
  

 

Dynamic Bayesian Collective Awareness 
Models for a Network of Ego-Things 

 
Divya Thekke Kanapra, Mario Marchese,  Eliane L. Bodanese, David Martin Gomez  
Lucio Marcenaro, and Carlo Regazzoni  
 

Abstract—A novel approach is proposed for multimodal 
collective awareness (CA) of multiple networked intelligent agents. 
Each agent is here considered as an Internet-of-Things (IoT) node 
equipped with machine learning capabilities; CA aims to provide 
the network with updated causal knowledge of the state of 
execution of actions of each node performing a joint task, with 
particular attention to anomalies that can arise. Datadriven 
dynamic Bayesian models learned from multisensory data 
recorded during the normal realization of a joint task (agent 
network experience) are used for distributed state estimation of 
agents and detection of abnormalities. A set of switching dynamic 
Bayesian network (DBN) models collectively learned in a training 
phase, each related to particular sensorial modality, is used to 
allow each agent in the network to perform synchronous 
estimation of possible abnormalities occurring when a new task of 
the same type is jointly performed. Collective DBN (CDBN) 
learning is performed by unsupervised clustering of generalized 
errors (GEs) obtained from a starting generalized model. A 
growing neural gas (GNG) algorithm is used as a basis to learn the 
discrete switching variables at the semantic level. Conditional 
probabilities linking nodes in the CDBN models are estimated 
using obtained clusters. CDBN models are associated with a 
Bayesian inference method, namely, distributed Markov jump 
particle filter (D-MJPF), employed for joint state estimation and 
abnormality detection. The effects of networking protocols and of 
communications in the estimation of state and abnormalities are 
analyzed. Performance is evaluated by using a small network of 
two autonomous vehicles performing joint navigation tasks in a 
controlled environment. In the proposed method, first the sharing 
of observations is considered in ideal condition, and then the 
effects of a wireless communication channel have been 
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analyzed for the collective abnormality estimation of the agents. 
Rician wireless channel and the usage of two protocols (i.e., IEEE 

802.11p and IEEE 802.15.4) along with different channel 
conditions are considered as well. 

Index Terms—Abnormality detection, collective awareness 
(CA), dynamic Bayesian network (DBN), Markov jump particle 
filter (MJPF), self-awareness (SA). 

I. INTRODUCTION 

NTERNET-OF-THINGS (IoT)-related technologies 
have advanced well beyond our imaginations in the past 

few years. At present, billions of physical devices worldwide 
are connected to the Internet, and most of them can collect 
and share large amounts of data. In general, any device can 
be thought of as an IoT device if it has networking 
capabilities. A usual IoT device can vary from a child’s toy 
to a driver-less vehicle. However, IoT has not yet reached a 
desired level of maturity, and challenges are still open, such 
as computation constraints, heterogeneity, data storage, 
autonomous capabilities, security, etc. One of the most 
crucial challenges is the lack of proper models representing 
the agent behaviors and their causal relationships to the 
surrounding environments and other objects [1]. 

Such a representation should be capable to span over 
variables at different abstraction levels to allow, for 
example, better explainability of autonomous agent’s 
choices both online and offline (ex-post). Moreover, the 
representation learned in a data-driven way from observed 
sensory data when the agent performs an experience for the 
first time (possibly driven by an external control) [2]. With 
machine learning algorithms and signal processing 
techniques, the IoT nodes can include such learning 
capabilities. Artificial self-awareness (SA) has an essential 
role in this framework. 

SA is a broad concept that defines the agent’s ability to 
focus on the inner self-state in relation to the external 
environment [3]. Nowadays, machine learning provides an 
extensive set of methods and techniques to estimate SA 
models from data sequences. This work considers self-
aware agents and provided a methodology by which 
collective awareness (CA) of a group of agents can be 
defined and achieved. Moreover, it shows how the proposed 
techniques can be suitable for jointly building individual 
and collective representation of the state of development of 
a task with respect to SA models learned from previous 
experiences. 
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Bayesian network (BN) techniques are the reference 
approach here used to represent awareness models. Models 
are composed of multiple variables, hierarchically 
organized into layers. The sensors perceive the layers 
associated with the observations variables. In contrast, 
hidden layers represent variables with direct or indirect 
causal relationships with observations at different 
abstraction levels. 

Dynamic BNs (DBNs) introduce temporal links that 
connect BNs variables at successive time instants, allowing 
to describe also causal, temporal relationships, i.e., 
behaviors of the same object as represented by dynamic 
series of probability states of variables in time. dynamic 
BNs DBNs allow an agent to explain the temporal series of 
observed sensor data at different abstraction levels thanks 
to the global model’s generative property. The same 
property can apply for simultaneous observation of objects 
doing collaborative tasks. Links among DBNs related to 
each object can explain coupling conditional probabilities 
describing reciprocal influences among such objects. This 
generative capability makes coupled DBNs attractive for 
composing the basis of SA representation in an agent. 

However, as SA models are data driven, i.e., learnable 
from the data inference, DBNs’ generative capabilities must 
be augmented by the ability to incrementally learn new 
DBNs from sensor observations when such observations 
correspond to new experiences. This implies that inference 
on such models also includes anomaly detection and 
incremental learning steps in addition to classical Bayesian 
prediction-estimation filtering. 

Supposing that SA knowledge at a certain point of agent 
life is set using DBN models learned from sensorial data 
connected to the agent’s past experiences. Then the problem 
is to define a Bayesian inference process capable of allowing 
the agents to continuously check and monitor whether 
available DBN generative models can predict well the 
current observations in doing the current task. When it 
comes to a new experience that the agent cannot use the 
embedded knowledge of learned models to predict and 
reliably estimate it’s own context state (abnormal 
situations), it requires incremental learning of new models 
to enrich it’s own SA memory. 

The main contributions of this article can be summarized 
as follows. 

1) A method proposed to learn CA models from low 
dimensional data sequences of a network of intelligent 
entities. For the inferences, a Markov jump particle 
filter (MJPF) based on generalized DBN models is 
used and extended to become able to detect 
abnormalities at different abstraction levels. 

2) The robustness of the distributed abnormality 
detection feature of models concerning a realistic 
communication channel model is investigated. 
Evaluated the performance in order to estimate, on 
the one hand, the reliability and accuracy of 

abnormality detection under the hypothesis of perfect 
communication (i.e., no data loss and transmission 
delays), and, on the other hand, analyzed the 
robustness of the system model against packet losses 
and transmission delays of the communication 
channel among objects by considering different 
protocols and channel conditions. 

The remainder of this article is structured as follows. The 
main state-of-the-art contributions regarding self-aware 
entities and networks are reported and summarized in 
Section II. Section III covers some of the definitions found 
in the existing literature related to the concepts used in this 
work. Section IV reports our proposed strategy for 
developing models to represent CA and to detect 
abnormality situations. Different features of the models and 
the capability to detect abnormality at different levels is 
discussed. The experimental setup and the communication 
system are described in Section V. Section VI discusses the 
results obtained at different abstraction levels of the 
models. Conclusions and future work are drawn in Section 
VII. 

II. STATE OF THE ART 

Artificial intelligence is the concept that allows 
agents/machines to perform any task autonomously in any 
situation. Under the umbrella of artificial intelligence, 
applications, such as machine learning, deep learning, etc., 
are increasingly used to implement solutions in various 
fields, including self-driving vehicles. The intense use of 
machine learning techniques applied to the sensory data 
helps deal with the system’s uncertainty to a certain extent. 
Such multisensory data used to build models that can make 
predictions of the agents’ future states. 

Over many years, SA has been studied in multiple 
research disciplines, such as cognitive sciences, psychology, 
and philosophy [4]–[7]. Moreover, according to the 
definition in [8], the circumstantial cues remind the agents 
of themselves and lead to give more attention to self and 
away from the environment. On the other hand, Goukens et 
al. [9] proposed the idea of private and public SA. Duval 
and Wicklund of [8] and Goukens et al. [9], examine the 
impact of private SA in decision making. The SA concept 
widely studied in biology, which has been reproduced in 
artificial systems to enrich the capability of autonomy in 
different fields, including machine learning and robotics 
[10], [11]. The main challenge in most of these approaches 
is how SA capabilities integrate into artificial agents. 

