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Abstract

This thesis addresses the problem of excessive packet collision rate in highly dense Long-

Range Wide Area Networks (LoRaWAN). The outcomes of this research are reduced

collision rate, transmission delay and energy consumption, and enhanced packet delivery

rate. A novel framework for packet transmissions is proposed for LoRaWAN protocol.

The proposed framework includes:

• Unsupervised learning clustering algorithm that aims to reduce the packet collision

rate by classifying the random nature of LoRaWAN nodes packet transmissions into

different clusters.

• Supervised learning for packet dynamic transmission Priority Scheduling Technique

(PST) that allows the gateway to prioritise the transmissions from nodes located in

different clusters. The dynamic transmission PST aims at preserving the limited

resources of LoRaWAN battery-powered nodes by eliminating unnecessary packet

transmissions while maintaining a fair trade-off between the packet delivery rate

and energy consumption.

• Deep learning scheme for collision avoidance in ultra-dense networks. This scheme

allows the gateway to predict the number of collisions and implement a hybrid

procedure to alternate between LoRaWAN transmission classes in order to avoid

packet collisions.

The simulation results under different network scenarios show reduced packet collision

rate, total transmission delay and total energy consumption, and also enhanced packet

delivery rate.

i



Acknowledgments

First and foremost, I would like to thank the government of the Kingdom of Saudi Arabia

for the opportunity to pursue my research programme.

It has been a great honour to work alongside such an elite team, for which I would

like to express my sincerest gratitude to my research supervision panel. Firstly, to my

primary supervisor Dr. Kok Keong Chai for his limitless support and continual guidance

throughout my research progress. Secondly, to Prof. Yue Chen and Dr. Jesus Requena

for their influential feedback and advice.

I owe a deep sense of gratitude to Prof. Talib Alukaidey for his genuine support and

long-standing ties before and during my research at Queen Mary University of London.

Also a special thank you to Dr. Atm Alam for his generous efforts and enlightenment

throughout my research.

The deepest heartfelt thank you to my father Maj. Gen. Ali Alenezi who taught me the

meaning of perseverance, persistence and discipline, to my mother Bahiah Alsharif who

taught me the value of seeking knowledge and for always believing in me, to my wife, to

my brothers and sisters for the love they have given. Their presence and moral support

has made it all possible, for which I am forever indebted to you all.

Lastly, thank you to my friends and colleagues for being part of this once in a lifetime

experience.

ii



Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures vi

List of Tables x

List of Abbreviations xii

1 Introduction 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Authour’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and State-of-the-Art 7

2.1 LoRa Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 LoRa Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 LoRa Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 LoRa Packet Time on Air (ToA) . . . . . . . . . . . . . . . . . . . 16

iii



2.1.4 Adaptive Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Capacity and Scalability . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Collision Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.6 Machine Learning in LoRaWAN . . . . . . . . . . . . . . . . . . . 30

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Clustering in LoRaWAN 33

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Unsupervised Learning Clustering Algorithm (K-Means) . . . . . . . . . . 34

3.3.1 Three Clusters Analysis (k = 3) . . . . . . . . . . . . . . . . . . . 36

3.3.2 Four Clusters Analysis (k = 4) . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Five Clusters Analysis (k = 5) . . . . . . . . . . . . . . . . . . . . 39

3.4 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Packet Collisions in LoRaWAN . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Total Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Simulation Results and Performance Evaluations . . . . . . . . . . . . . . 47

3.5.1 Collision and Packet Delivery Rates in Typical LoRaWAN vs. Dif-

ferent Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Optimal Number of Clusters Analysis using Elbow Method . . . . 51

3.5.3 Total Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Dynamic Transmission Priority Scheduling Technique 58

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



4.2 System Model, Problem Statement and Formulation . . . . . . . . . . . . 59

4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Unsupervised Learning Clustering Algorithm (K-Means) . . . . . . 66

4.3 Proposed Dynamic Transmission Priority Scheduling Technique . . . . . . 68

4.3.1 Transmission Priority Scheduling . . . . . . . . . . . . . . . . . . . 69

4.3.2 Transmission Modes Options . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Naive Bayes Classifier Algorithm . . . . . . . . . . . . . . . . . . . 73

4.4 Simulation Results and Performance Evaluations . . . . . . . . . . . . . . 77

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Packet Collision Prediction for Ultra-Dense LoRaWAN 83

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Collision Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Long Short-Term Memory (LSTM) and Model Architecture . . . . 86

5.2.2 Traffic Model and Data Set . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Collision Aware Transmission Priority Scheduling Technique (CA-PST) . 95

5.3.1 Performance Metrics Formulations . . . . . . . . . . . . . . . . . . 97

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion and Future Work 104

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Reference 109

Appendix A Simulations Environments 121

v



List of Figures

2.1 LPWAN vs. Other Wireless Protocols Coverage Range . . . . . . . . . . . 7

2.2 World ISM Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 LoRa Network Protocol - LoRa Gateway Host, Sensor and Network Server

Block Diagram [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 LoRa Three Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 An Example of Symbol Values Within 128 Chips . . . . . . . . . . . . . . 12

2.6 Up-Chirp with SF = 7 (The symbol is one of the combinations of 27 = 128) 14

2.7 Down-Chirp with SF = 7 (The symbol is one of the combinations of

27 = 128) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 An Example of Cyclically-Shifted Up-Chirp Data Symbol . . . . . . . . . 15

2.9 Coding Rate Example for SF7 . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Explicit Header Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Implicit Header Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.12 LoRa Packet Time on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.13 Total Packet ToA (Tpacket) is the Sum of Preamble Duration (Tpreamble)

and Payload Duration (Tpayload) . . . . . . . . . . . . . . . . . . . . . . . . 17

2.14 LoRa Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.15 ADR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Random Distribution of LoRa Nodes Using LoRaWAN Protocol to Com-

municate with the Gateway Before and After K-Means Clustering . . . . 34

vi



3.2 Simple Transmission Priority Scheduling Technique Based on K-Means

Clustering (K = 3) Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Simple Transmission Priority Scheduling Technique Based on K-Means

Clustering (K = 4) Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Simple Transmission Priority Scheduling Technique Based on K-Means

Clustering (K = 5) Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Collision Rate and Transmission Delay Trends in Typical LoRaWAN (A)

Vs. Proposed K-Means Clustering (B) . . . . . . . . . . . . . . . . . . . . 45

3.6 Transmission Delay in Typical LoRaWAN (example A) Vs. Proposed K-

Means Clustering based Simple Transmission Priority Scheduling Tech-

nique (example B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Collision Rate and PDR in Typical LoRaWAN . . . . . . . . . . . . . . . 48

3.8 Collision Rate and PDR in LoRaWAN with Three Clusters (k = 3) . . . . 49

3.9 Collision Rate and PDR in LoRaWAN with Four Clusters (k = 4) . . . . 50

3.10 Collision Rate and PDR in LoRaWAN with Five Clusters (k = 5) . . . . . 52

3.11 Analysis of Total Energy Consumption at a Different Number of Clusters

- The Elbow Point Forms At (k = 4) Indicating The Most Appropriate

Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 The Impact of Reducing the Number of Clusters on The Network Total

Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Dense Application Resembling a Forest Scenario using LoRaWAN . . . . 59

4.2 Simulation Analysis of The Optimal Number of Clusters in Terms of TTD

and TEC - The Convex Point Forms At (k=5) Indicating The Optimal

Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Transmission Priority Designation to Clusters of CK Based on The Cor-

responding Value of zCK
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



4.4 Transmission Modes Control - Higher Priority Clusters are Allowed Re-

transmissions for Better PDR Levels and Lower Priority Clusters are De-

tained From Retransmissions to Preserve Energy and Enhance Transmis-

sion Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Naive Bayes Classifier in Dynamic Transmission PST . . . . . . . . . . . 76

4.6 Collision Rate in Typical LoRaWAN Vs. Collision Rate in One Cluster

of Kopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Comparison of The Total Transmission Delay Over Different Network

Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Comparison of The Total Energy Consumption Over Different Network

Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Comparison of The Packet Delivery Rate Over Different Network Density 81

5.1 SSM Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 LSTM Cell - Showing The Input Gate it; Forget Gate ft; and Output

Gate ot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Heat Map for Data Set Features Correlations - Darker Colour Indicates

Higher Correlation and Lighter Colour Indicates Lower-to-Inverse Corre-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Validation of MSE Loss in LSTM (training vs. validation) . . . . . . . . 92

5.5 Validation of MSE Loss in GRU (training vs. validation) . . . . . . . . . 94

5.6 Validation of MSE Loss in SimpleRNN (training vs. validation) . . . . . 94

5.7 Coefficient of Determination (R2) (LSTM vs. GRU vs. SimpleRNN ) . . 95

5.8 CA-PST Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Comparison of TTD, TEC and PDR . . . . . . . . . . . . . . . . . . . . . 101

1.1 Initialisation of The Number of Nodes, Packets, Step Size, Bits, CR, SF

and Bitrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

1.2 Initialisation of the Collisions, Transmission Slots, Transmission Duration

and The Transmission Process. . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



1.3 Importing The Libraries Needed For Constructing RNN Models. . . . . . 123

1.4 Importing The Data Set For Training The Model. . . . . . . . . . . . . . 123

1.5 Scaling The Data Set For Better Data Explanation To The Training Model124

1.6 Constructing The LSTM Model . . . . . . . . . . . . . . . . . . . . . . . . 125

1.7 Constructing The GRU Model . . . . . . . . . . . . . . . . . . . . . . . . 126

ix



List of Tables

2-A Comparisons of Existing Wireless Protocols . . . . . . . . . . . . . . . . . 9

2-B Comparisons of Existing LPWAN Protocols . . . . . . . . . . . . . . . . . 9

2-C 6 out of 30 MAC Commands – The Last Two Commands Set ADR [1] . . 20

3-A Initial Cluster Centers (k = 3) . . . . . . . . . . . . . . . . . . . . . . . . . 36

3-B Final Cluster Centers (k = 3) . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-C Initial Cluster Centers (k = 4) . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-D Final Cluster Centers (k = 4) . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-E Initial Cluster Centers (k = 5) . . . . . . . . . . . . . . . . . . . . . . . . . 39

3-F Final Cluster Centers (k = 5) . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-G Performance Comparisons in Terms of Collision Rate, Packet Delivery

Rate and Transmission Delay . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-A List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4-B Likelihood Occurrence Pattern Table . . . . . . . . . . . . . . . . . . . . . 75

4-C Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4-D Performance Comparisons of The Dynamic PST Against Other Consid-

ered Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5-A Features of the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5-B Performance Evaluation of the Parameters Used in LSTM . . . . . . . . . 92

5-C Performance Evaluations of LSTM, GRU and simpleRNN . . . . . . . . . 93

x



5-D Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



List of Abbreviations

ABP Activation By Personalisation

ACK Acknowledgment

ADR Adaptive Data Rate

BW Bandwidth

CA-PST Collision-Aware Priority Scheduling Technique

CID Command Identifier

Colli Collisions

con. conservative

CR Coding Rate

CRC Cyclic Redundancy Check

CSMA Carrier-Sense Multiple Access

CSS Chirp Spread Spectrum

DL Deep Learning

DoS Denial-of-Service

DR Data Rate

DT Decision Tree

FEC Forward Error Correction

FSK Frequency-Shift Keyin

GRU Gated Recurrent Unit

GW Gateway

IoT Internet of Things

xii



ISM Industrial, Scientific and Medical

ITD Initial Transmission Delay

K-Means Unsupervised Learning Clustering Algorithm

LBT Listen Before Transmit

LoRa Long-Range

LoRaWAN Long-Range Wide Area Networks

LPWAN Low-Power Wide Area Networks

LSTM Long Short-Term Memory

MAC Medium Access Control

MSE Mean Square Error

ncon. non-conservative

PDR Packet Delivery Rate

Pr Priority

PST Priority Scheduling Technique

R2 coefficient of determination

Rc Chip rate

Rs Symbol rate

RL Reinforcement Learning

RNN Recurrent Neural Network

RSSI Received Signal Strength Indicator

RTD Retransmission Delay

SF Spreading Factors

SSM State Space Model

TEC Total Energy Consumption

ToA Time on Air

TSCH Time Slotted Channel Hopping

TTD Total Transmission Delay

WCSS Within-Cluster Sum of Square

WMAN Wireless Metropolitan Area Network

xiii



Chapter 1

Introduction

The Low-Power Wide Area Networks (LPWAN) technologies have been increasingly

researched and deployed as a promising solution for serving Internet of Things (IoT)

applications. Long-Range (LoRa) technology via its Long-Range Wide Area Network

(LoRaWAN) protocol [1], has shown a very attractive platform due to its low energy

consumption and wide area coverage. However, one main drawback associated with

LoRaWAN is the vulnerability to a high packet collision rate. This is due to the adoption

of ALOHA communication protocol, where LoRa nodes initiate packet transmissions

without the presence of Listen Before Transmit (LBT) protocol [2, 3].

As a result, LoRaWAN efficiency suffers a depreciation, particularly on network’s en-

ergy consumption and transmission delay. In order to compensate for the absence of

LBT protocol, LoRaWAN provides different Spreading Factors (SF) based on the LoRa

physical layer Chirp Spread Spectrum (CSS) technique to allow simultaneous packet

transmissions. Alternating between different SF comes at the expense of higher trans-

mission power and time-on-air, which can be an ideal solution for small-scale networks

[4, 5, 6, 7]. However, adopting LoRaWAN to serve dense applications remains an open

challenge.

1
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1.1 Research Motivation

LoRa physical layer modulations relies on the CSS technique [8], which quantifies how

many chirps are pulsed per second. Using CSS technique, LoRa provides a wide area

communication coverage for a range of more than 10 km. In addition, using CSS increases

the robustness against noise and external interferences. The Medium Access Control

(MAC) LoRaWAN protocol exploits the CSS by providing the SF feature to further

boost the communication efficiency. The transmissions using different SF, between SF7

and SF12, vary in terms of data per chirp per second [1]. This allows the receiver

to distinguish between simultaneous transmissions according to the used SF [9]. The

packet transmission delay is the duration of transmitting a packet from the sender to

the receiver. In an ideal environment the packet transmission delay is mainly effected

by the SF, the transmission power and the packet size [10]. Given a typical IoT packet

size of 50-300 bytes, an IoT battery-powered device using LoRaWAN has an expected

lifetime of up to 6 years [11], provided there are infrequent daily transmissions [12,

13]. This explains the wide interest of adopting LoRaWAN in IoT applications [14, 15,

16]. However, as formerly mentioned the LoRaWAN efficiency is still an open challenge

especially in dense applications.

This led to the strive of a number of research bodies and industrial organisations to

challenge the efficiency of LoRaWAN. For example, Rachkidy et al. [17] proposed a

collision resolution technique that allows LoRa gateway to decode the overlapped packet

signals and hence, corrupted received packets. While Liao et al. [18] introduced a

multi-hop based concurrent transmission technique in order to mitigate the probability

of simultaneous packets transmissions of LoRa nodes. In addition, Zhu et al. [19]

proposed a tree based clustering algorithm to enhance LoRaWAN capacity. Their scheme

particularly exploits the variety in SF communication reliability by allocating different

SF to different clusters. Based on the SF allocation, clusters with less SF reliability

off-load traffic to clusters with higher SF reliability via multi-hop relay. Although,

the collision rate has been enhanced in the aforementioned schemes [17, 18, 19], this
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comes at the expense of compromising the transmission delay or the energy consumption.

LoRaWAN and other LPWAN technologies are solutions for IoT applications which

usually have limited resources. Since LoRaWAN adopts ALOHA protocol, the number

of packet collisions increase proportionally to the number of nodes within the network.

This introduces packet retransmission attempts from the nodes side, which in return

increases the transmission delay and energy consumption. Hence, in this thesis the main

focus is to reduce the packet collision rate in LoRaWAN and maintain relatively low

transmission delay and energy consumption.

1.2 Research Scope and Objectives

The scope of the thesis is to address the issue of high packet collision rate when using

LoRaWAN to serve dense and ultra-dense applications. The main challenges are the

excessive packet collision rate, inefficient Total Transmission Delay (TTD), Total Energy

Consumption (TEC) and Packet Delivery Rate (PDR). In order to efficiently implement

LoRaWAN it is necessary to define the target application. This thesis considers using

LoRaWAN as a wireless communication solution for serving an early warning weather

monitoring system. Given the unlabelled data delivered by the nodes (sensors), the

limited resources for the IoT devices (battery-powered) and the random transmission

behaviour of LoRaWAN due to adopting ALOHA protocol, the objectives of this thesis

are:

• Develop a new algorithm using unsupervised learning clustering algorithm (K-

Means) to reduce the collision rate. This is achieved by partitioning LoRaWAN

nodes into different clusters based on the the unlabelled data transmitted from the

nodes to the gateway. K-Means is particularly chosen to be applied at the gateway

level. This is to lift the computational burdens from the nodes level.

• Develop a dynamic packet transmission Priority Scheduling Technique (PST) based

on supervised learning to preserve the energy consumption. The dynamic transmis-
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sion PST enhances the gateway’s decision making process in favour of minimising

the energy consumption in the network. This is achieved by classifying different

clusters with different transmission priorities. Based on which, only the nodes

that are located in clusters classified as high transmission priority enjoy better

transmission capabilities. While the nodes that are located in lower transmission

priority clusters only have the necessary transmission capabilities. Although the

mechanism of the dynamic transmission PST focuses on preserving the energy

consumption, it offers a fair trades-off between PDR, TTD and TEC.

• Develop a deep learning based prediction scheme for collision avoidance. The

packet collision prediction scheme is particularly aimed at enhancing LoRaWAN’s

reliability in terms of PDR when serving ultra-dense networks where the number of

nodes are scaled up to 5000 in a limited area. In particular, the gateway implements

a hybrid procedure, in which the nodes operate on one of LoRaWAN transmission

classes A or C 1. This allows better control over the actively transmitting cluster

in favour of ensuring higher levels of PDR at ultra-dense application.

1.3 Contributions

The main contributions of this thesis are summarised as follows:

1. The reduction of the excessive packet collision rate associated with LoRaWAN. This

is achieved via classifying the unpredicted transmissions’ nature of LoRaWAN into

an organised manner that allows better resource management.

2. A dynamic transmission PST based on supervised learning to enhance the net-

work’s transmission delay and energy consumption while maintaining relatively

acceptable levels of the packet delivery rate. This is performed in two folds:

1Note that LoRaWAN provides three different classes for the end-device to join the network. First is
class A, which is the most energy efficient, where the nodes initiate transmissions without prior sensing
to the channel status and open a temporary receive window following each transmission. Second is class
B, where nodes listen to periodic beacons from the gateway. Third is class C, which is the most energy
inefficient, where nodes listen continuously to the gateway. More details of LoRaWAN end-device classes
are discussed in chapter 2 and published in [20].
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(a) First, it allocates a unique transmission priority to each of the clusters in the

network ranging from high to low. Based on the cluster’s priority, the corre-

sponding nodes are assigned specific transmission intervals by the gateway.

(b) Second, it provides two transmission modes specifically designed to prevent

excessive energy consumption that is caused by unnecessary transmission at-

tempts. This is followed by a decision making process using the Naive Bayes

classifier algorithm in order to decide the best transmission mode for each

cluster based on the cluster’s transmission needs.

