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Abstract 
 
Rhombohedral graphite thin films, or ABC stacked multilayer graphene systems 
had been attracting a lot of theoretical interest due to their predicted extremely 
flat bands in the low energy limit which were in principle susceptible to various 
many body interactions such as magnetism and superconductivity.  However, due 
to the competing Bernal hexagonal phase being more energetically favourable, 
experimental investigations into rhombohedral stacked graphite films had been 
limited. Despite the recent breakthrough in identification of rhombohedral 
domains in exfoliated graphite films, the electron transport investigation into 
rhombohedral graphite films were carried out up to tetra-layer systems. This 
thesis reports the first experiments that systematically characterises 
rhombohedral graphite films up to 50 layers encapsulated by high quality hBN 
crystals. We find that, at high temperatures (above 50K) conduction properties of 
rhombohedral graphite films are dominated by thermal activation across the bulk 
gap resembling an intrinsic semiconductor. At lower temperatures however, a 
semiconductor-metal transition manifests itself with conduction across the 
metallic surfaces dominating transport properties, thus enabling the electron 
transport investigation of low energy flat bands. Through Landau level 
spectroscopy, we find that low energy band structure undergoes a trigonal 
warping as well as a modified dispersion. The low energy bands become not as 
flat as originally predicted having a E∼ p2 dispersion with a Berry phase of Nπ. We 
find that, on samples with 9-12 layer thickness, an interaction induced gap opens 
at the charge neutrality point accompanied by Berry curvature. Magnetic field 
characterisation of the gap as well as its hysteretic behaviour suggests possible 
magnetisation accompanied by the gap opening. We also find that, as predicted 
theoretically, above a finite displacement field which overcomes the screening 
ability of surface charges of rhombohedral graphite films, a band gap opens, with 
this gap opening being absent on samples with stacking faults. Lastly, we study 
the transport properties of bulk charges, demonstrating a thickness (bulk-carrier 
density) dependent cross-over from three dimensional weak-antilocalization to 
weak-localization. We also show that, there is a finite Lorentz force induced 
displacement field generation on rhombohedral graphite when an in-plane 
magnetic field is applied perpendicular to current.  
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Overview 
 
 
This PhD thesis, being about first systematic study of electronic properties of 

mesoscopic rhombohedral graphite thin films encapsulated by hBN crystals, lies at 

the interface of graphene physics, van der Waals heterostructure devices and 

topological matter. 

 

Chapter 1 is a general introduction of the thesis, that reviews existing work on 

rhombohedral graphite systems that are both theoretical and experimental. The 

chapter introduces tight binding approach of modelling graphene and 

rhombohedral graphite, which is the most powerful method for modelling this 

system. Central concepts to graphene quantum transport such as pseudospin, 

valley, Berry phase and chirality are discussed which are shown to be also equally 

valid for rhombohedral graphite films. Topological properties of rhombohedral 

graphite films are discussed where its highlighted that the system is a 3D 

generalisation of 1D topological insulator model Su-Schrieffer-Heeger chain. The 

Landau level spectra, interaction induced gapped phases, such as spontaneous 

quantum Hall states and superconductivity, as well as a displacement field induced 

gap in the low energy bands are discussed.  

 

Chapter 2 is an introduction of electron transport. The concepts of effective mass, 

mobility and conductivity are discussed. Hall effect is introduced, as well as its 

quantum, anomalous and quantum anomalous analogues. Lastly, weak 
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(anti)localization is discussed as a very central phenomena to the field of quantum 

transport.  

 

Chapter 3 is a chapter dedicated to experimental details including and starting from 

fabrication of the devices, discussion of measurement electronics and control of the 

parameters such as temperature and magnetic field in the laboratory.   

 

Chapter 4 shows that there is an interesting interplay of bulk and surface 

conduction in rhombohedral graphite as a function of temperature where a 

transition into a metallic phase takes place due to surface dominated transport at 

low temperatures from bulk dominated transport at high temperatures.   

 

Chapter 5 discusses Landau level spectroscopy of low energy surface states and the 

implied low energy band structure.   

 

Chapter 6 is dedicated to a spontaneous gap opening at the low energy flat bands 

of 9-12 layer rhombohedral graphite films with peculiar symmetry properties.   

 

Chapter 7 is about displacement field induced gap opening in pristine 

rhombohedral stacked systems and how it is a signature of the absence of stacking 

faults. 

 

Chapter 8 is dedicated to bulk charges and how they display three-dimensional 

transport due to the in-plane momentum dependent quantised kz momenta they 

possess. 

 

Chapter 9 summarises the thesis.  
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Chapter 1 – Review of 
rhombohedral graphite 
 
 

1.1. Introduction 
Shortly after the discovery of quantum Hall effect by von Klitzing et al.[1] in 1980, 

topological nature of it was demonstrated by Thouless et al.[2] in 1982. It was 

found that realisation of quantisation of Hall conductivity at various integers is 

represented by celebrated Thouless-Kohmato-Nightengale- den Nijs invariant, 

which has later become known a Chern number. Before the turn of the same 

decade, in 1988, Haldane[3] showed that on a honeycomb crystal, with broken 

time-reversal symmetry, a quantum Hall effect may arise even in the absence of 

magnetic field, thus predicting what is known as anomalous quantum Hall effect.  

 

A few decades later, with the discovery of graphene by Novoselov et al.[4] in 2004, 

the theoretical toy model that Haldane and many others used was now available in 

practice. Moreover, with the demonstration of its peculiar relativistic quantum Hall 

effect, associated Berry phase and valley degree of freedom graphene in the 

coming years was able to lead to an explosion research in field of meso and 

nanoscopic physics both experimentally and theoretically[5]–[7]. 

 

One of these early theory works, by Kane and Mele[8], suggested that the very 

weak spin orbit interaction in graphene may lead to a very small gap, in the 

presence of time-reversal symmetry, thus leading to a new quantized Hall effect 
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with associated quantized spin currents. Unlike integer and anomalous quantized 

Hall effects which are characterised by Chern numbers, this new effect was found 

to be described with namely a different invariant, which has been dubbed as the Z2 

invariant[9].  

 

The generalisation of Kane and Mele’s work to three dimensions has led to 

prediction of a new class of material, which were named as topological 

insulators[10]–[12]. Topological insulators were predicted to be insulating in bulk 

with low energy two-dimensional surface states having close analogies to graphene 

with a linear dispersion relation, and Berry phase[13], [14]. Later on classes of 

topological materials were expanded into Weyl and Dirac semimetals which were 

found to exhibit linear dispersion relation and relativistic quantum phenomena in 

3D[15].  

 

Meanwhile, the family of two-dimensional systems was also growing. Novoselov    

et al.[16] showed shortly after graphene that their scotch tape method was 

applicable to other van der Waals crystals, namely hBN, MoS2, NbSe2 and so on. Out 

of these materials, hexagonal boron nitride (hBN), also possessing a honeycomb 

crystal structure with a similar lattice parameter to graphene, was found to be 

insulating, possessing a large band gap even in monolayer limit. In 2010 Dean et 

al.[17] demonstrated the use of hBN as a substrate due to its remarkably smooth 

surface for high quality electronics which has kick started developments in what 

came to be known as van der Waals heterostructures.  

 

Utilizing hBN as a substrate, in particular by forming a superlattice by aligning 

monolayer hBN and (mono/bi)-layer graphene crystals a fractal phenomenon in the 

electronic structure in the presence of magnetic field, called Hofstadter butterfly 

was observed[18]–[20]. Moreover, placing of graphene on hBN crystals was found 

to be generating a band gap (when the two crystals are aligned) leading to a finite 

Berry curvature and detection of topological currents in form of valley Hall 

effect[21]. Due to the self-cleansing mechanism and atomically smooth surface of 
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hBN, crystals of 2D materials are now widely encapsulated by hBN crystals, which 

has also enabled studies into air sensitive materials[22], [23].  

 

Rhombohedral (ABC) stacked graphene systems have been subject to intense 

theoretical studies often being referred to as an N-layer generalisation of graphene, 

possessing flat surface bands with a Berry phase of N𝜋 as well as 2N-2 gapped bulk 

sub-bands which become 3D Dirac cones in bulk limit that spiral in kz momentum 

space[24]–[31].  The flat bands have also been predicted to exhibit spontaneous 

quantum Hall states, as well as superconductivity[32], [33]. Rhombohedral stacks of 

graphene are an example of 3D generalisation of a Su-Schrieffer-Heeger chain, and 

belong to a new class of topological materials, namely the nodal line 

semimetals[34]–[36]. The flat bands arise as drumhead surface states whose 

boundaries are set by the projection of bulk nodal lines to the surface.  

 

Despite these exotic predictions and the topological properties electronic transport 

investigation of rhombohedral graphite systems have been limited to 

tetralayers[37]. This thesis will explore first systematic investigation of electronic 

properties of rhombohedral graphite systems up to 50 layers thickness, in high 

quality, clean interface Hall bars of van der Waals heterostructures. In this 

introductory chapter we will summarise the existing theoretical and experimental 

work on rhombohedral graphite, using the simplest tight binding model of 

graphene as the starting point. We will adopt a structure very similar to the 

pedagogical introduction given by McCann in reference[38]. 

 

1.2. Crystal Structure and Hexagonal Brillouin Zone of Graphene 

Graphene, the isolated single layer of graphite, is essential to understanding 

properties of its multilayers, possessing both hexagonal and rhombohedral 

phases[39], [40]. As a result, tight binding modelling of its band structure was 

carried out by Wallace[41], more than 70 years ago, long before its isolation in 

2004.  
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Graphene has a honeycomb crystal structure and consists of a hexagonal Bravais 

lattice formed by A and B sub-lattices as shown in Figure 1.1a and b. Primitive 

lattice vectors of the hexagonal Bravais lattice are 

 1 2
3 3, ,

2 2 2 2
a a a a   

   
   
   

  a a  (1.1) 

as depicted in Figure 1.1. The lattice constant, a, which is equal 2.46 Å is the 

distance between two neighbouring unit cells and the carbon-carbon bond length is 

equal to 𝑎/√3 (1.43 Å). 

 

Figure 1.1  a) Hexagonal crystal structure of graphene consisting of A and B sublattices b) Bravais 

lattice of graphene. Vectors a1 and a2 are primitive lattice vectors and a is the lattice constant.  

Reciprocal lattice vectors b1 and b2 related to the primitive lattice vectors by 

equation 𝐚௜ ∙ 𝐛௝ = 2𝜋𝛿௜௝  (𝑖, 𝑗 = 1, 2 ) are given by 

 1 2
2 2 2 2, ,

3 3a aa a
      

      
   

  b b  (1.2) 

which are shown in Figure 1.2 with the hexagonal Brillouin zone. 

Each carbon atom making up graphene’s honeycomb structure has 6 electrons. Out 

of these electrons 2 are core electrons and 4 of them are valance electrons 

occupying 2s, 2px, 2py and 2pz orbitals, respectively.  In plane orbitals (2s 2px and 

2py) form the 3 σ bonds per carbon atom leading to a single electron (2pz orbital) 
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per atom.  This allows tight binding estimation to be made considering of one 

electron per atomic site.  

 

 

Figure 1.2  Reciprocal lattice of graphene 

and the associated hexagonal Brillouin 

zone consisting of K and K' valleys as well 

as M and  points. Vectors b1 and b2 are 

the reciprocal lattice vectors. 

 

 

1.3 Tight binding approximation of Graphene 

An electronic eigenfunction describing a unit cell consisting of 2 single electron sites 

like the one of graphene is given as  

 

2

1

( , ) ( ) ( , )j ji l
i

C


 k r k k r  (1.3) 

where 𝐶௝௜(𝒌) is a column vector and Φ௟(𝒌, 𝒓) is a Bloch function. Within tight 

binding method we can write a matrix equation as 

 
jA jAAA AB AA AB

BA BB BA BBjB jB

C CH H S S
E

H H S SC C

      
               

 (1.4) 

where the transfer integral matrix elements are defined as  

 ij i jH    (1.5) 

and the overlap integral matrix elements are defined as 

 ij i jS    (1.6) 
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leading to the secular equation 

 det 0AA AA AB AB

BA BA BB AA

H ES H ES

H ES H ES

  
   

 (1.7) 

which one needs to solve to be able to obtain the dispersion relation.   

1.3.1 Matrix Elements 

To be able to solve the secular equation given in (1.7) matrix elements must be 

evaluated. Going back to the definition of an eigenfunction in (1.3), the Bloch 

function Ф௟(𝒌, 𝒓)  is defined as  

 
1

1
( , ) ( )j

N
i

l j j
i

e
N





   k Rk r r R
 (1.8)  

where ɸ௝ is jth atomic orbital in ith unit cell and the sum is over N unit cells.  

1.3.1.1 Diagonal elements 

Following the definition above, the diagonal element 𝐻஺஺ would be evaluated as 

 
, ,( )

, ,
1

1
( ) H ( )A i B i

N
i

AA A A i A A i
i

H e
N

  



     k R R r R r R  (1.9) 

given that there is only one A sublattice in every unit cell, Equation (1.9) reduces to  

 , , 2 2
1 1

1 1
( ) H ( )

z z

N N

AA A A i A A i p p
i i

H
N N

   
 

       r R r R  (1.10) 

where 𝜀ଶ௣௭ is equal to the onsite energy of the pz orbital in every A sublattice.  

Similarly, diagonal element 𝐻஻஻ becomes, given the inversion symmetry of the 

system,  

 , , 2 2
1 1

1 1
( ) H ( )

z z

N N

BB B B i B B i p p
i i

H r R r R
N N

   
 

         (1.11) 
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where 𝜀ଶ௣  is equal to the onsite energy of the pz orbital in every B sublattice.  

Overlap of orbitals corresponding to diagonal elements 𝑆஺஺ and 𝑆஻஻ is equal to a 

unity, 

 , , , ,( ) ( ) ( ) ( ) 1A A i A A i B B i B B ir R r R r R r R            (1.12) 

given that the there is a single orbital on the same lattice site. This leads to the 

diagonal overlap elements being equal to  

 
1

1
1 1

N

AA BB
i

S S
N 

    (1.13) 

and hence to be equated to a unity.  

1.3.1.2 Off-Diagonal elements 

Following from the definition of Bloch function in Equation (1.8) and the transfer 

integral matrix in Equation (1.5), the off-diagonal element describing electron 

hopping from A sublattice to surrounding three B sublattices is 
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where the term < ɸ஺|𝐻|ɸ஻ > is equated to a positive quantity as    

𝛾଴ =  − < ɸ஺|𝐻|ɸ஻ >  which is known as the hopping parameter.  This leads to 

Equation (1.14) being written as 
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where 𝑓(𝒌) =  ∑ 𝑒௜𝒌.ఋ೗ଷ
௟ୀଵ  with 𝛿௟ being equal to position vectors of three B 

sublattice atoms relative to A sublattice atoms.  

The function 𝑓(𝒌) obtained using the position vectors 𝛿௟ simplifies to 
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analogous to element AB, transfer integral matrix element BA is written as 

 
*

0 ( )BAH f  k  (1.17) 

where 𝑓∗(𝒌) is a complex conjugate of the function 𝑓(𝒌). 

Similarly, off diagonal integral element AB is calculated as  
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i l

S e s f
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 

     k R R r R r R k  (1.18) 

where 𝑠଴ is a non-zero parameter taking care of the fact that orbitals on 

neighbouring atomic sites may not be orthogonal.  Analogous to integral element 

AB, integral element BA is written as 

 
*

0 ( )ABS s f k  (1.19) 

1.4. Low Energy Bands 

Using the matrix elements calculated in the previous sections, solving the secular 

equation in (1.7) one obtains the energy equation as (equating 𝜀ଶ௣  to 0) 
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k

k  (1.20) 

leading dispersion plotted in Figure 1.3a with Figure 1.3b showing a line cut through 

the band structure.  

The values of the tight binding parameters  𝛾଴ and 𝑠଴ do not affect the main 

qualitative features of the band structure plotted above. Here they have been 

taken to be 3.033eV and 0.129, respectively. The values of the actual parameters 

for tight binding model of graphene and its multilayers have been attempted in 

various experiments[42]–[44].  For reference, they have been taken, in the 

calculations reported in this thesis as 𝛾ଵ = 0.38eV, 𝛾ଶ = −0.02eV, 𝛾ଷ = 0.38eV, 

𝛾ସ = 0.14eV.  
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Figure 1.3 a) Three-dimensional band structure of graphene with K, K' valleys and the  and M 

points depicted. b) A two-dimensional cut of the graphene band structure from K and K' valleys 

across the Brillouin zone. 

1.5. Linear Dispersion Relation and Massless Dirac Fermions 

As shown in Figures 1.2a and 1.3a, six Brillouin zones of graphene are composed of 

3 pairs of equivalent K and K’ points which are non-equivalent to each other. In the 

rest of this section, index, 𝛼 =  ±1 will be used to distinguish between K and K’ 

valleys.  Considering the reciprocal lattice vectors given in Equation (1.2) and the 

respective Brillouin zone diagram in Figure 1.2, the reciprocal lattice point for K (K’) 

point is 

 

4
K ,0

3a
    

   (1.21) 

by substituting these lattice points to the Equation (1.16) one finds that the 

function 𝑓(𝒌) is cancelled to exactly zero, indicating absence of coupling between 

two sub-lattices at K and K’ points.  
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Introducing a momentum that is measured from the centre of K, 𝑘௫ +
ସగ

ଷ௔
 , one 

obtains the function 𝑓(𝒌) to be as  

  3 3
( )

2 2x y

a a
f p ip     k

   (1.22) 

and assuming onsite lattice energies 𝜀ଶ௣௭ to be zero, using Equation (1.22) one 

obtains the transfer integral matrix as in the vicinity of K point as 
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0
x y

x y

p ip
H v

p ip

 
     (1.23) 

where the quantity 𝜈 is Fermi velocity of graphene equal to √𝟑𝒂𝜸𝟎

𝟐ћ
 . Assuming a 

unitary overlap integral matrix, the eigenvalues obtained from (1.23) lead to 

dispersion relation    

 
2 2( ) x yv p p v     k p

 (1.24) 

with eigenvectors leading to the Bloch function for A and B sublattices respectively 

as 
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 (1.25) 

where 𝜽 is the angle of momentum which is in x-y plane, 𝒑 = 𝒑(𝐜𝐨𝐬𝜽, 𝐬𝐢𝐧𝜽). 

 

1.6. Pseudospin, chirality, and Berry phase 

A remarkable property of the Bloch functions implied in (1.25) is that they resemble 

two component spinors describing a system consisting of either spin up or spin 
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down states. However, unlike spinor functions, the eigenvectors leading to the 

Bloch function above arise as a result of the presence of A and B sub-lattices, in 

other words due to presence of 2 carbon atoms in the unit cell, thus making the 

honeycomb lattice structure of graphene consisting of 2 single electron sites, 

behaving as an analogue of spin and leading to the pseudospin degree of freedom. 

It can be seen that the pseudospins are also linked to momentum through the 

phase component, 𝜃, which is a polar angle of the momentum in x-y plane thus 

leading the Bloch functions on the A and B sub-lattices being coupled to the 

direction of momentum and therefore resulting in chirality. 

Since we have established the pseudospin freedom and its chirality, a convenient 

way of expressing the Hamiltonian in (1.23) at K and K’ valleys, is as 

     cos sinx yH vp        (1.26) 

where the Pauli spin matrices 𝜎௫  and 𝜎௬ are describing the pseudospin freedom 

arising from A and B sub-lattices.  

Furthermore, evaluating the Bloch function in (1.25) for a closed circular loop, 

corresponding to a change in value of 𝜃 by 2π, a phase change that is equal to π is 

obtained as shown below 
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   (1.27) 

with the integral in Equation (1.27) being known as the Berry phase integral[45] and 

the quantity of 𝜋 obtained above being the experimentally verified characteristic 

Berry phase for graphene[5], [6].  

1.7. Tight binding model of AB-stacked bilayer graphene 

An AB stacked bilayer system consists of 4 atoms in its unit cell as shown in Figure 

1.4a, which means it is described by 4 by 4 transfer and overlap integral matrices.  
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The simplest tight binding framework is described by an additional hopping 

parameter to 𝛾଴ which describes in plane hopping between nearest A and B lattice 

sites which is 𝛾ଵ. Parameter 𝛾ଵ describes interlayer hopping between lattice sites A2 

and B1 which lie directly on top of each other as shown in Figure 1.4a. This hopping 

parameter is mathematically expressed by 

 1 2 ,2 1 ,1( ) ( )A A B B       r R r R  (1.28)  

thus, the transfer integral matrix which describe the lattice sites A1, B1, A2, B2 are 

given by  
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 (1.29) 

and the overlap integral matrix is given as 
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 (1.30) 

where s1 is describes the non-orthogonality of orbitals on dimerised sites A1 and 

B2.  Due to the small influence of parameters s0 and s1 on describing the low energy 

electronic properties they will be neglected and a unitary overlap integral matrix 

will be assumed when discussing the low energy bands of AB-stacked bilayer 

graphene in the Section 1.8.  
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Figure 1.4 a) Hexagonal crystal structure of bilayer graphene consisting of four sublattices within 

the highlighted (dashed black lines) unit cell region. b) Lattice sites A1, B1, A2, B2 within each unit 

cell illustrated as well as the hopping parameters 𝜸𝟎 and 𝜸𝟏.  

1.8. Low energy band structure of bilayer graphene  

Assuming a unitary overlap matrix and solving the transfer integral matrix defined 

in (1.29) one obtains dispersion relation for 4 bands of a bilayer graphene system 

which is given by  
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 (1.31) 

where α = ±1. The dispersion relation, when 𝛼 = 1 , implies two set of bands which 

are separated from each other by 2𝛾ଵ (depicted in orange on Figure 1.5) as a result 

of dimerization of pz orbitals in the vicinity of K/K’ points where 𝑓(𝐤) is equal to 

zero. When 𝛼 = −1, two set of touching bands in the vicinity of K and K’ points, 

which have a 𝐸 =  −𝑣ଶ𝑝ଶ/𝛾ଵ dispersion are obtained depicted in blue on Figure 

1.5.  All bands, away from K and K’ points, have a linear dispersion in the large 

momentum limit. 
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Figure 1.5 Low energy band structure of 

bilayer graphene in the vicinity of K point. 

Orange bands are gapped because of 

dimerization of A and B sublattice orbitals 

that lie on top of each other. The lower 

energy bands arise from non-dimerised 

orbitals and they have a quadratic 

dispersion at low momentum.  

 

 

1.9. Two band Hamiltonian, Chirality, and Berry Phase in Bilayer Graphene  

Analogous to the case of single layer, the two band Hamiltonian of bilayer graphene 

describing massive chiral quasiparticles is given by  
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which gives us the low energy dispersion relation 𝐸 =  
௩మ௣మ

ఊభ
 with eigenfunctions 

leading to the Bloch function 
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 (1.33) 

where the angle 𝜃 is the angle of momentum which is in x-y plane (𝒑 =

𝑝(cosθ, sinθ)) as in the case of single layer graphene, which implies coupling of 

pseudospin degree of freedom to momentum as in the case of single layer 

graphene. However, inserting the above wavefunction into Berry phase integral 

would give a Berry phase of 2𝜋 instead of 𝜋 for the case of monolayer graphene.  

The characteristic Berry phase of 2𝜋 in bilayer graphene has also been verified 

experimentally[46].  



 
31 

 

1.10. Tight binding model of ABC stacked N-layer graphene 

The simplest Hamiltonian for an N-layer ABC stacked system takes into account of 

hopping parameters 𝛾଴ and 𝛾ଵ, analogous to bilayer graphene systems, however 

with a matrix dimension of 2N by 2N as shown in the Equation (1.34) in the vicinity 

of the K point. 
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 (1.34) 

where the function  and *are defined identical to the single and bilayer systems.  

Low energy bands (depicted in blue on Figure 1.6a, b, c) of an N-layer ABC graphene 

system in the vicinity of K point is described by the two band Hamiltonian[27] 
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 (1.35) 

leading to the low energy dispersion relation 

 
 

1
1

N

N

vp
E

    (1.36) 

where the effective Hamiltonian above and the low energy dispersion relation are 

indeed a generalisation of bilayer graphene leading to a Berry phase of 𝑁𝜋. 

Further to the 2 low energy surface bands, there are also 2N-2 low energy, gapped, 

linearly dispersing bulk sub-bands which are depicted in orange on Figure 1.6a, b 
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and c. These bulk sub-bands have been found to be described by the analytical 

expression  

 1

3
4 sin

2(2 1)
N
gap N


 

    
 (1.37) 

where N is the number of layers[47]. This expression is plotted on Figure 6d for 

various number of layers. Smaller but finite bulk gap is present even for 50 layers.  

