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Abstract

The liquid and supercritical states of matter are respectively the least understood and
most misunderstood states of ordinary matter, from a theoretical view. The work ex-
posited in this thesis aims to elucidate the nature of the supercritical state and its re-
lationship to the liquid and gas states which flank it on the phase diagram. Contrary
to the belief of the supercritical state as lacking transitions, these works present several
transitions to be found in this state. This is done with molecular dynamics simulations
data.

We begin with structural crossovers discovered in the two most important supercritical
fluids from an industrial point of view: water and carbon dioxide. These crossovers
coincide with calculations of the dynamical crossover called the Frenkel line, which marks
termination of oscillatory molecular motion, giving way to purely diffusive motion. These
structural crossovers across the Frenkel line demonstrate the universal applicability of the
Frenkel picture of fluids.

I then perform simulations of argon to calculate the dynamical instability of its su-
percritical state. Using tools from chaos theory, I show that the dynamical instability
undergoes a crossover at the Frenkel line, which demonstrates that the supercritical state
sports a transition in the fundamental geometry of phase space.

The “c”-transition is presented next. This is a universal interrelation between the dy-
namics and thermodynamics across the supercritical state and a transition which provides
an unambiguous separation of liquidlike and gaslike states in several different supercriti-
cal fluids. This discovery was completely unanticipated and is like nothing else ever seen
in the supercritical state.

The “c”-transition is suggestive of a phase transition, and the thesis concludes with the
beginnings of a search for it. The heat capacity is calculated from molecular dynamics
simulations of argon with unprecedented precision, and other methods used to find a
phase transition are discussed.
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cV = 1.88 and λd = 1 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 cV as a function of cTτMkD (kB = 1), where the curves similarly converge
in the liquidlike state at the path-independent point close to cV = 2. . . . 109

7.7 Simulated cV (kB = 1) of carbon dioxide as a function of the dynamical
length, λd = cτ across 5 paths spanning the supercritical state up to 33
Tc and 520 Pc. All these paths collapse onto a single curve and undergo a
unified dynamic-thermodynamic transition at the path-independent point
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Chapter 1

Introduction

1.1 The Third State of Matter

The liquid state is an interesting curiosity, academically speaking. Condensed matter
and statistical physics modules for undergraduates and even postgraduates have plenty
to say on the gaseous and particularly the solid states, but the liquid state is barely
mentioned, save for demonstratively when perhaps discussing the Clausius-Clapeyron
equation. In my experience, many physicists in other fields do not even realise their own
ignorance of the liquid state, it never having been brought up in their education before
they specialise away from condensed matter. One recalls the poignant story by Andrew
Granato about his time teaching statistical mechanics at the University of Illinois. He
“lived in constant fear that some student might raise his hand and ask: ‘How about
liquids?’”, but also notes that this never once happened across cohorts totalling 10000
students [1]. This anecdote is in line with my own undergraduate experiences, and it
is no secret that textbooks on statistical mechanics and even those dedicated to liquids
do not have much, or anything, to say at all on the topic of heat capacity in liquids
[2, 3, 4, 5, 6, 7, 8, 9].

It is not hard to see why liquids have a pessimistic outlook associated with them.
As they saying goes, they have no “small parameter”. What is meant by this is that
perturbative approaches are unacceptable for the study of liquids. In gases, one can treat
the potential energy perturbatively, starting from an ideal gas and expanding in pairs
and triplets and so on of particles interacting [6]. On the other hand, in solids, we can
rely on atoms having permanent, or at least nearly permanent positions, and can expand
each particle’s potential energy in harmonic and then anharmonic terms. Liquids are
dense, like solids, and they flow, like gases, so they are strongly interracting and their
particles do not have equilibrium positions. Neither the interaction nor the displacement
is small. This is what is meant by a lack of a “small parameter”.

1.2 How Does a Liquid Differ from a Gas?

A coherent notion of the gaseous state is a relatively recent development in physics and
chemistry. Antoine Lavoisier was the first to suggest that all gases can be condensed into

11



liquids [10]. In Lavoisier’s time vapours were distinct from gases, also called elastic fluids,
with the former resulting from the evaporation of a liquid and the latter being a distinct
state of matter (to which the caloric and aether fluids also belonged). Experiments by
Lavoisier, Michael Faraday and Humphry Davy [11, 12], and others in which gases were
liquefied showed that gases (caloric, aether, and the electric fluid notwithstanding) are
vapours and are therefore states of ordinary matter rather than a different type altogether.

On the theoretical front, the liquid state was a mystery for a long time in part due to
the success of theoretical physics to understand the gaseous state. Liquids are apparently
much more similar to gases than they are to solids. One of the great achievements of
theoretical physics is the Navier Stokes equations to which liquids and gases are both
admissible as “fluids”. Combining this with the ability of statistical mechanics to recover
the thermodynamics of ideal gases, it is clear why the perturbative, “dense gas” treatment
of liquids would be attractive to theoretical physicists. The most prominent example of
this is the van der Waals ideal fluid, for which Johannes van der Waals won the 1910
Nobel Prize in Physics. This model adds attractive and repulsive interactions to the ideal
gas at low order in density. The equation of state of the van der Waals ideal fluid is:

(
P +

aN2

V 2

)
(V −Nb) = NkBT, (1.2.1)

with N the number of molecules, P the pressure, V the volume, T the temperature,
kB the Boltzmann constant, and with a parametrising the attractive forces between
molecules and b parametrising the molecules’ “size” (such that the volume can never fall
below Nb). The addition of the attractive term, indeed the simplest possible way of
representing that each molecule is attracted to each other molecule, gives the isotherms
of Eq. 1.2.1 interesting behaviour. This can be seen in the low temperature isotherms in
Fig. 1.1: after reducing the volume to a certain point, the pressure decreases for a while,
before increasing again, far more sharply. This region of thermodynamic instability is
taken to represent a phase transition, and the high and low volume regions the vapor
and liquid phases respectively. The critical isotherm, at T ≈ 0.5 is also shown in Fig.
1.1, at and above which there is no “loop”, therefore terminating the boiling line.

The van der Waals state has a lot going for it. It can be derived using classical
statistical mechanics using cluster expansions [6]. These methods suffer from a rather
glaring issue, however. The liquid heat capacity is rather high, much closer to that of a
solid than a gas. Indeed, a monoatomic liquid close to its melting point has a isochoric
specific heat capacity cV very similar to that of the Dulong and Petit value for solids:
3kB. Meanwhile the isochoric heat capacity of the van der Waals fluid is the same as the
ideal gas: 3

2
kB. While the addition of these attractive terms is sufficient for the existence

of a phase transition, this cannot correspond to the liquid-vapour transition due to the
vast difference in heat capacity between the high-density state of the model and real
liquids. The van der Waals model, and other similar models, serve as conceptual guides
to the liquid and supercritical states, but they miss key aspects to the liquid state. We
must look elsewhere.
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Figure 1.1: Isotherms of the van der Waals equation of state, showing the famous “van
der Waals loop” which signifies the vapour-liquid phase transition.

1.3 The Supercritical State

This theoretical basis for the supercritical state, the termination of the boiling line, was
a strong argument for the validity of the van der Waals model. The critical point and
supercritical state was discovered by Charles Cagniard de la Tour in his experiments on
acoustics [13, 14] by heating liquid-vapour mixes to the point where there is no distinction
between them. Our view of this état particulier, now called the supercritical state (a name
given to it by Thomas Andrews, who elucidated much of its nature [15]), has not changed
in the 200 years since its discovery. Near critical anomalies behave like extensions to the
boiling line, but do not persist deep into the supercritical state which is otherwise seen
as homogeneous, unremarkable and lacking in transitions [7, 16, 17]. A phase diagram
showing the relationship between the boiling line, melting line, and to-be-introduced
“Frenkel line” is shown in Fig. 1.2.

Naturally, there have been several proposals which extend a separation between “liq-
uidlike” and “gaslike” states beyond the critical point, though not far beyond it. For
example, maxima of density fluctuations exist in many supercritical fluids in the vicinity
of the critical point [18, 19, 20, 21]. The Widom line is the most famous stratification
of the supercritical state. It is the line of the maximum of the isobaric heat capacity
which extends from the critical point and becomes less prominent as it departs [22]. Sim-
ilar maxima lines for isothermal compressibility, thermal expansion etc. can be defined,
which are all close to each other, all emerge from the critical point, and all disappear
beyond its vicinity at around two to three times the critical temperature. The Widom
line is a very evocative phenomenon - it emerges from the critical point and carries on
the legacy of thermodynamic anomalies at the boiling line. It is interesting that these
anomalous lines diverge from each other as they go deeper into the supercritical state.
This near-critical state with its anomalous properties is like an expansion of the boiling
line into a whole region. The anomalies give many supercritical fluids important and

13



Figure 1.2: The phase diagram of matter in the high-temperature and high-pressure
range. The boiling line terminates at the critical point, out of which the Widom line
and related lines emerge, representing near-critical anomalies of different thermodynamic
quantities. The Frenkel line terminates at the boiling line but extends arbitrarily far into
the supercritical state, separating rigid liquid-like and nonrigid gaslike fluids.
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exploitable properties.

More recently and about ten years ago, the Frenkel line was introduced [23, 24, 25]
as a dynamical crossover line in the supercritical state. This crossover is defined on the
basis of particle dynamics in fluid states. The key physical distinction between liquids
and gases is the qualitative difference between the types of atomic trajectories. In gases,
particles move in straight lines between the collisions after which they change course. In
liquids, atomic motion consists of two types: quasi-harmonic vibration around equilib-
rium positions and diffusive jumps between two neighbouring equilibrium positions [2].
Therefore, atomic motion in a liquid combines both elements of small-amplitude vibra-
tions as in a solid and diffusive motion as in a gas. On temperature increase (or pressure
decrease), a particle spends less time vibrating and more time diffusing. The (P ,T ) con-
ditions at which the solid-like oscillating component of motion disappears, leaving only
the diffusive motion, correspond to the qualitative change of particle dynamics and to the
transition of the liquidlike into the gaslike state [23, 24, 25]. This crossover in dynamics,
from combined oscillation and diffusion to pure diffusion, is the theoretical definition of
the Frenkel line.

Supercritical fluids are employed in a variety of industrial applications [17, 26, 27, 28,
29] such as chemical extraction, chemical reactions, as solvents, and many many more.
The keen extracting and dissolving efficiency of supercritical fluids is due to a combination
of factors. Supercritical fluids at high pressures possess high densities, much closer to
those of subcritical liquids than gases, but at the same time possess very diffusive motion,
sporting diffusion coefficients which are 10-100 times higher than those of of subcritical
liquids. The high density promotes interaction between a solute and solvent, and the
high diffusion promotes dissolution itself and helps maintain a high reaction rate. In this
sense, supercritical fluids combine the best of both worlds.

Despite the extensive industrial use of supercritical fluids, it is well known that their
understanding from a fundamental perspective is lacking [17, 26, 27]. Empirical results
instead form the basis of the application of supercritical fluids in industrial sectors. The
elucidations to the supercritical state such as the Widom line, and the Frenkel line are
therefore important for improving fundamental understand of the supercritical state and
optimising the use of it in industrial applications [17, 30, 31, 32, 33, 34]. The supercritical
state is subject to much the same neglectful treatment as the liquid state in undergraduate
physics courses. One is given the famous example of continuously transforming a liquid
into a gas or vice versa by taking a path on the phase diagram around the critical point,
but little is said about the state itself except that it has “properties intermediate to
liquids and gases” and that “no distinctive states can be found” within it.

1.4 Thesis Outline

This project was outlined with one particular goal in mind - to understand the nature of
the transition of the Frenkel line. The Frenkel line and the supercritical state has been
the sole focus of all the major projects I undertook during this PhD (which are the only
ones I describe here). This was to be done by a combination of theory and molecular
dynamics simulation, as is the norm for the field of liquid physics.
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I begin in Chapter 2, as is right, with Mori-Zwanzig theory, which uses the powerful
tool of timescale separation to fully convert a macroscopic description of fluids into a
microscopic picture. This will allow us to come up with expression for fluid relaxation
properties, namely the viscosity, in terms of microscopic quantities, as well as elucidate
the nature of collective modes in the fluid state. This project is all about dynamics and
thermodynamics of supercritical fluid, so this formal understanding of collective modes
is central to what follows. We then approach the liquid state from a less formal and more
goal-oriented point of view - Frenkel theory. Along with providing an unparalleled general
explanation for liquid heat capacities, it gives rise to the Frenkel line, the dynamical
stratification of the supercritical state which will dominate this thesis.

Having gone to great lengths to understand what fluid states are, microscopically,
we then put this work to the test in Chapter 3 by introducing molecular dynamics, our
window into the microscopic world. I describe the algorithms used to integrate classical
equations of motion, how we model systems, and how the resulting trajectories are used
to gather results useful for statistical mechanical analysis.

In Chapter 4 I describe the rather surprising results of the first molecular dynamics
project I performed, which was on water. Here we will see the coupling of the Frenkel
line to water’s striking structural crossover from tetrahedral ordering to disordered close
packing, on the basis of molecular coordination statistics. Water’s tetrahedral structure,
and its loss of that structure in the supercritical state and surrounding topics are subject
to much debate. The coincidence of this important transition, and the elucidation of
how the different states on either side of it evolve, with the FL, a theory and framework
developed entirely independently of water, is a strong vindication for the theory.

Following this, in Chapter 5, we see the results of the second project, this time on
the other giant of the supercritical fluids industry - carbon dioxide. In collaboration
with neutron scattering experiments, I analyse the relationship between density and
intermolecular distances to show a crossover in structural evolution across the Frenkel
line. This result is less dramatic than the result found in water, and high quality methods
and moderate statistical analysis were required to decisively confirm the result.

In Chapter 6 I change tune slightly and use methods from chaos theory to find new
insights into the Frenkel line. I calculate a characteristic measurement of a chaotic
system, the maximal Lyapunov exponent, along several deeply supercritical isochores
which cross the Frenkel line. A very crisp crossover is observed, which I explain in
terms of the different dynamical “events” occurring in the different states and their
contribution to chaotic dynamics. These dynamical events are exactly the phenomena
used in Frenkel theory, and this work therefore not only extends a study of chaos theory
into the supercritical state, but also reveals that the Frenkel picture of fluids is relevant
to the study of the properties of phase space itself.

Chapter 7 is a change of timbre, and the magnum opus of this PhD. Instead of
looking at the consequences of the Frenkel line, we inspect the transition itself. Searching
for a way to unambiguously measure the dynamical timescales of a supercritical fluid,
I discovered a very special relationship between the “dynamical length” of a system,
describing the maximum wavelength of propagating transverse modes below the Frenkel
line, and the isochoric specific heat capacity. This relationship is universal, occuring
along all supercritical paths except those that pass through near-critical anomalies, and
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serves as an unambiguous separation between liquidlike and gaslike states, unlike the
previous vague or path-dependent definitions of the Frenkel line. This transition between
liquidlike and gaslike states is called the “c”-transition, due to the “c”-shaped curve which
parametrises the dependence of the heat capacity on the dynamical length, and has been
observed in molecular dynamics simulations of argon, nitrogen, and carbon dioxide. The
“c”-transition is unprecedented and, I believe, will open a new avenue of research into
the supercritical state entirely. This transition is little understood, and its scope and
implications are only briefly discussed in this chapter.

The discovering of the “c”-transition introduced many questions, the first of which I
attempted to begin answering in Chapter 8, the possibility of a thermodynamic phase
transition coupled to the “c”-transition. This was always a possibility considered at the
Frenkel line, but the “c”-transition is very suggestive as a path-independent transition
with a distinctive inversion point. The precision of my molecular dynamics simulations
had to be greatly improved, and this allows me to place an upper limit of around 0.002
kB on the size of a possible discontinuity in heat capacity across the Frenkel line and
“c”-transition. A higher order transition would require precision measurements of the
derivative of the heat capacity, which would need to be calculated analytically rather
than numerically. This venture is started, but the work is ongoing.

Finally in Chapter 9, I draw conclusions of the results holistically and discuss my
plans for further work, mostly involving the “c”-transition, much of which is already
underway. We’ve been hunting this beast for a long time, and we seem to be closing in.
I have no intention of giving up the chase.
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Chapter 2

Theory

2.1 Mori-Zwanzig Theory

The power of thermodynamics and the related hydrodynamics is the selection of a few
special variables whose evolution is self-contained, despite the microscopic truth of the
world. The miracle of entropy and heat is how simply it describes all of these ignored
degrees of freedom (I must stop myself here lest I write another 100 pages on entropy and
uncertainty). Our starting point is with the Mori-Zwanzig formalism. Pre-requisites of
irreversible thermodynamics, advanced classical statistical mechanics, correlation func-
tions, and micoscropic representations of hydrodynamics quantities can be found in sev-
eral introductory postgraduate texts, e.g. Refs [6, 8, 35]. With these microscopic ex-
pressions for hydrodynamic quantities, we wonder if we can reformulate our microscopic
dynamical equations in a manner which stratifies variables by our interest, with a sort of
entropic link between the interesting stratum and the uninteresting stratum.

2.1.1 The Generalised Langevin Equation

We recall now the dynamics of phase space. With our Hamiltonian, H , the dynamical
evolution of any phase function A is

dA

dt
= iLA, (2.1.1)

the formal solution of which is given as

A(t) = exp(iL t)A(0). (2.1.2)

From now on I will sometimes use A to represent A(0) etc. The Liouvillean, L is as
practically intractable as the Hamiltonian, and Eq. 2.1.2 treats all degrees of freedom on
equal grounds.

I introduce the equilibrium inner product to be used for the following analyses:

Definition 2.1.1 (Equilibrium Inner Product) The equilibrium inner product [·, ·]
maps the space of functions of phase only to itself.

[A,B] =

∫
dΓ%eq(Γ) A∗(Γ)B(Γ) = 〈A∗B〉eq, (2.1.3)
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where ∗ represents complex conjugation.

We now make a choice of some variables we care about. The variables of choice in hy-
drodynamics are all macroscopic, slowly and gradually varying compared to microscopic
timescales and length-scales predictable from the Hamiltonian H . The stratification of
slow and fast variables is very appealing, and is a strong justification to the notion of
local thermodynamic equilibrium used when discussing entropy in hydrodynamics. In
practice, we do not need to work with all possible “slow” variables, because not all slow
variables couple to the ones we are interested in. However, in principle, we can choose
the set {Ai} to include all “slow” variables and see where it takes us. We will take these
variables to be linearly independent, because any variable that we might want which
is linearly dependent can easily be incorporated. For simplicity we shall say we have
orthogonalised our variables:

[Ai, Aj] = 0, if i 6= j, (2.1.4)

where [·, ·] is the equilibrium inner product, Eq. 2.1.3 in Def. 2.1.1. Finally if 〈Ai〉 6= 0,
we shall replace it with Ai − 〈Ai〉. This set {Ai}, i = 1, ...,m constitutes a subspace of
dimension m on the phase space. Its significance shall become clear.

Definition 2.1.2 (Projection Operator) The projection operator P associated with
the vector subspace {Ai} maps elements of the vector space of phase functions to that
vector subspace.

P = [A, · ] · [A,A]−1 ·A

=
∑
j

[Ai, · ][A,A]−1
ij Aj,

(2.1.5)

here A is a column vector with components Ai, [·,A] is a row vector with components
[Ai, · ], [A,A]−1 represents the inverse of the matrix with elements [A,A]ij = [Ai, Aj].

Since {Ai} are orthogonal, we have [A,A]−1
ij =

δij
[Ai,Aj ]

.

With this projection operator, and the identity operator on the vector space, I , we
can define the operator Q = I −P. This operator is not usually named but, using the
Latin etymology, I shall call it the abjection operator. This projects onto the subspace
orthogonal to the subspace {Ai}. Every phase function therefore has components in the
subspace and in the orthogonal subspace.

Both the projection and abjection operators are idempotent:

PP = QQ = I . (2.1.6)

From here we can insert the identity operator into Eq. 2.1.1:

dA(t)

dt
= exp(iL t)(P + Q)iL A(0)

= iΩ ·A(t) + exp(iL t)iQL A(0) (2.1.7)
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with L and its derivative operators acting component-wise, and where we have de-
fined the frequency matrix

iΩ = [A, iL A] · [A,A]−1 (2.1.8)

whose components reduce, in the orthogonal case, to

iΩij =
∑
j

[Aj, iLAi]

[Aj, Aj]
. (2.1.9)

Due to the symmetry of correlation functions [6], the diagonal elements of the frequency
matrix vanish. The frequency matrix therefore projects the time derivative of each of
our variables along each other variable. It is called the frequency matrix because, if we
omit the second term on the right of Eq. 2.1.7, we recover a system of coupled equations
where the time derivative of each variable depends linearly on the others. If there is an
oscillatory component to the motion, the frequency matrix is where it will be found, and
its elements will represent the frequency in some way.

The second term on the right of Eq. 2.1.7 requires a rather contrived mathematical
trick. We first take the Laplace transformation of a propagator of an arbitrary operator
A and express it in fraction form:∫ ∞

0

dt exp(−zt) exp(−A t) =

∫ ∞
0

exp(−zt)
∞∑
n=0

(−1n)

n!
(A t)n

=
∞∑
n=0

(−1)n

n!
A n

∫ ∞
0

dt exp(−zt)tn

=
∞∑
n=0

(−1)n

zn+1
A n

= (z + A )−1, (2.1.10)

where partial integration neatly cancels the n! factorial term. Next, we use Eq. 2.1.10
with the identity

(z + A + B)−1 = (z + A )−1 + (z + A )−1B(z + A + B)−1, (2.1.11)

easily proven with some algebra, to obtain:∫ ∞
0

dt exp(−zt) exp
(
− (A + B)t

)
=

∫ ∞
0

exp(−zt) exp(−A t)

−
∫ ∞

0

dt exp(−zt) exp(−A t)B

∫ ∞
0

dτ exp(−zτ) exp
(
− (A + B)τ

)
.

We consider the second integral, and perform a change of variables: t → t1, t + τ → t2,
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such that the limits are t1 : 0→∞, t2 : t1 →∞:∫ ∞
0

dt1 exp(−A t1)B

∫ ∞
t1

dt2 exp(−zt2) exp
(
− (A + B)(t2 − t1)

)
=

∫ ∞
0

dt2 exp(−zt2)

∫ t2

0

dt1 exp(−A t1)B exp
(
− (A + B)(t2 − t1)

)
,

having performed a standard (but careful) change of variables. This leaves us with:∫ ∞
0

dt exp(−zt) exp
(
− (A + B)t

)
=

∫ ∞
0

dt exp(−zt)

(
exp(−A t)

−
∫ t

0

dτ exp(−A τ)B exp
(
− (A + B)(t− τ)

))
. (2.1.12)

The integrals are equal over equal limits, which implies equality of the integrands, i.e.:

exp
(
− (A +B)t

)
= exp(−A t)−

∫ t

0

dτ exp(−A τ)B exp
(
− (A +B)(t−τ)

)
. (2.1.13)

Using Eq. 2.1.13, with A + B = QL and therefore A = L and B = −P, we
extract the identity we wish to use:

exp(iL t) = exp(iQL t) +

∫ t

0

dτ exp
(
iL (t− τ)

)
iPL exp(iQL t). (2.1.14)

Inserting this into Eq. 2.1.7 yields:

dA(t)

dt
= iΩ ·A(t) + exp(iQL t)iQL A(0)

+

∫ t

0

dτ exp
(
iL (t− τ)

)
iPL exp(iQL t)iQL A(0). (2.1.15)

Let’s examine these parts. The frequency matrix consists of those parts in the evolution
of A which belong to the subspace - how the components of A affect each other. The
other two terms feature the iQL A term, which is the evolution of A due to all of the
“fast” degrees of freedom. Because this term is always uncorrelated with A and arises
due to microscopic degrees of freedom which we do not “see”, we will call it the random
force f :

f(t) = exp(iQL t)f(0),

f(0) = iQL A(0).
(2.1.16)

Note that this random force evolves according to the anomalous propagator exp(iQL t).
The random force at t = 0 is defined as the evolution of A due the instantaneous
influence of the fast degrees of freedom, but the “true” evolution of this quantity would
be df

dt
= iL f(0), rather than iQL f(0) as the anomalous propagator implies. This means

that we discard any part of the evolution of f which is not orthogonal to A, and that
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these parallel components to the evolution of f(0) are deposited elsewhere, as we shall
now discuss.

The integrand in Eq. 2.1.15 has the term

PiL f(t) = [A, iL f(t)] · [A,A]−1 ·A
= −[iL A, f(t)] · [A,A]−1 ·A
= −[iQL A, f(t)] · [A,A]−1 ·A
= −[f(0), f(t)] · [A,A]−1 ·A,

(2.1.17)

since iL is anti-self-adjoint [35] and adding Q to the correlation inner product with f ,
which is already orthogonal to A, is equivalent to the identity operation. We can now
define the memory matrix M:

M(t) = [f(0), f(t)] · [A,A]−1, (2.1.18)

which is essentially an anomalous time correlation function for the random force. This
renders Eq. 2.1.15 in the form

dA(t)

dt
= iΩ ·A(t) + f(t)−

∫ t

0

dτ M(τ) ·A(t− τ), (2.1.19)

where the propagator exp
(
iL (t− τ)

)
bypasses the memory matrix because the memory

matrix is an inner product, and therefore inert to operators. Let’s consider this equation
under the pretence that our only knowledge is of our chosen variables A. Its evolution
is governed by a three terms. The first is deterministic, represent the coupling of the
variables to each other with no admission of outside influence. The second is a fluctuating
term, caused by the parts of the phase space which are “random” to us, since we only see
our stratified phase space. The final term is an integral, involving the random force at
all previous times (we are assuming that the dynamics started at t = 0 implicitly here),
and also the variables themselves. This memory term comes because of the anomalous
evolution of the random force, and represents how the evolution of the fast phase variables
mix with our slow variables. Equations of this form are generalised Langevin equations
(GLEs), as they represent the fluctuating, dissipative dynamics of variables with the
added joy of a memory kernel, in this case the memory matrix.

