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Abstract

Utilisation of renewable biofuels (rapeseed oil, soy oil, dimethyl carbonate, cyclopen-
tanone, methyl butanoate, dimethoxymethane and ethanol) is essential to achieving net-zero
carbon emission and meeting the requirement of 2 ◦C scenario. Deployment of biofuels
derived from lignocellulosic biomass such as agricultural wastes is expected to be scaled
up substantially. Molecular dynamics simulation can provide in-depth understanding of the
physiochemical properties of biomass and biofuels.

Surface coking as the primary deactivation pattern of metal-based catalyst in biofuel
reforming is investigated. Mass reduction of lignin pyrolysis in simulation is validated against
experimental results. Mechanisms behind the effects of temperature, aromatic size and oxygen
content on coke adsorption are revealed in molecular simulation considering the molecular
collision dynamics, thermal dynamics and kinetics. It is identified that the modification of
crystallinity of catalyst outer shell and the occurrence of seeping after coke adsorption would
affect the subsequent catalyst regeneration.

Insight into the chemical mechanism of soot inception in combustion has been gained
from molecular dynamics simulation with reactive force field. The hydrocarbon structures of
nascent soot in molecular simulation agree well with the experimental observation. Concur-
rently, the mechanisms of molecular structure of the oxygenated additives, i.e. the existence
of ester, alcohol, carbonyl group and ether, on soot precursor mitigation are elucidated via
evaluating the early formation of CO and CO2 quantitatively during the thermal decomposi-
tion.

Prediction of fuel transport properties in high-pressure conditions is achieved. The phase
transition of biodiesel at extremely high pressure is studied via morphology evolution to elu-
cidate the experimentally observed solidification process. Viscosity and thermal conductivity
are predicted over extended ranges of temperatures and pressures. Thermophysical properties
like critical temperature, critical density and critical pressure are predicted for supercritical
combustion. The capability of molecular simulation on thermophysical property prediction is
evaluated after comparing with the experimental results.
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Chapter 1

Introduction

1.1 Biofuels produced from biomass

1.1.1 Deployment of biofuels

Biofuels produced from biomass including wastes are renewable and regarded as alter-
natives to fossil fuels with the hope of achieving environmental and socioeconomic benefits
such as reducing anthropogenic green-house gas (GHG) emissions, circular bioeconomy
development, employment generation and energy security. According to the International
Energy Agency (IEA) 2◦C Scenario (2DS), modern bioenergy will meet nearly 17% of final
energy demand in 2060 compared to 4.5% in 2015, growing most in the transport sector
as shown in the Sustainable Development Scenario (SDS) in Figure 1.1 (a). However, the
current rate of bioenergy deployment is well below these 2DS levels. In the transport sector,
the present biofuel supply/consumption must be scaled up by at least 10 times, from 3 EJ to
30 EJ (2% of current global transport fuel to 27% in the year 2050 (Fairley, 2011), to keep
pace with the 2DS requirements as shown in Figure 1.1 (b).

It is a consensus that liquid fuel vehicles will continue to be used for many decades
particularly in the long-haul road freight transport and marine transport for international
trading, even when electric vehicles are expected to become dominant for passenger cars in
the global automotive market. In spite of the encouraging expectation in electrification of
light-duty passenger vehicles, liquid fuels still provide over 50% of transportation energy
(Lynd and de Brito Cruz, 2010), considering there is little near future prospect for battery-
powered jetliners, heavy goods vehicles and marine vessels. This scenario was demonstrated
clearly in the SDS as shown in Figure 1.1 (c). Presently road freight and light passenger
vehicles account for the major proportion of biofuels, while there will be a sharp increase to
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meet the demands of 7% of international shipping and 10% of aviation fuels in 2030 although
the present biofuel utilisation is minimal in both subsectors (IEA, 2017).

Fig. 1.1 (a) Contributions of bioenergy to final energy demand in the years 2015 and 2060
in 2DS; (b) final energy demand of transportation in 2DS; (c) major biofuel consumption in
SDS, 2015-2030; source of data: IEA bioenergy report (IEA, 2017).

1.1.2 Technical roadmap of biofuel production

Biodiesel and bioethanol are currently two of the commercially available large-scale bio-
fuels that can be produced from a variety of resources (Luque et al., 2008). Consumption share
of advanced biofuels derived from lignocellulosic biomass such as agricultural and forestry
wastes is expected to further scale up substantially considering sustainability of lignocellulose
and massive production of 170 billion metric tons per year (Li et al., 2015). Lignocellulose
comprising of cellulose, hemicellulose and lignin can be cracked and depolymerized rapidly
into biofuels during pyrolytic degradation at elevated temperature.

Among the process technologies, thermochemical conversion is more suitable for
industry-scale utilization compared with the biochemical methods, e.g., anaerobic and aerobic
digestion (Liu et al., 2017b). Gasification is also promising and commonly used in treatment.
Syngas produced from the gasification can be used as fuels directly after purification or syn-
thesized into high-value-added chemicals like ethanol and dimethylether However, biocrude
liquid fuel is a complex mixture containing aromatics, phenolics, acids, hydroxyketones,
etc. The number of oxygenated compounds in a typical biofuel can be over 300 during
biomass pyrolysis, resulting in undesirable attributes of high viscosity, low energy content
and corrosiveness (Sharifzadeh et al., 2019). Tar formation is the main issue in gasification
that can clog the downstream equipment, increase the maintenance cost and hinder biomass
utilization. Tars formed inevitably during gasification refer to a series of condensed organics
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from single ring aromatics like toluene to heavy polycyclic aromatic hydrocarbons (PAHs) of
4-7 rings. Oxygenated aromatics like dibenzophenol also exists (Molino et al., 2016).

The third/fourth generation of biofuels producing from algae biomass is also in develop-
ment. Algal biofuels do not require agricultural land and potable water resources. Algae do
not compete with food or other crops and can be cultivated in shallow lagoons or raceway
ponds on marginal land or closed ponds. It can be produced throughout the year unless it is
limited by light irradiation, and the oil yield can even exceed that of the best oilseed crops
(Dutta et al., 2014). It is estimated that algae could potentially produce 10 to 300 times more
fuel than other crops (Chisti, 2007). The low content of hemicelluloses and about zero content
of lignin in algal biomass results in an increased hydrolysis and/or fermentation efficiency.
The road map of first/second generation biofuel production is shown in Figure 1.2. Pathways
for the valorisation of microalgae are shown in Figure 1.3.
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Fig. 1.3 Pathways for the valorisation of microalgae to biofuels and high-value chemicals.

1.1.3 Heterogeneous catalysis in biomass thermochemical conversion

It is acknowledged that catalyst can play a significant role in both biofuel reforming
and tar removal. By adding appropriate catalyst like base transition metal nanoparticles
into the reactors, the desirable reaction pathways can be selectively enhanced, leading to
the biomass valorisation and thus achieving the optimization of the products. However,
catalysts undergo deactivation temporally or permanently during their lifetime through a
series of physicochemical phenomena (Hu et al., 2013) (Hervy et al., 2019) (Ochoa et al.,
2020) (Cheng et al., 2020) (Li et al., 2020). Catalyst deactivation leads to secondary reactions,
prohibiting the conversion rate and probably weakening the production of H2 in gasification
(Arregi et al., 2018a).

Understanding catalyst deactivation mechanisms and developing strategies to design
stable catalysts are as important as research of catalytic selectivity and activity in practice, but
deactivation processes are often overlooked in academic research (Murphy and Xu, 2018).
For industrial application, catalyst regeneration excluding irreversible deactivation can help
to control the replacement costs, and thus make the reforming process more favourable.
Bartholomew (2001) classified the deactivation mechanism into six types, i.e., poisoning,



6 Introduction

fouling, sintering, crushing, catalyst surfaces reacting with gas to produce volatile compound,
and inactive phase formation on catalyst surfaces after reaction with vapour, support or
promoter. In terms of biofuel/tar reforming, coke deposition is the most notorious and
the primary deactivation mechanism (Sharifzadeh et al., 2019) (Ochoa et al., 2020) (Gao
et al., 2020). Surface coking inhibiting active sites from being available for reaction is
affected by many factors, including the composition of feedstock and operating conditions
like temperature, pressure and contact time, etc. Arregi et al. (2018b) studied the deactivation
rate of nickel (Ni) supported catalyst in in-line steam reforming. It was observed that
the increasing concentration of non-reformed oxygenated phenolic compounds in reaction
medium accelerated the deactivation. Ochoa et al. (2017) showed that coke morphology
mainly affected by temperature also caused a deep impact on deactivation of Ni.

1.2 Physicochemical properties of biofuels in combustion

Understanding the relations between biofuel composition & molecular structures and
the physicochemical properties is essential in fuel quality evaluation and development of
cleaner and more efficient engines. In comparison with conventional diesel fuels comprised
of alkanes, aromatics and even sulfur, the contents of biodiesel are primarily fatty acid methyl
esters (FAMEs). It has been reported widely that the oxygen atoms in FAME molecules
lead to substantial reduction in emissions of particulate matter, total hydrocarbons and
carbon monoxide, while the power loss is imperceptible in unmodified conventional engines
when biodiesel is used (Xue et al., 2011) (Roy et al., 2013). Nevertheless, higher viscosity
and worse fluidity are the major application downsides for biodiesel (Chen et al., 2018a).
Injectors with common rail system always work at extremely high pressure above 100 MPa,
meaning that fuel viscosity increases substantially over the atmospheric values. In general, the
chemical kinetics of hydrocarbons in combustion have been the subject of numerous studies.
However, fewer kinetic studies related to the oxidation of biodiesel have been performed
at the experimental and modelling level. The main reason for the lack of information is
the complexity in molecular structure of actual biodiesel compounds, which involves large
aliphatic chains of 14-20 carbon atoms with C=C double bonds and ester groups (Coniglio
et al., 2013). For the combustion kinetics, the elemental chemical reaction with rate constant,
thermal dynamics parameters and transport property are the major components. Assessment of
biodiesel properties and their impact is required before expanding the availability of biodiesels
in the fuel market. Comparison between biodiesel and diesel on some specific properties in
shown in Table 1.1.
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Table 1.1 Range of the specification of diesel and biodiesel (Lapuerta et al., 2008)

1.2.1 Prediction of biodiesel thermophysical properties for supercriti-
cal combustion

Most data available in the literature encompasses the temperature dependence of biodiesel
viscosity at atmospheric pressure. Fewer studies (actually only seven studies were mentioned
in the latest review paper of Ferreira et al. (2020) ) have dedicated to measuring and predicting
the high-pressure viscosity of biodiesel (Chhetri and Watts, 2012) (Freitas et al., 2014)
(Ferreira et al., 2020). Recent observation of the crystallisation and solidification process of
FAMEs at room temperature and high pressure above 230 MPa makes it even more challenging
to understand the rheological property of biodiesel at extremely high pressure (Tarakowski
et al., 2015) (Kiełczyński et al., 2017).

The next generation clean, fuel-flexible and efficient engines will operate at considerably
high pressure such as 100 bar which is above the fuel critical points, i.e., at supercritical
conditions. The engine injection is thereby described as a transcritical process of subcritical
liquid fuel under extremely high pressure injected into supercritical ambient gases. The fuel jet
will be heated to a supercritical temperature before combustion where distinct liquid and gas
phases do not exist. It is known that high-temperature and high-pressure (HTHP) supercritical
fuels have properties of lower density, viscosity and higher diffusivity which is beneficial for
fuel/air mixing. Prediction of fluid behaviour at HTHP supercritical conditions is a challenge.
It requires new theoretical methods particularly considering the phase transition between
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“rigid-like”, “liquid-like” and “gas-like” due to the existence of Frenkel line or Widom line
(McIlroy et al., 2006) (Brazhkin et al., 2012) (Brazhkin et al., 2013) (Gallo et al., 2014)
(Mallepally et al., 2018) . Direct measurements of physical properties for every encountered
fluid at all conditions of interest are not only expensive and time-consuming but also extremely
difficult and sometimes impossible (Baled et al., 2018). A typical P-T phase diagram of
supercritical fluids (SCFs) is shown in Figure 1.4, where Pr and Tr are reduced pressure and
reduced temperature normalized with respect to their critical values. Widom lines are the loci
of the extrema for thermal expansion, density fluctuation and thermal capacity, which are
terminated according to the disappearance of extrema (Banuti et al., 2020).

Fig. 1.4 P-T phase diagram of SCFs with melting line, coexistence line and the newly
developed thermal dynamic boundaries i.e. the Frenkel line and Widom lines.

1.2.2 Biofuels on soot mitigation

Some recent studies have identified black carbon as the second largest anthropogenic
contributor to global warming (Andreae and Ramanathan, 2013). Its climate impact is much
higher than conventionally believed, especially in altering regional atmospheric stability. The
effects of soot on climate mainly lie in its radiative influences which can be distinguished as
direct, referring to scattering and absorption of radiation by soot particles themselves, and
indirect, referring to the influences of soot on cloud radiative properties and cloud lifetimes
(Charlson et al., 1992). According to the synthetic black-carbon climate forcing model
developed by Bond et al. (2013), the best estimation of climate radiative forcing of soot is
+1.1 W ·m−2 with 90% uncertainty which is about twice greater than the data released by
Intergovernmental Panel on Climate Change (IPCC), shown in Figure 1.5.

Any efforts on reducing soot emission can simultaneously lead to the dual benefit of
mitigating near-term climate change and protecting human health. The average atmospheric
lifespan of particulate carbon black is 4-12 days. Thus, cutting down the emission of diesel
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Fig. 1.5 Comparison of emission species on atmosphere radiative forcing, where positive forc-
ing indicates warming the climate and NMVOC is non-methane volatile organic compound;
source of data: IPCC climate change report (Blanco et al., 2014).

soot and organic matter is probably the most pragmatic approach to slow global warming and
the fastest solution to survive Artic ice and Tibet glaciers. Some modelling studies showed
that eliminating all fossil black carbon could scale down 20-45% of global net warming within
3-5 years, whereas reducing CO2 emissions by a third was estimated to have the same effect,
but after 50-200 years (Jacobson, 2002). The formation of soot depends strongly on the fuel
composition. For example, compared with conventional Jet-A fuels, experiments on a NASA
DC-8 aircraft at cruise conditions showed that utilisation of a 50:50 (by volume) blend of
Jet- A fuel and a hydrotreated camelina oil can reduce the volatile and non-volatile particle
emissions by 50% - 70% and shift the particles towards smaller size (Moore et al., 2017).

The major concern for the utilisation of diesel type of fuels is the harmful emissions
of nitrogen oxides (NOx) and soot (black carbon). While NOx formation is common to
combustors and the mechanisms are relatively well understood, soot formation has not been
fully understood, especially when biodiesel or biodiesel/diesel blends are concerned. Soot
emitted from diesel engines accounts for over 15% of total hazardous pollution in the air as
shown in Figure 1.6. Soot and its co-pollutants are also the key components of fine particulate
matter, i.e., PM2.5, the leading environmental cause of cardiopulmonary mortality.

Biodiesel is considered as “carbon-neutral” fuels because combustion emissions are
assumed to be offset by carbon sequestration during biomass growth. Moreover, the utilisation
of biodiesel in conventional internal combustion engine resulted in particulate emission
reduction appreciably under operating conditions owing to the oxygenated moiety within
the primary fuel molecules which changes the rates and reaction pathways of ignition and
oxidation processes (Coniglio et al., 2013). Evaluating and quantifying the effects of actual
biodiesel molecular structures, e.g., chain length, unsaturation degree and oxygenated moiety
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Fig. 1.6 Sources of global black carbon emissions in the year 2010; source of data: Arctic
Monitoring and Assessment Programme (https://www.amap.no/, 2015).

on sooting tendency are currently lacking but essentially needed for the design of novel
oxygenated biofuel additives.

For advanced biofuels, the amount of soot reduction is approximately linear to the
added oxygen content, but not all oxygenated additives are of equal effectiveness. Westbrook
et al. (2006) investigated how different oxygenated function groups like ester structures can
have different soot-suppression efficiency of the fuel species like dibutyl maleate (DBM),
methyl butanoate (MB), dimethyl carbonate (DMC) and methanol etc. It was found that
when the oxygen content of the fuel reached 25-30% by mass, virtually all soot emission
had disappeared, as shown in Figure 1.7. Measurements of the 75:25 blended ethylene and
biofuels on soot formation in shock tube at high temperature (1700-2200 K) found that
addition of ethanol, cyclopentanone, and methyl acetate reduced soot while α-diisobutylene
and methyl furan produced more soot compared to the baseline (Barak et al., 2020).

Most recently, Sun et al (Sun et al., 2017a) (Sun et al., 2017b) (Sun et al., 2017c)
studied several novel oxygenated fuels including carbonates, polyether and ketones. Combus-
tion kinetics investigations were performed for typical representative compounds, including
dimethyl carbonate, diethyl carbonate, cyclopentanone, 3-pentanone, 1,2-dimethocyethane
and dimethoxymethane. It was found that due to the presence of the carbonate functional
group, fuels of this category have special unimolecular decomposition channels, and CO2

is easily released from their combustion processed. Therefore, one carbon atom in the fuel
need to combine with two oxygen atoms to prevent from participating in the formation of
soot precursors. In this way, the oxygenate atoms are not efficiently used. The carbon-oxygen
double bond in the ketone fuels are tightly bounded, so carbonyl functionalities tend to be
released in CO, fragmenting the carbon chains in fuel molecules, and avoiding the direct
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formation of larger hydrocarbon species from the fuel consumption. Meanwhile, oxygen
atoms in carbonyl moieties are not able to participate in the formations of small aldehyde and
ketone pollutants.

Fig. 1.7 Computed reductions in soot precursors concentrations with the additions of selected
oxygenated species: dibutyl maleate (DBM), methyl butanoate (MB), dimethyl carbonate
(DMC) and methanol, which are reproduced from the work of Westbrook et al. (2006).

Understanding the soot formation mechanism and thereby reducing soot emissions from
combustion devices have always been a challenge with insufficient studies. It is acknowledged
that soot nucleation defined as the transition from gaseous molecular precursors to condensed
matter, yielding carbonaceous nanoparticles is a key step but mostly unknown (Mercier et al.,
2019). Critical gaps remain between the experimental observation and mechanistic description
(Wang, 2011). The widely reported soot nucleation pathways involving the dimerization of
PAHs into stacks via van der Waals (vdW) force is debatable (Michelsen, 2017). It fails to
explain, for example, the existence of a large amount of aliphatic C-H bonds in the shell
of nascent soot (Cain et al., 2011). Irreversible process of PAH dimerization, with pyrene
(C16H10) recognized as the smallest building block, is not thermodynamically favoured (Zhao
et al., 2005). The binding forces (e.g., electrostatic force, dispersive force and π-π stacking
interaction) of dimers with moderate-sized PAHs are too weak to allow the PAH clusters to
survive in the environment above their boiling or sublimation temperatures.

The species as large as ovalene (C32H14), hexcoronene (C42H18) or circumcoronene
(C54H18) may generate the dimers capable of surviving at flame temperature. The concen-
tration of these PAH species in the gas phase during combustion is low, contradicting to the
phenomenon that nascent soot was observed before the concentration peaks of these PAH
species (Keller et al., 2019). The hypothesis of dimerization of PAHs with larger size in the
soot nucleation process therefore appears highly unlikely. It is speculated that some stronger
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interactions are prerequisite for soot nucleation, such as covalent bonds combining PAH
radicals and aryl radicals, but the existing theories are still inadequate to explain the rapidly
persistent mass growth and the gas-to-solid nucleation process in post flame region (Wang,
2011).

1.3 Molecular dynamics simulation

1.3.1 Basic methodology of molecular dynamics

Macroscopic properties are often determined by molecular-level behaviour which can
be obtained from molecular dynamics (MD) simulation of a system containing a set of N
atomic particles.The basic methodology of MD simulation is shown in Figure 1.8. Each of the
particles is assigned a random velocity corresponding to the Maxwell-Boltzmann distribution
at the desired temperature. The interaction between the particles is described typically in the
form of a suitable potential energy. The time evolution of the particles’ positions is determined
by integrating Newton’s equations of motion with integrator like Verlet algorithm (Verlet,
1967).

The concept of ensembles plays a key role in statistical mechanics. An ensemble is a
large number of microstates that all have the same constrained properties as the macroscopic
system of interest. Representative ensembles include microcanonical ensemble (the system
is constant in number of atoms, volume, and energy i.e, NV E), canonical ensemble (fixed
atom numbers, volume, and temperature, i.e., NV T ), isothermal-isobaric (fixed atom numbers,
pressure, and temperature, i.e., NPT ) ensemble, and the grand canonical ensemble etc. For
isothermal simulation, temperature is maintained with the thermostats algorithm such as
velocity rescaling (Woodcock, 1971) (Bussi et al., 2007), Andersen thermostat (Andersen and
Hans, 1980), Berendsen thermostat (Berendsen et al., 1984), and Nose-Hoover thermostat
(Nose, 1984), (Hoover, 1985) etc. For isobaric simulation, pressure is maintained with the
barostat such as Berendsen barostat (Berendsen et al., 1984), Parrinello-Rahman barostat
(Parrinello and Rahman, 1981) and Nose-Hoover barostat (Nose, 1984), (Hoover, 1985) etc.
The details are introduced as:

(a) Initialisation

Initial position

The physiochemical properties at equilibrium should be insensitive to the initial con-
ditions. Thus, an initial configuration only has to be reasonable-meaning that it should not
contain non-physical overlaps between molecules that result in high-energy interactions
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Fig. 1.8 Schematic of the basic molecular dynamics simulation procedure.

(Raabe, 2017). When simulating the solids, the initial configuration is prepared according
to the experimentally determined crystal structure of the component as shown in Figure 1.9
(a)-(c). For liquids or gases, the molecules could be placed at random positions within the
simulation box as shown in Figure 1.9 (d).

Fig. 1.9 Particle distribution: (a)-(c) are simple cubic (sc), body-cantered cubic (bcc) and
face-cantered cubic (fcc); (d) random distribution

Initial velocity

In molecular dynamics studies, the set up of the simulation also comprises the assignment
of initial velocities to all particles. For example, the Maxwell-Boltzmann distribution which
provides a probability distribution of the velocities of particles within a system as a function
of the temperature:
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p(vi) =

√
Mi

2πkBT
exp
(
−Miv2

i
2kBT

)
(1.1)

where vi is velocity of particle i, Mi is mass of particle i, kB is Boltzmann constant, T is
temperature.

Time step

The time step for most of MD simulations is on the femtosecond (fs) scale. For organics,
the largest time step is limited by the highest frequency of chemical bond vibration, i.e.,
vibrations of bonds containing hydrogen atom. This is because hydrogen is the lightest atom
and has the fastest bond vibration. Normally, the time step should be ten times lower that the
highest frequency (Kim, 2014). Too large time step would cause the integration algorithm
unstable and large truncation error. The energy of molecular system would increase rapidly,
and results in the devastating atomic collisions. The repulsive forces then create a strong
force that propels these atoms apart which cause the explosion of the simulation box. On the
other hand, too small time step would cause very long calculation time. To solve this problem
by neglecting fast vibrations, many MD simulation constrain all bonds containing hydrogen
atoms. Therefore, one should select proper time step to consider both accuracy and efficiency.
Time step for some typical systems is summarised in Table 1.2.

Table 1.2 Time steps of different systems (Raabe, 2017).

(b) Boundary condition

Molecular dynamics is typically applied to systems containing several thousand atoms. If
the simulation cell is bounded by real physical walls, the behaviour of a considerable fraction
of particles near a solid surface are different from the particles in the bulk. The surface effects,
i.e, interactions of the atoms with the container walls would distort the results. The classical
way to minimize edge effects in a finite system is to apply periodic boundary conditions
(PBC). The atoms of the system to be simulated are put into a space-filling box (primary
cell), which is surrounded by 8 translated copies (image cell) of itself as shown in Figure 1.10.
Thus the primary cell is imagined to be periodically replicated in all directions to form a
macroscopic sample of the substance of interest. When a particle leaves the modelling domain,
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a corresponding image particle of this particle enters the simulation zone. The minimum
image convention implies that the cut-off radius used to truncate non-bonded interactions can
not exceed half the shortest box vector, otherwise more than one image would be within the
cut-off distance of the force (Raabe, 2017). For a cubic box with a box length L and the origin
of coordination located in the center of the box, the PBC is applied to the components of the
position vector by:

if ri,x>L/2, rnew
i,x =ri,x-L

if ri,x<−L/2, rnew
i,x =ri,x+L

Fig. 1.10 Periodic boundary conditions in two dimensions

(c) Integrating equations of motion

The force acting on the particle is caused by its interaction with the N - 1 other particles,
and can be derived from the gradient of the potential energy (U) of the system. Potential energy
is a function of atom positions (r) which is conventionally classified into intermolecular and
intramolecular components. The total potential energy is summed for various contributions,
such as Lennard-Jones (LJ), Coulomb, and bonded terms. The details of potential energy are
introduced in the following section of 1.3.2 and 1.3.3. The force on any atom is calculated as:

fi =−∂U(r)
∂ri

(1.2)
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The time-dependent particles’ positions are updated by integrating Newton’s equations
of motion expressed as:

fi = miai = mi
d2ri

dt2 (1.3)

where fi is the force on atom i, ai is acceleration. As each particle interacts simultaneously
with all others in the system, the motions of all particles are coupled. The analytical integration
of the 3N (N is the number of particles in the system) second order differential equations
of this many-body problems is impossible. Several finite-difference methods have been
developed to solve the numerical integration of the Newton’s equations of motion such as the
widely used Verlet algorithm (Verlet, 1967), leap frog algorithm (Van and Berendsen, 1988),
Velocity-Verlet algorithm (Swope and William, 1982), etc., in which the integration over the
time t is then broken into a series of short time step ∆t. The Verlet algorithm is based on
a Taylor series expansion for the position r(t). Verlet algorithm is a two-step method as it
estimates r(t +∆t) from the current position r(t) and the previous position r(t −∆t). The
leap-frog algorithm uses positions r(t) at time t and velocities v at time t − 1

2∆t. In velocity
Verlet, positions r and velocities v at time t are used to integrate the equations of motion;
velocities at the previous half step are not required.

