
Parameter-less Late Acceptance Hill-climbing:

Foundations & Applications

Mosab Bazargani
School of Electronic Engineering and Computer Science

Queen Mary University of London

Submitted for the degree of

Doctor of Philosophy

2021

Abstract

Stochastic Local Search (SLS) methods have been used to solve complex

hard combinatorial problems in a number of fields. Their judicious use of

randomization, arguably, simplifies their design to achieve robust algorithm

behaviour in domains where little is known. This feature makes them a

general purpose approach for tackling complex problems. However, their

performance, usually, depends on a number of parameters that should be

specified by the user. Most of these parameters are search-algorithm related

and have little to do with the user’s problem.

This thesis presents search techniques for combinatorial problems that

have fewer parameters while delivering good anytime performance. Their

parameters are set automatically by the algorithm itself in an intelligent way,

while making sure that they use the entire given time budget to explore the

search space with a high probability of avoiding the stagnation in a single

basin of attraction. These algorithms are suitable for general practitioners

in industry that do not have deep insight into search methodologies and

their parameter tuning. Note that, to all intents and purposes, in real-

world search problems the aim is to find a good enough quality solution in

a pre-defined time.

In order to achieve this, we use a technique that was originally introduced

for automating population sizing in evolutionary algorithms. In an intelli-

gent way, we adapted it to a particular one-point stochastic local search

algorithm, namely Late Acceptance Hill-Climbing (LAHC), to eliminate the

need to manually specify the value of the sole parameter of this algorithm.

We then develop a mathematically sound dynamic cutoff time strategy that

is able to reliably detect the stagnation point for these search algorithms.

We evaluated the suitability and scalability of the proposed methods on a

range of classical combinatorial optimization problems as well as a real-world

software engineering problem.

I dedicate this work to the most beautiful expressions of my life;

“my mother and my dad”.

i

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Edmund

K. Burke for accepting me as his student and his enthusiastic encouragement.

He gave me the freedom to explore and pursue the research avenues that I

really love, and at the same time he constantly provided me feedback, and

guided me in my journey. I was fortunate to learn from him, not only about

scientific methods, but also about my role as a researcher and a scholar. I

could not have imagined having a better supervisor.

I am very grateful to Fernando G. Lobo for his guidance and friendship,

as well as for accepting my several visits to him at University of Algarve.

With him, I have learn many things concerning research; he taught me

to write better, taught me to explain things better, and taught me that

hard work pays off. I also enjoyed our conversions about philosophy, social

science, and the future of democracy. I am also thankful to his wife, Paula,

and his kids, Gil and Ana, for inviting me several times in their house.

I am also very thankful to Jun Chen for being there for me at the most

difficult time of my PhD. His support and advise during difficult days are

very precious to me. He taught me how to focus on my goals, in any or-

ganization, without being diverted into unnecessary challenges. I also learn

from him the importance of hunting academic funds. I feel very fortunate

to have had the opportunity to work with him.

I am similarly grateful to Fabrizio Smeraldi who I got to know early in

my journey. Thank you for the friendship, the support and advice you gave

me, our conversation, and afternoon coffee. I am happy that we continue

this all virtually throughout COVID-19 pandemic.

I also want to thank Arman Khouzani, for offering me his couch to sleep,

right before my stage one, when I didn’t have a place to stay. Thank you

for the friendship, the advice, and our conversation. I learn a lot from you

ii

as a demonstrator and, later on, as the teaching fellow. Thank you for all

this.

For more than two years, I had the honour to be the EECS Chief PhD

representative and closely work with a group of representatives from different

research groups and centres as well as interacting with a number of EECS

admin staff. I would like to thank all of them, especially, Alan, Edward,

Laura, Nicole, Keith, Melissa, Hayley, Julie, Lowri, Yue, Dorothee. Thank

you for all the support you gave me in this journey.

I would like to thank all the current and former Operational Research

lab members with whom I had the pleasure to work and interact. I am very

grateful to all my colleagues and friends, Ali, Farid, Una, Elham, Maryam,

Louise, and Stathis. Thank you all for the company and friendship, for

all the good times we shared, for all the funny moments, and for being an

inspiration to me.

Kind gratitude to my beloved family, my mother who always wanted

me to complete my post-graduate study, my father and two sisters, Mena

and Marve, who taught me to be myself. They taught me to never give up

in achieving my ultimate goals and helped me pursue an academic degree.

They are the spiritual support of my life. I owe a big thank you to you.

A very special thanks goes to Houman Samim, my brother-in-law, who has

always been there for me.

I thank EU Cost Action CA15140 for funding my Short-Term Scientific

Mission to visit the University of Algarve in 2017 and 2019. The work in

this thesis was partially sponsored by EPSRC grant EP/J017515/1.

iii

Declarations

Parts of this thesis have appeared in the several publications which have been

subject to peer review; one of them is still under review. These publications

are listed below:

Chapter 3 is based on the two following papers:

• Bazargani, M., Lobo, F. G. (2017). Parameter-less late accep-

tance hill-climbing. ACM SIGEVO Genetic and Evolutionary

Computation Conference (GECCO’17), ACM Press, pp. 219–

226.

doi: 10.1145/3071178.3071225.

• Bazargani, M., Drake, J. H., Burke, E. K. (2018). Late accep-

tance hill climbing for constrained covering arrays. 21st Euro-

pean Conference on the Applications of Evolutionary Computa-

tion (EvoApplications), In Lecture Notes in Computer Science,

Springer, pp. 778–793. Best Paper Award Nomination.

doi: 10.1007/978-3-319-77538-8 52.

Chapter 4 is based on:

• Lobo, F. G., Bazargani, M., Burke, E. K. (2020). A cutoff time

strategy based on the coupon collector’s problem. European Jour-

nal of Operational Research. Elsevier. pp. 101–114.

doi: 10.1016/j.ejor.2020.03.027.

Chapter 5 is based on:

• Bazargani, M., Lobo, F. G., Burke, E. K. (2020). Parameter-

less late acceptance hill-climbing: an anytime performance local

search algorithm. [under review].

I would like to express here my thanks to all co-authors.

iv

Licence

This work is copyright © 2021 Mosab Bazargani, and is licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported Licence. To view

a copy of this licence, visit http://creativecommons.org/licenses/by-

sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite

300, San Francisco, California, 94105, USA.

v

Contents

1 Introduction 1

1.1 Thesis Objectives . 2

1.2 Introduced Algorithms . 2

1.3 Main Contributions . 3

1.4 Thesis structure . 5

2 Stochastic Local Search 7

2.1 Combinatorial Problems . 8

2.1.1 A Prototypical Combinatorial Problem: TSP 9

2.2 SLS Algorithms . 11

2.2.1 Late Acceptance Hill-Climbing (LAHC) 27

2.3 Hyper-heuristics . 32

2.4 Cutoff Time Strategies . 34

2.5 Parameter Tuning . 36

2.6 Search Space Structure . 37

2.7 Summary . 38

3 Parameter-less Late Acceptance Hill Climbing 41

3.1 Parameter-less Search Scheme 42

3.2 LAHC with Exponentially Increasing History List Length . . 43

3.2.1 Experiments with LAHC alone 44

3.2.2 Experiments with Automated Restarts 45

3.3 Speeding up with Seeded Restarts 47

3.3.1 Experiments with pLAHC-s 50

3.4 From Theory to Practice: A Case Study using a Software

Engineering Problem . 53

3.4.1 Constrained Combinatorial Interaction Testing Problem 54

vi

3.4.2 Covering Arrays by Simulated Annealing (CASA) . . 57

3.4.3 Experimentation . 61

3.5 Summary . 68

4 Theory Driven by Practice: A Cutoff Time Strategy for SLS 69

4.1 Motivation . 70

4.2 The Coupon Collector’s Problem 72

4.2.1 Cutoff Time Strategy Based on the Coupon Collec-

tor’s Problem . 73

4.3 Stopping LAHC Using the Results of the

Coupon Collector’s Problem 74

4.4 Experimental Setup . 75

4.4.1 Benchmark Problems 76

4.4.2 Neighbourhood Structures 79

4.4.3 Algorithm Setup . 79

4.5 Experimental Results . 81

4.5.1 Comparison of the CCP and the 2% Cutoff time Strategy 82

4.5.2 Percentage of the Total Search Time for the CCP Cut-

off Strategy . 88

4.5.3 How Good is the Current Solution at the Cutoff Point? 90

4.6 Discussion . 93

4.7 Summary . 96

5 Revisiting pLAHC with more Suitable Cutoff Time 99

5.1 Anytime Performance and the Benefits of

Parameter-less Search . 100

5.2 Parameter-less LAHC Using CCP Cutoff Time 102

5.3 Experimental Setup . 105

5.3.1 Algorithm Setup . 106

5.4 Experimental Results . 107

5.4.1 Ability of pLAHC to Find a Solution with a Given Cost107

5.4.2 Anytime Performance 110

5.4.3 Does Seeding always Speeds up pLAHC? 112

5.5 Summary . 114

6 Conclusions and Future Work 116

6.1 Summary of Contributions . 116

vii

6.2 Future Research . 121

Bibliography 124

viii

List of Figures

2.1 An example of Travelling Salesman Problem that contains

of seven UK cities. A solution to this particular problem is

indicated by the dashed line and arrows. 10

2.2 An illustration of global optimal solution and local optimum

solutions in a maximization problem. 12

2.3 A 2-exchange move for the TSP instance of seven UK cities. 14

2.4 Tradeoff between solution quality and number of iterations,

for the u1817 instance taken from TSPLIB. Plot obtained

with averaged data collected from 100 independent runs. So-

lution quality (cost) is shown in log scale. 27

2.5 Classification of hyper-heuristic based on the nature of the

heuristic search space and the source of feedback during learn-

ing. The figure is reproduced and quoted from Burke, Cur-

tois, Hyde, Kendall, Ochoa, Petrovic, Vazquez-Rodriguez &

Gendreau (2010). 34

3.1 Distribution of the required history length needed by pLAHC

to reach the target solution quality (C1, C5000, C50000) corre-

sponding to the u1817 instance. 47

3.2 Distribution of the required history length needed by pLAHC-

s to reach the target solution quality (C1, C5000, C50000) cor-

responding to the u1817 instance. 51

3.3 Average history list length through time for the u1817 in-

stance, pLAHC and pLAHC-s vis-a-vis. Data collected from

the average of 100 independent runs. 52

3.4 Average current solution cost through time for the u1817 in-

stance, pLAHC and pLAHC-s vis-a-vis. Data collected from

the average of 100 independent runs. 52

ix

3.5 Features of each layer of the three-layer search framework of

CASA. 58

3.6 Binary search vs outermost search (one-side narrowing). Dashes

partitions are the eliminated subrange of N . In a and b, the

subrange progresses from top to bottom. 59

3.7 Sizes of CCA obtained over 100 independent runs for 6 dif-

ferent problem instances. In (e) we also show the statistical

outliers. In problem instance 30, only in one run —a statis-

tical outlier— CASA reports a smaller CCA than CALA. . . 65

3.8 Best sizes of CCA using eight different levels of IIL averaged

over all 35 problem instances. 67

5.1 Typical scenario of trade-off between cost and time in the

search algorithms using different parameter configurations. . . 101

5.2 Solution cost through time obtained by pLAHC and mLAHC,

for the TSP u1817 instance, QAP tai60a instance, and PFSP

tai051–050×20. Subfigures (a), (b), (c), correspond to dif-

ferent maximum number of iterations allowed for the algo-

rithms to run (I1, I5000, I50000), with Ix being the number

of iterations taken by mLAHC with a fixed history length

Lh = x and 50 restarts. The data is collected from the aver-

age of 100 independent runs. Cost and iteration are shown in

log scale. 111

x

List of Tables

2.1 TSP benchmark instances taken from the TSPLIB repository. 11

3.1 Results for seven TSP instances produced by LAHC using

three different history list lengths, Lh ∈ {1, 5000, 50000}. The

results are averaged over 100 independent runs, and match

very well with those reported by Burke & Bykov. 45

3.2 Number of iterations needed by pLAHC to reach at least the

same solution quality as that obtained by LAHC. OF stands

for overhead factor, i.e. how much slower pLAHC is compared

with LAHC. The results are averaged over 100 independent

runs. 46

3.3 Number of iterations needed by pLAHC-s to reach at least

the same solution quality as that obtained by LAHC. OF

stands for overhead factor, i.e., how much slower pLAHC-s

is compared with LAHC. The results are averaged over 100

independent runs. 50

3.4 Best solutions (size of CCA, N) produced by CASA, CALA,

Hill-Climbing (HC) and non-deterministic näıve move accep-

tance implemented within the three-layer search framework of

CASA over 100 independent runs. Problem instances where

CALA found a smaller CCA than CASA are shown in gray.

Lowest size of CCA in each row are shown in boldface. 63

3.5 Inner iteration limit (IIL), and average function evaluations

(FE) used by acceptance methods obtaining the best results

for each instance over 100 independent runs. pn reports the

probability that was used by the best-performing non-deterministic

näıve move acceptance. The problem instances where CALA

found a smaller CCA than CASA are shown in gray. 66

xi

4.1 Summary of results obtained for the three problem classes and

for the three settings of the history length Lh ∈ {1, 5000, 50000}.
100 independent runs were made for each combination of

problem instance and Lh value. The table reports how many

of those runs the CCP strategy reached a better, equal, or

worse solution cost, than the 2% cutoff strategy (labeled as

<, =, or >, under the Cost columns). It also reports on the

number of runs for which the CCP strategy took less or more

iterations to stop than the 2% strategy (labeled as < or >,

under Iterations). The CCP cutoff time is calculated using a

confidence level p = 0.95. 83

4.2 Results obtained by LAHC on seven TSP instances with both

stopping criteria, CCP and 2% of total search time, using

Lh ∈ {1, 5000, 50000}. The CCP cutoff time is calculated us-

ing a confidence level p = 0.95. The results are averaged over

100 independent runs. Entries in boldface are statistically

significant with a p-value < 0.05 according to the Wilcoxon

signed-rank test. 85

4.3 Results obtained by LAHC on 17 of Taillard’s instances of

QAP of size larger than 30 taken from QAPLIB with both

stopping criteria, CCP and 2% of total search time, using

Lh ∈ {1, 5000, 50000}. The CCP cutoff time is calculated us-

ing a confidence level p = 0.95. The results are averaged over

100 independent runs. Entries in boldface are statistically

significant with a p-value < 0.05 according to the Wilcoxon

signed-rank test. 86

4.4 Results obtained by LAHC on 12 of Taillard’s PFSP instances

with both stopping criteria, CCP and 2% of total search time,

using Lh ∈ {1, 5000, 50000}. The CCP cutoff time is calcu-

lated using a confidence level p = 0.95. The results are av-

eraged over 100 independent runs. Entries in boldface are

statistically significant with a p-value < 0.05 according to the

Wilcoxon signed-rank test. 87

4.5 The CCP cutoff time for TSP, QAP, and PFSP instances with

confidence level p = 0.95, as a percentage of the total search

time. Results are the average over 100 independent runs. . . 89

xii

4.6 Analysis over the neighbours of the current solution obtained

by LAHC on TSP instances, for both cutoff strategies. Imove

denotes the average number of improving moves over 100 in-

dependent runs at the cutoff time. Imax denotes the maxi-

mum number of improving moves in a single run out of 100

independent runs. Local Optimum denotes the percentage of

runs where the current solution at the cutoff point was at a

local optimum. Entries in boldface are statistically significant

with a p-value < 0.05 according to the Wilcoxon signed-rank

test. 90

4.7 Analysis over the neighbours of the current solution obtained

by LAHC on QAP instances, for both cutoff strategies. Imove

denotes the average number of improving moves over 100 in-

dependent runs at the cutoff time. Imax denotes the maxi-

mum number of improving moves in a single run out of 100

independent runs. Local Optimum denotes the percentage of

runs where the current solution at the cutoff point was at a

local optimum. Entries in boldface are statistically significant

with a p-value < 0.05 according to the Wilcoxon signed-rank

test. 92

4.8 Analysis over the neighbours of the current solution obtained

by LAHC on PFSP instances, for both cutoff strategies. Imove

denotes the average number of improving moves over 100 in-

dependent runs at the cutoff time. Imax denotes the maxi-

mum number of improving moves in a single run out of 100

independent runs. Local Optimum denotes the percentage of

runs where the current solution at the cutoff point was at a

local optimum. Entries in boldface are statistically significant

with a p-value < 0.05 according to the Wilcoxon signed-rank

test. 93

xiii

4.9 For each TSP instance, and for Lh ∈ {1, 5000, 50000}, the

table displays two values (idler and idlep) collected from the

experiments that used the CCP cutoff time. idler stands

for the number of times that the state of LAHC changes,

plateau moves aside, and is shown in thousands of iterations

rounded to the nearest integer. idlep shows that same number

percentage-wise in terms of the total number of iterations

done during the entire run. The results are averaged over

100 independent runs. For each instance, we also show the

value of β ln |N(s)| (using p = 0.95), the overhead factor of

the CCP calculation with respect to visiting each solution in

the neighbourhood exactly once. 95

5.1 Overhead Factor (OF) of pLAHC on TSP, QAP, and PFSP

instances to reach at least the same solution quality (Cx) as

that obtained by LAHC with a fixed history length. Cx for

x ∈ {1, 5000, 50000} are shown as Average Relative Percent-

age Deviation (ARPD). The results are averaged over 100

independent runs. 109

5.2 Number of iterations needed by pLAHC and pLAHC-s to

reach to at least the same solution quality as that obtained by

LAHC with a fixed history length (Cx). Results are shown in

a form of overhead factor (OF), i.e. how much slower pLAHC

is compared with LAHC. The results are averaged over 100

independent runs. Entries in boldface are statistically signifi-

cant with a p-value < 0.05 according to the Wilcoxon signed-

rank test. 113

xiv

List of Abbreviations

AMS Adaptive Multi-Start heuristic

ARPD Average Relative Percentage Deviation

ATSP Asymmetric Travelling Salesman Problem

CA Covering Arrays

CALA Covering Arrays by Late Acceptance

CASA Covering Arrays by Simulated Annealing

CATS Covering Array by Tabu Search

CCA Constrained Covering Arrays

CCP Coupon Collector’s Problem

CIT Combinatorial Interaction Testing

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

EA Evolutionary Algorithm

ES Evolutionary Strategy

FDA Fitness-distance Analysis

FE Function Evaluations

GA Genetic Algorithm

GDA Great Deluge Algorithm

GOMEA Gene-pool Optimal Mixing EA

GRASP Greedy Adaptive Search Procedure heuristic

hBOA Hierarchical Bayesian Optimization Algorithm

HC Hill Climbing

II Iterative Improvement

xv

IIL Inner Iteration Limit

ILS Iterated Local Search

Imax Maximum number of improving moves

Imove Average number of improving moves

irace Iterated Racing

LAHC Late Acceptance Hill-Climbing

MKP Multidimensional Knapsack Problem

mLAHC Multistart LAHC

NEH Algorithm of Nawaz, Enscore & Ham (1983)

OF Overhead Factors

OR Operational Research

PFSP Permutation Flowshop Scheduling Problem

pLAHC Parameter-less Late Acceptance Hill-Climbing

pLAHC-s Parameter-less LAHC with seeding

QAP Quadratic Assignment Problem

QAPLIB Quadratic Assignment Problem Library

SA Simulated Annealing

SAT Boolean Satisfiability Problem

SBSE Search Based Software Engineering

SIL Successful Iterations List

SLS Stochastic Local Search

SPO Sequential Parameter Optimization

TA Threshold Accepting

TS Tabu Search

TSP Travelling Salesman Problem

TSPLIB Travelling Salesman Problem Library

VLSI Very Large-Scale Integration

VRF PFSP benchmark of Vallada, Ruiz & Framinan (2015)

xvi

Science is nothing but

perception.

Plato

Chapter 1

Introduction

This thesis is about one-point stochastic local search algorithms inspired

from Darwin’s theory of evolution. These are heuristic methods for solving

complex and computationally hard problems — often combinatorial prob-

lems. They are suitable for problems that can be formulated as a search

problem and aim to find a solution, with a maximum objective function

value, among a set of candidate solutions. They move from one solution

to another in the space of candidate solutions, induced by a small change

to the current solution, until an optimum solution is found in a given time

budget. They have been successfully applied in a number of different fields,

including operational research, engineering, medicine, finance, and even arts.

Notwithstanding, the performance of these algorithms, to a very great de-

gree, relies on the tuning of their parameter(s) value(s). It often requires a

good level of expertise and knowledge about these algorithms to tune them

in a way that makes them work well in practice. Moreover, tuning is a

quite time-consuming exercise. Therefore, it is no surprise that most gen-

eral practitioners in industry have no choice other than to undertake ad-hoc

experimentation with a variety of parameter settings. Consequently, search

methodologies as implemented today —albeit robust— are not often easy-

to-use and require a lot of parameter tuning. Note that, to all intents and

purposes, in real-world applications the aim is to find a good enough quality

solution in a pre-defined time.

The results of parameter tuning also depend on the particular computa-

tional infrastructure in which the search algorithm is launched for a given

time budget. The computational resources are gradually improving; thereby,

1

the time required to execute a single iteration of a search algorithm is also

being gradually reduced. This impacts on previously tuned parameters when

their computational infrastructure is changed. So, it is instrumental to have

search methodologies that use all of the given time budget in an intelli-

gent manner to yield a quality solution regardless of the used computational

infrastructure.

Today’s complex real-world problems have parameters themselves. For

example, the number of drivers working in an online shopping store. These

problem-related parameters can often be amended by the stakeholders if that

can lead to a better quality solution. The conglomeration of problem-related

and search-algorithm-related parameters creates even further complexity in

addressing real-world problems, something that should be avoided. One way

to achieve this is by reducing the parameters of search algorithms.

1.1 Thesis Objectives

The goal of this thesis is to design search techniques that have fewer parame-

ters for combinatorial problems while delivering good anytime performance.

To achieve this goal, the work carried out herein is broken down to the

following four objectives:

• Introduce the parameter-less Late Acceptance Hill-Climbing (pLAHC)

by eliminating the sole parameter of the late acceptance hill-climbing,

making a simple algorithm even simpler to apply in practice.

• Investigate the functionality of pLAHC in a real-world problem by

adapting it to an existing complex search framework.

• Design a mathematically sound dynamic cutoff time strategy for one-

point stochastic local search algorithms that accepts worsening moves,

applied to combinatorial problems.

• Finally, incorporate the proposed cutoff time strategy in pLAHC.

1.2 Introduced Algorithms

In order to fulfil the objectives of this thesis, the following algorithms are

introduced throughout this thesis:

2

• parameter-less Late Acceptance Hill-Climbing (pLAHC) em-

beds restart mechanism in the LAHC. It starts by running LAHC

with a small history list length. Thereafter, whenever —with a high

probability— it is in a local optimum, it triggers a new run of LAHC

with exponentially increasing history list length.

• parameter-less Late Acceptance Hill-Climbing with seeding

(pLAHC-s) has the exact same principle as pLAHC, except when a

new LAHC is trigged, it uses previously obtained knowledge to set the

initial solution and the history list.

• multistart Late Acceptance Hill-Climbing (mLAHC) restarts

LAHC with a fixed history list length.

• Coupon Collector’s Problem (CCP) cutoff time employs a clas-

sical problem in probability theory to introduce a new cutoff time. This

mathematically sound cutoff time is used as a restating mechanism in

above mentioned algorithms.

1.3 Main Contributions

The main contributions of this thesis are:

• Introduce search approaches that have fewer parameters while deliv-

ering a quality solution (Bazargani & Lobo 2017, Bazargani, Drake &

Burke 2018, Lobo, Bazargani & Burke 2020).

• Propose an automated strategy to eliminate the only parameter of

the Late Acceptance Hill-Climbing (LAHC) algorithm (Bazargani &

Lobo 2017), a general purpose metaheuristic. It successfully adapts a

technique, that was previously introduced for automating population

sizing in evolutionary algorithms, to avoid the need to tune the value

of the parameter of LAHC. Source code for this work is made available

online at https://github.com/mbazargani/pLAHC.

• A case study of the application of pLAHC to a real-world problem

(Bazargani, Drake & Burke 2018). It replaces simulated annealing

used in a well-known existing search framework with LAHC and uses

the structure of the search framework to automatically decide when to

3

trigger a new run of LAHC with exponentially increasing history list

length.

• Introduce a mathematically sound dynamic cutoff time strategy that

is able to reliably detect the stagnation point for one-point stochas-

tic local search algorithms applied to combinatorial problems (Lobo,

Bazargani & Burke 2020). The strategy is derived from the Coupon

Collector’s Problem, and is scalable based on the employed pertur-

bation operator and its induced neighbourhood size, as well as from

feedback from the search.

• Evaluate the proposed cutoff time on a range of common benchmark

sets derived from three classical NP-hard problems, namely the Trav-

elling Salesman Problem (TSP), the Quadratic Assignment Problem

(QAP), and the Permutation Flowshop Scheduling Problem (PFSP),

using two different perturbation operators (Lobo, Bazargani & Burke

2020). A complete set of the results of these experiments is published

in a 79-page PDF document as supplementary material available at

https://bit.ly/3foVjud. Furthermore, the same information is also

available in a companion website at https://mbazargani.github.io

/CCPcutoffTime/, which has several useful features such as searching

and sorting, as well as allowing the results to be exported in a variety

of formats such as JSON, XML, CSV, and SQL.

• For the first time, using a construction heuristic (that provides a very

good solution) to create an initial solution for LAHC while making

sure that it still accepts worsening moves (Lobo, Bazargani & Burke

2020).

• Improve the best-known solutions of 71 PFSP instances (out of 480)

(Lobo, Bazargani & Burke 2020), taken from a newly introduced hard

benchmark by Vallada, Ruiz & Framinan (2015) —known as VRF

benchmark. The solutions to these instances and their makespan costs

(Cmax) can be obtained from https://mbazargani.github.io/CCP

cutoffTime/PFSP/new-vfr-best-knowns.txt.

• Introduce an anytime performance local search algorithm that has no

parameters while delivering a quality solution, making it a suitable

algorithm for general practitioners who do not have deep insight into

4

the search methodologies. This research work is submitted and is

under review.

• Study the applications of the search methodologies to the search based

software engineering problems (Bazargani, Drake & Burke 2018, Guizzo,

Bazargani, Paixao & Drake 2017).

1.4 Thesis structure

The thesis is composed of six chapters. Chapter 1 introduces the motiva-

tion behind this research work, and states the main objectives. Following

that, it enumerates the contributions to the state-of-the-art, and outlines

the contents of the remaining chapters.

Chapter 2 reviews the fundamental concepts and definitions of stochastic

local search algorithms designed for combinatorial problems. It starts by ex-

plaining the importance of these algorithms and introducing combinatorial

problems. The main components of most on-point stochastic local search

algorithms are also given in this chapter. Thereafter, it presents a range of

well-known stochastic local search methods, their most relevant variants and

components. A few key application areas are highlighted and some examples

are cited to demonstrate the diversity of real-world problems where these

algorithms have been successfully applied. It also describes the LAHC algo-

rithm and provides a brief analysis and applications of it. Hyper-heuristics

are explained next, since some SLS algorithms, introduced in this chapter,

are employed as the acceptance mechanism in selection hyper-heuristics in

a variety of application areas. The chapter ends by presenting some theo-

retical aspects of search methodologies, namely cutoff time strategies, the

parameter tuning, and the search space.

Chapter 3 first explains the parameter-less search scheme that was used

in the evolutionary algorithms. Then, it establishes a connection between

the history list length of LAHC and the related problem of population siz-

ing in evolutionary algorithms. Based on this analysis, it introduces the

parameter-less LAHC algorithm (pLAHC) that has no parameter. A re-

fined version of pLAHC that uses seeded restarts is also investigated in this

chapter. The validity of the method is shown with a number of computa-

tional experiments applying it to several TSP benchmark instances. The

last part of the chapter focuses on a real-world application of pLAHC by us-

5

ing a problem that is taken from the search based software engineering field,

i.e., combinatorial interaction testing problem. The combinatorial interac-

tion testing is a cost-effective black-box sampling technique for discovering

interaction faults in highly configurable systems. For illustration purpose

and a fare analysis of the proposed approach, the pLAHC is adapted within

a well-known existing search framework for this problem. The problem and

its benchmark, the search framework, and background material are all pre-

sented in this part. The example is used as a case study but similar design

principles may be applied to other kinds of real-world problems as well.

Chapter 4 explains the pitfalls of the stagnation in search algorithms.

The Coupon Collector’s Problem and how it can be used to design a cutoff

strategy for stochastic local search is presented here. Although the pro-

posed method is generic, the suitability and scalability of the method, in this

chapter, is illustrated with the LAHC algorithm on a comprehensive set of

benchmark instances of three well-known combinatorial optimization prob-

lems: the Travelling Salesman Problem, the Quadratic Assignment Problem,

and the Permutation Flowshop Scheduling Problem. It also provides a dis-

cussion about two criticisms that can be made to the proposed technique.

Chapter 5 discusses the tradeoff between search time and solution qual-

ity, the importance of anytime performance, and the benefits of parameter-

less search. It presents a refinement of pLAHC that uses a restart strategy

based on the dynamic cutoff time introduced in Chapter 4. The resulting al-

gorithm has no parameters and a comprehensive series of experiments shows

that it provides good anytime performance, competitive to state-of-the-art

ones.

Chapter 6 summarizes and concludes the major contributions of the

thesis, and gives suggestions for future research.

6

Evolution continually innovates,

but at each level it conserves the

elements that are recombined to

yield the innovations.

John H. Holland

Chapter 2

Stochastic Local Search

A good number of local shops in the United Kingdom have started home

delivery services after the breakout of COVID-19. In a nutshell, every day,

they collect several customers’ orders and then deliver them to their home

addresses, preferably in one go in a day. It is cost-effective for a shop and

its customers to carry out deliveries by choosing a shortest path (tour) that

goes through all addresses starting from the shop and ending there. Google

Maps Platform provides the Distance Matrix API that calculates travel dis-

tance and time for a matrix of origins and destinations. This API allows

us to measure the distance between every two locations. Now, the foremost

question that remains to be answered is in what order customers should be

visited to minimize the cost? The cost can be the elapsed time, the to-

tal distance, or a form of blended function of both time and distance. To

explain the computational complexity of this problem, let us consider an

example. Imagine a shop has 20 deliveries for a particular day. That makes

20! different possible tours (candidate solutions) for that day to be consid-

ered to find the best solution. If computing the cost of each solution takes

one nanosecond1, then our shop needs to wait about 2815 days to find the

best (optimal) solution for that day.

Of course, in practice, it is not viable to examine all possible candidate

solutions. An attractive approach is to start from a somewhat arbitrary tour

(solution), then, move from one solution to another by iteratively performing

110−9second. Note that a processor which works at 1GHz has one billion clock cycles
per second. In this example, we assume that computing the cost of a solution takes one
clock cycle. In reality, it takes much more than one clock cycle; however, we simplified it
for the sake of clarity.

7

small changes on a given tour, with a goal of improving the cost of it. This

type of approach is known as a Stochastic Local Search (SLS) algorithm.

Such approaches are often the methods of choice for solving combinatorial

problems like the one illustrated above. It may be noted that the above

mentioned problem can be seen as a variation of the Travelling Salesman

Problem (TSP), which will be more formally introduced in the next section.

This chapter is devoted to fundamental concepts and definitions of SLS

algorithms designed for combinatorial problems. Some theoretical aspects

of SLS that are a prerequisite to understand later chapters are also cov-

ered here. It is organized as follows. It starts with an introduction to

combinatorial problems and presents the travelling salesman problem for an

illustrative purpose. Other combinatorial problems used in this work will

be explained in the chapters to come. Section 2.2 introduces a range of SLS

methods, their most relevant variants, components, and presents some in-

teresting applications of them to real-world problems in the literature. This

is followed by an introduction to the Late Acceptance Hill-Climbing algo-

rithm, a brief analysis and applications of it. Hyper-heuristics are not the

subject of this thesis. However, since we have mentioned some applications

of hyper-heuristics based local search algorithms (introduced in this chap-

ter), they are briefly explained in Section 2.3. Moreover, hyper-heuristics

feature in the section on future research (Section 6.2.) Thereafter, there are

three sections that consider more theoretical aspects of search algorithms.

Section 2.4 discusses some related work on cutoff time strategies and search

stagnation. Section 2.5 briefly presents parameter tuning in SLS methods.

Search space and its impact on behaviour of SLS is discussed in Section 2.6.

Finally, a brief summary of this chapter is given in Section 2.7.

2.1 Combinatorial Problems

Combinatorial problems have important applications in several areas, such

as artificial intelligence, operational research, machine learning, finance,

bioinformatics, and software engineering. In a nutshell, a combinatorial

problem has a finite set of candidate solutions, each of which consists of

discrete objects, and the intention is to find the quality ones among them.

Some of the well-known combinatorial problems are planning, scheduling,

vehicle routing, timetabling, hardware design, and resource allocation.

8

Combinatorial problems can be classified as decision problems or opti-

mization problems. In decision problems, the objective is to find a solution

or a set of solutions to a given problem instance composed of a set of logical

conditions (Hoos & Stützle 2005, p. 15). The aim in this type of problem

is to find a feasible solution(s) or to come to a decision that no solution

exists to satisfy all the conditions. A well-known combinatorial decision

problem is the Boolean Satisfiability Problem (SAT) (Selman, Levesque &

Mitchell 1992). In combinatorial optimization problems, the solutions are

evaluated by an objective function to find those with optimal objective func-

tion values, a.k.a. solution quality (Hoos & Stützle 2005, p. 15). The goal

here would be to minimize or maximize solution quality. TSP is an exam-

ple of a minimization problem (see Section 2.1.1), and the Linear Ordering

Problem (Schiavinotto & Stützle 2004) is a maximization problem. In cases

where the objective function amounts to a measure of the cost of a solution,

then it is a cost function and typically the aim is to minimize it.

Many combinatorial optimization problems can be also seen as an ex-

tension of decision problems, since they have constraints. The vast majority

of real-world combinatorial optimization problems have this characteristic.

In this type of problem, candidate solutions must satisfy a set of constraints

to become feasible solutions; so then, optimal solution(s) is (are) identified,

based on their objective function values, among feasible solutions.

2.1.1 A Prototypical Combinatorial Problem: TSP

In the following, we introduce a conceptually-simple combinatorial opti-

mization problem, i.e., the Travelling Salesman Problem (TSP), which will

be utilized throughout this chapter for illustrating features of the SLS ap-

proaches. Other combinatorial problems used in this study will be presented

in the next two chapters where they have been first employed.

The TSP is probably the most well-studied classical NP-hard combina-

torial optimization problem. It has several real-world applications, such as

logistics, printed circuit board assembly, and the manufacture of microchips,

to name a few. The problem is defined as follows. Given a set of cities

and the distance between them, the goal is to find a shortest closed tour

(roundtrip) while visiting each city only once. Usually, the term TSP refers

to the symmetric TSP, where the distance from city i to city j is the same

as the distance from city j to city i. In the Asymmetric TSP (ATSP) in-

9

stances, these two distances are not the same. In this research work we only

use symmetric TSP instances. A graphic representation of a TSP instance

is given in Figure 2.1.

Edinburgh

ManchesterLiverpool

Cardiff
Bristol

Belfast

London

Figure 2.1: An example of Travelling Salesman Problem that contains of
seven UK cities. A solution to this particular problem is indicated by the
dashed line and arrows.

The most well-known TSP benchmark library is TSPLIB, introduced

by Reinelt (1991), which is available at http://comopt.ifi.uni-heidelb

erg.de/software/TSPLIB95/. In this benchmark, the number of cities is

indicated in the instance name. For example, rat783 is an instance with

783 cities. TSPLIB contains 111 instances and Table 2.1 shows the names

and sizes (number of cities) of seven of them.

A considerable amount of literature has been published on applying dif-

10

Table 2.1: TSP benchmark instances taken from the TSPLIB repository.

Dataset Size

rat783 783
u1060 1060
fl1400 1400
u1817 1817
d2103 2103
pcb3038 3038
fl3795 3795

ferent search techniques to TSP. The interested reader is referred to surveys

that provide a detailed description of some of these studies, e.g., Cook, Ap-

plegate, Bixby & Chvátal (2011), Gutin & Punnen (2007), Larrañaga, Kui-

jpers, Murga, Inza & Dizdarevic (1999), Jünger, Reinelt & Rinaldi (1995),

Laporte (1992).

2.2 SLS Algorithms

There are different exact methods which can produce the globally optimal

(best) solution for a given instance of a combinatorial problem, e.g., exhaus-

tive search (Burke & Kendall 2014, p. 7), constraint programming (Jaffar

& Lassez 1987), linear programming (Dantzig 1963), backtracking (Knuth

2019, subsection 7.2.2), and branch-and-bound (Land & Doig 1960) meth-

ods. These are acceptable strategies for small problems (possibly with a

few constraints); however, they are intractable as problems become larger.

The types of 21st Century combinatorial problems that often occur in the

real world tend to grow very large and very quickly with many constraints

(see the example that was given at the beginning of this chapter.) More-

over, although there are methods to generate all of the possibilities in some

combinatorial universe (Knuth 2014, subsection 7.2.1), it is not always the

case, even in small problems (Burke & Kendall 2014, p. 7). Given this situa-

tion, the intention is to design search algorithms that go through the search

space in an “intelligent” way to avoid sampling unpromising points; and, for

a given problem, provide “a” solution —rather than “the” solution— which

is good enough, cheap enough, and fast enough. These search algorithms are

known as Stochastic Local Search (Hoos & Stützle 2005) and are also often

called metaheuristics (Chopard & Tomassini 2018, Hoos & Stützle 2015).

11

Local optima

Global optimal

Figure 2.2: An illustration of global optimal solution and local optimum
solutions in a maximization problem.

They do not guarantee to find the global optimal solution, but a promis-

ing locally optimum solution. Figure 2.2 illustrates the difference between a

globally optimal solution and locally optimum ones.