We can take the inner product with A(0) of Eq. 2.1.19 to construct the equivalent
equation for correlation functions:

dC(t)

dt
= iΩ ·C(t)−

∫ t

0

dτ M(τ) ·C(t− τ), (2.1.20)

with the correlation matrix Cij having elements [Aj(0), Ai(t)]. This handily removes
the term we consider random since it contains only phase averages. We can solve this
equation with the introduction of Laplace transformations:

C̃(z) =

∫ ∞
0

dt exp(−zt)C(t), (2.1.21)
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M̃(z) =

∫ ∞
0

dt exp(−zt)M(t). (2.1.22)

Let us take the transformation of Eq. 2.1.20, one term at a time:∫ ∞
0

dt exp(−zt)dC(t)

dt
= −C(0) + zC̃(z), (2.1.23)∫ ∞

0

dt exp(−zt)iΩ ·C(t) = iΩ · C̃(z), (2.1.24)∫ ∞
0

dt exp(−zt)
∫ t

0

dτ M(τ) ·C(t− τ) = M̃(z) · C̃(z), (2.1.25)

having used partial integration in Eq. 2.1.23 and the convlution theorem in Eq. 2.1.25.
Our GLE in the Laplace domain therefore reads:

C̃(z) =
(
zI− iΩ + M̃(z)

)−1 ·C(0) (2.1.26)

with I the identity matrix. These equations, 2.1.19, 2.1.20, and 2.1.26, are formally exact
- no approximations were made in their derivation. They are equivalent to 2.1.2, except
the former two are integro-differential equations, far harder to solve. The equation in
the Laplace domain has shifted the problem to the calculation of the memory matrix,
but since the “correlation functions” of the memory matrix M(t) evolve according to
the anomalous propagator exp(iQL t), this exercise appears to have been fraught with
vanity.

It is now, however, that we brandish our weapon of choice, namely our selection of
all the “slow” phase functions. The memory matrix evolves in the fast stratum of phase
space, and therefore, insofar as this stratification is cleanly possible, will be by definition
characterised by decay times much shorter than those characterising A. And since the
anomalous propagator would erase any evolution coupled to the slow variables, we can
confidently propose, where such timescale separation is appropriate:

M(t) ≈ Γδ(t), (2.1.27)

such that

Γ =

∫ ∞
0

dt M(t)

= M̃(0).

(2.1.28)

This has the following effect on Eqs. 2.1.19 and 2.1.20:

dA(t)

dt
= iΩ ·A(t)− Γ ·A(t) + f(t), (2.1.29)

dC(t)

dt
= (iΩ− Γ) ·C(t). (2.1.30)

The former represents the memoryless Langevin equation, and the latter, having taken
an average, can be solved as:

C(t) = exp
(
(iΩ− Γ)t

)
·C(0). (2.1.31)
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We see then that the effect of many degrees of freedom, operating on a far faster timescale
than our variables of interest, is a damping effect on the natural oscillations that these
variables impose on each other. The timescale separation removed the memory kernel in
our integral, and for this reason this separation is often called the Markovian approxima-
tion. Indeed, in the case that we have an isolated slow variable, uncoupled to any other
slow variables, Eq. 2.1.31 becomes:

C(t) = exp(−Γt)C(0). (2.1.32)

The frequency of appearance of exponential decays and therefore Lorentzian spectra in
irreversible physical phenomena is indicative of our good choice of variables very slow
and gradual compared to microscopic dynamics.

2.1.2 The Memory Function

In many cases, we are not interested in the macroscopic functions of thermodynamics and
hydrodynamics, but rather extensions of hydrodynamics into the microscopic realm. The
defining and troublesome property of dense fluids is the lack of a “small parameter”, such
as atomic displacements in solids or density in gases, which allows us to write away the
complexity of microscopic dynamics. We shall need to see what can be done, therefore,
about the memory function when our timescales edge uncomfortably close to those of
the Hamiltonian.

The definition, Def. 2.1.2, of the projection and abjection operators guarantee the
memory matrix to have all the same symmetries as standard time correlation functions,
and indeed the anomalous propagator is just as unitary as the true propagator.

The zero-time value of the memory matrix, M(0) can be found directly:

M(0) = [f , f ] · [A,A]−1

= [iQL A, iQL A] · [A,A]−1

=
[
Ȧ− [A, Ȧ] · [A,A]−1 ·A, Ȧ− [A, Ȧ] · [A,A]−1 ·A

]
· [A,A]−1

= [Ȧ, Ȧ] · [A,A]−1 −Ω ·Ω

= − d2C(t)

dt2

∣∣∣∣
t=0

·C(0)−1 −Ω ·Ω,

where the cross-terms in the larger inner product on the third line cancel out due to
the anti-self-adjoint property of iL in the inner product, and the appearance of the
frequency matrices between the third and fourth line requires some careful handling of
indices not worth explicating here. We can perform a full series expansion of M(t) in
terms of correlation function derivatives at t = 0, but this will only get us so far.

If we examine the anomalous evolution of the fluctuating force in Eq. 2.1.16:

df(t)

dt
= iQL f(t),

we can introduce the operator L1, perhaps called the (first order) reduced Liouvillean,
such that

df(t)

dt
= iL1f(t). (2.1.33)
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Having done this, we can define a new projection operator, the (first order) reduced
projector

P1 = [f , · ] · [f , f ]−1 · f , (2.1.34)

which, because PP1 = P1P = 0, further stratifies phase space into the variables
orthogonal to A but parallel to f and those orthogonal to both. Note that if we made
the fast and slow identification when choosing A, this does not mean that the Q1 defined
from P1 projects onto a yet faster portion of phase space - it’s just separate. We can
then repeat our manipulations to obtain the GLE for the random force:

df(t)

dt
= iΩ1 · f(t)−

∫ t

0

dτM1(t) · f(t− τ) + f1(t), (2.1.35)

where all symbols with subscript 1 have obvious definitions. We now take the inner
product with f(0)

dM(t)

dt
= iΩ1 ·M(t)−

∫ t

0

dτM1(t) ·M(t− τ). (2.1.36)

We have therefore shifted the formalism to a more abstract level, generating equivalents
to Eqs. 2.1.19 and 2.1.20. Laplace transforming to retrieve the equivalent of Eq. 2.1.26,
we have

M̃(t) = (zI− iΩ1 + ˜M1(z))−1 ·M(0), (2.1.37)

and so

C̃(z) =
(
zI− iΩ + (zI− iΩ1 + M̃1(z))−1 ·M(0)

)−1

·C(0). (2.1.38)

If we project ever further and further into phase space, we create ever longer and longer
continued fraction expressions for C, which involve the zero-time elements of more and
more abstract memory matrices:

M1(0) = − d2M(t)

dt2

∣∣∣∣
t=0

·M(0)−1 −Ω1 ·Ω1, (2.1.39)

M2(0) = − d2M1(t)

dt2

∣∣∣∣
t=0

·M(0)−1 −Ω2 ·Ω2, (2.1.40)

and so on. These expressions involve the equal-time correlations of our variables A and
their time derivatives. Such phase means are often amenable to calculations, especially
using the various symmetries of correlation functions and their derivatives, but these
quantities become increasingly frustrating to calculate as the series grows in terms. The
increasingly abstract interpretation of the high order memory matrices also obstructs the
insight gained by these analyses.

However, if we’re using rather than receiving our physical insight, we can make some
well-informed decisions and see the consequences. For example, we can terminate the
continued fraction in Eq. 2.1.38, and make some sensible estimates about the functional
form of the memory matrices. Having done so, we can make predictions or identifications.
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2.1.3 Generalised Hydrodynamics

We shall dive straight into the memory functions by applying them to the variables of
hydrodynamics. On can write down equations for microscopic extensions of hydrody-
namic variables using the Irving-Kirkwood procedure [35]. Such variables are amenable
to the formalism of Mori-Zwanzig theory. We begin, as we have just set out, with a set
of variables which are conserved as the wavevector represents macroscopic length scales,
k → 0. In this case for each Ai we can define current densities:

dAi
dt

= ik · ji(t,k), (2.1.41)

where we will have to drop the A vector notation because it will conflict with the true
tensorial nature of the current densities and k. We restrict our attention, for now, to
small wavevectors. This has consequences for the GLE:

dAi(t,k)

dt
=
∑
j

(
iΩij(k)Aj(t,k)−

∫ t

0

dτMij(t, k)Aj(t− τ,k)

)
+ fi(t,k), (2.1.42)

where the phase averages in Ω and M depend only on the magnitude of k due to the
supposed isotropy of the fluid. From the definition of the frequency matrix, Eq. 2.1.8,
we can see that its components vanish as k in the limit k → 0. Note that the random
force can be written:

fi(t,k) = − exp(iL t)(0,k)L Qk · ji(t,k), (2.1.43)

giving it a proportionality to k. Using Eq. 2.1.14, we can write the time-evolved random
force as:

fi(t,k) = exp(iQL t)fi(0,k)

= exp(iL t)fi(0,k)−
∑
j

∫ t

0

dτ
[Aj(0,k), iL fi(t,k)]

[Aj(k), Aj(0,k)]
Aj(t− τ,k)

= exp(iL t)fi(0,k) +
∑
j

∫ t

0

dτ
[iLAj(0,k), fi(t,k)]

[Aj(k), Aj(0,k)]
Aj(t− τ,k),

having used the anti-self-adjoint property of the Liouvillean between the second and third
lines. Combining this with Eqs. 2.1.41 and 2.1.43, we see that the anomalous part of
the propagator is proportional to k2, whereas the “true” evolution of the random force
is proportional to k. Since the memory matrix is an anomalous autocorrelation of the
force, all of the anomalous parts are proportional to k3 or k4. In the small wavevector
limit, therefore, the leading terms of Mij are just ordinary time correlation functions.
Physically this represents the very small impact our macropscopic variables have on the
microscopic evolution of the system - as our functions of choice dwarf the microscopic
scales of H , the fast stratum of the phase space becomes nearly the entire phase space.
This result will be very useful in applying this analysis.
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Transverse Current

We are now ready to name some functions and feed them to the the Mori Zwanzig war
engine we’ve developed. We note that the (mass) density, momentum current density,
and energy current density are all coupled [6]. When it comes to choosing slow variables,
therefore, we should never choose any one of these without the others. However, since
we are working with Fourier components, we can split the momentum current density:

j(t,k) =
kk

k2
· j(t,k) +

(
I− kk

k2

)
· j(t,k)

= jL(t,k) + jT(t,k)
(2.1.44)

which defines the longitudinal component, jL of the current density, parallel to the
wavevector, and the transverse component, jT, perpendicular to it. In this case, we
can see that only the longitudinal component is coupled to the density and energy cur-
rent density, and the transverse component does not carry such information. If, adopting
a Cartesian co-ordinate system, we declare the z-axis to point in the direction of k, then
the transverse current density components can be written

jT
x (t,k) =

1

V

N∑
i=1

vix exp
(
− ik · ri

)
, (2.1.45)

and similarly for the y-component, and we have moved the particle index to a superscript
to leave space for the co-ordinate subscript. Likewise, in the case of absent streaming
velocity, using the microscopic expression for the stress tensor τM [8], we can write:

djT
x

dt
= (ik · τ (t,k))x

= ikτzx(t,k)

= − 1

V

N∑
i=1

ik exp
(
−ik · rij

)(
mivizv

i
x −

1

2

N∑
j 6=i

rijz F
ij
x

ik · rij
(

exp
(
ik · rij

)
− 1
))
,

(2.1.46)

and similar for the y-component. The projection operator in this case is simply:

P =
[jT
x (0,k), · ]

[jT
x (0,k), jT

x (0,k)]
jT
x (0,k)

= V
[jT
x (0,k), · ]

mnkBT
jT
x (0,k),

(2.1.47)

where n = N
V

, we have assumed all atoms have the same mass, and have (finally) chosen
an ensemble - the canonical ensemble. The one element of the frequency matrix vanishes,
due to correlation function symmetry [6]. In this case, our autocorrelation function:

CT(t, k) = V
[jT
x (0,k), jT

x (t,k)]

mnkBT
, (2.1.48)
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evolves according to the equation:

dCT(t, k)

dt
= −

∫ t

0

dτMT(t, k)CT(t− τ, k), (2.1.49)

where the memory kernel now takes the form:

MT(t, k) =

[
djT

x (0,k)

dt
,
djT

x (t,k)

dt

]
V

mnkBT

= − V k2

mnkBT
[τzx(0,k), τzx(t,k)],

so long as we are taking the k → 0 limit. Here we will employ the Markovian approxi-
mation too:

dCT(t, k)

dt
= −

∫ ∞
0

dτ
V k2

mnkBT
[τzx(0,k), τzx(τ,k)] CT(t, k). (2.1.50)

So, in practice, we fully integrate the stress autocorrelation function, hoping that the
evolution of CT is slow enough that ignoring the memory convolution is warranted. We
temporarily define the quantity

µ(k) =

∫ ∞
0

dτ [τzx(0,k), τzx(τ,k)], (2.1.51)

which simplifies our GLE to

dCT(t, k)

dt
= − V k2

mnkBT
µ(k) CT(t, k), (2.1.52)

which is easily solved, given our normalisation defined in Eq. 2.1.48:

CT(t, k) = exp
(
− V k2µ(k)

mnkBT
t
)
. (2.1.53)

If we have a lot of confidence in our k → 0 limit, we can insert it directly into µ(k), giving
us our approximation for the expression for the stress tensor τ at macroscopic scales:

τzx =
1

V

N∑
i=1

(
mivizv

i
x −

1

2

N∑
j 6=i

rijz F
ij
x

)
, (2.1.54)

such that we have

µ =

∫ ∞
0

dτ [τzx(0), τzx(t)], (2.1.55)

and the transverse autocorrelation function is

CT(t, k) = exp
(
− V k2µ

mnkBT
t
)
, (2.1.56)
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which represents the damping of all collective motion, no matter the wavelength. Its
Laplace transform is:

C̃T(z, k) =
1

z +
V k2µ

mnkBT

, (2.1.57)

from which we can retrieve the real spectrum:

CT(ω, k) = Re

[
1

π
C̃T(iω, k)

]

= Re

 1

π

1

iω +
V k2µ

mnkBT

CT(0)


=

1

π

1

ω2 + k2 V µ
mnkBT

. (2.1.58)

which is a single Lorentzian peak, centered on zero-frequency at each wavelength, mono-
tonically decaying at higher frequencies. With this, we have recovered a characteristic
behaviour of fluids - their inability to support shear waves.

Our final step here is to compare the suggestively defined µ with a hydrodynamic
quantity. We begin by splitting the velocity field into two components:

v(t, r) = vL(t, r) + vT(t, r), (2.1.59)

where
∇× vL(t, r) = 0, (2.1.60)

∇ · vT(t, r) = 0. (2.1.61)

Taking Fourier transformations of these two equations, we see that

k× vL(t,k) = 0, (2.1.62)

k · vT(t,k) = 0. (2.1.63)

We assume that the fluid is not far from equilibrium, such that both the velocity and its
gradients are small, and therefore dv

dt
≈ ∂v

∂t
. From there we take the Fourier components

of the momentum continuity equations:

∂j(t,k)

∂t
= −ik · τ (t,k)

= −ηk2v(t,k)−
(1

3
η + ζ

)
k k · v(t,k) + ikP (t,k), (2.1.64)

where η is the shear viscosity, ζ is the bulk viscosity, and P is the pressure field. Because
vT(t,k) is perpendicular to k,

∂jT(t,k)

∂t
= −ηk2vT(t,k). (2.1.65)
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Accepting further that density fluctuations are small like velocity fluctuations, we identify

∂vT(t,k)

∂t
=

η

mn
k2vT(t,k), (2.1.66)

with n the mean particle concentration and m the particle mass, as it was in the mi-
croscopic current autocorrelation function analysis above. The formal solution to this
equation is

vT(t,k) = vT(0,k) exp
(k2η

mn
t
)
. (2.1.67)

We now employ the intuitive fact that fluctuations in microscopic phase variables decay
according to the same equations which govern their macroscopic equivalents, which can
be formally derived using the fluctuation-dissipation theorem [36]. This allows us to
make the following identification on the basis of Eqs. 2.1.56 and 2.1.67:

η =
V

kBT

∫ ∞
0

dτ [τzx(0), τzx(τ)], (2.1.68)

which is an example of a Green-Kubo formula, which relates a transport property to the
relaxation of microscopic fluctuations. Should we wish to relax the Markovian approxi-
mation, the non-Markovian and microscopic identification for viscosity would naturally
be

η(t,k) =
V

kBT
[τzx(0,k), τzx(τ,k)]. (2.1.69)

With this identification, Eq. 2.1.49 becomes:

dCT(t, k)

dt
= − k2

mn

∫ t

0

dτ η(t, k)CT(t− τ, k), (2.1.70)

the Laplace transform of which gives the solution (using the convolution theorem):

C̃T(z, k) =
1

z + k2
η̃(z, k)

mn

(2.1.71)

Transverse Collective Modes

The exponential decay of the transverse autocorrelation function was due to our choice
of variables. In the single variable case, as we saw, a quantity can only decay. Since the
transverse current density does not couple to the mass, energy, or longitudinal current
densities, the only other slow variables which it might couple to which come to mind are its
derivatives. In this sense, by ignoring a complicated relationship between the transverse
current density and its derivatives, we allowed it only to access dissipative dynamics.
Our first amendment is therefore to expand our list of slow transverse variables. For our
slow variables A, we choose:

A =

[
jT
x (t,k)
τzx(t,k)

]
, (2.1.72)
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such that the correlation matrix is

[A,A] =
kBT

V

[
mn 0
0 G∞(k)

]
, (2.1.73)

where we have defined the infinite frequency shear modulus :

G∞(k) =
V

kBT
[τzx(0,k), τzx(0,k)], (2.1.74)

which is also the zero-time value of the generalised viscosity, Eq. 2.1.69. The frequency
matrix, which will allow for some non-decaying behaviour, is

iΩ(k) =
V

kBT

 0
[
τzx(t,k), djTx (t,k)

dt

][
jT
x (t,k), dτzx(t,k)

dt

]
0

 · [ 1
mn

0
0 1

G∞(k)

]

=
V

kBT

 0
[
τzx(t,k), djTx (t,k)

dt

][
−djTx (t,k)

dt
, τzx(t,k)

]
0

 · [ 1
mn

0
0 1

G∞(k)

]

=
V

kBT

[
0 ik

ik G∞(k)
mn

0

]
. (2.1.75)

We can’t write down the memory matrix, unless we make a deal with Laplace’s demon,
but we can deduce its form. The derivative of jT

x lies on our slow subspace, therefore its
corresponding random force vanishes. We therefore write for the memory matrix:

M(t,k) =

[
0 0
0 MT(t, k)

]
. (2.1.76)

We can now write down the Laplace transformation of our GLE in terms of our unknown,
the memory function MT:

C̃(z) =

[
z ik

ik G∞(k)
mn

z + M̃T(z, k)

]−1

·C(0)

=
1

z(z + M̃T(z, k)) + k2G∞(k)
mn

[
z + M̃T(z, k) −ik
−ik G∞(k)

mn
z

]
·C(0).

(2.1.77)

The quantity of interest, as before, is the transverse current density autocorrelation
function, the solution to which, having done some tidying up, is:

C̃T(z, k) =
1

z + k2cT(k)2

z+M̃T(z,k)

CT(0), (2.1.78)

such that

cT(k)2 =
G∞(k)

mn
(2.1.79)
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where cT(k) can be considered a wavevector-dependent speed of sound. Relapsing to our
old habits, we invoke the Markovian approximation:

MT(t, k) ≈ 1

τT(k)
δ(t), (2.1.80)

having defined a characteristic transverse relaxation time (as opposed to frequency or
decay rate Γ). Now we can extract the Fourier spectrum:

CT(ω, k) = Re

[
1

π
C̃T(iω, k)

]

= Re

 1

π

1

iω +
k2cT(k)2

iω + 1
τT(k)

CT(0)


=

1

π

k2cT(k)2τT(k)

ω2 + τT(k)2
(
(k2cT(k)2 − ω2

)2 . (2.1.81)

In order to provide more meaning to the quantities in this equation, we compare Eq.
2.1.78 to Eq. 2.1.71 to make the identification:

η̃(z, k) =
G∞(k)

z +
1

τT(k)

(2.1.82)

This implies that the generalised viscosity, related to the memory kernel in the single-
variable case, undergoes exponential decay with time:

η(t, k) = G∞ exp

(
− t

τT(k)

)
, (2.1.83)

which implies that the the addition of a second slow variable coupled to our transverse
current density is equivalent to having memory effects, indeed, merely a nonzero decay
time, in the single-variable case. As we shall see, the existence of this other dynamical
variable, or a not-too-rapid decay of shear stress, allows for propagating transverse elastic
waves forbidden under normal hydrodynamics.

The condition for propagating collective modes at a given wavevector is, roughly
speaking, the existence of a peak at nonzero frequency in the current density spectrum.
Taking the derivative and equating it to zero, we see that this condition is equivalent to

ωT(k)2 = k2cT(k)2 − 1

2τT(k)2
, (2.1.84)

where ωT(k) is the position of the peak, interpreted as the frequency of the transverse
collective mode. Below a critical wavevector, kg, this frequency is imaginary and thereore
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Figure 2.1: The transverse current spectrum CT(ω, k) at an arbitrary wavevector, show-
ing non-propagating modes for τT(k) = 1

2
and propagating modes for τT(k) = 1, distin-

guishable by the clear peak at around ω = 0.8.

does not correspond to propagating modes. The transverse spectrum, unlike the longitu-
dinal spectrum, is therefore gapped, existing only at short wavelengths to whom the fluid
somehow provides an elastic medium. The minimum, gapped, wavevector, kg, is given
by:

kg =
1√
2

1

cT(k)τT(k)
. (2.1.85)

Plots of propagating and non-propagating spectra, separated by different values of τT(k),
are shown in Fig. 2.1.

Finally, we can relate τT(k) to other existing quantities. Our non-Markovian viscosity
in Eq. 2.1.82 has the following Laplace spectrum:

η̃(z, k) =
G∞(k)

z +
1

τT(k)

, (2.1.86)

from which we can see that in the limit of zero frequency:

η(ω → 0, k) = τT(k)G∞(k), (2.1.87)

meaning that τT is the ratio of high-frequency and low-frequency responses to gradients
in velocity. If we take Eq. 2.1.85 to its zero-wavevector limit (bear in mind that since we
took MT to be a standard autocorrelation function with no anomalous evolution, we are
already approximating k to be small), we get an approximation for a k−independent kg

using macroscopic quantities alone:

kg =
1

η

√
ρ

2G∞
, (2.1.88)
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or

kg =
1√
2

G∞
cTη

. (2.1.89)

The wavevector kg sets the characteristic length scale of the fluid: at smaller lengths
(k > kg), the fluid’s structure is rigid enough for elastic transverse waves to exist, at larger
lengths, the equations of hydrodynamics should provide a more appropriate description.
The quantities in Eqs. 2.1.88 and 2.1.89 are possible to approximate macroscopically,
meaning that this key fluid parameter relates microscopic and macroscopic physics.

Continuum Viscoelasticity

The quantity kg and the transverse elastic waves it admits were a consequence of the finite
relaxation of stress, one way or the other. The equations of hydrodynamics describe the
evolution of transverse motion as uncoupled to all non-viscous forces in the fluid, and
the viscosity itself as a time-independent function of the fluid’s state. Writing out Eq.
2.1.20 for the shear stress in our two-variable case explicitly and including the Markovian
approximation in Eq. 2.1.80, we see (ignoring the random force):

dσzx(t,k)

dt
= ik

(
V

kBT

)2

G∞ jT
x (t,k) +

σzx(t,k)

τT(k)
, (2.1.90)

i.e. the rate of stress is not only proportional to the derivative of the velocity gradi-
ents (through the second term on the right), but also the velocity gradients themselves
(through the first term on the right). Though we cannot simply integrate both sides, this
implies that the instantaneous stress depends not only on the velocity gradients, but also
on the strain, which is elastic behaviour. This is more difficult to see by including the
non-Markovian memory kernel in the integro-differential equation in the single variable
case, but it does amount to the same effect.

This effect is called viscoelasticity, and was quantitatively described first by Maxwell
[37]. There are actually several types of viscoelasticity, as there are several possible ways
to combine a viscous and elastic response. We describe two here, and thereby decide
which is appropriate to our case of fluids:

Definition 2.1.3 (Maxwell Viscoelasticity) A Maxwell viscoelastic medium experi-
ences both elastic and viscous strain responses to stress:

dε

dt
=

1

G

dσ

dt
+

1

η
σ, (2.1.91)

where ε is the shear strain, σ is the shear stress, G is the shear modulus, and η is the
shear viscosity.

Definition 2.1.4 (Kelvin-Voigt Viscoelasticity) A Kelvin-Voigt viscoelastic medium
experiences both elastic and viscous stress responses to strain:

σ = Gε+ η
dε

dt
, (2.1.92)

where ε is the shear strain, σ is the shear stress, G is the shear modulus, and η is the
shear viscosity.
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A Maxwell material put under a constant shear strain will relax until its shear stresses
vanish. Under a constant shear stress, the shear strain will grow for as along as the stress
is applied. As the stress is applied and removed, an elastic component to the strain
instantaneously responds. In this sense, therefore, the material responds in an elastic
manner at short time scales to stress, and a viscous manner at long time scales.

A Kelvin-Voigt material put under constant shear strain will experience a constant
shear stress. If the stress is removed from a strained Kelvin-Voigt material, the strain
will relax until it vanishes. As the stress is applied and removed, the viscous component
instantaneously responds. In this sense, therefore, the material responds in a viscous
manner at short time scales to stress, and an elastic manner at long time scales.

From these considerations, we see clearly that our fluids are Maxwell materials. The
Laplace transformation of Eq. 2.1.91 is:

− zε̃(z) =

(
z

G
+

1

η

)
σ̃(z) (2.1.93)

which we can compare to the purely viscous stress equation:

−zε̃(z) =
1

η
σ̃(z),

so see that this type of viscoelasticity is equivalent to the replacement of the hydrody-
namic viscosity with a frequency-dependent viscosity:

η̃(z) =
G

z +
G

η

. (2.1.94)

Here the Maxwell relaxation time has entered:

τM =
η

G
, (2.1.95)

which is also the time constant of the stress relaxation in Eq. 2.1.91 at constant strain.
The quantity introduced in Eq. 2.1.80 can therefore be interpreted as a k−dependent
Maxwell relaxation time, due to its appearance in the generalised viscosity. Implementing
it into the viscosity, and taking the Fourier spectrum:

η(ω) =
G(

τM
ω

)2
+ 1

(2.1.96)

This viscosity becomes approximately elastic when ωτM � 1, and approximately hydro-
dynamic when ωτM � 1. Taking the inverse Laplace transformation of Eq. 2.1.93, we
have:

σ(t) = −
∫ t

0

dτη(t− τ)ε(τ), (2.1.97)

with

η(t) = G exp

(
− t

τM

)
, (2.1.98)
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which all looks rather familiar. This makes very comprehensive our microscopic descrip-
tion of transverse collective modes in fluids, as the same phenomenon described from
a macroscopic perspective provides the same interpretations in the same mathematical
form.