The formulas are summarised as:

Verlet

ri(t +∆t) = 2ri(t)− ri(t −∆t)+ai(t)∆t2 +O
(
∆t4) (1.4)

vi(t) =
ri(t +∆t)− ri(t −∆t)

2∆t
(1.5)

Leap Frog

ri(t +∆t) = ri(t)+vi

(
t +

1
2

∆t
)
+O

(
∆t2) (1.6)

vi

(
t +

1
2

∆t
)
= vi

(
t − 1

2
∆t
)
+ai(t)∆t +O

(
∆t2) (1.7)

vi(t) =
vi
(
t + 1

2∆t
)
−vi

(
t − 1

2∆t
)

2
(1.8)

Velocity-Verlet

ri(t +∆t) = ri(t)+vi(t)∆t +
1
2

ai(t)∆t2 +O
(
∆t3) (1.9)

vi

(
t +

1
2

∆t
)
= vi(t)+

1
2

ai(t)∆t +O
(
∆t2) (1.10)
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vi(t +∆t) = vi

(
t +

1
2

∆t
)
+

1
2

ai(t +∆t)∆t +O
(
∆t2) (1.11)

(d) Temperature/pressure control

To derive thermophysical properties from MD simulations that can be compared with
experimental data, it is therefore necessary to perform simulations at constant temperature
and/or constant pressure, i.e. experimentally relevant conditions. In MD simulation of the
N-particle system, the temperature is computed from the kinetic energy in the following
equation:

1
2

Nd f kBT (t) = Ekin (1.12)

where Nd f is number of freedom. The kinetic energy Ekin is in the form of:

Ekin =
1
2

N

∑
i=1

miv2
i (1.13)

The pressure tensor is calculated from the difference between kinetic energy Ekin and
virial Ξ:

P =
2
V
(Ekin −Ξ) (1.14)

Ekin =
1
2

N

∑
i=1

mivi ⊗vi (1.15)

Ξ =−1
2 ∑

i< j
ri j ⊗ fi j (1.16)

The straightforward way to control the temperature at a given value is to scale the
velocities of particles by a factor λ , which is also the core idea of the thermostat algorithm. In
velocity rescaling method, the temperature difference after velocity rescaling can be expressed
as:

∆T =
N

∑
i=1

mi (λvi)
2

Nd f kB
−

N

∑
i=1

miv2
i

Nd f kB
(1.17)

∆T =
(
λ

2 −1
)

T (t) (1.18)

Hence, the required scaling factor is given by:

λ =
√

Tnew /T (t) (1.19)
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Velocity rescaling method is mostly used in equilibrium simulation. It does not generate
a canonical distribution, and can not reveal correctly the energy fluctuation due to the thermo-
physical process in the molecular system. Berendsen et al. (1984) established an algorithm
to control temperature by introducing an external bath with constant temperature which is
coupled with the simulation system. Meanwhile, particles’ velocities are modified through a
time scale τ in each time step, which is similar to the velocity rescaling scheme. The deviation
of the system temperature from Tbath is slowly corrected according to:

dT (t)
dt

=
1
τT

(Tbath −T (t)) (1.20)

Thus, the scaling factor λ for updating the velocity is given by:

λ =

√
1+

∆t
τT

(
Tbath

T (t)
−1
)

(1.21)

The Berendsen thermostat (Berendsen et al., 1984) suppresses the fluctuations of the
kinetic energy, which indicates that it can not generate a proper canonical ensemble rigorously.
Fluctuation properties like heat capacity would be affected. Andersen thermostat (Andersen
and Hans, 1980) and Nose-Hoover thermostat (Nose, 1984), (Hoover, 1985) thermostat are
more sophisticated approaches to control the temperature involve interactions of the system’s
particles with a heat bath, which can generate rigorously the correct canonical ensemble
probabilities. In Andersen thermostat, temperature is controlled by stochastic collisions of
its particles with imaginary heat bath particles. This can either be achieved by randomizing
all the velocities simultaneously (massive collision) or by randomizing every particle with
some small probability every timestep. However, it should be noted that the system dynamics
by Andersen thermostat is unphysical due to a fact that stochastic collisions leave particles’
velocities to decorrelate much faster than the real situation, and the true kinetics of particles
are not constant. Therefore, this method can not be used to predict the transport properties by
time correlation function.

The Berendsen thermostat is a weak-coupling algorithm which is extremely efficient
for relaxing a system to the target temperature in initial stage, but once the system has
reached equilibrium it is more important to probe a correct canonical ensemble. Nose-Hoover
thermostat is an extended-ensemble approach which is first proposed by Nose (1984) and then
modified by Hoover (1985). The system Hamiltonian is extended by introducing a thermal
reservoir and a friction term (ζ ) in the equations of motion. This friction parameter is a fully
dynamic quantity with its own momentum (p) and equation of motion. It is described by
the difference between the actual kinetic temperature of the system T (t) and the imposed



1.3 Molecular dynamics simulation 19

temperature T :
dζ

dt
=

Nd f kB

Me f f
(T (t)−T ) (1.22)

where Me f f is the effect mass of the reservoir. The particle’s motion is expressed accordingly
as:

d2ri

dt2 =
fi

mi
− p

Me f f

dri

dt
(1.23)

The effective mass is an an adjustable parameter, and a large value corresponds to a
slow energy exchange between the system and the heat reservoir. The function to evolve the
friction parameter is formulated according to the explicit velocity functions like leap-frog and
velocity-Verlet. Nose-Hoover is the most widely used thermostat that sustains the canonical
ensemble distribution both in configuration and momentum space.

A macroscopic system reacts on an imposed pressure (P) by changing its volume.
Accordingly, pressure control in molecular dynamics involves volume fluctuations of the
simulation box. In Berendsen algorithm, the coupling of the system to the external volume is
realized by a piston that acts on the system to achieve the isotropic expansion or compression.
The coordinates and box vectors are rescaled every step by the scaling factor:

dP(t)
dt

=
1
τP

(
Ppiston −P(t)

)
(1.24)

λ = 1−βT
∆t
τP

(
P(t)−Ppiston

)
(1.25)

where βT is the isothermal compressibility. It should be noted that Berendsen barostat yields
a simulation with the correct average pressure, it does not yield the exact NPT ensemble.
For simulations where the fluctuations in pressure or volume are important e.g. to calculate
thermodynamic properties, Nose-Hoover barostat or Parrinello-Rahman barostat should be
used.

1.3.2 Classical force field

During MD modelling, the forces between atoms within molecular, i.e., intramolecular
interaction and also between molecules, i.e., intermolecular interaction are determined by the
force field. Here, three classical force fields, i.e., Transferable Potentials for Phase Equilibria
(TraPPE) (Martin and Siepmann, 1998), Chemistry at Harvard Macromolecular Mechanics
(CHARMM) (Vanommeslaeghe et al., 2010) and Optimized Potentials for Liquid Simulations
(OPLS) (Jorgensen et al., 1996) are selected to introduce the potential energy in MD system.
The energy of non-bonded interactions between atoms are described based on Coulomb
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potential and the vdW interactions by 12-6 LJ function:

Enb
(
ri j
)
=

qiq j

4πε0ri j
+4εi j

((
σi j

ri j

)12

−
(

σi j

ri j

)6
)

(1.26)

where ri j is the distance between two atoms i and i, qi and q j are the partial charges on the
atoms, ε0 is the permittivity of vacuum, σi j is the vdW radius, and εi j is the well-depth for this
atom pair. The LJ pair coefficients for interactions between unlike atoms can be computed
using arithmetic average and geometric average: σi j =

(
σii +σ j j

)
/2 and εi j =

(
εiiε j j

)1/2.
Apart from the non-bonded interactions, bonded interaction to maintain molecular topology
is shown in Figure 1.11, with the energy functions expressed as follows:

Fig. 1.11 Different intramolecular interactions between atoms of i, j , k and l.

Intramolecular interaction of bond stretching is represented by a harmonic potential:

Eb
(
ri j
)
=

1
2

kb
i j
(
ri j −b0

)2 (1.27)

Bond-angle vibration between a triplet of atom is also represented by a harmonic potential:

Ea
(
θi jk
)
=

1
2

kθ
i jk
(
θi jk −θ0

)2 (1.28)

In CHARMM force field, an Urey-Bradley correction term is also included (Vanommeslaeghe
et al., 2010):

EUB
a
(
θi jk
)
=

1
2

kUB
i jk
(
rik − r0

ik
)2

(1.29)

In TraPPE and OPLS force field, proper dihedral angles separated by the three bonds is
represented by cosine terms of a Fourier series:

EF
d
(
φi jkl

)
=

1
2

(
4

∑
n=1

Fn
(
1+(−1)n+1 cos(nφ)

))
(1.30)

Fourier function can be converted into Ryckaert-Bellemans function for computational effi-
ciency:

ERB
d
(
φi jkl

)
=

5

∑
n=0

Cn (cos(φ −180◦))n (1.31)
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In CHARMM force field, dihedral potential is expressed as:

Ed
(
φi jkl

)
= kφ (1+ cos(nφ −φs)) (1.32)

For out-of-plane improper dihedral, it is expressed as:

Eid
(
ξi jkl

)
=

1
2

kξ

(
ξi jkl −ξ0

)2 (1.33)

where k, F and C are the force constants. The improper dihedral angle ξ is defined as the
angle between planes (i, j,k) and ( j,k,l).

1.3.3 Reactive force field

To calculate chemical kinetics in MD, reactive force field (ReaxFF) developed by
van Duin et al. (2001) should be used, where all connectivity dependent interactions are
described based on bond order formalism. Bond order determined by interatomic distance
using an empirical formula is continuous and includes contributions from σ , π and π π

bonds. By updating bond order at every iteration, ReaxFF MD method is able to model the
bond formation and dissociation. Nonbonded terms like vdW and Coulomb interaction are
calculated independently. Charge equilibration (QEq) method is used to adjust the partial
charge on individual atoms based on interactions with their neighbours. System energy
associated with different forces on each atom are calculated using the following equation (van
Duin et al., 2001):

Esystem = Ebond +Eover +Eunder +El p +Eval +Etor +EvdW +ECoulomb (1.34)

where Ebond ,Eover, Eunder, El p, Eval , Etor, EvdW , ECoulomb, represent bond energy, overcoordi-
nation energy penalty, undercoordination stability, lone pair energy, three-body valence angle
energy, four-body torsional angle energy, vdW energy, and Coulomb energy, respectively.

Bond order is calculated directly from interatomic distance using the empirical formula:

BOi j = BOσ
i j +BOπ

i j +BOππ
i j

= exp
[

pbo1

(
ri j

rσ
o

)pbo2
]
+ exp

[
pbo3

(
ri j

rσ
o

)pbo4
]
+ exp

[
pbo5

(
ri j

rσ
o

)pbo6
]

(1.35)

where BO is the bond order between atoms i and j, ri j is interatomic distance, ro terms are
equilibrium bond lengths, and pbo terms are empirical parameters.
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1.4 Molecular modelling of biofuel and biomass

MD is widely used to study the heat and mass transfer process as well as the microscopic
structure evolution during phase transition. MD simulation has also been successfully used
to predict the thermalphysical properties (density, enthalpy of vaporization, heat capacity,
surface tension, isothermal compressibility, etc) of organics like alkane, aromatics, methyl
esters, alcohols, water, ionic liquids, crude oil, etc (Wensink et al., 2003) (Caleman et al.,
2012) (Bharadwaj et al., 2015) (Bedrov et al., 2019) (Chen et al., 2020). For example, Ding et
al. (Ding et al., 2018a) (Ding et al., 2018b) studied the transport properties and local structure
of molten alkali carbonates. Moreover, after reviewed the application of MD on calculating
transport properties of working fluids at supercritical conditions, Nie et al. (2019) concluded
that MD can be considered as an effective tool. Recently, Oliveira et al. (de Oliveira and
Caires, 2019) (de Oliveira et al., 2020) studied the molecular arrangement in diesel/biodiesel
blends and the impact of biodiesel as an additive on the stabilization of diesel/ethanol blends.
It is expected that MD modelling becomes routinely used to bridge fundamental knowledge,
physical insight and practical use of supercritical fluids considering that force fields (which
are crucial to the simulation accuracy) and molecular simulation are more and more precise
and affordable (Vega, 2018).

ReaxFF is feasible for large scale reactive systems, inheriting similar accuracy of quan-
tum mechanics but with substantially reduced computational expenses. Besides the application
of ReaxFF MD on combustion of small fuel molecules like syngas (Ashraf and van Duin,
2017), wet ethanol (Feng et al., 2019) and benzene (Dong et al., 2015), it has been success-
fully used to investigate the pyrolysis and oxidation of large hydrocarbon fuels like JP-10
(Chenoweth et al., 2009), diesel (Chen et al., 2019) and bio-oil (Liu et al., 2017c). Moreover, a
wide range of aspects related to soot formation have also been studied, for example, incipient
soot particle formation from pericondensed PAHs in the form of physical stacks or chemical
carbon bridge connection and energy transfer of PAHs interacting with bath gases (Mao et al.,
2017) (Wang et al., 2019).

MD simulation with classical force fields also provides an opportunity to study the
three-dimensional structure of biomass components and quantification of their interactions at
nanoscale level (Zhang et al., 2019) (Ciesielski et al., 2020). For example, MD simulation with
all-atom force fields demonstrated the effect of hydrogen bonding on strength of crystalline
cellulose nanofiber (Zhu et al., 2015). Using coarse grained force field, Lindner et al. (2013)
studied the aggregation of lignin on the surface of cellulose chains in aqueous solution with
the system size of 3.8 million atoms. Owing to the capability in predicting thermophysical
properties and describing diffusion process in complex pores of zeolites, MD simulation can
also contribute to the reactor design (Ding et al., 2018b) (Nie et al., 2019) (Keil, 2018).
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In addition to the experimental methods like thermogravimetric (TG) analysis to study
biomass pyrolysis, ReaxFF MD enables the identification of elementary pathways and the
associated kinetic parameters of macromolecular architecture of biomass (Zheng et al., 2016)
(Chen et al., 2017) (Paajanen et al., 2021). Li et al. (2021), review the utilisation of ReaxFF
MD in unravelling the complex reactions and kinetics for pyrolysis and oxidation of organic
systems such as lignin, coal, polymers and high-energy materials. Batuer et al. (2021)
developed a ReaxFF MD simulation model of cotton cellulose pyrolysis in both non-isothermal
and isothermal conditions. It was found that 80% and 100% of volatile removal ratios was
the closest to the TG experimental results. The work of Monti et al. (2018) showed that the
ReaxFF simulation of lignin fragmentation on a Pd catalyst was capable to reveal the surface
chemistry details of adsorption dynamics of reactive oligomer and deposition dynamics of the
generated fragments.

1.5 Knowledge gaps, motivation and thesis overview

Liquid biofuels are a sustainable energy source for transportation, and deployment of
biofuels is important in achieving net-zero carbon. During producing biofuels from lignocel-
lulosic biomass, improving biofuel properties by adding catalyst is essential. Deactivation
will inevitably occur during this process. However, there is still a lack of investigation on the
mechanism of catalyst deactivation concerning the effects of catalyst size, coke molecular
structure and temperature. The properties of biofuels would affect its utilisation in engine,
deployment and commercialisation. Soot formation mechanism particularly the transition
form gas phase precursors to solid phase particulate matter is still controversial. It is reported
that oxygenated biofuels can help reduce soot formation. However, the detailed reaction
pathways in soot formation regarding the specific functional groups in biofuels is unlikely to
be tracked in experiments. This results in the insufficient understanding of soot mitigation
mechanism of biofuels. Moreover obtaining the physical properties of biofuels experimentally
is also difficult particularly in high-temperature and high-pressure supercritical conditions
which is important in developing supercritical combustion. Predicting the thermophysical
properties of biofuels is still an open question which needs a reliable method.

The MD simulation can be used to fill the knowledge gaps. MD simulation as an
advanced tool can be used to the study the utilisation of biomass and biofuels in atomic
level, leading to much enhanced fundamental understandings of the processes involved and
improved predictions of property variables. The overall aim of this study is to gain a better
understanding of the key aspects of biofuel production and utilisation using MD simulations.
The objectives of the study are mainly in three aspects:
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• To reveal the mechanisms behind the catalyst deactivation during biomass thermochem-
ical conversion. The effects of nanocrystal size on surface premelting and the effects of
coke molecular structures on deposition will be quantified. The seeping phenomenon
will be studied as it affects the catalyst regeneration after deactivation.

• To validate the soot inception model and study the nascent soot molecular structures.
The specific pathways of aromatics formation from fuel pyrolysis will be identified. The
soot mitigation mechanisms of biofuels will be revealed, and thus different functional
groups in biofuels on soot reduction can be quantified.

• To establish reliable method to predict the thermophysical property of biodiesel at
extreme and supercritical conditions. The capability of different force field on property
prediction will be investigated by comparing with experimental results. Various thermo-
physical properties will be calculated using equilibrium and non equilibrium molecular
simulation.

The thesis is organised into several chapters:

Chapter 1: The importance of biofuel production and utilisation as renewable energy in
reducing GHG emission is firstly introduced. The deactivation phenomenon of catalyst are
mentioned as an unsolved problem in biofuel production. The difference between biofuels
and diesel in terms of physical properties like transport properties and combustion kinetics
like soot formation are reviewed. The basic methodology of MD simulation is introduced and
the application of MD in studying fuel properties are reviewed.

Chapter 2: The coke surrogate models are established firstly based on the distribution of
lignin pyrolysis products and soot inception mechanism. Nanocatalyst surface premelting in-
duced thermal degradation is studied via Lindemann index and atom displacement magnitude.
A ReaxFF MD simulation system is established to elucidate the deactivation mechanism by
demonstrating the time evolution of catalyst morphology and interactions with coke, to reveal
the effect of coke size, O/C ratio and operating temperature on chemisorption/physisorption.
Afterwards, the deactivation extent of catalyst is quantified via adsorption ratio and relative
Lindemann index over a wide range of conditions.

Chapter 3: With the objective of developing a better understanding of sooting phenom-
ena in nanoscale, reactive MD simulation was performed in this chapter. The role of typical
building blocks and the specific chemical growth pathways on soot inception are investigated,
taking advantages of the recent advance of MD force field to describe the carbon condensa-
tion chemistry. From this approach, the effects of composition and molecular structure of
biodiesel blends (e.g., alkanes and aromatics in diesel, double bonds and oxygenated moieties
in FAMEs) on sooting tendency are scrutinised by labelling and tracking the corresponding
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atoms during the simulation. The mechanisms of molecular structure of oxygenated additives,
i.e. the existence ester, alcohol, carbonyl group and ether, on soot precursor mitigation are
elucidated via evaluating the early formation of CO and CO2 quantitatively during the thermal
decomposition.

Chapter 4 and Chapter 5: MD simulation is employed to deal with the aforementioned
challenges in transcritical injection prediction of biodiesel. In Chapter 4, capability of current
methods on prediction of transport property of FAMEs in equilibrium MD simulation are
evaluated, particularly in conditions of high pressure. Chapter 5 is oriented to addressing a
number of specific issues in three areas where there is currently a lack of understanding or
reliable predictive methods, including (1) high pressure induced solidification; (2) critical
property and surface tension prediction; and (3) prediction of transport properties such as den-
sity, viscosity and conductivity of the fuel mixtures using both equilibrium and nonequilibrium
MD simulations.

Chapter 6: The main conclusions of the thesis are summarised, and suggestions for
future work are illustrated.





Chapter 2

Lignin pyrolysis and catalyst deactivation

Surface coking is the primary deactivation pattern of metal-based catalyst in biofuel reforming,
which hinders the commercial utilisation of biomass. Although significant experimental work
has been performed on coke deposition induced catalyst deactivation taking place in biomass
pyrolysis and upgrading, further fundamental modelling studies is required to deepen the
understanding of the physiochemical phenomena. This would help to optimise the processing
condition and attenuate deactivation. To the best of our knowledge, molecular modelling of
catalyst surface coking in biomass utilisation has not been performed.

The schematic depiction of the catalytic thermochemical conversion process of lignin
is shown in Figure 2.1. A typical lignin molecular structure is shown in Figure 2.2. Lignin
pyrolysis is simulated in MD with reactive force field in Chapter 2.2, and the coke surrogate
models are established accordingly. The surface instability induced thermal degradation of Ni
nanocatalyst and coke deposition induced catalyst deactivation are studied in Chapter 2.3.

2.1 Modelling methodology

2.1.1 Model construction

Lignin is the third major component of lignocellulose, accounting for 10-35% by weight,
up to 40% by energy in biomass (Liu et al., 2017b). Compared with semi-crystalline polysac-
charide cellulose and amorphous polysaccharide hemicellulose, lignin is an amorphous
aromatic polymer composed of three basic monomer units, i.e., p-hydroxyphenyl (H), guaia-
cyl (G) and syringyl (S) as shown in Figure 2.3 (a). The proportion of H, G and S units in
lignin strongly depends on the biomass species. The exact molecular structure of lignin is
difficult to characterize. The linkages of basic lignin units are complex and mainly include
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C-O ether bonds (β -O-4, α-O-β ’, γ-O-4, α-O-β ’, and α-O-4 etc) and C-C bonds like α-6 as
shown in Figure 2.3 (b). In this study, a simplified softwood lignin structure containing seven
most common linkages proposed by Beste was adopted (Beste, 2014).

As one of the most promising active phases, Ni is widely used in reforming process
(Ochoa et al., 2020). In this study, face-centred cubic (fcc) lattice of Ni nanoparticles as
shown in Figure 2.3 (c) was created on a web-based crystallographic tool (Chatzigoulas et al.,
2018). The minimum surface energy of corresponding Miller indices of (111), (100) and (110)
was adopted from the work of Jiang et al. (2004). In order to study the surface premelting
phenomena, Ni catalyst is divided into three layers, i.e., layer1 (L1) atom identities (ID) range
from 1 to 369; IDs of L2 range from 370 to 1229; IDs of L3 range from 1230 to 2867.

Coke is always referred to as any unwanted carbonaceous organics depositing on the
catalyst surfaces, and varies in composition depending on the reforming temperature and
resident time. It is generally classified into different types based on morphology or structure,
e.g., highly oxygenated encapsulating coke and aromatic filamentous coke (Ochoa et al.,
2017) (Ochoa et al., 2020).

In order to simplify the complex coke composition and better understand the adsorption
and decomposition mechanisms on the catalyst surfaces, surrogate coke molecular models are
established as shown in Figure 2.3 (d). Peri-condensed PAHs including naphthalene (A2),
pyrene (A4), coronene (A7), ovalene (A10), circumcoronene (A19) which are constituted
of 2-, 4-, 7-, 10-, and 19- numbered aromatic rings respectively, are selected to represent
a large range of molecular size. These PAH monomers are regarded as the key precursors
and building blocks in soot formation of incomplete hydrocarbon combustion, and used
widely to study the nucleation and condensation mechanism in soot inception (Mao et al.,
2017) (Mao et al., 2018). The counterparts of phenolic compounds including phenol (A1O1),
hydroquinone (A1O2), phloroglucinol (A1O3) and benzenehexol (A1O6) are selected to
reflect the effect of O/C ratio.

2.1.2 Simulation setup procedures and details

For lignin pyrolysis simulation, 40 lignin unimolecules containing 13720 atoms are con-
structed into a 200 × 200 × 200 Å cubic box with a lower initial density to avoid overlapping
of major functional groups. After system energy minimisation, the box is further compressed
using an isobaric-isothermal NPT ensemble at 300 K and 100 bar with a time step of 0.25 fs
until the density reduced to 1.25 g/cm3, which is close to the value in the work of Zhang et al.
(2016). Thereafter, to relax the system, 3 recycle simulation in NPT ensemble at atmospheric
pressure with temperature annealing between 300 K and 400 K was performed for 100 ps,
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Fig. 2.1 (a) Schematic depiction of the cellulose, hemicellulose and lignin in plant cells of
lignocellulosic biomass; (b) representative molecular structures of β -D-glucose cellulose,
hemicellulose and softwood lignin fragment highlighting the most common linkages adapted
from Beste (2014); (c) lignin surrogate models proposed by Faravelli et al. (2010) based on
the characterization and composition of lignin structures; (d) molecular modelling of lignin
decomposition over nanocatalysts.

followed by isochoric-isothermal NV T simulation at 400 K for 100 ps. The equilibrated
system with a 51.1 × 51.1 × 51.1 Å cubic box is shown in Figure 2.4 (a). Production run is
continued using canonical NV T ensemble from the equilibrated system, ramping from 300 K
to 3000 K with the heating rate of 20 K/ps.

Both non-isothermal and isothermal simulations are set up using canonical NV T en-
semble with the Ni nanocrystals placed in the centre of a 100 × 100 × 100 Å cubic box as
shown in Figure 2.4 (b) to investigate the melting process of nanocatalyst. Nonisothermal
simulation is performed first to study the dynamic melting with the temperature ramping from
300 K to 3000 K in 500 ps simulation. Separate isothermal simulation is then performed
to study the equilibrium melting process using constant temperatures from 400 K to 2400
K with temperature interval of 400 K. For simulation of coke deposition, each of the coke
surrogate molecule is duplicated 50 times and distributed randomly into the 100 × 100 × 100
Å cubic box with a 4 nm Ni nanocatalyst fixed in the centre as exhibited in Figure 2.4 (c).
Isothermal simulation of 800 ps with time step of 0.25 fs is performed using canonical NV T
ensemble. The trajectories and species information are outputted at every 400 steps. The
linear and angular momentum of Ni nanocrystal is zeroed every 10 time steps.

The periodic boundary condition is applied in all directions. The velocity of molecules
is assigned according to Maxwell-Boltzmann distributions of the specified temperature. The
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Fig. 2.2 Lignin molecular structure used in this study, adapted from Beste (2014).
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Fig. 2.3 (a)-(b): Basic units of lignin and various linkage in the lignin structure; (c) atom
arrangement of a 4 nm Ni nanocrystal in tridimensional view with facets indicated and the
cross section with different layers (L1, L2 and L3) indicated, where the atoms are coloured
according to the coordination number (CN) with cut off distance of 3.2 Å; (d) molecular
structures of coke surrogate models with molecular structure, molecular mass and CAS
number indicated.
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Nosé-Hoover thermostat and barostat are adopted to control the system temperature and
pressure with a temperature and pressure damping constant equal to 100 times and 1000
times of the time step respectively. A bond order cut off of 0.3 is employed to recognize the
molecules and analyse the species forming during the simulation. The ReaxFF MD simulation
is performed with REAXC package in the Large-scale Atomic/Molecular Massively Parallel
Simulation (LAMMPS) (Plimpton, 1995). In this study, the latest developed C/H/O param-
eter set (CHO2016) (Ashraf and van Duin, 2017) was used to study lignin pyrolysis, as it
improved the C1 chemistry and was widely applied to describe reaction network and kinetics
during pyrolysis and oxidation of syngas, phenoxy-aromatic fuels, multicomponent diesel etc.
(Ashraf and van Duin, 2017) (Chen et al., 2019) (Kwon et al., 2020b) . C/H/O/Ni parameter
set (Mueller et al., 2010a) (Mueller et al., 2010b) developed for modelling hydrocarbon
chemistry catalysed by Ni was adopted to study the surface coking over Ni nanocatalysts. All
the visualizations are produced by OVITO (Stukowski, 2009).

Fig. 2.4 (a) Snapshot of the equilibrated unit cell with one unimolecular (C138H160O45) of the
40 lignin fragments highlighted; (b) 4 nm Ni nanocrystal centred in the box for modelling
of catalyst thermal stability; (c) schematic box depicting the modelling system of coke
adsorption, where Ni catalyst is fixed in centre with aromatic organics distributed around.

2.2 Lignin pyrolysis products

Nonisothermal simulation is performed first to study the lignin mass fraction change
during pyrolysis and is compared with TG experimental results of kraft lignin (Barr et al.,
2021) as shown in Figure 2.5.

Based on the species evolution in Figure 2.5 (a), the lignin pyrolysis processes can be
roughly summarized into three stages. Pyrolysis at temperatures ranging from 300 K to 800
K is the initial stage where lignin molecules mainly proceed conformation adjustment with
a slight mass loss. Very few small radicals like CH3O, CH3, and OH are observed in this
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stage. The second pyrolysis stage takes place when temperature ramps from 1000 K to 1800
K. The macromolecular lignin structure decomposes appreciably while number of species
increases slightly in this stage. Existence of secondary reaction at temperatures from 1800
to 3000 K results in the apparent increase of species in the last pyrolysis stage. It should be
pointed out that although there is a temperature difference between the experiment (423-1173
K) and simulation (800-3000 K), pyrolysis process is described well in the ReaxFF MD
simulation following the consistent decreasing trend from the simulation and TG experiment
as shown in Figure 2.5 (a). Relevant work (Qian et al., 2016) (Hong et al., 2020) (Batuer et al.,
2021) also verified the elevated temperature strategy used in ReaxFF MD can well reproduce
the pyrolysis mechanism of coal, cellulose and oil shale kerogen at higher experimental
temperatures.

Fig. 2.5 (a) Evolution of lignin mass fraction and number of species where blue solid box
is mass fraction of TG experiment (temperature ramp: 2 K/min), black hollow box is mass
fraction of ReaxFF MD simulation (20 K/ps), red hollow box is species of ReaxFF MD
simulation; (b) snapshot of the system and the mass fraction of final composition yield, where
typical molecular structures are identified.

Depending on the degree of pyrolysis, the lignin macro molecular structures depolymer-
ize into volatile compounds, monomers, oligomers, and solid bio-char. Pyrolysis products are
generally classified as char, heavy tar, light tar and gases according to molecular size (Batuer
et al., 2021).

