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Abstract 

More than 40% of the Earth’ surface is covered by drylands which are home to nearly three 

billion people. Climate change and over-pressure on land and water resources as a result of 

population growth have endangered the ecosystem functioning in drylands. Ecosystem 

degradation could adversely affect people’s livelihoods and well-being. This study helps with 

decision-making to address two land and water resources managerial challenges in drylands: 

desiccating saline lakes and soil salinization. Saline lakes as the main natural aquatic feature 

of dryland landscapes are desiccating at alarming rates in the recent decades, predominantly 

due to human interventions and climate change. The result is increased water salinity levels 

which negatively impacts the ecosystems integrity in the nearby regions. To sustainably restore 

and preserve the saline lakes in the short- (e.g. 10 years) and long-term periods (e.g. 30 years), 

a four-step eco-hydrological framework, primarily based on land use strategies is proposed 

here: (1) projecting the future governing climatic patterns in the basin under study; (2) 

evaluating the needed water for restoration of the saline lake; (3) prioritising and allocation of 

the water to all environmental, municipal, industrial, and agricultural water users; and (4) 

optimisation of the agricultural land use considering the total available land and freshwater 

resources. The applicability of the framework was examined by the case of Lake Urmia in Iran 

— known formerly as the second (by volume) hyper-saline lake in the world. The results show 

that for restoration of Lake Urmia, annually 3,648 Mm3 (∼70% increase) and 3,692 Mm3 

(∼73% increase) surface water inflow to the lake is required to restore the lake in 30 years 

under the two greenhouse gases emission scenarios of RCP 4.5 and RCP 8.5, respectively. 

Provision of these inflow volumes needs respective reductions of 95,600 ha and 133,687 ha in 

the Urmia basin irrigated area. The proposed framework can inform decision-making for 

adapting and enhancing the resilience of the saline lakes to negative consequences of the over-

exploitation of water resources, particularly in the context of projected climate change.  

The second part of this research estimates the extent, severity, and long-term trends in 

soil salinization as one of the land degrading threats in drylands. Soil salinization is a dynamic 

and common environmental issue; however, there remains considerable uncertainties regarding 

its large-scale spatio-temporal variability and relation to the future climate change. Due to 

unavailability of the detailed soil and plant data for application of physical- or numerical-based 

methods, Machine Learning (ML) techniques were used for prediction of the soil salinization 

trends on a global scale. Using the ML techniques, measured legacy soil profile data were 

related to a set of environmental predictors to estimate the soil salinity (and sodicity where Na+ 

is higher compared to other soluble salts) at other locations, depths, and times. With a similar 

approach and based on outputs of the Global Circulation Models, the trends in drylands’ soil 

salinization were predicted to the end of the 21st century. Between 1980 and 2018, the results 

indicate that soil salinity and sodicity have been temporally and geographically highly variable. 

Additionally, compared to the 1961 - 1990 period, the results show that primary (naturally-

occurring) soil salinity will be a major issue in the drylands of South America, southern and 

Western Australia, Mexico, southwest United States, and South Africa by the end of the 21st 

century. The results provided by this study could contribute to sustainable land and water 

management in dryland regions of the world.
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Chapter 1 Introduction 

Lands, including water bodies located within them, form the basis for our livelihoods, well-

being, and biodiversity by providing multiple benefits to net primary production and serving 

diverse ecosystem services (Shukla et al. 2019). The Millennium Ecosystem Assessment 

(2005) defines these ecosystem services in four major groups including (1) provisional services 

which provide food, water, or fibre, (2) regulating services which have impacts on air and water 

quality, (3) cultural services such as aesthetic values, recreation, and ecotourism, and (4) 

supporting services that help photosynthesis, soil formation, and nutrient cycling. Climate 

change and direct and indirect human activities are among the crucial threats to the integrity of 

potential or existent ecosystem services provided by the lands and water bodies located within 

them (FAO 2015; Sivakumar et al. 2007). Loss of the land utility and production is a serious 

issue for the environment around the world (Ravi et al. 2010; Nkonya et al. 2016; Cerretelli et 

al. 2018). Land degradation, or negative trend in the long-term land quality/functionality 

caused by direct or indirect anthropogenic activities will remain high on the agenda in the 21st 

century (Eswaran et al. 2001).  

To a large extent, climatic stressors, growing population, unsustainable agricultural 

activities, and rapid urbanisation/industrialisation are the main drivers of the land and water 

resources degradation (Ferreira et al. 2018; Blaikie et al. 2015). Globally, there is a large 

uncertainty in the estimated extent and spatial distribution of the degraded lands to the point 

that estimates vary between < 10 Mkm2 and > 60 Mkm2 (Gibbs et al. 2015). Degradation of 

the lands and their water bodies are particularly of concern in the world’s drylands where all 

the provided supporting, regulating, provisioning, and cultural ecosystem services to humans 

are highly vulnerable to variability in precipitation, air temperature, and soil fertility (Enfors et 

al. 2008; Mortimore 2005). 

Projected population growth and irrigation expansion has unprecedentedly increased 

the demand for water resources across the world and particularly the drylands (Sterling et al. 

2013). Since the 1980s, many rivers have been dammed to meet the water demands (Pekel et 

al. 2016). The water scarcity in drylands has been exacerbated by recent observed drier trends 

in climatic conditions (Santos et al. 2014; Haddeland et al. 2014) to the point that water usage 

in many basins has exceeded the water availability (Molle et al. 2010). Accordingly, from the 

management point of view, optimal allocation of water resources to meet urban, industrial, and 

agricultural needs, whilst assuring that all other major ecosystems services are provided, 
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remains a grand challenge in basins located in drylands (Shadkam 2017). One of the forms of 

water resources degradation in drylands is the desiccation of saline lakes, which has negatively 

impacted the ecosystem well-being in their surrounding areas (Williams 2002b; Wurtsbaugh 

et al. 2017). 

On the other hand, the dryland populations’ livelihoods are primarily dependent on 

agriculture, which is one of the sectors highly vulnerable to climate change (Rosenzweig et al. 

2014). Land degrading processes such as soil salinization, soil erosion, and overgrazing have 

adversely impacted the drylands’ provided ecosystem services (Morgan 2009; Majeed et al. 

2019; Mirzabaev et al. 2016). Similar to land degradation on a global scale, currently, the 

estimates on the extent and severity of the land degradation in drylands are just crude 

approximates with substantial uncertainties. This is majorly due to data unavailability and 

methodological limitations (Cherlet et al. 2018a). 

  This thesis is particularly focused on two aspects of water and land resources 

degradation in drylands, i.e. saline lakes’ desiccation and soil salinization. How saline lakes 

can sustainably be restored and estimation of the past, current, and future trends in soil 

salinization processes are the research questions addressed in this thesis. In what follows, first 

drylands are introduced and then a brief overview of the saline lakes’ drying and soil 

salinization issues are provided. This is followed by the motivations and aims of the study and 

finally, by an overview of the research methodologies used to address in this research. 

1.1 Drylands 

Drylands are traditionally characterised based on the Aridity Index (AI) – the ratio of average 

annual precipitation amount to potential evapotranspiration amount (Middleton et al. 1997). 

Drylands are the regions with an AI ≤ 0.65 mm mm-1 (Middleton et al. 1997). Aridity is 

different from drought. Aridity is a long-term climatic feature of drylands with low 

precipitation and/or available water while drought is a short-term climatic event not restricted 

to drylands (Le Houérou 1996). Based on the AI, drylands can be classified into four climate 

areas including hyper-arid (AI between 0 and 0.05 mm mm-1), arid (0.05 - 0.2 mm mm-1), semi-

arid (0.2 - 0.5 mm mm-1) and dry sub-humid (0.5 - 0.65 mm mm-1) (UNCCD 1994). Africa and 

Asia together have 70% of the global drylands (Figure 1-1). Excluding hyper-arid regions, 

grasslands, forests, and croplands are the largest land cover types in drylands. Together with 

hyper-arid regions, drylands cover about 46.2% (±0.8%) of the global land area (Prăvălie 

2016). 
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Currently, close to 38% of the global population (near to 3 billion people) are residents 

of the drylands (Koutroulis 2019), the majority of them located in the drylands of South Asia, 

sub-Saharan Africa, and Latin America (van der Esch et al. 2017). Developing countries are 

home to close to 90% of this population (Shukla et al. 2019). It is estimated that population in 

the drylands will reach 4 billion people by 2050 (van der Esch et al. 2017). This will be twice 

the population increase projected for non-drylands. Estimates of Le et al. (2016) show that 

between 1980s and 2000s, approximately 500 (±120) million people living in the drylands 

faced the negative impacts of land degradation on bio-mass productivity. 

 

Figure 1-1: Global distribution of the drylands. 

Traditionally, the response of the dryland populations to environmental degradation 

factors has been described in the context of two general frameworks (Shukla et al. 2019). The 

first is the “Desertification Syndrome” framework, which puts the stress on the human role and 

recognises the unsustainable anthropogenic activities as the main factor for poverty of the 

drylands’ livelihoods and subsequent inability for investment in resource conservation 

(Millennium Ecosystem Assessment 2005). The second is “Dryland Development”, which 

additionally considers the role of natural processes and recognises interactions between human 

activities and climate variabilities as the driver of resource degradation (Reynolds et al. 2007). 

In general, the consensus is that complex interactions between the human- and climate-induced 

drivers result in degradation of ecosystem services provided by drylands; which one is more 

significant, human or climate however, differs from place to place (Ravi et al. 2010; D’Odorico 
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et al. 2013). Accordingly, analysing the environmental resource degradation in the drylands 

needs an integrated approach to both natural- and human-related parameters as neglecting 

either of these may result in under- or over-estimation of impacts (Harrison et al. 2016). 

1.2 Saline lakes 

Saline lakes or salt lakes are the water bodies surrounded by land with salt concentrations of 

sodium chloride and other dissolved salts of more than 3 g L-1. In “Saline Lake Ecosystems of 

the World”, Hammer (1986) classifies the lakes into four groups in terms of salinity: (1) sub-

saline: 0.5 - 3 g L-1, (2) hypo-saline: 3 - 20 g L-1, (3) meso-saline: 20 -50 g L-1, and (4) hyper-

saline: greater than 50 g L-1. Saline lakes are the main aquatic landscape feature of the (semi-) 

arid and subtropical regions (Williams 1996) and represent nearly 44% of the total volume and 

23% area of the all inland water bodies (Messager et al. 2016b). Saline lakes are majorly found 

in closed (endorheic) basins where the evaporation is excessive over the precipitation (Hammer 

1986; Williams 2002a). The water input of the saline lakes is usually supplied by one or more 

rivers. In the majority of cases, the supplying rivers to the saline lakes are the main source of 

dissolved salts in their water. The entering salts cannot leave as the lake is terminal and excess 

of evaporation over water input to the lake increases the salt concentration. By far, the Caspian 

Sea is the largest saline lake in the word which is filled by approximately 41% of the total 

inland saline water in the world (Wurtsbaugh et al. 2017). Lake Urmia in Iran used to be the 

second largest hyper-saline lake by volume, but is now near to 90% desiccated, as discussed 

further below.  

As saline lakes are predominantly located in water scarce areas, they provide a diverse 

range of socio-economic and ecological services (Wurtsbaugh et al. 2017). Saline lakes provide 

economic services, such as shipping and mineral extraction. Compared to freshwater lakes, 

saline lakes can better accumulate and recycle nutrients (Blomqvist et al. 2004; Wurtsbaugh et 

al. 2017) and therefore, they can be suitable habitats for diverse fish species. In the case of 

higher salt concentrations where the water salinity levels are not tolerable by the fishes (such 

as hyper-saline lakes), dormant eggs (cysts) of the invertebrate food organisms, such as brine 

shrimp (Artemia spp.) can be harvested as a source of food in the fish cultivation industry. 

Saline or hyper-saline lakes can also serve as the habitat for migratory birds and invertebrate 

food organisms, such as brine shrimp and brine flies (Ephedra spp.) can be used by migrating 

birds during long migration cycles (Roberts 2013). For example, Andean salars and the above-

mentioned Lake Urmia are home to the migrating flamingos (Wurtsbaugh et al. 2017). Saline 
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lakes are also of the aesthetic values and, similar to freshwater bodies, can be used for 

recreational activities, such as boating, fishing, swimming, and other aquatic sports (Case 2013; 

Micklin et al. 2008). In a broader sense, saline lakes can affect regional climate patterns, 

supporting the biological diversity and productivity, and maintaining environmental and 

human health (Williams 1996; Hammer 1986; Hassani et al. 2020). 

As the formerly fourth largest lake and the second largest salt lake in the world, the 

Aral Sea started to shrink in 1960s and in 1997, retaining only 10% of its original volume 

(Micklin 2007). A great portion of this shrinkage is attributed to agricultural development. Due 

to the ever-growing demand for water, more or less similar drying patterns, or so-called Aral 

Sea syndrome (AghaKouchak et al. 2015) has been recorded for other major saline and hyper-

lakes across the globe, except Antarctica (Messager et al. 2016b). The desiccation of saline 

lakes is not a recent-observed phenomenon (Williams 1993). For example, the diversion of 

water by the city of Los Angles for agricultural expansion and urban water use completely 

dried the Owens Lake in western US before the 1940s (Wurtsbaugh et al. 2017). The 

combination of climate change and climate variability with unsustainable human activities has 

accelerated the desiccation of saline lakes (Shadkam 2017). Since 1996, the Caspian Sea 

surface water level (above the mean sea level) has been dropping by almost 7 cm per year 

(Chen et al. 2017). Similarly, due to a combination of human interventions and climate change, 

Iran’s Lake Urmia lost almost 90% of it volume within only 20 years since 1995 

(AghaKouchak et al. 2015; Schulz et al. 2020). Furthermore, due to a series of unsustainable 

water management decisions and reduction in water input, the California’s Salton Sea water 

level has declined more than 7 m since 2000 (Case 2013).  

Severe desiccation of the saline lakes can negatively impact the health and economic 

resilience of the people living in their surroundings (Micklin 2007; Frie et al. 2019). The saline 

dried-up lands (playa) remaining after the severe desiccation of the saline lakes can be a source 

for saline dust and air pollutants (Abuduwaili et al. 2010; Griffin et al. 2004). Saline particulate 

matters originated from the dried bed of the saline lakes can be transferred to the regions far 

from the location of the saline lake and harm human health, agriculture, and soil bio-

productivity. Exposure of 12,700 km2 of the Aral Sea bed to wind resulted in substantial 

ecological loss, deterioration of the bio-diversity, and associated difficulties for the local 

communities (Crighton et al. 2011; Wiggs et al. 2003). An increase in the number of lung 

infections and respiratory diseases was also reported as a consequence of the wind-blown saline 

dusts originated from the Owens Lake in California (Cahill et al. 1996). By further shrinkage, 
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the salt concentration of lakes’ water increases and salinity levels become unbearable even by 

salinity-tolerant micro-organisms — resulting in the loss of fisheries or economic profits from 

harvesting of brine shrimp eggs. Salinities beyond the tolerance of the fishes in the Aral Sea 

cut around 60,000 jobs related to the fishing industry, leading to 40,000 t reduction in annual 

fish production (Micklin et al. 2008). In the case of Lake Urmia in Iran, brine shrimp was 

entirely eliminated from the lake at the water salinities above 250 g L-1 and thus, the flamingos 

on the top of the food chain vanished (Abbaspour et al. 2007). Although desiccation of the 

saline lakes can initially benefit the mineral extraction industries, complete desiccation or 

further recession of the shorelines can cut the linkage between the solar evaporation ponds and 

the lake’s water body (Wurtsbaugh et al. 2017). Monetizing the loss of other ecological and 

biological services provided by (hyper-) saline lakes is not easy as the consequences are mostly 

irreversible, geographically widespread, and have resulted in degraded ecosystems (Hammer 

1986). 

1.3 Soil salinity and sodicity 

Soil salinity refers to amount of soluble salts in the soil (Soil Survey Staff 2010). Cations 

including sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+), and anions 

including chloride (Cl-), sulphate (SO4
2-), bicarbonate (HCO3

-), carbonate (CO3
2-), and nitrate 

(NO3
-) compose the major soluble minerals in the soil (Shahid et al. 2018). Soil sodicity, 

however, refers to high concentration of sodium salt (Na+) compared to concentration of other 

exchangeable cations in the soil, such as calcium, magnesium, and potassium (Richards 1954; 

Soil Survey Staff 2010). In fact, soil sodicity is a special form of the soil salinity in which high 

levels of Na+ accumulates at the expense of other soil exchangeable cations. The origin of these 

soluble salts in the soil is different. In primary soil salinization, physical and chemical 

naturally-occurring processes are the main sources of the soluble salts in the soil. These 

processes include surface evaporation, weathering of the saline parent material (rocks from 

which the soil is formed), and transferring of the saline minerals by wind or (sub-) surface 

waters to the location of soils. In secondary soil salinization, however, the origin of soluble 

salts is human activities. Irrigation with brackish/saline water, land use/cover change, dryland 

management activities, seawater intrusion as a result of coastal groundwater over-exploitation, 

over-use of fertilisers, dumping industrial waste brine, and poor drainage conditions in 

agricultural lands are all the examples of such human activities.  
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Conventionally, electrical conductivity of water-saturated soil paste extract (ECe) has 

been used as indicator of soil salinity (Soil Survey Staff 2010). As laboratory measuring of the 

ECe is time consuming and needs trained technicians, electrical conductivity of other soil to 

water (w/v) extracts including 1:1, 1:2, 1:2.5, 1:5, and 1:10 have been used to measure the 

extent of soil salinity (Shahid et al. 2018). These extractions can be prepared in field and then 

using the pre-defined correlations, the measured electrical conductivities can be converted to 

ECe. However, still ECe is preferred to EC of extracts prepared by other soil to water ratios as 

it is the best representative of the soil solution at the real field conditions. Additionally, the 

correlations for converting the EC of other extractions to ECe are highly site-specific and there 

is no universal correlation for all soils.  

On the other hand, the level of soil sodicity has been traditionally defined by 

exchangeable sodium percentage (ESP) (Soil Survey Staff 2010). Soils have a capacity to 

adsorb positively charged constituents of dissolved salts called cation exchange capacity 

(CEC). ESP is the extent to which sodium occupies the adsorption complex of a soil. ESP is 

usually represented as a percentage and calculated by: ESP = (Naexc / CEC) × 100 (Richards 

1954), where ESP is the soil exchangeable sodium percentage (ratio), Naexc is the soil 

exchangeable sodium in mEq/100 g soil, and CEC is the soil cation exchange capacity in 

mEq/100 g soil.  

Soil salinization is a land degrading process that increases the concentration of soluble 

salts in the soil. Soil salinity is particularly important in the root zone as it can affect crops and 

plants productivity. A saline soil is a soil with excessive concentration of the soluble salts that 

negatively impacts the soil’s fertility and stability. Higher salinity in soil solution increases the 

energy needed by soil micro-organisms and plants for withdrawal of water from the soil — 

leading to death of the plants and further soil erosion (Shrivastava et al. 2015). The presence 

of sodium, chlorine, and boron has toxic effects on plants’ leaves. Excessive soil salinity in the 

root zone can increase the ion toxicity in plants’ leaves, nutrient deficiency (N, Ca, K, P, Fe, 

Zn), and lower the bio-mass productivity (Munns et al. 2008). Soils with an ECe less than 2 dS 

m-1 are known to be non-saline. A soil salinity between 2 and 4 dS m-1 can negatively affect 

the yields of sensitive crops (fruit trees and vegetables). Soil salinities between 4 and 8 dS m-1 

restrict the growth of the majority of crops and plants and only salt tolerant crops can sustain 

at the salinities higher than 8 dS m-1 (Soil Survey Staff 2010). Similarly, high levels of soil 

sodicity can adversely affect the crop productivity and soil stability (Richards 1954). Sodicity 

causes decreased permeability and poor drainage — leading to a higher soil surface erosion 
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during heavy rainfall or irrigation cycles (Daliakopoulos et al. 2016). Soils with an ESP more 

than 6% are considered to be sodic (Northcote et al. 1972; Isbell 2016); however, depending 

on the soil clay type, sodicity-related problems may emerge at other sodicity thresholds. Salt-

affected soil is a generic term that includes both salinity and sodicity issues (Daliakopoulos et 

al. 2016). 

1.4 Background and research motivations 

The United Nations Sustainable Development Goal (SDG) 6 aims to ensure the freshwater 

availability, increase water-use efficiency, and restore/protect aquatic ecosystems (UN General 

Assembly 2015). Furthermore, the SDG 15 is to “protect, restore and promote sustainable use 

of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt/reverse 

land degradation and biodiversity loss” (UN General Assembly 2015). However, as previously 

mentioned, due to population increase and growing food demand, sustainable management of 

land and water resources has become a grand challenge, particularly in drylands (Sakadevan et 

al. 2010).  

The main reason for global drying of the saline lakes is that over the recent decades, 

provision of water for growing human water demands has been preferred to the environmental 

water needs (Williams 2002a). In response to the desiccation crisis of saline lakes, three 

strategies have been adopted by watershed/basin mangers to preserve or restore the lakes 

(Wurtsbaugh et al. 2017) including (1) reducing upstream water consumption, particularly in 

agricultural sector, (2) partial restoration (restoration of some parts of the lakes instead of the 

whole lakes), and (3) transfer of water from the adjacent basins to compensate the water deficit 

in the saline lakes’ basins.  

Approaches such as reducing the irrigation area, increasing agricultural water 

productivity, and cultivating less water intensive crops have been traditionally suggested for 

reducing the water uptake at supplying river basins (Wada et al. 2014); however, success and 

sustainability of these approaches depends on the adaptability and commitment of all 

stakeholders, particularly the farmers who use upstream water for irrigation (Shadkam 2017). 

Although partial restoration may not be a long-term sustainable solution for saving the full 

range of the ecosystem services provided by saline lakes (Wurtsbaugh et al. 2017; Micklin et 

al. 2008), it can be used as a temporary solution while more sustainable solutions are under 

development (Wada et al. 2014). However, in many cases, the logistic and financial costs do 

not allow construction of ducts/dams and smaller lakes. Transfer of water from other basins 
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cannot be a sole sustainable solution as these projects need substantial funding and the 

consequent water deficits in the donor basins negativity impact the environmental 

sustainability. Therefore, a combination of the two or three of these strategies is required for 

sustainable restoration/preserving a saline lake. Identifying long-term sustainable solutions for 

restoration and preserving the saline lakes requires a complete balance between the economic 

and environmental services provided by these lakes. A sustainable solution must take into 

account all relevant economic, social, and environmental aspects. A comprehensive analysis 

that takes into account these aspects for sustainable restoration and preservation of the 

desiccating saline lakes in the context of future climate uncertainties, particularly based on 

agricultural land use management, has not been addressed adequately in the literature so far.  

On the other hand, as one of the widespread and serious forms of land degradation, 

significant uncertainties and knowledge gaps remain concerning the soil salinization extent, 

severity, and its relation to climate change (Shukla et al. 2019). This leads to a need for 

developing predictive tools to identify the locations of saline and sodic soils and their spatio-

temporal variability on the global scale (FAO Soils Portal 2020). However, previous studies 

have primarily focused on the past or current trends in spatio-temporal variability of the soil 

salinity at the local scales. Complex interactions between socio-economic, bio-physical, and 

environmental parameters peculiar to each location make it a challenge to map the land 

degradation and its various forms on a global scale (Cherlet et al. 2018b). 

Currently, Harmonised World Soil Database (Fao/Iiasa/Isric/Isscas/Jrc 2012) and 

WISE-30 (Batjes 2015) are the main databases that provide global quantitative information on 

distribution of the salt-affected soils. However, these databases are purely spatial and mostly 

based on outdated 1970s data. Neither can a more recent attempt of Ivushkin et al. (2019) on 

generating a spatio-temporal map from the world’s salt-affected soils capture quantitatively the 

complex dynamism involved in soil salinization processes. Their model is a classifier which 

classifies the soils into saline and non-saline classes and variations in soil salinity within the 

classes cannot be quantified. Additionally, their work does not differentiate between the 

salinity and sodicity. Therefore, an up-to-date and consistent analysis of the variability of 

different aspects of the salt-affected soils at the global scale is lacking. Moreover, a quantitative 

investigation of the future trends in global soil salinity in the face of future climatic 

uncertainties is rare. Such analyses can bring new insights into our understating of the global 

environmental change and is crucial to agro-ecological modelling, land assessment, crop 

growth simulation, and sustainable water resources management. 



Chapter 1  Introduction 

  

 

25 

 

1.5 Aims and objectives 

Taking a quantitative approach, this thesis aims to fill the research gaps on the management of 

land and water resources in drylands mentioned in the previous section. Particularly, in the face 

of future climatic uncertainties, the main aim of this research is assisting policy and decision-

making in devising sustainable action plans against the two forms of land and water resources 

degradation in drylands, i.e. desiccation of saline lakes and soil salinization. The specific goals 

of this thesis are: 

 to identify sustainable solutions for restoration and preservation of desiccating saline 

lakes in various time horizons, considering socio-economic, hydrologic, climatic, and 

land-related stressors; 

 to identify the parts of a saline lake that should be prioritised for restoration;  

 to estimate the extent and severity of soil salinity and sodicity on a global scale; 

 to estimate the current soil salinization rates and trends in salt-affected lands, from the 

country to global levels; 

 to develop a quantitative tool for predicting variations in primary soil salinity in the 

mid-term (2031 - 2060) and long-term (2071 - 2100) futures; and 

 to identify the soil salinization hotspots around the globe by the end of the 21st century. 

In summary, the novel contributions to knowledge provided by this work include: 

 development of a decision-support framework based on optimal agricultural land use 

and cropping pattern at a river-basin scale for sustainable restoration of desiccating 

saline lakes across different time horizons (e.g. 10 or 30 years); 

 development of a remote sensing-based technique for identifying the parts of a saline 

lake that should be prioritised for restoration in combination with semi-analytical 

models for estimation of the wind-blown dust flux; 

 development of four dimensional predictive models/tools, taking into account the 

longitude, latitude, time, and depth, for spatio-temporal prediction of soil salinity and 

sodicity; 

 generating high-resolution schematic maps of different aspects of variation in surface 

soil salinity and sodicity (referring to the top 30 cm of the soil layer) on a global scale 

between 1980 and 2018; and 
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 development of quantitative predictive models/tools based on the outputs of the Global 

Circulation Models for predicting the annual variability of primary soil salinity by the 

end of the 21st century. 

1.6 Methodology 

In this section, an overview of the methods and frameworks proposed to address the above 

questions is provided (Figure 1-2). Details on the applied methodological approaches can be 

found in chapters 2 to 4. 

 

Figure 1-2: Schematic representation of the methodological framework used in the study (GCMs: Global 

Circulation Models). 

1.6.1 Sustainable solutions for restoration of saline lakes 

To provide sustainable solutions for restoration of the desiccating saline lakes, a four-step eco-

hydrological framework is proposed here, which takes all climatic, hydrologic, agronomic, and 

socio-economic aspects of saline lakes’ basins into account (Chapter 2). The proposed 

framework is principally based on reducing the upstream water uptake for agricultural activities 

and optimisation of cropping patterns in the river basins supplying a saline lake whilst trying 

to maximise the farmers’ net income. The effect of diversion of water from other basins was 

also reflected in the development of the framework. In addition to this framework for 

restoration of desiccating saline lakes in long-terms, consideration is given to partial restoration 

as a short-term solution. The applicability of the proposed framework is illustrated by the case 

of Lake Urmia in north western Iran — as mentioned earlier, formerly the second largest hyper-

saline lake of the world (by volume). 
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Depending on the time horizon considered for restoration of a saline lake, the first step 

in the framework is projection of governing climatic conditions in the lake’s basin. In the 

analysis considered in this thesis, the target year for restoration of Lake Urmia is assumed to 

be 2050 (30-year period). Outputs of the Global Circulation Models (GCMs) are used for 

projection of the climatic parameters. Air temperature and precipitation over the basin area are 

the main required climatic parameters. Due to high uncertainties in the outputs of the GCMs, 

multi-GCM ensembles under different greenhouse gas emission trajectories are used for 

projecting the future climates.  

The second step in the framework is development of a hydrologic balance over the lake 

area, coupled with salt balance models to estimate the water evaporation/subsurface flow 

from/into the lake. At large scales, these two parameters are not easily available for saline lakes 

and require using indirect techniques, such as application of hydrological or energy balance 

over the lake area, to be estimated. In this research, a calibrated salt-coupled hydrological 

balance over the lake’s area is used to estimate the annual water needed to reach the restoration 

target water level. The target water level differs from lake to lake and depends on the ecosystem 

services needed to be returned by restoration of the saline lake. For the case of Lake Urmia, 

1274.1 m (above the mean sea level) was selected as the target level as it could be the basis for 

returning the brine shrimp into the aquatic environment of the lake (Abbaspour et al. 2007). In 

the third step, based on the projected population growth, the municipal and industrial water 

demands within each supplying river basin is estimated and allocated.  

Finally, in step four, alternative sustainable land use and cropping patterns in supplying 

river basins for reducing water uptake in the agricultural sector are analysed to provide annual 

required water inflow for the lake’s restoration. From the total water available in each basin, 

the water remaining for agricultural sector is used as a constraint for an economic optimisation 

model at the river basin scale to obtain the optimal agricultural land use pattern, considering 

the total available land resources. The water diverted from the adjacent basins can be added to 

the water available for the agriculture sector. The final aim of the economic optimisation model 

is to maximise the net income for the farmers. Additionally, in this step, the potential 

greenhouse gas emissions as a result of the recommended land use change activities are 

considered in the optimisation model. As a result, the proposed land use/cropping pattern 

scheme can assure the preservation of the saline lake. 
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As reaching the main objectives of the agricultural land use optimisation may not be 

feasible in the short-term, partial restoration is considered as a parallel solution. For partial 

restoration of a saline lake, the priority is given to restoration of the locations at higher risk of 

wind-blown dust generation. In particular, a remote sensing-based technique coupled with 

semi-analytical models for estimation of the wind-blown dust flux is developed to recognise 

the parts of a saline lake that should be prioritised for restoration (Chapter 2). 

1.6.2 Extent and severity of soil salinity/sodicity 

As previously mentioned, measuring soil ECe and ESP is the traditional method for assessing 

soil salinity and sodicity extent. Despite the accuracy and reliability, the applicability of this 

method remains at a farm-scale or for local assessments as it is a costly method and includes a 

large spatial discontinuity in results. Expert judgment and satellite remote sensing are the other 

two methodological approaches that have been usually used for estimation of the extent and 

severity of soil salinization at local to global scales. Expert judgment, however, cannot be 

consistent and quantitative for the variations of the soil salinity and sodicity over the time 

(Ivushkin et al. 2019). Remote sensing also has its own drawbacks for universal applications. 

In crop or vegetated lands, the remote sensing techniques cannot be reliable for assessing the 

soil salinity and sodicity as the soil spectral reflectance is highly blended by the vegetation 

reflectance (Shahid et al. 2010). Additionally, remote sensing is sensitive to top soil layer 

reflectance and salinity at deeper soil layers cannot be estimated. Application of model-based 

techniques for estimating the extent and severity of soil salinity and sodicity is another option 

(Feddes et al. 1988; Saito et al. 2006). However, numerical and analytical models for 

simulation of water and solute transport in the root zone are limited to short-term applications 

at the farm-scale as they need very detailed properties of soil and land data and are 

computationally demanding (Suweis et al. 2010).  

To overcome some of the above difficulties, the Digital Soil Mapping (DSM) 

framework (Jenny 1994) is applied in this analysis to estimate the spatio-temporal variability 

in soil salinity and sodicity on a global scale. It is assumed that soil salinity and sodicity are 

governed by soil-forming factors including climate, organisms, relief, parent material, and 

time. If the relationship between soil ECe and ESP and those soil-forming factors and the 

spatially explicit distribution of soil-forming factors are available, the distribution of soil 

salinity and sodicity can be estimated from the distribution of soil-forming factors (called 

predictors hereafter) (Omuto et al. 2013). Here, Machine Learning (ML) techniques are used 



Chapter 1  Introduction 

  

 

29 

 

for characterising the relation between the soil salinity/sodicity and predictors. ML models 

have been trained based on the experimentally measured ECe and ESP values (soil profiles 

data) and a set of environmental predictors to estimate annual soil salinity and sodicity between 

1980 and 2018 at high spatial resolutions (Chapter 3). The models’ outputs are used to estimate 

the long-term variability of soil salinity and sodicity on a global scale.  

1.6.3 Future of the primary soil salinity 

Similarly, using ML techniques, the extent and severity of primary soil salinity is projected to 

the end of the 21st century using a set of environmental predictors and available projected values 

of some predictors, including precipitation frequency, precipitation intensity, 

evapotranspiration, and wet (rain) and dry (wind) deposition rates of sea salts, obtained from 

the outputs of Global Circulation Models (Chapter 4). Model predictions are used to identify 

the hotspots of soil salinization on a global scale 

1.7 Thesis outline 

This thesis is presented in the Journal Format comprising three papers, presented in chapters 2 

to 4. The thesis author is the first author of all the three papers. The thesis structure and a short 

summary of what each chapter covers is provided below: 

Chapter 2 (Paper 1): Desiccation crisis of saline lakes: a new decision-support framework 

for building resilience to climate change (published in Science of the Total Environment) 

Chapter 2 presents the new eco-hydrological framework developed in this work for restoration 

of desiccating saline lakes due to human activities, which is of great importance for ecosystem 

functioning, agriculture, water management, and human well-being. Its applicability is 

illustrated by application to the Urmia basin. Furthermore, the developed method for 

identifying the locations of a saline lake with priority of restoration is also presented. 

Chapter 3 (Paper 2): Predicting Long-term Dynamics of Soil Salinity and Sodicity on a 

Global Scale (Published in PNAS) 

This chapter quantifies the spatio-temporal variability of soil salinity and sodicity on a global 

scale. A ML-based methodology is developed for spatio-temporal prediction of the soil salinity 

and sodicity and the results of the developed methodology are used to map the annual soil 

salinity and sodicity variation between 1980 and 2018.  
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Chapter 4 (Paper 3): Climate change and soil salinization: A global scale perspective for 

the 21st century  

The final paper included in this thesis is among the first attempts for projecting the spatio-

temporal variations of the dryland soil salinity by the end of 21st century in response to climate 

change. ML-based models have been trained based on the current global trends in soil salinity 

to project the primary soil salinization hotspots to the end of the century. 
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Abstract 

River flow reductions as a result of agricultural withdrawals and climate change are rapidly 

desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human 

wellbeing in the surrounding areas. Here we present a new framework to guide eco-

hydrological restoration of saline lakes and build their resilience to climate change by 

optimizing agricultural land use and related water withdrawals. The framework involves four 

steps: 1. selection of global circulation models for the basin under study; 2. establishment of a 

hydrological balance over the lake’s area to estimate the amount of water required for its 

restoration; 3. water allocation modelling to determine the water available for restoration and 

allocation of the remaining water across different users in the lake’s basin; and 4. basin-scale 

optimisation of land use and cropping patterns subject to water availability. We illustrated the 

general applicability of the framework through the case of the second largest (by volume) 

hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, 

primarily as a result of upstream water withdrawals. Through the application of the framework, 

we estimated the amount of water needed to restore the lake, either fully or partially, and 

proposed a sustainable land use strategy, while protect farmers’ income in the basin. 

Considering future climate change projections under two representative concentration 

pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 

(∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required 

to restore the lake by 2050, respectively. This would require the respective conversion of 

95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin 

by 2050. The proposed framework can be used for building resilience to climate change and 

mitigating human-induced threats to other declining saline lakes. 

 

Keywords: Ecosystem services; Lake restoration; Lake Urmia; Land use management; 

Optimal cropping patterns; Saline lakes. 
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Nomenclature 

Symbol Definition Symbol Definition 

,a b  Constants in subsidy function prem  
Mass of precipitation over the lake area 

(kg) 

A  Total area under cultivation (ha) 
saltavailablem  Available salt mass in the lake (kg) 

, ,c c ca b c  
Calibration parameters in the lake 

level-volume relation saltm  
Change in the mass of lake water salt 

after t  (kg) 

AOT  Aerosol optical thickness 
saltnewm  

Salt mass available in the lake after t  

(kg) 

,C C   Constant parameters in Eq. 10 
saltriversm  Salt mass added by rivers (kg) 

aC  Production cost (US$ ha-1)   Function used in Eq. 7 

xCC  Maximum canopy cover p  Soil surface plastic pressure (Pa) 

yc  
Dimensionless coefficient used in  

Eq. 11 cP  Income received by farmers (US$ t-1) 

1d  Lower saltating particle size (m) ( )sp d  Soil particle size distribution 

2d  Upper saltating particle size (m) ( )f sp d  Fully disturbed particle size distribution 

id  Particle-size bin interval length (m) ( )m sp d  
Minimally disturbed particle size 

distribution 

id  Particle-size bin mean diameter (m) wP  Price of irrigation water (US$ m-3) 

jD  Mean diameter of jth mode (m) Q  Total saltating particles flux (kg m-2 s-1) 

sd  Particle size (m) ( )sq d  
Horizontal sand flux of particle size sd  

(kg m-2 s-1) 

fe  Freshwater pan evaporation (kg) 
b  Bulk soil density (kg m-3) 

se  Lake water pan evaporation (kg) p  Particle density (kg m-3) 

f  
The total fraction of dust which can be 

released from unit soil mass 
S  Crop subsidy (US$ ha-1) 

f  Dust fraction in soil p  Ratio of free dust to aggregated dust 

F  Vertical dust flux (kg m-2 s-1) j  Standard deviation of the jth mode 

( )F Y  Crop-field production function (t ha-1) m  

The ratio between mass of impacting 

particle and mass ejected by 

bombardment 

g  Acceleration due to gravity (m s-2) TGM  Total gross margin (US$) 

i  Number of cultivated crops *u  Friction velocity (m s-1) 

I  Number of particle-size bins *tu  Threshold friction velocity (m s-1) 

J  

Number of modes in calculation of 

fully/minimally particle size 

distribution 
W  

Available annual water in each river basin 

(m3 ha-1). 

m  
Change in the mass of lake brine after 

t  (kg) jw  Weight of the jth mode 

evaporationm  
Mass of evaporated water from the 

lake area (kg) 
X  Area under cultivation by each crop (ha) 

infm  
Mass of water entered to the lake by 

rivers (kg) Y  Seasonal irrigation demand (mm) 
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2.1 Introduction  

Saline inland water bodies are a recurrent landscape feature of mid-latitude and subtropical 

closed hydrological basins (Hammer 1986). With their current volume of 82,676 km3, they 

account for 44% of the total lake water storage on earth (Messager et al. 2016a). These lakes 

play an important role in determining regional climate patterns, sustaining biotic productivity 

and diversity, maintaining environmental and human health, and providing recreational 

services, minerals, and other resources (Williams 1996; Hammer 1986). Therefore the 

dynamics of saline lakes are of great importance to a broad array of stakeholders.   

Over the past decades, several anthropogenic and climatic drivers have disturbed the 

hydrological balance of many inland saline lakes, often resulting in complete desiccation 

(Wurtsbaugh et al. 2017). Excessive evaporation with respect to the natural inflow (i.e. negative 

water balance), resulting from unrestricted withdrawals of surface and sub-surface water in the 

upstream watersheds and global warming, have decreased the water levels of most large saline 

lakes to an alarming extent across the world. Saline lakes’ basins are mostly located in regions 

categorised as arid and semi-arid climates (Williams 2002b). Some examples of the declining 

saline lakes around the world are provided in Figure 2-1. In most cases, unsustainable upstream 

water withdrawals have been a primary factor in the lake shrinkage (Williams 1996). Lake 

Urmia, the Aral Sea, and Owens Lake are some examples of the shrinkage as a result of 

anthropogenic interventions. The Aral Sea faced a reduced area of 74% and volume of 90% as 

a result of basin-wide irrigation expansion (Micklin 2007). Similarly, water use for human 

needs led to an average ∼1.74 km3 yr-1 reduction in water inflow to Lake Urmia from 1995 to 

2010, resulting in ∼86% decrease in the total lake volume (Chaudhari et al. 2018). Diversion 

of the supplying streams to meet agronomic and urban water demands desiccated California’s 

Owens Lake completely by 1940 (Wurtsbaugh et al. 2017).  

Comprehensive analyses of the trade-offs between ecological and economic benefits of 

the saline lakes are needed to identify sustainable options for managing these lakes, with the 

goal of restoring them while enabling economic activities in the surrounding regions 

(Wurtsbaugh et al. 2017). In addition to the loss of the above-mentioned ecosystem services, 

shoreline recession in theses saline lakes leaves salt-rich playas behind, which remain exposed 

to wind shear and are susceptible to aeolian transport of salt-rich dust. Snow melting in the 

surrounding mountains, soil salinization, vegetation degradation, poor air quality, and 
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augmented risk of morbidity from respiratory diseases are some of the direct irreversible 

consequences of dust emissions from these desiccating lakes (Abuduwaili et al. 2010).  

In response to concerns regarding the shrinking of saline lakes and the consequent 

impacts on the local environment, many ongoing national and sub-national efforts are aimed at 

increasing flows in upstream rivers. The endoreic nature of these basins makes them more 

vulnerable to changes in inflow regimes (Williams 2002b). Many approaches have been 

adopted by watershed managers to address the issue of saline lakes’ shrinkage. One such 

approach is partial restoration of lakes by constructing physical barriers in the desiccated part, 

similar to the method used for the Aral Sea (Micklin 2007). Another example is California’s 

Mono Lake where the water inflows were increased by limiting withdrawals in the lake’s 

upstream tributaries (Ryan 2015). Multi-million to multi-billion-dollar projects for transferring 

water from the adjacent basins have been also considered as a method to preserve saline lakes, 

and examples include Lake Urmia, Dead Sea (Deatrick 2016), and Utah’s Great Salt Lake 

(Miller 1987). In most cases, the required flow for restoration and preserving saline lakes can 

be provided by reducing water use, especially in the agricultural sector, although the projected 

climate change can help or exacerbate the management of the water demands (Wurtsbaugh et 

al. 2017). Despite utilizing various approaches for controlling the water withdrawals across 

saline-lake watersheds, a quantitative analysis of how agricultural land use would need to 

change to reduce water use, especially in face of future climatic uncertainties, is rare. Basin-

wide technical and institutional improvements in the agricultural sector, reducing irrigated area, 

and cultivating less water-intensive crops can substantially conserve the water for restoring and 

preserving saline lakes. Hence, to assist policy-makers and evaluate the priority for investment 

in land use and cropping pattern change, a comprehensive analysis of the land, climate, and the 

economy nexus of saline lakes’ basins is needed.  

To address this need, we propose a framework to guide evaluation of possible solutions 

based on land use strategies that can facilitate restoration of saline lakes in the short- to long-

terms (2030 - 2050). The framework considers hydrological models combined with a salt 

balance to determine the water inflows that would be necessary to restore and keep the lake at 

the recommended level to maintain its ecosystem services. It also enables consideration of 

alternative cropping patterns to facilitate rehabilitation of lakes, especially in the context of 

projected climate change, while striving to protect farmers’ income. As a results, it is possible 

to determine possible future hydrological, agronomic, and socio-economic conditions in the 

lake’s basin associated with an optimal land use change strategy, aiming to reduce water 
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consumption in the basin and restore the lake. Because such land-based interventions have the 

potential to increase greenhouse gas (GHG) emissions (Houghton 2003; Smith 2008), the 

framework also quantifies the emissions related to the recommended land use change schemes. 

 
 
Figure 2-1: Examples of the observed decrease in surface water area in major saline lakes around the world 

over the period 1984 - 2015 (Pekel et al. 2016). 

 

Although the lakes will differ and the specific analysis of each lake and its basin will 

require specific data, the proposed framework is generic and can be applied to similar saline-

lake basins located in arid and semi-arid areas with unsustainable water withdrawals as a 

primary reason for decreased water flows into the lake. Some critical examples of these lakes 

are The Aral Sea, Great Salt Lake, Lake Urmia, Lake Abert, Walker Lake, Lake Poopó, and 

Owens Lake. If the basin-wide demographic, hydrological, climatic, and agronomic data for 

each river supplying the saline lake are available, the proposed framework can be applied for 

projecting the required adaptations in the agricultural land use. However, the proposed 

framework cannot be applied to lakes in arid regions where droughts and excess of evaporation 

relative to precipitation are the major causes of desiccation.  

To mitigate the adverse consequences of lake recession in shorter time spans, the 

framework also enables consideration of partial restoration by identifying the part(s) of the lake 

that should be prioritised for restoration. This is based on the analysis of dust emissions from 

the lake bed since the dispersion of wind-blown saline dust from the playa, resulting from the 

desiccation of saline lake sediments, is the major concern for environmental and human health 
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in nearby regions (Gillette et al. 1997). Here we prioritise the partial restoration option with 

the best potential for dust emission mitigation over other objectives, such as recreation or 

extraction of minerals. We quantify the potential for vertical emissions of saline dust from the 

lake bed in response to wind erosion to identify the zones with the higher priority for 

restoration. The framework is detailed in the next section, followed by an illustrative 

application in section 2.3. 

2.2 Materials and methods  

As illustrated in Figure 2-2, the proposed framework comprises four steps. Step 1 involves 

projection of future climate conditions, depending on the targeted time horizon for restoration 

of the lake. This is commonly carried out by using outputs of Global Circulation Models 

(GCMs). However, the variety of GCMs with different initial conditions and physics 

necessitates the application of multi-GCM ensemble for the basin under study to capture the 

uncertainties involved in the predictions of climate change. Therefore, this is taken into account 

in the framework as discussed in section 2.3.1. 

Step 2 requires establishment of a historical salt and water balance over the lake’s area 

to relate limnological and hydrological processes of a saline lake to climatic and other long-

term meteorological drivers. These hydrological processes can include the surface and sub-

surface inflow or sediment transport dynamics. Among the climatic parameters related to the 

water balance of a saline lake, a reliable estimation of the evaporation rate is a challenge 

(Zilberman et al. 2017), especially if measured data are not available. At the same conditions, 

the evaporation from saline water bodies is different from freshwaters due to the different 

surface activity of brine (Lensky et al. 2005). Dissolved salts reduce the free energy of the 

water molecules, which influences the saturated vapour pressure depending on the salt 

concentration (Shokri-Kuehni et al. 2017a; Shokri‐Kuehni et al. 2017b). This in turn modifies 

the evaporative fluxes. Therefore, relationships commonly used for estimations of the 

evaporation flux from freshwater cannot be applied for the case of saline lakes. Instead, 

estimation of the evaporation rate can be resolved by direct measurements, as in the present 

study and in Mor et al. (2018), or implementation of long-term mass balance models — e.g. 

Winter et al. (2003) and Mohammed et al. (2012).  

In step 3, the calibrated hydrological balance over the lake’s area against system 

stressors provides the basis for estimation of the required inflow for restoration of the lake to 

the targeted water level for various time horizons. This will depend on how restoration is 
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defined, what management objectives are preferred, and the constraints included. The 

restoration target level can be defined as the level that returns the degraded aquatic system to 

the conditions that are ecologically productive, protective, or aesthetically pleasing (Hobbs et 

al. 1996). It should be noted that the ecological target level for lake restoration is not a singular 

level and, in most cases, the ecological aspects are improved along a continuum of salinities 

and elevations. A vulnerability analysis of the ecological services provided by saline lakes to 

the water-level decline, descriptions of factors to which the saline aquatic system is sensitive, 

and quantification of trade-offs among various restoration objectives, can be the key elements 

in prioritizing and adopting a single elevation for the lake water. After the estimation of the 

required water, another model is needed to estimate the available water and allocate the 

remaining water (not used for restoration) among all stakeholders at the river basin scale. The 

water allocation approach needs to consider the future climatic, hydrological, agronomic, 

demographic, and other drivers in a saline lake basin. 

 Finally, step 4 aims at developing and evaluating alternative sustainable land use and 

cropping patterns to reduce water usage in the agricultural sector that is needed for increasing 

the lake’s water level. The focus is on agricultural usage because in most cases unsustainable 

development of agronomic activities in saline lakes’ basins has been the major reason for the 

decline of lakes, including Lake Urmia (AghaKouchak et al. 2015; Hassanzadeh et al. 2012; 

Chaudhari et al. 2018; Ghale et al. 2018). We define a land use strategy as sustainable if it 

allows the inflow of required water to the lake over relevant management time scales while 

meeting the economic, social, and environmental needs of the stakeholders in the basins. Water 

allocated to the agricultural sector (in step 3) becomes one of the inputs into a farm-economic 

optimisation model to obtain the optimal cropping pattern at the river basin scale, subject to 

available irrigation water and land resources needed to restore the lake by the targeted time 

horizon. Estimation of the cultivated crop yields as a function of irrigation water in the 

supplying river basins provides another major input for the farm-economic optimisation model 

(Figure 2-2). 

The system is then optimised to maximise income at the farm level for the new land use 

and cropping patterns. Other optimisation objectives can also be defined, based on 

stakeholders’ interests and data availability. As new cropping patterns involve land use change, 

it is important to estimate the resulting change in GHG emissions, which is also included in the 

framework. The optimal agricultural water management solutions, identified through the 

optimisation, enable decision- and policy-makers to evaluate how potential land use schemes 
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may perform, explore the interconnections between different system components, and identify 

the key factors affecting the restoration strategies. They can also consider various challenges, 

such as ensuring that farmers comply with recommended solutions, maintaining equity among 

stakeholders, behavioural and institutional barriers, and financing needed for the proposed land 

management policy. 

 

Figure 2-2: The proposed framework for restoration of saline lakes (GCM: Global Circulation Model).  

 

In case that coping with these challenges is not possible in the short term, consideration 

can be given to feasible partial restoration scenarios in parallel with the land use optimisation 

process. Depending on available resources and services provided by the saline lake, locations 

with the higher priority for restoration can be identified. The decision-makers may also want 
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to change the constraints or optimisation objectives. Therefore, the proposed framework can 

be used as an iterative decision-support tool which can be updated as new information or 

alternative watershed resource management frameworks come to light.  

 The applicability of the proposed framework is illustrated in the next section through 

the case of the second largest (by volume) hyper-saline lake in the world – Lake Urmia in Iran 

– which is at risk of complete desiccation. Strategies for both partial and complete restoration 

are considered in the short- (2030) and long-terms (2050), respectively. 

2.3 Application of the framework: The case of Lake Urmia 

The Urmia basin plays a pivotal role in Iranian national food supply. Nearly 10% of the 

country’s agricultural area is located in the basin, producing about 6 Mt of crops annually. With 

an average annual precipitation close to 400 mm and average potential evapotranspiration of 

530-680 mm, the basin’s climate is classified as cold semi-arid (Kottek et al. 2006). The lake 

is located in a geological sink called graben where volcanic rocks caused by historical eruptions 

are widely distributed (JICA 2016). The lake is terminal and surrounded by mountainous areas 

with elevations ranging from 1,270 to 4,000 m (above the mean sea level). It is supplied by 12 

major streams flowing into the lake, with an average annual run-off ratio of 0.24 (JICA 2016). 

The Talkhe and Zarineh rivers with the catchment areas of 12,717 and 11,838 km2 compose 

24.6% and 22.9% of the whole lake’s basin area, respectively, while ~ 40% of the annual inflow 

to the lake is supplied by the Zarineh and Simineh rivers.  

Construction of more than 44 reservoirs along the lake’s tributaries (with the total 

storage capacity of ∼1.413 km3) and increasing the authorised groundwater withdrawals from 

0.25 km3 in 1980 to 1.6 km3 in 2014, along with intermittent drought periods, doomed Lake 

Urmia to almost complete desiccation (Fathian et al. 2015; Shadkam et al. 2016; Jalili et al. 

2016), which is unprecedented in the last 4,000 years (Kelts et al. 1986). As a result, the lake 

lost 80% of its area and 96% of its volume in just 20 years, declining by 0.4 m yr-1 in the water 

level (Figure 2-3). The growing in-field, modelling, and remote sensing evidence suggests that, 

although climate change and decreasing precipitation have exacerbated the decline of the water 

levels, intensified water withdrawal is one of the major reasons for the shrinkage of the lake 

(AghaKouchak et al. 2015; Hassanzadeh et al. 2012; Chaudhari et al. 2018; Ghale et al. 2018).  

As mentioned earlier, airborne saline particles emitted from the desiccated parts of the 

lake, are a major concern for environmental and human health. Long-term fluctuations in 

hydrological and climatic parameters prevent an effective estimation of spatial distribution of 
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the adjacent demographic and industrial centres exposed to the emissions. Hence, we evaluated 

the geospatial dispersion of PM10 (particulate matter ≤ 10um) emitted from the lake bed 

(section 2.3.4.2.1) in the context of a five-hour storm that struck the Urmia basin in March 

2018 at the mean wind speed of 44 km h-1 (gusts up to 70 km h-1). The simulations were based 

on the assumption that the lake bed moisture was < 5%. The HYSPLIT_4 (Hybrid Single-

Particle Lagrangian Integrated Trajectory) model (Draxler 1999; Rolph et al. 2017) was used 

to simulate the dispersion and deposition trajectories (particle speed deposition = 0.001 m s-1). 

The emission rate was set equal to the vertical dust flux (F) as a function of wind speed, 

calculated from the vertical dust parameterizations explained in section 2.3.4.2.2. The spatial 

scattering range of the emitted saline fine particles as a result of the storm (Figure 2-4, a to c) 

suggests a very significant influence of dust from the desiccated parts of Lake Urmia on air 

concentrations of PM10 at the ground level (0 to 100 m above the surface). 

Annual depositions of 13.03 Mt of sediments, 1 Mt of salt, and 1,076.45 Mt of 

herbicides, pesticides and fertilisers (WRMC 2007), conveyed by inflowing rivers, 

dramatically exacerbate the environmental perils of wind-blown particulates. The composition 

of the deposited particles is of particular concern for human and animal health, as well as for 

vegetation. For example, chloride-containing airborne particles can lead to a range of metabolic 

and reproductive alterations to vegetation and respiratory-related threats for humans and 

livestock (McCune 1991). Our analysis of the elemental composition of 49 near-surface 

sediments at the lake bed (initial geochemical data after Alipour et al. (2018)) indicated 

significant contamination of deposits by arsenic and antimony and moderate contamination by 

rubidium and strontium (enrichment factors = 13.4, 11.9, 4.43, and 4.06, respectively). 

