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 23 

1. Introduction 24 

It has been shown that certain materials such as composites, porous materials, rocks, 25 

cement concrete, and asphalt concrete, etc., show significant differences in their strength 26 

in tension and compression states. The modulus of elasticity as well as the Poisson's ratio 27 

of the material may also change under tensile and compressive states [1, 2, 3]. Take the 28 

concrete material as an example, the compressive modulus is about 1.5~2 times of the 29 

tensile modulus [4, 5, 6]. So, for an accurate numerical simulation, this characteristic of 30 

material has to be considered. It constructs a typical material nonlinear model. 31 

In order to evaluate bearing capacity and stability, the civil structure with the 32 

soil-foundation interaction is commonly investigated numerically, such as airport run-33 

ways, highway pavement, stacking dock, mineral deposit, geotechnical slope and so on. 34 

The soil medium is simplified as an infinite or semi-infinite domain. The most common 35 

approach with FEM is to use massive elements to simulate an unbounded domain. The 36 

application of large-scale finite element discretization could result in an increase in 37 

computational burden [7]. Furthermore, the inaccurate results could be obtained due to 38 

the truncated boundaries in the numerical procedure. To overcome this difficulty, the 39 

Boundary Integral Equations Method (BIEM), also known as the Boundary Element 40 

Method (BEM), is coupled with the FEM [8, 9]. However, it is difficult to derive the fun-41 

damental solutions in general case, especially for non-homogeneous and nonlinearity of 42 

materials. Meanwhile, the semi-analytical finite element method was developed to re-43 

duce the time cost of 3D model simulation [10, 11] and applied in pavement structural 44 

analysis [12, 13], but it mainly focusses on linear analysis or problems without compli-45 
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cated loads. The unbounded problems can be overcome by introducing mapped infinite 46 

elements, i.e., utilizing the infinite element to extend the FEM to unbounded domain 47 

problems [14-17]. The shape function describes the far-field characteristic of the problem, 48 

which can be obtained using a mapping to transform the global infinite region into a local 49 

finite domain by Bettess et al. [17-20]. As an alternative, these issues can be solved with 50 

the meshless methods coupling with infinite-mapping technique [7]. 51 

In engineering analysis, the linear elasticity of material is not valid for general issue. 52 

The material mechanical properties are closely related to their micro structure. The 53 

scanning images of the building materials are shown in Figure 1 and present the similar 54 

mottled patterns at different scales. The heterogeneity is manifested in the micro-scale for 55 

the metal materials, and its mechanical properties accord with the linear elastic hypoth-56 

esis. For the rock or concrete materials, its heterogeneity is displayed in the mesoscale 57 

and the assumption of linear elasticity sometimes produces the computational errors 58 

which cannot be ignored. 59 

 60 

Figure 1. Scanning images of solid materials at different scales: (a) twin structure of carbon steel; (b) 61 

fine grain structure of granite; (c) meso structure of concrete. 62 

The commercial numerical software in engineering including ABAQUS are widely 63 

used in engineering and manufacturing. However, it is still a challenging task to solve 64 

bimodular problems efficiently [21-26]. Nevertheless, the development of new numerical 65 

methods is always attractive to solve difficult and complicated engineering problems. 66 

Unlike the traditional numerical method, the computational framework of the meshless 67 

method was based on the scattered nodes. In the 1990s, the meshless method was de-68 

veloped based upon the Galerkin method. In 1992, the diffuse element method (DEM) 69 

was proposed by Nayroles et al. [27]. The Moving-Least Square (MLS) method was in-70 

troduced to construct the meshless shape functions with Galerkin method in numerical 71 

discretization. In 1994, Belytschkoet al. presented the Element-Free Galerkin method 72 

(EFGM) [28], in which the Lagrange was employed to ensure the boundary conditions 73 

being satisfied. Since then, the EFGM has been widely used to simulate the fracture fail-74 

ure of materials and to show its superiority over the traditional FEM [29, 30]. In 1996, 75 

Belytschko et al. published a comprehensive review [31], which attracted exclusive at-76 

tention in computational mechanics. This can be regarded as the beginning of the mesh-77 

less method in numerical engineering. Another important development is the introduc-78 

tion of the local weak form methods. In 1998, Atluri et al. proposed the Meshless Local 79 