Compounds containing more than 40 carbon atoms are considered as char as shown in
Figure 2.5 (b). Fragments including 14-40 carbon atoms and 5-13 carbon atoms are considered
as heavy tar and light tar which account for 38% and 20%, respectively. The gas molecules
accounting for 17% of the products include organic gases containing 1-4 carbon atoms and
inorganic gases like H2, CO2 and H2O etc. Tar composition of oxygenated aromatics like
phenols and m-xylene can sustain for long duration even under supercritical conditions and is
supposed to proceed dehydration leading to the formation of aromatic compounds such as
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benzene, toluene and xylenes (Okolie et al., 2019). These coke precursors can further pyrolyze
and polymerize via H-Abstraction-Carbon-Addition (HACA) soot inception mechanism [3,
44], facilitating the formation of condensed heavy PAH. For example, naphthalene, which
is also recognized as the most stable and difficult-to-decompose compound among biomass-
derived tars, is selected as the surrogate model to study the catalyst deactivation in tar
reforming (Arregi et al., 2018a) (Cheng et al., 2020) (Gao et al., 2020).

2.3 Catalyst deactivation during thermochemical conversion
of lignin

2.3.1 Surface instability induced thermal degradation

Temperature is recognised as the most common factor resulting in metal sintering during
steam reforming processes. The dynamic melting temperature Tm of nanocrystal of different
sizes can be obtained by the time evolution of the average potential energy, i.e., pe using
nonisothermal temperature ramping simulation as shown in Figure 2.6 (a). The melting
behaviour of the 4 nm crystal is further characterized using the atom distribution function
g(r) = dn(r)/

(
4πρnr2dr

)
as shown in Figure 2.6 (b). It describes local number density ρn

variation as a function of distance r from a reference atom, and can reveal the structural
information of local order degree.

The pe curves mainly pass through three stages, taking 4 nm crystal as an example.
In the first stage, a gradual linear increase of pe is seen between 400 K to 1550 K. The
corresponding curves of g(r) display a series of well-defined peaks at time before 240 ps,
indicating that long-range ordered structure and crystalline arrangement are well preserved.
When temperature is higher than 2000 K, i.e., after 320 ps, melting enters the third stage
where the pe still increases linearly with temperature with a higher slop, while long-range
order of atom distribution function vanishes indicating the completely amorphous liquid
phase. The nonlinear sharp increase region between 1550 K and 2000 K is related to the
solid-to-liquid transition, where 2000 K is always regarded as the melting point of the system
as indicated by the dash lines in Figure 2.6 (a). The melting temperature depends strongly on
size, and a linear decrease in melting temperature is found with increasing reciprocal of radius
as shown in Figure 2.6 (c). The melting temperature of bulk Ni is obtained by extrapolating
1/R → 0 is 2512 K which is about 40% higher than the experimental value of 1728 K.

In order to eliminate the effect of insufficient equilibrium during the temperature ramp,
a number of isothermal simulations were performed. Dimensionless Lindemann index
representing the degree of atomic vibration is employed to quantify the crystallinity of
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Fig. 2.6 (a) Potential energy per atom of nanocrystal with diameters of 2-6 nm heating from
300 K to 3000 K; (b) time evolution of the radial distribution function of the 4 nm nanocrystal
heating from 300 K to 3000 K in 500 ps; (c) melting temperatures of Ni crystal with different
sizes determined by potential energy evolution.
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nanoparticles. The Lindemann index is defined as:
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where δi is the Lindemann index of the ith atom, δ is the system-averaged value, N is the
number of atoms in nanocrystal, ri j is the interatomic distance between atom i and j, ⟨· · · ⟩T

denotes the time average at temperature T.

The Lindemann index of 4nm nanocrystal at different temperatures is shown in Figure 2.7
(a). It is known that the catalyst reactivity is closely related to the number of the nearest neigh-
bours of the surface atom, i.e., coordination number. The coordination number distribution
of the Ni nanocrystal shown in Figure 2.3 (c) is determined using the first minimum of the
atom distribution function, i.e., 3.2 Å as the cut-off distance. The distribution of coordination
number of outer shell at different temperatures is presented in Figure 2.7 (b). Phase change
of Ni nanocrystal during melting is determined at the temperature where Lindemann index
δ increases to 0.08 (Neyts and Bogaerts, 2009). High Lindemann index denotes high vibra-
tional motion of atoms and disordered structural morphology. The bulk melting temperature
predicted using Lindemann index as the criterion in ReaxFF MD simulation is 2298 K, still
33% higher than the experiment result but closer to that from the potential energy method.

It is also observed that a sudden increase of Lindemann index takes place in L3 outer
shell at 1600 K which corresponds to the drastic change in coordination number distribution
in Figure 2.7 (b), while inner layers of L1 and L2 still persevere ordered solid state at 1600
K. Surface disordering before complete melting is regard as a general phenomenon during
nanocrystal melting due to the existence of the unstable undercoordinated atoms with dangling
bonds as indicated in Figure 2.3 (c). The higher values of the potential energy per atom in
both solid and liquid states for the smaller nanocrystals in Figure 2.6 (a) are a reflection of the
increased fraction of loosely bounded surface atoms.

It is believed that strict surface melting phenomenon defined with the formation of
quasi-liquid film occurs only if the radius of nanocrystals is larger than the critical value (e.g.,
2.96 nm for Ni (Chernyshev, 2009)). Surface structure instability induced deactivation of 4
nm crystal is scrutinised, considering that even slight atom modifications in crystal surfaces
can affect activity and selectivity in catalysis. Generally, when temperature reaches Hüttig
temperature (0.3Tm), i.e., around 689 K), the surface atoms located at corners, steps, and
terraces with reduced coordination numbers tend to dissociate and diffuse readily over the
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Fig. 2.7 (a) Lindeman index of 4 nm nanocrystal at isothermal conditions, where the melting
temperature of different sizes based on Lindemann index criteria is inserted, and the solid
triangle is the result of nanocrystal; (b) distribution of coordination number of L3 surface at
different isothermal conditions.

surface. After temperature further approaches to Tamman temperature (0.5Tm, i.e., around
1149 K), the bulk atoms start to show mobility (Argyle and Bartholomew, 2015).

The melting behaviours are reflected via displacement magnitude as shown in Figure 2.8.
The surface atoms show apparent mobility at 1200 K with the average displacement magnitude
of outer shell almost 3 times greater than the core layer. The atoms with prominent mobility,
i.e., those with deviation displacement from lattice position greater than 3.2 Å, present mainly
at junction edges or corners of facets. These atoms also account for 39% of the out shell at
1600 K, explaining the drastic change in coordination number distribution. At temperatures of
2000 K and 2400 K, the nanocrystal becomes totally amorphous, indicating frequent change
of atoms between different layers.

2.3.2 Deposition induced deactivation

Carbonaceous molecular adsorption onto catalyst surfaces is the first step to study coke
deposition induced deactivation, involving coke composition, operating temperature and
reaction time. In order to decouple these factors, isothermal ReaxFF MD simulation using
the aromatic coke surrogate molecules (see Figure 2.3 (d)) at 1200 K was performed to
investigate the time evolution of adsorption process as illustrated in Figure 2.9. Corresponding
snapshots to depict the key stages during adsorption are displayed in Figure 2.10. Temperature
effects on adsorption ranging from 400 K to 2000 K are confined to typical molecules of
benzene (A1, minimum aromatic size), pyrene (A4, medium size PAH), circumcoronene (A19,
maximum size PAH) and benzenehexol (A1O6, the highest oxygen content), as illustrated by
the snapshots in Figure 2.11.
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Fig. 2.8 Scatter plots of displacement magnitude along with atom ID of 4 nm nanocrystal
at different time and the corresponding coloured maps of the overall and cross sectional
snapshots, where (a): 400 K, (b): 800 K, (c): 1200 K, (d): 1600 K, (e): 2000 K, (f): 2400 K,
and the numbers in bracket indicates displacement magnitude of different layers, where blue:
L1, orange: L2, red: L3, and the grey area in (c) and (d) indicates atoms with displace over
3.2 Å.
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Time evolution of molecules is obtained in ReaxFF MD simulation through the dumped
information of molecular quantities and chemical formulas of species identified by the bond
order criteria of 0.3. It should be noted that except for the plane-parallel monolayer adsorption
onto Ni facets (Figure 2.10 (b-1)), the addition of PAH stacks with various misalignment
and conformation onto Ni surfaces is also frequently observed (Figure 2.11). The analysis
of the overall adsorption is extended to the recognition of the new cluster comprising Ni
nanocrystal and the adsorbates. Here, an interatomic distance criteria of 4 Å adopted from
the work of Mao et al. (2017), which has been used to distinguish physical nucleation PAH
clusters, is employed as illustrated in Figure 2.9 (a). The adsorption ratio is thereof defined as
the proportion of the adsorbate atoms. From Figure 2.9 (b)-(e), the effects of molecular size
and O/C ratio on time evolution of adsorption tendency in different stages are elaborated into
four aspects: initial adsorption rate, binding stability, decomposition of adsorbates and final
adsorption ratio.

For benzene (A1), adsorption ratio fluctuates appreciably in all the simulation time with
a low final adsorption ratio of 25%, and the number of benzene molecules reduces steadily
to 35. It should be pointed out that PAH monomer constructed ReaxFF MD systems are
observed to be chemically stable at 1200 K (Mao et al., 2017), and there is no decomposition
occurring in our homogenous test system of A1O6 in the absence of Ni nanocatalyst. This
indicates that the reduction of aromatic molecules is entirely due to the surface reaction after
adsorption.

We display two typical interaction scenarios between benzene and nanocrystal in Fig-
ure 2.10 (a) and (b). The first type is that benzene is trapped at the time of 15 ps, and
desorbed back immediately after 7 ps surface diffusion. Trap-diffusion-desorption is regarded
as void-collision leads to the unstable physisorption which accounts for the fluctuation in
adsorption ratio. The second type is that benzene diffuses on the surface for almost 399 ps
after trapped by nanocrystal until decomposition occurs, e.g., dehydrogen forming C6H5 and
aromatic ring opening. Trap-diffusion-decomposition is regarded as effective-collision, in
which situation, adsorbates are able to reside on the surface for a long period due to the tuned
energy exchange and momentum accommodation with the particle (Li and Wang, 2005).

Comparing the adsorption ratios, it is observed that medium size PAHs (A2, A4 and
A7) show heavier fluctuation while step addition occurs in large size PAHs (A10 and A19) in
late stage. This is because only A10 and A19 undergo thermally stable physical nucleation
forming PAH stacks at 1200 K (Mao et al., 2017). The A19 trimers are subsequently trapped
as a whole onto the aromatic subtracts at the time of 452 ps (Figure 2.10 (c)), accounting for
the 6% increase of adsorption ratio (Figure 2.9 (c)). Also, it should be noted that 1200 K is
the transition point for dimerization of A10. Thus, step addition of A10 is not as prominent
as A19 and most A10 is monolayer adsorbates. The reduction of A10 is much more than
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Fig. 2.9 (a) Schematic plot of the cluster recognition (coloured by green) with a cut off
distance of 4 Å; (b)-(c) time evolution of overall adsorption ratio; (d)-(e) time evolution of the
number of aromatic molecules, and the coloured area in (b)-(e) is the initial stage of A1O6
and A19.
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A19 considering that PAH nucleation stacks result in the multi-layered adsorbates. This is
described as PAH nucleation induced physisorption. A19 has the highest initial adsorption
rate, and larger PAH has higher final adsorption ratio for medium PAHs, indicating that large
PAH size enhances effective collision.

Aromatics with higher oxygen contents show higher initial adsorption rate and lower
fluctuation (Figure 2.9 (b)). This indicates that oxygen in coke also facilitates effective
collision. The substituent hydroxyl group in the benzene can lower decomposition activation
energy and enhance the decomposition rate (Figure 2.9 (d)). After adsorption, benzenehexol
can proceed the surface reaction like C-O bond fission, O-H bond fission and ring opening etc.
(Figure 2.10 (d)). The radicals can further react into H2O which can then desorb back into the
gas phase (Figure 2.11 (d-3)), thus result in the low fluctuation of the adsorption ratio.

Fig. 2.10 Representative trajectories (black lines) to show the time evolution of aromatic
molecule interaction with the surfaces of Ni nanocrystal, where (a)-(b): A1, (c): A19 and (d):
A1O6, and green arrow in (a) indicates the movement direction of A1, (b-2) is the modified
view of (b-1) to indicate the diffusion trajectory of A1 on (111) facet, (b-3) and (b-4) are
part of the products after surface reaction, A19 in (c) coloured in green is trapped at the time
of 40 ps and acted as subtracts for PAH stack adsorption, (d-2) to (d-5) are typical products
captured after surface reaction.

Through the above analysis, it can be revealed that the mechanism of coke adsorption
onto the catalyst surface includes three aspects: molecular collision dynamics, thermal dynam-
ics and kinetics. Although both dynamics and kinetics undoubtedly depend on temperature,
the effects of temperature on adsorption of different coke surrogate molecules in Figure 2.11
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become complicated particularly when coupled with binding energy type between the adsor-
bates and the substrate, i.e., physisorption by weak vdW forces and chemisorption by covalent
bonds. To be specific, at conditions where there is no surface reaction occurring, e.g., at 400
K and 800 K, the binding energy between A1O6 and Ni surface is covalent bond as the cluster
is recognised as a molecule with the formula of Ni2867C300H300O300. This also explains that
higher oxygen content facilitates effective collision. However, the binding energy is observed
to depend on the posture for PAHs, i.e., only aromatic ring parallel to the catalyst surface and
binding through the C-C π orbitals are identified as covalent bonding.

A1 adsorption ratios at 400 K, 800 K and 1200 K are 98%, 38% and 30% respectively.
The velocity of molecules in MD accords with the Maxwell-Boltzmann distribution, i.e.,
vp = (2RT/M)1/2, where vp is the most probable velocity, R is the gas constant and M is
molar mass of the substance. A higher temperature is supposed to lead to higher probability
of void-collision in physisorption due to higher momentum and kinetic energy (Li and Wang,
2005). However, when temperature is increased further to 1600 K and 2400 K, adsorption
ratio increases to 40.33% and 57.67% even though desorption occurs at 2400 K. This indicates
surface reaction kinetics plays a role at high temperature. Same situation also occurs for A4,
where adsorption ratio decreases from 97.20% at 800 K to 70.77% at 1200 K, while increases
from 54.95% at 1600 K to 58.52% at 2000 K. For the effect of thermal dynamics, it is known
that PAH dimer lifetime is sensitive to molecular size, and it decreases in elevated temperature.
Physical nucleation of A4 at 400 K and A19 from 400 K to 2000 K generates the PAH stacks
and results in the multi-layered adsorbates.

2.4 Discussion and conclusion

Catalyst deactivation due to coke deposition is usually reversible, and the surface adsor-
bates can easily be removed by oxidation with O2. The degradation of catalyst crystallinity is
the real concern in regeneration. We compared the Lindemann index of nanocrystal outer shell
after adsorption with the corresponding isothermal melting value at the same temperature as
shown in Figure 2.12. It is clear that PAH adsorption reduces the Lindemann index at 1200 K
and above, indicating more ordered crystalline structure than isothermal melting. It is assumed
that the covalent bond between adsorbates and catalyst surface after chemisorption prohibits
the mobility of crystal surface atoms, facilitating the preserve of crystallinity. Meanwhile,
the effect of oxygen content is not as prominent as PAH size. However, it should be noted
that when temperature was increased to 1600 K and 2000 K, seeping of the PAH surface
reaction intermediates into the inner layer of catalyst occurs (see Figure 2.11) which indicates
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Fig. 2.11 Snapshots of the system after 800 ps isothermal simulation to demonstrate the
temperature effect on adsorption of A1, A4, A19 and A1O6, where molecular formula of the
cluster in (a-1), (b-1), (c-1) and (d-1), (d-2) is indicated at the bottom of the panel; (a-4), (a-5),
(d-3), (d-4) and (d-5) are cross section snapshots, and intermediates seeping into catalyst
are indicated in the enlarged snapshot, PAHs with its ring parallel to the particle surface are
indicated by the black circle in (b-1) and (c-1), the conditions where physical nucleation
occurs according to the work of Mao et al. (2017) are highlighted by the red frame and
multi-layered adsorbates are indicated by black arrows.
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the failure of conventional surface regeneration method that may result in the irreversible
deactivation.

Fig. 2.12 Effect of coke adsorption on catalyst crystallinity of outer shell compared with
the corresponding isothermal nanocrystal melting process, which is characterised by relative
Lindemann index, and grey area indicates seeping occurrence.

The conclusions are summarised as:

The equilibrated system after 20 K/ps ratio temperature ramp (800 K-3000 K) in produc-
tion run showed similarity of mass reduction trend compared with our TG experiments (423
K-1173 K). The coke surrogate models (i.e., PAH and oxygenated aromatics) are established
based on the identified molecular structure to reflect the molecular size and oxygen contents
in practical coke respectively.

The Ni nanocatalyst surface thermal instability is investigated via the temperature
dependence of Lindeman index over different layers. Outer shell of the 4 nm nanocrystal
starts to show disorder and coordination number distribution modification when temperature
is higher than 1200 K.

Isothermal ReaxFF MD system of a centred Ni nanocrystal surrounded by coke surrogate
molecules is constructed to reveal the mechanism behind the chemisorption and physisorp-
tion at different temperature (400 K-2000 K). It is observed that adsorption is complex
process coupling the molecular collision dynamics (e.g., benzene desorbs after trapped by
the nanocrystal), thermal dynamics (e.g., medium PAH like pyrene undergo dimerization and
physical nucleation before adsorption at low temperature of 400 K) and kinetics (e.g., surface
reaction of benzenehexol and the subsequent desorption of intermediates at high temperature
above 1200 K).

In comparison with the isothermal melting of nanocrystal, surface chemisorption is
observed to facilitate the preserve of nanocatalyst crystallinity owing to the covalent bond
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prohibiting the mobility of surface atoms. Seeping of surface reaction intermediates at 1600
K and 2000 K into the inner layer of nanocrystal is adverse to catalyst regeneration.





Chapter 3

Soot formation in biofuel combustion

Soot, not merely poses tremendous harms to public health but also causes the darkening and
melting of ice glacier. The utilisation of oxygenated biofuels is believed to reduce the soot
emission. In this Chapter, the soot inception model is reviewed in 3.1. The difference between
biodiesel and diesel on soot inception and soot morphology are revealed using ReaxFF MD
simulation in Chapter 3.2. The mechanisms of PAH growth and nascent soot nucleation
are elucidated. The effect of oxygenated function groups in biofuels on soot mitigation are
quantified in Chapter 3.3.

3.1 State-of-the-art soot inception model

Particle matter emissions form diesel engines are considerably high (six to ten times) than
form gasoline engines. Diesel particle emissions can be divided into three main components:
soot, soluble organic fraction, and inorganic fraction. More than 50% of the total PM
emissions are soot that is seen as black smoke. Diesel particulate matters are typically sphere
about 15–40 nm in diameter, and approximately more than 90 % of PM is smaller than 1 µm
in diameter. The formation of process of PM emission as shwon in Figure 3.1 is dependent on
many factors as the combustion and expansion process, fuel quality (sulfur and ash content),
lubrication oil quality, and consumption, temperature, exhaust gas cooling as well as the
oxygen contents, fuel components and molecular structure.

Unlike GHGs, soot formation is difficult to be precisely modelled owing to the complex
process that involves gas-phase chemistry of primary fuel components, heterogeneous interac-
tions on the surface of soot particles, and particle aerosol dynamics. Although the discussion
has shifted from phenomenological possibilities to specifics of reaction pathways due to
computer modelling as a scientific tool, particle nucleation, i.e., the transition of gas-phase
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Fig. 3.1 Schematic diagram of soot formation process from gas phase to solid agglomerated
particles in five steps.

two-dimensional PAH species to three-dimensional solid incipient soot particle is probably
the least understood area with numerous debates. Nascent soot is generally in the size range
of 1-6 nm emerging in two types, i.e., disordered incipient particle rich in aliphatics and
liquid-like stacked incipient particles (Michelsen, 2017). Challenges also remain especially in
the context of real fuel combustion concerning the pathways of first aromatic ring formation.
Currently, supported by experimental evidence such as bimodality in nascent soot particle
size distribution (PSD) of premixed flames, many numerical simulations of soot nucleation
invoke the pericondensed PAH dimerization by physical binding of vdW force (Chen et al.,
2014a) (Chen et al., 2014b) (Grančič et al., 2016) (Bowal et al., 2019).

Although it is generally believed that the PAH stabilomers with a central core of con-
densed, 6-membered aromatics rings, equal or larger than pyrene (A4) can overcome the
two-three-ring thermodynamic barrier and survive from the fragmentation at flame tem-
perature (Herdman and Miller, 2008) (Wang, 2011), these physically bonded homo/hetero
molecular stacks are too volatile to achieve the thermal dynamic stability. A study by Khol-
ghy et al. (2019) demonstrated that PAH clustering models with reduced soot nucleation
reversibility by considering chemical bonds between reactive PAH dimers can predict the
sooting process within experimental uncertainty for ethylene coflow diffusion flame, while
PAH clustering with vdW forces only underpredicts it by more than two orders of magnitude.

Present understanding cannot fully account for the apparent irreversibility and the
morphology of the covalently bonded structures in nascent soot. The previous assumption of
purely chemical growth leading to fullerene-like soot nuclei has been ruled out as it greatly
underpredicted the mean particle size and was too slow to account for rates in soot formation
occurring in short time (1-10 ms to reach particle diameters of 50 nm) (Wang, 2011).

Combing theory and mass spectrometry experiments, Johansson et al. (2018) proposed
a promising new chemical growth model referred as rapid clustering of hydrocarbons by
radical-chain reactions (CHRCR) of resonance-stabilized radicals (RSRs) which may shed
light on the unresolved issues of soot nucleation. In the CHRCR model, three stages are
involved: initiator-RSRs growth, hydrocarbon clustering and particle-surface growth. The



3.1 State-of-the-art soot inception model 49

CHRCR is certainly plausible to explain a range of currently unanswered sooting phenomena,
such as the large amount of aliphatics, the presences of five-membered aromatic rings in
young soot particles.

Further research is still needed to specify the reaction details in order to identify how
these clusters achieve the gas-to-solid phase transition because lower abundance of RSRs
may limit the growth rates (Frenklach and Mebel, 2020). In a recently conducted experiment
to spatially resolve the molecular composition of soot, the results showed that the majority
species observed in the samples are benzenoids consisting of only fused six-membered
rings and do not find “seed” molecules with the morphology of aromatic islands connected
by aliphatic side chains, thus challenged the CHRCR model (Jacobson et al., 2020). The
controversy between these observations in soot composition and nucleation mechanisms make
them important topics for continuous research.

The availability of modelling/simulation tools at the atomistic level may shed light on
these unsolved issues. The multiscale model for soot inception developed by Violi et al. (2002),
integrating kinetic Monte Carlo and molecular dynamics, allows the extension of the accessible
time scale by orders of magnitude while retaining the full atomistic details. Application of
this model to acetylene and benzene flames showed that the reaction pathways concerning
the growth of incipient soot particles are dependent on the molecular structure of fuel. Some
indicators were employed to evaluate the property of the three-dimensional structure of
nascent soot particles including physical properties (e.g., porosity, density, radial distribution
function and sphericity) and chemical properties (e.g., C:H ratio, aromatic moieties and
number of cross-links) (Violi, 2004) (Violi and Venkatnathan, 2006).

MD simulation with OPLS-AA force field (Elvati and Violi, 2013) (Lowe et al., 2015)
was used to quantify the impact of mass, symmetry and morphology of PCAH, AALH
and aliphatics substituted PAHs on the stability of the molecular dimers. Meanwhile, the
contributions from potential energy and entropy were taken into consideration simultaneously
by using the free energy methods to describe the process. It was understood that the attached
aliphatics increased the nucleation rate greatly due to the collision energy accommodation
enhancement by the added internal degrees of freedom.

Modelling work was also performed by using replica exchange MD simulation to
investigate the molecule size distributions of the heterogeneous PAH clusters in the core-shell
model (Bowal et al., 2019). It was found that larger PAHs are stacked at the core while small
PAHs are located on the cluster surface. Of the two main factors, the strength of intermolecular
interactions played a more critical role in determining cluster partition than the molecular
size difference. Another method for modelling combustion and soot formation process is
reactive force field (ReaxFF) based MD simulations. For example, Mao et al. (Mao et al.,
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2017) (Mao et al., 2018) (Mao et al., 2019) found that physical dimerization depended both
on the temperature and PAH size while all the PAHs became chemically active at temperature
above 2500 K and generated fullerene-like soot particles. It is recognized that MD-type of
modelling/simulation will likely lead to high-fidelity soot models capable of simultaneously
resolving particle size distribution, chemical composition, and morphology (Violi et al., 2002)
(Wang, 2011) (Mao et al., 2017).

3.2 Soot formation of biodiesel combustion

3.2.1 Fuel molecular structure and modelling setup

To give an integrated description and to emulate practical fuels in the investigation of
combustion properties, using surrogate models is a common strategy. In this study, diesel
surrogate fuels are constructed by n-Dodecane (DDC, C12H26); Heptamethylnonane (HMN,
C16H34); 1,2,4-Trimethylbenzene (TMB, C9H12), n-Dodecylcyclohexane (DCH, C18H36)
with molar ratio of 20%, 20%, 30% and 30% which are in accordance with the general
diesel composition, i.e., normal and iso-paraffins (ramified alkane) contributing to 25-50%,
cyclo-paraffins constituting about 20-40% and the proportion of aromatics is 15-40% (Pitz
and Mueller, 2011). While petrol-diesel comprises hundreds or thousands of hydrocarbon
components, biodiesel fuels typically contain fewer than ten components. Soy oil biodiesel
is employed in the simulation, consisting primarily of five major methyl esters, i.e., methyl
palmitate (MP, C16:0), methyl stearate (MS, C18:0), methyl oleate (MO, C18:1), methyl
linoleate (ML, C18:2) and methyl linolenate (MLN, C18:3) (Coniglio et al., 2013). The
corresponding molecular structures and compositions are presented in Table 3.1 and Table 3.2

All the simulations are performed using LAMMPS with the latest developed CHO2016
parameters which can accurately describe C1 chemistry and carbon condense phase (Ashraf
and van Duin, 2017). In order to quantify the sooting tendency consistently, each reactive
system is built keeping approximately the same overall carbon number, i.e., 150 diesel
molecules, 114 biodiesel molecules, and 133 biodiesel blends molecules (50%-50%) are
placed randomly in the cubic box. The temperature is set up from 2500 K to 4000 K with 500
K intervals. In ReaxFF simulations, employing a high temperature and pressure to accelerate
the reactions and facilitate the simulation process is a common strategy (Chenoweth et al.,
2009) (Liu et al., 2017c) (Chen et al., 2019). It is also worth noting that this study is focussed
on fundamental aspects of fuel chemistry leading to soot formation (rather than simulating
combustion engine conditions) with special attention to renewable biodiesel fuels. The
total simulation time for each system is set up as 2 ns with 0.25 fs time step. Canonical
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Table 3.1 Molecular structures, chemical formula and compositions of soy oil biodiesel.

Table 3.2 Molecular structures, chemical formula and compositions of diesel.
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ensemble (NV T ) is used in all the simulations in conjunction with the Nosé-Hoover thermostat
employing a damping of 25 fs. The bonding formation and dynamic trajectory are recorded
every 2.5 ps. For species analysis, a 0.3 bond strength cut-off is chosen in the post-processing
to recognize the formation of molecules. A low cut-off value is helpful for capturing all
the reactions including even short-lived intermediate species. Every case (one system at
one temperature) was repeated five times with unique starting configurations to prevent
uncertainties caused by the single run. The visualisations of simulation results are generated
using Visual Molecular Dynamics (VMD) software (Humphrey et al., 1996).

3.2.2 Evolution of incipient soot formation

It has been understood that temperature plays important roles in modulating the initial
fuel pyrolysis and the subsequent growth pathways of carbonaceous clusters. For example,
peri-condensed aromatics like naphthalene, anthracene, and pyrene would experience physical
stacking at temperatures below 400 K and form incipient particles, while chemical events of
soot growth only take place at temperatures above 2500 K via self-assembly of fullerene-like
particles connected by polyacetylenic chains (Mao et al., 2017). To investigate the temperature
dependence of chemical process of nascent soot formation, the time evolutions of the average
mass and C:H ratio of the largest molecule over the temperature range from 2500 K to 4000
K are presented in Figure 3.2.

Fig. 3.2 Temperature effects and time evolutions of the mass and C:H ratio of the largest
molecule in the simulation of biodiesel blends, where the shaded area represents the statistical
uncertainty ranges determined by standard deviation.