 

Figure 6 a) b) c) Band Structure of ABC stacked graphene systems of 3, 6 and 9 layers respectively. 

It can be seen the surface bands depicted in blue are becoming flatter with increasing thickness 

whereas the bulk band gap is becoming smaller.  d) Size of the bulk band gap for increasing 

number of layers, a finite bulk gap is present for even 50 layers thickness.  
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1.11. Topological arguments for low energy flat surface bands 

Topological systems are protected by the presence of a non-zero energy gap that 

occurs as a result of a topological phase transition which unlike conventional 

quantum phase transitions does not accompany a spontaneous symmetry 

breaking[48], [49]. Systems which have a symmetry protected topological order are 

described by topological numbers (Berry phase and associated winding number in 

1D and Chern numbers in 2D, and Z2 index for the case of topological insulators) 

rather than order parameters[2], [11], [50].  

One of the simplest examples of topological phase transitions lie in a 1D Su-

Schrieffer-Heeger (SSH) chain[51]. An ABC stacked multilayer system could be 

mapped onto a 1D, becoming identical to a SSH chain or it could be regarded as a 

3D generalisation of the SSH chain as depicted in Figure 1.7[34]. 

 

Figure 1.7 a) 1D Su-Schrieffer-Heeger chain of alternating hopping parameters w and v. b) 3D ABC 

stacked graphene multilayers of in plane hopping parameter 0 leading to in plane Fermi velocity v 

and out of plane hopping parameter 1 leading to dimerised orbitals.  
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The two band Hamiltonian for an ABC stacked system, once mapped onto a 1D 

chain becomes 
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with the Hamiltonian above yielding a dispersion relation 

  2 2
1 12 cos( )E v v d    p p k  (1.39) 

where it must be clarified that |p| is the magnitude in plane momentum within 

each graphene layer whereas k is the actual momentum along the chain with d 

being spacing of graphene layers.  Eigenstates obtained through the dispersion 

relation are of the form 
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where  ɸ(𝒌) = 𝑡𝑎𝑛ିଵ ቀ
ఊభ௦௜௡(𝒌ௗ)

௩|𝒑|ାఊభ௖௢௦(𝒌ௗ)
ቁ . Following the eigenfunction defined above 

one can obtain the winding number through the Zak phase (Berry phase for a 1D 

system) as 
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where the system is topologically non-trivial when the winding number is equal to 

1. Another way of picturing the topological argument, which is demonstrated 

through Berry phase associated winding above, would be through introducing Pauli 

spin matrices to the Hamiltonian defined in (1.38). This leads to the Equation (1.42) 
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where 𝜎 are the Pauli spin matrices and they are describing the sub-lattice degree 

of freedom rather than spins.  Plotting the components h(k) over the Brillouin zone 

for three separate cases as the momentum is tuned from 𝜋 to −𝜋 leads to the 

pictorial illustration of winding around the origin as shown in Figure 1.8.  

 

 

Figure 1.8 Winding properties of vector h(k) 

around the origin as kzd is tuned from 0 to 2π. 

Above picture is broken when 𝒗|𝒑| ≥  𝜸𝟏. 

 

 

 

One can apply symmetry arguments to the Hamiltonian written in form above. The 

winding of the vector h(k) around the origin is a consequence of the chiral 

symmetry (or otherwise known as sub-lattice symmetry). Mathematically one can 

define chiral symmetry as 

 
1CHC H    (1.43) 

where C is a unitary matrix which anti-commutes with the Hamiltonian. Taking the 

Pauli spin matrix 𝜎௭ as the unitary operator one can satisfy the condition above as 

 
1( ) ( )z zH H    k k  (1.44) 

Using the above equation, one can immediately see that it is actually as a result of 

chiral symmetry that the vector h(k) is restricted on the x-y plane and thus is able to 

have a defined winding number around the origin.  
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Moreover, considering wave-function amplitudes along the lattice sites one can 

gain insight into the edge or in the case of rhombohedral graphite films, surface 

property of the wave-functions. Figure 1.9 shows the wave-functions located at top 

and bottom layers for the case of low energy flat bands, whereas for the case of 

energies where the bulk sub-bands lie the wave-functions are found to be 

distributed within the gapped bulk.  

 

 

Figure 1.9 Surface (a, b) and bulk (c) eigenstates 

of an ABC stacked chain, with wavefunctions 

located towards the edges for the two surface 

eigenstates.  

 

 

 

 

Whilst sustaining chiral (sublattice) symmetry, in other words keeping the h(k)z 

component zero, the only possible way to change the winding number of the 

system from 1 to 0 is through closing the bulk gap and then reopening it which 

would be referred to as a topological phase transition, where the latter insulating 

phase would not be showing any surface states. It is at this transition point a really 

interesting example of bulk-boundary correspondence arises where a spiral nodal 

line in kz direction could be mapped onto the 2D Brillouin zone to produce the flat 

bands of an ABC stacked N-layer system. One can re-write Equation (1.39) for a 3D 

chain as 

    222
1 1cos( ) sin( )x yE vp d vp d    k k  (1.45) 

where zeros could be defined at 
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𝑝௫ =  (𝛾ଵ/𝑣) cos(𝒌𝑑)  and  𝑝௬ =  −(𝛾ଵ/𝑣)sin (𝒌𝑑) 

which leads formation of a spiral of zeros in 3D momentum state, which is referred 

to as a nodal line and is illustrated in Figure 1.10 [35].  

                

Figure 1.10 Nodal line of a gapless rhombohedral stacked graphene system at the limit where the 

bulk band gap closes and its projection to the surfaces leading to flat bands with drumhead 

surface states.  

The mapping of the spiral in Figure 1.10 leads to formation of a circle in the 2D px, 

py plane with a radius |𝐩| =𝛾ଵwhere the flat band exists. Thus, rhombohedral 

graphite in bulk form is a gapless a nodal line semimetal, which possesses flat bands 

in low energy limit that arise due to a projection of the Fermi surface to the 2D 

surface Brillouin zone[36]. It must be pointed out that in thin film limit, which are 

the systems studied in this thesis, rhombohedral graphite films are topological 

insulators. 
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1.12.  Landau Spectrum of ABC-stacked graphene layers 

In the presence of a perpendicular magnetic field the Hamiltonian defined in 

Equation 1.34 becomes modified as the in plane momentum becomes perturbed 

due to the vector potential associated with magnetic field,  𝐩 → 𝐩 +
௘

௖
𝐀 . Rewriting 

the Hamiltonian defined in Equation 1.34 around the K point using the raising and 

lowering operators 𝑎 =  
௟൫௣ೣି௜௣೤൯

√ଶћ
 and 𝑎∗ =  

௟൫௣ೣା௜௣೤൯

√ଶћ
 respectively , and expanding 

the 2N component wavefunction defined on each sublattice of each layer, 

(Ѱ஺ଵ, Ѱ஻ଵ,Ѱ஺ଶ, Ѱ஻ଶ … , Ѱ஺ே , Ѱ஻ே) as harmonic oscillator states (ɸ଴, ɸଵ, ɸଶ … ),  

which are eigenfunctions of the operators 𝑎 and 𝑎∗one is able to obtain the 

effective Hamiltonian in an nth Landau Level as [27] 
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 (1.46) 

where ɛ௡ =  √2𝑛ћ𝑣/𝑙 , with 𝑙 being the magnetic length given by 𝑙 = 26𝑛𝑚/√𝐵 .  

Low energy Landau levels of an N-layer rhombohedral stacked graphene system has 

been obtained analytically to be[27], [29] 

 ( 1)...( 1)n N n n n N        (1.47) 

for n > 0 where ћ𝜔ே =  𝛾ଵ(√2ћ𝑣/𝛾ଵ𝑙)ே . It must be noted that there are N-zeroth 

Landau levels with the definition of a zeroth Landau level being the condition that 

the wavefunction that giving rise to the Landau level being present entirely on one 

surface. Figure 1.11 shows the low energy Landau levels for 3 layers, 6 layers and 9 

layers ABC stacked systems taking only into account the hopping parameters 𝛾଴ and 

𝛾ଵ. A clear change in magnetic field dependence of the Landau levels can be seen 

with respect to number of layers, as the magnetic field dependence of Landau 
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levels with respect to number of layers, N, is 𝐵ே/ଶ , pointed by the Equation (1.47). 

As well this, a finite onset magnetic field is found for the Landau levels as the layer 

number is increased[52]. At large energies beyond ±25meVs, Landau levels start 

dispersing linearly with respect to the magnetic field[52], [53].  

 

Figure 1.11 Landau level spectrum of ABC stacked multilayer graphene flakes of (a) 3, (b) 6 and (c) 
9 layers. 

1.13. Spontaneous symmetry broken states 

The low energy  𝐸 ~𝑝ே dispersion of rhombohedral graphene stacks suggested by 

the simplest tight binding considerations suggest the low energy bands to be 

increasingly flat as the number of layers increases. Given that symmetry broken 

states have already been demonstrated on bilayer systems, their dispersion 

property makes rhombohedral graphene stacks as ideal candidates for broken 

symmetry quantum phases[54]–[56]. The effective low energy gapped Hamiltonian 

describing the symmetry breaking for an N layer system has been found to be[32] 

  1
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N v x y zN
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H N N     
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  (1.48) 

where cos (𝜃) and sin (𝜃) denote x and y components of momentum and 𝜏௩ = ±1 

denotes K or K’ valleys. Pauli matrices 𝜎 describe the pseudospin degree of freedom 

as in the case of single layer graphene, however also coupling to either one of the 

top or bottom layers in this case.  The second term in the equation above describes 

the interaction induced gap between the low energy conduction and valance bands 

with 2λ being the magnitude of the band gap. The introduction of spontaneous 
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inversion asymmetry by the interaction λ leads to a finite Berry curvature within the 

system. Assuming that the interaction is momentum independent, the present z-

component of Berry curvature in the vicinity of conduction (valance) band is given by 
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where using the Berry curvature expression above, one can evaluate a corresponding 

orbital magnetisation and an intrinsic Hall conductance. The gapped phases are 

characterised by spin and valley dependence of the gap term λσz with regards to their 

orbital magnetisation and intrinsic Hall conductance. Overall, there are 4 ground 

states which are summarised in Figure 1.12.  

The first of these states (Figure 1.12a), the quantum valley Hall (QVH) insulator is a 

state where the interaction λ is of the form of a charge density wave, leading to a 

spontaneous net layer polarisation and opposite values of Berry curvature in two 

different valleys. The experimental observation of this phase would be through 

observation of a quantized valley Hall effect. Due to an overall cancelling of orbital 

magnetisation associated with Berry curvatures this phase preserves time reversal 

symmetry and has broken inversion symmetry only. The experimental observation of 

a quantum valley Hall phase has been hindered due to presence of inter-valley 

scattering events, which have destroyed the quantisation effects.  

Quantum anomalous Hall (QAH) insulator (Figure 1.12b) arises when the interaction 

λ is valley dependent, i.e. the interaction term in Equation (1.48) is λτvσz hence 

leading to a valley polarization. Due to the same Berry curvature and orbital 

magnetisation for each valley this state possesses an orbital magnetic moment and 

hence has broken time reversal symmetry. Its experimental observation would be as 

a quantised spontaneous Hall resistance present at even zero magnetic field. The Hall 

conductivity would be quantised with a layer dependent value of 2Ne2/h.  
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Figure 1.12 a) Layer polarised quantum valley Hall state and associated valley Hall currents b) Valley 

polarized quantum anomalous Hall insulator state with associated Hall currents c) Spin polarised 

layer antiferromagnetic state with associated spin polarized valley Hall currents at top and bottom 

surfaces d) Quantum spin Hall state with valley hall currents of opposite spins or spin currents of 

opposite valleys. Figure adapted from Zhang et al.[32].  

Layer antiferromagnetic insulator, illustrated in Figure 1.12c, arises when the 

interaction λ is spin dependent, i.e. λszσz, with sz= ±1, for up and down spins 

orientation of spins. This spin dependent interaction leads to a spin polarised state, 

which has been demonstrated to be ground state in bilayer, and rhombohedral 

stacked multilayer experiments, utilizing suspended samples. This phase is expected 

to lead to spin filtered valley Hall currents, i.e. a valley Hall effect of opposite spins in 

top and bottom layers. This state also lacks time reversal symmetry due to its spin 

polarized, magnetic nature. The limitation brought by the suspended samples being 
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two-probe has prohibited a detailed investigation of the layer antiferromagnetic 

phase.  

The final potential ground state, topological insulator state arises when the 

interaction λ is dependent on both valleys and spins, i.e. when the interaction term 

becomes λszτvσz and therefore leading to a valley polarisation with respect to same 

spins or spin polarization with respect to same valleys. If each layer is considered 

individually (which is the case in thick rhombohedral systems) this phase would lead 

to both spin and valley polarised currents in each layer. A clear distinction must be 

made with the quantum spin Hall phase specified here and the quantum spin Hall 

phase predicted and observed in TMDC systems or magnetic quantum wells. The 

quantum spin Hall state specified here has a broken Z2 symmetry and it arises with 

no consideration of spin-orbit coupling effects. Rather than a Z2 index its 

characterised by Chern numbers which arise from presence of finite Berry curvature. 

It is referred to as quantum spin Hall as the valley Hall currents are in opposite 

direction in opposite layers whereas the spin currents are in same direction in 

opposite layers. Therefore, in systems where top and bottom layers are electronically 

coupled, i.e. in thinner systems like bilayer, an overall quantum spin Hall Effect would 

be observed. 

As well as the gapped symmetry broken states outlined above, there is also a 

possibility of gapless however rotation symmetry broken nematic state. Unlike the 

diagonal term λ in the case of gapped interaction, the presence of this phase is 

included through an off diagonal perturbation to the Hamiltonian[57]. This phase has 

been observed to be present in suspended bilayer systems and has also been 

identified as a possible symmetry broken state on rhombohedral stacked multilayer 

graphene systems. Its experimental manifestation is expected to show a drop in 

resistance at a filling factor v=0 (in other words zero doping) at low magnetic fields.  
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1.14. Displacement field induced gap and screening effects in 

rhombohedral stacks of graphene  

The low energy band structure of rhombohedral graphene stacks consists of flat 

bands which lie at the surface, as the bulk bands are gapped as a result of 

dimerization, leading to rhombohedral graphite stacks to behave as a zero gap 

semiconductor with diverging density of states. Aside from the interaction induced 

gapped phases, which could happen at zero doping/displacement field, 

rhombohedral graphite is also a platform which could exhibit single particle, 

displacement induced gap that is tuneable, as it has been observed on bilayer and 

tri-layer systems[58]–[65].  

The effective low energy Hamiltonian in the presence of a potential difference 

between the first (U1) and last (UN) layers becomes 
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with ∆𝑈 =  𝑈ଵ − 𝑈ே being the net potential difference applied across the sample, 

leading to the band gap. 

Due to the diverging density of states, the flat bands are able to respond to any 

external electric field generated, by generating a carrier density imbalance, 𝛿𝑛 , 

which induces a screening field, 𝐹௦௖௥௘௘௡ =
ି௘ఋ௡

ଶఌ
. Thus, the total potential difference 

across the system becomes equal to  

 0( )( 1)screenU e F F N d     (1.51) 

where 𝐹଴ is the externally imposed electric field, N is the number of layers and d is 

the interlayer spacing of rhombohedral graphene stacks.  

A self-consistent model taking into account of charge density imbalance, 𝛿𝑛, has 

been found to lead to following approximate expression[58] 
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with Г(𝑥) being a gamma function. The 𝑓ேis equal to ½ in the large N limit which 

leads to the following simplified expression for displacement induced gap[58] 
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 (1.53) 

where 𝐹஼  is a critical field associated with a characteristic charge density of the flat 

band which is ~1.2 × 10ଵଷ𝑐𝑚ିଶ.  

 

Figure 1.13 Displacement field D induced gaps, U, on ABC stacked systems with thickness of 5, 10, 

15, 20 and 30 layers respectively.  
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Figure 1.13 shows displacement induced gaps suggested by Equation (1.53) for 

various number of layers of ABC stacked flakes. Greater displacement field is 

necessary for thicker number of layers to induce a sizeable gap detectable in 

electronic transport experiments. 

1.15. Trigonal Warping and Berry phase of 𝑵𝝅 in rhombohedral 

graphite 

The remarkably simplistic low energy dispersion scenario of 𝐸 ~𝑝ே (with N being 

the number of layers) is not the case when additional hopping parameters 𝛾ଶ, 𝛾ଷ 

and 𝛾ସ are considered which are depicted on Figure 1.14a. 

It turns out that once additional hopping parameters are considered, the flat bands 

of rhombohedral graphite are not as flat with charge carriers gaining a finite 

effective mass and the circular fermi surface underging a trigonal warping. Terms 𝛾ଶ 

and 𝛾ଷ are responsible for the trigonal distortion of the Fermi surface[29]. The term 

𝛾ସ breaks the electron-hole symmetry (or sometimes referred to as particle-hole 

symmetry), thus leading to the lifting of the topological protection described in 

Section 1.11[66] albeit the low energy bands are still topological origin in a sense 

that they arise in the bulk gap due to topological properties of the gapped bulk 

bands. It is 𝛾ସ which also leads to a quadratic low energy dispersion of the 

conduction and valance bands, leading to an effective mass.  

The effective dispersion relation obtained by Koshino and McCann for an N-layer 

rhombohedral stacked system is 
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where 

𝑋(𝑝) = ෍
(𝑛ଵ + 𝑛ଶ + 𝑛ଷ)!

𝑛ଵ! 𝑛ଶ! 𝑛ଷ!

1

(−𝛾ଵ)௡భା௡మା௡యିଵ
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2
ቁ
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and the summation is taken over ni ≥ 0 where 𝑛ଵ + 2𝑛ଶ + 3𝑛ଷ = 𝑁.  Fermi 
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velocities v, v3 and v3 correspond to √ଷ௔ఊబ

ћ
 , √ଷ௔ఊయ

ћ
  and √ଷ௔ఊర

ћ
 respectively. The 

effective mass obtained as a result of the quadratic dispersion around each K (K’) 

point at low momentum is 𝑚∗ =
ఊభ

ସ௩௩ర
= 0.4𝑚௘.  

 

Figure 1.14 a) Tight binding hopping parameters 𝜸𝟎 to 𝜸𝟒 illustrated on an ABC stacked trilayer 

system. b)  Low energy band structure of ABC trilayer system showing one of the 3 band crossings 

illustrated in the inset. Trigonal warping of the Fermi surface can also be inferred from the inset. c) 

d) Low energy band structures of 6- and 9-layer ABC stacked systems insets showing all band 

touching points and associated Berry phase of Nπ as well as trigonal warping.  

Once the dispersion relation is plotted for the arbitrary number of layers, an 

interesting property is obtained with regards to the conduction and valance band 

crossings.  The number of crossings which occur at K and K’ valleys at 𝑋(𝑝) = 0 is 

an integer with respect to the number of layers. When N+1 is not a multiple of 3, 

there are N linear conduction and valance band crossings with a Berry phase of 𝜋 
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leading to a Berry phase of 𝑁𝜋 even in the presence of trigonal warping. When N+1 

is a multiple of 3, there N+1 Dirac points with a Berry phase of 𝜋 and a Dirac point 

with a Berry phase of – 𝜋 also leading to an overall Berry phase of 𝑁𝜋. The trigonal 

band distortion with respect to number of layers as well as the respective Dirac 

points is depicted in Figure 1.14 for various numbers of layers.  The presence of 

odd/even Berry phase with respect to odd/even number of layers could manifest 

itself in weak (anti)localization phenomena at quantum transport experiments in 

disordered limit[30].  

1.16. Flat band superconductivity in rhombohedral graphite 

The microscopic theory of superconductivity proposed by Bardeen, Cooper and 

Schrieffer (BCS) in 1957 was very successful in explaining many aspects of 

superconductors including the superconducting gap and its size, as well as the 

superconducting transition temperature. The BCS theory was successful in explaining 

superconductivity through a phonon mediated attractive interaction between 

electrons, W, which form pairs above the Fermi surface of a metal, lowering the 

ground state energy of the system and therefore leading to a gap with respect to the 

Fermi level of the metal as[67] 

 1
2 expC

F

E
W 
 

   
 

 (1.55) 

where ρF is density of states at the Fermi level and Ec is the characteristic phonon 

energy. The negative exponential dependence on the interaction strength between 

electrons explains the usual low temperature transition temperatures for the onset 

of the superconducting state. From BCS theory one obtains the relationship between 

the superconducting energy gap and the critical temperature as[67] 

 2 3.5 CT   (1.56) 

where TC is the transition temperature.  

Unlike the expressions above, the flat bands offer a potential route to high 

temperature superconductivity through a linear dependence on characteristic 
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pairing energy and the flat band area. Superconducting gap size of an ABC stacked 

system (although generalizable to other flat band systems) has been obtained to be 

as[33] 
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where pFB is the momentum which defined the boundary of the flat band at the 

surface. Therefore, as well as being directly proportional to the interaction strength, 

the superconducting gap size and the transition temperature is directly dependent 

on the flat band area which suggests possible high temperature superconductivity.  

Flat band superconductivity has recently been discovered on twisted bilayer 

graphene systems. Formed by twisting of graphene layers to ‘magic angles’ the flat 

bands have created a lot of excitement in solid state physics community. The 

superconductivity observed in ‘magic angle’ graphene bilayers has been dubbed to 

be unconventional however the transition temperatures have been found to be far 

from high temperatures with an initial value of 1.7K, later on, with reported to 

increase to 3K through application of pressure and following that with major 

improvements in the sample quality[68]–[70]. 

Superconductivity in rhombohedral graphite has also been predicted, when 

additional hopping parameters to 𝛾଴ and 𝛾ଵ are considered and the topological 

protection of the flat bands is lifted, leading to a quadratic dispersion with a heavy 

effective mass. In this case an interesting interplay between flat band and BCS-like 

superconductivities has been proposed[66]. At low coupling energy, 𝑔 ≪

(8𝜋𝛾ସ𝛾ଵ)
𝛾଴

ൗ  , as well as assuming there is negligible doping, superconducting is 

found to be as  

 
1 4 1 4

0 0

2 8
exp

g

   
 

   
     

   
 (1.58) 

thus, showing an exponential dependence to the coupling strength, 𝑔, therefore 

leading to a BCS like superconductivity.  
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1.17. Stacking Faults on Rhombohedral Graphite Films 

Given the hexagonal orientation of graphite being more thermodynamically stable, 

one is increasingly more likely to have stacking faults in rhombohedral stacks of 

greater number of layers. As a result, there have been a reasonable number of 

works, considering what happens to the electronic structure of graphene stacks in 

the presence of stacking faults[25], [71]–[75]. The number of different stacking 

possibilities have been estimated to be 2N-2 where N is the number of layers[26]. 

This means that when systems of large number of layers are considered 

simplifications had to be made whereas for systems of smaller number of layers all 

possibilities have been studied.  

 

Figure 1.15 Linkage diagrams and crystal structure schematics for a),d) ABCA b),e) ABAC c),f) ABCB 

stackings. 

Figure 1.15 shows orbital linkage diagrams and crystal stacking sequences for ABCA 

stacked tetra-layer system and its possible versions with stacking faults namely 

ABAC and ABCB. Linkage diagrams for ABAC and ABCB systems suggest the band 
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structures in the vicinity of the K point to be identical which was indeed found to be 

case in tight binding calculations shown in Figure 1.16 which are in agreement with 

the tight binding calculations carried out by Min and MacDonald[26], [73]. The band 

structures of ABAC and ABCB systems are very similar to one for ABA stacked tri-

layer, possessing a superposition of 2 pairs of bands at zero energy, which are 

quadratically dispersing and linearly dispersing. The only difference to ABA stacking 

was found to be an additional pair of gapped sub-bands.  

 

Figure 1.16 Low energy tight binding band structures calculated in the vicinity of K point for a) for 

ABCB/ABAC tetralayer and b) for ABA tri-layer.  