The design of SLS algorithms mostly intends to be easy to implement

and simple to understand in order to be successfully employed in tackling

computationally complex problems. There are two types of SLS algorithms,

i.e., one-point (a.k.a. single-solution) and population-based. One-point SLS

algorithms maintain only one solution at each iteration (a.k.a. search step);

Hill Climbing (HC) (Chopard & Tomassini 2018, p. 32) and Simulated An-

nealing (SA) (Kirkpatrick, Gelatt & Vecchi 1983) are examples of this kind

of SLS. Population-based SLS methods, on the other hand, manipulate sets

of candidate solutions, known as a population, at each generation; Genetic

Algorithm (GA) (Goldberg 1989), and Evolutionary Strategy (ES) (Beyer

& Schwefel 2002) are two well-known algorithms of this type of SLS. The

fundamental idea behind these methods can be outlined as follows. They

iteratively generate and evaluate a set of candidate solutions (or a popu-

lation of candidate solutions) and in each iteration (generation in the case

of population-based SLS), based on some criteria, they either accept or re-

ject the candidate solution(s). The search stops when the specified stopping

criteria are satisfied.

One-point SLS algorithms are quite popular in the field of Operational

Research which is the focus of this research work; so that, we only discuss

12

one-point SLS in this chapter. One of their major advantages is their sim-

plicity of use and ease of implementation. The main components of most

one-point SLS are introduced in the following:

• Solution representation: in combinatorial problems, it is often the permu-

tation of n objects. For example, in the TSP instance given in Figure 2.1,

it is a permutation of 7 cities.

• Initialization: this specifies the starting point of the search process in

the search space. It is usually generated uniformly at random (u.a.r. for

short). However, there are construction heuristics that build an initial

solution from scratch. Take the TSP instance given in Figure 2.1 as an

example. One way to generate an initial solution is to start from an empty

tour with only London in it and then gradually add the remaining 6 cities

into it until there is nothing left to add. Each time we add the city that is

the closest one to the last in the tour. The idea behind the construction

heuristic is that instead of starting the search process from a random place

in the search space, it is beneficial to start it from an area that has already

shown a promising performance. They are often a single-pass approach

and have a fast computational performance (Burke & Kendall 2014, p. 9).

• Neighbourhood structure: this is related to a move operator (Hoos &

Stützle 2005, p. 44) and induces the set of neighbours of the current

solution —as potential replacements. Different move operators for com-

binatorial problems are introduced in the literature which form the basis

for many successful applications of SLS; however, there is no principled

way of choosing it since it strongly depends on the problem at hand.

One of the most widely used move operator is the 2-exchange move. In

TSP, it operates as follows: two non-adjacent edges are removed from

a tour creating two sub-tours and subsequently one of the sub-tours is

reconnected in reverse order. Figure 2.3 illustrates two tours that are

neighbours under the 2-exchange move.

It also worth mentioning that a finite sequence of successors of the current

position, generated by the move operator, are around the search trajectory

of the problem at hand. It also determines the neighbourhood size of the

current solution, and obviously a large neighbourhood offers more choices

around the search trajectory.

13

Edinburgh

ManchesterLiverpool

Cardiff
Bristol

Belfast

London

Edinburgh

ManchesterLiverpool

Cardiff
Bristol

Belfast

London

2-exchange

Figure 2.3: A 2-exchange move for the TSP instance of seven UK cities.

• Evaluation functions: this measures the quality of candidate solutions

and guides the search process. The term “objective functions” is also

used. There is often no distinction made between an objective function

and an evaluation function in the literature. However, some researchers in

the SLS community distinguish between these two terms (Hoos & Stützle

2005, p. 46). In their distinction, a combinatorial optimization problem

includes an objective function that needs to be optimized, while a SLS

algorithm for addressing this problem might make use of an evaluation

function.

An evaluation function somehow depends on search space, neighbourhood,

and constraints. In the case of the latter, combinatorial problems usually

have constraints that need to be satisfied and are normally formulated in

an objective function. There are two classes of constraints: namely, hard

constraints and soft constraints. A hard constraint must be satisfied, and

violation of it leads to an infeasible candidate solution. On the other hand,

a soft constraint is a condition that we would like to satisfy, but at the

same time, it is not mandatory. Some applications of search approaches

simply ignore infeasible candidate solutions throughout the search process

and do not include them in the evaluation function. However, in some

other approaches, a very high penalty value is considered for violation of

hard constraints. As for soft constraints, they are mostly included in the

evaluation function by a summation of the penalty values for them.

• Stopping criterion: this decides when to terminate the search process. It

14

is also known as termination condition or cutoff time. They are gener-

ally classified into two types: static and dynamic (Hoos & Stützle 2005,

p. 194). The static stopping conditions do not rely on the state of the

search, e.g., total CPU time elapsed or the total number of function eval-

uations. The dynamic stopping conditions depend on the search state,

e.g., objective function value of the current solution or the total number

of iterations without improving the current solution. All existing stopping

conditions in the literature are empirical; however, recently a new cutoff

time based on a solid mathematical foundation is introduced by Lobo,

Bazargani & Burke (2020) and it is presented in Chapter 4 of this thesis.

After introducing the main components of most one-point SLS, in the

following section we are going to give examples of six widely used one-

point SLS algorithms, i.e., Iterative Improvement, Simulated Annealing,

Tabu Search, Threshold Accepting, Great Deluge Algorithm, and Iterated

Local Search. Thereafter, we will explain in detail the Late Acceptance

Hill-Climbing which is the pillar of this research work.

Iterative Improvement

Iterative Improvement (II) is the most basic and simplest SLS algorithms. It

starts from an initial solution in the search space (usually generated u.a.r.),

and then iteratively tries to improve the quality of the current solution

with respect to the evaluation function of the given problem. Iterative im-

provement is also known as iterative descent or hill-climbing. The term

hill-climbing is traditionally used for applications of iterative improvement

to maximization problems.

There are different variations of iterative improvement based on the

way they choose the next point to explore in the search space. Four well-

known approaches are iterative best improvement, iterative first improve-

ment, randomized iterative improvement, and probabilistic iterative improve-

ment (Chopard & Tomassini 2018, p. 32). All these methods check neigh-

bours of the current solution in a systematic order. The iterative best im-

provement (a.k.a. steepest-ascent hill-climbing) chooses the best neighbour

of the current solution as the next search point to move to, while the iter-

ative first improvement (a.k.a. first-ascent hill-climbing) chooses the first

15

improving neighbour as the next point (see Algorithm 2.1). Note that these

two approaches are normally terminated when none of the neighbours of the

current solution brings about an improvement with respect to the evaluation

function. Obviously, these two approaches are greedy and often get stuck in

a local optimum very quickly. To overcome this problem, randomized itera-

tive improvement and probabilistic iterative improvement are introduced to

occasionally accept candidate solutions with a solution quality worse than

the current one, known as worsening moves.

Algorithm 2.1: Iterative first improvement.

Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Calculate its cost function value C(s);
3 while s is not a local optimum do

// Checks neighbours of the current

// solution in a systematic order.

4 Choose a neighbour s′ of s such that C(s′) < C(s);
5 s = s′;

6 return s;

The key idea behind the randomized iterative improvement is to occa-

sionally, based on a given probability, move to random neighbouring candi-

date solutions regardless of the solution quality. Unlike randomized iterative

improvement, probabilistic iterative improvement does not accept worsen-

ing moves without considering the amount of deterioration in the evaluation

function value. It uses a probability of acceptance that depends on the

change of the evaluation function value incurred (Hoos & Stützle 2015).

The simulated annealing, discussed next, is a special case of a probabilistic

iterative move. In both algorithms, if the given probability is so set to 0%,

then they effectively turn into an iterative first improvement algorithm. If

the given probability is 100% in randomized iterative improvement or infin-

ity in probabilistic iterative improvement, then they degenerate to a uniform

random walk.

Simulated Annealing

Simulated Annealing (SA) was introduced by Kirkpatrick, Gelatt & Vecchi

16

(1983). The idea behind it is inspired by the physical process of metallurgy,

and its terminology is taken from that field. SA always accepts improving

moves; however, based on the parameter T , a.k.a. temperature, it decides

to either accept or reject worsening moves. The temperature T is initially

set to a high value and then progressively decreased during the search pro-

cess. At high temperatures, worsening moves are more likely to be accepted,

and this helps to avoid getting stuck in a local optimum. However, as the

search progresses —it intends to converge towards a local optimum— the

temperature is gradually decreased and as a consequence, the probability of

accepting worsening moves tends to zero.

The acceptance probability, for minimization problems, is often based

on the Metropolis criterion (Aarts, Korst & van Laarhoven 2003, p. 97) and

defined as p = exp((C − C ′)/T), with C and C ′ denoting the evaluation

function values of the current and candidate solutions. The fundamental

aspect of SA is the fact that it progressively lowers the temperature during

the search. The modification of temperature T is managed by a cooling

schedule, also called an annealing schedule, and can be defined in different

ways. One of the widely used cooling schedules that has shown to be quite

efficient in many problems is a geometric cooling schedule (Hoos & Stützle

2005, p. 77). It requires two parameters, temperature length, k, and cooling

rate, α, which must be between 0 and 1. It starts from an initial given tem-

perature (T0), and then, every k iterations, it updates the temperature as

T = α×T . The standard steps of a Simulated Annealing —for a minimiza-

tion problem— with a geometric cooling schedule is given in Algorithm 2.2.

Note that the initial temperature of SA and the other two parameters are

empirical and problem dependent.

SA is one of the most studied SLS algorithms and is well-known in the

field of Artificial Intelligence (Russell & Norvig 2016, p. 125). In a very

detailed study, Johnson, Aragon, McGeoch & Schevon (1989, 1991) con-

cluded that one of the main reasons that SA is effective is due to accepting

worsening moves.

There are many successful applications of SA for real-world combinato-

rial problems. It has been widely studied within the Operational Research

literature and has been applied to problems in a variety of applications,

including, exam timetabling (Thompson & Dowsland 1996, 1998, Burke,

Bykov, Newall & Petrovic 2003, Burke, Eckersley, McCollum, Petrovic &

17

Algorithm 2.2: Simulated annealing with a geometric cooling
schedule.

Input : Initial temperature, T0;
Input : Cooling rate, α; // Must be between 0 and 1

Input : Temperature length, k.
Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Calculate its cost function value C(s);
3 while termination criterion not satisfied do
4 Choose a neighbour s′ of s;
5 if C(s′) ≤ C(s) then
6 s = s′;
7 i = i+ 1;

8 else
9 if Uniform(0,1) < exp((C(s)− C(s′))/T) then

// Metropolis condition

10 s = s′;
11 i = i+ 1;

12 if i == k then
13 T = α× T ; // Cooling schedule

14 i = 0;

15 return s;

Qu 2003, Leite, Meĺıcio & Rosa 2019), job shop scheduling (Seçkiner & Kurt

2007, Ying & Lin 2020, Li, Wang, Gao, Song & Li 2020), crew scheduling

(Emden-Weinert & Proksch 1999, Hanafi & Kozan 2014), vehicle routing

(Breedam 1995, Chiang & Russell 1996, Wang, Mu, Zhao & Sutherland

2015), large scale aircraft trajectory planning (Chaimatanan, Delahaye &

Mongeau 2014, Islami, Chaimatanan & Delahaye 2017), and packing prob-

lems (Rao & Iyengar 1994, Burke, Kendall & Whitwell 2009), to name a few.

Furthermore, SA is a popular choice for optimization problems in other sci-

entific areas. For example, in electronic engineering, it has been widely used

for placement and routing problems of VLSI design (Sechen 1988, Anand,

Saravanasankar & Subbaraj 2011, Shunmugathammal, Columbus & Anand

2019), and also some optimization related problems in renewable energy

sources (Katsigiannis, Georgilakis & Karapidakis 2012, Garĺık & Křivan

2013, Zhang, Maleki, Rosen & Liu 2018, Zhang, Wu, Maleki & Zhang 2018).

In medicine, it has applications in medical image processing (Bick & Giger

18

1997, Sharma, Ray, Sharma, Shukla, Aggarwal & Pradhan 2009, Tubic,

Zaccarin, Beaulieu & Pouliot 2001, Matsopoulos, Mouravliansky, Deliba-

sis & Nikita 1999), the interpretation of the acid-base balance of blood

in the umbilical cord of newborn infants (Garibaldi & Ifeachor 1999), and

plan dosages in radiotherapy treatment (Webb 1989, Jacob, Raben, Sarkar,

Grimm & Simpson 2008, Kubicky, Yeh, Lessard, Joe, Speight, Pouliot & Hsu

2008, Tinkle, Weinberg, Chen, Littell, Cunha, Sethi, Chan & Hsu 2015). In

architecture, it has been used for multiple project scheduling (Chen & Sha-

handashti 2009), cost modelling (Alwisy, Bouferguene & Al-Hussein 2018),

process modelling (Chan, Kwong & Luo 2009), and building modelling from

point clouds (Yang, Xu & Dong 2013, Chen, Koc, Shi & Soibelman 2018).

Examples of other fields include chemistry (Andrade, Nascimento, Mundim,

Sobrinho & Malbouisson 2008, Ghosh, Sharma & Chaudhury 2020), eco-

nomics (Chen & Yeh 2001, Gilli & Schumann 2011), and astronomy (Habib,

Vernin, Benkhaldoun & Lanteri 2006, Chira & Plionis 2019). The above

mentioned applications represent just the tip of the iceberg of many SA ap-

plications existing in the literature. A complete review of them is beyond

the scope of this thesis.

Tabu Search

Tabu Search (TS) was proposed by Glover (1989). It is significantly different

from search approaches that have been introduced so far, because it makes a

systematic and direct use of memory to guide the search process and escape

from local optima. It uses a short-term memory to keep track of those can-

didate solutions that have been recently visited in a tabu list and forbids the

search to revisit them for some time. A parameter known as the tabu tenure

indicates tabu list length and determines the duration (number of iterations)

for which these restrictions should apply to candidate solutions. The core

concept underlying TS is to prevent the search from immediately revisiting

a point in the search space that has been previously explored (Chopard &

Tomassini 2018, p. 43) and also to avoid cycling (Hoos & Stützle 2005, p. 79).

In the literature, there are many successful applications of TS (Gendreau

& Potvin 2013, Glover & Laguna 1997); however, its performance strongly

depends on the tabu tenure setting (Hoos & Stützle 2015).

TS typically uses an iterative best improvement strategy to select the

19

best neighbour from admissible neighbours in each iteration. Once in a local

optimum, this can lead to accepting a worsening move (Gendreau & Potvin

2013, p. 246). Since memorizing complete visited solutions is overwhelming,

TS usually associates a tabu status with specific solution components. For

example, in a UK road trip example if the last change in the current solu-

tion is visiting Manchester after London, then instead of keeping the whole

solution in the tabu list, we only store the tabu position in the permutation.

In this case, assuming the first position in the perturbation belongs to Lon-

don, it will be stored in the tabu list. This means that for a tabu tenure

iterations, we cannot replace Manchester in position two of the perturbation

with any other city.

Tabus are sometimes quite restrictive, in the sense that they may avoid

attractive moves or cycling even when there is no danger of it (Gendreau &

Potvin 2013). To overcome this issue, TS usually employs different mecha-

nisms to revoke tabus. These mechanisms are known as aspiration criteria.

The most commonly used aspiration criterion is that a tabu move is allowed

if its resulting candidate solution is better than the best solution so far. A

general algorithm outline for TS is shown in Algorithm 2.3.

Algorithm 2.3: A general template for Tabu Search.

Input : Tabu tenure.
Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Calculate its cost function value C(s);
3 while termination criterion not satisfied do
4 Determine set N of admissible neighbours of s;
5 Choose a best improving solution s′ in N;
6 Update tabu list based on s′;
7 if C(s′) < C(s) then
8 s = s′;

9 return s;

Over the last three decades, since TS was proposed, hundreds of pa-

pers presenting applications of it to various combinatorial problems have

appeared in the literature. TS has many applications in Operational Re-

search. In several cases, its applications are among the most effective to

tackle difficult real-world problems. For example, there are applications of it

20

in the nurse rousting (Burke, Causmaecker & Berghe 1999, 2004, Václav́ık,

Š̊ucha & Hanzálek 2016), timetabling (Burke, Kendall & Soubeiga 2003,

Amaral & Pais 2016), graph optimization (Wu, Wang & Glover 2020, Pas-

tore, Mart́ınez-Gavara, Napoletano, Festa & Mart́ı 2020), assignment (De-

meester, Souffriau, Causmaecker & Berghe 2010, Liu, Zhang, Zhang, Kur-

niawan, Juhana & Ai 2020), vehicle routing (Diabat, Abdallah & Le 2014,

Alinaghian, Tirkolaee, Dezaki, Hejazi & Ding 2020), and aviation (Soykan

& Rabadi 2016, Çiftçi & Özkır 2020). TS also has applications in other

scientific areas, e.g., telecommunications (Xu, Chiu & Glover 1999, Lee &

Kang 2000), earth science and agriculture (Zagré, Marcotte, Gamache &

Guibault 2018, Kong, Kuriyan, Shah & Guo 2019), and chemistry (Cheng

& Fournier 2004, Lin, Chavali, Camarda & Miller 2005).

Threshold Accepting

Threshold Accepting (TA) is a local search method that accepts worsen-

ing moves. It was first introduced by Dueck & Scheuer (1990) at IBM

scientific centre in Heidelberg. On the other side of the Atlantic, a quite

identical approach, around the same time, was suggested by Moscato &

Fontanari (1990), where they called it a “deterministic update in SA”. Both

publications argued that the stochastic way of accepting worsening moves

used in the SA algorithm does not play a major role in the success of the

search process, but only accepting worsening moves in this algorithm does

so. Therefore, they introduced a simpler approach that does not require

the computation of a cooling schedule. In a theoretical study, Althöfer &

Koschnick (1991) proved that TA has convergence properties that are similar

to those of SA.

TA starts the search process from an initial solution (usually generated

u.a.r.) Thereafter, it always accepts improving moves. In the case of the

worsening moves, it only accepts them if they are not worse than a particular

threshold, T . In other words, it accepts a candidate solution if C ′ − C < T ,

with C and C ′ denoting the evaluation function values of the current and

candidate solutions. Note that the initial threshold value must be bigger

than zero. The threshold value is updated over time and decreases to zero;

so, towards the end of the search process, TA turns into an iterative im-

provement algorithm. The pseudocode of the TA is given in Algorithm 2.4.

21

Algorithm 2.4: A general template for Threshold Accepting.

Input : T ; // Threshold value that must be bigger than 0

Input : I; // Non improving iterations before updating T
Input : ε; // A parameter value for updating T
Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Calculate its cost function value C(s);
3 i = 0;
4 while termination criterion not satisfied do
5 Construct a candidate solution s′ ∈ N(s);
6 Calculate its cost function value C(s′);
7 ∆ = C(s′)− C(s);
8 if ∆ < T then
9 s = s′;

10 i = 0;

11 else
12 i = i+ 1;

13 if i > I then
14 T = T − ε;
15 if T < 0 then
16 T = 0;

17 return s;

In analogy to SA, the parameter T of the TA might be interpreted as a

deterministic cooling schedule. An adaptive approach to update the thresh-

old value was also introduced by Hu, Kahng & Tsao (1995). However, it is

not clear when to update the threshold value and how much it should be

decreased. Although TA refined the SA acceptance procedure to make it a

simpler algorithm, it still involves a few parameters whose values are deduced

empirically (Burke, Bykov, Newall & Petrovic 2003). This technique is not

widely applied in comparison to SA and TS. Some of the applications of TA

are as follows: vehicle routing (Tarantilis, Kiranoudis & Vassiliadis 2002,

2004), scheduling (Lee, Vassiliadis & Park 2004, Marimuthu, Ponnambalam

& Jawahar 2009), assignment (Nissen & Paul 1995, Leutner, Gschwind, Lier-

mann, Schwarz, Gemmecker & Kessler 1998), aircraft landing (Liu 2010),

evaluation of the discrepancy of a set of points (Winker & Fang 1997), clas-

sification with feature selection (Ravi & Zimmermann 2000), and economics

22

(Winker 2000).

Great Deluge Algorithm

The Great Deluge Algorithm (GDA) is another generic one-point SLS algo-

rithm that was introduced by Dueck (1993). The algorithm is inspired by

the idea of a Great Deluge event (a.k.a. great flood). In the Great Deluge

analogy, a person climbing a hill moves around, in any direction, as the

water level rises to avoid getting his/her feet wet. Finally, the person “gets

wet feet” when a local optimum is reached. The water level is known as the

upper limit in the GDA.

The outline of the GDA, based on what Dueck (1993) suggested, is given

in Algorithm 2.5. The algorithm starts from an initial solution that is usually

generated u.a.r. Thereafter, it always accepts any move (candidate solution,

s′) that is not worse than the upper limit, B. Note that the initial upper

limit value must be bigger than the cost of the initial solution. The upper

limit value is updated over time and decrease whenever a candidate solution

is accepted by a decay rate of ε. The algorithm terminates when stopping

criterion is satisfied.

Algorithm 2.5: A general template for Great Deluge Algorithm.

Input : B; // Initial upper limit, must be bigger than 0

Input : ε; // A parameter value for updating B
Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Calculate its cost function value C(s);
3 while termination criterion not satisfied do
4 Construct a candidate solution s′ ∈ N(s);
5 if C(s′) < B then
6 s = s′;
7 B = B − ε;

8 return s;

Burke, Bykov, Newall & Petrovic (2003) extended GDA to prevent a

premature convergence by accepting all the candidate solutions which are

better than the current one. This encourages current solutions to return

into the feasible region. In their approach, they also initialize the upper

23

limit, B, with the initial cost function value. This prevents sharp descents

and idle steps in the beginning of the search process. Hence, the extended

GDA has only one parameter, ε, which is the decay rate of the upper limit,

B, at each iteration. They explained that it is relatively easy to specify the

only parameter of the extended version of the GDA (Burke, Bykov, Newall

& Petrovic 2003, 2004).

The Flex-Deluge algorithm is another extension of the GDA that is

introduced by Burke & Bykov (2006, 2016). Accepting worsening moves

in this version depends on a “flexibility” coefficient, kf (0 ≤ kf ≤ 1),

which is formulated in the two following acceptance rules: 1) C(s′) ≤
C(s) + kf × (B − C(s)), when C(s) < B; 2) C(s′) ≤ C(s), when C(s) ≥ B.

According to the first part of this formulation, the increase in the accepted

penalty for the candidate solution should not be greater than the difference

between C(s) and B multiplied by kf . This modification is based on the

observation that the quality of results can be improved by slowing down the

acceptance of worsening moves (a.k.a. “the uphill motion” in the minimiza-

tion) of a prospective search (Burke & Bykov 2016). Note that slowing down

the acceptance of worsening moves increases diversification in the search pro-

cess which eventually increases the possibility of escaping from local optima.

The second part of the above mentioned formulation, which is the same as

the extended version of the GDA, makes sure that once the upper limit sur-

passes the current solution cost value, any candidate solution with a solution

cost better than that of the current one is accepted regardless of the upper

limit. Obviously, the Flex-Deluge algorithm degenerates to an iterative im-

provement by setting kf = 0, and converts to the original GDA by kf = 1.

Burke & Bykov (2016) successfully applied this method to university exam

timetabling and showed that their approach improves the solution quality

of 20 instances (out of 28) compared to previously published methodologies.

The GDA has been applied to a number of real-world problems. It has

been particularly investigated and adapted for timetabling problems (Bykov

2003, Burke, Bykov, Newall & Petrovic 2004, 2003, Burke & Bykov 2006,

2016, Mohmad Kahar & Kendall 2015, Landa-Silva & Obit 2009, McMullan

2007, Abdullah, Turabieh, McCollum & McMullan 2010, McCollum, Mc-

Mullan, Parkes, Burke & Abdullah 2009). There are also applications of

it in other scheduling problems (McMullan & McCollum 2007, Abdullah,

Aickelin, Burke, Din & Qu 2007, Eng, Muhammed, Mohamed & Hasan

24

2020), vehicle routing (Yassen, Ayob, Nazri & Sabar 2017), attribute reduc-

tion (Mafarja & Abdullah 2014), engineering design (Dhouib 2010), training

fuzzy cognitive maps (Baykasoglu, Durmusoglu & Kaplanoglu 2011), pre-

ventive maintenance optimization (Nahas, Khatab, Ait-Kadi & Nourelfath

2008), channel assignment in cellular communication (Kendall & Mohamad

2004), facility layout (Nourelfath, Nahas & Montreuil 2007), and patient-

admission (Kifah & Abdullah 2015).

Several multiobjective formulations of GDA have also been explored

(Petrovic & Bykov 2003, Bykov 2003, Acan & Ünveren 2020).

Iterated Local Search

The search methodologies that we have discussed so far are classified as

simple SLS (Hoos & Stützle 2015). Iterated Local Search (ILS) (Lourenço,

Martin & Stützle 2019), in contrast, is a hybrid SLS, since it combines

different types of search steps (Hoos & Stützle 2005, p. 85). The general idea

behind ILS is as follows. It starts the search from an initial solution, and then

applies a local search algorithm to it to obtain a locally optimal solution.

Thereafter, it iteratively carries out the following three steps until it satisfies

the termination criterion. First, a perturbation operator is applied to the

current solution, s, which yields a modified candidate solution, s′. This step

aims to change the search area from the current basin of attraction that has

been already explored to a new one. Second, a local search is performed on

s′, the resulting local optimum is saved then again in s′. In the last step, an

acceptance criterion is used to decide from which of the two local optima, s

or s′, the search process is continued. A pseudo-code of a high-level outline

of ILS is given in Algorithm 2.6.

The local search algorithm often used in ILS is based on iterative first

improvement which stops in a local optimum. ILS has a simple princi-

ple. It first carries out intensification by means of a local search algorithm,

and then, once in a local optimum, it undertakes diversification by using

a perturbation operator to escape the local optimum. Note that in the

literature, the terms perturbation operator and move operator are some-

times used interchangeably. However, in the context of ILS and some other

SLS, a perturbation operator refers to the partial destruction of the given

solution in a random way and not necessarily guided by an evaluation func-

25

Algorithm 2.6: A high-level outline of Iterated Local Search.

Input : Perturbation operator parameter(s).
Output: A solution to a given problem.

1 Produce an initial solution s; // Usually u.a.r.

2 Perform a local search on s;
3 while termination criterion not satisfied do
4 s′ = Apply a perturbation operator to s, resulting in s′;
5 Perform a local search on s′;
6 Based on acceptance criterion, either continue with s or accept

s = s′;

7 return s;

tion (Lourenço, Martin & Stützle 2019). It is reported in the literature that

the strength of the used perturbation operator has an extensive influence on

the performance of ILS (Hoos & Stützle 2005, p. 87).

A weak perturbation does not usually change the basin of attraction in

the search process, and leads the subsequent local search phase to fall back

into the local optimum just visited. On the other hand, a too strong per-

turbation resembles a random restart of the search process, and thereby, it

converts ILS to a multistart hill-climbing. Although, there are reports of

successful applications of multistart hill-climbing in the literature (Mart́ı,

Aceves, León, Moreno-Vega & Duarte 2018, Lobo & Bazargani 2015, Boese,

Kahng & Muddu 1994), perturbation of ILS aims to benefit further by em-

ploying obtained knowledge, from previously visited promising results, for a

guided restart.

ILS has been applied to a variety of benchmark problems, including

TSP, QAP, and PFSP. It has been also successfully applied to a number of

real-world combinatorial problems. Some of the applications of ILS are vehi-

cle routing (Penna, Subramanian & Ochi 2011, Silva, Subramanian & Ochi

2015), scheduling (Maenhout & Vanhoucke 2010, Hachemi, Gendreau &

Rousseau 2013, Soria-Alcaraz, Özcan, Swan, Kendall & Carpio 2016, Song,

Liu, Tang, Peng & Chen 2018), image processing (Cordón, Damas & Bar-

dinet 2003, Cordón & Damas 2006), design of water distribution networks

(Corte & Sörensen 2016, Martinho, Melo & Sörensen 2020), car sequenc-

ing (Cordeau, Laporte & Pasin 2008, Ribeiro, Aloise, Noronha, Rocha &

Urrutia 2008), and many others. Interested readers can find some of these

26

applications in (Lourenço, Martin & Stützle 2019).

2.2.1 Late Acceptance Hill-Climbing (LAHC)

The Late Acceptance Hill-Climbing (LAHC) was introduced by Burke &

Bykov (2017, 2008). It was shown to be competitive (and often superior) to

other algorithms of its kind, such as SA, TA, and the GDA, when applied

to Travelling Salesman and Exam Timetabling benchmark problems.

One of the major advantages of LAHC compared with other algorithms

of its kind, such as SA, TA, and GDA, is its simplicity of use. LAHC has a

single parameter, the history length, whose meaning appears to be well un-

derstood and directly related to runtime execution and solution cost (Burke

& Bykov 2017, Bazargani & Lobo 2017). Specifically, the longer the his-

tory length is, the longer it takes to reach a good quality solution; but at

the same time a better solution quality can be expected at the end of the

search process. Figure 2.4 shows the above mentioned tradeoff for the u1817

instance of TSP. For the other instances, the pattern observed is similar.

 100000

 1x10
6

 0 1x10
8

 2x10
8

 3x10
8

 4x10
8

 5x10
8

 6x10
8

 7x10
8

 8x10
8

C
o

s
t

Iteration

length of history list (Lh)

1
5000

50000

Figure 2.4: Tradeoff between solution quality and number of iterations, for
the u1817 instance taken from TSPLIB. Plot obtained with averaged data
collected from 100 independent runs. Solution quality (cost) is shown in log
scale.

Similarly to the above mentioned algorithms, the LAHC algorithm can

also accept worsening moves. However, unlike SA, TA, and GDA, it does

27

not require a cooling schedule. Instead, the algorithm uses a list to mem-

orize previous values of the current solution’s cost. The size of the list,

denoted as Lh, is the sole parameter of the algorithm. The basic idea of

LAHC is that a candidate solution is compared with a solution which was

current several iterations before, more precisely, Lh iterations before. This

contrasts to iterative improvement algorithms (traditional hillclimber) or a

(1+1)-Evolutionary Algorithm (EA) where the candidate solution is com-

pared with the current solution of the immediate previous iteration. It is

straightforward to see that LAHC degenerates into an iterative first im-

provement by setting Lh = 1.

Note that the list contains the solution cost function values only, not the

solutions themselves. Again, this contrasts to other search algorithms that

memorize previously visited solutions, such as Tabu Search and all sorts of

evolutionary algorithms, where the list is in effect a population of visited

solutions.

The idea of late acceptance can be implemented with minor variations

and extensions. Building upon the work of Burke & Bykov (2017), we

settle on their final version whose pseudocode for a minimization problem

is reproduced as Algorithm 2.7.

In LAHC, an initial current solution is generated, usually u.a.r., and all

the Lh elements of the history list are initialized with the same value: the

cost of the current solution. The algorithm combines the late acceptance

idea with the greedy rule of always accepting non-worsening moves as done

with SA, i.e., it accepts a candidate solution if its cost is better than the cost

value stored in the history list Lh iterations before or if it is not worse than

the current solution of the immediate previous iteration. Another extension

proposed by Burke & Bykov (2017) is to update the history list with better

values only and exclude any updating with worse values. The updates on the

list are constant-time operations due to a circular list implementation (Line

9 of Algorithm 2.7); therefore, not requiring actual removal and element

shifting.

The stopping criterion is not specified in the pseudocode shown in Al-

gorithm 2.7. In the context of search, the stopping criterion is usually not

considered to be a parameter, but rather a decision that the user of the

algorithm has to make to decide when the algorithm should stop.

It is also worth mentioning that LAHC has been successfully used in

28

Algorithm 2.7: Late Acceptance Hill-Climbing (LAHC).

Input : The history length, Lh.
Output: A solution to a given problem.

1 Produce an initial solution s // Usually u.a.r.

2 Calculate its cost function value C(s)
3 forall k ∈ {0 . . . Lh−1} do
4 fk = C(s) // Initialize history list

5 I = 0 // Iteration counter

6 while stopping criterion is not fulfilled do
7 Construct a candidate solution s′ ∈ N(s)
8 Calculate its cost function value C(s′)
9 v = I mod Lh // Virtual beginning

10 if C(s′) < fv or C(s′) ≤ C(s) then
11 s = s′ // Accept candidate

12 if C(s) < fv then
13 fv = C(s) // Update the fitness array

14 I = I + 1;

15 return s

several competitions (Burke & Bykov 2017). In 2011, it was the winner of

the International Optimisation Competition organized by SolveIT Software

Pty Ltd, an Australian based company. The goal of the competition was

to develop an application to solve the largest constrained Magic Square

problem within one minute of run time. It has also been incorporated in

real-world software systems, an example being the constraint satisfaction

solver OptaPlanner, an open source project by Red Hat (http://www.opta

planner.org/).

A Brief Analysis of LAHC

In spite of its simplicity, there are several facts that may go unnoticed re-

garding the behaviour of the LAHC algorithm. Herein, we reason about the

pseudocode shown before as Algorithm 2.7 and highlight statements that are

true regardless of the problem instance in which the algorithm is applied.

1. The history list values monotonically decrease. The history

list values are initialized in lines 3-4 with C(s), the cost value of the

29

initial solution s. Subsequently the sole place where the history list

is updated is in line 13, and that line of the code is only executed if

the cost of the current solution C(s) strictly improves upon the value

fv. Thus, the history list values either decrease or remain the same as

times goes by.

2. Acceptance criteria. A candidate solution s′ is accepted if and only

if at least one of the following three conditions occur (see line 10 of

the pseudocode):

(i) C(s′) < fv. We call this the late acceptance condition.

(ii) C(s′) < C(s). We call this the hill-climbing condition.

(iii) C(s′) = C(s). We call this the plateau condition.

The last two conditions are mutually exclusive, but any other two are

not.

3. fv is an upper bound for the cost value of the solution which

was current Lh iterations before. Note that it is possible that a

candidate solution is not accepted, yet the history list value fv still

gets updated. The position v changes at each iteration, and as long as

C(s) < fv, fv is updated. In other words, the value fv is guaranteed

to be less than, or equal to, the cost value of the solution which was

current Lh iterations before.

The three items listed above are important to understand the behaviour

of LAHC. In particular, the state of the algorithm is given by the current

solution, its cost value, and the history list values. There are two important

remarks to be made:

• The state of the algorithm changes on a plateau move (see item 2 (iii)

above), that is, the current solution changes, even though no solution

cost improvement results from such a state change.

• The state of the algorithm can change even without accepting a can-

didate solution, as shown above in item 3. As a corollary of that same

item, if the cost of the current solution does not change for Lh consec-

utive iterations, then all history list values are less than, or equal to

the cost of the current solution.

30

Applications of LAHC

LAHC has been successfully applied as a move acceptance mechanism within

methodologies for a wide variety of problem domains. Burke & Bykov (2008,

2017) originally demonstrated its effectiveness using the classic travelling

salesman problem and exam timetabling benchmarks. Their work on exam

timetabling was extended by Ozcan, Bykov, Birben & Burke (2009), who

used the Late Acceptance as a move acceptance mechanism in selection

hyper-heuristics (see Section 2.3 for details on hyper-heuristics). Demeester,

Bilgin, Causmaecker & Berghe (2011) also used a tournament-based hyper-

heuristic approach consisting of (among other things) the Late Acceptance

strategy as a move acceptance criterion. They made improvements on the

best-known results, for seven out of thirteen instances, of the Toronto ex-

amination timetabling benchmarks (Carter, Laporte & Lee 1996). Ahmed,

Mumford & Kheiri (2019) used LAHC along with SA and GDA as the non-

deterministic move acceptance methods in their hyper-heuristic approach to

tackle an urban transit route design problem. An application of a hyper-

heuristic based local search that uses LAHC with other four local search

algorithms, including SA, ILS, GDA, and iterative improvement, was intro-

duced by Turky, Sabar, Dunstall & Song (2018) to tackle the bin packing

problem and the Google machine reassignment problem. A choice func-

tion - Late Acceptance strategy hyper-heuristic was shown to be the best

of nine selection hyper-heuristics for the multidimensional Knapsack prob-

lem by Drake, Özcan & Burke (2016). A Late Acceptance selection hyper-

heuristic was used by Abdulaziz, Elnahas, Daffalla, Noureldien, Kheiri &

Ozcan (2018) for wind farm layout optimisation, and by Kheiri & Özcan

(2013) for the magic squares problem.

Vancroonenburg & Wauters (2013) extended the LAHC algorithm to

multi-objective optimization. Zhou & Kang (2018) incorporated the LAHC

in a multi-objective hybrid imperialist competitive algorithm to minimize

the line efficiency and the weighted total relevant costs per unit in the mul-

tirobot cooperative assembly line balancing problems.

The local search algorithm that was developed by Wauters, Toffolo,

Christiaens & Malderen (2015) and Toffolo, Christiaens, Malderen, Wauters

& Berghe (2018) used the LAHC algorithm as the local search component

of the Iterated Local Search algorithm. It was the winner of the VeRoLog

31

Challenge 2014 (Heid, Hasle, & Vigo 2014). The same approach was used by

Dang & Causmaecker (2016) to develop a systematic method to characterize

each neighbourhood’s behaviours, and using cluster analysis to form similar

groups of neighbourhoods. Turky, Sabar, Sattar & Song (2016) proposed

a parallel LAHC algorithm for the Google Machine Reassignment problem

that was introduced in ROADEF/EURO challenge 2012. The approach out-

performs or at least was comparable to the state-of-the-art methods from

the literature. LAHC was also used for the first time in genetic programming

problems by McDermott & Nicolau (2017).

Other application areas include lock scheduling (Verstichel & Berghe

2009), high-school timetabling (Fonseca, Santos & Carrano 2016), vehi-

cle routing (Sartori & Buriol 2018), a job scheduling strategy to improve

big data processing in geo-distributed contexts (Cavallo, Modica, Polito &

Tomarchio 2017a), multi-job Hadoop scheduling (Cavallo, Modica, Polito

& Tomarchio 2017b), general lot sizing and scheduling with constraints

(Goerler, Lalla-Ruiz & Voß 2020), identifying critical nodes of weighted

graphs (Zhou, Wang, Jin & Fu 2021), the constrained covering arrays prob-

lem (Bazargani, Drake & Burke 2018), patient admission scheduling prob-

lem (Bolaji, Bamigbola & Shola 2018), 2D and 3D strip packing prob-

lems (Wauters, Verstichel & Berghe 2013), the travelling purchaser prob-

lem (Goerler, Schulte & Voß 2013), optimizing office-space allocation (Bo-

laji, Michael & Shola 2018), and finding fatigue damage in railway bridges

(Frøseth & Rönnquist 2019).