3. A Collision-Aware Priority Scheduling Technique (CA-PST) aimed at enhancing

the packet delivery rate in ultra-dense networks. This technique exploits the Long

Short-Term Memory (LSTM) deep learning model to predict the number of packet

collisions. Based on the collision predictions, the gateway using the CA-PST in-

structs the nodes that are located in high transmission priority clusters to switch

from LoRaWAN transmission class A to class C. In return, the corresponding nodes

follow specific transmission intervals to avoid packet collisions.

1.4 Authour’s Publications

Journal Papers

1. M. Alenezi, K. K. Chai., Y. Chen. and S. Jimaa, ”Ultra-dense LoRaWAN: Reviews

and challenges,” in IET Communications, vol. 14, pp. 1361-1371, doi: 10.1049/iet-

com.2018.6128

2. M. Alenezi, K. K. Chai, A. S. Alam, Y. Chen and S. Jimaa, ”Unsupervised Learning

Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN

Networks,” in IEEE Access, vol. 8, pp. 191495-191509, 2020, doi: 10.1109/AC-

CESS.2020.3031974.

3. M. Alenezi, K. K. Chai, A. S. Alam, Y. Chen and S. Jimaa, ”Collision Avoidance
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for Ultra-Dense LoRaWAN Based on Deep Learning,” in IEEE Internet of Things

Journal, (Submitted).

Conference Papers

1. M. Alenezi, K. K. Chai, S. Jimaa and Y. Chen, ”Use of Unsupervised Learn-

ing Clustering Algorithm to Reduce Collisions and Delay within LoRa System for

Dense Applications,” 2019 International Conference on Wireless and Mobile Com-

puting, Networking and Communications (WiMob), 2019, pp. 1-5, doi: 10.1109/

WiMOB.2019.8923515.

1.5 Thesis Structure

Chapter 2 provides the fundamental details of LoRa technology and LoRaWAN proto-

col. It also presents a set of papers addressing a number of issues in LoRaWAN networks.

Moreover, it explores a set of studies that have implemented various machine learning

techniques in LoRaWAN.

Chapter 3 introduces the proposition of the unsupervised learning clustering algorithm

for reducing the collision rate in LoRaWAN.

Chapter 4 covers the proposed dynamic transmission PST based on clustering and

supervised learning for preserving energy within LoRaWAN networks.

Chapter 5 reveals the proposed deep learning based Collision Aware transmission Pri-

ority Scheduling Technique CA-PST to enhance PDR levels in ultra-dense LoRaWAN

networks.

Chapter 6 concludes this thesis and gives an insight to the future work that can po-

tentially be carried out based on the work done in this thesis.



Chapter 2

Background and State-of-the-Art

2.1 LoRa Overview

LoRa is a long-range wireless communication technology proposed by LoRa Alliance and

developed by Semtech [1]. It resides in Wireless Metropolitan Area Network (WMAN)

using LPWAN protocol as shown in Figure 2.1. LoRa is aimed at providing wireless

network services to resource-limited devices (battery-powered), with low data rate (up

to 50 kbps) and long distance (up to 10 km).

Figure 2.1: LPWAN vs. Other Wireless Protocols Coverage Range

7
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Industrial, Scientific and Medical (ISM) bands of the world are shown in Figure 2.2.

The band over North America is 915 MHz while over Europe is 868 MHz [21]. LPWAN

technologies can be approved if it is capable of providing the allowed band in a specific

geographical area [22].

Figure 2.2: World ISM Bands

Since sensors can be served via a number of different wireless protocols, it is necessary to

compare the pros and cons of different wireless protocols especially in terms of coverage,

data rates, energy efficiency and cost of implementation. Table 2-A provides a compar-

ison of technologies that are able to provide network connectivity to a set of sensors.

Table 2-A is based on long range, low data rate, low power and cost. It indicates that

“LPWAN technology is suited for connecting devices that need to send small amounts

of data over a long range, while maintaining long battery life” [23].

Within LPWAN there are three technologies that use different modulation techniques.

These are SigFox [24], LoRa [1] and NB-IoT [25]. The modulation techniques of SigFox

and LoRa are proprietary while NB-IoT is 3GPP [26, 27, 28]. The list of the three

products are displayed in Table 2-B.

IoT applications could be categorised as fixed or mobile [29, 30]. Examples of fixed IoT

applications are street lights and farming. Examples of mobile IoT are vehicles and cattle.

For fixed application SigFox, LoRaWAN and NB-IoT are able to operate good. However,



Chapter 2. Background and State-of-the-Art 9

Table 2-A: Comparisons of Existing Wireless Protocols
- Bluetooth BLE ZigBee WiFi Cellular M2M LPWAN

Long Range
(>10km)

× × × × ✓ ✓

Low Data Rate
(<5k bit/s or 20
to 256 bytes per
message)

✓ ✓ ✓ × × ✓

Low Power (to
last 5 to 10 years
on a single bat-
tery)

✓ ✓ ✓ × × ✓

Low Cost ✓ ✓ ✓ ✓ × ✓

Table 2-B: Comparisons of Existing LPWAN Protocols
SigFox LoRaWAN NB-IoT

Mobility Poor Good Poor

Availability Europe Worldwide Worldwide

Cost Radio Modules <$5 <$10 <$12
Uplink/Downlink Uplink Both Both

for fixed applications LoRaWAN has one interesting feature, which is the Adaptive Data

Rate (ADR) in the physical layer [31, 32, 33]. ADR maximises battery life, range and

network capacity for each end-device. Section 2.1.4 provides in-depth details of ADR

mechanism. SigFox and NB-IoT do not have this feature.

SigFox operates on EU 868 frequency band [34] hence, the unpopularity in the USA mar-

ket. LoRaWAN and NB-IoT provide uplink and downlink transmissions, while SigFox

provides only one-way communication (uplink). Therefore, SigFox cost is the lowest.

Table 2-B shows that LoRaWAN is the best amongst other protocols in reference to mo-

bility, worldwide availability, radio module cost and uplink/downlink capabilities [35].

LoRa network protocol is shown in Figure 2.3 as depicted from [1]. The Sensor, which is

a processor based device, transmits and receives, among other details, the sensing values

to LoRa gateway via the antenna physical layer. Similarly, the Gateway Host receives

and transmits to the sensors via the antenna physical layer. The last block of Figure

2.3 is the Network Server, which routes backward and forward messages from sensors to
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a specific application. In addition, the Gateway Host could be interfaced to a Network

Server via Ethernet, 3G or WiFi protocols.

Figure 2.3: LoRa Network Protocol - LoRa Gateway Host, Sensor and Net-
work Server Block Diagram [1]

Figure 2.4: LoRa Three Layers

As shown in Figure 2.4, LoRa consists of three layers [1]. The first layer is the physical

layer or modulation layer based on Chirp Spread Spectrum (CSS) technique. In addi-

tion, the physical layer offers four regional ISM bands, including EU and US allowed

bands. The SX1276/77/78/79 chips transceivers, produced by Semtech, form the physi-

cal layer for LoRa. The second layer is the Media Access Control (MAC) layer protocol

(LoRaWAN) with specific access network architecture. MAC protocol manages uplink

and downlink between gateways and sensors. LoRaWAN provides three different classes;

class A, class B and class C devices. Class A, is the lowest power sensor system for

applications where sensors are pure ALOHA based. Class B, where the sensor receives

a time synchronised beacon from the gateway. Class C is continuous listening where



Chapter 2. Background and State-of-the-Art 11

sensor use more power to operate but it offers the lowest latency for server to sensor

communications. The third layer is the application layer.

LoRa adopts star topology, where a set of LoRa sensors are connected wireless to LoRa

gateway. Sensors communicate in their time or frequency slot with LoRa gateway. The

radio link between LoRa gateway and LoRa sensors can be very long which leads to

less battery life. However, LoRa sensors are able to rest between message transmissions,

which means LoRa sensors consume less energy. Star topology is mainly aimed for

LPWAN. It is also widely used in WiFi and mobile (cellular) networks.

LoRaWAN supports both uplink and downlink messaging. A message from a sensor to a

gateway is referred to as an uplink message, while a message from a gateway to a sensor

is called a downlink message.

LoRa deploys its own modified Chirp Spread Spectrum (CSS) modulation. It also deploys

a Frequency-Shift Keying (FSK) modulation with higher data rate (up to 50 kbps) [10,

36].

Semtech [37] has produced number of digital baseband chips for outdoor and indoor

LoRaWAN gateways. LoRaWAN is well suited to cover connectivity over, for example,

a large building using star network topology. However, the market is geared towards

using LoRa for applications that deploy over thousands of nodes in a limited area to be

connected to a gateway. Hence, the terms Dense Networks where the number of end-

devices scale up to 1000 and Ultra-Dense Networks where the number of end-devices

exceed 1000, in a limited geographical area (km2) [38, 39, 40].

2.1.1 LoRa Physical Layer

For the ease of understanding the design, programming and simulation/modelling of

LoRa technology, terminologies such as Chip, Symbol, Chirp, Spreading Factor (SF),

Coding Rate (CR) and Data Rate (DR) are described in this section.
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2.1.1.1 Chips, Symbols, Chirps and Spreading Factor

A Chip is a pulse that sweeps from fLow (−BW
2 ) to fHigh (+BW

2 ), where BW is Band-

width. A number of Chips forms a Symbol. For example, assume a Symbol value is

between 1 and 128, this number would be one of the combinations of 27 = 128 chips.

Figure 2.5 illustrates an example of symbol values within 128 chips.

Figure 2.5: An Example of Symbol Values Within 128 Chips

The Chip rate (Rc) and Symbol rate (Rs) are expressed in Equations (2.1) and (2.2)

below.

Rc = ChipRate = Chips/Second (2.1)

Rs = SymbolRate = Symbols/Second (2.2)

The Chip is equivalent to one pulse of the Bandwidth (BW). Hence, the following Equa-

tion (2.3).

Rc =
1

BW
(2.3)

There are 2SF combinations of symbols that can be transmitted over the BW , where

SF = {7, 8, 9, 10, 11, 12}. Therefore, the Rs from (2.2) can be expressed in terms of BW
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as shown in Equation (2.4).

Rs =
BW

2SF
(2.4)

To estimate the processing gain of Rc and Rs, the term Spreading Factor (SF) was

emerged. LoRa has been designed for Symbols with group of sizes N of chips N ∈

{128, 256, 512, 1024, 2048, 4096}. Equation (2.5) shows SF in terms of N.

SF = log2(N) (2.5)

To gain the highest throughput with the lowest power consumption but for short dis-

tances, SF should be set to 7. While at SF12, the distance is at the maximum but the

data rate is at the lowest [1].

LoRa modulation deploys CSS. In CSS technique, first developed for radar applications

in the 1940’s [41, 42], the frequency of the generated Chirps varies linearly with time

to provide low cost, low power and resilience to interference based solution. So Chirp

(sweep) is a signal of continuously increasing frequency (up-chirp), a ramp from frequency

minimum fmin = 0kHz to frequency maximum fmax = 127kHz as shown in Figure 2.6,

or continuously decreasing frequency (down-chirp) fmax = 127kHz to fmin = 0kHz as

shown in Figure 2.7.

Figure 2.8 is an example of cyclically-shifted up-chirp data Symbol 96 which requires

spreading factor of 7, as it is one of the combinations of 27.

In the Symbol example in Figure 2.8, {96 Decimal = 1100000 Binary} is a modulated

data. The number of raw bits that can be encoded by this symbol is 7, which means

SF = 7. The sweep signal is divided in two SF = 27 = 128 chips. The Symbol starts

from chip 96 and ends with chip 128 and cyclically-shifted from chip 0 to chip 95.
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Figure 2.6: Up-Chirp with SF = 7 (The symbol is one of the combinations of
27 = 128)

Figure 2.7: Down-Chirp with SF = 7 (The symbol is one of the combinations
of 27 = 128)

2.1.1.2 Coding Rate and Data Rate

Some of the data bits are lost due to interference. Error correction bits recover the

original lost data bits. LoRa uses Forward Error Correction (FEC) scheme to avoid a

costly re-transmission. FEC requires error correction bits (redundant bits) to be added

to the data. Although FEC reduces data throughput, it also increases the sensitivity of

the receiver [43, 44].

LoRa defined a set of values which are referred to as Code ∈ {1, 2, 3, 4} to calculate the

Coding Rate (CR) based on Equation (2.6).
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Figure 2.8: An Example of Cyclically-Shifted Up-Chirp Data Symbol

CR =
4

4 + Code
(2.6)

Hence CR = {4/5, 4/6, 4/7, 4/8}. So for SF7, Figure 2.9 shows the redundant bits

relative to the data bits.

Figure 2.9: Coding Rate Example for SF7

CR could maximise the data rate if less code bits are used. However, more redundant

bits sent to the receiver, LoRa will consume more power [45]. DR is given as in Equation

(2.7).
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DR = SF × Rc

2SF
× 4

4 + CR
(2.7)

The values of DR for bandwidths from 125 kHz to 500 kHz with SF7 to SF12 are

discussed in details in LoRa Patent [46].

2.1.2 LoRa Packet Structure

The LoRa modem employs two types of packet formats, explicit and implicit modes. It

also comprises of three elements; preamble, optional header and data payload. Figures

2.10 and 2.11 show the explicit and implicit header modes respectively. Both modes are

discussed in details in [45].

Figure 2.10: Explicit Header Mode

Figure 2.11: Implicit Header Mode

If the payload, coding rate and Cyclic Redundancy Check (CRC) presence are fixed or

known in advance, then the implicit mode could be deployed. This mode reduces the

transmission time. Figure 2.11 shows the implicit header mode. More in-depth details

on this mode can be found in [45].

2.1.3 LoRa Packet Time on Air (ToA)

As shown in Figure 2.12, Time on Air (ToA) is a unit to measure the transmission time

of LoRa packet. A LoRa packet consists of preamble and payload symbols. Hence, the

packet’s ToA (Tpacket) is the sum of preamble duration (Tpreamble) and payload duration

(Tpayload) as shown in Figure 2.13.
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Figure 2.12: LoRa Packet Time on Air

Figure 2.13: Total Packet ToA (Tpacket) is the Sum of Preamble Duration
(Tpreamble) and Payload Duration (Tpayload)

Tpreamble is a function of Ts and by using Equation (2.2), the symbol period can be

defined as shown in Equation (2.8)

Ts = 1/Rs (2.8)
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From [45], Tpreamble is given by Equation (2.9).

Tpreamble = (npreanble + 4.25)× Ts (2.9)

The length of preamble (npreamble) is programmable. The data sheet in [45] describes

two registers; RegPreambleMsb and RegPreambleLsb, and shows that their functions in

LoRa mode is dedicated to store the length of preamble. The 4.25 in Equation 2.9 is the

number of symbols added to accommodate for the variance in the payload lengths in the

explicit and implicit modes.

Again from [45], Tpayload is extracted as shown in Equation (2.10)

Tpayload = npayload × Ts (2.10)

From the same reference [45], npayload can be calculated using Equation (2.11)

npayload = 8 +max

(
8PL− 4SF + 28 + 16CRC − 20IH

4(SF −DE)
× (CR+ 4), 0

)
(2.11)

where 8 is the default number of symbols, PL is the number of bytes of payload and

SF is the spreading factor. IH is the implicit header mode when (0) or explicit header

mode when (1). DE is Low data rate, disabled when (0) or enabled when (1). CRC is

not present in Payload when (0) or CRC is present in Payload when (1).

CR is the programmed coding rate from 1 to 4. Therefore, the total packet time on air

Tpacket is given by Equation (2.12).

Tpacket = Tpreamble + Tpayload (2.12)
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2.1.4 Adaptive Data Rate

Adaptive Data Rate (ADR) is an interesting feature and crucial for the IoT infrastruc-

ture. It allows for high network performance and enforces scalability. With ADR, LoRa

network is able to maximise battery life, range and network capacity for each end-device.

“LoRa network allows the end-devices to individually use any of the possible data rates

and TxPower. This feature is used by the LoRaWAN to adapt and optimize the data

rate and TxPower of static end-devices.” [1].

The ADR mechanism involves a set of LoRa commands and parameters. ADR commands

are LinkADRReq and LinkADRAns. ADR parameters are ADRParamSetupReq and

ADRParamSetupAns. These commands and parameters are embedded in LoRa frame

format as shown in Figure 2.14.

Figure 2.14: LoRa Frame Format
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Table 2-C: 6 out of 30 MAC Commands – The Last Two Commands Set ADR
[1]

CID Command Transmitted by Short Description
End-Device Gateway

0x01 ResetInd × Used by an ABP device to indi-
cate a reset to the network and
negotiate protocol version

0x01 ResetConf × Acknowledges ResetInd com-
mand

0x02 LinkCheckReq × Used by an end-device to vali-
date its connectivity to a net-
work

0x02 LinkCheckAns × Answer to LinkCheckReq com-
mand. Contains the received
signal power estimation indicat-
ing to the end-device the qual-
ity of reception (link margin)

0x03 LinkADRReq × Requests the end-device to
change data rate, transmit
power, repetition rate or chan-
nel

0x03 LinkADRAns × Acknowledges the LinkADR-
Req

Figure 2.14 shows that LoRa protocol consists of layers to include Physical layer, MAC

layer and Application layer. LinkADReq and LinkADRAns are MAC commands as

specified by the LoRaWAN specifications [1]. However, each Req/Ans has the same

Command Identifier (CID). They differ if the message is uplink or downlink as seen in

Table 2-C. Therefore, one of them should be used at one time. FOpts. shown in Figure

2.14, is used to piggyback MAC commands on a data message. Args are the optional

arguments of the command.

For a better explanation, ADR procedure is illustrated as shown in Figure 2.15. The

network server (via LinkADRReq command) requests an end-device to perform a rate



Chapter 2. Background and State-of-the-Art 21

adaptation.

Figure 2.15: ADR Procedure

From Figure 2.15, an end-device (via LinkADRAns command) answers to the LinkADR-

Req command with acknowledgment. Bits 1 and 2 for LinkADRAns indicate if TxPower

and DataRate have been set or not. Therefore, when the bits 1 and 2 set to (0), the

command is discarded and the end-device state is not changed. When set to (1), the

data rate and TxPower were successfully set.

Note that the LinkADRReq is used for two purposes. First is for ADR (requesting

data-rate and TxPower). Second is for channel-reconfiguration.

Algorithm 1 shows ADR algorithm with a procedure to calculate the margin by the

network server if an end-device requested ADR. If the ADR algorithm is executed, then

the network server will be able to enhance the data rate and power consumption of the

sending device by adopting the most efficient data rate.
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Algorithm 1 ADR Algorithm at Pseudo Code Level

1: Check ADR flag in uplink message
2: if ADR flag is set to 1 then
3: NS collects recent uplink messages to calculate data rate
4: NS calculates margin

margin = SNRmeasured − SNRlimit −MARGINdefault

5: else
ADR flag is not set

6: end if
7: if calculated margin is large (±10) then
8: NS calculates new margin value based on optimised data rate
9: else

use received data rate
10: end if

where NS is the network server and SNR is the Signal to Noise Ratio. The margin is

the range of the expected SNR value on which assigning a new ADR is based.

2.2 State-of-the-Art

This section reviews a set of papers addressing issues related to the capacity, scalabil-

ity, reliability, transmission delay, coverage, interference, energy efficiency and packet

collisions in LoRaWAN networks. It also explores the use of various machine learning

techniques, all for the purpose of enhancing LoRaWAN performance. The section con-

cludes with identifying the technical concerns that are bridged by the proposed chapters

of this work.