Figure 3.2 (a), it is clear that 2500 K is not a favourable temperature to have nascent
soot formation observed within the simulation period since the species produced only exist in
the form of small polyyne-like structures. Biodiesel blends are not depleted at 2500 K with
some reactants like TMB even persist the whole resident time in all five reactive systems. In
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ReaxFF MD simulation, temperature accelerates fuel reaction positively by increasing the
kinetic energy and collision frequency. However, this is not the pattern for soot nucleation. At
3500 K, mass of the largest molecule reached a plateau after 600 ps and stabilised at around
1200 amu.

Molecules of nascent soot precursors at 4000 K grow most rapidly yet soot particles
keep fluctuating at a relatively smaller value of 600 amu after 500 ps. This is attributed to
the decomposition of the formed nascent soot at higher temperature. At the initial stage of
3000 K, soot precursors increase steadily, followed by an apparent rate rise after passing the
inflection point at around 1100 ps. The step-shape increment occurs several times in the first
round simulation shown in Figure 3.2 (a). The rate transition indicates that the mass addition
shifts from steady gas-phase PAH growth to condensed-phase soot inception by aliphatic
connection. Initial mass growth of the largest molecules and the subsequent hydrocarbon
clustering always accompany the continuous increment of C:H ratio as shown in Figure 3.2
(b). To have a better understanding of the formation, fragmentation and reorganisation of
nascent soot, reactions at 3000 K are scrutinised in the following study. The representative
molecular structures are visualised and identified in Figure 3.3.

The soot precursors comprising CR5 (carbon ring with five atoms) substituted with
aliphatic branches are observed frequently in Figure 3.3. To quantify the soot formation
process, the numbers of carbon rings in the reactive system ranging from triangle to octagon
are counted in Figure 3.4. Before 800 ps, formation of hexagons and pentagons is relatively
limited since the system would primarily go through the pyrolysis of fuels to produce PAH
precursors like small unsaturated fragments as shown in Figure 3.3 (b). The decline of CR6
also occurs in this period due to the decomposition of DCH. After the occurrence of the
scattered cyclopentadienyl and benzene in Figure 3.3 (c), the numbers of CR5 and CR6
increase rapidly with CR5 dominating from 800 ps to 1000 ps. During this stage, medium-
sized PAHs exist in the form of peri-condensed or elongated cata-condensed aromatics.

It has been reported previously in stochastic atomistic simulation that most of the soot
precursors at 202 amu and 226 amu contain penta-rings as opposed to only hexa-rings
(Johansson et al., 2017). The morphology and distribution of penta-rings in molecular
constituents of the incipient soot were also imaged explicitly in high-resolution atomic force
microscopy (AFM) (Commodo et al., 2019). Longer time scales would stabilise these PAHs
by ring reorganisation and side-chain condensation reactions. This facilitates the pentagon
defect healing, leading to thermodynamically more stable PAH fragments with more hexagons.
Thus, after 1000 ps, the number of CR6 overtakes CR5, and the overall quantity of carbon ring
continues increasing because of continuous radical addition reaction as shown in late stages
in Figure 3.3. The CR7 starts to increase at this stage along with the size expansion of PAHs,



54 Soot formation in biofuel combustion

Fig. 3.3 Evolution of pyrolysis product distribution and incipient soot morphology of biodiesel
blends, where carbon atoms from different surrogates are indicated with different colours, all
the oxygen atoms in biodiesel are indicated with red sphere, and all the hydrogen atoms are
indicated with silver sphere, some representative structures are enlarged.
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and mainly resides in periphery while the numbers of CR3, CR4 and CR8 are negligible
during the whole process.

Fig. 3.4 Time dependence of carbon ring count statistics, where the rings are artificially
coloured.

3.2.3 Mechanisms of PAH growth and nascent soot nucleation

The molecular details leading to the formation of solid soot particles from gaseous
molecules can be revealed by examining the extensive MD results obtained. A ReaxFF-based
panoramic soot formation mechanism is proposed and schematically showed in Figure 3.5.
The formation can be divided into six stages: fuel pyrolysis to form gaseous precursors,
initiator formation, growth of aromatics, nucleation (gas-to-solid transition), evolution of soot
nuclei, particle coalescence and fractal aggregation.

Although the biodiesel blends comprising 9 components can generate massive possible
reaction pathways, the predominant thermal composition pathways are C-C bond cleavage
and H-atom abstraction by radical species to produce C6-C9 intermediates and C0 compounds.
A series of subsequent H-abstraction reaction and β -session generate smaller unsaturated
fragments like ethylene (C2H4), ethyne (C2H2) etc., and RSRs, e.g., propargyl (C3H3) and
cyclopentadienyl, as the precursors for soot formation. The combination process of small pre-
cursors to form aromatics using MD simulation has barely been reported, which is recognized
as the initial step for soot formation. Propargyl is known as the key precursor in benzene
formation via C3H3 + C3H3 → C6H6. Recently it was also recognised as the initiator in the
CHRCR model for radical chain reaction via C3H3 + C2H2 → C5H5. With unpaired electrons
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being delocalised over multiple C-atom sites, propargyl is stabilised by resonance and less
reactive than ordinary flame radicals like methyl, ethyl and vinyl etc. This enables RSRs like
propargyl and cyclopentadienyl to exist till the late stage as showed in Figure 3.3, and thus
to survive the hostile flame environments. In our simulation, it has been confirmed that the
penta-rings play a key role in the initial stage as showed in Figure 3.4.

Fig. 3.5 An indicative mechanism of soot particle formation from gaseous molecules. The
process includes fuel pyrolysis to produce PAH precursors, aromatics formation, PAH growth,
particle inception, evolution of the soot nuclei, together with the simulated image of soot
particles with surface growth and fractal agglomeration of 200 primary particles (Df is fractal
dimension, kf is fractal prefactor).

The early soot formation model focussed on the addition of C2H2 to aromatics to produce
the pericondensed stabilomers after H-atom abstraction from aromatics [34]. In ReaxFF MD
simulation, PAH growth is initiated by the addition of C2H2 or C2H3 to cyclopentadienyl,
benzyl (C7H7), and indenyl (C9H7) which agrees with the recent CHRCR model described as
the addition of ethyne or vinyl to RSRs with five or seven carbon ring. At high temperatures,
these adducts are able to undergo fast extension, cyclisation, and rearrangement to enlarge
the PAH-like structures which are also substituted with methyl groups or unsaturated side
chains. The continuous growth of PAHs proceeds through three categories of moderate-sized
intermediates, i.e., ADLHs, AALHs and PCAHs to generate semi-condensed nonplanar
oligomers of aromatic compound which exhibits liquid like properties. The molecular
morphology of these PAHs in ReaxFF MD results are consistent with the recent AFM
experimental results (Commodo et al., 2019) (Schulz et al., 2019), which confirmed the
existence of aliphatically linked aromatic structures in soot.

Fully PCAH stabilomers have to be as large as coronene to attain the thermodynamic
stability of dimerization through electrostatic and dispersive force which was seldom found
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experimentally (Sabbah et al., 2010), while the role of AALH and ADLH doped with penta-
rings has been deciphered as stable components in flame via atmospheric-sampling high-
resolution tandem mass spectrometry (Adamson et al., 2018).

Recently, Frenklach and Mebel (Frenklach and Mebel, 2020) updated the “HACA”
model to include the nucleation mechanism by establishing the thermodynamics-kinetics
coupling model. It showed that the E-bridged covalent bond with five member rings is
variable to account for the soot nucleation by exciting 2 to 3 internal molecular rotors. The
reversible chemical growth can also achieve the measurable nucleation flux with cluster size
over 3 monomers. In this ReaxFF MD simulation, the seed molecules eventually evolve into
aliphatically bridged curved three-folder cluster structure weighting approximately 1100 amu
with an envelope diameter of about 5.5 nm, thus achieving the transition from gaseous PAHs
to the first condensed particle nuclei. In addition to the methyl radicals or vinyl conjugated
side chains, long aliphatics (C4-C10) highlighted in Figure 3.5 have also been observed. The
existence of aliphatics in nascent and mature soot remains an extensively observed but not
being clearly explained (Cain et al., 2010) (Cain et al., 2011). Although the controversial is
revoked again recently as the mass spectrometry experiment found that the soot is composed
of stabilomers mainly without aliphatics (Jacobson et al., 2020), our ReaxFF simulation
results support the existence of the aliphatics in soot nuclei together with the AFM images
which also confirmed the existence of long aliphatics in nascent soot directly (Frenklach,
2002) (Commodo et al., 2019) (Schulz et al., 2019).

The MD results are processed to indicate the morphological evolution of primary particles.
The amorphous clustering structures are arranged in a core surrounded by ordered graphite at
a specific distance. Graphitisation during soot maturing at high temperature always results in
ordered outer shell structure with interplaying distance at around 0.35 nm (Michelsen, 2017).

To reveal the turbostratic structure in soot nuclei, a schematic core-shell model (ran-
domly oriented multiple amorphous inner core surrounded by regular aligned outer shell)
is constructed which is then simulated into TEM (Transmission Electron Microscopy)-like
image. It provides a way to build large scale artificial atomic models of soot particles by
mimicking the fringe lattice parameters in high resolution TEM experiments, e.g., distribu-
tions of fringe length, tortuosity and separation distance. Most soot particles have complex
fractal aggregation, affecting the nature of the particles. In this study, the fractal morphology
is quantified by the scaling law given as np = kf·(Rg/rp)·Df, where np is the number of particles
in the aggregate, Df its fractal dimension, kf is the fractal prefactor, Rg is the radius of gyration
of the aggregate and rp is the mean radius of the single monomers. The fractal parameters in
this study are based on the experimental result of the biodiesel blends (Lapuerta et al., 2017).
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3.2.4 Comparison of biodiesel and diesel on soot formation

The comparison between diesel and biodiesel fuels on soot formation at the atomic
level is achieved for the first time, as that demonstrated in Figure 3.6, with different stages
divided based on the mass growth of the largest molecules. Components of real biodiesel
are large FAMEs comprising methyl esters and the attached saturated paraffin or unsaturated
olefin chains of 16-18 carbon atoms. Detailed kinetics of real biodiesel is insufficiently
understood and is always constructed by analogy with two kinds of moieties. The differences
between diesel and biodiesel on soot formation lies in several aspects: C:H ratio of the largest
molecules during soot formation, size, composition and morphology of the nascent soot.

Fig. 3.6 Comparison of diesel and biodiesel on incipient soot formation processes, where the
fitted red line and scattered red triangles indicate the number of carbons and the C:H ratio in
the largest molecule during the simulation of biodiesel, and the fitted black line and scattered
black squares indicate diesel, and the dehydrogenation process is highlighted with ellipses.
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As shown in Figure 3.6, the methyl ester functional group results in the higher C:H
ratio in biodiesel soot inception, because dehydrogenation via H-atom abstraction from PAH
precursors and nascent soot formation are enhanced at all growth stages due to the early
formation of hydroxyl and methoxy radicals. In addition, the fuel-bonded oxygen causes the
removal of C-atoms from soot precursors, suppressing the PAH and soot surface growth and
leading to smaller primary particles. It was also reported that smaller primary soot particles
always have higher reactive surface area, which in turn would increase the availability of
active sites for oxidation and thereby enhance the particle size reduction (Zhang et al., 2017).

The fuel composition and the molecular structure particularly the oxygen content in
biodiesel determines the soot formation pathways, which are the underlying reason for the
observed differences in the resulting soot particles between diesel and biodiesel. For diesel,
the bond strength of cycloalkyl ring in DCH is similar to the bonds in non-cyclic alkanes,
thus the mechanisms of soot precursor formation from cycloalkanes and non-cyclic alkane
are similar after the ring opening. In comparison with n-alkanes, highly branched paraffin
like HMN tends to produce large alkenes, because the C-C fission produces alkyl radicals
with methyl substitution at the β C-atoms. The methyl C-H or C-C bond fission of TMB
would generate trimethylbenzyl radicals, methylbenzyl and dimethylbenzyl radicals directly,
circumventing the cyclisation steps that are necessary for soot formation from aliphatic
hydrocarbons. Therefore, nascent soot of diesel has more organised fullerene-like structures
and is aromatics dominated while final nascent soot of biodiesel appears to be amorphous in
structure with a considerable amount of long aliphatic branches.

The morphological differences in Figure 3.6 help to elucidate the fundamental mech-
anisms behind XPS (X-ray Photoelectron Spectroscopy) experimental results that internal
nanostructures of the primary particles generating from fuels with higher biodiesel contents ex-
hibit pronounced C-C sp3 hybridization signals indicating higher degree of structural disorder
(Savic et al., 2016).

To quantitatively compare the sooting propensity of diesel and biodiesel, yield sooting
index (YSI) is employed as a metric. Experimental YSI is based on converting the maximum
soot concentration in a fuel-doped methane/air coflow laminar flame into an apparatus-
independent index, and effects of combustion conditions e.g., pressure, temperature and
dopant concentration can be factored out to highlight the effect of fuel composition and
molecular structure on sooting behaviour. Kwon et al. (2020b) has developed the framework
to predict the YSI in ReaxFF MD simulation. In this study, four reference fuels including
benzene, n-dodecane, methyl octanoate and ethyl formate are selected specifically after test.
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The following equation is used to estimate the YSIs of the test fuels:

YSIReaxFF = A×∑
i

wi +B (3.1)

where wi is the mass fraction of fragment i including the nascent soot and the corresponding
unsaturated fragments like PAH precursors which would contribute to the surface growth,
A and B are scaling constants chosen so that the ReaxFF-estimated YSIs for ethyl formate
and benzene are equal to 9.2 and 100.3 respectively on a unified scale (Das et al., 2018a).
The comparison between ReaxFF-derived YSIs and experimental YSIs is shown in Fig-
ure 3.7. It is apparent that for the selected fuels ReaxFF-derived YSI is able to reproduce the
experimentally-measured YSI reasonably. The YSIs of diesel and biodiesel are calculated
using the same scaling constants as the simulation conditions remain the same (Kwon et al.,
2020b). The ReaxFF-derived YSI of diesel is equal to 79.36 ± 6.43, higher than that of
biodiesel which is equal to 68.61 ± 4.23.

Fig. 3.7 Comparison between ReaxFF derived YSIs and experimentally measured YSIs, where
the experimental values are from the unified sooting tendency database based on the work of
Das et al. (2018a).

It has been demonstrated that the sooting tendency of the mixtures of surrogate fuels can
be predicted accurately (4%-5% of average error) via the predictive mixing rules (Das et al.,
2017) given as follows:

YSIMix =
n

∑
i=1

wi ×YSISur +
m

∑
j=1

w j ×

(
11

∑
k=1

nk × ck

)
j

(3.2)

where wi is the mass fraction of surrogate fuel i, n is the number of surrogate fuels with
experimentally measured YSI values available while m is the number of surrogate fuels
without experimental YSIs, nk is the number of carbon atoms of type k in surrogate fuel
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j, and ck is the contribution of each carbon type to the YSI. The YSIs of the surrogate
compounds are obtained either using the measured YSIs or by lumping up the contribution
from the C-atom types present in the fuel molecules via group-additivity approach when
YSIs are not experimentally available. To compare with the ReaxFF-derived YSI directly, the
predicted YSI should be converted into the unified value by using the following formula, as
the predictive model is in “low scale” (Das et al., 2018a).

YSIUnified = 0.64[±0.03]×YSILow +30.4[±1.9] (3.3)

As a consequence, the predicted unified YSI value of the mixtures of diesel surrogate
fuels in current study is equal to 79.05 ± 4.27. Thus, ReaxFF-derived YSI is feasible to
evaluate sooting tendency of diesel and biodiesel fuels quantitatively.

3.2.5 Effects of biodiesel molecular structures on soot precursor miti-
gation

The simplest biodiesel surrogate fuels, i.e., methyl butanoate (MB), ethyl propionate
(EP) and methyl crotonate (MC) are selected to interpret the effect of unsaturation and
isomerisation of fuel molecular structure on soot suppression, as they contain structural
functional groups expected to account for fuel-specific effects observed in combustion of
practical biodiesel fuels. The specific fuel destruction pathways are captured and listed in
Table 3.3 using Chemical Trajectory AnalYzer scripts (Dontgen et al., 2015).

From the observed pathways shown in Table 3.3, pyrolysis of fuels is accomplished
mainly via unimolecular decomposition by direct C-C and C-O bond cleavage, yielding
aliphatic radicals and oxygenated radicals. H-atom abstraction via methoxy radical attack
(R4) also occurs occasionally in MB pyrolysis since the C-H bond in CH2 group alongside
the carbonyl group in alkyl esters is considerably weaker compared with the secondary C-H
bonds in conventional hydrocarbons, which makes it a more vulnerable site for radical attack
by H-atom abstraction [49]. Time history of stable oxygenated products like CO and CO2 in
Figure 3.8 (a) quantifies the capability of the ester groups on capturing and removing C-atoms
from soot precursor pool. Early formation of CO and CO2 moieties increases instantly in
MB and EP with initial number of CO2 more than twice greater than CO in MB, whereas
negligible amount of CO2 is produced in MC decomposition.

The radicals like CH3(CH2)2(CO˙), CH3CH2(CO˙), CH3CH2O˙ and CH3(CH)2CO˙
formed by C-O bond fission inside ester groups via R1, R5 and R9 generates CO moiety
rapidly, while methoxy radicals react into CO via aldehyde intermediates: CH2O→CHO→CO
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Table 3.3 The observed decomposition pathway and final oxygenated products of MB, EP,
and MC in five parallel simulations, with the occasional pathways marked with star.
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(Ashraf and van Duin, 2017). Formaldehyde decreases immediately after reaching peak which
accounts for the steady increase of CO at the later stage. Reactions of methoxycarbonyl
(CH3O(CO˙)) and ethoxycarbonyl (CH3CH2O(CO˙)) radicals both proceed in two competitive
channels yielding CO and CO2. In addition, MB, EP and MC produce a small amount of H2O
indicating the additional dehydrogen of nascent soot by O-atoms.

Aliphatic counterparts tend to produce soot precursors of high unsaturation. For example,
the recombination of methyl radicals in R2, R8 and R11 generates ethane. The subsequent
H-atom abstraction and dehydrogen of ethane would produce ethylene. Compared with
the propyl radical in MB pyrolysis, the presence of C=C double bond leads to resonant
stabilised propenyl radical in MC decomposition via R10. In this study, a site-specific method
as shown in Figure 3.8 (b) is proposed by colouring and labelling each C-atom so as to
track and quantify the carbon from different sites to nascent soot. C-atoms in all carbonyl
structures contribute almost zero to nascent soot as C=O seems to never be broken even at
high temperature while the C-atoms connecting with the ester O-atoms contribute the second
to last but still considerably. The C=C double bond in MC has the highest sooting tendency,
whereas the site sooting tendency of alkyl C-atoms is effectively the same in MB, EP and MC.
From a combined consideration of the oxygenated product trend and carbon site contribution
to soot in Figure 3.8, it can be seen that the influence of unsaturation on sooting behaviour is
more prominent than isomerisation regarding the fuel molecular structures.

3.3 Soot mitigation mechanism of oxygenated fuel additive

3.3.1 Modelling setup

A recently proposed 5-components diesel surrogate fuel by Qian et al. (2018) is employed
to simulate diesel soot formation, which can accurately reproduce gaseous emissions of the
target diesel fuel in the actual engine combustion conditions. The surrogate fuel shown in
Table 3.4 includes 21.6% n-Hexadecane (n-HXD, C16H34), 15.5% n-Octadecane (n-OTD,
C18H38), 26.0% heptamethylnonane (HMN, C16H34), 20.7% 1-methylnaphthalene (1-MNT,
C11H10) and 16.2% decalin (DCA, C10H18) by mol. Five representative oxygenates, i.e,
dimethyl carbonate (DMC, C3H6O3), cyclopentanone (CPO, C5H8O), methyl butanoate (MB,
C5H10O2), dimethoxymethane (DMM, C3H8O2) and ethanol (C2H6O) shown in Figure 3.9
are selected to blend with diesel surrogates so as to evaluate the effects of ketones, esters,
ethers and alcohols on soot precursor mitigation.

The reactive systems studied are shown in Table 3.5. System 1 is established as a baseline
containing 149 pure diesel surrogate molecules with 150 oxygen molecules to model the
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Fig. 3.8 (a) Time evolution of the main oxygenated products during the pyrolysis of MB,
EP and MC, where the shaded regions indicate the statistical uncertainty determined by the
standard deviation; (b) contributions of different functional groups to nascent soot after 2ns
simulation, where carbon contribution to the largest molecules is displayed.

Fig. 3.9 Molecular structures and chemical formulas of the oxygenated fuel additives.
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Table 3.4 Molecular structures and the chemical formulas of diesel surrogate fuel.

Table 3.5 Number of the molecules of diesel surrogate fuel and oxygenated additives in the
simulation box.

fuel-rich combustion. To study the effect of fuel additives, oxygenate fuel molecules are
doped into the simulation boxes containing the diesel model. A rule is adopted in which
systems 2-6 are setup by adjusting the number of diesel molecules in the box so that these
systems have approximately the same carbon and oxygen numbers as system 1. This could
highlight the influence of the molecular structure of the additive instead of the amount of
oxygen. The density of system 1 is set to be 0.1 g · cm−3, and the edge length of the cubic
box is 82.5 Å. The size of the simulation boxes in systems 2-6 is adjusted accordingly to have
the same density as system 1.
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3.3.2 Incipient soot formation mechanism of fuel combustion

The time evolutions of the regular products of diesel combustion, e.g., CO, CO2, H2O
and formaldehyde (CH2O) are shown in Figure 3.10 (a), followed by those of the typical
C1-C3 intermediates like methyl radical (CH2), ethylene (C2H4), ethyne (C2H2), vinyl (C2H3)
and propargyl (C3H3) displayed in Figure 3.10 (b). Visualisation and identification of the
representative molecular structures are captured and presented in Figure 3.11. In the fuel-rich
combustion, O2 is consumed at an extremely high rate at the initial stage accompanying with
the acute increase of CO molecules. The formation of CO2 occurs around 1.8 ps later than CO,
because of its dependence on the production of C1 species like CO, HCO, and CH2O. Only
around 6 CO2 molecules are produced, rather small volume compared with CO. The amount
of CO2 molecules remained almost constant in this period, manifesting that no CO has been
further converted into CO2. H2O production takes place earlier than CO2 with appreciable
quantity. Formaldehyde molecule is also found to be an important intermediate and it reaches
a maximum number of 92 at 29.1 ps. The existence of formaldehyde peak is the feature of
low-temperature combustion of large alkanes. At temperature as high as 3000 K it is unstable
and would decompose to CO easily which explains the steady increase of CO at the late stage.

In Figure 3.10 (b), the number of ethylene decreases immediately after reaching its max-
ima at around 80.8 ps while the peaks of ethyne and vinyl radical are relatively inconspicuous.
Ethyne, vinyl radical and propargyl radical can persist the whole process whereas methyl
radical and ethylene deplete almost completely at the late stage. This is mainly because
that paraffins like n-HXD and n-OTD accounting for the largest proportion of the diesel
composition, would experience H-abstraction and consecutive unimolecular C-C fission to
produce alkyl radical like C4H9, C7H15, C8H17 and C13H27, etc., releasing ethylene at the
same time (Chen et al., 2019). A series of β -scission reactions of these C4-C13 fragments take
place subsequently to form alkenes. HMN tends to produce more of the large alkenes as it is
more likely to dissociate to alkyl radicals with substitution at the β C-atom. Ethylene mainly
reacts into ethyne and vinyl radical while propargyl radical is from the dehydrogen of propene
via a serial of H-abstractions with H-atom as the primary abstractor (McEnally et al., 2006).
Propargyl radical is a kind of resonantly-stabilized radicals (RSRs) which would undergo
decomposition and oxidation at much lower rates than nonresonant radicals do. These C2 and
C3 unsaturated hydrocarbons play crucial roles in cyclopentadienyl and benzene formation
whilst the specific pathways vary considerably. Another observation is the large aliphatics
repolymerized by a wide variety of these precursors and alkenes after the depletion of the
initial diesel alkanes, and the relevant molecular structures are captured and illustrated in
Figure 3.11 (d).
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Fig. 3.10 Time evolutions of major intermediates and products in diesel combustion, where
the shaded area indicates the average standard deviations of five repeated simulations.

Hydrocarbon combustion is kicked off either by unimolecular C-C bond dissociation
or the oxidative reaction by abstraction of a hydrogen free radical from the substrate. In this
study, the earliest reaction of 1-MNT detected is the H-abstraction reaction by O2 through
cleavage of the C-H bond in methyl group at 0.3 ps, producing hydroxyl radical and the
corresponding 1-naphthylmethyl radical. This is ascribed to the relatively low dissociation
energy of the methyl C-H bond, 85.1 Kcal/mol (Kalpathy et al., 2015). The aromatics is
generally stable and can survive a long time to ring-opening reactions. In this period, it is
possible to break the methyl-aryl C-C bond and the aryl C-H bond. These decomposition
reactions would favour the formation of 1-MNT radical and naphthalene radical. Moreover,
2-methylindene radical with a pentagonal ring is also observed. The early formation of these
aryl groups, with molecular structures and highlighted radical sites displayed in Figure 3.12
(a), was also observed experimentally by Shaddix et al. (1997). They are regarded as potential
building blocks with high propensity to produce nascent soot by reacting with additional
benzenoid rings. Thus, soot precursor formation mechanism is closely correlated with the
fuel molecular structures, particularly the large hydrocarbons existing in practical fuels which
can decompose in a wide range of pathways.

The initial mass growth is found to be triggered by the addition of C2H2 or C2H3 to
cyclopentadienyl and benzene. The newly generated RSRs are constructed by five-, six- or
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Fig. 3.11 Time evolutions of incipient soot formation of diesel combustion, where C, H and O
atoms are represented in cyan, silver and red.
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seven-membered carbon rings substituted with unsaturated aliphatics, as shown in Figure 3.11
(c) and Figure 3.12 (b). More recently, the aliphatic-substituted aromatics in nascent soot
particles were observed and visualized directly by high-resolution atomic force microscopy
(Schulz et al., 2019). The small aliphatics would connect the RSRs by chemical covalent bond,
dimerizing into cross-linked three-dimensional AALH structures as shown in Figure 3.12 (d).

The unstable AALH structures further evolve into a peri-condensed plane through
rearrangement and ring closure (Keller et al., 2019), leading to aromatic peri-condensed
polycyclic hydrocarbon structures at 1.5 ns. Structure of ADLH is also observed at around 1.6
ns. In this period, addition reactions also take place in the hydrocarbon flame, generating the
elongated aliphatic side chains, e.g., C8 alkene in Figure 3.12 (e). The flat size of incipient
soot can have a length of 6.03 nm as shown in Figure 3.12 (f). At high temperature, it would
undergo cyclization and condensation, resulting in branched fullerene/ellipsoid structure.
The morphology of the nascent soot at 1.6 ns is an amorphous structure, around 3.7 nm in
diameter and 998 amu in mass, rich in aliphatics, with a C:H ratio of 6-10. The ratio of C-H
groups presented in aliphatics to that in aromatic rings is around 1.2 at 1.6 ns and 2.3 at 2 ns,
respectively. In addition, it can be assumed that aliphatic-substituted aromatics can also act as
building blocks to stack into the outer shell when the temperature becomes somewhat lower.
RSR moieties on shell surfaces could provide sites for small hydrocarbons in flames to attach.
This pathway could potentially explain recent experimental results showing that the soot shell
surface is abundant with alkyl or alkenyl functionalities in the range of C2-C8 (Wang, 2011).

3.3.3 Soot formation during diesel combustion with blending of oxy-
genates

The blending ratio was configured properly to unify the oxygen contents and the overall
carbon quantity to highlight the effect of oxygenate molecular structure on soot formation
process. Some insights to the soot inception of diesel with oxygenates can be gained from the
detailed morphological development comparison, as shown in Figure 3.13 at the time instants
of 1.2 ns and 2 ns, respectively. The C-atoms contributed from the oxygenates are quantified
and highlighted in the nascent soot.

