS and using

Burg’s method to guarantee stability.
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Figure 5.6: AR model with p = 100, N = 1500 to predict wave excitation force in

heave, with JONSWAP wave peakedness factor γ = 1, significant height Hs = 0.07m

and peak period Tp = 1s. Comparing real data, directly solving LLS and using

Burg’s method to guarantee stability.

200 samples), we found that to retrain the model with L = 100 (half of the

prediction horizon) time steps is a satisfactory option.
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5.2 Short-term wave force prediction using autoregressive model

• Prediction horizon np

Prediction horizon is not a tuning factor of the AR model, but of the con-

troller. However, it will be affected by the AR model performance limitation.

For optimal control performance the LNOC requires 2Tp prediction horizon

which means 3.6 seconds or np = 400 time steps in the case of Tp = 1.8s. If

the AR model can provide accurate and consistent prediction of 2Tp time, the

LNOC optimal performance can be maintained. Otherwise, a shorter predic-

tion horizon np should be chosen.

Fig. 5.3 above shows that at Tp = 1.8s AR predicts precisely over 2 seconds

in the future but less well over 3.6 seconds, so control performance degrades

at Tp = 1.8s is expected. Fig. 5.4 shows a better performance with the same

AR model used, but at a different peak period Tp = 1s. The AR model

predicts precisely over 3 seconds. This is more than enough to guarantee

optimal control performance. Note that peak periods from 1-1.8 seconds at

tank testing scale correspond to peak periods from 6-11 seconds at full scale

ocean waves, which are considered the most common sea conditions. Provided

that the AR model scales well, the results we obtained here are similar to

the published results in [55] reporting that the AR model can predict well for

several peak periods into the future.

• Stability of the AR wave force predictor

Note that directly solving the system (5.6) could result in an AR model that

is unstable. This can cause severe drawback in real-time implementation of

the AR predictor. Many algorithms have been developed to guarantee the

stability of the AR model, e.g. Burg’s method or Yule’s method [56]. These

methods can be used via MATLAB routines arburg() and aryule(). Fig.

5.5 and 5.6 show the comparison between directly solving the LLS and using

Burg’s method. In the first figure, training data length is set to be 800 samples

and the LLS solution is stable. Similar prediction accuracy can be seen from

both methods. Howeverm in the second figure, when training data length is
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changed to 1500 samples, instability model is provided by directly solving the

LLS problem, while the AR model provided by Burg’s method is still stable.

5.3 The Kalman estimator with a random walk

wave model

In the last section, all the excitation force training data are generated numerically,

using the predefined JONSWAP spectrum. In practice, these excitation force data

are unmeasurable because all the hydrodynamic forces are coupled. In this section,

the KFRW wave excitation force estimator is introduced. The basic idea is aug-

menting the state vector of the original state-space model to include the excitation

force term wk, then using the same linear Kalman filter to observe the original state

xk and the excitation force wk simultaneously.

Recall the discrete-time state-space model in the last chapter,

xk+1 = Axk +Bwwk +Buuk

zk = Cxk (5.10)

The system output vector zk consists of the displacement and velocity of the WEC

which can be measured by motion sensors. The task of the wave excitation force

estimator is to estimate xk and wk based on the information of zk and uk.

In the KFRW method, an augmented state vector ηk is introduced to include

both xk and wk. To this end, a mathematical model is necessary to perform the

time transition of wk. A random walk model is adopted in [57] for this purpose,

wk+1 = wk + εw,k (5.11)

where εw,k is the random step at time k that wk takes to reach wk+1. This is

essentially an AR model of order 1 with parameter λ1 = 1 if εw,k is considered a

zero-mean white noise process that is uncorrelated to any wi with i < k. With

some minor modifications the system equations and the random walk model can be
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summarized as,

xk+1 = Axk +Bwwk +Buuk + εx,k (5.12)

wk+1 = wk + εw,k (5.13)

yk = zk = Ckalxk + µk (5.14)

where εx,k represents modelling errors, yk represents the measurement of system

output (WEC motions) and µk represents the measurement errors. Note that the

output matrix C is now Ckal = [I8×8, 08×n]> since the displacement and velocity of all

dimensions are measurable. Defining the augmented state vector as ηk := [xk, wk]>,

the state-space representation of the augmented state can be written as,

ηk+1 = Aaηk +Bauk + εk

yk = zk = Caηk + µk (5.15)

where εk = [εx,k, εw,k]> is the lumped modelling error term. The state transition

matrix, input and output matrices are

Aa =

A B

0 1

 (5.16)

Ba =

Bu

0

 (5.17)

Ca =
[
Ckal 08×4

]
(5.18)

Now the wave excitation force estimation problem becomes a state estimation prob-

lem, which can be tackled by a Kalman Filter. By the assumption of a standard

Kalman Filter, the model error εk and the measurement error µk should be uncorre-

lated zero-mean white Gaussian noise process with covariance matrices Qkal, Rkal,

respectively, which are tuning parameters to ensure the estimation accuracy.