An artificial agent can be considered self-aware if it can 
dynamically observe itself and its surrounding environment 
through different exteroceptive and proprioceptive sensors 
and learn and maintain a contextual representation by 
processing the observed multisensorial data [3]. Developing 
SA in artificial agents will reduce human efforts in different 
areas, and in some fields, the human operator can be 
entirely replaced by machine intelligence. 



  

 

The term collective consciousness was introduced by the 
French sociologist Émile Durkheim (1858–1917) to refer to 
the shared beliefs and moral attitudes that operate as a 
unifying force within society [12]. Collective consciousness 
or CA plays a significant role when a group of agents needs 
to perform a task by co-operating and communicating to 
achieve collective or individual goals. Bourazeri and Pitt 
[13] investigated the key requirements to achieve collective 
action in decentralized community energy systems (dCES); 
CA to enhance the sense of collective responsibility, social 
networking to promote self-organization. 

Each agent in the multiagent system can take autonomic 
actions to a certain extent along with the ability to interact 
with other agents [14]. A group of such self-aware agents 
can form a network that has CA capabilities. With such an 
ability, each agent in the system should be aware of itself 
and other agents’ activities. Distributed state estimation 
and tracking are fundamental collaborative information 
processing problems in wireless sensor networks (WSNs). 
Multisensor fusion and tracking problems have a long 
history in signal processing, control theory, and robotics 
[15]–[18]. Moreover, the distributed state estimation issues 
in wireless networks with packet-loss have been the center 
of much attention lately [19]–[21]. There has been a 
significant development in the study of Kalman filtering in 
the presence of data packet drops [21]–[24]. The recent 
advances in the WSN technology also boost the study of a 
distributed Kalman filter (DKF) [25]–[28], where each 
sensor node in the WSN can compute local estimates via 
Kalman filtering based on its own observations and the 
information sent from its neighboring sensors. The existing 
literature shows that it lacked a proper model to represent 
a group of agents’ behavior and underlying reasons in 
different situations. 

This work has developed multimodal CA models by 
considering exteroceptive and proprioceptive sensory data 
from all the agents in the network. Each of the considered 
modality extracts different system features that help to 
enrich contextual awareness to detect abnormalities at 
different abstraction levels. 

III. DEFINITIONS 

This section includes some of the definitions found in the 
existing literature related to the concepts used in this work. 

1) Ego-Thing: Ego-thing can be defined as intelligent 
autonomous entities that can perceive their internal 
as well as external parameters and adapt themselves 
when they face abnormal situations [29]. In this 
article, ego-thing, agent, object, and vehicle are used 
as synonymous. 

2) Self-Awareness: 
a) SA can be seen as the capacity to become 

theobject of one’s own attention. It occurs when 
an organism focuses not only on the external 
environment but on the internal self; it becomes 

a reflective observer by processing private & 
public self-information [30]. 

b) SA is a capability of an autonomous system 
todescribe the acquired knowledge about itself 
and its surroundings with appropriate models 
and learn new models incrementally when it 
comes to new experiences [3]. 

3) Collective Awareness: CA is an extension of SA 
concept to a network of ego-things that cooperate to 
perform a given task with different interdependent 
roles. CA allows the network to understand whether 
perceptionaction information processing models they 
are provided of allow then to predict the dynamic 
evolution of the current situation, as well as to 
coherently detect global anomalies in a distributed 
way [31]. 

4) Multimodality: Different sensor modalities can be 
used by an agent to collect information by its own 
sensors about its own state (proprioceptive) and 
context one (exteroceptive); consequently, CA makes 
it necessary to be capable of learning models from 
heterogeneous sensor modalities. The capability to 
estimate causal dynamic connections of generalized 
variables related to different modalities is a key 
aspect to allow agents to be provided of CA models 
related to co-operative tasks they have to perform. 

IV. DESIGN AND IMPLEMENTATION 

The data-driven method introduced to learn CA models 
for a network of ego-things considers low dimensional 
multimodal sensor data. Low-dimensional data here 
consists of exteroceptive sensor data related to the position 
of entities in an environment and two different 
combinations of proprioceptive control information that 
are causally connected to the motion (i.e., derivatives of 
position) of ego-things. 

Dynamic Bayesian data-driven model learning is used for 
abstracting at different levels of dynamic rules driving the 
collective behavior of a group of ego-things in a training 
phase. The model learning process initially performed 
consists of the estimation of a generative model and its 
component pieces. This includes learning continuous 
dynamic conditional probabilities, semantic vocabularies at 
discrete levels. The necessity of establishing in the model 
condition bidirectional probabilities among exteroceptive 
and proprioceptive DBNs also implies estimating co-
occurrence matrices. 

The learned generative models allow predictions of a part 
of variables not yet observed and the observation of new 
variables (for example, in future time instants) allows 
anomaly detection. For example, the probabilistic distance 
between predicted future states of the entities and the 
observed sensory likelihoods in those moments can be used 
to estimate instantaneous anomaly at the continuous level. 



  

 

The generative nature of DBN models allows probabilistic 
inference methods to be defined that differ also depending 
on the type of DBN chosen to represent data. For example, 
Kalman filtering, Hidden Markov models, and particle 
filters (PFs) can be used for Bayesian inference on simpler 
DBNs containing only observation and hidden state nodes  

[32], [33]. MJPF [34], [35] works instead of on DBNs with 
three levels of variables, i.e., including discrete switching 
variables. MJPF Bayesian inference can enrich to make 
available beyond prediction and state joint estimates at 
discrete and continuous levels, also probabilistic anomaly 
estimation as a SA component. 

In CA, multiple DBNs related to multiple agents should 
become coupled to represent collective interactions. In this 
case, inference methods like MJPF can still apply, despite 
the inference steps have to manage the higher complexity of 

prediction models. In this latter case, as agents on the 
field sparsely collect observations used by MJPF, the 
important aspect is determining the impact of using 
communication schemes to share such observations among 
agents in the network. Sharing allows CA to be possible 
simultaneously in each agent in a distributed way. Effects 
of the wireless channel 

 

Fig. 1. Block diagram: Training phase  
 
 
 
 
 
 
 
 
 
 
 
 
 

due to packet loss over the model performances so become 
important to be modeled and analyzed as done in this 
article. 

The description of the proposed method is divided into 
two parts: 1) learning of CA models (offline phase) and 2) 
testing the fitness models (online inference phase) and the 
following sections explain the various steps involved in the 
process. 

A. Collective Awareness Model Learning (Offline) 
This work considers three different modalities, each of 

them able to capture a part of the essential information 
necessary to provide collective-awareness (CA) to the 
network of egothings. The possibility to estimate direct 
causal relationships between the environment state and the 
network of agents states when they perform a co-operative  

 
task considered to select such modalities. The model 

learning steps are the same for all the modalities and 
assumed that the multimodal acquired data sequences are  
available for all the networked ego-things. The block 
diagram representation of the training phase is shown in 
Fig. 1. 

 

 
 
1) Preprocessing and Estimation of Generalized Errors: 

Once the sequences of multimodal data samples are 
available, time alignment is performed to match their 
timestamps. The first level of synchronization occurs 
between heterogeneous data of every single ego-thing 
(intrasynchronization). Ad-hoc intersynchronization is also 
necessary among the data collected by different ego-things 
that are part of the considered network as they can be of 
different clocks. Three sensor modalities here considered 
are odometry (X–Y positions) as exteroceptive data, control 
Steering angle-Power (S − P) and control Steering angle-
Velocity (S−V) as proprioceptive data. The chosen sensor 



  

 

data are low dimensional, i.e., each provided a 2-D vector of 
observations for a single ego-thing. In this article, with no 
lack of generality, a network of two egothings is considered 
to provide experimental results on CA, so 4D sensor data 
sequences are used for collective model learning for each 
modality. 