Petrov-Galerkin(MLPG) method [32]. The discrete system equation is based on a nodal 80 

assembly with more concise in numerical implementation. In 1995, Liu et al. proposed a 81 

Reproducing Kernel Particle Method (RKPM) approximation [33-35], Thereafter, several 82 

meshless methods were developed such as the Method of Fundamental Solution (MFS) 83 

[36-38], the local Radial Point Interpolation Method (RPIM) [39-41], the local Radial Basis 84 

Function (RBF) collocation method [42-44] and the Meshless Intervention-Point (MIP) 85 

method [45] etc. In 2014, Wen et al. proposed the meshless FBM [46]. In the finite block 86 

method, the mapping technique is implemented numerically with the infinite elements 87 

for the infinite domain problems [7]. Afterwards, the FBM is successfully applied to 88 
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nonlinear elasticity problems, contact problems, and heat conduction problems [47-49]. It 89 

has been demonstrated to the analysis of bimodular problems for two-dimensional 90 

problems [50]. 91 

In this paper, the FBM is extended to three-dimensional semi-infinite structures in 92 

bimodular materials. The infinite block mapping technique is introduced to present the 93 

semi-infinite structure and implemented with the meshless finite block method to con-94 

struct the intrinsic constitutive equations in iterative analysis. The meshless finite block 95 

method with the infinite block mapping technique is formulated for 3D bimodular 96 

problems. The FEM solution is considered as a benchmark for numerical analysis, and 97 

the accuracy of the proposed method is observed by ABAQUS with subroutine UMAT 98 

developed for bimodular materials. 99 

2. Bimodular material constitutive equations 100 

Suppose   ,  and   are principal stresses, as shown in Figure 2. The general-101 

ized Hooke's law, in matrix form, as 102 

σAε ~~     or    εQσ ~~
I  (1) 

where A is the flexibility matrix, QI is the elasticity matrix, ε~ is the nodal strain 103 

vector in the principal directions, σ~  is the nodal stress vector in the principal directions, 104 

which are defined as 105 
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 With the analytical theory proposed by Ambartsumyan and complemented with 106 

shear moduli [1, 21, 22], it is assumed that   EvEvaij ,  Ea jj 1  or E1 , 107 

(i=1, j=1, 2, 3), where E and E present as the tensile and compressive moduli respec-108 

tively, 
v  and 

v are tensile and compressive Poisson's ratio respectively, Ga 144  , 109 

Ga 155  , Ga 166  , in which, G , G  and G  are the shear moduli. The shear 110 

stresses or strains in the principal directions are zero. According to the shear moduli al-111 

gorithm [13], it is assumed that the axes x, y, and z tend to axes α ,  , and  , respectively. 112 

Then, we have 113 
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 114 

Figure 2. Principal stresses and their direction in Cartesian’s coordinate system. 115 
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There are three cases to obtain G , G and G , 116 

(1) If all three principal stresses are equal, i.e.    , we have 117 

a. If 0 , then 118 

G = G = G =
)1(2 







v

E
G , (6) 

b. If 0 , then 119 

G = G = G =
)1(2 







v

E
G , (7) 

(2) If only two of the three principal stresses are equal, i.e.    , we hold 120 
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, (8) 

(3) If all three principal stresses are not equal, i.e.    , we have 121 
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G . (9) 

In the Cartesian coordinate system, the directional cosines for each principal strain are 122 

defined as 123 
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The strain vector in different coordinate systems is obtained, in matrix form, as 124 

Lεε ~ , (11) 

where ε is the strain vector in Cartesian’s coordinate system, L is the transformation ma-125 

trix defined by 126 
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 127 

The strain energy density U in terms of the principal strains and elastic matrix, at each 128 

node, yields 129 

LεQLεεQε I
TT

I
T

2

1~~

2

1
U . (13) 

Therefore, the elastic matrix Q in Cartesian’s coordinate system is obtained by 130 

LQLQ I
T . (14) 