The KFRW algorithm is summarized briefly for completeness. It takes the con-

trol input uk and output yk from measurement as the estimator’s inputs, and an

estimated state information η̂k as the output. It runs at every time step for the

estimation.
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We denote the former input of the non-causal controller with observer ûk−1, and

the estimated state η̂k−1. Firstly, calculate a priori estimation with the former state

information

η̂−k = Aaη̂k−1 +Baûk−1 (5.19)

and then the error covariance P−k of this priori estimation is calculated with the

predefined model error covariance Qkal

P−k = AaPk−1A
>
a +Qkal (5.20)

The Kalman gain is

Kkal = P−k C
T
a (CaP−k CT

a +Rkal)−1 (5.21)

The estimated state information can be calculated as

η̂k = η̂−k +Kkal(yk − Caη−k ) (5.22)

The last step in a Kalman algorithm loop is to update the error covariance matrix

Pk for the next time step

Pk = (I −KkalCa)P−k (5.23)

The non-causal optimal control policy with the states estimated by the KFRW

estimator can be rewritten as

ûk = Kxx̂k +Kdwk,np (5.24)

where x̂k is taken from the estimated augmented state η̂k. The estimated wave

excitation force can also be taken from η̂k noted as ŵk. Note that the augmented

state-space model is only used for estimation purpose, the control gain Kx and Kd

are calculated using the original state-space model.

5.4 The comprehensive LNOC framework

The comprehensive LNOC framework to maximise energy conversion by incorporat-

ing the wave excitation force prediction can now be summarised. This framework
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is shown in Fig. 5.7 by block diagrams. It systematically combines: 1) the linear

non-causal optimal controller, represented by the off-line calculated control gain Kx

and Kd; 2) the Kalman filter with a random walk wave model to estimate the sys-

tem state xk and the wave excitation force input wk; 3) the autoregressive model

trained by the collected excitation force data to predict the incoming excitation force

sequence wk,np .

Figure 5.7: Complete linear non-causal optimal controller framework.

Compared with other non-causal control techniques, this framework does not

require any external wave measurement sensors. The estimator input, PTO torque

and WEC motion measurement are commonly required by any feedback controllers.

The cost of deploying wave measurement units and signal processing are saved.

From a computational effectiveness stand point, the linear optimal controller does

not require any on-line optimization. The main contribution of computational load

is from the AR wave force predictor, which is relatively not time consuming.

In the next section, numerical simulations will be carried out to demonstrate
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the efficacy of the LNOC+AR framework, comparing to the ideal wave prediction

performance shown in the last chapter. The computational issue will be quantified

as well.

5.5 Numerical simulations

5.5.1 The LNOC+AR control efficacy

Numerical simulations are carried out to demonstrate the performance of the LNOC+AR

control framework, with comparisons to the LNOC with ideal wave prediction and

a well-tuned passive damper. A JONSWAP wave profile of peakedness factor γ = 1

with significant wave height Hs = 0.04m is again adopted to generate wave excita-

tion force profile. Peak periods of the sea states range from Tp = 0.7s to Tp = 1.8s

in the simulations. The simulation time is 700 seconds, and the sampling time is set

to be Ts = 1/200Tp.

For the AR wave excitation force predictor, the model order is chosen as p = 100,

data length is N = 800, the AR predictor is retrained every half peak period,

prediction horizon of the LNOC controller is chosen to be 2×Tp seconds. The main

focus of the simulation results is to evaluate the degradation of control performance

caused by the prediction errors of the AR predictor.

0 100 200 300 400 500 600 700

Time (s)

0

50

100

150

E
n

er
g
y
 (

J
)

linear damper

LNOC ideal

LNOC AR prediction

Figure 5.8: Energy captured, JONSWAP wave profile peakedness factor γ = 1,

Hs = 0.04m, Tp = 1.8s.

Chapter 5 75



5.5 Numerical simulations

74 76 78 80 82 84 86 88 90

Time (s)

-2

0

2

4

6
P

o
w

er
 (

W
)

linear damper

LNOC ideal

LNOC AR prediction

Figure 5.9: Power, JONSWAP wave profile peakedness factor γ = 1, Hs = 0.04m,

Tp = 1.8s.
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Figure 5.10: Input torque, JONSWAP wave profile peakedness factor γ = 1, Hs =

0.04m, Tp = 1.8s.

Fig. 5.8 shows the energy output of the WEC. For the passive damper case,

energy output is 85.76J . The LNOC with ideal prediction case reaches 153.55J

(79% improvement) while the LNOC with AR predictor case ends at 130.66J (52%

improvement). Fig. 5.9 shows the corresponding power plot. The better the AR

predictor performs, the better the black line follows the ideal blue line in the figure.

This can be used as an indicator to evaluate the performance of the AR model. It

has been shown in Fig. 5.3 that at around 81 seconds of the simulation, the AR

model does not provide accurate prediction up to 2Tp time, so in Fig. 5.9 at the
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Figure 5.11: Pitch angle, JONSWAP wave profile peakedness factor γ = 1, Hs =

0.04m, Tp = 1.8s.
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Figure 5.12: Capture width ratio, JONSWAP peakedness factor γ = 1, wave profile

Hs = 0.04m, wave excitation force prediction horizon is 2× Tp.

same time the black line starts to depart from the ideal blue line. In the meanwhile,

the control input in Fig. 5.10 starts to have minor oscillations, while the pitch angle

in Fig. 5.11 has smaller amplitude than the ideal case.

