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The developmental transition from flowers to the mature dia-
spores (seeds or fruits) depends on cell growth and differen-
tiation (Finch-Savage et al., 2006; Balanza et al., 2016). The 
plant cell wall is a dynamic nanoscale network for which the 
classical model and role of xyloglucan–cellulose tethers in wall 
structure and cell growth was challenged by recent results from 
genetics, biomechanics, and advanced imaging (Moulia, 2013; 
Cosgrove, 2018; B. Zhang et al., 2021). Xyloglucan (XyG), the 
predominant hemicellulose, is composed of a β-1,4-glucan 
backbone that is consecutively substituted with α-1,6-linked 
xylosyl residues (Frankova et al., 2013; Pauly et al., 2016). Di 
Marzo et al. (2022) demonstrated that the MADS-box tran-
scription factor SEEDSTICK (STK) specifically controls 
seed and fruit biology by α-xylosidase (XYL) mediated XyG 
remodelling.

Specific cell wall remodelling is decisive for generating 
the diversity in morphological, biomechanical, and physio-
logical traits of dispersed diaspores during seed and fruit de-
velopment (Steinbrecher et al., 2017; Landrein et al., 2019; 
Seale et al., 2020; Arshad et al., 2021; Huss et al., 2021). It is 
of similar importance in the control of germination timing 
via dormancy, seed responses to abiotic stresses including heat 
(thermoinhibition), and seedling growth required for plant es-
tablishment and survival in a particular environment (Finch-
Savage et al., 2006; Shigeyama et al., 2016; Finch-Savage et al., 

2017). A representative structural unit of XyG is composed 
of four β-1,4-linked glucose molecules (backbone) of which 
three have α-1,6-linked xylose side chains in Arabidopsis thaliana 
(XXXG; see Box 1 for nomenclature). The xylosyl residues are 
often modified with β-1,2-linked galactosyl residues which 
may be additionally α-1,2-linked with fucosyl residues (Box 1). 
A machinery of specific glycosyl transferases, transglycosidases, 
and hydroxylases generates the diversity in XyG structures, 
with XyG α-1,6-xyosyltransferases (XXTs) adding αXyl res-
idues, and α-xylosidases (αXYLs) cleaving xyloysl residues 
from the non-reducing end of XyG cell wall components 
and XyG oligosaccharides (Frankova et al., 2013; Pauly et al., 
2016; B. Zhang et al., 2021). Interestingly, while XyG-deficient 
A. thaliana xxt mutants exhibit only minor morphological 
phenotype changes, xyl1 mutants lacking α-xylosidase enzyme 
activity exhibit altered XyG side chains, free XyG oligosac-
charide accumulation, and specific phenotypic defects during 
reproduction, seed dispersal, germination, and seedling growth. 
Di Marzo et al. (2022) demonstrate that the expression of the 
XYL1 gene is directly regulated in developing seeds and fruits 
by the STK transcription factor.

Box 1 summarizes seed- and fruit-associated morphological, 
biochemical, biomechanical, and physiological changes of xyl1 
and stk mutants, including reduced silique elongation growth 
and increased cell wall stiffness in both, as well as altered XyG 
side chains, accumulation of free XXXG oligosaccharides, lack 
of seed dormancy, and increased seed thermotolerance of the 
xyl1 mutant (Sampedro et al., 2010; Günl et al., 2011; Sechet 
et al., 2016; Shigeyama et al., 2016; Di Marzo et al., 2022). 
Likewise, results from bgal10, bgal6 (mum2), axy8, and bglc1 
mutants are presented which have reduced β-galactosidase, 
α-fucosidase, and β-glucosidase enzyme activities, respectively. 
They all have cell wall XyG with altered side chains and free 
XyG oligosaccharide accumulation (Iglesias et al., 2006; Dean 
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Box 1. Xyloglucan remodelling and cell wall biomechanics during Arabidopsis thaliana seed and fruit biology