2.2 Frenkel Theory

Using the very deep and abstract formalism of memory functions we have shown that
liquids have solid-like properties at short wavelength. This result, and many of the impli-
cations which follow, were anticipated by Yakov Frenkel [38] before any of the formalism
we used to derive it had been developed. In exploring the intuitive physical meaning of
the results of generalised hydrodynamics, we shall set out Frenkel’s original work and
recent developments of it.

At this point we are capable of saying that the existence of transverse elastic waves in a
fluid is on account of relaxation of shear stress on time scales comparable to the frequency
of the waves themselves. As to why and how shear stress relaxes, we have no answer
yet. The time τT(k) does not follow from the Hamiltonian H , and its macroscopic
extension τM provides no new insight - it is already a ratio of the different responses.
Phase space does not operate under the same intuitions as we do, and so the memory
function formalism will not give us a satisfactory answer - we postulated that a decaying
memory function, or a second slow transverse variable, was appropriate, and we will also
have to postulate why.

2.2.1 The Problem of cV

The heat capacities of simple gases and solids can be deduced by pure reason (i.e. count-
ing degrees of freedom). The Dulong and Petit law is trivially recovered by assuming
harmonic bonds, giving each atom six quadratic degrees of freedom. This is not so easy
for a liquid, where displacements are not small and a quadratic expansion is not appro-
priate. Instead we decompose the system to its normal modes, of which there are 3 per
atom, which correspond to the one longitudinal branch and two transverse branches of
collective modes in a monoatomic crystal. A liquid’s (apparent) inability to support shear
stress leads us to declare that such a decomposition leads us with just one longitudinal
branch. In this scheme, the kinetic energy of a branch can manifestly never be zero, so
we are left with a heat capacity of 2kB. Brillouin was first to recognize the significance
of cV = 2kB corresponding to the loss of the potential energy of the two transverse mode
branches [39]. Since this contradicted the experimental cV ≈ 3kB of liquids at the melt-
ing point, a proposition was made that liquids consist of crystallites with easy cleavage
directions so that liquids have cV = 3kB and can flow at the same time.

Frenkel came up with another approach to tackle this problem, inspired by his work
on defects in solids [38]. Indeed, it is not so different an approach from the crystallite
model just described. He accused the atoms themselves of the liquid’s ability to flow,
by describing the dynamics as follows: atoms adopt an impermanent glassy structure,
where at any given time most atoms are vibrating about their quasi-equilibrium positions
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as they do in a glass or a crystal. An atom spends a characteristic time τF (which is,
for example, on the of the order of a few picoseconds in water at 1 bar and 273 K)
oscillating before it abruptly “jumps” to a new quasi-equilibrium position. These jumps
are typically faciliated through an atom’s neighbours moving in a way that presents a
brief opening out of the “cage”, rather than an atom receiving enough energy to punch
out directly. The result is that the environment of any given atom is approximately static
and glassy on timescales less than τF. A consequence of this model is the ability of liquids
to locally support shear stress, albeit only at high frequencies. This is the central result
of the Frenkel theory of liquids: at time scales faster than the frequency ωF ≈ 1

τF
the

liquid behaves like a solid, but at time scales slower than ωF it behaves hydrodynamically.
Because high-frequency modes dominate the contribution to the energy, the result cV ≈
3kB drops out immediately. The key parameter of the liquid is τF, and its properties are
roughly determined by how close ωF is to the oscillation frequency.

We have shown, however, using our formal theoretical analyses, that the collective
modes are gapped in wavevector, rather than frequency. The analysis will be changed,
therefore, to make kg the fundamental quantity rather than τF, but the physical meaning
is very similar. Frenkel identified his “hopping” time, τF, in liquids with the Maxwell
relaxation time τM, an identification which has since become the accepted view [40].
This is an important identification, because the time between atomic rearrangements is
a vague concept, not experimentally measureable directly and suffering from ambiguity.
The Maxwell relaxation time is much crisper, and the appearance of τM or kg makes
Frenkel’s theory very powerful indeed.

Specifically, the heat capacity of a liquid in modern Frenkel theory is modelled as
follows [41]. The energy of a liquid can be written as a sum of kinetic energy KT and KL

and the potential energy ΦT and ΦL of the transverse and longitudinal collective modes
respectively:

E = KT +KL + ΦT(k > kg) + ΦL. (2.2.1)

The longitudinal terms can be collected into one term, since the full range of wavevectors
is accessible to such modes. Meanwhile, because the kinetic energy of transverse modes
in liquids and solids is of course the same, we can use the virial theorem to express KT

as half the total energy of transverse modes in a harmonic solid system:

E = EL +
ET

solid

2
+ ET(k > kg). (2.2.2)

These contributions can be approximated using integrals over wavevectors:

EL(T ) =

∫ kD

0

dk gL(k)e(k, T ), (2.2.3)

ET
solid(T ) =

∫ kD

0

dk gT(k)e(k, T ), (2.2.4)

ET
liquid(T ) =

∫ kD

kg

dk gT(k)e(k, T ). (2.2.5)
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We have made the classical Debye approximation, such that gL(k) = 3N
k3D

and gT(k) = 6N
k3D

,

with kD the Debye wavevector, and e(k, T ) = kBT . We will assume the Debye wavevector,
insofar as it can be defined in a liquid, is identical to that of a solid, i.e. [7]:

kD =
(
6π2n

) 1
3 . (2.2.6)

Performing and inserting these integrals into Eq. 2.2.2, we arrive at the following expres-
sion:

Eliquid(T ) = NkBT

(
3−

(
kg

kD

)3
)
, (2.2.7)

with corresponding heat capacity

CV = NkB

(
3−

(
kg

kD

)3
)
− 3NkBT

k3
D

k2
g

(
∂kg

∂T

)
V

. (2.2.8)

In order to make sense of these statements, we must ponder the evolution with temper-
ature of kg, and therefore τF. Naturally the period between atomic rearrangements will
reduce as temperature increases, as increasing the oscillation amplitude will create more
frequent opportunities for a cage escape event. With our identification between τM and
τF, we can consider this as a loose explanation for the decrease of shear viscosity with
temperature increase in liquids. Meanwhile kg increases with increasing temperature,
meaning that the lower wavelength modes are erased. This explains the behaviour of the
heat capacity of liquids very neatly. Just above the melting point when τF is large, the
energy is close to 3NkBT and the heat capacity will not be far off 3NkB. The limit of
applicability of this equation is when kg approaches the maximum meaningful wavevec-
tor, kD, which is on the order of the the reciprocal of the interatomic distance as we
can see by inspection of Eq. 2.2.6. In other words, the maximum wavelength at which
propagating transverse modes exist approaches the interatomic distance. This means
that the liquid rearranges itself microscopically so rapidly that there is no meaningful
distance over which it behaves elastically. At this point the energy approaches 2NkBT
and the heat capacity approaches 2NkB.

The evolution of the liquid CV with temperature now has a crisp physical explanation,
backed up both by macroscopic viscoelastic considerations and a formal manipulation of
Hamilton’s equations: the atomic kinetic energy of a liquid is comparable to the potential
energy wells of the interatomic interactions. This opens up the phase space to a certain
degree (dependent exactly on how much excess energy there is), which causes the decay of
correlations in the stress tensor. This causes the attenuation of some transverse collective
modes, and causes others to disappear completely from the spectrum. As the energy
increases and the phase space opens out more, the stress decorrelates more quickly and the
number of excluded modes increases. The potential energy of such modes, representing
a network of atoms energetically connected, therefore decreases, thereby decreasing the
system’s total number of degrees of freedom. For this reason, the heat capacity of a liquid
decreases as a function of temperature.

To conclude this section, we will repeat the derivation of the k−gap that Frenkel
himself very nearly stumbled upon. As mentioned above, Maxwell viscoelasticity amount
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to replacing the viscosity η with the operator:

1

η
→ 1

η

(
1 + τM

d

dt

)
. (2.2.9)

What Frenkel did was to insert this operator into the Navier-Stokes equations rather than
solving the GLE which it implies. The Navier-Stokes equations governing the evolution
of the transverse velocity we defined in 2.1.59 are:

∇2vT =
ρ

η

dvT

dt
, (2.2.10)

Noting that the pressure gradient does not appear in this equation because the curl of
a scalar gradient vanishes. We will assume again a fluid not far from equilibrium, such
that the partial derivative and material derivative to not appreciably differ from each
other. We then insert out viscosity operator:

η∇2vT = ρ
∂vT

∂t
+ ρτM

∂2vT

∂t2
. (2.2.11)

If we divide through by τM and ρ we retrieve:

(cT)2∇2vT =
1

τM

∂vT

∂t
+
∂2vT

∂t2
, (2.2.12)

where cT =
√

G
ρ

corresponds to the transverse speed of sound, both due to its appearance

in the wave equation and its form. The plane-wave solution to Eq. 2.2.12 is:

vT(t, r) = v0 exp

(
−t
τM

− i (ωt− k · r)

)
. (2.2.13)

Insertion of this solution into Eq. 2.2.12 gives the condition for a real frequency:

(cT)2k2 = ω2 +
i

τM

ω, (2.2.14)

the wavevector at which this gives real solutions is:

kg =
1

2cTτM

. (2.2.15)

Neglecting the missing factor of
√

2, which is unimportant for considerations as qual-
itative as ours, we see the same physical quantities in the same form governing the
propagation of transverse modes.

The k−space gap, as we have now seen, has been derived from several different per-
spectives, both macroscopic and microscopic. Ultimately, however, all of these approaches
describe the same physical truth of liquids, which is that theirs is a mixed dynamical state.
Atoms do not merely diffuse, nor merely oscillate, but combine the two which gives the
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liquid simultaneously both fluid and elastic properties. Modern Frenkel theory, as sum-
marised in Ref. [41], not only gives a much more accessible explanation to the gapped
momentum state compared to the very abstract and involved derivations of Mori-Zwanzig
theory, but also uses it to qualitatively explain the trend of heat capacity in many simple
liquids, including noble liquids, molecular liquids, and molten metals [42]. Fitting to
experimental of simulated data of cV is a matter of setting G as a fitting parameter using
known measurements of η. This application of Frenkel theory, also called the phonon
theory of liquid thermodynamics has been rigorously examined [43], and proves to be
both falsifiable and successful.

2.2.2 The Frenkel line and the Supercritical State

The importance of the value cV = 2kB is now quite clear to us as the point where a liquid
loses all of its elastic properties and, we may guess, becomes purely hydrodynamic with
no meaningful oscillations in its atomic motion. It is simple enough to call this state
a gas, but what do we really know about the heat capacity of gases? When cV is near
2kB, the van der Waals equation of state, and therefore cluster expansions, are still not
adequate. How does cV behave in this diffusive fluid? What happens if we take a path
on the phase diagram around the critical point, avoiding the boiling line? When does
our liquid become a gas? And what is the nature of this transition?

As a starting point, we can certainly identify what contributes to cV between 2kB

and 3
2
kB. When the temperature is not too high, the atoms can still form appreciable

transitory bonds which represent a non-negligible proportion of the total energy. Since
oscillatory motion is gone in this state, the interactions are dominated by repulsive forces,
with very weak contributions from long range attraction. The reduction of cV as tem-
perature increases further is due to these transitory interactions becoming ever more
transitory. At cV = 2kB, the atomic motion consists of atoms shifting each other around
and sliding off of each other - interactions are still strong but there is no caging and oscil-
lation of atoms on account of attraction. This sliding and shifting transforms into brief
collisions as anything but the steepest part of the atomic repulsion becomes incapable of
appreciably diverting the system’s dominating kinetic energy.

This is true and useful, but does not allow easy comparison to the phonon theory of
liquid thermodynamics. Towards that end, we shall rephrase the above using collective
modes, as was done in Ref. [41]. The system’s Hamiltonian can always be diagonalised
in principle, so collective modes of some longitudinal sort can be said to exist. And they
too must somehow disappear to explain the drop in cV . So how do the modes disappear?
As we just discussed, the meaningful interactions becomes less and less as temperature
increases (or as pressure decreases, for that matter). Another way of seeing things is
using the mean free path, lFP, from kinetic theory, which is the mean distance a particle
travels before experiencing a collision. Collisions, of course, are poorly defined except
in the case of elastic hard spheres, but this is no different from the quantitatively vague
concept of τF. If lFP represents the distance an atom travels before it interacts with
another, then it can be used to set the minimum wavelength at which collective modes
can propagate. If we denote by kFP = 2π

lFP
the mean free wavevector, we can write the
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energy as:

EL
gas(T ) =

∫ kFP

0

dk gL(k)e(k, T ), (2.2.16)

and therefore

Egas(T ) =
3

2
NkBT +

1

2
NkBT

(
kFP

kD

)3

. (2.2.17)

The approach to the ideal gas is therefore described by the mean free path becoming
long enough to exclude all but the very lowest energy, macroscopic collective modes.

Though the application of Debye theory to gases is a bit absurd when it comes to
quantitative prediction, it gives us important conceptual insight regarding the heat ca-
pacity of liquids and gases. In the liquid state, the increasing frequency of atomic dis-
locations with increasing temperature reduces the effective range at which the liquid is
elastic, thereby reducing the maximum wavelengths at which transverse elastic collective
modes can propagate. In the gaseous state, the decreasing frequency of atomic collisions
with increasing temperature (at constant pressure) increases the effective range at which
the gaseous state is at all self-interactive, thereby increasing the minimum wavelengths
at which longitudinal collective modes can propagate. We could associate with these
processes mathematical models, but it is readily apparent that these two processes will
evolve differently in temperature, as they are very different from each other. What this
means is that there is a crossover in thermodynamics around the point cV = 2kB. The
evolution of cV with temperature (or pressure) above 2kB is different from that below
2kB. The locus of these crossover points, near cV = 2kB coincides with the Frenkel line
(FL). Recall that FL denotes the crossover between combined oscillatory and diffusive
motion of particles and purely diffusive motion. We can now be more specific about this
crossover. Crossing this line corresponds to relaxation time τM approaching the period
of molecular oscillation, or equally the gapped wavevector kg approaching the maximum
wavevector of the system, the Debye wavector kD as we saw above.

All these criteria correspond to the physical phenomenon of molecular oscillation
giving way to purely diffusive motion. As the fluid increases temperature or decreases
pressure, particles spend less time oscillating relative to diffusing and therefore the fluid
state evolves from a mixed dynamical state where oscillation and diffusion are both
present to a pure dynamical state where only diffusive motion remains. Hence there is
a line on the (P, T ) phase diagram with positive slope across which there is a crossover
in dynamics and in thermodynamics. This line exists in the supercritical state because
there the boiling line is no more and the transition from a liquidlike to a gaslike state is
continuous. Across the boiling line, the same transition in dynamics and thermodynamics
occurs, but the FL is absent because the transition is part of the boiling transition.

The thermodynamic criterion for the FL is straightforward, but the basis for the
thermodynamic crossover is of course dynamical. The dynamical definition of the FL is
constructed using the velocity autocorrelation function (VAF), Z(t). This is the autcor-
relation of the single particle velocity, v. The mean can be a phase mean, or a mean over
all particles - these means will coincide in the thermodynamic limit. Mathematically:

Z(t) = 〈v(t) · v(0)〉. (2.2.18)
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Minima and maxima in the VAF represent the tendency of a particle to change the
direction of its motion, and therefore are indicative of oscillation. The disappearance of
minima from the VAF therefore presents an approximate dynamical functional definition
of the FL. These two criteria closely coincide for simple systems which are nearly harmonic
[23].

The FL separates fluid states not only on the basis of particle dynamics and ther-
modynamics, but also structure. The argument for this claim is simple. We introduce
the radial distribution function, g(r), which measures the relative probability of a given
particle being found at a distance r from another particle. Its definition is:

ng(r) =
1

N

∑
i 6=j

〈δ(r− rij), 〉 (2.2.19)

such that ng(r) is the mean number of particles at a distance r from a given particle.
This quantity is related to the the Fourier transformation of the static structure factor,
which measures the static periodicity:

S(k) = 1 + n

∫ ∞
0

dr (g(r)− 1) exp(−ik · r). (2.2.20)

Here we must use g(r)− 1 so that the integral converges, and we have left off a factor of
nδ(k) which is experimentally inaccessible anyway. We furthermore see that the number
of particles at a distance r from an atom is given by 4πr2ng(r). Using this, we can use
g(r) to write down the potential energy of a system with pair interactions φ(r):

Φ = 4πnN

∫ ∞
0

drr2g(r)φ(r). (2.2.21)

Since the kinetic contribution to energy is immutable in form, any crossover in the ther-
modynamics necessitates a crossover in structure too, via the radial distribution function
in simple fluids.

The Frenkel line therefore represents a rather extensive transition between liquidlike
and gaslike states, and it operates in the supercritical state where such transitions are
traditionally supposed to be absent [44]. The nature of the transition across the FL is
currently not very well understood. Indeed, the transition across the FL is effectively the
same as that across the boiling line except for its abruptness: particle dynamics, density,
heat capacity etc. all sharply change upon evaporation, but at the FL the transition is
apparently smoother as the number of transverse modes smoothly drops to zero. However,
the FL doesn’t emerge from the critical point, it instead emerges from the boiling line at
about 0.8 Tc, where Tc is the critical temperature. The boiling line itself branches away
from the melting and sublimation lines at the triple point, so the meeting of the FL with
the boiling line below the critical point is an interesting phenomenon that shows how
poorly the near-critical and supercritical states are understood. The region between the
FL and boiling line is better understood as a dense gas (much like how the supercritical
state is often pictured) and the boiling line at these conditions is a 1st order phase
transition between two gaslike states [45]. Unlike the boiling line and sublimation lines,
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and like the melting line, the FL extends to arbitrarily high temperatures and pressures
as long as the system remains chemically unaltered. This is in contrast to the Widom
line, which does not extend further than about three times the critical temperature.
Furthermore, the FL is path independent, whereas the maximum in cP or other properties
depends on the path taken through the phase diagram. The FL therefore presents a
definition of and distinction between liquid(like) and gas(like) states at conditions far
more extreme than those we experience in everyday life.

One of the early motivations for the FL was the phenomenon called “fast sound”, or
positive sound dispersion (PSD). PSD is phenomenon where the speed of sound increases
beyond its hydrodynamic value at large wavevectors. This is related to the propagation
of transverse modes: the mixing of transverse and longitudinal excitations causes an
increase of the speed of sound from

√
B/ρ to

√
(B + 4/3G)/ρ at higher wavevectors.

The phenomenon was indeed predicted by Frenkel [2], though on the bases of frequency
father than wavevector. Experimental evidence for the structural crossover across the FL
has been gathered in supercritical neon [46], dinitrogen [47], methane [48], and subcritical
ethane [49]. The thermodynamic crossover has been approached on the basis of modelling
[50], but still largely remains a mystery. This work will concentrate heavily on these
crossovers at the FL, structural, thermodynamic, and others more subtle.
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Chapter 3

Molecular Dynamics

We concluded our discussion of transverse collective modes in liquids with a macroscopic
connection, but the fact remains that many key properties of liquids cannot be measured
directly by experiments, or even at all. To this date, the gapped momentum spectrum
predicted in the liquid transverse sector has not been seen experimentally. Immediately
with the advent of computers, physicists realised the potential they had to illuminate
the liquid state, with its chaotic dynamics and amorphous structure [51]. Indeed, such
simulations are sometimes called “computer experiments”, revealing the crucial revela-
tory aspect of these simulations. A discussion of the place this “third part” of empirical
science occupies is best left for another time, however. There are two primary methods of
molecular simulations. Monte Carlo simulations involve sampling phase space configura-
tions according to a postulated phase space probability density (usually the isothermal-
isochoric or isothermal-isobaric ensembles) in order to generate statistical moments of
phase functions. Based on the dynamical picture of liquids I have expounded in the pre-
vious sections, it should be clear that this technique leaves much to be desired. On the
other hand, Molecular Dynamics simulations, deals with both structure and dynamics.
These are the simulations which we will focus on here.

3.1 Integration Algorithms

Molecular dynamics is, in a phrase, the numerical solution of a many-body classical
mechanical system. A simple statement for a bold proposition. Though computing
power has increased a great deal, so too have our ambitions. The evolution of a classical
system is governed by the interchange of energy between kinetic and configurational
forms. Velocity drives particles through space, and the interparticular interactions make
changes to this velocity. The phase space increases in dimensionality by 6 per particle
in our system (neglecting constraints), and in order to produce a faithful description
of a state of matter one needs to simulate, at the very least, many dozens of particles.
This renders Newton’s, Lagrange’s, and Hamilton’s equations of motion insoluable except
using an algorithmic finite-difference approach: we evolve the system through phase space
in discrete steps for as long as we please. As always in finite difference methods, we must
make a choice between optimising speed of execution or accuracy and stability of the
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solution. The most obvious discretisation of Newton’s equations is the forward Euler
method :

ri(t+ δt) = ri(t) + vi(t)δt, (3.1.1)

vi(t+ δt) = vi(t) + ai(t)δt. (3.1.2)

Here ri,vi, ai are the position, velocity, and acceleration of the ith particle. This method
is called a first order method, because we have truncated the Taylor series at first order,
and the error of our approximation is proportional to terms of order δt2 and above. In
practice, this method is unacceptable for use. It’s unstable - no matter how small the δt,
it will always diverge from the true solution. Physically, it doesn’t conserve energy well
and is not symplectic (it doesn’t preserve the phase space volume, violating Liouville’s
theorem). Another method is computationally not too much more expensive, but vastly
more accurate and stable. This is the velocity Verlet method.

ri(t+ δt) = ri(t) + vi(t)δt+
1

2
ai(t)δt

2, (3.1.3)

vi(t+ δt) = vi(t) +
1

2
(ai(t) + ai(t+ δt)) . (3.1.4)

The trajectories generated with this method are accurate up to order of δt3, time re-
versible, and preserve the phase space volume. These equations, or equivalent reformula-
tions, are frequently used in molecular dynamics simulations because of these properties.

3.2 Potentials

The terms ai(t) in Eqs. 3.1.3 and 3.1.4 look innocuous but are the source of the most
number crunching when it comes to implementation. As per Hamilton’s equations, we
must know the gradient function of the configurational (potential) energy term, Φ ({ri}),
such that

miai(t) = −
N∑
j 6=i

∂ϕ(rij)

∂rij
, (3.2.1)

with mi the particle mass. For computational efficiency, one usually introduces a “cut-
off” distance, above which contributions to the sum in Eq. 3.2.1 are ignored. Choosing
the potential is not a trivial task. Indeed, how would one even begin to discern how
different sorts of atoms should interact with each other microscopically? There are a few
things we can know for sure. The first is that there must be a strong repulsive term.
This we know effectively a priori, as the stability of atomic matter requires such a term
to be present. Physically we understand this term to have its origins in the energy cost
associated with the Pauli exclusion principle when electron orbitals occupy overlapping
space. The second is an attractive term, which is easily inferred from the fact that
atomic matter is unerringly cohesive under at least some conditions. The third is the
electrostatic term, of which we know the form, but the partial charges of atoms are not so
obvious. Finally, we know that bonded interactions must exhibit stronger cohesive forces
as separation increases, as opposed to non-bonded interactions, such that the atoms do
not spontaneously dissociate.
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The simplest potential one can imagine is the hard sphere potential :

ϕHS(r) =

{
∞, r ≤ σ

0, r > σ,
(3.2.2)

where σ is the atomic radius. This is a problematic potential, however, due to the
discontinuity. We much prefer to use the soft sphere potential :

ϕSS(r) = ε
(σ
r

)n
, (3.2.3)

where ε is often called the interaction strength, and n is typically an integer. The hard-
sphere potential is of course the limit of n → ∞. No thermodynamically stable phases
are found for n ≤ 3. The soft sphere potential might be acceptable from sparse gaseous
or supercritical phases, but the lack of an attractive term means that it cannot model
any cohesion and is inappropriate for denser states. The most famous interaction which
incorporates cohesion is the Lennard-Jones potential :

ϕLJ(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
. (3.2.4)

The Lennard-Jones potential alone can acceptably model noble fluids such as argon
(ε ≈ 120kB, σ ≈ 3.4Å), but is a popular choice to measure the weak, so-called “van
der Waals” forces which exist even between ions. A sometimes superior choice is the
Buckingham potential :

ϕBuck(r) = ε

(
6

α− 6
exp

(
α
(

1− r

σ

))
− α

α− 6

(σ
r

)6
)
. (3.2.5)

This potential is also formulated as:

ϕBuck(r) = A exp

(
−r
ρ

)
− C

r6
. (3.2.6)

Although the Buckingham potential may model certain interactions better, it exhibits a
strong attraction at small distances. If, when simulating, an atom pair overcomes the
barrier, the atoms will accelerate towards each other at an ever-increasing rate and spoil
the trajectory.

Electrostatic interactions are tricky, because they are long range. In molecular dy-
namics, if we want to simulate the bulk of a material, it is much more efficient to use
periodic boundary conditions, rather than simulating an enormous isolated system and
only gathering data far from its surfaces. In order to do this, the minimum image con-
vention [52] is a popular choice: the simulation cell is repeated on all sides, and each
atom only interacts with the nearest “image” (of which there are 6 in three dimensions)
of any other given atom. Such a procedue demands that we set the cutoff of interac-
tions (which is a computational convenience we should wish to employ nonetheless) as
no larger than half the simulation cell width. However electrostatic forces do not decay
quickly, requiring us to be careful with periodic boundary conditions and cutoffs. The
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Ewald sum is a technique for dealing with long range periodic electrostatic interactions
[53]. To the electrostatic term, a sum of pair energies, one introduces “smeared out”
Gaussian distributions of charges, one set with charges equal to physical charges and
with opposite charges, such that the physical situation is unchanged. However, if the
physical point charges are paired with the fictitious opposite-charge Gaussian distribu-
tions, one has split the total electrostatic energy into a short range and long range term,
the latter of which is of course short range in reciprocal space. This technique allows for
rapid convergence of energy compared to a calculations totally in real space.