Let Zk(e1,e2,...,en),c be the measurements from all the 

egothings related to modality “c” at the time instant k and 

Xk(e1,e2,...,en),c be the associated joint latent state variables. The 

measured observations can be mapped to the latent states 

by the following observation model: 

 Zk(e1,e2,...,en),c ,...,en), k (1) 

where k represents the vector composed of measurement 
errors (for each ego-things) at a time step k. g() is a function 
that, in this article, is assumed to be linear. 

This assumption meets easily by considering 
lowdimensional exteroceptive and proprioceptive sensory 
data to learn switching DBN models. The sensors can design 
to calibrate to acquire these features around working 
points, so allow statistical linearization of the relation 
between observation and hidden latent variables. This 
assumption here allows the paper to focus on nonlinearities 
in the dynamic models that DBNs can learn through 
switching models and can be related to the agent’s 
capability to predict and detect anomalies in their dynamic 
behaviors. However, the proposed method already proved 
to be extendable to situations where it used high 
dimensional data (like videos) and nonlinear observation 
models. In this case, the problem is more complex because 
some times the function g() is also not known as has to be 
estimated jointly with prediction components of the 
generative model. Tools like generalized adversarial 
networks (GANs) and variational autoencoders (VAEs) 
have to be integrated into the DBN to map observed sensory 
data into generalized state variables of the DBN model [36], 
[37]. This goes beyond the scope of this article, as explained. 

Learning a DBN model is a recursive incremental 
process. In fact, the input information to the learning steps 
consists of a state grounded set of deviations of observed 
data from predictions provided by the inference process 
associated with an already existing generative model, i.e., an 
initial DBN. Generalized error (GE) is used as the definition 
of an error that consists of coupled information, including 
a state and the deviation found in the state for higher-order 
derivatives (e.g., in this article limited to first-order state 
derivative). The detection of GEs (e.g., a mismatch between 
Bayesian predictions and updates) is done through anomaly 
detection. At the same time, learning is a process of finding 
a new DBN that minimizes the presence of GEs in a given 
sequence. It showed that an initial reference generalized 

filter [38] could be applied low dimensional data to produce 
GEs. In this article, this is done with each modality data 
sequences to produce the GEs from which to learn the task 
model. 

The initial model is based on a null force filter 
(unmotivated Kalman filter in this work) that assumes the 
absence of forces between consecutive time instances. It is 
equivalent to suppose that the agent’s state vector at a time 
instant k+1 will remain unchanged with respect to the 
previous time instant k except for low variance Gaussian 
perturbations. When the observed data series do not follow 
this rule, record the derivatives’ errors in a given position 
(i.e., GEs associated with anomalies) and post-process to 
learn a new model. This corresponds to obtain a new DBN 
where the associated inference model (in our case, an 
MJPF) will generate minimal GEs if applied to similar 
sequences as those from which the model was learned. The 
GEs related to modality “c” can be written as 

 X˜ kc = Xkc X˙kc X¨kc ··· Xkd,c (2) 

where d indexes the dth time derivative of the state. In 2, all 
components are random vectors. To describe errors jointly 
from different entities, one can organize such vectors in 
different ways. Here, for example, a vector in (2) is 
described below in (3) that includes all vectors of all the 
entities for a certain fixed derivative order, i.e., d = 0. Other 
similar vectors can write for higher level derivatives 

 c  e1 e2 en 
 Xk = Xk ,Xk ,...,Xk . (3) 

In this work, we have limited the GEs to first-order 
derivatives, and models have been learned accordingly. 

2) Joint Vocabulary Learning: Once the GEs are 
estimated, the very next step is to perform unsupervised 
clustering as part of the learning process of the collective 
DBN (CDBN) generative model (refer Fig. 3). The 
probabilistic links that connect variables in the CDBN are 
also estimated within this process. A hierarchical switching 
2-time slice DBN (2T-DBN) [39] is chosen as the Generative 
model, and it is shown in Fig. 3. The model is composed of 
two levels beyond the observation level: a continuous and a 
discrete generalized state level. Unsupervised clustering 
allows learning a semantic vocabulary consisting of clusters 
of GEs with similar state and derivative values. A different 
switching variable assigns to each cluster, and this variable 
represents the discrete switching variable. As each cluster 
is characterized by its own average derivative, a different 
linear dynamic model at a continuous level associate with 
each cluster label, so specifying a further element for the 
generative model. Such local conditional elements of the 
generalized model are useful for allowing the model to 



  

 

represent a piece-wise linear dynamic behavior (one way of 
approximating nonlinear models) for each modality. 

The sequential probabilistic trajectories of multiple 
switching variables, i.e., modes of behavior of the dynamic 
system, can be represented by transition matrices at the 
discrete level. Switching models are associated with 
inference methods: for example, MJPFs can be seen as 
composite joint filters, where Kalman filter (KFM) is used 
at the continuous level to allow inferences on local linear 
components of a dynamic model. PF acts as a second filter 
on the discrete switching variables to regulate switches 
among successive elements of the piece-wise linear discrete 
dynamics. 

The learning of a DBN switching model from GEs implies 
the capability to cluster GEs into groups that show similar 
properties (similar dynamic linear behavior in state 
regions). To this end, the unsupervised clustering is 
necessary. The unsupervised clustering approach used to 
obtain clusters from GEs is the growing neural gas (GNG) 
algorithm [40]. The input multimodal GEs data sequences 
provided to each GNG here consists of GEs computed 
separately applying an initial filter to different agents data 
collected when performing a collective task. 

In this article, the algorithm used implies separate 
clustering to be applied to different vectors associated with 
a given derivative [refer (2)]. A successive hierarchical 
clustering step is applied to obtain GEs clustering thanks to 
synchronization information. Two ego-things are here 
considered for simplicity so that the input of each GNG 
consists of a 4-D vector. Therefore, for each modality, two 
GNGs have to be performed, one for the GE’s state 
component in (2), noted as GE0, and the second for the 
derivative component GE1 as provided by the initial filter. 
For example, the input vectors to the GNGs belong to the 
odometry modality is in the form as 

 GNG1,X1c,k  (4) 

 GNG2,X2c,k . (5) 
The output of each GNG consists of a set of clusters, each 

one characterized by the mean and the covariance matrix 
of GEs being attributed to that cluster, so providing an 
uncertainty-based boundary of each cluster. A cluster can 
see as nodes of a graph of switching variables. Each node 
groups a subset of samples of GEs (i.e., GE0 or GE1) that 
have a low distance wrt the mean of the region associated 
with the node. The nodes produced by GNGs are the 
discrete components or switching random variables of the 
CDBN model. For instance, the group of nodes created by a 
GNG of modality “c” of lth order time derivative vector of 
GEs written as 

 Sc,l = {S1,S2,...,Sm} (6) 

where m represents the maximum number of nodes 
produced by the GNG. The co-occurrence matrix requires 

a further post clustering step taking into account 
relationships between different GE spaces to find the 
temporal correlation between the switching variables. The 
nodes activating at the same time instance from GE0 and 
GE1 discrete cluster spaces are grouped as part of the 
hierarchical successive clustering step to form words. An 
example of a word is 

T 

c 
W(7) 

where Si represents the ith element of the group of nodes 
produced by GNG1 belongs to GE0. Likewise, Sj1 represents 
the jth element of the list of nodes produced by GNG2 (i.e., 
the GNG belongs to GE1 space). 

A unique label assigned for each word or combination of 
nodes and the complete list of formed vocabulary is called 
dictionary. The resulting dictionary is 

Dc ,...,  
where L represents each word’s unique label, m represents 
the index of the maximum number of elements in the 
dictionary. The dictionary information is used in MJPF for 
the joint prediction and estimation of future states of the 
ego-things. 