Despite the emergence of the lake’s recession between 2006 and 2014, the monetary 

incentives in agriculture and other sectors drawing on the water in the lake’s basin hindered its 

conservation (Madani 2014). In 2014, the near-complete desiccation, with the water level 

declining to 1,270.1 m, received significant scientific and public attention (AghaKouchak et 

al. 2015; Garousi et al. 2013). As a consequence, the Iranian government and the UN issued a 

US$ 1.3 billion plan for rehabilitation of the lake and surrounding wetlands which saved the 

lake from complete desiccation. However, in the first four years of this ten-year restoration 

plan, the lake level increased by only 0.6 m to 1,270.7 m, corresponding to an increase in water 

volume of 525 Mm3. This falls well below the targeted ecological level established by the Lake 

Urmia Restoration Committee of 1,274.1 m. This ecological target reflects the lake level and 

volume at which salinity is expected to fall below 240 g L-1 NaCl. This salinity represents the 
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maximum tolerance level for brine shrimp, the only fauna at the top of the ecological pyramid 

of the lake (Abbaspour et al. 2007). Our calculations showed that an additional water volume 

of 11,850 Mm3 is required to achieve the target water level of 1274.1 m (based on the lake 

level-area-volume relationships; see Appendix 1 for details).  

 
 

Figure 2-3: a: Lake Urmia’s watershed and the river basins of its tributaries. b: Increase in the number of wells, 

decrease in precipitation, reduction in surface run-off, and increase in the area under cultivation in each river 

basin. The increase in the number of wells is obtained through comparison of two periods: before 1985 and from 

1985 to 2001. For the surface run-off, average river discharges in the 1975 - 1995 and 1995 - 2011 periods are 

compared. The decrease in the annual precipitation in each basin is acquired through comparison of the 1980s and 

2000s. Land use change is for the period 1987 - 2007. c: Annual water stocks and flows determining Lake Urmia’s 

hydrological balance. For the period between 1980 and 1995, the difference between the inflow to the lake and 

net evaporation (evaporation minus precipitation on the lake’s surface) was negligible; since 1995, the gap 

between the inflow and outflow from the lake has grown steadily. d: Annual decrease in the groundwater table 

level between 2004 and 2014. 

 

To meet the water needs for short-term recovery of the lake (ten years), trans-basin 

water diversions were implemented by government as a part of the rehabilitation plan. One of 

these is a US$ 100 million tunnel (35.7 km) which will be used to transfer 0.64 km3 of water 
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per year from the adjacent basin (the lower Zab, one of the Tigris’s tributaries). However, 

desertification and degradation of the Tigris’s downstream marshes as a result of this water 

diversion, dam construction on other transboundary tributaries, and plans by Turkey and Iraq 

for impoundment of 34 km3 of Tigris’s water (Altinbilek 2004) cast serious doubts on the long-

term efficacy of the solutions related to inter-basin diversion. Moreover, occurrence of 33 dust 

events per year in south western Iran, with hourly PM10 concentrations above 500 µg m-3 might 

be attributed to a 65% decrease in Tigris’s historical discharge and desiccation of its deltaic 

wetlands compared to the historical values in the period 1931 - 1952 (Rahi et al. 2018). The 

following sections detail the framework steps as applied to the case study. 

 
 
Figure 2-4: a, b, and c: Average concentrations of PM10 (particulate matter ≤ 10 μm) between the surface and 

100 meters above ground level after 6, 12, and 18 hours from the beginning of the storm, respectively. d: 

Aggregate PM10 disposition rate 24 hours after the start of the simulation. The model simulates the PM10 dispersion 

originated from the Lake Urmia’s saline playa (in a hypothesised case of the lake’s desiccation) during a dust 

storm on 24/3/2018 (14:00 UTC). A mean of 27 ensemble members (offset is one meteorological grid point in the 

horizontal and 0.01 sigma units in the vertical direction) was calculated for the 18-hour dispersion simulation. For 

further details, see Appendix 1). 

2.3.1 Step 1: Selection of multi-GCM ensemble  

Required climatic parameters for projecting the future hydrological and agronomic conditions 

in the Urmia basin for the period 2020 - 2050 were obtained using an ensemble of GCMs from 

the IPCC’s Fifth Assessment Report (Emori et al. 2016). The outputs of the 16 GCMs under 
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two Representative Concentration Pathways (RCP) forcing scenarios (4.5 and 8.5) were 

considered to capture the uncertainties in the projected climates. Including different 

realizations of the GCMs, a total of 34 and 25 ensemble members were used for RCP 4.5 and 

8.5, respectively.  Details of the GCMs and their used realizations are provided in Table 2-1. 

They were statistically bias-corrected over the reference period of 1960 - 1995, i.e. before the 

lake’s desiccation. The bias-corrections were based on Eq. 2 in Hawkins et al. (2013) using 

high-resolution gridded time-series dataset for observed climatic parameters at 0.5° resolution, 

based on Harris et al. (2014), version CRU TS  4.02. This method was selected as it is 

computationally more efficient than more advanced techniques because of the large number of 

ensemble members. 

Table 2-1: Global Circulation Models (GCMs) used in this study for projecting future (2020 - 2050) 

hydrological and climatic conditions in the Urmia basin. 

GCM 

Used 

realizations 

under RCP 

4.5a 

Used 

realizations 

under RCP 

8.5a 

Spatial resolution 

(latitude × longitude; 

degrees) 

Centre (Country) 

ACCESS1-0 1 1 1.25 × 1.87 CSIRO-BOM (Australia) 

CNRM-CM5 1 1 1.40 × 1.40 CNRM-CERFACS (France) 

GFDL-CM3 1 1 2 × 2.5 NOAA (USA) 

GFDL-ESM2G 1 1 2.02 × 2 NOAA (USA) 

GFDL-ESM2M 1 1 2.02 × 2.5 NOAA (USA) 

GISS-E2-H 1,2,3,4,5 1,2 2 × 2.5 NASA (USA) 

GISS-E2-R 1,2,3,4,5 1,2 2 × 2.5 NASA (USA) 

GISS-E2-R-CC 1 1 2 × 2.5 NASA (USA) 

HadGEM2-CC 1 1 1.25 × 1.87 MOHC (UK) 

HadGEM2-ES 1,2,3,4 2,3,4 1.25 × 1.87 INPE (Brazil) 

IPSL-CM5A-LR 1,2,3,4 1,2,3,4 1.89 × 3.75 IPSL (France) 

IPSL-CM5A-MR 1 1 1.26 × 2.5 IPSL (France) 

IPSL-CM5B-LR 1 1 1.89 × 3.75 IPS (France) 

MPI-ESM-LR 1,2,3 1,2,3 1.86 × 1.87 MPI (Germany) 

MPI-ESM-MR 1,2,3 1 1.86 × 1.87 MPI (Germany) 

NorESM1-M 1 1 1.89 × 2.5 NCC, NMI (Norway) 
a  Realization number indicates the initial conditions of the ensemble member. 

2.3.2 Step 2: Salt-water balance over the lake’s area 

To plan for a sustainable restoration of a lake, the primary question is: how much water is 

required annually by each supplying tributary to restore the lake in the face of future 

hydrological, agronomic, and climatic conditions? To estimate the required inflow for the Lake 

Urmia, we established a hydrological model over the lake, combined with a salt balance. For 

simplicity, here we adhered to the recommended target level adopted by the Restoration 

Committee (1274.1 m) because it is expected that above this water level the lake’s water 

salinity would fall below the maximum salinity that could be tolerated by brine shrimp (240 g 

L-1 NaCl).   
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Unlike previous analyses of the water balance over the lake and its tributaries’ 

watershed (JICA 2016), here we accounted for the effect of projected climate change. 

Moreover, most of the existing models did not consider the effect of dissolved salt mass on the 

water balance and the variations in the depth of the lake, which were accounted for in the 

present study. The lake’s hydrological balance was used to estimate the total annual and sub-

surface inflow to the lake as well as the salt precipitation rate. The water needed for restoration 

of the lake under different scenarios (partial or complete restoration) was calculated based on 

this reconstruction of the hydrological balance. The hydrological model was first calibrated 

against the climatic parameters and the surface water input in the reference period, here taken 

to cover the period from 1996 to 2010 due to limited data availability. Then, using the calibrated 

model, the amount of water required for rehabilitation to the target ecological water level for 

different time and climate scenarios was estimated. This is discussed in more detail next. 

2.3.2.1 Water and salt mass balance in the reference period (1996 - 2010) 

In this step, the lake’s mass balance, including both the mass of water and dissolved salt, was 

established first. Subsequently, the meteorological and bathymetry data over the period were 

implemented to calibrate the model parameters. The change in the mass of the brine (m) after 

a period Δt was determined as follows (Lensky et al. 2005):  

                                    
infevaporation salt pre

m
m m m m

t


    


                                      (1) 

In eq. (1), mevaporation is the mass of evaporated water according to the lake’s area, msalt 

is the change in the mass of salt available in the water, minf is the amount of water that enters 

the lake during a particular time period, and mpre is the mass of precipitation over the lake’s 

area. The change in the mass of salt, msalt, can be positive or negative, depending on the 

deposition or dissolution of salt in water. It was calculated as: 

                                salt saltavailable saltrivers saltnewm m m m                         (2) 

where msaltavailabe and msaltnew represent respectively the total amount of salt present in the lake 

at the beginning and the end of a particular time span and can be obtained directly by measuring 

the concentrations of salt in the lake; msaltrivers is the amount of salt added to the lake by its 

rivers (Table 2-2). If msalt is positive in a particular year, it means that the salt is precipitated 

on the lake bed and vice versa. The bathymetry data from 2010 were used to calculate the area, 

level, and volume of the lake, using ArcGIS surface volume tool. The volume of salt added to 

or removed from the lake at each time (assuming the salt deposition is related to the halite 

whose density is 2,160 kg m-3) was taken into account to update the estimated area, level, and 
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volume of the lake. However, the lake bed surface area (i.e. 3D surface) was assumed to be 

constant. The observed precipitation over the lake’s region and its corresponding area during 

1996 - 2010 was adopted from JICA (2016).  

No data were available on the evaporation rates from the lake’s surface. Therefore, the 

annual rate of evaporation was estimated based on pan evaporation data. While it is not possible 

to use pan evaporation values directly to calculate the evaporation from open water bodies like 

a lake, a correction factor is typically used, here assumed at 0.77 (Darvishi 2014). To account 

for the presence of dissolved salts, we applied two different methods for correction of the 

freshwater pan evaporation data. In both methods, a time series of pan evaporation between 

1996 and 2010 was applied, including the average of annual freshwater pan evaporation 

measured experimentally at ten different stations around the lake and the only station within 

the lake.  

Table 2-2: Salinity and average mass of salt added to the lake by different rivers during 1996 - 2010. 

River 

Average annual 

inflow to the lake 

(Mm3) 

Total dissolved 

solids (mg L-1) 

Average amount of 

added salt (t yr-1) 

Barandooz chay 174.5 288.282 50,322.89 

Roze  chay 25.8 437.526 11,294.58 

Gedar chay 202.8 324.738 65,882.62 

Nazlu chay 137.4 264.865 36,393.63 

Shahr chay 51.1 403.800 20,673.75 

Mahabad chay 118.1 436.872 51,623.41 

Simineh rood 296.7 260.304 77,237.22 

Zarineh rood 879.9 302.022 265,770.50 

Zola chay 27.8 662.304 18,440.75 

Sinikh chay 17.3 357.956 6,218.88 

Ghale chay 27.5 339.060 9,348.78 

Azar shahr 22.6 145.000 3,279.03 

Mardoogh chay 60.4 250.000 15,111.33 

Lilan chay 42.7 287.850 12,300.79 

Javan chay 7.9 250.000 1,988.50 

Soofi chay 30.4 286.851 8,755.05 

Aji chay 166.4 8,863.020 1,475,385.57 

Surrounding plains 316.4 150.000 47,467.05 

 

In the first method, the lake water pan evaporation (es) was used as the annual 

evaporation from the lake’s surface area. In the second method, saline water evaporation rate 

from the lake was assumed to be constant at 1,200 mm yr-1 (JICA, 2016). This value was 

calculated by establishing a water balance over the lake’s area as:   

 
Water balance = (Surface water inflow) + (Groundwater inflow: Groundwater recharge + Water from 

groundwater storage) – (Base flows of the rivers) + (Precipitation over the lake) – (Evaporation from the lake) – 

(Water uptake from surface water and groundwater).  
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Ten different cases of annual evaporation rates from the lake’s surface were used for the annual 

water balance calculation. They ranged from 1,000 to 1,900 mm yr-1 with a 100 mm yr-1 

interval, referring to the average annual freshwater pan evaporation value at stations adjacent 

to the lake, equal to 1,611 mm — obtained via the Thiessen method (Thiessen, 1911). The case 

with the evaporation rate of 1,200 mm yr-1 showed the highest correlation with the annual 

average lake water level and accumulated annual water balance. Using the total precipitation 

over the lake and the above two methods for estimation of the evaporation rate, net annual 

inflows to the lake were calculated as the sum of surface and sub-surface inflows.  

Two other methods were also applied to calculate the annual evaporation from the lake 

(see Table 2-3): 1. correction of the evaporation values obtained in the first method described 

above by multiplying with the lake-effect correction factor (0.77); and 2. modification of the 

saline water pan evaporation values using the lake-effect correction factor. However, the 

calculated total annual inflow into the lake using these methods was not acceptable since the 

estimated values for the total inflow to the lake were lower than the total surface entry, 

measured by the discharge gauges at the periphery of the lake (~2,600 Mm3 yr-1). 

Table 2-3: Freshwater and brine evaporation before and after application of salt and lake constants 

correction. 

Year 

Average of 

ten stations 

(freshwater) 

(mm) 

Golmankhan 

station 

(freshwater) 

(mm) 

Golmankhan 

station 

(saline) 

(mm) 

Saline to 

freshwater 

ratio 

Evaporated 

water from 

the lake 

calculated 

by JICA 

(Mm3) 

Average of ten 

stations modified 

for salt presence 

× saline-to-

freshwater ratio 

(mm) 

Golmankhan 

station 

modification 

(×0.77) (mm) 

Average of ten 

stations 

(freshwater)  

modified for 

salt presence × 

0.77 (mm) 

1996 1,424.7 1,385.1 1,191.5 0.86 6,864.5 1,225.5 917.4 943.7 

1997 1,370.9 1,181.7 918.9 0.77 6,814.8 1,066.0 707.5 820.8 

1998 1,473.3 1,386.0 1,098.3 0.79 6,686.9 1,167.4 845.6 898.9 

1999 1,417.2 1,168.2 1,116.0 0.95 6,311.6 1,353.8 859.3 1,042.4 

2000 1,503.7 1,385.9 997.7 0.71 5,900.7 1,082.5 768.2 833.5 

2001 1,615.4 1,489.3 1,391.1 0.93 5,476.6 1,508.9 1,071.1 1,161.8 

2002 1,505.7 1,381.9 1,115.6 0.80 5,266.2 1,215.5 859.0 935.9 

2003 1,406.0 1,557.3 1,153.6 0.74 5,241.6 1,041.5 888.2 801.9 

2004 1,433.9 1,433.5 1,248.6 0.87 5,319.9 1,248.9 961.4 961.7 

2005 1,515.4 1,338.8 1,205.7 0.90 5,138.9 1,364.7 928.3 1,050.8 

2006 1,484.5 1,267.6 1,181.4 0.93 5,108.5 1,383.5 909.6 1,065.3 

2007 1,383.0 1,164.3 1,115.9 0.95 4,929.1 1,325.5 859.2 1,020.6 

2008 1,636.7 1,687.0 1,452.7 0.86 4,565.0 1,409.4 1,118.5 1,085.2 

2009 1,378.9 1,379.2 801.8 0.58 4,409.4 801.6 617.3 617.2 

2010 1,430.0 1,265.1 1,070.9 0.84 4,069.6 1,210.5 824.5 932.1 

Average 1,465.3 1,364.7 1,137.3 0.82  1,205.5 863.8 928.2 

 

Although the aforementioned mass balance enabled us to estimate the total inflow and 

the under-surface water gain, there was still a need for updated relationships between the lake’s 

level, area, and volume, which also consider the salt precipitated on the lake bed to determine 
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the required water for restoration. We initially used the bathymetry data from the year 2010 to 

predict the lake’s area and volume as a function of the lake’s level (Appendix 1) and also the 

lake’s level as a function of its volume, i.e. Level = ac × (Volume)bc + cc. The constant 

parameters (ac, bc, and cc) in this relationship were chosen as the calibrating parameters. The 

total annual inflow results obtained through the combined water and salt balances enabled us 

to calibrate these relationships. These sets of fitted functions and the calibrated lake level-

volume relationships were then used to predict the required water for the restoration of the lake 

between 2020 and 2050. 

We used Monte Carlo simulations to address the issue of the equi-finality and parameter 

uncertainty in the calibration process. We investigated the calibration of the three parameters 

(ac, bc, and cc) ranging from 2.189×10-5 to 5.189×10-5, 0.50 to 0.52, and 1267 to 1269, 

respectively. A 1,000 combinations of the calibrating parameters were derived employing 

uniform sampling strategy from each parameter within the above range. We then estimated the 

annual total inflow between 1999 and 2010 using the first evaporation method (preferred 

because the second method assumes a constant annual evaporation rate), precipitation data, and 

the water balance over the lake’s area. We finally compared these results with the total inflow 

calculated for the same period by considering both the water and salt balances. A coefficient 

of determination (R2) between the two computed ranges of the total annual inflow equal was 

set at 0.6 as an acceptable threshold for choosing a set of calibration parameters.  

2.3.2.2 Mass balance in the period 2020 - 2050 

The calibrated level-volume relationship was then used to estimate the required annual surface 

water inflows for complete restoration of the lake to the target water level (1274.1 m) by 2050. 

For the whole lake, the calculations of the amount of salt added to the lake by its rivers 

demonstrated that the volume of added salt was negligible compared to the volume of lake: the 

average total volume of added salt was close to 1 Mm3 yr-1, compared to the surface water 

inflow of 2,606.5 Mm3 yr-1. Hence, in the established hydrological cycle between 2020 and 

2050, the salt balance was omitted. This was also because the amount of salt which dissolves 

from the lake bed into the water cannot be estimated precisely. Owing to a large difference 

between historical observations and the model output, bias-corrected precipitation and 

evaporation rates projected by the GCMs were utilised to estimate the evaporation and 

precipitation over the lake’s corresponding area in each year in the period. The rainfall and 

evaporation time series from each GCM were bias-corrected as mentioned earlier (based on 
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Hawkins et al. (2013) method), using the observed precipitation data at synoptic stations 

adopted from Harris et al. (2014) and the evaporation rates calculated in section 2.3.2.1, 

respectively. The reference period for the bias-correction of the rainfall time series was 

arbitrarily chosen to be between 1960 and 1995. This period was long enough to cover inter-

annual climatic variabilities before and after the lake’s shrinkage. The annual inflow volumes 

required to attain the target level of 1,274.1 m by 2050 were estimated using the calibrated 

level-volume relationship discussed in section 2.3.2.1. Considering the annual water gain by 

the lake from precipitation and projected evaporation, we calculated how much water is 

required annually to refill the lake to the target level by 2050. The calculations were repeated 

for each multi-GCM ensemble member over the acceptable sets of calibration parameters to 

determine the uncertainty ranges for the required volume. Finally, the annual inflow required 

for the restoration was distributed across the tributaries proportionally to the discharge history 

of each river. The estimated water requirement for each river was then used as an input for the 

water allocation model in step 3 of the framework.  

2.3.3 Step 3: Water allocation model 

To capture the variabilities and uncertainties of GCM-based predictions of the future climatic 

and hydrological conditions in the Urmia basin, the water allocation modelling and 

optimisation (step 4) were based on a mean of the multi-GCMs with 34 ensemble members for 

the RCP 4.5 scenario and 26 members for RCP 8.5. All the required climatic parameters were 

computed as an ensemble mean with equal weighting of each ensemble member. The final 

annual water requirement for restoration of the lake by 2050 was set as the mean of both multi-

parameter and multi-GCM ensemble predictions under RCP 4.5 and RCP 8.5 (i.e. 3,648 and 

3,692 Mm3 yr-1, respectively).  

We calculated the available runoff and the increase in water demand to meet the lake’s 

inflow target at the river-basin scale and then prioritised the latter to achieve the aims of the 

land-based restoration plan. In each watershed, the remaining water (the difference between 

available runoff and lake inflow requirement to meet the restoration target) was distributed 

among the industrial, municipal, and agricultural sectors, leading to an estimate of the 

maximum water available for irrigation after the distribution.  

The water-resources management model in the Mike HYDRO Basin module (Mike 

2017) was used for the allocation of water within each river basin. The total projected allocation 

of the annual run-off to water users, hydropower plants, and reservoirs was prioritised by the 
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global ranking algorithm implemented in the model. The highest global priority was assigned 

to the municipal and industrial water users, while irrigation water users were assumed to have 

lower priority because of the lower economic productivity of water in agriculture. The 

discharge at the river inlet into the lake was set equal to the annual required flow for lake 

restoration. The yearly surface water run-off in each tributary catchment and sub-catchment 

was estimated as a product of precipitation and the runoff ratio, using the average of the multi-

GCM bias-corrected precipitations between 2020 and 2050, and calibrated historical run-off 

ratios extracted from Table 2.6.3 in JICA (2016). Annual run-off ratios were calculated 

utilizing observed precipitation data (provided by Iran’s Water Resources Management 

Company) and recorded surface discharge at the neighbouring end points of the supplying river 

basins. The accuracy of the runoff ratios for each basin was checked by calculation of the runoff 

depth (annual discharge divided by the catchment area) for each river. The average runoff depth 

for the supplying rivers was 318.6 mm, with Mahabad, Shahr, and Talkhe having the highest 

runoff depths of 699.9, 472.7, and 419.9 mm, respectively (Table 2.6.4 in JICA (2016)). 

There are no complete data on the proportion of the municipal water that is returned 

back as grey water or how much urban water is consumed. Equally, data on future projections 

do not exist. Therefore, the time series of the municipal and industrial water usage per capita 

and the increase in the number of residents in each river basin (see WRMC (2007) for details) 

were applied to predict the non-irrigation water demand until 2050. It was assumed that the 

current urban per-capita water is consumed completely and there is no return (as grey water) 

to the network. The expected annual outflow (evaporation and agricultural water supply) from 

each reservoir under construction was also accounted for as additional water. The outputs from 

this part of the framework were fed into the optimisation model as the maximum available 

water for irrigation, as discussed in the next section. 

2.3.4 Step 4: Farm-economic optimisation  

This step aims to identify optimal solutions for a full or partial restoration of the lake. It 

involves basin-scale optimisation of land use and cropping patterns subject to water 

availability, while protecting farmers’ income. The latter is used as the objective function, as 

follows (García-Vila et al. 2012): 

   
1
[( ( ) )] ( 10)]

N
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                         (3) 

where TGM is the total gross margin (US$), i represents each crop analysed (1,2,…,𝑁), X is 

the area under cultivation (ha), Y is the seasonal irrigation demand (mm), F(Y) is the crop-yield 



Chapter 2  Restoration of saline lakes 

 

54 

 

production function (t ha-1), Pc is the income received by farmers (US$ t-1), S is the crop subsidy 

(US$ ha-1), Pw is the price of irrigation water (US$ m-3), Ca is the production cost (US$ ha-1) 

and 10 is the units conversion factor. 

 The optimisation is subject to the constraints on the available cropping lands and 

irrigation water: 

                                     1
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                                        (5) 

where A represents the total area under cultivation in each river basin, and W is the available 

annual water in each river basin (m3 ha-1). 

The model was optimised using MATLAB Optimization Toolbox®  (Mathworks) and 

applying the ‘fmincon’ function. As this function minimises rather than maximises, the inverse 

of the objective function (1/TGM) was used and optimisation carried out for each year between 

2020 and 2050, subject to the above constraints. The final optimal cropping pattern and land 

use for agriculture were estimated as an average of the optimal land use and cropping pattern 

calculated for each year. It should be noted that the optimisation model does not account for 

all the counter-measure projects employed by the Iranian government, such as facilitating the 

effluent transfer to the lake (for a complete list of these, see WRMC (2007)). 

The various inputs into the optimisation model, shown in Figure 2-2, are discussed 

below. 

2.3.4.1 Crop-yield functions 

One of the inputs required for the optimisation is an estimate of the variations in crop yields 

with applied irrigation water in face of projected climatic conditions. The AquaCrop model 

(Steduto et al. 2009; Raes et al. 2009) was used for this purpose to determine the crop-yield 

responses (F(Y) in Eq. 3) to climatic and irrigation variability and to develop crop-water 

production functions. The following major cultivated crops in the Urmia basin were 

considered: winter wheat, barely, maize (grain), sugar beet, oilseeds, potato, tomato, cucumber, 

water melons, alfalfa, dry beans, apple, pear, and stone fruits. Their yield responses were 

analysed to determine the crop yield as a function of available irrigation water and other 

environmental factors. In addition, pistachio was selected as one of the alternative crops for 

cultivation as it has a lower irrigation demand and higher market value (also proposed by the 

Restoration Committee). Cultivar-specific crop parameters, including the time needed to reach 

the maximum canopy cover (CCx), canopy senescence, physiological maturity and flowering 
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(or the start of yield formation) were adopted from Table 11 in Allen et al. (2005). This source 

was also used to obtain the average maximum effective rooting depth (Table 22 in Allen et al. 

(2005)). The average planting density, planting method (direct sowing or transplanting) and 

use of fertilisers were the field and management parameters tuned by the historical crop yields. 

Historical crop yields (Food et al. 1998) were compared with simulated crop yields to validate 

the AquaCrop model against field and irrigation management practices. Regression techniques 

were then applied to obtain the yield response function for each crop for the period 2020 - 

2050. For other cultivated crops and where input data for AquaCrop model parameterization 

were missing, the average annual potential evapotranspiration was assumed at 700 mm. The 

latter was calculated using the Hamon method based on monthly data of three weather stations 

(JICA 2016).  

Based on the soil map of the Urmia basin (Hengl et al. 2017), the soil type in this area 

can be categorised as Inceptisol (Service USDoASC, 1999). The soil moisture profile for each 

region was acquired from ERA-Interim reanalysis. Daily rainfall (mm) and climate time-series 

data, including daily relative humidity, minimum and maximum temperature (˚C), and wind 

speed (m s-1) between 2020 and 2050 were obtained by taking an average from the bias-

corrected output of the multi-GCM ensemble. As mentioned earlier, the climate time series 

were bias-corrected according to Hawkins et al. (2013) using the updated data from Harris et 

al. (2014). 

2.3.4.2 Partial restoration and land use optimisation in the agricultural sector 

As mentioned earlier, the optimisation model allows provision of the required water for 

restoration of the lake. However, in some cases, attaining the optimal land use and cropping 

patterns may not be viable in the short term. Accordingly, feasible partial restoration solutions 

in parallel with the agricultural land use optimisation would be beneficial to mitigating the 

adverse consequences of the lake’s shrinkage. If partial restoration is needed and feasible, it is 

important to determine the parts of the lake that should be prioritised for restoration. This will 

depend on many factors, such as agriculture, extraction of minerals from the lake bed or 

recreational activities. Here we focus on the avoidance of dust emissions from the dried lake 

bed due to their adverse impacts on human health, animals, and vegetation. The following 

sections provide an overview of the dust emission sources and the methodology used to 

estimate the geospatial dispersion of PM10 through vertical dust parameterisation mentioned 

previously in section 2.3 and Figure 2-4. 
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2.3.4.2.1 Identification of dust emission sources 

Locations vulnerable to wind erosion were characterised through the daily Aerosol Optical 

Thickness (AOT) obtained by Moderate Resolution Imaging Spectroradiometer 

(MODIS)/Terra dataset (5 Min L2 Swath, 3 km  resolution at nadir, both over land and ocean, 

MOD04_3K) over the lake’s area between 2010 and 2016 (Levy et al. 2015). We chose this 

period because the lake had the lowest water level between 2010 and 2015. For each pixel, the 

average of daily AOT intensities was multiplied by the number of days which had the measured 

AOT values > 0.15 (intensity × frequency) to obtain an index for each pixel, here called 

“aerosol intensity-frequency”. The pixels with an aerosol intensity-frequency index value 

higher than the 75-percentile of the calculated indices for all pixels between 2010 and 2016 

were identified as dust sources within the lake’s domain. These sites were mostly located on 

the lake’s islands and on the margins of the southern half of the lake. The sediment at the lake’s 

periphery can be classified as sandy loam and silty clay loam-textured, except the Jebel site on 

the west shore which has sand dunes (Table 2-4). 

Table 2-4: Sediment composition of 12 sites on the margin of Lake Urmia. Soil textures in Figure 2-9 are 

based on these compositions. 

Site Sand (%) Silt (%) Clay (%) 

1 4.7 77.5 17.7 

2 8.4 75.2 16.3 

3 22.9 60.2 16.9 

4 42.0 45.0 13.0 

5 4.3 78.7 17.0 

6 30.5 57.0 12.5 

7 31.0 56.0 13.0 

8 46.0 42.0 12.0 

9 43.0 49.0 8.0 

10 7.0 76.0 17.0 

11 4.0 66.0 30.0 

12 73.0 18.0 9.0 

 

2.3.4.2.2 Vertical dust parameterization 

Two parameters should be determined first in estimations of the vertical dust flux: 1. the 

threshold friction velocity at which the soil particles start to move; and 2. the horizontal 

saltation flux (Kang et al. 2011). Threshold friction velocity ( *tu ) is defined as the minimum 

friction velocity required for the commencement of soil-particles movement and the saltation 

process. Here, the relationship proposed by Shao et al. (2000) was used to calculate the 

threshold friction velocity. For a particle with diameter ds, six formulations were used to 

determine the horizontal sand flux, q(ds) (kg m-2 s-1). Details of those equations can be found 

in White (1979), Kawamura (1951), Owen (1964), Sørensen (2004), Lettau et al. (1978), and 
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Durán et al. (2011). Aggregate flux intensity, Q of saltating particles of all sizes was then 

estimated as follows (Shao et al. 2002): 
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where d1 and d2 are the lower and upper saltating particle size limits, respectively, and p(ds) is 

the soil particle size distribution. Shao (2001) assumed p(ds) as a combination of two idealised 

particle size distributions, known as minimally disturbed particle size distribution pm(ds), and 

fully disturbed particle size distribution pf(ds). During weak erosion, p(ds) is close to pm(ds), 

while when the erosion is strong, p(ds) is close to pf (ds). Shao (2001) represented p(ds) as:                                                    
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where u* is the friction velocity and u*t is the threshold friction velocity. 

The minimally and fully disturbed particle size distributions can be deemed as the sum of 

lognormal distributions, i.e.: 
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where J is the number of modes, and Dj, j, and wj are the mean diameter, standard deviation, 

and the weight of the jth mode particle size distribution, respectively (Shao 2001). Minimally 

and fully disturbed size distributions for different soil types were calculated using parameters 

for four soil textures, namely sand, loam, sandy clay loam, and clay, proposed by Shao (2004). 

Saltating particles can mobilize other particles with different size ranges by their impact on soil 

surface. Dust particles (defined as particulate matter < 70 μm) are not lifted by the direct effect 

of wind since the inter-particle cohesive forces are predominant compared to the aerodynamic 

forces (Kok et al. 2012). These particles are primarily ejected and lifted from the soil surface 

due to the impact of saltating particles on them (Gillette 1974). This ejection from the soil 

results in a vertical dust particle flux into the atmosphere and subsequent particle suspension 

(which can be either short-term or long-term, depending on the size of the particles).  

In this study, the following two methods were applied to estimate the vertical dust flux, 

F, from the dried lake bed: 
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1. A simplified total vertical dust flux F was obtained by modelling the ploughing process of 

individual saltating particles (assuming the impact angle of a saltating particle is 13º) as (Lu 

et al. 1999):                                                           
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where p (500 for silty clay loam, 10,000 for loam, and 50,000 for sand dune) is the plastic 

pressure of the soil surface in N m-2 (surface hardness), f is the fraction of dust contained in the 

volume of the soil, ρb and ρp are the densities of the bulk soil and particles, respectively, and 

Cα and Cβ are constants; Q is the aggregate flux intensity determined by Eq. (6). For loamy and 

silty-clay loam which form 90% of the lake’s saline playa, Cα is equal to 0.0002 and 0.0006, 

respectively; for sand dunes, Cα is 5. For Cβ, the value of 1.37, suggested by Lu et al. (1999), 

was applied for all soil textures. Here, f represents the fraction of mineral particles < 10 μm 

and is equal to 15.2%, the average percentage of clay available in 12 samples gathered from 

the sites around the lake (Table 2-4).  

2. A simplification of a vertical dust emission parameterization was followed in the second 

method (Shao 2001). The proposed method for estimation of the vertical dust emission is 

based on saltation bombardment and aggregate disintegration mechanisms. Using this 

method, the dust emission rate for particle-size range with a mean value of di and an 

increment Δdi induced by saltation of particles of size ds, can be calculated as:                                                  
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where cy  is a dimensionless coefficient, q(ds) is the stream-wise saltation flux of particle with 

diameter ds and g is the acceleration due to gravity. fi can be obtained by:  
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and σm is: 
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where p is soil plastic pressure and  p is the ratio of free dust to aggregated dust, i.e.: 

 σp=
pm  (di )

pf  (di )
 (14)  
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Assuming the particles are divided into I particle-size bins, each with a mean diameter di and 

an interval length Δdi, the model proposed by Shao (2004) can be considered as a spectral dust 

emission model which can be utilised for estimation of the vertical dust flux of various particle 

size ranges. The vertical dust emission F from bin i is then: 
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where d1 and d2 are the lower and upper size limits for saltating particles. Total vertical dust 

emission of fine particulate matter is the sum of all size bins. The following values were 

assumed for p (required for calculation of σm) and cy for different soil types (Shao 2004): for 

sand dunes p = 1,500 Pa and cy = 5×10-5; for silty clay loam p = 50,000 Pa and cy = 1×10-5; for 

loam p = 10,000 Pa and cy = 5×10-5. To compute the density of air, the average air temperature 

of Urmia city of 21˚C was used, measured at the climate station between May and September, 

the driest period for the lake and a higher dust emission possibility. The average dew 

temperature between May and September for the Urmia climate station is 7.56 ˚C. Based on 

this, the average air density at the location of the lake of 10.32 kg m-3 was used. For the 

calculation of dynamic viscosity, it was assumed that the pressure is equal to the atmospheric 

pressure at sea level (since the change in air pressure has a minimal impact on the viscosity of 

gases). The dynamic viscosity of air was estimated at 18.17×10-6 Pa s. Various 

parameterizations of vertical dust emission were compared with the wind tunnel (Roney et al. 

2006) and in-field measurements (Nickling et al. 2001) of salty dust emission as a function of 

friction velocity to determine the best formulation for each soil texture (Figure 2-5). In order 

to include the effects of moisture and non-erodible elements, the saltation threshold friction 

velocity should be corrected, usually by multiplication of the threshold friction velocity by 

correction factors > 1. Soil moisture and the presence of non-erodible elements increase the 

saltation threshold friction velocity. Expanded parameterization of Fécan et al. (1998) was used 

for the correction of the soil moisture effect (Appendix 1, Eq. A1.3). Moreover, the threshold 

friction velocity correction factor ( f  ) proposed by Raupach et al. (1993) was applied to account 

for the presence of roughness elements (Appendix 1, Eq. A1.4). 

2.3.4.3 Protecting farmers’ income: irrigation costs and subsidies  

Currently, the irrigation efficiency in the Urmia basin is 41% (WRMC 2007) and many 

endeavours are in progress to improve it to 70% or more for farms and 90% for horticultural 

gardens. However, in this study, a conservative assumption was made that the irrigation 

efficiency would increase only to 60%. Traditionally in Iran, the agricultural water price paid 
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by farmers in modern, semi-modern, and traditional irrigation networks has been 1%, 2%, and 

3% of the final value of the produced crop, respectively (WRMC 2007). With this tariff scheme, 

farmers only pay 25% of the real calculated cost of water in three different irrigation networks 

and there is no incentive for improving the water use efficiency. In our optimisation model, the 

irrigation water price of US$ 0.06 per m3, recommended by the Iranian Ministry of Agriculture, 

was assumed to eliminate inefficiencies in the water consumption chain (WRMC 2007).  

 
Figure 2-5: Observed and modelled vertical PM10 emission from the Lake Urmia’s saline playa: a: Silty clay 

soil. b: Sandy loam. c: Sand dune. Since there are no experimental data on saltation and vertical dust flux from 

the playa as a function of wind friction velocity, measured data for other saline lakes were used to assess and 

validate the performance of various vertical dust formulations. For each soil texture, measured values are shown 

as dots while model outputs are represented by the lines. For silty clay loam, the vertical PM10 dust emission rates 

were observed in an in-field wind-tunnel at potentially high emission areas in Owens Lake (Nickling et al. 2001). 

Experimental data for sandy loam and sand dunes were measured in the saltation wind-tunnel at University of 

California Davis (Roney et al. 2006) where crustal sediments were conveyed from Owens Lake to the wind-tunnel 

site. For silty clay loam, the horizontal saltation flux from White (1979) and vertical dust formulation from Lu et 

al. (1999) were selected to model dust emissions from the Lake Urmia’s bed. For sand dunes and sandy loam, 

White (1979) & Shao (2004) and Kawamura (1951) & Shao (2004) formulations were used, respectively. 

 

Alternatively, to protect farmers against a new irrigation water pricing system and 

capture climate-induced risks in crop yields, a new subsidy scheme was considered here. Prior 

to 2010, irrespective of the yield of harvested crops, farmers were entitled to receive fixed 
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annual subventions. To be eligible for receiving the funding, it was assumed in this analysis 

that the farmers’ harvested annual crop yield must fall below the 30th percentile of the historical 

local annual crop yields between 1995 and 2015 (based on data availability for all crop yields). 

With this subsidy scheme, we tried to cover the agriculture-associated risks throughout the 

growing season, including adverse climatic conditions, natural disasters, and pest invasions. 

The subsidy was estimated in US$ ha-1 as Subsidy=a × (yield) b, where yield is in t ha-1 and a 

and b are constant parameters for each cultivar. At lower yields, it was assumed that the payable 

subsidy increases with yield reduction compared to the reference yield. The final constant 

parameters used for each crop in the subsidy function based on historical yields are presented 

in Table 2-5. For some crops, including wheat, barely, and oil seeds, the final product price 

was calculated as a function of the yield to capture the high dependency of the final crop price 

on annual yields. In other words, the final crop price was assumed to be a function of the yearly 

crop yield because in years with low average crop yields, the final crop price increases.  

Table 2-5: Historical annual yields, production costs, and average producer prices for different crops based 

on the data between 1995 and 2015.  

Crop 
Yield (30th 

percentile) (t ha-1) 

Production costs a 

(US$ ha-1) 

Producer priceb 

(US$ t-1) 
a b 

Apple/pear 14.17 2547.82 605.59 2.14×1021 -17.79 

Stone fruits 9.54 6085.25 482.77 1.41×1018 -19.75 

Pistachio 0.63 7473.92 10042.24 0.01873 -7.14 

Winter wheat 2.90 892.44 -0.0768 (yield) + 473.9 9.72×106 -13.15 

Barely 2.64 680.51 -97.44 (yield) + 482.2 2.36×1015 -39.23 

Potato 22.14 2725.56 284.67 4.28×1043 -33.46 

Sugar beet 30.33 3025.31 95.10 8.85×1016 -10.07 

Oil seeds 0.97 1201.65 -274.7 (yield) + 871.9 0.03969 -12.84 

Tomato 27.21 2783.12 237.80 1.10×1046 -33.17 

Cucumber 13.52 1331.60 422.95 1.76×1045 -40.67 

Water melons 9.85 1331.60 158.36 4.64×1045 -48.59 

Maize 5.92 1878.25 371.60 3.30×1018 -24.21 

Bean (dry) 1.14 1096.85 1616.97 2.15 -11.45 
 a Source: The Iranian Ministry of Agriculture for year 2014. 
 b Producer prices are adopted from FAO (2016) and show the final price received by farmers. For winter wheat, barely,      

and oil seed the producer prices are presented as function of the yield to capture the dependency of the price to produced 

crop availability. a and b are the constant parameters in the subsidy function. 

2.3.4.4 Greenhouse gas emissions 

The potential GHG emissions associated with the suggested land use change were estimated at 

the optimal solution determined through the optimisation model. The focus was on two major 

plausible activities: 1. conversion of the current marginal irrigated croplands to rain-fed 

systems; and 2. conversion of the current marginal croplands to grasslands/rangelands. 

Quantification of the change in GHG emissions as a result of shifting from one cropping pattern 
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to another in irrigated lands is not as easy; hence, the change in GHG emissions related to the 

cropping pattern alteration within the irrigated croplands was not considered. For the 

conversion of irrigated to rain-fed croplands, we assumed that the current irrigated croplands 

in the river basins are converted into rain-fed cultivation of cereal crops. Furthermore, the 

conversion factors for the warm temperate dry IPCC climate zone were used to evaluate the 

change in the GHG emission in the Urmia basin. The sequestration rate was calculated by 

subtracting the average net soil CO2 eq. emissions from the whole soil profile (0 - 1.2 m depth), 

with the clay contents of 18%, 34%, and 40% in the Australian cereal belt (Dalal et al. 2001), 

from the net cropland soil CO2 eq. emissions of the IT-BCi site (5200 ± 410 kg CO2 eq. ha-1 yr-

1), reported by Schaufler et al. (2010). We used these empirical values since the estimated 

emission rates of their studied site’s IPCC climate zone are similar to the Urmia basin’s IPCC 

climate zone. For the restoration of cropland to grassland, we used the estimated emission 

factor range for the warm temperate dry IPCC climate zone (2,475 - 18,069 kg CO2 eq. ha-1 yr-

1) in Diaz et al. (2012) to calculate the mean and standard deviation of the possible reduction 

in GHG emissions.  

 Conversion activities were studied in the context of two land use change rates: 

achieving the land use program targets in ten and in 30 years (Cameron et al. 2017). Monte 

Carlo simulation was used to propagate the uncertainty of the estimated emission rates for each 

land-based activity, with 50,000 iterations assuming normal distribution from the mean and 

standard deviation of the activity’s net sequestration rate. The final probability distribution of 

each activity is the product of the Monte Carlo sampling results and the converted area rate. 

The 5th and 95th percentile of the cumulative reduction in GHG emissions of each activity 

during the conversion interval (ten or 30 years) were used to determine the confidence intervals. 

2.4 Results and discussion 

The following sections discuss the results obtained in the different steps of the framework. 

2.4.1 Step 1: Projected climate in the Urmia basin 

Figure 2-6 presents the overall variations in the projected changes in precipitation and near-

surface (2 m) air temperatures (hereinafter referred to ‘air temperature’) across the Urmia basin, 

averaged by month. The results were computed by comparing air temperatures and 

precipitation outputs of each model for the reference (1960 - 1995) and future (2020 - 2050) 

periods. We chose 1960 - 1995 as the reference period because in that period the lake was in 

good condition and had high water levels. As can be inferred from Figure 2-6, almost all the 
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GCM ensemble members predict an increase in monthly air temperatures in the Urmia basin 

compared to the reference period. An increase in the basin’s average monthly air temperatures 

was found for both 2050 scenarios: 1.95˚C for RCP 4.5 and 2.47˚C for RCP 8.5. A slightly 

lower increase is expected for the average annual temperature: 1.86˚C and 1.94˚C. 

Furthermore, a clear decreasing precipitation trend is projected to continue until 2050. The 

annual average precipitation in the basin is expected to decrease by 2.7% (RCP 4.5) and 11.6% 

(RCP 8.5) by 2050, relative to the reference period (1960 - 1995). The projected monthly 

precipitations show large seasonal variations. For RCP 4.5, the monthly precipitation ranges 

between -17.1% in August to 6.5% in December, while for RCP 8.5, all monthly precipitation 

are decreasing by up to -33.1% (September). In general, the decrease in precipitation rates is 

higher in spring and summer. However, it should be noted that the uncertainty analysis in 

Figure 2-6 indicates a spectrum of possibilities with respect to precipitation, including no 

change, increase, and a greater reduction than discussed above. 

 In addition to the temperature and precipitation trends, a 52% to 57% increase in the 

basin’s population is anticipated by 2050 relative to the year 2007 (WRMC 2007), further 

exacerbating the desiccation conditions if left unaddressed. 

2.4.2 Step 2: Salt water balance — the water required for restoration 

As discussed in section 2.3.2, the results of the lake’s salt balance in the period of shrinkage 

(1996 - 2010) suggest a considerable raise in the lake’s floor due to the salt precipitation on the 

lake bed at a rate of 4 cm yr-1 (Figure 2-7). Therefore, it can be concluded that the net inflow 

into the lake during the shrinkage was even smaller than the inflow value estimated here based 

only on the lake level-area-volume relationships. The precipitation of the salt on the lake bed 

is a result of the negative water balance and excess evaporation over the net inflow to the lake. 

As the lake’s volume decreases, supersaturation of the dissolved salts causes precipitation of 

excessive salts on the lake bed. 
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Figure 2-6: Overall monthly variations in the projected changes in precipitation and near-surface air 

temperatures across the Urmia basin, calculated by comparing the output of each GCM ensemble member 

for the reference (1960 - 1995) and future (2020 - 2050) period. The central mark in each box indicates the 

median, and the bottom and top edges of the box are the 25th and 75th percentiles, respectively. The outliers are 

shown as individual dots. 

It is generally accepted that Lake Urmia receives a comparatively small portion of its 

annual inflow from groundwater discharge. However, there is disagreement on the estimates 

of groundwater inflows, ranging from 3% (Hasemi 2011) to 49% (JICA 2016) of the total water 

input into the lake. The sub-surface inflow to the lake is mainly through the wetlands around 

the lake because the thick halite bed does not allow for water flow through the lake bed (JICA 

2016). According to the results of our model, the average annual sub-surface inflow calculated 

as the difference between the total inflow (from the water balance analysis) and the surface 

water inflow (from stream gauges) varies only between 12.8% and 15.3%, depending on the 

method used for the estimation of annual evaporation. This indicates that the lake’s water 

budget is mostly dependent on the surface inflow so that any future restoration plan should 

focus on increasing the amount of surface water flowing into the lake. 
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Figure 2-7: Precipitated/dissolved salt on the lake bed and average annual total inflow into Lake Urmia, 

including both surface and underground flows (1997 - 2009). The average salt precipitation rate on the lake 

bed during the desiccation period is 0.04 m yr-1. 

Figure 2-8, a shows the annual volume of surface water required for restoration of the 

lake by 2050 under the RCP 4.5 and RCP 8.5 scenarios for GCMs with the realization number 

of 1 (the other numbers are not shown for simplicity). These surface inflow requirements were 

estimated based on the bias-corrected evaporation and precipitation projected by the various 

GCMs. For each GCM, the uncertainty involved in the process of calibrating the hydrological 

balance over the lake’s area was represented by the corresponding error bar (minimum and 

maximum required surface inflow values calculated by Monte Carlo simulations). According 

to the mass balance results, the average surface inflow of 3.648 km3 yr-1 (standard deviation, 

SD = 0.271 km3) is required under RCP 4.5 and 3.692 km3 yr-1 (SD = 0.315 km3) under RCP 

8.5 for the complete 30-year lake restoration to the target level of 1274.1 m. Our predicted 

inflow is comparatively lower than that of JICA (2016) who estimated the annual river inflow 

volume of 4.95, 4.55, and 4.40 km3 yr-1 for ten, 20, and 50 years’ restoration scenarios, 

respectively. However, their model did not consider the projected climate variabilities to attain 

the target water level. Taking into account the annual sub-surface water gain of 12.8% in RCP 

4.5 and 15.3% in RCP 8.5 (Figure 2-7), our model shows that the total annual inflow required 

to restore the lake in 30 years is 4.183 km3 yr-1 and 4.358 km3 yr-1, respectively.  

To put these results in perspective, the total current annual surface inflow to the lake is 

2.13 km3 yr-1. Therefore, under the RCP 4.5 scenario, a 70.8% increase in the inflow would be 

needed to rehabilitate the lake fully in 30 years’ time; the equivalent increase for RCP 8.5 is 

73.2%. As the sub-surface water gain is limited, much of the required water would need to be 

supplied by the lake’s tributaries, with the water allocations shown in Figure 2-8, b and c (full 
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restoration). This sensitivity to the surface inflow, as well as the substantial technical, 

institutional, and behavioural barriers to reducing the upstream river withdrawals, make full 

restoration of the lake a grand challenge, particularly in the short term. Through a dynamic 

environmental inflow plan, Alborzi et al. (2018) predict that complete restoration of Lake 

Urmia under arid conditions may take up to 16 years even if a 40% decrease in the basin 

irrigation demand occurs. Therefore, partial restoration of the lake, similar to that implemented 

for the Aral Sea, could be a more promising approach to accelerate the rehabilitation process, 

as discussed next. 

 
Figure 2-8: a: Required annual surface inflow for restoration of the lake by 2050 under the RCP 4.5 and RCP 8.5 

scenarios, predicted by the GCMs for the realization number of one. b and c: Minimum, maximum, and mean of 

the estimated annual volume  of water required from each river supplying the lake (shown on the x-axis) for a ten-

year partial (southern half of the lake) and 30-year full restoration of the lake. 
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2.4.3 Steps 3 and 4: Water allocation and optimal land use for agriculture  

2.4.3.1 Short-term: recommended partial restoration 

Decreased evaporation as a result of reduced surface area of the lake and the required water 

volume suggest that the current river inflows would be sufficient for a partial restoration of the 

lake. However, it is not clear which part of the lake should be prioritised for partial restoration 

based on the current river inflows. 

Some options have been proposed previously for partial restoration, including: 1. 

conserving the southern shores by building a dike connecting four major islands in the southern 

part of the lake (Razia et al.) (hatched area in Figure 2-9);  and 2. dividing the lake into the 

northern and southern parts (Hamidi-Razi et al. 2018) (a two-lane highway embankment), and 

rehabilitating the southern part at the expense of the northern part. In addition to these, we also 

analysed direct transfer of water to the northern part as a third option. 

Since the wind dispersion of mineral aerosols from the dried lake bed is of major 

concern for environmental and human health (Gillette et al. 1997), here we prioritised the 

partial restoration option with the best potential for dust emission mitigation over other 

objectives, such as water quality, migratory birds, island separation, recreation, social, 

economic, and political, that can be fully, partially, or not at all achieved in partial restoration. 

To that end, we explored the main sources of PM10 through an intensity-frequency index 

analysis of remotely-sensed AOT between 2010 and 2016 (the period with the highest shoreline 

recession). As a result, nine highly wind-erodible salt playa sites were detected, with an 

approximate aggregate area of 1,745.9 km2 (Figure 2-9).  

Parametrizations of the vertical dust models were employed (see section 2.3.4.2) to 

evaluate the potential for wind erosion from the lake bed as a function of soil moisture, 

vegetation cover, and texture. For the whole lake bed, meteorological records and vertical dust 

flux estimates show the potential for the release of 36,391 t PM10 yr-1
, contingent on the 

moisture of the bordering salty playa falling below the threshold moisture content for dust 

emissions (~5%). Based on our simulations, soil stabilization management, including 

ploughing, grooving, and planting salinity-tolerant seedlings to restore at least 5% of vegetative 

cover, were found to mitigate only 24.6% of the fugitive dust emissions. However, in the 

alternative scenario that keeps the soil moisture of the identified dust sources at 15%, the PM10 

emissions would be reduced by 90.8%, to 3,342 t yr-1. The likelihood of salt-entrained dust 
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suspension can be reduced to almost zero by keeping the sediments moisture in the range of 

35% to 40%. 

 
 

Figure 2-9: Detected dust sources (coloured areas), their soil texture, and the proposed area for partial restoration. 

White areas represent the regions where no dust emissions are expected. The hatched area denotes the proposed area for 

restoration of four major islands. 

  

Restoration of the southern half of the lake could mitigate 77% of salt-rich dust 

emissions from the lake bed. Restoration of the northern part of the highway (see Figure 2-9) 

and areas below the main southern islands (hatched area in Figure 2-9) could prevent 22% and 

39% of the total average dust emissions per year, respectively. Thus, based on these results, 

restoration of the southern part of the lake should be given a higher priority. Diking would 

change the bathymetry, connectivity, and physics of the diked area, as well as the water and 

salt balances, and water level where the salinity tolerance is reached. Still, there is a challenge 

of defining a singular salinity and water level within the diked area. However, in case the 

ecological target level for the whole lake (1,274.1 m) is attained in this southern part of the 

lake, the re-flooded areas would cover more than 70% of the detected dust-source locations of 

the whole lake. The Aji river in the northern part is responsible for 68% of the lake’s annual 

dissolved salt entry (Table 2-2); therefore, the southern part receives a lower salt input. The 
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decrease in salt concentration would allow for a recovery of the industry of harvesting brine-

shrimp dormant eggs (or “cyst”). Under the RCP 4.5 and RCP 8.5 scenarios, our simulation 

shows that the respective annual water inputs of 1.83 and 1.86 km3 can restore the southern 

part of the lake to the target level in ten years (Figure 2-8, b and c, partial restoration). Note 

that 1.58 km3 of water is provided currently by the southern tributaries. The remaining volume 

of 0.32 km3 can be supplied by the proposed land use management, as discussed below. 

2.4.3.2 Long-term restoration: recommended land use change 

In the short-term, partial restoration can help to redress the saline dust dispersion issue; 

however, the question about a sustainable solution for restoration of the lake still remains 

unanswered. Irrigation accounts for 93% of water consumption in the lake’s basin, with an 

average irrigation efficiency of 37% for arable and 45% for horticultural lands (WRMC  2007). 

One pragmatic and viable intervention to reduce the withdrawals would be to improve the 

irrigation efficiency or cultivation of less water-intensive crops (Micklin 2007). It is unclear, 

however, how the current land use and crop distribution should be changed to use water more 

efficiently and achieve the required lake restoration target by 2050. 