The overall control performance for different peak periods can be characterised

by the CWR plot in Fig. 5.12. Twelve simulations of different peak periods ranging

from Tp = 0.7s to Tp = 1.8s are run to evaluate all the CWRs. Significant wave

height is fixed at Hs = 0.04m although this is normalised in CWR. Fig. 5.12

validates that for shorter peak periods, the AR model performance is better, so is
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the LNOC performance. The overall control performance degradation caused by the

inaccuracy of the AR wave excitation force predictor is not significant. This can be

also seen from Table 5.2 by comparing the CWR values of AR prediction and ideal

prediction.

Table 5.2: LNOC performance in CWR

Peak

period

passive

damper

LNOC

no prediction

LNOC

AR prediction

LNOC

ideal prediction

0.7s 0.169 0.164 0.202 0.205

0.8s 0.276 0.263 0.300 0.302

0.9s 0.348 0.331 0.374 0.380

1.0s 0.338 0.331 0.408 0.415

1.1s 0.286 0.289 0.362 0.378

1.2s 0.224 0.234 0.300 0.317

1.3s 0.167 0.180 0.235 0.255

1.4s 0.117 0.130 0.166 0.189

1.5s 0.083 0.094 0.116 0.140

1.6s 0.059 0.068 0.081 0.101

1.7s 0.043 0.050 0.062 0.076

1.8s 0.030 0.036 0.045 0.055

5.5.2 Computational effectiveness

Finally, some evaluations on computational load are given to show that the LNOC

framework with AR predictor is applicable for real-time implementation. The av-

erage computational time for the whole simulation is 0.0035 second which is less

than the designed sampling time 0.009 second. For time steps that AR model is
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retrained, the computational time is roughly 0.1 second. This is larger than the

sampling time so the AR model should be retrained at a slower rate separately.

Because the retraining happens every half Tp time and the AR model can predict

up to 2×Tp time, the computational time of 0.1s is acceptable. For time steps that

retraining does not happens, the computational time is trivial since the controller

is computed off-line. Note that at full scale the time scale is at least 6 times longer

than the laboratory scale, so real time control becomes even easier.
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Chapter 6

Modelling and control of

Mutli-PTO M4 in multiple

directional waves

In Chapter 4 and 5, the LNOC framework integrated with the KFRW wave force

estimator and AR wave force predictor has been investigated. Significant energy

conversion improvement is demonstrated through numerical simulation results, by

applying the LNOC+AR framework to the single PTO 3-float (1-1-1) M-WEC M4.

As mentioned in Chapter 2, increasing the number of mid and stern floats results

in various configurations of the M-WEC M4. This may enable multiple PTOs to be

installed within one WEC device, further improving the single device power capture

capability. For example the 6-float (1-3-2) M4 has two PTOs and the 8-float (1-3-4)

M4 has four PTOs that can operate in parallel. A design diagram of the 1-3-4 M4

can be viewed in Fig. 6.1.

In this chapter, the genericness of the LNOC+AR framework is demonstrated

by extending the methodology to be applied on the 8-float (1-3-4) M4 WEC with

four PTOs. Compared to the previous studied 3-float (1-1-1) M4, the dynamic

model order further increases due to the additional PTOs. The control problem

now becomes a multiple input one.

80



6.1 Control-oriented state-space model

Figure 6.1: 8-float 1-3-4 M4 WEC plan view at laboratory scale. The four thick

lines denote the hinges for PTO.

Besides, it has been assumed so far that the WEC aligns with the wave direction.

In reality the WEC may veer away from this due to currents or windage, although

currents are small in ocean conditions and wind is often aligned with the wave

direction. Nevertheless this effect should be quantified to see how energy conversion

can be affected. When non-zero degree heading occurs, the roll and sway motion of

the WEC is not trivial any more. In order to quantified this effect, the hydrodynamic

model of the WEC has be to extended to allow roll and sway motion as well as

surge, heave and pitch, which introduces more challenges for the controller and

wave predictor design.

6.1 Control-oriented state-space model

In this section the control-oriented state-space model for the 1-3-4 M4 is built. Since

the modelling method is the same as what has been discussed in Chapter 3, only

the parts that differ from the 1-1-1 M4 case will be reported, to showcase how the

complexity of the model increases.

In Fig.6.1, the eight floats are indexed by i = 1, 2, . . . , 8 from left to right and
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from bottom to top, respectively. Coordinate origin O is at the hinge height above

the mid float (i = 3) with x (surge) pointing towards right, y (sway) upwards and z

(heave) outwards from the paper. Each float (i) has five degrees of freedom (DOF):

surge, sway, heave, roll, pitch. Incoming wave angle is fixed and thus yaw can be

neglected. For a float i, xi, yi, zi are used to denote surge, sway and heave. Roll,

pitch with respect to the WEC origin O are denoted by ψi, θi.

The generalized motion vector of the WEC can be chosen as :

q = [xo, yo, zo, ψo, θl, θ5, θ6, θ7, θ8]> (6.1)

where θl is the pitch motion for the first four floats. θl equals θi for i = 1, 2, 3, 4

since they are one rigid body. θ5, θ6, θ7, θ8 are pitch motion of floats 5, 6, 7, 8. All

floats have the same roll motion ψo.