3) Feature Extraction: In this step, co-occurrence 
probability matrix has been estimated from the complete 
list of words. It provides the information about the GNG 
nodes enable in GE1 space corresponds to nodes in GE0 
space. The co-occurrence matrix for modality c can be 
represented as 

 Tc . (9) 
The rows of the matrix 1-m called transitional elements 

correspond to the total number of nodes generated from 
generalized error 0 (GE0) by GNG1. Similarly, the columns 
of the matrix 1-n are absorbing elements represent the total 
nodes produced by GNG2 of generalized error 1 (GE1). 
Each of the matrix elements θ is an estimation of the 
probability of occurrence between GE0 and GE1 spaces. 
For example, θ13 is a co-occurrence probability value 
between the first node of GNG 1 to the third node of GNG 
2. The causal relationships between different GE spaces 
help extract various features of the discrete cluster level 
from each modality’s viewpoint and summarized in the 
following. 

1) Odometry X–Y: The initial generalized filter produces 
GEs from the exteroceptive sensory data of odometry. 
Then discretized the GEs by GNGs and obtained GE0 
and GE1 cluster spaces. The generalized GE0 encodes 
the location information of the ego-things, and at the 
same time, GE1 gives focus to the direction of 



  

 

movements. Then, the co-occurrence matrix is 
estimated; it provides information about the causal 
relationships between GE0 and GE1 cluster spaces. In 
other words, for a given node in GE0 space (embed 
the position information), the co-occurrence matrix 
tells the possible future direction of movements of 
ego-things (i.e., the possible nodes enable in the GE1 
space) in probabilistic terms. All the information 
extracted from the GE0 and GE1 clusters, along with 
the help of the co-occurrence matrix, used to learn a 
filter. This filter produces errors or abnormalities 
when the prediction deviates from the actual 
measurements. Inside the filter, the spatial features 
embedded. Therefore, it can differentiate the types of 
dynamics of the ego-things based on spatial co-
ordinates in the provided context. When an agent 
network experience different from the one used to 
learn the filter, it will produce abnormality errors. 
That means the anomaly detection occurs when the 
existing filter fails to represent the new situation with 
the knowledge it already has. A new filter will be 
learned in this situation to embed the knowledge 
acquired from the current experience. If a similar 
experience happens in the future, the filter will 
represent the situation, and the knowledge will help 
in the joint decision-making of ego-things. This is an 
evolving concept; more details and results are 
provided in Section VI-A. The extracted feature from 
the exteroceptive odometry data will enrich each ego-
things’ contextual awareness in the network. In this 
level of abstraction, it can detect the spatial 
anomalies. 

2) Control S–P: Contrary to odometry modality, the 
control S–P modality extracts a slightly different 
feature of the networked system of ego-things. The 
filter differentiates the agents’ types of dynamics, and 
the location does not play any role. The activated 
GNG nodes in the cluster space of GE zero (GE0) 
during the ego-things’ linear movement enable a 
specific subset of nodes in the GE1 (derivative) space. 
Similarly, the dynamics in the curved part of the 
trajectory activates another subset of nodes in both 
GE0 and GE1 discrete spaces. The filter produces 
abnormality if the network goes through a different 
movement pattern than the one used for learning the 
filter. This feature helps to enrich the SA of each 
agent in the network. 

3) Control S–V: In line with the S–P modality, S–V 
modality also identifies the different types of 
dynamics of the agents’ network. Nevertheless, the 
performance differs based on the joint behavior of the 
proprioceptive low dimensional data used for 
learning the filter. When the joint nature of the low-
dimensional variables, i.e., steering and velocity, 
varies while performing a different task and 

movement patterns, the filter detects the abnormality. 
This is considered SA property as the used 
proprioceptive sensory data sequences represent the 
ego-things’ internal behaviors. 

Some of the important results of this discrete level filter, 
along with continual learning, are presented in Section VI-
A. 

Finally, the availability of words (estimated from clusters 
of GEs) allows the final step to learn the prediction models 
at the discrete level. To this end, the temporal transition 
probability between the discrete vocabulary of words can 
be computed by looking at the relative frequency of time 
transitions of data. The time sequence is analyzed again to 
this end to label each observation with words found by 
clustering and the frequency of changes estimated to 
complete the DBN model transition probabilities at the 
discrete switching variable level. 

4) CDBN Models: The previous sections present all the 
necessary steps involved in learning CDBN models. 
Each agent in the network learns three CDBN models 
in total, and each of them represents a particular 
sensory modality. As states before, all learned models 
are replica inside each ego-things in the network. The 
set of CDBN models learned by ego-thing ep and eq is 
the same for each other ego-thing in the system, and 
can be written as 

CDBNep = CDBNc1,CDBNc2,CDBNc3  

 = CDBNeq ∀p,q ∈ N (10) 



  

 

where c1, c2, and c3 represents the odometry, control S–P 
and control S–V modalities, respectively. Fig. 3 shows the 
representation of learned CDBN model (by considering two 
ego-things). The square nodes are discrete, and round nodes 
are continuous. The horizontal arrows that are in green and 
blue colors represent the conditional probability between 
two consecutive time instances at continuous as well as 
discrete levels. Moreover, the vertical arrows (orange and 
black in color) describe the causalities between inferences of 
different ego-things at discrete, continuous states and 
observation levels. 

B. Model Testing (Online Phase) 
This part explains the inference process applied to 

sequences when a given DBN model has been learned and is 
available. The inference process occurs at different levels of 
the CA models learned in the training phase. All the filters 
in this work are using the same method shown in Fig. 2. 
Therefore, they can produce new GEs that can be 
potentially useful for the continual learning of new models. 
Despite here, we describe a single step in this direction. 

The filters produced at the intermediate level [i.e., 
Filter(s) A in Fig. 1] have tested and analyzed the obtained 
results. The features extracted of the ego-thing by the 
estimation of the co-occurrence probability matrix used for 
this purpose. Each of the filters learned in the training 
phase will pass through the process shown in Fig. 2 (during 

the test phase) to detect abnormalities and to learn new 
filters whenever abnormalities occur. The results of the 
evolving emergent concept have been presented in Section 
VI-A. 

1) Joint States Estimation and Abnormality Measurements: 
The process flow diagram of the filter testing is shown in 
Fig. 2. We have proposed to apply a dynamic switching 
model called MJPF [29], [34] to make inferences on the 
CDBN models learned in the training phase (refer Fig. 3). 
In MJPF, we use Kalman filter (KF) [41] in continuous state 
space and PF [42] in a higher hierarchical discrete level. 
Each dynamic model in the continuous state is associated 
with one of the discrete set of vocabulary variable. The co-
occurrence and transition probability matrices model the 
switching probability from one mode to another. A detailed 
description of MJPF is described in [43, Sec. 2]. Here we 
provide a brief description to understand better how 
generative DBN models learned can drive the inference 
process and the related anomaly detection and fixing of 
GEs. 

The objective of MJPF is to iteratively estimate the joint 
posterior of discrete variables together with continuous 
states based on an observation sequence. The joint posterior 
decomposes into a categorical distribution, represented 
through a set of weighted particles and a set of continuous 
distributions assumed to be constituted by linear and 
Gaussian variables. The different continuous distribution is 
associated with different values of discrete variables. 

 

Fig. 2. General block diagram of CDBN model testing for two ego-things network. The processes involved in this test phase are common for all the 
filters learned during the training phase. The red dotted lines indicate communication over the wireless channel. 
 
 



  

 

Fig. 3. Single CDBN model for two agent networks. 

An MJPF is an inference mechanism associated with a 
switching DBN model, consists of a prediction/update steps. 
The particles are predicted using the Gaussian proposal 
function q = p(Wk + 1/Wk) using Monte Carlo chain concepts 
associated with a specific algorithm (for example, 
sequential importance resampling (SIR) PF [44]). To this 
end, the part of the generative model named temporal 
transition probability, estimated in the training phase, can 
be used. However, 
each particle prediction can perform at the continuous level 
by the KF applied to the different linear dynamic models 
learned during the training phase (using each cluster 
information). 

The propagation of particles allows the prediction of joint 
continuous/discrete posterior. The update step provides the 
new observed sensory data sample to the filter; this 
generates message passing through the DBN, allowing to 
update before continuous state variable inside the KF of a 
particle by means of innovation. Then the message reaches 
the discrete level where the difference wrt the transition 
model prediction introduces a new update. Updating allows 
the global weight of particles to be estimated to represent 
the new posterior. 