Prior to the tight binding calculations, two density functional theory (DFT) 

calculations were carried out for tetralayer systems possessing stacking faults. The 

first work was that of Latil and Henrad which predicted a band gap for ABAC 

stacking which is not in agreement with the tight binding calculations [71]. Second 

work by Aoki and Amawashi [72] considered tetralayer systems with stacking faults 

both in zero and finite displacement. Their calculations (shown in Figure 1.17) in 

zero displacement field were in agreement with tight binding calculations and their 

prediction for ABA stacked trilayer not exhibiting a band gap in the presence of 

finite displacement field was in agreement with experiments[65], [76]. The most 

striking prediction from this work is that tetralayer samples showing stacking faults 

were found not to open a band gap despite a large displacement field of 

0.7794V/nm. This prediction is yet to be tested in experiments and could in 
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principle allow a potential method for verification of presence of stacking faults on 

rhombohedral stacked systems. 

 

Figure 1.17 Low energy band structures of tetra-layer stacking orientations at presence of zero and 

finite displacement field of 0.7794V/nm for a) b) ABCA, c) d) ABAB, e) f) ABAC, g) h) ABCB 

structures respectively calculated using density functional theory Figure adapted from ref. [72].  

For systems of larger number of layers, an initial work utilizing tight binding 

calculations were carried out by Arovas and Guniea [25] where they considered a 

single stacking fault between two regions of hexagonal stacking, namely in form of 

ABABCBCB. They find that such kind of stacking faults separating two Bernal 

stacked regions leads to an additional low energy band with a cubic dispersion and 

would manifest itself in Landau fan spectroscopy experiments with Landau levels 

dispersing as B3/2. Further to this study, a more systematic approach to study 

stacking faults was adopted by Koshino and McCann [74] where they considered 

several hexagonal stacked sections connected by regions of rhombohedral stacking. 

It is found that the overall systems are well approximated by the electronic 

structure of incomplete hexagonal stacked graphite regions which make up the 

overall system with rhombohedral stacking faults. The overall low energy spectrum 

was found to be comprised of linear, quadratic, and cubic bands.  
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Further to the tight binding calculations, a DFT work was carried out by Taut, 

Koepernik and Richter [75] going beyond the initial work on tetra-layer systems and 

considering two types of singular stacking faults on rhombohedral graphite slabs of 

structures (ABC)4(BCA)4 and C(ABC)4(BAC)4 as well as a surface stacking fault. A 

rhombohedral structure without stacking faults consists of dimers because of 

overlapping pz orbitals. Out of the stacking faults considered, the former type was 

found to lead to two monomers and a tetramer, whereas stacking fault of the latter 

type was found to induce one monomer and a tetramer. Overall, it was found that 

the stacking faults lead to additional surface and interface low energy bands 

including linearly dispersing ones which form Dirac cones which has prevented a 

gap opening in the case of odd-numbered ABA stacked multilayer graphene.  

1.18. Identification of Rhombohedral Graphite 

1.18.1. Raman Spectroscopy  

Identification of the low abundance (~15%) rhombohedral stacking on a few layer 

graphene flakes has been demonstrated to be possible through Raman scattering as 

well as far and near field optical microscopy[43], [77]–[79]. However, these works 

were limited to 6 rhombohedral graphite layers[78]. Recently, in a seminal work, 

Henni et al.[52] identified ABC 

stacked rhombohedral graphene 

flakes up to 17 layers through 

Raman spectroscopy features 

including G-peak and particularly 

the double resonance 2D peak and 

verified the stacking through 

magneto-Raman scattering 

experiments.  

The G peak arises from the first 

order process of in plane lattice 

distortions in graphene originating from degenerate in plane transverse optical and 

in plane longitudinal optical modes[80]. Double resonance 2D peak is however 

Figure 1.18 Formation of the double resonant 2D 

peak on an ABC tri-layer system.  i) Creation of an 

electron hole pair ii) scattering of the electron to the 

K’ valley iii) Back scattering of the electron to the K 

valley iv) Recombination of the electron-hole pair.  
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formed because of a 4-step process where two in plane transverse optical phonons 

with wavevector k ≠ 0 are involved. An electron-hole pair is initially created as a 

photon possessing energy of ћ𝜔௅  is absorbed. The electron (hole) is scattered with 

a momentum wavevector k. Following this, the electron (hole) is scattered back 

with a momentum wavevector  -k. Final step is the recombination of the electron-

hole pair[81].  The inelastic scattering of the electrons (holes) results in a link to the 

electronic structure of the system as shown in Figure 1.18.  

 

 

Figure 1.19 a) The studied ~17-layer system suspended over circular holes of 6µm on a silicon 

substrate.  b) Raman spectra of the regions h4 (orange) and h0(black) containing ABC and ABA 

domains, respectively. c) G peak of the Raman spectra shown in b). 2D peak of the Raman spectra 

shown in b). e) Low intensity electronic Raman scattering feature and its absence on ABA domain. 

Figure adapted from Henni et al.[52].  

The summary of the Raman characteristics obtained for ~17 graphite layers by 

Henni et al.[52] is shown in Figure 1.19. The two main features distinguishing ABC 

stacked domains from ABA ones is, broadening of the 2D peak, and a blue shift of 

the G-peak. As well as these two features a low intensity feature attributed to 
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electronic Raman scattering across the bulk band gap appears between the G and 

2D peaks as shown in Figure 1.19e.  

Following on from the work of Henni et al.[52], Torche et al.[82] carried out first 

principles DFT analysis for the Raman spectra of both rhombohedral and hexagonal 

stacked multilayer systems (Figure 1.20a) as well as a system with stacking faults 

(Figure 1.20b). The considered system with stacking faults was a periodic 

arrangement of rhombohedral and hexagonal tri-layers in form of 

[ABC](BAB)[CBA](BCB). The work suggested a definitive signature of the absence of 

the stacking faults which was found to be an additional kink at a laser energy 

dependent wavenumber located around the left end of the 2D peak as shown in 

Figure 20a and b (at a wavenumber of ~2575cm-1).  

 

 

 

 

 

 

 

 

 

1.18.2. Transmission Electron Microscopy 

Transmission electron microscope (TEM) selected-area electron diffraction imaging 

of graphite films as well as dark field imaging has been shown [83],[84] to give 

signatures of respective rhombohedral and Bernal phases of rhombohedral 

graphite as shown in Figure 1.21.  

 

Figure 1.20 a) Experimentally obtained 2D peak for a 17 layer rhombohedral stacked system (black) 

as well as theoretical curves for bulk rhombohedral (red) and bulk hexagonal (dashed blue) 

stackings. b) Experimentally obtained 2D peak for the 17-layer system (black) compared with 2D 

peak of a system with stacking faults. Figure adapted from A. Torche et al.[82]. 
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A 6nm thick graphite flake suspended on a TEM grid (Figure 1.21a) with a 

corresponding map of FWHM of 2D peak of Raman spectrum (Figure 1.21b) with 

red/yellow regions (Region 1) being the rhombohedral domain, with blue region 

(Region 2) being the Bernal hexagonal domain.  Figures 1.21c and d show electron 

diffraction peaks on regions 1 and 2 respectively, with points 011ത0 and 112ത0 

corresponding to first and second order diffraction peaks. Intensity profile of 

diffraction along points I to II and III to IV are shown on Figure 1.21 and for 

rhombohedral stacked region first order diffraction peak intensity at 011ത0 is 

minimal (i.e. close to zero) whereas the intensities from both regions are 

comparable for the case of Bernal hexagonal stacking. Hence, estimation of the ABC 

stacking fraction at a given region is enabled through study of the ratio intensity at 

the first order point 011ത0 to second order point 112ത0.  

 
Figure 1.21 a) An optical micrograph (scale bar 10um) of 6nm thick graphite flake suspended over 

a transmission electron microscope (TEM) grid. b) Map of 2D peak of Raman spectrum of the flake 

(scale bar 10 µm) suspended over the TEM grid. c) d) Selected-area electron diffraction imaging of 

suspended graphite flake at regions 1 and 2. e) Intensity profile of the regions 1 and 2 along points 

I and II and III and IV, respectively. f) Dark image of regions 1 and 2 obtained using first order 

𝟎𝟏𝟏ഥ𝟎  spot. Figure adapted from Y.Yang et al.[84].  
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Using the above outlined property of two phases at first and second order 

diffraction points, by focusing on the first order diffraction peak 011ത0 a dark field 

image of regions 1 and 2 were generated which is shown in Figure 1.21f with a clear 

contrast difference between ABC and ABA stacked regions in agreement with the 

Raman 2D peak FWHM mapping.  

1.19. Density Functional Theory predicted magnetic gap 

It has been found has been predicted and experimentally verified that the layer 

antiferromagnetic state highlighted in Section 13 dominates over other interaction 

induced states predicted by mean field calculations[32], [85]. Pamuk et al.[86], 

investigating rhombohedral stacks of graphene layers considered magnetic 

instabilities using density functional theory.  

Their main finding is that layers of the both surfaces of a rhombohedral stacked 

system are weakly ferrimagnetic individually (illustrated in Figure 1.22a)  arising 

from with opposite but unequal magnetic moments on atoms corresponding to 

each sublattice, however, leading to an overall antiferromagnetic configuration in 

the event of electronic coupling between the two surfaces.  Layer numbers of up to 

8 have been considered and it has been found that the gap size is maximum for 6-

layers with an approximate value of around 55meV, showing a slight decrease for 

layer numbers greater than 6 as shown in Figure 1.22b.  The gap size found for tri-

layer systems, 38.6meV is in a good agreement with transport experiments utilizing 

suspended tri-layer samples.  A very interesting question the work raises is how the 

gap size would behave for even a greater number of layers where the electronic 

coupling between two surfaces could become absent. One may be able to probe 

the weakly ferrimagnetic nature of the two surfaces in transport experiments.  
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Figure 1.22 a) Crystal structure of rhombohedral graphite and illustrated configuration of spins at 

each sublattice with unequal magnitude. b) Obtained magnetic gap as a function of temperature 

for layer numbers between three to eight.  Figure adapted from B. Pamuk et al.[86].  

 

1.20. Angular Resolved Photoemission Spectroscopy of 

Rhombohedral Graphite 

Angular resolved photoemission spectroscopy (ARPES) is one of the most direct 

methods of studying the electronic band structure of solids. It relies on the 

photoelectric effect and typically utilizes high energy photons (100-1000eV) and 

allows the reconstruction of the band structure of a system through simultaneous 

detection of the energy of the incoming photons and the angle at which they leave 

the surface. The angle at which the electrons leave the surface allows a link 

between the energy of the photons and the conserved momentum on the plane of 

the sample. ARPES has been utilized to study band structure of graphene, see for 

example Bostwick et al.[59],[89], since the early days of its discovery. 

ARPES experiments on rhombohedral graphene stacks had been carried on systems 

of up to 5 layers[88], [89]. Higher quality results obtained on tri-layer systems have 

confirmed the simplest tight binding predictions for the band structure[44]. More 

recently, with the advances on identification of rhombohedral stacks of greater 

number of layers, an ARPES investigation was carried out on a 14-layer system for 

which the second derivative of the intensity maps obtained as well as the 

accompanied DFT calculations are shown in the Figure 1.23[90]. A dip of 25meV size 
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was found in the valance band around the K point towards the  and  points 

which has been attributed to the presence of the magnetic gap predicted by Pamuk 

et al.[86], however on a sample with a greater number of layers. It has been 

highlighted that electronic transport measurements are necessary to confirm the 

presence of the gap which will be the subject of this thesis. 

 

Figure 1.23 Second derivative of an ARPES intensity map of a 14-layer system accompanied by DFT 

calculations a) without a bad gap b) with a spin polarized gap. Adapted from H. Henck et al.[90]. 

1.21. Summary 

In this introductory chapter, starting with the simplest theoretical description of 

graphene, we have reviewed existing literature on rhombohedral graphite, ranging 

from a few layers of ABC stacked graphene systems to what is expected for the case 

of bulk systems. Considering the most fundamental hopping parameters 𝛾଴ and 𝛾ଵ 

it is shown that ABC stacked multilayers are a generalisation of graphene possessing 

Berry phase and chirality with respect to pseudospin degree of freedom. We have 

found that rhombohedral graphite consists of two 2D surfaces with a hexagonal 

Brillouin zone and undergoing a 𝐸 ~𝑝ே   dispersion in the vicinity of K and K’ points, 

thus leading to, in principle, extremely flat surface bands.  
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We have established that once mapped on to a 1D chain rhombohedral graphite 

becomes identical to a Su-Schrieffer-Heeger chain. Considering the two band 

Hamiltonian of the bulk system we find that the gapless bulk has a Fermi surface of 

spiralling Dirac points, with the projection of it on the surface of the system leading 

to the 2D drumhead surface states thus making ABC graphite a nodal line 

semimetal whose flat band boundaries are defined by the projection of bulk nodal 

line to the surface.  

Assuming the simplest tight binding model with hopping parameters 𝛾଴ and 𝛾ଵ are 

valid, we have looked into Landau level spectra of rhombohedral graphite systems 

of various thickness and established that at low energies Landau levels disperse as 

BN/2 with B being the magnetic field. We have found that the extremely flat bands 

of rhombohedral graphite are potentially a host to correlated states such as anti-

ferromagnetism and superconductivity as well as spontaneous quantum Hall states. 

As a unique layer dependent electron transport signature of rhombohedral 

graphite, we have looked-into single particle gap opening beyond a critical 

displacement field for various layer numbers.  

Trigonal warping of the Fermi surface was found to be present after adaptation of 

the full tight binding framework that considers all parameters of Slonzewski-Weiss-

McClure model. Remarkably, it was found that the presence of trigonal warping 

leads onto a finite number of Dirac points where conduction and valance bands 

touch, keeping the Berry phase of 𝑁𝜋 present, that has been discussed in the 

absence hopping parameters 𝛾ଶ, 𝛾ଶ and 𝛾ସ. We have reviewed the work on stacking 

faults in graphite systems ranging from tetra-layers to bulk. Lastly Raman and TEM 

characterisation of rhombohedral graphite systems as well as an ARPES assisted 

magnetic gap prediction was touched upon. 
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Chapter 2 – 
Fundamentals of 
Electron Transport 
 

2.1. Introduction 

In this chapter a general introduction and overview of electronic transport concepts 

such as effective mass and mobility will be given where Ohms law will be derived 

through both from a classical picture as well as a semi-classical picture. It will be 

highlighted that from a semi-classical point of view low temperature conductivity of 

metals is a Fermi surface property. Further to this, the diffusive viewpoint of charge 

transport which holds at low temperatures will be outlined. Hall effect, which is a 

very fundamental phenomenon to transport studies will be introduced. Higher 

magnetic fields will be considered where Shubnikov - de Haas oscillations will be 

introduced as well as the quantum Hall effect. Anomalous Hall effects of both 

magnetic, spin and valley (both intrinsic and extrinsic) origins will be introduced as 

well as their quantised versions which take place at zero magnetic fields. Lastly, low 

temperature, quantum transport phenomena of weak (anti)localization will be 

explained in a pedagogical way, which will also become relevant at latter sections 

reporting the experimental results.  
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2.2. Effective mass, mobility, and electrical conductivity 

To consider dynamics of electrons making up the crystal classically, one must 

consider superposition of electron wavefunctions in plane wave states as wave 

packets for which the motion resembles that of a classical particle. Assuming plane 

wave solutions in a two-dimensional space for illustrative purposes, we can 

calculate the group velocity of an electron wave packet as  

 
1d d

v
d d

 
 

k k  (2.1) 

with a net electric field E is applied to the crystal, where the wave packet moves 

with its total energy remaining constant, the change in its kinetic energy is equal to 

 e t   Ev  (2.2) 

at a time interval of 𝛿𝑡. We know from Equation (2.1) that 𝛿𝜀 = 𝒗ℏ𝛿𝒌 which would 

then lead to the expression  

 

d
e

dt


k
E

 (2.3) 

with ℏ𝐤 being referred to as crystal momentum of an electron. Taking a time 

derivative of the Equation (2.3) and combining it with Equation (2.2) one obtains 

the equation  

 e

d
m e

dt
 

v
E  (2.4) 

where 𝑚௘ = ℏଶ

(𝑑ଶ𝜀 𝑑𝒌ଶ⁄ )ൗ   is the effective mass arising from the band 

curvature[1], [2]. We note that the concept of such an effective mass does not 

apply to graphene, and in graphene instead of second derivative of dispersion 

relation which diverges, the relativistic equation 𝐸 = 𝑚𝑐௘௙௙
ଶ  is used away from the 

Dirac point[3], with speed of light being replaced by the Fermi velocity. In bilayer 



 
69 

 

graphene, which has massive chiral quasiparticles arising from quadratic dispersion 

such an approximation is valid. The case of ABC stacked multilayer graphene; is 

more complicated with the effective mass approximation being only valid for the 

case of an induced quadratic dispersion when additional tight binding hopping 

terms are considered.  

Having established electrons having some form of effective mass we can move to 

Drude model of electron transport and prove how Ohms law arises because of it. 

Equation (2.4) on its own would imply infinitely accelerating electrons in the 

presence of a constant electric field, however, we know that this not the case as in 

practice as electrons are scattered as a result of collisions (except ballistic systems). 

The possibility of collisions was first considered by Paul Drude in 1900 where he 

used an additional term leading to an exponential decay of electron velocity in the 

removal of an applied electric field as shown below 

 e e

d
m e m

dt 
  

v v
E  (2.5) 

with  being the time constant[4]. In the presence of a finite electric field the 

equation has a steady state solution, which is referred to as the drift velocity which 

is shown in equation below 

 d e
e

e

m

   v E E  (2.6) 

with 𝜏 being the time for which the electrons travel before getting scattered. The 

constant of proportionality between the drift velocity and the applied electric field, 

depicted by 
௘
 is known as the electron mobility. Having established the drift 

velocity, we can re-write the equation for current density, (𝒋 = 𝑛𝑒𝒗𝒅), as 

 

2

e

ne

m

  j E E
 (2.7) 
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which is the Ohms law with n being the carrier density and 𝜎 being the conductivity.  

So far, we have paid attention to wave packets that have negative charges, in 

addition to electron wave packets, there are also what we call hole wave packets 

that arise with a positive charge in unoccupied states of the valance band. 

Combining electrons of conduction band and the holes of valance band one can 

write the equation for resistivity/conductivity of a two-band system (like thin film 

rhombohedral graphite in low energy limit) as 

 

1
e hne pe  


  

 (2.8) 

where n is the concentration of electrons and p is the concentration of holes.  

 

2.3. Ohms Law using Boltzmann Transport Equation 

You may note that in the Section 2 we have started with quantum mechanics of the 

crystal, deriving a crystal momentum and and introducing an effective mass (note 

the use of the word effective), but than used a very classical equation, as Drude did 

before the development of the necessary quantum theory, to prove the Ohm’s Law 

and the fundamental transport concept of electron mobility. When we obtained the 

Equation (2.4), for the momentum introduced, we have used the definition of 

crystal momentum, rather than an electron momentum. This is because when an 

electric field is applied to a crystal, a momentum is generated on the electron as 

well as the lattice of the crystal. It was after the development of Drude model in 

1900, that quantum mechanics was developed, with significant implications being 

made to solid state physics through the Bloch theorem[5], which states that 

electrons are not free particles, but are subject to a periodic potential arising from 

the crystal lattice. Thus, in a way, we have a problem to solve. We will therefore use 

what is called a Boltzmann transport equation to obtain the same expression for 
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conductivity that we obtained from Drude model and meanwhile we will take care 

of the necessary quantum mechanics.  

In the presence of an electric field, E, according to Boltzmann transport theory, a 

steady system is described with a function 𝑓(𝒓, 𝒌, 𝑡) which restores to a Fermi-Dirac 

distribution 

 0 0 ( ( ) )

1
( ) ( , , )

1FE E E
f f t

e   
k

k r k  (2.9) 

in the presence of zero electric field.  

Assuming there are no scattering events, one can write the following equation for a 

system, before and after a time frame of dt 

  ( , , ) ( , / , )f t f dt e dt t dt   r k r v k E   (2.10) 

given that the number of quasiparticles are indeed conserved.  In the presence of 

scattering events however, such as from phonons or defects and impurities, the 

equality above does not hold. To take into account such scattering effects within a 

time frame of dt, we include an additional term 

  ( , , ) ( , , )
S

f ef t dt f dt dt t dt
t

       
Er k r v k   (2.11) 

with the Taylor expansion of the above expression, assuming that time scale dt is 

infinitesimally small, yielding the following expression 

 
S

ff f
f e

t t

         
k

rv E
  (2.12) 

which is known as the Boltzmann transport equation. Lets consider a simple 

expression for the scattering term, in the limit when the applied force that drove 

our system to 𝑓(𝒌) from 𝑓଴(𝒌) becomes absent, 
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0

S

f ff

t 
       (2.13) 

where we modelled our system to exponentially relax back to the equilibrium state 

a time constant of 𝜏 , i.e. integration of the Equation (2.13) yields the expression 

 0 0 0( ) ( )
t

t tf f f f e 
    (2.14) 

in this point we note that we have used the same approximation in the Drude 

model.  

We shall now consider the system in a steady state ቀడ௙

డ௧
= 0ቁ after the application 

of a time-independent electric field 𝑬 = 𝐸଴𝑥ො. Furthermore we shall assume that 

our system is spacially homonogenous which means that ∇௥𝑓 = 0 resulting in the 

Boltmann transport equation for the system to becomes 

 0( ) ( ) ( )
e

f f f  kk k E k


 (2.15) 

which in the small E limit becomes 

 0 0( ) ( ) ( ) ( )
e

f f f  kk k k E k


 (2.16) 

and for an 𝑬 = 𝐸𝑥ො, the expression above could be re-written as  

 0( ) ( )
e

f f    
 

k k k E


 (2.17) 

which is known as the linear Boltzmann equation. We can see that the effect of the 

electric field is to shift the state described by the Fermi-distribution function from a 

momentum of 𝒌 to a momentum of 𝒌 +
௘

ℏ
𝜏(𝒌)𝐸𝒙, thus shifting the overall Fermi 

surface in the case of a 3D system in kx direction and resulting in two misaligned 

quasi Fermi-levels in 2D case at positive and negative momenta[6]. Now, using a 3D 

system as an illustration example (despite the thin film nature of rhombohedral 

graphite films studied in this thesis we will see that 3D effects are also observed) 
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we will derive an expression for current density within Boltzman transport equation 

framework.  

The equation for current density is given 
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k

k k E
  (2.18) 

The first term in the bracket vanishes as 𝑣(−𝒌) = 𝑣(𝒌), hence leading to the 

equation 
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 Ε
  (2.19) 

we can we write డ௙బ(𝒌)

డ௞ೣ
 as డ௙బ(𝒌)

డఌ

డఌ

డ௞ೣ
=

డ௙బ(𝒌)

డఌ
ℏ𝑣௫, which would lead to the equation 

for current density becoming 
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8x x

fe
j d kv 

 


 


E
 (2.20) 

we know that at  𝑇 ≅ 0𝐾 the function డ௙బ

డఌ
 approaches to being a Dirac delta 

function, which leads to  
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8x x F

e
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at this point we carry out the expansion 𝑑ଷ𝑘 = 𝑑𝑺𝑑𝒌 =  𝑑𝑺
ௗఌ

ℏమ௩(𝒌)
 and modifying 

the equation for current density as  
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e vj d d E Ev 
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and obtaining  
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where it has to be said at this point that contribution to current can clearly be seen 

to be only at the Fermi surface. We can approximate 𝑣ி ≅ √3𝑣௫ which would lead 

to 
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2 3

3 3

2 4 2 4

8 3 8 3x F F F
e

e e
j k v k

m

  
 
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E E

  (2.24) 

we know that 𝑛 =
𝑘ி

ଷ

3𝜋ଶൗ  which results in the Ohms Law 

 

2

x
e

ne
j

m

  E E  (2.25) 

which means that we have solved a transport problem semi-classically using the 

Fermi-Dirac distribution. One can argue that this the more legitimate derivation as 

we now know that not all electrons in a metal participate in conduction process at 

low temperatures which is something we assumed in the Drude model. 

An interesting question which naturally arises is, do electrons move with the drift 

velocity or Fermi velocity. In light of the derivation we have carried out, one can 

modify classical equation for current density as 

 
d

F
F

v
j e n v

v

 
  

 
 (2.26) 

which means that only a certain fraction of electrons near the Fermi surface move 

with a Fermi velocity rather than the entire electrons moving with a drift 

velocity[6].  