3. The meshless finite block method 131 

3.1. Lagrange polynomial interpolation 132 

Consider a 3D square in normalized domain mapping to the physical domain, as 133 

shown in Figure 3. The Lagrange polynomials in the coordinate system ),,(   are 134 

used to interpolate function u 135 
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where pu  indicates the nodal value, subscript p denotes the number of node at P136 

),,( iii   in the global system and functions 137 
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where N , N and N  denote the numbers of node distributed along the axes ,  and 138 

 , respectively. The shape function is obtained simply as 139 

),(),(),(),,( kjip HGF   . (17) 

The partial differential with respect to axis  can be obtained directly 140 
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 141 

Figure 3. Mapping technique for finite block method: (a) normalized domain; (b) physical domain. 142 

3.2. Partial differential matrix 143 

The partial derivative of function u in Eq. (15) can be arranged in a vector. For ex-144 

ample, the nodal first order partial derivative of function u can be written, in the vector 145 

form, as 146 
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DuDUu , (19) 

where p is the number of node P(i, j, k) in global system, )(  NNNM   indicates the 147 

number of nodes in the local coordinate system, 148 
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M,,, 21 D . (21) 

In addition, the L-th order partial derivative with respect to the coordinates  ,   150 

and   can be approximated as 151 

  Lnml
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lmn 
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u
u . (22) 

Therefore, the higher order partial differentials in Eq. (22) can be obtained, in terms 152 

of the first-order partial derivative matrices D , D  and D , as 153 

uDDDu
nmllmn
 )(

, , (23) 

3.3. Mapping differential matrix 154 
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For three-dimensional problems, a hexahedron block with 20 seeds is selected in 155 

order to transform the coordination (x, y, z) to ),,(   as shown in Figure 3. The map-156 

ping function is expressed as 157 
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The partial differentials of function ),,( zyxu  with subject to axis  ,   or   can be 158 
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Then the partial differentials of the function ),,( zyxu  with respect to x, y and z are 160 

given by, 161 
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in which ij  express the terms in the cofactor of Jacobi matrix J, and 162 
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Therefore, the first order partial differential in the physical domain can be written as 163 

  uDuDΔDΔDΔu xx   131211, , (28) 

  uDuDΔDΔDΔu yy  ， 232221, , (29) 

  uDuDΔDΔDΔu zz  ,333231,  , (30) 

in which 164 
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 165 

where )1()1(
Jij  can be determined from Eq. (27) at each node in the normalized do-166 

main, and the first order differentials matrix is determined by the Lagrange interpolation 167 

functions in normalized domain )1,1,1(   . 168 

3.4. Mapping technology with 3D blocks 169 

For the semi-infinite structure shown in Figure 4(a), the semi-infinite domain is di-170 

vided into several subdomains with two 20-seed-finite blocks, two 171 

12-seed-one-infinite-edge blocks, two 7-seed-two-infinite-edge blocks and two 172 

8-seed-three-infinite-edge blocks as shown in figures from Figure (4b) to Figure (4e). the 173 

infinite blocks in different directions can be obtained by rotating the initial mapping 174 

function. The mapping function for the finite block and infinite blocks in a general form is 175 

written as 176 

),,,,,( qqqq QN  , (32) 

where q is the seed number shown in Figure 4. The details of the mapping function and 177 

their partial differentials can be presented in appendix A in different categories. 178 

 179 

Figure 4. Mapping with four semi-infinite blocks: (a) semi-infinite model; (b) 20-seed-finite block; (c) 180 

12-seed-one-infinite-edge block; (d) 7-seed-two-infinite-edge block; (e) 8-seed-three-infinite block. 181 

4. Formulations for bimodular material with meshless FBM 182 

The equilibrium equation, in the domain, gives 183 

 0fσ  , (33) 
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in which ),,,(, zyx  denotes stress, f are body force. Substituting the constitu-185 

tive equation Eq. (1) into kinematic equation in Eq. (33) without body forces yields 186 
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where zyx uuu ,,  are vectors of nodal displacements, and )3,2,1,(, jiijC  are coefficients 187 