2.3 Hyper-heuristics

Hyper-heuristics are not the direct subject of this thesis. However, since we

have discussed some literature on the applications of hyper-heuristic based

local search using SLS algorithms in this thesis, this section briefly dicsusses

the area. Moreover, there is significant potential for the work described in

this thesis to impact upon future research in hyper-heuristics. This is briefly

discussed in Section 6.2.

Hyper-heuristics are another class of effective search approaches that

have been applied to a wide variety of complex real-world problems. The

main difference between metaheuristics and hyper-heuristics is that while

most applications of metaheuristics are designed and tuned to a specific

32

problem, a hyper-heuristic is “an automated methodology for selecting or

generating heuristics to solve hard computational search problems” (Burke,

Curtois, Hyde, Kendall, Ochoa, Petrovic, Vazquez-Rodriguez & Gendreau

2010). While most implementations of metaheuristics explore a search space

of solutions to a given problem, hyper-heuristics search through a search

space of heuristics or heuristic components. Of course, there is nothing to

prevent the use of a metaheuristic as a hyper-heuristic (Bilgin, Demeester,

Misir, Vancroonenburg & Berghe 2011, Grobler, Engelbrecht, Kendall &

Yadavalli 2015, Damaševičius & Woźniak 2017).

Figure 2.5 depicts an overview of the hyper-heuristic categorisation given

by Burke, Curtois, Hyde, Kendall, Ochoa, Petrovic, Vazquez-Rodriguez &

Gendreau (2010). Based on the nature of the heuristic search space and the

source of feedback during learning, Burke, Curtois, Hyde, Kendall, Ochoa,

Petrovic, Vazquez-Rodriguez & Gendreau (2010) proposed a classification

for hyper-heuristics containing two classes, namely heuristic selection and

heuristic generation. Heuristic selection includes methodologies that decide

which heuristic from a set of existing heuristics should be applied at any

time in the search process. There are several techniques that can be used

for making such a decision, e.g., choice function, multi-armed bandit, and

uniform random. A comprehensive survey on selection hyper-heuristics is

recently published by Drake, Kheiri, Özcan & Burke (2020). The second

category of hyper-heuristic contains those methodologies that create new

heuristics from a set of components of existing heuristics. Many examples

of this type of hyper-heuristic use genetic programming (Burke, Kendall

& Whitwell 2009), a branch of evolutionary algorithms that has been also

used for automatically generating computer programs (Koza 1994). Burke,

Curtois, Hyde, Kendall, Ochoa, Petrovic, Vazquez-Rodriguez & Gendreau

(2010) also divided methodologies within each class of hyper-heuristic to

construction and perturbation. Construction approaches start a search pro-

cess with an empty solution, and their goal is to gradually build a complete

solution. Conversely, perturbation approaches start with a complete solu-

tion, and their aim is to iteratively improve the current solution.

Many hyper-heuristics are considered to be learning algorithms when

they use some feedback information from the search process. Hyper-heuristics

have two ways of learing, online learning and offline learning. The former

takes place during the search process when a hyper-heuristic uses feedback

33

H
y
p

e
r
-
h

e
u

r
is

t
ic

Online learning

Offline learning

No-learning

Methodologies to select

Heuristic selection

Methodologies to generate

Heuristic generation

Construction heuristic

Perturbation heuristic

Perturbation heuristic

Construction heuristic

Feedback Nature of the heuristic space

Figure 2.5: Classification of hyper-heuristic based on the nature of the
heuristic search space and the source of feedback during learning. The fig-
ure is reproduced and quoted from Burke, Curtois, Hyde, Kendall, Ochoa,
Petrovic, Vazquez-Rodriguez & Gendreau (2010).

it receives to constantly adapt itself throughout the search process. The lat-

ter, offline learning hyper-heuristics, gather knowledge in the form of rules

or programs from a set of training instances, and then use this information

to generalize a method for solving unseen instances. There are also some

non-learning hyper-heuristics that do not use feedback from the search pro-

cess.

2.4 Cutoff Time Strategies

It is very important to decide an appropriate moment to restart an SLS

algorithm, i.e., to determine when it is stagnant. Terminating too early

is detrimental because those last few changes in the current solution —

upon which the search stagnates— are usually the most predominant ones

in the sense that they require more effort to be discovered. Thus, restarting

the search before carrying out a sufficient enough number of iterations is a

barrier to utilize the stretch capacity of the algorithm. In this case, even a

restarting mechanism might not be able to improve the solution cost because

the algorithm ends up restarting before running those crucial iterations,

every single time. Similarly, letting the algorithm run when it is stagnant is

obviously a burden and a waste of time.

34

It is worth mentioning that the cutoff time decision still comes into play

when the algorithm is given a fixed time budget to operate, because even

in those cases it can be beneficial to restart the algorithm, as opposed to

letting it run when it is stagnant.

In the current practice reported in the literature, the cutoff time is of-

ten determined based on empirical grounds and after a considerable amount

of tuning effort. We should stress, however, that systematic tuning of the

cutoff time is extremely difficult and unlikely to be successful. Any fixed

cutoff time derived from previous experimental runs on different problem

instances is often not adequate, not only because it requires prior exper-

imental runs but also because the optimal cutoff time varies across prob-

lem instances and problem classes. Although several computational meth-

ods for offline tuning of metaheuristics have been gaining popularity, such

as Iterated Racing (irace) (López-Ibáñez, Dubois-Lacoste, Cáceres, Birat-

tari & Stützle 2016) and Sequential Parameter Optimization (SPO) (Bartz-

Beielstein, Lasarczyk & Preuss 2005), they are computationally demanding.

Tuning has its strengths in the absence of a sound method to specify a pa-

rameter value for an algorithm, but if a sound method exists there is no

reason not to use it.

An alternative and more practical approach to tackle the cutoff time

problem is to use a dynamic strategy that bases its decision on the search

progress. A common approach is to cutoff the search once a certain amount

of time θ has elapsed without improvement on the solution cost. Such time θ

is usually measured in the number of iteration steps, and typically depends

on properties of the problem instance, most notably, instance size (Hoos &

Stützle 2005). For example, Hoos & Stützle (2005) report a dynamic cutoff

time strategy for iterated local search applied to TSP that uses θ = m

with m being the number of cities of the TSP instance. Another common

approach is to determine the cutoff time once the algorithm does not improve

the solution cost for a sufficiently long period, specified as a fraction of the

total search time elapsed so far, and allowing the algorithm to perform a

certain minimum number of iterations (Burke & Bykov 2017).

There is no guarantee, however, that these mechanisms are effective be-

cause nothing prevents the cutoff time from being too short or too long

for the given problem instance, resulting either in not fulfilling the stretch

capacity of the algorithm or a waste of computational resources.

35

2.5 Parameter Tuning

Most SLS algorithms have parameters that are also known as guiding pa-

rameters (Chopard & Tomassini 2018, p. 66). The performance of SLS

significantly depends on the choice of appropriate values for those parame-

ters, e.g., initial temperature, cooling schedule, and temperature length of

SA, tabu tenure of TS, as well as, history list length of LAHC. They are

problem dependent (in most cases, instance dependent) and hence there is

no principled way to satisfactorily set their values for all problems. They

are usually set based on some rules-of-thumb. Note that we do not use

parameter tuning in this research work; on the contrary, we try to design

approaches that have fewer parameters. That being said, it is absolutely

important to understand parameter tuning and its drawbacks since they are

the incentive behind this research work.

The main challenge in parameter tuning for SLS is how to find the op-

timal choices for those parameters. This is an optimization problem within

the search process of the original problem (Kramer 2017, p. 21). Besides,

the tuning task of some parameters has a dynamic nature, since the optimal

choice varies throughout the search process. An adaptive perturbation for

ILS is an example of this (Lourenço, Martin & Stützle 2019, p. 141). An-

other major drawback of tuning is that it imposes a significant increase in

the total amount of time required for solving a problem. Moreover, because

of the tuning issue of SLS, end users need to have a good enough knowledge

of these methods to implement them successfully in practice, something that

many users do not have. Ideally, the fewer parameters an algorithm has, the

easier it should be to use from a practical point of view.

There are a number of research papers on parameter tuning of SLS algo-

rithms in the literature. Eiben, Hinterding & Michalewicz (1999) presented

a survey on controlling values of various parameters of an evolutionary al-

gorithm, and Eiben & Smit (2011) introduced a conceptual framework for

parameter tuning. Moreover, there have been some theoretical analysis on

this subject in the literature (Doerr & Doerr 2015, Doerr & Wagner 2018,

Doerr & Doerr 2019, Dang & Doerr 2019).

In recent years, several computational methods for offline tuning of SLS

have been introduced in the literature and have gained popularity, e.g.,

Iterated Racing (irace) (López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari

36

& Stützle 2016) and Sequential Parameter Optimization (SPO) (Bartz-

Beielstein, Lasarczyk & Preuss 2005). These approaches, in an automatic

way, try to find the most appropriate settings of an algorithm given a set of

instances of a problem. Tuning is useful for algorithms that have several pa-

rameters whose interaction is not well understood by a practitioner (or even

by an expert). However, if a search algorithm can be designed in a way that

is minimalist in terms of parameters, and moreover those parameters are

well understood in terms of their effect in the algorithms’ performance, then

a rational strategy for automating the setting of those parameters values

may be obtained.

2.6 Search Space Structure

The behaviour and performance of SLS algorithms also depends on search

space structure. This is known as the fitness landscape in the context of evo-

lutionary algorithms (a.k.a. population-based SLS). Understanding search

space structure helps in studying the behaviour of SLS and by that means

improving applications of SLS methods or designing new ones. The deep

analysis of search space structure is beyond the scope of this study and here

we only briefly introduce some main structural aspects of the spaces being

searched by SLS algorithms. There are some detailed studies in the litera-

ture on this subject that the interested reader can consult, e.g., chapter 5

of Hoos & Stützle (2005) and Reeves (2013).

A neighbourhood structure of a combinatorial problem samples points

from its search space and together with the evaluation function captures the

search landscape of a given problem. One should note that the concept of the

search landscape abstracts from details of the actual search process. In the

literature, fitness-distance analysis (FDA), introduced by Jones & Forrest

(1995), is widely used to analysis and characterise search landscapes. It

computes the correlation between the evaluation function value of candidate

solutions and their distance to the closest optimum solution. Divorced from

details of the search space structure, three concepts of search landscapes,

i.e., distribution of local optima, landscape ruggedness, and plateaus, have

influenced this research work (to be presented in the later chapters), in both

aspects: designing proposed approaches as well as analysing their behaviour.

The distribution of optimum solutions across the search landscape has

37

an impact on designing a successful SLS application. If solutions are evenly

distributed through the entire landscape, then the starting point of the

search is not as influential as when they are not distributed evenly (Hoos &

Stützle 2005, p. 209). However, if solutions are clustered in different regions

of the landscape and far from each other, then the restarting mechanism

used in some SLS is beneficial (Schiavinotto & Stützle 2004).

Unlike some problems with smooth landscape, intuitively, most hard com-

binatorial problems have a rugged landscape (Hoos & Stützle 2005, p. 228).

In these problems, the evaluation function value of a candidate solution is

weakly correlated with its direct neighbours. It is clear that the concept of

landscape ruggedness is related to the number of local optima. Intuitively,

problems with smooth landscape have fewer local optima, and they allow it-

erative improvement algorithms to explore larger parts of their search space

and thus results in high quality solutions. On the other hand, problems

with a rugged landscapes are intuitively harder to search for SLS algorithms

(Reeves 2013), and accepting worsening moves is an essential for providing

a quality solution in these problems.

Regions of neighbouring candidate solutions with identical evaluation

function values are known as plateaus (Whitley, Sutton & Howe 2008).

There are two different types of plateaus with respect to the existence of

exits to a better quality solution, i.e., open plateaus and closed plateaus. In

open plateaus, there exists solutions in the plateau that have neighbours

with a better solution quality. In contrast, closed plateaus do not have ac-

cess to solution with better solution quality than the current solution. Once

search algorithms are in a plateau then there is no difference between SLS

algorithms and the random walk. Understanding plateaus and also methods

to circumvent them are essential for finding efficient methods for hard com-

binatorial problems (Reeves 2013). There are some methods in the literature

to tackle this problem (Frank, Cheeseman & Stutz 1997).

2.7 Summary

At the beginning of this chapter, by giving an example related to one of

the consequences of the COVID-19 crisis, we explained the importance of

Stochastic Local Search (SLS) algorithms in our daily life. Then we briefly in-

troduced combinatorial problems and distinguished between two main types

38

of them, i.e., decision and optimization problems. To better explain some of

the features of SLS algorithms, we introduced a prototypical combinatorial

optimization problem: Travelling Salesman Problem (TSP). We explained

that there are two types of search methodologies based on the number of

solutions that they maintain in each search step, namely one-point SLS and

population-based SLS. Since this research work is about a one-point SLS

algorithm, in this chapter we only focus on this type. Next, we discussed

various properties of search methodologies and highlighted main components

of SLS, i.e., solution representation, initialization, neighbourhood structure,

evaluation function, and stopping criterion.

Building on the aforementioned search paradigms and properties, we in-

troduced and discussed a number of simple one-point SLS strategies such as

two variants of Iterative Improvement. Those are iterative first improvement

and iterative best improvement that form the basis of many complex SLS

methods. Overall, the main drawback with simple iterative improvement al-

gorithms is that they get quickly stuck in local optima and they do not have

any mechanism to escape it. To overcome this problem, many SLS algo-

rithms accept worsening moves. Two variations of iterative improvements

that accept worsening moves, i.e., randomized iterative improvement and

probabilistic iterative improvement, were introduced. Thereafter, five well-

studied SLS algorithms that use different techniques to accept worsening

moves were explained. The Simulated Annealing (SA) algorithm employs

a cooling schedule for accepting worsening moves, while Tabu Search (TS)

utilizes memory to guide the search process and accept worsening moves.

Unlike SA that accepts worsening moves based on a stochastic mechanism,

Threshold Accepting (TA) and Great Deluge Algorithm (GDA) employ a

deterministic method (deterministic annealing) for this purpose. Further-

more, Iterative Local Search (ILS) uses a local search algorithm and once it

gets stuck in a local optimum, it applies a perturbation operator to start the

search from hopefully another basin of attraction. We then introduced the

Late Acceptance Hill-Climbing (LAHC) and provide a brief analysis and ap-

plications of this algorithm, since it is the main focus of this research work.

We next explained hyper-heuristics and their variations and explained that

the selection hyper-heuristics use local search algorithms as their acceptance

mechanism.

Finally, three theoretical aspects of SLS algorithms, cutoff time strate-

39

gies, parameter tuning, and search space structure, were explained. We dis-

cussed search stagnation in the context of SLS algorithms and described

some cutoff time strategies that are used in the literature. In this research

work, we do not use parameter tuning. In contrast, we try to design methods

that have fewer parameters and are suitable for general practitioners. How-

ever, understanding them highlights the importance of this research work.

We finished this chapter by discussing search space features and properties.

We explained that the structure of a search space has an important impact

on the behaviour and performance of SLS algorithms.

40

Science may be described as the

art of systematic

over-simplification.

Karl Popper

Chapter 3

Parameter-less Late

Acceptance Hill Climbing

As we already explained in Subsection 2.2.1, LAHC has a single parame-

ter, the history list length, whose meaning appears to be well understood

and directly related to runtime execution and solution quality. Because

of that, Burke & Bykov (2017) argue that it is simpler to use compared

with the aforementioned algorithms. In this chapter, we go a step further

and simplify, even more, the application of LAHC by eliminating that sole

parameter. The new algorithm is called parameter-less Late Acceptance

Hill-Climbing (pLAHC). The term parameter-less used in this algorithm is

taken from the parameter-less search technique introduced in Evolutionary

Algorithms (EAs), since we use a similar technique in pLAHC. In the past,

the parameter-less search technique has been successfully used in automat-

ing the population size parameter in a variety of Evolutionary Algorithm

(EAs). The validity of the method is shown with computational experi-

ments on a number of instances of the Travelling Salesman Problem (TSP).

We evaluate pLAHC application to a real-world Search Based Software Engi-

neering (SBSE) problem, namely Combinatorial Interaction Testing (CIT).

CIT is a cost-effective black-box sampling techniques for discovering inter-

action faults in highly configurable systems. For illustration purpose we will

be using a well-known existing framework and will replace a SA used in this

framework with pLAHC.

This chapter is based on two papers by the author, i.e., Bazargani &

Lobo (2017) and Bazargani, Drake & Burke (2018). It starts by introducing

41

the parameter-less search scheme and establishing a connection between the

history list length of LAHC and the related problem of population sizing

in EAs. Building on that, Section 3.2 presents a parameter-less version of

the LAHC algorithm. The validity of the method is shown with a number

of computational experiments applying it to TSP benchmark instances that

were also used in the work of Burke & Bykov (2017). Section 3.3 presents

a refinement of the technique proposed in Section 3.2 with the purpose of

speeding up the search for good solutions. In Section 3.4, we show how the

proposed approach can be transferred to a real-world problem, i.e., CIT. The

example is used as a case study but similar design principles may be applied

to other kind of real-world problems as well. This problem, background

material, the benchmark used, and obtained results are all explained in this

section.

3.1 Parameter-less Search Scheme

Results reported by Burke & Bykov (2017) suggest that the history length

parameter has a more meaningful interpretation from the user point of view,

as it is directly related to solution quality and execution time. Specifically,

the longer the history length is, the slower the algorithm becomes in reaching

a good solution quality. Also, the longer the history length is, the better

chance the algorithm has of reaching a better quality solution given enough

time do so. The tradeoff is a logical one; to reach a better solution quality

we should expect to pay a price in terms of algorithm runtime.

This tradeoff is akin to what is observed with respect to population sizing

in EAs. In general, a large population has a better chance, given sufficient

execution time, to reach a better quality solution than the same EA with a

smaller population (Harik, Cantú-Paz, Goldberg & Miller 1999). The prob-

lem, however, is that an EA with a large population converges slower than

the same EA with a smaller population. To explore this tradeoff, Harik &

Lobo (1999) proposed the parameter-less genetic algorithm (GA), a tech-

nique that automates population sizing in an EA. The method establishes

a race among exponentially sized populations, which evolve in an alternate

fashion, in an attempt to reach an adequate population size. In this tech-

nique, smaller populations are preferred by allocating them more runtime

(fitness evaluations) than to larger populations. However, as time goes by

42

the small sized populations can be eliminated when there is evidence that

they will not be competitive with a larger population in terms of solution

quality delivered.

The parameter-less search scheme or a form of it has been incorporated

in different EAs. Smorodkina & Tauritz (2007) limited the number of par-

allel population racing to two, while the number of parallel population rac-

ing in the parameter-less GA is unlimited. A similar technique is used by

Auger & Hansen (2005) in the context of the Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES). It has also been successfully used with

model-based EAs such as the Hierarchical Bayesian Optimization Algorithm

(hBOA) (Pelikan & Lin 2004), and with the Gene-pool Optimal Mixing EA

(GOMEA) family of algorithms (Luong, Poutré & Bosman 2015, Bosman,

Luong & Thierens 2016, den Besten, Thierens & Bosman 2016).

Given that the population size parameter of an EA appears to have a

similar effect (and involve similar tradeoffs) to the history length parameter

of LAHC, it is likely that the methods used to automate population sizing

in EAs can also be used to automate the history length parameter of the

LAHC algorithm. It is precisely this observation that led us to conduct the

research presented herein.

3.2 LAHC with Exponentially Increasing History

List Length

To eliminate the need to specify the history list length parameter, we propose

an automated restart strategy for the LAHC algorithm with an exponentially

increasing history length. The strategy follows closely what was done in

Auger & Hansen (2005). Initially, the history list length can be a very small

number, for example Lh = 1. The restart is fired whenever the LAHC with a

fixed history list length Lh stops as shown by Line 6 of Algorithm 2.7. Any

restarting (stopping) criterion can be used by LAHC but here we follow

exactly what was suggested in Burke & Bykov (2017), i.e., the algorithm

halts when the number of consecutive non-improving (idle) iterations reaches

2% over the total number of iterations, and at least 100,000 iterations are

performed to avoid early termination.

The overall stopping criterion for the restart strategy has to be specified

in some other way. Criteria that come to mind could be for example a

43

total maximum number of iterations, a total maximum execution time, a

certain solution quality reached, or a certain number of restarts without an

improvement in the current solution at the end of each LAHC execution, to

name a few. With respect to the rate of increase for the history list length

we use a factor of 2, i.e., the history list length doubles on each restart. We

call the resulting algorithm parameter-less LAHC (pLAHC).

Another form of growth schedule could be specified; for example, linear

instead of exponential. However, we settle on exponential with a factor

of 2 because it seems to be the most logical thing to do, following previous

research by others (Harik & Lobo 1999, Auger & Hansen 2005, Pelikan & Lin

2004, Luong, Poutré & Bosman 2015, Bosman, Luong & Thierens 2016, den

Besten, Thierens & Bosman 2016). Smaller factors than 2 make the search

progress slow and it takes longer time to reach to the adequate history list

length. In contrast, search using factors bigger than 2 are more probable to

suppress the adequate history list length.

3.2.1 Experiments with LAHC alone

We start by presenting a series of experiments of the LAHC algorithm with

fixed history list length to confirm the existence of the tradeoff observed by

Burke & Bykov (2017). We do it for several instances of TSP that are shown

in Table 2.1 and are taken from the well-known TSPLIB repository. We use

the exact same instances and the exact same TSP perturbation operator

used in Burke & Bykov (2017), namely the 2-exchange move where a tour

is randomly divided into two parts and subsequently reconnected in reverse

order, as depicted in Figure 2.3.

For every instance, LAHC is run for 100 independent times and the re-

sults are averaged. As we explained in Section 3.2, the algorithm halts when

the number of consecutive non-improving (idle) iterations reaches 2% over

the total number of iterations, and at least 100,000 iterations are performed.

We use 3 settings for the history list length parameter (1, 5000, and 50000),

replicating the experiments conducted in Burke & Bykov (2017). Table 3.1

shows the results obtained. The Cost column gives the best ever solution

quality reached by the algorithm by the end of the run, averaged over the

100 runs. The Iterations column gives the number of iterations executed

until the end of the run, averaged over the 100 runs.

The results confirm the observations made by Burke & Bykov. The

44

Table 3.1: Results for seven TSP instances produced by LAHC using three
different history list lengths, Lh ∈ {1, 5000, 50000}. The results are averaged
over 100 independent runs, and match very well with those reported by
Burke & Bykov.

Dataset
Lh = 1 Lh = 5000 Lh = 50000

Cost Iterations Cost Iterations Cost Iterations

rat783 10808 774187 9354 28375627 9105 258717906
u1060 264264 2177387 235426 43375332 229013 389063282
fl1400 22483 4055588 20732 57679069 20426 492849859
u1817 69056 8384640 62175 90558784 59502 750645922
d2103 98643 12444579 89579 112400626 86370 877424569
pcb3038 160238 27520354 150439 176549830 144211 1342738864
fl3795 33159 63452752 31147 264306010 30170 1816215196

longer the history list length, the slower the algorithm is but a better solution

quality is reached.

3.2.2 Experiments with Automated Restarts

We now present experiments of the parameter-less implementation of LAHC

as described at the beginning of Section 3.2, i.e., with automated restarts

doubling the history length Lh on each restart; initially Lh = 1. We run the

algorithm on the same TSP instances described earlier. Again, 100 indepen-

dent runs are executed. The stopping criterion for each run is reaching the

target solution quality Cx obtained by the regular LAHC with history length

x averaged over 100 independent runs. The results are summarized in Ta-

ble 3.2. As an example, the entry in Table 3.2 corresponding to the instance

rat783 and C1 has the value 1116839. This value is the number of iterations

needed by pLAHC to reach the solution quality of 10808 (which can be read

from Table 3.1, rat783 with Lh = 1) on all of the 100 independent runs.

As expected, pLAHC is slower than a tuned LAHC (see the Overhead

Factors (OF) in Table 3.2); however, pLAHC needs no tuning. More im-

portantly, pLAHC tries to escape local optima by restarting with a larger

history list length when its current history list length appears to be insuffi-

cient. LAHC, on the other hand, needs to have Lh properly set; not doing so

makes it unable to improve beyond a certain solution quality. For example,

if LAHC is allowed to run for more iterations (ignoring the 2% idle iteration

condition) it would not improve the solution quality that much more. Take,

for example, the rat783 instance. If we run LAHC on it, with Lh = 1, for

45

Table 3.2: Number of iterations needed by pLAHC to reach at least the
same solution quality as that obtained by LAHC. OF stands for overhead
factor, i.e. how much slower pLAHC is compared with LAHC. The results
are averaged over 100 independent runs.

Dataset
Iterations needed by pLAHC to reach quality Cx

C1 OF C5000 OF C50000 OF

rat783 1116839 1.44 102151765 3.60 710536424 2.75
u1060 3352705 1.54 149197449 3.44 1108126907 2.85
fl1400 6267468 1.55 187044984 3.24 1042146093 2.11
u1817 13169262 1.57 352278209 3.89 2207268273 2.94
d2103 19253166 1.55 468100823 4.16 2572121231 2.93
pcb3038 42243384 1.53 804089579 4.55 4116303379 3.07
fl3795 104336892 1.64 1409994608 4.33 6302508196 3.47

710536424 iterations (those needed by pLAHC to reach a solution quality

C50000 = 9105) the average solution quality over 100 independent runs is

only 9933, nowhere close to the 9105 value. As a matter of fact, none of

those 100 runs reaches the 9105 value. A similar behaviour occurs with the

other instances.

Our experiments collect other relevant information concerning the pLAHC

runs. Due to space restrictions we focus our analysis on a specific instance,

u1817, which is median in terms of dimensionality (the number of cities).

Figure 3.1 shows the distribution of the required history list length needed

by pLAHC to reach the target solution quality (C1, C5000, C50000) corre-

sponding to the u1817 instance. In Figure 3.1a, we can observe that the

majority of the runs (56%) reach the target solution quality not needing

any restarts, i.e., with Lh = 1. This result is consistent with what one

would expect because we are only running pLAHC until it reaches the tar-

get quality C1 (obtained by LAHC with Lh = 1). Similarly, in Figure 3.1b

we observe that most of the pLAHC runs reach the target solution quality

C5000 (obtained by LAHC with Lh = 5000) either with Lh = 4096 (27%) or

Lh = 8192 (67%). Again, this is consistent with what is expected because

these are the values closest to 5000. The same expected behaviour occurs

in Figure 3.1c for the C50000 case, with most pLAHC runs needing to reach

a history list length of 65536, close to 50000.

These results suggest that pLAHC is capable, without any tuning, to

automatically discover an appropriate history list length required to reach

a certain target solution quality.

46

32

8

4

2

1

2

7

6

29

56

L
h

(a) C1

16384

8192

4096

2048

4

67

27

2

L
h

(b) C5000

262144

131072

65536

32768

16384

1

14

66

17

2

L
h

(c) C50000

Figure 3.1: Distribution of the required history length needed by pLAHC
to reach the target solution quality (C1, C5000, C50000) corresponding to the
u1817 instance.

3.3 Speeding up with Seeded Restarts

Here we explore a refinement of the pLAHC algorithm presented in the

previous section. The idea is to use information collected from the execution

of a LAHC run to seed the next history list upon a restart. In other words,

as opposed to having the history list initialized with the solution quality

of a randomly generated solution, we are going to explore an alternative

mechanism to avoid starting the search from scratch. We note that the idea

of seeding the start of the search in the context of parameter-less search

algorithms has been suggested before (see Holdener 2008).

The first idea that comes to mind is to use the current solution of the

LAHC run that has just expired, and use its cost function value to initialize

47

the history list of the new LAHC run. We tested this idea but the results

were not good. The reason is rather obvious. If the history list is filled up

with the cost value of the current solution, there is very little chance that the

delayed acceptance criteria will be successful because the current solution is

already very good (a local optimum) and the history list has no diversity;

the combination of these two factors leads to having most perturbations

rejected.

The idea behind late accepting is to use a delayed comparison (with a

solution which was current several iterations ago) to escape from a local

optima more easily. It is therefore desirable that the history list cannot be

composed of extremely good and identical values; it needs to have diversity.

Note that no diversity with a low quality value would not be a problem

because in that case most perturbations on a current solution would be

accepted (but that corresponds to the standard initialization of LAHC, i.e.,

to start the search from scratch, which is what we are trying to avoid.)

The above argument suggests that to be successful, a seeding strategy

needs to initialize the history list with good, yet diverse, cost function values

of previously visited solutions. The very next thing that comes to mind is to

fill the history list with the cost function values of past successful iterations.

By past successful iterations, we mean those iterations that yielded solutions

that improve upon the best cost-function-value ever found so far. To do so,

we use another list to memorize those best-so-far values. We call this list

the successful iterations list (SIL).

pLAHC is now augmented with a successful iterations list. The list is

shared among the LAHC restarts, and gets updated whenever there is an

improvement on the best-so-far solution quality value, regardless of which

LAHC produces it (Line 32 of Algorithm 3.1). Once a current LAHC expires,

the next LAHC restarts with its history list initialized with values taken from

the end of successful iterations list. Lines 8-12 of Algorithm 3.1 denote this

initialization. Note that in case the length of the SIL is lower than the

length of the newly created LAHC history list, we keep looping through SIL

until the history list is filled up (in that case, we will have duplicate values.)

In order to fulfil this functionality, we need to fetch the length of SIL in

each restart, since it is a dynamic list. Line 10 of Algorithm 3.1 grants this,

where SIL.size() returns the size of SIL. The history list is then sorted with

larger values at the virtual beginning and smaller values at the virtual end

48

Algorithm 3.1: Parameter-less Late Acceptance Hill-Climbing
with Seeding (pLAHC-s).

Output: A solution to a given problem.

1 Produce an initial solution s // Usually u.a.r

2 Calculate its cost function value C(s)
3 SIL = [] // Successful Iteration List (SIL)

4 Append C(s) to SIL
5 Lh = 1
6 best = s
7 while stopping criterion is not true do
8 v = 0
9 while v < Lh do // History list initialization

10 w = SIL.size()− 1− (v mod SIL.size())
11 fv = SILw
12 v = v + 1

13 sort (f) // Sort in descending order

14 I = 0 // Iteration counter

15 Iidle = 0 // Idle iteration counter

16 do until (I > 100000) and (Iidle > I × .02)
// Stopping criterion of LAHC,

// originally introduced by Burke & Bykov (2017)

17 Construct a candidate solution s′

18 Calculate its cost function value C(s′)
19 if C(s′) ≥ C(s) then
20 Iidle = Iidle + 1
21 else
22 Iidle = 0 // Reset counter

23 v = I mod Lh // Virtual beginning

24 if C(s′) < fv or C(s′) ≤ C(s) then
25 s = s′ // Accept candidate

26 else
27 s = s // Reject candidate

28 if C(s) < fv then
29 fv = C(s) // Update the fitness array

30 I = I + 1
31 if C(s) < SILSIL.size()−1 then // Update SIL

32 Append C(s) to SIL
33 best = s

34 Lh = 2× Lh
35 s = best

36 return s

49

of the list.

This way, instead of restarting the search from a uniformly randomly

generated solution, LAHC restarts from a good solution found previously

and hopefully has sufficient diversity of good solution quality values in its

history list right from the beginning. As we shall see, the combination of

these two factors gives enough flexibility for LAHC to take advantage of

the late acceptance idea without needing to start anew on every restart.

We refer to this refinement of pLAHC as parameter-less LAHC with seeding

(pLAHC-s). Pseudocode for it is presented in Algorithm 3.1, with lines

in red colour indicating changes with respect to LAHC (Algorithm 2.7) to

design pLAHC-s.

3.3.1 Experiments with pLAHC-s

We repeat the experiments described in Section 3.2.2, this time with pLAHC-

s instead of pLAHC. The results are summarized in Table 3.3. It is straight-

forward to observe that seeding the history list speeds up the search con-

siderably. The overhead factors of pLAHC-s with respect to LAHC are

substantially lower than those obtained with pLAHC, especially for the tar-

get solution quality C5000 and C50000. These are the cases where LAHC

requires long history length values, i.e., where restarts are an absolute must.

Table 3.3: Number of iterations needed by pLAHC-s to reach at least the
same solution quality as that obtained by LAHC. OF stands for overhead
factor, i.e., how much slower pLAHC-s is compared with LAHC. The results
are averaged over 100 independent runs.

Dataset
Iterations needed by pLAHC-s to reach quality Cx

C1 OF C5000 OF C50000 OF

rat783 771194 1.00 56110157 1.98 670283547 2.59
u1060 2225981 1.02 80241114 1.85 993939929 2.55
fl1400 6620509 1.63 136349568 2.36 987121266 2.00
u1817 13083187 1.56 130230000 1.44 1977770681 2.63
d2103 19857202 1.60 175890001 1.56 1718555845 1.96
pcb3038 48826067 1.77 163564379 0.93 2851442286 2.12
fl3795 128646608 2.03 360440032 1.36 3844065351 2.12

Figure 3.2 is the equivalent of Figure 3.1 for the pLAHC-s case. It shows

the distribution of the required history length needed by pLAHC-s to reach

the target solution quality (C1, C5000, C50000) corresponding to the u1817

instance. Again, the results suggest that pLAHC-s is capable, without any

50

tuning, to automatically discover an appropriate history list length required

to reach a certain target solution quality.

4096

2048

16

8

4

2

1

17

16

3
2
1
3

58

L
h

(a) C1

16384

8192

4096

683

11

L
h

(b) C5000

262144

131072

65536

32768

1

32

56

11

L
h

(c) C50000

Figure 3.2: Distribution of the required history length needed by pLAHC-s
to reach the target solution quality (C1, C5000, C50000) corresponding to the
u1817 instance.

Figure 3.3 illustrates the dynamics of restarts as the search progresses

through time, pLAHC and pLAHC-s vis-a-vis, for the u1817 instance. Fig-

ure 3.3a is for the target solution quality C1, Figure 3.3b for target quality

C5000, and Figure 3.3c for target quality C50000. The data used in the vari-

ous plots was collected from the runs described earlier. For any given point

in time (iteration number on the horizontal axis), we obtain the history list

length (averaged over 100 independent runs) at that given point in time, for

both pLAHC and pLAHC-s. It is notable that pLAHC-s quickly eliminates

small-sized history lengths compared to pLAHC. The results agree with our

51

intuition; it is the quick elimination of small-sized history lengths that allows

pLAHC-s to achieve a lower overhead factor compared to pLAHC.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 1x10
6

 1x10
7

 1x10
8

H
is

to
ry

 l
e
n
g
th

Iteration

pLAHC
pLAHC-s

(a) C1

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1x10
6

 1x10
7

 1x10
8

 1x10
9

H
is

to
ry

 l
e
n
g
th

Iteration

pLAHC
pLAHC-s

(b) C5000

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

 16384
 32768
 65536

 131072
 262144

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

H
is

to
ry

 l
e
n
g
th

Iteration

pLAHC
pLAHC-s

(c) C50000

Figure 3.3: Average history list
length through time for the u1817

instance, pLAHC and pLAHC-s vis-
a-vis. Data collected from the aver-
age of 100 independent runs.

 10000

 100000

 1x10
6

 10000 100000 1x10
6

 1x10
7

 1x10
8

C
o
s
t

Iteration

pLAHC
pLAHC-s

(a) C1

 10000

 100000

 1x10
6

 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

C
o
s
t

Iteration

pLAHC
pLAHC-s

(b) C5000

 10000

 100000

 1x10
6

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

C
o
s
t

Iteration

pLAHC
pLAHC-s

(c) C50000

Figure 3.4: Average current solution
cost through time for the u1817 in-
stance, pLAHC and pLAHC-s vis-a-
vis. Data collected from the average
of 100 independent runs.

Figure 3.4 also shows interesting dynamics of pLAHC and pLAHC-s

52

on the u1817 instance, this time showing the cost of the current solution

through time, averaged over 100 independent runs. Note how the cost oscil-

lates in the case of pLAHC but not in the case of pLAHC-s. The oscillation

observed with the pLAHC case is due to restarting every single LAHC from

scratch. This doesn’t occur with pLAHC-s, precisely because of the seeding

mechanism. Overall, the plots shown in Figure 3.3 and Figure 3.4 help us to

understand in a clear way why the seeding mechanism is beneficial within

the parameter-less restart strategy.

Although the plots in Figures 3.1, 3.2, 3.3, and 3.4, only concern the

u1817 instance, we did analyze what happens with the other instances and

the pattern observed is similar to the u1817 case.

The source code in C++ for the implementation of LAHC, pLAHC, and

pLAHC-s, described in this chapter, along with the input files necessary

to replicate all experiments presented herein are available online at https:

//github.com/mbazargani/pLAHC.

3.4 From Theory to Practice: A Case Study using

a Software Engineering Problem

During this chapter, so far, we have introduced the pLAHC algorithm and

shown its performance on several instances of TSP, a well-known academic

problem. In the remainder of this chapter, we aim to show how pLAHC can

be transferred to a real-world problem. For illustration purposes, we will

be using a well-known Search Based Software Engineering (SBSE) problem,

namely, Combinatorial Interaction Testing (CIT), which is a cost-effective

black-box sampling technique for discovering interaction faults in highly

configurable systems.

Before going further in this section, let us first briefly explain CIT in

the context of software engineering. In recent years, instead of produc-

ing an entire application from scratch, modern software development often

produces components of related products, where some components are inte-

grated from existing applications. This provides reusable components that

help developers to produce new products more quickly, offering a wider

choice of features to both developers and users. As a result, newly produced

software represents highly-configurable systems, which can add or remove

features from the core set of software functionality in a flexible manner.