LoRa end-devices use LoRaWAN class A, class B and class C protocol. Analysing these

classes reveals capacity and scalability issues as described in Section 2.2.1. In Section

2.2.2 a mathematical model has been reported to measure throughput to determine

the reliability of packets transmission within LoRaWAN. Section 2.2.3 reviews a set

of studies that address the impact of adopting ADR technique and LoRa’s different

modulation classes on the transmission delay. In Section 2.2.4 a set of papers tackling

issues related to the energy consumption in LoRaWAN and wireless sensors networks

are reviewed. Although the CSS offers high immunity to interference, LoRaWAN is
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known to have packet collision issues especially in dense networks. Therefore, Section

2.2.5 explores a set of studies on the deployment of LoRaWAN in urban and rural areas,

and reviews the collision behaviour. Section 2.2.6 reviews a set of research efforts that

were focused on incorporating the various machine learning algorithms for enhancing

LoRaWAN performance. This is concluded in Section 2.3 by shedding light on how the

work carried out in this thesis bridges the research gaps identified based on the reviewed

studies.

2.2.1 Capacity and Scalability

Adelantado et al. [10] carried out analysis of LoRaWAN class B end-devices. Reliability

is achieved by acknowledgment (ACK) received for data frames received. In LoRaWAN

specifications [1] transmitting data frames takes place over one of the two receiving win-

dows (RX1 and RX 2). This means a delay as result of the time-off period following each

transmission receive window. Such behaviour in LoRaWAN network raises the question

of how feasible class A and class B end-devices are for ultra-reliable services using Lo-

RaWAN. Augustin and et al. [47] deployed a technique to avoid the delay happening

as a result of waiting for the receiving windows by not sending packets more than the

smallest maximum payload size (which was 36 bytes according to their simulation pa-

rameters). However, such a solution has a severe impact on the capacity, resulting in

lower throughput and higher Time-on-Air (ToA). Of course class C end-devices provides

a constant listing behaviour but at the expense of very high power consumption.

Mikhaylov [48] carried out analysis on the capacity and scalability of LoRaWAN network.

Referring to a scenario with an ideal low transmission traffic model (8 bytes packet a

day), LoRaWAN gateway using 3×125 kHz channels can serve thousands of end-devices.

Of course the number end-devices is vastly reduced in a much denser traffic model. For

example, increasing the traffic model to a 1 byte packet every 30 seconds, the gateway can

only serve up to 357 end-devices. End-devices with a shorter distance to the gateway

(up to 2.4 km using DR5) have more data transmission rate (2 kbit/s), while further
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end-devices have lower transmission rate (100 bit/s). Note that LoRaWAN adheres to

end-device duty cycle restrictions (EU regulations [49]). More LoRaWAN scalability

scenarios and numeric figures are available in [50].

2.2.2 Reliability

Within LoRaWAN, a packet transmission has a serious drawback to the technology. In

regards to transmission drawback, Sørensen et al. [51] proposed analytical models that

estimate the impact of offered loads on packet error rate. Their models evaluate and

estimate the maximum throughput and maximum loads for reliable packets transmission

within LoRaWAN.

Augustin and et al. [47] carried out a study of LoRaWAN for IoT. In their study, LoRa’s

physical and data link layer performance was evaluated by field tests and simulations.

From the perspective of a single device maximal throughput, they conducted a test with

six 125 KHz channels using SF of 7-12. Considering a size of 13 bytes MAC header, 51

bytes packet size was the maximum payload allowed to be transmitted between the end-

device and the network server. The diagnoses revealed the receive windows as limiting

factors as the device following the initial transmission has to wait for the two downlink

receive windows to be done before attempting to send another packet. Thus, a limitation

to scaled-up applications with a large number of devices that send data on a regular traffic

basis (couple of times a day). The proposed solution to the aforementioned limitation

is to avoid sending more than the smallest maximum payload size (36 bytes in their

simulation). However, such a solution has a severe impact on LoRaWAN capacity and

results in lower throughput.

2.2.3 Transmission Delay

In line with the clustering based routing algorithms, Liu and Chang [52] proposed a

clustering rerouting scheme based on the assumption that nodes are scattered unevenly.

Their assumption is reflected on their clustering being performed based on an unequal
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number of nodes in each cluster. They utilise a probabilistic model in order to determine

which node has the energy capability to perform the tasks of multi-hoping for other nodes

in need within the same cluster. Therefore, the nodes within the cluster has the ability

to communicate with the gateway through the the cluster head. The node acting as a

cluster head has the ability to opt out from serving as a cluster head when the energy level

reaches a specified threshold. Although the proposed scheme enhanced the transmission

delay in comparison to similar approaches reported in [53, 54, 55], it relies on a decent

level of energy at the nodes level in limited-resources environment. The assumption of

energy availability in an IoT environment (battery-powered) could result in a network

failure.

As the functionality of LoRaWAN is highly dependent on resource allocation the tech-

nology uses an Adaptive Data Rate (ADR) technique. In practice, ADR aims to achieve

right first time reception between end-device and the gateway through basic minimum

SF selection. However, Cuomo et al. [56] recognised two sophisticated SF allocation

algorithms, EXPLoRa-SF and EXPLoRa-TA. The algorithms show a reduction in inter-

ference between clusters of end-devices with varying SF through improved time-on-air.

More specifically, EXPLoRa-SF attempts to equally assign redundantly high SF groups

across multiple base stations that are restricted solely by their Received Signal Strength

Indicator (RSSI). Although high SF provide long-range coverage, they increase interfer-

ence and collisions through greater time-on-air. Hence, EXPLoRa-TA works by assigning

different SF to end-device groups to ensure each group has an equal amount of time-on-

air. They coined the term “ordered waterfiling”. It was observed that both algorithms

prevailed over ADR at improving throughput in highly loaded systems of end-devices

distributed 200 meters from the gateway.

LoRaWAN has three classes of communication, class A, B and C, listed in descending

order of energy consumption. Delobel and et al. [57] selected class B to study the

energy efficiency of downlink communication (performance) as it is optimised for this

purpose. The downlink communication is confirmed through an acknowledgment (ACK)
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mechanism. Failure to receive ACK will trigger a retransmission, which accumulates

delays. The expected delay time is analytically computed in their proposed Markov

chain model. However, it exposes further flaws within the application of class B. The

limitations include; the gateway duty-cycle, conflict between classes A & B, and delay

before ACK sub-band availability.

The first limitation of duty-cycle is apparent to Delobel and et al. [57], where the gateway

is prevented from sending ACK for a large number of confirmed uplinks, for which it has

delays of up to 98.13s before the use of the next ping slot could be seen. Nonetheless,

they assumed all data frames could be acknowledged by gateways in which all ping slots

could be used.

The second limitation in LoRaWAN specifications is the conflict between class A and

B. Since class A devices transmissions are random, Delobel and et al. [57] prevented

other class B devices from transmissions during designated ping slots from the gateway

(beacons). By adopting this approach, their scheme was using Markov chain based

model, which increased the data-rate and reduced time-on-air frames. Moreover, the

delay time was further improved by increasing the number of sub-bands together with

increasing the ping period, which in return allow more frame transmissions and less

delays.

2.2.4 Energy Efficiency

Energy efficiency has always been within the interest scope of researchers, especially

with technologies designed for serving IoT applications. In this regard, Kavitha and

Suseendran in [58] proposed a priority based adaptive scheduling algorithm for IoT sensor

systems where several performance aspects were taken into consideration. One main

issue that the proposed algorithm tackles is the energy consumption in wireless sensor

networks. The scheduling algorithm is based on preset delay and energy requirements.

Based on these requirements a given packet can only transmit when there is a free slot for

transmission. In particular, the algorithm introduces a queuing procedure where packets
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queue before initiating transmissions. This procedure is mainly utilised to reduce the

amount of transmissions and hence reduce the total energy consumption of the network.

Their work is also inspired by similar techniques presented in [59, 60, 61, 62].

Rubel and et al. [63] proposed a clustering based priority management scheme to re-

duce the overall energy consumption in a wireless sensor network. In specific the scheme

classifies data received from nodes in different delay requirements. Based on each classi-

fication the scheme allows sensors to initiate communication with the base station. Their

scheme trades off the quality-of-service in serving each class of nodes.

In regards to the energy efficiency of IoT devices, Ogundile and et al. [64] investigated

the energy consumption constraint in wireless sensor networks and proposed a clustering

based routing algorithm. Their work takes into consideration that in some scenarios

the sensors tend to consume more power attempting to initiate transmissions with the

base station. Therefore, they proposed a clustering algorithm where each group of nodes

utilise predefined nodes (cluster heads) within their cluster to reach the base station.

This multi-hop technique showed an improvement to the energy efficiency. However,

such an approach can negatively impact the overall performance in the case of busy

multi-hops. Another common problem associated with the rerouting approaches is that

the nodes selected for multi-hoping are vulnerable to having a short lifetime. Hence, the

reliability is still an open issue. Similar approaches are also adopted in [65, 66, 67].

Different from the aforementioned clustering based routing algorithms, Liu and Chang

in [52] proposed a clustering rerouting scheme based on the assumptions that nodes are

scattered unevenly. Their assumption resulted in their clustering being performed based

on an unequal number of nodes in each cluster. They utilised a probabilistic model in

order to determine which node has the energy capability to perform the tasks of multi-

hoping for other nodes in need within the same cluster. Then the node has the ability

to opt out from serving as a cluster head at when the energy level reaches a specified

threshold. Although there proposed scheme outperformed those in [53, 54, 55], yet it

has a negative impact on the the total network delay.
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2.2.5 Collision Rate

In terms of latency, Sørensen and et al. [51], with Markov model of the jockeying queue,

they created a matrix A, which contains all state transition probabilities. Matrix A

can be used to evaluate the steady state probabilities, P , by solving the linear system

A · P = 0. Matrix A facilitated the adoption of a Markov model for LoRaWAN device

behaviour in the sub-band selection. For the sake of simplicity, they assumed a model

of only class A devices which transmits a fixed payload size. In addition, all devices

are assumed to successfully join the network in which there will be no acknowledgement

messages needed (downlink) and hence no retransmissions.

Furthermore, for simplicity, they adopted the queuing theory of M/M/c queue in their

model, taking into account that the mean queue length within M/M/c is twice that of

M/D/c. In addition they adopted jockeying M/M/c queue and carried out a comparison

of their model in terms of latency against the use of only M/D/c queue. Their approach

showed lower latency results.

Following LoRaWAN capacity evaluation, Augustin and et al. [47] carried out a simula-

tion of intense packets transmissions at a single data point. The results showed that the

maximum use is 18% of the channel capacity for 0.48 link load. 60% of packets dropped

due to collisions (collisions happen when two packet transmissions time overlap). Con-

firmed messages sent by devices as a collision solution is not practical, as it will result

in retransmitting packets several times and thus causing more delay.

Huang and et al. [68] mentioned that regulatory and aggregated duty cycling limitation

within LoRaWAN uplink was investigated from the perspectives of latency and collision

rate. The proposed models tend to analyse the latency and collisions of packets taking

into account sub-channel selection and combining. Results showed that sub-band with

the highest duty cycle provide low latency even in the case of very high loads but with

very high collision rate. Vice versa, sub-band with the lowest duty cycle results in high

latency even in the case of low loads but very low collision rate. They conclude with
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disproportionate relation between latency and collision rate, meaning enhancing one

could have severe impact on the other.

Although LoRaWAN is designed for serving a large number of devices with minimal need

for packets transmissions per day, Rizzi [69] carried out an industrial scenario experiment

using LoRaWAN. They adopted a similar approach to Time Slotted Channel Hopping

(TSCH) where using different SF were used in the same time-slot. Their approach

resulted in providing each device with one communication opportunity per minute and

minimised collision rate due to the accurate time and channel scheduling of TSCH.

Although Mikhaylov and et al. [70] empirically investigated that the SF s used within

LoRaWAN are not fully orthogonal, however the transmission can be decoded success-

fully when its power is greater than any other interfering power. Sørensen and et al. [51]

set out a simple rule in their model that all channels and SF are orthogonal, meaning

any two or more transmissions take place over the same channel, SF and time cause

a collision. For that reason, their scheme has multi-channel ALOHA random access

(same as the case in [10], [47] and [48]) representing LoRaWAN 6 SF in 6 ALOHA

channels (orthogonal) within a sub-band. Again for simplicity, they neglected acknowl-

edgement messages meaning there is no downlink and hence no retransmissions. Using

their scheme, they were able to quantify the outage caused by collisions by calculating

the traffic load and hence the collision probability.

Neumann and et al. [71] ran an experiment based on an indoor deployment of a gate-

way and single LoRa Mote (LoRa tool designed to demonstrate specific LoRa modem

capabilities). Both packet loss and packet error where measured based on the mote data

transmission from various locations (different floors over different distances). In terms

of packet loss and packet error, results vary based on the end-device location. Results

showed that devices with the lowest data rate (DR0 ) located on different floors have

packet loss decreasing as the device moves further from the gateway. The gateway expe-

rienced a packet loss of 25% when the device used DR0 at a close distance. Vice versa,

using higher data rates (DR5 ) showed an increase in the packet loss at further distances.
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The gateway experienced packet loss of 27% when the device used DR5 at a further

distance (for example, the building basement).

2.2.6 Machine Learning in LoRaWAN

LoRaWAN is meant for serving IoT applications, where low latency is not usually a

critical requirement [20]. Hence, the simplicity in LoRaWAN protocol, which makes it

suitable for IoT serving applications given the limited resources. However, this results

in a major drawback in LoRaWAN, which is the severe packet collision rate especially

as the served networks scale up. In return, this results in a serious degradation to

LoRaWAN performance and thus, to its reliability. The different features LoRaWAN

protocol provides for example, SF and CR, enhance its flexibility and suitability for being

adapted according to the needs of the served application [1]. In addition, these features

encouraged a number of research efforts to use them as elements to improve LoRaWAN

in different aspects using various machine learning algorithms and techniques.

For example, Cui and Joe [72] have proposed an enhanced packet collision prediction

scheme based on the Long Short-Term Memory (LSTM) model. Despite the high pre-

diction accuracy LSTM model provided, LoRaWAN random transmission behaviour

requires an online training schemes to achieve a practical prediction process. This has

motivated Cui and Joe [72] to combine LSTM with a State Space Model (SSM) and

propose an enhanced Long Short-Term Memory Extended Kalman Filter (LSTM-EKF)

scheme. Their proposed scheme showed relatively higher prediction accuracy in compar-

ison to the original LSTM model. However, the prediction process is highly dependant

on the input parameters, which are chosen to include LoRaWAN protocol features such

as different SF s, CR and the class of end-device communication. Hence, the prediction

accuracy remains a function of the pre-inputs selection process leading to a very high

computation overhead.

Acknowledging the randomness of LoRaWAN transmissions, Cuomo and et al. [73]

proposed nodes profiling scheme based on the unsupervised learning clustering algorithm
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(K-Means). Considering two gateways within the proximity of the nodes, the profiling

scheme aims to predict the duplication in nodes transmissions by grouping packets that

have similar transmission characteristics. Based on the duplication prediction, a traffic

prediction is carried out by combining the Decision Tree (DT) and LSTM models for

the purpose of enhancing the resource allocation. Although the unsupervised learning

clustering algorithm is the preferable machine learning classifying tool in low power

networks due to its simplicity, the number of clusters could play a vital role making it

very complex to implement. Hence, analysis of the optimal number of clusters is essential

to achieve the optimal clustering accuracy. This is highly dependant on the application

parameters used in the clustering process.

Exploiting the variety of LoRaWAN features as parameters in machine learning tools,

Sandoval et al. [74] proposes a configuration update scheme to the nodes based on

Reinforcement Learning (RL) to maximise the throughput of each node individually.

The configuration process relies on categorising packets received from the nodes into

different importance scales. Their scheme reserves LoRaWAN parameters that ensure

robust transmission for nodes classified as important source of information. These nodes

receive configuration updates from the gateway to elevate their individual throughput,

whereas, the gateway using the RL-based scheme refrains from updating nodes classified

as a lower importance source of information. In other words, the gateway using the

proposed scheme learns how to intelligently elevate the chance of allowing certain nodes

to successfully transmit at the expense of other nodes, all based on prior importance

classifications of the nodes.

Similarly, Aihara et al. [75] use RL by proposing Q-learning model combined with

Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) to mitigate the

collisions in LoRaWAN and enhance the network PDR. In their proposed scheme, the

number of successfully received packets form the nodes to the gateway is defined as a

reward function that their scheme learns to maximise. They have identified the main

cause of collisions to be simultaneous transmissions. Hence, to mitigate the collision
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rate, their schemes allows the gateway to learn which nodes are prone to simultaneous

transmissions. Hence, the gateway allows the target nodes to transmit over different

channels using CSMA/CA. However despite the high energy consumption needs when

using such techniques, the PDR is still a function of the number of available channels.

Hence, this can cause a negative impact especially when the network scales up.

2.3 Chapter Summary

The root cause to many of the problems addressed in the reviewed set of studies is

the packet collision rate associated with LoRaWAN random transmissions. Although

machine learning was the base to many of the proposed performance enhancement ap-

proaches, it can be easily accompanied with negative consequences especially in terms

of energy consumption. These negative consequences are usually due to the very high

computational burdens at the end-devices level. For example, it was noticed when re-

viewing the aforementioned set of studies [52, 53, 54, 55, 56, 57, 72, 73, 74, 75] that the

energy consumption was de-prioritised if not completely neglected. The fact that IoT

devices are resource-limited (e.g. battery-powered) makes it necessary to consider the

energy limitations. Hence, the work in Chapters 3, 4 and 5 take the energy limitations

into account.



Chapter 3

Clustering in LoRaWAN

3.1 Overview

The random LoRaWAN transmissions behaviour leads to high packet collision rate that

can exceed 90% at dense networks where the number of nodes reach up to 1000. This is

mainly due to the adoption of ALOHA protocol in LoRaWAN where the nodes initiate

transmissions to the gateway regardless of the channel status. This results in an increased

number of retransmission attempts by the nodes, which in return increases the network’s

total transmission delay and energy consumption. Hence, it is essential to reduce the

amount of possible simultaneous transmissions from the nodes in order to mitigate the

collision rate. This can be achieved by partitioning the nodes into different clusters.

Hence, this chapter proposes the use of unsupervised learning clustering algorithm (K-

Means) in LoRaWAN, and investigates the impact of different number of clusters on

the network’s collision rate. Simulations of the network performance show that the

proposed scheme results in a significant reduction to the packet collision rate, which in

return enhances the transmission delay and energy consumption.

33
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Figure 3.1: Random Distribution of LoRa Nodes Using LoRaWAN Protocol
to Communicate with the Gateway Before and After K-Means
Clustering

3.2 System Model

The system model in Figure 3.1 shows randomly distributed nodes n ∈ {n1, n2, · · · , ni},

where 1 ≤ i ≤ 1000 that communicate with one gateway (GW) using LoRaWAN proto-

col. Each node transmits a set of unique values. These values can be adjusted to any

practical application. The GW normalises these values and processes them as entities

for performing K-Means clustering. As in Figure 3.1, the nodes fall into different number

of clusters making the GW able to implement a simple transmission Priority Schedul-

ing Technique (PST). The simple transmission PST is aimed at regulating the order of

transmissions from the nodes based on the transmission priority of the corresponding

cluster. Hence, a lower number of nodes transmitting at same time.