Parametrising these potentials can be done in two ways for the most part. The first
is comparison to pertinent experimental data, and optimising parameters with a sensible
automated scheme. If we’re interested in the structural correlations we don’t need to fit
dielectric permitivitty data, but we should aim to get density and the structure factor
right at least somewhat near the target pressure and temperature. Of course there is
a certain futility to such a method, because the adequate amount of data needed to fit
a certain model for a certain task is the exact data which would make the molecular
dynamics study unnecessary. In practice, the extrapolations of such schemes do an
admirable job. The other way to parametrise these potentials is using so-called ab initio
methods, such as density functional theory, which solve the Schrödinger equation of the
system of interest in order to characterise its electronic structure. A combination of these
methods is often the best approach.

In this thesis, I perform molecular dynamics simulations of water, carbon dioxide,
and argon in their liquid, supercritical, and gaseous states. The potential used for water
is TIP4P/2005 which is a rigid, four-site potential. This means it consists of four “sites”,
one for each of the real atom in the molecule, and one fictitious atom between the oxygen
and hydrogen atoms. The real atoms are massive, but the oxygen carries no charge, and
the fictitious atom is massless but is negatively charged, which represents the discrepancy
between the charge and mass distributions in water better than a 3-site module would.
The hydrogen atoms only interact via their charge, but the oxygen atoms also have a
Lennard-Jones interaction, as in Eq. 3.2.4, amongst themselves. The parameters of this
potential are supplied in Tab. 3.1. These atoms are all rigid with respect to each other,
meaning that the bond lengths and angles are fixed. Though the H-O-H bond angle is
rather floppy at high temperature, the FL is an intermolecular phenomenon, so I was
content to use the FL predicted by the rigid potential in order to begin. This potential
was parametrised with structure and high pressure and temperatures in mind [54]. This
potential is one among many for water, of course, and was assigned the highest score by a
detailed review which compared the most popular water potentials to experimental data
[55, 56]. This potential was also used in a recent molecular dynamics study of the Widom
line in water [57]. Though a rigid-body potential omits many aspects of water’s behaviour
such as vibrational contributions to structure, the optimisation of the potential against
experimental results is designed to compensate for this, such that the properties of the
simulated water still closely match those of real water. The rigidity of the TIP4P/2005
potential makes it rather quick to simulate, at least for a system with charges where the
necessity of Ewald summation slows things down.

The potential used for carbon dioxide was a rigid body potential, like that of water,
with carbon-carbon, oxygen-oxygen, and carbon-oxygen van der Waals forces modelled
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Parameter Value
Oxygen mass (amu) 16.00

Hydrogen mass (amu) 1.00
S (fictitious atom) mass (amu) 0.000

Oxygen charge (e) 0.000
Hydrogen charge (e) 0.5564

S (fictitious atom) charge (e) -1.113
εOO (eV) 0.008031
σOO (Å) 3.159

O-H bond distance (Å) 0.9572
O-S bond distance (Å) 0.1546

H-O-H bond angle (deg) 104.5
H-O-S bond angle (deg) 52.25

Table 3.1: Potential parameters used in molecular dynamics simulations of water. εOO
and σOO refer to the Lennard-Jones parameters between the oxygen atoms, as per Eq.
3.2.4.

using the Buckingham potential as seen in Eq. 3.2.5 and with partial charges on the car-
bon and oxygen atoms calculated from ab initio methods and compared to experimental
data, including equations of state and phonon dispersion curves [58]. Again, as the FL is
an intermolecular phenomenon and carbon dioxide is a compact molecule, using a rigid
body potential is an acceptable approximation for a first study. Note that here all three
sites carry comparable mass and interact with each other via their electric charges and
via the Buckingham potential. This is in contrast to water where the molecule is domi-
nated by the oxygen atom with its larger mass and sole participation in van der Waals
interactions.

The potential used for argon was simply the Lennard-Jones potential described in Eq.
3.2.4. Argon, as a noble element, has very weak interatomic interactions, which allows
it to be modelled just using the Lennard-Jones potential between the single atom sites,
considerably speeding up calculations.

3.3 Gathering Data

Once we’ve decided on our potential, we have our Hamiltonian. We can then integrate
it, using our Verlet algorithm, to generate what we call a trajectory, a curve through
phase space. But a trajectory is not the fundamental quantity of statistical mechanics,
rather the probability density. How can we gather a probability density when we can
only access solutions to Hamilton’s equations one at a time? Boltzmann was the first to
address this issue, and more or less postulated that one can access the probability density
from a single trajectory. In typical Boltzmann fashion, however, he left this assumption
rather implicit and it was Ehrenfest who gave it its name, the Ergodic Hypothesis.

48



Parameter Value
Carbon mass (amu) 12.00
Oxygen mass (amu) 16.00
Carbon charge (e) 0.6081
Oxygen charge (e) -0.3040

Hydrogen charge (e) 0.5564
ACC (eV) 1123
ACO (eV) 1979
AOO (eV) 2110
ρCC (Å) 0.2778
ρCO (Å) 0.2637
ρOO (Å) 0.2659

CCC (eV Å6) 0.000
CCO (eV Å6) 12.61
COO (eV Å6) 22.28

O-C bond distance (Å) 1.156
O-C-O bond angle (deg) 180.0

Table 3.2: Potential parameters used in molecular dynamics simulations of carbon diox-
ide. ACO refers to the Buckingham parameter between the carbon and oxygen atoms, as
per Eq. 3.2.6, and so on for ACC , ρCO and so on.

Parameter Value
mass (amu) 39.95
ε (eV) 0.01032
ε (K) 119.65
σ (Å) 3.4

Table 3.3: Potential parameters for argon used in the molecular dynamics simulations.
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Hypothesis 3.3.1 (The Ergodic Hypothesis) The ergodic hypothesis states that the
time average of any phase function over a single trajectory, in the long time limit, is
equal to the phase average of that function:

lim
τ→∞

1

τ

∫ τ

0

dt A(t) =

∫
dΓ A(Γ). (3.3.1)

Sometimes the hypothesis is extended further, stating that any given trajectory explores
all of phase space in a uniform manner, given enough time. In other words, there is
only one trajectory through phase space, covering it completely. A moving thought, I
think. This of course certainly brings about Eq. 3.3.1 in the microcanonical case, and
it’s difficult to imagine another physical justification for this equation, but some authors
like to keep the distinction.

Ergodicity, the state of being ergodic, can be motivated with a nice intuitive physical ex-
planation. The evolution through phase space of real systems is nonlinear, and therefore
dynamically unstable. In other words, a small perturbation in the positions of momenta
of particles will cause a rapid divergence from the unperturbed trajectory, due to the
very many terms driving the evolution of each atom. This means that a trajectory is al-
ways very quickly decorrelating with its neighbours in phase space. This suggests, firstly,
that a uniform phase space probability density will very rapidly extend throughout phase
space (though due to Liouville’s theorem its total measure will remain unchanged), and,
secondly, that any given trajectory will likely visit any given subset of phase space of
nonzero measure. It’s not that simple, from a rigorous point of view, as dynamical in-
stability is a necessary but not sufficient condition for ergodicity, but it does motivate us
to give it a try.

With the ergodic hypothesis in hand, we can now start doing statistical mechanics
with our molecular dynamics trajectories. We take means of phase functions over our
trajectories, which is performed as follows:

〈A(Γ)〉 =
m∑
i=1

1

m
A(Γ(i× δt)), (3.3.2)

where m is the total number of timesteps we generate for the trajectory. In order that
we may generate good statistics, we must generate long trajectories with very many
timesteps. There isn’t much more to it, as all we need in statistical mechanics is various
statistical moments. A common tactic used to modify Eq. 3.3.2 is to only take every
nth timestep when constructing the average, which saves on computational power and
storage space. The ergodic hypothesis doesn’t guarantee this is possible, though it would
be a rather contrived phase space which forbade it. We collect as often as we need to
such that the average isn’t affected by the reduced sampling, and no more often than
that. TCFs are calculated as follows:

〈A(n× δt)B(0)〉 =
m−n∑
i=1

1

m− n
A((i+ n)× δt)B(i× δt). (3.3.3)

This is all well and good, but in statistical mechanics we use different ensembles
to calculate different quantities conveniently. How can we make our single phase space
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trajectory correspond to these ensembles? The symplectic equations of motion of the
Verlet integrator are very attractive when modelling isolated systems. We know them
to be accurate insofar as we have faith in the applicability of Hamiltonian mechanics to
our system. While much effort and progress have been recently made in understanding
the relationship between open systems and equilibration [59], how exactly we ought to
represent such effects in molecular dynamics simulations is not clear.

We typically begin a molecular dynamics simulation, of fluids at least, by seeding
a Maxwell velocity distribution at the target temperature in an initial configuration.
Such an initial configuration is likely not to be close to an equilibrium configuration
at the target temperature, so letting the system evolve for a while until it reaches the
“main sequence” of its energy hypersurface is good practice. The temperature (defined
using equipartition in Hamiltonian systems [52]) may have drifted unacceptably far from
the target temperature by this time, however, so we may wish to reseed the velocities,
now with a configuration closer to equilibrium. This process may be repeated a few
times. Temperature is hard to control precisely using this method, but if that isn’t
a problem, it’s an acceptable way to gather data at a fixed temperature and density.
The ergodic hypothesis states that the resulting trajectory we collect from will give us a
microcanonical mean, which does not correspond to a typical experimental setup. This
is unimportant, however, because in the thermodynamic limit, all ensembles coincide [7]
and therefore our small microcanonical simulation will give us valuable data pertaining
to an open macroscopic real system, provided we can simulate it at the right energy and
volume.

But what if we want to finely control the temperature, pressure, or even apply nonhy-
drostatic stress? Such things are not really possible to do in microcanonical simulations
where the best we can do is set up an initial velocity distribution at a density and let it do
its own thing. Are there constraints we can place on the equations of motion, transform-
ing our system into a non-Hamiltonian one, which will change the constants of motion?
There are, and such modifications to the equations of motion are called thermostats and
barostats.

The first thermostat we will examine is arguably the simplest, the Berendsen ther-
mostat. It is a slightly less jarring form of the velocity reseeding we described above. We
introduce a scaling factor, χ(t), by which we multiply the velocities at each timestep:

χ(t) =

(
1 +

δt

τ

( 3
2
NkBT

K(t)
− 1

)) 1
2

, (3.3.4)

where K is the instantaneous kinetic energy, T is the target temperature, and τ is a
specified time constant which sets the “strength” of the thermostat. In the case of con-
strained particles, such as diatomic molecules, the 3

2
factor will of course have to be

modified. The dynamics otherwise proceed as per Hamilton’s equations. This thermo-
stat therefore behaves as a universal damping (or augmenting, as it can also increase the
velocities) force which drives the system’s kinetic energy towards a target. This thermo-
stat suppresses kinetic energy fluctuations and unsurprisingly therefore does not cause
the system to sample canonical trajectories, and indeed the thermostat will drain energy
from high frequency modes. This violation of equipartition is called the “flying ice cube
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effect” due to the deposition of energy into low frequency modes such as centre-of-mass
translation [60].

There are two thermostats which cause a trajectory to sample canonical dynamics.
The first is the Nosé-Hoover thermostat [52]. This thermostat makes a modification to
the Hamiltonian, adding two new variables, η and its “momentum” pη:

H ′ = H +
p2
η

2Q
+ 3NkBTη, (3.3.5)

where Q is a parameter which again sets the thermostat’s strength. Although this is
the Hamiltonian preserved under Nosé-Hoover dynamics, these new variables are non
canonical, i.e. they do not preserve the form of Hamilton’s equations. The new equations
of motion are:

dri
dt

=
pi
mi

dpi
dt

= Fi −
pη
Q

pi

dη

dt
=
pη
Q

dpη
dt

=
N∑
i=1

p2
i

mi

− 3NkBT.

(3.3.6)

So we see that the new, non-canonical “momentum” pη, is driven by the discrepancy
between the instantaneous temperature and the target temperature, and in turn decides
the sign and magnitude of the friction term in the evolution of pi. The variable η seems
spurious in the evolution of the system itself, but is important for analyses of the phase
space probability density [52], an interest we can sympathise with.

The second thermostat which creates canonical dynamics is the Langevin thermo-
stat. This thermostat is easily motivated from a physical point of view: the effect of an
environment on an open system (whose own microscopic degrees of freedom are inacces-
sible to us) is inevitably stochastic. And as we have seen, such random variables also
produce a damping term. Mathematically, the Fokker-Planck equation corresponding
to the (Markovian) Langevin equation has an equilibrium solution which is a Gaussian
with width determined by the fluctuation strength. This thermostat therefore couples
each particle’s momentum to a fictitious dissipative and fluctuating heat source. The
equations of motion become [61]:

dri(t)

dt
=

pi(t)

mi

dpi(t)

dt
= Fi − γpi(t) + ξi(t)

〈ξi(t)ξj(τ)〉 = 2γkBTδijδ(t− τ)I(2).

(3.3.7)

Here ξ is a random force vector, γ is a friction constant, I(2) is the second rank isotropic
tensor, and δij is the Kroncker delta.This themostat drives the system on a local scale -
particles receive or release heat to the heat source based on whether they are too “hot”
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or “cold” compared to the target temperature. It also has the advantage of dispersing
numerical instabilities because of the stochastic influence.

Each of these thermostats has an associated barostat which controls drives the system
towards the target pressure. The Berendsen barostat works much like the thermostat.
We introduce the factor η(t), by the cube root of which we scale the system’s coordinates:

η(t) =

(
1− δt

τ

)
(P − P (t)) . (3.3.8)

Here P (t) is the instantaneous pressure (calculated from the trace of the stress tensor)
and P is the target pressure. Again τ is a relaxation time which sets the strength of the
barostat’s compression and expansion. The Nosé-Hoover and Langevin barostats work
by introducing auxiliary variables and inserting them into the equations of motion for
the momenta and positions [62, 63]. These are much more complicated and we have little
to gain by explicating them.

Using these thermostats and barostats we can comfortably equilibrate a system at
the thermodynamic conditions we please. Furthermore, if we’re using Langevin or Nosé-
Hoover integration algorithm, we can simply perform our production run with these
dynamics and perform analysis on the resultant trajectory. This allows us to control
temperature and pressure with very fine precision when we do our calculations, and
ensure that our trajectory samples the ensemble of our choice. In this thesis, we use the
microcanonical (NVE), canonical (NVT), and Gibbs (NPT) ensembles, where the labels
in brackets are commonly used to describe the thermodynamic quantities held constant
in such ensembles. We also note that some quantities are more convenient to calculate
in a given ensemble. For example, the isochoric heat capacity, ever on our minds, is easy
to write in the canonical ensemble:

cV =
〈E2〉 − 〈E〉2

NkBT 2
. (3.3.9)

There exists a method of calculating quantities in one ensemble when they are known in
another. If we wish find an expression relating the mean of the phase variable A in the
ensemble where F is held constant and the one where its thermodynamic conjugate f is
held constant, we use the following formula:

〈A〉F = 〈A〉f +
1

2

∂

∂f

(
∂f

∂F

)
∂

∂f
〈A〉f , (3.3.10)

where F as a function of f is given by F = 〈F 〉f . The formula in the case of a covariance
is [53]:

〈(A− 〈A〉F ) (B − 〈B〉F )〉F = 〈(A− 〈A〉f ) (B − 〈B〉f )〉f

+
∂f

∂F

(
∂

∂f
〈A〉f

)(
∂

∂f
〈B〉f

)
.

(3.3.11)

In the example of CV , we can calculate the variance of the kinetic energy K microcanon-
ical ensemble as a function of its analytically calculable form in the canonical ensemble
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to get the following expression:

cV =
3

2
kB

(
1− 〈K

2〉NV E − 〈K〉2NV E
3
2
Nk2

B〈T 〉2NV E

)−1

. (3.3.12)

All molecular dynamics simulations in this work, unless otherwise specified, have been
performed with the DL POLY package [64].
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Chapter 4

Water

4.1 The Most Studied Compound in Science

As discussed, crossovers in thermodynamics, intermolecular structure, and intramolecular
dynamics have been observed in a variety of different liquids, including noble liquids,
molecular liquids, and molten metals. Water, H2O, is very different from and more
interesting than (depending on whom you ask) all of these other liquids, for a variety of
reasons. Water is a small molecule, and indeed light, composed of oxygen and hydrogen.
Oxygen is one of the most electronegative elements so far discovered or synthesised, which
gives water a rather strong dipole. These two properties combine to make water a small,
light, strong dipole, making its electrostatic properties very prominent. The hydrogen
bonds of water, which are a static representation of the attraction between protons and
electronegative sites in polar molecules, are therefore, though not the strongest of any
compound, nonetheless very strong. It is this extra energetic contribution which gives
water its famous tetrahedral structure. This tetrahedral structure, deviations from it, and
the hydrogen bonds which cause it, are the source of many anomalies in the crystalline,
glassy, liquid, supercooled, and supercritical states which have inspired research for over
a century and continue to do so [65, 66]. On account of these anomalies, however, water
is not an ideal system to test fundamental theoretical prediction such as those of the FL
- it’s entirely possible, wondering a priori, that the complicated energetics and anomalies
of water would serve to obscure the crossover at the FL.

This having been said, supercritical water in particular is an exciting area of ongoing
research. Little is known about the supercritical state, despite its increasing deploy-
ment in important industrial and environmental applications [17, 26, 27]. In particular,
supercritical water is used for chemical extraction, biomass decomposition, dyeing and
chromotography, biodiesel production, as a chemical reaction catalyst and reagent, toxic
and hazardous waste processing and environmentally-friendly dissolving and cleaning,
among many other applications.

Experiments at high pressures and temperatures are challenging in water, and so
compared to subcritical experiments, experiments in supercritical water are rather scarce.
Water was studied in x-ray diffraction experiments close to the melting line, therefore
below the FL, up to 17 GPa and 850K [67]. Neutron scattering experiments on water
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in the supercritical state probed states below and above the FL, though these points
were rather scattered and sparse [68], precluding a systematic study of the structure of
water across the FL. Another x-ray study, before either of the previous experiments were
performed, studied the RDFs of water along the 1kbar isobar from below to above the
critical temperature. These points, as well as the state points simulated in this work,
are plotted in water’s phase diagram in Fig. 4.1. At higher temperatures and pressures,
water is known to lose its characteristic tetrahedral structure and adopt a more closely
packed structure typical of a “simple” liquid such as argon [67, 69, 70, 71]. The loss of
the hydrogen-bonded network results in a loss of many of water’s unique properties, and
this transition is known to occur in the supercritical state [69].

4.2 Molecular Dynamics Simulations

Previous work on the FL in water was performed using molecular dynamics simulations
of the TIP4P/2005 potential [72], The work in this chapter [74] was performed following
this identification of the FL. The FL in TIP4P/2005 water is shown, as an interpolated
curve, in Fig. 4.1, data having been taken from Ref. [72]. Along the six primary isobars
on which we will be concentrating, the FL occurs at the following state points: (0.5 kbar,
515 K), (1 kbar, 525 K), (2.5 kbar, 550 K), (5 kbar, 580 K), and (10 kbar, 680 K). The
critical point of water is (0.22 kbar, 647K), which is more pressurised and hotter than
many other liquids, on account of water’s strong energetics. The FL therefore doesn’t
cross the critical temperature until almost 10 kbar, however 1kbar and 5 kbar are 5 and
25 times the critical pressure, so we do not expect near critical anomalies such as those
associated with the Widom line to have a significant impact on water at these conditions.
Furthermore, these conditions correspond to temperatures much higher than the melting
line and pressures much higher than the boiling line and critical pressure, so we can
consider these conditions to be deeply supercritical.

A system of 3350 TIP4P/2005 water molecules was prepared in an unphysical cubic
lattice initial configuration. Because of our aspirations of the supercritical state, we have
no need to create an initial structure corresponding to any type of ice. This initial con-
figuration is seeded with a Gaussian velocity distribution at the target temperature, and
then heated and pressurised to the target temperature and pressure using the Langevin
thermostat and barostat, with 1.0 ps relaxation times to both. These equilibration runs
lasted for 30,000 timesteps of 1 fs, for 30 ps of equilibration time in total. During the last
15000 timesteps, the system volume was collected and used to generate the mean density
at each state point (plotted in Fig. 4.1b). The mean densities were used to create initial
conditions at the target volume, again in a cubic lattice. These pressurised systems were
then subject to production runs in the NVE ensemble, after using velocity scaling to
melt and equilibrate the lattices. These production runs lasted for 170,000 timesteps, or
170 ps. The NVE ensemble is often preferred because it has nice “realistic” dynamics,
without any arbitrary choice of thermostat having been made. However, I also took the
final configurations of the equilibration runs, and used them as the initial configurations
(without any modification) of a second round of production runs, this time again in the
NPT ensemble with the Langevin thermostat and barostat. This controlled temperature
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Figure 4.1: (a) Phase diagram of H2O showing the Frenkel line (reproduced from [72]),
together with experimental state points of Katayama [67], Soper [68], and Gorbaty [73]
and state points used in molecular dynamics simulations in this work. The Widom line
is reproduced from the data of Ref. [57]; (b) Density versus temperature plots for the
simulated samples in this study. The Frenkel line (indicated by dotted lines) passes
through regions of high density beneath the density fluctuations at the Widom line.
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better at the expense of more contrived dynamics. This was done in order to compare
the structural data which was to be collected, which, as one would hope, did not end up
depending on the ensemble choice. In much the same vein, I also simulated systems of
32768 water molecules in order to make sure that data did not depend on system size,
which they did not.

Production runs were used to calculate things like pressure and temperature, of course,
but the structural data of interest were the radial distribution functions. Recalling our
definition of g(r) in Eq. 2.2.19, we can approximate it from a molecular dynamics trajec-
tory by creating histograms over discrete bins, averaging over both atoms within a sample
and timesteps over the trajectory. Conveniently, DL POLY will perform this counting on
the fly, eradicating the need for storing atomic trajectories over an entire run and then
processing them. Water is polyatomic, meaning that it will have several different ra-
dial distribution functions for each possible pair of atoms. For TIP4P/2005, this results
in 6 different radial distribution functions. The O-O function will serve our purposes
- as there is only one oxygen atom per water molecule, it represents the translational
intermolecular structure without containing information on orientation.

This procedure is not very complicated. Indeed, it’s a very simple procedure, but
it simply had not been done yet. However a few more calculations were done in order
to gather more information on the structure, both of which are dependent on the radial
distribution function. The first are distributions of the coordination number. The co-
ordination number is cleanly defined only in perfect crystals, where nearest neighbours,
next-nearest neighbours etc. are unambiguous. In amorphous materials, the statistical
definition of coordination number, nc, is:

nc = 4πn

∫ rmin

0

drr2g(r), (4.2.1)

where rmin is the position of the first minimum in g(r). This measure therefore counts
the mean number of molecular neighbours in the first peak of the radial distribution
function. This allows us to calculate nc using nothing more than the g(r), rin, and V
which we have already calculated. The distribution of coordination numbers, however,
is far more involved. To calculate this quantity, I took final configurations from the first
round of production runs as initial configurations for a second round of production runs.
During this second round, I recorded atomic positions every 1000 timesteps (1 ps) during
the simulation, which lasted for 50 ps. Then, for each molecule in each of these 50 states,
the number of neighbours within rmin at the corresponding temperature and pressure was
recorded. These data were used to fill histograms, which I then trivially converted into
discrete probability distributions.

The second auxiliary structural data I collect are the angular distribution functions.
The angles in question are the angles between a given molecular and its neighbours. In
a tetrahedral lattice, such as that which exists in water ice, this angle is 109.4◦. The
molecular configuration “snapshots” created in the second production runs just described
were also used to calculate the angular distributions. The neighbour lists created in the
coordination number calculations were passed to a separate algorithm which calculated
the angle between each pair of neighbours for each molecule. These data were again used
to fill histograms and converted into probability distributions.
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4.3 Results

The O-O RDFs, showing intermolecular correlations, calculated from the production
runs, are shown in Figs. 4.2a-c and 4.3a-b. In Fig. 4.2d I have plotted RDFs from two
additional state points, simulated in order to compare to data from Alan Soper’s work [68]
at ambient conditions and at high temperature and pressure. The TIP4P/2005 model
evidently acceptably reproduces the peaks of the RDF (the overestimation of the height
of the first peak is a known artefact) at supercritical conditions. We will focus first on
the lower pressure isobars, in Fig. 4.2a-c because the features are more interesting there.
Upon temperature increase at 0.5 kbar and 1 kbar the second and third peaks diminish
in height until they disappear. Simultaneously a new second peak, radially intermediate
to the old second and third peaks, emerges as the new ones diminish. At 2.5 kbar, the
second peak diminishes and disappears as it did at lower pressures, but the third peak
diminishes somewhat before abruptly shifting leftwards (to a lower radial position) and
becoming more prominent again. Not any of this pronounced behaviour is visible at 5
kbar and 10 kbar. The second peak is visible, though flat, at the lowest temperature at 5
kbar, and at 10 kbar all the RDFs resemble the high-temperature structure of the lower
pressure isobars.

The behaviour of the RDFs is much more easily understood if we plot key features
versus temperature. We start with the peak radial position versus temperature in Fig.
4.4. This shows the pronunciation of the crossover at low pressures: the old peaks become
less prominent (represented by open symbols) than the new peak at a temperature very
close to the FL on that isobar. The position of the RDFs at all pressures were calculated
by inspection, since the transitions are rather dramatic. At higher pressures, the third
peak instead reduces in radial position with increasing temperature down to a minimum
near the FL before increasing again. At 2.5 kbar this minimum occurs not long after the
disappearance of the second peak, but at higher temperatures the transition is completely
smooth and the second peak disappears at a much lower temperature.