2.4. Quasi Fermi level seperation and diffusive 

electron transport viewpoint 

We have, in Section 1, assumed that with the application of an electric field E, all 

electrons of the system under consideration move with a drift velocity vd, and we 
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have linked this drift velocity to the a characteristic quantity, namely the mobility, 

which is the drift velocity charges gain per unit electric field. In section two 

however, we have seen that, taking care of necessary quantum mechanics, at low 

temperatures, the conductance is in fact a Fermi surface property. Despite having 

written the classical formula for current density in an alternative way in Equation 

(2.26), we did not carry out a proper derivation. 

One can visualise the shift in f(k) as a result of application of a bias voltage across a 

mesoscopic sample (see Figure 2.1a), and generation of net electric field (Figure 

2.1b), as formation of two quasi Fermi levels(Figure 2.1c), one for the electrons 

moving in the direction of the field applied, which are the states occupying poisitive 

momentum values in this instance, which is depicted as F+ in Figure 2.1c, and one 

for the states occupying negative momentum values, which is depicted as F-. One 

can see that, the states that carry current are only the ones that shift from negative 

momentum values to the positive momentum values, as a result of application of 

the net electric field. Defining the electric field induced momentum change as  

 𝑘ଵ =
௘

ℏ
𝜏(𝒌)𝐸𝒙, we can write the seperation between two quasi fermi levels as 

 

2
12

2 2F
F x x m

e

k k
E e v E eE L

m
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
 (2.27) 

where we have defined the quantity mean free path, Lm. It can be seen that the 

shift in energy levels as an electric field of Ex is applied is proportional to the 

amount of energy electrons gain within time frame of a mean fee parth.  

One can see on Figure 2.1b, that as a result of application of a net electric field, a 

chemical potential gradient is generated across the sample, with electrons below an 

energy of 𝜇ଶ, not contributing to the current, in other words being compensated 

(we are assuming to be at very low temperatures). Defining an average Fermi level, 

E௙ = (𝐹ା + 𝐹ି)/2 one can define a Fermi surface, and associated density of states, 

ௗ௡

ௗாಷ
, which means, in the vicinity of contact 1 (Figure 2.1a),  we have an electron 

density of 
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 1 2( )e
F

dn
n

dE
    (2.28) 

in the regime where transport will happen, wheras in the vicinity of contact 2 all 

electrons are compensated. This creates a diffision gradient of electrons, which can 

be modelled by Ficks law 

 21 2 ˆ
F F

dn dn
eD x e D

L dE dE

  
  j E E  (2.29) 

with D being the diffusion coefficient. The above formula gives an alternative 

expression for the condutivity 

 2

F

dn
e D

dE
   (2.30) 

which is known as the Einstein relation for degenerate conductors. One can see 

that, the expression for conductivity here, at a first galance is significantly different 

from the one derived in Section 2. It indeed represents the alternative point of view 

of conductivity which is in form of a diffusion coefficient rather than mobility. In 

order to make sure that there is not an inconsistency between the two viewpoints, 

one relate the diffisuion coefficient to mobility by writing it as 

 
21
FD v

d
  (2.31) 

where d is the dimensionality of the system being considered. The overall message 

from this section is that, at low temperatures, electrical conduction within a metal, 

in the presence of significant scattering processes, being a diffusion process at the 

continiuum level, when electrons are considered individually could be considered 

as a random walk process and this idea will become very important when we are 

discussing the idea of localization[6]. 
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Figure 2.1 a) Potential difference applied across two contracts on a strip of width W and length L. 

b) Chemical potential imbalance (µ1- µ2) around the contacts leading to electron diffusion. c) 

Illustration of conductivity as a Fermi surface property where compensated electrons away from 

Fermi energy do not take part. Figure adapted from S. Datta [6].   

 

2.5. Hall Effect in a two-dimensional system in the 

presence of non-quantising Magnetic Field 

When considering electron dynamics within a crystal and deriving Ohms law from it 

we have so far considered the case of zero magnetic field.  In the presence of a 

finite but small magnetic field, because of the Lorentz force, the Equation (2.5) 

becomes modified as 

 e e

dv v
m eE ev m

dt 
    B

 (2.32)     
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where B is the applied magnetic field[1], [2]. In the presence of a finite electric field 

in x direction, and the magnetic field in z direction, the equation yields the steady 

state solutions  

 
0 ( )

x
e x

y x

vm eE

e E v B
  

  
 (2.33) 

assuming all current remains the flow in x-direction, (i.e. 𝑣௬ = 0). The second part 

of the Equation (2.37) tells us that a transverse electric field is now present in our 

system (depicted in Figure 2.2) which counteracts on the Lorentz force and is 

therefore directly proportional it. This present transverse electric field was 

discovered by Edwin H. Hall in 1879 and is known as the Hall effect[8]. The 

proportionality constant between the electric field generated and applied magnetic 

field allows us to calculate a very useful quantity called the Hall coefficient. From 

Equation (2.37), by substituting 𝑗௫ = 𝑛𝑒𝑣௫ one will obtain the Hall coefficient as 

 
1y

H
x

E
R

j B ne
    (2.34) 

the sign of the Hall coefficient as implied by the equation above depends on the 

type of dominating carriers (negative for electrons, positive for holes) hence its 

experimental determination allows one to find out the dominating carrier type. At 

this point it is very useful to introduce two very useful quantities which are 

longitudinal and transverse resistivity coefficients 

   ,   x xx x y xy xE J E J    (2.35) 

which give rise to the equations 

   ,  xyxx
xx xy

SD SD

VV L B

I Wd I ne
      (2.36) 
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where Vxx and Vxy are measured longitudinal and transverse voltages as depicted 

on Figure 2, whereas ISD is the source-drain current. It also has to be noted that L is 

the sample length at across which the voltage Vxx is measured and W is the sample 

width across which Vxy is measured with d being the thickness of the system (which 

is absent when considering truly two-dimensional systems). An optimal device 

structure for Hall effect measurements is depicted in Figure 2.2 and its known as a 

Hall bar.  It can be seen from Equation (2.40) that when a single carrier type is 

present in the system, the transverse (Hall) resistivity should vary linearly with 

respect to applied magnetic field. Therefore any deviations from linearity (away 

from quantum Hall limit which will be explained in Section (2.7)) in transverse 

resistivity are either attributed anomalous Hall effect in the case of magnetic 

materials with single type of charge carriers or to presence of multiple charge types  

which can often be the case as a result of conduction across multiple bands.  

          

 

 

 

 

 

 

 

 

 

2.6. Multi-band transport 

In the above section we introduced two experimentally obtainable quantities, 

which are namely the longitudinal and transverse resistivity, which could be defined 

+  +  +  +     +  +  + + 
+ E

-  -  -  -  -  -  -  -  
- 

E

Figure 2 Hall effect in the presence of a magnetic field illustrated on the most optimal device 

geometry to measure it, hence the name Hall bar.  
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within a tensor describing a two-dimensional system (like surface states of 

rhombohedral graphite thin films) as 

 
xx xy

xy xx

 


 
 

   
 (2.37) 

We know that, by definition, 𝜎 = 𝜌ିଵ and hence we obtain a conductivity tensor by 

inverting the resistivity tensor as  

𝜎 = 𝜌ିଵ =
1

det 𝜌
adj 𝜌 =

1

𝜌௫௫
ଶ + 𝜌௫௬

ଶ
ቀ

𝜌௫௫ −𝜌௫௬

𝜌௫௬ 𝜌௫௫
ቁ = ቀ

𝜎௫௫ 𝜎௫௬

−𝜎௫௬ 𝜎௫௫
ቁ 

where the longitudinal and transverse conductivity (𝜎௫௫ and 𝜎௫௬) are related to 

experimentally obtainable quantities as 
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 (2.38) 

which after substituting expressions 1( )xx ne   and /xy B ne  become 
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 
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    (2.39) 

for N number of carriers from different bands. Carrying out a least-squares fitting of the 

expressions in (2.39) to the experimental obtained magnetic field dependence of 𝜎௫௫ and 

𝜎௫௬ until the fit converges yields one the carrier densities and mobilities of different carrier 

types within the system being studied.  

2.7. Hall effect in a two-dimensional system in the 

presence of quantising magnetic field 

Returning to the expression for conductivity we have derived, 𝜎଴ =
௘మఛ

௠೐
 , within the 

tensor form in the presence of magnetic field it becomes 
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with 𝜔஼ =
௘஻

௠೐
 . Inverting the tensor above, through a similar process to what we did 

we get the resistivity tensor 
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 (2.41) 

where there are implications of the directly, experimentally obtainable tensor 

components 𝜌௫௬ and −𝜌௫௬ being independent of the time constant 𝜏 as this means 

that the carrier density of the system being measured could be obtained 

independent from scattering effects on the charges, i.e. independent of disorder of 

the system. In the presence of a large magnetic field, when the quantity 𝜔஼𝜏 ∼ 1, 

the system enters to the semiclassical limit, when Landau levels form, because of 

the cyclotron motion of electrons. In this limit, the band structure of the two-

dimensional system become discretised where energy levels form which are 

dubbed as the Landau levels. There is finite number of Landau levels that are 

accessible by tuning the Fermi level of the system through the gaps the system 

possesses. Each Landau level is indexed by a number n, and is described by the 

equation 

  
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1 1( )2 2n C

e

n n
m l

    
  (2.42) 

where the quantity 𝑙 is named the magnetic length, 𝑙 = ට
ℏ

௘஻
 which was introduced 

in Chapter 1 when defining the harmonic oscillator after the introduction of Landau 

gauge as a result of finite magnetic field.  The magnetic length is associated with 

the characteristic carrier density each Landau level can hold, which is shown below 
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per spin per valley[9]. As each Landau level is being filled (e.g. when carrier density 

is tuned by a gate) or new Landau levels are created as the magnetic field is tuned 

one will find that the measured resistivity of the material will start oscillating, which 
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are namely the Shubnikov-de Haas oscillations[10]. At a constant carrier density as 

the magnetic field is varied, one will see that the period of oscillations of resistivity 

is constant and is related to carrier density as  
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 (2.44) 

where the factor 4 takes care of spin and valley degeneracy for the surface states of 

rhombohedral graphite. Furthermore, one can obtain useful information about the 

system being investigated from Shubnikov de Haas (SdH) oscillations. As any other 

damped oscillatory wave, it can be described with a cosine function with two 

additional terms that take care of damping due to finite conduction lifetime of 

charges and finite temperature[11] 
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Where me is effective mass, 𝜏௤ is quantum lifetime and term 𝜒 is given by 𝜒 =

ଶగమ௞ಳ்

ℏఠ಴
  with T being the temperature. Quantum lifetime 𝜏௤ measures the mean 

time that a carrier remains in an eigenstate before being scattered into a different 

state. Its main effect is to lead to a broadening of the Landau levels, which can be 

expressed mathematically as 𝛤 = ℏ
𝜏௤

ൗ   and is depicted schematically in Figure 2.3. 

By equation the expression for Landau level broadening with the expression for 

cyclotron energy of a given Landau level, one can derive the condition stated for 

the observation of SdH oscillations in the semiclassical limit, 𝜔஼𝜏௤ ∼ 1 where it has 

to be restated here that the scattering time in this condition is the quantum 

scattering time, and mobility obtained from it is named as the quantum mobility.   
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Figure 2.3 a) Theoretical density of states of a two-dimensional (2D) system in the presence of a 

Landau quantising magnetic field, with energy gaps forming because of cyclotron motion of 

particles. b) Density of states of a 2D system in practice with broadened Landau levels due to 

scattering events within time τq.  

Quantum scattering time 𝜏௤ is sensitive to all scattering events whereas transport 

lifetime 𝜏 is weighed toward large angle scattering events that cause a drastic 

change in momentum. Ratio of quantum lifetime 𝜏௤ to transport lifetime 𝜏 (often 

referred to as the Dingle ratio) is used to comment on the scattering mechanisms 

within the system being investigated. The temperature dependent ఞ

ୱ୧୬୦(ఞ)
 damping 

term is also very important, being first derived in a seminal paper by Lifshiftz and 

Kosevich[12] it is used on its own to extract the effective mass of charges from 

cyclotron motion by studying temperature dependence of change in longitudinal 

resistivity at a given magnetic field. 

As magnetic field is increased, to generate Landau levels that can hold a large 

density of electrons, eventually all charges will occupy a given Landau level (while 
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the Fermi level lies in a gap) with a given degeneracy aside from those of spin and 

valley, which is namely the filling factor[9] 
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 (2.46) 

with 𝑣  being an integer where n is the total density of free electrons in the system 

and nc being the characteristic density of electrons the Landau level (at a given 

magnetic field) can hold. Typically, as the magnetic field is increased to obtain new 

Landau levels, the amount of charges the Landau level can hold also increases, thus 

leading to lower filling factors at higher magnetic fields. When the condition of the 

Fermi level of the system being in the gap is satisfied, the quantum scattering time 

𝜏௤ is greatly enhanced, in fact, it is infinite. This is because, elastic collisions are 

forbidden by the Pauli exclusion principle, as all possible states of equal energy are 

occupied. Inelastic collisions also become unlikely given the rare presence phonons 

as ℏ𝜔஼  >> 𝑘஻𝑇 hence leading to the infinite scattering time. A natural consequence 

of this is vanishing resistivity and conductivity and furthermore, quantisation of the 

Hall resistivity as 

 2xy

h

ve
  

 (2.47) 

which is known as the quantum Hall effect. Experimental manifestation of quantum 

Hall effect, first observed by von Klitzing in 1980[13], with both quantised 

transverse magnetoresistance and vanishing longitudinal resistance is shown in 

Figure 2.4.  
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Figure 2.4 Manifestation of quantum Hall effect on a high mobility two-dimensional electron gas 

system with dips in longitudinal resistivity at above 1T and accompanied by it a quantisation of 

Hall resistance. Figure adapted from ref [14].  

2.8. Hall Effects in the absence of Magnetic Field 

We have in Section 2.2 and 2.3 we have established the fact that when electrons 

are under the influence of a constant electric field they collectively form a steady 

state as a result of scattering progresses where they can be considered to have a 

constant drift velocity within the framework of the Drude model. Following on from 

there, in Section 2.6 we have introduced a magnetic field and the associated 

Lorentz force which in a nutshell gives rise to the Hall effect. Depending on the 

symmetry properties of the material, in the absence of either time-reversal and/or 

inversion symmetry it can acquire a momentum space dependent pseudo-magnetic 

field. This gives rise to component of group velocity of the electron wave-packets in 
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transverse direction, as if a magnetic field associated Hall effect was present, which 

can be expressed in a semiclassical equation as[15] 
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where Ω(𝒌) is the Berry curvature density and 𝐤̇ is the rate of change of crystal 

momentum arising from presence of finite electric field. The fact that the electric 

field is applied in x-y plane, means that only z component of the Berry curvature 

density  Ω(𝒌)𝒛 is relevant. The nature of interaction that gives rise to finite Berry 

curvature, also determines its properties giving rise to the specific type of intrinsic 

Hall effect. Berry curvature can only be present within a system, when either of the 

time-reversal, Ω௡,௞ = −Ω௡,ି௞ or inversion Ω௡,௞ = Ω௡,ି௞ symmetries are broken for 

an an nth band, however if both of the symmetries are present at the same time the 

Berry curvature vanishes leading to the usual equation for group velocity of an nth 

band.  

2.8.1 Anomalous Hall Effect 

The first of the zero magnetic field Hall effects considered will be the anomalous 

Hall effect which was discovered by Edwin Hall in 1881 shortly after the discovery of 

Hall effect[16]. His observation was a larger ‘pressing electricity’ in magnetic iron 

compared to non-magnetic systems. Later, dubbed anomalous Hall effect, this 

phenomenon was understood to arise because of non-zero contribution to 

transverse resistivity arising from magnetisation M as well as the ordinary Hall 

effect. It is typically expressed as  

 
0
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where 
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with B being the applied magnetic field and M being the magnetisation of the 

system[17]. Note that two Hall coefficients have been introduced where R0 is 

known as the ordinary Hall coefficient whereas Rs is the spontaneous Hall 

coefficient. Experimental manifestation of anomalous Hall effect is depicted in 

Figure 4.5.  Two distinct linear Hall resistivity regimes are present implied by 

Equation (2.49). Until a critical magnetic field (related to the magnetisation of the 

material) is reached, the ordinary Hall resistance of the material has the anomalous 

contribution superimposed. 

 

Despite the experimental studies and the empirical relationship obtained (shown in 

Equation (2.49)), the first theory which explained anomalous Hall effect intrinsically 

(in other words free from disorder and impurities) was put forward by Karplus and 

Luttinger (KL) in 1954[18]. KL theory explained anomalous Hall effect through an 

anomalous velocity arising due to time-reversal symmetry breaking, which is 

Figure 4.5 An empirical illustration of anomalous Hall effect. A magnetisation related additional 

Hall resistance 𝝆𝒙𝒚
𝟎  superimposed to Hall resistance yielding two separate regions with linear 

slopes as magnetic field is tuned.  
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communicated to the electrons of the system in form of spin-orbit coupling which 

in more modern terms became known as the Berry curvature after introduction of 

Berry phase to solid state physics[19].  

The implications of a time-reversal symmetry broken Berry curvature i.e. Ω௡,௞ =

Ω௡,ି௞, can be seen through another consideration of Equation (2.18). The term 

v(k)f0 no longer vanishes as an integral is carried out across the entire momentum 

space, hence leading to a transverse component of current density, which can be 

expressed for a single band as 
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which by Ohms Law leads to presence of a finite Hall conductivity in the presence of 

zero magnetic field which is expressed below[20] 
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where Ω௭(𝒌) is the Berry curvature density acting out of plane of the sample. The 

most remarkable feature of the intrinsic anomalous Hall current and the 

conductivity obtained is that they are both independent of scattering time, hence, 

one can say that they are dissipation-less. 

In transport experiments however, it is the Hall resistivity that is measured rather 

than the Hall conductivity. Knowing that the relationship between Hall resistivity 

and conductivity is, 𝜎௫௬
ᇱ =

ିఘೣ೤
ᇲ

ఘೣೣ
మ ାఘೣ೤

ᇲమ , and assuming that 𝜌௫௫ ≫ 𝜌௫௬
ᇱ  one will obtain the 

relationship that has been found to be an experimental guide with Hall resistivity 

and the longitudinal resistivity being coupled to each other 𝜌௫௬~𝜌௫௫
ଶ  as the 

resistivity of the sample is varied through either doping or gating. Indeed this was 

found to be the case in the experiments observing intrinsic anomalous Hall 

effect[21].  
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On top of the intrinsic mechanism for the anomalous Hall effect, defect and 

impurity related extrinsic effects were also considered. The first one of these, is the 

skew scattering mechanism proposed by Smit in 1955[22]. This scattering 

mechanism explained anomalous Hall effect to arise due to an asymmetric 

scattering of electrons by impurities caused by spin orbit coupling, interacting with 

the polarized spins of electrons as a result of iterant magnetisation of the material, 

hence leading to a transverse charge separation. The anomalous Hall conductivity 

obtained as a result of the prosed scattering mechanism was found to be 

proportional to the scattering time and hence a linear dependence of anomalous 

Hall conductivity to resistivity, 𝜌௫௬~𝜌௫௫  was predicted[17]. The other scattering 

mechanism proposed was the side-jump contribution to the anomalous Hall 

conductivity. It could be regarded as an extension of the anomalous velocity theory 

proposed by KL to the spherical impurities with spin orbit interaction. Overall side-

jump contribution was found to yield an anomalous Hall conductivity independent 

of scattering time. Thus, the separation between intrinsic and side jump 

contributions to anomalous Hall effect was for a long time the most argued aspect 

of anomalous Hall effect[17].  

A quantised version of anomalous Hall effect was predicted by Haldane in 1988. 

This prediction followed after the discovery of quantum Hall effect in 1980 by von 

Klitzing et al.[13] for which the topological nature was demonstrated by Thouless et 

al.[23] in 1982. Haldane, basing his model on then hypothetical material graphene, 

showed that in 2D systems lacking time reversal symmetry (e.g. due to spontaneous 

magnetic ordering) a quantized Hall conductance could be observed in the absence 

of any magnetic field, as a result of presence of a spontaneous Berry curvature[24]. 

Albeit being predicted for 2D materials which were hypothetical in 1988, 

experimental realisation of quantum anomalous Hall effect has so far been limited 

traditional thin films of a not so traditional material, namely a topological insulator, 

magnetically doped Bi2Sb2Te3[25]. Quantisation of Hall signal in absence of 

magnetic field was reported in this system in 2013.  
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2.8.2. Spin Hall Effect 

Spin Hall effect, as the name implies means the presence of a transverse 

conductivity, or Hall resistivity, for spins rather than charges. This effect was first 

considered, unlike anomalous Hall effect, through an extrinsic mechanism by 

Dyakanov and Perel[26] in 1971. However, the name spin Hall effect was coined by 

Hirsh, who re-predicted the effect in 1999[27]. Being closely related to anomalous 

Hall effect, it is theorised to occur as a result of spin-orbit interaction within both 

extrinsic and intrinsic considerations[27], [28].  

The extrinsic contributions giving rise to the spin Hall effect are the skew and side-

jump scattering mechanism as in case of extrinsic contributions to anomalous Hall 

conductivity, however of course, in the presence of time-reversal symmetry as no 

inherent magnetisation is present for the spin Hall effect. In the case of presence of 

a non- spin polarized current, electrons of opposite spins undergo scattering in 

opposite directions as a result of their inherent spin-orbit coupling property when 

passing by a spin-less scattering object (such as a defect). The electrons in their rest 

frame feel the presence of a current which processes an effective magnetic field 

interacting with their spin, leading to a Zeeman energy dependent force acting in 

counter directions for each spin. As mentioned above, this type of scattering would 

yield transverse spin currents that is influenced by the scattering time in the Drude 

model, hence it would not be dissipation-less.  The side jump contribution as in the 

case of anomalous Hall effect, arises because of a sideways displacement of an 

electron wave packet due to the potential it has been subject to by a ‘scattering’ 

object.  This mechanism as highlighted above is independent of scattering time and 

hence leads to dissipation-less spin currents.  

The intrinsic spin Hall effect, again similarly to the intrinsic anomalous Hall effect 

arises in the presence of finite Berry curvature, but unlike anomalous Hall effect 

where the Berry curvature arises from absence of time-reversal symmetry, in the 

case of intrinsic spin Hall effect the Berry curvature arises from the absence of 
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inversion symmetry which introduces a Rashba spin-orbit coupling which is a 

different type of spin-orbit coupling to case considered for the anomalous Hall 

effect[28]. 

The first determination of spin Hall effect both extrinsic and intrinsic nature came 

through experiments utilizing optical techniques[29], [30].  The way that transverse 

spin currents arise is naturally accompanied by charge accumulation of the same 

magnitude on either side of the sample in a non-spin polarized system, hence 

various alternative methods for electronic transport experiments were 

proposed[27]. Finally electronic observation happened in an extremely narrow 

width aluminium Hall cross with ferromagnetic contacts injecting spin polarized 

charges through a dielectric oxide barrier[31]. (It must be stated here that by spin 

polarized charges or electrical spin injection we mean creation of a non-equilibrium 

population of up and down spins within the system). The way Valenzuela and 

Tinkham determined the spin Hall effect (SHE) was through an introduction of a 

non-local measurement set up utilizing a Hall cross and a ferromagnetic contact. 

They have driven the spin polarized current away from the Hall cross which resulted 

in spin-polarized electrons moving towards the Hall cross. The spin Hall signal was 

inferred from the presence of a non-local signal (which was at the time dubbed the 

spin Hall voltage) at the Hall cross, as a result of charges of opposite spins moving in 

opposite directions towards the two edges of the sample. 

Following the observation of SHE in electronic transport experiments it has been 

proposed that extrinsic SHE could in principle be found on paramagnetic systems 

with large 𝜎ௌு/𝜎௫௫, spin conductivity to charge conductivity ratio, which is referred 

to as the spin Hall angle. Abanin et al.[32] have found that on systems with a much 

smaller charge diffusion length but much larger spin diffusion compared to the 

width, i.e. lୣ ≪ W ≪ lୱ, where W is the width of the device a non-local current will 

be observed without the need for spin injection through ferromagnetic contacts. 

They have found that this non-local signal will should the equation 
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where L is the length of the device, 𝜎௫௬
ௌ  is the spin Hall conductivity, and ls is the 

spin diffusion length. Thus, the fitting of the expression above would allow one to 

extract parameters ls and spin Hall angle for the spin Hall system being 

investigated. The above relationship was found to be obeyed in graphene systems 

with enhanced spin orbit coupling, through various techniques such as 

hydrogenation[33]. At charge neutrality point in hydrogenated samples, values of 

spin diffusion length and spin Hall angle were found to be (0.95±0.02)𝜇m and ~0.58 

respectively.  