by the constitutive and equilibrium equations, and given by 188 

,)()()(

,)()()(

,)()(

,222

,222

,222

2
344423

2
2445364625

2
563223

2
354536

2
4655135614

2
153113

2
454625

2
266621

2
162112

2
3334

2
443545

2
5522

2
4424

2
224626

2
6622

2
5556

2
661516

2
1111

zzyyzxyxx

zzyyzxyxx

zzyyyxx

zzyyzxyxx

zzyyzxyxx

zzyyzxyxx

QQQQQQQQQ

QQQQQQQQQ

QQQQQQQ

QQQQQQ

QQQQQQ

QQQQQQ

DDDDDDDDDCC

DDDDDDDDDCC

DDDDDDDCC

DDDDDDDDDC

DDDDDDDDDC

DDDDDDDDDC













 (36) 

where ),6,,2,1,(, jiijij QQjiQ    are the terms in elasticity matrix Q and given by 189 
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Consider the following boundary conditions defined as 190 
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, (38) 

where )(xt  and )(xu  are given traction and displacement on the boundary, 191 

 T,,)( zyx tttxt ,  T,,)( zyx uuuxu . x is the collocation point on boundary. Traction )(xt  192 

can be rewritten as 193 
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where matrix )3,2,1,(, jiijB  is associated with the boundary collocation point 194 
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where ),,(, zyxn   is the boundary outwards normal. Therefore, 3×M linear algebraic 195 

equations are obtained in total from Eq. (33) and (38). In addition, on the interfaces be-196 

tween blocks, following continue conditions should be taken into account 197 

 ,),,(,0,0 )()()()( zyxttuu jiji    (41) 

where )(iu  and )(it  represent the displacement and traction on the interface between 198 

block i and block j. Finally, a set of linear algebraic equations is established in global 199 

system as follows 200 

 ,]13[]13[]33[   MMMM FUK  (42) 

where K is stiffness matrix, U is the vector of displacements, F is vector consisting of the 201 

boundary value of the displacement, tractions and domain body forces. Following non-202 

linear iterative algorithm is adopted in this paper 203 

Step 1: m = 0, take either tensile or compressive modulus at all collocation points. 204 

Solve the global stiffness matrix to obtain the initial displacements, stresses, and strains. 205 

Step 2: Determine the principal stress  ,  ,   and the direction at each node. 206 

Then, determine the moduli, Poisson’s ratios (  EE , ), (  vv , ), and the constitutive 207 

matrix according from Eqs. (6) –(14).  208 

Step 3: Modify the stiffness matrix K and vector F based on the current step. Solve 209 

the equations again to obtain the displacements, stresses and strains at each node. 210 

Step 4: Calculate the average error from all collocation points 211 

 





M

i

m

i

m

i UU
M 1

)1()(1
 , (43) 

where )(m
iU  presents the displacement at step m. if 610 , terminate the iteration and 212 

print out the result. Otherwise, let m = m+1, go to step 2. 213 

5. Numerical examples 214 

In this section, four examples are presented to demonstrate the accuracy of the 215 

meshless FBM with bimodular materials. A 3D tensile column with gravity is investi-216 

gated in the first example. Then, FBM is applied to an arch bridge model, single-layer 217 

semi-infinite model and multi-layer pavement foundation under different loadings. All 218 

codes are written with Matlab and Fortran in subroutine UMAT using ABAQUS. 219 

5.1. Tensile column with gravity 220 

Consider a gravitational column of the length l = 2, dimension of the cross-section is 221 

normalized as 1×1, and the mass density  =2 as shown in Figure 5(a). It is fixed on the 222 

bottom and a tensile force P of 2 units is applied to the top. It is assumed that a compres-223 
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sion modulus is 5000 unites, and the Poisson's ratios in tension and compression is zero. 224 
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The locations of node along different axes in the normalized domain is chosen 227 
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The total number of nodes for the FBM is 1134 (=9×9×14), and 396 C3D20R elements are 228 

used in FEM. The node distribution of FBM is shown in Figure 5(b). Comparison between 229 

the exact solution and FBM solution at point z = 1.96 and the number of iterations for 230 

convergence between FEM and FBM are presented in Table 1. With different ratios of 231 

tensile and compression modulus, the vertical displacement changes along z-axis and 232 

exact solution are shown in Figure 6. Obviously, the FBM can give an accurate solution 233 

for the problem and shows the similar convergence rate comparing with the FEM method. 234 