In Fig. 4.5 I show the mean molecular coordination number along four isobars, the
distribution of coordination number at 1 kbar, and the angular distribution described
above at 1 kbar, all as functions of temperature. The mean coordination shown in
Fig. 4.5 is calculated using integration of g(r), though the coordination data collected
from the atomic positions produce the same mean. Inspection of the RDF at 300K and
5kbar (in Fig. 4.3a) reveals a problem with our definition of coordination number: the
second peak shifts left and becomes a shoulder of the first peak, merging with it. This
leaves us bereft of a well-defined first peak. This behaviour is not a problem with the
definition, per se, because the behaviour of the RDF implies that there is no typical “first
coordination shell” at all. For this reason, the lower temperature water simulations at 5
kbar do not support a meaningful coordination number, as can be seen in Fig. 4.5a. The
coordination numbers at 1kbar and 2.5 kbar exhibit unusual behaviour: they increase
with temperature, presenting maxima near the FL, before decreasing with temperature
as they do at higher pressures. The decrease of coordination with temperature is a
generic effect related to decrease of density and clustering as thermal energy increases.
An increase of coordination with increasing temperature is indicative of a change in
structure, therefore, and the maximum represents the termination of this change into a
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Figure 4.2: (a)-(c): O-O RDFs of simulated water at different pressures and tempera-
tures. Insets are the same data but with reduced plotting range to highlight the secondary
peaks. (d) Simulated and experimental [68] RDFs at ambient and supercritical condi-
tions, offset by 1 for convenience.
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Figure 4.4: O-O RDF peak positions: Squares - second peaks; circles - third peak;
triangles - new second peaks. Open triangles imply that the new peak is less prominent
than the old peaks, and vice versa for open squares and circles. The dashed vertical lines
correspond to temperatures at the Frenkel line.
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Figure 4.5: (a): Mean coordination number nc of water molecules in the supercritical
state across Frenkel line. The dashed verticle lines correspond to the temperature at the
Frenkel line. nc is not shown at low temperature at 5 kbar because the minimum between
the first and second peaks in Fig. 4.2c disappears at those temperatures, causing an ill-
defined cut-off. (b): Normalised histogram of molecular coordination calculated from
structural snapshots at 1 kbar. (c): Intermolecular angular distribution functions at 1
kbar. The dashed curve shows the distribution at the temperature corresponding to the
Frenkel line.
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generic simple structure.
The discrete probability distributions in Fig. 4.5b give more details of this behaviour.

The distribution at the lowest temperature, 300K, is sharp around 5-fold coordination,
representing the prominent transient (nearly) tetrahedral structure in the liquid. As
temperature increases the distribution broadens as its mean value increases and decreases,
representing the weakening of structure as the tetrahedra are dispersed (as opposed to
the adoption if a pronounced new structure).

We finally discuss the angular distribution in Fig. 4.5c, which shows a broad peak
around 109.4◦ at the lowest temperatures, representing the tetrahedral structure. Notably
there is a small but prominent peak at between 50 and 60◦. 60◦ is the angle of close
packing, so what this means is that there is a degree of close packing in the liquid. This is
distinct from the amorphisation of tetrahedral structure, which causes the broadening of
the 105◦ peak. As temperature increases, the degree of close packing increases, indicated
by the increasing height of this 50-60◦ peak, and the tetrahedral structure becomes
increasingly amorphous, indicated by the lowering height and broadening of the 105◦

peak. At the temperature at the FL, the close-packed peak becomes its most prominent
along the isobar, and is more prominent than the diminishing tetrahedral peak. Above
the temperature at the FL, both peaks further diminish. This behaviour is indicative of
the same process as nc - the tetrahedral structure below the FL gives way to a simple
close packed structure, and this new structure dominates and evolves as expected above
the FL.

The final data to discuss are the also derived directly from the RDFs: the height of the
first peak. The overestimation of the first peak height must be noted in these analyses.
The behaviour we see is real behaviour in the sense that this simulated system has a FL,
and the structural changes we see are still valuable as guides to the behaviour of real
water. The peak heights are not as intuitively evocative as peak positions, so here we are
guided by theory. The height of a peak, g(rmax)− 1, where rmax is the radial position of
the peak, is predicted in solids to follow a power law with temperature [2, 75]: g−1 ∝ T n.
A perfect classical crystal at exactly zero temperature will possess a RDF consisting of
delta functions. At a nonzero temperature, atoms can stray from their equilibria. If
displacements are small, the potential energy curves they traverse will be approximately
quadratic, which means that the spikes in the RDF will broaden into Gaussian peaks with
variance proportional to the temperature. The height of a Gaussian peak is proportional
to the reciprocal of its standard deviation, thence our power prediction for solid RDF
peaks. Liquids possess a transitory solid structure, so we can argue that this relationship
will hold for them too, at least below the FL where solidlike oscillation still exists in the
dynamics. This prediction was tested and verified in molecular dynamics simulations of
supercritical argon by my predecessor, Ling Wang [76]. The deviation from this power-
law relationship coincided with the FL in these studies. I plot the peak height versus
temperature in a log-log scale in Fig. 4.6, in order that a power law curve appear as a
straight line. Here, at all pressures, the deviation from the low-temperature power law
is clearly visible, and takes place within 5-15% of the FL predicted by the VAF criterion
(shown as a dashed verticle line). This is the width of the crossover seen in structural
and thermodynamic properties in experiments and modelling on other fluids [46, 50],
including my later work on CO2.
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Figure 4.6: Log–log plot of the RDF first peak heights, showing the crossover of evolution
as temperature approaches the FL. The dashed lines correspond to the temperatures at
the FL

65



4.4 Discussion

The FL therefore, with a multitude of evidence, stands at the climax of a structural
transformation in water. We attribute this transformation in the features of the RDFs
to the dynamical crossover at the FL and a water-specific structural crossover. The
transformation of water from a tetrahedral structure at low pressures and temperatures
to a closely packed structure at high pressures and temperatures is well-known. Water’s
tetrahedral structure is dominated by the electrostatic energetics of hydrogen bonds and
is open (in the sense of low coordination), meaning that increasing the kinetic energy
of a system or compressing it can can destroy this structure. A structural crossover is
therefore an inevitability in water, but there was no guarantee that it would be related
to the FL. The data have made this association. The black disks in Fig. 4.1a are what
we label the “crossover points”. At low pressures, where the crossover is pronounced,
the “crossover point” is defined as the temperature at which the new peak becomes
more prominent than the old diminishing ones. The appearance of a secondary peak at
positions intermediate to the old peaks is indicative of a complete change of structure.
We call this change pronounced because the new peak emerges from nothing (and the
old peaks diminish into nothing) rather than a continuous transition from one structure
to another. At higher pressures (where the old second peak corresponding to tetrahedral
coordination has disappeared at temperatures far below the FL), the “crossover point”
is defined as the temperature at which the new second peak reaches its radial minimum,
above which it moves outwards with temperature again. Along isobars where density
can decrease with temperature increase, it is natural for peaks to move outwards as the
mean distance between molecules increases. A peak moving inwards is suggestive of a
change in structure, therefore, and the radial minimum is a good measure of the apex or
completion of a structural crossover. The crossover’s apex, by these definitions, as can
be seen in Fig. 4.1a, very closely follows the locus of points which defines the FL.

Based on these observations, we propose that the FL is a facilitator of the known
structural crossover in water from tetrahedral to closely packed, extending from near the
critical point (at 500 bar) to the deep supercritical state (up to 2.5 kbar). The method
of the facilitation is as follows: as the oscillatory component of molecular motion is lost
in the tetrahedral structure, water molecules acquire purely diffusive motion and thence
the flexibility to arrange themselves into a denser structure in response to the hydrostatic
pressure. It’s worth being clear here about what I mean by “close packing”. In solids,
close packing is one of two structures, hexagonal or face-centered cubic crystals. Each
atom has 12 nearest neighbours and the packing fraction is the maximum possible in
three dimensions, at about 0.74. In liquids, when I say close packing, I simply mean a
simple structure where atoms and molecules are jammed together as close as the external
pressure can manage with no short or medium range order to counteract it. A “closely
packed” fluid can therefore have a relatively low coordination number which simply rep-
resents a low density while the atoms or molecules still lack any short or medium range
order. The solid-like oscillatory motion maintains the tetrahedral structure, and its termi-
nation at the FL allows the structure to rearrange itself into the simpler “closely-packed”
configuration at higher temperature and pressure. The loss of the tetrahedral structure
at low temperatures, say 300K, by increasing pressure is achieved by overcoming the
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hydrogen-bonded energetics by force. Increasing temperature along an isobar, however,
does not disperse the structure by giving the molecules enough kinetic energy to overcome
the hydrogen bonds. Instead the increase in kinetic energy creates more frequent “escape
routes” from the tetrahedral cages, to the point that molecules are diffusive so often that
no tetrahedral structure can be sustained at all. At these low pressures, therefore, water
transitions from a tetrahedral rigid liquid into a closely packed rigid liquid on approach
to the FL, and from a closely packed rigid liquid into a gaslike non-rigid fluid above the
FL.

Let me emphasise that the novelty here is not the transformation itself, for that in-
evitably must occur somewhere in the supercritical state. Rather the unexpected discov-
ery is that this pronounced structural crossover, the loss of water’s tetrahedral structure
which gives it many of its intriguing anomalies, is coupled to the FL and operates in the
deep supercritical state, far from the melting line and critical point, where such transi-
tions were traditionally thought to be absent. One could have predicted that the FL,
with it in mind, would have been the upper limit (in temperature) for this transition, but
there was no guarantee that it did not happen below the FL, or indeed in a curve through
state space that didn’t resemble the FL’s shape at all. Thinking about the liquid and
supercritical state in terms of dynamics is clearly a powerful tool, as it has elucidated
the transition of water from its unique structure to that of a simpler liquid.

There is a single experimental structural study (at least of which I am aware) which
crosses the FL in deeply supercritical water in a neat and analysable manner, that of
Gorbaty et. al. [73], which uses x-ray scattering to extract the O-O RDFs at 1 kbar. A
comparison of the peak positions between my simulations and the experimental data is
given in Fig. 4.7. The peak positions at low temperature from the X-ray data are very
close to those from my simulations, and the second peak disappears at almost the same
temperature from both sets of data. The behaviour of the third peak at 1kbar in the
X-ray data is more similar to the simulated data at 2.5 kbar: it transition into the new
peak continuously rather than giving way to a newly emerged intermediate peak. After
it drops down to this minimum at the FL, it moves radially outwards as temperature
increases. The structural crossover’s proximity to the predicted FL is therefore present
in these experimental data, though the crossover itself is somewhat less abrupt.

We now turn to the RDF features at higher pressures. As mentioned, the FL extends
to arbitrarily high temperatures and pressures, provided the system remains chemically
unaltered. In Fig. 4.4, we see that the second peak disappears far below the FL at these
pressures, implying that the transformation from tetrahedral to close packing is nearly
complete. The transformation we see is more subtle, but new second peak increasing from
a minimum is still seen, suggesting that the FL is still the conclusion of a transformation
beyond which the peak shifts outwards as it does at all other pressures. Likewise, the
deviation from the solidlike law in the height of the first peak seen in Fig. 4.6 remains
unchanged at high pressures. The FL therefore facilitates water’s dramatic structural
crossover in its tetrahedral state, and creates a more subtle crossover in its simpler high-
pressure state.

These observations demonstrate the potential breadth of the implications of the FL.
Water is an interesting, complicated, and anomalous system with very many applications
in industry. These findings imply that the FL and its theoretical backdrop describe
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Figure 4.7: O-O PDF peak positions from molecular dynamics (MD) data and X-ray
scattering data [73]. As before, open triangles imply that the new peak in the MD data
is less prominent than its neighbours and vice versa for open squares and circles.
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fundamental mechanisms in fluids, because the effects of the FL are amplified in the
anomalous substance of water, rather than diminished. Furthermore, supercritical water
is industrially relevant and these results will serve as a stimulus and guide for future
experimental and theoretical work into supercritical water.
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Chapter 5

Carbon Dioxide

5.1 A Very Versatile Fluid

Carbon dioxide is a rather notorious compound for its role as a greenhouse gas, not only
in the terrestrial atmosphere but also the Venerian atmosphere. It’s also an interesting
compound for its physical properties, as the triple point lies at a pressure exceeding
atmospheric pressure, giving us a convenient example of sublimation. Though we may
wish to use the FL to redefine what is meant by a liquid and discuss whether such a state
exists beyond the critical point, it does us well to remember that it is still terminated
before before the zero of temperature or pressure. The mixed dynamical state is not a
guaranteed privilege.

Returning to earth, supercritical carbon dioxide is used in a wide variety of applica-
tions, more even than water, such as polymer synthesis and processing [77, 78, 79], dissolv-
ing and deposition in microdevices [80], solvation, green chemistry, green nanosynthesis
and green catalysis [30, 31, 33, 34, 81, 82, 83, 84, 85, 86, 87], extraction [88], chemical
reactions [32], and sustainable development including carbon capture and storage [89].
Carbon dioxide’s prevalence means there is a lot to be gained from a deeper understand
of its supercritical state.

Much like with water, the FL was determined in supercritical carbon dioxide using
the VAF criterion by one of my predecessors [72]. The simulations I describe here were
performed in collaboration with neutron scattering experiments performed by Sarantos
Marinakis and Alan Soper [90]. Carbon dioxide’s phase diagram is shown in Fig. 5.1.
The critical point of carbon dioxide is 73.8 bar and 304 K, which is exceeded substantially
in temperature and pressure by water due to water’s stronger configurational energetics.
The FL crosses the isobars of 500 and 590 bar along which this study is performed at 297
K and 302 K respectively, such that, though the temperature is not deeply supercritical,
the states we probe are still far from the critical point and fairly far above the melting
line (around 200 K at these pressures).
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Figure 5.1: The phase diagram carbon dioxide, showing the Frenkel line with reference
to the boiling line and melting line. The star represents the critical point.

5.2 Molecular Dynamics Simulations

The potential used here, described in Section 3, was used to locate the FL in carbon
dioxide by a predecessor [72], which guided the work here. The potential parameters
are listed in Tab. 3.2. Much like with water, permitted by our lack of interest in the
crystalline state, an initial configuration of 30752 carbon dioxide molecules was prepared
in a square lattice to be melted and pressurised in equilibration runs. With my experience
from water and anticipating a less pronounced transition in carbon dioxide, I started
with this large number of molecules in order to generate RDFs as sharply as possible.
As it happens, it would take more effort than this to gather the required statistics.
Equilibration was performed in the NPT ensemble with the Langevin thermostat and
barostat for 30 ps (30,000 timesteps) to calculate the required density at each state
point. Initial configurations were then remade at the target density and melted and
equilibrated with velocity rescaling followed by 100 ps of production runs in the NVE
ensemble during which RDFs were collected. Each isobar was traversed from 220 K to
500 K in increments of 10 K.

5.3 Results

The RDFs calculated from MD trajectories are shown in Fig. 5.2. Unlike in water, there
are no sharp or dramatic transitions. The first, second, and third peaks all reduce in
height and shift radially outwards, as expected as temperature increases on an isobar.
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Figure 5.2: Evolution of C-C RDFs of simulated carbon dioxide at different pressures
and temperatures.
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These RDFs resemble those of water at higher pressure, indicating a lack of pronounced
medium-range structure. This is not unexpected, as carbon dioxide lacks the necessary
geometry to be polar (the oxygen-carbon-oxygen angle is π), and doesn’t contain bonds
with high electronegativity differences like the hydrogen-oxygen bond in water.

Since the RDFs do not exhibit any pronounced changes like those of water, I deemed
it important to create a more systematic procedure for determining the position of a peak.
This procedure was to fit a parabola to the crest of the peak. To reduce ambiguity, this
fit would have be reasonably insensitive to the range (in r) of data used to create the fit.
Specifically, data from up to 1 Angstrom on either side of the peak were used to fit a
parabola, and the uncertainy on the centre and heights of these parabolae were less than
5% of the absolute values at all temperatures and pressures. The mean peaks positions
and heights of these parabolae are used in the discussion that follows. The positions of
the first peak are plotted in Fig. 5.3, together with fits made from data below and above
the FL. These fits are reasonably convincing, as the peak positions appear to remain
linear at temperatures far above the FL. The transition, however, is not sharp, and one
can doubt whether there is truly much to see here - the RDF peak expands more readily
with temperature in the gaslike state above the FL, which is an easy thing to predict,
but is rather more weak than I would have hoped. Furthermore, there is enough noise,
particularly at low temperatures, to call into question conclusions about a transition so
weak to begin with.

I therefore began a new suite of simulations, intending to much improve the quality of
the statistics and to decisively arrive at a conclusion. New initial conditions underwent a
full 500 ps of equilibration time in order to as accurately as possible generate production
initial conditions at the necessary density. The production runs too were extended to
500 ps to remove as much spurious noise from the RDFs as possible thereby reducing
ambiguity in peak position determination. Furthermore, I doubled the density of state
points in the low temperature region, such that below 300 K I had simulations every
5 K, and increased the maximum temperature of the range to 600 K. The first peak
positions extracted from these trajectories are plotted in Fig. 5.4. With reduced noise
and an increased temperature range, what formerly appeared to be a bilinear transition
now appears to be a continuous curve. My skepticism paid off, it seems.

The transition in the peak heights seen in water in the previous chapter and previ-
ously in argon [76] are fully evident here, as seen in Fig. 5.5. This transition seems to be
universal across the FL. This makes sense, at it’s predicated solely on the small displace-
ments of solid-like oscillations, which are present by definition in any fluid below the FL.
However this leaves the peak positions in Limbo. Heights are all well and good, but they
don’t exactly overflow with intuition. They measure the pronunciation or permanence
of coordination shells, which is hard to sink one’s teeth into. If a appreciable crossover
exists in the intermolecular geometry itself (rather than its statistical prevalence), we
must look more closely and think more carefully.

Let us question what the first peak position signifies and why we ought to care. The
simplest measure of distance between particles is simply the cube root of volume divided
by particle number. Volume divided by particle number is the mean volume occupied
by a particle, so its cube root defines a characteristic length, lV related to this volume.
This provides no information about the structure itself, however, as the only structural
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Figure 5.3: Evolution of the first peak position of the C-C RDFs with temperature. The
dotted lines correspond to the temperatures at the FL.
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Figure 5.4: Evolution of the first peak position of the C-C RDFs with temperature from
the second batch of simulations with greater precision. The dotted lines correspond to
the temperatures at the FL.
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information it contains is from the density. The peaks of the RDFs describe patterns of
low and high local density surrounding the typical particle. The first peak position, rfpp

is the the distance between first nearest neighbours, and its deviation from lV signifies
a degree of clustering and local fluctuations in density from the mean. The density
itself undergoes no crossovers in this deep supercritical state (rather famously!) and this
distance rfpp itself is the subject of no helpful theoretical predictions in fluids (though
the oft-forgotten work by Green in Ref. [91] is worth reading), but the combination of
the two parameters is insightful. Simply examining rfpp alone is tricky, in absence of
dramatic changes, because the density changes along our isobars which surely affects the
peaks. A stronger measure of intrinsic short and medium range structure is performed
by accounting for density.

Let me explain what I mean. In a simple cubic lattice, lV = rfpp. Therefore as you
compress and expand the crystal, lV = rfpp will always hold. In a body centered cubic

lattice, the first nearest neighbour distance is
√

3
2
a, where a, the lattice constant, is equal

to
(

2V
N

) 1
3 as the lattice has two atoms per unit cell. Therefore the body-centred cubic

lattice has a different constant of proportionality between lV and rfpp, about 1.09, but it
is still a constant, so long as the structure doesn’t change. Using similar considerations,
the constant is 1.12 in the face-centred cubic lattice, and 0.833 in a diamond cubic lattice.
The physical meaning of this proportionality is uniform compression. If the crystal is
subject to bulk strain, the structure at all levels is scaled in the same proportion to
this strain. Such behaviour is obviously not sustainable as extreme compressions or
expansions, and eventually the old structure must give way to a new one, disrupting
the original proportionality between lV and rfpp. In solids, this would usually involve an
abrupt phase transition from one crystal structure to another. However we are dealing
with fluids, and therefore do not expect a sharp structural change.

In Fig. 5.6, I show the relationship between lV and rfpp, except I scale each by its value
at a reference temperature, the predicted temperature of the FL. These plots contain the
same information as lV vs. rfpp, but in a more easily understood manner. At the lower

temperatures, the first peak position clearly shares a linear relationship with V
1
3 at both

pressures. This indicates that in this liquidlike state the local structure is not significantly
disrupted by the thermal expansion of the fluid. Above the FL, the deviation is stark
and consistent. Furthermore, the linear relationship is destroyed completely, rather than
the old relationship giving way to a new one. This is expected behaviour, as gases are
not condensed systems and the first peak position in a gas is more dependent on the
size, geometry, and interaction of the constituent molecules [91] rather than the density.
This linearity and deviation from it at higher temperatures has been observed in molten
group 1 elements and liquid CS2 [92, 93, 94]. The low level of noise and close temperature
spacing at low pressure make this conclusion already quite strong, however I decided to
back it up further with statistical analysis.

To determine whether a crossover is taking place here, I fitted the data to two different
sorts of functions. The first was either quadratic, or log plus linear:

f1(V ) =

{
a+ bV + c log(V )

a+ bV + cV 2
(5.3.1)
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Figure 5.6: Relationship between the first peak position r and the system’s characteristic
length V

1
3 . Dashed vertical lines show the fitted crossover volume and the volume at the

FL. Insets: Relative trend of the residuals of the linear fit
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The curves are obviously not cubic, or above, as extrapolating such curves would lead to
sharp drops up or down. The quadratic or log plus linear functions fit the shape of the
data well and will serve duly for our purposes. The second sort of functions we consider
are linear below a certain transition volume, Vc, and either quadratic or log plus linear
above this volume:

f2(V ) =

{
(α + βV ) Θ(Vc − V ) + (a+ bV + c log(V )) Θ(V − Vc)

(α + βV ) Θ(Vc − V ) + (a+ bV + cV 2) Θ(V − Vc)
, (5.3.2)

where Θ is the Heaviside step function, and a, b, c, β, Vc the fitting parameters (α depends
on the other parameters in order to ensure continutity at Vc. The linear fits at low
volume in the log plus linear case are also shown in Fig. 5.6. The insets here show
the “residuals”, the difference between the data and these linear fits. These residuals
increase from zero sharply above the transition temperature, suggesting a real change in
functional dependence across the transition volumes, corresponding to about 350K and
359K at 500 bar and 590 bar respectively. This is in line with previous observations of
the width of the crossover at the FL.

There is one final analysis I performed to justify claims of a crossover. Generally
speaking, one improves the numerical quality of a fit by adding more parameters to
it. One can, a priori, justify a penalty for the number of fitting parameters a fit uses;
otherwise one ends up with as many parameters as data and a polynomial of such a
degree will pass through them all. There are two closely related quantitative measures
of goodness of fit which penalise the number of parameters: the Akaike Information
Criterion (AIC) [95] and the Bayesian Information Criterion (BIC) [96]. Such measures
are quantitative, but, of course, somewhat arbitrary, but they are also widely used and
accepted. Applied to our data, the AIC and BIC, applied to the composite functions in
Eq. 5.3.2, were substantially lower than -10 below those for the single functions, which
is a decisive preference for two different functional dependencies in the data above and
below a certain volume, Vc.

5.4 Discussion

The structural crossover in carbon dioxide was shyer than that in water, and her true
colours were not shown without due dedication on my part. The crossover in the peak
heights appears to be a universal and reliable effect of the FL. Other effects are system
dependent and more interesting. Water, for example, does not show the deviation from
uniform compression above the FL, because it doesn’t uniformly compress below the FL.
This is hardly surprising, as we have seen much evidence that this region below the FL is
host to a continuous structural transformation. Carbon dioxide has no such transitions
in its liquidlike state, as we have demonstrated, but still loses its short and medium
range structure, like water does, due to the decoupling of density with the first nearest-
neighbour distance. This is an important finding because the FL is a fundamental and
universal phenomenon, and its effects should not be confined to anomalous compounds.

As mentioned, this work was published in collaboration with experimental studies on
supercritical carbon dioxide. The result of these neutron scattering experiments was the
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Figure 5.7: First peak position kmax of the structure factor S(k) of supercritical CO2,
extracted from neutron scattering experiments [74], as a function of temperature T at
(a) 500 bar; (b) 590 bar.
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extraction of the total structure factor (which includes contributions from C-C, O-O, and
C-O correlations). A subtle crossover in the peak positions of the structure factor is seen
here [90], similar to those seen neon [46] and nitrogen [47]. The first peak position of
the structure factor is plotted as a function of temperature in Fig. 5.7, where we see the
behaviour those who have studied the FL have come to expect: the first peak position
changes more readily with temperature above the FL than below. Considering subcritical
liquids to subcritical gases, the liquids are more compressed and resistant to changes in
structure, whereas gases are easily expanded. The first peak of the structure factor
represents the dominant periodicity in the system, so the crossover we see represents the
“coordination shells” (which won’t be very sharp above the FL) spreading into a larger
wavelength more readily at high temperatures. This crossover again happens within 10%
of the crossover predicted by the VAF criterion.

Performing a Fourier transformation of the structure factor gives the total RDF, not
quite the same as the partial C-C RDF we extracted directly using MD simulations.
The first peak of the total RDF is, however, scarcely affected by other contributions,
and serves as a respectable comparison. The same analysis was performed on these
experimental RDFs as I did on the MD RDFs, using data from NIST [97], the results of
which are plotted in Fig. 5.8. The crossover here is harder to discern from inspection,
but, noting the worse quality of the experimental data, we can compare to the modelling
data and say that the behaviours are in agreement including the temperature of the
crossover to within 10% of the predicted crossover from the VAF criterion.
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Chapter 6

Chaos

6.1 Dynamical Instability

For this next project we investigate a particular dynamical quality of a system, borrowed
from chaos theory - dynamical instability. Dynamical instability is the phenomenon
in which neighbouring trajectories in phase space diverge from each other under their
dynamical evolution. In such systems a small perturbation to a trajectory will cause
significantly different evolution, and trajectories have a tendency to spread out all across
phase space. Dynamical instability and chaos theory are of interest to the foundations
of classical statistical mechanics [98] and have important implications in the ability of
digital computers to faithfully recreate Hamiltonian trajectories [99].