A quantised version of spin Hall effect, namely the quantum spin Hall effect has 

been predicted theoretically and observed experimentally[34], [35]. Inspiration for 

the theoretical prediction of quantum spin Hall insulator came following the 

isolation of graphene and demonstration of its topological properties. In 2005, Kane 

and Mele found that inclusion of a gap, induced by spin orbit coupling, leads to a 

gapped phase preserving of both time-reversal and inversion symmetry as the spin 

dependent term describing the interaction is even under parity (inversion) and odd 

under time reversal. Characterised by quantised spin filtered currents, and 

mathematically Z2 index which has foreshadowed the prediction and experimental 

realisation of topological insulators, quantum spin Hall state, first observed in HgTe 

quantum wells has been found to give a quantised 4 terminal resistance[35]. It has 

to be mentioned at this point that the predicted quantum spin Hall phase in flat 

bands of rhombohedral graphite which arises due to electron-elecron interactions, 

is different to the outlined well known phase which arises as a result of spin-orbit 

coupling interaction. The QSH phase in these flat bands is characterised by Chern 

numbers rather than a Z2 index[36].  

2.8.3. Valley Hall Effect 

Valley Hall effect, as the name implies is the manifestation of valley Hall currents 

due presence of a finite Berry curvature arising from the lack of inversion symmetry 

in systems possessing valley degree of freedom[37]. Thus, it can be regarded as an 

intrinsic effect only. It could be understood to be similar to spin Hall effect through 

an analogy between valley and spin degree of freedom which was first introduced 
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in traditional quantum well systems, namely AlAs grown on a GaAs substrate in 

2006[38], [39].  A valley filter based on quantum point contacts was proposed, 

which led to breaking of valley degeneracy in these systems.  

Following this, a valley filter based on graphene (which possesses inequivalent K 

and K’ valleys as highlighted in Chapter 1) nanoribbons was proposed by Rycerz     

et al., where the term valleytronics was coined in 2007[40]. The first theoretical 

prediction of (quantum) valley Hall effect came through in the same year, where in 

a seminal paper by Xiao, Yao and Niu the effect of inversion (sublattice) symmetry 

breaking was considered and was found to lead to quantised valley Hall 

currents[36]. This prediction was inspired by weak localization experiments 

showing suppression of intervalley scattering[41] and demonstration of opening of 

a gap in graphene due to a substrate potential[42].  

As mentioned above, valley Hall effect is an intrinsic effect, and its due to absence 

of inversion symmetry where Berry curvature is an odd function of k, having the 

values of  Ω(𝒌)  and −Ω(−𝒌)  at K and K’ valleys respectively, hence it can be seen 

by Equation (2.55) that it leads to deflection of charges of the both valleys on 

opposite sides of the sample. The first ever experimental detection of valley Hall 

effect occurred in both optics and transport experiments in single layer MoS2 

transistors[43] (where inversion symmetry is intrinsically absent) and 

graphene/hBN superlattice systems[44] (where the inversion symmetry is broken 

due to hBN substrate potential) in 2014. In transport experiments valley Hall effect 

has been analysed using a modified version of the Equation (2.53) which is 
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where 𝜎௫௬
௩  is the valley Hall effectivity and 𝛼 = 𝜎௫௬

௩ 𝜌௫௫  is the valley Hall angle, 

analogous with the spin Hall angle. The above model has shown to be valid for the 

case 𝛼  1 in reference [44] and has been analytically obtained for the cases 𝛼 ≪ 1 

and 𝛼ଶ ≪ 1 in references [45] and [46] respectively. Overall, it is now generally 

accepted that in a system honeycomb lacking inversion symmetry, a cubic 
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dependence of non-local signal to resistivity corresponds to valley Hall effect and 

associated Berry curvature[44]–[48].  Quantum valley Hall effect is expected arise in 

the absence of intervalley scattering, where the Hall conductivity as a result of 

valley Hall currents is expected to approach a quantized value, which has been 

observed on 1D AB-BA domain walls on bilayer graphene systems where the two 

terminal conductance of the devices fabricated have been found to approach a 

quantised value for smaller sized domain walls[49].  

An interesting property which also emerges from inversion asymmetry in 

honeycomb systems is orbital magnetic moment and associated orbital 

magnetisation, which have opposite signs in opposing valleys.  The orbital magnetic 

moment associated with a gapped two band system has been shown to be[36] 
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where 𝜏௭ = ±1 is the valley index and 𝑠௭ = ±1  is the spin index and  ∆ is the gap 

which may be both spin and valley dependent. Such an orbital magnetic moment, 

and resulting magnetisation of opposite values in opposite valleys has been probed 

in optics experiments[50]–[53]. 

2.9. Localization effects in disordered mesoscopic systems 

The idea of diffusive process of electron transport is central to understanding the 

phenomena of weak localization (happening in weak disorder limit). Hence, we will 

first review the classical theory of diffusive process and its dimensionality to 

introduce the concept of localization and will later consider quantum effects in 

weak disorder limit, highlighting weak (anti)localization in the presence of disorder 

in mesoscopic systems.  

2.9.1. Classical picture of diffusion and localization 

Consider the classical diffusion of an electron in a disordered d dimensional crystal 

system. The random walk of the electron through the system takes place as it is 
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elastically scattered off various impurities. We say that such an electron is localized 

if it has non-zero probability of returning to its original position (at 𝑡 =  0) as 𝑡−>

 ∞[54].  

For a probability distribution function of a system possessing such a particle, p(𝐫, 𝑡), 

the diffusion equation could be written as  

 0
p

D p
t


  

 r  (2.56) 

which leads to the solution 
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which means that the probability to return to origin at a time t in a d dimensional 

system is  

 /2(0, ) (4 ) dp t Dt   (2.58) 

where the integrated probability, for a particle to return to origin after a first 

scattering event, at a time 𝜏 being  
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from which and one can immediately see that as t approaches infinity, localization 

is evident in 1D and 2D cases, whereas for the 3D case the electrons remain 

delocalized. Once one introduces quantum mechanics, the classical picture 

highlighted above becomes modified, and one obtains an enhanced back-scattering 

probability in a weakly disordered system which is known as the weak localization.  
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2.9.2. Weak Localization 

We have so far, when considering their dynamics within a crystal in zero or low 

magnetic fields, assumed electrons as classical particles, especially within the Drude 

model. It was the seminal work of Anderson in 1958[54] that showed the fact that 

significant deviations from classical picture may occur due quantum nature of 

electrons in a strongly disordered crystal lattice, leading to in fact, a complete 

absence of diffusion in these lattices, manifesting itself as a metal-insulator 

transition, which became known as Anderson or strong localization[55]. A few 

decades later, in 1980, considering quantum dynamics of electrons in a weakly 

disordered metallic system (which is where the term weak comes from), two 

groups have predicted a distinct temperature and magnetic field dependence of 

conductivity at low temperatures in two dimensional systems[56], [57], predicting 

weak (anti)localization in a metallic system which was also extended to three 

dimensions shortly after[58].  

When considering quantum dynamics of electrons, we are dealing with probability 

amplitudes, which have wavelengths and frequencies that relate to momenta and 

energies, respectively. These momenta and energies, rather than forces, are 

incorporated in a quantum system through phases of the wavefunctions. The most 

central concepts to understanding weak localization are the terms dephasing time 

and the dephasing length which are related to the wavelike nature of electrons. The 

simplest way of illustrating the concepts of dephasing time and dephasing length is 

through an imaginary interference experiment of two electron beams as illustrated 

in Figure 2.6. In the absence of magnetic field, each electron, undertaking path 1 

and 2 respectively, could be described by plane waves, 𝐴௔ = |𝐴௔|𝑒௜ఝೌ  and 𝐴௕ =

|𝐴௕|𝑒௜ఝ್. Now, if we consider a static system, in which electrons travelling through 

each pathway undergo scattering due to collisions with impurities the phase 

relationship at merging point X will always be the same. At low enough 

temperatures, it has been found that the dominant interaction effect that 

influences the phases of such electrons with different trajectories are inelastic 
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scattering events such as the electron-electron interactions and electron-phonon 

interactions. Remarkably, the timescale at which such an inelastic  

 

Figure 2.6 Two electron beams splitting to take alternative circular paths before merging into 

another single beam. Figure adapted from S. Datta [6].  

scattering event occurs, which is effective at destroying an electrons phase, 𝜏ఝ is 

much larger than the transport relaxation time 𝜏. Thus, electrons undergoing many 

scattering events within a crystal do not lose their phase information until an 

inelastic scattering event, which happens much less frequently. Hence, an obvious 

approach at defining a dephasing length by writing the equation  

 FL v   (2.60) 

is only true for very high mobility systems where 𝜏ఝ~𝜏. In low mobility systems, 

where 𝜏ఝ ≫ 𝜏, as velocity is randomised many times before a dephasing inelastic 

scattering event occurs, one needs to consider the root mean squared distance, 

which for a two dimensional system is given by[6] 
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where 𝜃 is the scattering angle at each collision, which leads to the following  

 L D   (2.62) 

as the expression for the dephasing length.   
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Let’s imagine an electron undergoing a random walk within a crystal lattice to 

return to its original position and for the sake of keeping our argument simple, let’s 

consider it doing that through two alternative pathways to each other, which have 

the probability amplitudes of A⊂ and A⊃ for clockwise and counter-clockwise 

directions respectively. Classically one would write the probability of the electron 

returning to its original position as 

 
2 2

11P A A    (2.63) 

which would be correct only if we ignore the quantum mechanical nature of 

electrons. Taking care of the quantum mechanics of electrons, we would have to 

write the probability of electrons returning to their original position as  

 
2 2

11 2 cos( )P A A A A            (2.64) 

where 𝜑 is the phase of the electron as it is completing the clockwise and 

anticlockwise pathways, respectively. Given that the random walks are carried out 

in opposite directions in same system, one can write the amplitudes as  

𝐴 = 𝐴⊂ = 𝐴⊃ 

and the phase difference term assuming time scale t is much smaller than 

dephasing length as 

cos(𝜑⊂ − 𝜑⊃) = 1 

which would lead to a probability amplitude given as 

 
2

11 4P A  (2.65) 

being double the probability one obtains classical relation given in Equation (2.63).  
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Figure 2.7 Backward scattered wave amplitudes as a particle is undertaking a diffusive motion 

towards a defined x-axis with a doubling happening for backward scattering happening exactly at 

zero-degree angle. Figure adapted from S. Datta [6].  

Hence, we saw that, during diffusive conduction across a mesoscopic sample, in the 

presence of time reversal symmetry, the probability of the occurrence of rare 

electron paths (in which electrons complete closed cycles to return to their original 

position) is doubled to due to their interference with their counter clockwise 

partners. This leads to a doubled amplitude of electron scattering at a zero angle to 

the x-axis towards which the diffusive motion within the system is taking place as 

illustrated in Figure 2.7. Remarkably, one obtains this enhancement as a small and 

negative correction to the Drude conductivity 

 Drude WLG G G   (2.66) 

where ∆G୛୐ is on the order of −𝑒ଶ/ℎ.  

Excitingly from an experimental point of view, the story does not end here. The 

weak localisation effect of enhanced backward scattering is found to be remarkably 

sensitive to magnetic field, or one should say rather to introduction of a vector 

potential to the system. The fact that the weak localization correction is destroyed 

by application of a magnetic field has established it as unique signature of this 

phenomena.  
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In the presence of a magnetic field, the phases of the wavefunctions describing the 

electrons undergoing a random walk in clockwise and anticlockwise directions 

become modified as 

 (0) (0)  and  
e e

d d      
 

      A r A r
    (2.67) 

where the phase difference between two counterpropagating paths becomes 

  2 2 2

S

e e e
d d BS         A r A S

    (2.68) 

with S being the area enclosed by the path. Thus, we can write the quantum 

interference term in Equation (2.67), which we shall call 𝐼, for n number of closed 

paths as 

 2 22 2
2 cos 2 cos

n n F

e
I A BS A B

B

      
   

 
 (2.69) 

where one can see that we have derived an oscillatory interference term which has 

a frequency that depends on the area enclosed by each specific counter 

propagating loop pairs. Given that, in principle, we have an infinite number of loops 

all with varying loop areas, the result of the summation approaches to zero above a 

critical magnetic field where weak localization becomes completely supressed. One 

can do a rough estimation of this critical field as  

 C
hB eS  (2.70) 

where S could be taken as the area of the sample to which magnetic field is 

pointing away from, as a rough estimation, but it is the size of the largest loop 

charge carriers carry out whilst undergoing a random walk.  

In the most simplistic scenario following scaling relationships have been derived for 

the change in conductivity with the application of a magnetic field due to 

suppression of weak localization 
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 (2.71) 

in 2 and 3 dimensions, respectively[59]. It must be noted that in 3D, the 

suppression of the weak localisation due to magnetic field is independent of its 

orientation with respect to current.  

2.9.3. Weak Anti-Localization  

Hand in hand with the prediction of weak localization, an interference induced 

positive correction to conductivity was also predicted, arising from reduction of the 

probability of backward scattering. This phenomenon was initially predicted to arise 

in materials possessing strong spin orbit coupling, where there is a spin-momentum 

locking [57], [60]. The effect in a nutshell arises as two wavelike particles possessing 

spins (locked to the direction of momentum) gain opposite phases as they are 

carrying out loops in counter-clockwise directions. They interfere destructively 

leading to the suppression (halving) of the classical probability amplitude for 

random walk in backward direction.  

More recently, after the discovery of graphene, weak anti-localization effect was 

also demonstrated in this carbon based system[61], [62] which intrinsically has very 

weak spin-orbit coupling effect. The observation of the effect in graphene was 

indeed due to presence of a Berry phase, and associated coupling of pseudospin 

degree of freedom to momentum. Analogous to the case of spin-orbit coupling, 

quasiparticles carrying out counter-clockwise loops gain a Berry phase of opposite 

values hence leading to a destructive interference.  

Over the past decade, following on the breakthrough with regards to experimental 

realisation of topological insulators and Weyl/Dirac semimetals, weak 

antilocalization has also been observed in these systems, both of surface and bulk 

origins in the former, and being of bulk 3D origin in the latter[63]–[66]. 

Interestingly, possessing surface bands that are N-layer generalisation of graphene, 



 
102 

 

and possessing bulk sub-bands that are gapped bulk Dirac cones, ABC graphite films 

are expected to show an interesting interplay of weak (anti)-localization effects in 

both two and three dimensions. The requirement of sufficiently low temperatures 

also holds for weak anti-localization as one needs to have a phase coherence length 

much larger than mean free path. The characteristic experimental signature for 

suppression of weak anti-localization due to presence of a magnetic field has been, 

theoretically shown to be   

 
2

( )
e eB

B
h

 


 (2.72) 

in 3D at large magnetic fields. For 2D, the situation is more complicated and an 

expression involving digamma functions has been derived and used to fit 

experiments[57]. For graphene, this expression has been shown to be[61],[62]  

 2

*

/ 4 / 4 / 4
( )

1 2 1 1 11/

i i

e eDB eDB eDB
B F F F

h 

 


 

    

    
                          

    

    (2.73) 

where F(z) = ln(z) +Ѱ(0.5+𝑧ିଵ) with Ѱ(x) being a digamma function. Constants 𝜏∗ 

and 𝜏௜ are intravalley and intervalley scattering times, respectively. The sign of the 

term in brackets determines the sign of the correction to conductivity.  
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Chapter 3 -Experimental 
Technicalities 
 

3.1. Fabrication of van der Waals heterostructures 

Following the isolation of graphene in 2004[1], its electronic properties were 

investigated through transport devices fabricated with graphene flakes on Si/SiO2 

wafers[2], [3]. A major drawback of SiO2 as a substrate was the limitation of sample 

quality (impacting parameters such as charge mobility) due to the influence of its 

surface charges[4], surface roughness[5], [6] and optical phonons[7]. This limitation 

was overcome by suspending the graphene flakes over the SiO2 substrate[8], which 

however meant that there were restrictions on the device designs. 

Shortly after the isolation of graphene, Novoselov et al.[9] in 2005, had shown that 

the mechanical exfoliation method could be extended to the other layered van der 

Waals crystals. Out of these crystals, hexagonal boron nitride (hBN) was found to be 

a wide band gap insulator[10] even in the monolayer limit, with a lattice parameter 

very close to the one of graphene[11]. In 2010, utilising hBN as a substrate instead 

of SiO2, it was shown that the charge mobility in transport devices was improved by 

an order of magnitude, with the roughness of the device being reduced by a factor 

of 3, approaching to the atomic limit[12].  
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The method used in the work by Dean et al.[12], to transfer graphene on top of a 

hBN flake acting as a substrate was the so called ‘wet transfer’ method. The hBN 

flake to act as a substrate was exfoliated onto a Si/SiO2 wafer. Graphene was then 

exfoliated onto a Si/SiO2 wafer coated with a water-soluble layer and a PMMA 

membrane. Once the graphene flake was selected the water-soluble layer was 

dissolved in a deionised water bath, leaving the flake and the PMMA membrane 

floating. The floating PMMA membrane was picked up using a glass slide and 

transferred onto the previously identified hBN substrate, using a transfer stage 

consisting of an optical microscope and a micromanipulator. Once the transfer 

process was completed the PMMA membrane was dissolved using acetone.  

To achieve a greater sample quality, the ‘wet transfer’ process was modified such 

that the graphene layer of interest was prevented from contacting with any 

solvent[13], [14]. In some cases, this was done through employing an alternative 

membrane to the water-soluble layer that the PMMA layer used could peel off 

from. This approach and the device quality obtained as a result has led to 

observation of fractional quantum Hall effect as well as room temperature ballistic 

transport in graphene [13],[14]. Nevertheless, albeit the subsequent improvements 

made in the fabrication procedure to achieve a ‘dry transfer’ a wet chemical had to 

be employed at some stage in the fabrication process[15]. Overall, there was room 

for development of a time-efficient all dry fabrication process.  

An all dry-process with an improved time efficiency was developed in 2014 initially 

utilising PDMS membrane and its viscoelastic nature, and later in 2015 with a 

combination of PMMA/PDMS membranes and their different thermal expansion 

coefficients with respect to the van der Waals crystals hBN and (multilayer) 

graphene[16]. The latter process (depicted in Figure 3.1) has been found to lead to 

a cleaner hBN/graphene/hBN interface. A property of hBN crystals as substrates is 

that through their self-cleansing mechanism[17], they interact with the desired 

crystal forming an atomically smooth interface and hence pushing away any 

contaminations on the interface to regions where bubbles of these contaminations 

are formed. The process depicted in Figure 3.1 was found to lead to reduced 

number of bubbles, hence suggesting a cleaner interface following the double 



 
109 

 

encapsulation of the 2D crystals. It was used to fabricate the rhombohedral 

graphite heterostructures investigated in this thesis.  

 

 

Figure 3.1 All dry fabrication illustrated schematically. a) Prepared PDMS/PMMA heterostructure 

on a glass slide onto which top hBN is mechanically exfoliated. b) Lifting of the previously 

identified rhombohedral graphite flake following the mounting of the glass slide onto a transfer 

stage equipped with an optical microscope and a micro-manipulator. c) Formation of the 

hBN/RG/hBN heterostructure after dropping the heterostructure formed in b) to the bottom hBN 

flake. At this stage Peltier module is heated to ∼𝟓𝟓°𝐂 causing thermal expansion of all layers. d) 

Peltier module is cooled to ∼𝟏𝟓°𝐂, enabling removal of PMMA/PDMS from the top hBN leaving 

behind the desired heterostructure.  

The fabrication procedure, depicted in Figure 3.1, was as follows. Crystals of hBN 

and graphite were mechanically exfoliated onto SiO2(290nm)/Si wafers with their 

respective thicknesses being obtained through combination of optical contrast and 
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atomic force microscopy. Rhombohedral domains of graphite films were identified 

through Raman mapping, in particularly FWHM of the 2D peak which couples to the 

electronic structure of the crystal. Following exfoliation of crystals, the top hBN 

layer was picked up by a prepared PDMS/PMMA heterostructure on a glass slide 

(depicted in Figure 3.1a). Using the glass/PDMS/PMMA/hBN heterostructure flakes 

mounted on a transfer stage, rhombohedral graphite domains were picked up (as 

shown in Figure 3.1b). This heterostructure was then dropped onto bottom hBN 

crystal exfoliated onto Si/SiO2 substrate. At this point, using the Peltier module on 

which the Si/SiO2 wafer was transferred to, the whole heterostucture was heated 

to ∼55°C.  An obvious concern here would be potential transition of rhombohedral 

graphite domains into more energetically stable Bernal hexagonal phase. We have 

previously shown by Joule heating experiments that rhombohedral graphite 

domains are stable up to temperatures approaching 227°C [18], hence the 

temperature of 55°C is low enough to keep the rhombohedral domains stable. The 

heating of the heterostructure is done to prevent picking of the hBN flakes on the 

Si/SiO2 substrate by the PMMA membrane. Following this, the Peltier module was 

cooled down to ∼15°C and Glass/PDMS/PMMA layers were peeled off from the top 

hBN flake (Figure 3.1d). The mechanism of peeling off is attributed to the thermal 

shrinkage of the PDMS membrane to which PMMA is attached. Once the van der 

Waals heterostructure was formed, standard e-beam lithography, reactive ion 

etching, and metal contact deposition processes were used to form the Hall bar 

devices.  

3.2. Measurement Electronics 

When carrying out electronic measurements to characterise simple Hall bars one 

typically has two options which are AC and DC. It is often much more practical to 

apply AC currents and detect AC voltages especially working with low resistances 

(up to ∼30kΩ for the case of rhombohedral graphite). At low temperatures, one 

often needs to apply very low currents and in return detect very low voltages (can 

be as low as 10s of nVs). Such a precision is not possible with instruments utilizing 

and measuring DC signals and it is only possible using AC signals thanks to the phase 
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locking technique which has led to the development of low noise lock-in amplifiers. 

Figure 3.2 shows a schematic of a typical measurement circuit, where the Hall bar 

device is wire bonded onto a 24-pin ceramic chip package, used to carry out both 

transverse and longitudinal resistance measurements using AC excitation generated 

by lock-in amplifier. The function of the resistor (typically between 1 to 10MΩ) in 

the circuit is to utilize the AC signal generated by the lock-in amplifier as a constant 

AC current source. The operating principle of the lock-in amplifier will be outlined in 

Section 3.2.1.  

Figure 3.2 a) Schematic illustrating four-probe measurement configuration using an AC current 

(10-100nA) generated from a lock-in amplifier using a resistor (𝟏 − 𝟏𝟎𝐌Ω). The frequency of AC 

excitations used were limited to below 50Hz to avoid mains hum. b) An optical micrograph of a 

typical device consisting of large contact pads enabling wire-bonding onto a 24-pin ceramic 

leadless chip-package with gold pads.  

3.2.1. Phase sensitive detection and Lock in Amplifier 

Let us first consider an ordinary AC signal amplifier and compare it to a lock in 

amplifier. An attempt to measure a very low voltage (10nV) and low frequency AC 

signal (100Hz) using an ordinary amplifier, which intrinsically comes along with a 

gain and a bandwidth which for illustrative purposes could be assumed to be 1000 

and 1kHz respectively. Using a state of the art of amplifier we would obtain a noise 

level of 5nV/√Hz , which would lead to an amplified signal of 10𝜇V, with a 

broadband noise of 15.8mV, which means that our attempted measurement will be 
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overwhelmed by the present noise.  Even if we were to use a band pass filter on our 

amplified signal, to reduce its bandwidth, let’s say to 1Hz, we would still end up 

with a noise level of 5 𝜇V, which is on the order of our signal that we have 

amplified. The advantage and in a way the function of the lock in amplifier is to 

reduce the bandwidth of the measured signal as low as 0.01Hz, through its phase 

sensitive detection mechanism, which in the above example would lead to a noise 

level of 0.5 𝜇V significantly smaller than our signal.  

The way the phase sensitive detection mechanism of a lock-in amplifier works could 

be illustrated through the following simple example. Imagine a reference signal 

which has a locked frequency to the signal being measured at a fixed phase offset. 

The signal, which is being measured is in the form of  

 ( ) cos( )s s S Sv t A t    (3.1) 

where 𝜔ௌ is the frequency and 𝜙ௌ is the phase. The reference signal supplied by the 

PSD is of the form 

 ( ) cos( )r r r rv t A t    (3.2) 

with its own frequency and phase. The simplistic PSD system considered here 

carries out the operation in Figure 3.3, before passing the signal through a low pass 

filter.  