Denote hi, ti and vi the horizontal, transversal and vertical distance from the

gravitational center of float i to origin O. The translational motion of each float can

be calculated by the following formulae, assuming small angle linearisation:

xi = xo + hi − θivi (6.2)

yi = yo + ti + ψovi (6.3)

zi = zo + vi − θihi + ψoti (6.4)

The motion equation for the 8-float M4 can be derived using Lagrangian equation

as for the 3-float M4 in Chapter 3 or by applying Newton’s second law at each DOF

and merge into matrix form. The motion equation is in the following form:

Mq̈(t) = fe,q(t) + frd,q(t) + frs,q(t) + fpto,q(t) (6.5)

In this equation, M is the mass and inertia matrix of size 9 × 9, shown in Eq.

(6.6). mi applies to masses associated with each float 1-4, including float, ballast

and beam, and terms with ∑
m5−8 also include associated masses of float, ballast

and beam for floats 5-8. Iψ denotes the inertia of roll of the WEC. I1234 denotes

the inertia of floats 1 to 4 in pitch and I5 to I8 denote those of the other floats. All
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inertias are relative to the origin O. All these specifications can be seen in Appendix

A.

q̈ is the second derivative of q. On the right hand side there are linear wave forces

including excitation force, radiation damping force, hydrostatic restoring force and

the controllable PTO torque, respectively. Mooring force in the experiment and

model for 6-float M4 caused the horizontal motion to be less than 1 cm [15], which

has negligible effect on phase in this model.

M =



∑8
i=1 mi 0 0 0 −

∑4
i=1 mivi −

∑
m5v5 −

∑
m6v6 −

∑
m7v7 −

∑
m8v8

0
∑8

i=1 mi 0
∑8

i=1 mivi 0 0 0 0 0 0
0 0

∑8
i=1 mi

∑8
i=1 miti −

∑4
i=1 mihi −

∑
m5h5 −

∑
m6h6 −

∑
m7h7 −

∑
m8h8

0
∑8

i=1 mivi
∑8

i=1 miti Iψ −
∑4

i=1 mihiti −
∑

m5h5t5 −
∑

m6h6t6 −
∑

m7h7t7 −
∑

m8h8t8

−
∑4

i=1 mivi 0 −
∑4

i=1 mihi −
∑4

i=1 miti I1234 0 0 0 0
−
∑

m5v5 0 −
∑

m5h5 −
∑

m5h5t5 0 I5 0 0 0
−
∑

m6v6 0 −
∑

m6h6 −
∑

m6h6t6 0 0 I6 0 0
−
∑

m7v7 0 −
∑

m7h7 −
∑

m7h7t7 0 0 0 I7 0
−
∑

m8v8 0 −
∑

m8h8 −
∑

m8h8t8 0 0 0 0 I8


(6.6)

Hydrodynamic coefficients for calculating linear wave forces are again obtained

from WAMIT software [43]. These include all cross-coupled terms among floats.

Since there are totally eight floats and each with six DOFs (yaw included but triv-

ial), the size of hydrodynamics coefficients from WAMIT are 48 × 48. Converting

them into 9×9 accordingly makes state-space modelling more straightforward. The

processes are omitted here as similar to what has been presented in Chapter 3. The

final state-space model is reported directly.

A new state vector x := [q, q̇, zs]> is defined, so that the state-space represen-

tation of the 8-float M4 control-oriented model can be written as

ẋ = Ax+Bfe,q(t) +Bfpto,q(t)

y = Cx+Du

(6.7)
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where the system matrices are

A =
[

09×9 I9×9 09×n
−(M+A∞)−1K −(M+A∞)−1Ds −(M+A∞)−1Cs

0n×9 Bs As

]
(6.8)

Bw =
[ 09×9

(M+A∞)−1

0n×9

]
(6.9)

Bu =
[ 09×1

(M+A∞)−1[0,0,0,0,1,−1,−1,−1,−1]>
0n×1

]
(6.10)

C =
 01×13 1 −1 0 0 0 01×n

01×13 1 0 −1 0 0 01×n
01×13 1 0 0 −1 0 01×n
01×13 1 0 0 0 −1 01×n


(6.11)

Without control, the PTO torques are modelled as four passive dampers with the

same damping constant Bmech. Note that the value of Mmech is selected by trail and

error for best power capture performance.

The order of the state-space model derived for the 8-float 1-3-4 M4 is now around

six hundreds, while for the 3-float 1-1-1 M4 it was slightly above a hundred.

Note that with non-zero degree headings, the excitation force coefficients Fex
and φ are changed. These are pre-calculated for headings ranging from 0 degree to

90 degrees, with 10 degrees interval. Other hydrodynamic coefficients are the same

for various headings, so are the state-space representation.

6.2 LNOC+AR efficacy on the 8-float M4

The LNOC+AR control framework is now applied to the 8-float 1-3-4 M4. Nu-

merical simulations are carried out to demonstrate control performances. These are

presented in two parts: zero degrees heading angle and non-zero degrees heading

angles. For both cases, sampling time is set dependent on peak period Ts = Tp/200

to maintain 200 time steps run in each peak period. For one simulation 100 peak

periods are run. For each specific sea state one simulation is completed within ten

minutes.