53

Such highly-configurable systems are more difficult to validate than tradi-

tional software with comparable scale and complexity. These systems raise

the issue of interaction faults, since faults in a system may be triggered by

interactions between features of different components. In the literature, it

has been shown that it is generally impractical to test all possible config-

urations by validating one combination in a single run of a system (Kuhn,

Wallace & Gallo 2004). Instead of doing so, testers need a technique to

judiciously sample some combinations for validating the system. Empirical

studies suggest that combinations of relatively few features actually cause

triggering failures (Kuhn, Wallace & Gallo 2004). This finding has signifi-

cant implications for testing, since testing combinations of all parameters is

no longer required. This technique is known as Combinatorial Interaction

Testing (CIT).

There are several techniques for CIT; one of the most established is Cov-

ering Arrays by Simulated Annealing (CASA) introduced by Garvin, Cohen

& Dwyer (2011). CASA is a three-nested-layer search framework using SA in

its most inner layer. Here we replace SA in CASA with pLAHC, proposing

a modified framework, Covering Arrays by Late Acceptance (CALA). The

result of this work was first published in Bazargani, Drake & Burke (2018),

and in order to be better embraced into the structure of this chapter, it is

presented in this single section.

In the next subsection, we present constrained CIT Problem and re-

lated work. Thereafter, Subsection 3.4.2 briefly explains the three-layer

search framework of CASA and presents the proposed modified framework,

CALA. The benchmarks used, experimental settings and results are given

in Subsection 3.4.3.

3.4.1 Constrained Combinatorial Interaction Testing Prob-

lem

In the literature, a t-way interaction test suite covers a set of t combinatorial

features and is known as the strength of combinatorial interaction testing.

The central problem of CIT is to construct Covering Arrays (CA) with a

minimum number of rows. A CA contains N rows with k columns, where

each column represents a feature of the system. Each column can only

contain valid values of the corresponding feature. In CA, for any choice of t

columns, all combinations of t features (all sets of t-way interactions) should

54

appear in at least one row. Consequently, the t-way interactions are said

to be covered. The aim is to cover all possible sets of t-way interactions in

a minimum number of rows N . In the literature, the notation of covering

arrays is typically presented as CA(t, vk11 v
k2
2 . . . vkmm), where t is the strength

of the array, the sum of k1, k2 . . . km, is the number of features, and vi denotes

the number of values that each of the ki feature(s) can take.

Empirical studies reveal that most failures are triggered by interaction

between only two features (2-way) of a system, and that no failure was

recorded to be triggered with t greater than 6 features (6-way) (Kuhn, Wal-

lace & Gallo 2004, Nie & Leung 2011). Most real-world systems also have

constraints, where some values of different features cannot appear together.

CAs supporting constraints are referred to as Constrained Covering Arrays

(CCA) (Cohen, Dwyer & Shi 2008). In this context, the goal of the combi-

natorial interaction problem is to find a minimum number of rows that cover

all valid t-way combinations of features’ values of a system, also known as

tuples, with respect to its constraints. The presence of constraints in CIT

is a major impediment to building an optimized CCA (Garvin, Cohen &

Dwyer 2011, Galinier, Kpodjedo & Antoniol 2017).

Let us explain CIT with an example. Assume that in a simple system,

there are three features, X, Y , and Z, where they can respectively have the

following values 2, 3, and 3. This system has also two constraints as follows:

1) X 6= Y which donates that X and Y cannot have the same value, and

2) ¬(X = 1 ∧ Z = 2) indicates that when X is 1, Z cannot be 2 and vice

versa. For a 2-way interaction, this system is presented as CA(2, 22, 31).

There are only 6 feasible covering arrays out of 12 total solutions. Those

6 CCA are: (1, 2, 1), (1, 3, 1), (2, 1, 1), (2, 1, 2), (2, 3, 1), (2, 3, 2). However, for

2-way interactions, all 2-way tuples can be covered in 5 CCA as follows:

(1, 2, 1), (1, 3, 1), (2, 1, 1), (2, 1, 2), (2, 3, 2). Obviously, we eliminated (2, 3, 1),

since three tuples in this array is covered by others. Thus the objective is to

find a minimum number of arrays that can cover all possible t-way tuples.

CIT has proven to be useful when testing software product lines, op-

erating systems, development environments, and many other systems that

are typically governed by a large configuration, parameters, and feature

spaces (Nie & Leung 2011).

55

Heuristic Approaches to the CIT Problem

Heuristic search methods have been successfully applied to the constrained

CIT problem to construct CCA. More often than not, those methods use

an off-the-shelf satisfiability solver (a.k.a. SAT solver) to check whether or

not the constructed rows of a CCA satisfy the constraints. In the litera-

ture, heuristic techniques devoted to CCA can be classified into two cat-

egories (Nie & Leung 2011), one-test-at-a-time (e.g., Cohen, Dalal, Kajla

& Patton 1994) and in-parameter-order (e.g., Yu, Lei, Nourozborazjany,

Kacker & Kuhn 2013).

A number of different metaheuristic methods have been proposed for

constructing and improving CCAs. Many of these methods first construct a

valid CCA with N rows for a CIT problem instance, using one of the one-

test-at-a-time methods. They then iteratively reduce the number of arrays

of the initial CCA, using a metaheuristic search algorithm to make the

new CCA feasible with respect to the given constraints (Bryce & Colbourn

2007). This process continues until a given stopping criterion is met, such

as a particular number of iterations or a given time budget. The most

well-established software application among this kind of framework is the

Covering Arrays by Simulated Annealing (CASA) tool (Garvin, Cohen &

Dwyer 2011). CASA is based on a nested three-layer search framework. An

outer search layer, resembling binary search, selects a target value for N ,

with an inner layer based on SA used to attempt to cover all tuples within

a CCA of that size. As CASA is the basis for much of our experimentation

in our study in this section, it is discussed in detail in Subsection 3.4.2.

In addition to CASA, two other frameworks of this nature have recently

shown promising results for the CIT. Lin, Luo, Cai, Su, Hao & Zhang (2015)

presented a ‘Two-mode meta-heuristic framework for Constrained Covering

Arrays’ (TCA), which uses a mixture of random walk and Tabu Search. In

each iteration of TCA, one uncovered valid t-tuple is inserted into a ran-

domly selected array (row) modifying only one cell. The modification only

happens if that cell has not been changed during the last T iterations, where

T is the length of tabu tenure (see Section 2.2 for details on Tabu Search).

More recently, Galinier, Kpodjedo & Antoniol (2017) proposed Covering

Array by Tabu Search (CATS). Unlike other methods that are restricted to

feasible areas of the search space, CATS extends the search process to allow

56

infeasible solutions, using an objective function that balances between the

number of constraint violations and the number of uncovered valid tuples.

Like TCA, it also puts restrictions on modifying a recently changed cell in

a CCA for a number of iterations based on the length of the tabu tenure.

There has recently also been work applying hyper-heuristics to the CIT

problem. Jia, Cohen, Harman & Petke (2015) reported that their hyper-

heuristic approach outperforms CASA, employing a Simulated Annealing-

based hyper-heuristic and six low-level heuristics. Zamli, Alkazemi & Kendall

(2016) proposed a high-level hyper-heuristic (HHH) to tackle CIT, using

Tabu Search as a high-level metaheuristic operating over four different low-

level metaheuristics.

Although here we have provided a review of some of the best-known

methods for combinatorial interaction testing, we refer the interested reader

to the following recent surveys on the topic by Khalsa & Labiche (2014) and

Nie & Leung (2011) for a detailed review of these and other approaches.

3.4.2 Covering Arrays by Simulated Annealing (CASA)

In 2003, Cohen, Colbourn & Ling (2003) first introduced a two-layer frame-

work for the constrained CIT problem, based on an outer search layer, and

an inner search layer. The proposed framework works iteratively, performing

outer search and inner search in each iteration. The outer search, resem-

bling binary search, decides a target value for the size of CCA (N) to search

for, within a particular range. The inner search layer, aided by SA, then

attempts to fit all valid t-way interactions within a covering array of that

size. Using a covering array initialised by AETG (Cohen, Dalal, Kajla &

Patton 1994), a simple mutation operator then generates a new solution,

with SA used to decide whether to accept the new solution. The mutation

operator replaces the value of a randomly chosen feature from a random row

of a CCA with another valid value for that feature. If the inner search fails,

the outer search decreases the upper bound on the range of current CCA

sizes to the current CCA size and defines a target value for N within the

new range. In the case that the inner layer is successful, the lower bound

on the range of CCA sizes is increased to the current CCA size and again

another value for N is taken from the new range.

Extending this existing framework, Garvin, Cohen & Dwyer (2009, 2011)

introduced the three-layer Covering Array by Simulated Annealing (CASA)

57

framework. The features of this three-layer search algorithm for the con-

strained CIT problem are shown in Figure 3.5. The three layers are referred

to as outermost search, binary search, and inner search. Binary search and

inner search are called iteratively in a similar manner to the previous version,

to build a CCA. Once binary search is terminated it sends the constructed

CCA to the outermost-search layer. Then that layer will again call binary

search for further search. The outermost search halts the search process once

the binary search in cooperation with inner search cannot find a smaller size

CCA.

One-side narrowing

Informed partitions

Bounds revision

Row sorting

Iteration bounding

Binary searchOutermost search Inner search

SAT history

Row replacement

t-set replacement

Simulated Annealing

Figure 3.5: Features of each layer of the three-layer search framework of
CASA.

The three-layer search starts from the outermost-search layer with a

given problem, lower and upper bounds on the range of CCA sizes, and Inner

Iteration Limit (IIL). The IIL is the stopping criterion for SA-based inner-

search layer below. This layer is complementary to the binary-search layer.

The binary search supposes that the inner search can determine whether or

not it is possible to generate a CCA for a given size N . Based on the result

that binary search receives from the inner-search layer, it eliminates a range

of sizes of N and will never again revisit that range. As the inner search

uses a stochastic algorithm, it cannot assure that finding a CCA of that

size is possible. As a result, following the termination of the binary-search

layer, the outermost-search layer does one-side narrowing of the range of

CCA sizes (N) from the upper bound, and then calls the binary-search

layer again. Figure 3.6 illustrates the difference between the binary search

and the outermost search layers. This way the soundness of using binary

search is somehow guaranteed, as it has a chance of revisiting those ranges

that were eliminated earlier in the previous call of the binary-search layer.

58

Resembing binary search

Larger

N size

Smaller

N size

(a) Binary search layer

One-side narrowing

Smaller

N size

Larger

N size

(b) Outermost search layer

Figure 3.6: Binary search vs outermost search (one-side narrowing). Dashes
partitions are the eliminated subrange of N . In a and b, the subrange
progresses from top to bottom.

The binary-search layer has four features, namely row sorting, iteration

bounding, informed partitioned, and bounds revision. This layer receives

three parameters from the outermost-search layer, i.e., upper and lower

bounds as well as IIL. Based on the feedback it receives from the inner-

search layer, it modifies IIL (iteration bounding) and the upper and lower

bounds (bounds revision). Iteration bounding doubles the inner iteration

limit under certain conditions. The binary-search layer estimates the best

choice for the next value of N , based on the number of iterations taken to

find a feasible CCA for the current N value (informed partitions). When the

inner-search layer successfully finds a feasible solution for a given N , some

rows of the current solution will need to be removed as the next value of N

will be smaller. When doing so, the binary-search layer keeps the rows con-

taining less frequent t-sets for the next call of the inner-search layer, as they

are more difficult to make than t-sets that are already duplicated multiple

times within a solution.

The inner-search layer receives a CCA from the binary-search layer. If

it receives a valid CCA, it immediately returns to the binary-search layer

and receives a smaller CCA. Once it receives an invalid CCA, it attempts

to transform it into a valid CCA. The inner-search layer uses three different

strategies to modify and create rows, using SA to decide whether to accept

newly generated solutions. In each iteration, it writes a missing t-set to a

randomly chosen row (t-set replacement). It then sends the modified row

to a SAT solver to check feasibility. It accepts the modified row if it is

feasible, otherwise it tries again to modify a randomly chosen row with a

t-set replacement strategy. If for 32 consecutive attempts it fails to make

a feasible t-set replacement, then row replacement is performed. The row

replacement strategy randomly picks a row and replaces it with a entirely

59

new generated row. Before using the newly generated row, it will be sent

to a SAT solver to ensure it is feasible. If it is not feasible, values of that

row will keep being perturbed until it becomes a feasible solution. During

this process, the algorithm remembers infeasible values that are rejected and

does not try them again (SAT history).

SA accepts worsening moves with probability p = exp((C−C ′)/T), with

C and C ′ denoting the cost function values of current and candidate solu-

tions, respectively, and T is the temperature (see Section 2.2 for more details

on SA). In CASA, the cost function is the number of non-covered tuples.

The initial solution is randomly generated. The starting temperature is 0.5,

and is updated in each iteration using a cooling rate of 0.0001% (Garvin,

Cohen & Dwyer 2011). SA halts once it finds a CCA for a given number of

rows N , or when it exceeds the IIL as defined by the binary-search layer.

Proposed Modifications: CALA

Herein we propose the use of pLAHC in the context of the constrained

CIT problem. To provide a fair comparison between SA and pLAHC, we

use the CASA framework as the basis of our work. We replace SA in that

framework with the pLAHC search technique, calling this modified approach

Covering Arrays by Late Acceptance (CALA). Note that the three-layer

CASA framework was designed and tested specifically using SA. Replacing

SA in CASA with pLAHC will provide us an insight whether or not pLAHC

is an effective alternative to SA within this framework.

To implement CALA we added the history list of LAHC to the inner-

search layer. Each time that the inner-search layer is called, the list will be

initialised with the number of non-covered tuples (since it is the objective

function of the inner search) in the CCA received from the binary-search

layer. CALA modifies the current solution using the same strategies as

CASA. The initial length of the history list is set to 32. This is based on

what we explained earlier in Section 3.2 that the initial history list length

can be very small. We double the length of the history list as suggested

in pLAHC (see Section 3.2) whenever the maximum number of iterations

are doubled by iteration bounding. The idea behind doubling the maximum

number of iterations (IIL) is that the inner-search requires more time to find

a CCA. And again, the idea behind doubling the length of history list in

60

pLAHC is to allow LAHC to accept a greater number of worsening moves,

in order to explore the search space more widely.

To provide a simple baseline for comparison, we also replaced SA with

standard Hill-Climbing (HC) and a non-deterministic näıve move accep-

tance (näıve) (Burke, Curtois, Hyde, Kendall, Ochoa, Petrovic, Vazquez-

Rodriguez & Gendreau 2010). The results of HC will provide evidence as to

whether accepting worsening moves is necessary to improve performance in

the three-layer search framework of CASA. This has not been reported in

the literature so far. The non-deterministic näıve move acceptance accepts

all improving moves, and worsening solutions with a given fixed probabil-

ity. This will give some indication as to whether it is the presence of non-

improving moves that improves performance, or the adaptive mechanism

that controls such moves that is required.

3.4.3 Experimentation

This section describes the experiments performed to evaluate the perfor-

mance of pLAHC within the three-layer search framework of CASA. Since

the presence of constraints increases the difficulty of constructing an opti-

mized CCA and better reflects problems found in the real world, we per-

formed all our experiments on constrained problem instances. We use two

well-known benchmark suites:

• [Real-2] (Cohen, Dwyer & Shi 2008) contains five constrained 2-way

real problem instances. Apache is a web server application, Bugzilla

is a web-based bug tracking system, GCC is a compiler system from

the GNU project, Spin-S and Spin-V are two components for model

simulation and model verification.

• [Syn-C2] (Garvin, Cohen & Dwyer 2011) contains 30 constrained

2-way problem instances. This benchmark suite was randomly gener-

ated, based on the structure of the five real-world problem instances

in [Real-2].

To implement the modifications outlined in subsection above, we used

the freely available C++ code of CASA from https://cse.unl.edu/~citpo

rtal/. In our experiments, we applied four different acceptance methods to

each problem instance using eight different inner iteration limit (IIL) of 256,

61

512, 1024, 2048, 4096, 8192, 16384, and 32768, as it is suggested by Garvin,

Cohen & Dwyer (2011). For each IIL, 100 independent runs were executed.

In the case of non-deterministic näıve move acceptance experiments, for

each IIL, we used 9 different probabilities for accepting worsening moves,

i.e., 10%, 20%, . . . , 90%. In this case, 100 independent runs were executed

for each probability.

In the following, we present and analyse the results obtained using four

different acceptance methods within the CASA framework. We report the

best results as is the practice in the CIT literature (Galinier, Kpodjedo &

Antoniol 2017, Garvin, Cohen & Dwyer 2009). For each instance, results

are obtained from 100 independent runs of 8 different inner iteration limits

per algorithm.

Table 3.4 compares the best results obtained using SA, pLAHC, HC

and the best of the nine variants of näıve hill climbing, from the eight IIL

values tested for each. The first column lists the name of each problem

instance. The first five problem instances are real problem instances from

the [Real-2] benchmark, and the remaining 30 instances are the synthetic

problem instances from the [Syn-C2] benchmark. Problem instances where

CALA found a smaller CCA than CASA are shown in gray. The number

of unconstrained and constrained parameters of these problem instances are

presented in the second and third columns respectively. Figure 3.7 presents

box plots for a selection of instances, showing the performance of methods

over all 100 runs for those instances.

Despite the fact that CASA was designed and tuned to use SA, pLAHC

performs very well in general in terms of CCA size as shown in Table 3.4.

CALA is able to outperform CASA in terms of CCA size obtained in 14 of the

35 problem instances tested, matching the performance of CASA in another

20 problem instances. CASA yields a better result than CALA in only one

problem instance, instance 30 of [Syn-C2]. However, Figure 3.7e shows that

there is little difference in performance between CASA and CALA on that

problem instance. Note that simple HC is able to find the same results as

CASA and CALA in 14 problem instances (2 of [Real-2] and 12 of [Syn-C2]),

suggesting that an advanced high-level search method is not required for all

instances. Despite this, inferior performance in the remaining instances

indicates that accepting worsening moves during the search is required to

find very high-quality CCA. Of the 14 instances where HC achieved the same

62

Table 3.4: Best solutions (size of CCA, N) produced by CASA, CALA, Hill-
Climbing (HC) and non-deterministic näıve move acceptance implemented
within the three-layer search framework of CASA over 100 independent runs.
Problem instances where CALA found a smaller CCA than CASA are shown
in gray. Lowest size of CCA in each row are shown in boldface.

Name Model Constraints CASA CALA HC näıve

Apache 215838445161 23314251 30 30 31 33
Bugzilla 2493142 2431 16 16 16 16
GCC 2189310 23733 18 16 19 18
SPIN-S 21345 213 19 19 19 20
SPIN-V 24232411 24732 33 32 34 37

1 28633415562 2203341 37 36 39 46
2 28633435161 21933 30 30 30 31
3 22742 2931 18 18 18 18
4 251344251 21532 20 20 20 20
5 215537435564 2323641 44 43 48 56
6 2734361 22634 24 24 24 24
7 22931 21332 9 9 9 9
8 210932425363 2323441 38 37 42 48
9 25731415161 23037 20 20 20 20
10 213036455264 24037 41 38 45 53
11 28434425264 22834 40 39 43 51
12 213634435163 22334 36 36 41 45
13 212434415262 22234 36 36 36 37
14 281354363 21332 36 36 38 40
15 25034415261 22032 30 30 30 31
16 281334261 23034 24 24 24 24
17 212833425163 22534 36 36 40 44
18 212732445662 2233441 40 38 43 50
19 217239495364 23835 45 42 48 57
20 213834455467 24236 51 51 53 66
21 27633425163 24036 36 36 37 39
22 272344162 23134 36 36 36 36
23 2253161 21332 12 12 12 12
24 2110325364 22534 40 39 43 51
25 211836425266 2233341 46 45 49 59
26 287314354 22834 29 27 31 35
27 25532425162 21733 36 36 36 36
28 2167316425366 23136 49 47 51 62
29 21343753 21933 26 25 28 30
30 2733343 22032 16 17 19 18

63

results as CASA and CALA, simple näıve acceptance was also able to obtain

the same results for 10 of them. This highlights two things. Firstly, for those

14 instances where näıve acceptance matches CASA and CALA, it might

be that performance is determined by other parts of the framework than

the inner-search layer that are not varied within our experiments. Secondly,

if it is the case that accepting non-improving moves is necessary for good

performance, as we have supposed based on the performance of HC, clearly

an intelligent mechanism to manage such moves is required.

Although Table 3.4 and Figure 3.7 provide an overview of the perfor-

mance of each acceptance method, due to the nature of the termination

criteria of the CASA framework the computational effort to generate these

results can differ. Table 3.5 reports the number of function evaluations

executed (FE) and inner iteration limit (IIL) used by the the acceptance

methods which obtain the results given in Table 3.4. The probability that

was used by the non-deterministic näıve move acceptance to obtain the best

results for each instance is also reported (pn). Note that in Table 3.5, we

give the results with the smallest size CCA executing the smallest number

of FEs. Thus, in a few cases, it is possible that a smaller IIL is able to gener-

ate the same “best” size CCA. However, the IIL of the acceptance criterion

using the smallest number of FEs is given. Figure 3.8 shows the average of

the 35 best CCAs found by each acceptance method, for each of the eight

IIL values tested.

Here we observe that increasing the IIL when using SA is not leading

to improved performance, with the majority of best results using a limit

of 256 iterations. Although we tested the iteration limit for CASA at eight

different levels (from 256 through to 32768), improvement in solution quality

was only observed in a handful of cases. This is in contrast to CALA, where

a higher iteration limit can lead to improved performance. Note that in

general a higher iteration limit corresponds to a longer list length, which

has previously been shown to improve the performance of LAHC in other

problem domains. This trend is clearly visible in Figure. 3.8, where we plot

the best sizes of CCA using eight different levels of IIL averaged over all 35

problem instances. For ten of the eleven problem instances that CASA and

CALA report the same solution quality from the same IIL, it is also worth

highlighting that CALA usually performs fewer FEs on average than CASA

(i.e., [Syn-C2] instances 2, 3, 4, 6, 9, 15, 16, 22, 23, 27). For HC, most of

64

 5

 10

 15

CASA CALA HC naïve

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

(a) Problem instance 7

 20

 25

CASA CALA HC naïve
N

u
m

b
e

r
o

f
ro

w
s
 i
n

 C
C

A
 (

N
)

(b) Problem instance 9

 40

 45

 50

 55

CASA CALA HC naïve

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

(c) Problem instance 18

 45

 50

 55

 60

CASA CALA HC naïve

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

(d) Problem instance 19

 15

 20

 25

CASA CALA HC naïve

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

(e) Problem instance 30

 15

 20

 25

 30

CASA CALA HC naïve

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

(f) GCC

Figure 3.7: Sizes of CCA obtained over 100 independent runs for 6 different
problem instances. In (e) we also show the statistical outliers. In problem
instance 30, only in one run —a statistical outlier— CASA reports a smaller
CCA than CALA.

65

Table 3.5: Inner iteration limit (IIL), and average function evaluations (FE)
used by acceptance methods obtaining the best results for each instance
over 100 independent runs. pn reports the probability that was used by
the best-performing non-deterministic näıve move acceptance. The problem
instances where CALA found a smaller CCA than CASA are shown in gray.

Name CASA CALA HC näıve
FE IIL FE IIL FE IIL FE IIL pn

Apache 12428 256 42984 1024 21318 1024 3217527 32768 0.1
Bugzilla 6906 256 5014 256 3042 256 14601 256 0.2
GCC 23966 256 170960 4096 19933 256 47475 256 0.1
SPIN-S 31709 256 28599 256 5609 256 263872 8192 0.1
SPIN-V 85587 1024 249668 4096 440130 8192 652949 2048 0.1

1 271544 256 705174 2048 93010 4096 387637 2048 0.1
2 12800 256 9515 256 7497 512 135987 1024 0.1
3 3971 256 2530 256 2550 256 2914 256 0.1
4 18606 256 7382 256 96610 8192 125470 2048 0.1
5 337674 2048 1725605 32768 211295 4096 1446352 8192 0.1
6 9279 256 9138 256 3868 256 321926 4096 0.1
7 2239 256 3723 256 2302 256 5494 256 0.1
8 262800 256 276528 4096 48474 2048 720739 2048 0.1
9 10502 256 9009 256 8851 256 24964 256 0.1
10 1773201 16384 728932 8192 14899 256 341910 1024 0.1
11 299857 256 408347 8192 18350 512 83994 256 0.1
12 78917 256 134122 512 83982 4096 166717 256 0.1
13 25669 512 14098 256 7728 512 97738 512 0.1
14 44803 256 56625 2048 303042 16384 2115549 16384 0.1
15 19422 256 6979 256 162134 8192 349896 4096 0.1
16 8815 256 8445 256 3632 256 53157 512 0.1
17 183186 512 150178 2048 21319 1024 393618 2048 0.1
18 204717 256 921257 16384 223842 8192 692631 4096 0.1
19 215703 512 1418309 32768 825576 32768 2126520 16384 0.1
20 990948 512 1826568 32768 1369898 32768 569307 1024 0.1
21 44435 256 26059 512 33339 2048 95927 512 0.1
22 5836 256 3431 256 2818 256 21103 256 0.2
23 9171 256 7767 256 6068 256 12667 256 0.5
24 572118 2048 516839 8192 622386 32768 1468696 8192 0.1
25 600257 512 1685187 32768 27570 256 1971717 8192 0.1
26 67397 256 212219 4096 10488 512 46200 256 0.1
27 11015 256 7809 256 4698 256 39820 256 0.1
28 525787 256 2672647 32768 133453 4096 1817860 8192 0.1
29 104441 2048 59401 256 378675 16384 123522 256 0.1
30 488065 16384 26133 1024 11888 512 38258 512 0.1

66

the best solutions reported have an inner iteration limit (IIL) of 256, the

smallest iteration limit used. This is perhaps to be expected, since HC does

not have a strategy to escape from a local optimum and can quickly arrive

at sub-optimal solutions.

 30

 32

 34

 36

 38

 40

 256 512 1024 2048 4096 8192 16384 32768

N
u

m
b

e
r

o
f

ro
w

s
 i
n

 C
C

A
 (

N
)

Inner iteration limit (IIL)

CASA
CALA

HC
naïve

Figure 3.8: Best sizes of CCA using eight different levels of IIL averaged
over all 35 problem instances.

For the näıve approach, the best results are almost always obtained with

pn = 0.1, i.e., worsening moves are accepted 10% of the time. Again this

might be expected, as increasing the value of pn simply leads the search to

behave as a random walk. What is not shown in Table 3.5 are the cases

where other values of pn achieve the same best CCA size, albeit using a

greater number of FEs. As mentioned above, it appears that some instances

are easier to solve than others within the overall CASA framework. For

a number of instances (Bugzilla and [Syn-C2] instances 3, 4, 6, 7, 9, 16,

22, 23 and 27), the same best CCA size is found using all four acceptance

methods. Figures 3.7a and 3.7b show two of these instances. In the case

of instance 3 and 23 from [Syn-C2], the same best results are obtained by

all inner iteration limits (256, ..., 32768) of all näıve probabilities (10%, ...,

90%). As discussed above, it seems that in the case of these instances the

search process is driven by other mechanisms within the framework.

67

3.5 Summary

This chapter proposed an automated strategy to eliminate the sole parame-

ter of the LAHC algorithm, a general purpose metaheuristic introduced by

Burke & Bykov (2017). LAHC belongs to the class of local search methods,

is simple to implement, and easy to use in practice, requiring the tuning of

a single parameter whose effect on the search is well understood (see Sub-

section 2.2.1). Building on techniques that have been successfully used in

parameter-less evolutionary algorithms, we developed a parameter-less ver-

sion of LAHC, i.e., pLAHC, and then refined it even further with seeded

restarts, i.e., pLAHC-s. The resulting parameter-less algorithm is of course

slower than a LAHC fine-tuned with an appropriate history length value,

but has the advantage of not requiring any tuning (which in practice is

time consuming, and needs to be redone for different problems, and even for

different instances across the same problem.) Experiments on several TSP

benchmark instances show that the parameter-less LAHC is effective.

Afterwards, in order to show that the proposed approach has a broad ap-

plicability, we applied the pLAHC algorithm to a real-world problem taken

from the Search Based Software Engineering field. We employed the con-

strained CIT problem using the well-established CASA framework. CASA

was specifically designed and tuned to use Simulated Annealing. In the pro-

posed modified framework, CALA, Simulated Annealing is replaced within

CASA by pLAHC. Using the structure of the CASA framework, the history

list length of LAHC is set and controlled automatically. Although CASA was

originally designed and tuned to use Simulated Annealing, pLAHC shows

good performance compared to Simulated Annealing in the CASA frame-

work. In 14 of the 35 benchmark problem instances tested, CALA outper-

forms CASA, with CASA only outperforming CALA in one instance.

68

It doesn’t matter how beautiful

your theory is, it doesn’t matter

how smart you are. If it doesn’t

agree with experiment, it’s

wrong.

Richard P. FeynmanChapter 4

Theory Driven by Practice:

A Cutoff Time Strategy for

SLS

The performance of pLAHC significantly relies on when the LAHC restart

is fired. Throughout the course of an optimization run, the probability of

yielding further improvement becomes smaller as the search proceeds, and

eventually the search stagnates. Under such a state, letting the algorithm

continue to run is a waste of time as there is little hope that subsequent

improvement can be made. The ability to detect the stagnation point is

therefore of prime importance. If such a point can be detected reliably,

then it is possible to make better use of the computing resources, perhaps

restarting the algorithm at the stagnation point, either with the same or

with a different parameter configuration.

This chapter proposes a new cutoff time strategy. It presents a method

that is able to reliably detect the stagnation point for one-point stochas-

tic local search algorithms applied to combinatorial optimization problems.

The strategy is derived from the Coupon Collector’s Problem (CCP), and

is scalable based on the employed perturbation operator and its induced

neighbourhood size, as well as from feedback from the search. The suitabil-

ity and scalability of the method is illustrated with the Late Acceptance

Hill-Climbing algorithm on a comprehensive set of benchmark instances of

three well-known combinatorial optimization problems: the Travelling Sales-

man Problem, the Quadratic Assignment Problem, and the Permutation

69

Flowshop Scheduling Problem.

The Coupon Collector’s Problem is a well-known problem from prob-

ability theory, and has been used to analyse the behaviour of randomized

algorithms (Motwani & Raghavan 1995). However, in this chapter, we use

it to introduced a new dynamic cutoff time strategy. In the CCP there are

n coupon types and at each trial a coupon is chosen uniformly at random

with replacement. The CCP answers the following question: how many tri-

als need to be collect to get at least one copy of each type of coupon? In

the proposed cutoff time, the size of the neighbourhood equated the number

of coupons, n, in CCP formulation. Thus, the CCP calculates the num-

ber of ideal moves in which, with a high probability, we can conclude that

the search is stagnant. Note that the perturbation operator used in a SLS

algorithm induces a neighbourhood of a given size.

This work was first published in Lobo, Bazargani & Burke (2020); it has

a companion website available at https://mbazargani.github.io/CCPcu

toffTime/ and also a 79-page PDF document as supplementary material

available at https://bit.ly/3foVjud. The chapter is organized as follows.

The next section explains the motivation behind this work. Thereafter,

Section 4.2 reviews the coupon collector’s problem and how it can be used

to design a cutoff strategy for stochastic local search. Sections 4.4 and 4.5

present the experimental setup and the analysis of the results obtained,

respectively. In Section 4.6, we discuss two criticisms that can be made

to the proposed technique. Finally, we summarize and present the major

conclusions of this chapter.

4.1 Motivation

As we explained in Section 2.2, one-point SLS algorithms maintain a current

solution which is perturbed until a specified stopping criterion is reached.

At each iteration, the current solution is modified yielding a candidate solu-

tion. This can be accepted, becoming the new current solution for the next

iteration, or rejected, in which case the current solution remains unchanged.

One-point SLS algorithms differ among each other in large part by their

acceptance criteria and in the way they use (or not) additional memory to

help guide the algorithm. The current solution together with the additional

memory define the state of the SLS algorithm at any given point in time.

70

During the course of running such an algorithm, the current solution

changes quite often during the initial phase of the search. Then, as the

search progresses, those changes become less frequent, and eventually the

search stagnates. Under such a state, there is little chance that better

solutions are produced, and it may be beneficial to either stop or restart the

algorithm. Indeed, it is widely recognized that SLS algorithms often benefit

from restarts (Hoos & Stützle 2005, p. 192). By doing so, the algorithm has

a chance to explore new regions of the search space that can potentially lead

to other good solution(s), as opposed to always staying in the same region,

which could be already close to being fully explored and with little hope

of yielding further improvement. In some sense, the restarting mechanism

deals with the dilemma of exploration versus exploitation. By restarting,

the algorithm can explore an unexplored region of the search space; by not

restarting, the algorithm continues to exploit the region that it has already

explored. Another way to look at this problem is to recognize that at any

given point in time during the run, the SLS algorithm needs to make a

decision: either continue its normal mode of operation, or perform a restart

from a different position in the search space. A crucial aspect is to decide

the proper time to do the restart, the so-called cutoff time.

For algorithms that fully explore the neighbourhood of a solution, the

cutoff time decision can be easily made. This is the case with iterative first

improvement or iterative best improvement algorithms (see Section 2.2):

having explored the entire neighbourhood of a current solution without im-

provement, we know that the algorithm has reached a local optimum under

the given neighbourhood and the best it can do is to continue to explore

(i.e., restart) from a different initial solution. The new initial solution is

not necessarily selected uniformly at random from the search space. Often,

the new initial solution is obtained by making a larger perturbation of the

current solution, which, by being larger than usual, may allow the search

algorithm to escape that local optimum without needing to do a complete

restart. This is the basic idea behind iterated local search (Stützle & Ruiz

2018), a quite effective method in practice.

There are, however, other popular and effective SLS algorithms that do

not systematically explore the entire neighbourhood of a solution, e.g., Simu-

lating Annealing, Great Deluge Algorithm, Flex-Deluge Algorithm, Thresh-

old Accepting, and Late Acceptance Hill-Climbing, to name a few. The

71

proper estimation of the cutoff time of this type of SLS algorithm is non-

trivial and is crucial.

This chapter proposes a method to make the restart decision based on

theoretical grounds as opposed to an empirical rule-of-thumb. The method is

based on results from the coupon collector’s problem, a well-known problem

from the probability theory. The coupon collector’s problem has been used

to analyse the behaviour of randomized algorithms (Motwani & Raghavan

1995). Herein we use it to design a scalable approach for choosing an appro-

priate cutoff time for one-point randomized SLS algorithms that can accept

worsening moves. The proposed approach does not impose a computational

expense on the search algorithm.

We illustrate the proposed cutoff time strategy with the LAHC algo-

rithm. We test the proposed method on a range of common benchmark

sets derived from three classical NP-hard problems, namely the Travelling

Salesman Problem (TSP), the Quadratic Assignment Problem (QAP), and

the Permutation Flowshop Scheduling Problem (PFSP), using two different

perturbation operators. Our experiments show that the proposed approach

can firmly decide the cutoff time based on the problem instance size and

perturbation operator employed. It also shows that the current solution

obtained at the cutoff time is at a local optimum with high confidence.

4.2 The Coupon Collector’s Problem

We present the coupon collector’s problem (CCP) as described by Motwani

& Raghavan (1995). In the coupon collector’s problem, there are n coupon

types and at each trial a coupon is chosen at random. Each coupon type

is equally likely to be drawn. We are interested in the expected number

of trials needed to collect at least one copy of each type of coupon. This

problem is equivalent to an occupancy problem in which m balls are ran-

domly distributed in n bins and we are interested in the expected number

of trials to get at least one ball in every bin. Let X be a random variable

denoting the number of trials needed to collect at least one copy of each type

of coupon. The expected value of X is E[X] = nHn, where Hn =
∑n

i=1 1/i

is the nth Harmonic number which is asymptotically equal to lnn + O(1).

A good approximation is given by E[X] = n lnn+ γn, where γ ≈ 0.5777216

is the Euler-Mascheroni constant.

72

Regarding the distribution of X, it can be shown that it is sharply

concentrated around its mean value (Motwani & Raghavan 1995, p. 58).

Asymptotically, the probability that X deviates from n lnn by a quantity

cn, for any real constant c, is given by

lim
n→∞

Pr[n lnn− cn ≤ X ≤ n lnn+ cn] = e−e
−c − e−ec , (4.1)

which quickly approaches 1 as c increases. For the non-asymptotic case, for

a constant β > 1 an upper tail bound is given by

Pr[X > βn lnn] ≤ n−β+1 . (4.2)

We shall use this last result to propose a cutoff time for one-point SLS

algorithms that accept worsening moves.

4.2.1 Cutoff Time Strategy Based on the Coupon Collector’s

Problem

When a one-point randomized SLS algorithm is used to solve a combinatorial

optimization problem, the current solution s is perturbed by a problem spe-

cific operator for that problem yielding a solution s′. The operator induces

a neighbourhood N(s) of a given size. For example, a common operator for

the TSP is the 2-exchange move which removes two non-adjacent edges of a

tour and reconnects the sub-tours by reversing one of them (see Fig. 2.3). In

a problem with m cities, there are m(m−3)/2 possible 2-exchange moves and

this is the size of the 2-exchange TSP neighbourhood. Obviously, different

operators yield different neighbourhood sizes.

The state of a one-point randomized SLS algorithm can be described

by the current solution that it maintains and by other information that it

requires for its operation.

We now address the following question: how can we conclude that the

search is stagnant? The answer to this question is simple: when there is

strong evidence that subsequent operator moves will not change the state

of the algorithm. Note that the state of a one-point randomized SLS al-

gorithm can be described by the current solution that it maintains and by

other information that it requires for its operation. The next question is:

how can we detect such evidence? Again the answer is simple: when the

73

neighbourhood of the current solution has been (with high probability) fully

explored without resulting in a change in the state of the algorithm. It turns

out that the coupon collector’s problem allows us to detect that evidence

by equating the size of the neighbourhood to the number of coupons, and

recognizing that the possible moves on a solution are equally likely.

Inequality 4.2 tells us that the right probability that the number of

trials needed to fully explore a neighbourhood of size |N(s)| is greater

than β |N(s)| ln |N(s)| is at most |N(s)|−β+1. By raising β this probability

can be made arbitrarily small.

Let p = 1−|N(s)|−β+1 be the confidence that the neighbourhood of size

|N(s)| of a solution is fully explored upon β |N(s)| ln |N(s)| trials. Solving

the previous equation for β gives us the desired value for a given confidence p.