Using the optimisation approach described in section 2.3.4, we determined the optimal 

land use and cropping patterns that maximise the farmers’ net income at the river-basin level, 

subject to land and water availability. We divided the irrigated area in the Urmia basin into six 

major zones, represented in Figure 2-10, with the suggested decrease in irrigated areas and 

change in cropping patterns in these sub-basins given in Figure 2-11. These results are based 

on the analysis of the effects of regional climate change (for RCP 4.5 and RCP 8.5), expansion 

of upstream irrigation reservoirs/networks, and population growth along the major tributaries 

of the lake, considering two plausible lake restoration options: intra-basin restoration (without 

any human-made water conveyance) and inter/trans-basin restoration (partly relying on water 

diversion from the Zab basin). 

In the case of intra-basin restoration, our results show that optimal water use over the 

basin requires the conversion of 95,600 ha (RCP 4.5) and 133,687 ha (RCP 8.5) of irrigated 

land for rain-fed cropland or grassland. Under RCP 4.5, the optimal reduction in horticultural 

lands (31%) is slightly higher than in the arable lands (28%). Likewise, under RCP 8.5, the 

optimal reduction in horticultural lands is 34% and in arable 30%. The annual water 

requirement for restoration of the lake by 2050 are 3,648 and 3,692 Mm3 yr-1 for RCP 4.5 and 

RCP 8.5, respectively. 
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For inter-basin restoration, a reduction of 78,700 ha and 114,826 ha in the total irrigated 

area is proposed under the RCP 4.5 and 8.5 scenarios. This is significantly reduced compared 

to the area currently used for cultivation in the lake’s basin, which is close to 438,900 ha (Figure 

2-12). The total inflow into the lake required for this restoration option is 3,048 and 3,092 Mm3 

yr-1 for the two respective scenarios.  

 For the optimal cropping pattern in the basin in both restoration options, ∼624 mm 

(RCP 4.5) and ∼681 mm (RCP 8.5) of water per year would satisfy the irrigation demand of 

the basin (at 60% irrigation efficiency); by comparison, 1,511 mm is used currently (WRMC  

2007). 

 
 

Figure 2-10: The Urmia basin and six major agricultural sub-basins considered in the study. 
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 At the end of the 30-year restoration process, assuming the current final price for the 

crops considered, we estimated under RCP 4.5 that the unit water productivity would be 0.278 

US$ m-3 for the inter-basin water transfer and 0.304 US$ m-3 for the intra-basin restoration. 

This represents a respective increase of 68% and 87% from the current water productivity of 

0.16 US$ m-3. Similar increases were found for the two restoration options under RCP 8.5: 

0.271 US$ m-3 and 0.296 US$ m-3, respectively.   

 
 

Figure 2-11: Proposed land use change in the Lake Urmia’s basin for the restoration of the lake by 2050. 

Each bar chart shows the proposed change in the current area under cultivation in the agricultural sub-basins 

(shown in Figure 2-10) considering 14 major crop categories. New cropping patterns refer to two options: intra-

basin restoration of the lake (a to f) and inter-basin restoration (g to l). Consideration was given to the role of the 

major stressors: rise in the basin’s temperature, increase in population/dry years, and completion of upstream 

reservoirs and irrigation networks. 
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Regarding the change in cropping patterns, the share of each crop group would remain 

generally the same as currently (Figure 2-12). However, the share of individual crops would 

change, favouring crops, which require less water (Figure 2-11). One such crop is pistachio so 

its proposed cultivation would increase in intra-basin restoration from the current 718 ha to 

4,415 ha (RCP 4.5) and 3,790 ha (RCP 8.5), mostly in areas downstream of the river basins. 

For inter-basin restoration, the pistachio cultivation would increase to 4,542 ha (RCP 4.5) and 

4,038 ha (RCP 8.5). This would also lead to a large increase in farmers’ revenue as pistachio 

has a high final (market) price. 

According to the crop yields and the area under cultivation in each year until 2050, our 

calculations showed that the final annual subsidy cost to cover the new irrigation water cost 

would be US$ 1.179 million (RCP 4.5) and US$ 1.287 million (RCP 8.5) for intra-basin 

restoration. For the inter-basin option, these values decrease to US$ 0.995 million (RCP 4.5) 

and US$ 1.105 million (RCP 8.5), respectively. Overall, winter wheat, barley, and maize need 

the highest average annual subsidy (9.17, 1.25, and 4.64 US$ ha-1). 

 
 

Figure 2-12: Proposed cropping pattern change in the Urmia basin (Cereals: wheat, barely, maize; industrial 

crops: sugar beet, oil seeds; vegetables: potato, tomato, cucumber, water melons, bean, sweet melon, onion, and 

other vegetables; fodder: clover, alfalfa, corn; orchards: apples, grapes, stone fruits, pistachio, and others). 
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 The proposed change in land use and cropping patterns would lead to a reduction in 

GHG emissions (Table 2). This is due to the reduction in the area of land used for cultivation 

of 21% (RCP 4.5) to 30% (RCP 8.5) for the intra-basin restoration option. As indicated in Table 

2, conversion of the irrigated croplands to rain-fed crops and to grasslands would reduce the 

cumulative GHG emission from 0.07 (0.05 - 0.09) Mt CO2 eq. to 1.55 (0.65 - 2.44) Mt CO2 

eq., depending on the type, amount, and speed of conversion. On average, changing from 

irrigated croplands to grasslands saves six times more GHG emissions than converting to rain-

fed cropland. As expected, the mitigated GHG emissions are higher over the ten-year 

restoration period than over 30 years.  

It should be noted that the GHG savings refer only to land use change (section 2.3.4.4) 

and do not include GHG emissions as a result of farming activities. It is also noteworthy that 

there is a general lack of data on GHG emissions related to alteration of cropping patterns 

within the irrigated croplands for a region with climatic parameters similar to the Urmia basin. 

For example, there are no data for the change in GHG emissions due to a change from wheat 

to sugar beet cultivation. Therefore, with the available data it was not possible to include GHG 

emissions in the optimisation model and hence the GHG emissions have been estimated at the 

optimum solution. However, in other saline lakes’ basins where detailed data on GHG 

emissions related to changing a crop pattern are available, the emissions can be included into 

the optimisation model.  

The aforementioned reductions in the total area under cultivation, especially, without 

water transfer from adjacent basins, would entail some behavioural and institutional challenges 

that can jeopardise the accomplishment of the land use strategies proposed in this study. This 

is particularly the case in the Urmia, Gedar, and Aji sub-basins due to the required large-scale 

land use reduction in the agricultural sector (up to 42%, 35%, and 33%, respectively). Indeed, 

these strategies go against the current tendency to increase crop production at the farm level 

and therefore their implementation may meet major opposition. Monetizing the activities 

involved in conversion of the irrigated lands to grasslands/rangelands or rain-fed systems is 

difficult with available data; however, investing in entrepreneurial initiatives to reduce the local 

livelihood dependency on agriculture and industrializing the economy of the Urmia basin 

would presumably ensure long-term profits. 
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Table 2-6: Reductions in GHG emissions as a result of the proposed land use change in the agricultural 

sector over ten- and 30-year periods. 

Restoration option/       

Scenario 
Period 

Cropland to rain-fed  

(Mt CO2 eq.) 

Cropland to grassland  

(Mt CO2 eq.) 

5th 

percentilea Median 
95th 

percentilea 

5th 

percentilea Median 
95th 

percentilea 

Intra-

basin 

RCP 4.5 
10 years 0.18 0.27 0.36 0.46 1.02 1.60 

30 years 0.06 0.09 0.12 0.47 1.11 1.74 

RCP 8.5 
10 years 0.38 0.38 0.50 0.64 1.40 2.37 

30 years 0.08 0.12 0.16 0.65 1.55 2.44 

Inter-

basin 

RCP 4.5 
10 years 0.15 0.22 0.29 0.37 0.88 1.39 

30 years 0.05 0.07 0.09 0.39 0.90 1.43 

RCP8.5 
10 years 0.22 0.33 0.43 0.55 1.29 2.02 

30 years 0.07 0.10 0.14 0.65 1.54 2.43 
a Calculated through Monte Carlo simulation. 

2.4.4 Method limitations and uncertainties 

In addition to the uncertainties in future climate projections, there are some other limitation to 

the methodologies used in the proposed framework. For instance, there may be some bias in 

the historical climatic data used as observations to remove the significant bias in the output of 

GCMs. Use of the data from meteorological stations, combined with more advanced bias-

correction methods (e.g. quantile-mapping (Gudmundsson 2016)) may mitigate this issue.  

 Another limitation is the reference period for calibration of the hydrological balance 

over the lake’s area. Here, the period from 1995 to 2010 was considered with yearly time 

resolutions, while longer periods with finer time resolutions (e.g. monthly) would improve the 

accuracy of the results.  

One of the sources of uncertainty in the estimations of the dust release from Lake Urmia 

bed is the data that we used for validation of the vertical dust parametrizations, which are not 

specific to this lake. Long-term experimental data on the response of the lake’s playa to wind 

erosion are rare and require further laboratory and field studies. Similarly, most of the data that 

we used as crop tuning parameters were the general crop parameters adopted from Allen et al. 

(2005). More detailed data from the cultivars in the Urmia basin would improve the simulations 

of the crop-yield response. 

Furthermore, the restored lake and its surrounding wetlands can act as carbon sinks. With 

the available data, quantifying their potential for carbon sequestration was not possible and was 

not considered in the study. This could be a subject of future work. 
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2.5 Conclusions 

A new eco-hydrological framework was proposed to pave the way for preservation and 

restoration of desiccating saline lakes in the face of projected climate change, with the aim of 

mitigating the catastrophic consequences of their shrinkage. The framework comprises a suit 

of models used to identify optimal solutions for lake restoration, including global circulation, 

salt-water, water allocation, and land use and economic optimisation models. Considering the 

effects of global warming under different climate change scenarios, the framework enables 

estimations of the amount of water required for either partial or full restoration of saline lakes 

based on the water availability in the lake’s tributaries. It also guides decision- and policy-

makers in formulating an optimal land use strategy in the lake’s basin with the aim of restoring 

the lake to recommended ecological levels up to 2050.  

 To illustrate its capabilities, the framework was applied in the context of a typical saline 

lake basin, in this case Lake Urmia. This lake used to be the second hyper-saline lake in the 

world and has faced a drastic water-level decline over the past two decades. The following 

conclusions can be drawn with respect to the restoration of Lake Urmia, based on the 

application of the proposed framework:  

• The outputs of the GCMs suggest an increase of ~2˚C in the average temperature in the 

basin by 2050 compared to the reference period (1960 - 1995). A decreasing precipitation 

trend is expected by 2050, although the uncertainty analysis suggest a spectrum of 

possibilities, from no change, to an increase to a greater decline in precipitation. 

• The mass and water balance model over the lake’s area between 1997 and 2010 (shrinkage 

period) shows the salt precipitation of 4 cm yr-1 on the lake bed. The subsurface flow in this 

period was limited, ranging between 12.8% and 15.4% of the total inflow to the lake of 

2,861.3 Mm3 yr-1. 

• The average surface inflow of water required for a complete 30-year lake restoration to the 

target level of 1274.1 m was estimated at 3,648 Mm3 yr-1for the RCP 4.5 scenario and 3,692 

Mm3 yr-1 for RCP 8.5. From a policy perspective, increase in population, maintaining equity 

among stakeholders, and various financial, behavioural, and institutional barriers impede 

attaining such surface inflows in the short-term. Instead, partial restoration of the lake by 

2030 might be a more feasible option. 

• If the soil moisture of the lake bed falls below 5%, there is a potential for the release of 

36,391 t yr-1 of saline PM10 from the lake bed. These emissions would reduce to 3,342 t yr-
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1 with the soil moisture increasing to 15%. Restoration of the southern half of the lake could 

mitigate 77% of salt-rich dust emissions from the lake bed, while restoration of the northern 

and areas below the main southern islands could prevent only 22% and 39% of the total 

average dust emissions per year, respectively. Accordingly, the restoration of the southern 

part of the lake is recommended in the short-term (2030) to control the expected PM10 

emissions from the lake bed. 

• An annual water input of 1.83 km3 (RCP 4.5) and 1.86 km3 (RCP 8.5) can restore the 

southern part of the lake to the target level of 1274.1 m in ten years; currently, 1.58 km3 of 

water is provided by the southern tributaries.  

• At present, the area under cultivation in the lake’s basin is close to 438,900 ha. In the case 

of restoration, including inter-basin water transfers, a reduction in the total irrigated area of 

78,700 ha is proposed under RCP 4.5 and 114,826 under RCP 8.5. The conversion of 95,600 

ha (RCP 4.5) and 133,687 ha (RCP 8.5) of irrigated lands to rain-fed cropland or grassland 

is suggested. 

• At the end of the 30-year restoration plan, the unit water productivity would be 0.278 US$ 

m-3 for restoration with inter-basin water transfer and 0.304 US$ m-3 for the intra-basin 

restoration scenario (RCP 4.5). The equivalent values for RCP 8.5 are 0.271 US$ m-3 and 

0.296 US$ m-3, respectively. 

• Conversion of the irrigated croplands to rain-fed systems and to grasslands proposed here is 

expected to reduce cumulative GHG emissions due to the land use change from 0.07 (0.05 

- 0.09) Mt CO2 eq. to 1.55 (0.65 - 2.44) Mt CO2 eq., depending on the type, amount, and 

speed of land conversion. 

As demonstrated in the paper, the proposed framework provides a comprehensive and 

powerful tool to aid decision- and policy-makers in identifying optimal solutions for restoring 

saline lakes at risk of desiccation. The framework is generic enough to be applicable to different 

regions, subject to data availability. It is recommended that future work explores its application 

to other saline lakes with the aim of demonstrating further its applicability and improving the 

methods. 
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Abstract 

Knowledge of spatio-temporal distribution and likelihood of (re)occurrence of salt affected 

soils is crucial to our understanding of land degradation and for planning effective remediation 

strategies in face of future climatic uncertainties. However, conventional methods used for 

tracking the variability of soil salinity/sodicity are extensively localised, making predictions on 

the global scale difficult. Here, we employ machine learning techniques and a comprehensive 

set of climatic, topographic, soil, and remote sensing data to develop models capable of making 

predictions of soil salinity (expressed as electrical conductivity of saturated soil extract) and 

sodicity (measured as soil exchangeable sodium percentage) at different longitudes, latitudes, 

soil depths, and time periods. Using these predictive models, we provide the first global-scale 

quantitative and gridded dataset characterising different spatio-temporal facets of soil salinity 

and sodicity variability over the past four decades at a ~1 km resolution. Analysis of this dataset 

reveals that a soil area of 11.73 Mkm2 located in non-frigid zones has been salt-affected with a 

frequency of reoccurrence in at least three-fourths of the years between 1980 and 2018, with 

0.16 Mkm2 of this area being croplands. Although the net changes in soil salinity/sodicity and 

the total area of salt-affected soils have been geographically highly variable, the continents 

with the highest salt-affected areas are Asia (particularly China, Kazakhstan, and Iran), Africa, 

and Australia. The proposed method can also be applied for quantifying the spatio-temporal 

variability of other dynamic soil properties, such as soil nutrients, organic carbon content, and 

pH. 

 

Keywords: Soil salinization; Soil salinity; Soil sodicity; Global scale modelling; Machine 

Learning; Global trends. 
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Significance Statement 

Land degradation due to soil salinization has detrimental impacts on vegetation, crops, and 

human livelihoods, leading to a need for a methodologically consistent analysis of the 

variability of different aspects of salt-affected soils. However, previous studies on the soil 

salinity issue have been primarily spatial and localised, leaving the large-scale spatio-temporal 

variations of soil salinity widely ignored. To address this gap, we present the first globally 

validated analysis quantifying the long-term variations (40 years) of the top soil salinity at high 

spatial resolutions using machine learning techniques. The results have significant implications 

for agro-ecological modelling, land assessment, crop growth simulation, and sustainable water 

management. 

3.1 Introduction 

Soil salinization is one of the main land-degrading threats influencing soil fertility, stability, 

and bio-diversity. Saline soils are the ones with excess accumulation of soluble salts in the root 

zone (Abrol et al. 1988). On the other hand, accumulation of high levels of sodium salt relative 

to other exchangeable cations is the main attribute of sodic soils (Bleam 2016). Wind, rainfall, 

and parent rock weathering are the main origins of these salts in “primary” soil salinization 

whereas in “secondary” soil salinization, excessive salt accumulation is human-induced 

(Rengasamy 2006). Saline and sodic soils, or in general salt-affected soils, mostly lie across 

arid and semi-arid climates where the dominance of evaporation over precipitation concentrates 

the salts in the root zone (Abrol et al. 1988; Ponnamperuma 1984), leading to undesirable 

alterations in the physical, chemical, and biological functions of the soil (Metternicht 2016; 

Daliakopoulos et al. 2016). Sodicity adversely influences the soil infiltration capacity (Wong 

et al. 2010), increases the susceptibility of water and wind-blown erosion (De la Paix et al. 

2013), and exposes more soil organic matter to decomposing processes (Singh 2016). Soil 

salinity, on the other side, distresses the soil respiration, nitrogen cycle, and decomposing 

functionality of soil microorganisms (Singh 2016; Rath et al. 2015). Salinity stress affects the 

vegetation growth directly by reducing the plant water uptake (osmotic stress) and/or by 

deteriorating the transpiring leaves (specific ion effects) (Parihar et al. 2015), in turn reducing 

organic input to the soil and ultimately leading to desertification of lands (Sentis 1996; Perri et 

al. 2020). Under extreme conditions, dispersion of saline dust (De la Paix et al. 2013; Hassani 

et al. 2020), poverty, migration, and high costs of soil reclamation are long-term socio-

economic consequences of soil salinization (Zaman et al. 2018). 
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Soil salinity and sodicity levels are spatially, vertically, and temporally dynamic 

(Zaman et al. 2018; Mulder et al. 2011), particularly at the top 0 - 30 cm soil layer which is 

substantially affected by governing climatic conditions. Naturally-occurring events, such as 

flash floods, El Niño and La Niña, alternative wet and dry years, and long periods of droughts 

can considerably affect soil salinization and accumulation/leaching of the salts in/from the root 

zone at daily to multi-year temporal resolutions. Similarly, anthropogenic activities like 

irrigation and dryland management can affect soil salinization at different temporal resolutions. 

Given the high dynamism in soil salinization processes, updated spatial and temporal 

information on the extent of salt-affected soils is indispensable for devising appropriate 

sustainable action programmes for managing land and soil resources (Daliakopoulos et al. 

2016; Ivushkin et al. 2019; Oldeman et al. 2017; Fao/Iiasa/Isric/Isscas/Jrc 2012). This 

information can be also valuable for enhancing our understanding of terrestrial carbon 

dynamics (Wong et al. 2010; Setia et al. 2013), food security and agricultural modelling 

(Butcher et al. 2016; Shani et al. 2007), climate change impacts (Várallyay 1994; Suweis et al. 

2010), water resources and irrigation management (Fan et al. 2012; Mateo-Sagasta et al. 2011), 

and efficiency of organic/inorganic reclamation practices (Amini et al. 2016; Mau et al. 2016). 

Several statistics on the global distribution of salt-affected soils (Ivushkin et al. 2019; Oldeman 

et al. 2017; Fao/Iiasa/Isric/Isscas/Jrc 2012; Szabolcs 1989; Squires et al. 2011; Ghassemi et al. 

1995; FAO 2000; Schofield et al. 2003) have been generated based on data from soil surveys 

and statistical extrapolation (Abrol et al. 1988; Fao/Iiasa/Isric/Isscas/Jrc 2012); yet these 

estimations are mainly purely spatial (Ivushkin et al. 2019; Hengl et al. 2017a), not necessarily 

up-to-date (Ivushkin et al. 2019; Zaman et al. 2018), and in some cases incomparable 

(Montanarella et al. 2015; Rengasamy 2006). Therefore, there is still a need for a 

methodologically consistent dataset documenting long-term variations of the soil salinity and 

sodicity at high spatial resolutions (FAO Soils Portal 2020). 

To address this need, we focused on two target variables: ground-derived measurements 

of soil ECe (the ability of a water-saturated soil paste extract to conduct electrical current: 

representative of salinity severity) and ESP (exchangeable sodium percentage: representative 

of sodicity severity). We used 42,984 and 197,988 data, respectively, scattered over time from 

1980 - 2018. We trained two-part predictive models for making 4-D predictions of soil salinity 

and sodicity as target variables (longitude, latitude, soil depth, and time; see Methods). Through 

mapping data-driven relations between soil ECe/ESP observations and a collection of 

associated predictors generated from topographic, climatic, vegetative, soil, and landscape 
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properties of the sampling locations (Appendix 2, Table A2-1), these two-part models enabled 

us to make long-term gridded predictions of soil salinity and sodicity at new locations with 

available predictors’ values. Note that “prediction” refers to the estimation by the trained 

models of soil salinity/sodicity on a global scale from 1980 to 2018 even in locations where 

there is no measurement available rather than to future projection of soil salinity/sodicity on 

the basis of current trends. The first part of the models classified the soil into saline/sodic and 

non-saline/non-sodic classes (binary classification) and the second part predicted per-class 

severity of the salinity/sodicity issue (regression). Meaningful statistics derived from the ECe 

and ESP predictions were then used to generate univariate thematic maps of the variability of 

different aspects of soil salinity/sodicity between 1980 and 2018 at ~1 km spatial resolution 

(30 arc-seconds; e.g. Figure 3-1). These were delimited to -55° and 55° latitudes, comprising 

tropics, subtropics, and temperate zones (see the Data Availability statement). We focused on 

the top soil layer (or surface soil) referring to the top 30 cm of the soil profile measured from 

the surface.  

 

Figure 3-1: Variability of different aspects of soil salinity and sodicity in western USA. a and d: Standard 

deviation (SD) of annually predicted soil salinity (ECe) and sodicity (ESP), respectively, between 1980 and 2018. 

b and e: Average of annually predicted ECe and ESP, respectively (1980 - 2018). c and f: Change in the likelihood 
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(θ) of soils with an ECe ≥ 4 dS m-1 or ESP ≥ 6% in the period 2000 - 2018 relative to 1981 - 1999 (the likelihood 

is dimensionelss, calculated by dividing the number of years with ECe ≥ 4 dS m-1 or ESP ≥ 6% by the total number 

of years in the studied period). Positive θ indicates that the likelihood has increased and negative shows that it has 

decreased. 

3.2 Validation of the predictive models 

Appendix 2, Figure A2-1 (a to d) and Appendix 2, Table A2-2 illustrate the performance of the 

two-part fitted models in prediction of target variables. During the training of the classifier, 

any soil with ECe ≥ 2 dS m-1 and ESP ≥ 1% was labelled as saline and sodic class, respectively. 

The overall accuracy for the saline/non-saline soil classifier evaluated by 10-fold cross 

validation (10-CV) was 89.65% (88.33% - 88.87%) and for the sodic/non-sodic soil classifier, 

it was 85.59% (85.05% - 85.24%); the values in parenthesises show the lower and upper bounds 

for 95% confidence intervals. The average per-class User’s Accuracies (probability that 

predictions represent reality) for the salinity classifier was 88.3% and for the sodicity classifier 

85.5%. The prediction errors evaluated by 10-CV normalised root-mean-square (normalised 

by range) was 8.82% (9.02% - 9.17%) for the regression model fitted to observations in the 

saline class and 6.94% (7.09% - 7.20%) for the regression model fitted to the sodic class.  

To further evaluate the performance of our models, we compared our predicted soil 

surface ECe/ESP with the corresponding ECe/ESP outcomes of the often-cited global dataset 

of soil salinity/sodicity: Harmonised World Soil Database (Fao/Iiasa/Isric/Isscas/Jrc 2012) 

(HWSD; Appendix 2, Figure A2-1, e and f). To do so, we evaluated the outputs of our 

predictive models and HWSD surface estimations of ECe and ESP against the available 

measured surface values of ECe and ESP. Any available ECe or ESP measurement from 1980 

with zero upper sample’s depth and a maximum lower sample’s depth equal to 30 cm was used 

in this analysis. The coefficient of determination (R2) between the predictions of our two-part 

model and 9,293 measured surface values of ECe was 0.83, while for HWSD it was 0.12. 

Likewise, R2 between 30,491 surface measurements of the ESP and our predictions was 0.86, 

while it was 0.26 for HWSD.  

Moreover, we investigated the relationship between the catchment-level average of soil 

salinity estimations for three continents of Australia, Africa, and North America predicted by 

our trained models and the Dryness Index (the ratio of long-term potential evapotranspiration 

to rainfall) with the results presented in Appendix 2, Figure A2-2. This figure shows higher 

predicted salinities in drier climates (locations with higher Dryness Index) where excessive 

evapotranspiration leads to accumulation of the soluble salts in the soil root zone. The trend 
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observed in Appendix 2, Figure A2-2 is in agreement with the physically-based modelling 

results reported in Porporato et al. (2015) for estimation of primary soil salinity in the soil root 

zone as a function of the Dryness Index. Appendix 2, Figure A2-2 provides additional 

verification of the validity our model predictions.   

3.3 Importance of predictors 

The importance of each predictor in the models developed in this study as well as how the 

predicted target variables depend partially on these predictors were investigated, which 

provided some mechanistic insights on possible influential parameters involved in soil 

salinization processes (Appendix 2, Figure A2-3; Appendix 2, Table A2-5). In general, soil 

classification, depth, Fraction of Absorbed Photo-synthetically Active Radiation (FAPAR) as 

a vegetation cover indicator, and temperature of different soil layers were the predictors highly 

correlated with target variables. Among 43 predictors, the most important predictors in 

estimation of ECe values were FAPAR (10%), lower sample’s depth (6.69%), soil’s layer four 

(indicating the layer of soil lying between 100 - 289 cm below the surface) temperature 

(5.93%), soil clay content (5.68%), and the World Reference Base (WRB) soil classes (5.63%). 

From various WRB soil classes, the predicted salinity of Haplic Kastanozems and Haplic 

Leptosols was the highest. On the other hand, for prediction of ESP, the most significant 

predictors were WRB soil classes (15.96%), lower sample’s depth (8.27%), upper sample’s 

depth (7.18%), FAPAR (3.43%), and soil’s layer three (indicating the layer of soil lying 

between 28 - 100 cm below the surface)  temperature (2.69%). Also, Gleyic Podzols and Haplic 

Podzols showed the highest levels of predicted sodicity among the WRB soil classes. Our 

results suggest that FAPAR can be a better index for mapping soil salinity than Normalised 

Difference Vegetation Index (NDVI), which has been conventionally used as an indirect 

remote sensing indicator of soil salinity (Allbed et al. 2013; Daliakopoulos et al. 2016). Partial 

Dependency Plots (Appendix 2, Figure A2-3) show how the main individual parameters 

involved in soil salinization processes, e.g. climate, soil temperature, water table depth, and 

vegetation will affect the estimated values of the soil salinity/salinity, by marginalizing over 

the other predictors. These make the results suitable for evaluation of the risk of soil salinization 

in response to future change in key drivers of soil salinity, such as future climates and land 

cover. 
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3.4 Variability of soil salinity/sodicity 

Traditionally, threshold values of ECe and ESP have been used as primary indicators for 

distinguishing saline, sodic, and saline-sodic soils (showing properties of both saline and sodic 

soils) (Rengasamy 2006; Burt 2011). However, depending on the soil classification system, 

threshold values can be 4 (Abrol et al. 1988; Richards 1954), 15 (Gupta et al. 2008) 

(Solonchaks), or even 30 (Soil Survey Staff 2010) (salic) dS m-1 for ECe and 6% (Northcote et 

al. 1972; Isbell 2016) or 15% (Richards 1954; Gupta et al. 2008; Soil Survey Staff 2010) 

(Solonetz or natric) for ESP. In addition, the distinguishing characteristics of saline and sodic 

soils are not limited only to the values of ECe and ESP and other soil physio-chemical 

properties, such as pH, salt contents, SAR (Sodium Absorption Ratio), and permeability, 

should be taken into consideration (Abrol et al. 1988; Szabolcs 1989). For example, the Soil 

Science Society of America (SSSA) (Soil Science Glossary Terms Committee 2008) defines 

sodic soils as non-saline soils with enough concentrations of exchangeable sodium that can 

adversely affect crop productivity with a saturation extract SAR ≥ 13, rather than adopting any 

ESP threshold. Therefore, in the present study, we quantified variability in areas affected by 

salinity and sodicity by focusing only on soils’ ECe and ESP. An ECe equal to 4 dS m-1 and an 

ESP equal to 6% were considered the critical thresholds, corresponding to the lower agronomic 

limits tolerable by crops (Fao/Iiasa/Isric/Isscas/Jrc 2012). Note that (re)occurrence of a soil 

with high salinity in a year means the salinity of that soil in that particular year is ≥ 4 dS m-1. 

Similarly, (re)occurrence of a soil with high sodicity means the ESP of that soil in that 

particular year is ≥ 6%. Additionally, we assumed soils at a particular location are salt-affected 

if the annual predicted ECe of that location is ≥ 4 dS m-1 and/or its predicted ESP is ≥ 6% in at 

least 75% of the years between 1980 and 2018. It should also be noted that all the statistics on 

salt-affected soils provided here were computed for the world’s non-frigid zones, located in the 

latitudes between -55° and 55°. 

Based on the calculated likelihood of annual reoccurrence of salt-affected soils (Figure 

3-2 and Appendix 2, Figure A2-8 to Figure A2-12; ranges between zero and one), we estimated 

that an area of 5.9 Mkm2 had an ECe ≥ 4 dS m-1 in at least three-fourths of the 1980 - 2018 

period. Assuming 2 dS m-1 as the lower tolerable limit of salinity, this area increases to 7.62 

Mkm2. During that period, however, an area of 9.18 Mkm2 had an ESP ≥ 6% in at least three-

fourths of the years; this area would reduce drastically to 0.13 Mkm2 if the threshold value for 

sodicity were fixed at 15%. Globally, the likelihood of reoccurrence of soils with ECe ≥ 4 dS 

m-1 in the 2000 to 2018 period was 0.94 of the 1981 to 1999 period (Appendix 2, Figure A2-
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4). This value was 0.97 for the soils with ESP ≥ 6%. In total, we estimate that an area of 11.737 

Mkm2 was salt-affected in the 1980 - 2018 period. Note that this is ~25% higher than the often-

cited approximation of Szabolcs (1989) and 41% greater than the FAO’s estimation in 2000 

(Martinez-Beltran 2005). 

 

Figure 3-2: Global distribution of salt-affected soils (excluding the frigid zones). a and e: Likelihood of the 

surface soils with an ECe ≥ 4 dS m-1 and ESP ≥ 6% between 1980 and 2018, respectively (the likelihood is 

dimensionelss, calculated by dividing the number of years with ECe ≥ 4 dS m-1 or ESP ≥ 6% by the total number 

of studied years). The panels on the right (d and h) and below (c and g) the maps show the total area of soils with 

an annual predicted ECe ≥ 4 dS m-1 and ESP ≥ 6%, respectively, in at least 75% of the period between 1980 and 

2018 for different longitudes and latitudes at 30 arc-second resolution (~1 km). b and f: Total area of the soils 

with an annual predicted ECe ≥ 4 dS m-1 and ESP ≥ 6%, respectively, in at least 75% of the 1980 - 2018 period at 

the continental level. 

 At the continental level, Asia (including the Middle East) had the largest area of salt-

affected soils with 7.14 Mkm2, followed by Africa with 2.292 Mkm2, Australia and Oceania 
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with 1.313 Mkm2, South America with 0.527 Mkm2, North America with 0.422 Mkm2, and 

Europe with 0.024 Mkm2. In terms of the area of salt-affected lands, the top ranking countries 

were China with 211.74 Mha, Australia with 131.40 Mha, Kazakhstan with 93.31 Mha, and 

Iran with 88.33 Mha (Appendix 2, Table A2-3). 

 Our analysis showed that globally 16.49 Mha of the salt-affected lands were located on 

croplands over the 1980 - 2018 period. This represents 0.88% of the global cultivated area in 

2015, according to the GFSAD30CE V001 dataset (https://croplands.org/home). Cropland was 

considered here as any stretch of the land with at least 60% cultivated area from 1993 to 2018 

and no distinction was made between irrigated and non-irrigated croplands. Our estimated 

value was 31.3% to 62.7% (7.52 to 28.25 Mha) lower than in the previous assessments (Sandra 

1989; Ghassemi et al. 1995), although those focused on the world’s irrigated lands. A large 

majority (536.1 Mha) of the salt-affected areas were located in barren areas (Appendix 2, Table 

A2-4). The next most salt-affected land cover types were open shrublands (144.12 Mha; 

dominated by woody perennials 1 - 2 m height, 10 - 60% cover) and grasslands (77.37 Mha). 

At 10.16 Mha, evergreen broadleaf forests had the largest salt-affected area among different 

forested land cover types. At the biome level, 928.23 Mha of the salt-affected lands were in 

deserts and xeric shrublands, followed by montane grasslands and shrublands (86.45 Mha). 

With respect to climatic conditions, 92% of the salt-affected areas were located in the regions 

with arid climate and 4.72% in polar tundra. The latter are mostly located in northwest China 

and north of Himalaya and have high levels of the sodicity. 

Only South America with ~9,466 km2 yr-1 had a statically significant increasing trend 

in the total area of soils with ECe ≥ 4 dS m-1 (p < 0.05; Figure 3-3 and Appendix 2, Table A2-

20). However, all continents with a statistically significant trend in the area of soils with ESP 

≥ 6% showed an increasing trend; the highest rate of increase was found for Asia with ~5,616 

km2 yr-1 (p < 0.05; Appendix 2, Table A2-21). Although the strong regional variations are 

obscured by continental summaries, the overall observed trends and fluctuations may be related 

to the complex coupling between the surface soil salinity and multi-year climatic patterns or 

extreme environmental events. For instance, the substantial fluctuations of the salt-affected 

areas in Australia over relatively short time periods from 1998 to 2015 may be associated with 

continent-wide variations of the hydrology between dry and wet periods as a result of the El 

Niño-Southern Oscillation Cycle (Van Dijk et al. 2013) (Figure 3-3, c and i). Particularly in 

arid and semi-arid regions, the fluctuations in salinity levels can be confirmed by the stochastic 

salinization model of Suweis et al. (2010). Assuming constant soil and vegetation properties 

https://croplands.org/home
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they concluded, for instance, that the probability of having a soil with root zone salinity > 4 dS 

m-1 with the rainfall frequency of 0.15 d-1 was approximately four times higher than the rainfall 

frequency of 0.2 d-1 (with mean rainfall depth of 1.79 cm). 

 

Figure 3-3: Variations in the total area of salt-affected soils between 1980 and 2018 at the continental level. 

a to f: Variations in the total area of soils with salinity of ECe ≥ 4 dS m-1. g to l: Variations in the total area of soils 

with sodicity of ESP ≥ 6%. Red lines show the low-pass filtered (five-year running window) variation of the 

annual salt-affected areas. Mean values indicate the total area of salt-affected land on each continent averaged 

from 1980 to 2018. 
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Figure 3-4: Variations in the soil cell-level salinity/sodicity and country-level area of the salt-affected soils 

(p < 0.05). a and d: Cell-level variations in ECe and ESP between 1980 and 2018, respectively. Soil cell is any ~1 

× 1 km stretch of the soil. Maps are delimited to -55 and 55 latitudes and higher latitudes are shown only for 

improving the visualization of the maps. b and c: Variations in the total area of soils with salinity of ECe ≥ 4 dS 

m-1 since 1980, at the country level. e and f: Variations in the total area of soils with sodicity of ESP ≥ 6% since 

1980, at the country level (see Appendix 2, Table A2-22 and Appendix 2, Table A2-23 for annual gain or loss in 

the total area of salt-affected soils for all countries/states). Countries are sorted based on the mean annual area of 

soils with an ECe ≥ 4 dS m-1 or ESP ≥ 6% between 1980 and 2018, largest to smallest. 

The trends in the total area of soils with ECe ≥ 4 dS m-1 were statistically meaningful 

(p < 0.05) for only 117 out of 256 countries/states (Figure 3-4), among which the following 

had the highest rate of annual increase: Brazil (~5,637 km2 yr-1), Peru (~2,308 km2 yr-1), Sudan 

(~2,294 km2 yr-1), Colombia (~2,007 km2 yr-1), and Namibia ~1,483 km2 yr-1). For sodicity 

(ESP ≥ 6%), the number of countries/states with a statistically significant trend of variation in 

the total area reduces to 70, with the highest values since 1980 estimated for Iran (~3,499 km2 
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yr-1), Saudi Arabia (~2,256 km2 yr-1), Argentina (~2,012 km2 yr-1), Afghanistan (~1,483 km2 

yr-1), and the USA (~1,316 km2 yr-1). 

 In summary, the dataset, models, and analyses presented here quantified the global 

long-term variations of top soil ECe and ESP as respective indicators of soil salinity and 

sodicity at a high spatial detail, given the limited availability of spatio-temporal data on soil 

salinity and sodicity. The proposed 4-D modelling approach for predicting soil ECe and ESP 

provides new insights into the most influential environmental factors involved in soil 

salinization processes. Our findings indicate that the total area of salt-affected soils has been 

temporally and geographically highly variable in the studied period (1980 - 2018), showing 

both decreasing and increasing trends at the national to continental scales. This sheds new light 

on this topic, given that the general agreement in the literature is that the salt-affected areas are 

expanding (Ivushkin et al. 2019; Rozema et al. 2008). These data and the estimated statistics 

on salt-affected areas can support decision-making under current and future climate scenarios 

(Hengl et al. 2017a) and direct national and international land-reclamation efforts (Oldeman et 

al. 2017). Baseline estimates of the soil salinity and sodicity can also inform large-scale crop 

and agro-ecological models aimed at determining the impact of land degradation and climate 

change on the food production security (Folberth et al. 2016). These data can also be valuable 

for soil classification studies (Burt 2011) and development of a more robust response to climate 

change in soil salinization hotspots. Ultimately, existing models of terrestrial carbon cycling 

should benefit from the detailed data of soil salinity change (Wong et al. 2010) provided 

through this work. 

3.5 Limitations of the models and recommendations for further research 

From the map producers’ standpoint, the reliability of the estimated soil surface ECe and ESP 

might differ at the continent level and this can be attributed to an uneven spatial distribution of 

the input soil profiles data used for training the model (Appendix 2, Figure A2-5). Spatial 

heterogeneity of the soil profile/sample data is a major limitation and source of uncertainty in 

all Digital Soil Mapping techniques (Fao/Iiasa/Isric/Isscas/Jrc 2012; McBratney et al. 2003; 

Omuto et al. 2013). Spatial clustering of the training soil profile data is also reported as a major 

limitation by Ivushkin et al. (2019) and Hengl et al. (2017b) who have used Machine Learning 

(ML) algorithms for digital soil mapping. The majority of soil profiles are sampled from 

agricultural lands and areas, such as mountain tops, steep slopes, deserts, sand dunes, and dense 

tropical forests are considerably under sampled.  
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In the present study, to quantify how the spatial heterogeneity in the original training 

sets introduces biases in our analysis, we evaluated the performance of our model at the 

continental level. Comparisons between the measured surface values of soil ECe and ESP and 

the values predicted by the two-part models developed in this study as well as the values 

presented by Harmonised World Soil Database (Fao/Iiasa/Isric/Isscas/Jrc 2012) are can be 

found in Appendix 2, Figure A2-21 and Appendix 2, Figure A2-22, at the continental level. 

Coefficients of determination between the measured values and predictions are provided for 

each region. As expected, predictions made for locations with a higher number of samples in 

the training set show higher accuracy suggesting that the reliability of the predictions made by 

our models is geographically variable. A large proportion of ECe observations are from North 

America and Australia (> 90%), making them the most reliable zones of predictions. On the 

contrary, less than 1% of the ESP observations in the training datasets come from Australia, 

resulting in higher uncertainty in ESP predictions for Australia. Our investigation highlights 

the need for training datasets with more optimised spread patterns from unrepresented 

geographical locations. In addition, for the classification part of each predicted target variable, 

we produced 39-year mean of pixel-level scaled Shannon Entropy Index (Hs) (Shannon 1949) 

to identify the certainty of the classifier in binary prediction of classes (see Appendix 2, “Trend 

analysis” for calculation of Hs). The spatial distribution of Hs is shown in Appendix 2, Figure 

A2-23. Hs shows the certainty in model predictions; values close to zero indicate that the 

classifier is more certain about the results of binary classification while values close to one 

show higher uncertainty. Appendix 2, Figure A2-23 demonstrates that generally the salinity 

classifier is more certain about the predictions, compared to the sodicity classifier. 

In addition to the challenges associated with the spatial heterogeneity in the original 

training sets discussed above, other limitations that could be addressed in future research 

include: 

 The input data are not uniformly scattered through the time-domain: for ECe, they are 

mostly gathered between 2000 and 2005, while the majority of ESP samples are related to 

the 1990s (Appendix 2, Figure A2-18). 

 Despite recent progress in harmonization of the legacy soil profile data, the accuracy and 

methodology used by different laboratories for gathering and analysing soil samples has 

not been consistent. This may influence the results of the predictive models (Hengl et al. 

2017a).  
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 Evaluating the propagation of uncertainty over the target variables introduced by each of 

the 43 predictors was not feasible due to the high computational load of ML algorithms. 

For the similar reason, we were not able to generate spatially explicit maps of the 

uncertainty for the predicted target variables and we could only estimate the global 

uncertainty using 10-fold cross validation.    

 It was challenging to quantify the error propagation from the first part of the predictive 

models (classification) to the second part (regression). 

 In this study, we predicted the variations of soil salinity and sodicity at a yearly time 

resolution, while lower temporal resolutions might be required in some cases. A flash flood 

or heavy rainfall event, for example, can alter the salinity/sodicity levels of a region within 

weeks or even days and the two-part models developed here cannot capture salinity/sodicity 

variations at those temporal resolutions.  

 The spatial resolution of the generated maps (~1 km) is not suitable for farm-scale and local 

studies, so long-term mapping of soil salinity and sodicity at those resolutions remains an 

open research question. 

 Although a fair portion of the available measured data were sampled before 1980, the 

collection of predictors used in the present study did not allow us to generate maps of ECe 

and ESP before 1980s. In particular, remotely-sensed predictors are not available or 

accessible before 1980s, which makes it challenging to develop the salinity/sodicity map 

before 1980. 

 Similar to the 1980 - 2018 time period, the developed methodology opens a possibility for 

projection of the soil salinity/sodicity, for example by the end of the 21st century, based on 

the current trends in soil salinization processes. For future projections, however, both the 

historical and projected values of the predictors are needed while not all of the 43 predictors 

used in the current analysis had projected values for the future. 

3.6 Methods 

Numerical methods have been used to provide the detailed predictions of soil salinization 

dynamics, mostly based on the solutions of Richard’s equation for water movement in soil 

unsaturated zone and convection-dispersion equations of solute transport, such as Saito et al. 

(2006) or Feddes et al. (1988). However, the application of these models remains constrained 

to localised and short-term simulations as numerical investigation of the interactions between 

water movement and solute transport in the root zone requires detailed knowledge of many 
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parameters related to soil, climate, and vegetation (Suweis et al. 2010; Li et al. 2015) which 

are not available on a global scale. Another option for modelling long-term soil salinity is 

application of salt-balance equations as, for example, in the stochastic model of soil salinity 

proposed by Suweis et al. (2010) which takes a minimalistic approach to modelling the soil-

plant-atmosphere interactions (Porporato et al. 2004). This approach requires long-term 

measurement of the root zone salt concentration for tuning the calibration parameters but such 

data are not available at large scales and in many places around the world. Moreover, although 

these vertically averaged salt balance models can provide mechanistic insights into the soil 

salinity response to fluctuations in key hydro-climatic drivers of soil salinity, they do not 

include information about the soil salinity originated from the parent material from which soil 

is formed. 

Therefore, in the present investigation, we used the Digital Soil Mapping framework 

(Jenny 1994; McBratney et al. 2003) to characterise the spatio-temporal variability in soil 

salinity. In that framework, the soil characteristics are governed by soil-forming factors, 

including climate, organisms, relief, parent material, and time. If the relationship between soil 

profile characteristics (ECe or ESP in this case), soil-forming factors and their distribution is 

known, the soil profile characteristics can be inferred/predicted depending on the distribution 

of the soil-forming factors (Hengl et al. 2017b).  

Superior predictive performance of ML algorithms in characterising the relation 

between the soil profile characteristics and soil-forming factors has been demonstrated in 

recent studies (Hengl et al. 2017a; Padarian et al. 2020; Heung et al. 2016; Hengl et al. 2015). 

The procedure for estimation of soil salinity/sodicity involves (1) collection of measured soil 

salinity and sodicity data for training the model, (2) compiling and processing the predictors 

(covariates) and linking them to the measured soil salinity and sodicity, (3) mapping a 

relationship between measured soil profiles data and predictors through building supervised 

ML models, followed by the validation of the trained models, and (4) deployment of the trained 

models to predict the spatio-temporal variation of the soil ECe and ESP at the global scale over 

the four-decade period considered in the study. 

3.6.1 Data 

The latest standardised soil dataset from WoSIS (World Soil Information Service) (Batjes et 

al. 2017) was used to obtain ECe (dS m-1) at the global scale and to train the models. For 

consistency, the electrical conductivity of other soil-to-water extract ratios (1:1, 1:2, 1:5, and 
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1:10) was ignored. This dataset contains 19,434 geo-referenced profile records. Depending on 

the number and depth of sampling, individual profiles may include information for one or more 

soil layers. Among 73,517 samples, the ECe values of only 43,602 (11,303 profiles) samples 

were measured after January of 1980, the time after which the predictors required in our 

analysis were available; thus the rest of data points (29,915) were disregarded.  

We complied the soil profiles data on soil exchangeable Na+ (cmol kg-1) and cation 

exchange capacity (CEC, cmol kg-1) from the National Cooperative Soil Survey 

Characterization Database (NCSS, https://ncsslabdatamart.sc.egov.usda.gov/), Africa Soil 

Profiles Database (AfSP, ver. 1.2) (Leenaars et al. 2014), and ISIRC-WISE Harmonised Global 

Soil Profile Dataset (WISE, ver. 3.1) (Batjes 2008) and divided the exchangeable Na+ by CEC 

to calculate ESP as the proposed criterion for evaluating the sodicity levels in soil samples 

(Burt 2011). Similar to ECe, the values of ESP recorded before 1980 were excluded. This 

provided us with ESP values of 207,048 soil layers (36,578 profiles in total), which were used 

to train the models. The spatial distribution of the ECe and ESP data used in training and 

validation of our models are illustrated in Appendix 2, Figure A2-5.  

3.6.2 Predictors 

We selected the predictors based on the relevance to soil salinization processes as follows: 

surface evaporation, plant transpiration, fertilisers, poor drainage, and a rising water-table 

depth (Zaman et al. 2018; Jambhekar et al. 2015; Shokri‐Kuehni et al. 2020). In addition, the 

interactions of five main factors influencing soil formation processes, comprising climate, 

topography, living organisms, parent material, and hydrologic dynamics, were considered 

(Jenny 1994; Batjes et al. 2017). Based on these factors, 43 environmental predictors stacked 

from terrain's elevation data, climate datasets, atmospheric reanalysis, satellite-based remote 

sensing products, soil and lithological maps, and output of hydrological models were linked to 

the soil profiles data to develop predictive models of soil salinity/sodicity (Appendix 2, Table 

A2-1).  

In a broad sense, the employed predictors could be categorised into two major groups: 

static (purely spatial) and dynamic (spatio-temporal). Static predictors were mainly soil texture, 

and topographic properties that were assumed to remain approximately constant in the period 

of the analysis (1980 - 2018). Soil texture data including clay, silt, and sand content (weight 

%) were collected from ISRIC global gridded soil information at 250 m spatial resolutions at 

five soil depths: 0, 15, 30, 60, and 100 cm (Hengl et al. 2017a). For each soil texture parameter, 

https://ncsslabdatamart.sc.egov.usda.gov/
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we generated the averages over the mentioned standard depths using trapezoidal rule (Hengl et 

al. 2017a). Topographic predictors comprised elevation (m), aspect (degrees), slope (degrees), 

plan and profile curvatures (calculated by a 10-parameter 3rd order polynomial method 

(Haralick 1983)), slope length (m), and Terrain Ruggedness Index (TRI) with a square cell 

radius of three. They were all derived from the SRTM Digital Elevation Database v4.1 

(resampled to 250 m resolution) (Jarvis et al. 2008) and computed in the SAGA GIS Terrain 

Analysis-Hydrology and Morphometry libraries (except elevation and aspect) (Conrad et al. 

2015). Other static predictors were: sample upper and lower depths from the surface (cm), soil 

classes based on the World Reference Base (WRB) (Hengl et al. 2017a) soil classification 

system, groundwater table depth at equilibrium (m) (Fan et al. 2013), the average of annual 

fertiliser input rate (1980 - 2018) for C3 annual and perennial crops (kg nitrogen ha-1 y-1 of 

crop season; for definition of C3 crops see Appendix 2, Table A2-1) (Hurtt et al. 2016), plant 

rooting depth (m) (Schenk et al. 2009), average soil and sedimentary thickness (m) (Pelletier 

et al. 2016), Topographic Index (Marthews et al. 2014), and parent material lithological classes 

(Hartmann et al. 2012). 

Dynamic predictors, on the other hand, were mainly related to the climatic, hydrologic, 

and surface vegetative variables and were introduced to our model to account for the dynamic 

processes involved in soil salinization. At our targeted spatial resolution (~1 km at the equator), 

however, these processes can hardly influence the soil salinity on a daily or monthly basis. 

Therefore, the long-term averages of the dynamic predictors were applied. Depending on the 

predictor type, the averaging time window was different to capture the effect of seasonality and 

inter-annual variations on predictors’ values. The dynamic predictors with decadal averaging 

time window were: annual potential evapotranspiration (mm yr-1), annual precipitation (Harris 

et al. 2014) (mm yr-1), and monthly minimum, maximum, mean, and diurnal temperature range 

(Harris et al. 2014) (˚C). The dynamic predictors with five-year averaging window were: 

annual actual evapotranspiration (mm yr-1), annual climate water deficit (mm yr-1), monthly 

Palmer Drought Severity Index (Palmer 1965), and monthly root-zone soil moisture (mm), all 

derived from TerraClimate dataset (Abatzoglou et al. 2018). The dynamic predictors with 

annual averaging window were: remotely-sensed surface soil moisture (2 to 5 cm depth; 

percentage of total saturation) (Copernicus Climate Change Service 2018), evaporative stress 

factor (Martens et al. 2017), Leaf Area Index (LAI) (Claverie et al. 2014), the Fraction of 

Absorbed Photo-synthetically Active Radiation (FAPAR) (Claverie et al. 2014), Normalised 

Difference Vegetation Index (NDVI) (Didan et al. 2016), two-band Enhanced Vegetation Index 
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(EVI2) (Didan et al. 2016), wind speed (m s-1) (ERA5 2017), as well as soil skin, layer one (0 

- 7 cm), two (7 - 28 cm), three (28 - 100 cm), and four (100 - 289 cm) temperatures (˚K) (ERA5 

2017). We generated a spatial layer of each dynamic predictor for each year from 1980 to 2018. 

The spatial resolution of dynamic variables was generally coarser than that of the static 

predictors. Additionally, we applied Land Cover Characteristics Data Base (LCCDB) 

(Loveland et al. 2000) to generate a layer of IGBP land cover classes (Belward et al. 1999) 

from 1980 to December 1996 as another dynamic predictor. For the 1997 to 2018 period, 

however, we adopted IGBP land cover classification data from Collection 6 MODIS Land 

Cover (MCD12Q1 and MCD12C1) for years 2000, 2006, 2014, and 2018 (Sulla-Menashe et 

al. 2018). 

The spatial resolution of some predictors, such as soil texture, soil classification, land 

cover, water table depth, and remotely-sensed products, was originally below ~1 km. These 

data layers were used directly to estimate the soil salinity/sodicity level. However, the spatial 

resolution of some predictors, mostly climatic ones, was above ~1 km. For those predictors, 

we used interpolation methods (Appendix 2, Table A2-1) to obtain the data layers at desired 

spatial resolution (~1 km) and the generated layers were used for prediction of soil salinity and 

sodicity. All predictors’ layers were then projected to WGS 1984 spatial coordinates and saved 

as raster datasets, except elevation, slope, slope length, TRI, plan and profile curvatures, which 

were in the World Mercator coordinates system. To estimate the missing data, we filled the 

spatial gaps (pixels with null values) in data layers using the average of surrounding pixels. A 

circle with a radius of 4 was used to calculate the missing data using the mean from the 

neighbouring cells. Even after this procedure, some data were still missing. To resolve this 

issue, the observations corresponding to those missing cells in the rasters were disregarded, 

which were 618 (1.41%) observations for ECe and 9,060 (4.37%) observations for ESP.  

The values of cells from rasters of static predictors were directly extracted at locations 

of observations. For the predictors in the World Mercator projection, we first projected the 

coordinates of the observation points to World Mercator and then extracted the values of 

predictors. For the dynamic predictors, however, we binned the training datasets according to 

the year of acquisition of the observations. For each soil sample with a particular year and 

observation location, values of the dynamic predictors corresponding to that particular year and 

location of observation were extracted and attributed to the measured values of ECe or ESP (all 

geo-referenced in the WGS 1984 coordinates system). Raster processing and data extractions 

were conducted in ArcGIS 10.7 (Esri 2011).  
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3.6.3 Training, validation, and statistical analysis 

The final prepared matrices for training had 44 columns (43 representing predictors and one 

for the target variable) and the number of rows were equal to the number of observations for 

each target variable. Land cover, parent material lithological units, and WRB soil classes were 

the three categorical predictors. 