Specific XyG remodelling by a battery of enzymes (A) has profound roles during reproduction, seed dispersal, and germination 
(B–E). The control of reproduction by the MADS-box transcription factor STK is achieved in part by αXYL-mediated cell wall 
remodelling (B) combined with other pathways which may differ between seed and fruit development (see cited references 
and figure 7 in Di Marzo et al., 2022). The control of silique growth (C) by STK, for example, requires XYL1 with a reduced 
silique size and increased valve cell wall stiffness in both the stk and the xyl1 mutant. There were no obvious morphological 
phenotype changes observed in axy8 and bglc1 mutants. In contrast to this, bgal and xyl1 mutants exhibited specific seed- 
and fruit-associated phenotype changes. As for the xyl1 mutant, reduced silique elongation growth was also observed in 
the bgal10 mutant (Sampedro et al., 2012); however, in contrast to the non-dormant xyl1 mutant seeds, the seeds of bgal10 
mutants are dormant. The seeds of bgal6 (mum2) (Dean et al., 2007), stk (Ezquer et al., 2016), and stk/xyl1 mutants are 
impaired in mucilage production (B), whereas xyl1 mutant seeds have wild-type (WT) phenotype and produce mucilage (Di 
Marzo et al., 2022). As in the xyl1 mutant, increased cell wall stiffness (C) was also observed in developing seeds of the stk 
mutant (Ezquer et al., 2016) and may lead to its smaller seed size as well as the defects in seed coat development in that 
stk, but not xyl1, mutant seeds are impaired in mucilage production (B) and impaired seed abscission [D; from Balanza et al. 
(2016) with permission (https://doi.org/10.1242/dev.135202)] required for seed dispersal (Balanza et al., 2016). STK seems 
to achieve this via the MUM2 gene encoding a βGAL6 involved in pectin and possibly also XyG remodelling (Dean et al., 
2007; Ezquer et al., 2016). The bgal10 mutant is also reduced in silique growth (C), impaired in seed mucilage production, 
and XyG remodelling (Sampedro et al., 2012). The production of dormant seeds (E) is not affected in the bgal10 and axy8 
(the AXY8 gene encodes an αFUC) mutants, but xyl1 mutant seeds are non-dormant (Sechet et al., 2016). Interestingly, the 
non-dormant xyl1 mutant seeds are thermoinhibition resistant (E) and have increased hypocotyl cell wall stiffness in creep-
extension analysis (Shigeyama et al., 2016). Altered XyG in cell walls and the accumulation of free XyG oligosaccharides 
(C, E) were associated with the altered fruit and seed phenotypes of the xyl1 (Iglesias et al., 2006; Sampedro et al., 2010; 
Günl and Pauly, 2011; Sechet et al., 2016; Shigeyama et al., 2016; Di Marzo et al., 2022), bgal10 (Sampedro et al., 2012), 
axy8 (Günl et al., 2011), and bglc1 (Sampedro et al., 2017) mutants. DAP, days after pollination.
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et al., 2007; Günl et al., 2011; Sampedro et al., 2012, 2017). 
XYL1 and the transcriptional regulation of its expression 
by STK plays a major role in the control of seed and fruit 
mechanical properties by XyG remodelling (Box 1); however, 

depending on the specific process or tissue, other interacting 
pathways may dominate.

An integrated approach combining genetics with biomech-
anical and image analysis appears to be important for advancing 

Box 2. Biomechanics and XyG remodelling enzymes during Aethionema arabicum fruit and seed dimorphism

Heteromorphic species can produce seed and fruit morphs that are distinct in dispersal, germination, morphology, and 
physical properties (Lenser et al., 2016). The dimorphic species Aethionema arabicum naturally exhibits the production 
of two different seed and fruit morphs on the same plant (A). In addition to this interesting developmental control, it 
exhibits phenotypic plasticity in that the ratios and numbers are controlled by environmental cues during reproduction. 
Comparative transcriptome analysis of the dimorphic fruit and seed developmental programme revealed differences 
in transcription factor and downstream gene expression (Wilhelmsson et al., 2019; Arshad et al., 2021). This includes 
the transcript abundances of STK and XyG remodelling enzymes (B), and suggests that XyG may differ between the 
fruits and seed coats of the two morphs. Aethionema arabicum develops a larger dehiscent fruit (DEH) with 2–4 M+ 
seeds (with mucilage) and a smaller indehiscent fruit (IND) with a single non-mucilaginous (M–) seed (A). Fruit opening in 
IND fruits needs significantly higher forces than in DEH fruits. When the linear regions of individual force displacement 
curves (the part prior to breakage) are compared (C), IND fruits (separation area 0.86 ± 0.03 mm2) show a faster increase 
in force per mm and therefore a higher elastic modulus than DEH fruits (separation area 6.94 ± 0.14 mm2) (Arshad et 
al., 2019). Dimorphic fruits with distinct cell wall architecture are ideal model systems to investigate the effects of cell 
wall polysaccharide composition and dynamics on seed and fruit size, as well as their biomechanical properties and 
developmental patterns.
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our understanding of XyG remodelling and cell wall mech-
anics in seed and fruit biology (Sechet et al., 2016; Shigeyama 
et al., 2016; Di Marzo et al., 2022). Using atomic force mi-
croscopy (AFM) to analyse silique valve cell wall stiffness, Di 
Marzo et al. (2022) demonstrate that developmentally regu-
lated XYL1 gene expression is required for maintaining wall 
integrity during silique growth. Using creep-extension ana-
lysis with elongating stem segments, Shigeyama et al. (2016) 
reported that xyl1 mutant cell wall stiffness was higher than 
in wild-type plants. This work also demonstrated that epi-
dermal cells of xyl1 mutant siliques are longitudinally shorter 
and horizontally enlarged, a finding which fits with the in-
creased cell wall stiffness in xyl1 mutant siliques reported by Di 
Marzo et al. (2022). Although different biomechanical methods 
were used, in both cases the same conclusion about the role 
of αXYL in controlling cell wall mechanical properties (stiff-
ness) was obtained. Interestingly, the silique elongation growth 
is reduced in XyG-deficient xxt1/xxt2 mutants (Sechet et al., 
2016), and the cell wall stiffness tested by microtensile assays 
of hypocotyls was also decreased compared with the wild type 
(Cavalier et al., 2008). The importance of the right balance in 
XyG remodelling enzymes (Box 1) seems crucial, and both 
XXT-mediated incorporation and αXYL-mediated removal 
of xylosyl residues can lead to the same biomechanical changes.