The mathematical work which addresses dynamical systems with this property is
called Ergodic Theory. Ergodic systems, mathematically, are the lowest rung on the so-
called ergodic hierarchy which describes dynamical instability [98]. To speak technically,
dynamical instability is the phenomenon in which neighbouring points in the phase space
of a deterministic dynamical system diverge exponentially under the system’s evolution.
Verbally: the present determines the future, but the approximate present does not ap-
proximately determine the future. Small uncertainties in the state of a system will lead
to increasingly poor predictions as the system evolves. Dynamical instability is a neces-
sary but insufficient condition for all categories on the ergodic hierarchy. There are no
known general conditions for these categories, but ergodic systems are in some sense the
“weakest”, the least dynamically unstable. Each rung on the ergodic hierarchy implies
the ones below it. The next step up is mixing systems.

We define a dynamical system D = (Γ,O, µ,M ), with phase coordinates Γ over phase
space M , time evolution operator T , and measure µ (so far we have used a probability
density as a measure and called it ρ). This dynamical system D has the mixing property
if, for any A,B ∈M [100]:

lim
t→∞

µ(At ∪B)

µ(A)
=

µ(B)

µ(M )
, (6.1.1)

with At = T (t)A, the time evolution of the initial set A. Verbally, this equation expresses
that in mixing systems, the ratio of the “overlap” between a time evolved set and any
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Figure 6.1: The evolution of a probability density under chaotic dynamics in a (a)-(b):
fine grained phase space; (c)-(d): coarse grained phase space.

other subset of phase space to the measure of the unevolved set will, with enough time,
approach the “overlap” between that subset and phase space itself. In other words, the
initial set A will evolve into a set At which is distributed completely evenly throughout
phase space. This definition requires the dynamics to be measure-preserving, and de-
scribes the closest approach to a uniform probability density such systems can muster.
The initial set A, in a mixing system, will spread out in fine, filigree-like filaments through
phase space, so thin and so far-reaching that all subsets of phase space, no matter how
small, contain the same proportion of A. This process is illustrated graphically in Fig.
6.1a-b. In c-d, I have performed coarse-graining, restricting the resolution to the squares
and representing the fractional occupation by the initial set within the squares with the
shading. In a mixing system, as t→∞, all of these squares (no matter how big or small
they are, so long as they’re finite), will become the same shade.

It is obvious that a mixing system is necessarily ergodic. A general condition for
ergodicity is unavailable, and it comes as no surprise that mixing systems too have no
known general condition. The higher rungs of the ergodic ladder, Kolmogorov systems
and Bernoulli systems [101], are not so easily explained intuitively. So I shan’t bother.
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For our specific purposes, we note that dynamical instability is also related to the FL.
The FL is a dynamical transition between states with very different phase space dynamics
- below the line the configuration space is full of local minima which temporarily confine
particles, whereas above the line the phase space is much more open.

Dynamical instability arises in highly nonlinear systems which are not very amenable
to microscopic solutions. There is however a very simple and intuitive way to quantify the
dynamical instability of a system, which is the Lyapunov spectrum. Lyapunov spectra
measure the rate of divergence of neighbouring trajectories in phase space. Consider a
point Γ(0) ∈M at time t = 0, and a perturbation of it in the ith phase space coordinate:
Γ(0) + δΓi(0). If the dynamics are unstable, this perturbation will rapidly grow and
erase correlations between the two trajectories. The state at time t = τ can be written
Γ(τ) + δΓ(τ), where Γ(τ) is the time-evolved unperturbed trajectory, and δΓ(τ) will, in
general, spread into many or all other phase space dimensions. The assumption of the
Lyapunov spectrum is that this perturbation grows exponentially with time:

|δΓ(τ)| = |δΓ(0)| exp(Λτ). (6.1.2)

More specifically, we must define this for each phase space coordinate:

Definition 6.1.1 (Lyapunov Exponents) The Lyapunov exponents characterise the
exponential divergence of a perturbation in each coordinate of phase space:

λi = lim
t→∞

1

t
log

(
|δΓi(t)|
|δΓi(0)|

)
. (6.1.3)

The collection of Lyapunov exponents is called the Lyapunov spectrum.

The Lyapunov spectrum therefore defines the directions in which phase space contracts
and expands under time evolution. The sum of Lyapunov exponents is related to the rate
of contraction of phase space and thus vanishes for Liouvillean flows [101]. Just one pos-
itive Lyapunov exponent will cause dynamical instability, and the nature of exponential
growth means that the total perturbation size, |δΓ(t)|

|δΓ(0)| , will be dominated by the largest
positive Lyapunov exponent, Λ say. We can therefore write:

Λ = lim
t→∞

1

t
log

(
|δΓ(t)|
|δΓ(0)|

)
. (6.1.4)

This quantity is frequently called the maximal Lyapunov exponent (MLE). There are
a few things to be careful with, however. One can immediately spot that if δΓ(0) lies
along the phase velocity tangent the perturbation will never grow. More generally, Λ will
depend both on the perturbation δΓ(0) and the point which is perturbed Γ(0). Along
a given trajectory, the value of Λ will depend on where the perturbation is taken. In
practice we will take the average Λ over a trajectory. In an ergodic system, this average
will be the same as the phase average, but assuming that under this context would be a
bit rich. So we’ll be taking averages over initial conditions too, to make sure.

The MLE has its most accessible explanation by taking its reciprocal to get the
Lyapunov time. The Lyapunov time represents the characteristic time period over which

85



Dynamical System Lyapunov Time
Solar System 5 million years
Pluto’s Orbit 20 million years

Hydrodynamic chaotic oscillations 2 seconds
1 cm3 of argon at standard conditions 3.7×10−11s

1 cm3 of argon at its triple point 3.7×10−16s

Table 6.1: Lyapunov times of different dynamical systems [101].

Dimension Symbol Reduced form
Length r r∗ = r/σ

Time t t∗ = t
√
ε/(mσ2)

Energy E E∗ = E/ε
Concentration n n∗ = nσ3

Table 6.2: Definitions of the dimensionless reduced units in the LJ potential.

a perturbed trajectory decorrelates with the unperturbed trajectory. It is of practical
importance, because it measures the growth rate of errors associated with imperfect
measurements. After the Lyapunov time has passed, these errors have grown by a factor
of e. The Lyapunov times for several dynamical systems, reported in Ref. [101], are
listed in Tab. 6.1.

Dynamical instability is a key feature of chaotic systems. Indeed, chaotic systems
are necessarily mixing systems, but there is an understanding that chaotic systems must
exhibit additional interesting features, such as dense periodic orbits or strange attractors.
Many mixing systems happen to exhibit such features anyway. Chaos theory is a multi-
disciplinary approach to dynamically unstable systems which appear in physics, climate,
computer science, ecology, and many other fields. I use the language of ergodic theory in
order to add to this field by investigating dynamical instability in the supercritical state
and across the FL [102].

6.2 Molecular Dynamics Simulations

Here I use a much smaller system than before, consisting of 256 atoms under periodic
boundary conditions which interact with each other according to the LJ potential 3.2.4
with potential parameters corresponding to argon, listed in Tab. 3.3. I choose argon
because it is a system which has been well-characterised over the FL [50, 76, 103]. The
critical point of argon is 48.6 bar and 151 K. The phase diagram of argon including the
Frenkel line is depicted in Fig. 6.2. In this work, in line with existing work on Lyapunov
exponents in MD, I used reduced units for the LJ potential which puts everything in
terms of the physical parameters which characterise the model. The definitions of the
relevant dimensionless reduced units are given in Tab. 6.2.
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Figure 6.2: The phase diagram argon, showing the Frenkel line with reference to the
boiling line and melting line. The star represents the critical point.

This work involves small perturbations and measuring their growth. MD simulations
are not exact, and become less so when a larger timestep is employed. Obviously sensi-
tivity of the results that follow to choice of timestep is something which must be watched
out for. Timesteps, therefore, between 1 and 0.01 fs were employed, with all results
showing no sensitivity to this choice.

I prepared an initial configuration of 256 argon atoms in a cubic cell with FCC crystal
structure at four different lattice constants: 6.428, 6.049, 5.747 Å. These correspond to
reduced concentrations of 0.7101, 0.8284, and 1.065 respectively. Densities and concen-
trations of these isochores are given in standard units, alongside the temperatures and
energies in reduced and standard units of the FL calculated by the VAF criterion, in Tab.
3.3. Structural equilibration, including melting where applicable, was performed in the
NVT ensemble with the Langevin thermostat for 200 ps, at temperatures ranging from
20K in the crystalline state to 10,000K in the deeply supercritical state. Equilibrated
configurations were fed into NVE dynamics for a further 200 ps, from which statistical
data such as VAFs were collected.

The final configurations of these NVE runs were used as the initial configurations
of the production runs in which the MLEs were calculated. The procedure used to
calculate the MLE is called the tangent space method [104], and operates as follows. An
initial configuration is perturbed by a very small amount in all phase space directions.
Practically this amounts to shifting the x, y, and z coordinates and velocity components
of each particle in as small a manner as is allowed by the numerical precision of DL POLY.
It’s crucial that the perturbed and unperturbed trajectories lie on the same phase space
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n∗ 0.7101 0.8284 1.065
ρ (g/ml) 1.199 1.403 1.798
n (Å−3) 0.01807 0.02108 0.02710
TF (K) 295 997 3850
T ∗F 2.45 8.33 32.0

EF/N (eV) -0.00432 0.116 0.650
E∗F/N 5.28 16.9 69.0

Table 6.3: Thermodynamic data for each system investigated: ρ - density; n concentra-
tion; TF - temperature at the Frenkel line; T ∗F reduced temperature at the Frenkel line;
EF/N - energy per particle at the Frenkel line; E∗F/N - reduced energy per particle at
the Frenkel line. The reference energy is E∗/N = 0 at n∗ = 0.5917 and T ∗ = 0.5 (20 K).

energy hypersurface, so velocities of the perturbed configuration are rescaled such that
the change in energy from the perturbation is eradicated and the states lie on the same
hypersurface. The perturbed and unperturbed systems are then evolved according to
Hamilton’s equations for a certain period of time. This period varied from 0.25ps to 2ps,
with no sensitivity in the results to follow on this choice. The MLE is then calculated
according to Eq. 6.1.4 and recorded. Next, the perturbation δΓ(t) is projected along
itself with a resulting magnitude equal to |δΓ(0)|. Mathematically:

δΓnew(0) = δΓ(t)
|δΓold(0)|
|δΓ(t)|

. (6.2.1)

The new perturbation and the original trajectory are both evolved, and another MLE
is recorded. This procedure was repeated until 100 MLEs were recorded. The MLEs
recorded this way are insensitive to initial perturbation size within a reasonable range.
The MLEs recorded were averaged to give the time average of the MLE, Λ, for each
given trajectory. I calculated the same values of Λ (within statistical fluctuations) under
different initial conditions produced by differently seeded initial velocity distributions. I
will therefore comfortably refer to both Λ and the phase average 〈Λ〉 by the same symbol,
Λ, from here on out.

6.3 Results

We begin by investigating the transition at the melting line. We can comfortably agree
that this transition is reasonably well-understood, and it can act as a forward base from
which we can understand what’s happening at the FL. The reduced energy per particle
as a function of temperature is plotted in Fig. 6.3. The disconinuity of energy across the
melting line due to the latent heat of fusion allows us to discern the location of the melting
line when we plot the MLE versus the reduced energy in Fig. 6.4. I prefer to plot the MLE
as a function of energy because energy is a microscopically unambiguous quantity about
which the phase space is aware. Energy defines a hypersurface, whereas temperature is
a statistical quantity best defined for large systems. We see a discontinuity in the MLE

88



0.50 0.52 0.54 0.56 0.58 0.60 0.62

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
*

E
*
/
N

(a) n* = 0.8284

M
el
ti
ng
li
ne

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1

2

3

4

5

6

7

T
*

E
*
/
N

(b) n* = 1.065

M
el
ti
ng
li
ne

Figure 6.3: Reduced energy per particle E∗

N
across the melting line at reduced concentra-

tions of (a) 0.8284 and (b) 1.065.

across the melting line, which has been previously documented [105, 106, 107, 108, 109].
This gives us confidence that my calculations are correct. I note that the transition
in energy and MLE is not very clear, particularly at the sparser of the two isochores.
This is because I set the energy of each simulation densely across the transition which
causes some degree of superheating in the crystalline state or supercooling in the liquid
state. This is especially true with a small system size of 256 atoms. Nonetheless the
discontinuity is very clear. I further note that the lowest concentration, n = 1.199 g/ml
(n∗ = 0.7101), is much below the concentration at the triple point, 1.417 g/ml. This
means that at temperatures immediately below the triple point temperature (83.8 K)
the state is a solid gas mixture, and the state at temperatures immediately above it is
a liquid gas mixture. Though there is some degree of this at the concentration of 1.403
g/ml, at the lowest concentration the transition in the MLE is obfuscated completely.
For this reason I omit this plot.
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Figure 6.4: Maximal Lyapunov exponent Λ across the melting line at reduced concen-
trations of (a) 0.8284 and (b) 1.065.
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The next matter was to calculate the FL along the isochores. VAFs along the isochores
are plotted in Fig. 6.5. As can be seen, the disappearance of the minima happens fairly
promptly at lower densities. At the highest density, however, a very slight minimum
remains for a temperature range that spans almost 1000 K. The zoomed-in inset of Fig.
6.5c shows the gradual disappearance of this minimum. The VAFs in this inset are almost
indistinguishable at the lower resolution of the main figure despite differing significantly
in energy. This means that after most atomic oscillation is dispersed, a very slight
component disappears far more gradually, which happens because the system density is
fixed at a high value. In this sense, the system is almost completely diffusive and “gas-
like” far before the disappearance of the minimum, and the last leg of the transformation
takes place much more slowly. Energies and temperatures at the FL are listed in Tab.
6.3.

Finally we look at the MLE plots for the three isochores extending deep into the
supercritical state. Fig. 6.6 plots the MLE as a function of reduced energy, up to and
beyond the FL. We also include the thermodynamic definition of the FL, cV = 2kB,
as an alternative marker of the dynamical crossover. The high-temperature functional
dependence of the MLE is clearly visible with the logarithmic axes: Λ = a(E∗)b. The
data are fitted to this relationship and the fitted parameters are reported in Tab. 6.4.
At lower densities, the crossover to this power-law relationship closely coincides with the
both the dynamical crossover at the FL and the thermodynamic crossover at cV = 2. At
the highest density, the dynamical crossover occurs deep within this power-law regime.
However we note, as discussed above, a very small minimum in the VAFs disappears in
the energy range of E∗/N ≈ 40 to E∗/N ≈ 68 (this is a larger range than that between
the melting line and FL at the other densities), which corresponds to a very minor
component of molecular oscillation disappearing in this range. For the most part, atomic
oscillation gives way to diffusion at much lower energies than the disappearance of the
minimum, represented in Fig. 6.6 by the gradual approach to the power-law relationship
as oscillatory modes disappear.

n∗ 0.7101 0.8284 1.065
a 2.727 2.747 2.798
b 0.4856 0.4944 0.5040

Table 6.4: Fitted parameters for the power law relationship Λ = a(E∗)b along the three
different isochores.

6.4 Discussion

Chaotic dynamics have received ample attention in physics beyond theoretical consider-
ations. Lyapunov exponents have been used to calculate transport properties in fluids,
such as viscosity [110, 100, 111, 112]. Additionally, the ability of digital computers to
faithfully represent the dynamics of chaotic systems is an increasingly important ques-
tion (for a particularly striking example of a digital computer’s failure, see the recent
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and reduced time Z(t∗) at the four different concentrations.
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Figure 6.6: Maximal Lyapunov exponent Λ in the fluid state at reduced concentrations
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energies to be visible.
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work [99]), and the Lyapunov spectrum has been proposed as a natural measure of the
deviation of the calculated trajectory from the “true” one [113].

One of the seminal examples used in chaos theory is the Lorentz gas [114], which
models an ideal gas in the dilute limit, and whose Lyapunov exponent is well-known
[101]. On the other hand, the Lyapunov spectrum of condensed phases have also been
well studied in the condensed phase using MD simulations [115, 105, 106, 107, 108].
The behaviour of Lyapunov spectra across phase transitions has been documented [105,
106, 107, 108, 116, 117, 109, 118], exhibiting discontinuities in the MLE itself or its first
derivative with respect to an order parameter. Phases are an ultimately macroscopic
notion, but particle dynamics and phase space properties like Lyapunov spectra can
both provide a quantitative microscopic description of the phases and the transitions
between them, motivating our line of inquiry.

The transition of Λ in the supercritical state behaves as one might expect. The dis-
continuity in Λ across the melting line is due to the discontinuous opening up of phase
space upon melting. Opening up here means that trajectories are more able to wander
through different parts of phase space, as atoms migrate between quasi-equilibrium po-
sitions about which they oscillate. The effect on the momentum subset of phase space
offers no discontinuity assuming that equipartition holds or nearly holds. It’s difficult to
picture this opening up of phase space, but the effect on the Lyapunov exponents is clear.
In the crystalline state, where atomic diffusion events are extremely rare, a perturbation
in a trajectory will cause particles to bounce off each other in different ways and will
result in a slightly different position in the configuration subset of phase space. In a
liquid however, where diffusion events are commonplace, a perturbation in a trajectory
will cause migrations which would otherwise not have happened, or prevent migrations
which otherwise would have. This results in a substantial increase in dynamical instabil-
ity in the liquid state compared to the solid state, and since the change in dynamics is
discontinuous, so too is the discontinuity in Λ. The dynamical transition at the FL is not
fully understood, but any discontinuity must be small enough to have gone undetected
for two centuries. The gradual transition from one regime into another is therefore in
line with our understanding of the changes which take place in phase space across the
FL.

A power law with temperature for the MLE has been observed in a diverse range
of condensed matter systems [119, 120, 121], though at far lower temperatures than
those probed in this study. Our understanding of the FL informs our explanation of
the power law found in the supercritical state. Between the melting line and the FL,
as the relaxation time τF decreases, the MLE increases with energy. This increase is
caused by the increasing prevalence of diffusion events, which contribute significantly
to dynamical instability as explained above. This regime terminates smoothly as τF

approaches the atomic oscillation period and a local rigid structure can no longer be
defined. Above the FL where diffusion is continuous rather than abrupt, the events of
chief dynamic sensitivity are now the collisions of kinetic theory - collisions involve sudden
changes in velocity, and in turn lead to other collisions. The distinction between collision
and diffusion is not sharp at and close above the FL, but the dynamical state is very
clearly different from below, with atoms migrating without a continuous impediment,
but encountering resistance when they meet other atoms head-on. An altered trajectory
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will lead to a very different cascade of collisions. Scattering is what makes the Lorentz
gas a chaotic dynamical system [114]. These collisions now determine the evolution
of the MLE without contribution from diffusion events, which is why it follows a single
functional form. The collisions become more frequent with temperature at a fixed density.
For a hard-sphere gas, the mean collision rate is [122]

wcoll = nπσ2

√
6kBT

m
. (6.4.1)

This is a concave function of temperature (and thus energy), which is a property ex-
hibited by the MLE at all densities (the gradient in the log-log plots in Fig. 6.6 is less
than unity). At the lower densities, this power-law regime spans more than an order of
magnitude of energy above the FL. The fluid at the highest density, even well below the
FL, is mostly dominated by diffusion and collisions, but there is a transitory period of
oscillation for some molecules. We can interpret that collisions are responsible for the
bulk of dynamical instability in these states, but a small fraction of atoms at any given
time undergoing oscillation do not contribute to dynamical instability in this way. This
crossover period of small deviation from the power law is much smaller at lower densities.

Fig. 6.7 summarises my main interpretations of these results. In the crystalline
state motion is only oscillatory and atoms oscillate within effectively permanent cages,
which means dynamical instability is relatively low. Dynamical instability increases with
temperature simply because mobility increases with temperature and atoms have access
to more of configuration space and momentum space. Across the melting line, atomic
motion combines oscillation with occasional diffusion events. Diffusion events are another
source of dynamical instability, and the evolution of the MLE has contributions from
both of these dynamical events. As temperature increases, the relaxation time decreases
and diffusion events become more common, accelerating the growth of the MLE. As the
FL is approached and diffusion events become very common, a new type of event can
be described. Collisions involve rapid accelerations of particles whose kinetic energies
dwarf the potential energy of their environment. Therefore between the melting line
and the FL, the evolution of dynamical instability is caused by oscillation, diffusion, and
collisions, the contributions of each of which will evolve differently with energy. This,
the liquid’s mixed dynamical state, precludes a simple functional relationship between
Λ and E. Above the FL, oscillation is no more and diffusion becomes commonplace.
Indeed, all atoms are always diffusing and the evolution of dynamical instability is no
longer fed by the increasing frequency of diffusion events. Instead, what becomes more
prevalent is high-velocity collisions between atoms which cause rapid changes in position
and momentum, which in turn cause an increase in dynamical instability. Since there is
no longer any oscillation or diffusion, the dynamical instability evolves only according to
these simple gaslike dynamics, and it turns out that this evolution is a power law with
energy. This is much akin to the justification for a thermodynamic crossover at the FL -
below the line the evolution of energy is defined by the disappearance of oscillation and
the increasing frequency of diffusion, above the line diffusion is ubiquitous and energy
changes based on how far atoms go between collisions.

Thinking of liquids as mixed dynamical states has provided much insight [41] in re-
cent years, and crossovers in thermodynamics and structure have been predicted and
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Figure 6.7: Summary of our main results: Evolution of dynamical instability in condensed
matter, from solids at low temperature to gaslike supercritical fluids at high temperature.
The figure shows the dynamical regimes in each state of matter (oscillation, diffusion, col-
lisions) and their relationship to the dynamical instability. Yellow atoms are oscillating,
green atoms are diffusing, and cyan atoms are colliding.
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discovered (including in this thesis, at least for simulations!) on the basis of these consid-
erations. The Lyapunov spectrum is very sensitively linked to dynamics, much moreso
than thermodynamics or structure, and has been used in the past to indicate changes of
phase [105, 106, 107, 108, 116, 109, 118]. Our results therefore do not only help to under-
stand microscopic chaos in the supercritical fluid state, but also show that this depiction
of liquids as dynamically mixed states and the idea of the FL which separates regions in
the supercritical part of the phase diagram are very deep and fundamental physical ideas
which are supported directly by properties of the classical phase space itself.
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Chapter 7

The “c”-transition

7.1 The Nature of the Frenkel Line

From the very beginning of this project, a key topic for exploration was the nature of the
transition at the FL, in order that we might discern whether a sort of phase transition
was operating in the supercritical state. A phase transition, should one take place, is
likely to manifest in the isochoric heat capacity, cV . The heat capacity is one of a
system’s most fundamental thermodynamic properties because it measures the change
in entropy and degrees of freedom under increase of thermodynamic temperature. As
described, the transition at the FL is all about the evolution of degrees of freedom:
below the FL the phase is defined by the disappearance of long wavelength transverse
collective modes via the domination of oscillation by diffusion; above the FL the phase
is defined by the disappearance of short wavelength longitudinal modes (the only type
remaining) due to the increasing distance atoms travel unperturbed. How exactly the
phase evolves between these extremes, however, is unknown. It is likely smooth, but
then the higher order derivatives of cV could still contain anomalies, and accessing the
theoretical description of these derivatives in terms of the Frenkel picture is troublesome.

On the other hand, the transition might be better understood if the parameters which
characterise cV itself were themselves better understood close to the FL. Towards this
end, we explored a multitude of ideas related to order parameters and characterising τF

in the vicinity of the FL where it becomes ill-defined. The idea that something related to
the shear modulus G or the number of propagating transverse modes could be an order
parameters was something we considered for a long time. All our approaches suffered
from the inability of our theoretical models to accurately characterise a fluid near the FL.
The collisions of the gaslike state and the diffusive jumps of the liquidlike state, which
define the mean free path lFP of kinetic theory and the relaxation time τF of Frenkel theory
respectively, are both unclear in the states around the FL where the liquid is so mobile
that atoms spend as much, or more, time diffusing as they do oscillating or where the gas
is so dense that atoms spend no significant time without being perturbed significantly
by another atom. It was while trying to find an unambiguous operational definition of
τF and comparing it to τM that I discovered what we have called the “c”-transition.

This transition operates in the deep supercritical state, far from the critical point. As
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mentioned, transitions in this state of matter are traditionally thought not to exist so far
from any other known phase transition. In this work, we conduct the widest and most
detailed survey of the supercritical state heretofore undertaken. We investigate states up
to 330 times the critical temperature and 8000 times the critical pressure, scanning the
phase diagram along isobars, isotherms, and isochores.

This is a story I want to tell chronologically, so I shall drive straight into simulation
details and discuss motivation concurrently.

7.2 Molecular Dynamics Simulations - Argon

As is traditional in the field of liquid physics, we perform our fundamental probings into
a conceptually and practically simple system, in this case argon, just as I did in the
work on chaos [102]. Argon is pleasing theoretically and practically due to its simple
energetics. The only potential energy is the Lennard-Jones pair potential, with no need
to worry about charges or internal degrees of freedom. Furthermore, the weakness of
the LJ potential at long range means that argon becomes very close to an ideal gas at
accessible temperatures and pressures, suiting our analysis.

As in the previous chapter, initial configurations of argon were prepared in an FCC
crystal structure. In this study, I have used systems of 500, 4000, 27000, and 108000
atoms, finding no significant dependence of any results on system size. These systems
were subject to equilibration along three different isobars, isotherms, and isochores. Pre-
equilibration was performed, as I did in water and carbon dioxide, in the NPT ensemble
in order to produce equilibrium densities for the isobars and isotherms. After that, the
NVT ensemble produced equilibrium structures which served as the initial conditions for
the production runs, which took place in the NVE ensemble.

While working on definitions of τF accessible to molecular dynamics, I compared it to
the Maxwell relaxation time τM which provides the macroscopic link to Frenkel theory,
as seen in our discussion of generalised hydrodynamics. Calculating this quantity is non-
trivial, even if the equations involved seem simple. For convenience, I repeat relevant
equations here:

η(ω → 0, k) = τT(k)G∞(k) (2.1.87)

G∞(k) =
V

kBT
[τzx(0,k), τzx(0,k)], (2.1.74)

η =
V

kBT

∫ ∞
0

dτ [τzx(0), τzx(τ)], (2.1.68)

τM =
η

G
. (2.1.95)

The path, then, seems clear. Using molecular dynamics we can calculate the Maxwell
relaxation time as follows:

τM =

∫ ∞
0

dτ
[τzx(0), τzx(τ)]

[τzx(0), τzx(0)]
, (7.2.1)
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having omitted the k−dependence of G∞ to get its “macroscopic” form. This reiterates
the meaning of the Maxwell time in a microscopic manner - it measures the normalised
autocorrelation of fluctuations in shear stress.