3.3 Unsupervised Learning Clustering Algorithm (K-Means)

The core propose of choosing K-Means [76, 77] for clustering is due to its simple imple-

mentation at the GW level without involving the nodes in the clustering process. This

is to ensure minimal energy burden at the nodes level. The nodes fall within different

clusters following K-Means clustering algorithm. These clusters are based on a set of
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values S = {s1, . . . , sk} where S is in the space of a positive integer number k.

In K-Means the number of clusters has to be pre-defined. Therefore, considering the

scale of the network the number of clusters is chosen to be k = {3, 4, 5}. This is to

evaluate the impact of introducing a different number of clusters on the collision rate.

The core purpose is to reduce the collision rate.

The clustering process begins by defining the number of cluster. Since the clustering is

based on the set of values transmitted from the nodes to the gateway, these set values

are normalised into a value of z for each node. This is followed by initiating a cluster

center value cj that are randomly chosen for the available values of z. The aim is to

classify nodes with the minimum Euclidean distance from a specific cj into the same

cluster following Equation (3.1).

argmin
cj

dist(cj , zni) (3.1)

where dist(cj , zni) is the Euclidean distance between each cluster’s center cj and the

node’s normalised value zni . Note that cj value and therefore, the Euclidean distance

are updated following each node classification following Equation (3.2) and (3.3). This

is to minimise the difference between cj and other nodes’ values of z.

d(cj , zni) =
√
(cj(A)

− zni(A)
)2 + (cj(B)

− zni(B)
)2 (3.2)

where A and B are the original set of values transmitted by each ni to the GW. zni(A)

and zni(B)
are the normalised values of the original A and B values. cj(A)

and cj(B)
are

the initial cluster center values.

cj =
1

| cj |
∑
n∈k

n (3.3)

The same procedure above happens with each node of ni. Since cj is updated following

each node clustering process, a number of iterations are needed to ensure the conver-
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gence of cj . The convergence of cj indicates the classification of each node to the closest

cluster in terms of the value z. In the considered scenario of this work, a total of thirty

iterations were performed to reach the converged stage of each cluster. Sections 3.3.1,

3.3.2 and 3.3.3 provides analysis of using a different number of clusters k = {3, 4, 5} for

this work. Note that the minimum limit of the number of clusters is one, which has

no impact on reducing the number of simultaneous transmissions as the typical network

with no clustering is naturally falling in the form of one cluster. Although two clusters

were included in the analysis of network performance, it was not included in the detailed

comparisons in the following sections as the variations are insignificant. Therefore, the

comparisons of number of clusters started from three clusters onward. Note that the

values of A and B are listed prior to the normalisation for better visualisation of the

considered scenario. The data set in this work is based on a forest wildfire early warn-

ing application hence, the value A represents the atmospheric humidity while value B

represents weather temperature.

3.3.1 Three Clusters Analysis (k = 3)

In this scenario three clusters are chosen to evaluate the reduction of the collision rate

in comparison to different number of clusters. By assigning an initial clustering values

(Table 3-A) to be the initial centroids for each of the three clusters, the clustering process

begins following Equations (3.1), (3.2) and (3.3) above. Therefore, nodes are assigned

to the cluster with the nearest value of A and B.

Table 3-A: Initial Cluster Centers (k = 3)
- Clusters

- 1 2 3

A (Atmospheric
humidity %)

50 70 30

B (Temperature) 30 44 45

Note that the values in Table 3-A were the initial values; following the convergence of

cj , Table 3-B shows the final centroid values for each cluster and the number of nodes

classified to each cluster.
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Table 3-B: Final Cluster Centers (k = 3)
- Clusters

- 1 2 3

A (Atmospheric
humidity %)

49 63 37

B (Temperature) 37 38 37

Number of nodes
in each cluster

338 334 328

The total number of nodes considered in the system model is 1000. From Table 3-B, this

number was divided into three clusters, where cluster one consists of 338, cluster two

consists of 334 and cluster three consists of 328 nodes following the clustering process,

and an average of 20 runs.

The bar chart in Figure 3.2 illustrates the clusters based on the mean values of A and

B for the nodes within each cluster. Note that in a simple transmission priority ar-

rangement, the clusters are assigned different transmission priorities corresponding to

the relationship between the values A and B. In other words, the lower the difference

between the values, the higher the transmission priority assigned to the corresponding

cluster. The main purpose of this consecutive transmission style of the clusters is to pre-

vent simultaneous transmissions from nodes in different clusters, and therefore reducing

the total collision rate.

3.3.2 Four Clusters Analysis (k = 4)

In this scenario four clusters are chosen to evaluate the reduction of the collision rate in

comparison to different number of clusters. Similar to (k = 3), initial clustering values

(Table 3-C) are assigned to be the initial centroids for each of the four clusters, the

clustering process begins following Equations (3.1), (3.2) and (3.3) above.

Note that the values in Table 3-C were the initial values; following the convergence of

cj , Table 3-D shows the final centroid values for each cluster and the number of nodes

classified to each cluster.
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Figure 3.2: Simple Transmission Priority Scheduling Technique Based on K-
Means Clustering (K = 3) Bar Chart

Table 3-C: Initial Cluster Centers (k = 4)
- Clusters

- 1 2 3 4

A (Atmospheric
humidity %)

56 70 30 43

B (Temperature) 45 31 44 30

Table 3-D: Final Cluster Centers (k = 4)
- Clusters

- 1 2 3 4

A (Atmospheric
humidity %)

54 65 35 45

B (Temperature) 39 37 37 37

Number of nodes
in each cluster

239 255 257 249

The total number of nodes considered in the system model is 1000. From Table 3-D, this

number was divided into four clusters, where cluster one consists of 239 nodes, cluster

two consists of 255, cluster three consists of 257, cluster four consists of 249, following

the clustering process, and an average of 20 runs. Figure 3.3 illustrates the clusters with

different values of A and B.
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Figure 3.3: Simple Transmission Priority Scheduling Technique Based on K-
Means Clustering (K = 4) Bar Chart

Table 3-E: Initial Cluster Centers (k = 5)
- Clusters

- 1 2 3 4

A (Atmospheric
humidity %)

41 50 30 60 69

B (Temperature) 30 45 44 31 44

3.3.3 Five Clusters Analysis (k = 5)

Similar to the above two clustering scenarios. This work takes clustering even further

by partitioning the nodes into five clusters. In this scenario five clusters are chosen to

evaluate the reduction of the collision rate in comparison to different number of clusters.

Similar to (k = 3, 4), initial clustering values (Table 3-E) are assigned to be the initial

centroids for each of the five clusters, the clustering process begins following the same

Equations (3.1), (3.2) and (3.3).

Note that the values in Table 3-E were the initial values; following the convergence of

cj , Table 3-F shows the final centroid values for each cluster and the number of nodes

classified to each cluster.
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Table 3-F: Final Cluster Centers (k = 5)

- Clusters

- 1 2 3 4 5

A (Atmospheric
humidity %)

44 49 35 57 65

B (Temperature) 34 41 37 35 38

Number of nodes
in each cluster

177 178 256 178 211

The total number of nodes considered in the system model is 1000. From Table 3-F, this

number was divided into four clusters, where cluster one consists of 177 nodes; cluster

two consists of 178, cluster three consists of 256, cluster four consists of 178 and cluster

five consists of 211 nodes, following the clustering process, and an average of 20 runs.

The bar chart in Figure 3.4 shows the clusters with different values of A and B, based on

which the the cluster with the lowest difference between A and B is granted the highest

transmission priority.

Figure 3.4: Simple Transmission Priority Scheduling Technique Based on K-
Means Clustering (K = 5) Bar Chart

The purpose of increasing the number of clusters is to evaluate the impact of the num-

ber of clusters on the collisions and compare it to a typical (non-clustered) LoRaWAN
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network. The discussion below which is based on the simulation results proves that the

higher the number of clusters, the lower the collisions. Hence, the evaluations are taken

further to assess the impact of the clustering technique on the network total transmission

delay and the total energy consumption which is mainly effected by the collisions and

the retransmissions of collided packets.

3.4 Problem Formulations

3.4.1 Packet Collisions in LoRaWAN

In the defined system model there are 1000 nodes assumed to be transmitting randomly

to the gateway. Each node transmits one packet following ALOHA protocol. A collision

happens when two nodes transmit at the same time over the same frequency. According

to Poisson distribution, the probability P of a collision to happen is given by Equation

(3.4):

P = e−2G (3.4)

where G is the rate of packet transmission attempts per node. All nodes are assumed

to be transmitting over one channel using one spreading factor (SF7) with a bandwidth

of 125 kHz and a Coding Rate (CR) of 1, which maximise the actual packet bits at the

expense of the Forward Error Correction (FEC) redundant bits. In LoRaWAN typical

deployment each node transmits whenever there is a ready to send packet regardless of

any other transmission occupying the channel (ALOHA style) [1]. This transmission

behaviour results in a collision rate of up to 90% at a LoRaWAN network with 1000

nodes (shown in Figure 3.7, Section 3.5).

On the other hand, the proposed clustering based simple transmission PST via regulating

the nodes transmissions based on the corresponding cluster’s priority reduces the collision

rate. The reduction to the collision rate is a result of reducing the number of nodes in

each cluster. By using Equation (3.5), the proposed technique reduces the total collision
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rate to 58% when k = 3, 45% when k = 4 and 41% when k = 5 in comparison to the

collision rate in typical LoRaWAN. Figures 3.8, 3.9 and 3.10 in Section 3.5 show the

collision rate at each cluster of Ck.

Total Collision Rate =
C1colli + C2colli + · · ·+ Ckcolli

Ck
(3.5)

where colli is the number of collisions in the corresponding cluster of Ck.

3.4.2 Total Transmission Delay

For further evaluation, this section addresses the impact of applying K-Means clustering

on the total transmission delay. The transmission delay in LoRaWAN is a function of

the number of bits and the bit rate per second [8]. It is proportional to the number of

bits within a packet and it is calculated as in Equation (3.6) below

TransmissionDelay =
Number of bits

Bitrate
(3.6)

where Bitrate is given by Equation (3.7)

Bitrate =
SF ×BW

2SF
× 4

4 + CR
(3.7)

where SF is the Spreading Factor and it is fixed to SF7, BW = 125kHz and CR is

the Coding Rate and is set to CR = 1. Note that CR ∈ {4/5, 4/6, 4/7, 4/8} is the ratio

of the actual data bits to the redundant bits and is represented by CR = {1, 2, 3, 4},

respectively. Using these parameters insures a maximum successful transmissions in

LoRaWAN given a limited area [1]. More details of the BW, SF and CR are given in

[20].

Note that for simulation practicality, collided packets are allowed one retransmission per

packet. The transmissions follow LoRa SX1272 LoRa model specifications [45]. This is

to validate the simulation performance against practical experiments held in [78, 79, 47].
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According to LoRaWAN specifications [1], a packet collision results in a retransmission

attempt. Hence, Initial Transmission Delay (ITD) and Retransmission Delay (RTD) are

taken into consideration in the simulation process. The simple transmission PST for

different clusters introduces waiting times, which means a cluster with lower priority

waits until transmissions from nodes in higher priority clusters are complete.

For better explanation, it is important to give details of the transmission delay concept in

the considered LoRaWAN system model. This takes place via the following two examples

(A) and (B) to explain how the transmission delay differs in typical LoRaWAN (non-

clustering) and the proposed K-Means clustering based simple transmission PST. Values

used in (A) and (B) are simplified for the purpose of clarity. Simulation values are

different and revealed in the performance evaluations section.

• Example A (no clustering):

Assume there are 1000 nodes, with each node sending 1 packet and the transmission

time is 1 second for each node. Hence,

ITD = 1000 nodes× 1 second = 1000 seconds

However, there are collided packets that need to be retransmitted again. In such

a network size, the collision rate is 90%. This means 900 packets need to be

retransmitted. Hence,

RTD = 900 nodes× 1 second = 900 seconds

Thus, The Total Transmission Delay (TTD) can be calculated as the following:

TTD = ITD +RTD = 1000 seconds+ 900 seconds = 1900 seconds

• Example B (four clusters):

Assume there are 1000 nodes divided evenly into four clusters. This means 250

nodes in each cluster. Assume there is a collision of 48% in each cluster. This
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means 120 collided packets of the total 250 nodes in each cluster. Overall, there

are four clusters of 250 transmitting nodes each with 120 collided packets. Let the

Initial Transmission Delay in each cluster C be denoted as CkITD
. Similarly, let

Retransmission Delay due to collisions in each cluster be denoted as CkRTD
and

Total Transmission Delay of the cluster k be CkTTD
, where k is the number of

clusters and k = {1, 2, 3, 4}. Hence, CkTTD
in each cluster of k can be calculated

as in the following equations:

C1TTD = C1ITD + C1RTD

C1TTD = 250× 1 second+ 120× 1 second = 250s+ 120s = 370s

C2TTD = C1TTD + C2ITD + C2RTD

C2TTD = 370s+ 250× 1 second+ 120× 1 second = 370s+ 250s+ 120s = 740s

C3TTD = C2TTD + C3ITD + C3RTD

C3TTD = 740s+ 250× 1 second+ 120× 1 second = 740s+ 250s+ 120s = 1110s

C4TTD = C3TTD + C4ITD + C4RTD

C4TTD = 1110s+ 250× 1 second+ 120× 1 second = 740s+ 250s+ 120s = 1480s

From examples (A) and (B), the total transmission delay in example A resembling typical

LoRaWAN with no clustering applied is 1900 seconds. While the total transmission delay

in the network after applying four clusters is 1480 seconds. Hence, the proposed K-Means

clustering based simple transmission PST reduces the delay more than that of typical

LoRaWAN. Figure 3.5 illustrates the impact on collisions and transmission delay before

(example A) and after (example B) applying K-Means clustering. Figure 3.6 shows

the expected outcome of the total transmission delay in both examples. Simulations

were carried out to prove the aforementioned examples and the results are shown in the
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simulation results section of this chapter.

Figure 3.5: Collision Rate and Transmission Delay Trends in Typical Lo-
RaWAN (A) Vs. Proposed K-Means Clustering (B)

Figure 3.6: Transmission Delay in Typical LoRaWAN (example A) Vs. Pro-
posed K-Means Clustering based Simple Transmission Priority
Scheduling Technique (example B)

From examples (A) and (B), TTD is calculated following a set of Equations (3.8), (3.9)

and (3.10).

CHPTTD
= CHPITD

+ CHPRTD
(3.8)

CLPTTD
= CHPTTD

+ CLPITD
+ CLPRTD

(3.9)

TTD = CHPITD
+ CLPTTD

(3.10)

where CHPTTD
is transmission delay of clusters with a higher transmission priority,

CHPITD
is the delay caused by initial transmission in higher transmission priority clus-
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ters, and CHPRTD
is the delay caused by the retransmissions of collided packets in higher

transmission priority clusters. Similarly, CLPTTD
is transmission delay of clusters with a

lower transmission priority, CLPITD
is the delay caused by initial transmission in lower

transmission priority clusters, and CLPRTD
is the delay caused by the retransmissions of

collided packets in lower transmission priority clusters. TTD is the total transmission

delay of the network including all clusters. Note that transmission delay in lower priority

clusters always contain the transmission delay of clusters with higher priority, as lower

priority clusters wait until transmissions in higher priority clusters are over.

3.4.3 Energy Consumption

As for the energy consumption and since LoRa SX1272 model is adopted in this work,

the energy evaluations are validated against LoRa SX1272 model used in an experiment

carried out in [78]. This work considers the energy consumed by transmitting clusters

and the energy consumed by non-transmitting clusters following the Equations (3.11)

and (3.12), respectively:

ECTr = PTr ×DTr (3.11)

where ECTr is the energy consumed by transmitting clusters, PTr is transmission power

in watts per node/packet andDTr is the transmission duration in seconds per node/packet.

ECnonTr = PnonTr ×DnonTr (3.12)

where ECnonTr is the energy consumed by non-transmitting clusters, PnonTr is the power

consumption per standby nodes in non-transmitting clusters and DnonTr is the trans-

mission duration expected for the standby nodes in non-transmitting clusters.

From Equations (3.11) and (3.12), the total energy consumption E
(i)
c in Equation (3.13)

is calculated as the sum of individual cluster’s energy consumption as expressed in Equa-

tions (3.14), (3.15), (3.16) and (3.17). It is assumed that only one scenario with four
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clusters are considered (k = 4) in this analysis.

E(i)
c = EC

(i)
Tr +

K∑
j=0,j ̸=i

EC
(i)
nonTr (3.13)

where i ∈ {1, 2, 3, 4} is the cluster number. The energy consumption in each cluster is

calculated as follows:

E(1)
c = EC

(1)
Tr + EC

(2)
nonTr + EC

(3)
nonTr + EC

(4)
nonTr (3.14)

E(2)
c = EC

(1)
nonTr + EC

(2)
Tr + EC

(3)
nonTr + EC

(4)
nonTr (3.15)

E(3)
c = EC

(1)
nonTr + EC

(2)
nonTr + EC

(3)
Tr + EC

(4)
nonTr (3.16)

E(4)
c = EC

(1)
nonTr + EC

(2)
nonTr + EC

(3)
nonTr + EC

(4)
Tr (3.17)

where E
(1)
c is the energy consumption during cluster 1 transmissions, EC

(1)
Tr is energy

consumed by transmitting nodes in cluster 1, EC
(2)
nonTr is energy consumed by non-

transmitting nodes in cluster 2, EC
(3)
nonTr is energy consumed by non-transmitting nodes

in cluster 3 and EC
(4)
nonTr is energy consumed by non-transmitting nodes in cluster 4.

E
(2)
c , E

(3)
c and E

(4)
c are the energy consumption during clusters 2, 3 and 4 transmissions

respectively, each of which includes the energy consumed by both the transmitting node

and the non-transmitting nodes within the corresponding cluster. A similar approach is

adopted for calculating energy consumption in other scenarios with a different number

of clusters (k = {2, 3, ..., 100}).

3.5 Simulation Results and Performance Evaluations

This section reveals the impact of applying K-Means clustering on the collision rate and

the Packet Delivery Rate (PDR) in LoRaWAN. Moreover, it shows an evaluation of the

total transmission delay within the network in comparison to typical LoRaWAN and a

collision resolution scheme proposed in [80]. Furthermore, it reveals the evaluation of

the optimal number of clusters in terms of energy consumption efficiency.
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Figure 3.7: Collision Rate and PDR in Typical LoRaWAN

3.5.1 Collision and Packet Delivery Rates in Typical LoRaWAN vs.

Different Number of Clusters

3.5.1.1 Typical LoRaWAN

In typical LoRaWAN, the collision rate is excessively high due to simultaneous trans-

missions attempts from different nodes. This is a result of the adoption of ALOHA

protocol where nodes initiate transmissions regardless of the channel status. To evaluate

the packet collision behaviour in LoRaWAN, a simulation LoRaWAN engine is built and

the number of transmitting nodes are scaled from 1 to 1000 nodes. From Figure 3.7,

it is shown that the collision rate using typical LoRaWAN at 1000 nodes exceeds 90%.

This illustrates the problem of adopting LoRaWAN to serve dense applications hence

the proposed clustering for LoRaWAN. Note that in the simulation, the transmission

environment is assumed to be idle, where the packet loss can only be a result of packet

collision. Thus, PDR follows a mirror trend of the collision rate.
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Figure 3.8: Collision Rate and PDR in LoRaWAN with Three Clusters (k = 3)

3.5.1.2 Three Clusters (k = 3)

From Figure 3.8, it is noticed that the collision rate in each cluster significantly decreased.