The αXYL-catalysed cleavage of xylosyl residues from the 
non-reducing ends of cell wall XyG chains and XyG oligosac-
charides has been shown to be the limiting step in XyG oligo-
saccharide degradation (Iglesias et al., 2006; Shigeyama et al., 
2016; Sampedro et al., 2017). Released XyG oligosaccharides 
can also alter cell wall properties by incorporation catalysed 
by XyG endotransglycosylase (XET) enzyme activity (Box 1). 
In grass caryopses, this may lead to coleorhiza-enforced dor-
mancy due to tissue stiffening (Holloway et al., 2021) and in 
tomato and other endospermic seeds tissue to weakening of the 
micropylar endosperm (Finch-Savage et al., 2006; Steinbrecher 
et al., 2017). XyG oligosaccharides were also proposed to dir-
ectly or indirectly mediate cell wall signalling which can result 
in altered hormonal biosynthesis or signalling (Frankova et al., 
2013; Pauly et al., 2016; Sechet et al., 2016; Shigeyama et al., 
2016; B. Zhang et al., 2021). The structure of XyG differs be-
tween plant species especially in diversity of the side chains; 
however, despite this, conservation in XyG remodelling mech-
anisms and enzymes was also established (Pauly et al., 2016; 
Rubianes et al., 2019; Holloway et al., 2021). Mutants in XyG 
remodelling enzymes, such as in STK and XYL1 in the work 
of Di Marzo et al. (2022), are indeed highly suited to advance 
our understanding of the mechanisms of cell wall biochemistry 
and biomechanics (Box 1).

Within the Brassicaceae, the dimorphic diaspores of 
Aethionema arabicum offer another interesting approach into 
cell wall biology during reproduction (Box 2). In Ae. arabicum, 
the developmental control and plasticity of fruit and seed 
morphs is associated with morphological, biomechanical, 

gene expression, and physiological differences between the 
morphs (Lenser et al., 2016; Wilhelmsson et al., 2019; Arshad 
et al., 2029, 2021). Comparing the distinct seed and fruit 
morphs of heteromorphic species therefore provides very 
interesting systems for future research into cell wall biochem-
istry and biomechanics including for XyG remodelling en-
zymes (Box 2).

Environmental conditions play a key role in seed and fruit 
biology (Finch-Savage et al., 2017; Fernandez-Pascual et al., 
2019). Temperature during reproduction can shift the ratios 
and numbers of the Ae. arabicum fruit and seed morphs (Lenser 
et al., 2016). Temperature and photoperiod contribute to 
population fitness by affecting seed coat cell wall properties 
(thickness, proanthocyanidin content) and thereby dormancy 
in other species (Finch-Savage et al., 2006; Mizzotti et al., 2014; 
MacGregor et al., 2015; Fernández Farnocchia et al., 2021). 
The cell wall is a highly dynamic and adjustable structure, and 
its biomechanical properties are determined by specific cell 
wall compositions for which new modelling approaches are 
being pursued (B. Zhang et al., 2021; Y, Zhang et al., 2021). 
Integrating molecular work with morphological and bio-
mechanical analysis, as exemplified by Di Marzo et al. (2022), 
and further with such novel modelling approaches are prom-
ising prospects for future research into this fascinating topic.
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