In the case of the proposed approach, the posterior 
probability density function associated with a switching 
model learned DBN related to modality c is 

pWkc,
X˜k(e1,e2,...,en),c/Zk(e1,e2,...,en)  

,...,en),c Wkc,Zk(e1,e2,...,en) 
/ 

  

 

× pWkc/Zk(e1,e2,...,en)  (11) 

where Wkc is the superstate random variable that represents 
words learned through clustering as the higher hierarchical 
level vocabulary of switching variables; X˜k(e1,e2,...,en),c 

represents the joint continuous state of all the ego-things at 
time instant k. 

D-MJPF uses (11) as the target posterior to be iteratively 
estimated jointly at the discrete and continuous state. The 
particles’ weight is iteratively computed and allows to 
approximate the posterior. The predicted particles that 
better match observations obtain the maximum weight, and 
their positions indicate where the higher probability mass 
of the posterior is concentrated. D-MJPF can apply to the 
sensory observed data variables of each modality. However, 
classical MJPF not having anomaly detection capability. To 
this end, an additional functionally has to be added to the 
D-MJPF. 

The abnormality estimation collectively computed in 
each ego thing constitutes the collective anomaly detection 
step. The abnormality information allows each ego-thing to 
measure how well the learned models fit the currently 



  

 

observed sequence. The anomaly metric used in this work 
is the filters innovation and estimated by the formula 

 δk,c = Zk(e,c1,e2,...,en) − HX
k(e,c1,e2,...,en) (12) 

where δk,c represents the innovation term, Zk(e,c1,e2,...,en) is the 

observations from all the ego-things that belong to modality 
c, H is the observation matrix and Xk(e,c1,e2,...,en) is the states 

estimated by the MJPF at time instant k. 
In MJPF, we treated the states of all the ego-things 

together. Each discrete zone has a number of KFs 
associated with it. The total number of KFs associated with 
each zone depends upon the number of particles assigned 
by the discrete level vocabulary. Each KF will calculate the 
innovation term and average for the estimation of 
abnormality. Suppose the model detects abnormal situation 
by testing with data set from a different experience than the 
one used in the training phase. In that case, the system 
stores the abnormality data and then learn a new model 
from the data. If no abnormality is detected (the innovation 
metric elements are zero), higher-level state estimation will 
be performed, and the process is repeated. By learning a 
new model from the abnormality data, the system can 
represent 

receiver to the sender. 

the new situation. If the system encounters similar 
experiences in the future, it will infer with the stored 
representation. 

2) Wireless Channel Effects Over the Model Performance: 
The network model of the ego-things is shown in Fig. 4. It 
shows the connections from sender ego-thing (ego-thing 1) 
to the receiver ego-thing (ego-thing 2); the same is assumed 
for the receiver ego-thing to the sender. Three 
environmental conditions, such as ideal (no loss), urban and 
rural, with two protocol standards implemented in the 
simulator. This work considered only the PHY and MAC 
layers of the protocols (IEEE 802.15.4 and IEEE 802.11p). 

The throughput of IEEE 802.15.4 is minimal and is less 
than the PHY bit rate of 50 kb/s. Continuous transmission 
of packets is not possible as the PHY layer needs to wait for 
Acks and the CSMA/CA has many timers. By taking into 
account the PHY layer and MAC layer overheads, the 
applications have only access to a theoretical maximum of 
about 50 kb/s. Therefore, we used a data rate of 50 kb/s in 
this work. When using 802.15.4, the type of network is an 
unslotted CSMA for the MAC layer, and the network is 
PAN with the first node (that starts the network) is the 
coordinator. Therefore, the connectivity type is ad-hoc if 
the number of ego-things is more than two. But IEEE 
802.11p supports device-to-device (D2D) connectivity 
among ego-things even if it consists of many IoT nodes. 

 
 
 
 

 

Fig. 4. Network model for two ego-things. The communication shown is from the ego-thing 1 (sender) to ego-thing 2 (receiver), and the same is for the 



  

 

The data gathered by the exteroceptive and 
proprioceptive sensors are encoded for the transmission 
over the wireless channel. The encoded data is sent over the 
channel, the receiver ego-thing collects this data and 
performs a decoding operation. Then, the joint data (of the 
sender and receiver ego-things) synchronize to match their 
data-acquisition time-stamps. A D-MJPF makes inferences, 
matches the predicted collective states with the observed 
sensory data to detect the abnormality. 

The theoretical analysis of the channel’s impact over the 
data is analyzed in this part, and then the metrics 
introduced in the next section are used to evaluate the 
model performance in the presence of packet loss and 
delays occurring in the channel. In Fig. 2, the red dotted line 
indicates the data exchange between the ego-things. The D-
MJPF will behave differently in situations like lost or 
delayed packets than how it behaved in an ideal (no loss) 
situation. The prediction step of the filter will perform 
jointly, and in the updating step, estimates the posterior for 
each ego-thing separately. Then estimate the innovation 
metric separately for each ego-thing. For instance, if the 
ego-thing 1 (e1) is not received packets from ego-thing n (en) 
within an allowed time frame or the packets lost in the 
channel, the filter will continue prediction based on the 
previous prior state estimate. Therefore, the covariance 
uncertainty increase more until the next observation 
arrives. As a result, the filter’s innovation term will become 
higher during those intervals of packets loss. In case the 
delay is more than the allowed time, the system will treat 
this situation as equivalent to lost packets. An example plot 
of the filter behavior in the presence of lost packets is shown 
in Fig. 5. 

 
 
 
 

 
The delay and the loss depend on various factors, such as 

the distance between the ego-things, the communication 
protocol in consideration, transmission power, the 
frequency, environmental factors, etc. In this work, we have 
considered a Rician channel for the study of fading between 
two ego-things. We have chosen this channel model by 
considering the distance between the two vehicles not being 
too high, and the Line of Sight (LOS) component exists 

between the objects. However, we also investigated the case 
where No LOS (NLOS) elements exist. 

The probability density function of Rician distribution is 

 f(x|υ,σ)  (13) 

where I0(xυ/σ2) is the modified Bessel function of the first 
kind and order zero, υ and σ are the signal strength of the 
dominant and of the scattered paths, respectively. Rician K 
factor is 

υ2 
 K = . (14) 

2σ2 
It expresses the ratio between the LOS path power 

component to the remaining multipath components. 
Therefore, υ2 and 2σ2 are the average power of the LOS and 
NLOS multipath components. As the direct wave weakens, 
the Rice distribution becomes Rayleigh. The K-factor value 
zero is equivalent to Rayleigh distribution. 

3) Model Performance Evaluation Metrics: The matching 
and verification operation was performed after estimating 
abnormality by the models inside each of the networked 
ego-things (refer Fig. 2). 

In all circumstances, models inside each ego-thing can 
ensure perfect observations from its own sensors. The 
models inside each ego-thing can predict their own future 
state and abnormality measurements without any 
problems. Simultaneously, the ground truth sensory data 
sent to other ego-things undergoes the channel effects, such 
as packet loss or delay while transmitting through the 
wireless channel. 

Consider an ego-thing e1, the CDBN models inside 
estimates the abnormality for itself by the ground truth 
observations collected by own sensors. This abnormality 

measurement we considered as a reference signal. 
Simultaneously, the same sensory data from ego-thing e1 
has been communicated to a second ego-thing e2, and the 
CDBN models inside ego-thing e2 performs abnormality 
estimation. This time, the transmitted observations were 
affected by the loss and delay and, consequently, the 
models’ state prediction and abnormality estimation 
capability. 

 

Fig. 5. Example of model behavior over lost packets. The confidence interval becomes high when the model not receiving real observations from the 
agent in the networks 



  

 

To measure the models’ performance degradation, we 
have initially estimated the mean squared error (MSE) [45] 
between the reference abnormality signal and the estimated 
abnormality after the influence of the wireless channel. The 
MSE values present the discrepancy between the two 
abnormality signals estimates for the same ego-thing. When 
more packets are lost in the channel or the delay becomes 
more than expected, the MSE values increases. In the 
future, the estimation of MSE values can be used to define 
further the threshold of how much loss the model can accept 
to assure a certain level of quality in performance. 