β = 1− ln(1− p)
ln |N(s)|

. (4.3)

The number of iterations needed to cutoff the algorithm would then be equal

to θ = β |N(s)| ln |N(s)| trials without changing the state of the algorithm,

with β obtained from Equation 4.3 for a given confidence level p. We shall

now illustrate how this idea can be used within the LAHC algorithm.

4.3 Stopping LAHC Using the Results of the

Coupon Collector’s Problem

Following what was presented in Subsection 4.2.1, we can use the coupon

collector’s problem to decide the cutoff time for the LAHC. There is, how-

ever, a subtlety: the cutoff time θ may never be reached because the state of

the algorithm can change indefinitely due to plateau moves. As such, rather

than counting the number of consecutive iteration steps where the state of

the algorithm does not change, we count the number of consecutive iteration

steps where neither the current solution has improved nor the history list

was updated.

This number is used to decide at any given point in time whether the

algorithm should stop. We can do so using a certain confidence that the

entire neighbourhood of the current solution has been explored without af-

fecting the state of the algorithm, plateau moves aside. As an example, for

a neighbourhood size |N(s)| = 1000 and a confidence level p = 0.95, we

74

can use Equation 4.3 to obtain β = 1.4337 and the cutoff time would be

θ = β |N(s)| ln |N(s)| = 9903 iterations.

Due to the specificities of LAHC, an extra condition needs to be fullfilled:

θ ≥ Lh. Not fulfilling this condition would imply that the history list could

still be updated in subsequent iterations had the algorithm not stopped.

This extra condition is a direct consequence of the corollary stated at the

end of Subsection 2.2.1. The cutoff time θ for LAHC is therefore given by the

maximum of Lh and β |N(s)| ln |N(s)|. We shall now present experiments

to validate this strategy.

4.4 Experimental Setup

This and the following section present an extensive experimental evalua-

tion of the proposed cutoff time strategy in order to validate its suitability

and scalability. In this section, we describe the goals of the experiments,

the benchmark problems, and the experimental setup. In the subsequent

section, the results will be presented and discussed.

The cutoff strategy is illustrated with the LAHC algorithm. The ex-

periments were programmed in C++ and executed using High Performance

Computing provided by Queen Mary University of London. One should

note that the aim of this work is not to introduce a new SLS algorithm or

a new operator that performs better on the benchmark problems used in

this study, but rather to test the new cutoff time based on CCP. The overall

goals of our experiments are:

• To compare it with another dynamic cutoff time approach used by

Burke & Bykov (2008, 2017), which is a common strategy of stopping

the algorithm when the solution cost does not improve for a sufficiently

long period of time: In their approach, the cutoff time is determined

when the number of consecutive non-improving (idle) iterations over

the total number of iterations done from the beginning of the search

reaches a specified threshold (2% in their case) and at least a min-

imum number of iterations (100,000 in their case) are performed to

avoid early termination. As an example, if the search has produced

one million iterations from the beginning and during the last 20,000

iterations, there was no improvement, then the search is stopped.

75

• To investigate the scalability of the proposed approach based on the

instance size: To accomplish this aim, besides applying it to several

TSP instances ranging from 783 to 3795 cities, we also apply it to all

QAP instances of QAPLIB, which have much smaller sizes (ranging

from 10 to 256). We use the 2-exchange move as a perturbation oper-

ator for both problems. This operator induces a neighbourhood of size

m(m − 3)/2 for the case of TSP, and
(
m
2

)
= m(m − 1)/2 for the case

of QAP, with m being the number of cities/facilities of the TSP/QAP

instance.

• To investigate the scalability of the proposed approach based on the

perturbation operator, we also applied it to all Taillard (1993) in-

stances of PFSP using a different perturbation operator, i.e., the in-

sertion move. This operator induces a different neighbourhood size

with respect to the 2-exchange move used for the TSP and QAP in-

stances, namely (m− 1)2, with m being the number of jobs.

• To study the solidity of the method, we check all neighbours of the

current solution at the cutoff time. Our experimental results confirm

our expectation drawn from the CCP that at the cutoff time, the

current solution is at local optimum with high probability.

Although we will only explicitly compare the CCP method with the 2%

strategy, we will be implicitly comparing it with any fixed-based percentage

strategy. The experiments that we are about to present show that a cutoff

time based on a fixed-percentage of total time without improvement (no

matter what that value is, 2% or any other) does not scale well across

different problem classes, across problem instances within each class, and

even across parameter settings for a given problem instance, as we shall see

in Subsection 4.5.2.

4.4.1 Benchmark Problems

We are using three well-known combinatorial optimization problems to eval-

uate the performance of the proposed cutoff time. We perform experiments

on 30 TSP instances taken from the well-known TSPLIB repository. Among

the 30 instances are the 7 instances used by Burke & Bykov (2017). Subsec-

tion 2.1.1 provides details on TSP and TSPLIB. Remember that the number

76

of cities is indicated in the instance name; for example, rat783 is an instance

with 783 cities.

The remaining of this subsection explains the other two problems and

datasets used in our experiments.

Quadratic Assignment Problem (QAP)

The QAP is another well-studied NP-hard optimization problem (Sahni &

Gonzalez 1976). Many real-world problems can be formulated as QAPs,

namely campus layout (Dickey & Hopkins 1972), scheduling (Geoffrion &

Graves 1976), and designing typewriter layout (Zhai, Hunter & Smith 2002),

to name a few. It has been shown in the literature that they are one of the

hardest combinatorial optimization problems (Hoos & Stützle 2005). To

date, instances of size bigger than 30 cannot generally be solved using exact

methods. The QAP can be described as the problem of assigning a set of m

facilities to a set of m locations, with given flows between facilities and given

distances between locations. The QAP aims to assign facilities to locations

in such a way that every facility is assigned to exactly one location, every

location is assigned to exactly one facility, and the sum of the products

flow×distance is minimized. This can be formally stated as searching for a

permutation φ that minimizes the function f defined as follows:

f(φ) =

m∑
i=1

m∑
j=1

aijbφ(i)φ(j) (4.4)

where φ is a permutation of the set of integers {1, . . . ,m} denoting an as-

signment of the m facilities to the m locations. f(φ) denotes the cost of

permutation φ. A flow of value aij has to go from facility i to facility j, φ(i)

gives the location of facility i in φ. Thus, bφ(i)φ(j) is the cost of assigning

facility i to location φ(i) and facility j to location φ(j), simultaneously. In

this study, we use all QAP instances of the QAPLIB repository accessible at

http://anjos.mgi.polymtl.ca/qaplib/. See Burkard, Karisch & Rendl

(1997) for detailed information on QAPLIB. The instance sizes of QAPLIB

varies from 10 to 256, and is indicated in the instance name. For example,

tai256c has 256 facilities and locations. The QAPLIB repository contains

136 instances that can be broadly classified into four types as follows:

77

1. Real-world instances taken from practical applications of QAP.

2. Unstructured instances that are generated randomly according to a

uniform distribution. These are among the hardest QAP instances to

solve using exact methods.

3. Randomly generated instances with structure resembling a distribu-

tion found in real-world problems.

4. Instances with distance matrix based on the Manhattan distance on a

grid.

Permutation Flowshop Scheduling Problem (PFSP)

The PFSP is one of the most thoroughly studied class of scheduling prob-

lems (Framinan, Leisten & Garćıa 2014). There are different variants of

it. In the literature, the most commonly studied variant is the minimiza-

tion of the total completion time of the last job (Fernandez-Viagas, Ruiz

& Framinan 2017), i.e., the makespan Cmax, and that is the variant that

we use in this chapter. Formally, a PFSP instance is given by a set of n

independent jobs {J1, . . . , Jn}, where each job Jj must be sequentially pro-

cessed on a set of m machines {M1, . . . ,Mm}. Each job Jj requires a given

fixed non-negative processing time pij on each machine Mi. In the PFSP,

all n jobs are to be processed on the m machines in the same machine order

starting from M1 and finishing on Mm. The objective of PFSP-Cmax is to

find a job sequence φ that minimizes the makespan. For our experiments,

we use the well-known standard benchmark set of Taillard (1993). It is

composed of instances with number of jobs in {20, 50, 100} for a number of

machines in {5, 10, 20}, instances with 200 jobs for 10 and 20 machines, and

instances with 500 jobs for 20 machines. For each combination of number

of jobs and number of machines, Taillard provides 10 instances, so, in total

the set contains 120 instances. They are accessible from Taillard’s web-

site http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancem

ent.dir/ordonnancement.html. In the tables containing the experimental

results of PFSP, the instances of one particular size are labeled with n×m,

with n being the number of jobs and m the number of machines. We also

78

carried out experiments with a more recent benchmark introduced by Val-

lada, Ruiz & Framinan (2015), a.k.a. VRF, which contains instances with

up to 800 jobs and 60 machines.

4.4.2 Neighbourhood Structures

The perturbation operators that we employ are used quite often with search

algorithms for these problems. For TSP and QAP, we use the 2-exchange

move. In TSP it operates as follows: two non-adjacent edges are removed

from a tour creating two sub-tours and subsequently one of the sub-tours is

reconnected in reverse order. In QAP, it swaps the locations of two randomly

selected facilities. As explained earlier in Subsection 4.2.1, the neighbour-

hood size of this operator is m(m−3)/2 for TSP and
(
m
2

)
= m(m−1)/2 for

QAP, with m being the number of cities/facilities. The 2-exchange move for

QAP is sometimes called the swap or interchange move. For PFSP, we use

the insertion move as a perturbation operator, which consists of randomly

picking job Ji at position i of the permutation and inserting it at position

j 6= i, i.e., Ji can be inserted before or after position j. This operator is

sometimes called the shift operator. The size of the insertion neighbourhood

is (m− 1)2, with m being the number of jobs.

4.4.3 Algorithm Setup

We compare two cutoff strategies: the 2% of total search time without

improvement in solution cost, with a minimum of 100,000 iterations, as

undertaken previously in Burke & Bykov (2017), and the coupon collector’s

problem based strategy with a confidence p = 0.95 of having explored the

entire neighbourhood of the current solution without changing the state of

the algorithm, plateau moves aside, as explained earlier. Henceforth, we

refer to these two strategies as the 2% strategy and the CCP strategy.

We note that the confidence p chosen for the CCP calculation has a

clear mathematical meaning. We choose p = 0.95 in our experiments but, of

course, other value could be used. The important thing is that for a given p

the theory says that at the cutoff time the solution should be, on expectation,

at a local optimum with a probability of at least p. Obviously, a better

guarantee of stopping at a local optimum can be obtained by raising p closer

(but never reaching) 100% at the expense of waiting a little longer. Note

79

that the distribution of the number of trials needed to collect all coupons on

the CCP is sharply concentrated around its mean value. Take the example

described earlier in Section 4.3. If the size of the neighbourhood is 1000

and p = 0.95, the resulting β = 1.4337. If instead we choose p = 0.99 for

the same neighbourhood size we would get β = 1.66666 (just a small factor

increase). A choice of p = 0.9999 would give β = 2.33333 (still a reasonable

factor). Of course we cannot set p = 1.0 because that implies β =∞.

For every problem instance, we carry out experiments with three history

lengths, Lh ∈ {1, 5000, 50000}. These are the lengths used by Burke &

Bykov (2017) in their original paper on LAHC. For every instance, the

LAHC with a given history length was run 100 independent times, for both

cutoff strategies.

To make the comparison as fair as possible, each of the 100 independent

runs eventually stops (as specified by the cutoff strategy, either the 2% or

the CCP strategy) and at that point in time we record several pieces of

information that are tracked by our computer simulations. Subsequently,

the run is resumed and continues until the other cutoff strategy tells the

algorithm to stop. This way, the behaviour of the LAHC algorithm is exactly

the same in both cases up to the point where one of them stops as dictated

by the cutoff strategy; the only difference being that one of them will run

for a longer period of time. By doing so we remove external factors that

could blur the comparison between the two cutoff strategies.

When the algorithm stops, we record the total number of iterations per-

formed by the algorithm and the best solution cost achieved up to that point

in time. At the time the algorithm stops, we also visit all the neighbours

of the current solution and count how many of those neighbours are better

and how many have an equal cost to that of the current solution.

Initialization

The initial candidate solutions for TSP and QAP are generated uni-

formly at random. For these two problems, all the Lh elements of the history

list of LAHC are initialized with the cost value of the initial solution.

For the PFSP, the well-known construction heuristic NEH (Nawaz, En-

score & Ham 1983) is used to generate the initial solution. Most recent meta-

heuristic algorithms for PFSP rely on NEH (algorithm of Nawaz, Enscore

80

& Ham) initialization (Ruiz & Maroto 2005, Ruiz & Stützle 2007, Taillard

1990). NEH can be described by the following three steps: 1) sort the m

jobs by descending order of the sums of processing times on the machines;

2) take the first two jobs and schedule them (from two possible schedules) to

minimize the partial makespan; 3) take the remaining jobs one at the time

and find the best schedule position for them in the sequence of jobs that are

already scheduled to minimize the partial makespan. It has been shown in

the literature that the NEH heuristic has the best performance for a wide

variety of problem instances (Taillard 1990, Ruiz & Stützle 2007). NEH

has a complexity of O(m3r), which can be problematic for large problem in-

stances. However, Taillard reduced its complexity to O(m2r) by using a new

data structure (see Taillard (1990) for details). We use Taillard’s method

in our implementation of NEH. Since the initial solution generated by NEH

is already very good, initializing the history list of LAHC with the NEH

solution cost is not a good idea because LAHC would degenerate quickly

into a simple hill-climbing algorithm. Note that LAHC benefits from ac-

cepting worsening moves. Thus initializing the history list with very good

cost values holds back LAHC from accepting worsening moves right from

the start. In order to avoid this, we initialize all the Lh elements of the his-

tory list of LAHC with a cost value of a randomly generated solution. This

complies with Burke & Bykov (2017) proposition on initializing the history

list of LAHC. Although in the original paper of LAHC, they initialized the

elements of the history list with the cost of the initial solution, they also

noted that the list can be initialized with other values, if necessary.

4.5 Experimental Results

The LAHC algorithm was applied to 30 TSP instances taken from TSPLIB,

to all 136 QAP instances contained in QAPLIB, to all 120 PFSP Taillard’s

instances, and to all 480 PFSP instances of the more recent benchmark

introduced by Vallada, Ruiz & Framinan (2015). In this chapter, due to

space restrictions, we present here a subset of the experiments. For TSP,

we show the results of 7 instances, the exact same ones used by Burke &

Bykov (2017) in their study. For QAP, we present 17 Taillard instances of

size larger than 30. These are among the most difficult QAPLIB instances

(Ochoa & Herrmann 2018). For PFSP, we report the results of 12 instances,

81

one for each combination of number of jobs and number of machines found

in Taillard’s benchmark. Notwithstanding, results for all problem instances

are available in a companion website of this work at https://mbazarga

ni.github.io/CCPcutoffTime/ and also as a 79-page PDF document at

https://bit.ly/3foVjud.

4.5.1 Comparison of the CCP and the 2% Cutoff time Strat-

egy

Table 4.1 shows the results obtained for the three problem classes and for

the three settings of the history length Lh ∈ {1, 5000, 50000}. Recall that

100 independent runs were made for each combination of problem instance

and Lh value. Table 4.1 reports how many of those runs reached a better,

equal, or worse solution cost (labeled as <, =, or >), when using the CCP

as opposed to the 2% cutoff strategy. It also reports on the number of runs

for which the CCP strategy took less or more iterations to stop than the

2% strategy (labeled as < or >). As an example, consider the first TSP

instance rat783 with Lh = 5000. The table entries say that in 32 out of 100

runs, the CCP strategy lead to a better solution cost than that provided by

the 2% strategy, and in the remaining 68 runs the solution cost obtained

at the cutoff time was the same for both strategies. Regarding the number

of iterations, the CCP strategy allowed the algorithm to run for a longer

period of time on all of the 100 runs.

For completeness, Tables 4.2, 4.3, and 4.4, show the Average Relative

Percentage Deviation (ARPD) from the optimal or best-known solutions,

and the number of iterations spent, averaged over the 100 independent runs

for the TSP, QAP, and PFSP instances, respectively. The RPD is calculated

as:

r∑
i=1

((Soli −Bestsol)/Bestsol)/r, (4.5)

where Soli is the solution quality obtained in the ith run, and Bestsol

is either the optimal solution or the best-known solution for each given in-

stance. The Wilcoxon signed-rank test is used to assess if the differences

obtained in solution qualities and number of iterations are statistically sig-

nificant. We considered the results to be statistically significant for a p-value

82

Table 4.1: Summary of results obtained for the three problem classes and for the three settings of the
history length Lh ∈ {1, 5000, 50000}. 100 independent runs were made for each combination of problem
instance and Lh value. The table reports how many of those runs the CCP strategy reached a better,
equal, or worse solution cost, than the 2% cutoff strategy (labeled as <, =, or >, under the Cost columns).
It also reports on the number of runs for which the CCP strategy took less or more iterations to stop
than the 2% strategy (labeled as < or >, under Iterations). The CCP cutoff time is calculated using a
confidence level p = 0.95.
TSP

Dataset

Lh = 1 Lh = 5000 Lh = 50000
Cost Iterations Cost Iterations Cost Iterations

(CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%)
< = > < > < = > < > < = > < >

rat783 100 0 0 0 100 32 68 0 0 100 0 100 0 100 0
u1060 100 0 0 0 100 67 33 0 0 100 4 96 0 0 100
fl1400 100 0 0 0 100 99 1 0 0 100 15 85 0 0 100
u1817 100 0 0 0 100 96 4 0 0 100 27 73 0 0 100
d2103 100 0 0 0 100 86 14 0 0 100 7 93 0 0 100
pcb3038 100 0 0 0 100 78 22 0 0 100 3 97 0 0 100
fl3795 100 0 0 0 100 100 0 0 0 100 85 15 0 0 100

QAP

Dataset

Lh = 1 Lh = 5000 Lh = 50000
Cost Iterations Cost Iterations Cost Iterations

(CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%)
< = > < > < = > < > < = > < >

tai30a 0 100 0 100 0 0 100 0 99 1 0 100 0 100 0
tai30b 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0
tai35a 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0
tai35b 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0
tai40a 0 100 0 100 0 0 100 0 99 1 0 100 0 100 0
tai40b 0 99 1 100 0 0 100 0 100 0 0 100 0 100 0
tai50a 0 100 0 100 0 0 100 0 72 28 0 100 0 100 0
tai50b 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0
tai60a 0 100 0 100 0 0 100 0 1 99 0 100 0 100 0
tai60b 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0
tai64c 0 100 0 100 0 10 90 0 0 100 0 100 0 0 100
tai80a 0 100 0 98 2 1 99 0 0 100 0 100 0 100 0
tai80b 0 100 0 99 1 0 100 0 0 100 0 100 0 100 0
tai100a 2 98 0 46 54 1 99 0 0 100 0 100 0 100 0
tai100b 5 95 0 18 82 0 100 0 0 100 0 100 0 100 0
tai150b 95 5 0 0 100 0 100 0 0 100 0 100 0 100 0
tai256c 85 15 0 0 100 81 19 0 0 100 0 100 0 0 100

PFSP

Dataset

Lh = 1 Lh = 5000 Lh = 50000
Cost Iterations Cost Iterations Cost Iterations

(CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%) (CCP vs. 2%)
< = > < > < = > < > < = > < >

tai001 – 020×05 0 33 67 100 0 9 87 4 14 86 0 100 0 0 100
tai011 – 020×10 0 84 16 100 0 2 98 0 0 100 0 100 0 1 99
tai021 – 020×20 0 91 9 100 0 2 98 0 0 100 0 100 0 1 99
tai031 – 050×05 0 86 14 100 0 13 87 0 0 100 0 100 0 0 100
tai041 – 050×10 1 52 47 98 2 31 69 0 0 100 0 95 5 100 0
tai051 – 050×20 2 75 23 93 7 33 67 0 0 100 0 94 6 100 0
tai061 – 100×05 0 100 0 0 100 20 80 0 0 100 0 100 0 0 100
tai071 – 100×10 46 54 0 0 100 60 40 0 0 100 1 99 0 24 76
tai081 – 100×20 80 20 0 0 100 72 28 0 0 100 0 75 25 100 0
tai091 – 200×10 71 29 0 0 100 69 31 0 0 100 48 52 0 0 100
tai101 – 200×20 100 0 0 0 100 95 5 0 0 100 25 75 0 0 100
tai111 – 500×20 100 0 0 0 100 100 0 0 0 100 83 17 0 0 100

83

< 0.05, and typeset those in boldface in the tables. Some of the RPD val-

ues displayed in Tables 4.2, 4.3, and 4.4 are identical when rounded to two

decimal places, but there is still a statistical significance difference between

them.

Obviously, the strategy that allows the algorithm to run longer can never

reach a worse solution cost than the other. We shall now discuss the obtained

results separately for each problem class.

TSP

For the TSP instances, it can be observed that the CCP strategy allowed

the algorithm to run longer except in one case, the rat783 instance with

Lh = 50000. It can also be observed that the solution cost obtained at the

CCP cutoff time was never worse than the solution cost obtained at the 2%

cutoff strategy. For Lh = 1 it was always better, and for Lh ∈ {5000, 50000}
it was either better or equal. In the sole case where the 2% strategy ran for

a longer period of time (rat783 with Lh = 50000), the CCP strategy never

got to a worse solution cost.

Overall, the results obtained with the TSP instances show that the 2%

strategy was stopping the runs prematurely in several cases, not allowing

the algorithm to reach its full capacity.

QAP

Regarding the QAP instances, it can be observed that the 2% strategy

often allows the algorithm to run longer than the CCP strategy (sometimes

by a factor of more than 10). However, running it longer did not result in a

improved solution cost except in one single run out of the 100 independent

runs performed on the tai40b instance with Lh = 1. In contrast, for the

cases where the CCP strategy ran longer, the solution cost was often better.

This is especially clear for the tai150b and tai256c instances.

The 2% strategy reveals a drawback here. Recall that this strategy al-

ways performs a minimum number of iterations, specified by a parameter,

which was set here to be 100,000 iterations. This explains why the 2% strat-

egy ran much longer than the CCP strategy on the smaller sized instances

84

Table 4.2: Results obtained by LAHC on seven TSP instances with
both stopping criteria, CCP and 2% of total search time, using Lh ∈
{1, 5000, 50000}. The CCP cutoff time is calculated using a confidence level
p = 0.95. The results are averaged over 100 independent runs. Entries in
boldface are statistically significant with a p-value < 0.05 according to the
Wilcoxon signed-rank test.

Dataset
Stopping Lh = 1 Lh = 5000 Lh = 50000

Criterion RPD Iters. (103) RPD Iters. (103) RPD Iters. (103)

rat783
2% 0.24 774 0.06 28195 0.03 259162
ccp 0.13 8295 0.06 33005 0.03 258750

u1060
2% 0.17 2252 0.05 43576 0.02 388940
ccp 0.14 17617 0.05 54757 0.02 390672

fl1400
2% 0.12 3954 0.03 57279 0.01 491071
ccp 0.08 50783 0.03 92089 0.01 500390

u1817
2% 0.21 8297 0.09 92454 0.04 752937
ccp 0.17 73853 0.09 146712 0.04 774101

d2103
2% 0.23 12318 0.11 111923 0.07 879397
ccp 0.20 80799 0.11 164602 0.07 903109

pcb3038
2% 0.16 28181 0.09 175972 0.05 1340996
ccp 0.15 143671 0.09 273101 0.05 1400232

fl3795
2% 0.15 61248 0.08 266016 0.05 1812087
ccp 0.12 523161 0.08 678023 0.05 2142779

with Lh = 1. Indeed, one can observe that for the smaller list sizes it almost

always stopped immediately after completing the 100,000 iterations.

We should highlight that the value of 100,000 was not tuned in this

case; we simply use the same value that Burke & Bykov (2017) suggested in

their original LAHC work. Obviously, the 100,000 value was tuned and was

appropriate for the TSP instances, but not so for the QAP case.

As in the TSP case, the CCP strategy stops the algorithm at an appro-

priate moment, neither too soon nor too late.

PFSP

We shall now discuss the results obtained with the PFSP instances. Sim-

ilarly to the QAP case, the 2% strategy let the algorithm run for a much

longer period of time (sometimes by a factor of more than 20) when applied

to the smaller sized instances with Lh = 1, again due to the minimum num-

ber of 100,000 iterations it requires before stopping. In this case, however,

a different scenario emerged compared to the QAP case. While in the QAP

case, running it longer was not beneficial, in this case it was. Thus, it seems

85

Table 4.3: Results obtained by LAHC on 17 of Taillard’s instances of QAP
of size larger than 30 taken from QAPLIB with both stopping criteria, CCP
and 2% of total search time, using Lh ∈ {1, 5000, 50000}. The CCP cutoff
time is calculated using a confidence level p = 0.95. The results are averaged
over 100 independent runs. Entries in boldface are statistically significant
with a p-value < 0.05 according to the Wilcoxon signed-rank test.

Dataset
Stopping Lh = 1 Lh = 5000 Lh = 50000

Criterion RPD Iters. (103) RPD Iters. (103) RPD Iters. (103)

tai30a
2% 0.05 100 0.03 335 0.02 3443
ccp 0.05 6 0.03 333 0.02 3424

tai30b
2% 0.13 100 0.03 427 0.03 4435
ccp 0.13 7 0.03 424 0.03 4396

tai35a
2% 0.05 100 0.03 406 0.02 4121
ccp 0.05 9 0.03 404 0.02 4088

tai35b
2% 0.08 100 0.02 526 0.02 5395
ccp 0.08 10 0.02 521 0.02 5337

tai40a
2% 0.05 100 0.03 480 0.02 5004
ccp 0.05 13 0.03 478 0.02 4954

tai40b
2% 0.10 100 0.02 640 0.02 6538
ccp 0.10 13 0.02 634 0.02 6458

tai50a
2% 0.05 100 0.03 645 0.03 6621
ccp 0.05 21 0.03 645 0.03 6539

tai50b
2% 0.07 100 0.01 860 0.00 8709
ccp 0.07 23 0.01 855 0.00 8585

tai60a
2% 0.04 100 0.03 809 0.03 8292
ccp 0.04 33 0.03 811 0.03 8176

tai60b
2% 0.06 100 0.01 1102 0.00 11147
ccp 0.06 35 0.01 1099 0.00 10974

tai64c
2% 0.01 100 0.00 132 0.00 1429
ccp 0.01 27 0.00 158 0.00 1485

tai80a
2% 0.04 100 0.03 1142 0.02 11874
ccp 0.04 64 0.03 1155 0.02 11687

tai80b
2% 0.05 100 0.01 1592 0.01 16081
ccp 0.05 69 0.01 1595 0.01 15810

tai100a
2% 0.04 100 0.03 1534 0.02 15754
ccp 0.04 104 0.03 1563 0.02 15496

tai100b
2% 0.05 100 0.00 2144 0.00 21482
ccp 0.05 115 0.00 2158 0.00 21109

tai150b
2% 0.03 105 0.01 3576 0.00 35435
ccp 0.03 318 0.01 3642 0.00 34864

tai256c
2% 0.01 100 0.00 789 0.00 8187
ccp 0.00 608 0.00 1358 0.00 8466

that CCP strategy makes an immature call to stop the algorithm for the

smaller sized instances (the first six small instances from tai001–020×05
to tai051–050×20) when using the history list length Lh = 1.

There is an explanation for this behaviour which is related to the exis-

tence of a sequence of plateau moves in many of these PFSP instances that

86

Table 4.4: Results obtained by LAHC on 12 of Taillard’s PFSP instances
with both stopping criteria, CCP and 2% of total search time, using Lh ∈
{1, 5000, 50000}. The CCP cutoff time is calculated using a confidence level
p = 0.95. The results are averaged over 100 independent runs. Entries in
boldface are statistically significant with a p-value < 0.05 according to the
Wilcoxon signed-rank test.

Dataset
NEH Stopping Lh = 1 Lh = 5000 Lh = 50000

RPD Criterion RPD Iters. (103) RPD Iters. (103) RPD Iters. (103)

tai001 – 020×05 0.01
2% 0.00 100 0.00 115 0.00 1403
ccp 0.00 4 0.00 120 0.00 1524

tai011 – 020×10 0.06
2% 0.01 100 0.01 209 0.00 2171
ccp 0.01 5 0.00 211 0.00 2189

tai021 – 020×20 0.05
2% 0.02 100 0.01 196 0.00 2109
ccp 0.02 5 0.01 200 0.00 2130

tai031 – 050×05 0.00
2% 0.00 100 0.00 147 0.00 1610
ccp 0.00 28 0.00 182 0.00 1657

tai041 – 050×10 0.06
2% 0.03 100 0.03 386 0.02 4819
ccp 0.04 40 0.03 438 0.02 4705

tai051 – 050×20 0.07
2% 0.05 100 0.04 536 0.04 5819
ccp 0.05 58 0.04 579 0.04 5722

tai061 – 100×05 0.00
2% 0.00 100 0.00 180 0.00 1951
ccp 0.00 133 0.00 317 0.00 2039

tai071 – 100×10 0.02
2% 0.01 100 0.01 514 0.00 5773
ccp 0.01 221 0.00 746 0.00 5780

tai081 – 100×20 0.08
2% 0.05 100 0.05 884 0.03 10785
ccp 0.04 335 0.04 1178 0.03 10360

tai091 – 200×10 0.01
2% 0.00 100 0.01 399 0.01 4551
ccp 0.00 788 0.00 1548 0.00 6022

tai101 – 200×20 0.05
2% 0.03 100 0.03 1239 0.02 13931
ccp 0.02 1390 0.02 2520 0.02 14549

tai111 – 500×20 0.03
2% 0.03 100 0.02 2172 0.01 24049
ccp 0.01 12574 0.01 12210 0.01 32159

lead to an improved solution cost. The reader may wonder why the same

behaviour was not observed in the QAP experiments. Indeed, there are also

plateau moves in some of the QAP instances that we tested, but it turned

out that the sequence of such moves did not allow the algorithm to improve

any further within the minimum 100,000 iterations. As explained earlier in

the paper, a plateau move changes the state of the LAHC algorithm but

the CCP strategy ignores such moves because it could lead the algorithm to

never halt. We shall address this issue in Section 4.6.

Regarding the experiments with Lh ∈ {5000, 50000}, the CCP strategy

almost always got to an equal or better solution cost than the 2% strategy.

To the best of our knowledge, it is the first time that a construction

87

solution (in this case, obtained by NEH) is used in the LAHC and the

history list is initialised with the cost of a random solution. It is stated

in the literature that NEH provides a very good solution and afterwards

the mean improvement is less than 1% (Taillard 1990). In our experiments

on over 120 of Taillard’s instances of PFSP with Lh = 50000, using the

average of 100 independent runs, we improved the NEH solutions by 3.1%,

and considering the best out of 100 runs, the percentage is up to 3.5%.

Although in this work we do not aim to come with a method to reach a

better solution cost, it is worth mentioning that in 82% of QAPLIB instances

(111 out of 136) the LAHC with history length of 50000 using the CCP

cutoff time reached the best-known solutions. For PFSP, this rate was 43%

for Taillard’s instances (51 out of 120), and 41% for VRF’s instances (196

out of 480). As a matter of fact, for VRF’s instances we improved the best-

known solutions on 15% of the instances (71 out of 480). These results are

typeset in boldface and colored blue in the supplementary material.

Our reference for the previous best solutions for the VRF benchmark

are combined from the online materials of Vallada, Ruiz & Framinan (2015)

and the recent paper from Pagnozzi & Stützle (2019).

4.5.2 Percentage of the Total Search Time for the CCP Cut-

off Strategy

It is interesting to look at the CCP strategy through the lens of Burke

& Bykov’s dynamic strategy of a certain percentage of total time without

improvement. To do so, we computed, for the CCP strategy, the amount

of time —percentage-wise in terms of total search time— that it was idle

before deciding to halt the algorithm. The results are shown in Table 4.5.

Note that by definition, producing a similar table for the 2% strategy would

yield 2% for all entries, except for those cases that correspond to stopping

precisely when 100,000 iterations have been reached.

For all problem instances with Lh = 1, the CCP strategy performed

much more than 2% of the total search time without improvement before it

reached the cutoff time. However, on 13 out of the 17 QAP instances, and

on 6 out of the 12 PFSP instances , the algorithm ran for a shorter period

of time than with the 2% strategy, since the latter one takes effect after a

minimum of 100,000 iterations have elapsed (see number of iterations used

by these two stopping criterion when Lh = 1 in Tables 4.3 and 4.4).

88

Table 4.5: The CCP cutoff time for TSP, QAP, and PFSP instances with
confidence level p = 0.95, as a percentage of the total search time. Results
are the average over 100 independent runs.

TSP
Dataset Lh = 1 Lh = 5000 Lh = 50000

rat783 58.45% 14.47% 1.84%
u1060 53.10% 16.65% 2.33%
fl1400 33.96% 18.04% 3.28%
u1817 40.56% 19.73% 3.69%
d2103 49.19% 23.74% 4.30%
pcb3038 59.34% 31.04% 6.04%
fl3795 27.27% 20.38% 6.34%

QAP
Dataset Lh = 1 Lh = 5000 Lh = 50000

tai30a 67.97% 1.52% 1.48%
tai30b 59.28% 1.18% 1.14%
tai35a 64.81% 1.40% 1.23%
tai35b 58.77% 1.07% 0.94%
tai40a 62.72% 1.59% 1.02%
tai40b 58.47% 1.19% 0.78%
tai50a 61.28% 1.93% 0.77%
tai50b 56.16% 1.45% 0.58%
tai60a 58.10% 2.30% 0.61%
tai60b 53.52% 1.69% 0.46%
tai64c 79.91% 13.60% 3.38%
tai80a 57.23% 3.04% 0.43%
tai80b 51.98% 2.19% 0.32%
tai100a 56.25% 3.66% 0.37%
tai100b 50.62% 2.64% 0.27%
tai150b 44.45% 3.78% 0.39%
tai256c 72.77% 32.37% 5.17%

PFSP
Dataset Lh = 1 Lh = 5000 Lh = 50000

tai001 – 020×05 85.42% 4.29% 3.29%
tai011 – 020×10 64.39% 2.38% 2.30%
tai021 – 020×20 70.50% 2.53% 2.37%
tai031 – 050×05 93.29% 14.36% 3.03%
tai041 – 050×10 74.61% 6.12% 1.07%
tai051 – 050×20 50.75% 4.49% 0.88%
tai061 – 100×05 90.40% 37.74% 5.86%
tai071 – 100×10 60.00% 16.38% 2.07%
tai081 – 100×20 41.33% 10.32% 1.16%
tai091 – 200×10 72.31% 37.75% 9.21%
tai101 – 200×20 42.29% 22.11% 3.71%
tai111 – 500×20 34.89% 35.07% 12.10%

What stands out from Table 4.5 is that the cutoff time specified by the

89

CCP strategy corresponds to having different percentages of consecutive

“idle time” over total running time, and it does so automatically depending

on a problem instance basis without the need of any tuning. Another impor-

tant observation that can be made is that no fixed percentage value is ideal

for all problem classes and problem instances. If instead of 2% we chose

another value, say 3%, the resulting cutoff point would still be inadequate.

4.5.3 How Good is the Current Solution at the Cutoff Point?

To further validate this work, we performed an analysis of the neighbour-

hood of the current solution at the cutoff point, for both strategies. Since

our experiments used a confidence value p = 0.95 in Equation 4.3 to deter-

mine the number of iterations required to visit the entire neighbourhood of

a solution without changing the state of the algorithm, plateau moves aside,

we should expect the current solution to be a local optimum with a proba-

bility of at least 95% at the cutoff point determined by the CPP strategy.

Regarding the 2% strategy no such guarantee can be given.

Table 4.6: Analysis over the neighbours of the current solution obtained
by LAHC on TSP instances, for both cutoff strategies. Imove denotes the
average number of improving moves over 100 independent runs at the cutoff
time. Imax denotes the maximum number of improving moves in a single
run out of 100 independent runs. Local Optimum denotes the percentage
of runs where the current solution at the cutoff point was at a local opti-
mum. Entries in boldface are statistically significant with a p-value < 0.05
according to the Wilcoxon signed-rank test.

Dataset
Stopping

Lh = 1 Lh = 5000 Lh = 50000

Criterion Imove Imax
Local

Imove Imax
Local

Imove Imax
Local

Optimum Optimum Optimum

rat783
2% 124.10 1582 0% 0.30 2 76% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

u1060
2% 54.10 294 0% 0.66 5 61% 0.00 0 100%
ccp 0.00 0 100% 0.02 1 98% 0.01 1 99%

fl1400
2% 54.13 251 0% 1.47 5 34% 0.06 1 94%
ccp 0.02 1 98% 0.03 1 97% 0.03 1 97%

u1817
2% 43.86 194 0% 1.29 5 36% 0.05 1 95%
ccp 0.01 1 99% 0.01 1 99% 0.04 1 96%

d2103
2% 39.83 196 0% 1.45 7 31% 0.01 1 99%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

pcb3038
2% 28.50 110 0% 1.87 11 30% 0.01 1 99%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

fl3795
2% 22.23 76 0% 3.16 13 15% 0.42 3 68%
ccp 0.07 2 94% 0.06 2 95% 0.03 1 97%

90

To verify this, we enumerated the entire neighbourhood of the current

solution at the cutoff time and counted how many of those neighbours were

better than the current solution, i.e., how many immediate improving moves

could be made upon the current solution. Tables 4.6, 4.7, and 4.8 show

the results obtained for the TSP, QAP, and PSFP instances, respectively.

The results were collected from the 100 independent runs conducted for

each instance for both cutoff strategies. The column labeled Imove refers

to the average number of improving moves at the cutoff time, over the 100

independent runs. The column labeled Imax refers to the maximum number

of improving moves observed in a single run, and the column labeled Local

Optimum refers to the percentage of runs that the current solution was at

a local optimum at the cutoff time.