JONSWAP wave spectra with peakedness factor of 1 and 3.3 are both used to

generate wave profiles. Significant wave height is fixed at Hs = 0.04m although this
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is normalized by the performance index CWR. Peak periods range from Tp = 0.7s

to 1.8s, each with 0.1s interval. For Froude scaling these are 4.95 to 12.7 seconds

in full scale which is typically 50 times the model scale. These wave profiles are fed

as disturbances to the WEC model and WEC responses are recorded to calculate

absorbed energy. For fair comparison to a passive damper only one set of control

parameters Q and R are used for all wave conditions. The passive damping ratio

Bmech = 3NMs/rad, identical for 4 PTOs.

6.2.1 Zero degree headings

Fig.6.2 shows the CWR plot for different peak periods. This can be viewed equiva-

lently as normalised power capture and enables comparison to some idealised opti-

mum value for point absorbers and hinged rafts in regular waves [6, 11]. Note that

the CWR is independent of significant wave height.
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Figure 6.2: Capture width ratio, significant wave height Hs = 0.04m, zero degrees

heading. Comparing the 3-float M4 CWR which was validated by experimental data

with the 8-float M4 CWR derived by simulations.

In Fig.6.2 the solid line with ’+’ sign shows the CWR of 3-float M4 with a passive

damper which has been validated by experiment data. This provides justification

Chapter 6 85



6.2 LNOC+AR efficacy on the 8-float M4

for the fidelity of the 8-float M4 model as no experiment has been carried out yet.

It can be seen that without control, the maximum CWR is 0.35 for the 3-float M4

with 1 PTO. For the 8-float M4 with 4 PTOs this is 1.13, slightly less than 4 times

of the 3-float case.

The LNOC is applied to the 8-float M4 with incoming wave predictions. It can

be seen that with LNOC and ideal prediction, the CWR at Tp = 0.9s increases from

about 1.13 to about 1.47 which is 30% improvement. At Tp = 1.8s this improvement

goes up to 93%. The average improvement for all peak periods is around 53%. The

CWRs of 3-float M4 with passive damper and LNOC are also presented at the

bottom. Control performances are similar for both WECs.

The AR model with non-perfect wave force predictions (black dash line) brings

performance degradation but improvements of capture width are still significant

compared to the passive damper case, in this case from 21% to 83%. These are run

with a JONSWAP spectra with γ = 1.

To demonstrate that the LNOC also works in a narrow band spectrum, the

JONSWAP spectra with γ = 3.3 is also shown in Fig.6.2 as the dash line with ”x”

symbol. The control performance is similar to the γ = 1 case.

Fig.6.3 to Fig.6.4 show the time responses at Tp = 1.0s, comparing the passive

damper and LNOC with ideal wave force predictions and AR predictions. These

include the PTO torque (control input) and the power capture for all the PTOs. It

is clear that at zero degrees heading all PTOs are operating in parallel and their

responses are almost identical. This shows the LNOC is able to control 4 PTOs

simultaneously and enables the same power capture improvement for all of them.

6.2.2 Non-zero degree headings

Fig. 6.5 and 6.6 show the comparison of excitation force in heave and pitch mode,

which contribute most to the average power. Readers should see how excitation

force in these modes decrease as incoming wave angle increases.

Fig. 6.7 and Fig. 6.8 shows the CWR trends of passive damper and LNOC for
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Figure 6.3: PTO control torque, significant wave height Hs = 0.04m, peak period

Tp = 1.0s, γ = 1, zero degrees heading.
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Figure 6.4: Instant power, significant wave height Hs = 0.04m, peak period Tp =

1.0s, γ = 1, zero degrees heading.

Tp = 1.0s when WEC headings change from 0 degrees to 90 degrees, respectively for

γ = 1 and γ = 3.3. Orange lines show rotation angles of roll motion and the RMS

pitch angles for 4 PTOs in average.

Chapter 6 87



6.2 LNOC+AR efficacy on the 8-float M4

0 10 20 30 40 50 60

Time

-40

-20

0

20

40

H
ea

v
e 

ex
ci

ta
ti

o
n

 f
o

rc
e 

(N
) 0 degree 30 degree 60 degree 90 degree

Figure 6.5: Excitation force in heave mode for various headings, significant wave

height Hs = 0.04m, peak period Tp = 1.0s, γ = 1.
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Figure 6.6: Excitation force in heave mode for various headings, significant wave

height Hs = 0.04m, peak period Tp = 1.0s, γ = 1.

It can be observed that as incoming wave angle increases from zero, the relative

pitch angle decreases, so do the CWRs. The roll motion of the whole WEC increases

from almost zero at zero heading to a significant value compared with pitch at 30

degrees heading and then stays relatively stable. As the heading increases from 0

to 90 degrees, it can be observed clearly that as the roll motion increases, the pitch

motion decreases.

The LNOC controller, for both ideal wave force prediction and AR cases, can

improve CWR for all WEC heading angles. Surprisingly, the improvements for

non-zero headings are more significant than for zero heading.

These observations are not sensitive to the change of peakness factor γ, which

can be noticed by compared every two plots with the same peak period but different
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value of γ. Fig. 6.9 to Fig. 6.14 show the comparisons made in different peak

periods.

In a more realistic scenario, the WEC heading is likely to fluctuate around zero

as wind and current exist. This result with unchanged control parameters ensures

the LNOC can be applied and improve power capture of the WEC regardless of

change of the WEC headings.
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Figure 6.7: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.0s,

γ = 1.
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Figure 6.8: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.0s,

γ = 3.3.