 

Figure 3.3 Phase sensitive detector operation principle. Measured signal is multiplied with a 

reference signal before passing through a low-pass filter filtering out high frequency components. 

Figure courtesy of T. Tomson.  



 
113 

 

The multiplied signal is mathematically expressed as  

  1
( ) cos[( ) ( )] cos[( ) ( )]

2m r s r s r s r s r st A A t t                 (3.3) 

where the low pass filter used has a cut off frequency 𝜔௖ ≪ 𝜔௥ + 𝜔௦ which means 

that the first term in the brackets in the equation above will be cancelled once the 

signal goes through the low pass filter. When the term 𝜔௥ − 𝜔௦ is zero, which is the 

case, and is the main operation principle of phase sensitive detector, one obtains 

the filtered wave 𝑣଴ as 

 0

1
cos( )

2 r sv A A    (3.4) 

assuming a low unity low pass filter gain. In the event of a constant phase 

difference between the measured signal and the reference signal one obtains a DC 

signal proportional to the measured signal amplitude.  The PSD could be regarded 

as transition of the operation of an ordinary low pass filter such that its frequency 

response is centred on the reference frequency supplied as shown on Figure 3.4. 

Hence, when carrying out the electrical measurement schematically depicted in 

Figure 3.2a, by sourcing a constant AC current through the resistor, one can 

measure the amplitude of the voltage drop across the sample using the lock in 

amplifier, hence obtain the resistance of the sample.  

 

Figure 3.4 Lock in amplifier enables an effective low pass filter operation with a cut-off frequency 

centred around the reference signal supplied by the lock in. Figure courtesy of T. Tomson.  



 
114 

 

It must be noted that when performing superconductivity measurements, often 

additional RC filters are used to filter out additional harmonics unavoidably 

generated by the lock-in amplifiers, which start to have a pronounced influence on 

the signal once the detected signal quantities become extremely small.  

3.3. Measurement geometry and electrostatic gating  

Electrical measurements reported in this thesis were carried out using various 

measurement configurations on Hall bars devices of hBN/RG/hBN van der Waals 

stacks on Si/SiO2 substrates as shown in Figure 3.5. The more usual ‘local’ 

measurement geometry depicted in Figure 3.5b, allows one to determine 

longitudinal resistance, and the longitudinal resistivity as 

 
xx xx

xx
SD

V W
R

I L


   (3.5) 

with W being the width of the Hall bar and L being the distance between the 

contact pair used to measure the longitudinal voltage drop Vxx. Measuring it in 

combination with the Hall resistance, as highlighted already in Chapter 2, allows 

one to extract the carrier density associated with the Fermi level of the system as  

 xy xy

B
R

en
    (3.6) 

where a combination of the two measurements allows one to extract Hall mobility 

of the system at around given chemical potential.  

As well as enabling 4-probe measurements which allows one to obtain resistance of 

the sample without contact resistance influence (depicted in Figure 3.5b) Hall bars 

fabricated have also enabled the study of topological currents which lead to a non-

local voltage drop away from current injection contacts (as depicted in Figure 3.5c) 

due to presence of a zero magnetic field Hall effect of spins and or valleys. The 

presence of non-local signal is verified through an estimation of Ohmic contribution 

to non-local resistance at the point the non-local voltage measured as[19], [20] 
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W

Ohmic xxR e


   (3.7) 

for current applied across the width W voltage measured at length L away from 

current injection contacts.  

 

Figure 3.5 a) Schematic of the van der Waals heterostructure formed using an all dry transfer 

process. b) Local measurement geometry depicted on a double gated device with the current 

injection, longitudinal and transverse voltage contacts labelled. c) Non-local measurement 

geometry with voltage measured away from current injection contacts.  

An important tuneable parameter while investigating electronic properties of a 

two-dimensional or a thin film system is the chemical potential. To be able to have 

a comprehensive insight one needs to be able to tune the Fermi level at each 

surface of a rhombohedral graphite film. This is done through electrostatic gating 

by application of a DC voltage across the sample and a gate, through a dielectric 

located above/below the sample. The top and back gates used within the devices 

for which the measurements are reported were gold metal contact and n-doped 

silicon, respectively. The generated electric field across hBN and SiO2 dielectrics 

produce a finite carrier density at each surface proportional to voltage applied, 

which is expressed by the equation below per unit surface area as 

 0 0
0 0

b rb t rt
total b t

b t

V V
n n n

ed ed

   
     (3.8) 
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where d is the thickness of the dielectric which is hBN for the top gate and SiO2 for 

the bottom gate, and 𝜀௥ being the relative permittivity for the dielectrics, with 0bn

and 0tn taking care of the position of the charge neutrality point at each surface. By 

inducing charges of opposite types on each surface, or applying voltages of 

opposite signs one can also induce a displacement field to the low energy flat bands 

of a rhombohedral graphite system which can be expressed as  

 0 0( ) ( )

2
rt t t rb b bV V V V

D
   

  (3.9) 

in terms of respective gate voltages with 0tV and 0bV  being the voltage values of the 

charge neutrality point. The displacement field in principle should lead to a gap 

opening at the low energy bands of a rhombohedral graphite system above a 

critical displacement field[21], as it has been observed in bilayer systems[22]–[25].  

3.4. Temperature Control 

3.4.1. Sorption pump-controlled Helium-3 cooling 

Majority of the experiments reported in this thesis were carried out utilizing 

variable temperature inserts (VTI) immersed in liquid helium (4He). Liquid helium 

has a boiling point of 4.2K. However, at low enough pressures vaporised 4He exists 

down to temperatures of around 1K (see Figure 3.6a). Temperatures down to 1.4K 

were obtained by pumping vapour helium through the sample space using a rotary 

oil pump were the vapour pressure was adjusted down to values around 3mbar 

(see Figure 3.6a) through use of a needle valve.  

Temperatures that are not accessible 4He were obtained using a single shot 

sorption pumped 3He VTI manufactured by Oxford Instruments. A pictorial image of 

the VTI is shown in Figure 3.7a as well as a schematic depicting its operating 

principle. It can be seen from Figure 3.7b that extremely low pressures, 

0.0001mbar, are required to reach down to the base temperature of 0.25K on a 3He 
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system. This is achieved by using a large surface area (which is charcoal in our case) 

material as sorption pump [26], which the 3He gases adsorb onto.  

 

Figure 3.6 Vapour pressure of a) 4He and b) 3He and associated temperatures. At extremely low 

pressures gaseous 3He exists at temperatures down to 0.25K whereas only around 1K is accessible 

for the case of 4He. Data from ref. [26]. 

The operation procedure of the 3He insert depicted in Figure 3.7a is as follows. The 

sample which is bonded to a 24-pin chip carrier is initially mounted onto a probe 

which is attached to end of a narrow finger-like copper block with threads at one 

end. Using the threads, the copper block is screwed onto the copper cylinder 

depicted as 3He pot on Figure 3.7a. Once this procedure is completed, the vacuum 

can is attached to the insert as an inner vacuum generated through pumping. Once 

low enough pressure is reached (typically on the order of 10-6 mbar), the pumping is 

terminated and at this stage small amount of exchange (4He) gas ∼25cm3 is added, 

to ease the cooling process. The VTI is then dipped into a liquid nitrogen Dewar to 

pre-cool it down to 77K. Once the insert is cooled to 77K, it is then carefully dipped 

into the liquid helium Dewar which if left alone will cool the insert down to 7-8K 

(depending on the quality of the vacuum and volume of the exchange gas). At this 

stage, pumping is started to generate 4He vapour flow through the VTI including the 

1K pot, which will be cooled down to temperatures as low as 1.4K. A key property 

of the sorption pump is that, at a liquid 4He boiling temperature of 4.2K it starts 
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absorbing the 3He gas present in the insert, which is what enables it to be used as a 

pump. Typically, before operation at base temperature of ∼0.25K, using heaters 

mounted on the sorption pump, it is heated to a temperature above 32K, while the 

1K pot is kept at the lowest temperature possible (below superfluidity transition 

point of vaporised 4He at 2.17K). This releases all 3He atoms adsorbed to the 

charcoal surface, generating a high pressure, and as the 3He atoms are passing by 

the 1K pot they become condensed and fill the 3He pot in a liquid state. This 

process is referred to as regeneration. Once regeneration process is completed, 

heater of the sorb is switched off, which cools it down to 4.2K, and pumping begins 

with low enough vapour pressures such that surroundings are cooled to 

temperatures as low as 0.25K. 

 

Figure 3.7 a) 3He variable temperature insert with the most fundamental parts labelled (adopted 

from Oxford instruments user manual). b) Schematic of a 3He variable temperature insert 

illustrating the operation principle, pumping of vaporised 3He to the sorption pump. Figure 

adapted from N. H. Balshaw [26]. 

Typically, to achieve temperatures between 0.25K and 1.5K within the VTI, varying 

amounts of heat are supplied to the sorption pump which varies the vapour 

pressure of the evaporating 3He. To achieve temperatures including and above 

1.6K, heat is supplied directly to the 3He pot, which at this point is cooled by the 

vapour 4He flow. Once temperatures equal and above the equilibrium temperature 
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of 7-8K is reached, 4He flow could be stopped and after pumping the exchange gas 

within the vacuum space of the insert, temperatures up to room temperature could 

be achieved inside insert, while keeping the superconducting magnet immersed in 
4He. 

3.4.2. Helium-3/Helium-4 mixture dilution fridge 

When a mixture of two helium isotopes is cooled below a critical temperature it 

separated into two phases [26]. The light ‘concentrated phase’ is rich in 3He and the 

heavier dilute phase is rich in 4He. Since the enthalpy of 3He in each phase is 

different, it is possible to obtain cooling by evaporating 3He from concentrated 

phase into the dilute phase. 

One can think of the 3He ‘concentrated phase’ as a liquid and the ‘diluted phase’ as 

a gas. As helium is inert, 3He gas evaporated from concentrated phase moves 

through 4He gas without interactions. The process works until lowest temperatures 

(down to 10 mK) as along as a finite 3He concentration remains in the ‘dilute phase’.   

Typically, a 3He/4He mixture is cooled down to condensate in a liquid 4He assisted 

1K pot. The condensate is further cooled down below 0.87K in mixing chamber to 

get a separation of the two phases. Heavier ‘dilute phase’ lies at the bottom of the 

mixing chamber and cools the sample attached to the mixing chamber as it 

evaporates. The evaporation of 3He could be carried out to yield vapour pressure 

temperatures beyond that of the charcoal pump of the 3He sorption pump system 

hence leading to an order of magnitude lower temperatures. The evaporated 
3He/4He mixture is stored in the dilution fridge to be sent back to 1K pot for the 

next cooling cycle.  

3.5. Magnetic Field 

Magneto-transport experiments reported in this thesis takes advantage of the 

extremely high magnetic fields (up to 18T) generated in superconducting magnets 

immersed in liquid helium [26].  The main motivation behind superconducting 
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magnet technology is that their property of zero resistance allows them to behave 

as an ideal inductor without resistance.  

A superconducting magnet typically consists of a solenoid made from 

superconducting metals such as NbTi and NbSn and its magnetic field generation 

and basic properties can be understood using introductory level inductance physics. 

As an example, we can consider a simple solenoid with zero resistance carrying 

current i with N number of coils and a cross section area of A, where the generated 

magnetic flux would be 

 0B BA NiA    (3.10) 

with 𝜇଴ being the vacuum permeability where the inductance of the wire could be 

defined as  

 
BL
i


  (3.11) 

which defines the flux generation efficiency of the solenoid per unit current 

applied. The most important property of an inductor is that there is only a finite 

potential drop across it (let us say from point a to b across the inductor), when 

there is a change of the current applied through it 

 ab

di
V L

dt
  (3.12) 

as expressed in the equation above. We note that there is a self-induced 

electromotive force within the inductor that opposes this change of applied 

current. Hence, a finite energy input to the solenoid is necessary to be able to 

generate finite final current I flowing through it. The instantaneous power applied 

to the inductor is expressed as 

 ab

di
P V i Li

dt
   (3.13) 
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hence one can write the total energy applied to the inductor to be able to generate 

a final current of I as 

 2

0

1

2

I

U L idi LI   (3.14) 

so an inductor with a finite current I flowing through it has a finite energy stored 

which is released as this current decreased.  

 

Figure 3.8 A superconducting magnet circuit (grey shaded area) showing the superconducting coils 

as well as superconducting switch connected to a heater. The protection circuit (labelled) is 

necessary for minimising the energy release during potential quenching events. Figure adapted 

from N. H. Balshaw [26]. 

The energy stored within a superconducting magnet may be rapidly released in a 

quenching event when a fraction of the superconductor switches to a normal state 

(which could be due to a variety of reasons such as quick sweeping of current or too 

high magnetic field) which kicks off a chain reaction at which the entire 

superconducting magnet switches to a metallic state releasing the entire energy 

stored within it as heat to the surroundings, which may cause significant damage to 

the equipment.  

A superconducting magnet system is typically equipped with a superconducting 

switch (shown in Figure 3.8), which is a narrow strip of superconducting (below a Tc 

accessible by switch heater) metal, connected to a switch heater which keeps this 
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narrow strip of wire in a resistive state as the magnet is charged with energy. The 

function of the superconducting switch is to enable the operation of the magnet in 

a persistent mode, which makes use of the constant field generated inside the 

magnet once a given current is applied. Typically, once the given value of magnetic 

field is reached, the switch heater is turned off, forming a superconducting circuit, 

and passivating the power supply. This approach used to reduce the heat load on 

the cryostat enabling the magnet power supply to be turned off. Another 

advantage is the stability of the field generated for experiments that strictly require 

a constant magnetic field. The persistent magnetic field generated at a given 

current across the magnet is typically more stable than the power supply as small 

fluctuations in current occurs within, leading a small uncertainty in the magnetic 

field value.  

3.6. Summary 

Rhombohedral graphite flakes identified through Raman spectroscopy mapping 

were encapsulated with high quality hBN crystals using a PMMA/PDMS assisted all-

dry transfer method. Hall bars were then defined on the formed van der Waals 

heterostructures with gold contacts as well as a top gate by a combination of e-

beam lithography, e-beam evaporation, and etching processes.  

Low noise electrical measurements were carried out using SR830 lock-in amplifiers 

whose AC signals were sometimes superimposed onto a DC signal enabling direct 

dV/dI measurements. Kiethley sourcemeters were used DC signal sources. Prior to 

measurements the devices fabricated on SiO2/Si wafers were cleaved and wire 

bonded onto 24-pin ceramic chip carriers that were carefully mounted onto probes 

attached to the liquid helium variable temperature inserts.  

Lastly, magnetic field generation (up to 18T) and control was enabled through use 

of superconducting magnet technology. During the experiments instrument control 

data acquisition was carried out using LabVIEW programming language.  
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Chapter 4 –Bulk versus 
Surface conduction 
4.1. Introduction 

Bulk nodal line semimetal[1] rhombohedral graphite is a topological insulator in 

thin film limit as highlighted already in Chapter 1. Albeit bearing similarities to more 

usual topological Z2 symmetry protected topological insulators[2], rhombohedral 

graphite thin films are chiral symmetry protected and are a 3D generalisation of the 

simplest 1D topological insulator model Su-Schrieffer-Heeger chain[3]–[5].  

Nevertheless, both systems possess topological surface states which lie inside their 

bulk band gaps[6].  

A fundamental issue to transport studies of topological insulator crystals has been 

the unavoidable albeit limitable parallel thermally activated bulk conduction[7]–[9]. 

These crystals require careful crystal growth under laboratory conditions to unleash 

their topological properties, unlike rhombohedral graphite films which are 

exfoliated from high quality crystals of naturally occurring graphite[10]–[12].  

The bulk band gap of rhombohedral graphite films, in the thicknesses of the films 

studied (9 to 50 layers) with tight binding predicted bulk gap sizes ranging from 

370meV to 71meV is comparable to bulk gap sizes of ordinary topological 
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insulators. During experiments, one would expect a smaller transport gap size to 

manifest itself as it has been the case in other topological insulators[7], where one 

would hope, the conduction at low temperature at least, to be dominated by the 

surface states of topological origins.  

4.2. Temperature dependence of zero gate resistivity 

The temperature dependence of zero gate resistivity of rhombohedral graphite 

films with thicknesses ranging from 10 to 21 layers is shown in Figure 4.1 as well as 

a reference 10-layer Bernal hexagonal stacked graphite device. It can be seen that 

until a saturation temperature between 50 to 75K, the resistivity of rhombohedral 

graphite devices increases with decreasing temperature, as it would be expected 

from an intrinsic semiconductor, whereas for the case of reference ABA device, 

resistivity is decreasing, as it would be expected from a semimetal. We know that, 

in low energy limit, rhombohedral graphite is also a semimetal thus the observed 

semiconductor like cooling curves could only be explained an expected thermally 

activated bulk conduction domination at temperatures above 50K. The drop in 

resistance at low temperatures (except the 10 layer device – for which a gap at 

charge neutrality point emerges  which is discussed in detail on Chapter 6) is 

parallel surface conduction channels emerging, and in fact, dominating the 

transport properties.  

 

Figure 4.1 Temperature dependence of resistivities of Hall bars devices rhombohedral graphite 

films of 10, 14, 19 and 21 layers thickness as well as a 10-layer thick reference hexagonal graphite 

film device with a heterostructure schematic as well as a device micrograph insets.  
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Extracted carrier densities (from Hall resistance) for a 14-layer rhombohedral 

graphite film is shown on Figure 4.2a. As expected from thermally activated 

conduction on an intrinsic semiconductor, bulk carrier density increases 

exponentially with temperature. The Arrhenius plot of the temperature 

dependence of carrier densities (Figure 4.2b) was found to yield a thermal 

activation gap of (110 ± 20)meV which is as expectedly smaller than theoretically 

calculated bulk gap size of 245 meV [5]. The extracted activation gap is comparable 

to the ones for high quality BiSbTe2S topological insulator crystals[13].  

 

Figure 4.2 a) Temperature dependence of Hall resistance extracted electron carrier densities of a 

14-layer rhombohedral graphite film b) Arrhenius plot of the carrier densities plotted in a) with an 

obtained activation gap size of (𝟏𝟏𝟎 ± 𝟐𝟎)𝐦𝐞𝐕. 

 

4.3. Multi carrier-type transport 

To clarify for the claimed multiband conduction, taking place across surface and 

bulk bands at low temperature, we have carried out multiple carrier fits (Figure 4.3) 

by carrying out a list-squares fitting of the expressions in Equation (2.39) to 

longitudinal and transverse conductivities, 𝜎௫௫ and 𝜎௫௬ which was found to suggest 

3 types of carrier at low temperatures (5K) where we expect surface conduction to 

dominate over that of bulk. We attribute two carriers of opposite signs with 

relatively higher mobilities of 3420 3900 
ୡ୫మ

୚ୱ
ൗ  and carrier densities of  

(2.11 4.12⁄ ) × 10ଵଶ cmିଶ to surface charges of electrons and holes respectively 
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which emerge and increasingly become dominant as temperature is decreased. The 

remaining charge type are electrons which we believe to be of bulk origin with a 

mobility of 1040 
ୡ୫మ

୚ୱ
 and a carrier density of 5.38 × 10ଵଶcmିଶ which completely 

dominates transport at higher temperatures due to increased thermal activation 

across the bulk gap.  

 

Figure 4.3 Multiband transport on 14-layer rhombohedral graphite film at 5K with longitudinal and 

transverse conductivities (blue and red) both described by the same 3 carrier model (dashed 

lines), yielding 2 surface electrons and holes, and one bulk (electrons) carriers.  

4.4. Semiconductor – metal transition 

Remaining evidence for crossover from a semiconductor like bulk transport to 

metallic surface transport are the on the top and back gate maps at around the 

crossover point of T=50K and a surface dominated conduction temperature of 

T=0.25 which are shown in Figure 4.4a and b.  The contrast between the two maps 

highlight the transition each sample undergoes as cooled to temperatures down to 

and below T=0.25K. It can be seen on Figure 4.4a that the maximum resistivity 

points as expected are located diagonally along the displacement field line at         

T= 53K, whereas a cross feature is visible at T=0.25K indicating absence of a single 

semiconductor thin film but rather presence of a thin film with two electronically 

decoupled metal surfaces. We note that, albeit conduction at this point being 
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dominated by surface states, there are still a significant amount of bulk charges, 

which we will discuss the transport properties of in Chapter 8.  

 

Figure 4.4 Resistivity maps of the 14-layer rhombohedral graphite device with top and bottom 

surface carrier densities tuned through capacitive gating a) at T=53K and b) at T=0.25K. The colour 

scale on both maps corresponds to 240 to 40Ω, white to black.  

4.5. Summary 

Conduction properties of rhombohedral graphite films, as well as topological 

surface states, possesses gapped bulk bands, across which a thermally activated 

bulk conduction takes place and dominates transport properties of rhombohedral 

graphite films above 50K. The size of this transport gap is found to be 

(110 ± 20)meV for a 14-layer film, considerably less than theoretically expected 

value of 245 meV. This thermally activated bulk conduction is exponentially 

supressed with decreasing temperature, hence leading to a surface state 

dominated transport accompanied by a semiconductor-metal transition at low 

temperatures. As a result, at 5K and below, rhombohedral graphite films exhibit 

multi-carrier type transport, with surface electron and hole charges as well as bulk 

charges. The transition from bulk to surface dominated transport occurring with 

decreasing temperature is also evidenced with top and back gate maps where 

carrier densities on each surface are tuned independently around the charge 

neutrality point.  
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Chapter 5 - Landau level 
spectroscopy of 
rhombohedral graphite films 
5.1. Introduction 

We have seen that at low temperatures, the transport properties of rhombohedral 

graphite films are dominated by two-dimensional low energy surface states. One of 

the most powerful techniques to characterise electronic structure of high-quality 

two-dimensional systems is to study their magnetic field dependence, including the 

study of quantum Hall effect and carrying out of Landau level spectroscopy 

experiments. Hence, this chapter will be dedicated to Landau level spectroscopy of 

the low energy surface states, with the overall goal of gaining a complete 

understanding of dispersion properties of low energy surface states of 

rhombohedral graphite films.  

5.2. Single gated Landau fan maps 

The initial magnetic field characterisation of the rhombohedral graphite samples, 

ranging from thicknesses of 9 to 50 layers, was carried out on a single surface which 

are shown in Figure 5.1 below. It can immediately be recognised that there is a 

significant difference between the experimental data and the magnetic field spectra 

calculated for rhombohedral graphite films of up to 9 layers in Chapter 1, Section 

12. The most striking feature that is common to all four maps is the strong electron-

hole asymmetry. The parameter for electron-hole asymmetry within the tight 

binding framework is 𝛾ସ,[1] which already indicates that simplest Landau level 
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spectrum[2] taking into account the parameters 𝛾଴ and 𝛾ଵ solely is not enough and 

hence a more detailed model is required. 

 

Figure 5.1 Single gated magnetic field stepped map of (a) longitudinal conductivity of a 9 layer 

rhombohedral graphite film as a function of bottom surface carrier density (blue to red 

logarithmic scale bar as 0.2ms to 43ms), (b) longitudinal conductivity of a 19 layer film (blue to red 

logarithmic scale as 0.1ms to 500mS), (c) absolute differential longitudinal conductivity of a 21 

layer film as a function of bottom surface carrier density (blue to red logarithmic scale bar as 

50uS/V to 0.5mS/V (d) absolute differential longitudinal conductivity of a 50 layer thick film (blue 

to red scale bar as -0.5mS/V to 0.5mS/V) as a function of top surface carrier density. 

There are also other qualitative features of the maps that have a trend as the layer 

number of graphene stacks is increased. The electron side of each map (positive 

doping) there are linear in B-field Landau level features which, at a first glance 

suggests a relatively simple dispersion on the electron side assuming of course the 

4N zeroth Landau levels are still degenerate as it has suggested to be in previous 

studies. The hole side, however, is very complicated, with horizontal features as 

well as vertical Landau level features that arise away from zero doping. An 
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interference of these features is clearly visible on the hole side of Figure 5.1a.  The 

maximum field at which horizontal features persist is 17T on single gated 3nm 

device marked with a black arrow and it is found to drop to 13T and 8T on 6.5 and 

7.2nm devices respectively with an eventual complete absence of any features on 

the hole side for the 50 layer device on Figure 5.1d.  