The formula to estimate MSE is as follows: 
n 

1 
MSE =  − ˆ (15) n 

i=1 

where ψi is the reference signal, and ψˆi is the signal to be 
compared. In our case, the reference signal (i.e., ψi) is the 
abnormality estimated without delay or loss, and ψˆi is the 
anomaly estimated after the packet loss or delay occurred. 
The estimated error value tells the reliability of the model 
for determining an abnormality under the channel’s effects. 

For an in-depth analysis of the model performance by 
considering the impact of the communication channel, we 
have considered metrics, such as accuracy and F1 score [46] 
in addition to MSE estimation. The accuracy is a measure 
of all the correctly identified samples in the anomaly 
measurements and is calculated by 
 TP TN 

ACC+ (16) 
TP + FP + TN + FN 

where TP (true positive) is an outcome when the model 
correctly predicts the anomaly and a TN (true negative) is 
an outcome where the model correctly predicts the normal 
situation. Similarly, FP (false positive) is an outcome where 
the model incorrectly predicts the anomaly, and FN (false 
negative) is an outcome where the model incorrectly 
predicts the normal situation. 

On the other hand, the F1 score is the harmonic mean of 
precision and recall and gives a better measure of the 
incorrectly classified cases than the accuracy. The 
estimation formula is 

∗ (Precision ∗ Recall) 

 F1 score2  (17) 
(Precision + Recall) 

where Precision is give by 
TP 

 (18)  Precision

TP + FP 

and Recall can be estimated by the following formula: 

 Recall . (19) 

 

Fig. 6. Environment and the vehicles used for the experiments. (a) 
Testing environment. (b) iCab platforms. 

The accuracy metric is used when TP and TN are more 
important, while the F1 score becomes an important 
measure when FP and FN are crucial. 

We have used the above evaluation metrics to compare 
the model performance under the communication channel’s 
influence by considering different protocols and presented 
the results and analysis in Section VI. 

V. EXPERIMENTAL STUDY 

This section explains the case study and the data sets used 
to validate the proposed methodology. Two intelligent 
autonomous vehicles named iCab (Intelligent Campus 
Automobile) having the same setup [47] used in this work 
and shown in Fig. 6(b). Each vehicle is equipped with 
sensors, such as one lidar, a stereo camera, laser 
rangefinder, and encoders. This work concentrated on the 
low-dimensional data of control, i.e., steering angle (s), 
velocity (v), and power (p), along with the odometry data (x 
and y positions) of the vehicles. The collected data is 
synchronized (intra and Ad-hoc inter synchronization) to 
align their timestamps. The two iCab vehicles perform joint 
navigation tasks in the rectangular trajectory shown in Fig. 
6(a) by keeping their position one after the other with a 
minimum distance among them. The vehicle navigates in 
the front called header (iCab1) and the one follows is the 
assistant (iCab2). 

To train and validate the performance of the CA models, 
mainly used three low dimensional data combinations, such 
as Odometry (X − Y), steering-power (S − P), and 
steeringvelocity(S − V) from Scenarios I and II described as 
follows. 

1) Scenario I [Perimeter Monitoring (PM)]: The iCab 
vehicles jointly perform platooning operation in a 
closed environment, as shown in Fig. 6(a). The 
navigation operation performed four times, one after 

 

 

 



  

 

the other, and collected the multisensory 
exteroceptive and proprioceptive data. The assistant 
vehicle (iCab2) mimics the actions of the header 
(iCab1) vehicle. Fig. 7 plots the odometry (x and y 
positions) data from both vehicles for the Scenario I 
PM task, blue and red circles indicate the starting 
positions of iCab vehicles. Moreover, Fig. 8 shows the 
example control signal plots of iCab1 vehicle, and the 
iCab2 control signals are similar as it mimics the 
action of the leader vehicle. In Fig. 8(a) and (b), the 
drop in values happened when vehicle maneuvering 
in the curves of the rectangular trajectory, and during 
rectilinear motion, the values of steering and velocity 
are 

 

Fig. 7. Odometry data for PM task (training data). 

 

Fig. 8. Control signal plots of iCab1. (a) Steering. (b) Velocity. (c) Power. 

more steady. In Fig. 8(c) shows the fluctuations in 
power values during the curved trajectory motion. 

2) Scenario II (Emergency Stop): While both iCab 
vehicles jointly navigate in a rectangular trajectory 
one after the other, a random pedestrian suddenly 
crosses in front of the header vehicle. As soon as the 
header detects the pedestrian’s presence, the vehicle 
automatically executes an emergency brake and waits 

until the pedestrian crosses and then continues the 
navigation operation. Subsequently, the assistant 
vehicle (iCab2) detects the anomaly in the header 
vehicle and performs an emergency brake operation 
until the header vehicle starts its movement again. 
The Odometry (X − Y) and control data combinations 
of Steering-power (S − P) and Steering-velocity (S − V) 
from this scenario used to test the fitness of switching 
CDBN models learned in the training phase. There 
are two sets of data of three combinations (X−Y, S−P, 
and S−V) prepared from Scenario II. Fig. 9 shows the 
plot of Odometry (X−Y) data. The first one is the 
emergency brake operation executed once in the 
complete navigation in the rectangular trajectory 
called Emergency stop 1 (ES1), as shown in Fig. 9(a). 
The second data set is collected while the pedestrian 
appeared twice, and an emergency stop was 

 

Fig. 9. Odometry data of test scenarios. (a) Emergency stop 1 (ES1). (b) 
Emergency stop 2 (ES2). 

 

Fig. 10. Clustering of GEs odometry X − Y (training data). Nodes 

indicate the cluster centers of associated data points. (a) GE0 space. (b) 

GE1 space. 

performed twice during the platooning operation 
performed in the rectangular trajectory. This second 
set of data is named ES2 (Emergency stop 2) and is 
shown in 
Fig. 9(b). 

In the real iCab experiments, the vehicles are connected 
with a base station to exchange data between them, not 
directly connected. We need an additional simulator for 
only the connection part to check how the model 
performance is affected by packet loss and delays happen 
by the wireless communication channel’s influence. For this 
purpose, we have used a simulated environment to 



  

 

exchange all the sensory data (Odometry and two 
combinations of control data along with their timestamp 
information) between the ego-things and measured the 
model’s performance by considering various parameters. 
We have used the opportunistic network environment 
(ONE) simulator in this work [48], and the graphical user 
interface (GUI) of the simulator is shown in Fig. 17. 
Simulated dynamic ego-things scenarios with two different 
protocols, such as IEEE 802.11p and IEEE 802.15.4, and 
compared the performance. 

The IEEE 802.11p protocol is one of the most feasible and 
widely considered standards in the intervehicles 
communication scenario, especially in autonomous vehicle 
networks [49]. On the other hand, IEEE 802.15.4 is suitable 
for lowcost, low-speed ubiquitous communication between 
connected devices [50]. Additionally, a new interface has 
been created in the ONE simulator to model the channel 
between the egothings as a Rician channel and set different 
values for its parameters, including transmitted power, 
central frequency, receiver sensitivity, and Rician K-factor. 

The data to be communicated between the ego-things are: 

X−Y position, steering angle (S), rotor velocity (V) and rotor 

power (P) of the iCab vehicles with their respective time 

stamps. In this way, we assume that the amount of data to 

be sent is 4 B for the position + 2 B for the steering angle + 

2 B for the rotor power + 4 B for the time stamp. By 

considering only Physical and MAC layers, the total size of 

each data packet for IEEE 802.11p is 48 (28 + 6 + 14) B, and 

for IEEE 802.15.4 is 29 (9 + 6 + 14) B. 