From Figure 3.13, both morphology of the nascent soot and the number of C-atoms from
oxygenates vary in different cases, among which C-atoms from DMC only account for 5.9%
(calculated from 18/304) and 5.7% (from 46/814) at 1.2 ns and 2 ns, respectively as shown
in Figure 3.13 (a), while almost 73.8% and 67.0% of the C-atoms are from CPO at 1.2 ns
and 2 ns as shown in Figure 3.13 (b). This is mainly attributed to the initial configuration
which was determined by the C:O ratio of the oxygenate molecular structures. It is more
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Fig. 3.12 Snapshots of the enlarged representative carbonaceous nanoparticle morphology
during diesel combustion, where aliphatic side chains are coloured in yellow with direct C2H2
or C2H3 addition highlighted with red ellipse while aliphatic links between aromatic moieties
in nascent soot are highlighted in green.
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Fig. 3.13 Morphological snapshots of nascent soot at 1.2 ns (above the dashed line) and final
soot particles at 2 ns (below the dashed line) in diesel combustion with various additives, from
left to right, (a): DMC, (b): CPO, (c): DMM, (d): MB and (e): ethanol, where the numbers of
carbon atoms contributed from oxygenated fuel additives are given in purple.

meaningful to compare the C-atom ratio originated from oxygenated additives in nascent soot
with the corresponding initial stoichiometric configuration to evaluate the sooting propensity
of oxygenates. For the cases of diesel blending with DMC and DMM, the C-atom contribution
ratios at 2 ns are 5.7% and 12.8% respectively, both of which are much smaller than the
C-atom ratio between oxygenates and fuel mixtures in the initial box, 14.0% and 21.2%
respectively. This means that DMC and DMM are much less likely to form the nascent soot
compared with diesel surrogate molecules.

The ratios for cases blending with CPO and ethanol are 67.0% and 23.5% in nascent soot,
both of which are lower but at almost the same level as the initial ratio, 70.4% and 28.1%,
respectively. It is thus indicated that the CPO and ethanol have similar sooting propensities
to diesel. This also occurs for fuel mixtures blending with MB, 35.1% of the C-atoms are
from MB in the initial box but the contribution is 32.3% in the final nascent soot. These
observations can be ascribed to the consecutive C-C bond in the molecular structures of CPO,
MB and ethanol which would lead to soot formation. However, C-atoms in DMC and DMM
are separate and each of them is bound to a different O-atom, avoiding significant levels of
the products such as ethylene, acetylene or unsaturated radicals which are known to be PAH
precursors.
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3.3.4 Quantification of oxygenated effectiveness in soot mitigation

The effectiveness of oxygenates on soot suppression is not well understood and is
drawing increasing interests (Farooq et al., 2012) (Sun et al., 2017a) (Sun et al., 2019). In the
kinetics modelling performed by Westbrook et al. (2006) for premixed fuel-rich combustion
of n-Heptane and oxygenate blends, it was observed that all oxygenates tested reduced the
emission of soot precursors, but with different effectiveness. In the previous experimental
study by Farooq et al. (2012), the effectiveness was represented by the number of C-atoms
captured by CO and CO2. The time histories of CO and CO2 for thermal decomposition of
oxygenates blending with diesel are presented in Figure 3.14. The capability of ReaxFF on
capturing chemical reaction pathways and predicting Arrhenius parameters quantitatively has
been validated extensively against experiments and continuum methods (Ashraf and van Duin,
2017) (Ashraf et al., 2019). It is a common practice to normalize the absolute rate constants
using the slowest reaction obtained from ReaxFF simulation, that is, the rate constant of the
slowest reaction is set to be 1 (Chen et al., 2018b). The thermal pyrolysis pathways of the
oxygenates and the relative kinetics rates are summarized in Table 3.6.

Fig. 3.14 Time evolutions of (a) CO and (b) CO2 for diesel blending with various additives at
3000 K.

Among the additives, CPO shows the best performance with 294 oxygen atoms used to
fix C-atoms while MB has the lowest quantity. This is because the scission of the C=O double
bonds in CPO carbonyl group hardly occurs even at 3000 K, and double bonds maintain all
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the way to CO formation through the unimolecular decomposition, i.e., R3⋆ with rapid kinetic
rate. This also explains the steep increase of CO in the initial stage of Figure 3.14 (a) before
the turning point at around 0.12 ns. In contrast, MB has the lowest plateau value for CO but
with a fair amount of CO2 as demonstrated in Figure 3.14 (b), indicating that CO2 moieties in
esters tend to result in the direct formation of CO2 molecules considerably. In this way, two
O-atoms together captured only one C-atom from species pool. The oxygen initially present
in esters is therefore less effective. As a carbonate ester, the early formation of CO2 was
also observed in DMC. Specifically, pyrolysis of DMC and MB by R1 and R11 respectively,
can produce a considerable amount of methoxycarbonyl radical, i.e., CH3O(C˙O), which
has two competitive decomposition pathways to produce CO2 or CO + CH3O. However,
both CH3O(CO)O˙ in DMC by R2 and CH3(CH2)(CO)O˙ in MB by R10 are more likely to
produce CO2 directly via β -scission (Farooq et al., 2012).

Unimolecular decomposition plays a leading role in pyrolysis of oxygenates while H-
abstraction by H-atom, methoxy and hydroxyl radical also accounts for a certain proportion in
the consumption of oxygenates. Relevant pathways in DMM and ethanol produce H2O which
affects the effectiveness of O-atom on combining C-atoms to some extent and should not be
ignored. Form Table 3.6, it can be summarized that although oxygenates decompose primarily
into oxygenated intermediates, they also produce methyl, ethyl, propyl and some biradicals,
which in turn are likely to favour the soot precursor production. For example, three of the MB
pyrolysis pathways produce the alkyl radicals whereas in the case of DMC and DMM, only
one methyl radical formation pathway is observed. In this manner, the consumption patterns
of the additive can be expressed in two aspects, removing C-atoms from the soot precursor
pool via combination with O-atoms in functional groups while contributing to soot precursor
formation due to the alkyl chains simultaneously.

3.4 Discussion and conclusion

A series of reactive molecular dynamics simulation was performed to provide molecular
details of the nascent soot formed from the utilisation of multicomponent diesel/biodiesel
blends and diesel/oxygenated additives. Effects of each unique surrogate fuel molecule
structure on sooting behaviour were thereupon investigated particularly the functional groups
in biofuels on soot mitigation. The ReaxFF force field with CHO2016 parameters identified
the complex sequence of soot formation pathways involving the fuel pyrolysis, formation of
unsaturated precursors, PAH growth, and gas-to-solid transition of the nascent soot, together
with the predictive core-shell model of the soot nuclei.
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Table 3.6 The observed primary chemical reaction and relative kinetics rate of oxygenates in
thermal decomposition, where the reaction leading to the direct formation of CO are marked
with asterisk, the products of alkyl radicals are highlighted in blue, species facilitating the
bimolecular decomposition are highlighted in green.
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The time history of the carbon rings in reactive systems revealed that PAH growth by
chemistry is substantially more complicated than the previous model described, as addition
of gaseous ethynes to radical sites and the subsequent ring closures forming peri-condensed
aromatics with primarily fused six-membered carbon rings. Specifically, five-membered
rings are also identified to be prevalent and even dominant among PAH species induced by
the radical chain reaction of the RSRs. The variety of PAHs increased dramatically with
size, forming typical intermediate structures like ADLH, AALH and PCAH. The curved
semi-condensed oligomers of aromatics of high molecular mass served as the key particle
seeds to achieve the soot inception transition of gas to solid. Given the frequent appearance
of aliphatics in reactive systems, the formation of carbonaceous particles would involve the
attachment and elongation of aliphatic side chains both in the amorphous core and outer shell
surface which helped to explain the experimental aliphatic signals.

Diesel and biodiesel show distinct nascent soot morphologies due to their different fuel
compositions. The nascent soot of diesel was aromatics dominated and more organised than
that of biodiesel which contains a considerable amount of aliphatics. ReaxFF MD-based
simulation was extended to quantify the sooting tendency of the fuel mixtures by adopting the
YSIs. It was observed that the YSI of diesel is about 15.67% higher than biodiesel. As the
consequence of the methyl ester functional groups in biodiesel, the underlying soot reduction
mechanism was elucidated by the early formation of oxygenated products, e.g., CO and CO2

during fuel thermal decomposition, which was also confirmed by the proposed site specific
method that the C-atoms in carbonyl contributed almost zero to nascent soot.

Effects of oxygenate molecular structures on soot formation are quantified and reflected
in two aspects: removing C-atoms from the soot precursor pool through combination with
the O-atoms, and contributing to soot precursor formation due to the existence of C-C bonds
simultaneously. Regarding the soot propensity, C-atoms from DMC and DMM are less likely
than diesel to appear in incipient soot particles while MB, CPO and ethanol show similar
tendencies to diesel. C=O double bond in carbonyl group is sufficiently stable to survive in the
high-temperature condition and in favour of the formation of CO while the production of CO2

in DMC and MB is mainly due to C-O fission between ester moiety and methyl group and the
subsequent β -scission. The effect of oxygenated additives on diesel blends sooting propensity
should be the combined factors of oxygenated moiety and the aliphatic counterparts.





Chapter 4

Transport property prediction of FAMEs
in high pressure conditions

This Chapter presents equilibrium molecular dynamics (EMD) simulation results of FAMEs,
including transport property prediction, evaluation of the force field which plays a key
role in MD simulations, together with analyses of the dynamics of molecular structure.
The formulas of Green-Kubo (GK) and Einstein method on calculation of viscosity and
diffusivity are introduced in Chapter 4.1. The applicability of Stokes-Einstein (SE) relation
and Stokes-Einstein-Debye (SED) relation are studied. The capability of force fields on
property prediction is evaluated in Chapter 4.2. The mechanism behind the breakdown of
SE relation due to high pressure induced solidification is revealed in Chapter 4.3. The focus
of Chapter 4.4 is on a new predictive method that can be used to estimate experimental
viscosity at high temperature and high pressure conditions provided that Stokes-Einstein
relation applies.

4.1 Green-Kubo and Einstein method

The transport property (χ) can be calculated from an equilibrium MD simulation, via
correlation with specific variable ζ by Einstein equation or its time derivation ζ̇ by the
Green-Kubo (GK) equation (Maginn et al., 2018). In the GK method, transport property is
related to the running integral of the autocorrelation function (ACF) for ζ̇ (t):

χ =
∫

∞

0

〈
ζ̇ (t0) ζ̇ (t0 + t)

〉
t0

dt (4.1)
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An equivalent expression for χ is known as the Einstein formula via mean-square of
variable ζ :

χ = lim
t→∞

〈
(ζ (t0)−ζ (t0 + t))2

〉
t0

2t
=

1
2

lim
t→∞

d
dt

〈
(ζ (t0)−ζ (t0 + t))2

〉
t0

(4.2)

Although the simulation setup and computational cost are essentially the same for these
two approaches, in practice one method is often preferred depending on the properties being
estimated. For viscosity, the GK method is related to the autocorrelation function of pressure
tensor (PACF):

η =
V

kBT

∫
∞

0

(〈
Pαβ (t)Pαβ (0)

〉)
dt (4.3)

where V is volume, kB is Boltzmann constant, T is temperature, Pαβ represents the αβ

components of the pressure tensor, α , β is any two of the x, y or z Cartesian coordinates.
Shear viscosity is a collective property as the GK formulation consolidates the contributions
of all the atoms into a single autocorrelation function. To improve the convergence, it is
common to include multiple terms from the pressure tensor:

η =
V

10kBT

∫
∞

0

(〈
∑
αβ

Pαβ (t)Pαβ (0)

〉)
dt (4.4)

where the factor of 10 results from assigning weighting factor of 3/3 and 4/3 for each of the
six off-diagonal (α ̸= β ) terms and the three diagonal terms (Mondello and Grest, 1997) (It
should be noted that the ACFs of the three off-diagonal elements of the pressure tensor are
expected to be equivalent/dependent, attributed to the isotropy of the system). The pressure
tensor is calculated from the following equation:

Pαβ (t) =
1
V

(
N

∑
i=1

miviα viβ +
N−1

∑
i=1

N

∑
j>1

ri jα fi jβ

)
(4.5)

where mi is the mass of a molecule i, N is the number of molecules, viα and viβ are the velocity
components of a molecule i in the α and β -directions, and r and f represent the displacement
and force between two molecules, respectively.

Einstein equation connects the self-diffusivity to the particle displacement and can
average over the number of the particles. Diffusion coefficient of particles in three dimensional
systems is calculated using:

Dself = lim
t→∞

1
6Nit

〈
Ni

∑
j=1

(
r j,i(t)− r j,i(0)

)2

〉
(4.6)
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where r j,i(t) is the position of the jth molecule of species i at time t, and Ni is the number
of molecules of species i in the system. The particle mean square displacement (MSD)
grows linearly with the time for sufficient large value of t (Pranami and Lamm, 2015). In
homogeneous system, Dxx=Dyy=Dzz (Maginn et al., 2018).

Besides the translational diffusivity, molecular motions also lead to changes in molecular
orientations. Rotational motion and reorientation of molecules can be characterised by an
end-to-end vector, i.e., RRR defined by the coordinates of the terminal carbon atoms. Relaxation
time is determined by the ACF of angle θ between the end-to-end vector of a given molecule:

tRot(t) =
∫

∞

0
(⟨Pn(cos∠(RRR(t),RRR(0))⟩)dt (4.7)

where Pn is nth order Legendre polynomial.

4.1.1 Modelling system setup

The physical properties of alkanes have been studied extensively in past decades using
the EMD simulation (Mondello and Grest, 1997) (Ungerer et al., 2007) (Yang et al., 2021)].
However, there are few MD studies on FAMEs which contain the ester function group. The
molecular structure of two typical FAMEs of different chain lengths, i.e., methyl decanoate
(MDC) and methyl myristate (MMR) are selected in this study. Changes in molecular structure
are reflected in changes in macroscopic properties of materials. Basic physical properties
of molecular mass, fusion temperature and boiling temperature of corresponding n-alkanes
and branched alkanes are listed in Table 4.1 for comparison. FAMEs and n-alkanes with
the same chain length have approximated fusion temperature, which is 20% higher than
that of branched alkanes. Boiling point of FAMEs is higher than that of normal alkane and
branched alkanes. Both FAMEs and alkanes with longer chain length have higher fusion
temperature and boiling temperature. Moreover, a wide range of properties of FAMEs such as
density, viscosity, oxidative stability etc., show strong correlation with molecular structure
configurations like the chain length, degree of unsaturation and the position of double bonds
(Gopinath et al., 2015).
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Three different force fields, i.e., TraPPE (Martin and Siepmann, 1998), CHARMM
(Vanommeslaeghe et al., 2010) and OPLS (Jorgensen et al., 1996) are selected to predict
the transport properties of FAMEs. The OPLS all-atom (AA) force field was parameterized
for simulation of organic molecules and peptides. The pair potential for atoms separated by
three bonds or more within a molecule, i.e., 1-4 interactions are scaled down by the “fudge
factor” of 0.5. In this study, optimised OPLS parameters for esters and long alkanes (LOPLS)
are adopted (Siu et al., 2012) (Pluhackova et al., 2015). CHARMM is an all-atom force
field which is widely used in biochemistry applications, in particular simulation of lipid
membranes for which dedicated membrane builder tools are available. Force field parameters
of CHARMM36 (Huang and MacKerell Jr, 2013) are used and topology files are generated
from CHARMM General Force Field (CGenFF) (Vanommeslaeghe et al., 2010). TraPPE-UA
is a united-atom (UA) potential, which is computationally more efficient than LOPLS-AA and
CHARMM-AA. In TraPPE force field, all bond length is fixed, and intramolecular nonbonded
1-4 interactions are already considered in torsion energy. The parameters of ester function
group are adopted from the work of Kamath et al. (2006).

All EMD simulations are performed in the GROningen MAchine for Chemical Simula-
tions (GROMACS) molecular simulation package (Van Der Spoel et al., 2005). The initial
boxes are constructed by distributing molecules randomly in a relative larger box to avoid
overlap as shown in Figure 4.1 (a). MD systems are relaxed via steepest descent energy mini-
mization to ensure the system has no steric clashes or inappropriate geometry. Minimization
is converged when the maximum force on any atom is less than 1000 KJ·mol−1. Equilibration
run is performed for 500 ps in NPT ensemble to compress the system to the desired pressure
and density as shown in Figure 4.1 (b). The Parrinello-Rahman barostat is used for pressure
coupling with the compressibility set as 4.5e-5·bar−1. Temperature is coupled using velocity
rescaling method. Production run of 0.5-100 ns in NV T ensemble is then followed for data
collection.

The initial velocity of molecule is generated according to Maxwell distribution of
temperature with random seed. Neighbour searching was performed using the Verlet scheme,
with a list created every one step using a length of 1.4 nm. The cut-off distance of LJ potential
is 1.4 nm. The long-range electrostatic interactions were calculated using the fourth order
particle-mesh Ewald (PME) algorithm (Darden et al., 1993) with a cut-off distance of 1.4 nm
in real space. The size of FFT (fast Fourier transform) grid in reciprocal space of PME is 0.12
nm. The periodical boundary conditions in all direction are used in all simulations. The time
step is set as 1 fs for all simulations. LINCS constraint-algorithm (Hess et al., 1997) is used to
fix all the bonds in TraPPE force field and C-H bonds in LOPLS and CHARMM force field.
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Fig. 4.1 Equilibrium run and compression of EMD system containing 500 MDC molecules:
(a) snapshot of the initial box with molecules distributed randomly; (b) snapshot of box after
500 ps simulation in NPT ensemble at 298.15 K and 0.1 MPa.

4.1.2 Pressure effect on viscosity & diffusivityy

Systems configured in Figure 4.1 with TraPPE force field are used to study the pressure
effect on viscosity and diffusivity at 298.15 K. Normalized PACF and time evolution of
viscosity at 0.1 MPa are shown in Figure 4.2 (a). Pressure effect on viscosity is shown in
Figure 4.2 (b). Pressure tensor is dumped every 5 fs which is frequent enough to accurately
calculate the time integration. In Figure 4.2 (a), normalized PACF decays rapidly, reaching
minimum at 0.04 ps followed by the fluctuation around zero. Shear viscosity reaches the first
plateau at 74 ps, and sustains until 178 ps during which it remains stable with an average
value of 1.26 cP. In the time period of 200-500 ps, viscosity shows apparent rise and fall
with maximum value of 1.77 cP at 270 ps and minimum value of 0.87 cP at 391 ps. It was
recommended that the estimation of viscosity should be made at the time shortly after η(t)
reaches the plateau instead of longer correlation times (Zhang and Greenfield, 2007) (Zhang
and Greenfield, 2010) (Fanourgakis et al., 2012) (Li and Greenfield, 2014). It is not applicable
to use this criteria to distinguish the effect of pressure on viscosity. The plateau value of η(t)
at 0.1 MPa is higher than that at 1 MPa and 10 MPa. There is no identifiable plateau for η(t)
at 100 MPa, as it reaches the local maximum value at 60 ps and decrease directly. It inevitably
results in uncertainty if plateau values are identified manually.

Identifying the plateau region of running integration without introducing the artificial
deviation is often hampered by the noisy tail of the ACF. To eliminate the tail, one can decom-
pose the PACF by fitting it to the Kohlrausch-Williams-Watts (KWW) stretched exponential
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Fig. 4.2 (a) Viscosity of MDC at 298.15 K and 0.1 MPa using GK method, where viscosity is
indicated by solid black line, and the normalized ACF of Pxy is shown in dashed red line, the
shaded region indicates the largest fluctuation range, green dotted line indicates the average
value of the first plateau, the arrows indicate the corresponding axis; (b) the effect of pressure
on the convergence of viscosity.

function (Maginn et al., 2018):

Cp(t)
Cp(0)

= Ae−(t/τs)
βs
+(1−A)cos(ωt)e−(t/τ f )

β f
(4.8)

where ω is the frequency of rapid pressure oscillations (mainly due to bonded forces in
molecular simulations), τ f and β f are the time constant and exponent of fast relaxation, τs

and βs are constants for slow relaxation. Parameter A is the pre-factor that determines the
weight between fast and slow relation. The results from the fitting are shown in Figure 4.3 (a).
The running integral of the fitting function can be used to compute the viscosity.

For highly viscous liquids, another approach to improve convergence is time decomposi-
tion method (TDM) proposed by Zhang et al. (2015) by fitting the running integral. In TDM,
a series of independent and shorten trajectories are obtained in NV T simulation with the
same system configuration but different random seeds for the initial velocity distribution. The
averaged running integral as a function of time is also fitted to a double stretched exponential
functions express as:

η(t) = Aατ1

(
1− e−t/τ1

)
+A(1−α)τ2

(
1− e−t/τ2

)
(4.9)

where A, α , τ1, and τ2 are fitting parameters. When the standard deviation of the replicated
running integral is equal to 40% of the averaged η(t), it is the time range over which the
running integration should be fitted.
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The mean value of 40 independent replicated running integrals is shown in Figure 4.3
(b), with the fitted viscosity equal to 1.45 cP. Averaged viscosity reached the plateau at 300
ps with the value of 1.41 cP. The minimum value of the averaged viscosity is 1.14 cP in 852
ps. The fluctuation of the averaged viscosity in the late stage still exists but behaves much
better than the noisy η(t) curve in Figure 4.2. Although the result of viscosity obtained by
fitting PACF shows more rapid and stable convergence compared with the result obtained by
fitting to running integral, significant underestimation is demonstrated. Standard deviation
as shown in Figure 4.3 (b) increases as a power function of time due to the accumulation
of the random noise at long times in correlation function. The averaged plateau value of
single run in Figure 4.2 (a) is close to the TDM result. It should be noted that the standard
deviation between 74 ps and 178 ps ranges from 0.24 cP to 0.44 cP which indicates significant
randomness of the value derived from the single run. In the following study, all viscosities are
calculated using the TDM method with 40 statistically independent trajectories.

Fig. 4.3 (a) Decomposition and fitting of PACF; (b) viscosity comparison obtained by fitting
the running integral and PACF, where the solid black line is the averaged viscosity value of 40
independent replicates with standard deviation indicated in shaded area, and the red dashed
line indicates the fitted value according to Equation (4.9), blue dotted line is the integration of
fitted PACF, black dashed line indicates the time when standard deviation is equal to 40% of
the averaged viscosity.

Unlike viscosity, diffusion coefficient has less intrinsic uncertainties (Kim et al., 2018).
It is much easier to obtain accurate self-diffusivity as it describes the motion of individual
molecules and the accuracy of statistics is improved by averaging over all particles in the
system. The velocity autocorrelation function (VACF) and MSD of molecule centre of mass
(COM) is shown in Figure 4.4. Oscillatory behaviour of VACF of monatomic LJ fluid is
used to identify the Frenkel line of dynamic cross-over between gas-like and liquid-like
regime in supercritical conditions (Brazhkin et al., 2013). VACF of gas decays monotonically
in an exponential function. VACF of solids and liquids near melting temperature has both
oscillatory and decaying components due to the cage effect described in cell theory (Scalliet
et al., 2015) (Bellissima et al., 2017). The negative region of VACF is typical for liquids
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and dense gases when rebounding collisions are more frequent than scattering collisions
(Kondratyuk et al., 2016) (Maginn et al., 2018). With pressure increases, the minimum of
VACF deepens and shifts to smaller times. Same as the GK method in calculation of viscosity,
tail effect would introduce considerable noise in integration of VACF, it is a trade-off in
determining the simulation length of VACF (Maginn et al., 2018). Diffusion coefficient using
Einstein method by linear regression of MSD is used more widely in MD simulations. In
order to avoid the influence of anomalous ballistic diffusion in the initial stage which shows a
non-linear relationship between MSD and time, the linear fit is performed in middle region
between 100 ps and 900 ps. Atom position data is dumped every 0.1 ps for the observation of
the initial ballistic diffusion process.

Fig. 4.4 (a) Normalized VACF of MDC centre of mass at different pressures, where shaded
area indicates negative values; (b) MSD of MDC centre of mass, where the shaded area is
used in the linear regression.

The scaling law of system size must be taken into account to achieve accurate estimates
of self-diffusivity (Yeh and Hummer, 2004) (Moultos et al., 2016) (dos Santos et al., 2020)
(Celebi et al., 2021). Finite size effect of self-diffusivity depends on the hydrodynamic radius
of diffusing molecule with respect to the size of the simulation box (Celebi et al., 2021).
Diffusion coefficients of MD systems with different configurations of molecular numbers
are shown in Figure 4.5. Linear dependence of self-diffusion coefficient on 1/N1/3 (N is the
number of molecules in system) was observed. Self-diffusion coefficient of infinite system
size, i.e., D∞ is obtained by the linear fitting and extrapolation. D∞ is 5-10% higher than
self-diffusion coefficient of system with 500 molecules. Applying analytic correction term
using the following equation derived by Yeh and Hummer (Yeh and Hummer, 2004) is also a
feasible approach for to obtain D∞:

D∞
self = DMD

self +
kBT ι

6πηL
(4.10)
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where ι is a dimensionless constant equal to 2.837297 for periodic lattice, L is box length.
It was verified that Yeh-Hummer correction results have excellent consistency with the
extrapolated infinite self-diffusion coefficient (Yeh and Hummer, 2004) (Moultos et al., 2016)
(dos Santos et al., 2020). Finite-size effect on viscosity is generally negligible (Maginn et al.,
2018). It was conformed that there was no dependence on the system size for the shear
viscosity of glymes at 400 K and 30 bar using TDM (Moultos et al., 2016).

Fig. 4.5 System size effect on diffusion coefficient, where error bars are calculated from 40
independent trajectories and solid lines are the line fitting with linear regression.

The result of normalized rotational correlation function using different orders of Legen-
dre polynomial of the angle between end-to-end vector is shown in Figure 4.6 (a). Different
orders of rotational dynamics of P1, P2 and P3 correlation function correspond to different
experimental measurement techniques like spectral band shapes measured in infrared absorp-
tion, nuclear magnetic resonance and polarized Raman spectra (Li and Greenfield, 2014). The
rotational correlation function of P1, P2 and P3 decays to zero at time of 512 ps, 185 ps and
96 ps respectively. The longest orientation relaxation time is often employed to determine
the duration length of trajectory for accurate viscosity estimate in single run and the plateau
region for data interception in viscosity curve (Mondello and Grest, 1997) (Gordon, 2003b).
The effect of pressure on molecular reorientation is shown Figure 4.6 (b). The rotational
correlation function decays slower in higher pressure conditions indicating longer relaxation
time. To evaluate the molecule relaxation time, rotational correlation function was approxi-
mated by the sum of two stretched exponential function which corresponds separately to the
conformational dynamics and reorientation of overall molecules as a rigid body (Zhang and
Greenfield, 2007) (Zhang and Greenfield, 2010) (Li and Greenfield, 2014) (Falk et al., 2020):

CRot(t)
CRot(0)

= Ae−(t/τs)
βs
+(1−A)e(t/τ f ) (4.11)



4.1 Green-Kubo and Einstein method 87

After integrating from t=0 to t=∞, we obtain the correlation time which is given analytically
by the gamma function Γ:

tRot = Aτs
1
βs

Γ

(
1
βs

)
+(1−A)τ f (4.12)

The results of relaxation time are listed in Table 4.2. Relaxation time increased signifi-
cantly when pressure was increased to 100 MPa. The characteristic decay times for different
values of n can be related by the Debye rule as tRot_n/tRot_n+1=(n+2)/n (Zhang and Green-
field, 2007). Therefore, in the case of isotropic rotational diffusion, a value of 3 for ratio of
tRot_1/tRot_2 and value of 6 for ratio of tRot_1/tRot_3 is expected. Our results in Table 4.2 agree
well with this relation, indicating that polynomials of correlation functions with different
orders will lead to comparable results. The correction term for system-size scaling effect on
rotational diffusion should be extremely small as it is in linear relationship with the inverse
value of box volume (Celebi et al., 2021). So, the system size effect on rotational relaxation
time is ignored in the following study.

Fig. 4.6 (a) Normalized ACF of MDC molecule end-to-end vector, where P1 is the first
order Legendre polynomial of the angle of the vector; (b) effect of pressure on molecule
reorientation using the P1 function.