5.3. Implied low energy band structure 

Most of the qualitative features of the Landau fan map on Figure 5.1a (except the 5 

to 0T magnetic field feature around charge neutrality point will be considered as a 

spontaneous quantum phase transition on Chapter 6) was captured by a calculated 

magnetic field spectrum[3],[4] taking into account of additional hopping 

parameters 𝛾ଶ, 𝛾ଷ  and 𝛾ସ which can be summarised with the following two band 

Hamiltonian as  
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with 𝜋 and 𝜋 * being 𝑝௫ − 𝑖𝑝௬  and its complex conjugate respectively with 

effective mass term 𝑚∗
ିଵ term being equal to 4𝑣ଶ𝛾ସ

𝛾ଵ𝛾଴
ൗ ≅ 0.4𝑚௘.   The diagonal 

terms are given by 
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and its complex conjugate, respectively.  The above two band Hamiltonian yields 

the low energy band structure of a N-layer rhombohedral graphite film as  

 
2

*

( ) ( )
2

p
E p X p

m
   (5.2) 

which is plotted for a 9-layer film in Figure 5.2 and is the suggested low energy 

band structure of the hBN encapsulated rhombohedral graphite thin films.  
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Figure 5.2 Low energy band 

structure of a 9-layer 

rhombohedral graphite film 

implied by a full tight binding 

model. 

 

 

The most notable feature of the band structure apart from trigonal warping 

accompanied by the quadratic dispersion is the 3 mini-valleys (depicted by black 

arrows on Figure 5.2) that form on the valance band as a band overlap of 4𝛾ଵ𝛾ସ
𝛾଴

ൗ  

develops meaning that any gap generation in these weakly dispersing low energy 

bands needs to come over this band overlap value.  

5.4. Discussion  

The Landau fan spectrum implied by the gapless electronic band structure in Figure 

5.2 is plotted on Figure 5.3. The most striking feature in contrast to earlier studies is 

the fact that the degeneracy of N zeroth Landau levels is lifted (see the zeroth 

Landau levels label on Figure 5.3), albeit valley and spin degeneracy retained hence 

leading to 9 individual Landau levels (as valley and spin degeneracy hold) originating 

from a single surface with particular valleys on each surface. These Landau levels, as 

suggested from the Landau fan spectrum may account for most of the linear-like 

dispersion features on the electron side of single gated Landau fan spectra on 

Figure 5.1. The hole Landau levels arising as triply degenerate at low magnetic fields 

, due to three mini valleys formed at the valance band (see Figure 5.2, black 

arrows), split at higher magnetic fields, thus forming crossing with zeroth Landau 

levels explaining the interference effects of features on the hole side on Figure 

5.1d.  As well as the interference effects the hole Landau levels are also responsible 

for the horizontal features which become absent for the 50-layer thin film. The 
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robustness of zeroth Landau levels are likely to be behind the remaining electron 

side features on 50-layer thin film despite a complete disappearance of any 

features on the hole side.  

 

Figure 5.3 Free particle Landau level spectrum of a 9 Layer rhombohedral graphite film. 

One of the features on the hole side of Landau fan maps for 7-11 thick films was a 

filling factor which was found to coincide with layer numbers estimated from 

measured flake thickness through atomic force microscopy. This feature, with a 𝑣 of 

-9 for the case of 9-layer device, black dashed line, is visible on Figure 5.1a. Figure 

5.4a, b and c below show respective maps for 7-layer, 9-layer and 11-layer film. The 

Landau levels can clearly be seen at negative filling factors corresponding to the 

layer number. We believe that emergence of these filling factors, in the event of 

single gating which would provide filling factors for a single valley only, hence 

leading to 2N zeroth Landau levels up to 𝑣 of ±9. This is an additional supportive 

fact to the presence of lifted orbital degeneracy of zeroth Landau levels, hence the 

full tight binding model leading to the spectrum plotted on Figure 5.3.  
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Figure 5.4 Single gated Landau fan map of longitudinal conductivity 𝛔𝐱𝐱 of a) 7 layer, b) 9 layer c) 

11 layer device as a function of filling factor 𝑣 and magnetic field B, with robust 𝑣=-N highlighted 

with dotted white lines.  

Figure 5.5 shows a double gated Landau fan map of a 9-layer rhombohedral 

graphite film along the maximum carrier density line of the top - back gate map 

(both gates tuned simultaneously to induce same density of charges on each 

surface) hence bringing in the additional valley from the second surface zeroth 

Landau levels. As expected, robust zeroth Landau levels features up to filling factors 

of ±18 are present, with a total of up to 36 levels arising from 9 orbital, 2 spin and 2 

valley degrees of freedom aside from a reproduction of the numerous hole Landau 

level crossings on the hole side. The features of the Landau level spectrum shown in 

Figure 5.4a are distinctly clearer than the ones of Figure 1 as it was measured at 

10mK unlike the previous maps, hence leading to less thermal smearing of the 

levels as well as minimising the thermally activated bulk charges. Features are 

particularly well pronounced on the whole side at filling factors of v=8,12,16 which 

can be attributed to larger Zeeman gap between orbital levels. Additional features, 

apart from the gap at zero doping and the robust v=-6 state most likely associated 

with the gap, which will be considered in detail on Chapter 6, there are the 

numerous Landau level crossings that take place at an electron doping of                 

≅ 2.5 × 10ଵଶ𝑐𝑚ିଶ as illustrated more clearly on Figure 5.5b.  The most striking  
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Figure 5.5 a) Double gated Landau fan spectrum of a 9-layer rhombohedral graphite film. a) Map 

of longitudinal conductivity at 10mK at zero displacement field as a function of carrier density and 

magnetic field b) Map of differential longitudinal conductivity at 10mK as a function of filling 

factors. c) Calculated Landau level spectrum of a 9-layer rhombohedral graphite film using a 

gapped band structure at low energies d) e) Landau level crossing for quantum spin Hall and layer 

antiferromagnetic order parameters, respectively. The red and blue lines denote up and down 

spins, respectively. The grey dotted line depicts the transition between gapped and gapless 

electronic states.  

features of the crossings is that they all occur at even filling factors (labelled by red 

triangles on Figure 5.5b) of 10,14,18 and 22. The crossings which are only present at 

10mK, suggest emergence of the an additional gap to one that is already present at 

zero magnetic field, away from zero doping for which valley and spin degrees of 

freedom may play an equally important role as well as the orbital degree of 

freedom from each layer. The even filling factors suggests the most likely presence 

of the quantum spin Hall phase in this regime as depicted on Figure 5.5d as it 

enables valley degeneracy as opposite spins are separated. The presence of a layer 

antiferromagnetic phase would lift valley degeneracy as well as spin, hence lead to 

crossings at both even and odd filling factors which is why it would be ruled out. 
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5.5. Summary 

Low energy band structure of rhombohedral graphite films was studied through 

Landau level spectroscopy. The most striking feature of the common to devices of 

all thicknesses was the strong electron-hole asymmetry. The clearest Landau level 

maps were obtained on thinner devices (9-10 layers) most probably due to smaller 

influence of parallel bulk charges due to larger bulk band gaps and less thermal 

activation. A free particle spectrum calculated for a 9-layer ABC stacked system was 

found to produce main features of the experimentally obtained Landau fan maps, 

with the implication being an influence of hopping parameters  𝛾ଶ, 𝛾ଷ  and 𝛾ସ within 

tight binding framework. This meant that the low energy band structure is not 

dispersing as E ∼𝑝ே but rather as E ∼𝑝ଶ with a considerable band overlap of the 

valance band to that of conduction, where a triply degenerate mini-valley maxima 

arise due to the trigonal warping of the band structure. The main features of the 

Landau level spectra that are to be discussed are a lifted degeneracy of the 2N 

zeroth Landau levels and numerous Landau level crossings on the hole side arising 

basically due to the valance-conduction band overlap.  Aside from a spontaneous 

gapped quantum state which will be considered in the next chapter, an additional 

phase transition takes place on the electron side away from zero doping, most like 

to be an a transition into a quantum spin Hall phase due to observed filling factor 

crossings.  
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Chapter 6 - Spontaneous gap 
opening in at charge 
neutrality point 
6.1. Introduction 

Despite the theoretically predicted  E ∼𝑝ே dispersion not being validated by Landau 

fan spectroscopy; rhombohedral graphite films still contain flat bands that are 

susceptible to interactions at charge neutrality point as well as a Berry phase of 

Nπ[1], [2]. Albeit hBN encapsulated bilayer graphene devices requiring the presence 

of a finite displacement field to have a gap opening[3], [4], there has been variety of 

interaction induced spontaneous gap opening on suspended bilayer graphene 

systems as well as a nematic state[5]–[9]. The work has also been extended to 

suspended devices of ABC stacked tri-layer and tetra-layer systems[10], [11].  

As it has been summarised on Chapter 1 in detail, the predictions on low energy 

bands of rhombohedral graphite films include spontaneous quantum Hall states[12] 

and superconductivity[13], which becomes BCS like once full tight model giving rise 

a quadratic low energy dispersion is considered[14]. More recently a density 

functional theory accompanied angular resolved photoemission spectroscopy 

(ARPES) experiments were carried out on rhombohedral graphite films of a 14-layer 

thickness[15], with the obtained data being interpreted by the presence of a layer 

antiferromagnetic gap, which is ferrimagnetic should the top and bottom layers be 
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considered separately[16]. This is not surprise with the mean field calculations 

suggesting a layer-antiferromagnetic order parameter being ground state in bilayer 

graphene systems[17].  

As already pointed out in the cooling curves on the previous chapter, samples 

ranging from 3nm to 4.5nm thickness, which corresponds to a layer number of 9 to 

12 layers, a rise in resistance was found, in contrast to an decrease in resistance in 

thicker samples, due to the growing influence of surface states at low 

temperatures.  The rise in resistance reported in higher quality 9 to 12-layer 

systems is due to emergence of an interaction induced transport gap at the charge 

neutrality point of rhombohedral graphite films. While some samples in the 

reported thickness range showed hysteretic behaviour as a function of gate 

(doping) as well as perpendicular magnetic field, in other samples the hysteretic 

behaviour with respect to gate was found to be absent, a hysteresis, however, 

being observed as a function of in plane magnetic field. 

6.2. Thermal activation gap accompanied by topological 
currents 

Figure 6.1a shows charge neutrality point of a 10-layer film at varying temperatures 

from 0.25K to 15K with the resistance being above 10kΩ at 0.25K while decreasing 

monotonously at higher temperatures and becoming below 1 kΩ at 15K, implying a 

presence of thermal activation across a transport gap. Given the rich topological 

properties of the low energy surface Bloch bands, one may well expect topological 

currents with the presence of a gap, hence non-local resistance around the charge 

neutrality point was also checked, and indeed found as shown in Figure 6.1b.  

Figure 6.1c shows an Arrhenius plot both measured peak local and non-local 

resistances, yielding activation energy related transport gaps of 6meV and 19meV, 

respectively. We attribute the shift of the charge neutrality point to negative carrier 

densities with increasing temperatures to thermally activated donor defects. The 

approximately factor of 3 larger non-local activation gap suggests a cubic 

dependence of non-local resistance to resistivity, as it would be expected from a 
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Berry curvature induced (spin) valley Hall effect[3], [4], [18] which has indeed been 

found to be the case as shown in Figure 1d. Fitting was carried out using the model  
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Figure 6.1 a) Temperature dependence of 4 probe resistance of a single gated 10-layer 

rhombohedral graphite film around the charge neutrality point b) Temperature dependence of 

non-local resistance emerging around charge neutrality point c) Arrhenius plot of peak local (grey) 

and non-local (red) resistance, yielding activation energies of 6meV and 19meV d) Non-local 

resistance at 0.25K plotted against resistivity with a non-local signal fit yielding a valley decay 

length of 1.25m. 

with the obtained valley decay length being 1.25m which is comparable to high 

quality hBN encapsulated graphene devices. The emerging resistance accompanied 

by edge currents, the thermal activation behaviour, and the cubic dependence of 

non-local signal on resistivity all suggest presence of a finite transport gap, and zero 
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field Hall conductance arising due to Berry curvature, which is a consequence of 

inversion symmetry breaking in a system possessing Berry phase on its Bloch bands.  

6.3. DC characterisation of the gapped resistive state 

Now that we have established presence of a gapped resistive state, further 
characterisation is necessary to comment on the type of order parameter 

 

Figure 6.2 a) Four-probe Vxx/I curve (green) and its absolute derivative (red) with negative 

differential resistance regions present above a critical voltage drop and/or current across the 

sample at T=0.25K.  b) Temperature dependence of Vxx/I curves up to 12.5K. c) Peak Vxx values at 

which the negative differential resistance onsets fit by ∆= ∆𝟎 𝒕𝒂𝒏𝒉 ቆ𝟏. 𝟕𝟒ට𝑻𝑪
𝑻ൗ − 𝟏ቇ mean field 

expression. 

responsible for the gapped state. Figure 6.2a shows voltage-current 

characterisation at the charge neutrality point, where it can be seen that above a 

critical voltage drop across the sample, and/or a critical DC current driven through 
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the sample, a negative differential resistance (NDR) is onset. We believe that, the 

onset of negative differential resistance is due to a voltage drop across the sample 

that overcomes the transport gap, where for large DC current the gap becomes 

smaller due to Joule heating, eventually becoming completely killed, where the I-V 

curve recovers to a linear slope, with smaller gradient and hence less resistance. 

Hence, albeit being dependent on the length of the sample at which the voltage 

drop is being measured, we believe the voltage drop at which the NDR onsets is 

related to the transport gap size. Indeed, as expected, with increasing temperature 

(Figure 6.2b), the NDR onset voltage, in other words the voltage drop to overcome 

the band gap decreases, being completely absent at 12.5K, suggesting a dynamic 

nature of the gap emerging below 12.5K. This is consistent with the non-local signal 

accompanied by the gap vanishing completely at 12.5K (Figure 6.1b). Moreover, the 

voltages at which NDR onset occurs are found to be remarkably well described by a 

mean field (BCS) fit, further suggesting the presence of spontaneous symmetry 

breaking in the gapped state.  

6.4. Magnetic field dependence  

Having established presence of an NDR onset, which is related to a critical voltage 

drop across the sample, we will now characterise the gapped resistive state as a 

function of magnetic field in both perpendicular and planar orientations. Figure 

6.3a shows perpendicular field map (at T=5K where quantisation effects are absent) 

of differential resistance where it can be seen that the gapped resistive state (dark 

red regions) and the NDR (blue regions) with the gap becoming completely killed at 

2T. Figure 6.3b shows the normalised NDR onset voltage as a function of magnetic 

field, with the blue fit being a (Bେ − B)ଵ/ଷ scaling law. Such a scaling is well known 

within the mean-field description of systems possessing a finite magnetisation[19], 

hence directly suggests magnetisation property of the gapped phase, which may 

well be an orbital magnetisation arising from finite Berry curvature. The NDR onset 

voltage has been found to have a more linear dependence on the applied magnetic 

field when its applied parallel to the sample (Figure 6.3c,d).  
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Figure 6.3 Destruction of the gapped resistive state by magnetic field of perpendicular and in-

plane orientations. a) Map of differential voltage-current for a DC current sweep range of ±𝟔𝝁A 

and a stepped magnetic field range of 0 to 2.5T at 𝐓 = 𝟓𝐊. b) Normalised gap size related NDR 

onset critical voltage drop across the sample at various magnetic field fields at 𝐓 = 𝟓𝐊 (red) fitted 

with the mean field magnetisation scaling relation (𝐁𝐂 − 𝐁)𝟏/𝟑 (blue) where 𝐁𝐂 is the critical field 

at which gap vanishes. c) Map of differential voltage-current for a DC current sweep range of 

±𝟔𝝁A and a stepped in plane magnetic field range of 0 to 4.5T at 𝐓 = 𝟏. 𝟔𝐊. d) Gap size related 

NDR onset critical voltage at varying in plane magnetic fields (red) fitted with a linear magnetic 

field dependence (blue) expected from the Zeeman energy enhancement by the in-plane magnetic 

field.  

6.5. Hysteretic behaviour  

To characterise the magnetic field dependence of the gapped resistive state 

further, independent of the quantisation effects induced by a perpendicular 

magnetic field, resistivity was studied as a function of in plane magnetic field as 

shown in Figure 6.4a. The hysteretic behaviour at a first glance suggests possible 

magnetisation which is not a surprise given the fact that the mean field 

considerations suggest layer-antiferromagnetic order to be dominant and magnetic 

field dependent I-V characterisation (Figure 6.3) on this gapped phase. Figure 6.4b 

shows temperature dependence of critical magnetic field obtained from the 
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magnetic field sweeps which was found to be described by a power law, depicted 

as an inset. Remarkably, and at the same time not so surprisingly, this power law, or 

scaling has been found to be a characteristic of large-moment antiferromagnetic 

(LAFM) and hidden order phases that emerge in strongly correlated heavy fermion 

systems such as URu2Si2 and CsFeCl3 [20], [21]. The critical exponent of the fit 

obtained, α, was found to be 0.4 which is closer to one of the so-called hidden 

order phases measured on URu2Si2, which is closely related to LAFM order. This 

finding is also a further evidence that points us towards an antiferromagnetic order 

parameter arising due to strong electron-electron correlations, albeit an entirely 

light atom carbon-based system.  

 

Figure 6.4 a) Hysteresis in resistivity as the spontaneous gap is killed while a planar magnetic field 

is swept at the charge neutrality point. b) Extracted critical magnetic field values at temperatures 

up to 9K, obeying the power law shown in the inset with red line being a fit where the coefficient 

α is set to 0.4.  

As already mentioned at the introduction, certain samples also exhibited hysteresis 

with respect to applied carrier density at the surface, as well as perpendicular 

magnetic field. The data for one of these 9-layer devices is shown in Figure 6.5 both 

as a function of carrier density at zero displacement field (Figure 6.5a) and as a 

function of perpendicular magnetic field (Figure 6.5b). We attribute the occurrence 

of these hysteresis events, with multiple abrupt resistivity changes as the phase 
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transition is taking place, to the presence of multiple mesoscopic domains of this 

gapped state. This idea could be verified using advanced scanning probe 

microscopy techniques which could also be helpful on commenting on the nature of 

the domains.  

 

Figure 6.5 a) Temperature dependence of hysteresis in resistivity at the charge neutrality point a) 

as carrier density is tuned at D=0 on a 9-layer device b) as the perpendicular magnetic field is 

swept. 

6.6. Summary  

We have identified emergence of a spontaneous interaction induced transport gap 

with peculiar symmetry properties on the quadratically dispersing flat bands of 

rhombohedral graphite films between 9 to 12-layer thickness. It has been found 

that this gap exhibits thermal activation behaviour yielding an Arrhenius gap size of 

∼6meV. Since the emergence of the gap breaks the A/B sublattice inversion 
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symmetry, it has been found to be accompanied by a non-local signal. This non-

local signal was found to be well described by a valley Hall effect model, where a 

zero magnetic field Hall conductance arising due to Berry curvature is considered.  

I-V characterisation at the charge neutrality point was found to yield a negative 

differential resistance onset, most likely due to the potential gain of each electron 

overcoming the transport gap, with the gap simultaneously being supressed due to 

Joule heating. The voltage drop across the Vxx contacts at which NDR was onset is 

found to be well described by a mean field gap expression, which is consistent with 

the emergence of the gap due to a spontaneous symmetry breaking. Magnetic field 

dependence of the I-V curves showed suppression of the gap as well as the NDR 

onset voltage in both perpendicular and planar orientations of the field. 

Perpendicular field dependence of NDR onset voltage was found to yield a cubic 

dependence to the magnetic field as it would be expected within mean field 

framework from a gap possessing finite magnetisation whereas the planar magnetic 

field was found to be linear, as would be expected from Zeeman energy 

enhancement.  

Remarkably, a hysteresis was found to be present when planar magnetic field 

characterisation was carried out, which is not a surprise given most likely spin 

dependent nature of the responsible order parameter for the gap, and hence a 

probable spin ordering. Moreover, when the critical field obtained at each 

temperature was plotted it was found to be remarkably well described by a power 

law that has been a characteristic of both large moment antiferromagnetic order as 

well as a hidden order in heavy fermion systems, demonstrating rhombohedral 

graphite films as an alternative platform for strongly correlated electron physics. 

Finally, a hysteresis as well as abrupt jumps in resistance was also found as both the 

carrier density and perpendicular magnetic field was tuned on some but not all 

samples, suggesting presence of multiple mesoscopic domains on certain samples, 

which could be a very interesting scanning probe microscopy study.  
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Chapter 7 - Displacement 
Field Induced Band Gap 
Opening 
7.1 Introduction 

A displacement field induced band gap opening because of inversion (sublattice) 

symmetry breaking has been demonstrated in both bilayer graphene[1]–[4] and 

ABC stacked tri-layer systems[5]. Given the closely related nature of low energy 

dispersion in N-layer rhombohedral graphite films, when considering only the 

primary hopping parameters, a displacement field induced band gap opening has 

also been predicted[6], above a critical field which depends on the number of layers 

as outlined already in Chapter 1, Section 14. Moreover, given the calculated 

sensitivity of such a displacement field induced gap to stacking and stacking faults 

in tetra-layer systems[7], displacement field induced gap opening may indeed be a 

signature of pristine rhombohedral stacking on graphite films even on films up to 50 

layers thickness.  

7.2 Displacement field induced resistivity increase 

Figure 7.1 shows displacement field-carrier density maps on rhombohedral graphite 

films ranging from 9 to 50 layers thickness which were identified through Raman 

spectroscopy prior to transport characterisation. The spontaneous gap on 9-layer 
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system at zero displacement field rapidly closes, considered in detail in Chapter 6, 

while a new gap emerges above a critical displacement field. Qualitative agreement 

to gap opening prediction of Koshino[6] can immediately be seen which is in 

principle a result of the theoretically expected low energy two-band structure of 

rhombohedral graphite. The increase in resistivity, evident above a critical 

displacement field for all pristine rhombohedral graphite systems, high resistivity 

points which corresponds to the white to red regions of the contour plot, is because 

of band gap opening and indeed obeys an Arrhenius dependence as expected from 

generation of such a band gap (see Section 7.4).   

 

 

Figure 7.1 Resistivity, 𝛒𝐱𝐱(𝐧, 𝐃) maps of rhombohedral graphite films with thicknesses ranging 

from 3.3nm to 16.5nm where the colour scale from light blue to red corresponds to 10Ω to 25kΩ, 7 

kΩ, 5 kΩ, 2 kΩ on each map respectively. The maps were obtained at temperatures of around 

T=0.25K. 

Figure 2a shows line cuts from the displacement field maps where the resistivity is 

normalised. The extracted values of Dc for varying sample thicknesses are shown in 

Figure 2b, with the red fit being a self-consistent model obtained for the low energy 

band structure which is obtained through firstly an estimation of the screening 

carrier density at top and bottom surfaces as[8]  
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where the wavefunction 𝜓஺/஻௜
௟ (𝐤) for each band on each sublattice is given by the 

full SWCM model implied by the Landau fan spectroscopy with index i 

corresponding to the particular layer, and l corresponds to the particular orbital 

considered. The constant -1 takes care of the charges that develop to neutralise the 

sample at the Fermi energy. It has to be reminded here that, the wavefunction 

amplitudes for low energy bands are extremely localized on the top and bottom 

surfaces, hence they are the ones that give rise to almost all of the charges on top 

and bottom surfaces as the bulk bands are more localised on the bulk rather than 

the surfaces. As well as being dependent on the momentum k within the Brillouin 

zone, the wavefunction amplitudes in Equation (7.1) are coupled to the band gap 

generated between the conduction and valance bands, which we can denote as Δ*. 

Within the self-consistent Hartree model, Δ* is related to the externally applied 

displacement field D as  
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 (7.2) 

where 𝜀௥ is the permittivity of rhombohedral graphite thin film assumed to be same 
as that of graphene.  

 

Figure 7.2 a) Line cuts of the displacement field maps with respect to normalised resistivity where 

the dashed lines depict extraction of critical field, Dc for each film. b) Critical field, Dc plotted as a 

function of layer number, with the red fit being a numerical calculation carried out using the full 

tight-binding model.  
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As well as the change in the low energy dispersion property for increasing number 

of layers another important factor that had to be taken into account to calculate 

theoretically the values of Dcrit above which a transport band gap, Δ, emerges is the 

band overlap, with size of 2𝛾ସ𝛾ଵ
𝛾଴

ൗ  . The transport gap therefore is related to the 

band gap as 

 
* 4 1

0

2 


     (7.3) 

which is depicted on Figure 7.3a on a band structure schematic. Figure 7.3b shows 

the relation of both gaps to the applied displacement field for a 9-layer thick thin 

film, and it can be seen that as a result of the finite band overlap, the transport gap 

emerges at a much later critical displacement compared to the masked band gap. 