This is a result of reducing the number of simultaneously transmitting nodes. Note

that nodes within each cluster transmit at different times from nodes in other clusters

following a simple transmission priority scheduling technique. The total collision rate

for the network is reduced from 90% to 58%.

The number of nodes vary in each cluster with 338, 334 and 328 nodes in clusters one,

two and three, respectively. The transmissions from the nodes follow LoRaWAN class A

transmission protocol.
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3.5.1.3 Four Clusters (k = 4)

The number of clusters are increased in order to have a better insight to the impact of

the number of clusters on the collision rate and PDR. From Figure 3.9, it is noticed that

the collision rate in each cluster further decreased. This is a result of further reduction to

the number of simultaneously transmitting nodes in each cluster. Note that nodes within

each cluster transmit at different times from nodes in other clusters following a simple

transmission priority scheduling technique. The total collision rate for the network is

further reduced to 45% in comparison to 58% at k = 3.
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Figure 3.9: Collision Rate and PDR in LoRaWAN with Four Clusters (k = 4)

Similarly the number of nodes vary in each cluster with 239, 255, 257 and 249 nodes in

clusters one, two, three and four, respectively. In a similar manner, the transmissions

from the nodes follow LoRaWAN class A transmission protocol.
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3.5.1.4 Five Clusters (k = 5)

When increasing the number of clusters to k = 5, it is noticed in Figure 3.10 that the col-

lision rate in each cluster further decreased in comparison to a lower number of clusters.

This is a result of further reduction to the number of simultaneously transmitting nodes

in each cluster. Similarly, the nodes within each cluster transmit at different times from

nodes in other clusters following a simple transmission priority scheduling technique.

The total collision rate for the network is further reduced to 41% in comparison to 45%

at k = 4 and 58% at k = 3.

Similarly the number of nodes vary in each cluster with 177, 178, 256, 178 and 211 nodes

in clusters one, two, three, four and five, respectively. The transmissions from the nodes

follow LoRaWAN class A transmission protocol.

It is noticed that the collision rate is reduced linearly as the number of clusters increases.

This is a result of the continuous reduction of the number of nodes in each cluster.

However, increasing the number of clusters increases the complexity of the clustering

process. Hence, it is essential to find the optimal number of clusters that provides the

best trade-off between reducing the collision rate, providing fairly reduced transmission

delay and energy consumption. Since LoRaWAN is a low power orientated wireless

technology, the optimal number of clusters is to be found based on the most appropriate

total energy consumption. Section 3.5.2 reveals the process of obtaining the optimal

number of clusters using the Elbow Method [81, 82, 83]. While Section 3.5.3 reveals the

impact of reducing the number of clusters on the total transmission delay within the

network.

3.5.2 Optimal Number of Clusters Analysis using Elbow Method

As for the unsupervised clustering algorithm (K-Means), the number of clusters are

predefined where nodes are clustered based on the Euclidean distance from each cluster’s

centroid. Although the effect of increasing the number of clusters on the collision rate of

the network is evaluated, this work also takes into account obtaining the most appropriate
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Figure 3.10: Collision Rate and PDR in LoRaWAN with Five Clusters (k = 5)
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number of clusters in terms of the energy consumption. One well-known technique of

finding the optimal number of clusters when using K-Means is the Elbow Method [81,

82, 83]. The Elbow Method as the name indicates is widely used with continuously

increasing or decreasing behaviours. Specifically it is the process of analysing a scree

behaviour to find the point (elbow of the curve) where the most significant variation

happens.

Since the collision rate is a decreasing function of the number of clusters, the Elbow

Method is adopted in the analysis of the collision behaviour. Increasing the number of

clusters decreases the number of nodes in each cluster. In return, less simultaneous trans-

missions and hence, less packet collision rate and less retransmission attempts. Thus,

the transmission delay and energy consumption caused by the retransmission attempts

are directly effected by the number of clusters in the network. However, increasing the

number of clusters also increases the complexity of the clustering process. Since the

energy consumption is vital in LoRaWAN, it is essential to find the optimal number of

clusters that provides the most appropriate energy consumption. To find the optimal

number of clusters, simulations of the energy consumption for the considered network

size of 1000 nodes are carried out under different number of clusters k = {1, 2, · · · , 100}.

The purpose is to analyse the energy consumption behaviour under different number of

clusters.

Figure 3.11 shows a scree plot of Ec where it is continuously decreasing as the number

of clusters increase. However, in the considered network scenario it is noticed that the

steepest Ec decrease point is at k = 4. Afterwards, Ec continues to gradually decrease

with a very slight trend in relation to increasing the number of clusters. Ec gradient

behaviour forms an Elbow point at k = 4. Since the energy consumption after k = 4

is not significantly decreasing, K = 4 is adopted as the most appropriate number of

clusters in this case.
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Figure 3.11: Analysis of Total Energy Consumption at a Different Number of
Clusters - The Elbow Point Forms At (k = 4) Indicating The
Most Appropriate Number of Clusters

3.5.3 Total Transmission Delay

The simulation results in Figure 3.12 show a total transmission delay comparison between

a typical LoRaWAN network, the proposed clustering based simple transmission PST

and the collision resolution scheme proposed in [80]. The choice of the work in [80] as

a benchmark is to validate the implementation of class A LoRaWAN protocol against

class B and evaluate the impact in terms of transmission delay especially when scaling

up the network density to 1000 nodes.

From Figure 3.12, it can be noticed that TTD in typical LoRaWAN when serving a

network of 1000 nodes reaches up to almost 70s. This is due to number of factors such

as the initial transmissions of the considered 1000 nodes, the retransmissions attempts

and the waiting time between the initial transmission and retransmissions attempts,

all as a result of the high collision rate shown earlier in Figure 3.7. The proposed K-

Means clustering based simple transmission PST is evaluated under a different number
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Figure 3.12: The Impact of Reducing the Number of Clusters on The Network
Total Transmission Delay

of clusters. When k = 3 clusters, the delay is reduced to 57.6s. This reduction is a result

of reducing the collision rate in each of the clusters and therefore, reducing the number of

nodes competing at the same time as shown earlier in Figure 3.8. When k = 4 clusters,

the delay is further reduced to 54.1s. Again this is a result of minimising the collision rate

as shown earlier in Figure 3.9. When k = 5 clusters, the delay is reduced further to 51s

due to the reduction of the number of nodes in each cluster. Therefore, it has the lowest

collision rate as shown earlier in Figure 3.10. It is noticed that increasing the number of

clusters leads to minimising the number of nodes in each cluster and hence, minimising

the collision rate in the network. As in Equations (3.8), (3.9) and (3.10), retransmissions

of collided packets have a severe impact on the total delay. Hence reducing collision rate

results in reducing TTD in a similar manner to reducing the energy consumption.

Comparing against the periodic beacons based collision resolution scheme proposed by

Rachkidy and et.al. in [80], the transmission delay is enhanced more than that of typi-

cal LoRaWAN and the proposed simple transmission PST. However, their technique is
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Table 3-G: Performance Comparisons in Terms of Collision Rate, Packet De-
livery Rate and Transmission Delay

- Total
Collision
Rate (%)

Total
PDR (%)

TTD

Number of Nodes 1000
nodes

1000
nodes

300 nodes 1000
nodes

Typical LoRaWAN (both
simulation and in [84])

90% 10% 17s 70s

Proposed k = 3 Tech-
nique

58% 42% 17s 58s

Proposed k = 4 Tech-
nique

45% 55% 16s 54s

Proposed k = 5 Tech-
nique

41% 59% 16s 51s

Periodic Beacon Based
Technique [80]

- - 8s 25s

based on periodic beacons according to class B of LoRaWAN protocol. Devices oper-

ating on class B listen to beacons produced by the gateway and transmit only when

there is an available beacon. This makes class B far more power consuming, which

defeats the core purpose of using LoRaWAN for serving dense resource-limited IoT de-

vices (battery-powered). Table 3-G shows a comparison performance evaluation of all

simulated scenarios.

It is noticed that in Table 3-G the transmission delay at a smaller network scale (300

nodes) has very small variations. However, the variations increase when scaling up the

network size (up to 1000 node). This is due to the increased number of nodes within each

cluster and hence, more packet collisions. The work carried out has shown that lower

collision rate is accompanied with higher PDR and lower transmission delays. Hence,

more applicability of adopting LoRaWAN for dense IoT applications using the proposed

clustering based simple transmission PST.
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3.6 Chapter Summary

The packet collisions in LoRaWAN play a significant role especially when serving dense

networks with up to 1000 nodes. This drawback is due to the random transmissions from

the nodes, leading to a packet collision rate that exceeds 90%. Hence, introducing the

clustering to LoRaWAN have significantly reduced the collision rate. The collision rate

was reduced to 58% at k = 3 clusters. Increasing the number of clusters further reduced

the collision rate to 45% and 41% at k = 4 and k = 5, respectively. In return PDR is

improved as a result of reducing the collision rate. Although, increasing the number of

clusters results in a lower collision rate, it was essential to obtain the optimal number of

clusters in order to limit the clustering process complexity. Since LoRaWAN is aimed at

serving resource-limited IoT devices (battery-powered), the optimal number of clusters

(k = 4) was found based on the most appropriate total energy consumption of the

network. Introducing the clustering to LoRaWAN reduced the number of retransmission

attempts caused by packet collisions. Hence, the total transmission delay when k = 4 is

also reduced by 23% in comparison to typical LoRaWAN.



Chapter 4

Dynamic Transmission Priority

Scheduling Technique

4.1 Overview

Despite the benefits of LoRaWAN protocol for IoT applications, it still suffers from ex-

cessive random and simultaneous transmissions due to the adoption of ALOHA protocol.

Therefore, resulting in a severe packet collision rate as the network scales up. This leads

to continuous retransmission attempts, which in return increases the transmission de-

lay and energy consumption. Thus, this chapter reveals the proposition of a dynamic

transmission Priority Scheduling Technique (PST) based on the unsupervised learning

clustering algorithm to enhance the network’s transmission delay, energy consumption

and packet delivery rate. Particularly, the LoRa gateway classifies the nodes into different

transmission priority clusters. While the dynamic transmission PST allows the gateway

to configure the transmission intervals for the nodes according to the transmission priori-

ties of the corresponding clusters. Furthermore, the dynamic transmission PST involves

a decision making property to assess the necessity of the re-transmission attempts of

collided packets in each cluster. The purpose is to preserve the energy consumption via

58
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eliminating unnecessary transmissions. This work allows scaling up the network density

while maintaining low packet collision rate and significantly enhancing the transmission

delay & the energy consumption. Simulation results show that the proposed work out-

performs the typical LoRaWAN and recent clustering & scheduling schemes. Therefore,

the proposed work is well suited for dense applications in LoRaWAN.

4.2 System Model, Problem Statement and Formulation

The system model, the considered dense application scenario and the impact of packet

collision rate are revealed in Section 4.2.1. This is followed by formulations of the

Total Transmission Delay (TTD) and Total Energy Consumption (TEC) in Section

4.2.2. Where Section 4.2.3 introduces the unsupervised learning clustering algorithm

(K-Means) and reveals the optimal number of clusters analysis. The notations used in

the rest of the chapter are presented in Table 4-A.

Figure 4.1: Dense Application Resembling a Forest Scenario using LoRaWAN

4.2.1 System Model

The system model shown in Figure 4.1 resembles a forest scenario with one gateway

(GW) and randomly distributed nodes n ∈ {n1, n2, . . . ni}, where 1 ≤ i ≤ 1000. The

LoRa nodes ni are configured following LoRa SX1272 model. This is to validate ni’s

performance against practical experiments carried out in [78, 79, 47]. The nodes are
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Table 4-A: List of Notations
Notation Description

ACK Average value of A transmitted by all ni in the corresponding CK

Ani , Bni A,B values transmitted by ni

AnCK
A value transmitted by ni in the corresponding CK

BnCK
B value transmitted by ni in the corresponding CK

BCK Average value of B transmitted by all ni in the corresponding CK

CPr Cluster’s transmission priority

CHPr Higher transmission priority cluster

CLPr Lower transmission priority cluster

CK Clusters of K ∈ {1, 2, ..., 5}
cj Cluster’s center point

Ck Clusters of k ∈ {1, 2, 3, ..., 30}
DRcolli Daley of ni’s retransmission of collided packets

DRch Daley of ni’s retransmission of lost packets

DIT Daley of ni’s initial packet transmission

DCHPr Delay in of higher priority clusters

DCLPr Delay in of lower priority clusters

Dactive Duration of ni in active mode

Didle Duration of ni in idle mode

d ni’s distance from GW

DCK Total transmission delay of a cluster of K

d0 Distance from GW (500 meters)

dmax Maximum distance from GW (3km)

Eactive Energy consumption of active transmitting cluster (Joules)

Eidle Energy consumption of idle cluster (Joules)

G Rate of packet transmission attempts per node

GW LoRa gateway

IT Initial packet transmission

Kopt Optimal number of clusters, (K = 5)

nCHPr ni in higher priority clusters

nCLPr ni in lower priority clusters

niPr ith node transmission priority

nCK Node corresponding to a cluster of K

ni ith LoRa node (sensor)

nid ith node distance from GW

Pr Transmission priority,
Pr ∈ {LP,LMP,MP,UMP,HP}

Rcolli Retransmission due to a packet collision

Rch Retransmission due to a packet loss

Sn Transmission slot

Tn Transmission time interval

Tm Transmission mode

Tmcon. Conservative transmission mode

Tmncon. Non-conservative transmission mode

Thcon. Threshold value of z for Tmcon.

Thncon. Threshold value of z for Tmncon.

vab the normalisation value of A & B

zCK Average value of z in cluster of K

zni Difference between ni’s values A & B

stationary and communicate with the GW following class A LoRaWAN protocol, while

the GW communicates back through a temporary receive window that opens following
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each transmission from ni [1].

Note that this work is based on applying a clustering algorithm, which usually incor-

porates the conventional solution of deploying multiple GW s in order to provide trans-

mission alternatives for the nodes in different clusters. However, this is not the case in

this work for a number of reasons. Firstly, deploying multiple GW s introduces a set

of problems, some of which are multipath propagation, interferences and nodes trans-

mission duplication just like the problem reported in [73]. Secondly, multiple GW s are

usually ideal in protocols where the the low-latency and ultra-reliability requirements

are critical, for example, cellular networks (5G). However, this is not always the case

in low power protocols like LoRaWAN, especially when the energy resources are limited

[1]. Therefore, considering more than one GW could deviate the scope of this work away

from evaluating the feasibility of adopting LoRaWAN for severing dense IoT applications

as a worse-case scenario. Finally, mainly due to the CSS technique in LoRa modulation,

a LoRa GW is reported in several studies and experiments to be capable of serving

thousands of nodes [85, 86, 87]. Hence, the complexity in this work lies in reducing

the collision rate and therefore, enhancing the PDR in LoRaWAN while maintaining

relatively low TEC and TTD, all using a single GW.

For that, this work scenario considers two sets of random values (A) and (B) that are

assigned to each node ni following random-uniform distribution1. The node ni transmits

these values to the GW, where the clustering is formed. Based on these values the node

is assigned to the corresponding cluster. This is for the purpose of evaluating the wildfire

possibility within the covered area.

In [47, 79], two different experimental projects using LoRaWAN were carried out to

evaluate the channel condition impact on the PDR. Both were carried out in urban

environments where obstacles are highly deployed between the nodes and the GW. Both

showed that the node’s distance nid from the GW has a great impact on the PDR.

1These values can be adjusted according to any application. As for the forest scenario adopted in this
work, the values A and B represent atmospheric humidity and weather temperature, respectively.
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Specifically, ni located at a distance (d) more than 500 meters (d0) away from the GW

(nid ≥ d0) experiences a bad channel condition, where the PDR ranges between 50% to

90%. On the other hand, the PDR is guaranteed more than 90% when nid ≤ d0.

Based on the considered forest scenario and the results in [47, 79], only one fifth of the

nodes are distributed within a range of d0 from the GW. These nodes are assumed to

have a good channel condition with a PDR more than 90%. The rest of the nodes are

distributed at distances range from d0 up to 3000 meters (dmax). These nodes have bad

channel condition with a PDR that can be deprived down to 50%. In other words, for

a more realistic system model only one fifth of the nodes have good PDR of more than

90% while the rest are vulnerable to packet loss.

In addition, the nodes communicate with the GW using class A of LoRaWAN proto-

col, spreading factor (SF7) and coding rate of 4/5. These parameters are particularly

chosen to provide the maximum data rate, lowest transmission delays and lowest energy

consumption for the network. Although the LoRaWAN network with the most reliable

SF7 provides the best performance in terms of data rate, transmission delay and energy

consumption [1, 20], the LoRaWAN network still under-performs in certain scenarios

due to high collision rate, especially when the network is dense. Hence, given the system

model is dense at a limited area (up to dmax around the GW ), the analysis in this work

is based on using SF7.

The main objective of this work is to enhance the TTD and TEC. This is achieved

by reducing the excessive packet collision rate associated with LoRaWAN due to the

adoption of ALOHA protocol communication in class A LoRaWAN [88]. Packet collisions

happen when two packets are transmitted at the same time over the same frequency using

the same SF [1, 20]. When a collision happens, the node keeps attempting to retransmit

until an acknowledgement from the GW is received, which results in increasing the TTD

and eventually the TEC.

Since LoRaWAN adopts ALOHA protocol for communications between the nodes and the
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GW, the node transmits packets whenever there are ready to transmit data, regardless of

the channel status. Hence, following Poisson distribution, the probability P of a packet

collision to happen is given as in Equation (4.1):

P = e−2G (4.1)

where G is the rate of packet transmission attempts per node. Hence, having more nodes

transmitting at the same time increases the probability of a packet collision. Simulations

are carried out in Section 4.4 to show the proportional relationship between the number

of nodes and the total collision rate.

Given the limited resources and random transmission behaviour of LoRaWAN nodes, it

is essential to minimise the number of simultaneous transmission. Considering the given

application scenario with the unlabelled data associated with the nodes, an effective

method to reduce the simultaneous transmissions is to partition the nodes into different

clusters. Assuming sufficient resources for the gateway, K-Means can be adopted to per-

form clustering of the nodes based on their transmitted data. Therefore, the gateway

applies the dynamic transmission PST to regulate the nodes transmissions without ex-

hausting the nodes limited resources in the transmission intervals configuration process.

Since the aim is to provide a dynamically control the transmissions between the nodes

and the GW, formulations of TTD and TEC are essential in order to evaluate the

network performance. The following subsection reveals TTD and TEC as functions of

K number of clusters (CK). In addition, the formulations and analysis show that TEC

is proportional to TTD.

4.2.2 Problem Formulations

4.2.2.1 Total Transmission Delay (TTD)

In the proposed dynamic transmission PST (Section 4.3), the GW assigns different

transmission priorities Pr to K number of clusters CK , where K = {1, 2, 3, ..., k}. The
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nodes in a lower Pr cluster wait until transmissions from nodes in higher Pr clusters are

satisfied. This introduces waiting times in lower transmission priority clusters. Hence,

TTD can be given as in Equation (4.2):

TTD(K) =
K∑
j=1

(DC1 , DC2 , ..., DCK
), (4.2)

where K is the number of clusters in the network, DCK
is the total transmission delay

of n in a cluster of CK and is given as in Equation (4.3):

DCK
=

nCK∑
i=1

X(i), (4.3)

where nCK
is the total number of all ni in the corresponding CK ; X(i) = (DIT +

DRcolli
+DRch

); DIT is the delay of the initial transmission IT of each ni; DRcolli
is the

delay of the retransmission caused by ni’s collided packet (Rcolli); DRch
is the delay of

the retransmission caused by ni’s lost packet due to bad channel condition (Rch). Note

that the GW is assumed to be able to distinguish between IT , Rcolli and Rch.