To investigate the accuracy for different node density, the average relative errors is de-235 

fined as 236 

 




M

q
M

1

*1
 . (46) 

The numerical results presented in Table 2 demonstrate the average errors with iteration 237 

numbers of convergence over all collocation points when 10 EE . Observing the re-238 

sults in Table 2, it is evident that increasing the node density improves the degrees of 239 

accuracy, and convergency is easily approached in iterations when the node number N  240 

is more than 3. 241 

 242 
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(a) (b) 

Figure 5. Model with a tensile load and gravity: (a) front view of model with load and constraint; (b) node distribution in 243 

physical domain for FBM. 244 

 245 

 246 

Table 1. Comparison of precision and convergence. 247 

 EE  
z=1.96 Number of iterations for convergence 

Exact solution FBM solution FEM FBM 

1 1.59E-5 1.59E-5 2 2 

5 7.21E-4 7.20E-4 2 2 

10 1.6E-3 1.60E-3 2 2 

50 9.0E-3 8.9E-3 2 2 

 248 

 249 
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Figure 6. Vertical displacement variation along z-axis against with different ratios of tensile and 250 

compression moduli, where “nx” : n EE . 251 

 252 

Table 2. Average errors   for different node density with 10 EE . 253 

Node density 

(  NNN  ) 
  

Number of iterations 

for convergence 

(336) - - 

(448) 5.20×10-5 2 

(5510) 1.29×10-5 2 

 (7714) 6.24×10-6 2 

 (9918) 3.65×10-6 2 

(111122) 2.39×10-6 2 

 254 

 255 

5.2. Arch bridge in bimodular materials 256 

Consider a simplified arch bridge as shown in Figure 7. Due to the symmetry of the 257 

structure, half of the model is taken for analysis. The radius of the arc is a=1 unit. There is 258 

a vertical pressure load 0p  of 1 unit applied on the top, the lengths in both y-axis and 259 

x-axis are w(=2a). The displacement yu  is fixed on the bottom face (y=0), and xu  is zero 260 

on the surface x=0. The ratios of Young’s moduli are selected as 5,2,1 EE , compres-261 

sion modulus 1E  unit and Poisson’s ratio 4.0v  in the computation procedure. 262 

 263 

Figure 7. Half model of simplified arch bridge model for FBM. 264 

 265 
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(a) 267 

 268 

(b) 269 

Figure 8. Half model for FBM and FEM: (a) nodes distribution for FBM; (b) finite element mesh for 270 

FEM. 271 

 272 
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(c) 278 

Figure 9. Dimensionless stress with 3 different ratios of Young’s moduli in tensile and compression 279 

along (a) AB; (b) CD; (c) AC, and “nx” : n EE . 280 

The bridge is divided into three blocks using FBM shown in Figure 7, where blocks I 281 

and II are finite blocks with 20-seed, block III one semi-infinite block with 282 

12-seed-one-infinite-edge. In the discretization of each block, there are 12 and 14 colloca-283 

tion nodes along finite and infinite directions respectively. The distribution of nodes 284 

along each axis is the same as Example 5.1 as shown in Figure 8(a). Stresses along two 285 

segments AB and CD shown in Figure 7 are plotted to illustrate the degree of accuracy. 286 

Simulation with FEM is complemented with 90,912 C3D10 elements as shown in Figure 287 

8(b). The length in the x-axis is w = 40 unit. The normalized stress x  along AB, CD and 288 

AC by FBM and FEM are plotted in Figure 9 to show the difference between these two 289 

methods with bimodular materials. Reasonable agreements can be observed clearly. 290 

5.3. A semi-infinite solid with bimodular materials 291 

The semi-infinite structures are introduced to simulate soil foundations. Consider a 292 

semi-infinite body as shown in Figure 10(a) with the linear distributed vertical load in a 293 

square area of width 1 unit on the surface. The linear distributed load is plotted in Figure 294 

10(b) with unit maximum absolute value of q in compression and tension. Bimodular 295 

materials are selected with three different ratios of tensile and compressive moduli as 296 

shown in Table 3. Due to the symmetry of the structure and loading, only a half model is 297 

analyzed shown in Figure 10(a). To accurately capture the stress near the loading area, 298 

the structure is subdivided into two layers. In the first layer, including one 20-seed finite 299 

block III, three 12-seed-one-infinite-edge blocks I, IV, V, and two 7-seed-two-infinite-edge 300 

block II and VI. However, in the second layer, one 12-seed-one-infinite-edge block, three 301 