Actualising Eq. 7.2.1 is slightly problematic, however, in an MD simulation due to the
integral. We can calculate the autocorrelation function easily enough using Eq. 3.3.3 from
the k → 0 limit of the instantaneous stress tensor [8] which we periodically record from
the trajectory into a time series, but integrating such a function is dangerous. The reason
for this is that at long times, an autocorrelation function becomes very noisy around zero
as correlations truly have decayed to insignificance. If the integral is performed into
this region of noise around zero, what we are effectively doing is performing a random
walk. The expectation of a random walk is zero displacement, of course, but the variance
of the walk grows linearly with integration time. This means that integrating just one
trajectory will cause the viscosity, and thus τM, to wander, rather than settle, if the
tail of the autocorrelation function is integrated over too long a time. Better statistics
acquired by averaging over a longer MD trajectory does not solve this problem, as there
is a minimum to fluctuations [7] and integrating these fluctuations will always cause
wandering. This is a known problem, and there are a few ways that people deal with it
[123]. One method is simply to terminate the integral as soon as it first hits zero. This
is a better strategy than it sounds, at least for fairly inviscid fluids where shear stress
decorrelates very quickly and the initial drop captures most of the integral. However it’s
a bit presumptive, best used once a better method has verified it to be possible. Another
option is to take the autocorrelation function and fit it to something analytic which can
be integrated analytically. This is again presumptive, forcing an outcome by our choice
of fitting function.

The approach I took, and to be sure, that many others have taken, was to simulate
multiple trajectories at the target conditions with different initial conditions, calculating
the stress autocorrelation function for each of them. The integral of each autocorrelation
function is tantamount to performing a random walk, but averaging over such walks
will eliminate the drift and retrieve the true steady state value. Using different initial
conditions in this way much more efficiently reduces noise than a single long trajectory
because all the states in the new time series are completely uncorrelated, rather than
simply adding more states onto the end of an existing time series. Viscosities calculated
in this way were insensitive to system size, from 500 to 108000 atoms, consistent with
earlier findings [124].

Values of viscosity and isochoric specific heat capacity (in units of kB) across several
different phase diagram paths are plotted with experimental values in Fig. 7.1. Viscosi-
ties and heat capacities plotted this way were calculated from NVE production runs of
1000000 timesteps (1 ns) and averaged over 20 different initial conditions. Heat capacity
was calculated using Eq. 3.3.12. Values of viscosity and the shear modulus were averaged
over the three independent off-diagonal components of the stress tensor. Experimental
values of cV and η at lower pressures come from NIST, and higher pressures come from
Ref. [125]. The agreement here is good at both high and low pressures, demonstrating
that the calculations of viscosity here are adequate. The agreement with NIST dimin-
ishes at higher pressures, but given the good agreement with the data from Ref. [125]
it seems likely that this discrepancy is due to the lessened reliability of NIST data at
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higher pressure on account of extrapolation.
Viscosity is an informative quantity when considering the dynamics of liquids and

gases, and in order to tell our story it is helpful to plot cV (η). Along isobars and isochores,
cV (η) has clear turning points due to corresponding minima in η, whereas no such minima
exist along our isothermal paths. We observe strong path dependence in the interrelation
between cV and η, and will return to the issue of path dependence below. Here we note the
earlier work [126] relating viscosity to excess entropy calculated from the virial expansion
at low density. This relation was discussed on empirical grounds and is unrelated to
excitations in the system considered by Frenkel theory.

Next we examine the dependence of cV on τM. This is the key physical property in
the Frenkel picture of liquids and its relationship with cV should contain information on
the nature of the crossover. We begin with the evolution of τM along the nine phase
diagram paths, all of which cross the FL. This evolution is plotted in Fig. 7.3. We note
that despite all paths crossing the FL, τM experiences rather extreme path dependence
in that it has minima aong isobars and isotherms but not along isochores. We recall
that Frenkel’s theory relates τM to the average time between molecular rearrangements
in the liquid [2]. Backed by experiments and modelling [127, 128], this relation has since
become an accepted view [40].

In the liquidlike regime, τM decreases with temperature. In the gaslike regime, shear
momentum transfer takes place via the collisions of kinetic theory (as discussed in the
previous section), and a relaxation time is therefore interpreted as the mean time be-
tween collisions in this regime [2, 4]. In the same way that the liquid relaxation time,
which qualitatively describes the frequency of abrupt diffusive atomic motion, can be
related to τM, we postulate here that in the gaslike regime the gas relaxation time, which
qualitatively describes the frequency of abrupt collision events, can too be related to
τM. It stands to reason that τM would be related to this collision frequency, after all
it isn’t obvious that there could be two separate relaxation timescales operating in the
gaslike regime, but I will also provide a mathematical argument for this identification. I
summon the Zwanzig and Mountain formula for the infinity frequency shear modulus for
a monoatomic fluid with pairwise interactions ϕ(r) [129]:

G∞ = nkBT +
2πn2

15

∫ ∞
0

dr 4πr2g(r)
d

dr

[
r4 dϕ(r)

dr

]
. (7.2.2)

The ideal gas limit of any system is achieved by setting the interaction term to zero,
which reduces G∞ to nkBT . Meanwhile, the expression for the viscosity of a hard sphere
gas is [122]

η =
1

3
ρvthlFP, (7.2.3)

where vth is the thermal velocity. Noting that lFP = vthτc, with τc the mean time between
collisions, and 1

2
ρv2

th = 3NkBT
2V

, we retrieve the result:

η

G∞
= τc(= τM). (7.2.4)

In other words, the viscoelastic relaxation time represents the microscopic “event”
frequencies of both the liquidlike and gaslike fluids far from FL on either side. This

101



NIST

Calculated

100

200

300

400

η
(μ
P
a
s)

(a) Viscosity (isobars)

P = 10kbar

P = 5kbar

P = 1kbar

NIST

Calculated

0 500 1000 1500 2000 2500 3000

1.6

1.8

2.0

2.2

2.4

2.6

2.8

T (K)

c
V

(b) Heat capacity (isobars)

P = 10kbar

P = 5kbar

P = 1kbar

Calculated

Experimental (Abramson)

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

T (K)

η
(μ
P
a
s)

(c) Viscosity (10kbar isobar)

Calculated

Experimental (Abramson)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

P (kbar)

η
(μ
P
a
s)

(d)Viscosity (500K Isotherm)

Figure 7.1: Comparison of (a) viscosities η and (b) isochoric specifc heat capacities cV
(kB = 1) calculated from simulated trajectories with experimental data from NIST [97];
comparison of viscosities η calculated from simulated trajectories along the (c) 10 kbar
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makes it a natural choice of dynamical parameter close to the FL, because although
the diffusion and collision times do not carry much physical meaning in such states,
τM is always well-defined. The minima therefore represent a crossover from a liquidlike
relaxation time commanded by diffusion and oscillation events [130] to a gaslike relaxation
time commanded by collisions [41]. This same crossover takes place along isochores, but
manifests differently in τM because τM can only decrease with temperature on an isochore.
Indeed, τ = L

vth
in the gaslike regime, where L and vth are the particle mean-free path and

thermal velocity in the gaslike state and L = 1
nσ

, where σ is the particle cross-section

area. Hence τM decreases with temperature at constant n mostly because vth ∝
√
T

increases (σ decreases with temperature weakly). We note that the minima of both η
and τM depend on the path taken on the phase diagram and path parameters.

We now investigate the relationship between dynamics and thermodynamics by plot-
ting cV as a function of τM along these nine paths in Fig. 7.4. Along isobars and
isotherms, cV (τM) has clear turning points corresponding to the minima in τM. This
turning point occurs close to cV = 2kB, such that the crossover in cV from liquidlike to
gaslike corresponds to the dynamical transition in τM. Along isochores, the situation is
again more subtle. However, since the ideal gas limit as T → ∞ corresponds to both
cV → 3/2 and τM → 0, the function cV (τM) in its gaslike regime must approach 3/2 as
τM → 0. Inspection of Fig. 7.4c reveals that this is indeed the case, and that cV (τM)
settles into this limiting behaviour again close to cV = 2kB.

Notably, Figures 7.2 and 7.4 show the significant path dependence of cV on η and
τM: cV depends differently on these parameters along isochoric, isobaric and isothermic
paths as well as different conditions for each path. Moreover, switching the dependence
of cV from η to the related τM completely changes the shape of the curves.

We now come to the pinnacle of these analyses. Recall our discussion of gapped
momentum states in liquids in Chapter 2. We recall the gapped wavevector, kg from Eq.
2.2.15:

kg =
1

2cTτM

, (2.2.15)

which was the solution to Eq. 2.2.12:

(cT)2∇2vT =
1

τM

∂vT

∂t
+
∂2vT

∂t2
. (2.2.12)

It follows from the discussion in Section 2.2 and Eq. 2.2.15 in particular that the solution
to the Maxwell-Frenkel viscoelasticity importantly depends on a certain parameter with
dimensions of length. We call this parameter the dynamical fluid elasticity length λd =
cTτM. The physical meaning of this length is that it sets the range of propagation of solid-
like transverse waves in the liquid because τM is the time during which the shear stress is
relaxed. Hence, cV should uniquely depend on λd because (a) λd governs the propagation
of transverse modes and (b) each mode carries the energy kBT (in harmonic classical case).
Moreover, this dependence is predicted to be unique and path-independent, in contrast
to the dependence of cV on η or τM plotted earlier. Therefore, we plot cV (λd) in Fig. 7.5,
and will use λd in our subsequent analysis

The result of this master plot in Fig. 7.5 is striking. Despite the clear difference
among paths of the same and different type seen in Figs. 7.2, 7.3 and 7.4, the functions
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Figure 7.5: Simulated cV (kB = 1) of argon as a function of the dynamical length, λd = cτ
across 9 paths spanning the supercritical state up to 330 Tc and 8000 Pc. All these paths
collapse onto a single curve and undergo a unified dynamic-thermodynamic transition at
the path-independent point cV = 1.88 and λd = 1 Å
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cV (cTτM) along all deeply supercritical paths converge into the same “c”-shaped curve in
Fig. 7.5. The liquidlike parts of the paths follow a similar shape before converging into
exactly the same curve. We can consider the cV (λd) curves to belong to a single family,
the loci of which converge at the inversion point of cV ≈ 1.88kB. From here on out, I will
call the loci, and the shape they trace out, the main sequence.

The values of cV ≈ 2kB and λd ≈ 1 Å at the inversion point in Fig. 7.5 are physically
significant. As previously explained, the value of cV = 2kB corresponds to a complete lack
of propagating transverse modes from the fluid’s phonon spectrum, with atoms effectively
interacting only longitudinally. In Frenkel’s theory cV = 2kB defines the upper limit (in
temperature), occurring well above the melting point where τM becomes comparable
to Debye vibration period. At this point, kg in Eq. 2.2.15 becomes close to the largest
wavevector set by the interatomic separation in the system (UV cutoff), and all transverse
waves disappear from the spectrum, resulting in cV = 2.

Anharmonicity can change this cV = 2kB result by a relatively small amount [41], and
the disappearance of transverse modes corresponds in anharmonic systems to cV = 2kB

only approximately. We also note that similarly to solids, plane waves decay in liquids.
The decay mechanisms in solids include anharmonicity, defects and structural disorder
present in, for example, glasses. Despite this decay, high-temperature specific heat in
solids is governed by phonons. In liquids, the additional decay mechanism is related to
atomic jumps [41]. Nevertheless, the propagation length of high-frequency excitations in
liquids and supercritical fluids is on the order of nanometers, as evidenced by experiments
and modelling [131, 132, 133, 103]. This is similar to room-temperature solids where the
lifetime of high-frequency phonons is on the order of picoseconds and the propagation
range is on the order of nanometers [134] and where disorder and/or defects reduce these
values further. This is also similar to glasses which are structurally similar to liquids
[135]. Therefore, phonon excitations govern the specific heat in liquids and supercritical
fluids to the same extent they do in solids.

The significance of the propagation range λd reaching about 1 Å at the inversion point
in Fig. 7.5 is that it corresponds to the shortest distance in the system (UV cutoff), the
interatomic separation on the order of Angstroms in condensed matter phases. This
distance is fixed by fundamental physical constants in the form of the Bohr radius which,
incidentally, together with the Rydberg energy, sets the viscosity minimum [136]. The
UV cutoff puts the upper limit for k-points for propagating waves in the system. Recall
that kg in 2.2.15 sets the range of transverse waves. When kg becomes comparable to the
largest, Debye, wavevector, all transverse modes disappear from the system spectrum.
We have calculated the Debye wavevector kD = (6π2n)

1
3 [7], to be about 1.0 Å−1 at the

inversion point. Equating it to 1
2cTτM

in 2.2.15 gives λd = cTτM ≈0.5 Å. This is consistent

with about 1 Å at the inversion point in Fig. 7.5, given the approximate nature of Debye
model and that 2.2.15 applies to the linear part of the dispersion relation only but not
to the range where ω(k) flattens off close to the zone boundary at k = kD.

In the gaslike state, the quantity cTτM increases towards the ideal limit of cV = 3/2
in Fig. 7.5. The collapse of all curves in the gaslike regime in Fig. 7.5a implies that cτ is
the only parameter necessary to characterise the loss of these degrees of freedom in this
regime.
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Figure 7.6: cV as a function of cTτMkD (kB = 1), where the curves similarly converge in
the liquidlike state at the path-independent point close to cV = 2.

An alternative way to collapse the data from different paths is informed by the phonon
theory of liquid thermodynamics. As we saw, the liquid energy at low temperatures,
where transverse waves exist below the Frenkel line, depends on the ratio of kg in 2.2.15

and the Debye wavector kD: kg
kD

[41, 103, 137] (or, alternatively, on ωF

ωD
for propagating

waves [41], where ωF = 1
τM

and ωD is Debye frequency). However, this disappearance of
transverse modes can only proceed up to the largest k-point, kD, set by the UV cutoff
in the system as discussed earlier. As a result, kg

kD
enters the equation for the liquid

energy. We plot cV as a function of dimensionless product cTτMkD in Fig. 7.6. We
observe that the curves from all paths collapse in the region of large cV down to about
cV = 2, showing that cV below the Frenkel line depends on the product cTτMτkD only,
as predicted theoretically. This is followed by the divergence of cV below cV = 2 in the
gaslike state along different paths, presumably because the solid-like concepts underlying
kD become progressively less relevant in the gaslike state at high temperature.

The key result of this work is visible in both scaling graphs in Figs. 7.5 and 7.6: the
data collapse in either large or small-value range of cV ; the curves diverge from each other
in the other range; and this divergence takes place near the key value cV = 2kB. We
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have identified two parameters, λd and λdkD, which fully characterise the heat capacity
of argon.

7.3 Molecular Dynamics Simulations - Carbon Diox-

ide

Argon is all well and good, however it is almost as simple a system as we can simu-
late, with only the hard sphere and soft sphere systems being any simpler. The single
interaction type between loose atoms is very helpful as a conceptual tool, however for
practical and conceptual reasons we ought to see what happens to the “c”-transition in
other types of fluid. The first system I considered is nitrogen, N2, modelled as a rigid
body with two Lennard-jones sites. In this case, the formula for heat capacity must be
modified to account for the change to the equipartition, from Eq. 3.3.12 to:

cV =
5

2
kB

(
1− 〈K

2〉NV E − 〈K〉2NV E
5
2
Nk2

B〈T 〉2NV E

)−1

, (7.3.1)

with K again the kinetic energy. Changing from a monoatomic to a rigid diatomic
Lennard-Jones system is a small shift, but there are noteworthy changes to the dynamics.
The viscosity will certainly be somewhat sensitive to the extra dimension afforded to the
molecules and the addition of rotational dynamics. The “c”-transition, however, still
holds. I would place the graphs here, but the next system is also a rigid linear molecule
but its energetics are far more complicated, such that nitrogen offers nothing new except
encouragement. This next system is a return to carbon dioxide.

As already stated, carbon dioxide is one of the most used supercritical fluids, enjoying
a variety of industrial and environmental applications. It’s also very accessible, with a
critical temperature of around 300 K and a critical pressure of “only” around 75 bar.
Theoretically, it importantly differs from nitrogen because it contains two different ele-
ments and its bonds are not entirely covalent. Oxygen’s electronegativity gives carbon
dioxide a quadrupole moment and therefore electrostatic interactions must be included
in our simulations. Furthermore we have to contend with three different sorts of Van der
Waals interactions between the different element pairs. The energetics of carbon dioxide
are therefore considerably more complicated, and there is plenty of room for the viscosity,
speed of sound, and heat capacity to diverge from the very tidy interrelation we found
in argon and nitrogen.

The crystal structure of carbon dioxide naturally implicates some significant order
with respect to orientation. Setting up an initial configuration in this structure, knowing
full well that I shall only go on to melt it, struck me as a tad gratuitous, so initial
configurations of 512 carbon dioxide molecules were produced in an unphysical simple
cubic structure. The exact same equilibration procedure as used in argon is used here.
Analysis was performed in the same way, save for the modification in cV seen in Eq. 7.3.1.
DL POLY automatically calculates the k → 0 limit stress tensor according to the different
types of forces included in the setup, so no modification on my part was necessary. We
simply note that in the gaslike end of the “c”-transition, cV (this time measured per
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molecule) must approach 5kB
2

rather than 3kB
2

. The inversion point of the “c”-transition
is more difficult to predict, as carbon dioxide’s more complicated inner structure allows it
to evade a simple modal decomposition. If there is no significant orientational collective
dynamics at the FL, however, which seems a reasonable assumption, then we would
expect the inversion point to below slightly below 3kB, equivalent to argon and as it does
in nitrogen.

We needn’t indulge in the story of the previous section, we know our favourite pa-
rameter and we know what to do with it. What is worth mentioning, however, is the
potential for carbon dioxide I’m using, the same as in Section 3, models van der Waals
forces using the Buckingham equation, Eq. 3.2.5. As stated, the behaviour of the Buck-
ingham potential at small distances is unphysical, and its usage comes with the proviso
that an atom never be likely to cross the maximum caused by the competing attractive
and repulsive terms. Should we choose an isochore as a path on the phase diagram and
try to follow it up to a gaslike cV near 5kB

2
, this unphysical attraction becomes a prob-

lem. This is because a fixed density requires enormous temperatures in order for atoms
to surpass their attractive terms and acquire nearly unbound motion. Unfortunately very
high kinetic energy at fixed extreme compression is exactly what will cause an atom to
overcome the Buckingham potential’s maximum. For this reason, no supercritical iso-
chore will be extendable by our simulations into the gaslike regime. This isn’t a problem,
however, since the other paths I have selected still sample a wide region of the phase
diagram and adequately demonstrate path independence. The paths are three isobars: 2
kbar, 5 kbar, 10 kbar; and two isotherms: 1000 K and 2000 K.

Behold the “c”-transition in Fig. 7.7, just as stark in carbon dioxide as it was in argon.
As expected, the transition occurs at around 2.9kB, implying that the thermodynamic
evolution in the gaslike state beyond the inversion point is defined, as in the simple
monoatomic theoretical case, by the loss of short-wavelength intermolecular collective
longitudinal modes. The shape of the curves in Figs. 7.5 and 7.7 are very similar,
surprisingly similar, in fact. The inversion point occurs again at λd =1 Å, and the
curves coincide not only in the gaslike states, but also in the liquidlike states, whereas
there is moderate divergence in argon. Why carbon dioxide exhibits an even neater
transition than argon is a mystery to me.

The critical point of carbon dioxide is 303 K, 73.8 bar. The critical point of argon
is 151 K, 48.6 bar. This means that near critical effects are much less easily avoided in
carbon dioxide, and indeed I ran into them without specifically looking for them. The
“c”-transition operates in a huge range of the supercritical state, but it is only the deep
supercritical state which hosts it. Near the critical point, the curves fail to collapse onto
the main sequence curve in the gaslike state, as can be seen in argon and carbon dioxide
in Fig. 7.8. The near-critical 500 K isotherm of carbon dioxide and near-critical 10 bar
isobar of argon both deviate from the main sequence roughly when they pass near the
critical isochore, returning to the main sequence curve in the deeply liquidlike and gaslike
states along the paths far from the critical point. This demonstrates the uniqueness and
importance of near-critical state and the near critical anomalies.

Moreover, a subcritical isobar, at 10 bar, was simulated in argon and underwent “c”-
transition analysis, the results of which are plotted in Fig. 7.8b. Naturally a subcritical
path will contain a discontinuity in the heat capacity and dynamical length, and this
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Figure 7.7: Simulated cV (kB = 1) of carbon dioxide as a function of the dynamical
length, λd = cτ across 5 paths spanning the supercritical state up to 33 Tc and 520 Pc. All
these paths collapse onto a single curve and undergo a unified dynamic-thermodynamic
transition at the path-independent point cV = 2.9 and λd = 1Å
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can be seen in the figure. However, on either side of this continuity the curves fall onto
the main sequence. In the gaseous (not gaslike!) state the curve coincides exactly with
the other paths, and in the liquid state it falls into the locus of similar curves, just
like the other liquidlike paths. This is a rather profound discovery, as it extends the
“c”-transition into the subcritical regimes - liquids and gases. Recall the vast range of
supercritical states which conform to both sides of the “c”-transition - this dynamical
correspondence is shared by liquids and gases below the critical point. One starts to
wonder what essential differences exist between liquids and liquidlike supercritical fluids,
and likewise between gases and gaslike supercritical fluids. We’ll return to this.

7.4 Discussion

This transition, the “c”-transition as we call it, was not an expected consequence of the
FL. The expression for CV in Eq. 2.2.8 is only very approximate, especially regarding

its volume dependence which arises through kD and the partial derivative
(
∂kg
∂T

)
V

. It is

far from obvious that across many different phase diagram paths, differing by orders of
magnitude in temperature and pressure, the functions cV (λd) would all converge into a
single point, at the point cV ≈ 1.9kB, and at the apex of a transition from liquidlike to
gaslike behaviour. One could have predicted that a path-independent expression for cV
in the gaslike state would have been derivable from dynamical considerations, but the
convergence of all curves at a single point exactly at the apex of the liquidlike to gaslike
transition is a very striking discovery.

As mentioned earlier, the dynamical VAF criterion of the Frenkel line corresponds to
the disappearance of the oscillatory component of particle motion. In Fig. 7.9, we plot
the line calculated using the VAF criterion in argon, together with the “c”-transition line
determined by (P ,T ) at the inversion point where cV ≈ 1.9 in Fig. 7.5. We also plot
the critical isochore for comparison. The Frenkel line from the VAF criterion and the
inversion point are close and run parallel to each other. This serves as self-consistency
check for our theory and implies that the inversion point can serve as a hallmark and
a definition of the supercritical transition between the liquidlike and gaslike states at
the FL. As mentioned earlier, the inversion point is unambiguously defined in Fig. 7.5
and does not depend on a theory such as that underlying the thermodynamic criterion
cV = 2kB and the dynamical VAF criterion.

Let me reiterate that near the critical point, the dynamical and thermodynamical
properties are strongly affected by near-critical anomalies [22, 44], and the function cV (λd)
is affected as a result. The function cV (λd) calculated along near-critical paths does not
collapse onto the inversion point. On the other hand, our main sequence curve in Figs.
7.5 and 7.7 is deeply supercritical (and subcritical) and is therefore free of the near-
critical anomalies. The deeply supercritical state was simultaneously very mysterious, on
account of underexploration, and little considered, so the operation of the “c”-transition
in the deep supercritical state and not near the critical point is an unexpected discovery.
The critical point is often accompanied by a rather famous example: one can continuously
transform a liquid into a gas by going around the critical point. Of course if one strays
close to the critical point in such a venture, while no boiling will occur, the transformation
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Figure 7.8: (a): Comparison of a near critical isotherm (500 K) in carbon dioxide to the
main sequence “c”-transition curve from deeply supercritical state points. (b) Compar-
ison of a near critical isobar and a subcritical isobar in argon to the main sequence. In
both figures, the near-critical paths are split according to whether volume is above or
below the volume of the critical isochore, Vc.
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Figure 7.9: Phase diagram of argon showing the inversion points of the “c”-transition
corresponding to cV ≈ 1.9kB in Fig. 7.5, the Frenkel line determined by the VAF criterion
[23], the critical point, and the critical isochore.

115



will nonetheless contain interesting anomalies. If, however, the critical point is avoided
and a deeply supercritical path is chosen, what one will effectively do is traverse the
entirety of the “c”-curve, from liquid to liquidlike to gaslike to gas. The near critical state,
and the boiling line itself, are the anomalous parts of the phase diagram. The subcritical
states and deeply supercritical states, at least in the sense of the “c”-transition, are one
and the same.

There have been a great many proposals of methods to separate the supercritical state
into liquidlike and gaslike regions recently. The Widom line [22], as mentioned, makes
use of the near critical anomalies, effectively continuations of the boiling line itself, as
they extend into the supercritical state. The Frenkel line itself, of course, has several
different definitions including dynamic, thermodynamica, and spectral [138]. Another
recent proposal [139] defined a dynamical degree of “solidicity”, derived from the VAF,
to separate rigid and nonrigid states. This was related to the FL, and provided an
alternative definition. Indeed, as the authors say, the FL is more fundamental than a
liquid and gaseous state, existing in soft-sphere systems without a boiling line or critical
point, a property understood since the FL’s early days [23]. The FL as a concept is
therefore inundated with different definitions, all of which roughly agree with each other,
and all of which are based on fundamental theoretical considerations with origins in our
expectations of rigid and nonrigid states. The “c”-transition, however, is empirical -
it defines a transition in and of itself, without needing to discuss expectations. There
are two regimes in the supercritical state, one where the function cV (λd) falls on the
universal curve at cV / 1.9kB, and one where the function cV (λd) converges upon the
universal point, for any path, at cV ≈ 1.9kB. As can be seen in Fig. 7.9, the “c”-
transition is closely traced by the VAF criterion of the FL, which confirms its origins.
The discovery of the “c”-transition is a vindicating event for Frenkel theory, because I
discovered it having been guided by this theory and nothing else. Equally, one can take
the “c”-transition as the more fundamental phenomenon, since it’s unambiguous, and the
FL and its accompanying theories to be a comprehensive explanation of this transition.
There is much still to learn about the “c”-transition, and we must consider it as a distinct
entity and not only view it by the grace of the FL, as there is no guarantee that the FL
can provide us with all the answers.