Since the transmissions from ni in the lower Pr clusters CLPr wait until transmissions

from ni in the higher Pr clusters CHPr are satisfied, the delay of DCLPr
is given as in

Equation (4.4):

DCLPr
= DCHPr

+

nCLPr∑
i=1,i/∈CHPr

X(i), (4.4)

where DCHPr
is the delay of all ni in higher Pr clusters and nCLPr

is ni in the corre-

sponding CLPr clusters.

4.2.2.2 Energy Consumption

The GW using the proposed dynamic transmission PST (detailed in Section 4.3) reg-

ulates the transmissions from ni in different clusters of CK to the GW based on the
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corresponding transmission Pr. Hence, each of CK is either at an active or idle trans-

mission status. When a cluster of CK is at an active status, the corresponding nCK

are allowed transmissions. Otherwise, the cluster is at an idle transmission status, and

no transmissions from the corresponding nCk
. Note that only one cluster of CK can be

active at a time. Hence, TEC as a function of the number of clusters (K) can be given

as in Equation (4.5):

TEC(K) = Eactive +

K∑
j=1,Eactive /∈j

E
(j)
idle (4.5)

where Eactive and Eidle are the energy consumption in Joules of all nCK
in the cor-

responding active and idle clusters of CK , respectively. Eactive and Eidle are given in

Equations (4.6) and (4.7), respectively.

Eactive =

nCk∑
i=1

(PT ×Dactive), (4.6)

Eidle =

nCk∑
i=1

(Pidle ×Didle), (4.7)

where PT and Dactive are the transmission’s power and duration of ni in an active cluster

of CK . While Pidle and Didle are the power consumption and the duration of standby ni

in the other idle clusters of CK .

From Sections 4.2.2.1 and 4.2.2.2, the TTD and TEC are proportionally impacted by

the number of ni’s initial transmissions and retransmissions of collided or lost packets.

In other words, minimising TTD eventually results in minimising TEC. Hence, from

Equations (4.2) and (4.5), the objective function of obtaining the minimum value of

TTD at a given number of clusters K can then be represented as in Equation (4.8),

subject to a number of constraints:

min
k

TTD(K) (4.8)
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S.T.

minTEC(K) (4.9)

Pr = K (4.10)

Rcolli =


1, in case of a collision

0, else

(4.11)

Rch =


Rcolli + 1, d0 < nid < dmax

Rcolli, d0 > nid

(4.12)

where constraint (4.9) denotes the proportionality of TEC to TTD at a given number

of clusters K. Pr in constraint (4.10) is the transmission priority assigned to each

cluster of K. The process of assigning Pr to each cluster is revealed in Section 4.3.

Rcolli in constraint (4.11) is the retransmission of collided packets and it is limited to

one retransmission per node. This is to retain the practicality of simulations given the

considered high number of nodes. Rch in constraint (4.12), is the retransmission of lost

packets due to bad channel condition for nodes ni located at distances further than d0

from the GW.

4.2.3 Unsupervised Learning Clustering Algorithm (K-Means)

The evaluation of the impact of adopting the unsupervised clustering algorithm K-Means

on the total collision rate is revealed in Chapter 3 [89]. In fact, it was noticed that the

TTD and TEC are decreasing function of the number of clusters. However, in K-Means,

the number of clusters k is a predefined value. Hence, in this work the optimal number

of clusters is obtained according to the most efficient performance of TTD and TEC

against the number of clusters k.

The partition of the nodes takes place by minimising the within-cluster sum of square

(WCSS) of the given data set zn = {zn1 , zn2 , ...zni}, where zni is the difference between

the values A and B, which are transmitted by ni as explained in the system model.
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Since the values A and B can be measured in different units, a normalisation is needed

to obtain the value of z. In other words, nodes with almost similar values of z are

grouped together forming one cluster. Note that the clustering is based on the values of

zn. This means that nodes at different locations from the GW can belong to the same

cluster, see Figure 4.1. The objective partitioning function can then be represented as

in Equation (4.13):

argmin
cj

k∑
j=1

∑
zni∈Ck

∥zni − cj∥2 (4.13)

where cj is an initial value of z fixed to form the center point of the corresponding cluster

Ck. Note that the clustering is formed at the GW level. The GW is assumed to be

aware of zn from previous successful transmissions. zni is then updated at the GW upon

each successful transmission from the corresponding ni.

K-Means is a suitable unsupervised machine learning clustering tool for networks with

limited resources. This is due to the simplicity of performing the clustering process

provided unlabelled data[90]. However, since the number of clusters play a vital role

in the clustering process, implementing K-Means can be very complex in the case of

excessively diversified data. Hence, it is very important to define objectives that can be

used to evaluate the optimal number of clusters.

In order to obtain the optimal number of clusters, extensive simulations were carried

out to evaluate TTD and TEC performance at a different number of clusters k, where

(0 ≤ k ≤ 30). Based on Equations (4.2) and (4.5), Figure 4.2 shows that TTD and

therefore, TEC are decreasing functions of k. On one hand, it is noticed that TTD and

TEC sharply decrease until (k = 5). This is mainly due to the reduction in the number

of nodes within each cluster and hence the reduction in the collision rate caused by nodes

transmitting at the same time. Note that collided packets get retransmission attempts,

which impact both TTD and TEC in an almost symmetrical manner. On the other hand,

at (5 ≤ k), TTD and TEC start to regain their values forming convex curves. This is

due to the gradually fading impact of the retransmissions caused by packet collisions
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Rcolli, and the increasing impact of the retransmissions caused by packet loss due to bad

channel conditions Rch. Thus, from Figure 4.2, the optimal number of clusters Kopt in

this scenario is at (k = 5), where TTD and TEC at the bottom points of the convex

curves forming the lowest values. In the case of different traffic model, the process of

obtaining the objective functions of minimum TTD and TEC is executed in a similar

manner. Therefore, the optimum number of clusters could vary depending on the traffic

model from the optimum number specified in Figure 4.2. However, the variance follows

the aim of minimising TTD and TEC as per Equation 4.8.
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Figure 4.2: Simulation Analysis of The Optimal Number of Clusters in Terms
of TTD and TEC - The Convex Point Forms At (k=5) Indicating
The Optimal Number of Clusters

4.3 Proposed Dynamic Transmission Priority Scheduling

Technique

The dynamic transmission Priority Scheduling Technique (PST) takes place at the GW

level where it schedules transmissions from the nodes according to different transmission

priorities assigned to the different clusters that are obtained by K-Means. Initially, a
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set of values zni transmitted to the GW from each ni is processed to partition ni to

different clusters. Following the clustering formation, each ni is assigned to a cluster of

CK . Let zCK
denote the average value of all zni within the same cluster of CK . Based

on zCK
, the GW using the dynamic transmission PST designates different transmission

priorities (Pr) to the different CK . Since the optimal number of clusters is Kopt = 5, the

transmission priorities range between lowest, lower-middle, middle, upper-middle and

highest, where Pr = Kopt and Pr ∈ {LP,LMP,MP,UMP,HP}, respectively.

Following the transmission priority designation process to each cluster of CK , the dy-

namic transmission PST provides two transmission modes to trade-off TTD and TEC

for further PDR gain according to each cluster transmission priority CPr. Given the

density in the network, the GW using the Naive Bayes classifier [91] determines the

probability of each ni to transmit using a certain transmission mode.

4.3.1 Transmission Priority Scheduling

For better elaboration, it is necessary to explain the details of the considered scenario in

this work. The GW assigns ni that has the highest value of zni to the highest transmis-

sion Pr cluster. To reiterate, z is the difference between the values A & B, where Ani

& Bni represent the atmospheric humidity and weather temperature values transmitted

by ni, respectively. Since A & B can be measured in different units, a normalisation is

needed to obtain the value of z. There is a number of normalisation methods [92, 93,

94, 95], which vary in terms of the considered values. Considering the scenario adopted

in this work, A & B are given as upward and downward attributes2. Hence, the en-

hanced max-min normalisation method is adopted for adjusting the normalisation value

2Referring the used data set, in a forest scenario it is less likely for a wildfire to happen when the
atmospheric humidity (A) is high, while the wildfire possibility increases with lower values of A. Hence,
the value A is considered as an upward attribute. Vice versa, it is less likely for a wildfire to happen
when the weather temperature (B) is low and the possibility increases with higher values of B. Hence,
the value B is considered as a downward attribute.
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vab = f(A,B) and is given as in Equation (4.14):

vab =



for upward attributes :

1−
|Ani −max(AnCK

)|
(max(AnCK

)−min(AnCK
))

for downward attributes :

1−
|Bni −min(BnCK

)|
(max(BnCK

)−min(BnCK
))

(4.14)

where AnCK
and BnCK

represent A and B values reported by ni in the corresponding

cluster CK .

The designation process of the Pr level to each cluster of CK follows Equation (4.15):

max(Pr) = max(zCK
) (4.15)

where zCK
denotes the average value of z in the corresponding cluster CK . Note that

zCK
= ACK

− BCK
, where ACK

and BCK
denote the average values of A and B in the

corresponding cluster CK , respectively.

For further illustration, the transmission cycle used in the simulations of this work is

depicted in Figure 4.3 to show the Pr designation process. From Figure 4.3, the Pr is

proportional to zCK
. This means the higher value of zCK

is assigned higher Pr. Based

on the cluster transmission priority CPr, the GW configures transmissions from the

corresponding nodes accordingly. In other words, the GW allows transmissions from ni

in higher Pr clusters nCHPr
, where it blocks transmissions from ni in lower Pr clusters

nCLPr
.

This strict condition introduces a network under-performance for some cases. For ex-

ample, given a dense application, the transmissions from CLPr can be blocked due to

the presence of excessive and unnecessary transmissions from CHPr that may not be
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Figure 4.3: Transmission Priority Designation to Clusters of CK Based on The
Corresponding Value of zCK

desirable. In order to achieve further performance gain, the proposed dynamic trans-

mission PST is performed under two transmission modes (Tm): conservative (con.) and

non-conservative (ncon.).

Based on the following assumptions, Algorithm 1 shows the process of the transmission

initiations from each ni according to its corresponding cluster.

Assumptions:

– GW already has zni for all the nodes from previous successful transmissions

– zni at the GW are updated upon each successful transmission

– Each ni transmit one packet an hour to the GW unless configured otherwise

– Each ni is allowed only one retransmission in the case of a collision Rcolli

– Each nid at d0 ≤ d ≤ dmax, is allowed one retransmission in the case of a
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packet loss Rch due to bad channel condition

– The environment is idle, where there are no inter communications exist and

the channel duty-cycle constraint is neglected

Algorithm 1 Transmission Priority Scheduling Process

At the GW level
Initialize: TTD, TEC, ni, zni , niPr , Pr ∈ {LP,LMP,MP,UMP,HP},
To achieve minTTD & minTEC;
1: for ni do
2: if ni ∈ HP then
3: ni := niHP and niHP transmission = 1;
4: else if ni ∈ UMP and (niHP ) = 0 then
5: ni := niUMP and niUMP transmission = 1;
6: else if ni ∈ MP and (niHP , niUMP ) = 0 then
7: ni := niMP and niMP transmission = 1;
8: else if ni ∈ LMP and (niHP , niUMP , niMP ) = 0 then
9: ni := niLMP and niLMP transmission = 1;
10: else if ni ∈ LP and (niHP , niUMP , niMP , niLMP ) = 0 then
11: ni := niLP and niLP transmission = 1;
12: else
13: niPr transmission = 0;
14: end if
15: end for

4.3.2 Transmission Modes Options

The two transmission modes Tm (con. and ncon.) are provided by the dynamic trans-

mission PST to trade-off PDR with TTD and TEC. Tm is defined based on whether or

not retransmissions of collided packets Rcolli in each CK are permitted. In other words,

the purpose is to allow the GW to assess whether there is a need for Rcolli, hence control

the PDR accordingly. The GW decides which mode to operate for each CK based on

threshold values (Th) assumed to be provided by a third party (e.g local authority).

These Th are Thcon. for con. mode and Thncon. for ncon. mode. Furthermore, Thcon.

and Thncon. contain a set of values of z that act as limits. The GW uses these limits in

order to determine the probability of using one of the two Tm by each CK .

In con. mode, the GW allows retransmissions of collided packets (Rcolli). Note that for
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Figure 4.4: Transmission Modes Control - Higher Priority Clusters are Al-
lowed Retransmissions for Better PDR Levels and Lower Priority
Clusters are Detained From Retransmissions to Preserve Energy
and Enhance Transmission Delay

simulation practicality the ni with collided packet is allowed one retransmission attempt.

In the case of any further collisions, the collided packets will be dropped. Operating the

con. mode elevates PDR at the expense of higher TTD and TEC. On the other hand,

Rcolli in ncon. mode is not allowed. Operating the ncon. mode minimises TTD and

TEC at the expense of lower PDR. Simulations results in Section 4.4 show that both

transmission modes Tm maintain acceptable PDR in comparison to other techniques.

Figure 4.4 illustrates the difference between both con. and ncon. transmission modes.

While Algorithm 2 shows the dynamic transmission PST process of alternating between

the two transmission modes according to Th values.

4.3.3 Naive Bayes Classifier Algorithm

Considering a dense application with a massive amount of transmissions from nCK
to

GW, the process of classifying CK to a certain Tm can be time inefficient. For this

reason the GW applies the Naive Bayes classifying algorithm to efficiently determine
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Algorithm 2 Dynamic Transmission PST Transmission Modes
At the GW level
Initialize: zCK

, Tmcon.
, Tmncon.

, IT , Rcolli, Rch, nid , d0, Pr ∈ {LP,LMP,MP,UMP,HP}
1: for Tmcon.

(HP,UMP ) do
2: IT = 1;
3: Rcolli = 1;
4: if nid > d0 then
5: Rch = 1;
6: else
7: IT = 0;
8: Rcolli = 0;
9: Rch = 0;
10: end if
11: end for
12: for Tmncon.

(MP,LMP,LP ) do
13: IT = 1;
14: Rcolli = 0;
15: if nid > d0 then
16: Rch = 1;
17: else
18: IT = 0;
19: Rcolli = 0;
20: Rch = 0;
21: end if
22: end for

the probability of nCK
transmissions using either Tmcon. or Tmncon. . Where Tmcon. and

Tmncon. denote con. and ncon. transmission modes, respectively. According to Th values,

the GW classifies each cluster of CK to a certain Tm based on the average value of zCK

following Equation (4.16):

P (Tmcon. |zCK
) ≥ P (Tmncon. |zCK

) (4.16)

where P (Tmcon. |zCK
) is the posterior probability of a cluster of CK to transmit using

Tmcon. and is given as in Equation (4.17):

P (Tmcon. |zCK
) =

P (zCK
|Tmcon.)P (Tmcon.)

P (zCK
)

(4.17)

where P (zCK
|Tmcon.) denote the posterior probability of zCK

conditioned on Tmcon. ;

P (Tmcon.) is the prior probability of Tmcon. ; and P (zCK
) is the prior probability of zCK

.
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Table 4-B: Likelihood Occurrence Pattern Table

CK Tmcon. (+α) Tmncon. (+α)

C1 1 (2) 0 (1)

C2 1 (2) 0 (1)

C3 0 (1) 1 (2)

C4 0 (1) 1 (2)

C5 0 (1) 1 (2)

P (Tm) P (Tmcon.) =
2

2+3 = 0.4 P (Tmncon.) =
3

3+2 = 0.6

Since there are two transmission modes Tmcon. and Tmncon. ,
a cluster of CK communicates with GW using one of them.
Hence, the corresponding Tm is denoted by 1 when used by
a cluster and 0 when not in use. The out of use Tm denoted
by 0 can cause inaccurate probability results when using the
product function in Equation (4.18). Hence, α is added to
avoid such confusion in the Naive Bayes classifying process,
where α = 1.

In a similar approach, Equation (4.17) is applied to obtain the posterior probability of

P (Tmncon. |zCK
).

zCK
is an independent value that varies in each cluster of K, which can result in a

high computational complexity when obtaining P (Tmcon. |zCK
). In order to reduce the

computation complexity, the posterior probability P (zCK
|Tmcon.) can be calculated is in

Equation (4.18):
Kopt∏
K=1

P (zCK
|Tmcon.) = P (Tmcon.)× P (zCK

) (4.18)

using Equation (4.18), the communications data set in Figure 4.3 is utilised as a training

set to construct the likelihood occurrence pattern given in Table 4-B. This is to determine

the probability of classifying a cluster of CK to a certain Tm. In particular, there are

K number of clusters, where K = {1, 2, ...,Kopt}. Lets assume a threshold value for the

con. mode, Thcon. ≥ 0.5, where the value 0.5 represent zCK
. Hence, all clusters with

zCK
≥ 0.5 are considered as higher priority clusters that more likely need to communicate

with the GW using Tmcon. . The rest of the clusters are more likely to communicate with

the GW using Tmncon. . Thus, based on the Bayesian theorem, the probability of having

a cluster assigned to using Tmcon. is given as in P (Tmcon.) and P (Tmncon.). Note that the
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classifying process is performed by the GW upon each new transmission cycle, where

the Tm probability is determined according to the new values of zCK
reported by each

ni. Figure 4.5 illustrates the dynamic transmission PST using Naive Bayes classifier.

Figure 4.5: Naive Bayes Classifier in Dynamic Transmission PST



Chapter 4. Dynamic Transmission Priority Scheduling Technique 77

0 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

0

10

20

30

40

50

60

70

80

90

100

C
o

lli
s
io

n
 R

a
te

 (
%

)

Collision Rate in Typical LoRaWAN

Collision Rate

0 50 100 150 200 250 300

Number of Nodes

0

10

20

30

40

50

60

70

80

90

100

C
o

lli
s
io

n
 R

a
te

 (
%

)

Collision Rate in One Cluster of K
opt

Collision Rate

Figure 4.6: Collision Rate in Typical LoRaWAN Vs. Collision Rate in One
Cluster of Kopt

4.4 Simulation Results and Performance Evaluations

The impact of the proposed dynamic transmission PST on the network performance is

evaluated via simulations following the parameters in Table 4-C.

Table 4-C: Simulation Parameters
Parameter Value

Protocol LoRaWAN (v1.1)

Number of nodes ni 1000

Payload size 25 Bytes

SF 7

CR 4/5

BW 125 kHz

Channel frequency 915 MHz

Power consumption per active ni 0.1 W

Power consumption per idle ni 0.072 W

Transmission duration 0.036 s

Optimal number of clusters Kopt = 5

It is shown that LoRaWAN is vulnerable to severe collision rate especially when serving

a high number of nodes. This is due to the fact that the nodes adopt ALOHA style

communication in its LoRaWAN protocol of class A [1, 20]. As shown in Figure 4.6,

the total collision rate in typical LoRaWAN network serving up to 1000 ni is up to

91%. Having introduced the optimal number of clusters Kopt, Figure 4.6 shows only

one of the five clusters in the network, hence the heterogeneity in the number of nodes
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Figure 4.7: Comparison of The Total Transmission Delay Over Different Net-
work Density

between the two figures. Other clusters of Kopt follow the same trend and hence, the

total collision rate when k = 5 is vastly reduced to an average of 38% in comparison

to typical LoRaWAN. Note that the more clusters introduced to the system result in

less nodes simultaneously transmitting, which in return reflects in less packet collisions.