Albeit the masking effect being significant, it must be noted that its layer number 

(for thickness of devices studied) independent. It is the changes in number of 

screening charges that lead to the layer dependent difference on the displacement 

field maps.  

 

Figure 7.3 a) Gapped low energy band structure of a 9-layer rhombohedral graphite film with 

masked band gap, and the transport band gap illustrated. b) A comparison of the dependence of 

the size of the masked band gap, and transport band gap on the externally applied displacement 

field.  
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7.3. Absence of a gap opening for graphite films of mixed 
stacking 

Now that we have established both experimentally and theoretically that there is a 

finite transport gap opening in rhombohedral graphite films, the next major thing to 

discuss is whether one can use the presence of such a displacement field induced 

gap opening to the stacking faults[8]. The literature on electronic properties of 

stacking faults was extensively discussed on Chapter 1 Section 17. For the purpose 

of our electronic investigations 3 types of stacking faults were considered which are 

 

Figure 7.4 Stacking faults on rhombohedral graphite films a) Schematic of a twinned boundary 

type stacking fault, and the low energy band structure for b) positive and c) negative displacement 

field of 0.9V/nm for an 18-layer graphite film. d) Schematic of a Bernal hexagonal stacking fault, 

and the low energy band structure for e) positive and f) negative displacement field of 0.9V/nm 

for an 18-layer graphite film. g) Schematic of a surface Bernal hexagonal type stacking fault and 

the low energy band structure for h) positive and i) negative displacement field of 0.9 V/nm.  
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namely twinned boundary, Bernal hexagonal and surface Bernal hexagonal where 

the structures could be illustrated as ABCABCBACBA, ABCBCABC, ABCABCABCABA 

where each stack could be extended to many number of layers but it should be 

noted that for the third stack ABA region is where the stacking terminates. The 

three types of stacking faults are illustrated pictorially on Figure 7.4a, d and g. 

Figure 7.4b and c show low energy band structure of an 18-layer thick system with a 

twinned boundary stacking fault with a displacement field of 0.9V/nm to -0.9V/nm 

and absence of a transport band gap is clearly visible. Figures 7.4e and f, and 7.4h 

and i show a rhombohedral stack with a Bernal hexagonal stacking fault and a 

surface Bernal hexagonal stacking fault respectively at displacement field of 

0.9V/nm to -0.9V/nm. In both cases a transport gap has been found to be absent. 

Low energy band structures were calculated in the vicinity of K (K’) point through 

appropriate orbital linkage relations for each type of stacking fault using the full 

tight binding model implied by Landau fan spectroscopy.  

As discussed in Chapter 1, Section 18, Raman spectroscopy, and the double 

resonant 2D peak is a well-established method of characterising stacking order in 

graphite films prior to electronic characterisation. The larger full width at half 

maximum (FWHM) of the 2D peak, as well as a shoulder at the left end of the 2D 

peak has been calculated and found to be signatures of pristine rhombohedral 

graphite stacks. Typically, once Raman mapping of a rhombohedral graphite flake is 

carried out, it is possible to see a range of FWHM of the 2D peak as shown Figure 

7.5a, with maximum FWHM regions should correspond to regions of pristine 

rhombohedral graphite (#c) whereas the minimum FWHM regions being pristine 

hexagonal Bernal stacking ((#a)  and finally any intermediate FWHM regions (#b)  

corresponding to the graphite regions with stacking faults. As well as the map, 

sample 2D peaks are plotted on Figure 7.5b, with the left shoulder pointed by the 

black arrow disappearing for intermediate FWHM region, in agreement with first 

principles calculations.  

A Hall bar was etched onto the region #b and a top-back gate map of it was 

measured in order to confirm the prediction of the absence of a band gap even in 

the presence of a large displacement field as shown in Figure 7.6. If a transport gap 
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was to be emerging at large displacement field, there would have been a resistive 

points emerging at the two corners of the map, which has not been found to be the 

case, resembling rather a Bernal hexagonal graphite system. We therefore believe 

that displacement field characterisation of graphite films enables one to verify 

pristine rhombohedral stacking in films of up to and including 50 layers.  

 

Figure 7.5 a) Raman spectrum 2D peak full width half maximum map of a graphite flake 6.5nm 

graphite flake with varying FWMH values at regions a, b, c. b) Raman spectra 2D peak on the three 

regions a, b, c.  

 

Figure 7.6 Top gate back gate map of a 6.5nm graphite film device with an inferred mixed stacking 

from Raman spectroscopy measured at T =1.6K with the colour scale from blue to white to red 

corresponding to 20 to 70Ω.  
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7.4. Non-local signal due to displacement field induced gap 

opening 

Now that we have established the absence of stacking faults in our rhombohedral 

graphite films, and displacement field generated band gap as a transport signature 

of this, we will be returning to the gap generated at large displacement fields, as a 

particular example, we will be considering the 9-layer device for which data is 

shown on Figure 7.7. Figure 7.7a is an Arrhenius plot of resistance at displacement 

fields ranging from 0.57 V/nm to 0.76 V/nm and a linear fit at each displacement 

field can be seen, and yields an activation energy which are plotted on the inset 

with the red fit being the gap size estimated with the self-consistent model 

outlined. Figure 7.7b shows a displacement field map of non-local signal on the 

same 9-layer device and it can be seen that non-local resistance accompanied the 

emergence of a transport gap at large displacement fields, as it has been found to 

be the case in bilayer graphene[9], [10] and been also found the spontaneous 

gapped state considered in Chapter 6.  

 

Figure 7.7 a) Arrhenius plot enabling the displacement field generated band gap extraction on a 9-

layer rhombohedral graphite film with the extracted gap size plotted in the inset. b) Non-local 

resistance measured at T=1.6K as a function of carrier density and displacement field with the 

colour scale blue to red corresponding to 0.1Ω to 10kΩ.  
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Figure 7.8 a) Non-local signal plotted against resistivity at finite values of positive and negative 

displacement fields measured at T=0.25K. 

The emerging non-local signal was plotted against resistivity to see if a cubic 

dependence is present as expected from a Berry curvature induced valley Hall 

effect arising due to sublattice (inversion) symmetry breaking by the finite 

displacement field. Indeed, due to the Berry phase of Nπ it possesses, which 

becomes Berry curvature with the emergence of the gap, the non-local signal does 

obey a cubic dependence to resistivity as shown in Figure 7.8 for either polarity of 

displacement field. Hence, we believe that the observed non-local signal emerging 

due to electrically generated Berry curvature is a further confirmation of 

rhombohedral graphite films behaving as an N-layer generalisation of graphene in 

low energy limit.   

7.5. Summary 

We have demonstrated displacement field induced band gap opening in 

rhombohedral graphite films of up to 50 layers thickness. We have shown that 

there is a strong layer number dependence on critical displacement field above 

which measured transport gap emerges. The layer number dependence is due to 

change in low energy dispersion with increasing number of layers. Moreover, we 

find that the induced band gap is initially masked, due to a significant band overlap 

caused by the hopping parameter 𝛾
4
 and this masking effect is layer independent 

and its relation to observed transport gap has been shown. Agreement was 
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obtained with the experimental data through numerical calculations considering of 

the screening effect due to charges arising from wavefunctions localised on each 

surface. Stacking faults of twinned, hexagonal Bernal and surface hexagonal Bernal 

types were considered theoretically and found to show absence of a transport gap. 

To check for the accuracy of the prediction, and intermediate 2D peak FWHM 

regions was selected on a Raman mapped 6.5nm graphite film with mixed stacking, 

with the device showing indeed absence of a band gap opening at large 

displacement fields. Hence, we verified displacement field transport experiments as 

an additional tool to verify pristine rhombohedral stacking on graphite films. Finally, 

the transport gap emerging in large displacement fields was found to be 

accompanied by a non-local signal, arising due to Berry curvature generated 

because of sublattice symmetry breaking and proving rhombohedral graphite as an 

N-layer generalisation of graphene in low energy limit. The non-local signal was 

found to exhibit a cubic dependence to resistivity, which is now expected as the 

transport signature of a valley Hall effect in the absence of spin orbit coupling 

effects.  
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Chapter 8 – Three dimensional 
quantum interference of bulk 
electrons 
8.1. Introduction 

Albeit low energy topological surface bands attracting the main interest, the 

gapped bulk sub-bands of rhombohedral graphite films are also peculiar.  They 

possess a linear dispersion for in plane direction and a quantised momentum in 

𝑘௭ direction[1] described as 

 2 2
1 1( ) 2 cos( )d

n zvp vp k d       (8.1) 

with values of 𝑘௭ being obtained at each value of in plane momentum p from 

solutions of  

 1sin(( 1) ) sin( ) 0z zvp N k d Nk d    (8.2) 

where out of N 𝑘௭ solutions for Equation (2) only one is complex[1], thus 

evanescent in bulk and is describing the surface states whereas remaining in plane 

momentum dependent 𝑘௭  values describe the gapped bulk bands.   

Another important aspect of the study of electron transport in bulk bands is 

previously limit studied aspect of topological nodal line semimetals[2]–[4] as well as 

their thin films in contrast to Weyl and Dirac semimetals. Here, unlike the earlier 

chapters focussing on two dimensional surfaces which is very much a generalisation 
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of graphene physics, we report on bulk electrons in the high quality in thin film 

devices of this nodal line system and quantum interference phenomena that 

reflects the bulk topology. As the dispersion relation in (1) and the equality in 

Equation (2) imply that for any in plane motion of massive Dirac fermions in bulk 

sub-bands one will also get a change in the 𝑘௭, hence leading to a 3D motion albeit 

a quasi 2D thin film sample. This, despite the 3D chiral anomaly physics being ruled 

out leads to 3D quantum interference effects[5] that reflect topological properties 

of massive Dirac fermions in diffusive limit as in the case of Weyl and Dirac 

semimetals[6]–[9].  

8.2. Magnetic field rotation of a 9-layer film 

The distinguishing feature of the gapped bulk charges in rhombohedral graphite 

thin films from the ones of their surface counterparts would be their three-

dimensional transport. Hence, to look for any signatures of three-dimensional 

transport, especially that of quantum interference effects, magnetoresistance of 

the samples was studied with varying magnetic field orientations. The main 

signature of weak (anti)localization of charges arising due to quasiparticles 

undergoing 3D random walk, that is different from their 2D counterparts is their 

field orientation independent dephasing[10], unlike 2D weak (anti)localization for 

which magnetic field signature is only present for perpendicular field[11].  

Figure 8.1a shows magnetic field rotation on a 9-layer system. A negative 

magnetoresistance (NMR) emerges as the magnetic field is rotated from out of 

plane 90⁰ orientation to in plane 0⁰ orientation. Moreover, this NMR is found to be 

supressed when conduction is surface dominated as the two surfaces of the film are 

doped as shown in Figure 8.1b, hence suggesting its bulk origins. The temperature 

dependence of the NMR at zero doping for current aligned magnetic field are 

shown in Figure 8.1c and it can be seen that, albeit being strongly supressed with 

increasing temperature, the observed NMR remains present with a quadratic field 

dependence resembling chiral anomaly until room temperature. Given the quasi-2D 

nature of the bulk nodal line system being studied, one can rule out chiral anomaly. 

Although a more exotic explanation such as Berry curvature would be tempting, it is 
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debatable how different the proposed Berry curvature effect on topological 

insulators is to chiral anomaly of massive quasiparticles.   

Figure 8.1 Quadratic negative magnetoresistance accompanied by weak antilocalization on a 9-

layer rhombohedral graphite film. a) Out of plane (90⁰) to in plane (0⁰ current aligned) magnetic 

field rotation at 1.6K.  b) Top gate back gate map of change in resistance from 0 to 10T magnetic 

field at 1.6K with the colour scale blue to white corresponding to -250 to 0Ω. c) Temperature 

dependence of negative magnetoresistance due to current aligned magnetic field d) 

Magnetoconductance as a function of weak current aligned field (±1.5T) at 1.6K (green), 10K (red) 

and 20K (brown) as well as respective fits of the equation 𝝈 = 𝜶𝑩𝟏/𝟐 + 𝜷𝑩𝟐 where 𝜶 is 

−𝟗𝛍𝐒/𝐓𝟏/𝟐, −𝟗𝛍𝐒/𝐓𝟏/𝟐, 0𝛍𝐒/𝐓𝟏/𝟐 and 𝜷 is 5. 𝟓𝛍𝐒/𝐓𝟐, 1𝛍𝐒/𝐓𝟐 , 1.75𝛍𝐒/𝐓𝟐 for yellow (1.6K) 

blue (10K) and orange (20K) fits respectively.  

Another, and the more important similarity of the 9-10-layer samples to Weyl/Dirac 

semimetals is the weak field magnetoconductance below 20K as shown in Figure 

8.1d. It can be seen that, albeit presence of a quadratic positive 

magnetoconductance there is a counteracting negative magnetoconductance at 

small fields, which has a square root of B dependence as expected from a 3D weak 

antilocalization effect (WAL). Hence the magnetoconductance was found to be 
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described with the equation ∆𝜎 = 𝛼𝐵ଵ/ଶ + 𝛽𝐵ଶ. This square root of magnetic field 

dependent negative magnetoconductance, described by coefficient 𝛼, is supressed 

completely at 20K being consistent with low temperature requirement for the 

manifestation of this quantum interference effect. Given that, the system we are 

studying is entirely carbon based, it is very unlikely that the 3D WAL behaviour 

would manifest itself because of spin orbit coupling. This leaves the Berry phase of 

the gapped bulk Bloch band charges and their random walk in three dimensions as 

the only alternative, hence therefore reflecting topological properties of the bulk of 

this three-dimensional Su-Schrieffer-Heeger chain.  

8.3. Magnetic field rotation of a 14-layer film 

 

Figure 8.2 Weak localization crossover and unidirectional in plane field negative 

magnetoresistance a) Weak field magneto-resistivity for perpendicular (90⁰) to in plane (0⁰) 

orientations of field.  b) Top-bottom surface carrier density dependence of magnetoresistance at B 

= 10T, T=1.6K with colour scale blue to red -40 to 40Ω. c) d) Temperature dependence of 

magnetoresistance for current aligned and perpendicular in plane magnetic fields, respectively.  
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The in plane magnetic field rotation was also carried out on films of greater 

thickness. Figure 8.2a shows magnetoresistance for rotated magnetic field, from 

perpendicular 90⁰, to in plane current aligned, 0⁰ orientation on a 14-layer sample. 

Negative magnetoresistance, or positive magnetoconductance is also prominent on 

this sample, having a 𝐵ଵ/ଶ, which was also supressed by surface doping as shown in 

Figure 8.2b, also confirming its bulk origins.  

Figure 8.2c and 8.2d shows temperature dependence of negative 

magnetoresistance for current aligned, and perpendicular in plane magnetic fields. 

In both cases, 𝐵ଵ/ଶ negative magnetoresistance below 20K recovers to a quadratic 

dependence at higher temperature. While becoming positive at 50K for current 

aligned magnetic field, the negative magnetoresistance persists until room 

temperature for perpendicular in plane magnetic field. The current aligned 

magnetoconductance at 1.6K was found to exhibit a tendency to saturation at ±18T 

as shown in Figure 8.3 with magnetoresistance reaching just over a 100%, 

surprisingly high for a non-magnetic system, being comparable to the ones 

measured from disordered bulk states of more usual topological insulator systems. 

 

Figure 8.3 Magnetoconductivity for a current aligned magnetic field of up to 18T, with 
magnetoconductance approaching above 100% at maximum field.  

We believe the most likely reason behind the observed quadratic negative 

magnetoresistance resembling chiral anomaly is magnetic field induced suppression 

of scattering from Coulomb impurities, which arise on defects within the bulk of the 
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rhombohedral graphite film, and is independent of the magnetic field orientation. 

We note that, the uniform contacts across the entire width of the sample studied 

rules out any possible current jetting effects and such a negative magnetoresistance 

has been found to be absent on reference hexagonal stacked thin films. 

We find that, the crossover into negative square root of magnetic field negative 

magnetoresistance on 14 layer device to be well described by the three-

dimensional weak localization model[5]  

 

22

222
1/ 2 2

1/

1
1 1 1

2
2 2

e

BB

le
Bl

e e

ll
lle

l x dx
h l l l l



 



                               
 

  (8.3) 

as shown in Figure 8.4 (dashed dotted lines) with an additional, defects related 𝛽𝐵ଶ 

term as in the case of thinner samples. The term 𝛼 is a system related coefficient, 

with Ѱ(z) being a digamma function, with characteristic lengths 𝑙௘, 𝑙஻ and 𝑙ఝ being 

mean free path, magnetic length and dephasing length respectively. The dephasing 

length 𝑙ఝ was found to be ∼0.1µm being order of magnitude higher than calculated 

mean free path of 19nm, from an extracted bulk electron mobility of 1040 cm2/Vs 

(Chapter 4, Section 3) and an estimated lowest bulk conduction band effective mass 

of 0.0279 me. We attribute the crossover into weak localization on thicker samples 

to enhanced thermally activated bulk carrier density, and the decreasing intervalley 

scattering rate arising from it[12]. The dephasing length of 0.1µm is an order of 

magnitude lower than the one that has been found for two dimensional Dirac 

fermions of graphene systems for which quantum interference effects were found 

to persist until up to an order of magnitude higher temperatures, ∼ 200K[12].  

The observed uni-directional field dependence of negative magnetoresistance for 

14-layer system is a strong proof for the argument of three-dimensional quantum 

interference. We believe the observed anisotropy shown in Figure 8.5a, which is the 

additional quadratic component of magnetoresistance as in plane field is rotated to 

be perpendicular to the current, is due to an effective displacement field generation 

as pointed out in a recent work[13]. Such a Lorentz force induced layer polarisation 
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would indeed have a quadratic dependence to magnetic field as shown in Figure 

8.5b (red fit).  A negative resistance induced by small displacement field at the 

charge neutrality point of a 14-layer system at the charge neutrality point is shown 

on the inset of Figure 8.5b, which suggests the generated effective displacement 

field by a field of ±10T to be 25mV/nm.  

 

Figure 8.4 Weak field magnetoconductance at 1.6K (red line) fitted with the Equation (8.3) for 

dephasing lengths of 0.1µm (dashed dotted blue line) and 1µm (dashed dotted green line). 

Figure 8.5 a) Anisotropic negative magnetoresistance of current aligned (red) and perpendicular 

(blue) in plane magnetic fields. b) The difference in magnetoresistance (black) at 1.6K and a 

quadratic fit (red) with the inset showing weak displacement field induced negative resistance 

around the charge neutrality point.  
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8.4. Summary 

In summary, we have demonstrated three-dimensional quantum interference 

effects influenced by Berry phase and intervalley scattering on carbon-based nodal 

line semimetal thin films. We have found that as well as leading to a quadratic 

negative magnetoresistance resembling chiral anomaly, which persists until room 

temperature, bulk states undergo three dimensional diffusive motion, leading to a 

Berry phase induced weak antilocalization below 20K, thus reflecting the 

topological properties of the bulk bands. For increasing thicknesses of 14 layers and 

beyond, as it has been found in graphene, a crossover into weak localization occurs 

due to a decreasing intervalley scattering length which becomes comparable to the 

dephasing length of 0.1µm. Furthermore, we have shown that, in plane magnetic 

field when perpendicular to the current applied, generates a small displacement 

field, yielding an additional negative magnetoresistance contribution. Overall, we 

promote rhombohedral graphite to be an exciting platform not just as an N-layer 

generalisation of graphene in the low energy limit, but also due to three-

dimensional transport its bulk charges display, strongly influenced by the bulk 

topology. We have demonstrated quantum interference effects seen in two 

dimensions in graphene, in three-dimensions despite the thin film nature of the 

rhombohedral graphite systems studied.  
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Chapter 9 – Summary 
 

Rhombohedral graphite films as topological insulators exhibit an interplay of 

intrinsic semiconductor-like thermally activated bulk conduction and a low 

temperature surface dominated conduction.  

Landau level spectroscopy of the surfaces at low temperatures revealed that 

𝐸~𝑝ேdispersion of flat bands predicted by the simplest tight binding model is not 

representative of the low energy band structure of hBN encapsulated 

rhombohedral graphite devices studied. Rather, a trigonal warping leading to 3-

degenerate valance band maxima is found, with a 𝐸~𝑝ଶdispersion in low 

momentum limit. Albeit 𝐸~𝑝ேdispersion picture not being validated, the low 

energy bands are still flat, with a Berry phase of Nπ and are still susceptible to a low 

temperature, BCS-like superconductivity.  

The 𝐸~𝑝ଶdispersing flat bands exhibit spontaneous inversion symmetry breaking 

below 15K for the case of 9-12 layers thick films, accompanied by topological 

currents arising due to a generated Berry curvature. I-V characterisation at the 

charge neutrality point yields an unusual negative differential resistance (NDR). This 

NDR onset voltage was studied both as a function of temperature and magnetic 

field yielding fits to mean field expressions as the gap is destroyed as a function of 

each parameter.  Moreover, in-plane magnetic field dependence suggested a gap 

destruction due to Zeeman energy enhancement, with the NDR onset voltage 
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decreasing linearly as a function of in-plane magnetic field. Hysteretic behaviour of 

gapped state was found, as a function of magnetic field and doping, suggesting 

presence of multiple mesoscopic domains with a finite magnetisation.  

A gap opening was also found as a function of applied displacement field, which 

was previously theoretically predicted. This gap was found to be absent in both 

theoretical calculations and experiments on the identified graphite regions with 

stacking faults. 

Lastly, transport properties of bulk charges were also investigated by carrying out 

magneto-transport experiments with varying orientations of magnetic field.  A 

negative magnetoresistance with a quadratic magnetic field dependence, 

resembling chiral anomaly was found for all orientations of in plane magnetic field. 

Below 20K however, this negative magnetoresistance which we attribute to a 

magnetic field induced suppression of scattering from Coulomb impurities was 

overwhelmed by weak anti-localization for the case of smaller number of bulk 

electron density, reflecting the topologically non-trivial nature of gapped bulk Bloch 

bands. With decreasing bulk band gap, and hence with increasing bulk carrier 

density the quantum interference below 20K was found to crossover into weak 

localization, being perfectly well described by a 3D weak localization model and 

yielding a dephasing length on the order of 0.1µm. This explains the order of 

magnitude lower temperatures necessary for observation of the effects in contrast 

to 200K for dephasing length on the order of 1µm on high quality graphene devices. 

Lastly, when the orientation of in plane magnetic field was set perpendicular to 

current, a Lorentz force induced effective displacement field generation was found, 

also with a quadratic dependence on applied magnetic field.  

As future work, there are yet experiments to do to confirm whether the predicted 

superconductivity exists in flat bands of rhombohedral graphite. We have seen 

some features in I-V curves that may suggest a superconducting phase in the 

vicinity of the gapped state away from the NDR region with the experiments 

possibly being subject of another a PhD thesis. Aside from the superconductivity 

experiments, low temperature scanning tunnelling spectroscopy experiments could 
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be carried out in order to physically map the bulk-surface transition taking place at 

low temperatures, as well as the mesoscopic domains that arise due to 

spontaneous symmetry breaking at the flat bands. Finally, due to Berry phase of Nπ 

the low energy flat bands possess, one expects an odd/even layer weak 

localization/antilocalization in transport experiments if we were to exclude the bulk 

charges completely, which is possible at extremely low temperatures around 10mK. 

One can also take the growth experiments carried out on SiC substrates further to 

see if it is possible to grow rhombohedral graphite films beyond 5-layers and 

characterise it in a comparative study with exfoliated rhombohedral graphite 

domains.  

Overall, we have reported the first every systematic study of rhombohedral 

graphite thin films of up to 50 layers, having characterised its electronic structure 

through electron transport, we have shown that similar to twisted bilayer magic 

angle systems, it is home to and exhibits correlated system physics that is typically 

present on more traditional carefully grown heavy fermion system crystals. Major 

advantage of our system in comparison to twisted bilayer graphene is that it does 

not require careful aligning of two crystals, which is currently a major fabrication 

challenge. As well as the two-dimensional transport, bulk of rhombohedral graphite 

films exhibit three-dimensional quantum interference influenced by bulk topology, 

which has so far been seen on exotic crystal systems such as Weyl and Dirac 

semimetals.  
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