VI. RESULTS 

This section presents the results obtained by the proposed 
methodology applied to the real experimental data sets. 
Mainly three-level results demonstrated: first two levels 
treated the model performance in ideal condition, i.e., 
without considering channel effects. The final part includes 
comparing D-MJPF performance with different evaluation 
metrics by considering two protocols and channel 
conditions. 

A. Phase 1: Discrete Cluster Level Abnormality Detection 
The performance of the initial filters [i.e., Filter(s) A in 

Fig. 1] assessed with the ego-things various features learned 
by co-occurrence probability matrices. All the filters pass 
through the processes shown in Fig. 2 during the test phase. 
Scenario II data sets (ES1 and ES2) of different modality 
used in this part. The detailed analysis of the results is 
presented only for the Odometry modality to show the 
evolution of the emergent concept of continual learning 
(refer Section IV-A2). However, a brief description of the 

results from other modalities (i.e., control S−P and control 
S−V) provided. 

1) Odometry: An initial filter (i.e., unmotivated KF) 
applied to the Scenario I PM data of odometry (refer 
Fig. 7) and obtained GEs as output. By applying the 
GNG algorithm on the GEs (i.e., GE0 and GE1), 
discrete cluster space generated as shown in Fig. 10(a) 
and (b), respectively. The same colored nodes in plots 
Fig. 10 represent the mapping of GE0 and GE1 space 
found by the co-occurrence matrix. Each type of 
dynamics (i.e., horizontal, vertical, and curve motion) 
and location co-ordinates (i.e., lower, upper, right, 
and left) of the ego-things PM task trajectory (refer 
Fig. 7) enable a different subset of nodes in GE0 and 
GE1 cluster space. For example, Zone A (horizontal 
lower) in GE0 space [refer Fig. 10(a)] maps to Zone A 
(the cloud of cyan colored nodes) in GE1 space [refer 
Fig. 10(b)]. It is evident from the plots that the 
odometry modality extracts spatial features to detect 
a spatial abnormality. A filter A1 collectively learned 
from the information acquired by GEs cluster spaces 
and cooccurrence matrix of Scenario I PM data of 
odometry can predict the future nodes enable in GE0 
and GE1 space (refer Section IV-A2) and their 
correlation. This filter A1 tested with Scenario II, ES1 
data set [refer Fig. 9(a)] where the ego-thing pass 
through a different dynamics (i.e., emergency stop 
operation). Here, the predicted discrete nodes (letters) 
mismatch with the nodes (letters) enabled by the 
observed sensory data sequence everywhere except 
the interval where the emergency stop operation 
performed and is shown in Fig. 11(a). The projected 
segment and the nodes in red color indicates the 
presence of an abnormality. Whenever the ego-thing 

 

Fig. 11. Emergent concept of odometry: GE1 space (a) Test data 1 (ES1); 
(b) Test data 2 (ES2). The projected segments and the nodes in red colors 
indicate the presence of abnormality. 
passes through new experience (i.e., detected abnormality), 
it will automatically execute a new filter model learning 
from the new experience data set. A filter called A2 learned 
from this data can represent similar scenarios in the future 
with embedded knowledge. In the next step, the filter (A2) 
tested with another data set of Scenario II, ES2 [refer Fig. 
9(b)] where the pedestrian appears at two spatial locations 
of the vehicle maneuvering trajectory. The estimated 
anomaly is shown as the projected segment and nodes in red 



  

 

color in Fig. 11(b). The additionally enabled nodes are only 
in one spatial location (i.e., on the right-hand side) even 
though the emergency stop operation performed twice. It 
means that the filter A2 was well able to encode the first 
emergency stop with the embedded knowledge as it 
happened in the same spatial location of the data used to 
learn filter A2. But the second emergency stop operation 
performed in a different location, and A2 was unable to 
represent this situation and generated an anomaly. From 
this anomaly data, the ego-thing will learn a new filter (i.e., 
A3) that can embed this new experience’s knowledge to 
make inference in the future when the ego-thing pass 
through a similar experience. If we analyzed the plots, Figs. 
10(b) and 11(a) and (b) together, the evolution of emergent 
concept is self-explanatory. Whenever the system endures 
new experiences, automatically learn new filters to 
represent similar future experiences of egothings (by the 
knowledge encoded in the learned filters). Consequently, 
contextual awareness and the collective decision-making 
process of the system increases. 

Fig. 12. Clustering of GEs: Control S–P (training data). Nodes indicate 
the cluster centers of associated data points. (a) GE0 space. (b) GE1 space. 

 
2) Control S–P: This modality considers the 

proprioceptive sensory data of the control Steering-
Power (S−P) 
combination. The GEs discrete spaces produced from 
the PM task (Scenario I) control S–P plotted in Fig. 
12. The clustering of the GE0 shown in Fig. 12(a) and 
(b) is the GE1 space (i.e., S˙−P˙ discrete space). The 
nodes marked as Zone B in Fig. 12(a) and (b) shows 
the mapping between GE0 and GE1 spaces captured 
by the co-occurrence matrix. In GE0 space [refer Fig. 
12(a)], the steering angle values are either zero or 
near to zero for the linear movement of the ego-thing, 
and the values become more negative during the 
movement in curves (the considered data sets only 
consist the left-hand side curved movements). 
Simultaneously, the power values are almost stable 
during rectilinear movements, and in curves, it 
acquires different values. Similarly, in the GE1 space 
[refer Fig. 12(b)] Zone B represents the linear 
movements, Zone A and Zone C correspond to the 
nodes activated during the vehicles’ curved motion. 
Contrary to odometry modality, S − P modality is 

good for differentiating the types of ego-things 
different dynamics. When the learned filter from GEs 
of training data set tested with ES1 and ES2 task of 
Scenario II, few additional nodes activated to 
represent the emergency brake operation 
abnormality. Each of the abnormality is considered as 
a new feature to learn new filters. Contrary to 
odometry, the concept learned with control S–P able 
to detect and differentiate the anomaly during either 
the ego-things are in linear motion or the curved 
trajectory. The spatial location is not significant in 
this case. This emergent concept learned from the 
proprioceptive control modality enriches the SA of 
each ego-things in the network. 

3) Control S–V: The plots of discrete space for control S–
V modality are shown in Fig. 13. Zone A in GE0 space 
[refer Fig. 13(a)] represents the rectilinear movement 
of the ego-thing, and it enables the nodes located in 
Zone B of GE1 space, as shown in Fig. 13(b).  

Fig. 13. Clustering of GEs: Control S–V (training data). Nodes indicate 
the cluster centers of associated data points. (a) GE0 space. (b) GE1 
space. 
 

4) Similarly, Zone B in GE0 space activates 
either Zone A or Zone C in the GE1 space. During 
linear movement, the steering acquired zero or 
nearby values, but the velocity would be maximum. 
During curves, steering values can be more positive or 
more negative. In our considered scenarios to collect 
data sets, the vehicles perform only curve to the left 
side so that steering values are more negative. This 
modality helps to understand the different movement 
patterns of the ego-things and enrich the SA. The 
concept learned for S–V modality shown similar 
results of 



  

 

Fig. 14. Abnormality measurements for odometry. (a) iCab1. (b) iCab2. 

Fig. 15. Abnormality measurements for control (SP): (a) iCab1. (b) iCab2. 

S–P modality except for the difference in the 
collective behavior of the data variables considered. 

The continual learning of filters from ego-things new 
experiences are self-explainable in this sense. The peculiar 
features will be encoded inside the filter learned from 
different experiences of ego-things. The filter models learn 
and update incrementally whenever the system passes 
through new experiences, as shown in Fig. 2. In this way, 
the agents are more intelligent; they have the functionality 
of detecting abnormality and describing it at different 
abstraction levels. 

B. Phase 2: Anomaly Detection by D-MJPF 
In this part, we have applied D-MJPF on the CDBN 

models [Filter(s) B in Fig. 2] learned from the data 
sequences by considering three different modalities. Inside 
each ego-thing, three models learned in total from the data 
of PM task performed by two vehicles. The considered low 
dimensional data combinations are X–Y position odometry 
data, steering-power (S–P), and steering-velocity (S–V). 