The results confirm, once again, that the 2% strategy often stops the

search prematurely, with the current solution not being a local optimum at

the cutoff time. In contrast, the CCP strategy stops the algorithm at the

correct moment with the current solution at the cutoff time being at a local

optimum with at least 95% probability on all instances except in 2 out of a

total of 108 cases: TSP instance fl3795 with Lh = 1, and PFSP instance

tai041-050x10 with Lh = 5000, where the observed probabilities were 94%

and 92%, respectively, and not that far from 95%.

On the TSP instances, it is clear that the 2% strategy stops the search

prematurely, especially for the smaller list sizes Lh = 1 and Lh = 5000.

On the QAP instances, the CCP strategy always reached a local optimum

at the cutoff time, except in tai40b with Lh = 1 where it was reached in

99% of the runs. Note that on the small instances with Lh = 1, as shown in

Tables 4.1 and 4.3, the 2% strategy executed many more iterations than the

CCP strategy, but yet, the CCP strategy fairly accurately made a correct

decision about the cutoff time. For the larger history lengths of 5000 and

50000, not even in a single table entry, the CCP failed to deliver a 100%

local optimum rate. This rate varies from 13% to 100% for the 2% strategy.

On the PFSP instances, the local optimum rate reached by the 2% strat-

egy varies from 10% to 100%. For the CCP strategy, it was always at least

95%, except in one case where it was 92%. This is normal as we are running

a stochastic algorithm, and even in that one case the CCP strategy reached

a better Cmax value than the 2% strategy.

This analysis confirms once again how well and how consistently the

91

Table 4.7: Analysis over the neighbours of the current solution obtained
by LAHC on QAP instances, for both cutoff strategies. Imove denotes the
average number of improving moves over 100 independent runs at the cutoff
time. Imax denotes the maximum number of improving moves in a single
run out of 100 independent runs. Local Optimum denotes the percentage
of runs where the current solution at the cutoff point was at a local opti-
mum. Entries in boldface are statistically significant with a p-value < 0.05
according to the Wilcoxon signed-rank test.

Dataset
Stopping

Lh = 1 Lh = 5000 Lh = 50000

Criterion Imove Imax
Local

Imove Imax
Local

Imove Imax
Local

Optimum Optimum Optimum

tai30a
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai30b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai35a
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai35b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai40a
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai40b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.01 1 99% 0.00 0 100% 0.00 0 100%

tai50a
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai50b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai60a
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai60b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai64c
2% 0.00 0 100% 0.46 4 72% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai80a
2% 0.00 0 100% 0.01 1 99% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai80b
2% 0.00 0 100% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai100a
2% 0.04 2 98% 0.01 1 99% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai100b
2% 0.05 1 95% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai150b
2% 6.71 21 5% 0.00 0 100% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai256c
2% 2.29 10 15% 2.74 18 13% 0.02 1 98%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

CCP strategy can make an instance-based decision about the cutoff time.

92

Table 4.8: Analysis over the neighbours of the current solution obtained
by LAHC on PFSP instances, for both cutoff strategies. Imove denotes the
average number of improving moves over 100 independent runs at the cutoff
time. Imax denotes the maximum number of improving moves in a single
run out of 100 independent runs. Local Optimum denotes the percentage
of runs where the current solution at the cutoff point was at a local opti-
mum. Entries in boldface are statistically significant with a p-value < 0.05
according to the Wilcoxon signed-rank test.

Dataset
Stopping

Lh = 1 Lh = 5000 Lh = 50000

Criterion Imove Imax
Local

Imove Imax
Local

Imove Imax
Local

Optimum Optimum Optimum

tai001 – 020×05
2% 0.00 0 100% 0.01 1 99% 0.00 0 100%
ccp 0.06 2 95% 0.01 1 99% 0.00 0 100%

tai011 – 020×10
2% 0.00 0 100% 0.01 1 99% 0.00 0 100%
ccp 0.03 1 97% 0.01 1 99% 0.00 0 100%

tai021 – 020×20
2% 0.00 0 100% 0.04 2 97% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai031 – 050×05
2% 0.01 1 99% 0.11 3 94% 0.00 0 100%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai041 – 050×10
2% 0.19 19 99% 0.05 2 96% 0.01 1 99%
ccp 0.04 3 98% 0.16 8 92% 0.03 3 99%

tai051 – 050×20
2% 0.07 2 95% 0.14 4 92% 0.00 0 100%
ccp 0.05 2 97% 0.00 0 100% 0.00 0 100%

tai061 – 100×05
2% 0.00 0 100% 0.52 6 62% 0.01 1 99%
ccp 0.00 0 100% 0.00 0 100% 0.00 0 100%

tai071 – 100×10
2% 0.18 5 89% 0.09 2 92% 0.01 1 99%
ccp 0.02 1 98% 0.02 1 98% 0.00 0 100%

tai081 – 100×20
2% 0.61 14 76% 0.52 8 79% 0.00 0 100%
ccp 0.05 2 96% 0.01 1 99% 0.00 0 100%

tai091 – 200×10
2% 0.85 12 71% 0.80 16 65% 0.05 1 95%
ccp 0.02 1 98% 0.00 0 100% 0.01 1 99%

tai101 – 200×20
2% 6.03 143 50% 1.20 21 70% 0.01 1 99%
ccp 0.04 1 96% 0.01 1 99% 0.01 1 99%

tai111 – 500×20
2% 66.14 3556 10% 11.74 808 44% 0.22 9 89%
ccp 0.01 1 99% 0.02 1 98% 0.00 0 100%

4.6 Discussion

Before finishing this chapter we would like to present and discuss two criti-

cisms that can be made of the CCP strategy.

Not handling plateau moves. In the LAHC, plateau moves change the

state of the algorithm because the resulting solution is accepted, but

the CCP method considers them as an idle move, not reseting the idle

iteration count. As explained earlier in this chapter, this decision is

needed because not doing so would imply that the CCP cutoff time

93

could potentially never be reached. Note that if there is a plateau move

from solution A to solution B, then A and B are neighbours, and it

would be very likely that a subsequent plateau move would occur from

B to A within the cutoff time period. This situation could continue

indefinitely, and that would be even more likely in the presence of

multiple plateau moves from a solution.

While this can be seen as a limitation of the method, we note that the

same occurs with other commonly used cutoff methods, such as the

2% strategy, or any other fixed-percentage strategy.

With the CCP method, we can be confident that the current solution

at the cutoff time is a local optimum with high probability, something

that cannot be stated with a fixed-percentage based strategy. Further-

more, we can say that it is unlikely that the algorithm improves its

solution cost if we let it run beyond the cutoff time, unless there is a

sequence of plateau moves that can lead the algorithm to escape from

that local optimum.

On performing a systematic enumeration of the neighbourhood.

A systematic enumeration of the neighbourhood refers to visit neigh-

bours of the current solution without replacement. Thus, one could

say that the cutoff time derived by the CCP could be avoided if the

perturbations on the current solution were done in a systematic man-

ner avoiding visiting the same neighbour more than once. This would

result in a cutoff time of |N(s)| instead of β |N(s)| ln |N(s)|.

We note, however, that such an approach would be costly because

each time the current solution changes, a random order of the neigh-

bourhood of that solution would need to be computed. Such a com-

putation needs O(|N(s)|) time and would have to be carried out very

often through the entire search. Data collected from our experiments

shows that the number of times the state of LAHC changes (plateau

moves aside) is much larger than the overhead factor of β ln |N(s)|
(see Table 4.9 for TSP results), which implies that a systematic visit

of the neighbourhood would not compensate. This is observed with

all tested history list sizes and is aggravated for the larger ones. Note,

for example, that for Lh = 50000, very often more than 50% of the

iterations result in a state change. A similar behaviour is observed for

94

Table 4.9: For each TSP instance, and for Lh ∈ {1, 5000, 50000}, the table
displays two values (idler and idlep) collected from the experiments that
used the CCP cutoff time. idler stands for the number of times that the
state of LAHC changes, plateau moves aside, and is shown in thousands of
iterations rounded to the nearest integer. idlep shows that same number
percentage-wise in terms of the total number of iterations done during the
entire run. The results are averaged over 100 independent runs. For each
instance, we also show the value of β ln |N(s)| (using p = 0.95), the overhead
factor of the CCP calculation with respect to visiting each solution in the
neighbourhood exactly once.

Dataset β ln |N(s)| Lh = 1 Lh = 5000 Lh = 50000

idler (103) idlep idler (103) idlep idler (103) idlep
rat783 15.63 4 0.05% 16117 48.87% 161686 62.49%
u1060 16.23 6 0.03% 24198 44.30% 240926 61.68%
fl1400 16.79 9 0.02% 31318 34.41% 309054 61.78%
u1817 17.31 11 0.02% 44514 30.78% 446753 57.74%
d2103 17.60 13 0.02% 52834 32.27% 528565 58.54%
pcb3038 18.34 19 0.01% 79761 29.28% 800315 57.16%
fl3795 18.78 27 0.01% 103946 15.67% 1007428 47.27%

the QAP and PFSP experiments, whose results are available in the

supplementary material.

The above argument gives concrete evidence that generating a ran-

dom order of the neighbourhood each time the state of the algorithm

changes, incurs a prohibitive computational cost. The only other rea-

sonable alternative would be to undertake a systematic exploration of

the neighbourhood using always the same fixed ordering as suggested

by Connolly (1990). Such a strategy avoids the need to generate the

neighbourhood anew each time the state of the algorithm changes,

but it is questionable whether using a fixed ordering is always bet-

ter than a random ordering. Connolly (1990) obtained good results

for simulated annealing applied to the QAP, but also acknowledged

that “the ’natural’ ordering may cause the search to perform badly for

other problems”, and then continues saying “random search-without-

replacement techniques could probably achieve the same effect, but at

the expense of slightly more computational effort”.

We should also note that, for certain algorithms such as LAHC, if a

fixed ordering is used then we could question if we are still dealing with

the SLS algorithm: the only randomized step would be in the genera-

95

tion of the initial solution (and even that not always —for example in

PFSP we use NEH for the initial solution which is deterministic) and

in the generation of the fixed ordering which would have to be gener-

ated randomly once and used for the entire run. Although technically

such an algorithm can still be labelled as the SLS algorithm, very little

about it is stochastic: given the initial solution and the fixed random

ordering, everything else is deterministic.

We should also highlight that the way in which one-point randomized

SLS algorithms accept worsening moves, that is presented in this chap-

ter (and the entire of this research work), is the same as much of the

literature, i.e., neighbours are sampled uniformly and independently

at random from the entire neighbourhood, not in a systematic man-

ner to avoid duplicate neighbours. The reason is most likely due to

the imposed overhead needed for generating a random neighbourhood

each time the algorithm changes its state. Nonetheless, a systematic

exploration of the neighbourhood using a fixed ordering is also a viable

alternative of performing local search, and in that case the CCP strat-

egy obviously does not apply. Another viable alternative is to use a

mixed strategy where most of the search uses a random exploration of

the neighbourhood, and when a significant part of it has been covered,

the algorithm could switch to a systematic exploration using a fixed

ordering.

4.7 Summary

This chapter presented a cutoff time strategy based on the coupon collector’s

problem for one-point stochastic local search algorithms. The technique was

illustrated with the LAHC algorithm on several instances of three classical

combinatorial optimization problems: TSP, QAP, and PFSP.

The results show that the proposed strategy is a sound method to stop

a one-point SLS algorithm that accepts worsening moves, and compares

favorably with the 2% —or for that matter, any fixed percentage— of total

time without improvement strategy. The CCP strategy decides to stop the

algorithm at an adequate moment, neither too soon nor too late, and with

a high probability that the current solution at the cutoff point is at a local

optimum. Letting the algorithm run beyond that time could only improve

96

the solution cost if a sequence of plateau moves escapes from that local

optimum.

Another advantage of the CCP strategy is that it requires no tuning and

adapts itself depending on the neighbourhood size induced by the employed

perturbation operator, and by the feedback of the search itself.

For this type of algorithm, the literature suggests three usual variants for

the stopping condition: (1) the algorithm stops after reaching some target

solution (or target value of the cost function), (2) the algorithm stops after

a certain amount of time (or number of iterations), and (3) the algorithm

stops when no further improvement seems possible.

The first variant is inapplicable when the target solution is unknown, and

among the two other variants the third one is often the more appropriate

one. The 2% strategy was an attempt to detect a reasonable cutoff point, the

point beyond which no improvement seems possible. Although more appro-

priate than a static strategy consisting of a fixed amount of time (number

of iterations) without improvement, the 2% strategy still makes incorrect

decisions many times, as the results presented in this chapter illustrate.

The ideal cutoff time is problem (and instance) dependent, and the CCP

strategy presented in this paper is a reliable method to detect it. Another

important feature of the CCP strategy is the simplicity of its application.

The same cannot be stated for a fixed percentage value based strategy which

requires the specification of a percentage value and a minimum number

of iterations before the percentage calculation takes place, both of which

require previous tuning to work reasonably well, and even then it will make

mistakes because no fixed percentage value is ideal for all cases.

Letting the search run when no further improvement seems possible is

a waste of time, and could be spent more effectively by restarting the al-

gorithm, possibly with a larger history length. This observation has been

made before (Burke & Bykov 2017) and motivated the development of the

parameter-less LAHC (Bazargani & Lobo 2017). In that work, the authors

proposed an automated way of increasing the history list length at the cutoff

point determined by the 2% strategy. The parameter-less LAHC could ob-

viously benefit from using the CCP rather than the 2% strategy, something

that we are currently addressing and will report in the near future.

The strategy presented here goes beyond the LAHC algorithm, and is

applicable to other one-point randomized search algorithms. The method

97

is based on solid mathematical foundations and that is the major differ-

ence from other strategies found in the literature which often rely on an

experimental rule-of-thumb. The mathematics behind the coupon collec-

tor’s problem have been used for analysing randomized algorithms. Herein,

we used it not for the analysis but for designing a rational way for deciding

the cutoff time of SLS algorithms. We believe this is a good example of

using theory to help design an algorithmic strategy in practice.

98

Nature is an endless combination

and repetition of very few laws.

She hums the old well-known air

through innumerable variations.

Ralph W. Emerson

Chapter 5

Revisiting pLAHC with

more Suitable Cutoff Time

The pit fall of the parameter-less Late Acceptance Hill-Climbing (pLAHC)

algorithm, introduced in Chapter 3, is that it uses an empirical restart strat-

egy as opposed to a mathematically sound dynamic restart strategy. Now,

since we succeeded in introducing a dynamic approach in the previous chap-

ter that can scale based on employed perturbation operator and its induced

neighbourhood size, as well as from feedback from the search, we are going

to revisit pLAHC. This chapter aims to broader the scalability of pLAHC by

incorporating the mathematically sound cutoff time to decide when a given

LAHC execution should be restarted with an increased history length.

Note that, to all intents and purposes, in real-world problems the aim

is to find a good enough quality solution in a pre-defined time. That being

so, we would like the search algorithm to use all of its given time budget

in an intelligent manner to yield as good a solution as it can. This means

that the algorithm should not prematurely converge. Moreover, because the

time budget can change for different reasons (even in the same system for

the same instance running in different times), ideally the algorithm should

provide us a good solution quality at any given time of the search, i.e., it

should deliver good anytime performance. This is the overall motivation

behind the pLAHC algorithm described in this chapter.

We present a comprehensive series of experiments which show that pLAHC,

using the new cutoff strategy, provides good anytime performance on bench-

mark instances of three well-known combinatorial optimization problems:

99

the Travelling Salesman Problem, the Quadratic Assignment Problem, and

the Permutation Flowshop Scheduling Problem. Our results confirm that

the enhanced version of pLAHC works well not only on the TSP instances

originally tested, but also on other real-world combinatorial optimization

problems. We used Average Relative Percentage Deviation (ARPD) to re-

port solution qualities which makes it possible to compare our results with

those reported by state-of-the-art approaches. Although in TSP instances

we do not reach to the best-known solutions due to the limitation of the

TSP 2-exchange move operator, for some instances of QAP and PFSP, we

obtain best known solutions reported in the literature. In addition to the

specification of a perturbation operator suitable for a given problem, the

only other decision that the user needs to make is to define the time budget,

i.e., a certain period of time that the algorithm should run.

This chapter is organized as follows. Before introducing the modified

pLAHC, we first, in the next section, discuss the tradeoff between search

time and solution quality, the importance of anytime performance, and the

benefits of parameter-less search for general practitioners in industry. Sec-

tion 5.2 briefly reviews the parameter-less LAHC algorithm and a refinement

of pLAHC and then describes the incorporation of the new restart strategy,

based on the Coupon Collector’s Problem, in pLAHC. Sections 5.3 and 5.4

present the experimental setup and the results obtained, respectively.

5.1 Anytime Performance and the Benefits of

Parameter-less Search

Search algorithm design often represents an explicit trade-off between the

time spent for the search and the quality of the obtained solution. This is a

lucid proposition: the aim is to develop a search methodology where a longer

search increases the chance of finding a better solution as it gets the oppor-

tunity to explore a larger part of the search space (Burke, Bykov, Newall

& Petrovic 2003). With this in mind, we consider search algorithms that

perform in a way that: 1) do not converge too quickly before using the entire

given time budget; and, 2) do not need more time budget than the given one

to utilize its stretch capacity. Configuring a search algorithm to effectively

balance this trade-off is non-trivial, even for experienced practitioners.

Figure 5.1a depicts a typical scenario of the above mentioned trade-off,

100

where we are trying to minimize a cost function. In the figure, S1, S2, and

S3, represent three different parameter configurations of an optimization

algorithm applied to a given problem instance. For a time budget t2, the

best parameter configuration would be S2. Note that by using configuration

S1, the algorithm would quickly converge at t1, and thereafter, from t1

onwards, it would be stagnated. On the other hand, by using parameter

configuration S3, the algorithm would prematurely stop at t2 before utilizing

its entire capacity.

In the context of anytime performance, a search algorithm should exhibit

good performance regardless of the total allocated time budget given to it,

or even in cases where a pre-defined time budget is not specified. Under this

scenario, its performance should ideally approximate to the one obtainable

by the best configuration at any point in time, shown in red in Figure 5.1b.

S1

S2

S3

t2t1 t3
Time

C
o
s
t

(a) C1

S1

S2

S3

t2t1 t3

Time

C
o
s
t

(b) C1

Figure 5.1: Typical scenario of trade-off between cost and time in the search
algorithms using different parameter configurations.

Trial-and-error experiments have been extensively reported in the litera-

ture for tuning parameters of search algorithms (some of these methods are

introduced in Subsection 2.6.) These methods tune parameters of search al-

gorithms for a given fixed time-budget, using certain sets of given instances

of a problem. Therefore, upon changing the time budget, they need to

be rerun to update those parameters’ values in order to maintain the best

performance of the employed search algorithm. This is quite unsustain-

able in some Operational Research (OR) complex uncertain environments

such as airport operations (Weiszer, Burke & Chen 2020, Androutsopou-

los, Manousakis & Madas 2020, Atkin, Burke, Greenwood & Reeson 2007).

101

Moreover, these methods use sets of given instances as an input for tuning

parameters of algorithms with a presumption that those tunings would sus-

tain beyond those instances. It is noteworthy that tuning of SLS algorithms

applied to real-world complex problems, to a great extent, is instance depen-

dent. Furthermore, for a large range of real-world optimization problems,

the general practitioner just wants to press a button and get a result after an

adequate amount of time. The period of time can also change for different

reasons. Sometimes, the user wants a quick result, while in some other cases

the user might want to give more time to the search algorithm to get to a

better quality solution.

We need to mention that for a given time budget, all tuning approaches

rely on the particular computational infrastructure, in which, the search

algorithm is launched. The computational infrastructure could be affected

by different factors, e.g., the computer hardware, the operating system, and

the compiler. Each of these factors also depends on several other factors

and they are constantly changing. For instance, the power of computer

hardware to a great degree depends on processor speed, hard disk speed,

and the amount of RAM. Since these computational resources are gradually

improving, the time required to execute a single iteration is also being grad-

ually reduced. Consequently, this strikes at previously tuned parameters.

Besides, in the era of the Internet of Things, a lot of companies and orga-

nizations are using cloud computers as an outsourced computing power to

shrink the size of their organization and furthermore reduce their expenses.

This imposes even more complexity to calculate the real processing time of

search algorithms, and incontrovertibly to tune their parameters. Tuning

is useful for algorithms that have several parameters whose interaction is

not well understood by a practitioner (or even by an expert). However, if

a search algorithm can be designed in a way that is minimalist in terms of

parameters, and moreover those parameters are well understood in terms

of their effect in the algorithms’ performance, then a rational strategy for

automating the setting of those parameters values may be obtained.

5.2 Parameter-less LAHC Using CCP Cutoff Time

In most SLS algorithms, when the search is at a local optimum, there is

little chance to escape from it. There are successful approaches that use

102

some sort of restart mechanism to overcome this barrier, e.g., Iterated Local

Search (Stützle & Ruiz 2018), Adaptive Multi-Start (AMS) heuristic (Boese,

Kahng & Muddu 1994), and Greedy Adaptive Search Procedure (GRASP)

heuristic (Feo & Resende 1995), to name a few. These methods somewhat

restart the search from somewhere else in the search space once a region has

been extensively explored with the hope to find a better quality solution.

The pLAHC algorithm not only benefits from the restart mechanism, it

also enlarges the area of the search space that it can explore in each restart

by using a history length twice as large as in the previous restart. The

restart decision can be easily made for those algorithms that systematically

explore the entire neighbourhood of a solution. This is, however, non-trivial

in pLAHC and other search algorithms that accept worsening moves on a

current solution. Ideally, the restart should be performed at the point where

the search stagnates, but that is not easy to detect.

In the original work of pLAHC, the dynamic cutoff time that was sug-

gested by Burke & Bykov (2017) was used do decide when to restart LAHC

with a larger history length. In that approach, the LAHC algorithm restarts

when the number of consecutive non-improving (idle) iterations reaches 2%

over the total number of iterations and, at least, 100,000 iterations are per-

formed to avoid early termination. Although, the approach was effective on

applying pLAHC to several TSP instances, the cutoff time strategy utilized

was based on empirical grounds. In Chapter 4, we have done a very through

investigation on this and introduced a new dynamic cutoff time strategy that

is able to reliably detect the stagnation point (point of convergence) for SLS

algorithms that accept worsening moves, applied to combinatorial optimiza-

tion problems. This new approach is derived from the Coupon Collector’s

Problem (CCP), and is based on theoretical grounds as opposed to an em-

pirical rule-of-thumb. It can be scaled based on the employed perturbation

operator and its induced neighbourhood size, as well as from feedback from

the search. In this chapter, we replace the 2% cutoff time, that was used

in the original pLAHC algorithm, with this new cutoff time strategy. The

pseudocode of the pLAHC algorithm using the CCP cutoff time is given in

Algorithm 5.1, with lines in red colour indicating changes with respect to

Algorithm 2.7 (i.e., LAHC).

The CCP cutoff time is calculated in Lines 1 and 2. Line 1 calculates β

as it is given in Equation 4.3, and based on that, the number of iterations

103

Algorithm 5.1: Parameter-less Late Acceptance Hill-Climbing
(pLAHC) using the CCP cutoff time.

Input : Confidence level for the CCP cutoff strategy: p
Output: A solution to a given problem.

1 β = 1− ln (1− p)/ln (|N(s)|)
2 θ = dβ ∗ |N(s)| ∗ ln (|N(s)|)e // CCP cutoff time
3 Lh = 1
4 best = ∅
5 while stopping criterion is not fulfilled do
6 Produce an initial solution s
7 Calculate its cost function value C(s)
8 forall k ∈ {0 . . . Lh−1} do
9 fk = C(s) // Initial history list

10 θ = max (θ, Lh)
11 v = 0
12 I = 0 // Iteration counter
13 Iidle = 0 // Idle iteration counter

14 do until (Iidle < θ)
15 Construct a candidate solution s′

16 Calculate its cost function value C(s′)
17 if C(s′) ≥ C(s) then
18 Iidle = Iidle + 1
19 else
20 Iidle = 0 // Reset idle counter

21 v = I mod Lh // Virtual beginning

22 if C(s′) < fv or C(s′) ≤ C(s) then
23 s = s′ // Accept candidate

24 if C(s) < fv then
25 fv = C(s) // Update history list

26 I = I + 1
27 if C(s) < C(best) then
28 best = s // Update best so far

29 Lh = 2× Lh
30 return best

needed to restart the algorithm, θ, is calculated in Line 2. Line 3 of the

algorithm keeps the history list length of the current run of LAHC, and it is

doubled in each restart as it is shown in Line 29. Line 4 keeps the best-ever-

solution that the algorithms found so far throughout all restarts of LAHC,

and it is updated in Lines 27 and 28. Line 10 makes sure that the algorithm

checks all elements of a history list once before restarting it.

104

5.3 Experimental Setup

This section describes the goals of the experiments, the benchmark problems,

and the experimental setup. The experimental results and its analysis are

deferred to the following section.

The experiments were programmed in C++ and executed using High

Performance Computing (HPC) provided by Queen Mary University of Lon-

don. The overall goals of our experiments are:

• To study the effectiveness of pLAHC using the newly introduced dynamic-

cutoff-time in Chapter 4 across different problem classes, across prob-

lem instances within each class, different perturbation operators, and

even different overall stopping criteria. To carry out this, besides ap-

plying pLAHC to the same TSP instances used in Chapter 3, we also

applied it to several instances of the Quadratic Assignment Problem

(QAP) and the Permutation Flowshop Scheduling Problem (PFSP).

(Details of these three problems are given in Subsections 2.1.1, 4.4.1.)

We do not compare the obtained results with the original work of

pLAHC, since, as we presented in Table 4.5, no fixed percentage value

of consecutive “idle time” over total running time (that is what was

used in the original work) is adequate for all problem classes and prob-

lem instances. Moreover, the restarting mechanism used in the original

work requires at least 100,000 iterations before considering any restart

of LAHC, which is a lot more than necessary for instances with small

sizes (see Tables 4.3 and 4.4).

• To show that pLAHC can reach to any solution cost obtained by the

regular LAHC with a fixed history length. This validates our early

assertion that pLAHC does not require any tuning or preprocessing

to reach to a given solution cost. To do so, we used the solution

cost obtained by the regular LAHC with a fixed history length as the

stopping criterion in pLAHC.

• To investigate the anytime performance behaviour of pLAHC. Once

again, it has been shown in the literature that SLS can benefit from

restarts. Building on this, we used a multistart LAHC with a fixed

history length to obtain the total number of iterations in 50 indepen-

dent restarts. We used this number as the overall stopping criterion

105

(maximum number of iterations) for pLAHC. Our experimental re-

sults confirm that pLAHC without requiring any tuning can obtain

similar results to the ones obtained by the multistart LAHC with a

fixed history length. In some cases it even reaches to a better cost.

• To investigate the efficacy of seeding within pLAHC beyond the TSP

instances that were originally studied in Chapter 3. In their work, they

concluded that parameter-less LAHC with seeding (pLAHC-s) speeds

up the search on several instances of TSP. Note that pLAHC-s uses

knowledge obtained in previous runs to initialize a new run of LAHC

(see Section 3.3 and Algorithm 3.1). In this chapter, by applying

pLAHC-s to several instances of QAP and PFSP, we aim to study, if

pLAHC-s maintains its advantages for other combinatorial problems.

5.3.1 Algorithm Setup

For each problem, we employed a perturbation operator that is frequently

used in the literature for that problem. Similar to Chapter 4, for TSP and

QAP, we used the 2-exchange move, and for PFSP, an insertion move is

employed.

The initialization of pLAHC is identical when applied to TSP and QAP

instances: the initial candidate solution, in each restart, is generated uni-

formly at random. Then, all the Lh elements of the history list of pLAHC

are initialized with the cost value of the initial solution. For PFSP, we use

the well-known construction heuristic NEH (Nawaz, Enscore & Ham 1983)

to generate the initial solution. Details of the NEH algorithm is given in

Subsection 4.4.3. In our experiments, we used the NEH solution as the ini-

tial solution in each restart of pLAHC. However, since the initial solution

constructed by NEH is already a very good solution (Taillard 1990), in each

restart of pLAHC, we initialize all the Lh elements of the history list with

a cost value of a randomly generated solution. Note that, as explained in

Subsection 2.2.1, LAHC benefits from accepting worsening moves and ini-

tializing the history list with a value that is already good forestalls LAHC

to leverage its design.

We used a confidence value p = 0.95 for the CCP cutoff time (to decide

when a given LAHC execution, within either pLAHC or pLAHC-s, should

be restarted). This indicates that LAHC restarts with a history list length

106

twice as large when, with 95% confidence, the entire neighbourhood of the

current solution has been explored without resulting in a change in the state

of the algorithm, plateau moves aside (as it is explained in Chapter 4).

5.4 Experimental Results

This section presents a set of computer experiments to address the goals

listed at the beginning of Section 5.3.

5.4.1 Ability of pLAHC to Find a Solution with a Given Cost

We start by conducting experiments that show that pLAHC is able to reach

a solution cost reached by LAHC with a given fixed history length, and that

it does so without the user needing to specify any parameter, showing that

pLAHC requires no tuning. To accomplish this, for every problem instance,

LAHC is run for 100 independent times using three history lengths Lh ∈
{1, 5000, 50000}. The stopping criterion for each of these runs is dictated by

the CCP cutoff time, as it is known that from that point on nearly no further

improvement can be expected as described earlier in Subsection 4.2.1. In

some sense, the solution cost Cx obtained by each of these independent runs

is close to the best possible cost attainable when using a given fixed history

length x. In other words, if the target is to reach a solution cost Cx, then

a history length Lh = x is a tuned parameter value to reach that target

solution cost Cx.

The history lengths that we used are the same as those reported by Burke

and Bykov in the experimental section of the original paper on LAHC (Burke

& Bykov 2017). Then, for each combination of problem instance and history

length we computed the average of the best-ever-solution cost reached by

the end of each of the 100 independent runs. One should note that the

current solution is not always the best-ever-solution, since the algorithm

accepts worsening moves. We used the obtained average cost, which we

denote as Cx (obtained by the regular LAHC with history length x) as the

stopping criterion for pLAHC. In other words, pLAHC runs until it reaches a

solution cost Cx and then stops. As an example, C5000 for the TSP instance

rat783 refers to the average of the best-ever-solution cost obtained on 100

independent runs of LAHC with history length 5000.

107

The results are summarized in Table 5.1, where Cx are shown as Average

Relative Percentage Deviation (ARPD) from the optimal or best-known so-

lutions for the TSP, QAP, and PFSP instances. The ARPD is calculated as

described in Equation 4.5. The Overhead Factor (OF) indicates how much

slower (or faster) pLAHC is compared with LAHC. The OF is calculated by

dividing the average number of iterations of pLAHC with the average num-

ber of iterations of LAHC. Table 5.1 presents the ARPD of each instance

using the three different history lengths. We provide these to give the reader

an idea of how far the obtained results are from the optimal or best-known

results.

The first thing that stands out from Table 5.1 is that C1 ≥ C5000 ≥ C50000

across all problem instances of the different problem classes. This confirms

that the longer the history length is, the better solution cost can be expected

to be at the end of the run.

We highlight that a given Cx value is close to the best possible cost

attainable by LAHC when using history length x. In other words, a history

length Lh = x is a tuned parameter value for LAHC if the goal of the

experiment is to reach a solution cost Cx: a smaller history length may be

unable to reach solution cost Cx at all, while a larger history length should

allow LAHC to reach a solution cost Cx but it will take more time to do so,

when compared with the configuration that uses Lh = x.

Note how pLAHC is always able to reach the target solution cost Cx,

and does so without needing any tuning. Indeed, pLAHC is capable of

discovering an appropriate history length required to reach a certain solution

quality obtained by a tuned LAHC. These results show that pLAHC, in

a simple and effective way, can escape local optima by restarting LAHC

with a larger history length when its current history length appears to be

insufficient.

As expected, pLAHC, in most cases, is slower than a tuned LAHC (see

the overhead factors in Table 5.1), but that is a reasonable price to pay for

relieving a user to set the Lh parameter, and eliminate the risk of setting it

with an inadequate value. Bear in mind that running a regular LAHC with

a fixed (and potentially inappropriate) history length value, might hinder

the possibility of the algorithm to reach the target solution cost no matter

how much time is given to the algorithm. It is also notable that sometimes

pLAHC is even faster than a tuned LAHC. The history list length that

108

Table 5.1: Overhead Factor (OF) of pLAHC on TSP, QAP, and PFSP
instances to reach at least the same solution quality (Cx) as that obtained
by LAHC with a fixed history length. Cx for x ∈ {1, 5000, 50000} are
shown as Average Relative Percentage Deviation (ARPD). The results are
averaged over 100 independent runs.

TSP

Dataset
C1 C5000 C50000

ARPD OF ARPD OF ARPD OF

rat783 0.13 1.18 0.06 5.61 0.03 3.44
u1060 0.14 1.03 0.05 6.10 0.02 3.74
fl1400 0.08 0.76 0.03 7.80 0.01 3.69
u1817 0.17 0.86 0.09 7.95 0.04 4.30
d2103 0.20 1.12 0.11 7.68 0.07 4.27
pcb3038 0.15 1.02 0.09 8.07 0.05 4.26
fl3795 0.12 0.97 0.08 7.71 0.05 5.52

QAP

Dataset
C1 C5000 C50000

ARPD OF ARPD OF ARPD OF

tai30a 0.05 1.17 0.03 1.67 0.02 1.06
tai30b 0.13 0.82 0.03 0.11 0.03 0.03
tai35a 0.05 1.14 0.03 2.16 0.02 1.48
tai35b 0.08 1.38 0.02 0.32 0.02 0.04
tai40a 0.05 1.04 0.03 1.89 0.02 2.29
tai40b 0.10 1.03 0.02 0.77 0.02 0.24
tai50a 0.05 1.13 0.03 2.49 0.03 1.46
tai50b 0.07 0.81 0.01 0.53 0.00 0.12
tai60a 0.04 1.56 0.03 2.00 0.03 1.31
tai60b 0.06 1.30 0.01 0.76 0.00 0.31
tai64c 0.01 0.47 0.00 0.62 0.00 0.66
tai80a 0.04 1.09 0.03 1.71 0.02 1.80
tai80b 0.05 0.91 0.01 1.76 0.01 1.32
tai100a 0.04 1.14 0.03 2.51 0.02 2.09
tai100b 0.05 1.01 0.00 2.37 0.00 0.82
tai150b 0.03 0.68 0.01 2.65 0.00 1.41
tai256c 0.00 0.96 0.00 2.60 0.00 1.23

PFSP

Dataset
C1 C5000 C50000

ARPD OF ARPD OF ARPD OF

tai001 – 020×05 0.00 7.37 0.00 0.22 0.00 0.02
tai011 – 020×10 0.01 1.27 0.00 1.17 0.00 0.76
tai021 – 020×20 0.02 0.93 0.01 0.90 0.00 1.24
tai031 – 050×05 0.00 0.06 0.00 0.82 0.00 0.09
tai041 – 050×10 0.04 1.67 0.03 0.27 0.02 0.73
tai051 – 050×20 0.05 1.15 0.04 1.96 0.04 2.51
tai061 – 100×05 0.00 0.12 0.00 0.05 0.00 0.01
tai071 – 100×10 0.01 0.90 0.00 0.30 0.00 0.05
tai081 – 100×20 0.04 1.11 0.04 1.02 0.03 1.54
tai091 – 200×10 0.00 0.40 0.00 0.07 0.00 0.02
tai101 – 200×20 0.02 1.35 0.02 1.20 0.02 0.36
tai111 – 500×20 0.01 1.60 0.01 4.52 0.01 3.36

109

obtained the best-ever-solutions are not shown in Table 5.1 since it are

discrete numbers and cannot be averaged over 100 independent runs.

The overhead factors obtained for the TSP instances are mostly larger

than those obtained for QAP and PFSP. We hypothesize that this is due to

the search space structure of these problems. It has been shown in the lit-

erature that, as opposed to what happens with TSP instances, local optima

in QAP and PFSP instances are quite far from each other (Tayarani-N. &

Prügel-Bennett 2015, Hernando, Daolio, Veerapen & Ochoa 2017). Thus,

the implicit restarting mechanism incorporated in pLAHC provides it with

the opportunity to find a given solution cost faster.

As a final observation, consider the results obtained for the QAP instance

tai100b and the PFSP instance tai011 – 020×10, where the best-known

or optimal solution for those instances was reached by pLAHC. It would be

extremely unlikely that a practitioner (even an expert one) would “guess”

the proper value of Lh needed to reach that best-known or optimal solution,

while pLAHC does not have this problem.

5.4.2 Anytime Performance

This subsection presents a different set of experiments to illustrate the any-

time performance of pLAHC. The pLAHC has a restarting mechanism in

its mode of operation because it runs LAHC with exponentially increasing

history list lengths. This gives it an advantage over a regular LAHC, even

if both algorithms are given the same time budget. To make a more fair

comparison, we should compare pLAHC with a multistart version of the

regular LAHC. By doing so, both algorithms can benefit from restarts, the

differences being that the LAHC restarts with the same history list length.

We employed a multistart LAHC (which we refer as mLAHC) that

restarts LAHC for 50 times using the same fixed history length. Similarly

to the previous experiments, we used Lh ∈ {1, 5000, 50000}, and a confi-

dence p = 0.95 for the CCP cutoff time. For each problem instance and

history length, mLAHC is run for 100 independent times, and the average

of total number of iterations is computed. We refer to the resulting average

number of iterations as Ix when mLAHC uses Lh = x, and use that as the

stopping criterion for pLAHC. Thus, the two algorithms are given the same

time budget. However, pLAHC does not execute LAHC as many times as

mLAHC due to increasing the history list length in each restart.

110

Figure 5.2 depicts log-log plots of the average current solution cost

through time, obtained by mLAHC and pLAHC for three instances, one

for each problem set. A similar behaviour is observed for the other in-

stances. By the end of a given maximum number of iterations (Ix), pLAHC

obtained a similar cost as mLAHC in all instances of the three different

problem classes. For both pLAHC and mLAHC, the cost value decreases

through time. However, pLAHC delivers a better anytime performance, and

it does so without having any parameter.