However, this comes at the expense of inefficient TTD and TEC due to the impact of

other factors such as the bad channel conditions (as discussed in Section 4.2.3, Figure

4.2).

In regards to the TTD, TEC and PDR, a comparison of the proposed dynamic transmis-

sion PST is carried out against a typical LoRaWAN network, the simple PST proposed

in Chapter 3 [89], and the tree-based clustering algorithm scheme proposed in [19]. The

benchmark in [19] is specifically chosen to validate the proposed work in terms of energy

efficiency especially in a resource-limited environment such as LoRaWAN.

When observing Figure 4.7 it is noticed that the typical LoRaWAN shows the least

efficient TTD. This is due to the adoption of star topology accompanied with the ALOHA
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protocol communication in LoRaWAN. Where the nodes initiate transmissions to the

GW regardless of any other transmission occupying the channel. For this reason the

collision rate is excessively high especially when scaling up the network. As a result,

retransmission attempts are much higher, which in return increase the TTD of the

network. Note that due to the high number of nodes considered in this scenario and

for simulation practicality, the retransmissions of collided packets are limited to one per

node. The simple PST comes second after typical LoRaWAN with slight improvement

to TTD. This improvement is mainly due to the clustering where the number of nodes

in each cluster is reduced. This results in a lower number of transmission attempts

and according to Equation (4.1), the probability of the packet collision to happen is

significantly impacted by the transmission attempts which is proportionally related to

the number of nodes transmitting at the same time. Although the number of nodes

in each cluster is significantly decreased, there are still collisions that happen where

each collision results in another retransmission attempt regardless of the necessity of the

retransmission.

Therefore, the proposed dynamic transmission PST outperformed both typical Lo-

RaWAN and simple PST. This is due to the ability to alternate between con. and ncon.

transmission modes. Note that in the simulation results, the dynamic transmission PST

is represented as con. (Upper-Bound) when the majority of clusters are transmitting

using Tmcon. , while it is represented as ncon. (Lower-Bound) when the majority of clus-

ters are transmitting using Tmncon. . It can be noticed that the TTD at con. is high in

comparison to that of ncon. mode. This is because the nodes are located in a cluster

that is assigned a Tmcon. and has the chance to initiate a retransmission for each collided

packet. Vice versa, the TTD at ncon. is relatively low due to the strict retransmission

condition which results in each collided packet to be dropped.

The tree-based clustering algorithm proposed in [19] shows the best TTD amongst all

approaches. This is due to the rerouting approach, which results in avoiding a packet

collision by utilising multi-hop technique that relay the packet to the GW through other
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Figure 4.8: Comparison of The Total Energy Consumption Over Different
Network Density

routes using neighbouring nodes. However, this comes at the expense of much higher

TEC as shown in Figure 4.8, which defeats the whole purpose of using LoRaWAN as a

low power technology.

Referring back to Section 4.2.2.2, TEC is directly affected by the number of collisions

and hence the number of retransmissions as a consequence. For that, it can be noticed

that TEC is generally proportional to TTD. In Figure 4.8, con. mode (Upper-Bound)

shows more energy consumption when comparing to ncon.mode (Lower-Bound), however

despite it consuming more TEC, adopting con. mode provides better PDR in comparison

to ncon. mode as shown in Figure 4.9. This comes as a result of allowing nodes in clusters

that are transmitting using con. to initiate retransmissions of collided packets. Hence,

it can be noticed that when PDR in con. is high, the TEC and therefore TTD are high,

whereas the opposite in ncon. mode. From Figure 4.9, the simple PST outperforms the

proposed dynamic transmission PST, however this comes at the expense of more TTD

and TEC. While the dynamic transmission PST at con. mode shows better PDR in
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Table 4-D: Performance Comparisons of The Dynamic PST Against Other
Considered Schemes

- TTD TEC PDR

LoRaWAN-Typical (Comparison Baseline) 1.66 Seconds 0.3 Joules 8.6%

Simple PST 12% (⇓) 18% (⇓) 65% (⇑)
Tree-Based Clustering Algorithm 94% (⇓) 116% (⇑) 51% (⇑)
Dynamic PST (Average) 50% (⇓) 53% (⇓) 48% (⇑)
* (⇑): indicates increased by value from the comparison baseline.
* (⇓): indicates decreased by value from the comparison baseline.
* The objective is to increase PDR; decrease TTD and TEC.

comparison to the tree based clustering algorithm.

From Table 4.4 and given the trade-off between TTD, TEC and PDR, the proposed

dynamic transmission PST shows more suitability for being adopted in LoRaWAN to

serve dense IoT applications.
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4.5 Chapter Summary

The use of machine learning techniques can lead to inefficient energy consumption when

applied to low power networks with limited resources. This is because machine learning

techniques usually require coordination between the end-nodes and the gateway. How-

ever, the dynamic transmission PST allows maintaining low energy consumption and

transmission delay due to its ability of providing the nodes with specific transmission

modes that appropriately fit the corresponding clusters transmission priorities and needs.

Therefore, the dynamic transmission PST provides a fair trade-off between TTD, TEC

and PDR. For example, considering typical LoRaWAN performance as a baseline com-

parison and given the same network density of 1000 nodes, it is noticed that the dynamic

transmission PST reduced TTD and TEC by 53% and 50%, respectively. While the

simple PST reduced TTD and TEC by 12% and 17%, respectively. Although the dy-

namic transmission PST shows slightly lower PDR levels of 48% in comparison to 65%

in the simple PST, it provides much better performance in terms of TTD and TEC.

On the other hand, the tree-based clustering approach sharply reduced TTD by almost

94%. However, this comes at the expense of an extravagant increase to TEC by more

than 116% in comparison to typical LoRaWAN. Such a compromise of TEC may defeat

the core purpose of using LoRaWAN as a low power transmission protocol. This leads to

a conclusion that the dynamic transmission PST is the most convenient amongst other

considered approaches especially when serving dense IoT applications.



Chapter 5

Packet Collision Prediction for

Ultra-Dense LoRaWAN

5.1 Overview

This chapter introduces a deep learning based Collision Aware Priority Scheduling Tech-

nique (CA-PST). This is aimed at assisting LoRaWAN to handle ultra-dense networks

where the number of nodes reach up to 5000. CA-PST allows LoRa gateway to con-

figure the nodes with one of LoRaWAN transmission protocol classes A and C based

on predicting the number of packet collisions. The nodes located at higher transmission

priority clusters have the chance to communicate with the gateway using class C and

therefore, avoid packet collisions. While nodes in lower transmission priority clusters

operate using class A. This technique offers a fair trade-off between the Packet Delivery

Rate (PDR) and Total Energy Consumption (TEC). Simulation results show that us-

ing CA-PST ensures LoRaWAN’s reliability in terms of PDR especially in ultra-dense

networks.

83
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Figure 5.1: SSM Structure

5.2 Collision Prediction Model

This chapter focuses on the use of LoRaWAN to serve ultra-dense applications with

the number of nodes within the network range between 1000 ≤ ni ≤ 5000. The main

purpose is to achieve acceptable levels of PDR while keeping fair trade-off with TEC. In

order to achieve that, this chapter proposes CA-PST, which predicts the possible packet

collisions in a given network and therefore, allows the gateway to schedule the nodes ni

transmissions to achieve the best possible PDR taking into account the nature of limited

resources in IoT applications.

In order to achieve accurate predictions it is necessary for the prediction model to under-

stand the behaviour of the packet collision rate in LoRaWAN. Therefore, it is mandatory

to exploit previous traffic information where the proposed CA-PST can rely on in its

transmission scheduling decisions. Exploiting previous information to predict future

trends is known as time-series predictions. There are a number of well-known meth-

ods that process time-series predictions, the simplest of which is the State Space Model

(SSM) [96, 97]. As shown in Figure 5.1, SSM is a one time step dependant. The output

yt at a time step t is derived from two assumptions which are the hidden state ht influ-

enced by the external input ut with the transfer function g; where the hidden state ht is

based on a one time step previous state ht−1 with the transfer function f . Thus, merely

observing the previous one time step state is not sufficient enough in complex scenar-

ios with sequential time-series problems incorporating multiple inputs that influence the

output.
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In packet collision predictions there are a number of internal factors (parameters) that

vary from one time step to another, and hence have a great influence on the output

(packet collisions). Therefore, it is necessary to exploit more powerful machine learning

models such as the well-known deep learning model Recurrent Neural Network (RNN)

[98, 99]. The non-linearity capabilities of RNN allows handling more complex sequential

data with multiple previous time steps. RNN models such Gated Recurrent Unit (GRU)

and Long Short-Term Memory (LSTM) have additional internal cells extending their

capabilities to accurately handle longer term dependency sequences of data [100, 101].

In the considered scenario, the number of collisions is an output denoted by yt and

is dependant on a sequence of time series inputs denoted by {xt−s, xt−s+1, · · · , xt−1};

where xt is the input in a given time step t. In RNN, the information of the past time

steps are processed in a hidden state. The forward hidden state can be a result of a

linear connection of multiple previous hidden states. The forward process is given as in

Equation (5.1)

ht = tanh(W [xt, ht−1] + b) (5.1)

where W and b are the weight matrix and the bias vector, respectively.

However, a common problem in RNN is known as information explosion or gradient

vanishing [102]. This a result of a long term dependency, where the inputs influencing a

certain hidden state remain part of all the forward hidden states. LSTM overcomes this

problem via the internal gates, specifically the forget gate that filters out the unnecessary

inputs from continuing to the forward hidden states [72].

Given the considered data set used in the scenario of this chapter, LSTM is adopted

in the proposed CA-PST, the following sections details the structure of LSTM and

evaluates its performance against other RNN models.
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5.2.1 Long Short-Term Memory (LSTM) and Model Architecture

Unlike traditional RNN cell structure [98], where only cells with repetitive tanh function

are processed forward, LSTM has a number of additional gates in each cell. These gates

are input, forget and output, in which the purpose is to control the information flow.

Just as in other deep learning models, there are two types of training; online and offline.

The online training is where the weights are updated following each sample of data fed

into the model. While in offline training, the weights are only updated when receiving

a data batch. It is worth mentioning that for the considered scenario and the utilised

data set in this chapter, only offline training is applied. Similar to simpleRNN model,

in LSTM model the non-linearity functions do not effect the cell state moving across

the constructed chain. However, the information in the hidden states that are processed

forward through the chain of cells are controlled by LSTM gates. The input gate it

controls the information that can be added form the previous hidden state ht to the

forward cell state ct and therefore, the forward hidden state ht. In a similar manner,

the forget gate ft controls the information that should be blocked from being added to

the cells ct and ht. While the output gate ot controls the information that should be

processed to ht. Figure 5.2 explains the LSTM cell, while the forward process is given

as in the following Equations:

ft = σ(Wf [xt, ht−1] + bf ) (5.2)

it = σ(Wi[xt, ht−1] + bi) (5.3)

c̃t = tanh(Wc[xt, ht−1] + bc) (5.4)

ct = ft · ct−1 + it · c̃t (5.5)

ot = σ(Wo[xt, ht−1] + bo) (5.6)

ht = ot · tanh(ct) (5.7)
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Figure 5.2: LSTM Cell - Showing The Input Gate it; Forget Gate ft; and
Output Gate ot

where σ is the logistic sigmoid function; W is the weights; b is the bias vectors; c̃t is the

intermediate state vector; and xt is the input vector.

Constructing a neural network of LSTM cells can be achieved by feeding the forward

cells of ct and ht as inputs to the next LSTM cell. LSTM based neural network models

vary in terms of the inputs and the outputs. The shape of the network could consist of

one input to one output, one-to-many, many-to-one and many-to-many. In this work,

the constructed neural network follows a many-to-one model. A number of previous

time steps are considered in the prediction process, hence the output of the model can

be given as in Equations (5.8) and (5.9)

[ht−s, ht−(s+1), · · · , hh−1] = LSTM(xt−s, xt−(s+1), · · · , xh−1) (5.8)

ŷt = wT
t [ht−s, ht−(s+1), · · · , hh−1] + bt (5.9)

where s is the length of the time steps.

Training this model follows the well-known back propagation through time method [103].

The purpose of constructing this model is to predict the number of collisions based on a
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Table 5-A: Features of the Data Set
Index Features

1 Colli

2 ni

3 Ck

4 Packet Size (bytes)

5 Number of Packets

6 SF

7 CR (1 to 4)/5

set of features that influence the collisions in the network. The features are fed into the

model as an input vector xt at each time step t. As listed in Table 5-A, these parameters

are the number of nodes in the network ni, number of clusters Ck, transmitted packet

size, the number of packets transmitted per each node of ni, and SF and CR used

in the transmissions between the ni and GW. Note that the clustering process is the

same as in Chapters 3 and 4, where SF is chosen to provide the maximum data rate,

lowest transmission delays, and lowest energy consumption for the network. The weights

and the parameters of the training were chosen based on evaluating the best validation

performances as detailed in the following performance evaluations section.

5.2.2 Traffic Model and Data Set

In LSTM, the data set used in training the model plays a significant role in constructing

a convenient neural network. The sole purpose of using LSTM is to predict the packet

collisions using given network features. As aforementioned, a packet collision happens

when two or more packets are transmitted at the same time using the same SF and CR.

The considered number of nodes in this work is scaled up to 5000 ni. All ni are configured

following the LoRa SX1272 model. Where ni performance is validated against practical

experiments carried out in [79, 47]. The transmissions between ni and GW take place

once every hour. While the period of the transmission window lasts for 120 seconds [1].

The data set consists of a number of features that were specifically chosen due to their

direct effect on the packet collisions. These features are the number of nodes in the

network ni, number of clusters Ck, transmitted packet size, the number of packets trans-
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Figure 5.3: Heat Map for Data Set Features Correlations - Darker Colour In-
dicates Higher Correlation and Lighter Colour Indicates Lower-to-
Inverse Correlation

mitted per each ni, SF, and CR. A validation of the data set is then carried out to

evaluate the diversity of the selected features. Usually a data set is considered diverse

when there is low to no correlation between the selected features [104, 105]. For this

purpose a heat map is generated to visualise the correlations between features to features

and features to output. In Figure 5.3, the correlation scales between 1 and −1, where 1

is fully correspondent and −1 is inversely correspondent. Note that the feature is always

correspondent to itself.
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From Figure 5.3, the number of packet collisions (Colli) is highly correlated to the

number of nodes. In other words, the higher the number of nodes the higher the number

of collisions. Similarly, the packet size and the number of packets transmitted by the

nodes also have a positive correspondence to the number of collisions. On the other

hand, the number of clusters has an inverse correlation to the number of collisions, this

is due to the lower number of nodes that transmit at the same time (detailed in Chapter

3). For the same reason, it can be noticed that there is an inverse correlation between

the number of clusters and number of nodes.

The data set is generated using a LoRa SX1272 model communication simulation engine

built in MATLAB for the purpose of carrying out this work. While the LSTM model

is constructed in Python using Keras library and Tensor-Flow backend version (2.4.1).

The data set is split into 70% training and 30% test. Higher portion of the data set is

dedicated for training to expose the model to high varieties of samples and hence, the

ability to handle more differences in samples over time.

5.2.3 Performance Evaluations

Constructing an LSTM model can be achieved via three main parameters. These pa-

rameters are the number of layers l, the size of the hidden states m and the length s

of the time steps t. The main purpose of building this model is to predict the number

of collisions based on a previous set of information fed into the model. Hence, manip-

ulating the LSTM parameters is highly dependant on the type of data set used in the

training process. In order to achieve the best prediction performance it is necessary to

evaluate the model performance under different parameter setups. As the considered

prediction problem is a regression problem, the validation metrics chosen to evaluate the

model performance are the Mean Square Error (MSE) and the coefficient of determi-

nation (R2). A lower value of MSE indicates better prediction output, while the R2 is

scaled between 0 and 1. A value of R2 closer to 1 indicates better explanation of the

data, while 0 indicates regression model incapability of explaining the data set. MSE
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and R2 are calculated as in Equations (5.10) and (5.11), respectively.

MSE =
1

T

T∑
t=1

(yt − ŷt)
2 (5.10)

R2 = 1−
∑T

t=1(yt − ŷt)
2∑T

t=1(yt − ȳt)2
(5.11)

where yt is the true output value at a time step t; ỹt is the predicted output value; and

ȳt is the mean value of the true output yt.

Following the evaluations, the best performance model of LSTM is then compared to

other predictions models such as the GRU and the conventional simpleRNN models.

The size of the hidden states m is scaled as m = {10, 30, 50}, while the number of layers

l is scaled up as l = {1, 2, 3, 4}. The length s of the time steps t is s = {5, 15, 25}. Note

that in all models the well-known adaptive stochastic algorithms Adam and RMSprop are

used due to its optimising properties for achieving convergences especially in regression

problems [106, 107].

From Table 5-B, it is noticed that increasing l results initially in decreasing MSE loss.

This is until l = 3, where the best performance of LSTM is situated. When increasing

l further to l = 4, it is noticed that MSE loss regain increasing. When observing the

performance under a different number of hidden states m, it is generally noticed that an

excessively high number of hidden states can result in complicating the training process,

and therefore higher MSE loss in the prediction. The best value of MSE is when l = 3

and m = 30. Tuning the model using these parameters is also reflected on R2 where the

model is performing at its best in explaining the data.

Figure 5.4 shows the performance of LSTM at its best tuning parameters in terms of

MSE loss when validated against a testing set.

In a similar manner, the two other models GRU and the conventional simpleRNN were
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Table 5-B: Performance Evaluation of the Parameters Used in LSTM

Parameters (number of layers l, size of hidden states m)
Evaluation metrics

MSE(10−3) R2

l = 1,m = 10 0.69523 0.98912

l = 1,m = 30 0.66391 0.98775

l = 1,m = 50 0.66827 0.98627

l = 2,m = 10 0.57324 0.98821

l = 2,m = 30 0.56395 0.99075

l = 2,m = 50 0.52687 0.99173

l = 3,m = 10 0.47875 0.99308

l = 3,m = 30 0.42753 0.99365

l = 3,m = 50 0.45136 0.99349

l = 4,m = 10 0.49021 0.99254

l = 4,m = 30 0.46234 0.99327

l = 4,m = 50 0.48529 0.99278
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Figure 5.4: Validation of MSE Loss in LSTM (training vs. validation)

constructed for the purpose of predicting the number of collisions in the network. For

fair comparison, the models were tuned using the same parameters l, m and s. The best

performance values and the tuning parameters are listed in Table 5-C. As for simpeRNN,

it is noticeable that the longer the length of time steps considered in the training process

the lower the prediction performance gets. This could be a reason of the explosion
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Table 5-C: Performance Evaluations of LSTM, GRU and simpleRNN

Model
s = 5 s = 15 s = 25

MSE(10−3) R2 MSE(10−3) R2 MSE(10−3) R2

SimpleRNN 1.37924 0.98729 1.38247 0.98652 1.39184 0.98569

GRU 0.95948 0.98873 0.95207 0.98914 0.95241 0.98876

LSTM 0.42886 0.99154 0.42753 0.99365 0.42791 0.99279

problems [102] related to long-term dependencies. While in both LSTM and GRU, the

longer the time steps lengths does not always result in better performance. There are

a number of reasons for the prediction deterioration accompanied with longer lengths

of time steps. Some of which are the overfitting problems [108] and the generalisation

avoidance dropout mechanism [109]. In general, the prediction in LSTM is much better

than that of GRU and simpleRNN. In comparison to LSTM, the MSE loss in GRU is

55% more, while the simpeRNN MSE loss is 69% more than LSTM. Therefore, LSTM

is adopted in this work for predicting the number of the collisions in the network.