4.1.3 SE & SED relation

To achieve the same level of statistical precision with diffusion coefficient, it is estimated
that almost two orders of magnitude of trajectory duration are needed in viscosity calculation
(Mondello and Grest, 1997) (Zhang et al., 2015). Kinetic theory in liquid state which relate
the diffusivity and viscosity by microscopic form of friction coefficient has been regarded as
a promising approach to obtain viscosity from diffusion coefficient efficiently (Bedrov et al.,
2000) (Zhang and Greenfield, 2007) (Koddermann et al., 2008) (Zhang and Greenfield, 2010)
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Table 4.2 Different orders of rotational relaxation time of MDC at different pressures, averaged
over 5 independent trajectories.

(Li and Greenfield, 2014):

D =
kBT
cd

(4.13)

where cd is the drag coefficient of molecule. In SE relation of molecule translational motion,
cd = nπRe f f η . In SED relation of molecule rotation motion, cd = n(4

3πR3
e f f )η . Parameter n

is equal to 4 or 6 based on slip or stick hydrodynamic boundary condition (Gordon, 2003b)
(Moultos et al., 2016) (Moultos et al., 2016) (dos Santos et al., 2020) (Falk et al., 2020), Re f f

is effective molecule hydrodynamic radius.

Molecular rotation motion is characterised by molecular reorientation relaxation time
tRot , and D will only indicate self-diffusion coefficient of molecular translational motion in the
following study. Elongated normal alkanes or polymer with Gaussian chain can be described
by Rouse model where the molecular strucutre is treated as a collection of beads connected
with a harmonic spring. Conformational dynamics of molecule described by longest relaxation
time is in the form of:

tRot =
cdnb

2l2

3π2kBT
(4.14)

SE and SED relation evolve into the following equations (Doi et al., 1988) (Kremer and Grest,
1990) (Mondello and Grest, 1997) (Mondello et al., 1998) (Yang et al., 2021).

D =
kBT
nbcd

(4.15)

tRot =
12Mη

π2ρRT
(4.16)

Here, cd is the translational fractional drag coefficient of monomer, nb is number of beads,
l is effective bond length, R is gas constant, M is molecular mass. For Gaussian polymer
with linear chain, molecular geometry has the relation of

〈
Ree

2〉=6
〈
Rg

2〉=nbl2 where Ree

is end-to-end distance, Rg is gyration radius (Mondello et al., 1998). Combing Equations
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(4.14)-(4.16), eliminating cd and subscribing l with Ree or Rg, the viscosity via SE relation
can be expressed as:

η (Ree) =
ρRT

〈
R2

ee
〉

36MD
(4.17)

η (Rg) =
ρRT

〈
R2

g
〉

6MD
(4.18)

Viscosity via SED relation is the direct inversion of Equation (4.16) and is rewritten in the
following form:

η (tRot) =
π2ρRTtRot

12M
(4.19)

It was verified that normal alkane like HXD was too short to be regarded as Gaussian
chain (Mondello and Grest, 1997) (Mondello et al., 1998). Moreover, the ester function
group in MDC and MMR also reduce the Gaussianity indicating the breakdown of Rouse
model on methyl esters selected in this study. To use SE and SED relation in viscosity
prediction of component with complexed molecular structure, obtaining Re f f is crucial. For
Gaussian polymer, hydrodynamic radius can be obtained from ensemble-averaged estimates
of the radius of gyration via Ree =0.6647

〈
Rg

2〉1/2 (Haydukivska et al., 2020). In temperature
dependent transport property prediction, some previous studies on complexed non-Gaussian
molecules like asphalt, ionic liquid or short alkane employed a linear regression between
viscosity with single molecule property of translational diffusion coefficient or relaxation
time, i.e., 1/η ∼ D/T or tRotT ∼ η (Mondello and Grest, 1997) (Zhang and Greenfield, 2007)
(Koddermann et al., 2008) (Zhang and Greenfield, 2010) (Li and Greenfield, 2014).

More recently, Re f f is obtained by averaging molecule cross section over ensemble
in EMD simulation. In conjunction with free volume theory (FVT) of molecular diffusion,
a parameter free and nonempirical method was proposed subsequently and was applied to
predict viscosity of alkane lubricants over extreme pressure of 0.7 GPa. This indicates the ap-
plicability of SE relation in pressure dependent transport property prediction. The correlation
of viscosity, translational diffusion and relaxation time is demonstrated in Figure 4.7 in terms
of MDC at 298.15 K. The linear scaling of transport property data is well-behaved, indicating
the preservation of SE relation. Compared with the previous study by Shi et al. (2013) on
coupling of instantaneous shear stress relaxation time with reorientation relaxation time,
statistical error was eliminated significantly in this study due to the replicated trajectories. If
we consider η ∼ tRot ∼ 1/D overall, the product of relaxation time and diffusion coefficient,
i.e. tRot ·D, should be constant if translation and rotation equally reflect viscosity (Zhang
and Greenfield, 2007) (Zhang and Greenfield, 2010) (Li and Greenfield, 2014). The relative
standard deviation of translation-rotation diffusion product is also a small value of 5.06% at
pressure ranging 1-100 MPa.
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Fig. 4.7 (a) Correlation between diffusion coefficient and the inverse of viscosity; (b) corre-
lation between relaxation time and viscosity, where the dashed lines indicate linear fitting,
pressure is also indicated by colour of the hollow square, the colour code of pressure applies
to the following plots of SE relation.

4.2 Evaluation of force field

4.2.1 Hydrodynamic radius

In previous EMD study on obtaining Re f f either via SE linear correlation or averaging
molecular cross section over ensemble, it is observed that Re f f remains universal with different
force fields of AA and UA models (Kondratyuk et al., 2020a), and Re f f is only weakly
dependent on density and temperature (Falk et al., 2020). Data of 1/η ∼ D/T with pressure
range of 10-300 MPa in isothermal conditions was plotted in Figure 4.8. Viscosities of TDM
results are used in the Yeh-Hummer term of Equation (4.10) to correct system size effect on
diffusion coefficient. The linear regression worked well with different force fields and various
isothermal temperatures. Compared with the SE linear fitting in Figure 4.7, widen pressure
range increased the goodness-of-fit. Slip boundary conditions are employed in calculation of
Re f f , which is the same boundary condition as Falk et al. (2020). The conformation difference
between MDC and MMR reflects merely the chain length difference. Comparing the Re f f in
Figure 4.8, effect of molecular structure on Re f f difference is distinguished. This indicates
that Re f f in EMD simulation is an intrinsic property of molecular structure and is insensitive
to the modelling configurations (Gordon, 2003a) (Gordon, 2005).

4.2.2 Physical properties

The capability of selected force fields was evaluated over density prediction of n-alkanes,
considering the availability of the NIST data for comparison as shown in Figure 4.9 (a). The
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Fig. 4.8 (a) Effect of force field on SE relation at 348.15 K, pressure ranging 10-300 MPa,
where the hollow symbols and dashed line are results of MDC while solid symbols and solid
line are results of MMR; (b) effect of temperature on SE relation, where the hollow square
and dashed line are results of MDC while the hollow circle and solid line are results of MMR.

densities of OTN, DCN and DDC are predicted at pressures ranging from 4MPa to 100 MPa,
and temperatures ranging from 300 K to 700 K. Densities of 361 phase points are calculated
in total for each force field. Based on phase change data listed in Table 4.1, these conditions
cover the gas phase, liquid phase and supercritical state. As shown in Table 4.3, there is no
scaling effect of system size on density prediction, and statistical error is negligible. The
simulation is performed in NPT ensemble containing 500 molecules, running 500 ps with
density averaged over the last 200 ps trajectory.

Table 4.3 The density of MDC at 298.15 K and 0.1 MPa calculated using the TraPPE force field
with different system sizes, results are averaged over 5 replicated independent trajectories.

Among the three force fields, TraPPE reproduces densities most accurately with an aver-
age absolute relative deviation (AARD) of 1.44%, which is in agreement with previous MD
simulations (AARD of 1% and 2% for DDC and n-Octacosane, respectively) (Papavasileiou
et al., 2019). Results of LOPLS has the largest AARD of 8.90%, despite that LOPLS parame-
ters have been optimised over the dihedral energy profile and LJ interaction in gas phase (Siu
et al., 2012). Both CHARMM and LOPLS force fields show underestimation at low density
conditions, particularly LOPLS which deviates around 10%-50% at low density conditions
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ranging from 0.5 g/ml to 0.3 g/ml. The prediction of these three force fields is accurate at
liquid phase and high pressure condensed phase at supercritical conditions.

Using TraPPE force field for prediction, the densities of MDC and MMR at high pressure
up to 300 MPa are shown in Figure 4.9 (b). At 298.15 K, densities of MDC and MMR are
limited up to 150 MPa and 50 MPa respectively to avoid the high-pressure induced liquid-solid
transition (Kouakou et al., 2013). The fitted density model itself is useful as a guide for the
molecular modelling. The pressure dependence of density ρ is fitted by the Tait equation
(Dymond and Malhotra, 1988).

ρ −ρ10

ρ
= A log

(
B+P
B+10

)
(4.20)

where ρ10 is the density at pressure of 10 MPa, A and B are the fitting parameters. From
Figure 4.9 (b), the density difference between MDC and MMR at 348.15 K appears at high
pressure above 150 MPa.

Fig. 4.9 (a) Correlation between densities of NIST and the results calculated by EMD
simulation including the liquid phase, gas phase and supercritical conditions; (b) pressure
effect on density of MDC and MMR at 298.15 K and 348.15 K, where lines are fitted results
according to the Tait equation (Dymond and Malhotra, 1988).

Diffusivity is difficult to obtain experimentally, with data rarely available. According
to a previous study (Siu et al., 2012), the LOPLS force field exhibits improved accuracy on
prediction of diffusion. This is also reflected in our simulation results shown in Table 4.4, i.e.
LOPLS has the smallest deviation among the three force fields, with the value of -25.16%
and -17.28% for DCN and DDC respectively. All atom molecular models of LOPLS and
CHARMM tend to underestimate diffusion. Diffusion coefficient predicted by CHARMM
was underestimated substantially by a factor of 0.63 and 0.54 for DCN and DDC respectively.
Conversely, the united atom model of TraPPE overestimates the diffusion because the absence
of hydrogen atoms increases the molecule free volume (Kondratyuk et al., 2016). Diffusion
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constant is dependent on molecular size, while all these three force fields followed exactly the
scaling law of diffusivity over molecular size, i.e., D ∝ M−2 (Von Meerwall et al., 1998) (Freed
et al., 2005). Scaling factors of DDDC/DCCN are equal to 0.63, 0.57, and 0.58 respectively for
TraPPE, CHARMM and LOPLS.

Table 4.4 Comparison of diffusion coefficient with the experimental result at 298.15 K and
0.1 MPa (10−9 m2/s), data was corrected over system size effect.

Considering the temperature range in the experimental result, viscosities of MDC and
MMR are calculated at isotherms of 298.15 K and 348.15 K via TDM. The comparison of
viscosity-pressure results is shown in Figure 4.10. The corresponding experimental values
are adopted from the work of Habrioux et al. (Habrioux et al., 2015) (Habrioux et al., 2016),
where isothermal viscosities are correlated according to the modified Tait equation:

ln
(

η

η0.1

)
= A(P−0.1)+Bln

(
C+(P−0.1)

C

)
(4.21)

where A, B and C are fitting parameters. A is temperature independent, B and C are fluid-
specific parameters dependent on the temperature (Habrioux et al., 2015) (Habrioux et al.,
2016) (Baled et al., 2018), η0.1 is the viscosity at 0.1 MPa for each isothermal temperature
which can be obtained by fitting Vogel-Fulcher-Tammann (VFT) correlation in the form of

η0.1(T ) = Aexp
(

B
T −C

)
(4.22)

where A,B and C are fitting parameters.

For MD simulation, the viscosity-pressure relation is described by the single exponential
Barus model (Dench et al., 2018) given as:

η = η0 exp(AP) (4.23)

where η0 is zero pressure viscosity, A is fitting parameter. Equation (4.23) has been used
to successfully describe the rheology of 1-diphenylethane at high pressure up to 400 MPa
(Kondratyuk et al., 2020a).
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Fig. 4.10 Comparison of viscosity between MD simulation and the experimental results,
where solid lines are experimental values, dashed lines are MD results fitted according to the
Barus model (Dench et al., 2018).

All these three force fields can describe the viscosity-pressure trend. It is observed that
CHARMM overestimates viscosity substantially in all conditions, and TraPPE underestimates
viscosity. The deviation is more prominent at high pressure compressed condition. LOPLS ex-
hibits the best agreement with experimental values. The evaluation of force field performance
using EMD-TDM method is consistent with the previous observation using non-equilibrium
MD simulation (NEMD) with periodic perturbation method (Papavasileiou et al., 2019).

4.3 Breakdown of SE relation due to high pressure solidifi-
cation

A violation or breakdown of SE relation has been observed in viscous liquids due
to occurrence of glass-formation instead of normal crystallization when liquid is cooled
sufficiently fast (Debenedetti and Stillinger, 2001) (Kumar, 2006) (Kawasaki and Kim, 2017).
Decoupling between D and η and between tRot and D would occur in supercooled liquids when
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temperature is below approximately 1.2Tg (Tg is glass transition temperature) (Debenedetti and
Stillinger, 2001) (Kumar, 2006) (Lombardo et al., 2006) (Kawasaki and Kim, 2017). There
have been studies on higher order phase transition and thermodynamic property inhomogeneity
when crossing Frenkel line and Widom lines on P−T diagram of monatomic gas and water
(Brazhkin et al., 2013) (Bolmatov et al., 2013) (Bryk et al., 2017) (Bryk et al., 2017) (Yoon
et al., 2018). Some experimental studies conformed the liquid-solid transition of polyatomic
organic components, i.e., solidification of biodiesel mixtures (up to 350 MPa) (Tarakowski
et al., 2015), n-Octane (∼0.9 GPa) (Takekiyo et al., 2020), pure FAMEs (Kouakou et al., 2013)
(up to 80 MPa), n-Tetradecane (302.8 MPa) (Jian and Zheng, 2009), and the crystallisation of
Methyl Stearate (0.2 GPa) (Liu et al., 2019). The observations of the HP glass formation of
water (Andersson, 2011) (Handle et al., 2012), ionic liquid (Ribeiro et al., 2014) (Yoshimura
et al., 2018) and crude oil (Kutcherov et al., 2017), raise question whether SE remains valid
for liquids which are densified by high pressure instead of cooling (Falk et al., 2020).

To scrutinise the HP induced phase transition of FAMEs, we firstly tracked the mor-
phology evolution of the modelling system in 100 ns trajectory. Molecular alignment was
quantified by using a collective variable named SMAC (Giberti et al., 2015a), in which the
relative orientation is characterised by torsion angle between internal molecule vector. The
SMAC variable describes the local order in the neighbourhood of a molecule, and has been
used to study the phase transition such as the nucleation process of urea (Giberti et al., 2015a)
and the crystallisation of paraffin in cooling condition (da Silva et al., 2021). SMAC is
expressed as:

Si =

{
1−ψ
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(
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))}
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(
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) (4.24)

where ri j is the distance between centre of vector of molecule i and j, φi j is torsion angle
between the molecular vectors, σ

(
ri j
)

is a switching function to ensure that only molecules
within the cut-off distance are considered, ψ is also switching function, Kn is kernel function
consisted of two Gaussian functions with standard deviation of 0.48 and reference angles
of zero and π (Giberti et al., 2015a) (Tribello et al., 2017) (da Silva et al., 2021). Kn

(
φi j
)

converts torsion angles close to zero and π to a number close to one which corresponds to
ordered arrangement of molecules in MD system (Tribello et al., 2017). σ

(
ri j
)

is a rational
function expressed as:

σ =
1−
(

r−d0
r0

)n

1−
(

r−d0
r0

)m (4.25)

where d0=0.0, n=6, m=2n, r0 is cut-off distance equal to 8.6 Å which is the radius of second
coordination sphere obtained by radial distribution function (RDF) of COM of molecule.
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Fig. 4.11 (a) The SMAC parameter of MMR at different temperatures and pressures, where
black dashed lines indicate transition time of 298.15 K - 100 MPa; (b) snapshots of MMR
MD system at 298.15 K - 100 MPa, where grey area indicates ordered alignment of solid
nuclei while red area indicates amorphous liquid phase.

Compared with MDC and alkanes in Table 4.1, MMR has the highest melting temperature
of 291.24 K, and was selected in favour of liquid-solid transition in MD simulation. The time
evolution of the collective variable and typical morphology snapshots of MMR are shown in
Figure 4.11.

Normally, FAMEs melting temperature increases with increasing pressure (Kouakou
et al., 2013). At conditions of 298.15 K - 50 MPa and 348.15 K - 300 MPa, collective
variables keep stable and have relatively low values as shown in Figure 4.11 (a). The time
invariance indicates the unchanged amorphous liquid states at these conditions. Solidification
process of MMR at 298.15 K - 100 MPa can be described by three different stages. Molecular
rearrangement takes place before 10 ns with SMAC increasing from 0.42 to 0.47, which is
followed by accelerated solidification process with SMAC increasing further to 0.7 in 20 ns.
After 30 ns, SMAC resides at the plateau and remains stable with MD system changed into
the heterogeneous structure as shown in Figure 4.11 (b). It should be noted that time evolution
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of SMAC in Figure 4.11 (a) shows the approximate trend with the nucleation of pure paraffin
under harsh subcooling conditions (da Silva et al., 2021). This indicates that HP is supposed
to have the equivalent effect on FAME crystallisation behaviour with the cooling process.

The mechanism of SE violation of liquids has been attributed to the attained solidity
upon supercooling, which is in accord with the growth of non-Gaussianity and spatially
heterogeneous dynamics (Lombardo et al., 2006) (Kawasaki and Kim, 2017). The HP
induced heterogeneity is reflected in the spatial distribution of solid-liquid phase as shown in
Figure 4.11 (b). Pressure effect on MMR molecular conformation is characterised by end-
to-end distance probability distribution as shown in Figure 4.12. There are two peak values
of probability, at 1.67 nm and 1.89 nm, corresponding to liquid and solid state respectively.
The probability at 50 MPa liquid state is not exact normal distribution because MMR is not
ideal Gaussian polymer chain. After crystallisation at 100 MPa, the peak value shift to 1.89
nm and probability increases with solidification degree accordingly. This indicates that HP
solidification can also enhance the non-Gaussian behaviour of MMR.

Fig. 4.12 (a) Probability distribution of MMR molecule end-to-end distance at 298.15 K,
and the probability is the statistical results in the time interval, (a): 50 MPa where lines
are overlapped; (b): 100 MPa where lines of [20-60] ns, [60-80] ns and [80-100] ns are
overlapped, and the black dashed lines indicate the peak values.

In glass transition of supercooled liquids, dynamics like structural relaxation time in
different regions only a few manometers away can differ orders of magnitude (Ediger, 2000)
(Koddermann et al., 2008) (Kawasaki and Kim, 2017). In HP solidified systems displayed in
Figure 4.11 (b), molecule in solid phase is stretched while in liquid phase it is flexible. The
heterogeneous spatial distribution of molecule conformation indicates the structure relaxation
dynamics and molecular mobility is also highly spatially correlated. The time evolution
of overall diffusion coefficient is shown in Figure 4.13. Different with the stable values at
50 MPa, diffusion coefficient at 100 MPa shows an inverse relation with the solidification
degree. It reached an extremely low average value of 9.68×10−11 m2/s at final stage where
stretched molecule at solid region would slide in preferred direction along the main chain
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(Kondratyuk et al., 2020a). Once diffusion falls below the cut-off value (5×10−11 m2/s for
argon), pressure-induced glass transition occurs (Shumway et al., 1995).

Viscosity becomes large due to the extraordinary slow-down of stress relaxation when
temperature gets close to Tg (Debenedetti and Stillinger, 2001) (Ediger and Harrowell, 2012).
For solidified HP system, it is impracticable to obtain the viscosity directly using TDM,
because at least 30 ns equilibrium run is needed before data collection. Moreover, the
feasibility of GK method is questionable in heterogeneous system. Previous MD modelling
study on 1-methylnaphthalene implied that the HP induced vitrification would occur above
300 MPa which explained the observation of faster-than-exponential growth of viscosity
with pressure (Kondratyuk et al., 2020b). Viscosity becomes large due to the extraordinary
slow-down of stress relaxation when temperature gets close to Tg (Debenedetti and Stillinger,
2001) (Ediger and Harrowell, 2012). For solidified HP system, it is impracticable to obtain
the viscosity directly using TDM, because at least 30 ns equilibrium run is needed before
data collection. Moreover, feasibility of the GK method is questionable in heterogeneous
system. Previous MD modelling study on 1-methylnaphthalene implied that the HP induced
vitrification would occur above 300 MPa which explained the observation of faster-than-
exponential growth of viscosity with pressure (Kondratyuk et al., 2020b).

To investigate phase transition in cooling of pure and spatially unconfined liquids, it is
necessary to perform simulation with long time scale due to the large number of possible
network configurations (Matsumoto et al., 2002). Considerable long time trajectory is also
needed to study the violation/preservation of SE relation (Kawasaki and Kim, 2017). The
application of EMD has been common in studying tribology of lubricants at HP conditions
up to 1 GPa (Kondratyuk and Pisarev, 2019) (Falk et al., 2020), where the appearance of
solid nuclei is possible. It should be stressed that identifying the conditions where spatial
heterogeneities occur is vital for the reliability in predicting HP transport property.

4.4 Crossing the SE relation

In general, viscosity is a mesoscopic property which is experimentally measurable while
diffusion coefficient is a microscopic description of molecular motion which can be readily
obtained in EMD simulation. However, direct viscosity measurements for every fluid at all
conditions of interest are not only expensive and time-consuming but also extremely difficult
and sometimes impossible to obtain especially at high-temperature, high-pressure (HTHP)
conditions. The work of Gordon (Gordon, 2003a) (Gordon, 2005), Falk et al. (2020) and
Kondratyuk et al. (2020a) proved that Re f f is a constant parameter over wide range of HTHP
conditions. It demonstrated that predicting viscosity through diffusion coefficient via scaling
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Fig. 4.13 Time evolution of overall diffusion coefficient of MMR at 298.15 K, where trajecto-
ries are partitioned every 2 ns and diffusion coefficient is the linear fitting of MSD between
200 ps and 1800 ps within each time interval, black dashed lines indicate the transition time
of 100 MPa.

behaviour of SE relation is promising in both reducing computational cost and keeping the
ultimate accuracy.

Hereon, we develop a predictive method via the crossing linkage between experimentally
available viscosities and corresponding EMD diffusion coefficients in any force field as shown
in Figure 4.14. Using the hybrid Re f f via liner regression, the viscosity can be estimated in
HTHP region after extrapolation provided SE relation preserves. The predicted value should
have experimental-level accuracy. Among these three force fields, TraPPE is supposed to
be robust even in extreme conditions considering the overall capability in density prediction
over wide range of HTHP conditions. The demonstrated correlations between viscosity and
diffusion coefficient can be exploited in the determination of transport properties of new
fluids such as new fuels or those of existing fluids/fuels in unexplored HTHP supercritical
conditions.

4.5 Discussion and conclusion

In this Chapter, equilibrium molecular modelling with three force fields (TraPPE,
CHARMM and LOPLS) has been performed to comprehensively study the properties of
FAMEs in high pressure conditions up to 300 MPa, which is very challenging for other meth-
ods such as experimental measurements. This study provided a new methodological approach
to fuel property predictions in extreme conditions using molecular dynamics simulation, with
results given in terms of transport property predictions, together with analyses of the dynamics
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Fig. 4.14 Correlation between viscosity from experiments and diffusion coefficient from EMD
simulation at the temperature of 348.15 K, (a): MDC, (b): MMR. Solid line is the fitting of
TraPPE, dashed line is the fitting of CHARMM and dotted line is the fitting of LOPLS.
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of molecular structure and Stokes-Einstein relation. There are several observations from the
simulation and the methodological approach.

Determining plateau time for FAME viscosity is a trade-off due to the increasing statis-
tical error with longer running integral. Averaging over replicated independent trajectories
with subsequent fitting is a feasible solution to obtain viscosity rigorously in spite of the
increased computational cost. Translational diffusion coefficient obtained via Einstein method
is statistically accurate, and scaling effect of system size should be considered. Rotational
diffusion is characterised via reorientation relaxation time of end-to-end vector.

Accuracy of density, diffusion coefficient and viscosity prediction varies among the
three force fields. TraPPE force field shows exact agreement with experimental density over
wide range of conditions. All-atom models tend to underestimate diffusion and overestimate
viscosity, vice versa for united atom model. LOPLS force field has performed better than
CHARMM on diffusion coefficient and viscosity.

The Stokes-Einstein relation holds for most conditions where diffusion coefficient,
relaxation time and viscosity are correlated, except at temperature close to melting point with
high pressure. There is need to pay special attention on this when using EMD to predict
transport properties at extreme high pressures. Because high pressure induced solidification
requires simulation with long time scale for the nuclei to appear, the consequent spatial
heterogeneity results in the breakdown of Stokes-Einstein relation.

A hybrid effective hydrodynamic radius is obtained by the cross-correlation of experi-
mental viscosities and EMD diffusion coefficients. The predictive method established in this
chapter can be used to estimate experimental viscosity at high temperature and high pres-
sure conditions from the corresponding EMD diffusion coefficient provided Stokes-Einstein
relation applies.





Chapter 5

Comparison of biodiesel and diesel on
physical property in extreme conditions

During the injection and subsequent spray, atomisation and droplet evaporation, fuel would
go through a wide range of temperature and pressure from the fuel nozzle to the combustion
chamber. A typical operating condition in diesel spray combustion is “Spray-A” of n-
Dodecane where fuel starts from nozzle condition of 363 K - 150 MPa to ambient condition
of 900 K - 6 MPa (Pickett et al., 2010). Common rail injection system has been tested under
ultra-high injection pressure above 300 MPa (Natti et al., 2013) (Zhao et al., 2020). Therefore,
high pressure induced solidification of biodiesel and diesel is studied in Chapter 5.2. Critical
property is calculated in Chapter 5.3. The application of EMD on prediction of density,
viscosity and thermal conductivity at wide range of HTHP conditions (up to 300 MPa and
1500 K) is introduced in Chapter 5.4. The performance and capability of NEMD on viscosity
and thermal conductivity prediction at extreme conditions are discussed in Chapter 5.5.

5.1 Modelling methodology

5.1.1 Fuel composition and molecular structures

In this chapter, the rapeseed biodiesel is selected as the research object with the molec-
ular structure and composition adopted from the work of Herbinet et al. (2008). The five-
component diesel surrogate fuels developed by Qian et al. (2018) are employed. The details
of rapeseed biodiesel are listed in Table 5.1.
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Table 5.1 Molecular names, chemical formulas, molecular structures, molecular mass and
composition of rapeseed biodiesel.

5.1.2 Force fields

Simulations of liquid-solid phase change in MD typically require long time scale tra-
jectories due to the energy barrier associated with nucleation events. TraPPE-UA force field
is developed for simulation of phase equilibrium in which carbon and bonded hydrogen
atoms are treated as a “pseudo-atom” for computational efficiency. The force field parameters
of alkanes, cycloalkanes & aromatics and FAMEs are taken from the work of Martin and
Siepmann (1998), Kamath et al. (2006) and Yiannourakou et al. (2019) respectively.

In this study, simulation of thermal conductivity using both the Green-Kubo (GK) EMD
and reverse NEMD are performed in LAMMPS package (Plimpton, 1995). The remaining
simulation are performed in GROMACS package (Van Der Spoel et al., 2005). In the TraPPE
force field, bond length is fixed. This can be achieved in GROMACS by using the LINCS
algorithm to constrain all bonds. In LAMMPS, there is no corresponding algorithm to fix
all bonds of the large molecules in fuels. A practical trade-off is to treat bond as flexible
with parameters constraining bond stretching adopted from other force fields (Keasler et al.,
2012). For example, in TraPPE force field of alcohols (Chen et al., 2001), force constant of
angle bending of C-C-O and C-O-H were taken from AMBER94 force field, and some torsion
parameters are taken from OPLS-UA force field. Yiannourakou et al. (2019) developed
TraPPE-UA force field to study vapour-liquid equilibrium (VLE) of polycyclic compounds,
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with bond stretching parameters borrowed from OPLS. Gong et al. (Gong et al., 2021a)
(Gong et al., 2021b) studied the diesel droplet evaporation under sub- and supercritical
conditions with bond stretching force constant taking from NERD model. In this study, the
bond stretching force parameters are adopted from OPLS force field (Jorgensen et al., 1996).