6.3 Discussion of the results

The results obtained so far in this thesis show that high capacity wave energy sys-

tems are possible by capturing energy from multiple floats with multi-mode forcing,

as incorporated in the M4 configuration. It is useful to compare the maximum pos-

sible CWR for point absorbers and hinged beam raft-type absorbers, available for

regular waves at resonance. For point absorbers the maximum capture width ratio,

normalised by wave length, is 1/2π for heave, 1/π for surge and pitch and 3/2π in

combination [6]. For the hinged beam it is 4/3π [11]. In the 1-3-4 case here we have

an M-WEC with 4 PTOs. For zero heading, as intended, if we considered this as

4 hinged beams the maximum CWR would be 1.7 while a maximum value of 1.2 is

achieved in irregular waves, 1.5 with LNOC framework applied. If we considered 4

point absorbers operating in heave, surge and pitch the maximum value would be

1.9. If we considered this as 4 point absorbers and 4 hinged beams in combination

then the maximum would be 3.6. But this would require 3× 4 = 12 floats and here
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Figure 6.9: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.2s,

γ = 1.

we only use 8. A crude estimate of theoretical maximum might thus be 2.4. The

intention is to compare with what is theoretically possible for power absorption. If

this were to be called efficiency it would be around 62.5%.

With different headings the contributions from each mode will be different. How-

ever for a heading of 90 degrees the 4 stern floats are responding mainly in heave

and the maximum CWR would be 0.63. With LNOC this is achieved with Tp = 1.2s

and 1.4s giving 100% efficiency while for Tp = 1s and 1.8s it is 0.55 and 0.4 giv-

ing efficiencies of 87% and 63%. When converted into power, this is now greater

for Tp = 1.8s and 1.4s than for Tp = 1.2s and 1s. The system was designed for

zero heading which will be the case for ocean conditions with small currents. With

currents, e.g. on continental shelf regions, the situation is complex with variable

heading and the optimum float configuration for maximum energy capture needs to

be determined. For this configuration the average power is between 0.4 and 1.2W

corresponding to 0.35 and 1.1MW at 1:50 scale with Hs = 2m. This would relate to
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Figure 6.10: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.2s,

γ = 3.3.

the average wave conditions at Wavehub. But the average power is now comparable

to off-shore wind turbines and this is clearly desirable for the further development

of wave energy conversion system.

6.3.1 Discussion on power quality

Apart from maximising the average absorbed power, power quality is another im-

portant aspect of WEC technology development. A key performance index of power

quality is the Peak to Average (P2A) ratio of the absorbed mechanical power. A high

P2A ratio is not favourable for PTO design as the high voltage can damage power

electronic components in the PTO. There are many potential ways to improve the

power quality of WEC, for example an well-design layout of WEC array can reduce

the total P2A by a factor of four by enabling the WEC to interact with the incom-

ing wave out of phase and share the same DC-link, results reported in [58]. Energy

storage and reactive power compensation can have huge impact in improving power
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Figure 6.11: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.4s,

γ = 1.

quality as well [59].

Energy maximising control will have an impact on the P2A ratio of WEC, al-

though this is hard to quantified as control will increase both the peak and average

power. Control algorithms can be developed to explicitly limit/handle the undesir-

ably high P2A ratio but can conflicts the maximisation of energy output. Improving

power quality of WEC is overall a co-design problem.

Here, the potential advantage of multi-PTO M-WEC can have in improving

power quality will be discussed. Fig. 6.15 shows the total power of the four PTOs

when the WEC is operating at zero degree heading and the four PTOs are working

in phase, resulting in a spiky peak power. In Fig. 6.16, the WEC is operating at 40

degrees heading, which means the four PTOs are working out of phase. It can be seen

that in this case the total power is smoother, meaning the power quality is improved.

The intention is not to prioritize non-zero headings as this is not ideal operational

condition for the M4 WEC. However, if the four PTOs can be intentionally designed
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Figure 6.12: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.4s,

γ = 3.3.

to work out of phase even in zero heading, either by introducing an extra layer of

control or alter the mechanical design, e.g. varies the length of beams connecting

the stern floats, the power quality of the M-WEC M4 can be sufficiently improved.

This is another advantage of M-WEC over S-WEC.
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Figure 6.13: Left Y axis: CWR of passive damper and LNOC. Right Y axis, rotation

motion angle (RMS value) of pitch and roll. X axis wave heading angle from 0

degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.8s,

γ = 1.
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degrees to 90 degrees. Significant wave height Hs = 0.04m, peak period Tp = 1.8s,
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Chapter 7

Conclusion and future work

In this chapter, all the presented work in this thesis is concluded, and the contribu-

tion from each chapter will be summarised. Finally, potential future directions of

my research are discussed.

7.1 Conclusions

• In Chapter 2, knowledge of wave energy conversion technologies are reviewed.