Figure 5.5 shows the performance of GRU at its best tuning parameters in terms of MSE

loss when validated against a testing set. While Figure 5.6 shows the performance of

the conventional simpleRNN model. Finally, R2 in all models are shown in Figure 5.7,

where LSTM shows the closest to 1. Therefore, since LSTM shows the best performance

in terms of explaining the data, LSTM is adopted for predicting the packet collisions in

this work.
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Figure 5.5: Validation of MSE Loss in GRU (training vs. validation)
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Figure 5.6: Validation of MSE Loss in SimpleRNN (training vs. validation)
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Figure 5.7: Coefficient of Determination (R2) (LSTM vs. GRU vs. Sim-
pleRNN )

5.3 Collision Aware Transmission Priority Scheduling Tech-

nique (CA-PST)

In the considered scenario, ni initiate transmissions to one GW following class A Lo-

RaWAN. When the number of ni exceeds 1000 in the network, it is noticed that PDR

suffers from serious deterioration. This is due to the excessive number of collisions caused

by simultaneous transmissions. In spite of applying the unsupervised learning clustering

to reduce the amount of nodes competing on the channel at the same time, yet in ultra-

dense network the number of ni is still high in each cluster. Therefore, the transmissions

attempts are increased leading to higher levels of TTD and TEC. Thus, the proposition

of the CA-PST, in which it takes place at the GW level.

Following the flow chart in Figure 5.8, when ni ≥ 1000 and the collision rate exceeds

a specific threshold, the GW runs a prediction of the number of collisions in the net-

work prior to the initiation of the nodes transmissions period. Then GW determines the
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Figure 5.8: CA-PST Flow Chart

clusters with the higher transmission priority needs CkHPr
according to the given appli-

cation’s specific threshold assumed to be known beforehand to the GW . Other clusters

in the network are classified as lower transmission priority needs CkLPr
. The GW then

instructs nodes in higher transmission priority clusters nCHPr
to operate using class C

following LoRaWAN protocol. The reason of choosing class C and not class B is that

despite the slotted-ALOHA style transmissions in class B where the nodes initiate trans-
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missions during a periodic beacon, the transmissions during the beacon remain random.

In other words, although the nodes transmissions are limited to the beacon period, still

the transmissions during the beacon period are random. Hence, the risk of simultane-

ous transmission remains present and therefore, packet collisions possibilities, while the

aim in CA-PST is to eliminate collisions caused by simultaneous transmissions. Note

that unlike LoRaWAN classes A and B, class C is a continuously listening class where

nodes have the capabilities to initiate transmissions at a specified time slot following a

command received by GW . Although, class C consumes much more energy than class

A, the nodes are only operating using class C during the transmission period. While

nodes in lower transmission priority clusters remain operating on class A and are treated

just as in the dynamic transmission PST (detailed in Chapter 4). This hybrid adoption

of LoRaWAN classes allows better control over the nodes transmissions especially in

ultra-dense applications where ni surpasses 1000 in a limited geographical area.

5.3.1 Performance Metrics Formulations

The proposed CA-PST adopts a hybrid technique, where nodes switch between Lo-

RaWAN classes A and C. Therefore, TEC is expected to be increased due to higher

energy consumption by nodes operating on a LoRaWAN class C. However, considering

ultra-dense applications, allowing more collisions to take place due to using class C will

eventually lead to higher energy consumption as a result of the retransmission attempts.

Therefore, it is necessary to understand how the network TEC is effected. Since TEC

is directly effected by the transmissions, hence both TTD and TEC are formulated as

in the following sections.

5.3.1.1 Total Transmission Delay

In the proposed CA-PST, the GW assigns different transmission priorities Pr to K

number of clusters CK , where K = {1, 2, 3, ..., k}. The nodes in a lower Pr cluster

wait until transmissions from nodes in higher Pr clusters are satisfied. This introduces

waiting times in lower transmission priority clusters. Hence, TTD can be given as in
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Equation (5.12):

TTD(K) =
K∑
j=1

(DC1 , DC2 , ..., DCK
), (5.12)

where K is the number of clusters in the network, DCK
is the total transmission delay

of n in a cluster of CK and is given as in Equation (5.13):

DCK
=

nCK∑
i=1

X(i), (5.13)

where nCK
is the total number of all ni in the corresponding CK ; X(i) = (DIT +

DRcolli
+DRch

); DIT is the delay of the initial transmission IT of each ni; DRcolli
is the

delay of the retransmission caused by ni’s collided packet (Rcolli); DRch
is the delay of

the retransmission caused by ni’s lost packet due to bad channel condition (Rch). Note

that the GW is assumed to be able to distinguish between IT , Rcolli and Rch.

Since the transmissions from ni in the lower priority Pr clusters CLPr wait until trans-

missions from ni in the higher Pr clusters CHPr are satisfied, the delay of DCLPr
is given

as in Equation (5.14):

DCLPr
= DCHPr

+

nCLPr∑
i=1,i/∈CHPr

X(i), (5.14)

where DCHPr
is the delay of all ni in higher Pr clusters and nCLPr

is ni in the corre-

sponding CLPr clusters.

5.3.1.2 Total Energy Consumption

The GW using the proposed CA-PST regulates the transmissions from ni in different

clusters of Ck to the GW based on the corresponding transmission Pr. Hence, each of

Ck is classified either CHPr or CLPr status. When a cluster of Ck is at CHPr status,

the corresponding nCHPr
are allowed transmissions using class C LoRaWAN. Otherwise
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the cluster is at CLPr transmission status and transmissions from the corresponding nCk

follow class A. Note that only one cluster of Ck can be actively transmitting at a time.

Hence, TEC as a function of the number and type of clusters can be given as in Equation

(5.15):

TEC = EnCHPr
+

K∑
j=1,CHPr /∈j

E
(j)
CLPr

(5.15)

where EnCHPr
and EnCLPr

are the energy consumption in Joules of all nCk
in the cor-

responding HPr and LPr clusters of Ck, respectively. EnCHPr
and EnCLPr

are given in

Equations (5.16) and (5.17), respectively.

EnCHPr
=

nCHPr∑
i=1

(PTHPr
×D), (5.16)

EnCLPr
=

nCLPr∑
i=1

(PTLPr
×D), (5.17)

where PTHPr
is the power consumed for a packet transmission by ni in an CHPr of Ck.

While PTLPr
is power consumed for a packet transmission by ni in the other CLPr clusters

of Ck. The duration of the transmission is denoted by D.

5.4 Simulation Results

In order to evaluate the performance of the proposed CA-PST, this section reveals sim-

ulation results that compares the CA-PST against other techniques. The simulations

follow LoRaWAN protocol [1] and the list of parameters in Table 5-D.

The simulations were carried out to evaluate the impact of the proposed technique on

TTD, TEC and PDR. Figure 5.9 is divided into three rows and five columns. The first

row in Figure 5.9(a) shows TTD, Figure 5.9(b) shows TEC and Figure 5.9(c) shows

PDR performances. While the first column to the left hand-side of Figure 5.9 shows
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Table 5-D: Simulation Parameters
Parameter Value

Protocol LoRaWAN (v1.1)

Number of nodes ni i = {1, · · · , 5000}
Payload size 25 - 200 Bytes

SF 7

CR 4/5

BW 125 kHz

Channel frequency 915 MHz

Active class C ni power consumption 0.153 W

Active class A ni power consumption 0.1 W

Idle class A ni power consumption 0.072 W

Transmission duration 0.036 s

Number of clusters k k = {2, · · · , 30}

the performance of the conventional LoRaWAN, followed by the simple PST proposed

in Chapter 3 [89], dynamic transmission PST proposed in Chapter 4 [110], clustering-

based multihop scheme proposed in [19] and the proposed CA-PST, respectively.

For convenient visualisations to the very high number of values and due to the high

number of nodes considered in the simulations, 2-values box-plot [111] is adopted in

Figure 5.9. In the sub-figures of Figure 5.9(a) and (b), the over-all trend of the plots is

ascending, hence the top hinges represent the higher number of nodes, while the bottom

hinges represent the previous number in x-axis. The margin between the two hinges

values of each box-plot represent the values in between. For example, in the first sub-

figure of Figure 5.9(a), the box-plot at the x-axis value of 1000 represent the values for

the nodes from ni = 1 (the bottom hinge) up to ni = 1000 (the top hinge). Vice versa,

the plots trend in the sub-figures of Figure 5.9(c) is descending, hence the top hinges

represent the lower number of nodes (previous number on the x-axis), while the bottom

hinges represent the higher number of nodes. For example, in the first sub-figure of

Figure 5.9(c), the box-plot at the x-axis value of 1000 represent the values for the nodes

from ni = 1 (the top hinge) up to ni = 1000 (the bottom hinge).

With holding Typical LoRaWAN at ni = 5000 as a baseline for comparisons, it is noticed

that all schemes perform better in terms of TTD. This is due to reducing the packet col-
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lisions, which in return reduces the need for packet retransmissions. The simple PST

enhances TTD by 13% in comparison to typical LoRaWAN. While the dynamic trans-

mission PST enhances TTD by 57%. CA-PST comes second best with reducing TTD

by 84% from that of typical LoRaWAN, this is due to the hybrid functionality of switch-

ing nodes in higher transmission priority cluster to operate using class C LoRaWAN.

The best performance in terms of TTD is achieved using the cluster-based multihop

scheme, which reduces TTD by 95%. However, observing the performance in terms of

TEC, the cluster-based multihop scheme compromises the energy consumption, and is

the worst amongst all techniques with increasing the energy consumption by 141% in

comparison to that of typical LoRaWAN. This defeats the purpose of using LoRaWAN

as a low power technology aimed at serving IoT applications with limited resources. It is

noticed that the best scheme in terms of TEC is the dynamic transmission PST scheme,

however at the expense of very low PDR. When observing the performance in terms of

PDR, it is noticed that all schemes almost decline at an ultra-dense number of nodes

(ni ≥ 1000). The CA-PST shows an excellent performance with a PDR level of up to

58%. All other schemes show very low PDR with levels below 30%. By a comprehensive

observation, it can be concluded that CA-PST provides the best trade-off between TTD,

TEC and PDR at ultra-dense applications (up to 5000 nodes), while the dynamic trans-

mission PST performs the best in dense applications with nodes less than 1000. Note

that CA-PST performs exactly the same as dynamic transmission PST when ni ≤ 1000.

This is because CA-PST activates dynamic transmission PST at lower scale networks.

Thus, the heterogeneity in the performance trend when ni ≥ 1000.

5.5 Chapter Summary

LoRaWAN is a low power technology with a simple transmission protocol design aimed

at serving resource-limited IoT applications (battery-powered devices). Due to its simple

transmission protocol, LoRaWAN specifically suffers from excessive collision rate espe-

cially when serving ultra-dense applications with up to 5000 nodes. The PDR in typical
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LoRaWAN drops below 10% when the number of nodes exceeds 1000. Considering the

other schemes performance at 5000 nodes, the best level of PDR is at 30%. This slight

enhancement of PDR in the other schemes comes at the expense of either higher TTD,

TEC or both. On the contrary, the proposed CA-PST enhanced the PDR up to 57%.

Although the CA-PST increased TEC by 33% in comparison to typical LoRaWAN, the

TTD was significantly reduced by 84%. The increase in TEC is due to providing the

nodes located in higher transmission priority clusters with the ability to transmit using

class C of LoRaWAN protocol, in which the nodes only transmit following instructions

from the gateway, hence a packet collision avoidance. Therefore, the CA-PST performs

the best in terms of PDR in comparison to the other schemes.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The work in this thesis particularly focuses on enhancing LoRaWAN performance while

taking into account LoRaWAN’s devices limited resources nature. In particular, when

carrying out the work in Chapters 3, 4 and 5 the energy consumption was always a

key factor that was kept at the lowest possible levels. The main drawback in LoRaWAN

protocol is the excessive packet collisions. This is due to the adoption of ALOHA protocol

where nodes initiate transmissions regardless of the channel status.

In Chapter 3, the unsupervised learning clustering algorithm is adopted as a backbone

for the proposed simple PST. The aim is to reduce the simultaneous transmission by the

end-nodes. Based on that a simple PST is introduced where clusters are granted unique

transmission priorities. Although nodes in higher transmission priority clusters are al-

lowed to initiate transmissions prior to nodes in lower priority cluster, however, nodes in

lower priority clusters still have the chance to transmit regardless of the importance of

the transmission. This led to reducing the TEC by 12% and TTD by 17%, in comparison

to typical LoRaWAN, while increasing PDR levels up to 65%. Note that the number of

nodes considered was ni = 1000. However, a more precise transmission decision making

104
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process was needed to further enhance TEC and TTD, while keeping acceptable levels

of PDR. This was achieved by the introduction of the dynamic transmission PST in

Chapter 4.

The dynamic transmission PST was introduced mainly to preserve the energy consump-

tion in the network. It introduces two transmission modes, and adopts the Naive Bays

Classifier algorithm for accurate transmission modes allocations to the nodes based on

the corresponding cluster transmission priority. It also introduces a strict transmission

termination process to the nodes located in lower transmission priority clusters. This

is because when analysing the transmission behaviour in simple PST, it was noticed

that nodes located in lower priority clusters have less importance, hence classified as

lower priority. Yet, these nodes still initiate transmissions to the gateway regardless

of the actual importance of the information they are attempting to deliver. Therefore,

unnecessary energy consumption and transmission delays are introduced to the network

with insignificant yield to PDR levels. Hence, the aim is to eliminate unnecessary waste

of resources by nodes classified as lower priorities without compromising PDR levels.

Comparisons against typical LoRaWAN shows a reduction of TEC by 50% and TTD by

53%. The PDR was increased up to 48%, leading to slightly lower performance of the

dynamic transmission PST against the simple PST in terms of PDR, however, signifi-

cantly better performance in terms of TEC and TTD. Thus, overall trade-off between

TTD, TEC, and PDR promotes the dynamic transmission PST to be the best amongst

other considered techniques for serving LoRaWAN dense networks.

The Collision-Aware Priority Scheduling Technique (CA-PST ) was specifically intro-

duced to enhance the reliability of LoRaWAN in terms of PDR at ultra-dense applica-

tions where the number of nodes are scaled up to ni = 5000. In ultra-dense applications,

excessively higher levels of TTD and TEC, and much lower levels of PDR were noticed

as the number of nodes surpasses 1000. Considering ni = 5000, PDR in all considered

schemes showed levels that are lower than 30%. This is due to a higher number of nodes

within each cluster, thus, higher collision rate. Hence, the introduction of CA-PST in
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Chapter 5. CA-PST is a hybrid scheme that regulates the transmission of nodes when

ni ≥ 1000 based on a prior number of packet collisions prediction scheme using LSTM.

Where the nodes located in higher transmission priority clusters switch to LoRaWAN

class C transmission protocol and follow the gateway transmission instructions. On the

other hand, the dynamic transmission PST is activated for transmission scheduling when

ni ≤ 1000. This has increased TEC by 33% while TTD sharply reduced by 84%. In

return the PDR level is elevated up to 57% in comparison to less than 30% in other

schemes. Thus, although the energy consumption is slightly compromised, CA-PST

performs the best at ultra-dense applications given a trade-off between TTD, TEC and

PDR.

It is worth mentioning that although the work in this thesis was carried on LoRaWAN

wireless protocol, it was designed to be applicable for implementation in other wireless

protocols provided some tuning and modifications to specific parameters in order to fulfill

the technical requirements of the target wireless protocol.

6.2 Future Work

LoRaWAN is a perfect solution for serving IoT applications. Usually in IoT applications

no ultra-low latency requirements nor dense transmission traffic models are expected.

However, the main concern in IoT applications is the energy consumption, due to the

limited energy resources at the end-devices level (nodes are battery-powered). Hence, a

significant importance was given to the energy consumption while carrying out the work

in this thesis. Carrying out this work unveiled important areas that can potentially add

to the feasibility of enhancing LoRaWAN performance for serving dense IoT application.

Some of the open research areas are discussed in the following.

• Security in LoRaWAN: The wireless communication medium that is utilised

to transmit packets between the gateway and the nodes takes place using open

ISM radio bands. Therefore, it is essential to maintain secure communication links
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that can prevent cybersecurity threats and attacks such as Denial-of-Service (DoS).

Additionally, LoRaWAN protocol is mainly designed to fit the limited resources

nature of IoT applications especially in terms of energy consumption given that

most IoT devices are battery-powered. Hence, it is very important to design a

secure scheme that meets the limited capabilities of LoRaWAN in dense networks.

Although LoRaWAN protocol provides different security properties such as con-

fidentiality, authentication, integrity as well as network joining mechanism, the

gap still remains unfulfilled in terms of designing lightweight robust and secure

mechanism that meets the unique LoRaWAN requirements.

• Blockchain in LoRaWAN: LoRaWAN by default adopts the star topology as

a mean of communication between the gateway and the nodes. In other words,

the information received from the nodes are relayed to the server via a single

gateway. Although the traffic loads in typical IoT applications are usually low, it

is critically important to consider the possibility of a single point of failure to occur

after LoRaWAN being deployed. One of the mostly used methodologies to address

such a threat in today’s state-of-the-art is the Blockchain technology. This could

be implemented via uploading transactions periodically to a Blockchain cloud.

Of course this involves reviewing many steps that are essential in implementing

Blockchain for example, the decision making for control policies needed for granting

authorisation and issuing credentials for the purpose of data access. Moreover,

Blockchain can play a significant role in improving the scalability of the network.

Hence, this could be a potential area for future research, which will have a great

impact in improving LoRaWAN.

• Mobility in LoRaWAN: Most IoT applications are stationary or have limited

mobility needs. However, there are applications that are significantly based on

mobile and roaming capabilities. Although LoRaWAN protocol supports mobility,

the adoption of Adaptive Data Rate (ADR) mechanism could result in elevating

the packet loss ratio in highly mobile applications. This is due to the increased
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amount of requests and acknowledgements needed between the gateway and nodes

to achieve the best data rate possible. Hence, there is a room for improving mobility

especially in line with ADR mechanism in LoRaWAN.
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Appendix A

Simulations Environments

MATLAB is used to build a communication engine based on LoRa SX1272 model for

the purpose of carrying out the work in this thesis. While Python is used together

with Keras library and Tensor-Flow backend version (2.4.1) to construct and train the

prediction models.

The following are snapshots of the significant parts of the codes used to produce the

simulation results presented in this thesis.
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Figure 1.1: Initialisation of The Number of Nodes, Packets, Step Size, Bits,
CR, SF and Bitrate.

Figure 1.2: Initialisation of the Collisions, Transmission Slots, Transmission
Duration and The Transmission Process.
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Figure 1.3: Importing The Libraries Needed For Constructing RNN Models.

Figure 1.4: Importing The Data Set For Training The Model.
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Figure 1.5: Scaling The Data Set For Better Data Explanation To The Train-
ing Model
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Figure 1.6: Constructing The LSTM Model
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Figure 1.7: Constructing The GRU Model