5.1.3 MD setup

Three ensembles are used depending on different scenarios, i.e., NPT , NV T and NV E
(microcanonical ensemble). In LAMMPS, the Nose-Hoover thermostat and barostat are used
to control the temperature and pressure with the damping constants equal to 100 and 1000
times of the time step respectively. In GROMACS, temperature is maintained by rescaling
velocity with a stochastic term to ensure the correct kinetic energy distribution, and pressure
is controlled by Parrinello-Rahman barostat (Parrinello and Rahman, 1981).

The cut-off radius of vdW interactions and Coulombic interactions are set to be 1.4 nm.
For thermal conductivity simulation in LAMMPS, PPPM solver (Hockney and Eastwood,
2021) is used for the calculation of long-range electrostatic interactions in reciprocal space
with the desired relative force error of 1.0e-5. In GROMACS, PME solver (Darden et al.,
1993) is used for long-range electrostatic interactions. PME calculations are performed
using a fourth-order spline interpolation with grid spacing of 0.12 nm. All simulations were
performed with initial energy minimisation before the equilibrium run and production run.
Periodical boundary condition is used in all directions in the simulation.

5.2 High pressure induced solidification

Occurrence of solid-like phase of fuel could be harmful for common rail injector which
should be avoided (Tarakowski et al., 2015). The liquid-to-solid phase transition of FAMEs
under high pressure (HP) remains much less studied than crystallisation under hash cool-
ing conditions. To investigate the high pressure induced solidification in molecular level,
the modelling system is constructed with 2000 biodiesel (or diesel) molecules randomly
distributed in a box as shown in Figure 5.1. Nie et al. (2019) reviewed the MD study on
transport properties of supercritical working fluids. And most MD simulation (both EMD
and NEMD) to compute transport properties like viscosity and thermal conductivity contains
around 500 - 2000 molecules. Recently, Yang et al. (2021) studied the viscosity and thermal
conductivity of n-alkanes like n-decane, n-undecane and n-dodecane with 250 molecules in
simulation box. The edge length of box is set at a relatively large value of 20 nm to avoid
atom overlap. A steepest descent energy minimization simulation is performed to relax the
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molecular geometry. Equilibrium run of 2 ns in NPT ensemble is followed with a time step
of 2fs to compress the system to the target temperature and density. A final 200 ns production
run is performed in NV T ensemble with atom trajectory dumped every 100 ps. The effect
of temperature, pressure and composition on phase transition is evaluated according to the
morphology shown in Figure 5.2.

Fig. 5.1 Snapshot of initial box containing 2000 biodiesel molecules, fuel surrogate molecules
are indicated with different colours, HXD and MP: purple, OTD and MS: magenta, HMN and
MO: blue, DCA and ML: red, MNT and MLN: green.

In a previous experimental study, it was reported that phase transition of rapeseed methyl
ester occurred at pressure above 230 MPa in room temperature (Tarakowski et al., 2015).
A visual inspection of the molecular trajectory at 300 K and 300 MPa is used to confirm
the formation of solid phase as shown in Figure 5.2. The nucleation is initiated from the
chain straightening of molecular conformation and orientation adjustment. This results
in the parallel alignment of molecules and the increase of local density which facilitates
the formation of critical nucleus before 50 ns. Prentice et al. (2020) observed that the
squalene undergoes the crossover to an amorphous and metastable solid-like state without
crystallisation at conditions up to 1 GPa, which was then validated by MD simulation. After
100 ns, the molecules in biodiesel show apparent crystalline structure of ordered arrangement.
It should be pointed out that nucleation is a rare event and complex molecules do not often
crystallize spontaneously during simulation, thus extreme long-time scale trajectory is needed
(Matsumoto et al., 2002) (Giberti et al., 2015b). FAME molecules can be regarded as the
combination of ester function group and linear chain hydrocarbons as shown in Table 5.1. The
crystalline system of biodiesel shows similar morphology in analogy with cooling induced
nucleation of n-alkane (C8, C10, C20 and C30) (Zerze et al., 2013) (Luo et al., 2015) (Xu
et al., 2020) and waxy crude oil (Chen et al., 2020), which have been described as crystalline
blocks and are spatially segregated with different nucleus sizes and chain orientations.

When pressure is reduced to 250 MPa, the system has single bundle-like nuclei with
stretched chains packed densely and oriented in the same direction. At conditions of 300
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K-200 MPa and 350 K-300 MPa, there are no nucleus appear. Biodiesel has higher tendency
in solidification than diesel at HP conditions as there is no nucleus appearing in diesel at
300 K and 300 MPa. HP solidified fluids are non-hydrostatic medium which has a sharply
increased viscosity and ceased of diffusion (Prentice et al., 2020). Condensed fuels shift from
liquid-like viscous fluid to solid-like elastic matter inside the nozzle indicating the occurrence
of phase transition which will inevitably affect the subsequent spray and droplet breakup in a
combustor chamber.

Fig. 5.2 (a) Time evolution of biodiesel morphology and molecular arrangement during
nucleation at 300 K and 300 MPa, from left to right: 50 ns, 100 ns, 150 ns and 200 ns; (b)
snapshots of systems after 200 ns simulation, from left to right: biodiesel at 300 K and 200
MPa, biodiesel at 300 K and 250 MPa, biodiesel at 350 K and 300 MPa, diesel at 300 K and
300 MPa.

RDF is widely used to quantify the local strucutre during phase transition. RDF is the
probability of finding a particle at a separation distance r from the centre of the reference
particle. In order to study the time evolution of modelling system during solidification, the
sub-block average method is applied where the trajectory is divided into consecutive blocks
and RDF is statistically averaged over the frames in the interval. The RDFs of centre of
mass (COM) of fuel molecules distributed in Figure 5.2 are shown in Figure 5.3. Crystals are
typically characterized by long-range order. For example, discrete peaks of RDF emerge at
multiple coordination spheres with radial distance of σ ,

√
2σ ,

√
3σ , etc in reduced units in

solid phase of monoatomic gas. For completely uniform distribution of particles, the local
density is equal to the bulk density with RDF equal to 1 for all radial distances. Accumulation
of particles leads to RDF > 1, while depletion makes RDF < 1. For biodiesel mixtures, the
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system stays amorphous in initial 40 ns and the RDF increases gradually to 1 at radial distance
equal to 0.5 nm. During nucleation process between 40-80 ns, the first peak value of RDF
is 2.17 at 0.47 nm, which then jumped to 4.48 between 80-120 ns. When crystallization
terminates gradually after 100 ns, the first peak value still increases slowly to 6.01. The
second and third peaks also emerge at 0.81 nm and 0.92 nm with small values due to the
imperfect crystalline strucutre. RDF can also characterize the crystalline morphology with
single nucleus of biodiesel at 300 K-200 MPa, which has a peak value of 2.78, smaller than
biodiesel system at 300 K-300 MPa.

Fig. 5.3 (a) Time evolution of RDF of center of mass of biodiesel molecules at 300 K and 300
MPa during 200 ns simulation, RDF is averaged over each 40 ns interval; (b) RDF of systems
corresponding to Figure 5.2 (b), averaged over last 40 ns trajectory, B indicates biodiesel an
D indicates diesel.

RDF can be used to distinguish the evolution of local crystalline strucutre but not instantly.
Collective variables like coordination numbers, SMAC and Steinhardt parameter, etc., are
developed to enhance the sampling with metadynamics and to drive the phase separation
process during nucleation (Giberti et al., 2015b) (Tribello et al., 2017) (Liu et al., 2020). They
are also used to identify the molecular structures possessing a crystalline arrangement by
analysing MD trajectories. Among collective variables, Steinhardt parameter (Steinhardt
et al., 1983) is more applicable for biodiesel mixtures as it is a bond-based parameter. A
set of nominal bonds, i.e., RRRi j between central atom i and atoms within its coordination
spheres is defined. The local environment around particle i can be characterised by the
bond-orientational order parameter of qqqnm(i) which is expressed as:

qqqnm(i) =
∑

N
j ̸=i σ

(
ri j
)

Ynm
(
RRRi j
)

∑
N
j ̸=i σ

(
ri j
) (5.1)

where ri j is the distance between atoms i and j, Ynm is the nth order spherical harmonics, m is
a number that runs from −n to +n, σ

(
ri j
)

is a switching function in rational form that acts on
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ri j. After averaging vector qqqnm over all the harmonics with the given n value, the Steinhardt
parameter in below equation can be used to measure the order degree of the coordination
sphere. To compare the overall nucleation process between different systems, Steinhardt
parameter is averaged over all particles.

Qn(i) =

(
4π

2n+1

n

∑
m=−n

|qqqnm(i)|2
)1/2

(5.2)

In general, Qn is small when the coordination shell is disordered and large when the
coordination shell is ordered. The sixth order Steinhardt parameter has been used to study
the crystal growth process in MD system of n-Octant (C8) (Xu et al., 2020) and n-Eicosane
(C20) (Anwar et al., 2013). The time evolution of relative Q6 parameter of different system
is shown in Figure 5.4, which is in accordance with the nucleation process in Figure 5.2.
For amorphous system without nucleation, Q6 parameters keep constant value at 1.0 while
crystalline systems have higher value which corresponds to both the intra- bond orderings and
inter- chain orderings. Comparing the crystallisation process of biodiesel at 300 MPa and 250
MPa, it is observed that after the long quiescent induction period, there is a linear increase
period which corresponds to the free growth of crystals without impediment (Paajanen et al.,
2019). As expected, biodiesel at 300 MPa has faster growth rate which is 1.74 times of the
rate at 250 MPa. The difference the nucleation processes is that there is a transition period (t4
- t5) at 300 MPa which shows gradually reduced growth rate until termination. This is because
the multiple nuclei limit each other’s further growth in this stage.

Fig. 5.4 Time evolution of relative Q6 parameter to characterise the crystallinity of the
modelling system, where the time points indicates different nucleation stages: t1=85 ns,
t2=130 ns, t3=40 ns, t4=100 ns, t5=160 ns.
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5.3 Critical properties and surface tension

For prediction of critical property and surface tension based on VLE modelling, 2000
biodiesel (or diesel) molecules are distributed randomly in a rectangular box of 8×8×32 nm
in the x, y and z directions. After energy minimisation, annealing simulation is performed in
semi-isotropic NPT ensemble with 1 fs time step. Pressure and compressibility in the x and y
directions are set up as zero, while in the z direction, they are set up as 1 bar and 4.5e-5/bar
respectively. The box is compressed in the z direction in cooling condition of 250 K for 0.5 ns
and then expanded by increasing temperature to 300 K linearly in 1.5 ns. After that, system is
maintained for 2 ns at 300 K for equilibrium. The liquid film generated is shown in Figure 5.5
(a). The second step is VLE simulation in NV T ensemble with 1fs time step. The z edge
of box is scaled up 3 times based on the average length of the z edge during the last 1 ns
trajectory in NPT simulation. The liquid film is then placed in the centre of the elongated
box. The liquid film is heated from 300 K to the targeted temperature with a rate of 0.1 K/ps
and then maintained for 10 ns at the temperature for production run. At each temperature,
five statically independent simulations are replicated by setting the initial velocities randomly.
Results are averaged over the final 5 ns of each individual trajectory. Snapshots of biodiesel
and diesel after 10 ns NV T simulation are shown in Figure 5.5 (b) and (c).

As shown in Figure 5.5 (b) and (c), the vacuum space on both side of liquid films
during VLE simulation makes the system inhomogeneous. Ignoring long-range dispersion
force affects the modelling of vapour-liquid interfaces significantly, and leads to incorrect
estimation of surface tension (mostly underestimate) (Ismail et al., 2007) (Fischer et al.,
2015) (Morrow and Harrison, 2019) (Papavasileiou et al., 2019). The tail corrections for the
two-phase simulation can range 50% - 7% as the cut-off radius changes from 2.1σ to 6.4σ in
reduced unit (Ghoufi et al., 2016). In order to compensate the truncation of dispersion forces,
one can increase the cut-off distance to 2-3 times of its normal value (Feria et al., 2020), or
apply Ewald summation method for LJ interactions like PME (Fischer et al., 2015) (Morrow
and Harrison, 2019) (Papavasileiou et al., 2019) or PPPM (in’t Veld et al., 2007) (Isele-
Holder et al., 2012). Mesh-based Ewald solvers were shown to be faster and more accurate
than incorporating extremely large cut-off distances (Isele-Holder et al., 2013) (Morrow and
Harrison, 2019). The geometric combination rules rather than Lorentz-Berthelot mixing
is adopted for LJ interaction in the reciprocal space, so as to gain a significant increase in
computational efficiency with a minor loss in accuracy (Isele-Holder et al., 2013). The same
Fourier grid and interpolation order are used for both LJ-PME and electrostatic PME. The
modelling of systems where dispersion interactions are simply truncated with cut-off distance
of 1.4 nm is also performed in comparison with the LJ-PME method.
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Fig. 5.5 (a) Snapshot of biodiesel box after 4 ns annealing-equilibrium simulation in semi-
isotropic NPT ensemble at 300 K and 0.1 MPa, where the box length of diesel in the z
direction is 12.49 nm; (b) and (c) are snapshots of molecule distribution of biodiesel and
diesel in VLE simulation with LJ cut-off distance of 1.4 nm.
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The density profile of biodiesel and diesel along the z direction is shown in Figure 5.6
(a) - (b). To obtain the critical properties, the density of liquid and vapour phase, i.e. ρL and
ρV , in VLE are obtained by fitting the density profile to the equation expressed as:

ρ(z) =
1
2
(ρL +ρV )−

1
2
(ρL −ρV ) tanh

(
2(z− z0)

d

)
(5.3)

where z0, and d are the fitting parameters related to the position where the density is half
between ρL and ρV , d is the width of the liquid-vapor interface.

Densities of fuel in liquid and gas phase are plotted in Figure 5.6 (c) - (d). Critical
temperature (Tc) and critical density (ρc) are extrapolated using the density scaling law and
the law of rectilinear diameters. Critical pressure (Pc) is estimated using ρL in the Rackett
equation proposed by Messerly et al. (2016). The equations are expressed as:

ρL −ρV = A(Tc −T )β (5.4)

1
2
(ρL +ρV ) = ρc +B(Tc −T ) (5.5)

Pc =
RTcρc

M

(
ρc

ρL

)(1− T
Tc )

ι

(5.6)

where A and B are fitting parameters, β is the critical exponent with a universal value of 0.325
(Kamath et al., 2006) (Morrow and Harrison, 2019), R is the gas constant, M is the molecular
mass, and ι is an empirical constant equal to 2/7 (Morrow and Harrison, 2019).

Critical properties of mixtures depend on molecular structure and composition. Tc

increases with the number of carbons in the fatty acid chain, while Pc decreases with the
chain length (do Carmo et al., 2015) (Evangelista et al., 2018). A theoretical method based on
empirical equations developed by Kay and B. (1969) and Li (1971) is used to estimate critical
temperatures and critical pressures of multicomponent fuels (Gong et al., 2021b) (Lin and
Tavlarides, 2012). The equation for critical temperature of mixtures, Tc,m is expressed as:

Tc,m =
n

∑
i=1

θiTc,i (5.7)

where n is the number of surrogate molecules, θi is the volumetric fraction of component i
expressed as:

θi =
xiVc,i

∑
n
i=1 xiVc,i

(5.8)

where xi and Vc,i are the mole fraction and critical molar volume of component i.
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Fig. 5.6 Equilibrium fuel density profiles and vapour-liquid coexistence curves: (a) and (b)
are density profiles of biodiesel and diesel across the liquid-vapour interface as a function
of the distance from the centre of liquid film, corresponding to snapshots in Figure 5.5 (b)
and (c); (c) and (d) are vapour-liquid coexistence curves of biodiesel and diesel with LJ
cut-off distance of 1.4 nm and LJ-PME method. Results are averaged over five independent
simulations, solid symbols are gas density while hollow symbols are liquid density, error bars
are immersed within the symbols.
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The equation for critical pressure Pc,m of mixtures can be described as:

Pc,m = Ppc

(
1+(5.808+4.93ωm)

Tc,m −Tpc

Tpc

)
(5.9)

where Ppc and Tpc are pseudo critical pressure and temperature, ωm is the mean acentric factor.
They can be expressed as the molar averages of all individual components:

Tpc =
n

∑
i=1

xiTc,i Ppc =
n

∑
i=1

xiPc,i ωm =
n

∑
i=1

xiωi (5.10)

The values of these parameters of biodiesel and diesel surrogate fuels are listed in the
supplementary material as Table 5.2 and Table 5.3. The predicted critical properties of
biodiesel and diesel are listed in Table 5.4. Biodiesel has higher critical temperature and lower
critical pressure in all methods. For critical temperature, although overestimated slightly, LJ-
PME can reproduce critical temperature better than simply truncated LJ interaction. Critical
pressures estimated using Equation (5.6) show positive correlation with temperature, and are
higher than theoretical results by a factor around 2. Compared with the results of Morrow and
Harrison (2019) on critical property prediction of pure surrogate hydrocarbons of diesel, using
MD-VLE simulation to predict the critical pressure of fuel mixtures is far from satisfactory.

Table 5.2 The parameters of biodiesel surrogate fuels, taken from the work of do Carmo et al.
(2015).

For supercritical combustion, the disappearance of surface tension of droplet will change
the conventional two-phase evaporation to diffusion dominated mixing process. The primary
method to compute surface tension in MD simulation was developed by Tolman (Tolman,
1948) and then refined by Kirkwood and Buff (Kirkwood and Buff, 1949). It computes the
surface tension as an integral of the difference between the normal and tangential pressures:

γ =
1
2

∫
∞

−∞

(
P⊥(z)−P∥(z)

)
dz (5.11)
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Table 5.3 The parameters of diesel surrogate fuels, taken from the work of Lin and Tavlarides
(2012).

Table 5.4 Comparison between MD and empirical equation on prediction of critical properties
of biodiesel and diesel.
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where P⊥(z) is the pressure component normal to the surface and P∥(z) is the pressure
component parallel to the surface. In the case of an interface between two fluid phases, the
integral in equation (14) can be replaced with an ensemble average of the difference between
the normal and tangential pressures (in’t Veld et al., 2007), using the equation expressed as:

γ =
1
2

Lz

(
⟨Pzz⟩−

1
2
(〈

Pyy
〉
+ ⟨Pxx⟩

))
(5.12)

where Lz is the length of the box in z axis, Pii is the diagonal component of the pressure tensor,
⟨· · · ⟩ in is an average over the canonical ensemble.

Both the chain length and unsaturation degree affect the surface tension of pure FAMEs.
Generally, the surface tension of FAMEs increases with the increase in unsaturation degree
and molecular mass (Thangaraja et al., 2016). Phankosol et al. (2014) developed an empirical
equation to estimate surface tension of biodiesel mixtures at temperatures between 30 and 80
◦C according to FAME composition.

γ = 60.211−0.4307NC −0.1125T +0.00207NCT +3.676N=−0.00893N=T (5.13)

where NC and N = are average numbers of carbon atoms and double bonds of biodiesel
mixtures.

The surface tension of biodiesel and diesel at different temperatures is shown in Fig-
ure 5.7. The surface tensions decrease linearly with increase of temperature (Chhetri and
Watts, 2013) (Thangaraja et al., 2016) (Das et al., 2018b). The surface tension obtained from
MD-VLE simulation with LJ cut-off distance of 1.4 nm can be 28.78%-70.37% lower than
results of LJ-PME, and the absolute relative deviation increases with temperature. Surface
tension of biodiesel estimated from LJ-PME approximates closer to the results from empirical
method. The surface tension of biodiesel is significantly higher than fossil diesel and hence
causes poor atomization characteristics when injected into the combustion chamber.

5.4 Transport properties of fuel mixtures using EMD

5.4.1 Density

Fuel density is the main property that affects the injection process, such as total mass
injected and pressure wave in the common-rail system (Boudy and Seers, 2009). The predicted
density of biodiesel and diesel is shown in Figure 5.8. After comparing with different force
field like LOPLS, Lipid14 and MARTINI, it was observed that the TraPPE can reproduce the
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Fig. 5.7 Vapour-liquid surface tension of biodiesel and diesel as a function of temperature,
where hollow symbols are results of LJ cut-off distance of 1.4 nm, solid symbols are results
of LJ-PME, the solid and dashed lines are fitting results, green asterisk indicates biodiesel
surface tension estimated using empirical equation, and the corresponding fitting equations
are also listed.

density of alkanes exactly (only 1% deviation from experiments) (Papavasileiou et al., 2019).
MD systems with 2000 biodiesel (or diesel) molecules are equilibrated in NPT ensemble
for 500 ps, and densities are the averaged results over the last 200 ps trajectories. For fuels
at isothermal conditions, density is fitted according to the Tait correlation (Dymond and
Malhotra, 1988) expressed as:

ρ −ρ0

ρ
= A log

(
B+P
B+P0

)
(5.14)

where ρ0 is a density at P0 which is 10 MPa here, A and B are fitting parameters.

At isothermal conditions, density of biodiesel is 5.39% and 5.43% higher than diesel
as a whole at 300 K and 400 K respectively. The effect of pressure on relative difference
of biodiesel and diesel is weaker with increase of pressure. The relative difference between
biodiesel and diesel at isobaric condition of 5 MPa increases sharply from 6.69% at 400 K to
86.55% at 900 K and then decrease gradually to 42.17% at 1500 K. However, at 15 MPa, the
relative difference increases gradually from 6.13% at 400 K to 25.68% at 1500 K.

5.4.2 Viscosity

There are basically two equivalent methods on viscosity prediction in EMD, i.e., the
Green-Kubo and Einstein equations. In analogy with the diffusion coefficient in the Einstein
equation, viscosity can be expressed as the mean-square “displacement” (MSD) of the time
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Fig. 5.8 Pressure and temperature dependence of density of biodiesel (B) and diesel (D),
densities of biodiesel at 300 K - 250 MPa and 300 K - 300 MPa are not included due to the
HP solidification, lines in (a) are fitting results while lines in (b) are connection between the
scattered data points.

integral of the pressure tensor (Chen et al., 2009) (Mondello and Grest, 1997):

η =
V

2kBT
lim
t→∞

d
dt

(〈
∑
αβ

(
Lαβ (t)−Lαβ (0)

)2

〉)
(5.15)

where Lαβ is expressed as:

Lαβ (t) =
∫ t

0
Pαβ

(
t ′
)

dt ′ (5.16)

It was observed that there was no dependence on system size when calculating viscosity
and thermal conductivity in EMD simulation (Moultos et al., 2016) (Yang et al., 2019).
MD systems containing 2000 fuel molecules are equilibrated in NPT ensemble for 500
ps at targeted conditions. Production run of 2ns simulation in NV T ensemble is followed.
According to previous studies, both methods converge very slowly, because of the heavy
pressure fluctuation during the simulation (Hess, 2002) (Hess, 2002).

To better understand the convergence of viscosity, 40 statistically independent trajectories
are replicated with molecules in each system having different initial velocity distribution.
The viscosity of biodiesel at extreme conditions using the GK and Einstein method is shown
in Figure 5.9. Each viscosity curve using the GK equation shows the same time evolution
pattern of increasing at initial stage and then reaching the plateau with severe noise. The
deviation between each viscosity curves escalate dramatically with time, and the standard
deviation would increase with integration time in a power law function (Zhang et al., 2015).
The deviation between the “MSD” curves also increases with time in the Einstein method.
The averaged viscosity curves in GK methods show good convergence with stable flat regions
in late stage. Viscosity is a collective property, and sufficient independent trajectories are
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Fig. 5.9 Viscosity of biodiesel at extreme conditions using the GK and Einstein method,
coloured thin lines are results of 40 statistically independent trajectories, black thick lines are
the averaged results, the slopes of MSD in (c) and (d) are viscosities.

indispensable when estimating viscosity from the averaged values of running integrals in
EMD simulation.

To calculate the viscosity rigorously (instead of identifying the plateau region manually),
the averaged running integral is fitted a double exponential function developed by Zhang et al.
(2015), i.e.,the time decomposed method (TDM). The viscosity of biodiesel and diesel as
a function of temperature and pressure are calculated using the GK-TDM method, with the
results shown in Figure 5.10. The 2ns trajectory is long enough for time integration in all
conditions. The pressure dependence of GK viscosity is then fitted according to equation
developed by Kashiwagi and Makita (Kashiwagi and Makita, 1982):

ln
η(P)

η0
= Aln

(
B+P
B+P0

)
(5.17)

where η0 is the shear viscosity at pressure P0 = 10 MPa, A and B are the fitting parameters.
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The temperature dependence of viscosity are fitted according to the following equations
by Das et al. (2018b):

η(T ) = exp
(

A
T −B

)
−C (5.18)

where A, B and C are fitting parameters.

Fig. 5.10 Pressure and temperature dependence of viscosity of biodiesel and diesel, lines are
fitting results.

At isothermal conditions of 300 K and 400 K, the viscosity of biodiesel is higher than
diesel by a factor of 1.3-2.3. Viscosity is also greatly affected by temperature. Although
absolute difference between biodiesel and diesel diminished rapidly at isobaric conditions,
the relative difference at 15 MPa is still among 20.43%-52.81% at temperature above 900
K. Molecular configurations of FAMEs affect viscosity in terms of unsaturation degree, cis-
trans isomerism, and location of double bond. FAMEs with higher unsaturation have lower
viscosity, and trans-configuration will lead to higher viscosity than cis-configuration, while
the location of double bond has the least effect (Hoekman et al., 2012). It is desired for a
fuel to possess optimum kinematic viscosity. Fuel with excessive viscosity will have poor
cold flow property, narrow injection angle, poor atomization characteristics and large droplet
sizes, thus ultimately results in the incomplete combustion and high emissions (Hoekman
et al., 2012). Fuel with lower viscosity fails to provide sufficient lubrication and leads to the
increased wear.

5.4.3 Thermal conductivity

The thermal conductivity (κ) of fuel is calculated according to the GK method, which is
expressed as the ensemble average of auto correlation function of the heat flux:

κ =
V

kBT 2

∫
∞

0
⟨qx(0) ·qx(t)⟩dt =

V
3kBT 2

∫
∞

0
⟨qqq(t) ·qqq(0)⟩dt (5.19)
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where qqq is heat flux computed from per-atom kinetic energy, potential energy and stress tensor
by the following equations:

qqq =
1
V

(
N

∑
i=1

(kei + pei)vi −
N

∑
i=1

Sivi

)
(5.20)

where the first term inside the bracket corresponds to the kinetic and potential energy of atom
i, N is the total number of atoms in the system, and Si is the per-atom stress tensor, the term
vi multiplying the energy contributions is the atom velocity vector (Aimoli et al., 2014). It
should be noted that the second term in Equation (5.20) includes contributions that come
from the non-bonded interactions of vdW and Coulomb, as well as contributions from the
bond stretching, angle bending and dihedral (Nazarychev et al., 2021). The recently observed
corrections on heat flux was not considered in this study in terms of the deficiency of current
atomic stress approximation in dealing with the contributions from many-body interactions
like angle and dihedral (Surblys et al., 2019) (Boone et al., 2019).

The convergence of thermal conductivity of biodiesel at extreme conditions and the effect
of pressure and temperature on thermal conductivity are shown in Figure 5.11. The running
integral shows high frequency and heavy fluctuation in initial stage which is negligible in
viscosity. Similar to viscosity, the convergence time of running integral of heat flux in HP
condition is at around 200 ps which is longer than that of HT condition which is at around
10 ps. However, unlike viscosity, thermal conductivity can converge steadily at both HP
condensed condition and supercritical gas phase. This indicates that averaging the running
integral of massive multiple independent trajectories can be avoided. Thermal conductivity is
the averaged value over the last 200 ps correlation time in each trajectory.