In the final training matrices, a large proportion of the measured ECe and ESP values 

were zero or close to zero (Appendix 2, Figure A2-18) and this could lead to fitting of the 

models with predictions biased towards the zero. Therefore, we investigated the patterns 

between predictors and target variables using a procedure similar to the one used in two-part 

models in statistics, which model the datasets featuring a large proportion of zeros (Frees 2009; 

Afifi et al. 2007). To that end, first we decomposed each training dataset into two classes: (1) 

non-saline (0 ≤ ECe < 2 dS m-1; 28,635 observations or 66.6% of the whole training dataset) 

and saline (2 ≤ ECe dS m-1; 14,349 or 33.4% of the whole training dataset) for ECe computation; 

and (2) non-sodic (0 ≤ ESP < 1 %; 109,340 observations or 55.2% of the whole training dataset) 

and sodic (1 ≤ ESP; 88,648 or 44.8% of the whole training dataset) for ESP computation. These 

thresholds were chosen with the aim of allowing us to divide the training sets into classes with 

approximately equal number of observations within each class. They should not be confused 

with the ECe and ESP thresholds that are conventionally used for characterising saline and 

sodic soils. Then, a binary classification algorithm was trained to estimate the occurrence 

probability of each class determining whether the target was saline/sodic or non-saline/non-

sodic class (we stress the difference between saline/sodic class and saline/sodic soil terms in 

our modelling procedure). In the next step, separate regression models were fitted to data in 

each class to predict the severity of the salinity/sodicity. 

The training of the regression and classification models for predicting ECe and ESP 

values was executed in the Statistics and Machine Learning toolbox of MATLAB (MATLAB, 

R2019b). The weight of observations in model trainings was assumed to be constant and equal 

to one. Based on a trade-off between speed, interpretability, and flexibility of different 

classification and regression ML algorithms, we used ensemble of regression and classification 

trees to train different parts of the two-part predictive models and produce the spatial-temporal 

maps of soil salinity/salinity. To do that, first we imported prepared training sets of salinity and 

sodicity into MATLAB and trained the classification and regression models for prediction of 

ECe and ESP using different available ML algorithms with their default hyperparameter 
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options. The results for classification and regression on saline/sodic classes for each target 

variable are presented in Appendix 2, Table A2-6. Models based on ensemble of 

regression/classification trees showed the highest speed, accuracy, and flexibility. Therefore, 

we chose them for the rest of the analysis.  

For classification, MATLAB built-in “fitcensemble” function was used to train an 

ensemble of classification trees with “tree” type weak-learners. We employed automatic 

hyperparameter optimisation to find the hyperparameters that minimise the hold-out (with 25% 

being held out) cross-validation loss. The hyperparameters (Breiman 2001) were the ensemble 

aggregation method, learning rate, number of learning cycles, minimum leaf size, maximum 

number of splits, number of variables to sample, and split criterion. They were optimised by 

the Bayesian optimisation algorithm with the “expected-improvement-per-second-plus” 

acquisition function. We set the maximum number of objective function evaluations to 130 

(there was no considerable variation in the observed minimum objective function after 100 

evaluations). In ML classification problems, the class imbalance happens when the number of 

data in one class is considerably higher than in the other classes. This results in poor predictive 

power, especially for the class which is less represented. In our analysis, the number of samples 

in non-saline class was approximately two times higher than in the saline class. When there is 

a class imbalance in a binary classification problem, other accuracy metrics, such as the 

proportion of correct predictions to all predictions (accuracy) would have little use since the 

binary classifier scores a high accuracy if every prediction is assigned to the majority class. In 

such cases, Matthews Correlation Coefficient (MCC) (Matthews 1975) is a more reliable 

accuracy measure (Boughorbel et al. 2017) and we used this accuracy metric to evaluate the 

performance of the trained binary classifiers.  

Likewise, we applied the MATLAB built-in “fitrenemble” function to fit a predictive 

model from the ensemble of regression trees for data within each separate class. With 

hyperparameter optimisation options similar to “fitcenemble”, the candidate hyperparameters   

(Breiman 2001) for optimisation were the number of learning cycles, learning rate, minimum 

leaf size, maximum number of splits, and number of variables to sample; for regression, we 

used “LSBoost” (Least-squares Boosting) method for training the models. Logarithm 

transform was applied to normalise the right skewness in frequency distribution of the response 

variables (Appendix 2, Figure A2-18).  
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10-fold cross validation was used to estimate the performance of fitted models. In 

addition to the MCC, binomial deviance loss, misclassification accuracy, precision, and recall 

metrics were also calculated for the fitted classifier models. For regression predictions, root 

mean squared error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe model efficiency 

coefficient (NSE) (Nash et al. 1970) in both logarithm-transformed and back-transformed 

scales were estimated. Since the hyperparameter optimisation was stochastic and it was not 

possible to regenerate the hyperparameter optimisation results of each training run, we repeated 

the training of each of these three models 30 times. Appendix 2, Table A2-7 to Table A2-12 

show the results of hyperparameter optimisation and the 10-fold cross-validation for those 30 

runs for each part of the developed two-part models. In total, there were two target variables, 

three models for each target variable, and 180 runs. Among the 30 trained models, we chose 

the one with the best performance (the lowest error, Appendix 2, Table A2-2). The trained 

classifiers with the highest MCC and regressions within each class with the highest NSE (in 

total six models) were selected for the rest of the analysis. Repeating the training process also 

gave us the opportunity to calculate the confidence intervals for the 10-fold cross-validation 

accuracy metrics (Appendix 2, Table A2-2). We generated 1,000 bootstrapped samples with 

replacement from validation metrics, and computed the 95% confidence intervals of the mean 

for each validation metric using the bias corrected and accelerated percentile method 

(MATLAB built-in “bootci” function). 

3.6.4 Prediction of spatio-temporal evolution of soil salinity at the global scale 

The trained models were applied to a global soil mask layer to make annual predictions of 

surface soil salinity at 30" resolution (0.008333°, ~1 km at the equator) since 1980. To generate 

the global soil mask layer, we re-projected/resampled the 2014 MODIS land cover map (Sulla-

Menashe et al. 2018) to the WGS 1984 coordinates system/30" resolution using the nearest 

neighbour method and masked out the pixels labelled as water bodies, permanent wetlands, 

urban and built-up lands, and permanent snow and ice. Due to the unavailability of the 

topographic predictors’ values (as input of models) at frigid zones and higher latitudes, we 

focused on the pixels located between the -55° and 55° latitudes. The final raster layer was split 

to tiles to facilitate the subsequent data analysis. We converted the tiles to point feature layers, 

extracted the values of static and dynamic predictors to the points in each year, and exported 

the corresponding tables and points’ coordinates as text files to make predictions using the 

trained models in MATLAB. Predictions and x- y- coordinates (representative of longitude and 

latitude) defined in output tables were rasterised and mosaicked to generate the final maps of 
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soil salinity for each year over the studied period. We divided the workflow of extraction of 

predictors’ values to points between 16 processes on a machine with 16 cores through the 

multiprocessing Python module (Python.org) and the task was completed in six days. Exporting 

and saving the attribute tables as a text file and deployment of the trained models on the new 

data (~6 billion rows) was accomplished in nearly 60 days by running a parallel pool of 16 

processes on the above-mentioned dedicated machine. 

In total, for each target variable and location with x- y- coordinates, 39 predictions were 

made (each representing one year from 1980 to 2018). We calculated the intra-annual 

likelihood of saline/sodic soils occurring in each x- y- point following the approach proposed 

by Pekel et al. (2016). By dividing the number of years which had the ECe values ≥ 4 dS m-1 

and ESP values ≥ 6% by the total number of studied years (39 years), the likelihood of surface 

soils with ECe ≥ 4 dS m-1 and ESP value ≥ 6% was computed, respectively. To understand and 

quantify the variation in the likelihood of soils with ECe ≥ 4 dS m-1 and ESP ≥ 6%, we divided 

the study period into two 19-year periods: January 1981 to December 1999, and January 2000 

to December 2018. Then, for each variable, we defined the parameter θ as θ = loge ((Likelihood 

of the 2000 - 2018 period + 0.5) / (Likelihood of the 1981 - 1999 period + 0.5)) (Appendix 2, 

Figure A2-4). Due to the presence of zero frequency counts in either the 1981 - 1999 or 2000 

- 2018 period, we added a “continuity correction” of 0.5 to the frequency counts for both 

periods (Higgins et al. 2011). We fitted a linear model to the predicted soil salinity and sodicity 

in each year since 1980 and the slope of the fitted models with p < 0.05 was considered as a 

soil salinity long-term trend for that location. We also generated two other layers from the soil 

cell-level mean (Appendix 2, Figure A2-6) and standard deviation of the annual predicted 

target variables (Appendix 2, Figure A2-7) between 1980 and 2018.  

To estimate the annual soil area with ECe ≥ 4 dS m-1 or ESP ≥ 6% at the land cover, 

biome, climate, and national/continental levels, first we discretised the annual predicted values 

for ECe and ESP at each x- y- position into four classes:  0 - 4 dS m-1, 4 - 8 dS m-1, 8 - 16 dS 

m-1, and > 16 dS m-1 for ECe and 0 - 6%, 6 - 15%, 15 - 30%, and > 30% for ESP (each class 

includes its left class edge). Then, we directly derived the area of each x- y- point in the WGS 

1984 coordinates system for salinity/sodicity classes (assuming each point represents a raster 

pixel with the size of 0.008333°), following the method presented in the Appendix 2 (Model 

deployment). The computed areas with the corresponding locations were converted to raster 

layers. Therefore, for each year and target variable, we produced four raster layers from the 

four salinity/sodicity classes representing the area of pixels (in WGS 1984). Finally using the 
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ArcGIS 10.7 “Zonal Statistics” tool, the sum of areas in each class and zone specified by biome 

(adopted form modified terrestrial ecoregions of the world, available at Nature Conservancy, 

Geospatial Conservation Atlas; https://geospatial.tnc.org/), climate zone (adopted from a world 

map of the climate classification after Kottek et al. (2006)), and country/continent border 

(adopted form global administrative areas, GADM (Hijmans et al. 2012)) datasets were 

calculated. For delineation of land cover zones, we compared the IGBP land cover classes of 

LCCDB (Loveland et al. 2000) in 1993 with MODIS generated land cover map of 2018 (Sulla-

Menashe et al. 2018) and kept those pixels which were classified with the same land cover type 

in both years. The statistics on the trends and total areas of surface soils with ECe ≥ 4 dS m-1 

and ESP ≥ 6% were calculated at different levels (land cover, biome, climate, country, and 

continent) by summing up the area of all salinity classes with ECe ≥ 4 dS m-1 and sodicity 

classes with ESP value ≥ 6%, respectively.  

Data availability 

Input training data (ground-measured values of ECe and ESP), objects of the two-part 

predictive models, and thematic maps quantifying different aspects of surface soil salinity and 

sodicity (0 - 30 cm) are freely available at: https://data.mendeley.com/datasets/v9mgbmtnf2/1. 

The maps of surface soil salinity (ECe) and sodicity (ESP) for each year between 1980 and 

2018 are available at https://doi.org/10.6084/m9.figshare.13295918.v1. All statistics provided 

in this paper, in addition to further data on spatio-temporal variability of the salt-affected soils 

at the cell, land cover, biome, climate, country, and continental levels are available in a tabular 

format in Appendix 2 (Statistics on salt-affected regions).  

Code availability 

All computer codes and further details on methods required for regeneration of the main results 

presented in this paper can be found in Appendix 2 (Computer codes). 
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Abstract 

Soil salinization has become one of the major environmental and socioeconomic issues 

globally and this is expected to be exacerbated further with projected climatic change. 

Determining how climate change influences the dynamics of naturally-occurring soil 

salinization has scarcely been addressed due to highly complex processes influencing 

salinization. This paper sets out to address this long-standing challenge by developing data-

driven models capable of predicting primary (naturally-occurring) soil salinity and its 

variations in the world’s drylands up to the year 2100 under changing climate. Analysis of the 

future predictions made here identifies the dryland areas of South America, southern and 

Western Australia, Mexico, southwest United States, and South Africa as the salinization 

hotspots. Conversely, we project a decrease in the soil salinity of the drylands in the northwest 

United States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan in 

response to climate change over the same period.  

4.1 Introduction 

The Soil Science Society of America (Soil Science Glossary Terms Committee, 2008) defines 

saline soil as a non-sodic soil containing sufficient amount of soluble salt which could 

adversely influence most crop plants. Conventionally, electrical conductivity of a saturated soil 

paste extract (ECe) has been used as a measure of the soil salinity (Burt, 2011). Soil salinization 

is a land degradation process that results in excessive accumulation of soluble salts in the soil 

(Abrol et al., 1988; Bleam, 2016). In naturally-occurring or primary soil salinization, the 

predominant origins of soluble salts are rainfall (wet deposition of oceanic salts), aeolian 

processes (dry deposition of oceanic salts), and physical or chemical weathering of parent rock 

materials (Rengasamy, 2006; Zaman et al., 2018). Transport of the accumulated salts from 
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saline geological depositions by streamflow or shallow underground waters is an additional 

source of primary salinization (I. Daliakopoulos et al., 2016). In anthropogenic or secondary 

soil salinization, however, the main sources of salinization are human interventions, such as 

irrigation with brackish or saline water, rising water tables due to poor land and water 

management, surface or subsurface sea water intrusion into coastal aquifers as a result of rising 

sea levels or over-exploitation of the fresh underground waters, and overuse of fertilizers (I. 

Daliakopoulos et al., 2016; Pannell & Ewing, 2006; Zaman et al., 2018).  

Excessive accumulation of the soluble salts in the root zone may go beyond the salt 

tolerance of plants, affecting adversely the growth rate of the plants (Ayub et al., 2020). A soil 

with salinity of ECe ≥ 2 dS m-1 (at 25 °C) is traditionally considered as a saline soil 

(Fao/Iiasa/Isric/Isscas/Jrc, 2012); however, depending on the plant type, climatic conditions, 

and soil-water balance properties, the salt-tolerance of sensitive crops and plants can be 

different (Maas & Grattan, 1999). Salinity stress deteriorates the plants’ transpiring leaves 

which is known as specific ion effects (Greenway & Munns, 1980) or directly reduces the plant 

water uptake from the rooting zone, resulting in osmotic stress on the plant (Munns & Tester, 

2008; Parihar et al., 2015). Soil salinity also imposes nutritious imbalances in plants 

(Rengasamy, 2006). Soil salinity between 2 and 4 dS m-1 can negatively impact the yields of 

sensitive plants and at salinity levels higher than 8 dS m-1, the growth of most of crops and 

plants shows a severe decrease in response to excessive soil salinity (Hillel, 2000; Soil Science 

Glossary Terms Committee, 2008). Vegetation loss in turn reduces the soil stability and 

exposes the soil to wind or water erosion (De la Paix et al., 2013). In addition to deleterious 

effects on vegetation, excessive soil salinity decreases the biological functioning of the soil 

micro-organisms to a level that disturbs the soil nitrogen cycle, respiration, and organic matter 

input (Rath & Rousk, 2015; Singh, 2016). Reduced environmental health due to aeolian 

dispersion of saline dust originated from the saline soils (De la Paix et al., 2013; Hassani, 

Azapagic, D'Odorico, et al., 2020), land abandonment and desertification (Perri et al., 2020; 

Sentis, 1996), worsening of economic welfare, and human migration are other detrimental 

consequences of excessive soil salinity (Hassani, Azapagic, D'Odorico, et al., 2020; 

Rengasamy, 2006).  

 Accurate and reliable data on spatial distribution of salt-affected soils are important to 

develop action plans for management of soil, water, and vegetation and will contribute toward 

data-driven policy making (Oldeman et al., 2017; Omuto et al., 2013; Pannell, 2001). These 

data have also implications for tuning large-scale agro-ecological models (Folberth et al., 2016) 
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and planning sustainable reclamation practices (Amini et al., 2016). With varying levels of 

accuracy and spatial coverage, from the local (Paz et al., 2020; Scudiero et al., 2014; 

Taghizadeh-Mehrjardi et al., 2014) to the global scale (FAO ITPS, 2015; Ghassemi et al., 1995; 

Hassani et al., 2020; I. Szabolcs, 1989), defining the spatial distribution and location of salt-

affected soils has been under focus of various studies. According to the global-scale studies, 

salt-affected soils lie across all climate zones and continents with an estimated global area of 

~8.31 - 11.73 Mkm2, depending on the methods used for estimation of area of the salt-affected 

soils. Nevertheless, the general consensus is that the saline and salt-affected soils (including 

sodic soils) are particularly found in drylands where the excess of evaporation over water input 

to the soil accumulates salts in the upper soil layer (Abrol et al., 1988; Fischer et al., 2008; 

Richards, 1954).  

Drylands, including hyper-arid, arid, semi-arid, and dry sub-humid lands, are 

characterised by a multi-annual Aridity Index (AI) of less than 0.65 mm mm-1, computed as 

the ratio of total precipitation to potential evapotranspiration (Middleton & Thomas, 1997; 

UNEP-WCMC, 2007). Drylands occupy a total of ~45% of the Earth’s surface (Prăvălie, 2016; 

Schimel, 2010). With the advance of proximal/remote sensors and digital soil mapping 

techniques, there is a rising interest in spatio-temporal mapping and monitoring of the soil 

salinity (Gorji et al., 2017; Ivushkin et al., 2019; Mulder et al., 2011). Due to the temporal and 

vertical variability in salinity levels of the salt-affected soils (Mulder et al., 2011; Zaman et al., 

2018), updated predictions on long-term variations of soil salinity can provide a clearer 

understanding of the dynamics of the terrestrial carbon sink (Wong et al., 2010), climate change 

impacts (Gy Várallyay, 1994), and alterations in the land, vegetation, and water resources 

(National Land and Water Resources Audit, 2001). Even though the above-mentioned purely 

spatial or spatio-temporal studies have substantially advanced our understanding of the current 

status of the salt-affected soils and processes involved in salinization, predictions of the future 

extent and dynamics of soil salinization at the global scale are still missing, partly due to the 

complex processes and many parameters influencing soil salinization at the global scale. This 

makes the future prediction of soil salinization in the face of future climate uncertainties a 

grand challenge, which is precisely one of the key objectives of the present investigation.   

 The projected hydrological consequences of climate change may result in physical, 

biological, biochemical, and chemical degradation of the soils (G Várallyay, 2010). As one of 

the major threats to soil stability, fertility, and biodiversity, it is expected that the soil salinity 

will be a significant and growing concern in a warmer world (Talat, 2020; Tomaz et al., 2020). 
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To formulate appropriate plans for sustainable management of soil, water, and vegetation, 

reliable predictions on the probable occurrence and expansion or shrinkage of the salt-affected 

soils in response to the threat of climate change are crucial. Compared to other dynamic soil 

properties, such as P, N, and organic matter content, prediction of soil-salinity responses to 

climate variability on a global scale has received much less attention (D. Corwin, 2020). The 

available literature on the effect of climate change as a source of soil salinization is mainly 

descriptive and quantitative predictions of the future status of salt-affected soils on the basis of 

current trends are rare. The IPCC report (Intergovernmental Panel on Climate Chang, 1996) 

predicts that climate change will likely impact all the primary mechanisms for soil salinization, 

including soluble salts accumulation due to a change in hydrological balance, sea salt intrusion, 

and wind-born salt deposition. An increase in the rate of evapotranspiration and alteration in 

precipitation patterns, particularly in arid and semi-arid areas, is expected to reduce the soil 

leaching efficiency and consequently, increase the salt concentrations in top-soil horizons 

(Bates, 2009; Karmakar et al., 2016; Szabolcs, 1990). Expansion of irrigated areas and the 

higher demand for water use under rising global temperatures, in combination with poor 

drainage/irrigation practices, are expected to result in the spread of secondary salinization 

(Yeo, 1998). Land use modifications and occurrence of more extreme climate events, such as 

prolonged droughts followed by severe floods, have the potential to release and redistribute 

large amount of salts from the geological substrates with high concentration of salts and may 

put new areas at risk of soil salinization (Van Weert et al., 2009). In addition, rising sea levels 

and unsustainable extraction of fresh water resources from coastal aquifers can worsen the 

issue of sea water-induced soil salinization in coastal regions (Dasgupta et al., 2015; Karmakar 

et al., 2016).  

A few studies investigated some aspects of the relationship between projected climate 

change and soil salinization. Szabolcs (1990) was among the first who estimated that the salt-

affected areas in North Mediterranean regions will be doubled by 2050 in response to 1 °C 

increase in the average annual temperature. Similarly, National Land and Water Resources 

Audit (2001) estimated that Australia’s drylands at risk of soil salinity imposed by dryland 

management actions may expand to 170,000 km2 in 2050, relative to approximately 57,000 

km2 in 2000. Schofield and Kirkby (2003) developed a set of soil salinization indicators 

including low relief, high two-way annual moisture flux, and local flow deficit in large 

catchments to identify the current and future (2079 - 2099) locations with salinization potential 

across the globe and concluded that areas at risk of soil salinity are expanding. Although these 
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studies provide an understanding of the salinization potential and limitations of the methods 

used for projecting the soil salinity, they are not based on up-to-date datasets and they mainly 

highlight the areas at risk; no quantitative and spatially explicit predictions are provided. Other 

studies on predicting impacts of climate change on soil salinization are mainly focused on 

predicting secondary salinization processes imposed by unsustainable irrigation practices (I. N. 

Daliakopoulos et al., 2016; Martín-Rosales et al., 2007; Zanchi & Cecchi, 2010) or sea water 

intrusion (Chen & Mueller, 2018; Colombani et al., 2015; Oude Essink et al., 2010) at local 

scales. Thus, there is a need for a quantitative global-scale analysis, characterising the 

geographical distribution and projecting the long-term variations in soil salinity in the face of 

future climate fluctuations and uncertainties, which motivated the present investigation. 

This study is among the first attempts for addressing the need for a quantitative tool 

capable of predicting long-term primary soil salinity on a global scale with a high spatial and 

temporal resolution. These models and the results will be of interest to local authorities, land 

managers, and policy makers, helping to plan mitigation of and adaptation to soil salinization. 

In particular, we performed comprehensive data-driven modelling and analyses to reveal how 

the projected or hypothesised variations in the key drivers may influence primary soil salinity 

on the global scale, in both mid- (2031 - 2060) and long-term (2071 - 2100) futures. We only 

focus on soil salinity in the top-soil horizon (0 - 1 m), quantified by the concentration of soluble 

salts which is expressed by the extent of ECe. Other aspects of salt-affected soils, such as 

sodicity (which is traditionally measured by the soil exchangeable sodium percentage) or 

alkalinity, are not within the scope of this analysis. The potential soil salinity caused by sea 

level rise, saline groundwater, or irrigation is also excluded from the study. Note that modelling 

the salinity intrusion in coastal areas in response to sea rise needs a relatively precise estimation 

of the future groundwater extraction from the coastal aquifer. Similarly, projected data of 

groundwater level and salinity change (either natural or anthropogenic) are needed for 

predicting the ground water-induced soil salinity which is not currently available. As 

mentioned in Yeo (1998), it is difficult to generate a clear prediction of the impacts of climate 

change on the extent of salinization caused by irrigation as this requires reliable estimations of 

irrigation expansion and the quality of irrigation water in future. Therefore, this study can be 

deemed as projection of the primary soil salinization under future climate uncertainty. 

Several numerical methods have been developed to simulate the soil salinization by 

considering different modes of mass transfer mechanisms transporting solute in unsaturated 

soil (such as D. L. Corwin et al. (2007); Schoups et al. (2006)); however, the application of 
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these models remains limited to small-scale simulations where the detailed soil characteristics 

data are available. Moreover, employing analytical approaches, such as the stochastic model 

of soil salinity (Perri et al., 2018; Suweis et al., 2010) or the developed frameworks for 

mechanistic modelling of the climate, vegetation, and soil salinity interactions (Mau & 

Porporato, 2015; Porporato et al., 2015; Runyan & D'Odorico, 2010), would be applicable for 

projecting soil salinity only if the initial soil salinity or required calibration parameters for 

tuning were available; currently, such data are not available, particularly on a global scale.  

Recent studies demonstrated the great potential of Machine Learning (ML) algorithms 

in digital soil mapping and predicting spatio-temporal properties of the soil (Padarian et al., 

2020). In the present study, we used supervised ML algorithms for projecting the long-term 

(up to year 2100) variations in soil salinity. In summary, the methodology included exposure 

of a known set of input data (predictors) and a set of known responses (soil salinity profiles) to 

ML models to develop trained models based on the relations between the two sets. The trained 

models were later applied to a new set of known input data (with unknown responses) to 

generate predictions for the response (see Methods). 

Dryland areas are generally known as the regions with the highest vulnerability to 

hydro-climatic consequences of climate change (I. Daliakopoulos et al., 2016). For this reason, 

the majority of our measured input soil profiles data were sampled from the dryland areas of 

the world. We made predictions of soil ECe only for the dryland areas with an AI ≤ 0.65 

(UNEP-WCMC, 2007) as extrapolation of the ML results to other areas is a matter of 

uncertainty (Hengl et al., 2017). The rest of this paper discusses the significance of the 

predictors and global variation in primary soil salinization at the grid-cell level, followed by 

the country-level analysis. Changes in the total area of drylands with an ECe ≥ 2 dS m-1 (and 

ECe ≥ 4 dS m-1) at the country and continental levels are also presented. Finally, methods and 

their limitations are discussed. 

4.2 Results 

4.2.1 Predictors’ significance and their relation to the predicted soil salinity 

Appendix 3, Table A3-1 shows the estimates of the predictor importance for the trained models 

based on the output of the GCMs used for spatio-temporal prediction of the ECe (see Methods 

for details of predictors and trained models). The percentage values reported in Appendix 3, 

Table A3-1indicate the relative importance of each predictor in the final trained model in each 

input dataset. Among the 14 applied predictors, the long-term (five-year average) annual 
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precipitation frequency is relatively the most influential soil predictors with an overall 

importance of 14% for all 16 best fitted models. WRB soil classes and daily evapotranspiration 

are respectively the second and the third influential environmental predictors in estimation of 

the soil ECe with the overall importance of 13.07% and 9.26%, respectively. 

The effect of each of the 13 non-categorical predictors (see Methods) on the predicted 

outcome of the trained models is shown in Appendix 3, Figure A3-1 (Partial Dependency Plots, 

PDPs). The effect of long-term daily wet and dry deposition rates of sea salts are presented in 

Appendix 3, Figure A3-2. Appendix 3, Figure A3-1, a and b suggest that shallower depths are 

not necessarly associated with higher ECe in soil under natural conditions. However, in many 

previous experimental, analytical and numerical investigations (Guglielmini et al., 2008; 

Huinink et al., 2002; Rad et al., 2015; Shokri‐Kuehni et al., 2017; Shokri, 2014), higher solute 

concentrations and solute precipitation close to the evaporation surface were observed when 

the Peclet number (quantifying the relative importance of chemical diffusion and advection) 

was greater than the one during saline water evaporation from porous media. It must be noted 

that under natural environmental conditions (which is the case in our investigation), many 

parameters influence the complex dynamics of solute transport and deposition in soil, including 

the vegetation and land cover, rainfall, microorganisms’ activities, depth of water tables, soil 

chemical compositions and heterogeneity, human interventions, and land-atmosphere 

interactions. These parameters, which could not be included in the majority of the previous 

experiments conducted under well-controlled laboratory conditions or numerical simulations, 

could induce significant impacts on solute distribution in soil under natural conditions (Abrol 

et al., 1988; Scudiero et al., 2014).  

Fine-textured soils (soils with the higher clay content) show higher Water Holding 

Capacity (WHC, the difference between field capacity and wilting point) and lower saturated 

hydraulic conductivity. Overall, the predicted ECe values provided by each of the 16 trained 

models show a reverse relation with the soil clay content and WHC which is in line with 

previous experimental results and a literature review (Li et al., 2014) (Appendix 3, Figure A3-

1, c, g, and h). Similarly, based on numerical, experimental, and field-scale investigations, 

Shokri‐Kuehni et al. (2020) concluded that soil salinity for coarse‐textured soils is greater than 

for medium and fine‐textured soils when the water table is shallow and hydraulically connected 

to the evaporation surface. Our predicted results regarding the effects of soil texture on soil 

salinity are generally in agreement with the above mentioned physically-based determined 

trends and behaviour. 



Chapter 4   Future of soil salinity 

 

117 

 

Moreover, the analysis of PDPs shows that the effective plant rooting depth influences 

the predicted ECe approximately up to the depth of 4 m. The PDPs also demonstrate a strong 

negative correlation between soil salinity and terrain elevation, topographic slope, and 

precipitation frequency (Appendix 3, Figure A3-1, d, e, and i). These correlations can be 

explained by the prior pedologic knowledge: the lower hillslope and the higher precipitation 

frequency result in more efficient leaching of the salts accumulated in the root zone (Suweis et 

al., 2010), resulting in lower salinity. The relationship between the predicted soil ECe values 

and other predictors, however, is more complicated and deriving general trends remains a 

challenge.  

4.2.2 Projected soil salinity in drylands up to the year 2100 

The trained models based on the output of Global Circulation Models (GCMs) were applied to 

new input predictor data to estimate the annual soil salinity for each grid-cell (0.5° spatial 

resolution) of the global soil base map of the drylands between 1904 and 2100 (see Methods 

for details of GCMs, predictors, and trained models). Figure 4-1 shows the spatial distribution 

of the change in primary soil ECe projected by the multi-model ensembles in the mid- (2031 - 

2060) and long-terms (2071 - 2100), relative to the reference period (1961 - 1990) at the 0.5° 

spatial resolution. The RCP 4.5 and RCP 8.5 scenarios (Representative Concentration 

Pathways which result in a respective radiative forcing of 4.5 and 8.5 W m-2 in year 2100, 

relative to pre-industrial conditions) are related to CMIP5 (Coupled Model Inter-comparison 

Project Phase 5 (Taylor et al., 2012)) data project, while the SSP 2-4.5 and SSP 5-8.5 scenarios 

(projections forced by RCP 4.5 and RCP 8.5 global forcing pathways for the Shared Socio-

economic Pathways 2 and 5) refer to CMIP6 (CMIP Phase 6 (Eyring et al., 2016)).  
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Figure 4-1: Multi-model ensemble mean of the change in predicted soil salinity represented by saturated 

paste electrical conductivity (ECe) in the mid- and long-term futures, relative to the reference period (1961 

- 1990) under different greenhouse gas concentration trajectories. a to d, mid-term prediction of changes in 

ECe (2031 - 2060). e to h, long-term prediction of changes in ECe (2071 - 2100). The average of the predictions 

to the depth of 1 m were used for calculations of salinity change. At each map cell (pixel) and based on each 

GCM, we calculated the mean of soil salinity for the reference, mid-, and long-term future periods and then 

computed the relative change as: (Future mean - Reference mean)/Reference mean; the percentage value of each 
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cell represents the multi-GCM mean of the calculated relative changes presented by the colour map. Positive 

values indicate an increase in soil salinity while the negative values are indicative of a decreasing trend. 

Our results reveal that the sign (positive: indicative of a higher ECe and negative: 

indicative of a lower ECe) and intensity of changes in primary soil salinity are geographically 

highly variable; the variations are more extreme at the end of the 21th century compared to the 

mid-term future. Generally, the relative changes in soil salinity are more severe for the GHG 

emission rates which result in higher radiative forcing scenarios (RCP 8.5 and SSP 5-8.5). 

However, the intensity and spatial distribution of the projected changes based on the CMIP5 

models are not necessarily the same as the CMIP6-based models predictions. Although our aim 

was to include all available projections in the analysis, in the case of discrepancy between 

CMIP5 and CMIP6 models, the predictions made based on the CMIP6 GCMs should be 

prioritised as they are more recent, forced by more updated data, and generally of higher spatial 

resolutions (Eyring et al., 2016). 

 According to our long-term predictions based on all multi-model ensembles, the 

drylands areas of South America, southern Australia, Mexico, southwest United States, and 

South Africa are generally at the highest risk of increased soil salinity, compared to the 

reference period. The threat of climate-induced soil salinity is also projected to increase in 

drylands of Spain, Morocco, and northern Algeria. To a lesser extent, western and southern 

Sahara and central Indian drylands, in addition to the desert soils of southeast Mongolia and 

north of China, are estimated to become saltier in response to the projected climate change by 

2100 for different GHG concentration trajectories. On the other hand, our results indicate that 

the extent of soil salinity will remain constant or decrease relative to the reference period in the 

drylands located across the northwest United States, the Horn of Africa, Eastern Europe, 

Turkmenistan, and west Kazakhstan.  

Additionally, Appendix 3, Figure A3-3 shows the long-term future relative change in 

the five-year moving averages of daily dry and wet deposition rates of the sea salts (the 1971 - 

2100 mean minus the 1961 - 1990 mean) projected by the multi-GCM ensemble means, as the 

two predictors used for training the models. Overall, the CMIP6 models predict a more severe 

increase or decrease in dry and wet deposition rates; however, all ensemble means are in 

agreement on an increasing trend in the dry deposition rate of sea salts in coastal regions, 

particularly in the southern hemisphere. All models also project a decreasing trend in dry 

deposition rates in north-western United States, west Canada, and central Asian regions; 

however, for these locations, the projected sign of the change in wet deposition rates is different 
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between the CMIP5 and CMIP6 models. To some extent, the projections of these deposition 

rate can explain why soil salinity decreases in some regions, e.g. central Asia and Kazakhstan, 

where there is less certainty on the projected sign of changes in precipitation and 

evapotranspiration (Miao et al., 2020). 

Not all of the predictions generated based on the CMIP5 and CMIP6 GCMs used in this 

study are in agreement on the extent and sign of the soil salinity by the end of the century. 

Figure 4-2, in particular, shows the multi-model ensemble agreements on the sign of the 

predicted change in soil salinity in the long-term future under different trajectory scenarios of 

GHG concentration. A cell value close to 100% indicates a complete agreement of the 

ensemble members on the sign of the salinity change. For the RCP 4.5 ensemble, as an example, 

an ensemble agreement of 100% of a grid-cell shows that all seven models in the ensemble are 

predicting an increase or a decrease in soil salinity in the long-term future relative to the 

reference period (depending on the sign of change). Especially under the SSP 2-4.5 and SSP 

5-8.5 scenarios, the multi-GCM certainty of the predictions for a great proportion of the 

drylands of southern/eastern Australia, South America, and southern Africa indicate the 

southern hemisphere is at a higher risk of salinity caused by climate change. The projected 

increase in soil salinity in south-west and southern Australia induced by rising shallow 

groundwater tables as a result of dryland resource management and activities (National Land 

and Water Resources Audit, 2001) can exacerbate the climate-induced soil salinization 

projected here. However, the certainty of the predictions made for drylands located in the 

Middle East, Russia, and Sahara is seemingly lower than for the other zones. For those dryland 

regions, the uncertainty is also recognisable through the difference in the predictions made 

based on the CMIP5 and CMIP6 models in Figure 4-1. For example, the CMIP5 models predict 

an increase in soil salinity in Russian drylands, while the CMIP6 models show the opposite 

trend in those regions. 

4.2.3 Country-level projected changes in soil salinity  

At the country level, we calculated descriptive statistics for the relative changes in soil salinity 

estimated at each grid-cell (in the mid- and long-term futures compared to the reference period) 

based on the multi-model ensemble mean, including grid-cells mean, 95% confidence intervals 

of the mean, standard error of the mean, and variance (Appendix 3, Table A3-2 - 9). We did 

not calculate these descriptive statistics at the continental level as there was no noticeable 
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difference between the results for various continents due to the high number of grid-cells within 

each continent. 

Although the country-level results mask the majority of the local-scale variabilities of 

the soil salinity, the provided statistics help to have a better understanding of the countries with 

the highest risk of salinization. We ranked the countries based on the total number of grid-cells 

located in each country and calculated all aforementioned statistics only for the 30 countries 

with the highest number of grid-cells (Appendix 3, Table A3-10 shows the top 30 countries 

and the total estimated area of their drylands). 

 

Figure 4-2: Multi-GCM ensemble agreement on the sign of change in predicted values of soil ECe in the 

long-term future (2071 - 2100), relative to the reference period (1961 - 1990) under different greenhouse 

gas concentration trajectories. 100% shows the full agreement of the models on the sign of change, while zero 

indicates inconsistency among the models’ predictions. 

For the 2071 - 2100 period relative to 1961 - 1990 and under RCP 8.5 as the worst case 

scenario, the countries with the highest relative increase in the soil salinity were Brazil (with a 

mean grid-cell increase in ECe of 15.1% and the 95% confidence intervals of 13.25% - 

16.95%), Namibia (13.57%; 12.1% - 15.04%), South Africa (11.2%; 9.41% - 13%), and 

Mexico (6.38%; 4.96% - 7.8%). The increase in soil salinity for Australia was much lower 

(3.31% and 2.88% - 3.73%). Under SSP 5-8.5, the countries with the highest relative increase 
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in grid-cell means of soil salinity in the same period were Botswana (24.94%; 22.71% - 

27.16%), South Africa (21.35%; 19.84% - 22.85%), Namibia (17.69%; 16.14% - 19.24%), and 

Brazil (16.21%; 14.77% - 17.66%). Overall, our calculated statistics suggest that the soil 

salinity will be increased more extensively by the climate change impacts in the regions spread 

across the southern latitudes, specifically below -20°. 

4.2.4 Change in the total area of salt-affected soils in drylands  

Additionally, based on our predictions for soil salinity extent in each grid-cell, we estimated 

the total area of salt-affected soils up to year 2100. Currently, no unique definition is available 

for the salt-affected soils. Contingent on the soil classification system, different values of ECe, 

ranging from 2 dS m-1 to even 30 dS m-1, are adopted as the minimum threshold of salinity for 

characterising the saline soils (Gupta et al., 2008; Richards, 1954; Soil Survey Staff, 2010). 

Accordingly, here we quantified the areal variation of the soils exposed to the threat of primary 

salinization assuming an ECe equal to 2 dS m-1 as the critical threshold, corresponding to the 

upper salinity limit tolerable by sensitive crops (Maas & Grattan, 1999). The results were 

computed at the country (Appendix 3, Table A3-11), continental (Table 4-1, Figure 4-3, 

Appendix 3, Figure A3-4), and global levels (Appendix 3, Figure A3-5). Additionally, 

Appendix 3, Figure A3-6 to 8 and Appendix 3, Table A3-12 and 13 show the projected 

variation in the total area of naturally-occurring salt-affected soils assuming 4 dS m-1 as the 

critical threshold at the continent and country levels. As before, at the country level, only the 

top 30 countries with the highest number of the grid-cells were included. This analysis could 

be an indicator of the spatial expansion of the soil salinity in drylands in response to climate 

change. 

Table 4-1: Continental-level predicted change in the total area of soils with ECe ≥ 2 dS m-1 in the mid- and 

long-term futures relative to the average of the 1904 - 1999 period under different greenhouse gas 

concentration trajectories. 

Scenarios 
Continent 

Africa Asia Australia North America Europe South America 

RCP 4.5, mid-term (%) 0.00 -1.03 0.02 -0.23 -6.58 2.35 

RCP 4.5, long-term (%) 0.17 -2.02 0.70 -0.33 -9.13 1.84 

RCP 8.5, mid-term (%) 0.02 -1.36 0.79 0.13 -2.55 2.21 

RCP 8.5, long-term (%) -0.02 -3.05 0.60 0.83 -5.35 4.88 

SSP 2-4.5, mid-term (%) 0.41 -0.05 1.59 -3.32 -2.09 2.56 

SSP 2-4.5, long-term (%) 0.61 -0.25 2.40 -2.89 -2.68 3.04 

SSP 5-8.5, mid-term (%) 0.51 0.02 1.36 -2.28 -1.90 3.60 

SSP 5-8.5, long-term (%) 1.45 -0.28 3.38 -2.45 -0.92 6.70 
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Overall, under emission rates resulting in the radiative forcing of 8.5 W m-2, all CMIP5 

and CMIP6-derived predictions indicate an increasing trend in the total area of dryland soils 

with an ECe ≥ 2 dS m-1 for Australia and South America and a decreasing trend for Asia and 

Europe relative to the average of 1904 - 1999 period. For Australia and South America, we 

estimate the respective increases of 3.4% and 6.7% in the total area of dryland soils with ECe 

≥ 2 dS m-1 between 2071 - 2100 relative to 1904 - 1999 period according to the multi-GCM 

ensemble means under the SSP 5-8.5 scenario. The CMIP5 and CMIP6-derived predictions of 

the total area of dryland soils with ECe ≥ 2 dS m-1, however, are not in agreement on the sign 

and extent of the change for Africa and North America. The multi-model ensemble means 

under the SSP 5-8.5 scenario predict an increase of 1.5% and a decrease of -2.5% for the total 

area of dryland soils with a salinity ≥ 2 dS m-1 located in Africa and North America  (between 

2071 - 2100 relative to 1904 - 1999), respectively. Brazil (with 43%), Mexico (14.5%), and 

Mongolia (8%) had the highest estimated expansion in the total area of dryland soils with a 

salinity ≥ 2 dS m-1 between 2071 - 2100 relative to 1904 - 1999 periods under SSP 5-8.5 at the 

country level. On the opposite side of the continuum, Canada (with -10%), Somalia (-8.5%), 

and Ethiopia (-5%) had the largest predicted shrinkage of saline soils under SSP 5-8.5 (among 

the top 30 counties with the highest number of grid-cells in our analysis). 

4.3 Discussion 

The results obtained here do not agree with the global scale predictions of Schofield and Kirkby 

(2003) who estimated that Australia and western North America would be the areas with lower 

salinization potential in the 2070 - 2099 period, while they predicted a high potential for 

salinization in lands across Eastern Europe and Kazakhstan. In addition to the difference 

between the methodologies used for the projections of soil salinity, this discrepancy is due to 

various other reasons. For example, unlike the current study, Schofield and Kirkby (2003) only 

used one GCM (HadCM3GGa), developed before 2000, to specify their salinization indicators. 

Furthermore, they estimated the future potential evapotranspiration as an empirical function of 

air temperature to calculate AI as an indicator of soil salinity, while we used total 

evapotranspiration derived from the more physically-based GCMs. 
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Figure 4-3: Continental-level predicted annual change in the total area of soils with an ECe ≥ 2 dS m-1 

relative to the 20th century average (1904 - 1999) for the models obtained from the CMIP6 data project. a 

to f: Relative change under SSP 2-4.5 greenhouse gas concentration trajectory. g to l: Relative change under SSP 

5-8.5 greenhouse gas concentration trajectory. Shaded areas show the minimum and maximum range of the 

relative changes predicted by multi-model ensemble members. Red lines show the low-pass filtered (5-year 

running window) of the multi-model ensemble mean of the predicted variations; since all spatio-temporal 

predictors are five-year moving averages, 1904 is the beginning of the period. 

The results of ML models are primarily based on the trends they capture from the input 

data used for training. Therefore, projected changes of ECe in the hotspots of climate-induced 

soil salinization can be mainly attributed to the variations in spatio-temporal input data 

projected by GCMs. As mentioned before, precipitation frequency and evapotranspiration were 
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the most influential spatio-temporal predictors for the predictions of the trained models. 

According to the analytical salt mass balance, higher evapotranspiration rate and precipitation 

with a lower frequency and intensity accumulate more salts in the root zone (Suweis et al., 

2010). By the end of the century, an ensemble mean decrease in precipitation (under RCP 8.5) 

of up to 40% was reported by Giorgi et al. (2019) for the southern hemisphere, particularly 

southern and Western Australia, Namibia, and Brazil for the June-July-August months, which 

are also the salinization hotspots according to our results. Similarly, in the northern hemisphere, 

they predicted a more severe decrease in precipitation for Mexico, West Africa, and 

Mediterranean coasts for December-January-February. At smaller spatial scales, other studies 

projected an increase in the number and duration of drought events, higher potential and actual 

evapotranspiration, decreasing trends in frequency and intensity of precipitation, and in general 

drier conditions by the mid and end of the century.  

Using 34 GCMs under the two different emission scenarios of RCP 4.5 and RCP 8.5, 

Shi et al. (2020) predicted that potential evapotranspiration tends to increase in south-eastern 

Australia. Likewise, using 22 CMIP5 models, a substantial increase in the number of warm 

temperature extremes and periods of dryness was projected by Alexander and Arblaster (2017) 

for Australia, one of the predicted salinization hotspots in the current study. Similar trends for 

Australia were projected by Grose et al. (2020) by analysing the available CMIP6 multi-model 

ensemble. By analysis of 14 GCMs under the RCP 4.5 and RCP 8.5 future scenarios, a 

substantial decrease in precipitation during the summer (up to 1.5 mm day-1) is expected by 

Colorado‐Ruiz et al. (2018) in southern Mexico, also a projected salinization hotspots in the 

present study. A decrease in the frequency of precipitation during winter and spring in south-

western United States is projected by Easterling et al. (2017), as also found in this study to be 

a hotspot. An increase in the number of consecutive dry days in West Sahara (Klutse et al., 

2018) and actual evapotranspiration in arid areas across north-western China (Ma et al., 2018) 

under the 1.5 °C and 2.0 °C global warming scenarios reported in the literature is congruent 

with the findings of the current study. 

To conclude, lack of reliable predictive tools and data to assist land managers and policy 

makers for understanding the land cover dynamics is one of the main obstacles to long-term 

sustainable land and environment management. In the present study, we used legacy soil-

profiles data and a set of purely spatial and spatio-temporal predictors to develop some 

predictive ML models for projection of the primary soil salinity (represented by electrical 

conductivity) as one of the major threats to the soil fertility, stability, and bio-diversity in world 
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drylands. Our analysis provides long-term gridded (at 0.5° spatial resolution) predictions of 

primary soil salinity change in drylands globally in response to projected key climatic drivers 

of soil salinity, which is currently missing in the soil and land management literature. In the 

face of projected future climatic uncertainties, the developed predictive models and generated 

data in the present investigation can help with decision-making regarding land and water 

resources management to recognise the hotspots of soil salinization, devise the necessary action 

plans, and implement those plans towards sustainable land and water resources management.  

Under different GHG concentration trajectories, our predictions suggest that by the late 

21th century the drylands areas of South America, southern Australia, Mexico, southwest 

United States, and South Africa are at the risk of higher soil salinity caused by climate change, 

compared to the reference period (1961 - 1990). In addition, increase in climate-induced soil 

salinity threatens the drylands of Spain, Morocco, and northern Algeria by the end of the 

century. On the other hand, our results project a decreasing trend in primary soil salinity of the 

drylands located in the northwest United States, the Horn of Africa, Eastern Europe, 

Turkmenistan, and west Kazakhstan, relative to the reference period. The reliability of the 

predictions made here are different: the projected soil salinities for the drylands located in 

North America and Australia are of the highest level of reliability while the drylands of central 

Asia, Middles East, and the Great Sahara have the highest uncertainty in predictions for soil 

salinity. Other zones such as India, South America, and South Africa are in the middle in terms 

of the reliability of predictions. 

4.4 Methods 

In a previous study (Hassani et al., 2020), we developed tree-based two-part predictive ML 

models for determining annual surface (referring to top 30 cm of the soil) soil salinity and 

sodicity (represented by exchangeable sodium percentage) over the past four decades (1980 - 

2018) at ~1 km2 spatial resolution on a global scale. In the present study, however, we aimed 

to predict the future dynamics of soil salinization up to the year 2100 under changing climate. 

In the present investigation, we focused on primary salinization and the trained tree-based ML 

models were only regressive models. The next sections explain the details of the workflow for 

predicting soil salinity (ECe) including: (1) collection of the measured soil-salinity profiles, (2) 

collection and processing of salinity predictors, (3) exposing the salinity profiles and predictors 

data to ML models, training the models, and validation of the trained models, and (4) 

employing the trained models to project the spatio-temporal variation of the soil ECe up to the 
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year 2100 under different greenhouse gas (GHG) concentration trajectories. Finally, we discuss 

the accuracy of the trained models for prediction of ECe.  

4.4.1 Soil-salinity profiles  

We obtained the geo-referenced soil profiles (points) with measured values of ECe from the 

soil profile dataset of World Soil Information Service (WoSIS) (Batjes et al., 2017). The spatial 

distribution of the profiles data used as an input into the ML models is presented in Figure 4-4, 

a. The WoSIS ECe database includes 19,434 soil profiles and each individual profile (with a 

unique profile ID) may include one or more samples for various depths below the soil surface. 

The data cover the sampling period from 1950 to 2014. Since the date of sampling was an 

essential parameter in model training, we removed the ECe profiles without sampling dates. 

This reduced the total number of ECe samples from 73,517 to 59,649, with the number of 

samples per year shown in Figure 4-4, b. In addition, we dropped the soil ECe profiles sampled 

from the croplands to remove the effects of human interventions from the analysis. As a result, 

a total 44,708 samples (11,517 profiles) remained in our analysis for model training and 

accuracy assessment. 

Global land cover data provided by Earth-Observation Satellites before 1997 were 

scarce. Accordingly, we divided the profiles into two categories based on the date of sampling: 

before 1997 and after 1997. For the period before 1997, we identified the profiles located in 

croplands using the Global Land Cover Characteristics Database, Version 2.0 at ~1 km 

resolution (Belward et al., 1999). Due to a lack of historical land cover data, we assumed that 

the land cover/land use did not change considerably before the 1980s. For profiles sampled 

after January 1997, however, we identified the samples/profiles located in croplands using land 

cover maps for years 2000, 2006, 2014, and 2018 with similar International Geosphere-

Biosphere Programme (IGBP) land cover legend adopted from the MODIS Data Collection 

(MCD12Q1 and MCD12C1)  (Sulla-Menashe & Friedl, 2018). We selected the IGBP land 

cover legend as it was available in both datasets. Each profile sampling date was attributed to 

the layer with the nearest year of acquisition. The MODIS land cover layers were first re-

projected to the World Geodetic System (WGS 1984) spatial coordinates at 0.004° (~500 m) 

using the nearest neighbour method.  

4.4.2 Predictors 

We used two types of predictor to train the models for predicting ECe as the target variable: 

purely spatial and spatio-temporal. Purely spatial predictors included the land and soil attributes 
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which were relatively constant during the period of the analysis, while spatio-temporal 

predictors were the large-scale hydro-climatic variables derived from the output of selective 

Global Circulation Models (GCMs). In total, 14 predictors were used, of which nine purely 

spatial and the rest spatio-temporal. The pre-processing details, projection, extent, and 

resolution of the predictors’ layers are summarised in Table 4-2. These predictors were 

primarily selected to represent the main factors affecting the salt balance in the root zone in 

non-irrigated soils (Suweis et al., 2010). In addition, we included in our model training 

additional soil formation factors, including topography and parent material (weathered rock or 

deposit from which the soil is formed) (Batjes et al., 2017; Jenny, 1994). 

 The purely spatial predictors comprised:  

 soil classes based on the World Reference Base (WRB) classification (IUSS Working 

Group WRB, 2015); 

 soil texture represented by the percentage of clay content, obtained from the ISRIC global 

gridded soil information at ~250 m spatial resolution (Hengl et al., 2017); 

 soil wilting point in mm (Global Soil Data Task Group, 2000); 

 soil field capacity in mm (Global Soil Data Task Group, 2000);  

 effective plant rooting depth in m (Yang et al., 2016);  

 topographic slope in degrees; and  

 terrain elevation in m.  

Slope and terrain elevation layers were derived from the World Elevation Terrain data adopted 

from ArcGIS Living Atlas of the World (Esri, 2020) and were re-projected to the WGS 1984 

coordinates system at 0.002° (~250 m) spatial resolution using the cubic convolution method.  
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Figure 4-4: General properties of the ECe profiles used for training the models. a, spatial distribution of the 

soil salinity profiles used for model training and prediction of the soil salinity. Each profile includes one or more 

soil samples. b, temporal distribution of the samples used for training the predictive models of soil salinity. Each 

bar shows the number of samples within one year. c, frequency distribution of the measured values of ECe. The 

solid and dashed vertical lines represent the mean and median values, respectively. d, average of the measured 

soil salinity values at 1 cm intervals to the depth of 1 meter below the surface.  
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Table 4-2: Purely spatial and spatio-temporal predictors used for model training and prediction of soil 

salinity. 

Purely spatial predictors 

Predictor Pre-processing Source Projection 
Source layer 

spatial range 
Spatial resolution 

Sample upper depth (cm) 

- 
Original soil 

dataset 
- - - 

Sample lower depth (cm) 

Elevation (m) 

Resampling the original DEM to ~ 

250 m resolution by the cubic 

convolution method 
World Elevation 

Terrain service 

(Imagery Layer 

from Esri) 

WGS 1984 

Web 

Mercator 

(Auxiliary 

Sphere) 

Left: 

-20,037,507.84 m 

Right:  

20,037,507.90 m 

Bottom: 

-20,037,508.41 m 

Top:  

20,037,508.34 m  

0.25 m 

Slope (degrees) 

Resampling the original DEM to ~ 

250 m resolution by the cubic 

convolution  method and then 

calculating the slope using ArcGIS 

“slope” function  

World Reference Base soil 

classes (120 classes) 
- 

ISRIC-

SoilGrids250 

GCS WGS 

1984 

180W-180E, 

62S-87.37N 
0.00208˚ 

Soil clay content (%) 

Per-cell average of five standard 

soil depths: 0, 15, 30, 60, and 

100 cm was calculated using the 

trapezoidal rule and ArcGIS “cell 

statistics” tool 

Field capacity (mm) 
Raster datasets for different 

continents were merged into a 

single global one 

Global Gridded 

Surfaces of 

Selected Soil 

Characteristics 

(IGBP-DIS) 

GCS WGS 

1984 

180W-180E, 

56.49S-90N 
0.00833˚ 

Wilting point (mm) 

Effective plant 

 rooting depth (m) 

The original dataset was geo-

referenced to the GCS WGS 1984 

coordinates system by the nearest 

neighbor method 

Yang et al. (2016) 
GCS WGS 

1984 

180.25W-179.75E, 

90.25S-89.75N 
0.5˚ 

Spatio-temporal predictors 

Predictor Pre-processing  Projection Extent 
Source  and spatial 

resolution 

Five-year moving average of  

annual precipitation 

frequency (day-1) 

Precipitation frequency (λ) was calculated by dividing the 

number of wet days (daily precipitation > 1 mm) by the 

total number of days of a year (T). Precipitation fluxes  

(kg m-2 s-1) were transformed to daily sums by multiplying 

by a factor of 86,400 

GCS WGS 

1984 

180W-180E, 

90S-90N 

Global Circulation 

Models (GCMs) 

presented in Table 

4-3 

Five-year moving average of  

annual precipitation 

intensity (cm) 

Precipitation intensity was calculated by  αλT = Annual 

accumulative precipitation, where α was the precipitation 

intensity, λ was precipitation frequency, and T was the 

total number of days of a year (365) 

Five-year moving average of 

daily evapotranspiration  

(cm day-1) 

First an annual average was calculated from monthly 

evapotranspiration fluxes (kg m-2 s-1). Then the annual 

average flux was transformed to daily sum by multiplying 

by a factor of 8,640 

Five-year moving average of 

daily dry deposition rate of  

sea salts (mg day-1 m-2) 

First an annual average was calculated from monthly dry 

deposition rates (kg m-2 s-1). Then the annual average flux 

was transformed to daily sum by multiplying by a factor of 

86,400 

Five-year moving average of 

daily wet deposition rate of  

sea salts (mg day-1 m-2) 

First an annual average was calculated from monthly wet 

deposition rates (kg m-2 s-1). Then the annual average flux 

was transformed to daily sum by multiplying by a factor of 

86,400 
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We filled the missing grid-cells (or cells with no data values) in purely spatial predictor layers 

with an average from the cells surrounding the missing grid-cell. We used a circle with a radius 

of four cells from the neighbouring cells to calculate the average and fill the data gap. All 

purely spatial predictors were assumed to be vertically constant. Rasters processing was 

conducted in ArcGIS 10.7 (Desktop, 2011). Then, we obtained the values of grid-cells of purely 

spatial predictors at the locations of ECe profiles (Figure 4-4, a) to later train predictive models 

of soil salinity (see “model training for prediction of soil salinity”). The upper and lower depths 

of the measured ECe samples derived from the original WoSIS database were the additional 

purely spatial predictors used for model training; these were introduced to account for the effect 

of depth on soil salinization processes. 