The collapse of all curves up to the key value of about cV = 2kB and divergence
of curves along different paths beyond this value has two further implications. First,
it suggests that the inversion point cV = 2kB is a special point on the phase diagram.
Second, if a thermodynamic property has a wide crossover, the behavior of different
properties strongly depends on the path taken on the phase diagram. On the other
hand, the observed collapse of all paths at the special inversion point close to cV = 2kB

and λd = 1 Å indicates either a sharp crossover or a dynamically driven phase transition
related to the “c”-transition between liquidlike and gaslike states. Within the uncertainty
set by fluctuations in our simulations, we do not observe an anomaly of cV in Fig. 7.1b
at temperatures and pressures corresponding to the inversion point (our simulations put
an upper boundary of about 0.05kB on the value of a possible anomaly of cV ). This does
not exclude a weak thermodynamic phase transition, similar to a percolation transition,
or a higher-order phase transition seen in higher derivatives of thermodynamic functions.
The hunt for this phase transition is the topic of the next chapter.
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In summary, we have discovered a universal, striking, and demonstrative inter-relation
between dynamics and thermodynamics using the specific heat cV and the dynamical
parameter of the fluid elasticity length, λd = cTτM. This connection provides a clear and
path-independent transition between liquidlike and gaslike supercritical states, which we
call a “c”-transition. Our “c”-shaped main sequence curve provides an unambiguous and
path-independent criterion for the separation of liquidlike and gaslike states, calculated
from accessible quantities in molecular dynamics simulations. The collapse onto this
main sequence curve occurs in the supercritical state up to T = 330Tc and P = 8000Pc,
meaning the transition, and the distinct states it separates, exist over a far larger range
of temperatures and pressures than the boiling line which separates subcritical liquids
and gases. The collapse is indicative of either a sharp crossover or a new phase transition
operating in the supercritical state.
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Chapter 8

The Possibility of a Phase Transition

8.1 What is the nature of the “c”-transition?

The search for a phase transition at the FL, as I mentioned, was long frustrated by
finding a suitable order parameter, with any obvious choices being too difficult to unam-
biguously define. The “c”-transition, if it does nothing else, makes it rather clear what
the important parameter of the supercritical state is: λd = cTτM. Or there may be a way
in via λdkD due to the second manifestation of the “c”-transition seen in Fig. 7.6. The
thermodynamic function cV has a special relationship with λd, but the transition itself,
along any one given path, is simply a stationary point. It’s worth noting that no other ob-
vious thermodynamic function shares a special relationship with λd. The “c”-transition
is suggestive of a thermodynamic phase transition for the following reasons. The “c”-
curves all converge into a single special point, cV ≈ 1.9kB, λd ≈ 1 Å for argon, which is
path-independent, depending, rather, only on the constitution of the fluid. Therefore the
fluid, as it arrives at this inversion point, approaches a sort of corresponding state where
certain aspects of the dynamics and thermodynamics are identical, no matter how (on
which path) this inversion point is approached. Furthermore, the curves on the gaslike
side of the transition are all identical, such that the corresponding states which the in-
version point heralds are not transitory, but rather define the whole supercritical state
on the gaslike side of the “c”-transition. This implies a profound change in dynamics.
However in order to find a thermodynamic phase transition, or convince ourselves of
its absence, we must turn back to parameters such as temperature to characterise our
properties.

8.2 Precision Measurements of cV from Molecular

Dynamics Simulations

The precision achieved in cV in the MD simulations of argon was about 0.05kB, though
this belies somewhat problematic behaviour. Properties like energy, VAFs, RDFs, etc
are relatively straightforward to calculate, as they are calculated as time averages of
trajectories. Viscosity has its own problems, as discussed. The heat capacity, calculated
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from Eq. 3.3.12 is not so simple - the quantity itself is an average, or rather a function of
several averages. Such quantities are called fluctuation properties. Fluctuation properties
have a very sensitive dependence on the trajectory used to calculate them, and one needs
to make sure that the trajectory is sampling the desired ensemble.

In the case of the NVE ensemble, this means ensuring that the standard deviation of
energy is negligible, which was already being done. Furthermore it means ensuring that
each trajectory samples sufficiently many states that its mean temperature is tolerably
close to the target temperature, which furthermore requires that the trajectories be
properly equilibrated. Nonetheless a non-insensible trajectory-dependence will remain,
and averaging over initial conditions, each of which must satisfy the above conditions, is
required.

In the case of the simulations done for the “c”-transition, processing was less rigid.
This is because viscosity was a much greater source of error than trajectory dependence
of fluctuation properties. The average cV calculated at each state point had a standard
deviation of up to 0.05kB, which precludes identification of an anomaly in cV of around
this size or smaller. This error came from two sources: insufficient temperature control
and short trajectories. I’ll address these in order, and how I fixed them. Throughout
this section the advice I received from and discussions I had with Alin-Marin Elena and
Vlad Sokhan were invaluable.

The temperature control is caused by relatively short and cavalier periods of equi-
libration. By no means unacceptable by typical MD standards, but when we have our
eyes on a precision much better than that achieved in the previous chapter, we have to
do better. The first thing we would have to do is discard our smallest system size of 500.
Fluctuations will always be unacceptably large in such a system. 4000 atoms however
should be enough. The problem with equilibration to a certain temperature in the NVE
ensemble is a tricky business, as I hinted at in Chapter 3. Simply initialising the system
with a Maxwell velocity distribution at the target temperature is not good enough be-
cause it is the energy we are holding constant. The mean temperature on that energy
hypersurface is by no means guaranteed to match the instantaneous temperature of the
initial configuration we seeded, though it will be somewhat close. Repeatedly reseeding
the velocities is suboptimal because you are effectively restarting the trajectory in this
case and will run into the problem that the initial configuration won’t be any more likely
to represent the temperature of the whole hypersurface.

The idea, then, is to let the trajectory “carry on” while also directing it towards the
temperature we want, so we don’t have to deal with the sudden shift in temperature
when a reseeded NVE trajectory relaxes into its “main sequence” phase space. One way
to do this is by rescaling velocities. If one has an NVE trajectory with mean temper-
ature T0, whose target temperature is T , we can take the ratio T

T0
. We then take the

final configuration of the trajectory and scale each velocity by the square root of the
above ratio, effectively scaling the temperature by the same ratio, then we have made
an attempt at correcting the temperature without significantly disrupting the trajectory.
Repeated applications of this will allow the mean temperature of the trajectory to be set
arbitrarily close to the target temperature. This method very quickly allows one to set
the temperature of a trajectory very precisely, but at a cost. Rescaling velocities in this
way is, unsurprisingly, very unphysical because it affects every atom in the same way,
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which is not in any way how contact with a thermal bath works. The scaling removes
more energy from high velocity atoms than low ones, and so the effect of repeated velocity
rescaling is to drain energy from high frequency modes into low frequency modes [140],
as described before. This effect, the “flying ice cube effect” is particularly troublesome
for rescaling thermostats such as the Berendsen thermostat. We should, however, still
be careful here as the repeated removal of energy disproportionately from high-frequency
modes may deposit the system in a strange part of phase space, nominally at the target
temperature, but not at all sampling the “main sequence” dynamics of the equilibrium
energy hypersurface associated with the target temperature.

The alternative to this is then to change the system’s energy in a physical way. One
might ask why we don’t just take the final configuration of a trajectory under NVT dy-
namics (using, say, the Langevin thermostat) and subject that to NVE dynamics. The
problem with this is effectively the same problem as simply setting an initial velocity
distribution at the target temperature. The trajectory may have had the right temper-
ature in NVT, but taking a point on that trajectory and sending it down a new NVE
trajectory does not come with a guarantee of maintaining the correct temperature. We
can, however, get close, by carefully tuning the friction constant of the thermostat. If the
coupling between the bath and the system is very weak, then the dynamics are no terri-
bly far removed from NVE dynamics. If such a weakly-coupled NVT trajectory is then
switched to NVE dynamics, not much has changed and the mean temperature should
also not change much. This method is not as fast as velocity rescaling, but this penalty
comes with increased confidence in our results. In what follows, both methods were used,
to no significant difference in results. Both methods allowed temperature to be controlled
to within 0.1% of the target. The spacing between neighbouring temperature points is
much larger than this, so this precision is acceptable.

The second source of error was short trajectories. One million timesteps was enough
to get the viscosity under enough control for its behaviour to be unambiguous. However
in order to have faith in our measurement of cV using Eq. 3.3.12, we need to be sure
that our trajectory is long enough to be sampling enough of the hypersurface for it
to be passably ergodic. As stated, fluctuation properties like cV are very sensitively
dependent on the trajectory from which they are calculated. Even with temperature
control satisfactorily undertaken, a longer trajectory may nonetheless be necessary to be
sure that enough of the “main sequence” of the hypersurface is sampled and that rare
events do not mar the trajectory. Ascertaining what qualifies as “long enough” is simply a
matter of making trajectories longer until the desired precision of cV is achieved. In what
follows, this meant NVE trajectories of four million timesteps. These trajectories were
taken from a single long trajectory, split into twenty four-million-timestep sections from
which statistics were gathered independently. This is preferable to a single 80-million-
timestep trajectory for two reasons: the first is that adding more time steps to a single
trajectory has diminishing returns on the convergence towards the “infinite time” average
(equal to the microcanonical phase average). Convergence is faster if the trajectory is
split up and then the subtrajectories are averaged, up to a point, so it’s a matter of
finding the optimum. The second reason is that splitting the trajectory up allows us
to take a standard deviation of the cV to be associated with each average, giving us a
quantitative measure of the error. We can therefore reliably seek our precision goal and
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Figure 8.1: Standard deviation σ(cV ) of the heat capacity calculated, at each temperature
along the unit isochore in Lennard-Jones units (1.688 g/ml), using 20 4-million-timestep
trajectories (kB = 1).

set an upper limit on any discontinuity in cV on that basis.

The standard deviation on the mean of cV calculated from the above method is plotted
as a function of temperature in Fig. 8.1. The error in cV , under the same number of
trajectories of the same length, is seen to decrease with T as a power law. This is not
altogether unexpected since the gaslike state is dynamically far simpler and cV evolves
much more slowly with temperature in this regime. These results were calculated along
the unit isochore in Lennard-Jones units (corresponding to 1.688 g/ml, see Tab. 6.2),
along which the inversion point of the “c”-transition is between 6000 and 7000 K. This
means we achieve a precision of ±0.002kB in the region where we expect a possible phase
transition to be operating on the basis of the “c”-transition. This will suffice for our first
glance.

The full range of cV along the unit isochore from T = 500 K to T = 50000 K is
shown in Fig. 8.2. The greatest concentration of state points is in the region between
cV = 2kB and cV = 1.8kB, where as we saw the error is around or below 0.002kB. One
cannot appreciate the precision of the entire range at once, so a zoomed-in plot whose
range is restricted to the area of most interested is presented in Fig. 8.3. In this region
the uncertainty in cV is between 0.002kB and 0.001kB. The data here therefore present
as a band whose width is twice the error, and we can see very clearly that this band
presents no sort of discontinuity. Indeed, there are no close candidates either. Producing
this plot took approaching a million hours of processor-time in total.
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Figure 8.2: Heat capacity cV calculated along the unit isochore in Lennard-Jones units,
using 20 4-million-timestep trajectories (kB = 1). The gridlines are separated by 0.005kB.
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Figure 8.3: Heat capacity cV calculated along a section of the unit isochore in Lennard-
Jones units, using 20 4-million-timestep trajectories (kB = 1). The gridlines are separated
by 0.001kB.
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8.3 Derivatives of cV

The possibility of a first order transition was remote. Some say that a first order phase
transition beyond the critical point is impossible (though this result is a bit dubious and
strikes me as somewhat begging the question) [141]. In any case, we have ruled out a
first order phase transition implicating cV to a rather high degree of accuracy. Just as
possible, perhaps more plausible, however, is a higher order transition in cV . Using the
thermodynamic definition of cV ,

cV = T

(
∂s

∂T

)
V

, (8.3.1)

where s is the specific entropy, we note that a first order phase transition across the FL
(or “c”-transition inversion point) implies a discontinuous change in the evolution of the
available phase space (roughly speaking) with temperature. The change in the evolution
of phase space is known, as discussed in the chapter on chaos. A discontinuity in the
derivative of cV , (

∂cV
∂T

)
T

= T

(
∂2s

∂T 2

)
V

+

(
∂s

∂T

)
V

, (8.3.2)

is therefore indicative of a discontinuity in the curvature of entropy with temperature if
we have discarded the possibility of there being a discontinuity in the first derivative. And
so on for higher derivatives.

Calculating such derivatives numerically from cV calculated directly from the trajec-
tories is unacceptable. Noise in the data is amplified as high order derivatives are taken,
and while the first derivative produces intelligible data, the second derivative is utterly
dominated by fluctuations. There are, of course, ways of dealing with such fluctuations,
but we cannot employ any smoothing when what we are looking for is a discontinuity
or kink. If we wish to analyse higher order derivatives, we must calculate them from
trajectories directly. We recall the expression for the heat capacity, derived almost by
inspection in the canonical ensemble:

cV =
〈E2〉 − 〈E〉2

NkBT 2
. (3.3.9)

We can continue onwards. We introduce the following definitions:

Z =

∫
dΓ exp(−βH ), (8.3.3)

β =
1

kBT
. (8.3.4)

And we note the following useful relations:

1

Z

∂Z

∂β
= −〈E〉, (8.3.5)

1

Z

∂2Z

∂β2
= 〈E2〉, (8.3.6)
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1

Z

∂3Z

∂β3
= −〈E3〉, (8.3.7)

and so on for higher derivatives. Then, we take the first two derivatives of 〈E〉:

∂〈E〉
∂β

=
∂

∂β

(
− 1

Z

∂Z

∂β

)
,

=

(
1

Z

∂Z

∂β

)2

− 1

Z

∂2Z

∂β2

= 〈E〉2 − 〈E2〉, (8.3.8)

∂2〈E〉
∂β2

=
∂

∂β
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1
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)
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)(
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1
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1
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)(
1

Z

∂Z

∂β

)
− 1

Z

(
∂3Z

∂β3

)
= 〈E3〉 − 3〈E〉〈E2〉+ 2〈E〉3. (8.3.9)

From here, it’s a matter of converting from derivatives in β to derivatives in T :

∂CV
∂β

= −2kBβCV −
(
kBβ

2
)2 (〈E〉3 − 3〈E〉〈E2〉+ 2〈E〉3

)
, (8.3.10)

and therefore:

∂CV
∂T

= −2CV
T

+

(
1

kBT 2

)2 (
〈E3〉 − 3〈E〉〈E2〉+ 2〈E〉3

)
. (8.3.11)

I have derived the expression for ∂2CV

∂T 2 , which involves statistical moments of E up to
fourth order, but the calculation is extremely tedious, and will not end up being useful.
I simply report the result here:

∂2CV
∂T 2

=
2CV
T 2
− 2

T

∂CV
∂T
− 4

k2
BT

5

(
〈E3〉 − 〈E〉〈E3〉

)
+

(
1

kBT 2

)3 (
〈E4〉 − 〈E3〉〈E〉

)
−
(

1

kBT 2

)2

CV 〈E2〉 −
(

1

kBT 2

)3

〈E〉
(
〈E3〉 − 〈E〉〈E2〉

)
+

4

kBT 3
〈E〉CV

− 2

kBT
C2
V −

2

kBT 2
〈E〉∂CV

∂T
.

(8.3.12)
Ideally one would wish to transform Eq. 8.3.11 into the NVE ensemble, but this

is a very tricky business which I won’t get into here. We will therefore attempt our
calculation of ∂CV

∂T
from an NVT trajectory. As in the previous section, we use very long

trajectories, split up into subtrajectories which were treated as separate initial conditions
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Figure 8.4: Heat capacity cV calculated along the 1.35 g ml−1 isochore in the NVT
thermostat with a friction constant of 1ps, using 40 36-million-timestep trajectories (kB =
1). The gridlines are separated by 0.005kB.

and from which data were gathered. However, the four million timestep subtrajectories
were vastly unsatisfactory for the task at hand - the standard deviation of cV itself was
almost 0.1kB for such trajectories, almost 50 times higher than in the NVE ensemble.
This problem was seen for many different thermostat coupling strengths. By increasing
the length of the subtrajectories to thirty-six million (!) timesteps, the uncertainty on
cV can be reduced to about 0.01kB - a fifth of the precision at the cost of nine times the
computational work compared to NVE measurements. These results are shown in Fig.
8.4, calculated along the 1.35 g ml−1 isochore with 40 subtrajectories.

From these trajectories, using Eq. 8.3.11, I calculated ∂cV
∂T

. These results are plotted
in Fig. 8.5, where we can see that my approach has failed to produce anything mean-
ingful. The uncertainty in each point is an order of magnitude larger than its absolute
value and these results could not be trusted if I took the time to extend the temperature
range. The NVE ensemble is clearly much neater than the NVT ensemble when it comes
to calculating fluctuation properties. A brute-force method of reducing fluctuations is
simply increasing the length of the trajectories, though this comes at a devastating com-
putational cost. Taking the average over a vast number of initial conditions will allow
the convergence of the derivative to a sensible value but the uncertainty on that value
would be unacceptably high. Alternative solutions to this problem, including an ana-
lytical expression for ∂CV

∂T
in the NVE ensemble, are currently underway. For now, this

chapter ends simply as a report of what has been done to ascertain a phase transition.
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Figure 8.5: Derivative of the heat capacity ∂cV
∂T

calculated along the 1.35 g ml−1 isochore
in the NVT thermostat with a friction constant of 1ps, using 40 36-million-timestep
trajectories (kB = 1).
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Chapter 9

Beyond Super and Subcritical

9.1 Conclusions

The supercritical state has had a long but somewhat barren history. There is a sense in
which the critical point itself has been for an obstacle to the study of the supercritical
state. This is not an entirely unreasonable eventuality, for the critical point raises very
interesting questions about the nature of the boiling line it terminates and about the
states the boiling line separates. However the continuous disappearance, or rather weak-
ening, of the near-critical anomalies into obscurity in the deep supercritical state has the
potential for deceit. The near-critical anomalies are echoes of the boiling line, but their
termination must not be taken out of context. The boiling line is a particular manifes-
tation of the fundamental transition from a mixed dynamical state to a pure dynamical
state via the disappearance of molecular oscillation. Does such a transition happen even
in deeply supercritical states far from the critical point? Of course it must. So we ought
to be optimistic in our estimation of the supercritical state. Using the old thought ex-
periment, if we continuously thermodynamically transform a liquid into a gas by taking
a path which skirts far beyond the critical point, with our modern understanding of the
liquid state, we know we must pass from states where the thermodynamics is governed
by a mixed dynamical state of disappearing oscillations and dominating diffusion events
to states where the thermodynamics is governed by a pure dynamical state of chaotic
collisions. These states are not only different instantaneously, but their evolution along
any phase diagram path is different. A mixed dynamical state has competing effects
which wax or wane, a pure dynamical state evolves more... unanimously. Some sort of
transition is inevitable, and we should be very careful to assume its unimportance.

The FL is born in the constructive distinction between liquids and gases of particle
dynamics. The distinction between liquidlike and gaslike on the basis of oscillatory
motion is as old as corpuscle theory, and the use of VAFs to meaasure this distinction goes
back to the early days of MD simulations [142, 143, 144]. The proposition of the FL and its
definition in the VAF criterion guides our gaze in the vast supercritical so that we might
find wide transitions occurring far from the critical point. The VAF criterion, though
rather rough, has the strong advantage of being path independent. The crossover of
particle dynamics affects other physical quantities of the supercritical system. Viscosity,
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speed of sound and thermal conductivity all decrease with temperature in the liquidlike
regime but increase with temperature above the line as in gases. Furthermore, the
diffusion constant crosses over from exponential temperature dependence in the liquidlike
regime to power-law dependence as in gases. These definitions all depend on the path
chosen on the phase diagram, the crossovers and minima of these properties may deviate
from the FL [41]. The VAF criterion defines a line on the phase diagram which is path
independent.

The link between dynamics and structure is no secret, and structure is amenable to
experimentation, gives ready insight into the energetics of a system, and is an intuitive
description of the system’s microscopic nature. It is for this reason that I am among
many early pioneers who have investigated the structural changes implicated with the
FL, using simulations or experiments. Argon, neon, and nitrogen all sport moderate
crossovers in structure [46, 47, 76], and the trends established in these projects guided
my own work in the structure of supercritical fluids. Water and carbon dioxide are,
as has been heavily emphasised, important compounds. They both see extensive use
industrially and environmentally in their supercritical forms, carbon dioxide is prevalent
in its supercritical form in the Venerean atmosphere, and water needs no introduction as
the most studied compound in science. It is natural that these compounds would be the
next step for research of the implications of the FL.

The transition in water was a surprise. It also hinted at a very rich collection of
behaviours of different fluids across the FL. Water’s interesting structure and its strange
evolution with temperature have been seen to be intimately connected with the FL. This
is not a surprise if we consider the dynamical transition at the FL to be a fundamental
idea to the study of liquids and supercritical fluids. Every fluid has a FL, and a fluid
with an interesting liquid state will have an interesting transition at the FL. Specifically
we saw from RDFs, angular distribution functions, and coordination distributions that
the FL sits at the apex of water’s transition between tetrahedral and disordered closely
packed structures. The structural evolution with temperature was noticeably different in
these states which the FL separated, revealing that the dynamical distinction between
these states is significant. Water also exhibits the sort of transitions seen previously in
argon [76]. These two observations demonstrate not only the diverse implications of the
FL but also its very fundamental nature.

Carbon dioxide, too, showed the same subtle crossover in structural correlations as
argon. This crossover in the heights of the first peak is related to the other transition
observed, which shows the FL to be the point of deviation from uniform expansion in
the liquidlike state, beyond which carbon dioxide loses its short-medium range order due
to the decoupling of the first nearest neighbour distance from the density. This is the
sort of transition that does not occur in every liquid, but the mechanism is good to have
been associated with the FL. These different but related discoveries in water and carbon
dioxide are important additions to the literature of structural crossovers at the FL. With
this work, structural crossovers have been seen in experiments or simulations across the
FL in argon [76], neon [46], nitrogen [47], water [74], and carbon dioxide [90]. This is
a diverse range of systems, and the observations made regarding them will guide and
inspire future work concerning the implications of the FL.

My work on dynamical instability in the supercritical state follows in a similar vein to
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my work on water and carbon dioxide in the sense that I am probing new implications of
the FL. The similarity ends here, however, because dynamical instability is a very “low-
level” property of the phase space and is amenable only to theoretical (as opposed to any
experimental measurements) consideration for thermodynamic systems. The maximal
Lyapunov exponent is very sensitive to changes of macroscopic phase and can give clues
to the nature of a transition which “higher-level” techniques would be insensitive to. We
saw that, unlike at the melting transition, the maximal Lyapunov exponent underwent
a smooth transition as it crossed the Frenkel line. On the gaslike side of this transition,
the exponent follows a very simple relationship with energy which I explain according
to the simplicity of the dynamics, as opposed to the mixed dynamical state of liquids.
This work was the first of its kind, exploring the dynamical instability of the supercritical
state and doing so in the shadow of Frenkel’s theory. Analysis of dynamical instability
is a useful tool, especially concerning states which we poorly understand. This work will
inspire, in me and I hope in others, further investigation into the chaos of supercritical
fluids.

A goal from the very beginning of the project was to get to the bottom of the transition
at the FL. It’s not clear whether the “c”-transition is the beginning of final stretch of this
goal, or has simply raised further questions. The “c”-transition speaks for itself, but is
elucidated by Frenkel theory. It makes evident the singular importance of dynamics, and
in particular collective dynamics, in understanding the fluid states of matter. We still
have only a motivation, rather than an explanation, for why the “c”-transition occurs.
The “c”-transition, it seems to Kostya and me, is for an apotheosis to all the work done
on the FL so far. When it comes to future work, this is what I shall focus on.

9.2 Further Work

The first order of business is to extend the study of the “c”-transition to a greater variety
of fluids. Water is an obvious choice. Simulations of supercritical water towards this end
are currently underway. Other systems or interest are molten metals, such as lead or
gallium, more complex molecular liquids, such as ethane or ammonia, fluid mixtures
such as molten sodium chloride, and possibly even exotic fluids such as plasmas. The
exception of near critical paths to the “c”-transition is perhaps not surprising, but it
certainly is profound and sets these states apart from other fluid states. Simulating more
near-critical paths and subcritical paths and subjecting them to “c”-transition analysis
may help shed light on how these states can be so different. Likewise, certain isochores
straddle the boiling line and therefore contain liquid-gas mixtures. These states could be
interesting to study. Combining analysis of dynamical instability with the “c”-transition
analysis could be very interesting too.

There is tentative evidence that the “c”-transition may manifest in a modified defini-

tion of λd using the “longitudinal” Maxwell relaxation time, τL =
ζ+ 4

3
η

K
, where K is the

bulk modulus and ζ is the bulk viscosity. This is important because the bulk modulus
of a fluid is possible to measure directly via experimentation, unlike the shear modulus
which can at best be inferred. An experimental observation of the “c”-transition would
be a very valuable discovery.
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Finally, there is the question of a phase transition associated with the “c”-transition.
Reducing the uncertainty in cV to below 0.001kB is a straightforward but taxing mat-
ter. The matter of reducing fluctuations in NVT ensemble calculations is also currently
underway. One can also approach the topic from another point of view. We have our
special parameter λd, we can investigate how it evolves in the liquidlike and gaslike states
and see what we find. The idea of a phase transition in the supercritical state is contrary
to all traditional knowledge, but there is no definitely proof of an absence of a phase
transition beyond the critical point - we are exploring the possibility. There’s certainly
something going on, and attacking it from several angles will help us better understand
it.
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