At isothermal conditions with pressure ranging 10-300 MPa, pressure dependence of
fuel thermal conductivity is not prominent. The difference between biodiesel and diesel at
isothermal condition mainly exists at pressure below 200 MPa, where biodiesel has lower
thermal conductivity than diesel. At isobaric condition with temperature ranging 500-1200 K,
thermal conductivity correlates strongly with temperature, which decreases almost linearly
with the increase of temperature. Diesel has higher thermal conductivity than biodiesel with
the range of 30.48% - 59.63% at 5 MPa and 41.68% - 50% at 15 MPa. At supercritical dense
gas phase above 800 K, fuel thermal conductivity at 15 MPa is clearly higher than that at 5
MPa.

The difference between biodiesel and diesel on thermal conductivity would affect the
mixing process in supercritical combustion due to the coupling effects between thermal
conductivity, temperature gradient and thermal diffusion (i.e., Soret effect). Different transport
processes (heat flux and species flux) induced by different thermodynamic forces interfere
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Fig. 5.11 (a) Thermal conductivity of biodiesel at extreme conditions using the GK method
with simulation performed in NV T ensemble; (b) results of 40 independent replicated trajec-
tories; (c) - (d) pressure and temperature dependence of thermal conductivity of biodiesel
and diesel. The values are averaged over five independent trajectory, some error bars are
immersed in symbols.
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with one another in irreversible thermodynamics and Onsager reciprocal relations (Jofre and
Urzay, 2021). For instance, in addition to causing heat conduction, temperature gradients also
induce mass transport through the Soret effect.

The standard heat flux is expressed as:

qqq =−
Λq,q

T 2 ∇T +
N−1

∑
i=1

(hi −hN)JJJi −
N−1

∑
k=1

Λq,k

T
∇T (µk −µN) (5.21)

The standard species diffusion flux is expressed as:

JJJi =−
N−1

∑
k=1

Λi,k

T
∇T (µk −µN)−

Λq,i

T 2 ∇T (5.22)

where JJJ is species flux, h is specific enthalpy, µ is specific chemical potential, Λ represents
Onsager coefficient, Λq,q = κT 2 participates in heat transfer in Fourier function of first term
in Equation (5.21), Λq,i is involved in the computation of the Soret and Dufour effect. For
binary mixtures, Λq,i is related to binary diffusion coefficient via thermal-diffusion ratio of
kT .

Soret effect is known to be important, particularly when large ratio of the molecular
mass of pure compounds are present in fluids. Typically, Soret effect tends to drive lighter
molecules towards hot regions and heavier molecules towards cold regions of the flow.

The effect is not only restricted in diffusion of H and H2 in H2/air flames. Rosner
et al. (2000), Dworkin et al. (2009) and Liu et al. (2017a) demonstrated the importance of
Soret effect in describing flame properties concerning its transport effects on heavy fuels
and combustion intermediates including soot precursors like PAHs. A modelling study on
C12H26/N2 mixtures observed that although the effect is only fractional compared with species
flux contributed from composition gradients, the positive value of kT indicates that C12H26

tends to migrate towards cold flow zones, thereby sharpening the transcritical interfaces (Jofre
and Urzay, 2021). In supercritical combustion, the effect of thermal diffusion should be
re-examined. It is recognised as quantitatively significant because of the vanishing of Fickian
diffusion in first part of Equation (5.22) (Bellan, 2000) (Palle and Miller, 2007) (Xin et al.,
2012).
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5.5 Capability of NEMD on transport properties

5.5.1 Periodic perturbation-NEMD method on viscosity prediction

NEMD method can potentially avoid the high computational cost associated with the
replicated trajectories in EMD simulation. In general, a perturbation is needed which can
be generated by imposing a linear velocity gradient along the shear direction or applying a
momentum flux (Papavasileiou et al., 2019). In periodic perturbation (PP) method adopted in
this study, external force is applied to the particles in MD system and then the viscosity from
the perturbation of the induced momentum is measured (Hess, 2002). PP-NEMD method has
been used to predict the shear viscosity of alkanes, alcohols and sulfur compounds, etc., in
various force field and shown promising performance (Zhao et al., 2007) (Zhao et al., 2008)
(Papavasileiou et al., 2019) (Zhu et al., 2021).

A periodic external force characterized by acceleration a is applied in the x direction on
each particle, which is a function of the z coordinate as shown in Figure 5.12. The external
forces in the y and z direction, ay and az, are zero. Since vy and vz are zero, and there is no
pressure gradient in the x direction, for a Newtonian liquid adding a small force will result in
a velocity gradient as expressed in the following equation:

ax(z)+
η

ρ

∂ 2vx(z)
∂ z2 = 0 (5.23)

Fig. 5.12 Schematic plot of acceleration implementation along the z direction on each of the
particles, black arrow indicates the direction and amplitude of acceleration.

In simulation with a periodic boundary condition, the acceleration a and velocity v
should also be periodic. To satisfy both conditions mentioned above, the cosine function was
applied. The acceleration profile is described as:

ax(z) = Acos
(

2πz
Lz

)
(5.24)
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where A is the amplitude of the periodic profile, Lz is box length in the z direction and 2π/Lz

is the wavelength. The generated velocity profile is expressed as:

vx(z) =V cos
(

2πz
Lz

)
(5.25)

where the amplitude V can be readily evaluated from the simulated velocity profiles:

V = A
ρ

η

(
Lz

2π

)2

=
∑

N
i=1 mivi,x2cos

(
2πz
LZ

)
∑

N
i=1 mi

(5.26)

Subsequently, the shear viscosity is obtained using the following formula:

η =
A
V

ρ

(
LZ

2π

)2

(5.27)

It is suggested that elongated box length in the z direction can reduce the wavelength
dependence of the viscosity (Hess, 2002) (Papavasileiou et al., 2019) (Boone et al., 2019).
To this end, initial box is built using same methodology with the generation of liquid film in
VLE simulation. A series of 1 ns - NV T production run with time step of 1fs is performed.
The time for liquids to build-up the desired velocity profile from the initial equilibrium state
is of the order of the molecular relaxation time (Hess, 2002). For example, molecular rotation
correlation time of alkanes like n-Hexadecane (C16H34) at ambient condition is around 300
ps (Mondello and Grest, 1997). The heat generated through the viscous friction is removed
by coupling to the Nose-Hoover thermostat.

The capability of PP-NEMD is tested on system at ambient condition of 313.15 K -
0.1 MPa. Seven NV T simulations were performed with acceleration amplitude A ranging
from 0.002 to 0.03 nm · ps−2. The results of viscosity are shown in Figure 5.13. For very
small acceleration amplitudes of 0.002 nm · ps−2, the viscosity shown heavy fluctuation
with high frequency and even unphysical negative values, while for large force with 0.02
nm · ps−2 and 0.03 nm · ps−2, viscosity reduces gradually in initial 100 ps and then reach
steady response region with extreme low values. Viscosity fluctuation is weakened with
increase of acceleration amplitudes. It is essential to determine the appropriate acceleration
amplitudes. On the one hand, acceleration amplitudes should be small enough so that the
perturbation does not disturb the equilibrium of the system. On the other hand, if the external
force is too weak to develop a stable drift-velocity profile, the consequent signal-to-noise ratio
will be too low (Zhao et al., 2007) (Zhao et al., 2008) (Papavasileiou et al., 2019). Too large
amplitude will cause the system to move far from equilibrium (Papavasileiou et al., 2019).
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Statistical uncertainty in viscosity prediction is quantified by block averaging method,
where time-serial data set is divided in a number of blocks and averages are calculated
for each block. The standard deviation among the block averages is used to estimate the
overall standard deviation. As the block length increases, block averages are expected to be
uncorrelated. The blocking procedure is performed iteratively from an initial very short block
length until the blocked standard deviation reaches its plateau (Hess, 2002) (Grossfield and
Zuckerman, 2009). Heavy fluctuation in viscosity with low force perturbation shows high
statistical uncertainty as indicated in Figure 5.13 (b).

To determine the viscosity, a linear dependence of the calculated shear viscosities with
respect to the applied perturbation forces is identified. Extrapolation of the linear fitting to
zero perturbation force is the shear viscosities for the “undisturbed” fluids (Zhao et al., 2007)
(Zhao et al., 2008) (Papavasileiou et al., 2019). Viscosity of PP-NEMD is 3.14 cP which is
16.49% lower than 3.76 cP estimated by the GK-EMD method. The PP-NEMD result is not
closer to experimental results considering that the TraPPE force field underestimates viscosity
intrinsically in the GK-EMD results (Kondratyuk et al., 2020a).

Fig. 5.13 (a) Time evolution of biodiesel viscosity using PP-NEMD method at 313.15 K
and 0.1 MPa with different acceleration amplitude; (b) comparison of biodiesel viscosity
between GK-EMD (red dashed line) and PP-NEMD (black dot line), viscosity is the averaged
value over last 500 ps trajectories which is steady for data collection, where the shaded area
indicates the values for linear regression, error bars are obtained by data blocking method.

Prediction of biodiesel viscosity using the PP-NEMD method at extreme conditions is
shown in Figure 5.14. Both molecular transverse relaxation time and rotational relaxation
time correlate with pressure following the free-volume theory (Freed, 2007) (Freed, 2009)
(Falk et al., 2020), which means that biodiesel at HP compressed condition takes longer time
to reach steady state. For biodiesel at 300 K - 200 MPa, even applying high amplitude of
0.01 nm ·ps−2, heavy fluctuation still exits apparently with negative values. When increasing
the amplitude further to the values above 0.015 nm ·ps−2, the force is too large to maintain
the system equilibrium, and viscosity decreases to extremely low value after 600 ps. An
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Fig. 5.14 Time evolution of biodiesel viscosity at extreme conditions with different accelera-
tion amplitude: (a) biodiesel at 300 K - 200 MPa; (b) biodiesel at 5 MPa - 800 K.

appropriate amplitude should exist between 0.01 and 0.015 nm ·ps−2. The same behavior
also occurs at HT dense gas phase, with an appropriate amplitude existing between 1e-4 and
5e-4 nm ·ps−2. It should be noted that too narrow an amplitude range would also lead to the
unreliable fitted results.

5.5.2 Reverse NEMD method on thermal conductivity prediction

To calculate thermal conductivity κ in the NEMD simulation according to Fourier’s
law, i.e., qqq = −κ∇T , one can impose temperature gradient in a simulation box and then
measure the resulting heat flux. Or using the reverse NEMD (rNEMD) approach by Müller-
Plathe (Müller-Plathe, 1997), in which the heat flux is created in a system by exchanging
the kinetic energy between atoms located in different regions of a simulation box as shown
in Figure 5.15. rNEMD has been applied to predict the thermal conductivity of paraffin,
benzene and cyclohexane, etc. (Zhang et al., 2005) (Nazarychev et al., 2021). To be specific,
a simulation box is divided into 20 bins in the z direction. The first slab is set to be the cold
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layer, while the central 11th slab is set to be the hot layer. By exchanging the velocity of
hottest atom in cold slab with that of coldest atom in hot slab, an artificial energy transfer
from the cold slab to the hot slab is imposed. After reaching steady state, the heat flux from
hot side to cold side is balanced with the total kinetic energy transferred by these swaps. The
thermal conductivity is the ratio of heat flux to the slope of the temperature profile:

κ =
∑trans f er ke

2LxLy∆t

(
dT
dz

)−1

(5.28)

where heat flux is equal to the transferred total energy divided by time and the cross-sectional
area of the simulation box, the temperature gradient is determined by calculating the tempera-
ture T of each bin:

T =
1

3NbkB

〈
Nb

∑
i=1

miv2
i

〉
(5.29)

where Nb is the number of atoms in each slab.

Fig. 5.15 A schematic representation of the exchange of the kinetic energy between the atoms
in hot (red) slab and cold (blue) slab of a simulation box in rNEMD simulation.

Simulation box of liquid film is established in LAMMPS by specifying the pressure
tensor of the z component only, and the volume in the z direction is varied independently
during simulation. Simulations are performed in NPT ensemble for 2 ns where pressure and
temperature ramp from 250 K and 1 bar to the targeted temperature and pressure in 1ns, and
then followed by a second 1ns simulation at constant temperature and constant pressure. The
box length in the z direction is scaled to the mean length in last 500 ps trajectories. The
simulation is then continued in NV T ensemble for 1 ns equilibrium before being changed into
microcanonical ensemble for rNEMD simulation. Time step is 1fs in all simulations.

The temperature gradient and amount of the heat flux are determined by the swap rate
(inverse value of the time interval between exchange). The thermal conductivity of biodiesel
at ambient condition with different swap rate is shown in Figure 5.16. All swap rates from
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Fig. 5.16 (a) Temperature profile along the z direction in rNEMD simulation of biodiesel at
313.15 K and 0.1 MPa with different swap rate (ps−1), where lines are linear fittings; (b) time
evolution of temperature difference between hot side and cold side; (c) density profile along
the z direction with different swap rate; (d) comparison of thermal conductivity using rNEMD
(black hollow box) and GK-EMD (red dashed line). The results of rNEMD are averaged over
five independent simulations.

1.25 ps−1 to 20 ps−1 produce temperature profile with good linearity. And the magnitude of
the temperature gradient increases with the increase of swap rate. The temperature different
between the hot slab and the cold slab converges after 200 ps, which means the system
reaches its steady state and the generated temperature gradient is stable. The concomitant
density gradient as a function of the position along the heat flux direction would result in the
inhomogeneity of the system. Also, the temperature in cold slab can be as low as 181.46 K
at swap rate of 20 ps−1, which is below the melting point of FAMEs and can result in the
anisotropy of conduction. Both the density inhomogeneity and the possible phase transition
can introduce the deviation or even invalidation. Effect of phase transition can be avoided by
doing the linear regression of the slabs with temperature higher than melting point, i.e, the
shaded area in Figure 5.16 (a). The thermal conductivity calculated with higher swap rate is a
bit larger than that with lower swap rate. Overall, the thermal conductivity predicted from
rNEMD is smaller than that of GK-EMD method with an approximate factor of 0.5.
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The capability of rNEMD on thermal conductivity predication at extreme condition is
shown in Figure 5.17. At HP compressed condition with swap rates of 2.5, 5 and 10 ps−1,
the results show good linearity, temperature difference stabilisation and negligible density
inhomogeneity. Liner regression should also be performed using the slabs in the shaded area
in Figure 5.17 (a), to avoid the possible occurrence of HP induced solidification. For dense
gas state of supercritical condition, the effect of density gradient is apparent at swap rate
of 1 ps−1. Density at the cold slab is 3.35 times higher than that at the hot slab. When the
swap rate is reduced to 0.25 ps−1, an extended simulation length of more than 2000 ps is
needed to ensure the stabilisation of the temperature difference and to generate the identifiable
temperature gradient.

5.6 Discussion and conclusion

In this chapter, thermal physical properties of biodiesel in a wide range of conditions are
predicted using equilibrium and nonequilibrium molecular dynamics, and the corresponding
results are compared with fossil diesel. Extreme conditions include condensed solid phase
at 300 K - 300 MPa and dense gas phase of supercritical conditions at 5 MPa - 1200 K. The
properties investigated include high pressure induced solidification, critical properties, surface
tension and transport properties like density, viscosity and thermal conductivity. The capability
of nonequilibrium molecular dynamics on viscosity and thermal conductivity calculation at
extreme conditions is also studied.

At 300 K, solidification of biodiesel occurs at pressure above 200 MPa, which corre-
sponds to the working condition of future high pressure common rail injector. It is identified
that biodiesel is more likely to solidify than diesel. Bond-orientational order parameter of Q6

is used to characterise the degree of crystallinity during the simulation.

Biodiesel has higher critical temperature, lower critical pressure and higher surface
tension than diesel. The long-range dispersion interaction is essential in accurately predicting
surface tension. The performance of vapour-liquid equilibrium simulation on critical pressure
prediction of fuel mixtures is not as good as pure component.

Equilibrium molecular dynamics are employed to build the database of transport prop-
erties over wide ranges of temperatures and pressures without restriction. Compared with
thermal conductivity, multiple independent replicated simulation is necessary to eliminate the
statistical uncertainty in viscosity calculation using the Green-Kubo method. The resulting
sharp increase in computation resource thus hampers its application in building large scale
database directly. Obtaining the parameters in empirical equation by fitting the limited viscos-
ity data points can deal with this issue. The density and viscosity difference between biodiesel
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Fig. 5.17 Temperature gradient, temperature difference between the hot side and cold sides,
density profile of biodiesel with different swap rates at extreme conditions: (a) - (c) biodiesel
at 300 K - 200 MPa; (d) - (f) biodiesel at 5 MPa - 1200 K.
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and diesel on injection, spray and atomization is explicit. The effect of thermal conductivity
difference is highlighted due to the importance of Soret effect in supercritical combustion.

Unlike the transferability of equilibrium method, nonequilibrium method requires addi-
tional adjustments in different conditions, such as choosing appropriate strength of external
force in periodical perturbation method and optimum swap rate in reverse nonequilibrium
method.



Chapter 6

Conclusion and future recommendation

6.1 Summary of current work

A number of topics have been investigated in this thesis, including the physiochemical
properties of biomass and biofuels from the aspects of deactivation of catalyst during biomass
conversion, soot formation and mitigation mechanism of oxygenated biofuel additives, and
thermophysical property prediction of biodiesel. MD simulation was performed with reactive
force field and classical force fields like OPLS, TraPPE and CHARMM according to whether
chemical reaction takes place or not. Besides equilibrium MD simulation in which proper-
ties are well-distributed across the computational box, nonequilibrium MD simulation was
also applied by imposing appropriate external perturbation artificially so that a detectable
microscale response can be produced.

The pyrolysis of lignin in ReaxFF MD simulation (800 K - 3000 K with ramp ratio of
20 K/ps) demonstrated a comparable trend with experimental results (423 K - 1173 K with
ramp ratio of 2 K/min) in mass reduction. The molecular structures of tar and char were
identified, and therefrom the coke surrogates were established, i.e., PAHs and oxygenated
aromatics. The Ni catalyst deactivation mechanisms amid thermochemical conversion of
lignin were attributed to surface premelting and coke deposition. Surface premelting was
caused by higher mobility of atoms with lower coordination number at outer layer. The
mechanisms behind the coke-catalyst interaction patterns (desorption, chemisorption and
physisorption) were attributed to molecular collision dynamics, thermal dynamics and kinetics.
The deactivation patterns were dependent on the temperature, PAH size and oxygen contents.
The surface premelting induced deactivation is non-reversible while the catalyst deactivated
due to coke deposition can be regenerated except in the simulations where seeping occurred at
high temperature above 1600 K. The ReaxFF force field with the latest CHO2016 parameters



134 Conclusion and future recommendation

was employed to study the combustion of diesel with addition of oxygenated biofuels. Soot
formation mechanisms were scrutinized in time evolution of PAH growth pathways and
incipient soot morphology. The nascent soot demonstrated structures of aromatics linked
by aliphatics which were in consistent with the CHRCR model rather than PAH nucleation
mechanism and HACA growth mechanism. The effects of biodiesel and oxygenated additives
on soot mitigation were quantified by tracking the specific function groups in early formation
of CO and CO2.

For viscosity prediction of FAMEs, running integral of time correlation function of
pressure tensor using the GK-EMD method was subject to significant statistical error. Because
it represents the collective response to naturally occurring fluctuations which are relatively
small and highly uncertain in single run. Fitting the averaged value of sufficient independent
running integral by the double exponential function is a reliable method despite of the
increased computational cost. Diffusivity using Einstein method is a property averaged
over each particle, thus converges easily. The rotational dynamics was characterised by
reorientation relaxation time. Diffusion coefficient demonstrated system size scaling effect
while it is negligible in viscosity and rotational relaxation time. A predictive model was
established based on the observation that the correlation between experimental viscosity and
EMD diffusion coefficient was in accordance with SE relation. The precondition should
be stressed when applying the predictive method at extreme conditions considering that the
high pressure induced solidification can result in the breakdown of the SE relation. Classical
force fields like TraPPE-UA, LOPLS-AA and CHARMM-AA have different performance on
accuracy and efficiency regarding property prediction of density, viscosity and diffusivity.

Nonequilibrium MD simulation is not necessarily more accurate than GK-EMD method
on estimating viscosity and thermal conductivity. The limitation of nonequilibrium MD
simulation on building large scale data set of fuel properties lies in the identification of the
fitting regime which needs prior adjustment of perturbation amplitude at each condition so as
to obtain optimum signal-to-noise ratio.

The emission from biodiesel utilisation was examined in MD simulation in two aspects.
Compared with fossil diesel, biodiesel has the advantage of lower yield sooting index due to
ester functional group. However, larger molecular size makes biodiesel more vulnerable to
solidification in common-rail injector working at hundreds of megapascal pressure. Biodiesel
also has higher viscosity and surface tension over broad range of conditions which would
mainly deteriorate its injection and atomisation, and ultimately result in poorer combustion.
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6.2 Future recommendation

6.2.1 Deactivation of catalyst

The modelling of interface chemistry between coke surrogates and nanocrystal facets
can also be achieved using density functional theory (DFT) or ab initio molecular dynam-
ics. Crucial steps concerning the effect of coke molecular structures on deposition can be
understood deeply in atomic level using the quantum chemistry based method.

The interaction between coke surrogates and nanocrystals can be studied from the
perspective of energy transfer and momentum accommodation during the collision. The effects
of factors like the PAH size, rigidity and initial velocity orientation as well as nanocrystal
size etc. on the transition between different deactivation patterns of permanent adsorption,
trapping-desorption and intermediate reflection can be explored.

The evaluation of deactivation degree on kinetics of lignin catalytic fragmentation can
be quantified by Arrhenius parameters in a more direct way.

6.2.2 Unphysical reaction condition in ReaxFF MD simulation

In order to accelerate the reaction, the temperature and pressure are increased manually
in ReaxFF MD simulation. This is the main weakness of the application of ReaxFF and
results in the controversial comments on its reliability. Accelerated MD simulation techniques
have been implemented with ReaxFF to deal with this issue, though still in development. For
example, collective variable-driven hyperdynamics (CVHD) method has been used to study
combustion of n-Dodecane at realistic temperature as low as 700 K (Bal and Neyts, 2016).
Bond boost method has been used to study the crossing-linking of polymers (Vashisth et al.,
2018). However, previous studies using CVHD method (Bal and Neyts, 2016) (Ashraf et al.,
2019) (Kwon et al., 2020a) (Lele et al., 2021) were restricted to bond scission process and
has not been applied on the simulation of PAH growth and soot inception.

Machine learning force fields like deep potential or neural network potential provide
another promising method (Botu et al., 2017) (Meuwly, 2021) (Behler, 2021) (Unke et al.,
2021) (Poltavsky and Tkatchenko, 2021). The ACM Gordon Bell Prize of 2020 was awarded
to Jia et al. (2020) for their work on pushing the limit of molecular dynamics with ab initio
accuracy to 100 million atoms with the deep potential. Most importantly, deep potential
was implemented with ReaxFF in LAMMPS, i.e., DeepMD (Zhang et al., 2018). Recently,
Zeng et al. (2020) has used DeepMD package to investigate the chemical reaction networks
of methane in combustion. Therefore, the soot formation mechanism in real combustion
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conditions by using deep potential ReaxFF MD simulation can be explored. The panoramic
scenario can be established to include the initial fuel pyrolysis, PAH formation and soot
inception as plotted in Chapter 3-Figure 3.5.

6.2.3 Physical property prediction

Viscosity prediction

In calculation of transport properties, the most difficult one is viscosity. The reasons lie
in (1) inaccurate description of molecular model, i.e., force field; (2) considerable uncertainty
induced by insufficient statistics.

To enhance the statistics, a concept of space partition methodology is established based
on the fact that accuracy of viscosity in GK-EMD is independent of the system size. The MD
box can be partitioned into chunks with equal size (e.g., 4×4×4 in x, y and z axis) and the
correlation function can be calculated within each chunk. The viscosity of the whole box
obtained by averaging over the time integral of the 64 chunks can be fitted to the stretched
exponential function in TDM method. It is expected that the improved statistical accuracy
can be achieved in single run of 500 ps instead of massive independent replicated simulation.

Zhu et al. (2021) established a framework to enhance viscosity prediction by adaptively
varying the non-bonded vdW interaction and torsion potential parameters (VaFF) according
to be deviation between PP-NEMD results and experimental results. Qiu et al. (2021) and
Boothroyd et al. (2021) developed the workflow (names as OpenFF toolkit) of training the
vdW parameters and assessing the classical force fields so as to improve the prediction of
physical property beyond viscosity. These two force fields cover a diversity of compounds
besides hydrocarbons and FAMEs.

By combing the aforementioned space partition method with the high-quality force fields
like VaFF and OpenFF, a database of viscosity of various fuels can be built in a wide range of
conditions. According to the quantitative structure-property relationship (QSPR), a machine
learning based predictive method can be established to predict the thermophysical properties
of new fuels with molecular structures as inputs that can be quantified by the molecular
descriptor.

Binary diffusion and Soret effect

The importance of diffusive mixing process and Soret effect on supercritical combustion
has been discussed in Chapter 5.4.3. Both the binary diffusion coefficient and thermal
diffusion coefficient of fuel molecules in N2 can be obtained in MD simulation.
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It is more convenient to use Maxwell-Stefan (MS) diffusion coefficient in modeling the
multicomponent transport process in liquids. The chemical potential is the driving force for
diffusion, and the binary MS diffusion coefficient is expressed as (Liu et al., 2013) (Jamali
et al., 2019) (Zhao et al., 2021):

DMS
i j =

x j

xi
Λii +

xi

x j
Λ j j −2Λi j (6.1)

where Λi j is Onsager coefficient which is expressed as the cross correlation of the displace-
ments of species i and j:

Λi j = lim
t→∞

1
6Nt

〈(
Ni

∑
k=1

(
rk,i(t)− rk,i(0)

))
×

(
N j

∑
l=1

(
rl, j(t)− rl, j(0)

))〉
(6.2)

The Fick diffusion coefficient (DFick) describes the diffusion of molecules in a multicom-
ponent mixture as a result of the gradient in the concentration of constituent species. For a
binary mixture, the following relation holds:

DFick = ΓDMS (6.3)

where Γ is thermal dynamic factor, which can be obtained by Kirkwood and Buff coefficient
(Zhao et al., 2021):

Γ = 1− xi
ρn

j
(
Gii +Gi j −2Gi j

)
1+ρn

j xi
(
Gii +G j j −2Gi j

) (6.4)

G∞
i j = 4π

∫
∞

0

(
gi j(r)−1

)
r2dr (6.5)

where gi j(r) is RDF between species i and j, and ρn
j is the number density of species j.

Soret coefficient (ST ) can be obtained in NEMD simulation with the implementation of
enhanced heat exchange algorithm (eHEX) (Antoun et al., 2018a) (Antoun et al., 2018b) .

ST =
DT

Di j
=

∇xi

xi (1− xi)∇T
(6.6)

where ∇T is the temperature gradient, ∇xi is the mole fraction gradient of component i,
which can be measured in NEMD simulation at stationary state when the temperature and
composition gradients are well developed in the liner regime.

Solidification

Plotting the solidification line of alkanes or FAMEs on the phase diagram is not only
helpful to guide the design of common-rail injector but also to evaluate the property of
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hydrocarbon lubricants, which even work at high pressure conditions up to GPa. The pressure
dependence of melting temperature can be fitted to Simon-Glatzel equation (Rzoska, 2017):

Tm(P) = T0

(
1+

P
A

)1/B

(6.7)

where T0, A and B are fitting parameters. The effect of pressure on vitrification can be
estimated by fitting to the equation which is analogous to Simon-Glatzel type relation (Holt
et al., 2019):

Tg(P) = Tg(0)
(

1+
A
B

P
)1/A

(6.8)

where Tg(0), A and B are empirical and adjustable parameters. To collect the pressure-
dependent phase transition temperatures of alkanes and FAMEs, enhanced sampling technique
like metadynamics in conjunction with collective variables can be employed to address the
nucleation problem of long timescale simulation without losing the characteristic atomistic
resolution (Giberti et al., 2015b).
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