The spatio-temporal predictors considered here were precipitation intensity, 

precipitation frequency, daily evapotranspiration, and sea salts wet and dry deposition rates 

(Table 4-2). To make predictions for future periods, we needed the projected values of the 

predictors. Therefore, we derived the values of spatio-temporal predictors from the outputs of 

the GCMs under different GHG concentration trajectories. 

For training the models, we used the GCMs available in both CMIP5 and CMIP6 data 

projects to consider the uncertainty in GCMs predictions and to cover all available projections 

for dry and wet sea salt deposition rates. Additionally, this gave us the opportunity to analyse 

the differences between the CMIP5 and CMIP6 model outputs in terms of the derived 

predictors’ values and their effects on the projected soil salinity. The historical outputs of 

GCMs, including precipitation, evapotranspiration, and dry and wet deposition rates of sea 

salts, were used for training the predictive ML models (CMIP5: 1900 - 2005; CMIP6: 1900 - 

2014). The projected outputs of GCMs for the same parameters were used to make future 

predictions of soil salinity (CMIP5: 2006 - 2100, CMIP6: 2015 - 2100). For the CMIP5 models, 

predictors were calculated based on the future projections forced by the RCP 4.5 and RCP 8.5 

scenarios. Likewise, for the GCMs models of CMIP6, predictors were computed using future 

projections forced by RCP 4.5 and RCP 8.5 global forcing pathways for the Shared Socio-

economic Pathways (SSP) 2 and 5, respectively. These medium (4.5) and high (8.5) radiative 

forcing pathways were chosen because they respectively represent the most plausible (or 

stabilization) and worst case scenarios of emissions by the end of the 21th century. 

Since the total number of wet days and the total annual precipitation values were 

calculated from the daily precipitation fluxes, the GCMs with precipitation data at daily 
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resolution were required. Additionally, not all of the available GCMs in the CMIP5 and CMIP6 

projects had the dry and wet deposition rates of the sea salts. Accordingly, our analysis was 

narrowed down to a total of 16 GCMs outputs under different GHG concentration trajectories 

from both CMIP5 and CMIP6 projects. For the GCMs with different ensemble members 

(MIROC5 and CESM2-WACCM-gn, in particular), we computed an ensemble mean to avoid 

a bias in the results of final multi-GCM ensembles toward the GCMs with the higher number 

of participating ensemble members. In total, data of 16 GCMs were downloaded from the 

CMIP5 and CMIP6 data (Cinquini et al., 2014), respectively. Details on the final chosen 

GCMs, their spatial resolution, and their used ensemble members are presented in Table 4-3.  

The original longitude values of netCDF files were set in the range -90° and 90°, 

referenced to the Greenwich Prime Meridian, to be in the same spatial extent as the purely 

spatial predictors. Then, using the bilinear interpolation method, all were interpolated to 0.5° 

× 0.5° WGS 1984 longitude-latitude regular grid to be able to generate multi-GCM ensemble 

from the outputs of our predictive models. Calculation of the spatio-temporal predictors and 

processing of the original netCDF files were conducted in the Climate Data Operators 

(Schulzweida, 2019) environment. The prepared netCDF data based on the outputs of GCMs 

were then converted to multi-band rasters, after which we obtained the values of spatio-

temporal predictors at locations of ECe profiles. These values combined with the values of 

purely spatial predictors were used to train the predictive models of soil salinity. It was not 

practical to use these spatio-temporal predictors at annual temporal resolutions because the salt 

level reaches a steady state condition usually at much longer time scales (Suweis et al., 2010). 

Therefore, we used a five-year moving average instead to better capture the effect of intra-

annual trends in these predictors on soil salinity variations. Finally, the five-year moving 

averages of the spatio-temporal predictors were attributed to each observation of ECe according 

to the year of sampling. 

4.4.3 Model training for prediction of soil salinity 

The measured values of ECe (target or response variable) and the values of each of the 14 

predictors (each represented by one column of data), attributed to the measured values of ECe, 

were then imported to MATLAB for model training and validation. For each GCM, a separate 

matrix of data was prepared, with a total of 16 matrices. The WRB soil classes (as the only 

categorical predictor) were represented by a vector of positive integers that contained values 

assigned to different soil classes. The other 13 predictors were non-categorical represented by 
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a set of real numbers. In spite of employing the method explained earlier for estimation of the 

missing cells in predictors’ layers, the values of some purely spatial predictors were still 

missing in the final imported matrices. Therefore, the corresponding ECe values (each 

represented by a row of data) were eliminated and not used for model training. As a result, 

1.28% of the sample rows were excluded from the analysis. 

We applied MATLAB Statistics and ML toolbox (MATLAB, R2019b) for building and 

validating the predictive models of ECe. Here, we used an ensemble of regression trees for 

training and projecting the soil salinity based on the predictor datasets obtained from each of 

the 16 GCMs shown in Table 4-3. We chose tree-based models due to their relatively higher 

accuracy and computational speed compared to other ML algorithms (Breiman, 2001; Hassani 

et al., 2020). Additionally, tree-based predictive models are highly flexible in mapping non-

linear relations between the known predictors and known responses (Hengl et al., 2015; Kuhn 

& Johnson, 2013) and are robust in handling outliers and collinearity concerns in 

environmental modelling (De'Ath, 2007; Elith & Leathwick, 2017). The MATLAB built-in 

“fitrenemble” function was applied for training the regression ensembles.  

The model hyperparameters, or parameters that should be set before launching the 

training process of a ML algorithm, were tuned using MATLAB automatic hyperparameter 

optimiser. These comprised ensemble aggregation method, number of learning cycles, learn 

rate, minimum leaf size, maximum number of splits, and number of variables to sample 

(Breiman, 2001). By varying the hyperparameters, the optimiser attempts to find a combination 

of their values which minimises the log (1 + cross-validation loss). Holdout cross-validation 

method (with 25% of data being held out) was used for optimisation and the cross-validation 

loss was quantified using mean squared error. The optimiser used the Bayesian optimisation 

algorithm with the “expected-improvement-per-second-plus” acquisition function. The 

maximum number of objective function evaluations was 100 since there was no notable 

decrease in the value of the observed minimum objective function after 100 evaluations. We 

repartitioned the cross-validation at every iteration and assumed the weight of all observation 

rows to be equal to one. We applied the log-transform to address the issue of right skewness in 

frequency distribution of the target variable; however, the log-transformation and back-

transform of the predicted responses had a negligible impact on the accuracy of the trained 

modes. 
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Table 4-3: Global Circulation models (GCMs) used for calculation of the spatio-temporal predictors. 

Model name Ensemble member(s)a Scenario(s) 
Spatial resolution  

(latitude × longitude) 
Source 

Coupled Model Inter-comparison Project Phase 5 (CMIP5) 

GISS-E2-H r6i1p3 RCP 4.5 2˚ × 2.5˚ 
NASA Goddard Institute for Space 

Studies (Schmidt et al., 2006). 

GISS-E2-R r6i1p3 RCP 4.5 2˚ × 2.5˚ 
NASA Goddard Institute for Space 

Studies (Schmidt et al., 2006). 

MIROC5 r1i1p1, r2i1p1, r3i1p1 RCP 4.5, RCP 8.5 1.4008˚ × 1.40625˚ 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science  

and Technology 

 (M. Watanabe et al., 2010). 

MIROC-ESM-CHEM r1i1p1 RCP 4.5, RCP 8.5 2.7906˚ × 2.8125˚ 

Japan Agency for Marine-Earth 

Science and Technology, Atmosphere 

and Ocean Research Institute (The 

University of Tokyo), and National 

Institute for Environmental Studies 

(S. Watanabe et al., 2011). 

MIROC-ESM r1i1p1 RCP 4.5, RCP 8.5 2.7906˚ × 2.8125˚ 

Japan Agency for Marine-Earth 

Science and Technology, Atmosphere 

and Ocean Research Institute (The 

University of Tokyo), and National 

Institute for Environmental Studies 

(S. Watanabe et al., 2011). 

MRI-CGCM3 r1i1p1 RCP 4.5, RCP 8.5 1.12148˚ × 1.125˚ 
Meteorological Research Institute 

(Yukimoto et al., 2012) 

NorESM1-M r1i1p1 RCP 4.5, RCP 8.5 1.8947˚ × 2.5˚ 
Norwegian Climate Centre (Bentsen 

et al., 2013). 

MRI-ESM1 r1i1p1 RCP 8.5 1.8947˚ × 2.5˚ 
Meteorological Research Institute 

(Yukimoto, 2011) 

Coupled Model Inter-comparison Project Phase 6 (CMIP6) 

CESM2-WACCM-gn r1i1p1f1, r2i1p1f1, r3i1p1f1 SSP 2-4.5, SSP 5-8.5 0.94240838˚ × 1.25˚ 

Community Earth System Model 

Contributors  

(Danabasoglu et al., 2020). 

CNRM-ESM2-1-gr r1i1p1f2 SSP 2-4.5, SSP 5-8.5 1.4003477˚ × 1.40625˚ 

National Centre for Meteorological 

Research, Météo-France and CNRS 

laboratory (Séférian et al., 2019). 

GFDL-ESM4-gr1 r1i1p1f1 SSP 2-4.5, SSP 5-8.5 1˚ × 1.25˚ 
NOAA Geophysical Fluid Dynamics 

Laboratory (Dunne et al., 2019). 

INM-CM4-8-gr1 r1i1p1f1 SSP 2-4.5, SSP 5-8.5 1.5˚ × 2˚ 
Institute for Numerical Mathematics 

(Volodin et al., 2019a). 

INM-CM5-0-gr1 r1i1p1f1 SSP 2-4.5, SSP 5-8.5 1.5˚ × 2˚ 
Institute for Numerical Mathematics 

(Volodin et al., 2019b). 

MIROC-ES2L-gn r1i1p1f2 SSP 2-4.5, SSP 5-8.5 2.7889823˚ × 2.8125˚ 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies (Hajima et al., 2019). 

MRI-ESM2-0-gn r1i1p1f1 SSP 2-4.5, SSP 5-8.5 1.8645104˚ × 1.875˚ 
Meteorological Research Institute 

(Yukimoto et al., 2019). 

NorESM2-LM-gn r1i1p1f1 SSP 2-4.5, SSP 5-8.5 1.8947368˚ × 2.5˚ 
Norwegian Climate Centre  

(Seland et al., 2020). 

a Four indices defining an ensemble member: “r” for realization, “i” for initialization, “p” for physics, and “f” for forcing. 
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The Bayesian optimisation algorithm could return different results since its chosen 

acquisition function depends on the runtime of the objective function; the optimiser avoids the 

regions with extremely high runtimes. According to the non-reproducibility of the tuned set of 

hyperparameters, the model training and hyperparameter tuning jobs on each of 16 datasets 

were repeated 30 times (480 models in total). The maximum number of learning cycles was 

limited to 500 to keep the runtime for each training task below 10 minutes. High runtime and 

computational costs did not allow us to repeat the trainings more than 30 times. We accelerated 

the model training process by running the computations on a machine with 48 cores using the 

MATLAB Parallel Computing Toolbox. The goodness-of-fit of the trained models was 

evaluated by 10-fold cross-validation R2 (the extent of variation explained by the model 

(Moriasi et al., 2015)), root mean squared error (RMSE), mean absolute error (MAE), and Nash-

Sutcliffe model efficiency coefficient (NSE (Nash & Sutcliffe, 1970)). Then we used the bias 

corrected and accelerated percentile method to calculate the 95% confidence intervals of the 

mean for each validation metric based on 1,000 bootstrap samples (with replacement) derived 

from the results of the 30 runs performed for each of the 16 datasets. Among the 30 trained 

models for each input training set, the one with the lowest RMSE was selected; we chose RMSE 

as it is more sensitive to large errors (Hyndman & Koehler, 2006). In total, 16 models remained 

in our analysis for soil salinity projections. 

4.4.4 Model implementation and soil salinity projection 

We converted the world drylands layer delineated by the United Nations Environment 

Programme World Conservation Monitoring Centre (UNEP-WCMC, 2007) to a raster layer at 

0.5° spatial resolution for generation of a global soil base map of the drylands. From that layer, 

we constrained our analysis to areas with an AI ≤ 0.65 and masked out the grid-cells (pixels) 

with an AI > 0.65 to keep only the drylands in our analysis (UNEP-WCMC, 2007). The 

remained raster had 24,045 grid-cells and we used it as the global soil base map of the drylands.  

Similar to input training profiles data, we extracted the values of purely spatial and 

spatio-temporal predictors to the location of the base map grid-cells and then a five year moving 

average from the values of spatio-temporal predictors was computed. We applied the best 

chosen trained models to these new locations (cells) and the corresponding values of the 

predictors. As mentioned before, the degree of soil salinity and solute concentration change 

along the soil depth. Usage of the upper and lower depths of the samples as predictors in the 

model training enabled us to make predictions of ECe at different depths below the soil surface. 
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In this regard, the trained models can be considered as four-dimensional predictive models of 

soil salinity that make predictions for different longitudes, latitudes, depths, and times. For 

each pixel and each year, we predicted the values of soil salinity at five depths: 0, 10, 30, 60, 

and 100 cm. We used the trapezoidal rule to compute an average of the ECe (dS m-1) to the 

depth of 1 meter as follows (Hengl et al., 2017): 

 ECe, ave  = [(10 - 0) × (ECe (10) + ECe (0)) + (30 - 10) × (ECe (30) + ECe (10)) + … 

          (60 - 30) × (ECe (60) + ECe (30)) + (100 - 60) × (ECe (100) + ECe (60))] / (100 × 2) 

where ECe is the predicted salinity at the corresponding depth. The outlier that is more than 

three scaled Median Absolute Deviations (MAD) away from the median of all predictions of a 

year were removed by the MATLAB “isoutlier” built-in function; this was the most robust 

method for removing outliers according to the user guide (see MATLAB “isoutlier” 

documentation for further details). In total, for each grid-cell of the global soil base map of the 

drylands, 197 predictions of ECe were made in the period between 1904 and 2100 (one 

prediction for each year); since all spatio-temporal predictors are five-year moving averages, 

1904 is the beginning of the period.  

To compare the future state of the drylands soil salinity against the past conditions, we 

considered three time periods in our analysis: reference period (1961 - 1990), mid-term future 

(2031 - 2060), and long-term future (2071 - 2100). We used 30-year periods and 1961 - 1990 

as the reference period based on the recommendations of the World Meteorological 

Organization for evaluations of the long-term changes in climatic variables (World 

Meteorological Organization, 2017). Soil salinity predictions for years in the future periods 

were averaged and compered to the average of the predictions for years in the reference period.  

We calculated the area of each grid-cell of the global soil base map of the drylands in 

the WGS 1984 spatial coordinates using the computer code presented in the Supplementary 

Information. We estimated the total annual area of salt-affected soils between 1904 and 2100 

and then computed the annual percentage change in the area of those soils by dividing the total 

area at each year by the average area of salt-affected soils over the period. We assumed an 

average of 95 years would be enough to remove the potential noise introduced by the spatio-

temporal predictors. We used global administrative areas dataset (GADM, 2020) to estimate 

the total area of salt-affected soils at the national and continental levels. Numerical values 

representing the countries and continents were attributed to each cell of the base soil map.  
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4.4.5 Accuracy assessment of the trained models 

The results of hyperparameter tuning and the 10-fold cross-validation accuracy metrics of the 

best fitted models are summarised in Appendix 3, Table A3-14. Appendix 3, Table A3-15 also 

presents the calculated lower and upper limits of 95% confidence intervals of the 10-fold cross-

validation accuracy metrics, calculated for the trained models. For all 16 models, the MATLAB 

ensemble aggregation method of “LSBoost” was superior in fitting the models, compared to 

the “Bagged” method. 

For the best fitted models, the lowest R2 was 71.72% (with the 95% confidence intervals 

of 67.62% - 69.89%) related to the GISS-E2-R model, while the highest R2 between the 

measured and predicted values of ECe was 73.95% (67.34% - 70.32%), calculated for the 

CNRM-ESM2-1 model (see Table 4-3 for the details of GCMs). For all 16 models, the average 

calculated 10-fold cross-validation R2 was 72.79%. Likewise, GISS-E2-R and CNRM-ESM2-

1 were the models with the highest and lowest calculated values of RMSE, respectively. The 

average of 10-fold cross-validation RMSE for all 16 best fitted models was 3.6, ranging from 

3.52 (3.78 - 3.93) to 3.67 (3.76 - 3.95). This represents a normalised RMSE equal to ~6% 

(normalised to the observed range of the ECe values).  

To understand better how well the best fitted models predict the response values, the 

relation between the measured (values sampled from the soil profiles) and predicted values of 

ECe is visualised in Figure 4-5 via bin scatter plots. Taking a conservative approach, Figure 

4-5 shows only the validation plots for the six (out of the 16 best-fitted) models with the worst 

performance (i.e. with highest RMSE values). The models predictions are fairly concentrated 

around the y = x line, suggesting a good agreement of the modelled values with measured data. 

The accuracy of predictions increases with ECe values, with a tendency for over-estimations 

for ECe ≤ 1 dS m-1. Overall, the relatively high R2 (>70%) values indicate a satisfactory model 

fitting, particularly as such values are not common in digital soil mapping (Malone et al., 2009).  

 Additionally, we evaluated the accuracy of the vertical prediction of the 16 best fitted 

models, i.e. the prediction accuracy at various depths from the soil surface. To do so, we 

categorised the measured and predicted (by 10-fold cross-validation) values of ECe into six 

bins of 0 - 20 cm, 20 - 40 cm, 40 - 60 cm, 60 - 80 cm, 80 - 100 cm, and 100 - 200 cm based on 

an average from the lower and upper depths of the samples (each bin included its left edge); 

the bins edges were chosen so that the number of samples available for each bin stayed roughly 

equal and the deeper depths were not considered due to lack of data. The calculated R2 values 



Chapter 4   Future of soil salinity 

 

138 

 

for each bin and each of the 16 models are reported in Appendix 3, Table A3-16. The averages 

of the 16 models R2 values for the shallowest to deepest soil layers (bins) were 63.59%, 72.99% 

77.39%, 77.31%, 79.59%, and 72.51%, respectively. These accuracies are in line with the 

reported R2 values of Taghizadeh-Mehrjardi et al. (2014) who developed separate regression 

tree-based models to predict soil salinity (78%  for 0 - 15 cm soil layer). However, their analysis 

was purely spatial and was only focused on the saline soils located in a local area in central 

Iran (72,000 ha), while the current analysis projects the spatio-temporal variability in soil 

salinity on the global scale. We did not observe a decrease in predictive accuracy of the digital 

soil models at the higher depths reported in other studies, such as Malone et al. (2009), Minasny 

et al. (2006), and Minasny et al. (2006). 

 In addition to global accuracy assessment of the trained models, we evaluated the 

predictive power of the best fitted models at the country and continental levels (Figure 4-6, a 

and b). We grouped the measured sample values of ECe according to the continent or the 

country where the samples were acquired and compared the mean of each group with the mean 

of the 10-fold cross-validated predictions for each group. Only 87 countries had measured input 

profiles data of ECe required for our analysis. At the country level, the R2 between the mean of 

predictions of the 16 models and the mean of measured values of ECe was 80.41% while at the 

continental level, this value was 99.64%. The reason for such a high accuracy at the continental 

level is the high number of data points within each continent which makes the predicted and 

estimated averages close to each other.   

Similarly, we compared the predictions of our models with other available gridded 

datasets on soil ECe, including HWSD (Harmonised World Soil Database 

(Fao/Iiasa/Isric/Isscas/Jrc, 2012)) and WISE (World Inventory of Soil Emission Potentials) 

which derived soil properties on a 30 × 30 arc-seconds global grid (WISE-30; (Batjes, 2015)), 

at the country and continental levels. Since these two datasets provide data for different soil 

layers (HWSD: two layers at 0 - 30 cm and 30 - 70 cm; WISE-30: seven layers, with five fixed 

depth intervals of 20 cm up to the depth of 100 cm and two 50 cm depth intervals between 100 

and 200 cm), we only focused on surface measurements. For comparison with HWSD, any soil 

sample with the upper sample depth of 0 cm and a lower sample depth ≤ 30 was chosen as the 

surface measurement (a total of 8,995 samples) while for WISE-30, any ECe sample with the 

lower sample depth of 20 cm was chosen as the surface measurement (a total of 7,535 samples).  
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At the location of each particular surface measurement, we predicted the soil salinity 

for 0 - 20 or 0 - 30 cm (depending on the target dataset for comparison) soil layers using the 

purely spatial and spatio-temporal values of predictors corresponding to the year of sampling 

of that particular surface measurement. Then we grouped the predictions and surface 

measurements based on the country and continent of sampling. At the country level, the R2 

between the mean of our models predictions and the mean of surface measured values (0 - 30 

cm) of ECe for 74 countries was 68.55%, while this value for HWSD was 13.6%. At the 

continental level, these values were 91.48% and 74.98%, respectively (Figure 4-6, c and d). 

Compared to the WISE-30 predictions, the R2 between the mean of our models predictions and 

the mean of surface measured values (0 - 20 cm) of ECe was 69.33% and 87.99% at the country 

(71 countries) and continental levels, respectively whereas the WISE-30 values were 17.22% 

and 5.53% (Figure 4-6, e and f). Although HWSD and WISE-30 datasets are purely spatial and 

they do not include information on the temporal variability of the soil salinity, comparing the 

predictions made by the models developed here against the predictions of those datasets can 

provide a better quantitative understanding of the improved predictive performance of our 

models.  

4.4.6 Model limitations, uncertainties, and perspectives for future research  

ML models are one of the solutions suggested for time series projection challenges (Ye et al., 

2019). However, unlike the analytical models, ML models do not enable consideration of the 

mechanistic insights in the predictive algorithms of soil properties (Hengl et al., 2017). As 

mentioned earlier, no harmonised dataset is currently available quantifying the concentration 

of the soluble salts in salt-affected soils and, to a great extent, quantification of the severity of 

soil salinity in the field is limited to ECe measurements. Provision of such dataset can be a 

baseline for developing more mechanistic approaches in projections of soil salinity. Although 

it would be very challenging, projecting large-scale soil salinity driven by groundwater table, 

irrigation practices, and sea level rise are important areas for future research. 

Captured trends and projections in this study depend on the input data used for training 

the models. Inconsistency in accuracy and methods applied by different laboratories for 

measuring soil properties can negatively impact the trends captured by the trained models. As 

we go towards the past, the number of available samples and their accuracy decreases (Figure 

4-4, b); this in turn may influence the validation procedures applied to the predictions made by 

ML models (Hengl et al., 2017). It may also generate predictions biased towards the recent 
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periods when more data samples are available. Additionally, more care should be given to 

application of the predictions made here at locations underrepresented by input data for training 

the ML models. In the current study, the majority of soil profiles used for training were sampled 

from North America and Australia due to a greater data availability. Thus, there is a possibility 

that the results are biased towards the soil and hydro-climatic conditions of these two 

continents. One solution to address this issue can be to develop more regional ML models; yet, 

this is challenging in the locations with the low number of sample data. Decrease in the number 

of available input data reduces the efficiency of the model training, resulting in less accurate 

and unsatisfactory validation outcomes. More updated and geographically scattered profile 

data are required in future studies to address the issue of inconsistency in the legacy soil-profile 

data. 

 

Figure 4-5: 10-fold cross-validation plots for the six trained models with the highest root mean squared 

error (RMSE) values out of the final 16 best fitted models. The RMSE decreases from a to f. The colour maps 

show the scatter density in each bin. The red lines represent the y = x line. 

More importantly, the extent of uncertainty in the predictors used for training the 

models is not spatially constant. All the predictors used here are large-scale estimations of other 

models which inherently include some degrees of uncertainty. Particularly, purely spatial 

predictors including the wilting point, field capacity, and effective plant rooting depth, are less 

certain in large deserts where observations are scarce for tuning and validation of the models. 

One way to address this issue is to provide spatially explicit maps of uncertainty for the 

predictions of the ML algorithms. However, this needs spatially explicit uncertainty maps of 

the predictors or their probability distributions. In the case of our study, such data were not 
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available for the predictors. Additionally, ML algorithms are highly computationally 

demanding and estimation of the outputs uncertainty ranges by methods such as Monte Carlo 

simulations was not feasible by our computational resources (assuming hypothetical 

distributions of uncertainty in the predictors and input profiles data). Thus, we did not quantify 

the posterior distribution and uncertainty of the predictions and instead we estimated the global 

accuracy of the projected results via the 10-fold cross-validation method. A less 

computationally intensive framework is needed in the future for provision of the spatially 

explicit estimations of uncertainties in outputs of the ML models. 

The number of GCMs with projected wet and dry sea salt deposition rates (which are 

also necessary for mechanistic approaches) were rather limited in both CMIP5 and CMIP6 data 

projects. More ensemble members could improve the certainty of the projected soil salinity. 

Furthermore, the spatial resolution of our salinity projections was relatively coarse (0.5°); 

although the purely spatial predictors were of the adequate resolution, there was no point in 

prediction of the soil salinity values at finer resolutions since the spatio-temporal resolution of 

the GCMs grids was roughly between 1 and 3°. Such issues might be addressed with 

improvement of the spatial resolution of GCMs and the number of GCMs with sea salt aerosols 

projections in upcoming years. 

Data availability. Input data for training the predictive models, objects of the predictive 

models, annual predictions made by the models for each location, and spatially-explicit maps 

quantifying the change in predicted soil salinity in the mid- (2031 - 2060) and long-term futures 

(2071 - 2100), relative to the reference period (1961 - 1990) are freely available at: 

www.figshare.com. 

Code availability 

Computer codes required for regeneration of the main results presented in this paper can be 

found in Supplementary Information appendix (computer codes section). 
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Figure 4-6: Comparison of the predicted values of soil salinity (ECe) in the present study and the measured 

values as well as the soil ECe predicted in other datasets (i.e. HWSD and WISE-30) at the continental (a, c, 

e) and country levels (b, d, f). a and b, average predicted values versus average measured values at the continental 

and country levels (87 countries), respectively. c and d, average of the surface (0 - 30 cm) salinity (ECe) values 

predicted by the present study and Harmonised World Soil Database (HWSD) versus the average of measured 

surface salinity at the continental and country levels (74 countries), respectively. e and f, average of the surface 

(0 - 20 cm) salinity predicted by the present study and WISE-30 (World Inventory of Soil Emission Potentials 

derived soil properties) dataset versus the average of measured surface salinity at the continental and country 

levels (71 countries), respectively. The error bars represent the minimum and maximum of average values 

calculated for the 29 models used in the study.  
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Chapter 5 Conclusions and recommendations 

The overall objective of this research has been to help decision-making in addressing the 

shrinkage of saline lakes and soil salinization issues as part of the two water and land 

management-related SDGs for water-scarce areas. The following specific objectives have been 

achieved: 

 an eco-hydrological land-based framework is proposed as a solution for sustainable 

restoration of shrinking saline lakes, in view of major socio-economic, hydrologic, 

climatic, and agronomic affecting parameters in saline lakes’ basins; 

 a remote sensing data-based method has been developed which enables decision- and 

policy-makers to identify the parts of a saline lake with priority for restoration;  

 the extent and severity of soil salinity/sodicity and soil salinization trends have been 

evaluated at the different geographical levels over the past four decades; and 

 the soil salinization hotspots have been predicted by the end of the 21st century. 

The following sections explain the particular findings of this work and the insights discussed 

in the previous chapters. This is followed by a discussion on the limitations of the work and 

recommendations for future research. 

5.1 Sustainable solutions for restoration of saline lakes 

The proposed framework presented in chapter 2 can be used for sustainable restoration of saline 

lakes, under different socio-economic and climatic scenarios. It can help decision- and policy-

making to recognise the optimal land-based solutions for restoration of the desiccating saline 

lakes. The application of the framework for restoration of Lake Urmia revealed that: 

 an increase in the Urmia basin air temperature close to 1.95˚C is projected by an 

ensemble of multi-GCMs by 2050 under RCP 4.5, compare to the base-line period 

(1960 - 1995); this increase is projected to be more extreme and close to 2.47 °C under 

RCP 8.5; 

 overall, a decrease in precipitation is projected for the Urmia basin. Under RCP 4.5 and 

RCP 8.5 GHGs emission scenarios, the average annual precipitation in the Urmia basin 

is expected to decrease by 2.7% and 11.6%, in the 2030 - 2050 period relative to the 

base-line period (1960 - 1995), respectively. 

 it is estimated that annually 4 cm salt has precipitated on the lake bed between 1997 

and 2010; 
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 the lake’s sub-surface gain has been 12.8% to 15.4% of the total inflow to the lake — 

nearly 2,861.3 Mm3 yr-1;  

 under RCP 4.5 and RCP 8.5 scenarios, the results of water balance over the lake’s area 

show that annually 3,648 Mm3 and 3,692 Mm3 surface water inflow is required for the 

complete restoration of the lake (to the depth of 1274.1 m) by 2050. These 

environmental water requirements are inputs for the third step of the framework; 

 to achieve the aims of inter-basin restoration, 78,700 ha and 114,826 ha reduction in the 

total irrigated area (438,900 ha) is required under RCP 4.5 and RCP 8.5 scenarios, 

respectively; 

 in the case of intra-basin restoration, these respective reductions are 95,600 ha and 

133,687 ha; 

 assuming that the reductions in irrigated lands will be converted to rain-fed systems or 

grasslands and depending on the type, speed, and amount of conversion, it is estimated 

that the proposed land use change strategy leads to a reduction in cumulative GHGs 

emissions ranging between 0.07 (0.05-0.09) Mt CO2 eq. and 1.55 (0.65-2.44) Mt CO2 

eq. 

 it is estimated that there is a potential for the annual release of 36,391 t of saline dust 

(particulate matters smaller than 10 μm) originated from the lake bed if its moisture 

falls under 5%; 

 if that soil moisture increases to 15%, the dust emissions would reduce to 3,342 t yr-1; 

 restoring the northern areas of Lake Urmia (areas above the highway) can mitigate 22% 

of the annual dust emissions originated from the lake bed while the areas below the 

main southern islands can prevent 39% of the dust emissions; 

 accordingly, restoration of the southern half of the lake is proposed as a short-term 

solution since it can prevent near to 77% of saline dust emissions originated from the 

Urmia lake bed; and 

 for restoration of the southern part to the target level of 1274.1 m, annually 1.83 km3 

(under RCP 4.5) and 1.86 km3 (under RCP 8.5) would be enough and the majority of 

these water requirements are currently provided by the southern supplying rivers. 
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5.2 Extent and severity of soil salinity/sodicity 

The following conclusions can be drawn from the analysis of the generated dataset on the extent 

and severity of the soil salinity/sodicity: 

 among the 43 environmental predictors, soil classes, depth from the surface, Fraction 

of Absorbed Photo-synthetically Active Radiation (FAPAR), and temperature of 

different soil layers were the most significant predictors for prediction of the soil 

salinity and sodicity; 

 globally 11.73 Mkm2 of soils have been salt-affected, i.e. their ECe is ≥ 4 dS m-1 and/or 

their ESP is ≥ 6% in at least three-fourths of the years between 1980 and 2018. Soil ECe 

of an area close to 5.9 Mkm2 have been ≥ 4 dS m-1 in at least three-fourths of the 1980 

- 2018 period while soil ESP of an area close to 9.18 Mkm2 have been ≥ 6% in at least 

three-fourths of the years of that period; 

 FAPAR is a better vegetation index compared to the Normalised Difference Vegetation 

Index (NDVI) for monitoring the salt-affected soils; 

 between 1980 and 2018, it is estimated that 164,900 km2 of the salt-affected soils are 

located in croplands; 

 globally, the outputs of the developed models reveal that the possibility of observing 

salt-affected soils in the 2000 - 2018 period is lower than the 1981 - 1999 period;  

 globally, the likelihood of reoccurrence of soils with ECe ≥ 4 dS m-1 in the 2000 to 2018 

period was 0.94 of the 1981 to 1999 period; for the soils with ESP ≥ 6%, this likelihood 

was 0.97; 

 between 1980 and 2018 and at the continental level, Asia (including the Middle East), 

Africa, Australia and Oceania, South America, North America, and Europe had the 

largest area of salt-affected soils, respectively; 

 at the country level, China, Australia, Kazakhstan, and Iran had the largest area of salt-

affected soils between 1980 and 2018; 

 in the same period, barren areas, open shrublands, and grasslands were the land cover 

types with the largest area of salt-affected soils; 

 among different forest types, evergreen broadleaf forests had the largest salt-affected 

area between 1980 and 2018; 

 deserts and xeric shrublands, followed by montane grasslands and shrublands, were the 

biome types with the largest area of salt-affected soils between 1980 and 2018; 
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 regions with arid climate and polar tundra were the climate zones with the highest level 

of the salt-affected soils in the same period; 

 annually ~9,466 km2 were added in the same period to the total area of soils with an 

ECe ≥ 4 dS m-1 in South America; the trend was not statically significant for the rest of 

the continents (p ≥ 0.05); 

 over the same period and at the continental level, the highest rate of increase in the total 

area of soils with an ESP ≥ 6% was estimated for Asia with ~5,616 km2 yr-1; Asia was 

followed by South America and North America with respective increase rates of ~1,813 

km2 yr-1 and ~1,652 km2 yr-1; the trend was not statically significant for the rest of the 

continents (p ≥ 0.05); 

 at the country level, the highest rates of annual increase in the total area of soils with 

an ECe ≥ 4 dS m-1 was estimated for Brazil, Peru, Sudan, Colombia, and Namibia; and 

 for sodicity (ESP ≥ 6%), the highest increase rates since 1980 were estimated for Iran, 

Saudi Arabia, Argentina, Afghanistan, and the USA. 

The provided statistics on spatio-temporal variability of salinity and sodicity emphasise 

the high dynamism involved in soil salinization processes and necessity for implementation of 

effective policy responses to control the human-induced portion of those processes. 

Additionally, the results show that soil salinity and sodicity was highly variable at different 

geographical levels between 1980 and 2018. The uses of these data include, but are not limited 

to, food production and security, climate impacts, and soil classification studies. 

5.3 Future of the soil salinity in drylands  

The following specific conclusions can be inferred from the outputs of the models predicting 

future soil salinity in drylands: 

 among the 14 predictors applied for developing the models, long-term annual 

precipitation frequency, the WRB soil classes, and long-term daily evapotranspiration 

are the most affecting predictors; 

 in the mid- and long-term futures, compared to the reference period (1961 - 1990), and 

under different scenario pathways including RCP 4.5, RCP 8.5, SSP 2-4.5, and SSP 5-

8.5, the analysis of the predictions indicate that the dryland areas of Mexico, southwest 

United States, South America, South Africa, and southern and Western Australia, and 

to a lesser degree, drylands of Morocco, Spain, and northern Algeria are the salinization 
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hotspots in response to variation in the key drivers of primary salinization used in this 

research; 

 in the mid- and long-term futures, relative to the reference period (1961 - 1990), a 

reduction is projected in the soil salinity of the drylands spread across the north western 

United States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan;  

 overall, the findings show that in response to the projected climate change, the increase 

in soil salinity will be more severe in the southern latitudes, especially below -20°; 

 under RCP 8.5 as the worst case scenario, Brazil, Namibia, and South Africa have the 

highest relative increase in the grid-cell mean values of soil salinity (1971 - 2100 

relative to 1961 - 1990); 

 under SSP 5-8.5, the countries with the highest relative increase in the grid-cell means 

of soil salinity are Botswana, South Africa, and Namibia, respectively; 

 at the continental level, relative to the average of 1904 - 1999 period and under the RCP 

8.5 or SSP 5-8.5 scenarios, predictions for the 2071 - 2100 period show an increasing 

trend in the total area of dryland soils with an ECe ≥ 2 dS m-1 for Australia and South 

America and a decreasing trend for Asia and Europe. 

5.4 Methodological limitations and future research directions 

5.4.1 Sustainable restoration of saline lakes 

The present study used the case of Lake Urmia in Iran to investigate the applicability of the 

conceptual proposed framework for eco-hydrological and sustainable restoration of desiccating 

saline lakes. The limitations and the need for further future research here can be categorised 

into two groups, the ones related to the case study (Lake Urmia) used for examining the 

applicability of the proposed framework and the ones related to the framework itself. In the 

following, first the data and methodological limitations encountered during the application of 

the framework for restoration of the Lake Urmia are discussed and then the future research 

directions for improvement of the proposed framework are presented. 

One of the major limitations during the application of the proposed framework for 

restoration of Lake Urmia was lack of reliable data for predictive calculations. For calculation 

of the available surface water within each basin, the run-off ratio was used while there are more 

advanced physical-based models for calculation of the run-off. However, these models needs 

a lot of detailed data of soil and landscape which were not available for Lake Urmia river 

basins. High resolution data of water uptakes by municipal and industrial sectors were not also 
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available and these were calculated based on the average water usage per capita. There was no 

reliable data on the sewage water that returns to the system and accordingly, grey water was 

not considered in the calculations. A key parameter for application of the framework was the 

evaporation rate from the surface area of Lake Urmia which was calculated indirectly in the 

present study. Field measurements of the evaporation rate from the lake area can considerably 

improve the downscaling of the GCMs outputs and decrease the uncertainty in the estimates of 

the annual water inflow required for restoration of Lake Urmia. For the case of partial 

restoration, the vertical dust fluxes were calibrated using the field or experimental data 

available from other saline lakes as such data were not available for Lake Urmia bed. 

Only 14 major crops in Urmia basin were considered in the land use/cropping 

optimisation and subject to data availability, other crops can be added to the analysis. 

Additionally, the required annual water for restoration of Lake Urmia was calculated assuming 

that target water level is 1274.1 m above mean sea level. This is based on the analysis of 

Abbaspour and Nazaridoust (2007) who estimated that the water salinity of the lake reduces to 

240 g L-1 at this water level, and this salinity is tolerable by Lake Urmia’s brine shrimp. 

However, there are a lot of uncertainties in the salinity that brine shrimp can tolerate (Agh 

2007). Also it is very difficult to ensure that the salinity of Lake Urmia falls below 240 g L-1 at 

that water level as there are a huge amount of salt already precipitated on the lake bed which 

can dissolve in the lake water and increase the salinity.  

  Subject to data availability, the proposed framework is mainly applicable to the basins 

where human actions are the main cause of desiccation. The proposed framework for 

sustainable restoration of saline lakes also can be improved in the future research. The temporal 

resolution considered in the proposed framework was annual which means that seasonal 

variations are not taken into account. Also the analysis was conducted at the river basin level 

and subject to data availability, finer spatial resolutions, e.g. sub-basin can be considered for 

restoration. The proposed framework was based on single constant water level for estimation 

of the annual water required for restoration by supplying rivers. In a more realistic situation, a 

range of target water levels can be determined based on the social, economic, and 

environmental services provided by the saline lake. Also in the proposed framework, reduction 

of the upstream water uptake was majorly based on land use change in agricultural sector and 

other initiatives for decreasing the water consumption were not considered. Reducing the water 

evaporation from the soil/lake surface or transferring more refined wastewater into the lake are 

other solutions for reducing the water usage and can be considered in the framework. Also the 
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framework can involve more socio-economic aspects for improving the agriculture-dependent 

livelihoods in saline lakes basins. For example, investing in and empowering the industrial 

activities in the saline lake basins can be a long-term substitution to compensate the revenue 

loss as result of the proposed land use change activities. However, how this can be strategically 

planned needs fundamental investigation. 

5.4.2 Predicting the extent, severity, and trends in soil salinity and sodicity 

The spatial and temporal resolution of the predictions made here can be improved. This 

needs environmental predictors with higher spatial and temporal resolutions.  

In the present study, ML algorithms were used for developing predictive models of soil 

salinity and sodicity. One of the limitations of the ML algorithms is extrapolation of the results 

to locations where enough representative data are not available for training the models. The 

data used for training in the current study are biased towards the agricultural lands and 

developing countries. Addition of more and more data sampled from all geographical regions 

can improve the certainty of the predictions made by models. Additionally, the accuracy and 

methods used by different laboratories for measuring the soil salinity and sodicity have not 

been constant over the time and this can negatively impact the accuracy of the predictions. 

Erroneous samples and noises can result in serious mistakes in the generated maps. This 

heterogeneity also exists in the vertical direction and more samples are available for the top 

soil horizons compared to the deeper soil layers. Developing more analytical models and 

approaches for estimation of the soil salinity and salinity at large spatial scales can eliminate 

the need for developing data-driven models and improve the accuracy of the results. 

In the present study, geographically explicit maps of uncertainty were not developed 

due to the computational load of the ML algorithms. In addition, the uncertainty that can be 

imposed by the lack of available data in the past periods is required to be quantified. As we 

move back, the number of available data for training the predictive models of soil salinity and 

sodicity decreases and this will impose uncertainty. Also it was not possible to quantify the 

error that propagates from the first part of the developed two-part predictive models to the 

second part.  

Furthermore, there is an urgent need to develop an independent dataset of measured 

values of soil salinity and sodicity. This dataset can be used as a benchmark for evaluating the 

predictive power of the trained models in the current study and also the other available datasets 

for soil salinity and sodicity. Additionally, it was difficult to compare the total area of salt-
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affected soils provided here by other references as their definitions of the saline and sodic soils 

are different. 

 Finally, socio-economic aspects were not considered in the present study. How soil 

salinization impacts on the drylands’ livelihoods can be monetised? The long-term economic 

costs of soil salinization can be a topic for future research studies. 
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Appendix 1 

Lake area-level-volume relationships 

 

Figure A1-1: The elevation map of the Lake Urmia bed. 

The volume of the whole Lake Urmia as a function of its water level (from mean sea level) can 

be expressed as:  

 2 2

1 1 1 2 2 2exp( (( ) / ) ) exp( (( ) / ) )     Volume a level b c a level b c   (A1.1) 

where 10 9

1 1 1 2 2 2 4.09 10 ;    1280;    4.802;     6.661 10 ;    1274;     3.141a b c a b c          

Eq. A1.1 with constant values listed below also can be used for estimation of the lake area as 

function of its water level. 

9 9

1 1 1 2 2 2  2.573 10 ;    1278;     2.281;    4.33 10 ;    1275;     5.578a b c a b c         

Moreover, similar relations of volume-level and area-level are derived in the case of 

dividing the lake into two parts. These relations are obtained for southern part of the lake which 

will be restored in the lake partial restoration scenario. Using 

10 9

1 1 1 2 2 2  3.441 10 ;    1284;    8.068;    1.714 10 ;    1271;    2.509a b c a b c            

in Eq. A1.1, the relation between the volume and level of the southern part of the lake can be 

obtained. Eq. A1.2 is also applied for calculation of the area of lake as a function of its water 

level.  
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2 2

11 11 11 22 22 22

2 2
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( (( ) / ) ) ( (( ) / ) ) ...

( (( ) / ) ) ( (( ) / ))

      

    

area a exp level b c a exp lev b c

a exp level b c a exp level b c
  (A1.2) 

where:  

9 9

11 11 11 22 22 22

9 8

33 33 33 44 44

  3.606 10 ;   1  278;    3.373;    1.539 10 ;   1  274;    2.095;  

  1.1 10 ;    1272;    1.395;   6.513 10 ;  44 1271;    0.8428.

a b c a b c

a b c a b c

       

       
 

Effect of Lake Urmia’s desiccation on the nearby environment 

A fixed number of 200,000 particles per hour was released from dust sources to compute the 

concentration and direction of dust storm. These particles originated from Lake Urmia bed, as 

a result of 5 hours wind blow on 24 March 2018. Emission rate was set to be equal to the 

vertical dust flux (F) as a function of wind speed, calculated from above (vertical dust 

parametrization). Gridded meteorological data from the output of Global Data Analysis System 

(0.5-deg, every three hours on the native GFS hybrid sigma coordinate system - data is 

available at  https://www.ready.noaa.gov/archives.php - and the same emission rate was 

applied to all defined point sources for the duration of the emission. The concentration grid 

resolution of the model was 0.5 × 0.5 degrees. A mean of 27 ensemble members (offset is one 

meteorological grid point in the horizontal and, 0.01 sigma units in the vertical direction) is 

calculated for 18 hours dispersion simulation. The particle speed of deposition was assumed to 

be 0.001 m s-1. 

Threshold friction velocity correction to moisture and roughness elements 

Soil moisture increases the threshold friction velocity by strengthening soil cohesion. Y. Shao 

and E. Jung (personal communication, 2009) parameterised the effect of soil moisture on 

various soil textures using an experimental study and expressed a relation for the soil moisture 

correction factor (fw) as follows 

 

1

1 ( )

w r

b

w r r

f for w w

f a w w for w w

 

   
  (A1.3) 

In above equation, w is the volumetric soil moisture, a and b are constants which depend 

on the soil type/texture, and wr is the threshold soil moisture. These parameters can be found 

in Y. Shao and E. Jung (personal communication, 2009). Non-erodible elements can affect *ftu

because they cover the soil surface, protecting it from erosion by reducing the wind momentum 

energy over the surface (Raupach, 1992). Here, the threshold friction velocity correction factor 

( f  ) proposed by Raupach (1992) and Raupach et al. (1993) is used for considering the effect 

of presence of roughness elements and is given by 

 1 1f m m         (A1.4) 

where  is the frontal area index or roughness density, m accounts for the non-uniformity of 

the surface stress,  is the ratio of basal to frontal area of the elements, and  is the ratio of the 

drag coefficient for a single roughness element to that of a surface without roughness elements. 

Raupach et al. (1993) suggested  ≈ 1,  ≈ 90, and m ≈ 0.5.  is a function of the fraction cover 

of non-erodible elements as follows 

https://www.ready.noaa.gov/archives.php
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 ln(1 )rc f      (A1.5) 

and c  is 0.35 (Shao et al., 1996). 

Salt mass balance 

Table A1-1: The salt mass balance over the period 1996 - 2010. 

Year 

Average water 

level of the lake 

(m) 

Lake water 

density (kg m-3) 

2D surface 

(km2) 

Volume 

(km3) 

Lake 

modified 

volume 

(km3) 

Salt height 

change on 

3D surface 

(m) 

1996 1277.88 1155.97 5721.61 33.71 33.79  

1997 1277.48 1166.13 5717.54 31.41 32.02 -0.007 

1998 1277.22 1175.34 5679.48 29.98 29.58 0.013 

1999 1275.92 1187.26 5005.78 23.06 22.78 0.113 

2000 1274.94 1250.73 4633.58 18.32 18.95 -0.082 

2001 1274.44 1309.00 4451.67 16.07 16.34 -0.060 

2002 1273.75 1332.60 4185.18 13.11 12.74 0.144 

2003 1273.61 1298.59 4126.75 12.51 12.69 0.065 

2004 1273.72 1323.41 4172.85 12.98 13.21 -0.087 

2005 1273.57 1325.92 4108.60 12.33 12.36 0.041 

2006 1273.18 1328.96 3996.50 10.79 11.30 0.057 

2007 1273.15 1329.88 3944.54 10.66 11.09 0.007 

2008 1272.58 1335.61 3653.32 8.47 87.36 0.134 

2009 1272.07 1346.63 3362.97 6.70  0.121 

2010 1271.68 1359.19 3098.89 5.43  0.141 
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Appendix 2 

Extended Data 

 

 

Figure A2-1: Validation of the predictive capability of the developed two-part models for global estimation 

of soil ECe and ESP. a and b: The relation between classes of known measurements (True class) and the Predicted 

class as a result of 10-fold cross validation (10-CV). Producer’s Accuracy shows the percentage of correct 

classifications relative to all classifications made by the classifier. User’s Accuracy indicates to what percentage 

the predictions of the classifier can represent reality. c and d: Binned scatter plots showing the relation between 

the measured data and predictions of the regression part for saline and sodic classes as a result of 10-CV. e and f: 

Comparison between measured values of ECe and ESP at the soil surface (0 - 30 cm) and the predicted values 

obtained using the model developed in the present study (R2 ECe = 0.83, R2 ESP = 0.86) and those obtained from 

the Harmonised World Soil Database (HWSD; R2 ECe = 0.12, R2 ESP = 0.26). A total of 9,293 and 30,491 

measured data points are used in e and f. 
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Figure A2-2: Catchment-scale average of the soil salinity predicted by ML-based models developed in the 

present study versus the dryness index (the ratio of long-term potential evapotranspiration to rainfall) for 

Australia, Africa, and North America. 
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Figure A2-3: Predictor importance and partial dependency plots. a and b: The significance of predictors for 

regression models over the saline and sodic classes. c to h: The relation of the top 12 important predictors with 

predicted values of ECe. i to n: The relation of the top 12 important predictors with predicted values of ESP. 

NDVI: Normalised Difference Vegetation Index; PDSI: Palmer Drought Severity Index; FAPAR:  Fraction of 

Absorbed Photo-synthetically Active Radiation; C3ann.: C3-annual crops; C3per.: C3-perennial crops. For the 

full name and properties of the used predictors, see Table A2-1.  
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Figure A2-4: Global distribution of the change in likelihood (θ) of surface soils (0 - 30 cm) with an ECe ≥ 4 

dS m-1 and ESP ≥ 6% in the 2000 to 2018 period, relative to the 1981 - 1999 period. A positive θ indicates 

that the likelihood has increased and a negative value shows that it has decreased. Maps are delimited to -55 and 

55 latitudes and higher latitudes are shown only for improving the visualisation of the maps. 
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Figure A2-5: Profiles data distribution used as input for training the two-part models. 

 

 

Figure A2-6: Average of annual predictions for surface soil (0 - 30 cm) ECe and ESP between 1980 and 

2018. 
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Figure A2-7: Standard deviation of annual predictions for ECe and ESP between 1980 and 2018.  
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Table A2-1: Static predictors used for training the two-part models. 

Static predictors 

Predictor Pre-processing Source Projection Extent Resolution 

Sample’s upper depth (cm) 

- 
Original soil datasets 

 
- - - 

Sample’s lower depth (cm) 

Elevation (m) Projected the original DEMs to 

the World Mercator x- y- 

coordinates system (at 259.511 m 

resolution) by the cubic 

convolution method to calculate 

predictors’ values in SAGA GIS 

(elevation only included re-

projection). SRTM Digital 

Elevation Database 

v4.1 

GCS WGS 

1984 

180W-170E, 

60S-60N 

 

0.00208˚ 

Plan curvature 

Profile curvature 

Slope (degrees) 

Slope length (m) 

Projected the original DEMs to 

the World Mercator x- y- 

coordinates system (at 1,000 m 

resolution) by the cubic 

convolution method for reducing 

computational time in SAGA 

GIS. 
Terrain Ruggedness Index (TRI) 

Aspect (degrees) - 

Fertiliser input rate for 

C3-annual and perennial crops 

(kg nitrogen ha-1 y-1). C3 is one 

of the pathways that plants use to 

fix carbon during the process of 

photosynthesis. For C3 plants, 

the first carbon compound 

produced during photosynthesis 

contains three carbon atoms. 

The original annual .nc layers 

were converted to geo-tiff rasters 

and per-cell average of rasters 

between 1980 and 2018 was 

calculated using the ArcGIS “cell 

statistics” tool. 

Land use 

Harmonization 

(LUH2 v2h_high) 

GCS WGS 

1984 

180W-180E, 

90S-90N 
0.25˚ 

World Reference Base soil 

classes (120 classes) 
- 

ISRIC-SoilGrids250 
GCS WGS 

1984 

180W-180E, 

62S-87.37N 
0.00208˚ 

Soil clay content (%) 

Per-cell average of five standard 

soil depths: 0, 15, 30, 60, and 

100 cm was calculated using the 

trapezoidal rule and ArcGIS “cell 

statistics” tool. 

Soil silt content (%) 

Soil sand content (%) 

Parent material lithological 

classes (16 classes) 

The original shape file was first 

converted to a geo-tiff format and 

then re-projected to the 

 GCS WGS 1984  

(0.01055˚ resolution). 

GLiM 
World 

Eckert IV 

Left: 

-16,653,453.7 m 

Right: 16,653,453.7 m 

Bottom: 

-8,460,600.9 m 

Top: 

8,376,733.0 m 

Polygon 

Water table depth (m) 

Raster datasets for different 

continents were merged into a 

single global one. 

Fan et al. (2013) 
GCS WGS 

1984 

180W-180E, 

53S-84N 
0.00833˚ 

Topographic Index 
The original .nc file was 

converted to a geo-tiff raster. 

Marthews et al. 

(2014) 

GCS WGS 

1984 

180W-180E, 

56.35S-86.09N 
0.00208˚ 

Average soil and sedimentary-

deposit thickness (m) 
- Pelletier et al. (2016) 

GCS WGS 

1984 

180W-180E, 

60S-90N 
0.00833˚ 

Average plant rooting depth (m) 

The original dataset was geo-

referenced to the GCS WGS 

1984 coordinates system by the 

nearest neighbour method. 

ISLSCP II 

Ecosystem Rooting 

Depths 

(95ecosys_rootdepth) 

Undefined 
180.25W-179.75E, 

90.25S-89.75N 
0.5˚ 
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Table A2-1 cont.: Dynamic predictors used for training the two-part models. 