7-seed-two-infinite-edge blocks and two 8-seed-three-infinite-edges blocks are used. For 302 

each block, 9 collocation points are used on the finite edge, 12 points for the infinite-edge. 303 

Normalized stress x  along AB and AC are presented to demonstrate the accuracy of 304 

the FBM shown in Figures 11(a)(b) versus the different ratios of tensile and compressive 305 

moduli, and Poisson ratios. In this example, FEM simulation is complemented by use of 306 

362,484 C3D10 elements with dimensions of 20 units in length and height, 10 units in the 307 

width. A reasonable agreement was clearly achieved. 308 
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Table 3. Tensile and compressive modulus and Poisson’s ratio. 309 

Case Young’s Modulus  EE  Poisson’s ratio  vv  

1 1/1 0.4/0.4 

2 0.5/1 0.2/0.4 

3 0.2/1 0.08/0.4 

 310 

 

 

(a) (b) 

Figure 10. Semi-infinite model with linearly distributed vertical load: (a) semi-infinite model with 12 blocks by FBM; (b) 311 

side view from x-axis. 312 

 313 

(a) 314 
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 315 

(b) 316 

Figure 11. Normalized stress x  given by FEM and FBM along: (a) AB; (b) AC, and “nx” :317 

n EE . 318 

 319 

5.4 Multi-layered infinite model with bimodular materials 320 

Consider a multi-layered infinite structure, as shown in Figure 12, to simulate a 321 

highway pavement structure under two symmetric circular pressure loads. The pressure 322 

is assumed to be 0.7MPa and radius of 0.1065m. The distance between two centers of 323 

loads is 0.3195m. The model contains four layers, i.e. the first and second layers are bi-324 

modulus materials and the 3rd and 4th layers are isotropic materials. The details of ma-325 

terial parameters and dimensions of each layer are listed in Table 4. Again, due to the 326 

symmetry of the structure and load condition, the quarter of structure is analyzed as 327 

shown in Figure 12. In numerical process, each layer is divided into four blocks. For the 328 

first layer, the top layer contains one 20-seed finite block, two 12-seed-infinite-edge 329 

blocks II and III, and one 7-node-two-infinite-edge block IV. In the second and third lay-330 

ers, the same block distribution is applied as in the first layer. In the bottom layer, con-331 

taining one 12-seed-one-infinite-edge block I, two 7-seed-two-infinite-edge blocks II and 332 

III, and one 8-seed-three-infinite-edge block IV. 333 

Similar to Example 5.3, the 8 seeds are used on the finite edges and 14 seeds on infi-334 

nite edges. The total number of collocation nodes by FBM is 12288. To validate the com-335 

putational accuracy, the results of stresses z  by FBM and FEM along segment AB and 336 

segment CD are compared in Figure 13. The contours of von Mises stress with bimodular 337 

materials on y = 0 are presented by using FBM in Figure 14. It is also analyzed by FEM 338 

with no dimension of  20 × 20 × 20  and 127,760 C3D20R elements used in this example. 339 

It can be seen that the position of the maximum von Mises stress with these two methods 340 

is the almost the same, and the values are also very close to each other. In addition, the 341 

FBM results are smoother 342 

 343 

 344 

 345 

 346 

 347 
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 348 

Table 4. Dimensions, Young’s modulus and Poisson’s ratio for each layer. 349 

Layer Height (m) Young’s Modulus  EE  (MPa) Poisson's ratio  vv  

a 0.18 6000/9000 0.2/0.3 

b 0.2 5000/8000 0.15625/0.25 

c 0.2 300/300 0.35/0.35 

d ∞ 80/80 0.4 

 350 

 351 

Figure 12. Quarter of meshless FBM with infinite block modelling. 352 

 353 

B 

C D 
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 354 

(a) 355 

 356 

(b) 357 

Figure 13. Stress z  distribution and comparison with FEM on: (a) AB; (b) CD. SM indicates sin-358 

gle Young’s modulus and BM indicates bimodular material. 359 

(P
a)
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 360 

(a) 361 

 362 

(b) 363 

 364 

Figure 14. The contours of von Mises stress with bimodular materials for y=0 by: (a) FBM; (b) FEM. 365 