To test the models’ efficiency, we have used the ES1 data 
set of the aforementioned variable combinations of Scenario 
II. The models were able to detect the vehicles’ emergency 
brake’s abnormal behavior when a pedestrian appears in  

 

 
 
front of the header vehicle. Figs. 14–16 show the 

abnormality plots of Odometry X −Y, control S −P, and 
control S −V, respectively, for iCab1 and iCab2 vehicles. 
The region inside the dotted rectangular box represented 
the interval when vehicles performed emergency brake 
operation. The abnormality metric used was the innovation 
of the D-MJPF, i.e., the difference between the predicted 
states and the ground truth observations [refer (12)]. As 
shown in Figs. 14–16, there is a significant rise in the 
innovation measurements during the intervals when the 
emergency brake operation executes. 

The data-driven models can not only provide a global 
estimation of anomalies based on the whole set of 
multidimensional generalized variables used in the models 
but also provide an insight of anomaly related to single 
specific components of the model. For example, the model 
learned from S–P data sequences was able to estimate the 
behavior of only steering (S) or only power (P) of the vehicle 
efficiently. It is an additional explainability feature of the 
model. 



  

 

C. Evaluation of Model Performance After the Channel 
Effects 

Inside each vehicle, we have three different CDBN models 
(represented as three different colored blocks in Fig. 2), and 
the models inside each ego-thing are the same. In Phase I 
and Phase II of CDBN model testing, we assumed all the 
ground 

Fig. 16. Abnormality measurements for control (SV): (a) iCab1. (b)iCab2. 

 

Fig. 17. GUI of ONE simulator. 

truth observations are available to all the ego-things 
without data packet loss and delay. 

The ONE simulator here used to measure the channel 
effects over the transmitting data. A network can be 
affected by different types of delays, such as a propagation 
delay, transmission delay, queuing delay, and processing 
delay [51]. However, this work considered the propagation 
delay, and the packets arrive with a considerable delay are 
assumed equivalent to lost packets. 

In ONE simulator, included six routing protocols, such as 
direct delivery (DD), first contact (FC), Spray-and-Wait, 
PRoPHET, MaxProp, and Epidemic, and set the movement 
model as MapBasedMovement [48]. However, we have 
chosen DD as the number of dynamic objects is limited to 
two in this work. The real trajectory data of the PM task 
(Scenario I) described in Section V is inserted in the 
simulator as the well known text (WKT) file format and 

created two dynamic nodes that represent the header 
(iCab1) and assistant (iCab2) vehicles. Fig. 17 shows the 
simulator environment. 

The parameters used in ONE simulator are summarized 
in Table I. Both of the protocol have some features and, at 
the same time, some limitations. For example, IEEE 
802.15.4 protocol allows low power transmission, but we  

 
 
 
 
need to compromise with the low data rate, which leads 

to more packet loss. On the contrary, the IEEE 802.11p 
protocol supports a high data rate, but the transmission 
power is comparatively 

 
TABLE I 

SIMULATION PARAMETERS FOR ONE SIMULATOR BY CONSIDERING 
PROTOCOL IEEE 802.11P AND IEEE 802.15.4 

    

    
    

    
    

    
    
    

 
TABLE I 

DATA DELIVERY PROBABILITY OVER TWO DIFFERENT PROTOCOLS, 
DATA RATES AND K-VALUES 

    

    
    

 
high. The K-factor value of 3 refers to the rural 
environment, and the loss becomes less. Whereas the loss 
increases when K-value becomes low, such as zero, it 



  

 

represents the urban environment where NLOS 
components are available. The receiver sensitivity column 
shows the minimum values of the signal-to-noise ratio 
(SNR) at the receiver to guarantee successful data reception 
[52]. 

The data delivery probability between the sender vehicle 
and receiver vehicle has been estimated and summarized in 
Table II. As expected, the probability values are low where 
the NLOS component presents, i.e., K = 0 and increased for 
the LOS scenario, i.e., K = 3 (rural environment). When 
more data packets lose, the CDBN model performance 
degrades in the estimation of future sates of the vehicles, 
and as a result, abnormality estimation gets affected. 

The abnormality estimated in Section VI-B by the D-
MJPF in ideal condition compared with the estimated 
abnormality in the presence of channel effects. For the 
evaluation of models performance, we have used different 
metrics, such as MSE, Accuracy and F1 score (refer Section 
IV-B3). 

We presented here the results for the header vehicle 
(iCab1) only. The CDBN models of the header vehicle 
(iCab1) estimated anomaly by own multi sensory observed 
data. Simultaneously, the same data transmitted to the 
assistant vehicle (iCab2) over the wireless channel. The 
CDBN models inside the assistant vehicle estimate the 
header vehicle’s abnormality along with its own 
abnormality. 

The estimated results (MSE, Accuracy and F1 score) are 
summarized in Tables III–V. The model’s performance was 
least (highest MSE value) when used the IEEE 802.15.4 
protocol (refer Table III) standard, and the K-factor value 

is zero. However, the MSE metric is not taking into account 
accuracy, precision, etc. So that we further estimated the 
accuracy and F1 score for better studying and analyzing the 
model performance. Accuracy and F1 score were high when 
used IEEE 802.11p with a data rate of 18 Mb/s as in Table 
IV, and MSE values were least in this case as expected. This 
is considered as the best performance under the channels’ 
influence. Table V summaries the model’s performance 
when used IEEE 802.11p with a 27-Mb/s data rate. The 
Accuracy and F1 score were better than IEEE 802.15.4 and 
worse than IEEE 802.11p, 18-Mb/s data rate. 

In summary, data rates, transmission power, received 
sensitivity, environmental conditions, etc., plays a role in 
the model performance. We need to carefully set the 
parameters and choose the appropriate protocol by 
studying the application area and the resources available. 
In this work, the payload size was not so big, so that the 
model performances did not degrade too much. Once the 
payload size goes high, it affects the model performance. In 

the future, the work will extend with a larger payload size 
and also include more parameters. 

VII. CONCLUSION 

This article presented a method to develop multimodal 
CA for networked IoT nodes performing joint tasks. The 
IoT nodes in his work are autonomous vehicles, and each of 
the vehicles is assumed to be having machine learning 
capabilities. The CDBN models learned from exteroceptive 
and proprioceptive sensory data have the functionality to 
extract unique features of the system related to self and CA 
and detect abnormalities happening anywhere in the 

TABLE III 
IEEE 802.15.4 MODEL PERFORMANCE EVALUATION 

    
          

          
          
          

TABLE IV 
IEEE 802.11P, DATA RATE: 18-MB/S MODEL PERFORMANCE EVALUATION 

    
          

          
          
          

TABLE V 
IEEE 802.11P, DATA RATE: 27-MB/S MODEL PERFORMANCE EVALUATION 

    
          

          
          
          

 



  

 

networked ego-things. The CDBN models are data driven 
and capable of detecting abnormalities at different 
abstraction levels. The distributed state estimation is 
performed by D-MJPF associated with each CDBN model. 
The models inside each agent can synchronously estimate 
the possible abnormalities around any of the agents in the 
network. Moreover, the models can describe abnormality 
related to single specific components of the vector used for 
model learning; this is an additional explainability feature 
of the models. 

In the offline training phase, the multisensory data 
collected when the agents are performing a joint task is used 
to learn the CDBN models. In the online test phase, the 
model’s fitness tested with the data sets from a new joint 
task different than the one used in the training phase. The 
presented results at different abstraction levels provide 
evidence for our method’s efficiency in detecting abnormal 
situations in the networked agents. Moreover, we have 
analyzed the effects of wireless communication channels on 
the model performance by considering different 
communication protocols and channel conditions. Then 
finally compared the obtained results by different 
performance evaluation metrics. 

Future research could analyze the model performance 
when more ego-things are communicating. Moreover, 
different metrics for the abnormality estimation can be 
included in the model and compare the performance. It can 
also embed additional functionalities to extract more 
networked ego-things features by including different 
cooperative scenarios. 
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