Dynamic predictors 

Predictor 
Averaging 

Method 
Source Projection Extent 

Spatial 

resolution 
Pre-processing 

Precipitation 

(mm yr-1) 
Decadal 

average of 

yearly 

accumulations 

CRU TS v. 4.03 
GCS WGS 

1984 

180W-180E, 

90S-90N 

0.5˚ 

 

Original monthly .nc files were 

converted to geo-tiff layers and 

decadal per-cell averages were 

computed in ArcGIS using the 

“cell statistics” tool. 

Potential  

evapotranspiration 

(mm yr-1) 

Diurnal temperature 

range (˚C) 

Decadal 

average of 

monthly means 

Average air 

temperature (˚C) 

Maximum air 

temperature (˚C) 

Minimum air 

temperature (˚C) 

Actual  

evapotranspiration 

(mm yr-1) 

Five-year 

average of 

yearly 

accumulations TerraClimate 
GCS WGS 

1984 

180W-180E, 

90S-90N 
0.0416˚ 

Original monthly .nc files were 

converted to geo-tiff layers and 

five-year per-cell averages were 

computed in ArcGIS using the 

“cell statistics” tool. 

Water deficit 

(mm yr-1) 

PDSI Five-year 

average of 

monthly values 
Root-zone soil 

moisture (mm) 

Soil surface (2-5 cm) 

moisture (percentage 

of total saturation), 

remotely-sensed by 

satellites 

Yearly mean 

Soil moisture 

gridded data 

(v201812.0.1) 

Climate Data Store 

GCS WGS 

1984 

180W-180E, 

90S-90N 
0.25˚ 

Original monthly (combined 

passive and active sensor type) .nc 

files were converted to geo-tiff 

layers and annual per-cell averages 

were computed in ArcGIS using 

the “cell statistics” tool. 

Evaporative stress 

factor (S) 

GLEAM v3.3 

Datasets 

GCS WGS 

1984 

180W-180E, 

90S-90N 
0.25˚ 

Original daily .nc files were 

converted to geo-tiff layers and 

annual per-cell averages were 

computed in ArcGIS using the 

“cell statistics” tool. 

Two-band Enhanced 

Vegetation Index 

(EVI2) 

NASA (LP DAAC) 

Vegetation Index 

and Phenology 

Vegetation Indices, 

VIP30 v. 004 

(Note for 2014-2018, 

we used NDVI and 

EVI from 

MOD13C2 Version 

6 product from Terra 

MODIS) 

GCS 

Unknown 

datum 

based upon 

the Clarke 

1866 

ellipsoid 

180W-180E, 

90S-90N 
0.05˚ 

EVI2 (and/or EVI) and NDVI sub-

datasets were extracted from the 

original monthly .hdf files, re-

projected to the GCS WGS 1984 

using the bilinear interpolation 

method, and saved as geo-tiffs. 

Annual per-cell averages of EVI2 

(and/or EVI) were then calculated 

in ArcGIS using the “cell 

statistics” tool. 

Normalised 

Difference 

Vegetation Index 

(NDVI) 

Fraction of 

Absorbed Photo-

synthetically Active 

Radiation (FAPAR) 

NOAA (National 

Oceanic and 

Atmospheric 

Administration) 

Climate Data Record 

(CDR) of Advanced 

Very High 

Resolution 

Radiometer 

(AVHRR) Surface 

Reflectance 

GCS WGS 

1984 

180W-180E, 

90S-90N 
0.05˚ 

Original daily .nc files were 

converted to geo-tiffs. Annual per-

cell averages of FAPAR and LAI 

were then calculated from the daily 

raster layers in ArcGIS using the 

“cell statistics” tool. 
Leaf Area Index 

(LAI) 

Wind speed 

(m s-1) 

ERA5 re-analysis 

monthly averages 

adopted from 

Climate Data Store 

 

GCS WGS 

1984 

0.125W-

359.875E, 

90.125S-

90.125N 

0.25˚ 

Original Monthly .nc files were 

converted to geo-tiffs and re-

projected to the GCS WGS 1984 to 

change the extent of the rasters 

(180W-180E, 90S-90N was the 

desirable extent). Annual per-cell 

averages were then calculated from 

daily raster layers in ArcGIS using 

the “cell statistics” tool. 

Soil skin 

temperature (˚K) 

Soil layer one (0 -7 cm) 

temperature (˚K) 

Soil layer two (7-28 cm) 

temperature (˚K) 

Soil layer three (28-100 

cm) temperature (˚K) 

Soil layer four (100-289 

cm) temperature (˚K) 

Land cover 

(16 classes) 

1980 - 1996, 

attributed to the 

1993 land cover 

layer.  

Global Land Cover 

Characteristics Data 

Base Version 2.0 

GCS WGS 

1984 

180W-180E, 

90S-90N 
0.00833˚ 

The International Geosphere-

Biosphere Programme (IGBP) land 

cover legend was chosen since it 

was available in both datasets.  

IGBP sub-datasets were extracted 

from the original .hdf files and 

saved as geo-tiffs. Layers with the 

sinusoidal coordinates system were 

re-projected to the GCS WGS 1984 

using the nearest neighbour 

method. 

1997 - 2018, 

attributed to the 

layer with the 

nearest year of 

acquisition. 

Collection 6 MODIS 

Land Cover 

(MCD12Q1 and 

MCD12C1) products 

for years 2000, 2006, 

2014, and 2018 

Unknown 

datum 

based upon 

the custom 

spheroid 

sinusoidal 

Left: 
-20,015,108.8 m 

Right: 
20,015,107.7 m 

Bottom: 

-10,007,554.1 m 

Top: 
10,007,554.1 m 

463.31 

meter 
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Table A2-2: Accuracy metrics and the results of hyperparameter optimisation for different parts of the 

fitted two-part models. 

 

 

Hyperparameters 

(Breiman 2001) 
Method 

Number of 

learning cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

Split 

Criterion 

E
C

e
 (

d
S

 m
-1

) 

Classification 

LBa - 34.76 0.32 4.97 9,886.65 5.44 - 

UBb - 56.51 0.55 39.58 18,553.18 18.44 - 

Best AdaBoostM1 50.00 0.47 21.00 2,664.00 - gdi 

R
eg

re
ss

io
n

 

None 

(0 - 2) c 

LB - 61.37 0.09 5.97 9,716.32 11.34 - 

UB - 97.83 0.13 12.60 15,242.99 18.04 - 

Best LSBoost 80.00 0.07 8.00 23,408.00 8.00 - 

Saline 

(2 - 60) 

LB - 105.78 0.08 4.60 5,037.27 8.80 - 

UB - 166.89 0.13 11.10 8,632.70 15.96 - 

Best LSBoost 366.00 0.05 3.00 9,365.00 1.00 - 

Classification accuracy 

metrics 

Binomial 

deviance loss 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCCd MOFe 

Classification 

LB 0.192 0.120 88.338 0.922 0.897 0.743 0.118 

UB 0.218 0.124 88.876 0.927 0.909 0.753 0.124 

Best 0.187 0.117 89.650 0.921 0.924 0.767 0.109 

Regression accuracy 

metrics 
RMSE (log) MAE (log) NSEf (log) RMSE MAE NSE MOF 

R
eg

re
ss

io
n

 

None 

(0 - 2) 

LB 0.069 0.047 0.711 0.294 0.189 0.640 0.005 

UB 0.070 0.048 0.718 0.297 0.192 0.648 0.005 

Best 0.068 0.047 0.727 0.289 0.186 0.659 0.005 

Saline 

(2 - 60) 

LB 0.190 0.129 0.730 5.230 2.501 0.703 0.037 

UB 0.193 0.132 0.738 5.318 2.551 0.713 0.038 

Best 0.187 0.127 0.747 5.119 2.451 0.724 0.037 

 Hyperparameters 

(Breiman 2001) 
Method 

Number of 

learning cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

Split 

Criterion 

E
S

P
 (

%
) 

Classification 

LB - 75.80 - 1.27 80,234.76 3.42 - 

UB - 122.04 - 1.74 121,561.84 6.81 - 

Best Bag 208.00 - 1.00 80,815.00 2.00 deviance 

R
eg

re
ss

io
n

 

None 

(0 - 1) 

LB - 220.45 0.04 6.80 19,872.75 2.03 - 

UB - 313.56 0.06 11.33 45,713.13 2.80 - 

Best LSBoost 378.00 0.03 12.00 95,924.00 2.00 - 

Sodic 

(1 – 

98.59) 

LB - 196.73 0.06 4.80 34,059.28 2.27 - 

UB - 281.72 0.09 11.75 53,918.61 2.93 - 

Best LSBoost 295.00 0.03 1.00 36,274.00 2.00 - 

Classification accuracy 

metrics 

Binomial 

deviance loss 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCC MOF 

Classification 

LB 0.226 0.148 85.053 0.851 0.883 0.697 0.152 

UB 0.229 0.149 85.248 0.854 0.885 0.701 0.154 

Best 0.229 0.144 85.593 0.859 0.885 0.708 0.149 

Regression accuracy 

metrics 
RMSE (log) MAE (log) NSE (log) RMSE MAE NSE MOF 

R
eg

re
ss

io
n

 

None 

(0 - 1) 

LB 0.071 0.046 0.556 0.226 0.142 0.530 0.005 

UB 0.071 0.046 0.560 0.227 0.144 0.533 0.005 

Best 0.071 0.046 0.563 0.225 0.142 0.537 0.005 

Sodic 

(1 – 

98.59) 

LB 0.231 0.160 0.740 6.924 2.683 0.705 0.056 

UB 0.233 0.162 0.744 7.030 2.726 0.714 0.057 

Best 0.231 0.158 0.744 6.772 2.616 0.726 0.055 

a Lower band 
b Upper band 
c Minimum and maximum of the training set 
d Mathews Correlation Coefficient 
e Minimum observed objective function 
f Nash-Sutcliffe model efficiency coefficient 
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Table A2-3: Total area of the salt-affected soils at the country level. 

Country Salt-affected area (Mha) Country Salt-affected area (Mha) 

China 211.748 Tunisia 2.163 

Australia 131.407 South Africa 1.995 

Kazakhstan 93.312 Colombia 1.657 

Iran 88.336 Kuwait 1.573 

Saudi Arabia 68.191 Eritrea 1.494 

Algeria 63.932 Turkey 1.391 

Mongolia 42.981 Malaysia 1.265 

Turkmenistan 36.992 Tajikistan 1.228 

Pakistan 36.195 Indonesia 1.227 

Iraq 30.544 Botswana 1.125 

Uzbekistan 27.355 Qatar 1.038 

Libya 21.535 Thailand 1.019 

Mexico 21.073 Angola 0.79017 

United States 20.747 Myanmar 0.75299 

Afghanistan 20.379 Israel 0.65719 

Niger 17.341 Philippines 0.65335 

Argentina 17.244 Nigeria 0.61718 

Mauritania 17.024 Azerbaijan 0.59546 

Chile 15.758 Djibouti 0.52259 

Western Sahara 15.254 Papua New Guinea 0.39629 

Chad 14.761 Venezuela 0.36037 

Sudan 13.202 Senegal 0.30626 

Somalia 13.114 Bahamas 0.27594 

Syria 11.647 Kyrgyzstan 0.25453 

Oman 10.495 Vietnam 0.21236 

Mali 9.863 Burkina Faso 0.19560 

Namibia 8.605 Guyana 0.19282 

Peru 7.782 Republic of Congo 0.18667 

Morocco 7.295 Ecuador 0.17812 

India 6.938 North Korea 0.14791 

Jordan 6.768 Madagascar 0.12221 

Egypt 6.695 Netherlands 0.10879 

Yemen 6.545 Tanzania 0.10358 

Kenya 5.261 Palestine 0.10204 

Brazil 4.998 Gabon 0.10049 

Bolivia 4.681 Cuba 0.09567 

Ethiopia 3.599 Cambodia 0.09222 

United Arab Emirates 2.966 Mozambique 0.08535 

Democratic Republic of the Congo 2.230 Japan 0.06442 
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Table A2-4: Total area of the salt-affected soils at the climate, biome, and land cover levels. For the full name 

of the climate zones see Figure A2-12. 

Climate Salt-affected area (Mha) Biome Salt-affected area (Mha) 

BWh 594.398 Deserts and Xeric Shrublands 928.225 

Bwk 339.908 Montane Grasslands and Shrublands 86.454 

Bsk 103.596 
Tropical and Subtropical Grasslands, Savannas and 

Shrublands 
52.459 

ET 55.528 Temperate Grasslands, Savannas and Shrublands 38.064 

BSh 43.330 Tropical and Subtropical Moist Broadleaf Forests 16.420 

Af 9.513 Mediterranean Forests, Woodlands and Scrub 15.019 

AW 4.718 Temperate Broadleaf and Mixed Forests 14.220 

Csa 4.461 Flooded Grasslands and Savannas 10.305 

Am 4.445 Temperate Conifer Forests 5.514 

Cfa 3.015 Tropical and Subtropical Dry Broadleaf Forests 2.734 

Cwa 1.965 Mangroves 1.538 

Dfb 1.940 Tropical and Subtropical Coniferous Forests 0.195 

CSb 1.346  

Dwc 1.142 Land cover Salt-affected area (Mha) 

Cfb 1.112 Barren 536.109 

Dfa 0.961 Open Shrublands 144.120 

Dfc 0.777 Grasslands 77.372 

Dwa 0.506 Croplands 16.490 

Dsb 0.480 Evergreen Broadleaf Forests 10.164 

Cwb 0.419 Savannas 0.343 

Dsa 0.399 Woody Savannas 0.151 

As 0.291 Mixed Forests 0.114 

Dwb 0.279 Evergreen Needleleaf Forests 0.097 

Cwc 0.237 Deciduous Broadleaf Forests 0.020 

Dsc 0.090 Closed Shrublands 0.007 

EF 0.007 

Csc 0.006 

Cfc 0.004 
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Frequency distribution of cell-level likelihoods and trends 

 

Figure A2-8: Frequency distribution of the cell-level likelihood of soils with an ECe ≥ 4 dS m-1 between 1980 

and 2018 at each land cover type. Black and red dotted lines indicate the mean and median of predictions, 

respectively. 

 

Figure A2-9: Frequency distribution of the cell-level likelihood of soils with an ESP ≥ 6% between 1980 

and 2018 at each land cover type. Black and red dotted lines indicate the mean and median of predictions, 

respectively. 
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Figure A2-10: Frequency distribution of the cell-level likelihood of soils with an ECe ≥ 4 dS m-1 between 

1980 and 2018 at each biome. Black and red dotted lines indicate the mean and median of predictions, 

respectively. 

 

Figure A2-11: Frequency distribution of the cell-level likelihood of soils with an ESP ≥ 6% between 1980 

and 2018 at each biome. Black and red dotted lines indicate the mean and median of predictions, respectively.  
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Figure A2-12: Frequency distribution of the cell-level likelihood of salt-affected soils at each climate 

between 1980 and 2018. a and b: Soils with ECe ≥ 4 dS m-1. c and d: Soils with ESP ≥ 6%. Heat map charts show 

the count of data within each climate zone. Bar charts show the mean of likelihoods within each climate zone.  
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Figure A2-13: Frequency distribution of the cell-level trends in variation of ECe (p < 0.05) between 1980 

and 2018 for each land cover type. Black and red dotted lines indicate the mean and standard deviation of the 

calculated trends.  

 

Figure A2-14: Frequency distribution of the cell-level trends in variation of ESP (p < 0.05) between 1980 

and 2018 for each land cover type. Black and red dotted lines indicate the mean and standard deviation of the 

calculated trends.  
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Figure A2-15: Frequency distribution of the cell-level trends in variation of ECe (p < 0.05) between 1980 

and 2018 for each biome. Black and red dotted lines indicate the mean and standard deviation of the calculated 

trends, respectively.  

 

Figure A2-16: Frequency distribution of the cell-level trends in variation of ESP (p < 0.05) between 1980 

and 2018 for each biome. Black and red dotted lines indicate the mean and standard deviation of the calculated 

trends, respectively.  
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Figure A2-17: Cell-level trends in variation of soil salinity and sodicity for each climate zone between 1980 

and 2018 (p < 0.05). a and b: Frequency distribution, mean, and standard deviation (SD) of the cell-level trends 

in vriation of  ECe. c and d: Frequency distribution, mean, and standard deviation of the cell-level trends in 

variation of ESP. Heat map charts show the count of data within each climate zone. See Figure A2-12 for the full 

name of each climate zone.  
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Model training 

Table A2-5: The significance of predictors for classification and regression models over the training sets 

and saline/sodic classes. Importance values are normalised between 0 and 1 and the higher the value, the more 

the significance. See Table A2-1 for the full name of the predictors. 

 

Predictor Min Max Mean Median 
Standard 

deviation 

Importance for ECe Importance for ESP 

Classification 
Regression 

(saline) 
Classification 

Regression 

(sodic) 

Sample’s upper depth  0.00 3,277.00 60.78 41.00 88.52 0.837 0.287 0.559 0.450 

Sample’s lower depth  0.00 3,292.00 86.54 66.00 95.66 1.000 0.669 0.641 0.519 

Elevation  -315.00 5,158.00 595.06 310.00 643.58 0.216 0.239 0.298 0.157 

Plan curvature -0.34 0.33 0.00 0.00 0.02 0.253 0.071 0.186 0.081 

Profile curvature -0.31 0.39 0.00 0.00 0.02 0.269 0.213 0.285 0.137 

Slope 0.00 70.00 6.58 3.00 9.16 0.064 0.154 0.156 0.056 

Slope length 0.00 75,083.30 1,007.75 0.00 2,286.11 0.080 0.000 0.047 0.023 

TRI 0.00 471.04 23.54 11.95 34.69 0.235 0.219 0.235 0.137 

Fertiliser input for C3 

annual crops 
0.00 329.87 70.06 81.09 25.80 0.000 0.320 0.000 0.012 

Fertiliser input for C3 

perennial crops 
0.00 415.51 36.87 0.00 70.47 0.011 0.071 0.000 0.000 

Water table depth 0.00 466.07 23.75 13.43 32.18 0.244 0.140 0.171 0.110 

Aspect 0.00 359.00 178.64 180.00 106.01 0.293 0.277 0.186 0.081 

Topographic index -1.85 19.91 6.17 5.95 2.29 0.318 0.127 0.186 0.069 

Soil clay content 0.00 90.00 23.11 21.00 11.80 0.347 0.568 0.217 0.168 

Soil silt content 0.00 82.00 40.12 40.00 17.92 0.166 0.077 0.204 0.094 

Soil sand content 0.00 98.00 36.74 34.00 19.85 0.167 0.274 0.189 0.096 

Soil-sedimentary 

thickness 
0.00 50.00 18.36 5.00 20.79 0.066 0.017 0.068 0.030 

Average rooting depth 0.40 4.50 1.38 1.20 0.51 0.067 0.186 0.106 0.062 

WRB soil classes - - - - - 0.996 0.563 1.000 1.000 

Parent material classes - - - - - 0.146 0.177 0.112 0.044 

Diurnal temperature range 4.99 21.00 12.87 12.43 2.17 0.241 0.263 0.304 0.135 

Precipitation 0.84 4,475.21 897.53 966.85 423.09 0.201 0.240 0.291 0.145 

Average temperature -5.17 29.76 14.06 13.47 5.84 0.107 0.101 0.247 0.112 

Maximum temperature 2.16 37.19 20.52 19.77 5.80 0.123 0.158 0.252 0.100 

Minimum temperature -12.64 24.13 7.64 7.29 6.09 0.117 0.092 0.201 0.077 

Root-zone soil moisture 0.00 510.98 68.98 65.17 57.09 0.209 0.094 0.263 0.117 

PDSI -6.37 7.64 0.32 0.26 1.47 0.387 0.024 0.271 0.101 

Soil surface moisture  

(2-5 cm) 
0.04 0.39 0.24 0.25 0.06 0.287 0.207 0.300 0.161 

Evaporative stress factor 0.00 1.00 0.77 0.86 0.20 0.231 0.314 0.169 0.073 

EVI2 -0.0737 0.5721 0.2849 0.3035 0.0962 0.284 0.240 0.230 0.112 

NDVI -0.2149 0.8877 0.4843 0.5167 0.1610 0.187 0.099 0.165 0.078 

FAPAR 0.0005 0.8560 0.4059 0.4272 0.1327 0.191 1.000 0.404 0.215 

LAI 0.0009 5.6356 1.2700 1.2189 0.7138 0.160 0.065 0.229 0.128 

Wind speed 0.84 7.13 3.14 3.08 0.81 0.293 0.118 0.317 0.143 

Soil surface (skin) 

temperature 
263.94 306.81 287.46 286.73 6.29 0.080 0.208 0.290 0.127 

Soil’s layer one 

temperature 
270.27 307.15 288.00 286.61 5.93 0.061 0.187 0.271 0.122 

Soil’s layer two 

temperature 
270.01 306.84 287.91 286.52 5.88 0.030 0.420 0.359 0.150 

Soil’s layer three 

temperature 
269.92 306.68 287.90 286.52 5.86 0.005 0.396 0.348 0.169 

Soil’s layer four 

temperature 
269.79 306.35 287.90 286.57 5.85 0.034 0.593 0.334 0.160 

Potential 

evapotranspiration 
330.80 2,450.19 1,205.92 1,148.09 280.03 0.187 0.116 0.338 0.164 

Water deficit 0.00 2,435.30 503.90 285.81 442.76 0.201 0.343 0.264 0.110 

Actual evapotranspiration 0.00 1,807.37 704.41 750.90 274.72 0.287 0.011 0.279 0.145 

Land cover classes - - - - - 0.306 0.057 0.178 0.095 
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Figure A2-18: Frequency distribution of the input training data. a and d: Histograms of the measured values 

of ECe and ESP used for training the two-part models, respectively. Black and red dotted lines represent the mean 

and median of data, respectively. b: Histograms of the lower and upper depths for measured ECe samples used in 

the training set. c, Frequency distribution of the measured ECe values versus depth. e: Histograms of the lower 

and upper depths for measured ESP samples used in the training set. f: Frequency distribution of the measured 

ESP values versus depth. g: Number of measured samples per year used in training process of the two-part models.  
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Table A2-6: Speed, interpretability, and flexibility of MATLAB built-in classification and regression ML 

algorithms for training different parts of the two-part predictive models. Information on the interpretability 

and flexibility are adopted from the MATALB ML toolbox user guide. 

Classifier 

ECe classification ESP classification 

Interpretability Flexibility Accuracy 

(%) 

Training time 

(s) 

Accuracy 

(%) 

Training time 

(s) 

T
re

e
 

Fine 74.3 9 68.8 15 Easy High 

Medium 72.1 8 66.5 13 Easy Medium 

Coarse 67.7 7 64.0 10 Easy Low 

Logistic Regression 72.1 86 68.2 480 Easy Low 

N
ai

v
e 

B
ay

es
 

Gaussian Naive 56.6 9 64.3 12 Easy Low 

Kernel Naive 71.2 487 64.9 8,240 Easy Medium 

S
u

p
p

o
rt

 V
ec

to
r 

M
ac

h
in

es
 Linear 71.2 406 67.8 13,277 Easy Low 

Quadratic 80.1 838 73.4 58,762 Hard Medium 

Cubic 85.7 1,897 78.6 77,690 Hard Medium 

Fine Gaussian 87.0 789 83.8 19,325 Hard High 

Medium Gaussian 81.2 283 76.2 13,408 Hard Medium 

Coarse Gaussian 72.4 315 69.2 10,044 Hard Low 

E
n

se
m

b
le

 Boosted Trees 75.2 35 69.6 160 Hard Medium to high 

Bagged Trees 88.6 31 84.2 176 Hard High 

RUSBoosted Trees 69.6 31 66.4 204 Hard Medium 

Regression Model 

ECe Regression ESP Regression 

Interpretability Flexibility 
RMSE NSE MAE 

Training 

time (s) 
RMSE NSE MAE 

Training 

time (s) 

L
in

ea
r 

Linear 0.30 0.33 0.24 11 0.39 0.25 0.31 16 Easy Very low 

Interaction 53.83 < 0 6.13 445 0.49 < 0 0.27 4,597 Easy Low 

Robust 0.30 0.32 0.23 24 0.39 0.24 0.31 149 Easy Very low 

Stepwise Not completed in 24 hours Not completed in 24 hours Easy Low 

T
re

e
 

Fine 0.25 0.53 0.17 7 0.34 0.44 0.24 106 Easy High 

Medium 0.26 0.51 0.18 6 0.34 0.44 0.25 18 Easy Medium 

Coarse 0.27 0.45 0.20 5 0.35 0.41 0.26 11 Easy Low 

S
u
p
p
o

rt
 V

ec
to

r 
M

ac
h

in
es

 

Linear 0.31 0.29 0.24 57 0.40 0.22 0.30 2,627 Easy Low 

Quadratic 0.26 0.49 0.19 133 0.36 0.37 0.27 7,905 Hard Medium 

Cubic 0.27 0.45 0.17 415 0.34 0.42 0.23 27,237 Hard Medium 

Fine Gaussian 0.22 0.65 0.15 62 0.27 0.65 0.19 3,711 Hard High 

Medium 

Gaussian 
0.25 0.53 0.18 51 0.33 0.47 0.24 2,495 Hard Medium 

Coarse 

Gaussian 
0.31 0.27 0.24 47 0.38 0.28 0.29 2,182 Hard Low 

E
n
se

m
b
le

 

Boosted Trees 0.28 0.41 0.22 11 0.37 0.31 0.29 53 Hard 
Medium to 

high 

Bagged Trees 0.22 0.64 0.16 17 0.27 0.63 0.20 104 Hard High 

G
au

ss
ia

n
  

Squared 

Exponential 
0.23 0.61 0.17 2,155 Not completed in 24 hours Hard Automatic 

Matern 5/2 0.24 0.57 0.15 26,648 Ditto Hard Automatic 

Exponential 0.20 0.69 0.14 3,393 Ditto Hard Automatic 

Rational 

Quadratic 
0.20 0.70 0.14 3,319 Ditto Hard Automatic 
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Table A2-7: Tuned hyperparameters and accuracy metrics for 30 classification models fitted to the ECe 

training set. The model with best MCC (Mathew’s Correlation Coefficient) was chosen for using in the final 

predictive two-part model of salinity. 

ECe classification 

No. 

Number of 

learning 

cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number 

of 

variables 

to sample 

Binomial 

deviance 

loss 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCC MOF 

1 23 0.266 3 1,703 - 0.192 0.117 89.298 0.925 0.914 0.761 0.114 

2 98 0.385 71 825 - 0.187 0.116 89.545 0.925 0.918 0.766 0.114 

3 107 - 1 25,989 10 0.226 0.117 88.814 0.931 0.899 0.754 0.117 

4 11 0.532 4 1,256 - 0.203 0.128 87.954 0.921 0.896 0.733 0.120 

5 10 0.008 7 3,541 - 0.306 0.138 85.881 0.931 0.852 0.701 0.152 

6 21 0.963 1 1,020 - 0.191 0.125 88.949 0.916 0.918 0.751 0.119 

7 18 - 2 26,939 5 0.227 0.122 88.177 0.929 0.890 0.741 0.122 

8 21 0.216 1 16,529 - 0.190 0.122 89.352 0.917 0.924 0.760 0.117 

9 96 0.477 7 18,762 - 0.135 0.121 89.082 0.920 0.915 0.755 0.115 

10 99 - 1 2,338 10 0.227 0.116 88.763 0.934 0.895 0.754 0.117 

11 44 0.077 4 32,789 - 0.193 0.120 89.287 0.920 0.919 0.759 0.114 

12 44 0.607 6 22,169 - 0.190 0.121 89.471 0.916 0.926 0.762 0.110 

13 50 0.474 21 2,664 - 0.187 0.117 89.650 0.921 0.924 0.767 0.109 

14 15 - 3 27,232 5 0.227 0.123 88.086 0.930 0.888 0.740 0.131 

15 74 0.028 6 24,562 - 0.196 0.121 88.424 0.929 0.895 0.746 0.120 

16 67 - 1 38,908 3 0.227 0.118 88.579 0.933 0.893 0.750 0.124 

17 19 0.703 11 24,248 - 0.192 0.126 88.842 0.915 0.918 0.749 0.120 

18 34 - 1 17,420 3 0.226 0.118 88.582 0.932 0.894 0.750 0.118 

19 12 - 2 27,493 4 0.227 0.128 87.621 0.926 0.885 0.729 0.130 

20 39 0.444 5 684 - 0.196 0.118 88.945 0.928 0.904 0.755 0.115 

21 50 0.191 16 11,886 - 0.189 0.119 89.352 0.922 0.918 0.761 0.113 

22 64 0.281 180 1,308 - 0.284 0.117 88.128 0.940 0.877 0.745 0.130 

23 63 - 1 2,615 30 0.226 0.117 88.849 0.931 0.899 0.755 0.117 

24 44 - 2 8,278 11 0.226 0.119 88.438 0.932 0.892 0.747 0.123 

25 89 0.904 2 154 - 0.199 0.121 88.400 0.930 0.893 0.746 0.114 

26 12 0.640 13 8,186 - 0.195 0.129 88.293 0.916 0.907 0.738 0.121 

27 10 0.422 1 22,855 - 0.193 0.126 88.854 0.916 0.917 0.749 0.120 

28 12 0.764 1 36,342 - 0.194 0.128 88.877 0.912 0.922 0.749 0.121 

29 45 0.481 4 2,039 - 0.136 0.124 88.812 0.919 0.913 0.749 0.116 

30 41 0.142 1 2,261 - 0.145 0.119 89.026 0.925 0.909 0.756 0.115 
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Table A2-8: Tuned hyperparameters and accuracy metrics for 30 regression models fitted to the non-saline 

class (ECe < 2 dS m-1). The model with best NSE (Nash-Sutcliffe model efficiency coefficient) was chosen for 

using in the final predictive two-part model of salinity. 

ECe regression non-saline 

No. 
Number of 

learning cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

RMSE 

(log) 

MAE 

(log) 

NSE 

(log) 
RMSE MAE NSE 

MOF 

× 104 

1 50 0.094 19 13,701 9 0.069 0.049 0.718 0.294 0.193 0.647 50.85 

2 110 0.034 1 7,603 10 0.070 0.047 0.714 0.296 0.188 0.644 50.35 

3 206 0.053 9 18,769 7 0.069 0.048 0.720 0.292 0.191 0.652 48.93 

4 29 0.224 10 20,978 16 0.070 0.048 0.710 0.297 0.191 0.642 50.97 

5 92 0.077 2 862 39 0.068 0.047 0.725 0.290 0.187 0.658 49.39 

6 60 0.206 3 701 42 0.068 0.047 0.727 0.289 0.188 0.659 50.13 

7 155 0.035 24 6,852 19 0.068 0.048 0.727 0.290 0.188 0.657 48.24 

8 66 0.067 1 18,230 9 0.069 0.047 0.718 0.295 0.186 0.646 49.72 

9 28 0.134 6 9,724 8 0.069 0.048 0.720 0.294 0.189 0.648 50.03 

10 59 0.068 4 11,243 7 0.069 0.046 0.723 0.292 0.185 0.653 48.35 

11 21 0.196 1 18,079 5 0.074 0.050 0.680 0.310 0.198 0.609 51.51 

12 127 0.035 27 2,023 18 0.069 0.049 0.718 0.295 0.193 0.646 50.44 

13 56 0.066 3 23,331 8 0.069 0.046 0.723 0.292 0.184 0.652 49.12 

14 28 0.133 16 23,402 17 0.070 0.048 0.711 0.296 0.190 0.642 49.37 

15 71 0.063 6 17,945 10 0.068 0.046 0.725 0.291 0.185 0.654 49.60 

16 58 0.114 1 517 16 0.071 0.050 0.705 0.298 0.196 0.637 49.54 

17 33 0.151 2 18,453 8 0.070 0.050 0.712 0.297 0.198 0.640 48.50 

18 45 0.077 5 1,993 26 0.069 0.047 0.719 0.294 0.187 0.647 48.86 

19 180 0.070 31 21,983 11 0.069 0.048 0.723 0.292 0.190 0.652 48.16 

20 80 0.072 8 23,408 8 0.068 0.047 0.727 0.289 0.186 0.659 47.63 

21 50 0.088 2 21,229 16 0.070 0.047 0.709 0.298 0.188 0.637 51.21 

22 44 0.242 14 242 20 0.069 0.047 0.724 0.291 0.188 0.656 50.46 

23 80 0.037 6 10,144 15 0.069 0.047 0.718 0.297 0.187 0.640 50.11 

24 110 0.154 1 18,459 4 0.071 0.047 0.707 0.299 0.189 0.636 51.77 

25 109 0.101 10 7,701 14 0.069 0.047 0.722 0.291 0.187 0.654 48.91 

26 22 0.201 7 6,285 31 0.071 0.048 0.706 0.298 0.192 0.637 51.01 

27 176 0.091 1 19,052 6 0.070 0.046 0.715 0.294 0.185 0.647 51.41 

28 84 0.047 13 4,221 5 0.071 0.051 0.703 0.300 0.201 0.632 50.12 

29 90 0.118 31 553 12 0.071 0.048 0.703 0.304 0.193 0.624 50.92 

30 18 0.209 4 25,273 6 0.070 0.048 0.713 0.297 0.191 0.640 51.00 
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Table A2-9: Tuned hyperparameters and accuracy metrics for 30 regression models fitted to the saline class 

(ECe ≥ 2 dS m-1). The model with best NSE was chosen for using in the final predictive two-part model of salinity. 

ECe Regression saline 

No. 

Number of 

learning 

cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

RMSE 

(log) 

MAE 

(log) 

NSE 

(log) 
RMSE MAE NSE 

MOF 

× 104 

1 144 0.235 8 7,380 1 0.193 0.134 0.728 5.223 2.560 0.713 391.75 

2 366 0.046 3 9,365 1 0.187 0.127 0.747 5.119 2.451 0.725 367.26 

3 59 0.075 6 8,900 9 0.191 0.131 0.735 5.423 2.551 0.691 384.33 

4 140 0.043 7 14,179 3 0.188 0.129 0.742 5.299 2.526 0.705 364.09 

5 229 0.042 1 1,812 1 0.189 0.128 0.741 5.168 2.472 0.719 360.28 

6 107 0.051 5 903 26 0.189 0.129 0.741 5.214 2.507 0.714 369.81 

7 52 0.153 11 12,602 3 0.192 0.133 0.733 5.372 2.586 0.697 387.43 

8 152 0.145 13 219 18 0.189 0.132 0.741 5.172 2.522 0.719 370.23 

9 103 0.068 7 6,004 2 0.189 0.129 0.741 5.231 2.508 0.713 373.13 

10 128 0.040 1 6,038 12 0.189 0.126 0.741 5.131 2.428 0.724 379.53 

11 45 0.099 7 13,238 9 0.192 0.132 0.731 5.436 2.579 0.690 385.47 

12 143 0.187 38 9,795 14 0.190 0.132 0.736 5.245 2.549 0.711 379.96 

13 114 0.045 1 816 27 0.188 0.130 0.743 5.195 2.514 0.717 365.84 

14 110 0.092 2 367 32 0.190 0.131 0.738 5.247 2.529 0.711 378.18 

15 113 0.035 4 4,955 20 0.190 0.128 0.738 5.246 2.491 0.711 373.13 

16 83 0.061 4 10,608 22 0.188 0.126 0.743 5.177 2.453 0.718 365.07 

17 84 0.052 1 9,323 13 0.190 0.129 0.738 5.263 2.486 0.709 365.50 

18 33 0.157 1 11,757 4 0.192 0.129 0.733 5.242 2.502 0.711 377.85 

19 86 0.105 9 11,060 12 0.195 0.131 0.722 5.265 2.521 0.709 368.75 

20 44 0.137 5 11,099 2 0.191 0.131 0.735 5.266 2.534 0.709 380.64 

21 359 0.196 1 1,111 3 0.191 0.128 0.735 5.204 2.466 0.716 375.64 

22 168 0.027 5 2,205 11 0.186 0.126 0.748 5.136 2.445 0.723 365.27 

23 132 0.124 2 478 32 0.189 0.130 0.741 5.182 2.494 0.718 370.60 

24 257 0.034 17 2,040 10 0.189 0.130 0.740 5.326 2.541 0.702 359.86 

25 90 0.123 1 13,140 5 0.191 0.127 0.736 5.178 2.439 0.718 384.88 

26 261 0.025 10 13,856 4 0.189 0.130 0.741 5.323 2.536 0.702 362.90 

27 35 0.213 1 202 25 0.205 0.145 0.695 5.631 2.771 0.667 405.56 

28 55 0.088 2 10,499 11 0.190 0.127 0.737 5.136 2.440 0.723 377.69 

29 248 0.140 13 78 16 0.198 0.132 0.714 5.539 2.597 0.678 378.02 

30 37 0.166 6 13,604 5 0.195 0.133 0.723 5.498 2.602 0.682 372.97 
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Table A2-10: Tuned hyperparameters and accuracy metrics for 30 classification models fitted to the ESP 

training set. The model with best MCC (Mathew’s Correlation Coefficient) was chosen for using in the final 

predictive two-part model of sodicity. 

ESP classification 

No. 

Number 

of 

learning 

cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number 

of splits 

Number 

of 

variables 

to sample 

Binomial 

deviance 

loss 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCC MOF 

1 28 0.231 1 9,436 - 0.209 0.149 85.065 0.853 0.882 0.697 0.154 

2 94 - 1 40,194 11 0.229 0.146 85.390 0.855 0.886 0.704 0.155 

3 65 - 1 186,555 5 0.229 0.150 85.007 0.850 0.885 0.696 0.154 

4 175 - 4 53,692 2 0.230 0.148 85.249 0.853 0.886 0.701 0.152 

5 50 - 1 98,133 3 0.229 0.147 85.274 0.855 0.884 0.702 0.152 

6 112 - 2 60,487 2 0.230 0.148 85.240 0.854 0.883 0.701 0.153 

7 74 - 1 190,915 2 0.229 0.146 85.411 0.857 0.884 0.704 0.151 

8 50 - 1 197,849 2 0.229 0.146 85.379 0.856 0.883 0.704 0.150 

9 16 - 1 194,982 4 0.229 0.153 84.736 0.850 0.879 0.691 0.159 

10 208 - 1 80,815 2 0.229 0.144 85.593 0.859 0.885 0.708 0.149 

11 77 - 1 113,132 2 0.229 0.150 85.034 0.852 0.883 0.697 0.151 

12 29 - 1 119,019 4 0.229 0.149 85.077 0.851 0.884 0.698 0.154 

13 52 - 2 185,249 2 0.230 0.148 85.233 0.855 0.883 0.701 0.155 

14 82 - 1 123,708 2 0.229 0.147 85.331 0.857 0.882 0.703 0.155 

15 26 - 2 71,302 2 0.230 0.151 84.938 0.852 0.880 0.695 0.156 

16 225 - 2 102,714 2 0.229 0.149 85.114 0.853 0.882 0.698 0.151 

17 48 - 1 118,810 12 0.229 0.148 85.156 0.853 0.884 0.699 0.157 

18 155 - 1 51,096 14 0.229 0.145 85.509 0.856 0.887 0.706 0.151 

19 80 - 1 64,011 3 0.229 0.147 85.329 0.854 0.886 0.703 0.150 

20 155 - 2 14,430 4 0.230 0.149 85.119 0.850 0.887 0.698 0.154 

21 18 - 2 169,555 3 0.229 0.151 84.948 0.851 0.882 0.695 0.156 

22 72 - 2 149,721 2 0.229 0.146 85.363 0.855 0.884 0.703 0.150 

23 111 - 2 51,520 2 0.229 0.146 85.394 0.855 0.885 0.704 0.153 

24 25 - 1 29,331 11 0.229 0.149 85.110 0.853 0.883 0.698 0.157 

25 164 - 2 145,917 4 0.229 0.147 85.343 0.853 0.887 0.703 0.154 

26 209 - 1 30,842 4 0.229 0.148 85.163 0.852 0.886 0.699 0.151 

27 180 - 1 34,111 4 0.229 0.146 85.391 0.855 0.886 0.704 0.150 

28 48 - 1 67,923 20 0.231 0.159 84.147 0.837 0.885 0.679 0.158 

29 53 - 1 92,899 4 0.229 0.151 84.859 0.853 0.878 0.693 0.155 

30 211 - 2 138,786 2 0.229 0.148 85.177 0.852 0.885 0.700 0.151 
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Table A2-11: Tuned hyperparameters and accuracy metrics for 30 regression models fitted to the non-sodic 

class (ESP < 1%). The model with best NSE (Nash–Sutcliffe model efficiency coefficient) was chosen for using 

in the final predictive two-part model of sodicity. 

ESP regression non-sodic 

No. 

Number of 

learning 

cycles 

Learn 

rate 

Minimum 

leaf size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

RMSE 

(log) 

MAE 

(log) 

NSE 

(log) 
RMSE MAE NSE 

MOF 

× 104 

1 196 0.058 27 7,078 3 0.071 0.045 0.561 0.226 0.141 0.536 51.95 

2 210 0.052 6 34,502 1 0.071 0.046 0.558 0.226 0.143 0.532 51.22 

3 69 0.120 12 23,081 2 0.072 0.047 0.549 0.229 0.145 0.523 52.44 

4 265 0.031 6 27,557 1 0.071 0.046 0.563 0.225 0.143 0.536 51.67 

5 155 0.072 4 3,473 2 0.071 0.046 0.563 0.225 0.144 0.536 51.05 

6 238 0.045 17 72,003 2 0.071 0.047 0.563 0.225 0.145 0.537 51.89 

7 166 0.045 16 96,243 3 0.072 0.045 0.548 0.229 0.141 0.523 51.71 

8 121 0.155 10 3,881 3 0.071 0.047 0.560 0.226 0.145 0.534 51.99 

9 478 0.009 1 6,981 4 0.071 0.046 0.563 0.226 0.143 0.534 51.64 

10 479 0.020 18 1,906 3 0.071 0.048 0.560 0.227 0.150 0.532 51.76 

11 170 0.058 5 13,936 1 0.072 0.046 0.549 0.228 0.142 0.524 51.99 

12 489 0.022 13 96,009 4 0.071 0.046 0.560 0.226 0.143 0.535 51.49 

13 117 0.092 4 5,232 2 0.071 0.047 0.555 0.227 0.145 0.529 52.49 

14 318 0.016 5 15,194 2 0.071 0.045 0.562 0.226 0.141 0.535 52.34 

15 272 0.039 16 2,251 2 0.071 0.048 0.562 0.226 0.148 0.534 52.18 

16 113 0.064 20 5,851 5 0.071 0.046 0.559 0.226 0.143 0.533 52.21 

17 318 0.017 6 78,130 3 0.071 0.045 0.562 0.226 0.141 0.535 51.44 

18 378 0.030 12 95,924 2 0.071 0.046 0.563 0.225 0.142 0.537 51.14 

19 192 0.030 9 64,674 2 0.071 0.046 0.562 0.226 0.144 0.535 51.44 

20 75 0.087 5 6,384 2 0.071 0.046 0.558 0.227 0.144 0.532 52.13 

21 222 0.037 1 3,599 4 0.071 0.046 0.561 0.226 0.144 0.533 52.03 

22 368 0.027 1 3,022 1 0.072 0.045 0.553 0.228 0.140 0.527 52.15 

23 365 0.052 5 1,245 3 0.071 0.046 0.558 0.227 0.143 0.531 51.40 

24 421 0.014 4 55,809 2 0.071 0.044 0.553 0.228 0.139 0.528 51.71 

25 353 0.043 5 87,892 1 0.071 0.045 0.560 0.226 0.140 0.534 52.80 

26 194 0.058 9 12,642 3 0.071 0.046 0.555 0.227 0.142 0.530 52.22 

27 395 0.027 1 18,392 1 0.071 0.045 0.556 0.227 0.141 0.530 52.11 

28 87 0.048 6 83,758 4 0.071 0.046 0.558 0.227 0.143 0.530 51.72 

29 217 0.037 9 3,935 2 0.071 0.044 0.555 0.227 0.139 0.528 51.89 

30 489 0.021 8 1,968 2 0.071 0.048 0.559 0.227 0.150 0.531 52.12 
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Table A2-12: Tuned hyperparameters and accuracy metrics for 30 regression models fitted to the sodic 

class (ESP ≥ 1%). The model with best NSE was chosen for using in the final predictive two-part model of 

sodicity. 

ESP regression sodic 

No. 

Number of 

learning 

cycles 

Learn 

rate 

Minimum leaf 

size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 

RMSE 

(log) 

MAE 

(log) 

NSE 

(log) 
RMSE MAE NSE MOF 

1 121 0.055 1 58,832 2 0.232 0.160 0.743 6.832 2.668 0.721 0.057 

2 172 0.102 6 12,029 2 0.230 0.159 0.745 6.784 2.628 0.725 0.056 

3 394 0.053 18 77,202 4 0.229 0.159 0.749 6.979 2.674 0.709 0.055 

4 144 0.117 12 86,769 4 0.236 0.165 0.733 7.093 2.798 0.700 0.057 

5 295 0.031 1 36,274 2 0.231 0.158 0.744 6.772 2.616 0.726 0.055 

6 465 0.012 1 82,208 2 0.231 0.160 0.744 6.960 2.707 0.711 0.055 

7 262 0.023 7 20,550 4 0.233 0.163 0.740 7.312 2.780 0.681 0.057 

8 218 0.042 7 11,874 3 0.231 0.160 0.745 7.091 2.702 0.700 0.056 

9 302 0.028 1 23,465 2 0.231 0.160 0.745 6.866 2.689 0.719 0.055 

10 333 0.019 1 21,829 3 0.231 0.160 0.743 6.947 2.664 0.712 0.056 

11 116 0.066 1 8,039 3 0.232 0.161 0.742 6.995 2.695 0.708 0.056 

12 347 0.035 8 58,001 2 0.227 0.157 0.753 6.795 2.634 0.725 0.054 

13 75 0.058 1 17,824 2 0.236 0.165 0.732 7.109 2.755 0.698 0.058 

14 96 0.097 7 6,191 2 0.232 0.162 0.741 7.130 2.728 0.697 0.056 

15 33 0.222 2 15,408 2 0.234 0.159 0.738 6.780 2.649 0.726 0.059 

16 444 0.086 24 73,908 2 0.229 0.159 0.749 6.852 2.667 0.720 0.055 

17 117 0.033 1 72,240 2 0.234 0.162 0.738 7.121 2.713 0.697 0.057 

18 481 0.019 5 70,110 2 0.227 0.158 0.752 6.817 2.634 0.723 0.055 

19 218 0.062 18 86,189 2 0.231 0.162 0.744 7.125 2.780 0.697 0.055 

20 125 0.121 10 15,807 1 0.235 0.165 0.736 7.182 2.829 0.692 0.057 

21 317 0.041 2 6,448 3 0.230 0.158 0.747 6.929 2.644 0.714 0.056 

22 144 0.029 1 62,848 4 0.233 0.163 0.739 7.172 2.776 0.693 0.058 

23 309 0.108 41 72,322 4 0.234 0.165 0.738 7.239 2.843 0.687 0.056 

24 66 0.115 4 53,906 1 0.233 0.162 0.739 6.945 2.714 0.712 0.058 

25 182 0.065 11 81,746 3 0.233 0.163 0.739 6.996 2.756 0.708 0.056 

26 295 0.171 12 1,713 4 0.234 0.162 0.736 6.981 2.688 0.709 0.058 

27 374 0.015 1 58,737 4 0.235 0.162 0.736 7.009 2.687 0.707 0.057 

28 188 0.131 1 2,564 3 0.232 0.160 0.742 6.892 2.688 0.717 0.056 

29 228 0.104 6 62,585 1 0.231 0.160 0.744 6.794 2.666 0.725 0.057 

30 210 0.057 3 53,132 2 0.230 0.158 0.746 6.794 2.619 0.725 0.055 
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Figure A2-19: Objective function value against the iteration number during model hyperparameter tuning 

of the best-fitted models. The maximum number of objective function evaluations was 130. Green and blue lines 

show the observed and estimated objective function values, respectively.  
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Limitations 

 

Figure A2-20: Spatial distribution of the known surface measurements classified by the two-part models. 

a: ECe. b: ESP. Any available ECe or ESP measurement from 1980 with zero upper sample’s depth and a 

maximum lower sample’s depth equal to 30 cm was used as a known surface measurement. We categorised the 

known surface measurements of ECe into five classes of non-saline (0 - 2 dS m-1), slightly saline (2 - 4 dS m-1), 

moderately saline (4 - 8 dS m-1), highly saline (8 - 16 dS m-1), and extremely saline (> 16 dS m-1) and similarly, 

the known surface measurements of ESP into five classes of non-sodic (0 - 1%), slightly sodic (1 - 6%), moderately 

sodic (6 -15%), highly sodic (16 - 30%), and extremely sodic (> 30%). The above maps are generated by 

comparison between the measured data classes and final predictions of the two-part models falling into each class. 
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Figure A2-21: Comparison between the measured soil surface electrical conductivity of saturated-paste 

extract (ECe) and the values predicted by the two-part models developed in this study as well as the values 

presented by Harmonised World Soil Database (HWSD) at the continent level. NSE = Nash-Sutcliffe model 

efficiency coefficient (Nash et al. 1970) ranging from -∞ to 1; NSE = 1 shows a perfect match. 
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Figure A2-22: Comparison between the measured surface soil exchangeable sodium percentage (ESP) and 

the values predicted by the two-part models developed in this study as well as the values presented by 

Harmonised World Soil Database (HWSD) at the continent level. Nash-Sutcliffe model efficiency coefficient 

(5) (NSE, ranging from -∞ to 1; NSE = 1 shows a perfect match) for South America with ~1% contribution to ESP 

training dataset was 0.89 whereas NSE of North America with > 80% involvement in the training dataset was 

0.74. In spite of this, predictions of surface ECe and ESP for Asia (NSE = -0.01, number of observations = 161) 

and Australia (NSE = 0.30, umber of observations = 34) were still of the lowest certainty, respectively. The low 

NSE values might be due to the insufficient number of validating surface measurements. Overall, the performance 

of the models in estimation of individual continents’ soil surface salinity/sodicity with an NSE ranging from -0.01 

to 0.96 (mean for all continents = 0.63) was better than the mean NSE of -0.14 for HWSD predictions.   
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Statistics on salt-affected regions 

We would assume soils of a particular location as salt-affected if the annual predicted ECe of 

that location were ≥ 4 dS m-1 and/or its predicted ESP were ≥ 6% in at least 75% of the years 

between 1980 and 2018 period. 

Note: All statistical analysis presented here were calculated for the regions delimited to -55° 

and 55° latitudes, i.e. tropics, subtropics, and temperate zones. Statistics of the countries located 

above 55° latitude (e.g. Canada, Russia, and United Kingdom) are not reported here. 

Table A2-13: Mean cell-level likelihood of the soils with an ECe ≥ 4 dS m-1 or ESP ≥ 6% for different biomes 

and land cover types between 1980 and 2018. Also this Table shows statistics on the soil cell-level trends in 

ECe and ESP (p < 0.05) for each land cover and biome in the 1980 - 2018 period. 

 

ECe ESP ECe ESP 

Trend (× 105 dS m-1  yr-1) Trend (× 105 % yr-1) Likelihood (× 105) 

Land cover MEAN STD MEAN STD MEAN 

Evergreen Needleleaf Forests -193.94 1,330.98 -218.25 1,013.15 66.02 1.96 

Evergreen Broadleaf Forests 1,373.16 4,812.37 440.51 2,459.06 727.24 0.52 

Deciduous Needleleaf Forests -110.53 425.51 -221.27 2,001.71 1.63 0.00 

Deciduous Broadleaf Forests -60.81 1,496.96 -213.23 665.46 32.26 0.44 

Mixed Forests -138.18 1,381.59 -204.27 982.49 51.78 0.39 

Closed Shrublands -1,366.40 2,460.76 2,151.29 3,087.65 90.90 61.96 

Open Shrublands -1,758.10 9,716.26 275.03 3,420.53 3,002.27 1,832.48 

Woody Savannas -147.79 2,023.91 -94.37 2,018.11 88.04 42.36 

Savannas 87.18 1,579.73 -481.02 2,665.50 108.94 26.87 

Grasslands -1,045.83 4,600.50 -799.55 4,401.40 651.07 1,531.19 

Croplands -414.23 2,067.68 -1,439.65 3,094.71 237.19 337.82 

Barren -8.47 9,614.04 78.34 3,400.27 3,009.40 3,633.16 

 

ECe ESP ECe ESP 

Trend (× 105 dS m-1  yr-1) Trend (× 105 % yr-1) Likelihood (× 105) 

Biome MEAN STD MEAN STD MEAN 

Tropical and Subtropical Moist Broadleaf Forests 483.8978 4326.879 -18.63 2,438.43 518.48 7.99 

Tropical and Subtropical Dry Broadleaf Forests -1244.43 3000.977 -1,005.10 3,214.77 256.79 139.22 

Temperate Broadleaf and Mixed Forests -499.945 2495.365 -347.28 2,061.64 133.55 153.88 

Tropical and Subtropical Grasslands, Savannas and 

Shrublands 
-756.812 5115.055 -589.24 3,000.58 580.47 166.23 

Temperate Grasslands, Savannas and Shrublands -569.106 3165.172 -818.54 3,683.85 366.81 830.73 

Montane Grasslands and Shrublands -329.883 4007.414 105.22 4,965.57 574.33 2,032.18 

Mangroves -1590.22 7012.804 -577.33 2,401.83 1,672.36 332.69 

Flooded Grasslands and Savannas -2653.01 6889.474 -314.04 3,296.76 1,282.01 1,005.42 

Mediterranean Forests, Woodlands and Scrub -836.737 3866.973 122.03 2,462.69 568.10 565.74 

Deserts and Xeric Shrublands -706.209 9238.99 159.96 4,029.28 2,777.99 3,416.36 

Tropical and Subtropical Coniferous Forests -2439.09 2505.256 -191.37 2,820.89 51.70 38.13 

Temperate Conifer Forests -467.236 2588.667 -169.80 2,061.95 139.45 162.14 
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Table A2-14: Mean cell-level likelihood of the soils with an ECe ≥ 4 dS m-1 or ESP ≥ 6% for different climate 

zones between 1980 and 2018. Also this Table shows statistics on the soil cell-level trends in ECe and ESP (p < 

0.05) for each climate zone in the 1980 - 2018 period. For the full name of the climate zones see Figure A2-12. 