6. Conclusions 366 

Meshless finite block method with infinite block to analyze three-dimensional solids 367 

of bimodular materials has been demonstrated in this paper. Mapping technique was 368 

applied to determine the first order of derivatives. The 20-node finite block, 369 

12-seed-one-edge-infinite block, 7-seed-two-edge-infinite block and 370 

8-seed-three-edge-infinite block were introduced to simulate all semi-infinite domains. 371 

The iterative process for the meshless finite block method with shear modulus comple-372 

mented algorithm to solve bimodular problems was proposed. The numerical algorithm 373 

was validated with four examples. Finite element software ABAQUS was used for com-374 

parison. Following conclusions can be summarized: (1) FBM is easy to deal with nonlin-375 

ear problems with semi-infinite boundaries; (2) Shear modulus algorithm is efficient and 376 

accurate to describe the bimodular mechanical behavior of materials; (3) The method 377 

proposed shows efficiency and accuracy for semi-infinite problems with bimodular ma-378 

terials. Compared with FEM, FBM is more accurate with the same computational effort; 379 

(4) FBM can be applied to more complicated problems, such as 3D elastoplasticity, 380 

thermoelasticity and elastodynamics. 381 

Frankly to say, the FEM is one of the most general numerical tools and efficient to 382 

deal with the complicated problems in engineering. However, as an alternative, the 383 

meshless finite block method with infinite-mapping technique provides a new approach 384 

in solving unbounded bimodular material problems with many advantages including the 385 
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efficiency and simplicity. As ABAQUS is a commercialized package, the CPU times used 386 

by different approaches are not comparable in this work. At present, dividing blocks is 387 

still a manual process in FBM, the versatility needs to be further improved with complex 388 

regional models. In the future work, the FBM is expected to be extended to apply to more 389 

complicated problems, such as 3D elastoplasticity, thermoelasticity and elastodynamics. 390 
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Appendix A 397 

1. 20-node finite block 398 

For this type of finite element, physical domain is mapped to a cube with 20 seeds in 399 

coordination system ),,(   in the region 1 , 1  and 1 , as shown in Figure 400 

4(b). Mapping function can be written as follows [51]: 401 
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Their partial differentials of mapping function are list as below: 402 
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2. 12-seed-one-edge-infinite block 403 

In the normalized domain, the face of upper side )1(   is mapped to infinite area 404 

as shown in Figure 4(c). The mapping functions [17] are 405 
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The Cartesian coordinate system in the physical domain can be obtained 406 

k

k

kk

k

kk

k

k zNzyNyxNx 




12

1

12

1

12

1

),,(,),,(,),,(  . (A.13) 

The first order partial differentials of Eq. (A.9) to (A.12) are 407 
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3. 7-seed-two-edge-infinite block  408 

In this case, two edges )1,1(    in the normalized domain is mapped to infinite 409 

place as shown in Figure 4(d). The shape functions [17, 52] are 410 

,
)]1(2[

)1)(1(

,
)]1(2[

)1)(1(

),2/()345)(1(

,
)1(4

,
)]1(2[

)1)(1(

,
)]1(2[

)1)(1(

),2/()345)(1(

7

6

5

2

4

3

2

1




















































N

N

N

N

N

N

N

, (A.18) 

in which )1)(1(    with coordinate transformation 411 
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Their partial differential with respect to  ,  and   are given as follows: 412 
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where )1)(1(   , )1(   , )1(   . 413 

4. 8-seed-three-edge-infinite block 414 

This type of infinite element is extended from Lagrangian 27-node brick, which is 415 

shown in Figure 4(e). Three directions )1,1,1(    in the normalized domain are 416 

mapped to infinity. The shape functions [17, 52] are simplified 417 
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where )1)(1)(1(    with coordinate transformation 418 
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Their partial differential with respect to ,  and  are listed as follows: 419 
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in which )1(   , )1(    and )1(   . 420 
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