TSP

 1×10
4

 1×10
5

 1×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

 1×10
10

C
o
s
t

Iteration

pLAHC
mLAHC

 1×10
4

 1×10
5

 1×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

 1×10
10

C
o
s
t

Iteration

pLAHC
mLAHC

 1×10
4

 1×10
5

 1×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

 1×10
10

C
o
s
t

Iteration

pLAHC
mLAHC

QAP

 7×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

 7×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

 7×10
6

 1×10
7

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

PFSP

3.9×10
3

4.0×10
3

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

(a) I1

3.9×10
3

4.0×10
3

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

(b) I5000

3.9×10
3

4.0×10
3

 1×10
0

 1×10
2

 1×10
4

 1×10
6

 1×10
8

C
o
s
t

Iteration

pLAHC
mLAHC

(c) I50000

Figure 5.2: Solution cost through time obtained by pLAHC and mLAHC,
for the TSP u1817 instance, QAP tai60a instance, and PFSP tai051–
050×20. Subfigures (a), (b), (c), correspond to different maximum number
of iterations allowed for the algorithms to run (I1, I5000, I50000), with Ix
being the number of iterations taken by mLAHC with a fixed history length
Lh = x and 50 restarts. The data is collected from the average of 100
independent runs. Cost and iteration are shown in log scale.

For the stopping criterion of I1 maximum number of iterations, mLAHC

does 50 restarts using Lh = 1, while pLAHC does fewer restarts. Note

111

that, the last restart of LAHC within the pLAHC scheme presumably halts

abruptly before utilizing its stretch capacity, when it hits the given maximum

number of iterations. Bazargani & Lobo (2017) explained that there is

no meaningful difference between solutions obtained by very small history

lengths. However, this changes when the difference between history lengths

is large. Therefore, it is not surprising that mLAHC and pLAHC have a

similar behaviour when I1 maximum iterations is used as stopping criterion.

For the stopping criterion of I5000 and I50000 maximum number of itera-

tions, mLAHC is able to compete with pLAHC towards the end of the given

time budget, but not at the beginning. Overall these results indicate that

pLAHC is a better alternative in terms of anytime performance, with the

added benefit of being easier to use since it has no parameters to set.

5.4.3 Does Seeding always Speeds up pLAHC?

Herein, we repeat the experiments done in Subsection 5.4.1, this time, by

means of pLAHC-s. In Chapter 3, it was shown empirically that seeding

could speed up the pLAHC algorithm when applied to TSP instances. In

this chapter, although we use a different cutoff time, we still observe the

same behaviour from pLAHC-s applied to TSP instances (see Table 5.2).

However, this behaviour does not hold for the other two problem classes,

i.e., QAP and PFSP.

Let us, again, briefly review the difference between pLAHC and pLAHC-

s. Similarly to pLAHC, once LAHC with a fixed history length stagnates, it

restarts LAHC by doubling its history length. However, instead of starting

the search process from scratch, it uses the best solution obtained in the

previous run as the initial solution of the new one, and it also initializes the

history list with the cost values collected from previous successful iterations.

In case the history list length is larger than the total number of previous

successful iterations, then there will be duplicate cost values in the initial

history list.

We argue that the seeding mechanism is advantageous on fitness land-

scapes where local optima are relatively close to each other. The advantage,

compared with the regular pLAHC, comes from not needing to restart the

search from scratch every time the history list length doubles its size. By

keeping the best solution from the previous LAHC run and by initializing

the history list with cost values from previously found successful iterations,

112

Table 5.2: Number of iterations needed by pLAHC and pLAHC-s to reach
to at least the same solution quality as that obtained by LAHC with a fixed
history length (Cx). Results are shown in a form of overhead factor (OF), i.e.
how much slower pLAHC is compared with LAHC. The results are averaged
over 100 independent runs. Entries in boldface are statistically significant
with a p-value < 0.05 according to the Wilcoxon signed-rank test.

TSP

Dataset
pLAHC (OF) pLAHC-s (OF)

C1 C5000 C50000 C1 C5000 C50000

rat783 1.18 5.61 3.44 2.69 4.07 3.06
u1060 1.03 6.10 3.74 1.88 4.57 3.21
fl1400 0.76 7.80 3.69 2.72 6.23 2.75
u1817 0.86 7.95 4.30 1.88 5.26 3.42
d2103 1.12 7.68 4.27 2.04 5.47 3.29
pcb3038 1.02 8.07 4.26 3.26 5.87 3.13
fl3795 0.97 7.71 5.52 2.03 5.00 3.68

QAP

Dataset
pLAHC (OF) pLAHC-s (OF)

C1 C5000 C50000 C1 C5000 C50000

tai30a 1.17 1.67 1.06 2.26 0.96 0.32
tai30b 0.82 0.11 0.03 3.16 0.26 0.03
tai35a 1.14 2.16 1.48 2.26 1.16 0.37
tai35b 1.38 0.32 0.04 3.26 0.58 0.05
tai40a 1.04 1.89 2.29 2.13 1.04 0.60
tai40b 1.03 0.77 0.24 3.12 0.61 0.11
tai50a 1.13 2.49 1.46 1.95 2.04 0.76
tai50b 0.81 0.53 0.12 2.42 0.69 0.16
tai60a 1.56 2.00 1.31 2.43 2.05 0.75
tai60b 1.30 0.76 0.31 3.87 1.29 0.36
tai64c 0.47 0.62 0.66 1.18 0.87 0.24
tai80a 1.09 1.71 1.80 1.98 1.80 1.04
tai80b 0.91 1.76 1.32 2.85 1.23 0.78
tai100a 1.14 2.51 2.09 1.77 2.45 1.20
tai100b 1.01 2.37 0.82 2.75 1.84 0.99
tai150b 0.68 2.65 1.41 2.83 3.13 1.96
tai256c 0.96 2.60 1.23 1.85 2.90 1.29

PFSP

Dataset
pLAHC (OF) pLAHC-s (OF)

C1 C5000 C50000 C1 C5000 C50000

tai001 – 020×05 7.37 0.22 0.02 1.92 0.07 0.01
tai011 – 020×10 1.27 1.17 0.76 2.40 0.36 0.27
tai021 – 020×20 0.93 0.90 1.24 2.82 3.06 0.34
tai031 – 050×05 0.06 0.82 0.09 0.13 2.55 0.32
tai041 – 050×10 1.67 0.27 0.73 2.60 0.33 0.11
tai051 – 050×20 1.15 1.96 2.51 1.82 0.91 0.46
tai061 – 100×05 0.12 0.05 0.01 0.10 0.04 0.01
tai071 – 100×10 0.90 0.30 0.05 1.78 0.45 0.08
tai081 – 100×20 1.11 1.02 1.54 1.22 0.88 0.70
tai091 – 200×10 0.40 0.07 0.02 0.56 0.08 0.02
tai101 – 200×20 1.35 1.20 0.36 1.37 0.99 0.30
tai111 – 500×20 1.60 4.52 3.36 1.91 3.81 2.01

113

the seeding mechanism can more easily jump to a different local optimum.

This seems to be the case with many TSP instances, where local optima are

concentrated in a small region of the landscape (see Hoos & Stützle 2005,

p. 220).

However, if local optima are located far from each other on the fitness

landscape, then, the seeding mechanism is too exploitative and does not

speed up pLAHC to reach to a given cost value. This seems to be the case

in most Taillard’s instances of QAP used in this work. They are real-life

like instances that have their local optima, under the 2-exchange neighbour-

hood operator, distributed across the entire fitness landscape (Freisleben

& Merz 2000, Hoos & Stützle 2005, p. 481). In the case of PFSP, the

fitness landscape induced by the insertion neighbourhood is smooth (Her-

nando, Daolio, Veerapen & Ochoa 2017). It has a high degree of neutral-

ity (Marmion, Dhaenens, Jourdan, Liefooghe & Verel 2011) with local op-

tima being spread across the landscape. Both algorithms, i.e., pLAHC and

pLAHC-s, employed the construction heuristic, NEH, to generate the initial

solution. This means that they start the search process from the exact same

basin in the fitness landscape. To work well under this scenario, pLAHC-s

requires a longer history list length with more copies of poor cost values to

be able to move out from one local optimum to another one with the hope

of getting to a better quality solution.

5.5 Summary

This chapter presents a modification of pLAHC, that was introduced in

Chapter 3, to make it good anytime performance. It aims at delivering a

quality solution comparable to what can be obtained by the best configura-

tion of the LAHC algorithm at any point in time. The pLAHC algorithm,

used in this chapter, was originally introduced to eliminate the only pa-

rameter of the LAHC algorithm. It was successfully applied in the past on

several TSP instances. However, due to the employed restart mechanism, it

could not be as effective when applied to other problem classes.

In this chapter, we employed a newly introduced dynamic cutoff time

strategy, i.e., CCP cutoff time, to decide when to restart each LAHC exe-

cution within pLAHC. As a result, the new pLAHC becomes scalable based

on the employed perturbation operator, the size of neighbourhood, as well

as from feedback received from the search. It is a ready-for-use heuristic ap-

114

proach that any general practitioner can easily apply to solve combinatorial

optimisation problems without needing to have a deep knowledge on their

internal mechanisms. More importantly, the resulting algorithm delivers

good anytime performance. We carried out a set of experiments on bench-

mark instances of TSP, QAP, and PFSP. We employed Average Relative

Percentage Deviation to report the obtained solution qualities which makes

it possible to compare our results to those reported by the state-of-the-art.

In some instances of QAP and PFSP, pLAHC obtained the best-known so-

lutions reported in the literature (note that entries of Table 5.2 that report

zero ARPD, pLAHC obtained the best-known solution.) We also investi-

gated if the seeding mechanism can always speed up pLAHC. It definitely

can on fitness landscapes where local optima tend to be clustered in a par-

ticular region of the search space. However, if local optima are spread over

the search space, then seeding turns out to be detrimental compared to the

non-seeding version of pLAHC.

115

The important thing is not to

stop questioning. Curiosity has

its own reason for existing.

Albert Einstein

Chapter 6

Conclusions and Future

Work

This final chapter summarizes the work contained in this dissertation, presents

the major contributions, and highlights a number of topics that deserve fur-

ther exploration.

6.1 Summary of Contributions

This dissertation started by giving an example of application of SLS algo-

rithms to a real-world problem to demonstrate the importance and impact

of this class of algorithms on day-to-day life. We explained that these al-

gorithms are suitable for addressing complex and large scale combinatorial

problems. Combinatorial problems involve finding a solution from a finite set

of discrete objects that satisfies certain conditions. The travelling salesman

problem is a prototypical example of a combinatorial optimization problem.

In this type of problem, going through all feasible solutions to find the best

one, assuming it is possible to generate them all, is not usually a viable op-

tion, since there are too many of them to be processed. SLS are successful

and popular search algorithms for this type of problem. They go through

the search space in an intelligent way, by avoiding unpromising points, to

provide a promising locally optimum solution. We provided some fundamen-

tal concepts and definitions of SLS algorithms, particularly, one-point SLS

algorithms that represent the main focus of this thesis. Iterative Improve-

ment, Simulated Annealing, Tabu Search, Threshold Accepting, the Great

116

Deluge Algorithm, and Iterated Local Search are among the widely used

one-point SLS algorithms. They were introduced, discussed, and some of

their key application areas were cited to demonstrate the type of real-world

problems where they have been successfully applied.

We then meticulously presented the LAHC algorithm, a successful one-

point SLS (Franzin & Stützle 2018), that was recently introduced by Burke

& Bykov (2008, 2017). This method has only one parameter, the history

list length, whose meaning is quite straightforward: the longer the history

list length is, the better quality solution is expected to be obtained at the

end of the search process; of course, at the expense of time. The LAHC is

simpler than other SLS of its kind, such as SA,TS, TA, GDA, and ILS. It

also benefits from adapting some features of other SLS algorithms.

Similar to TS, LAHC uses a list to memorise some knowledge obtained

during previous iterations for future utilisation. However, instead of keeping

a solution itself (or a form of it) in the list as is done by TS, it only memorises

the solution quality value. This makes the LAHC a memory affordable

approach with a history list containing values that are simple to interpret.

Furthermore, in TS, the tabu tenure that indicates tabu list length does

not have the same interpretation as the history list length in LAHC. The

longer the tabu list length is, the more restrictive the TS becomes (Gendreau

& Potvin 2013), and that is why different mechanisms, such as aspiration

criteria, are introduced to revoke tabus. However, this is not the case for the

history list length of LAHC. Similar to SA, TA, and GDA, LAHC accepts

worsening moves, but it neither requires a deterministic cooling schedule

(i.e., TA and GDA), nor probabilistic cooling schedule (i.e., SA). Instead, it

uses an adaptive approach that makes such decisions based on the cost of the

current solution or the cost of the solution from some iterations before. This

approach is adaptive to the search space, since the history list get updated

as the search proceeds. In the absence of the cooling schedule, the tuning

of the only parameter of LAHC is easier than SA, TS, TA, and GDA.

One of the major contributions of this thesis was to further simplify

LAHC with removing the necessity to tune its only parameter. This makes

LAHC a suitable and easy-to-use search methodology for general practition-

ers who do not have a deep insight into the parameter tuning of SLS algo-

rithms. It has been shown in the literature that SLS can benefit from restart-

ing the search from somewhere else in the search space (Hoos & Stützle

117

2005, Mart́ı, Aceves, León, Moreno-Vega & Duarte 2018). Another contri-

bution of this thesis was to incorporate a successful restart mechanism in the

LAHC algorithm. It is quite straightforward for algorithms such as ILS to

make a restart decision; however, it is non-trivial for those SLS algorithms

that accept worsening moves. In ILS, whenever the Iterative Improvement

algorithm used within ILS is in the local optimum, then it restarts the al-

gorithm. This is not the case in LAHC, since it accepts worsening moves

and therefore there is no way to know that we are in the local optimum.

Another major contribution of this thesis was to propose a new dynamic

cutoff time strategy that is able to reliably detect the stagnation point for

this type of one-point SLS algorithms. In examining these contributions we

studied their application to a real-world problem. We also showed when

these contributions come together, they can make an anytime performance

local search algorithm. This will be discussed in more detail in the following

paragraphs.

One of the known pitfalls of applications of SLS is that users of these

algorithms usually have to do a lot of parameter tuning in order to succeed

with them (Smit & Eiben 2009), where most of tuning is based on some ex-

perimental rule-of-thumbs (Smit & Eiben 2010). The first step of our jour-

ney in this thesis was to introduce a search algorithm that is easy-to-use, by

general practitioners. We proposed an automated strategy which does not

require parameter tuning. The goal was to eliminate the sole parameter of

the LAHC algorithm. To do so, we used a technique that was originally in-

troduced for automating population sizing in evolutionary algorithms (Harik

& Lobo 1999), and adapted it, for eliminating the need to manually specify

the value of the history list length of LAHC. We called this new approach the

parameter-less LAHC algorithm (pLAHC). The strategy follows closely the

restart mechanism that was used in Auger & Hansen (2005). The pLAHC

starts the search with executing a LAHC with a small history list length

and thereafter, whenever the LAHC is in the local optimum, it restarts it

with a new history list length which is double the previous one. It should be

noted that in each restart of pLAHC, with doubling the history list length,

the algorithm expands the search area of the search space with the hope of

finding a better quality solution. The pLAHC contains a restart mechanism

and does not have any parameter to tune. It is slower than LAHC with a

fine-tuned history list length; however, it does not require any tuning effort.

118

The validity of the method was shown with computational experiments on a

number of instances of the Travelling Salesman Problem (Bazargani & Lobo

2017).

We also study the application of pLAHC on a real-world search based

software engineering problem, known as the Combinatorial Interaction Test-

ing (CIT) problem. CIT is known as a black-box sampling technique for

discovering faults in highly configurable systems. In order to have a fare

comparison with Simulated Annealing, we employed the constrained CIT

problem using the well-established CASA framework introduced by Garvin,

Cohen & Dwyer (2011). CASA is a three-nested-layer search framework

that uses SA in its most inner layer. We successfully adapted pLAHC

to the CASA framework and replaced SA by LAHC. We called the new

framework Covering Array with Late Acceptance (CALA). We also used the

CASA’s design for triggering a restart of LAHC with doubling its history

list length. Although CASA was originally designed and tuned to use SA,

pLAHC showed good performance compared to SA in the CASA framework.

CALA outperformed CASA in 14 of the 35 benchmark problem instances,

and CASA outperformed CALA only in a single instance (Bazargani, Drake

& Burke 2018).

Up to this point, we had successfully designed an approach that utilised

a restart mechanism and did not have any parameter to tune. We had

also tried two different types of cutoff time for restarting LAHC, namely

dynamic and static cutoff times. Bazargani & Lobo (2017) used a dynamic

cutoff time (i.e., the 2% strategy) that was originally introduced by Burke

& Bykov (2008), and Bazargani, Drake & Burke (2018) employed a static

cutoff time which was the maximum number of iterations before triggering

a restart. One should note that, quoting from Burke & Bykov (2012):

“[. . .] the most effective approach is to terminate the search at

the moment of convergence. If we terminate it before the con-

vergence then we do not employ the full power of the method. If

we let the search run after the convergence, then we just waste

computing time (this time could be spent more effectively with

a larger [history list length]).”

In the above quote, the point of convergence (a.k.a. the moment of con-

vergence) refers to the point beyond which no improvement seems possible.

119

The exact same analogy applies to the restarting point of the search process

in pLAHC. In our experiments, we had observed that although the 2% strat-

egy is more appropriate than a static strategy consisting of a fixed amount

of time (number of iterations) with or without improvement, it still makes

incorrect decisions many times, as the results presented in Table 4.5. Burke

& Bykov (2012) elaborate on the issue of detecting the point of convergence

and the then state of the literature on this subject, which we quote again:

“[. . .] the maximum effectiveness can be achieved when the search

is stopped exactly at the point of the intersection of the time-cost

curve and the envelope of all these curves. However, the form

of the envelope is problem dependent and we currently have no

reliable method to detect these points during the search.”

While implementing pLAHC in practice, we also realized that the cut-

off time strategies often used in the literature for one-point SLS algorithms

for combinatorial problems, are mostly based on some empirical studies as

opposed to theoretical grounds. Thus, the next obvious step in our journey,

to introduce an anytime performance local search, was to design a reli-

able dynamic cutoff time strategy for one-point SLS algorithms that accepts

worsening moves.

Recognizing this gap between the theory and practice of cutoff time

strategies led us toward a practice-driven theory approach for this problem.

So that, we introduced a new dynamic cutoff time strategy that is mathe-

matically sound and derived from the Coupon Collector’s Problem (CCP).

CCP is a well-known problem from probability theory (Motwani & Ragha-

van 1995). It has been used to analyse the behaviour of SLS algorithms

(Doerr 2011, Jansen 2013). In this thesis, we used it to design a scalable

approach for choosing an appropriate cutoff time for one-point SLS algo-

rithms that can accept worsening moves. The proposed approach does not

impose a computational expense on the search algorithm, and does not have

any parameter. It is scalable based on the employed perturbation opera-

tor and its induced neighbourhood size, as well as from feedback from the

search. The suitability and scalability of the method was illustrated with the

Late Acceptance Hill-Climbing algorithm on a comprehensive set of bench-

mark instances of three well-known combinatorial optimization problems:

the Travelling Salesman Problem, the Quadratic Assignment Problem, and

120

the Permutation Flowshop Scheduling Problem. Although we illustrated the

CCP cutoff time in LAHC, it is rather a generic cutoff time, and its function-

ality is not limited to LAHC. We also improved the best-known solutions

of the 71 instances (out of 480) of Vallada, Ruiz & Framinan’s instances

for Permutation Flowshop Scheduling Problem (Lobo, Bazargani & Burke

2020).

Finally, we had all the components to fulfil the overachieving goal state-

ment of this thesis, which was, to design search techniques for combinatorial

problems that have fewer parameters while delivering good anytime perfor-

mance. We incorporated the proposed cutoff time strategy in the pLAHC

algorithm, as a restart mechanism, to decide when a given LAHC execu-

tion should be restarted with an increased history list length. The resulting

algorithm is an anytime performance local search algorithm. It has no pa-

rameters and delivers good anytime performance, making it a suitable algo-

rithm for the general practitioner. We presented a comprehensive series of

experiments which show that pLAHC provides good anytime performance,

competitive to state-of-the-art, on benchmark instances of three well-known

combinatorial optimization problems: the Travelling Salesman Problem, the

Quadratic Assignment Problem, and the Permutation Flow- shop Schedul-

ing Problem.

6.2 Future Research

Following the work presented in this thesis, a number of topics deserve

further investigation; some of them are outlined in the following.

Expand pLAHC into combinatorial problems with constraints.

We have shown that there is strong evidence that pLAHC is work-

ing well in benchmark problems. We also showed how successfully

pLAHC can be applied to a real-world problem taken from the search

based software engineering field. However, the application spectrum

is wide, and can be applied to a wide range of real-world problems.

As we mentioned in Chapter 2, real-world combinatorial problems of-

ten have some constraints. Their constraints are either blended in

the objective function or taken into account separately. Although the

LAHC can handle the former, it is important to investigate how to

incorporate the latter in LAHC and pLAHC. This is another step to

121

widen the applicability of pLAHC (introduced in Chapter 3) for gen-

eral practitioners who are dealing with this kind of problem. This can

be done with using the data structure of the history list of LAHC to

memorise more information about each solution (in this case number

of constraints that have been violated) than just its cost value. This

approach does not introduce any new parameters and it is easy to

implement.

Integeration of CCP cutoff time in other one-point SLS. We illus-

trated the suitability and scalability of the CCP cutoff time strategy

with LAHC. However, in Chapter 4, we explained that it “goes beyond

the LAHC algorithm, and is applicable to other one-point randomized

search algorithms.” Similar to LAHC, having a reliable and math-

ematically sound cutoff time for other one-point SLS is necessary to

avoid premature stopping decision of the search algorithm or even run-

ning it after the point of convergence. Thus, the integration of CCP

cutoff time into other one-point SLS approaches is an extension to

Chapter 4. One should note that the state of the algorithm that is

used in the CCP cutoff time strategy differs from one algorithm to

another. For example in LAHC, the state of the algorithm is given by

the current solution and the history list. So that, the adaptation of the

CCP cutoff time strategy to other one-point SLS is another important

future research avenue.

Extend CCP cutoff time to hyper-heuristics. In our experiments in

Chapters 4 and 5, we used one move operator for each problem class.

However, in complex problems, the functionality of one operator is

often limited; thereby, several move operators are normally employed

to better explore the search space. This represents selection hyper-

heuristics which were briefly discussed in Section 2.3. As presented in

the different subsections of Chapter 2, there are many applications of

one-point SLS in the literature that use hyper-heuristics. Therefore,

it is a promising avenue of research to extend the CCP cutoff time

introduced in Chapter 4 to hyper-heuristics. Note that, in selection

hyper-heuristics, each move operator induces its neighbourhood size

that should be used in CCP cutoff time. Moreover, neighbours induced

by different move operators have overlap. We need to take into account

122

all the above facts when investigating this research topic.

Parallelization. The pLAHC algorithm introduced in this thesis is run

in a sequential fashion. We explained in Chapter 5 that it is slower

than a tuned LAHC. With today’s advanced technology in computa-

tional power and cloud computing, it is important to investigate how

to parallelize pLAH to speed up execution time. As we explained in

Chapter 5, pLAHC is a memory-affordable algorithm that adapts it-

self based on the search space and the feedback from the search. The

parallelization of pLAHC makes it a time-affordable algorithm for a

general practitioner who wants to speed up the search process with-

out impacting the search outcome. It can be done by running several

copies of LAHC with different history list length in parallel. There

are guidelines for carrying out efficient parallelization of evolutionary

algorithms (Sudholt 2015). This is an extension to Chapter 5 that

requires a thorough investigation.

123

Bibliography

Aarts, E. H. L., Korst, J. H. M. & van Laarhoven, P. J. M. (2003), Simulated

annealing, in E. H. L. Aarts & J. K. Lenstra, eds, ‘Local Search in Com-

binatorial Optimization’, 2 edn, Princeton University Press, chapter 4,

pp. 91–120.

Abdulaziz, H., Elnahas, A., Daffalla, A., Noureldien, Y., Kheiri, A. & Ozcan,

E. (2018), Late acceptance selection hyper-heuristic for wind farm layout

optimisation problem, in ‘2018 International Conference on Computer,

Control, Electrical, and Electronics Engineering (ICCCEEE)’, IEEE.

Abdullah, S., Aickelin, U., Burke, E., Din, A. M. & Qu, R. (2007), Investi-

gating a hybrid metaheuristic for job shop rescheduling, in ‘3rd Australian

Conference on Progress in Artificial Life (ACAL 2007)’, Vol. 4828 of Lec-

ture Notes in Computer Science, Springer, pp. 357–368.

Abdullah, S., Turabieh, H., McCollum, B. & McMullan, P. (2010), ‘A hy-

brid metaheuristic approach to the university course timetabling problem’,

Journal of Heuristics 18(1), 1–23.

Acan, A. & Ünveren, A. (2020), ‘Multiobjective great deluge algorithm with

two-stage archive support’, Engineering Applications of Artificial Intelli-

gence 87, 103239.

Ahmed, L., Mumford, C. & Kheiri, A. (2019), ‘Solving urban transit route

design problem using selection hyper-heuristics’, European Journal of Op-

erational Research 274(2), 545–559.

Alinaghian, M., Tirkolaee, E. B., Dezaki, Z. K., Hejazi, S. R. & Ding, W.

(2020), ‘An augmented tabu search algorithm for the green inventory-

routing problem with time windows’, Swarm and Evolutionary Computa-

tion p. 100802.

124

Althöfer, I. & Koschnick, K.-U. (1991), ‘On the convergence of “threshold

accepting”’, Applied Mathematics & Optimization 24(1), 183–195.

Alwisy, A., Bouferguene, A. & Al-Hussein, M. (2018), ‘Framework for target

cost modelling in construction projects’, International Journal of Con-

struction Management 20(2), 89–104.

Amaral, P. & Pais, T. C. (2016), ‘Compromise ratio with weighting func-

tions in a tabu search multi-criteria approach to examination timetabling’,

Computers & Operations Research 72, 160–174.

Anand, S., Saravanasankar, S. & Subbaraj, P. (2011), ‘Customized simu-

lated annealing based decision algorithms for combinatorial optimization

in VLSI floorplanning problem’, Computational Optimization and Appli-

cations 52(3), 667–689.

Andrade, M. D. D., Nascimento, M. A. C., Mundim, K. C., Sobrinho,

A. M. C. & Malbouisson, L. A. C. (2008), ‘Atomic basis sets optimiza-

tion using the generalized simulated annealing approach: New basis sets

for the first row elements’, International Journal of Quantum Chemistry

108(13), 2486–2498.

Androutsopoulos, K. N., Manousakis, E. G. & Madas, M. A. (2020), ‘Mod-

eling and solving a bi-objective airport slot scheduling problem’, European

Journal of Operational Research 284(1), 135–151.

Atkin, J. A. D., Burke, E. K., Greenwood, J. S. & Reeson, D. (2007), ‘Hy-

brid metaheuristics to aid runway scheduling at london heathrow airport’,

Transportation Science 41(1), 90–106.

Auger, A. & Hansen, N. (2005), A restart CMA evolution strategy with in-

creasing population size, in ‘IEEE Congress on Evolutionary Computation

(CEC 2005)’, IEEE.

Bartz-Beielstein, T., Lasarczyk, C. & Preuss, M. (2005), Sequential parame-

ter optimization, in ‘IEEE Congress on Evolutionary Computation (CEC

2005)’, IEEE.

Baykasoglu, A., Durmusoglu, Z. D. & Kaplanoglu, V. (2011), ‘Training fuzzy

cognitive maps via extended great deluge algorithm with applications’,

Computers in Industry 62(2), 187–195.

125

Bazargani, M., Drake, J. H. & Burke, E. K. (2018), Late acceptance hill

climbing for constrained covering arrays, in ‘Applications of Evolutionary

Computation (EvoApplications 2018)’, Springer, pp. 778–793.

Bazargani, M. & Lobo, F. G. (2017), Parameter-less late acceptance hill-

climbing, in ‘Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO'17)’, ACM.

Beyer, H.-G. & Schwefel, H.-P. (2002), ‘Evolution strategies — a compre-

hensive introduction’, Natural Computing 1(1), 3–52.

Bick, U. & Giger, M. L. (1997), ‘Method and system for detection of lesions

in medical images’.

URL: https://patents.google.com/patent/US6185320B1/en

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W. & Berghe, G. V.

(2011), ‘One hyper-heuristic approach to two timetabling problems in

health care’, Journal of Heuristics 18(3), 401–434.

Boese, K. D., Kahng, A. B. & Muddu, S. (1994), ‘A new adaptive multi-start

technique for combinatorial global optimizations’, Operations Research

Letters 16(2), 101–113.

Bolaji, A. L., Bamigbola, A. F. & Shola, P. B. (2018), ‘Late acceptance

hill climbing algorithm for solving patient admission scheduling problem’,

Knowledge-Based Systems 145, 197–206.

Bolaji, A. L., Michael, I. & Shola, P. B. (2018), Adaptation of late ac-

ceptance hill climbing algorithm for optimizing the office-space allocation

problem, in ‘Hybrid Metaheuristics’, Springer, pp. 180–190.

Bosman, P. A., Luong, N. H. & Thierens, D. (2016), Expanding from dis-

crete cartesian to permutation gene-pool optimal mixing evolutionary al-

gorithms, in ‘Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO'16)’, ACM Press.

Breedam, A. V. (1995), ‘Improvement heuristics for the vehicle routing prob-

lem based on simulated annealing’, European Journal of Operational Re-

search 86(3), 480–490.

126

Bryce, R. C. & Colbourn, C. J. (2007), One-test-at-a-time heuristic search

for interaction test suites, in ‘Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO'07)’, ACM Press.

Burkard, R. E., Karisch, S. E. & Rendl, F. (1997), ‘QAPLIB — a quadratic

assignment problem library’, Journal of Global Optimization 10(4), 391–

403.

Burke, E., Causmaecker, P. D. & Berghe, G. V. (1999), A hybrid tabu

search algorithm for the nurse rostering problem, in ‘Second Asia-Pacific

Conference on Simulated Evolution and Learning (SEAL’98)’, Lecture

Notes in Computer Science, Springer, pp. 187–194.

Burke, E. K. & Bykov, Y. (2006), Solving exam timetabling problems with

the flex-deluge algorithm, in ‘Proceedings of the 5th International Con-

ference on the Practice and Theory of Automating Timetabling (PATAT

2006)’.

Burke, E. K. & Bykov, Y. (2008), A late acceptance strategy in hill-climbing

for exam timetabling problems, in ‘Proceedings of the 7th International

Conference on the Practice and Theory of Automating Timetabling

(PATAT 2008)’.

Burke, E. K. & Bykov, Y. (2012), The late acceptance hill-climbing heuris-

tic, Technical Report CSM-192, Department of Computing Science and

Mathematics, University of Stirling.

Burke, E. K. & Bykov, Y. (2016), ‘An adaptive flex-deluge approach to uni-

versity exam timetabling’, INFORMS Journal on Computing 28(4), 781–

794.

Burke, E. K. & Bykov, Y. (2017), ‘The late acceptance hill-climbing heuris-

tic’, European Journal of Operational Research 258(1), 70–78.

Burke, E. K., Bykov, Y., Newall, J. & Petrovic, S. (2003), ‘A time-predefined

approach to course timetabling’, Yugoslav Journal of Operations Research

13(2), 139–151.

Burke, E. K., Bykov, Y., Newall, J. & Petrovic, S. (2004), ‘A time-predefined

local search approach to exam timetabling problems’, IIE Transactions

36(6), 509–528.

127

Burke, E. K., Causmaecker, P. D. & Berghe, G. V. (2004), Novel meta-

heuristic approaches to nurse rostering problems in Belgian hospitals, in

J. Y.-T. Leung, ed., ‘Handbook of Scheduling: Algorithms, Models, and

Performance Analysis’, CRC Press, chapter 44.

Burke, E. K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S.,

Vazquez-Rodriguez, J. A. & Gendreau, M. (2010), Iterated local search

vs. hyper-heuristics: Towards general-purpose search algorithms, in ‘IEEE

Congress on Evolutionary Computation (CEC 2010)’, IEEE.

Burke, E. K., Eckersley, A., McCollum, B., Petrovic, S. & Qu, R. (2003),

Using simulated annealing to study behaviour of various exam timetabling

data sets, in ‘5th Meta-heuristics International Conference (MIC03)’, Ky-

oto, Japan.

Burke, E. K. & Kendall, G., eds (2014), Search Methodologies, Springer.

Burke, E. K., Kendall, G. & Soubeiga, E. (2003), ‘A tabu-search hyper-

heuristic for timetabling and rostering’, Journal of Heuristics 9(6), 451–

470.

Burke, E. K., Kendall, G. & Whitwell, G. (2009), ‘A simulated anneal-

ing enhancement of the best-fit heuristic for the orthogonal stock-cutting

problem’, INFORMS Journal on Computing 21(3), 505–516.

Bykov, Y. (2003), Time-predefined and trajectory based search: Singleand

multiobjective approaches to exam timetabling, PhD thesis, The Univer-

sity of Nottingham, Nottingham, UK.

Carter, M. W., Laporte, G. & Lee, S. Y. (1996), ‘Examination timetabling:

Algorithmic strategies and applications’, Journal of the Operational Re-

search Society 47(3), 373–383.

Cavallo, M., Modica, G. D., Polito, C. & Tomarchio, O. (2017a), A LAHC-

based job scheduling strategy to improve big data processing in geo-

distributed contexts, in ‘2nd International Conference on Internet of

Things, Big Data and Security’, SCITEPRESS - Science and Technol-

ogy Publications.

128

Cavallo, M., Modica, G. D., Polito, C. & Tomarchio, O. (2017b), Multi-job

hadoop scheduling to process geo-distributed big data, in ‘IEEE Sympo-

sium on Computers and Communications (ISCC)’, IEEE, pp. 1175–1181.

Chaimatanan, S., Delahaye, D. & Mongeau, M. (2014), ‘A hybrid meta-

heuristic optimization algorithm for strategic planning of 4D aircraft tra-

jectories at the continental scale’, IEEE Computational Intelligence Mag-

azine 9(4), 46–61.

Chan, K., Kwong, C. & Luo, X. (2009), ‘Improved orthogonal array based

simulated annealing for design optimization’, Expert Systems with Appli-

cations 36(4), 7379–7389.

Chen, M., Koc, E., Shi, Z. & Soibelman, L. (2018), ‘Proactive 2D model-

based scan planning for existing buildings’, Automation in Construction

93, 165–177.

Chen, P.-H. & Shahandashti, S. M. (2009), ‘Hybrid of genetic algorithm and

simulated annealing for multiple project scheduling with multiple resource

constraints’, Automation in Construction 18(4), 434–443.

Chen, S.-H. & Yeh, C.-H. (2001), ‘Evolving traders and the business school

with genetic programming: A new architecture of the agent-based arti-

ficial stock market’, Journal of Economic Dynamics and Control 25(3-

4), 363–393.

Cheng, J. & Fournier, R. (2004), ‘Structural optimization of atomic clusters

by tabu search in descriptor space’, Theoretical Chemistry Accounts: The-

ory, Computation, and Modeling (Theoretica Chimica Acta) 112(1), 7–15.

Chiang, W.-C. & Russell, R. A. (1996), ‘Simulated annealing metaheuristics

for the vehicle routing problem with time windows’, Annals of Operations

Research 63(1), 3–27.

Chira, M. & Plionis, M. (2019), ‘A simulated annealing algorithm to quantify

patterns in astronomical data’, Monthly Notices of the Royal Astronomical

Society 490(4), 5904–5920.

Chopard, B. & Tomassini, M. (2018), An Introduction to Metaheuristics for

Optimization, Springer.

129

Çiftçi, M. E. & Özkır, V. (2020), ‘Optimising flight connection times in

airline bank structure through simulated annealing and tabu search algo-

rithms’, Journal of Air Transport Management 87, 101858.

Cohen, D. M., Dalal, S. R., Kajla, A. & Patton, G. C. (1994), The automatic

efficient test generator (AETG) system, in ‘5th International Symposium

on Software Reliability Engineering (ISSRE 1994)’, IEEE, pp. 303–309.

Cohen, M., Colbourn, C. & Ling, A. (2003), Augmenting simulated anneal-

ing to build interaction test suites, in ‘14th International Symposium on

Software Reliability Engineering (ISSRE 2003)’, IEEE.

Cohen, M., Dwyer, M. & Shi, J. (2008), ‘Constructing interaction test suites

for highly-configurable systems in the presence of constraints: A greedy

approach’, IEEE Transactions on Software Engineering 34(5), 633–650.

Connolly, D. T. (1990), ‘An improved annealing scheme for the QAP’, Eu-

ropean Journal of Operational Research 46(1), 93–100.

Cook, W. J., Applegate, D. L., Bixby, R. E. & Chvátal, V. (2011), The

Traveling Salesman Problem, Princeton University Press.

Cordeau, J.-F., Laporte, G. & Pasin, F. (2008), ‘Iterated tabu search for

the car sequencing problem’, European Journal of Operational Research

191(3), 945–956.

Cordón, O. & Damas, S. (2006), ‘Image registration with iterated local

search’, Journal of Heuristics 12(1-2), 73–94.

Cordón, O., Damas, S. & Bardinet, E. (2003), 2D image registration with

iterated local search, in ‘Advances in Soft Computing’, Springer, pp. 233–

242.

Corte, A. D. & Sörensen, K. (2016), ‘An iterated local search algorithm for

water distribution network design optimization’, Networks 67(3), 187–198.

Damaševičius, R. & Woźniak, M. (2017), State flipping based hyper-heuristic

for hybridization of nature inspired algorithms, in ‘Artificial Intelligence

and Soft Computing’, Springer, pp. 337–346.

130

Dang, N. & Doerr, C. (2019), Hyper-parameter tuning for the (1+(λ, λ))

GA, in ‘Proceedings of the 2015 on Genetic and Evolutionary Computa-

tion Conference (GECCO’19)’, ACM.

Dang, N. T. T. & Causmaecker, P. D. (2016), Characterization of neigh-

borhood behaviours in a multi-neighborhood local search algorithm, in

P. Festa, M. Sellmann & J. Vanschoren, eds, ‘International Conference

on Learning and Intelligent Optimization (LION’2016)’, Springer, Cham,

pp. 234–239.