The differences between S-WEC and M-WEC in their theoretical power cap-

ture limit were discussed. The typical M-WEC design, M4, was then in-

troduced. By reviewing some of the existing control strategies for WECs, I

indicated that there is a gap of knowledge in this research area: most of the

published control methods focus on S-WECs with simple dynamics, while the

challenges for controlling M-WECs that enable higher energy conversion capac-

ities, are not investigated. Based on these discussions, the research objective

for this thesis is set up, which is to design a novel controller aiming for the

M-WEC energy maximising control problem. The controller should at least

have these advantages: guarantee optimum energy output, low computational

burden and can handle operational constraints.

• In Chapter 3, a control-oriented state-space model is developed for the 3-float

97



7.1 Conclusions

1-1-1 M-WEC M4. The energy-based Euler-Lagrangian modelling method

is adopted to provide a concise and generic mathematical description of the

device’s dynamics including coupling among different modes of motion. Sys-

tem identification and model order reduction algorithms are used to derive

the state-space subsystems representing the radiation effects. There is a brief

discussion on how to select the suitable sub-system order. The resulting state-

space models with different orders are validated by comparing the response in

time domain to those from a linear diffraction model, which has been experi-

mentally validated. The advantage of this control-oriented modelling method

is that the order of the model can be flexibly chosen to balance between model

fidelity and computational efficiency. This paves the way for designing a model-

based controller for the M-WEC M4.

• In Chapter 4, a linear optimal controller was designed for the M4 WEC using

the discrete time format of the derived control-oriented state-space model from

Chapter 3. A cost function aimed at maximising the energy output as well as

penalising the soft constraints of system states and system input was adopted.

The control policy is then obtained by solving the optimisation problem using

dynamic programming. Numerical simulations show that the controller can

effectively incorporate wave force prediction with a various prediction horizon.

The CWR of the M4 WEC can be significantly improved by applying this con-

troller, from 40% to 100% over a broad range of sea states. The controller was

also shown to be relatively robust against two types of wave force prediction

errors. Moreover, some useful guidelines are provided to show the readers how

to optimally tuned the control parameters for better control performance.

• In Chapter 5, a comprehensive LNOC framework was proposed. Firstly, the

necessity of short-term sea wave prediction in WEC control applications and

some realisable solutions were discussed. Three potential realization methods

for sea wave prediction are discussed and assessed comprehensively before one

of them is selected. Then, two key components enabling the LNOC frame-
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work, i.e. the KFRW state and wave force estimator and the AR wave force

predictor, were introduced in detail. Critical factors for obtaining an stable

and accurate AR model are discussed. The complete self-contained and low-

cost LNOC framework is then proposed, followed by numerical simulations to

demonstrate its efficacy on the M4 WEC. Results show that the AR predictor

can predict future wave excitation force accurately for around 2Tp of time. The

improvement on CWR of M4 provided by the LNOC framework is substantial.

• In Chapter 6, a different configuration of the M4 WEC, with 8 floats and 4

PTOs, was investigated. The increased of complexity of the WEC dynamic was

briefly introduced. The LNOC framework was again applied to this M-WEC

to improve its CWR, showing the genericness of this control method. More

importantly, the overall energy conversion capacity provided by multi-PTO

WEC and control was now around 2MW, which is similar to wind turbines

in some sites, which is desirable for the supply of electricity to grid. The

effect of off-design, arbitrary WEC headings in various incoming wave direction

was studied as a sensitivity check, which provides valuable information for

implementing the LNOC framework is reality. The CWR improvement in this

case is again substantial. Finally, a discussion on the potential advantage of

improving the power quality (P2A ratio) using multi-PTO configuration is

presented.

In summary, the research objectives set up in Chapter 2 are mostly addressed.

In the proposed LNOC framework, a energy maximising cost function is selected

and solved by dynamic programming to guarantee optimum absorbed power for the

M-WEC. Simulation results show that with sea wave prediction information incor-

porated, 40% to 100% energy output improvement can be obtained. Computational

burden of the LNOC framework is not heavy, thanks to the extra stiffness term

added to the control-oriented model to guarantee stability of the system, and thus a

convergent solution can be derived from the DARE. Control parameters Q and r are

there to deal with soft operational constraints. By selecting less aggressive (bigger)
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value of the control parameters, the controller can operate within the allowed torque

and position/velocity range to better protect the WEC system, although this will

trade off some optimality from the energy output. The AR wave force predictor is

shown to be robust and accurate enough for control purpose. It it shown that it can

predict incoming wave force up to 2Tp in time. Some interesting points related to

the M-WEC design and control problem are investigated as well, e.g. off-design non-

zero heading performance of the M-WEC M4 with/without LNOC control; power

quality can be potentially improved by co-design of M-WEC and control.

7.2 Future work

• In this thesis, the efficacy of the proposed LNOC framework on the M-WEC

M4 is mainly demonstrated by numerical simulations. Experimental tank test-

ing of the M4 incorporated with the LNOC framework would be valuable to

validate these numerical results. This is planed and will be carried out later

on this year in Plymouth, UK. Meanwhile, part of the the LNOC framework

(with a DSWP wave predictor instead of the AR wave predictor) has been re-

cently tested experimentally on a different M-WEC in a WEC control project

supported by Wave Energy Scotland, which I have contributed to. A DC mo-

tor was controlled to provide the required torque from LNOC and the WEC

motion was recorded to calculate the average absorbed power. With reliable

wave force prediction, the improvement of average absorbed power compared

with a passive damper was from around 40% to 120% depending on wave

periods.