Climate 

ECe ESP ECe ESP 

Trend (× 105 dS m-1 yr-1) Trend (× 105 % yr-1) Likelihood (× 105) 

MEAN STD MEAN STD MEAN 

ET 111.18 4,136.40 82.27 5,413.40 324.89 2,276.64 

EF -383.11 3,905.90 -1,882.60 3,343.22 221.74 360.87 

Dfc -391.58 1,395.77 -134.66 1,078.30 61.88 28.50 

Dsc -246.93 960.50 -204.56 1,181.56 84.01 56.12 

Bsk -835.32 4,268.78 -154.16 4,532.88 801.45 1,990.51 

Cfc -228.74 890.41 -118.11 688.70 16.75 16.82 

Cfb -152.44 1,237.17 -519.27 1,683.15 45.48 29.10 

Csc -925.37 2,375.44 -496.08 2,575.24 62.62 109.31 

Dfb -350.37 1,766.04 -870.50 2,054.51 116.81 200.76 

Dwc -743.63 2,342.93 -238.56 2,051.83 96.02 85.25 

Dwb -2,356.96 4,014.65 -421.00 2,014.50 314.16 110.69 

Dsb -765.30 2,372.16 208.22 3,471.50 223.41 193.45 

CSb -816.80 2,084.19 -87.14 2,172.00 108.94 196.48 

Dfa -237.36 1,126.71 -1,415.54 2,617.47 95.77 312.66 

Bwk -439.18 8,768.37 290.37 5,891.73 3,948.60 7,330.95 

Dwa -897.44 2,407.54 -2,483.69 3,915.74 256.64 156.36 

Csa -934.47 2,594.95 288.00 2,942.60 199.09 357.49 

Cfa -126.89 2,797.89 -356.57 2,212.29 128.52 36.10 

Dsa -1,788.15 3,690.43 94.90 3,583.49 497.52 808.61 

Cwa -475.22 2,062.28 -92.62 2,217.25 109.35 74.41 

BSh -1,896.97 5,317.69 -381.05 3,308.79 713.64 531.97 

BWh -611.38 10,495.24 78.17 3,205.38 3,038.27 2,538.39 

Cwb -652.95 2,053.46 -43.37 1,633.36 79.63 31.00 

Cwc -426.70 3,692.22 26.40 2,616.76 587.85 600.27 

Am 321.16 5,290.85 359.73 2,572.52 649.19 2.31 

AW -669.06 2,592.30 -367.78 3,051.78 191.40 40.76 

As -791.21 2,408.20 -9.37 2,740.20 193.97 31.36 

Af 2,054.75 5,162.73 -100.90 2,341.68 867.14 1.25 
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Table A2-15: Statistics on the total area of soils with an ECe or ESP between certain thresholds in the 1980 

- 2018 period at the land cover level. This table also contains information about the land cover-level trends in 

the total area of soils with an ECe ≥ 4 dS m-1 or ESP ≥ 6% since 1980 and their statistical significance (each class 

includes its left class edge). 

ECe 

Land 

cover 

Mean, 

ECe 4 - 8 

dS m-1 

(km2) 

SDa ECe  

4 - 8  

dS m-1 

(km2) 

Mean, ECe  

8 - 16 dS m-1 

(km2) 

SD, ECe  

8 - 16  

dS m-1 

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD,  

ECe ≥ 16 

dS m-1 

(km2) 

Mean of saline 

area, ECe ≥ 4  

dS m-1 (km2) 

1980 - 

2018 trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Evergreen 

Needleleaf 

Forests 

4,835.6 1,149.4 80.5 22.0 28.1 17.6 4,944.2 -49.8 0.002 

Evergreen 

Broadleaf 

Forests 

654,492.4 229,964.5 3,858.4 5,396.0 8.6 33.5 658,359.4 10,349.0 0.001 

Deciduous 

Needleleaf 

Forests 

28.9 6.6 0.0 0.0 0.0 0.0 28.9 0.2 0.031 

Deciduous 

Broadleaf 

Forests 

2,156.9 915.2 132.3 50.8 64.2 32.4 2,353.4 -47.1 0.000 

Mixed 

Forests 
21,494.0 5,005.5 200.1 75.8 110.3 50.5 21,804.4 -184.6 0.008 

Closed 

Shrublands 
365.2 279.7 8.8 9.9 0.0 0.2 374.1 -3.5 0.388 

Open 

Shrublands 
1,244,384.5 185,061.8 490,577.4 156,118.0 87,384.3 32,279.9 1,822,346.1 -5,010.4 0.115 

Woody 

Savannas 
6,760.7 1,062.9 234.9 188.6 3.2 3.4 6,998.8 0.5 0.975 

Savannas 17,339.4 4,783.1 836.0 277.1 3.4 12.9 18,178.9 73.7 0.300 

Grasslands 390,667.1 62,346.5 88,496.8 16,908.6 20,122.9 7,515.4 499,286.7 -4,836.6 0.000 

Croplands 148,125.4 24,137.5 14,562.3 3,294.7 350.4 367.3 163,038.0 -1,723.6 0.000 

Barren 3,013,899.4 221,158.4 1,089,902.7 115,492.3 226,593.9 76,531.5 4,330,396.0 -961.0 0.796 

ESP 

Land 

cover 

Mean, ESP 

6 - 15% 

(km2) 

SD, ESP 6 

- 15% 

(km2) 

Mean, ESP 

15 - 30% 

(km2) 

SD, ESP 

15 - 30% 

(km2) 

Mean, 

ESP  ≥ 

30% 

(km2) 

SD, ESP  ≥ 

30% (km2) 

Mean of sodic 

area, 

ESP ≥ 6% 

(km2) 

1980 - 

2018 trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Evergreen 

Needleleaf 

Forests 

111.4 115.0 0.0 0.0 0.0 0.0 111.4 -4.6 0.004 

Evergreen 

Broadleaf 

Forests 

465.6 596.3 0.0 0.0 0.0 0.0 465.6 5.3 0.541 

Deciduous 

Broadleaf 

Forests 

35.4 41.5 0.0 0.0 0.0 0.0 35.4 -0.3 0.678 

Mixed 

Forests 
83.5 48.3 0.0 0.1 0.0 0.0 83.5 -2.3 0.000 

Closed 

Shrublands 
231.2 128.0 0.0 0.0 0.0 0.0 231.2 5.1 0.003 

Open 

Shrublands 
1,073,504.8 110,501.5 1,017.7 300.8 0.2 0.7 1,074,522.6 1,268.4 0.428 

Woody 

Savannas 
3,473.7 1,471.0 0.0 0.3 0.0 0.0 3,473.8 -52.2 0.011 

Savannas 4,381.2 3,867.6 2.0 2.1 0.0 0.0 4,383.2 -103.1 0.060 

Grasslands 1,032,743.3 99,680.9 5,836.9 1,797.5 1.2 2.2 1,038,581.4 -3,518.9 0.012 

Croplands 228,444.5 29,256.5 1,527.1 1,140.7 0.4 1.4 229,972.0 -1,463.9 0.000 

Barren 5,000,492.0 158,500.1 115,200.6 9,591.5 17.1 16.8 5,115,709.7 2,519.1 0.279 

a Standard deviation  



Appendix 2 

 

 

195 

 

Table A2-16: Statistics on the total area of soils with an ECe between certain thresholds in the 1980 - 2018 

period at the biome level. This table also shows information about the biome-level trends in the total area of soils 

with an ECe ≥ 4 dS m-1 since 1980 and their statistical significance (each class includes its left class edge). 

ECe 

Biome 

Mean, 

ECe 4 - 8 

dS m-1 

(km2) 

SD, ECe  

4 - 8  

dS m-1 

(km2) 

Mean, ECe 

8 - 16 

dS m-1 

(km2) 

SD, ECe  

8 - 16  

dS m-1 

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 

16 dS m-1 

(km2) 

Mean of 

saline area, 

ECe ≥ 4 

dS m-1 (km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Deserts and 

Xeric 

Shrublands 

5,402,957.2 434,427.8 1,854,798.2 284,550.9 356,676.0 116,349.0 7,614,431.4 -13,300.2 0.085 

Flooded 

Grasslands 

and Savannas 

85,444.4 24,048.8 34,070.8 4,060.5 4,737.1 1,330.5 124,252.3 -1,941.6 0.000 

Mangroves 27,773.9 5,585.1 5,402.7 1,003.0 47.7 59.7 33,224.3 -254.6 0.002 

Mediterranean 

Forests, 

Woodlands 

and Scrub 

152,534.2 23,283.3 26,783.9 7,987.4 6,883.4 3,243.9 186,201.5 -1,315.4 0.001 

Montane 

Grasslands 

and 

Shrublands 

243,040.0 18,332.3 42,733.1 12,717.5 5,910.1 2,591.7 291,683.1 -835.2 0.011 

Temperate 

Broadleaf and 

Mixed Forests 

144,539.4 50,965.8 15,098.6 4,907.8 6,233.1 2,518.8 165,871.1 -4,044.7 0.000 

Temperate 

Conifer 

Forests 

52,836.1 11,162.5 3,965.3 1,381.7 945.9 384.3 57,747.3 -911.5 0.000 

Temperate 

Grasslands, 

Savannas and 

Shrublands 

320,498.4 50,867.7 33,101.5 9,013.1 7,243.3 2,747.7 360,843.2 -2,771.7 0.000 

Tropical and 

Subtropical 

Coniferous 

Forests 

2,867.4 789.4 408.1 235.7 9.5 12.1 3,285.0 -39.1 0.000 

Tropical and 

Subtropical 

Dry Broadleaf 

Forests 

88,770.6 23,136.6 5,546.4 1,687.3 141.8 123.8 94,458.7 -664.2 0.056 

Tropical and 

Subtropical 

Grasslands, 

Savannas and 

Shrublands 

696,230.8 92,651.8 368,470.1 41,665.8 48,707.3 15,603.3 1,113,408.2 -7,071.2 0.000 

Tropical and 

Subtropical 

Moist 

Broadleaf 

Forests 

992,815.8 254,469.2 24,965.9 14,011.8 85.2 310.3 1,017,866.8 11,638.1 0.001 
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Table A2-17: Statistics on the total area of soils with an ESP between certain thresholds in the 1980 - 2018 

period at the biome level. This table also contains information about the biome-level trends in the total area of 

soils with an ESP ≥ 6% since 1980 and their statistical significance (each class includes its left class edge). 

ESP 

Biome 

Mean, ESP 

6 - 15% 

(km2) 

SD, ESP 

6 - 15% 

(km2) 

Mean, 

ESP 

15 - 30% 

(km2) 

SD, 

ESP 

15 - 

30% 

(km2) 

Mean, 

ESP  ≥ 

30% 

(km2) 

SD, ESP  

≥ 30% 

(km2) 

Mean of 

sodic area, 

ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Deserts and Xeric 

Shrublands 
8,865,009.9 240,647.5 121,507.3 13,231.2 12.7 21.0 8,986,529.8 5,458.4 0.120 

Flooded 

Grasslands and 

Savannas 

97,621.6 8,122.4 1,536.0 574.5 0.0 0.0 99,157.7 -296.9 0.009 

Mangroves 6,269.6 632.1 60.0 49.8 0.0 0.0 6,329.6 -8.6 0.339 

Mediterranean 

Forests, 

Woodlands and 

Scrub 

185,835.7 18,231.2 681.0 441.2 0.2 0.6 186,516.9 -115.6 0.664 

Montane 

Grasslands and 

Shrublands 

903,607.4 46,474.4 120,237.8 9,995.9 18.9 18.4 1,023,864.0 1,271.3 0.082 

Temperate 

Broadleaf and 

Mixed Forests 

183,566.4 21,192.3 3,317.3 1,608.2 0.0 0.1 186,883.7 1,037.7 0.000 

Temperate Conifer 

Forests 
63,595.0 4,002.7 1,436.9 436.8 0.2 0.6 65,032.0 191.1 0.000 

Temperate 

Grasslands, 

Savannas and 

Shrublands 

759,323.5 114,238.6 690.8 391.3 0.6 1.5 760,015.0 1,986.6 0.227 

Tropical and 

Subtropical 

Coniferous Forests 

2,342.5 769.5 0.0 0.0 0.0 0.0 2,342.5 -33.5 0.001 

Tropical and 

Subtropical Dry 

Broadleaf Forests 

50,892.0 20,114.1 1.5 4.8 0.0 0.0 50,893.6 -686.0 0.014 

Tropical and 

Subtropical 

Grasslands, 

Savannas and 

Shrublands 

317,844.9 87,560.4 402.5 299.4 0.1 0.2 318,247.5 -4,180.4 0.000 

Tropical and 

Subtropical Moist 

Broadleaf Forests 

15,013.0 7,338.5 36.5 66.0 0.1 0.3 15,049.6 -98.3 0.354 

  



Appendix 2 

 

 

197 

 

Table A2-18: Statistics on the total area of soils with an ECe between certain thresholds in the 1980 - 2018 

period at the climate level. This table also shows information about the climate-level trends in the total area of 

soils with an ECe ≥ 4 dS m-1 since 1980 and their statistical significance (each class includes its left class edge). 

For the full name of the climate zones see Figure A2-12. 

ECe 

Climate 

Mean, ECe 

4 - 8 dS m-1 

(km2) 

SD, ECe  

4 - 8  

dS m-1 

(km2) 

Mean, ECe 

 8 - 16 

dS m-1  

(km2) 

SD, ECe  

8 - 16  

dS m-1 

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 16 

dS m-1 (km2) 

Mean of 

saline area, 

ECe  ≥ 

4 dS m-1 

(km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

AW 297,081.99 74,633.23 19,561.43 5,771.02 117.71 115.47 316,761.13 -2,145.8 0.046 

Af 541,186.77 196,155.54 2,035.31 3,250.37 18.66 70.64 543,240.74 9,737.9 0.000 

Am 280,332.75 59,046.66 16,546.19 9,773.84 62.93 197.40 296,941.87 2,383.3 0.006 

As 11,671.52 5,684.02 1,090.04 497.14 3.17 5.62 12,764.74 -254.6 0.002 

BSh 409,557.19 84,311.35 216,775.80 98,817.24 30,056.33 17,035.57 656,389.32 -9,150.2 0.000 

BWh 4,245,174.05 429,867.83 1,677,044.14 197,420.42 326,347.89 107,275.99 6,248,566.08 -10,717.6 0.081 

Bsk 571,005.65 55,111.88 35,192.30 17,223.06 5,502.52 3,966.61 611,700.47 -2,760.9 0.002 

Bwk 1,418,580.40 61,572.82 417,484.26 56,922.10 69,824.86 16,669.50 1,905,889.51 -1,276.2 0.358 

CSb 14,854.89 2,464.72 494.31 870.16 54.98 256.01 15,404.18 -149.5 0.000 

Cfa 75,351.50 16,775.68 8,282.03 1,729.48 2,514.85 721.54 86,148.39 -312.4 0.225 

Cfb 19,047.57 3,591.70 153.90 98.44 17.14 21.44 19,218.61 -99.3 0.055 

Cfc 318.11 402.30 1.03 3.02 0.04 0.16 319.18 -20.7 0.000 

Csa 38,271.52 12,398.11 3,368.09 1,580.96 625.74 523.26 42,265.35 -750.3 0.000 

Csc 205.03 228.71 2.12 7.83 0.44 1.58 207.60 -17.1 0.000 

Cwa 42,075.57 12,256.45 110.50 99.56 0.75 4.15 42,186.82 -527.5 0.002 

Cwb 12,599.48 4,065.05 214.13 356.74 38.96 110.96 12,852.56 -252.2 0.000 

Cwc 2,370.27 426.20 232.13 192.56 26.29 46.03 2,628.69 -10.1 0.092 

Dfa 11,833.93 3,300.65 4.43 5.75 0.21 1.30 11,838.57 41.3 0.386 

Dfb 92,024.22 32,921.59 74.00 34.19 14.27 10.94 92,112.48 -2,197.0 0.000 

Dfc 65,091.16 16,722.42 427.59 290.20 108.94 56.98 65,627.69 -1,246.9 0.000 

Dsa 5,892.86 2,987.85 97.79 173.30 11.77 28.15 6,002.42 -171.5 0.000 

Dsb 11,391.52 4,213.15 103.00 198.65 31.41 62.26 11,525.92 -210.1 0.000 

Dsc 1,235.83 412.55 19.67 55.44 2.93 6.88 1,258.43 1.8 0.775 

Dwa 13,587.65 9,593.01 10.32 17.22 0.00 0.00 13,597.97 -498.3 0.000 

Dwb 38,645.93 41,051.29 0.79 2.53 0.02 0.12 38,646.75 -2,874.8 0.000 

Dwc 18,647.40 7,578.91 885.67 187.83 22.08 33.71 19,555.15 -522.2 0.000 

EF 109.29 54.77 13.92 14.72 1.37 2.51 124.58 -0.6 0.499 

ET 72,479.87 9,945.22 21,437.79 5,826.41 2,996.06 1,048.90 96,913.73 253.8 0.117 
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Table A2-19: Statistics on the total area of soils with an ESP between certain thresholds in the 1980 - 2018 

period at the climate level. This table also contains information about the climate-level trends in the total area 

of soils with an ESP ≥ 6% since 1980 and their statistical significance (each class includes its left class edge). For 

the full name of the climate zones see Figure A2-12. 

ESP 

Climate 

Mean, 

ESP  

6 - 15% 

(km2) 

SD, 

ESP 6 - 15% 

(km2) 

Mean, 

ESP 15 - 30% 

(km2) 

SD, ESP  

15 - 30% 

 (km2) 

Mean, 

ESP ≥ 

30% 

(km2) 

SD, 

ESP  ≥ 

30% 

(km2) 

Mean of 

sodic area, 

ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-

value 

(1980 - 

2018) 

AW 66,723.39 52,393.80 34.39 75.12 0.04 0.19 66,757.81 -1,874.5 0.010 

Af 783.47 544.49 0.00 0.00 0.00 0.00 783.47 10.4 0.181 

Am 1,035.27 1,495.96 0.00 0.00 0.00 0.00 1,035.27 -6.6 0.763 

As 2,022.62 728.97 0.00 0.00 0.00 0.00 2,022.62 3.2 0.764 

BSh 477,114.91 48,531.17 2,153.58 925.53 0.29 0.82 479,268.78 -945.0 0.178 

BWh 5,103,247.28 230,356.67 24,666.78 5,859.54 0.44 1.35 5,127,914.50 5,231.9 0.117 

Bsk 1,446,213.25 104,661.58 10,955.36 2,601.10 9.63 18.39 1,457,178.24 785.3 0.607 

Bwk 3,442,886.47 39,033.27 92,799.41 12,339.29 1.91 2.93 3,535,687.80 678.2 0.235 

CSb 27,319.54 5,758.71 3.51 3.27 0.00 0.00 27,323.05 170.3 0.036 

Cfa 24,097.24 4,831.52 41.32 48.22 0.03 0.15 24,138.60 61.9 0.376 

Cfb 11,965.59 2,085.80 270.49 284.62 0.17 0.80 12,236.24 87.9 0.002 

Cfc 314.84 138.80 0.03 0.12 0.00 0.00 314.87 3.9 0.045 

Csa 75,978.28 13,442.30 146.73 75.03 0.45 2.13 76,125.46 714.9 0.000 

Csc 366.19 146.14 0.00 0.00 0.00 0.00 366.19 5.5 0.006 

Cwa 27,282.22 4,382.41 222.44 291.63 0.00 0.00 27,504.65 -74.4 0.243 

Cwb 5,191.37 768.95 0.39 0.64 0.00 0.00 5,191.77 -14.8 0.179 

Cwc 2,703.67 422.31 1.83 7.81 0.00 0.00 2,705.49 28.4 0.000 

Dfa 37,722.40 11,566.32 0.51 1.74 0.00 0.00 37,722.91 -31.5 0.851 

Dfb 118,230.61 42,891.06 35.32 21.50 0.01 0.09 118,265.94 -804.6 0.191 

Dfc 8,092.44 2,012.67 21.38 16.93 0.00 0.00 8,113.82 -29.2 0.316 

Dsa 9,946.86 2,348.92 0.05 0.34 0.00 0.00 9,946.91 15.8 0.643 

Dsb 9,917.17 3,429.96 0.07 0.21 0.00 0.00 9,917.24 -190.0 0.000 

Dsc 832.18 190.24 0.15 0.50 0.00 0.00 832.33 -7.1 0.007 

Dwa 8,514.13 3,174.45 0.84 5.26 0.00 0.00 8,514.97 -79.8 0.077 

Dwb 13,590.04 10,218.55 0.00 0.00 0.00 0.00 13,590.04 259.2 0.074 

Dwc 17,752.58 3,039.78 34.44 12.33 0.00 0.00 17,787.02 -27.8 0.528 

EF 195.73 193.41 0.02 0.11 0.00 0.00 195.74 -2.9 0.291 

ET 544,214.49 33,185.41 119,381.63 9,766.84 19.73 19.00 663,615.85 550.3 0.329 
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Table A2-20: Statistics on the total area of soils with an ECe between certain thresholds in the 1980 - 2018 

period at the continent level. This table also shows information about the continent-level trends in the total area 

of soils with an ECe ≥ 4 dS m-1 since 1980 and 1999 and the corresponding statistical significance (each class 

includes its left class edge). 

Continent Africa Asia Australia Europe North America South America 

Mean , ECe 4 - 8 dS m-1 (km2) 2,128,611.23 3,694,834.77 1,209,129.26 57,763.38 243,792.83 945,111.33 

SD, ECe 4 - 8 dS m-1 (km2) 244,655.94 311,957.67 217,864.27 10,122.29 50,681.79 249,556.22 

Mean, ECe 8 - 16 dS m-1 (km2) 785,682.43 1,038,846.99 532,286.04 101.79 31,727.17 25,199.79 

SD, ECe 8 - 16 dS m-1 (km2) 79,069.54 121,000.08 193,677.91 62.10 7,402.80 13,599.98 

Mean, ECe ≥ 16 dS m-1 (km2) 159,847.99 181,227.37 90,395.53 13.89 4,282.98 1,938.54 

SD, ECe ≥ 16 dS m-1 (km2) 46,494.72 64,174.65 35,886.55 14.01 1,750.71 3,242.45 

Mean of saline area, ECe ≥ 4 dS m-1 (km2) 3,074,141.66 4,914,909.12 1,831,810.83 57,879.06 279,802.98 972,249.67 

1980 - 2018 trend (km2 yr-1) -2,724.26 -22,663.81 -4,573.79 139.97 -3,092.30 9,466.74 

p-value (1980 - 2018) 0.49 < 0.01 0.20 0.34 < 0.01 < 0.01 

1999 - 2018 trend (km2 yr-1) 23,166.34 19,933.41 18,532.56 -165.41 3,077.91 1,372.62 

p-value (1999 - 2018) < 0.05 0.06 0.06 0.74 < 0.01 0.88 

 

Table A2-21: Statistics on the total area of soils with an ESP between certain thresholds in the 1980 - 2018 

period at the continent level. This table also contains information about the continent-level trends in the total 

area of soils with an ESP ≥ 6% since 1980 and 1999 and the corresponding statistical significance (each class 

includes its left class edge). 

Continent Africa Asia Australia Europe North America South America 

Mean, ESP 6 - 15% (km2) 1,875,394.56 7,585,807.83 838,087.86 55,355.12 499,594.85 612,090.06 

SD, ESP 6 - 15% (km2) 183,184.69 170,525.82 125,561.82 18,357.54 31,844.39 56,079.12 

Mean, ESP 15 - 30% (km2) 1,715.51 231,208.24 3,211.83 0.95 13,876.67 504.01 

SD, ESP 15 - 30% (km2) 361.10 18,398.63 1,291.58 2.38 3,116.81 397.25 

Mean, ESP ≥ 30% (km2) 0.15 21.29 0.00 0.02 11.14 0.12 

SD, ESP ≥ 30% (km2) 0.43 19.64 0.00 0.10 20.96 0.76 

Mean of sodic area, ESP ≥ 6% (km2) 1,877,110.22 7,817,037.36 841,299.68 55,356.09 513,482.66 612,594.18 

1980 - 2018 trend (km2  yr-1) -3,860.03 5,616.02 -485.28 -215.59 1,652.23 1,813.94 

p-value (1980 - 2018) 0.14 < 0.05 0.79 0.42 < 0.01 < 0.05 

1999 - 2018 trend (km2 yr-1) 12,990.22 15,112.59 1,978.87 1,488.74 1,135.92 6,094.53 

p-value (1999 - 2018) < 0.01 < 0.05 0.71 < 0.05 0.23 < 0.01 
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Table A2-22: Statistics on the total area of soils with an ECe between certain thresholds in the 1980 - 2018 

period at the country level. This table also shows information about the country-level trends in the total area of 

soils with an ECe ≥ 4 dS m-1 since 1980 and the corresponding statistical significance (each class includes its left 

class edge). 

Country 

Mean, 

ECe 4 - 8 

dS m-1  

(km2) 

SD, ECe  

4 - 8  

dS m-1  

(km2) 

Mean, ECe 

8 - 16 

dS m-1 

(km2) 

SD, ECe 

8 - 16 

 dS m-1  

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 

16 dS m-1 

(km2) 

Mean of 

saline area, 

ECe ≥ 4 

dS m-1 (km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-

value 

(1980 - 

2018) 

Afghanistan 154,952.93 15,910.35 26,452.15 7,514.74 4,375.77 6,893.46 185,780.85 263.2 0.296 

Akrotiri and 

Dhekelia 
3.66 1.82 0.00 0.00 0.00 0.00 3.66 0.0 0.253 

Albania 135.44 59.13 25.88 10.53 0.00 0.00 161.32 -0.3 0.717 

Algeria 397,251.03 60,983.19 0.00 0.00 0.00 0.00 397,251.03 984.4 0.262 

Angola 7,073.69 2,709.56 3,352.82 776.92 108.71 140.61 10,535.21 137.6 0.002 

Anguilla 2.94 3.45 0.29 0.48 0.00 0.00 3.23 -0.1 0.062 

Antigua and 

Barbuda 
30.53 23.57 1.67 4.17 0.08 0.52 32.28 -0.3 0.414 

Argentina 157,583.30 23,789.40 4,826.04 6,284.36 592.67 2,006.17 163,002.01 -942.4 0.011 

Armenia 142.59 42.68 0.22 0.55 0.00 0.00 142.81 0.1 0.813 

Aruba 1.97 1.89 0.00 0.00 0.00 0.00 1.97 0.0 0.070 

Australia 1,210,798.30 217,933.19 532,833.12 193,709.07 90,402.19 35,891.29 1,834,033.61 -4,613.3 0.193 

Austria 63.46 55.14 0.04 0.28 0.00 0.00 63.51 -0.2 0.830 

Azerbaijan 5,919.39 2,139.13 6.37 6.28 0.17 0.86 5,925.94 -93.3 0.001 

Bahamas 3,528.15 695.46 739.42 425.27 22.32 26.87 4,289.89 -25.2 0.001 

Bahrain 252.76 69.14 164.68 58.28 19.98 24.82 437.42 -0.5 0.178 

Bangladesh 2,116.78 1,632.50 22.10 45.19 0.00 0.00 2,138.88 -119.1 0.000 

Barbados 5.36 4.89 0.00 0.00 0.00 0.00 5.36 -0.2 0.002 

Belarus 39.23 24.61 1.27 3.00 0.07 0.21 40.56 -1.0 0.005 

Belgium 106.55 85.05 3.22 4.66 1.29 1.67 111.06 1.9 0.141 

Belize 256.93 162.94 0.48 0.55 0.00 0.00 257.41 -4.9 0.033 

Benin 534.80 701.34 131.37 71.01 0.07 0.41 666.24 -14.7 0.154 

Bhutan 422.53 287.16 6.04 12.47 0.47 2.34 429.03 -19.2 0.000 

Bolivia 68,937.29 27,095.86 1,861.11 1,063.18 300.04 216.41 71,098.43 580.0 0.143 

Bonaire, Sint 

Eustatius and 

Saba 

18.93 9.26 1.03 1.13 0.00 0.00 19.96 -0.5 0.000 

Bosnia and 

Herzegovina 
12.69 8.59 0.08 0.21 0.00 0.00 12.77 -0.1 0.353 

Botswana 38,058.35 18,237.21 9,590.68 4,728.57 2,723.35 1,617.03 50,372.38 -980.9 0.002 

Brazil 413,316.80 149,060.67 7,736.28 7,544.48 3.96 7.79 421,057.04 5,637.2 0.007 

British Virgin 

Islands 
12.70 4.70 0.04 0.18 0.00 0.00 12.74 -0.1 0.239 

Brunei 1,287.17 454.55 0.07 0.23 0.00 0.00 1,287.24 3.0 0.654 

Bulgaria 43.54 44.33 0.16 1.02 0.00 0.00 43.70 1.0 0.104 

Burkina Faso 3,176.36 2,389.85 2,457.07 1,134.33 178.67 222.90 5,812.10 -208.6 0.000 

Burundi 59.19 33.42 0.00 0.00 0.00 0.00 59.19 -2.0 0.000 

Cambodia 13,036.29 8,492.24 212.87 136.97 0.00 0.00 13,249.16 -85.4 0.489 

Cameroon 2,111.47 935.22 454.34 194.10 0.37 0.88 2,566.18 -58.9 0.000 

Caspian Sea 540.62 139.81 16.15 4.75 2.60 2.07 559.37 0.5 0.801 
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Country 

Mean, 

ECe 4 - 8 

dS m-1  

(km2) 

SD, ECe  

4 - 8  

dS m-1  

(km2) 

Mean, ECe 

8 - 16 

dS m-1 

(km2) 

SD, ECe 

8 - 16 

 dS m-1  

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 

16 dS m-1 

(km2) 

Mean of 

saline area, 

ECe ≥ 4 

dS m-1 (km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-

value 

(1980 - 

2018) 

Cayman Islands 30.11 16.16 0.00 0.00 0.00 0.00 30.11 -0.8 0.000 

Central African 

Republic 
222.74 209.64 1.03 3.44 0.00 0.00 223.76 -5.4 0.070 

Chad 165,824.58 39,522.81 68,212.55 9,494.78 16,069.39 4,803.66 250,106.51 -906.2 0.159 

Chile 28,621.56 9,396.46 1,935.81 2,765.11 231.79 716.90 30,789.16 -50.2 0.712 

China 800,013.32 41,439.25 278,443.13 20,103.35 57,912.77 11,581.37 1,136,369.22 -2,354.9 0.000 

Colombia 90,275.31 46,654.57 632.72 343.86 14.80 60.91 90,922.83 2,007.6 0.002 

Comoros 0.97 1.19 0.00 0.00 0.00 0.00 0.97 -0.1 0.001 

Costa Rica 295.66 177.75 0.13 0.81 0.00 0.00 295.79 -3.2 0.217 

Croatia 90.36 49.44 0.10 0.27 0.00 0.00 90.46 0.8 0.263 

Cuba 4,014.30 1,868.15 43.21 30.03 0.00 0.00 4,057.51 -34.3 0.204 

Curacao 2.47 3.55 0.00 0.00 0.00 0.00 2.47 -0.2 0.000 

Cyprus 0.92 1.26 0.00 0.00 0.00 0.00 0.92 0.0 0.009 

Czech Republic 1.53 1.83 0.00 0.00 0.00 0.00 1.53 -0.1 0.000 

Côte d'Ivoire 8,407.83 4,827.58 120.23 136.34 0.48 2.86 8,528.54 -170.5 0.012 

Democratic 

Republic of the 

Congo 

72,557.16 30,734.60 41.73 35.72 0.02 0.14 72,598.91 -1,356.5 0.001 

Denmark 1,486.04 431.33 0.69 2.32 0.09 0.27 1,486.82 13.0 0.032 

Djibouti 2,485.01 573.64 1,635.33 616.20 2.60 8.90 4,122.93 32.1 0.038 

Dominica 2.88 4.90 0.00 0.00 0.00 0.00 2.88 0.1 0.069 

Dominican 

Republic 
299.18 164.98 0.23 0.45 0.00 0.00 299.41 -0.1 0.969 

Ecuador 9,841.35 5,164.36 19.07 68.77 3.75 13.25 9,864.16 241.3 0.000 

Egypt 73,666.16 25,364.14 26,059.94 5,561.81 4,922.35 1,673.96 104,648.45 -1,596.8 0.000 

El Salvador 73.93 25.24 0.00 0.00 0.00 0.00 73.93 -1.5 0.000 

Equatorial Guinea 224.86 104.54 15.44 17.37 0.02 0.14 240.33 -2.5 0.120 

Eritrea 10,902.19 1,986.97 3,691.25 637.32 123.61 149.96 14,717.05 -48.1 0.141 

Estonia 649.13 502.84 0.61 2.47 0.00 0.00 649.74 -28.9 0.000 

Ethiopia 29,209.64 7,558.67 28,789.31 5,303.59 1,030.77 645.51 59,029.71 -160.2 0.182 

Falkland Islands 0.66 1.49 0.00 0.00 0.00 0.00 0.66 -0.1 0.000 

Fiji 634.93 724.46 0.84 4.57 0.02 0.13 635.78 14.2 0.173 

Finland 0.02 0.10 0.00 0.00 0.00 0.00 0.02 0.0 0.074 

France 789.29 376.72 7.65 7.08 0.00 0.00 796.94 -20.9 0.000 

French Guiana 680.96 498.86 0.13 0.37 0.00 0.00 681.09 -21.3 0.002 

French Southern 

Territories 
0.80 1.12 0.00 0.00 0.00 0.00 0.80 -0.1 0.000 

Gabon 5,241.24 2,177.61 266.08 240.99 0.00 0.00 5,507.32 36.1 0.276 

Gambia 587.30 313.13 155.00 106.71 0.11 0.47 742.40 -20.4 0.000 

Georgia 30.79 9.18 0.11 0.25 0.00 0.00 30.90 -0.3 0.055 

Germany 890.81 315.98 11.77 11.21 3.42 4.89 906.00 -11.9 0.008 

Ghana 6,059.31 2,845.48 396.23 216.14 0.00 0.00 6,455.54 -108.3 0.009 

Greece 430.03 334.76 1.09 4.80 0.00 0.00 431.11 -11.6 0.013 

Grenada 13.57 15.78 0.00 0.00 0.00 0.00 13.57 -0.2 0.407 

Guadeloupe 19.76 23.73 0.00 0.00 0.00 0.00 19.76 0.6 0.053 
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Country 

Mean, 

ECe 4 - 8 

dS m-1  

(km2) 

SD, ECe  

4 - 8  

dS m-1  

(km2) 

Mean, ECe 

8 - 16 

dS m-1 

(km2) 

SD, ECe 

8 - 16 

 dS m-1  

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 

16 dS m-1 

(km2) 

Mean of 

saline area, 

ECe ≥ 4 

dS m-1 (km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-

value 

(1980 - 

2018) 

Guatemala 112.41 74.59 0.00 0.00 0.00 0.00 112.41 0.4 0.685 

Guernsey 0.01 0.09 0.00 0.00 0.00 0.00 0.01 0.0 0.663 

Guinea 380.50 612.68 33.03 30.89 0.04 0.27 413.57 -23.7 0.007 

Guinea-Bissau 215.10 244.88 147.49 93.06 0.32 1.41 362.91 -15.2 0.001 

Guyana 17,005.91 9,664.04 135.84 123.17 0.00 0.00 17,141.75 -254.2 0.066 

Haiti 350.79 342.50 0.14 0.49 0.00 0.00 350.94 1.5 0.760 

Honduras 542.92 424.89 1.33 2.62 0.00 0.00 544.25 -21.6 0.000 

Hong Kong 95.34 36.37 0.00 0.00 0.00 0.00 95.34 -1.7 0.000 

Hungary 666.81 365.46 10.57 28.52 0.33 0.85 677.71 4.8 0.372 

India 72,207.91 19,327.21 13,864.71 4,961.64 1,421.86 2,452.09 87,494.48 -223.9 0.523 

Indonesia 78,193.87 24,840.74 104.67 290.06 6.45 23.76 78,304.99 -122.6 0.734 

Iran 558,214.60 65,832.39 137,230.30 23,629.17 20,921.61 13,633.69 716,366.51 -5,737.4 0.000 

Iraq 128,021.00 20,191.40 91,339.31 13,348.61 19,408.21 8,040.06 238,768.53 -1,251.4 0.000 

Ireland 86.00 36.68 1.63 2.26 0.00 0.00 87.63 0.9 0.117 

Isle of Man 0.75 1.20 0.00 0.00 0.00 0.00 0.75 0.0 0.016 

Israel 2,369.85 449.58 1,120.20 462.79 1,143.75 233.29 4,633.80 -47.6 0.000 

Italy 821.51 568.46 3.82 3.56 0.00 0.00 825.33 -19.4 0.015 

Jamaica 195.48 163.23 0.04 0.18 0.00 0.00 195.52 5.3 0.020 

Japan 3,580.48 438.55 24.68 14.80 0.02 0.12 3,605.18 -6.6 0.300 

Jordan 29,663.91 3,676.89 10,346.28 1,883.93 2,191.31 1,140.57 42,201.50 -169.5 0.022 

Kazakhstan 349,786.28 50,861.68 26,930.67 8,931.20 823.56 694.18 377,540.51 -1,839.6 0.006 

Kenya 30,922.65 6,254.87 25,159.21 4,200.75 30.43 130.54 56,112.28 -480.6 0.000 

Kosovo 0.36 0.71 0.00 0.00 0.00 0.00 0.36 0.0 0.016 

Kuwait 8,501.79 2,302.16 4,793.23 1,727.05 1,273.16 734.82 14,568.18 -36.4 0.003 

Kyrgyzstan 1,773.83 418.22 17.35 22.82 1.68 3.62 1,792.86 -18.5 0.001 

Laos 3,243.74 1,990.73 95.94 113.16 0.00 0.00 3,339.68 -10.2 0.735 

Latvia 460.55 135.03 0.47 1.62 0.02 0.11 461.05 -7.5 0.000 

Lebanon 36.89 40.37 1.20 2.96 0.00 0.00 38.09 -2.3 0.000 

Lesotho 5.68 7.86 0.00 0.00 0.00 0.00 5.68 -0.2 0.076 

Liberia 1,633.51 2,087.26 391.28 219.63 0.15 0.51 2,024.95 -122.4 0.000 

Libya 158,962.14 39,878.72 58,823.00 14,616.99 13,503.88 2,064.65 231,289.02 -715.1 0.240 

Liechtenstein 0.32 0.32 0.00 0.00 0.00 0.00 0.32 0.0 0.000 

Lithuania 56.15 52.85 0.20 0.43 0.01 0.08 56.36 -3.0 0.000 

Macao 2.01 1.44 0.00 0.00 0.00 0.00 2.01 -0.1 0.000 

Macedonia 9.35 10.31 0.00 0.00 0.00 0.00 9.35 0.2 0.262 

Madagascar 6,005.63 3,270.22 55.71 72.74 1.75 10.55 6,063.10 -213.1 0.000 

Malawi 1,029.32 1,545.31 0.02 0.13 0.00 0.00 1,029.34 -28.8 0.195 

Malaysia 37,842.00 11,262.18 23.94 85.35 0.00 0.00 37,865.95 439.7 0.005 

Mali 112,299.91 22,409.65 51,336.56 8,803.16 8,481.53 4,653.01 172,118.00 -79.3 0.844 

Malta 0.07 0.27 0.00 0.00 0.00 0.00 0.07 0.0 0.112 
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Country 

Mean, 

ECe 4 - 8 

dS m-1  

(km2) 

SD, ECe  

4 - 8  

dS m-1  

(km2) 

Mean, ECe 

8 - 16 

dS m-1 

(km2) 

SD, ECe 

8 - 16 

 dS m-1  

(km2) 

Mean, 

ECe ≥ 16 

dS m-1 

(km2) 

SD, ECe ≥ 

16 dS m-1 

(km2) 

Mean of 

saline area, 

ECe ≥ 4 

dS m-1 (km2) 

1980 - 

2018 

trend 

(km2 yr-1) 

p-

value 

(1980 - 

2018) 

Martinique 5.90 6.41 0.00 0.00 0.00 0.00 5.90 0.0 0.706 

Mauritania 163,944.59 28,457.22 75,209.51 14,302.27 16,467.33 6,110.87 255,621.43 -48.8 0.926 

Mexico 43,247.71 19,897.31 7,243.72 2,246.88 643.36 718.73 51,134.79 -1,074.5 0.000 

Moldova 3.93 6.04 0.00 0.00 0.00 0.00 3.93 -0.3 0.002 

Monaco 0.05 0.17 0.00 0.00 0.00 0.00 0.05 0.0 0.029 

Mongolia 202,353.51 14,219.52 38,371.14 8,013.43 5,914.46 1,499.60 246,639.11 -578.6 0.000 

Montenegro 7.22 5.58 0.00 0.00 0.00 0.00 7.22 -0.2 0.006 

Montserrat 0.84 1.09 0.06 0.39 0.00 0.00 0.90 0.0 0.412 

Morocco 71,746.82 27,576.81 12,301.31 4,820.45 1,160.62 1,377.16 85,208.75 432.8 0.335 

Mozambique 3,525.23 1,773.31 12.23 11.46 0.00 0.00 3,537.46 -121.0 0.000 

Myanmar 31,952.33 11,258.24 2,548.16 974.57 8.53 30.34 34,509.02 43.7 0.798 

Namibia 86,060.52 28,098.19 23,187.76 7,270.07 4,044.06 2,215.62 113,292.33 1,483.3 0.002 

Nepal 354.40 181.89 20.08 16.05 2.00 2.83 376.49 -4.3 0.101 

Netherlands 2,356.79 818.58 18.23 30.63 4.55 12.25 2,379.57 11.7 0.327 

New Caledonia 981.37 581.43 0.61 3.55 0.10 0.63 982.08 15.1 0.068 

New Zealand 93.79 138.33 1.05 3.39 0.00 0.00 94.83 -4.7 0.018 

Nicaragua 1,154.48 912.61 2.15 4.67 0.00 0.00 1,156.63 -29.3 0.022 

Niger 195,201.72 32,047.93 78,157.78 14,247.23 26,030.46 5,701.82 299,389.96 760.3 0.126 

Nigeria 28,880.82 10,999.63 12,696.09 4,619.99 696.20 636.48 42,273.10 -777.5 0.000 

North Korea 2,152.15 618.72 1.39 1.70 0.00 0.00 2,153.54 -47.8 0.000 

Northern Cyprus 7.63 6.97 0.00 0.00 0.00 0.00 7.63 -0.2 0.060 

Norway 2.92 5.43 0.66 2.11 0.04 0.12 3.61 -0.4 0.000 

Oman 51,408.83 12,282.33 34,412.65 5,980.26 5,907.46 4,882.27 91,728.94 -567.0 0.014 

Pakistan 191,486.76 28,171.70 48,332.79 8,503.59 4,425.30 4,761.69 244,244.85 -1,584.6 0.000 

Palestine 765.01 163.43 267.32 142.09 53.27 64.44 1,085.61 -6.7 0.000 

Panama 1,513.66 1,042.17 7.63 27.12 0.07 0.41 1,521.36 34.3 0.019 

Papua New 

Guinea 
22,279.96 13,841.84 738.59 779.22 1.59 6.37 23,020.14 867.8 0.000 

Paraguay 9,012.33 7,101.04 0.06 0.38 0.00 0.00 9,012.39 91.5 0.372 

Peru 119,258.89 70,082.12 8,003.55 1,448.13 795.30 342.29 128,057.74 2,308.3 0.019 

Philippines 33,395.51 17,119.77 788.86 629.98 0.11 0.68 34,184.47 1,240.9 0.000 

Poland 185.60 65.94 5.19 3.62 1.60 1.61 192.38 1.0 0.315 

Portugal 231.80 164.74 7.51 5.05 2.66 1.03 241.98 5.5 0.017 

Puerto Rico 153.97 144.64 0.46 1.16 0.00 0.00 154.43 7.6 0.000 

Qatar 4,242.01 2,183.97 4,552.07 1,650.50 1,183.34 721.18 9,977.42 17.7 0.042 

Republic of 

Congo 
18,533.10 9,311.56 0.68 2.49 0.02 0.14 18,533.80 -142.5 0.288 

Romania 295.05 279.33 0.05 0.16 0.00 0.00 295.10 -4.5 0.268 

Rwanda 19.84 16.50 0.00 0.00 0.04 0.27 19.88 -0.2 0.499 

Saint Kitts and 

Nevis 
5.20 5.80 0.00 0.00 0.00 0.00 5.20 -0.1 0.506 

Saint Lucia 6.62 7.86 0.00 0.00 0.00 0.00 6.62 0.1 0.208 

Saint Pierre and 

Miquelon 
0.80 1.14 0.00 0.00 0.00 0.00 0.80 -0.1 0.000 
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Saint Vincent and 

the Grenadines 
8.13 7.55 0.00 0.00 0.00 0.00 8.13 -0.3 0.017 

Saint-Barthélemy 0.02 0.13 0.00 0.00 0.00 0.00 0.02 0.0 0.253 

Saint-Martin 0.44 1.09 0.00 0.00 0.00 0.00 0.44 0.0 0.754 

Saudi Arabia 380,561.24 61,027.91 165,425.49 26,109.18 39,163.39 13,433.20 585,150.12 -4,399.9 0.000 

Senegal 6,224.53 3,488.72 6,415.38 2,941.95 409.72 294.48 13,049.63 -469.5 0.000 

Serbia 78.21 71.30 0.00 0.00 0.00 0.00 78.21 -0.2 0.865 

Sierra Leone 2,535.22 4,025.45 462.75 456.58 1.15 2.79 2,999.13 -176.6 0.002 

Singapore 33.26 10.74 0.42 1.78 0.00 0.00 33.68 -0.3 0.124 

Sint Maarten 0.08 0.41 0.00 0.00 0.00 0.00 0.08 0.0 0.357 

Slovakia 8.08 8.85 0.04 0.15 0.00 0.00 8.13 -0.2 0.172 

Slovenia 35.91 13.06 0.12 0.67 0.00 0.00 36.03 -0.1 0.463 

Solomon Islands 835.19 286.87 0.02 0.14 0.00 0.00 835.21 13.0 0.001 

Somalia 86,377.38 12,393.26 75,367.30 9,215.17 3,182.40 2,002.27 164,927.08 -699.3 0.010 

South Africa 32,483.59 5,964.61 4,372.70 3,372.51 1,095.75 1,912.33 37,952.03 10.5 0.934 

South Korea 923.40 309.35 25.90 13.13 0.00 0.00 949.30 -14.6 0.001 

South Sudan 617.63 529.26 18.45 20.09 0.00 0.00 636.09 -20.7 0.005 

Spain 446.57 254.09 0.60 1.68 0.00 0.00 447.17 -11.7 0.001 

Sri Lanka 360.67 134.20 3.36 3.00 0.00 0.00 364.03 -0.9 0.638 

Sudan 170,056.91 35,272.55 55,918.49 12,620.13 10,552.34 5,361.61 236,527.74 2,294.6 0.000 

Suriname 3,271.49 2,497.50 0.04 0.27 0.00 0.00 3,271.53 -30.7 0.395 

Swaziland 25.71 79.05 0.00 0.00 0.00 0.00 25.71 -0.4 0.725 

Sweden 129.77 99.05 0.08 0.46 0.00 0.00 129.85 -6.3 0.000 

Switzerland 30.68 20.57 0.02 0.09 0.00 0.00 30.69 -1.4 0.000 

Syria 51,002.45 7,452.21 22,859.12 6,685.03 7,326.31 3,134.39 81,187.89 -41.0 0.650 

São Tomé and 

Príncipe 
0.39 0.43 0.00 0.00 0.00 0.00 0.39 0.0 0.001 

Taiwan 533.85 104.96 5.75 31.57 0.10 0.63 539.70 -4.3 0.017 

Tajikistan 3,528.58 585.37 582.93 378.42 102.44 72.82 4,213.95 -10.5 0.307 

Tanzania 3,855.78 2,684.81 20.11 25.25 0.00 0.00 3,875.89 -185.2 0.000 

Thailand 34,780.67 15,173.31 13,378.82 7,584.43 19.34 29.44 48,178.82 740.3 0.011 

Timor-Leste 41.90 38.71 0.00 0.00 0.00 0.00 41.90 -1.3 0.020 

Togo 256.81 279.55 3.58 3.57 0.00 0.00 260.39 -13.8 0.000 

Trinidad and 

Tobago 
292.52 227.76 0.00 0.00 0.00 0.00 292.52 1.9 0.563 

Tunisia 19,615.14 6,112.50 6,301.58 1,868.58 2,356.56 662.74 28,273.27 -274.8 0.015 

Turkey 8,835.55 3,206.00 1,223.61 721.65 16.34 19.84 10,075.50 -278.4 0.000 

Turkmenistan 144,587.05 20,064.07 50,617.06 14,590.47 3,111.81 2,263.98 198,315.93 -444.9 0.259 

Turks and Caicos 

Islands 
217.51 84.17 64.86 75.75 2.77 5.34 285.14 -2.6 0.016 

Uganda 138.05 184.25 0.00 0.00 0.00 0.00 138.05 -8.8 0.000 

Ukraine 427.25 137.60 0.21 0.36 0.00 0.00 427.46 -0.8 0.676 

United Arab 

Emirates 
16,964.19 4,013.65 6,615.55 2,957.21 1,708.59 1,222.72 25,288.32 -115.7 0.042 

United States 160,671.09 23,163.32 24,495.28 5,692.75 3,700.50 1,180.61 188,866.87 -1,225.3 0.001 
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United States 

Minor Outlying 

Islands 

1.10 1.51 0.00 0.00 0.00 0.00 1.10 -0.1 0.000 

Uruguay 1,402.25 511.01 40.78 38.85 0.00 0.00 1,443.03 -28.5 0.000 

Uzbekistan 105,515.20 23,702.97 27,064.20 11,276.84 1,389.98 1,094.17 133,969.37 -684.4 0.136 

Vanuatu 271.67 217.21 0.00 0.00 0.00 0.00 271.67 -2.9 0.352 

Venezuela 28,784.86 16,664.07 255.02 149.36 2.75 14.50 29,042.64 -96.0 0.692 

Vietnam 10,792.66 3,732.20 126.89 123.82 0.00 0.00 10,919.54 -11.7 0.832 

Virgin Islands, 

U.S. 
6.67 9.84 0.00 0.00 0.00 0.00 6.67 0.2 0.127 

Western Sahara 102,941.68 18,916.15 41,349.66 11,398.44 11,078.28 4,953.38 155,369.61 649.8 0.022 

Yemen 52,529.11 17,254.51 32,682.20 11,926.33 1,681.85 2,772.69 86,893.16 -1,878.2 0.000 

Zambia 1,347.27 1,686.24 16.63 22.64 0.00 0.00 1,363.90 -58.0 0.014 

Zimbabwe 2,490.70 2,749.74 4.24 6.18 0.12 0.76 2,495.06 -107.5 0.004 

Åland 0.01 0.07 0.00 0.00 0.00 0.00 0.01 0.0 0.092 
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Table A2-23: Statistics on the total area of soils with an ESP between certain thresholds in the 1980 - 2018 

period at the country level. This table also contains information about the country-level trends in the total area 

of soils with an ESP ≥ 6% since 1980 and the corresponding statistical significance (each class includes its left 

class edge). 