Dantzig, G. (1963), Linear Programming and Extensions, RAND Corpora-

tion.

Demeester, P., Bilgin, B., Causmaecker, P. D. & Berghe, G. V. (2011), ‘A hy-

perheuristic approach to examination timetabling problems: benchmarks

and a new problem from practice’, Journal of Scheduling 15(1), 83–103.

Demeester, P., Souffriau, W., Causmaecker, P. D. & Berghe, G. V. (2010),

‘A hybrid tabu search algorithm for automatically assigning patients to

beds’, Artificial Intelligence in Medicine 48(1), 61–70.

den Besten, W., Thierens, D. & Bosman, P. A. N. (2016), The multiple

insertion pyramid: A fast parameter-less population scheme, in ‘Parallel

Problem Solving from Nature (PPSN XIV)’, Springer, pp. 48–58.

Dhouib, S. (2010), A multi start great deluge metaheuristic for engineering

design problems, in ‘ACS/IEEE International Conference on Computer

Systems and Applications - AICCSA 2010’, IEEE.

Diabat, A., Abdallah, T. & Le, T. (2014), ‘A hybrid tabu search based

heuristic for the periodic distribution inventory problem with perishable

goods’, Annals of Operations Research 242(2), 373–398.

Dickey, J. W. & Hopkins, J. W. (1972), ‘Campus building arrangement using

topaz’, Transportation Research 6(1), 59–68.

Doerr, B. (2011), Analyzing randomized search heuristics: Tools from prob-

ability theory, in ‘Series on Theoretical Computer Science’, WORLD SCI-

ENTIFIC, pp. 1–20.

131

Doerr, B. & Doerr, C. (2015), Optimal parameter choices through self-

adjustment, in ‘Proceedings of the 2015 on Genetic and Evolutionary

Computation Conference (GECCO’15)’, ACM.

Doerr, B. & Doerr, C. (2019), Theory of parameter control for discrete black-

box optimization: Provable performance gains through dynamic parame-

ter choices, in ‘Natural Computing Series’, Springer, pp. 271–321.

Doerr, C. & Wagner, M. (2018), Simple on-the-fly parameter selection mech-

anisms for two classical discrete black-box optimization benchmark prob-

lems, in ‘Proceedings of the 2015 on Genetic and Evolutionary Computa-

tion Conference (GECCO’18)’, ACM.

Drake, J. H., Kheiri, A., Özcan, E. & Burke, E. K. (2020), ‘Recent advances

in selection hyper-heuristics’, European Journal of Operational Research

285(2), 405–428.

Drake, J. H., Özcan, E. & Burke, E. K. (2016), ‘A case study of controlling

crossover in a selection hyper-heuristic framework using the multidimen-

sional knapsack problem’, Evolutionary Computation 24(1), 113–141.

Dueck, G. (1993), ‘New optimization heuristics: The Great Deluge algo-

rithm and the record-to-record travel’, Journal of Computational Physics

104(1), 86–92.

Dueck, G. & Scheuer, T. (1990), ‘Threshold accepting: A general purpose

optimization algorithm appearing superior to simulated annealing’, Jour-

nal of Computational Physics 90(1), 161–175.

Eiben, A., Hinterding, R. & Michalewicz, Z. (1999), ‘Parameter control in

evolutionary algorithms’, IEEE Transactions on Evolutionary Computa-

tion 3(2), 124–141.

Eiben, A. & Smit, S. (2011), ‘Parameter tuning for configuring and analyzing

evolutionary algorithms’, Swarm and Evolutionary Computation 1(1), 19–

31.

Emden-Weinert, T. & Proksch, M. (1999), ‘Best practice simulated an-

nealing for the airline crew scheduling problem’, Journal of Heuristics

5(4), 419–436.

132

Eng, K., Muhammed, A., Mohamed, M. A. & Hasan, S. (2020), ‘A hybrid

heuristic of variable neighbourhood descent and great deluge algorithm

for efficient task scheduling in grid computing’, European Journal of Op-

erational Research 284(1), 75–86.

Feo, T. A. & Resende, M. G. C. (1995), ‘Greedy randomized adaptive search

procedures’, Journal of Global Optimization 6(2), 109–133.

Fernandez-Viagas, V., Ruiz, R. & Framinan, J. M. (2017), ‘A new vi-

sion of approximate methods for the permutation flowshop to min-

imise makespan: State-of-the-art and computational evaluation’, Euro-

pean Journal of Operational Research 257(3), 707–721.

Fonseca, G. H. G., Santos, H. G. & Carrano, E. G. (2016), ‘Late accep-

tance hill-climbing for high school timetabling’, Journal of Scheduling

19(4), 453–465.

Framinan, J. M., Leisten, R. & Garćıa, R. R. (2014), Manufacturing Schedul-

ing Systems, Springer.

Frank, J., Cheeseman, P. & Stutz, J. (1997), ‘When gravity fails: Local

search topology’, Journal of Artificial Intelligence Research 7, 249–281.

Franzin, A. & Stützle, T. (2018), Comparison of acceptance criteria in ran-

domized local searches, in ‘Lecture Notes in Computer Science’, Springer,

pp. 16–29.

Freisleben, B. & Merz, P. (2000), ‘Fitness landscape analysis and memetic

algorithms for the quadratic assignment problem’, IEEE Transactions on

Evolutionary Computation 4(4), 337–352.

Frøseth, G. T. & Rönnquist, A. (2019), ‘Finding the train composition caus-

ing greatest fatigue damage in railway bridges by late acceptance hill

climbing’, Engineering Structures 196, 109342.

Galinier, P., Kpodjedo, S. & Antoniol, G. (2017), A penalty-based tabu

search for constrained covering arrays, in ‘Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO'17)’, ACM Press.

Garibaldi, J. M. & Ifeachor, E. C. (1999), ‘Application of simulated anneal-

ing fuzzy model tuning to umbilical cord acid-base interpretation’, IEEE

Transactions on Fuzzy Systems 7(1), 72–84.

133

Garĺık, B. & Křivan, M. (2013), ‘Renewable energy unit commitment, with

different acceptance of balanced power, solved by simulated annealing’,

Energy and Buildings 67, 392–402.

Garvin, B. J., Cohen, M. B. & Dwyer, M. B. (2009), An improved meta-

heuristic search for constrained interaction testing, in ‘2009 1st Interna-

tional Symposium on Search Based Software Engineering’, IEEE.

Garvin, B. J., Cohen, M. B. & Dwyer, M. B. (2011), ‘Evaluating improve-

ments to a meta-heuristic search for constrained interaction testing’, Em-

pirical Software Engineering 16(1), 61–102.

Gendreau, M. & Potvin, J.-Y. (2013), Tabu search, in E. K. Burke &

G. Kendall, eds, ‘Search Methodologies’, 2 edn, Springer, chapter 9,

pp. 243–263.

Geoffrion, A. M. & Graves, G. W. (1976), ‘Scheduling parallel production

lines with changeover costs: Practical application of a quadratic assign-

ment/LPApproach’, Operations Research 24(4), 595–610.

Ghosh, K., Sharma, R. & Chaudhury, P. (2020), ‘Structure elucidation and

construction of isomerisation pathways in small to moderate-sized (6–27)

MgO nanoclusters: an adaptive mutation simulated annealing based anal-

ysis with quantum chemical calculations’, Physical Chemistry Chemical

Physics 22(17), 9616–9629.

Gilli, M. & Schumann, E. (2011), ‘Heuristic optimisation in financial mod-

elling’, Annals of Operations Research 193(1), 129–158.

Glover, F. (1989), ‘Tabu search — Part I’, ORSA Journal on Computing

1(3), 190–206.

Glover, F. W. & Laguna, M. (1997), Tabu Search, Kluwer Academic Pub-

lishers.

Goerler, A., Lalla-Ruiz, E. & Voß, S. (2020), ‘Late acceptance hill-climbing

matheuristic for the general lot sizing and scheduling problem with rich

constraints’, Algorithms 13(6), 138.

Goerler, A., Schulte, F. & Voß, S. (2013), An application of late accep-

tance hill-climbing to the traveling purchaser problem, in ‘Lecture Notes

in Computer Science’, Springer, pp. 173–183.

134

Goldberg, D. (1989), Genetic algorithms in search, optimization, and ma-

chine learning, Addison-Wesley, Reading, Mass.

Grobler, J., Engelbrecht, A. P., Kendall, G. & Yadavalli, V. (2015),

‘Heuristic space diversity control for improved meta-hyper-heuristic per-

formance’, Information Sciences 300, 49–62.

Guizzo, G., Bazargani, M., Paixao, M. & Drake, J. H. (2017), A hyper-

heuristic for multi-objective integration and test ordering in google guava,

in ‘Search Based Software Engineering’, Springer, pp. 168–174.

Gutin, G. & Punnen, A. P., eds (2007), The Traveling Salesman Problem

and Its Variations, Springer.

Habib, A., Vernin, J., Benkhaldoun, Z. & Lanteri, H. (2006), ‘Single star sci-

dar: atmospheric parameters profiling using the simulated annealing algo-

rithm’, Monthly Notices of the Royal Astronomical Society 368(3), 1456–

1462.

Hachemi, N. E., Gendreau, M. & Rousseau, L.-M. (2013), ‘A heuristic to

solve the synchronized log-truck scheduling problem’, Computers & Op-

erations Research 40(3), 666–673.

Hanafi, R. & Kozan, E. (2014), ‘A hybrid constructive heuristic and sim-

ulated annealing for railway crew scheduling’, Computers & Industrial

Engineering 70, 11–19.

Harik, G., Cantú-Paz, E., Goldberg, D. E. & Miller, B. L. (1999), ‘The

gambler’s ruin problem, genetic algorithms, and the sizing of populations’,

Evolutionary Computation 7(3), 231–253.

Harik, G. R. & Lobo, F. G. (1999), A parameter-less genetic algorithm,

in ‘Proceedings of the 1st Annual Conference on Genetic and Evolution-

ary Computation (GECCO'99)’, Vol. 1, Morgan Kaufmann Publishers,

pp. 258–265.

Heid, W., Hasle, G., & Vigo, D. (2014), VeRoLog solver challenge 2014 –

VSC2014 problem description, in ‘VeRoLog (EURO Working Group on

Vehicle Routing and Logistics Optimization) and PTV Group’, pp. 1–6.

135

Hernando, L., Daolio, F., Veerapen, N. & Ochoa, G. (2017), Local optima

networks of the permutation flowshop scheduling problem: Makespan vs.

total flow time, in ‘IEEE Congress on Evolutionary Computation (CEC

2017)’, IEEE.

Holdener, E. (2008), The art of parameterless evolutionary algorithms, PhD

thesis, Missouri University of Science and Technology, Rolla, MO, USA.

Hoos, H. H. & Stützle, T. (2005), Stochastic Local Search: Foundations &

Applications, Elsevier / Morgan Kaufmann.

Hoos, H. H. & Stützle, T. (2015), Stochastic local search algorithms: An

overview, in ‘Springer Handbook of Computational Intelligence’, Springer,

pp. 1085–1105.

Hu, T. C., Kahng, A. B. & Tsao, C.-W. A. (1995), ‘Old bachelor acceptance:

A new class of non-monotone threshold accepting methods’, ORSA Jour-

nal on Computing 7(4), 417–425.

Islami, A., Chaimatanan, S. & Delahaye, D. (2017), Large-scale 4D trajec-

tory planning, in ‘Air Traffic Management and Systems II’, Vol. 420 of

Lecture Notes in Electrical Engineering, Springer, pp. 27–47.

Jacob, D., Raben, A., Sarkar, A., Grimm, J. & Simpson, L. (2008),

‘Anatomy-based inverse planning simulated annealing optimization in

high-dose-rate prostate brachytherapy: Significant dosimetric advantage

over other optimization techniques’, International Journal of Radiation

Oncology∗Biology∗Physics 72(3), 820–827.

Jaffar, J. & Lassez, J.-L. (1987), Constraint logic programming, in ‘Pro-

ceedings of the 14th Symposium on Principles of Programming Languages

(POPL'87)’, ACM Press.

Jansen, T. (2013), Analyzing Evolutionary Algorithms, Springer.

Jia, Y., Cohen, M. B., Harman, M. & Petke, J. (2015), Learning combinato-

rial interaction test generation strategies using hyperheuristic search, in

‘IEEE/ACM International Conference on Software Engineering’, IEEE.

Johnson, D. S., Aragon, C. R., McGeoch, L. A. & Schevon, C. (1989),

‘Optimization by simulated annealing: An experimental evaluation; Part

I, graph partitioning’, Operations Research 37(6), 865–892.

136

Johnson, D. S., Aragon, C. R., McGeoch, L. A. & Schevon, C. (1991), ‘Op-

timization by simulated annealing: An experimental evaluation; Part II,

graph coloring and number partitioning’, Operations Research 39(3), 378–

406.

Jones, T. & Forrest, S. (1995), Fitness distance correlation as a measure of

problem difficulty for genetic algorithms, in ‘Proceedings of the 6th In-

ternational Conference on Genetic Algorithms’, Morgan Kaufmann Pub-

lishers, p. 184–192.

Jünger, M., Reinelt, G. & Rinaldi, G. (1995), The traveling salesman prob-

lem, in ‘Handbooks in Operations Research and Management Science’,

Elsevier, pp. 225–330.

Katsigiannis, Y. A., Georgilakis, P. S. & Karapidakis, E. S. (2012), ‘Hybrid

simulated annealing–tabu search method for optimal sizing of autonomous

power systems with renewables’, IEEE Transactions on Sustainable En-

ergy 3(3), 330–338.

Kendall, G. & Mohamad, M. (2004), Channel assignment in cellular commu-

nication using a great deluge hyper-heuristic, in ‘12th IEEE International

Conference on Networks (ICON 2004)’, IEEE.

Khalsa, S. K. & Labiche, Y. (2014), An orchestrated survey of available al-

gorithms and tools for combinatorial testing, in ‘IEEE 25th International

Symposium on Software Reliability Engineering (ISSRE 2014)’, IEEE.

Kheiri, A. & Özcan, E. (2013), ‘Constructing constrained-version of

magic squares using selection hyper-heuristics’, The Computer Journal

57(3), 469–479.

Kifah, S. & Abdullah, S. (2015), ‘An adaptive non-linear great deluge algo-

rithm for the patient-admission problem’, Information Sciences 295, 573–

585.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983), ‘Optimization by

simulated annealing’, Science 220(4598), 671–680.

Knuth, D. (2014), The Art of Computer Programming, Volume 4A, The:

Combinatorial Algorithms, Part 1, Addison-Wesley, Boston, MA.

137

Knuth, D. E. (2019), The Art of Computer Programming, Volume 4, Fas-

cicle 5: Mathematical Preliminaries Redux; Introduction to Backtracking;

Dancing Links, Addison-Wesley, Boston, MA.

Kong, Q., Kuriyan, K., Shah, N. & Guo, M. (2019), ‘Development of a

responsive optimisation framework for decision-making in precision agri-

culture’, Computers & Chemical Engineering 131, 106585.

Koza, J. R. (1994), ‘Genetic programming as a means for programming

computers by natural selection’, Statistics and Computing 4(2).

Kramer, O. (2017), Genetic Algorithm Essentials, Springer.

Kubicky, C. D., Yeh, B. M., Lessard, E., Joe, B. N., Speight, J. L., Pouliot, J.

& Hsu, I.-C. (2008), ‘Inverse planning simulated annealing for magnetic

resonance imaging-based intracavitary high-dose-rate brachytherapy for

cervical cancer’, Brachytherapy 7(3), 242–247.

Kuhn, D., Wallace, D. & Gallo, A. (2004), ‘Software fault interactions and

implications for software testing’, IEEE Transactions on Software Engi-

neering 30(6), 418–421.

Land, A. H. & Doig, A. G. (1960), ‘An automatic method of solving discrete

programming problems’, Econometrica 28(3), 497.

Landa-Silva, D. & Obit, J. H. (2009), Evolutionary non-linear great del-

uge for university course timetabling, in ‘4th International Conference

on Hybrid Artificial Intelligence Systems (HAIS 2009)’, Lecture Notes in

Computer Science, Springer, pp. 269–276.

Laporte, G. (1992), ‘The traveling salesman problem: An overview of exact

and approximate algorithms’, European Journal of Operational Research

59(2), 231–247.

Larrañaga, P., Kuijpers, C., Murga, R., Inza, I. & Dizdarevic, S. (1999),

‘Genetic algorithms for the travelling salesman problem: A review of rep-

resentations and operators’, Artificial Intelligence Review 13(2), 129–170.

Lee, C. & Kang, H. (2000), ‘Cell planning with capacity expansion in mobile

communications: a tabu search approach’, IEEE Transactions on Vehic-

ular Technology 49(5), 1678–1691.

138

Lee, D. S., Vassiliadis, V. S. & Park, J. M. (2004), ‘A novel threshold ac-

cepting meta-heuristic for the job-shop scheduling problem’, Computers

& Operations Research 31(13), 2199–2213.

Leite, N., Meĺıcio, F. & Rosa, A. C. (2019), ‘A fast simulated annealing

algorithm for the examination timetabling problem’, Expert Systems with

Applications 122, 137–151.

Leutner, M., Gschwind, R. M., Liermann, J., Schwarz, C., Gemmecker, G. &

Kessler, H. (1998), ‘Automated backbone assignment of labeled proteins

using the threshold accepting algorithm’, Journal of Biomolecular NMR

11(1), 31–43.

Li, Y., Wang, C., Gao, L., Song, Y. & Li, X. (2020), ‘An improved simulated

annealing algorithm based on residual network for permutation flow shop

scheduling’, Complex & Intelligent Systems .

Lin, B., Chavali, S., Camarda, K. & Miller, D. (2005), ‘Computer-aided

molecular design using tabu search’, Computers & Chemical Engineering

29(2), 337–347.

Lin, J., Luo, C., Cai, S., Su, K., Hao, D. & Zhang, L. (2015), TCA: An

efficient two-mode meta-heuristic algorithm for combinatorial test gener-

ation (t), in ‘30th IEEE/ACM International Conference on Automated

Software Engineering (ASE)’, IEEE.

Liu, H., Zhang, J., Zhang, X., Kurniawan, A., Juhana, T. & Ai, B. (2020),

‘Tabu-search-based pilot assignment for cell-free massive MIMO systems’,

IEEE Transactions on Vehicular Technology 69(2), 2286–2290.

Liu, Y.-H. (2010), ‘A genetic local search algorithm with a threshold accept-

ing mechanism for solving the runway dependent aircraft landing prob-

lem’, Optimization Letters 5(2), 229–245.

Lobo, F. G. & Bazargani, M. (2015), When hillclimbers beat genetic al-

gorithms in multimodal optimization, in ‘Proceedings of the Companion

Publication of the Genetic and Evolutionary Computation Conference

(GECCO'15)’, ACM Press.

139

Lobo, F. G., Bazargani, M. & Burke, E. K. (2020), ‘A cutoff time strategy

based on the coupon collector’s problem’, European Journal of Operational

Research 286(1), 101–114.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M. &

Stützle, T. (2016), ‘The irace package: Iterated racing for automatic al-

gorithm configuration’, Operations Research Perspectives 3, 43–58.

Lourenço, H. R., Martin, O. C. & Stützle, T. (2019), Iterated local search:

Framework and applications, in M. Gendreau & J.-Y. Potvin, eds, ‘Hand-

book of Metaheuristics’, 3 edn, Springer, chapter 5, pp. 129–168.

Luong, N. H., Poutré, H. L. & Bosman, P. A. (2015), Exploiting linkage

information and problem-specific knowledge in evolutionary distribution

network expansion planning, in ‘Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO'15)’, ACM Press.

Maenhout, B. & Vanhoucke, M. (2010), ‘A hybrid scatter search heuristic

for personalized crew rostering in the airline industry’, European Journal

of Operational Research 206(1), 155–167.

Mafarja, M. & Abdullah, S. (2014), Fuzzy modified great deluge algorithm

for attribute reduction, in ‘Recent Advances on Soft Computing and Data

Mining’, Vol. 287 of Advances in Intelligent Systems and Computing,

Springer, pp. 195–203.

Marimuthu, S., Ponnambalam, S. & Jawahar, N. (2009), ‘Threshold ac-

cepting and ant-colony optimization algorithms for scheduling m-machine

flow shops with lot streaming’, Journal of Materials Processing Technology

209(2), 1026–1041.

Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A. & Verel, S.

(2011), On the neutrality of flowshop scheduling fitness landscapes, in

‘Lecture Notes in Computer Science’, Springer, pp. 238–252.

Mart́ı, R., Aceves, R., León, M. T., Moreno-Vega, J. M. & Duarte, A.

(2018), Intelligent multi-start methods, in M. Gendreau & J.-Y. Potvin,

eds, ‘Handbook of Metaheuristics’, 3 edn, Springer, chapter 7, pp. 221–

243.

140

Martinho, W. C. S., Melo, R. A. & Sörensen, K. (2020), An enhanced

simulation-based iterated local search metaheuristic for gravity fed water

distribution network design optimization, Technical Report 2009.01197,

arXiv.

Matsopoulos, G. K., Mouravliansky, N. A., Delibasis, K. K. & Nikita, K. S.

(1999), ‘Automatic retinal image registration scheme using global opti-

mization techniques’, IEEE Transactions on Information Technology in

Biomedicine 3(1), 47–60.

McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K. & Abdullah, S.

(2009), An extended great deluge approach to the examinationtimetabling

problem, in ‘4th Multidisciplinary International Scheduling Conference –

Tools & Applications (MISTA 2009)’.

McDermott, J. & Nicolau, M. (2017), Late-acceptance hill-climbing with a

grammatical program representation, in ‘Proceedings of the Genetic and

Evolutionary Computation Conference Companion (GECCO’17)’, ACM.

McMullan, P. (2007), An extended implementation of the great deluge al-

gorithm for course timetabling, in ‘7th International Conference on Com-

putational Science (ICCS 2007)’, Vol. 4487 of Lecture Notes in Computer

Science, Springer, pp. 538–545.

McMullan, P. & McCollum, B. (2007), Dynamic job scheduling on the grid

environment using the great deluge algorithm, in ‘9th International Con-

ference on Parallel Computing Technologies (PaCT 2007)’, Lecture Notes

in Computer Science, Springer, pp. 283–292.

Mohmad Kahar, M. N. & Kendall, G. (2015), ‘A great deluge algorithm for a

real-world examination timetabling problem’, Journal of the Operational

Research Society 66(1), 116–133.

Moscato, P. & Fontanari, J. (1990), ‘Stochastic versus deterministic update

in simulated annealing’, Physics Letters A 146(4), 204–208.

Motwani, R. & Raghavan, P. (1995), Randomized Algorithms, Cambridge

University Press, New York, NY, USA.

141

Nahas, N., Khatab, A., Ait-Kadi, D. & Nourelfath, M. (2008), ‘Extended

great deluge algorithm for the imperfect preventive maintenance opti-

mization of multi-state systems’, Reliability Engineering & System Safety

93(11), 1658–1672.

Nawaz, M., Enscore, E. E. & Ham, I. (1983), ‘A heuristic algorithm for the

m-machine, n-job flow-shop sequencing problem’, Omega 11(1), 91–95.

Nie, C. & Leung, H. (2011), ‘A survey of combinatorial testing’, ACM Com-

puting Surveys 43(2), 1–29.

Nissen, V. & Paul, H. (1995), ‘A modification of threshold accepting and

its application to the quadratic assignment problem’, OR Spektrum 17(2-

3), 205–210.

Nourelfath, M., Nahas, N. & Montreuil, B. (2007), ‘Coupling ant colony

optimization and the extended great deluge algorithm for the discrete

facility layout problem’, Engineering Optimization 39(8), 953–968.

Ochoa, G. & Herrmann, S. (2018), Perturbation strength and the global

structure of QAP fitness landscapes, in ‘Parallel Problem Solving from

Nature (PPSN XV)’, Springer, pp. 245–256.

Ozcan, E., Bykov, Y., Birben, M. & Burke, E. K. (2009), Examina-

tion timetabling using late acceptance hyper-heuristics, in ‘2009 IEEE

Congress on Evolutionary Computation’, IEEE.

Pagnozzi, F. & Stützle, T. (2019), ‘Automatic design of hybrid stochas-

tic local search algorithms for permutation flowshop problems’, European

Journal of Operational Research 276(2), 409–421.

Pastore, T., Mart́ınez-Gavara, A., Napoletano, A., Festa, P. & Mart́ı, R.

(2020), ‘Tabu search for min-max edge crossing in graphs’, Computers &

Operations Research 114, 104830.

Pelikan, M. & Lin, T.-K. (2004), Parameter-less hierarchical BOA, in ‘Ge-

netic and Evolutionary Computation (GECCO’04)’, Springer, pp. 24–35.

Penna, P. H. V., Subramanian, A. & Ochi, L. S. (2011), ‘An iterated lo-

cal search heuristic for the heterogeneous fleet vehicle routing problem’,

Journal of Heuristics 19(2), 201–232.

142

Petrovic, S. & Bykov, Y. (2003), A multiobjective optimisation technique for

exam timetabling based on trajectories, in ‘4th International Conference

on the Practice and Theory of Automated Timetabling (PATAT 2002)’,

Vol. 2740 of Lecture Notes in Computer Science, Springer, pp. 181–194.

Rao, R. & Iyengar, S. (1994), ‘Bin-packing by simulated annealing’, Com-

puters & Mathematics with Applications 27(5), 71–82.

Ravi, V. & Zimmermann, H.-J. (2000), ‘Fuzzy rule based classification with

FeatureSelector and modified threshold accepting’, European Journal of

Operational Research 123(1), 16–28.

Reeves, C. R. (2013), Fitness landscapes, in E. K. Burke & G. Kendall, eds,

‘Search Methodologies’, 2 edn, Springer, chapter 22, pp. 681–705.

Reinelt, G. (1991), ‘TSPLIB — a traveling salesman problem library’, ORSA

Journal on Computing 3(4), 376–384.

Ribeiro, C. C., Aloise, D., Noronha, T. F., Rocha, C. & Urrutia, S. (2008), ‘A

hybrid heuristic for a multi-objective real-life car sequencing problem with

painting and assembly line constraints’, European Journal of Operational

Research 191(3), 981–992.

Ruiz, R. & Maroto, C. (2005), ‘A comprehensive review and evaluation of

permutation flowshop heuristics’, European Journal of Operational Re-

search 165(2), 479–494.

Ruiz, R. & Stützle, T. (2007), ‘A simple and effective iterated greedy algo-

rithm for the permutation flowshop scheduling problem’, European Jour-

nal of Operational Research 177(3), 2033–2049.

Russell, S. & Norvig, P. (2016), Artificial Intelligence: A Modern Approach,

Global Edition, Pearson Higher Education.

Sahni, S. & Gonzalez, T. (1976), ‘P-complete approximation problems’,

Journal of the ACM (JACM) 23(3), 555–565.

Sartori, C. S. & Buriol, L. S. (2018), A matheuristic approach to the pickup

and delivery problem with time windows, in ‘Lecture Notes in Computer

Science’, Springer, pp. 253–267.

143

Schiavinotto, T. & Stützle, T. (2004), ‘The linear ordering problem: In-

stances, search space analysis and algorithms’, Journal of Mathematical

Modelling and Algorithms 3(4), 367–402.

Sechen, C. (1988), VLSI Placement and Global Routing Using Simulated

Annealing, Springer.

Seçkiner, S. U. & Kurt, M. (2007), ‘A simulated annealing approach to the

solution of job rotation scheduling problems’, Applied Mathematics and

Computation 188(1), 31–45.

Selman, B., Levesque, H. J. & Mitchell, D. G. (1992), A new method for

solving hard satisfiability problems, in W. R. Swartout, ed., ‘Proceedings

of the 10th National Conference on Artificial Intelligence’, AAAI Press /

The MIT Press, pp. 440–446.

Sharma, N., Ray, A. K., Sharma, S., Shukla, K., Aggarwal, L. M. & Prad-

han, S. (2009), ‘Segmentation of medical images using simulated anneal-

ing based fuzzy c means algorithm’, International Journal of Biomedical

Engineering and Technology 2(3), 260.

Shunmugathammal, M., Columbus, C. C. & Anand, S. (2019), ‘A novel

b∗tree crossover-based simulated annealing algorithm for combinatorial

optimization in VLSI fixed-outline floorplans’, Circuits, Systems, and Sig-

nal Processing 39(2), 900–918.

Silva, M. M., Subramanian, A. & Ochi, L. S. (2015), ‘An iterated local

search heuristic for the split delivery vehicle routing problem’, Computers

& Operations Research 53, 234–249.

Smit, S. & Eiben, A. (2009), Comparing parameter tuning methods for

evolutionary algorithms, in ‘IEEE Congress on Evolutionary Computation

(CEC 2009)’, IEEE.

Smit, S. K. & Eiben, A. E. (2010), Parameter tuning of evolutionary algo-

rithms: Generalist vs. specialist, in ‘European Conference on the Appli-

cations of Evolutionary Computation (EvoApplications 2010)’, Vol. 6024

of Lecture Notes in Computer Science, Springer, pp. 542–551.

144

Smorodkina, E. & Tauritz, D. (2007), Greedy population sizing for evo-

lutionary algorithms, in ‘IEEE Congress on Evolutionary Computation

(CEC 2007)’, IEEE.

Song, T., Liu, S., Tang, X., Peng, X. & Chen, M. (2018), ‘An iterated local

search algorithm for the university course timetabling problem’, Applied

Soft Computing 68, 597–608.

Soria-Alcaraz, J. A., Özcan, E., Swan, J., Kendall, G. & Carpio, M. (2016),

‘Iterated local search using an add and delete hyper-heuristic for university

course timetabling’, Applied Soft Computing 40, 581–593.

Soykan, B. & Rabadi, G. (2016), A tabu search algorithm for the multiple

runway aircraft scheduling problem, in ‘International Series in Operations

Research & Management Science’, Springer, pp. 165–186.

Stützle, T. & Ruiz, R. (2018), Iterated local search, in ‘Handbook of Heuris-

tics’, Springer, pp. 579–605.

Sudholt, D. (2015), Parallel evolutionary algorithms, in ‘Handbook of Com-

putational Intelligence’, Springer, pp. 929–959.

Taillard, E. (1990), ‘Some efficient heuristic methods for the flow shop se-

quencing problem’, European Journal of Operational Research 47(1), 65–

74.

Taillard, E. (1993), ‘Benchmarks for basic scheduling problems’, European

Journal of Operational Research 64(2), 278–285.

Tarantilis, C., Kiranoudis, C. & Vassiliadis, V. (2002), ‘A backtracking adap-

tive threshold accepting algorithm for the vehicle routing problem’, Sys-

tems Analysis Modelling Simulation 42(5), 631–664.

Tarantilis, C., Kiranoudis, C. & Vassiliadis, V. (2004), ‘A threshold accept-

ing metaheuristic for the heterogeneous fixed fleet vehicle routing prob-

lem’, European Journal of Operational Research 152(1), 148–158.

Tayarani-N., M.-H. & Prügel-Bennett, A. (2015), ‘Quadratic assignment

problem: a landscape analysis’, Evolutionary Intelligence 8(4), 165–184.

145

Thompson, J. M. & Dowsland, K. A. (1996), ‘Variants of simulated an-

nealing for the examination timetabling problem’, Annals of Operations

Research 63(1), 105–128.

Thompson, J. M. & Dowsland, K. A. (1998), ‘A robust simulated anneal-

ing based examination timetabling system’, Computers & Operations Re-

search 25(7-8), 637–648.

Tinkle, C. L., Weinberg, V., Chen, L.-M., Littell, R., Cunha, J. A. M.,

Sethi, R. A., Chan, J. K. & Hsu, I.-C. (2015), ‘Inverse planned high-dose-

rate brachytherapy for locoregionally advanced cervical cancer: 4-year

outcomes’, International Journal of Radiation Oncology∗Biology∗Physics

92(5), 1093–1100.

Toffolo, T. A., Christiaens, J., Malderen, S. V., Wauters, T. & Berghe,

G. V. (2018), ‘Stochastic local search with learning automaton for the

swap-body vehicle routing problem’, Computers & Operations Research

89, 68–81.

Tubic, D., Zaccarin, A., Beaulieu, L. & Pouliot, J. (2001), ‘Automated seed

detection and three-dimensional reconstruction. II. reconstruction of per-

manent prostate implants using simulated annealing’, Medical Physics

28(11), 2272–2279.

Turky, A., Sabar, N. R., Dunstall, S. & Song, A. (2018), Hyper-heuristic

based local search for combinatorial optimisation problems, in ‘AI 2018:

Advances in Artificial Intelligence’, Springer, pp. 312–317.

Turky, A., Sabar, N. R., Sattar, A. & Song, A. (2016), Parallel late accep-

tance hill-climbing algorithm for the google machine reassignment prob-

lem, in ‘AI 2016: Advances in Artificial Intelligence’, Springer, pp. 163–

174.

Václav́ık, R., Š̊ucha, P. & Hanzálek, Z. (2016), ‘Roster evaluation based

on classifiers for the nurse rostering problem’, Journal of Heuristics

22(5), 667–697.

Vallada, E., Ruiz, R. & Framinan, J. M. (2015), ‘New hard benchmark for

flowshop scheduling problems minimising makespan’, European Journal

of Operational Research 240(3), 666–677.

146

Vancroonenburg, W. & Wauters, T. (2013), Extending the late acceptance

metaheuristic formulti-objective optimization, in ‘6th Multidisciplinary

International Scheduling Conference (MISTA 2013)’.

Verstichel, J. & Berghe, G. V. (2009), A late acceptance algorithm for the

lock scheduling problem, in ‘Logistik Management’, Physica-Verlag HD,

pp. 457–478.

Wang, C., Mu, D., Zhao, F. & Sutherland, J. W. (2015), ‘A parallel simu-

lated annealing method for the vehicle routing problem with simultaneous

pickup–delivery and time windows’, Computers & Industrial Engineering

83, 111–122.

Wauters, T., Toffolo, T., Christiaens, J. & Malderen, S. V. (2015), The

winning approach for the VeRoLog solver challenge 2014: the swap-body

vehicle routing problem, in ‘29th Belgian Conference on Operations Re-

search (OR)’.

Wauters, T., Verstichel, J. & Berghe, G. V. (2013), ‘An effective shaking

procedure for 2D and 3D strip packing problems’, Computers & Opera-

tions Research 40(11), 2662–2669.

Webb, S. (1989), ‘Optimisation of conformal radiotherapy dose distribution

by simulated annealing’, Physics in Medicine and Biology 34(10), 1349–

1370.

Weiszer, M., Burke, E. K. & Chen, J. (2020), ‘Multi-objective routing and

scheduling for airport ground movement’, Transportation Research Part

C: Emerging Technologies 119, 102734.

Whitley, D., Sutton, A. M. & Howe, A. E. (2008), Understanding elementary

landscapes, in ‘Proceedings of the Gnetic and Evolutionary Computation

Conference (GECCO'08)’, ACM Press.

Winker, P. (2000), Optimization Heuristics in Econometrics : Applications

of Threshold Accepting, John Wiley & Sons.

Winker, P. & Fang, K.-T. (1997), ‘Application of threshold-accepting to

the evaluation of the discrepancy of a set of points’, SIAM Journal on

Numerical Analysis 34(5), 2028–2042.

147

Wu, Q., Wang, Y. & Glover, F. (2020), ‘Advanced tabu search algorithms

for bipartite boolean quadratic programs guided by strategic oscillation

and path relinking’, INFORMS Journal on Computing 32(1), 74–89.

Xu, J., Chiu, S. Y. & Glover, F. (1999), ‘Optimizing a ring-based private

line telecommunication network using tabu search’, Management Science

45(3), 330–345.

Yang, B., Xu, W. & Dong, Z. (2013), ‘Automated extraction of building

outlines from airborne laser scanning point clouds’, IEEE Geoscience and

Remote Sensing Letters 10(6), 1399–1403.

Yassen, E. T., Ayob, M., Nazri, M. Z. A. & Sabar, N. R. (2017), ‘An adap-

tive hybrid algorithm for vehicle routing problems with time windows’,

Computers & Industrial Engineering 113, 382–391.

Ying, K.-C. & Lin, S.-W. (2020), ‘Solving no-wait job-shop scheduling

problems using a multi-start simulated annealing with bi-directional shift

timetabling algorithm’, Computers & Industrial Engineering 146, 106615.

Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R. N. & Kuhn, D. R. (2013),

An efficient algorithm for constraint handling in combinatorial test gen-

eration, in ‘IEEE Sixth International Conference on Software Testing,

Verification and Validation’, IEEE.

Zagré, G. E., Marcotte, D., Gamache, M. & Guibault, F. (2018), ‘New

tabu algorithm for positioning mining drillholes with blocks uncertainty’,

Natural Resources Research 28(3), 609–629.

Zamli, K. Z., Alkazemi, B. Y. & Kendall, G. (2016), ‘A tabu search hyper-

heuristic strategy for t-way test suite generation’, Applied Soft Computing

44, 57–74.

Zhai, S., Hunter, M. & Smith, B. A. (2002), ‘Performance optimization of

virtual keyboards’, Human–Computer Interaction 17(2-3), 229–269.

Zhang, G., Wu, B., Maleki, A. & Zhang, W. (2018), ‘Simulated annealing-

chaotic search algorithm based optimization of reverse osmosis hybrid

desalination system driven by wind and solar energies’, Solar Energy

173, 964–975.

148

Zhang, W., Maleki, A., Rosen, M. A. & Liu, J. (2018), ‘Optimization with

a simulated annealing algorithm of a hybrid system for renewable energy

including battery and hydrogen storage’, Energy 163, 191–207.

Zhou, B.-h. & Kang, X.-y. (2018), ‘A multiobjective hybrid imperialist

competitive algorithm for multirobot cooperative assembly line balancing

problems with energy awareness’, Proceedings of the Institution of Me-

chanical Engineers, Part C: Journal of Mechanical Engineering Science

233(9), 2991–3003.

Zhou, Y., Wang, Z., Jin, Y. & Fu, Z.-H. (2021), ‘Late acceptance-based

heuristic algorithms for identifying critical nodes of weighted graphs’,

Knowledge-Based Systems 211, 106562.

149