• In Chapter 3, although we have constrained the coordinate of WEC motion

and reduced the order of the radiation subsystems, the order of the control-

oriented state-space model of the M4 WEC is still relatively high (more than

100). For the off-line designed LNOC this will not cause intensive compu-

tational loads, but this would not be the case for on-line optimisation-based
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control methods, like model predictive control, which might be more effec-

tive in handling operational constraints. The order of the state-space model

can potentially be further decreased by applying model order reduction to the

whole system, instead of only on the radiation subsystems. It would also be

interesting to investigate other modelling methods, such as black box mod-

elling, by system identification using experimental data, which might be able

to construct a useful control-oriented model of lower order. Besides, due to

the inherent linearity of the M4 design, the viscous damping force is negligible.

This might not be the case for other M-WEC designs. The non-linearity of

M-WEC can be significant, depending on the WEC structure as well as the

operating sea conditions such as very high amplitude waves. Incorporating the

non-linearity into the WEC dynamics when modelling and designing control

methods for M-WECs is valuable.

• In Chapter 4, the linear non-causal optimal controller was derived based on

a discrete-time state-space model using dynamic programming. However, the

close-loop stability of the obtained controller has not been investigated theo-

retically. In would be interesting to study the stability of the close-loop system,

and see how it relates to the controller’s tuning parameter Q and R. Further-

more, when doing numerical simulations, one set of control parameters Q and

R is used for all the tested sea states, for a relatively fair comparison to be

made with the linear passive damper with one constant damping ratio. Nev-

ertheless, it is valuable to investigate whether and how control performance

can be further improved based on distinct tuning for various sea states.

• In Chapter 5, only one solution out of three for implementing the short-term

wave prediction that performs prediction on excitation force directly was im-

plemented. A comparison has not been made between the other two solutions

that perform prediction on wave elevation. It would be interesting to quantify

the differences between these methods.

• In Chapter 6, the power quality issue of WEC is briefly discussed. Indeed,
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7.2 Future work

this is a very important aspect in real-time control implementation onto WEC

systems. The high P2A ratio caused by active control is not ideal for me-

chanical to electrical power conversion system. There are many ways to tackle

this issue which deserves further investigation. For example, from the control

design point of view, a non-linear constraint that limits the peak absorbed

power can be introduced to the control problem and model predictive control

can be utilized to resolved this constraints optimal control problem. Also, a

designed mechanism to enable multiple PTOs working out of phase and share

the same power link is another solution coming from the WEC design perspec-

tive. Anyway, mitigating the bad power quality issue of WEC + control is a

promising further research direction.

• Last but not least, the LNOC framework proposed in this thesis was compared

against the most commonly used linear passive damper. It would be mean-

ingful to compare it against other existing control strategies, such as latching

control or model predictive control. Also, this research is mainly focussed on

improving the wave to mechanical power conversion. A wave-to-wire model

and control framework to generate electricity from ocean waves is yet to be

designed. Although of profound importance, this achievement requires knowl-

edge and cooperation from other disciplines.
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Appendix A

Mass and inertia of the M4 WEC

Mass and position of centre of mass relative to the hinge point origin O for each

mechanical part of the 1-3-4 M4 are shown in Table A.1. Centre of mass is relative

to hinge point origin O. h (horizontal) is for x axis; t (transversal) is for y axis; v

(vertical) is for z axis. Beam 1234 connect bow and mid floats. Radius is of circular

cross section.

Inertia in pitch of the first 4 floats is I1234 = 5.58 kgm2. Inertia in pitch of each

stern float is I5 = I6 = I7 = I8 = 13.46 kgm2. Inertia in roll of the whole WEC is

Iψ = 56.51 kgm2. These are used in the state-space model for numerical simulations.
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Table A.1: Mass and centre of mass

Part mass (kg) h (m) t (m) v (m) radius (m)

float 1 1.2 -1.33 0 -0.222 0.1

ballast 1 1.0 -1.33 0 -0.335

beam 1234 0.289 -0.7 0 0.094

float 2 1.887 0 -0.7 -0.214 0.125

ballast 2 3.0 0 -0.7 -0.327

float 3 1.887 0 0 -0.214 0.125

ballast 3 3.0 0 0 -0.327

float 4 1.887 0 0.7 -0.214 0.125

ballast 4 3.0 0 0.7 -0.327

float 5 3.74 0.8 -1.05 -0.256 0.175

ballast 5 13.5 0.8 -1.05 -0.354

beam 5 0.56 0.5 -1.05 0

PTO 1 0.19 0.16 -1.05 -0.16

float 6 3.74 0.8 -0.35 -0.256 0.175

ballast 6 13.5 0.8 -0.35 -0.354

beam 6 0.56 0.5 -0.35 0

PTO 2 0.19 0.16 -0.35 -0.16

float 7 3.74 0.8 0.35 -0.256 0.175

ballast 7 13.5 0.8 0.35 -0.354

beam 7 0.56 0.5 0.35 0

PTO 3 0.19 0.16 0.35 -0.16

float 8 3.74 0.8 1.05 -0.256 0.175

ballast 8 13.5 0.8 1.05 -0.354

beam 8 0.56 0.5 1.05 0

PTO 4 0.19 0.16 1.05 -0.16
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