Country 

Mean, 

ESP  

6 - 15% 

(km2) 

SD, 

ESP  

6 - 15% 

(km2) 

Mean, 

ESP  

15 - 30% 

(km2) 

SD, ESP  

15 - 30% 

 (km2) 

Mean, 

ESP ≥ 

30% 

(km2) 

SD, 

ESP  ≥ 

30% 

(km2) 

Mean of sodic 

area, 

ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Afghanistan 216,750.94 20,860.38 3,014.32 1,254.46 0.02 0.12 219,765.28 1,483.7 0.000 

Akrotiri and 

Dhekelia 
4.50 6.24 0.00 0.00 0.00 0.00 4.50 0.1 0.519 

Albania 36.54 28.84 0.12 0.63 0.00 0.00 36.65 -0.4 0.355 

Algeria 626,841.62 72,092.34 0.00 0.00 0.00 0.00 626,841.62 510.1 0.625 

Angola 13,647.56 5,882.03 0.02 0.13 0.00 0.00 13,647.58 -276.4 0.000 

Anguilla 0.67 2.00 0.00 0.00 0.00 0.00 0.67 0.0 0.449 

Antigua and 

Barbuda 
2.78 4.39 0.00 0.00 0.00 0.00 2.78 0.0 0.454 

Argentina 288,013.11 43,405.75 359.46 326.93 0.12 0.76 288,372.69 2,012.4 0.001 

Armenia 50.06 30.47 0.00 0.00 0.00 0.00 50.06 -1.6 0.000 

Aruba 0.21 0.60 0.00 0.00 0.00 0.00 0.21 0.0 0.785 

Australia 838,355.96 125,602.81 3,211.83 1,291.58 0.00 0.00 841,567.78 -486.2 0.791 

Austria 1.85 1.80 0.00 0.00 0.00 0.00 1.85 -0.1 0.000 

Azerbaijan 7,027.13 588.47 0.05 0.32 0.00 0.00 7,027.18 12.0 0.156 

Bahamas 373.98 129.71 0.00 0.00 0.00 0.00 373.98 -0.4 0.843 

Bahrain 445.01 4.06 1.68 4.09 0.00 0.00 446.69 0.0 0.002 

Bangladesh 41.33 38.04 0.00 0.00 0.00 0.00 41.33 -1.2 0.026 

Barbados 0.30 1.87 0.00 0.00 0.00 0.00 0.30 0.0 0.335 

Belize 0.56 1.12 0.00 0.00 0.00 0.00 0.56 0.0 0.364 

Benin 1,400.40 2,554.13 0.00 0.00 0.00 0.00 1,400.40 -72.7 0.044 

Bhutan 0.08 0.48 0.00 0.00 0.00 0.00 0.08 0.0 0.158 

Bolivia 45,532.04 5,034.51 99.96 121.90 0.00 0.00 45,631.99 196.3 0.005 

Bonaire, Sint 

Eustatius and 

Saba 

14.47 15.29 0.00 0.00 0.00 0.00 14.47 -0.9 0.000 

Botswana 27,785.34 13,305.02 1.17 4.28 0.02 0.13 27,786.53 -110.8 0.565 

Brazil 5,724.73 5,339.75 0.00 0.00 0.00 0.00 5,724.73 -80.7 0.294 

British Virgin 

Islands 
0.54 3.00 0.00 0.00 0.00 0.00 0.54 0.0 0.249 

Brunei 0.46 0.64 0.00 0.00 0.00 0.00 0.46 0.0 0.049 

Bulgaria 4.41 10.36 0.28 1.73 0.02 0.10 4.70 0.0 0.932 

Burkina Faso 9,474.89 9,683.42 0.02 0.13 0.00 0.00 9,474.91 -514.0 0.000 

Burundi 11.18 1.99 3.26 1.85 0.07 0.23 14.51 0.0 0.981 

Cambodia 1,542.09 2,256.18 0.00 0.00 0.00 0.00 1,542.09 -29.6 0.364 

Cameroon 576.39 752.65 22.67 112.58 0.02 0.13 599.08 -18.1 0.111 

Caspian Sea 302.26 82.10 0.47 0.39 0.00 0.00 302.73 -3.2 0.005 

Cayman Islands 14.89 23.84 0.00 0.00 0.00 0.00 14.89 0.2 0.593 

Central African 

Republic 
49.56 143.54 0.00 0.00 0.00 0.00 49.56 -0.2 0.938 

Chad 50,295.87 8,051.47 0.70 0.36 0.00 0.00 50,296.56 -74.0 0.525 

Chile 180,306.30 10,376.65 41.13 32.93 0.00 0.00 180,347.44 492.8 0.000 
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China 2,136,070.51 47,271.28 161,035.31 12,608.93 20.50 19.23 2,297,126.32 -715.8 0.328 

Colombia 704.33 323.74 0.00 0.00 0.00 0.00 704.33 -17.2 0.000 

Costa Rica 2.52 14.80 0.00 0.00 0.00 0.00 2.52 -0.1 0.668 

Cuba 147.89 85.80 0.06 0.22 0.00 0.00 147.95 -1.0 0.404 

Curaçao 0.96 1.82 0.00 0.00 0.00 0.00 0.96 -0.1 0.028 

Cyprus 27.43 58.34 0.00 0.00 0.00 0.00 27.43 0.3 0.713 

Czech Republic 1.02 4.53 0.00 0.00 0.00 0.00 1.02 0.0 0.446 

Côte d'Ivoire 302.48 1,376.11 0.00 0.00 0.00 0.00 302.48 -10.4 0.601 

Democratic 

Republic of the 

Congo 

100.24 55.10 1.93 2.36 0.02 0.14 102.19 0.9 0.251 

Djibouti 6,726.63 779.05 0.04 0.19 0.00 0.00 6,726.67 -45.5 0.000 

Dominica 0.02 0.13 0.00 0.00 0.00 0.00 0.02 0.0 0.158 

Dominican 

Republic 
6.50 8.18 0.00 0.00 0.00 0.00 6.50 -0.1 0.588 

Ecuador 55.23 37.43 0.00 0.00 0.00 0.00 55.23 -1.0 0.063 

Egypt 52,104.65 5,142.35 86.07 15.44 0.00 0.00 52,190.72 288.2 0.000 

El Salvador 7.61 18.94 0.00 0.00 0.00 0.00 7.61 0.0 0.944 

Eritrea 19,264.50 2,842.37 1.36 2.02 0.00 0.00 19,265.86 -14.3 0.729 

Estonia 77.88 209.58 0.00 0.00 0.00 0.00 77.88 -1.4 0.635 

Ethiopia 24,980.82 5,996.57 0.17 0.58 0.00 0.00 24,980.99 -179.9 0.033 

France 37.89 57.41 0.00 0.00 0.00 0.00 37.89 3.1 0.000 

French Southern 

Territories 
0.19 0.58 0.00 0.00 0.00 0.00 0.19 0.0 0.155 

Gabon 128.38 213.91 0.00 0.00 0.00 0.00 128.38 1.0 0.750 

Gambia 79.86 26.17 0.00 0.00 0.00 0.00 79.86 -0.5 0.197 

Georgia 13.02 48.81 0.00 0.00 0.00 0.00 13.02 -0.4 0.560 

Germany 0.77 3.69 0.00 0.00 0.00 0.00 0.77 0.0 0.546 

Ghana 3,161.34 3,545.31 0.00 0.00 0.00 0.00 3,161.34 -113.6 0.022 

Greece 29.18 26.27 0.00 0.00 0.00 0.00 29.18 0.9 0.013 

Guadeloupe 0.97 4.62 0.00 0.00 0.00 0.00 0.97 0.0 0.779 

Guatemala 35.08 216.47 0.00 0.00 0.00 0.00 35.08 -1.4 0.666 

Guinea 411.49 534.09 0.00 0.00 0.00 0.00 411.49 -1.0 0.895 

Guinea-Bissau 113.08 363.57 0.00 0.00 0.00 0.00 113.08 -2.4 0.647 

Guyana 120.84 142.83 0.00 0.00 0.00 0.00 120.84 -4.5 0.024 

Haiti 16.22 35.49 0.00 0.00 0.00 0.00 16.22 -0.2 0.676 

Honduras 8.65 26.80 0.00 0.00 0.00 0.00 8.65 -0.4 0.321 

Hungary 385.75 759.49 0.14 0.75 0.00 0.00 385.89 -32.9 0.001 

India 103,978.73 26,904.56 259.27 308.06 0.00 0.00 104,238.00 -558.7 0.150 

Indonesia 245.14 311.54 0.00 0.00 0.00 0.00 245.14 4.1 0.362 

Iran 923,430.25 48,133.47 12,786.84 5,039.74 0.00 0.00 936,217.09 3,499.1 0.000 

Iraq 311,083.31 9,109.68 2,938.91 1,043.44 0.00 0.00 314,022.22 258.8 0.044 

Ireland 0.47 1.44 0.00 0.00 0.00 0.00 0.47 0.0 0.355 

Israel 6,720.86 336.71 0.70 0.91 0.00 0.00 6,721.56 16.5 0.000 

Italy 571.39 305.60 0.00 0.00 0.00 0.00 571.39 10.0 0.019 
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Country 

Mean, 

ESP  

6 - 15% 

(km2) 

SD, 

ESP  

6 - 15% 

(km2) 

Mean, 

ESP  

15 - 30% 

(km2) 

SD, ESP  

15 - 30% 

 (km2) 

Mean, 

ESP ≥ 

30% 

(km2) 

SD, 

ESP  ≥ 

30% 

(km2) 

Mean of sodic 

area, 

ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Jamaica 2.30 2.19 0.00 0.00 0.00 0.00 2.30 -0.1 0.009 

Japan 0.03 0.15 0.00 0.00 0.00 0.00 0.03 0.0 0.073 

Jordan 67,658.45 1,984.86 551.32 150.22 0.00 0.00 68,209.77 61.8 0.033 

Kazakhstan 1,152,995.42 94,477.26 24,518.30 5,620.83 0.00 0.00 1,177,513.72 -3,516.1 0.009 

Kenya 50,245.27 9,298.22 512.15 268.42 0.00 0.00 50,757.42 -124.2 0.358 

Kuwait 15,613.91 124.84 72.18 73.43 0.00 0.00 15,686.09 2.8 0.007 

Kyrgyzstan 3,933.39 779.11 18.52 15.88 0.00 0.00 3,951.91 -48.6 0.000 

Laos 7.39 33.74 0.00 0.00 0.00 0.00 7.39 -0.1 0.874 

Latvia 3.47 15.52 0.00 0.00 0.00 0.00 3.47 -0.1 0.790 

Lebanon 67.54 35.43 0.00 0.00 0.00 0.00 67.54 -0.8 0.108 

Lesotho 17.77 17.24 0.00 0.00 0.00 0.00 17.77 0.2 0.435 

Liberia 0.09 0.26 0.00 0.00 0.00 0.00 0.09 0.0 0.650 

Libya 239,674.27 23,913.78 82.31 11.14 0.00 0.00 239,756.59 100.6 0.772 

Lithuania 3.43 14.56 0.00 0.00 0.00 0.00 3.43 -0.3 0.097 

Macedonia 0.05 0.31 0.00 0.00 0.00 0.00 0.05 0.0 0.431 

Madagascar 397.87 205.02 0.00 0.00 0.00 0.00 397.87 -1.6 0.596 

Malawi 108.54 98.18 0.00 0.00 0.00 0.00 108.54 1.2 0.379 

Malaysia 203.87 123.33 0.00 0.00 0.00 0.00 203.87 1.8 0.313 

Mali 75,362.91 16,841.52 10.00 26.70 0.02 0.13 75,372.93 -763.0 0.001 

Malta 0.21 0.46 0.00 0.00 0.00 0.00 0.21 0.0 0.950 

Mauritania 87,249.26 9,205.02 176.88 36.66 0.00 0.00 87,426.14 -483.9 0.000 

Mexico 253,139.40 18,967.02 1,567.56 461.44 0.00 0.00 254,706.96 383.0 0.166 

Moldova 0.69 4.02 0.00 0.00 0.00 0.00 0.69 0.0 0.576 

Mongolia 490,605.97 21,187.50 11,782.06 1,966.31 0.44 1.29 502,388.47 166.0 0.589 

Morocco 73,776.38 9,306.70 177.78 17.01 0.00 0.00 73,954.17 -289.3 0.027 

Mozambique 3,171.49 1,805.45 0.12 0.75 0.00 0.00 3,171.60 -71.1 0.004 

Myanmar 759.43 1,198.80 0.00 0.00 0.00 0.00 759.43 -19.0 0.271 

Namibia 91,363.26 6,806.23 7.11 8.64 0.00 0.00 91,370.37 -200.3 0.037 

Nepal 1,318.28 1,002.96 0.00 0.00 0.00 0.00 1,318.28 -3.8 0.797 

Netherlands 0.03 0.17 0.00 0.00 0.00 0.00 0.03 0.0 0.485 

New Zealand 0.03 0.14 0.00 0.00 0.00 0.00 0.03 0.0 0.020 

Nicaragua 23.28 125.62 0.00 0.00 0.00 0.00 23.28 -0.8 0.680 

Niger 65,697.80 11,906.57 0.00 0.00 0.00 0.00 65,697.80 199.3 0.245 

Nigeria 4,498.27 5,989.30 3.36 14.11 0.00 0.00 4,501.63 -73.5 0.396 

North Korea 11.43 33.07 0.00 0.00 0.00 0.00 11.43 1.1 0.014 

Northern Cyprus 54.39 56.78 0.00 0.00 0.00 0.00 54.39 0.1 0.872 

Oman 105,289.20 5,868.45 1.13 1.42 0.00 0.00 105,290.33 75.6 0.372 

Pakistan 398,545.71 19,378.30 1,772.13 1,204.69 0.32 1.58 400,318.16 958.7 0.000 

Palestina 797.15 149.99 1.31 2.83 0.00 0.00 798.45 6.0 0.004 

Panama 2.30 14.23 0.00 0.00 0.00 0.00 2.30 -0.1 0.671 

Papua New 

Guinea 
19.50 53.35 0.00 0.00 0.00 0.00 19.50 0.0 0.993 

Paraguay 12,485.37 12,676.35 0.00 0.00 0.00 0.00 12,485.37 -492.2 0.005 
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Country 
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6 - 15% 

(km2) 
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ESP  
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 (km2) 

Mean, 

ESP ≥ 
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30% 

(km2) 

Mean of sodic 
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ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

Peru 78,620.16 4,684.19 3.46 4.23 0.00 0.00 78,623.62 -248.6 0.000 

Philippines 79.56 134.01 0.00 0.00 0.00 0.00 79.56 2.7 0.157 

Poland 0.12 0.38 0.00 0.00 0.00 0.00 0.12 0.0 0.158 

Portugal 1.93 3.94 0.00 0.00 0.00 0.00 1.93 -0.1 0.078 

Puerto Rico 0.69 2.31 0.00 0.00 0.00 0.00 0.69 0.0 0.454 

Qatar 10,239.71 65.80 48.01 64.82 0.00 0.00 10,287.72 0.4 0.036 

Republic of 

Congo 
129.20 122.21 0.00 0.00 0.00 0.00 129.20 4.0 0.019 

Romania 136.44 111.90 0.00 0.00 0.00 0.00 136.44 0.7 0.669 

Rwanda 1.18 2.11 0.00 0.00 0.00 0.00 1.18 -0.1 0.001 

Saint-Martin 0.08 0.31 0.00 0.00 0.00 0.00 0.08 0.0 0.401 

Saudi Arabia 677,693.88 41,498.95 87.12 66.44 0.00 0.00 677,781.00 2,256.2 0.000 

Senegal 2,044.49 1,720.61 3.31 5.70 0.00 0.00 2,047.80 -114.8 0.000 

Serbia 2.11 2.80 0.00 0.00 0.00 0.00 2.11 0.0 0.276 

Sierra Leone 34.69 55.96 0.00 0.00 0.00 0.00 34.69 -0.3 0.670 

Singapore 0.18 0.84 0.00 0.00 0.00 0.00 0.18 0.0 0.068 

Slovakia 9.87 25.83 0.00 0.00 0.00 0.00 9.87 -1.0 0.005 

Solomon Islands 0.89 3.20 0.00 0.00 0.00 0.00 0.89 -0.1 0.004 

Somalia 85,739.52 12,169.87 0.60 0.98 0.00 0.00 85,740.12 398.3 0.019 

South Africa 30,585.66 7,201.22 0.10 0.39 0.00 0.00 30,585.76 -335.9 0.000 

South Korea 0.85 1.37 0.00 0.00 0.00 0.00 0.85 0.0 0.038 

South Sudan 4,256.83 4,513.56 0.00 0.00 0.00 0.00 4,256.83 -162.4 0.009 

Spain 560.95 174.23 0.00 0.00 0.00 0.00 560.95 -0.4 0.873 

Sri Lanka 20.35 17.33 0.00 0.00 0.00 0.00 20.35 0.1 0.705 

Sudan 120,928.87 24,802.58 208.71 180.55 0.00 0.00 121,137.58 -1,190.5 0.000 

Suriname 0.17 1.09 0.00 0.00 0.00 0.00 0.17 0.0 0.335 

Swaziland 1.49 2.46 0.00 0.00 0.00 0.00 1.49 0.0 0.588 

Sweden 0.66 1.91 0.00 0.00 0.00 0.00 0.66 0.0 0.686 

Switzerland 9.03 7.20 0.00 0.00 0.00 0.00 9.03 -0.5 0.000 

Syria 123,697.38 7,403.43 479.93 413.83 0.00 0.00 124,177.30 316.7 0.002 

Taiwan 0.66 0.29 0.00 0.00 0.00 0.00 0.66 0.0 0.002 

Tajikistan 13,168.44 982.59 373.58 198.73 0.00 0.00 13,542.02 -13.2 0.372 

Tanzania 1,607.10 549.61 0.02 0.14 0.00 0.00 1,607.12 18.3 0.017 

Thailand 8,772.53 10,338.59 31.13 66.11 0.02 0.13 8,803.68 -306.7 0.035 

Timor-Leste 1.02 1.96 0.00 0.00 0.00 0.00 1.02 0.1 0.015 

Togo 552.78 605.87 0.00 0.00 0.00 0.00 552.78 -22.4 0.007 

Tunisia 22,799.58 2,648.03 156.86 190.38 0.00 0.00 22,956.45 -60.3 0.111 

Turkey 25,912.43 5,540.79 1.09 1.46 0.00 0.00 25,913.52 -340.0 0.000 

Turkmenistan 378,681.94 14,504.83 1,987.60 1,227.82 0.00 0.00 380,669.54 912.5 0.000 

Turks and Caicos 

Islands 
14.16 13.05 0.00 0.00 0.00 0.00 14.16 0.2 0.217 

Uganda 70.77 165.29 0.00 0.00 0.00 0.00 70.77 1.5 0.529 

Ukraine 257.02 169.78 0.00 0.00 0.00 0.00 257.02 2.2 0.368 

United Arab 

Emirates 
29,690.05 1,112.37 157.18 204.86 0.00 0.00 29,847.23 83.1 0.000 
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Country 
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6 - 15% 
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ESP  ≥ 

30% 

(km2) 

Mean of sodic 

area, 

ESP ≥ 6% 

(km2) 

1980 - 2018 

trend 

(km2 yr-1) 

p-value 

(1980 - 

2018) 

United States 244,008.42 20,967.09 12,421.72 3,133.88 11.14 20.96 256,441.28 1,316.6 0.000 

Uruguay 315.90 402.25 0.00 0.00 0.00 0.00 315.90 3.2 0.588 

Uzbekistan 274,290.01 8,495.61 9,344.50 4,175.01 0.00 0.00 283,634.51 -11.7 0.935 

Vanuatu 0.38 1.39 0.00 0.00 0.00 0.00 0.38 -0.1 0.004 

Venezuela 1,559.29 2,819.07 0.00 0.00 0.00 0.00 1,559.29 -47.4 0.243 

Vietnam 161.87 459.80 0.00 0.00 0.00 0.00 161.87 -2.9 0.666 

Virgin Islands, 

U.S. 
0.06 0.29 0.00 0.00 0.00 0.00 0.06 0.0 0.528 

Western Sahara 79,663.44 5,560.93 257.01 14.40 0.00 0.00 79,920.45 -6.1 0.940 

Yemen 75,857.80 17,624.44 7.31 8.47 0.00 0.00 75,865.11 1,054.6 0.000 

Zambia 865.73 1,306.79 0.00 0.00 0.00 0.00 865.73 -42.6 0.020 

Zimbabwe 287.96 373.02 0.00 0.00 0.00 0.00 287.96 -5.5 0.303 
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Computer codes  

This section provides the scripts and codes required to regenerate the results. Please note that 

ArcGIS Desktop 10.x license is needed to run ArcPy module. Also, the MATLAB Parallel 

Computing plus Statistics and Machine Learning toolboxes are required for running the 

MATLAB codes provided here. 

Pre-processing the predictors’ layers 

The scripts provided in this sub-section show how we pre-processed the predictors assembled 

from the different sources and made them ready for data extraction. We refer the reader to 

Table A2-1 to see the corresponding pre-processing steps for each individual predictor.  

Static topographic predictors including slope (degrees), plan and profile curvatures, 

slope length (m), and Terrain Ruggedness Index (TRI) were calculated in SAGA GIS GUI 

(Graphical User Interface) from CGIAR CSI SRTM 90 m Digital Elevation Database v4.1. The 

original DEM (Digital Elevation Model) data were resampled to 250 m and saved in three 

separate raster datasets named: North East, South East, and West. We downloaded these three 

layers, mosaicked them in ArcGIS for Desktop environment (herein we refer to its central 

application: ArcMap) and exported the generated global layer as a single geo-tiff. To generate 

the map of the topographic predictors including slope, slope length, TRI, plan, and profile 

curvatures, it was necessary to have the original DEM in a projected coordinates system. For 

computing those topographic predictors, we first projected the global DEM layer to World 

Mercator coordinates system (with 259.511 m spatial resolution) using ArcMap “raster project” 

tool. To reduce the computational load and avoid system crashes in SAGA GIS, we produced 

a separate DEM layer in the World Mercator coordinates system, however, at 1,000 m spatial 

resolution to generate the maps of slope length and TRI. For the plan and profile curvatures, 

the 10 parameter 3rd order polynomial method was used. Also, we used a square cell with radius 

of three for calculation of TRI.  

Other static predictors were directly pre-processed (including projections and per-cell 

statistics) through ArcMap GUI and the following scripts are not applicable to those predictors. 

Soil texture raster datasets of clay, silt, and sand content at different depths were averaged 

using ArcMap “raster calculator” tool. To get an average of soil texture properties between soil 

surface and 100 cm depth from the available values of SoilGrids250 datasets for five standard 

depths of 0, 15, 30, 60, and 100 cm, we applied the trapezoidal rule as follows: 

  Soil texture property average between 0 and 100 cm =   

[(15 - 0) × (Rval (15) + Rval (0)) + (30 - 15) × (Rval (30) + Rval (15)) + … 

                                         (60 - 30) × (Rval (60) + Rval (30)) + (100 - 60) × (Rval (100) + Rval (60))] / (100 × 2),  

where Rval (depth) was the raster value at the corresponding depth.  

Some predictors were originally in an .hdf format. HDF files were composed of 

different layers (or sub-datasets) and we required only one or two layers form those sub-

datasets. An example of these kind of predictors was VIP30 v. 004 dataset and NDVI and EVI2 

layers were the required sub-datasets. We used the following Python code to automatize the 

processes of extracting the desirable sub-dataset layers: 

## Extract sub-dataset, we used PyCharm Python IDE (Integrated Development Environment) 

## Usage: Extracting the required sub-datasets from predictors with .hdf format and saving the 

## final sub-dataset as a geo-tiff. 

 

import arcpy # Importing the ArcPy module 

import os # Importing Miscellaneous operating system module required for reading the file 

names in a directory 

import os, fnmatch 
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# Setting the geo-processing environments 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = r"The directory of .hdf files" 

arcpy.env.geographicTransformations = arcpy.SpatialReference(4326) # Setting the output 

coordinates as WGS 1984 

 

# Reading the .hdf files needed to be processed from a directory 

path = r" The directory of .hdf files " 

pattern = "*.hdf" 

hdf_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)]  

 

for i in range(0,len(hdf_files)): 

 # i is index of the .hdf file 

 arcpy.ExtractSubDataset_management(hdf_files[i],"Output directory"+str(i)+".tif", "S_N") 

 # Extracting the sub-dataset and saving as geo-tiff using ArcPy ExtractSubDataset_management 
 # S_N is the sub-dataset number in .hdf file 

 

 

In some cases, the original files were in an .nc format. To convert those netcdf files to raster 

layers we used the following Python code: 

 
## Making raster layers from a netcdf file, 

## Usage: This code first extracts the different temporal layers of the netcdf files and then 

## saves each layer as a separate raster file in .tif format. 

 

import arcpy # Importing the ArcPy module and spatial analysis required functions 

from arcpy import env 

from arcpy.sa import * 

import os # Importing Miscellaneous operating system module required for reading the file 

names in a directory 

import os, fnmatch 

 

# Setting the ArcPy geo-processing environments 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = r"The directory of the nc files" 

arcpy.env.geographicTransformations = arcpy.SpatialReference(4326) # Setting the output 

coordinates as WGS 1984 

 

# Reading the nc files in the directory where they are stored 

path = r" The directory of the nc files" 

nc_files = [f for f in os.listdir(path) if f.endswith(".nc")] 

 

# i is index of the nc file 

for i in range(0,len(nc_files)): 

   inNetCDFFile = nc_files[i] 

   variable = " The name of the variable in the netcdf file" 

   XDimension = "longitude" # In the netcdf file 

   YDimension = "latitude" # In the netcdf file 

   outRasterLayer = "Created_layer" 

   bandDimmension = "" # Varies depending on the band dimension (time) name in the nc file 

   dimensionValues = "" 

   valueSelectionMethod = "" 

   # Executing ArcPy the MakeNetCDFRasterLayer_md tool 

   arcpy.MakeNetCDFRasterLayer_md(inNetCDFFile, variable, XDimension, YDimension,\ 

                             outRasterLayer, bandDimmension, dimensionValues,\ 

                              valueSelectionMethod) 

   # Saveing the created layers in memory 

   arcpy.SaveToLayerFile_management('Created_layer', 'Temporaty_saved_layer'+str(i)) 

   # Saving the created layers on the disk 

   arcpy.CopyRaster_management('Temporaty_saved_layer'+str(i)+'.lyr',"Output 

   location"+str(i)+'.tif')   

 
 

After converting all predictors’ datasets to raster layers, we used the ArcPy “cell-

statistics” geo-processing tool to calculate the per-cell average of dynamic predictors. 

Temporal resolution of the predictors was different. First we generated the annual averages of 

each predictor. For the predictors with decadal averaging window, we calculated the average 

in each year from 1971 to 2018. For the predictors with 5-year averaging window, we computed 

annual averages from 1976. For the rest of predictors, we generated annual averages from 1980. 

Unfortunately, vegetation indices data including NDVI, EVI2, LAI, and FAPAR were not 
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available for 1980. Therefore, we produced their layers by calculating an average between 1981 

and 1985. For instance, we generated the raster layer of NDVI in 1980 (which was missing in 

the original VIP30 v. 004 dataset) by calculating the per-cell average of NDVI raster layers 

between 1981 and 1985. Then we computed running window averages of the predictors with 

decadal and five-year averaging windows (Table A2-1) from 1980 to 2018 using the following 

Python code. For each particular predictor and each year between 1980 and 2018, a raster layer 

representing the average of the corresponding predictor in the averaging window was 

generated. We named (labelled) these raster layers with the predictor’s name as a prefix and 

the number of the year to which the raster layer was corresponded. Final averaged rasters of 

each predictor were saved in separate directories for extraction of the values and further 

processing. 

## Calculation of per cell average for predictors with decadal and five-year averaging window, 

## Usage: this code gets a large number of rasters in a directory and calculates the per cell 

## average of the rasters 

## and generates a final raster layer which is the average of input rasters. 

 

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * # Importing all functions from ArcPy spatial analyst toolbox 

import os # Importing Miscellaneous operating system module required for reading the file 

names in a directory 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.workspace = r"The directory of rasters for each particular predictor" 

arcpy.env.extent = "MAXOF" 

arcpy.env.overwriteOutput = True 

arcpy.env.geographicTransformations = arcpy.SpatialReference(4326) # Setting the output 

coordinates as WGS 1984 

 

C = "Raster name prefix" 

for i in range(1980, 2019): 

 # i is the index of year 

 # Execution of the cell-statistics tool 

 # For predictors with decadal averaging window:  

  outCellStatistics = ([C + str(i) + ".tif", C + str(i-1) + ".tif", C + str(i-2) + ".tif",…, C 

  + str(i-9) + ".tif"], "MEAN", "DATA") 

 # For predictors with five-year averaging window: 

  outCellStatistics = ([C + str(i) + ".tif", C + str(i-1) + ".tif", C + str(i-2) + ".tif",…, C  

  + str(i-4) + ".tif"], "MEAN", "DATA") 

 # The output of cell-statistics is temporary (saved on memory)  

 # Saving the output of cell-statistics on the disk 

  outCellStatistics.save("Output folder/Predictor_name_" + str(i) + ".tif") 

 

 

Some pixels were missing in the final generated rasters of the predictors; mostly in 

layers of the remotely-sensed soil moisture and vegetation indices. We filled the spatial gaps 

(pixels with null values) in the data layers using the mean of surrounding pixels. A circle with 

radius of 4 from the neighbouring cells of the gap was used to calculate the mean through 

application of the following Python code:  

 
## Filling the gaps in rasters, 

## Usage: This code fills the gaps (null cells) in generated rasters for extraction of  

## predictors’ values. 

 

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * # importing the functions of spatial analyst toolbox 

# Importing Miscellaneous operating system module required for reading the file names in a 

directory 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.parallelProcessingFactor = "100%" 

arcpy.env.workspace = r"The directory of rasters" 
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arcpy.env.extent = "MAXOF" 

arcpy.CheckOutExtension("Spatial") 

 

# Acquiring all rasters within a directory 

path = r" The directory of rasters " 

pattern = "*.tif" 

tif_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# i is index of the .tif file 

for i in range(0,len(tif_files)): 

 string = tif_files[i] # raster layer name 

 string_1 = string[0:(len(string)-4)] # Raster layer name without .tif suffix 

 # Execution of the Filling. This part is a combination of ArcPy Focal Statistics and Raster  

 Calculator tools  

 # A circle with radius of 4 from the neighbouring cells of the gap is used to calculate the  

 average and gap is filled by the average value 

 Rasterfilled = Con(IsNull(string), FocalStatistics(string,NbrCircle(4,"CELL"),"MEAN","DATA"), 

 string) 

 # The output is temporary (saved on memory) and the following saves it on the disk 

 arcpy.CopyRaster_management(Rasterfilled, r"The output directory"+string_1+".tif") 

 

Extracting the predictors’ values to training point feature layers 

Merging of the training datasets (for ESP) from different source datasets and their pre-

processing (see Methods, Data) was fully accomplished in ArcMap GUI and corresponding 

toolboxes. The indicator of the missing values in original training datasets was replaced by -

9,999, soil layers attributes were joined to their corresponding geo-referenced profile locations, 

and the valid range for ESP was assumed to be 0 to 100%. Then we removed the profiles in 

AfSP and WISE datasets that spatially intersect the NCSS profiles and merged these three 

datasets into a single inventory. The final training datasets were saved as a point feature class 

(.shp format) file. We first projected these layers in ArcMap environment to World Mercator 

coordinates system to extract the values of static predictors in the World Mercator projection. 

We projected the point shape files instead of rasters to avoid data loss due to raster resampling. 

After extraction, the two shape files were re-projected to WGS 1984 coordinates system 

to extract the values of other predictors. For all static predictors, the extractions were directly 

conducted by “extract multi values to points” tool from ArcMap “spatial analyst” toolbox. 

However, for the dynamic predictors, first we applied the ArcPy “select layer by attribute” tool 

to the point features classes and divided the points according to the year of acquisition. In detail, 

in each point feature class, there were some points with x- and y- spatial coordinates values 

representing the locations where soil ECe and ESP were sampled. In the attribute table of these 

x- y- points, the year of acquisition of the sample, lower sample’s depth, upper sample’s depth 

(from the soil surface), and the measured values of ECe or ESP for that sample were reported. 

We selected the samples with the same year of acquisition and exported the selected samples 

as new point feature classes for further processing and extraction of the dynamic predictors’ 

values. Therefore, a total of 39 point feature layers labelled by the year of acquisition of 

samples were generated (since 1980). The following Python script shows the selection process: 

## Select by attribute,  

## Usage: This code selects the points in original datasets (needed for training) based on the 

## year of acquisition in attribute table. 

## This code splits the point feature layers of the training datasets into smaller point  

## feature layers. Each smaller layer is labelled by the name of the year. 

 

import arcpy # Importing the ArcPy module 

 

# Setting the geo-processing environments 

arcpy.env.workspace = r"The directory of training datasets" 

arcpy.env.overwriteOutput = True 

# Importing the original dataset feature point layer into memory 

arcpy.MakeFeatureLayer_management("ESP/ECe.shp", "lyr") 

# CC is the prefix of the generated point feature layers ECE_ or ESP_ for each year 



Appendix 2 

 

 

215 

 

CC = "" or "" 

for i in range (1980,2019): 

 # i is index of the year # -9999 is the index of the missing data 

 arcpy.SelectLayerByAttribute_management("lyr", "NEW_SELECTION", "Year >= '"+str(i)+"' AND   

 Year < '"+str(i+1)+"' AND NOT Year = '-9999'")  

 arcpy.CopyFeatures_management('lyr', "Output directory/"+CC+str(i)) 

 

 

Then we extracted the values of the predictors at each year corresponding to the year of 

acquisition of the point feature layer using ArcPy “extract multi values to points” geo-

processing tool as follows: 

## Extract multi values to training sets' data points, 

## Usage: This code extracts the values of each predictor’s raster layer (labelled by year) to 

## point feature layer of the training datasets labelled with the similar year. The extracted 

## values emerges in the attribute table of the point feature dataset. 

 

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * # Importing all functions in spatial analyst toolbox 

 

# Setting the geo-processing environments 

arcpy.CheckOutExtension("Spatial") # Checking for the spatial analyst license 

arcpy.env.workspace = r"The directory of point feature layers" # The directory should also 

include the dynamic predictors' raster layers 

C = "the prefix of the point feature layers for each year" 

 

# i is index of the year  

for i in range(1980,2019): 

   # Execution of extraction # For each predictor this loop has to iterate 

   inRasterList = [["Raster layer name" + str(i) +".tif","Name of the extracted value in   

   attribute table of the point feature layer"]] 

   inPointFeatures = C + str(i) + ".shp" 

   ExtractMultiValuesToPoints(inPointFeatures, inRasterList) 

 

 

The extracted values of each predictor were added to the attribute table of individual 

years’ point feature layers. The attribute tables were composed of columns with headers named 

after the predictors and rows representing the sample observations. After extraction of the 

predictors’ values, the point features layers were merged by ArcMap “merge” tool and the final 

attribute tables were exported as text files (.txt format). These text files were imported to 

MATLAB for fitting the models and further analysis. 

Model training 

The prepared text files were then imported to MATLAB workspace. We calculated the linear 

Pearson correlation coefficients between each predictor and target variables as a univariate 

criterion to filter the unnecessary predictors, assuming no interaction between the predictors 

(Table A2-24). The Pearson correlation coefficients between the predictors and target variables 

were non-significant; so we retrieved all predictors for further modelling. Initially, we used 

MATLAB Regression and Classification Learner applications to examine the performance of 

different built-in models available in MATLAB Statistics and Machine Learning toolbox. We 

used two-part models for mapping the relation between predictors and target variables. We 

held out 25% of the training sets and fitted the models with default models’ hyperparameters. 

Tree-based ensemble models were the most suitable among other models for our regression 

and classification tasks (see Table A2-6).  
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Table A2-24: Pearson's linear correlation coefficient between the non-categorical predictors’ values and 

target variables (ECe or ESP). Pearson's correlation coefficients equal to -1 and +1 indicate perfect negative and 

positive correlations between predictor and variable, respectively. For the full name of the predictors see Table 

A2-1. 

Predictor name 
ECe ESP 

Pearson correlation coefficient Pearson correlation coefficient 

Sample’s upper depth 0.083 0.120 

Sample’s lower depth 0.087 0.128 

Elevation -0.075 0.060 

Plan curvature -0.013 -0.006 

Profile curvature 0.002 0.000 

Slope -0.121 -0.115 

Slope length 0.007 0.068 

Terrain Ruggedness Index -0.118 -0.102 

Fertiliser input for C3 annual crops -0.028 -0.050 

Fertiliser input for C3 perennial crops 0.055 0.024 

Water table depth -0.083 -0.018 

Aspect 0.015 -0.018 

Topographic index 0.119 0.106 

Soil clay content -0.166 0.085 

Soil silt content 0.049 -0.123 

Soil sand content 0.092 0.064 

Soil-sedimentary thickness 0.133 0.138 

Average rooting depth -0.070 0.022 

Diurnal temperature range -0.040 0.140 

Precipitation -0.127 -0.209 

Average temperature -0.058 0.046 

Maximum temperature -0.067 0.073 

Minimum temperature -0.049 0.020 

Root-zone soil moisture -0.115 -0.220 

PDSI 0.029 -0.064 

Soil surface moisture (2 - 5 cm) -0.091 -0.204 

Evaporative stress factor -0.054 -0.218 

EVI2 -0.180 -0.254 

NDVI -0.191 -0.268 

FAPAR -0.200 -0.262 

LAI -0.165 -0.240 

Wind speed 0.159 0.071 

Soil surface (skin) temperature -0.020 0.076 

Soil layer one temperature -0.012 0.101 

Soil layer two temperature -0.016 0.100 

Soil layer three temperature -0.015 0.100 

Soil layer four temperature -0.015 0.101 

Potential evapotranspiration 0.047 0.175 

Water deficit 0.161 0.271 

Actual evapotranspiration -0.178 -0.229 

 

For the classification part, we used MATALB “fitcensemble” function. We ignored the 

slight imbalance between the classes in ESP training set. To resolve the presence of imbalance 

between the classes of ECe training dataset, however, application of under-sampling, over-

sampling (using Synthetic Minority Over-sampling Technique: SMOTE (Chawla et al. 2002)), 
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and/or a combination of these two techniques was possible. Also MATLAB “fitcensemble” 

allowed us to modify the misclassification cost matrix to handle the imbalance in classes. We 

developed the following MATLAB script to inspect the effect of abovementioned solutions on 

performance of the fitted models by “fitcensemble” function: 

 

clc; 

clear; 

%% Effect of misclassification cost, over-sampling, and under-sampling, 

%% Usage: This code will examine the effect of altering the misclassification 

%% cost of the class with lower number of samples in imbalanced binary classification. Also 

%% it examines the effect of under-sampling from the class with higher number 

%% of samples, over-sampling from the class with lower number of samples, 

%% and a combination of these methods. For each method, combined effect of 

%% manipulating the misclassification cost is also analysed. For 

%% over-sampling, we have used Synthetic Minority Over-Sampling 

%% Technique (SMOTE). We implemented MATLAB R2019 for running this. 

  

ECe = readtable('Location of the ECe training dataset on the disk','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); % Importing the table of training  

     % dataset which is ECe here 

 

%% Preparing the table 

table = standardizeMissing(ECe,-9999);% Converting the cells with missing values indicator 

% (-9999) to MATLAB standard NaN 

table.FID = []; 

table.Year = []; 

table(sum(ismissing(table),2) > 0,:) = [];% Dropping the rows with missing values 

edges = [0 2 100];% Setting the classes edges 

table.ECe = discretize(table.ECe,edges); % Discretising the ECe values into two classes,  

% saline and non-saline 

   

%% Partitioning 

% This part partitions the original dataset to training (75%) and test sets (25%) 

c = cvpartition(table.ECe,'Holdout',0.25,'Stratify',true); % Data will be stratified between  

% the two sets; this assures that data from both classes are available in the two final sets 

idx1 = test(c); 

idx2 = training(c); 

Test = table(idx1(:)==1,:); 

Training = table(idx2(:)==1,:); 

  

%% Preparing required tables for training and validation 

% Categorizing the categorical variables in the test set 

Test.Main_litho = categorical(Test.Main_litho); 

Test.WRB = categorical(Test.WRB); 

Test.LC = categorical(Test.LC); 

TrueLabels = Test.ECe; 

Class_1 = Training(Training.ECe == 1,:); 

Class_1_refilled = Training(Training.ECe == 1,:); 

Class_2 = Training(Training.ECe == 2,:); 

% Categorizing the categorical variables in the training set 

Training.Main_litho = categorical(Training.Main_litho); 

Training.WRB = categorical(Training.WRB); 

Training.LC = categorical(Training.LC); 

   

%% Model Training 

%% Calculating the classification accuracy metrics for different misclassification costs 

%% 'i' for the misclassification cost 

 

Row = 1; 

Accuracy_Metrics = zeros(13,10); 

for i = 1:0.25:4 

% Each iteration of 'i' changes the misclassification cost of the class with lower number of  

% samples in fitcensemble function misclassification cost matrix 

% For hyperparameter optimisation, 130 iterations are conducted to evaluate the objective 

% function. Holdout set (with %25 held out) was used to evaluate the objective function 

% 'ens' is the object of the final trained model 

  ens = fitcensemble(Training,'ECe','Cost',[0 1;i 0],'OptimizeHyperparameters',...           

  {'Method','LearnRate','NumLearningCycles','MinLeafSize','MaxNumSplits',...     

  'NumVariablesToSample','SplitCriterion'},'HyperparameterOptimisationOptions',...    

struct('Holdout',.25,'UseParallel',true,'MaxObjectiveEvaluations',130,'Repartition',true,'Show

Plots',false,'Verbose',0)); 

    %%Obtaining validation metrics 

    Predictedlabels = predict(ens,Test); 

    % Tp = True Positive, Fn = False Negative , Fp = False Positive, Tn = True Negative 
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    C = confusionmat(TrueLabels,Predictedlabels); Tp = C(1,1); Fn = C(1,2); Fp = C(2,1); Tn =  

    C(2,2); 

    Accuracy_Metrics(Row,1) = i; 

    Accuracy_Metrics(Row,2) = Tp; Accuracy_Metrics(Row,3) = Fn; 

    Accuracy_Metrics(Row,4) = Fp; Accuracy_Metrics(Row,5) = Tn; 

    Accuracy_Metrics(Row,6) = loss(ens,Test,'ECe'); % Binary misclassification loss 

    Accuracy_Metrics(Row,7) = (Tp+Tn)/(Tp+Fp+Fn+Tn)*100; % Binary classification accuracy 

    Accuracy_Metrics(Row,8) = Tp/(Tp+Fp); % Precision 

    Accuracy_Metrics(Row,9) = Tp/(Tp+Fn); % Recall 

    %MCC (Matthews Correlation Coefficient) for binary imbalanced classification 

    Accuracy_Metrics(Row,10) = ((Tp*Tn)-(Fp*Fn))/sqrt((Tp+Fp)*(Tp+Fn)*(Tn+Fp)*(Tn+Fn)); 

    Row = Row + 1; 

end  

% Saving results as a table 

Accuracy_Metrics = array2table(Accuracy_Metrics,'VariableNames',{'Cost_2_1' 'Tp' 'Fn'... 

'Fp''Tn' 'Loss_Classification_error' 'Accuracy' 'Precision' 'Recall' 'MCC'}); 

writetable(Accuracy_Metrics, 'Output directory\output file name.txt'); 

  

%% Calculating the classification accuracy metrics for the extent of oversampling and  

%% misclassification cost; 'i' for the number of increased samples, 'j' for the  

%% misclassification cost. We have used SMOTE (Synthetic Minority Over-sampling Technique) for 

%% generation of synthetic samples. Each iteration of 'i' produces 2500 new samples using  

%% the feature space between the 2500 random selected samples (without replacement) and  

%% their nearest neighbours 

  

Row = 1; 

Accuracy_Metrics = zeros(28,11); 

Oversampling_rate = 2500; 

Class_2_matrix = table2array(Class_2); 

for i = 1:4 

    % Random sample selection from class 2 (saline) without replacement and copying into a  

    % new matrix(named matrix) 

    y = randsample(size(Class_2_matrix,1),Oversampling_rate);     

    matrix = Class_2_matrix(y,:); 

    z = 1; 

    % 'inc' is the number of synthetic samples which will be made in the feature space between  

    % the two nearest neighbours  

    inc = 1; 

    % Augmented matrix is the matrix of new generated samples 

    Augmented_matrix = zeros(size(matrix,1)*inc,44); 

    for ii = 1:size(matrix,1) 

% Finding the nearest neighbours of each query row of the selected matrix of samples      

% in Class 2 (saline) 

        Index = knnsearch(Class_2_matrix,matrix(ii,:),'K',2); 

        % Generation of samples between the two nearest neighbours using proposed  

        % interpolation method in SMOTE 

        for jj = z:inc + (z-1) 

            Augmented_matrix(jj,1:2) =  

            Class_2_matrix(ii,1:2)+rand*(Class_2_matrix(Index(1,2),1:2)-... 

            Class_2_matrix(ii,1:2)); 

            % The target variable was the third column in the training set 

            Augmented_matrix(jj,3) = 2; 

            Augmented_matrix(jj,4:end) = ...  

            Class_2_matrix(ii,4:end)+rand*(Class_2_matrix(Index(1,2),4:end)-... 

            Class_2_matrix(ii,4:end)); 

            % Categorical variables of the generated sample are the same as the original   

            % sample (not eligible for interpolation) 

            Augmented_matrix(jj,20) = Class_2_matrix(Index(1,2),20); 

            Augmented_matrix(jj,21) = Class_2_matrix(Index(1,2),21); 

            Augmented_matrix(jj,44) = Class_2_matrix(Index(1,2),44); 

        end 

        z = jj+1; 

    end 

    % Converting the augmented matrix to a table  

    Augmented_matrix = array2table(Augmented_matrix,'VariableNames',... 

    {'upper_dept' 'lower_dept' 'ECe' 'Elevation' 'Pla_cur' 'Pro_cur' 'Slope' ... 

    'Slope_Leng' 'TRI' 'c3ann' 'c3per' 'WTD' 'Aspect' 'Topo_index' 'Clay' 'Silt' ... 

    'Sand' 'Soil_thick' 'Root_D' 'WRB' 'Main_litho' 'dtr' 'Pre' 'T_ave' 'T_max' 'T_min' ...      

    'S_mo' 'PDSI' 'Sat_SM' 'Gleam_S' 'EVI' 'NDVI' 'FAPAR' 'LAI' 'Wind_S' 'Skin_T' ...          

    'S_T_1' 'S_T_2' 'S_T_3' 'S_T_4' 'Pet' 'Def' 'aet' 'LC'}); 

    Augmented_matrix.Main_litho = categorical(Augmented_matrix.Main_litho); 

    Augmented_matrix.WRB = categorical(Augmented_matrix.WRB); 

    Augmented_matrix.LC = categorical(Augmented_matrix.LC); 

    % Adding the augmented matrix to the original training set 

    if i == 1 

        Old_Augmented_matrix = []; 

    end 
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    Tbl = [Training;Old_Augmented_matrix;Augmented_matrix]; 

    % To keep the previous generated samples in the next iteration: 

    Old_Augmented_matrix = [Old_Augmented_matrix;Augmented_matrix]; 

    for j = 1:0.5:4 

        % Each iteration of 'j' examines the effect of misclassification cost 

        % of the class with lower number of samples on the performance of 

        % the fitted model 

        ens = fitcensemble(Tbl,'ECe','Cost',[0 1;i 0],'OptimizeHyperparameters',...          

{'Method','LearnRate','NumLearningCycles','MinLeafSize','MaxNumSplits',... 

'NumVariablesToSample','SplitCriterion'},'HyperparameterOptimisationOptions',...         

struct('Holdout',.25,'UseParallel',true,'MaxObjectiveEvaluations',130,... 

'Repartition',true,'ShowPlots',false,'Verbose',0)); 

        %% Obtaining the validation metrics 

        Predictedlabels = predict(ens,Test); 

        C = confusionmat(TrueLabels,Predictedlabels); Tp = C(1,1); Fn = C(1,2); Fp = C(2,1);   

        Tn = C(2,2); 

        Accuracy_Metrics(Row,1) = i*Oversampling_rate; 

        Accuracy_Metrics(Row,2) = j; 

        Accuracy_Metrics(Row,3) = Tp; Accuracy_Metrics(Row,4) = Fn; 

        Accuracy_Metrics(Row,5) = Fp; Accuracy_Metrics(Row,6) = Tn; 

        Accuracy_Metrics(Row,7) = loss(ens,Test,'ECe'); 

        Accuracy_Metrics(Row,8) = (Tp+Tn)/(Tp+Fp+Fn+Tn)*100; 

        Accuracy_Metrics(Row,9) = Tp/(Tp+Fp); 

        Accuracy_Metrics(Row,10) = Tp/(Tp+Fn); 

        Accuracy_Metrics(Row,11) = ((Tp*Tn)-(Fp*Fn))/sqrt((Tp+Fp)*(Tp+Fn)*(Tn+Fp)*(Tn+Fn)); 

        Row = Row + 1; 

    end 

end 

% Saving the results as a table 

Accuracy_Metrics = array2table(Accuracy_Metrics,'VariableNames',... 

{'Augmented_samples_Num' 'Cost_2_1' 'Tp' 'Fn' 'Fp' 'Tn'... 

 'Loss_Classification_error' 'Accuracy' 'Precision' 'Recall' 'MCC'}); 

writetable(Accuracy_Metrics, 'Output directory\output file name.txt'); 

  

%% Calculating the classification accuracy metrics for different under-sampling rates and  

%% misclassification cost. 'i' the number of decreased samples, 'j' for the misclassification 

%% cost, under-sampling rate is 2500 samples in each iteration 

  

Row = 1; 

Accuracy_Metrics = zeros(28,11); 

Undersampling_rate = 2500; 

for i = 1:4 

    % Random undersampling without replacement 

    Class_1(randsample(height(Class_1),Undersampling_rate),:) = []; 

    Tbl = [Class_1;Class_2]; 

    Tbl.Main_litho = categorical(Tbl.Main_litho); 

    Tbl.WRB = categorical(Tbl.WRB); 

    Tbl.LC = categorical(Tbl.LC); 

    for j = 1:0.5:4 

        ens = fitcensemble(Tbl,'ECe','Cost',[0 1;j 0],'OptimizeHyperparameters',...         

{'Method','LearnRate','NumLearningCycles','MinLeafSize','MaxNumSplits','NumVariablesToSample',

'SplitCriterion'},'HyperparameterOptimisationOptions',...       

struct('Holdout',.25,'UseParallel',true,'MaxObjectiveEvaluations',130,'Repartition',true,'Show

Plots',false,'Verbose',0)); 

        %% Obtaining validation metrics 

        Predictedlabels = predict(ens,Test); 

        C = confusionmat(TrueLabels,Predictedlabels); Tp = C(1,1); Fn = C(1,2); Fp = C(2,1);  

        Tn = C(2,2); 

        Accuracy_Metrics(Row,1) = i*Undersampling_rate; 

        Accuracy_Metrics(Row,2) = j; 

        Accuracy_Metrics(Row,3) = Tp; Accuracy_Metrics(Row,4) = Fn; 

        Accuracy_Metrics(Row,5) = Fp; Accuracy_Metrics(Row,6) = Tn; 

        Accuracy_Metrics(Row,7) = loss(ens,Test,'ECe'); 

        Accuracy_Metrics(Row,8) = (Tp+Tn)/(Tp+Fp+Fn+Tn)*100; 

        Accuracy_Metrics(Row,9) = Tp/(Tp+Fp); 

        Accuracy_Metrics(Row,10) = Tp/(Tp+Fn); 

        Accuracy_Metrics(Row,11) = ((Tp*Tn)-(Fp*Fn))/sqrt((Tp+Fp)*(Tp+Fn)*(Tn+Fp)*(Tn+Fn)); 

        Row = Row + 1; 

    end 

end 

Accuracy_Metrics = array2table(Accuracy_Metrics,'VariableNames',{'Removed_samples_Num' 

'Cost_2_1' 'Tp' 'Fn' 'Fp' 'Tn'... 

'Loss_Classification_error' 'Accuracy' 'Precision' 'Recall' 'MCC'}); 

writetable(Accuracy_Metrics, 'Output directory\output file name.txt'); 

 

%% Calculating the classification accuracy metrics for combined under-sampling and over- 

%% sampling and misclassification cost change. 'i' for the iteration of decreased and  



Appendix 2 

 

 

220 

 

%% increased samples,'j' for misclassification cost, under-sampling rate is 1500 samples in  

%% each iteration. Oversampling rate is 1500 for each iteration 

 

Row = 1; 

Accuracy_Metrics = zeros(36,12); 

Oversampling_rate = 1500; 

Class_2_matrix = table2array(Class_2); 

Undersampling_rate = 1500; 

for i = 1:4 

    % Random oversampling with replacement 

    y = randsample(size(Class_2_matrix,1),Oversampling_rate);     

    matrix = Class_2_matrix(y,:); 

    z = 1; 

    inc = 1; 

    Augmented_matrix = zeros(size(matrix,1)*inc,44); 

    for ii = 1:size(matrix,1) 

        Index = knnsearch(Class_2_matrix,matrix(ii,:),'K',2); 

        for jj = z:inc + (z-1) 

            Augmented_matrix(jj,1:2) = ...  

            Class_2_matrix(ii,1:2)+rand*(Class_2_matrix(Index(1,2),1:2)- ...  

            Class_2_matrix(ii,1:2)); 

            Augmented_matrix(jj,3) = 2; 

            Augmented_matrix(jj,4:end) = ... 

            Class_2_matrix(ii,4:end)+rand*(Class_2_matrix(Index(1,2),4:end)- ... 

            Class_2_matrix(ii,4:end)); 

            Augmented_matrix(jj,20) = Class_2_matrix(Index(1,2),20); 

            Augmented_matrix(jj,21) = Class_2_matrix(Index(1,2),21); 

            Augmented_matrix(jj,44) = Class_2_matrix(Index(1,2),44); 

        end 

        z = jj+1; 

    end 

    Augmented_matrix = array2table(Augmented_matrix,'VariableNames',... 

    {'upper_dept' 'lower_dept' 'ECe' 'Elevation' 'Pla_cur' 'Pro_cur' 'Slope' ... 

     'Slope_Leng' 'TRI' 'c3ann' 'c3per' 'WTD' 'Aspect' 'Topo_index' 'Clay' 'Silt' ... 

     'Sand' 'Soil_thick' 'Root_D' 'WRB' 'Main_litho' 'dtr' 'Pre' 'T_ave' 'T_max' 'T_min' ... 

     'S_mo' 'PDSI' 'Sat_SM' 'Gleam_S' 'EVI' 'NDVI' 'FAPAR' 'LAI' 'Wind_S' 'Skin_T' ... 

     'S_T_1' 'S_T_2' 'S_T_3' 'S_T_4' 'Pet' 'Def' 'aet' 'LC'}); 

    % Random_under-sampling_without_replacement 

    Class_1_refilled(randsample(height(Class_1_refilled),Undersampling_rate),:) = []; 

    if i == 1 

        Old_Augmented_matrix = []; 

    end 

    Tbl = [Class_1_refilled;Class_2;Old_Augmented_matrix;Augmented_matrix]; 

    Tbl.Main_litho = categorical(Tbl.Main_litho); 

    Tbl.WRB = categorical(Tbl.WRB); 

    Tbl.LC = categorical(Tbl.LC); 

    Old_Augmented_matrix = [Old_Augmented_matrix;Augmented_matrix]; 

    for j = 1:0.5:5 

        ens = fitcensemble(Tbl,'ECe','Cost',[0 1;j 0],'OptimizeHyperparameters',... 

{'Method','LearnRate','NumLearningCycles','MinLeafSize','MaxNumSplits','NumVariablesToSample',

'SplitCriterion'},'HyperparameterOptimisationOptions',... 

struct('Holdout',.25,'UseParallel',true,'MaxObjectiveEvaluations',130,'Repartition',true,'Show

Plots',false,'Verbose',0)); 

        %% Obtaining validation metrics 

        Predictedlabels = predict(ens,Test); 

        C = confusionmat(TrueLabels,Predictedlabels); Tp = C(1,1); Fn = C(1,2); Fp = C(2,1);  

        Tn = C(2,2); 

        Accuracy_Metrics(Row,1) = i*Undersampling_rate; 

        Accuracy_Metrics(Row,2) = i*Oversampling_rate; 

        Accuracy_Metrics(Row,3) = j; 

        Accuracy_Metrics(Row,4) = Tp; Accuracy_Metrics(Row,5) = Fn; 

        Accuracy_Metrics(Row,6) = Fp; Accuracy_Metrics(Row,7) = Tn; 

        Accuracy_Metrics(Row,8) = loss(ens,Test,'ECe'); 

        Accuracy_Metrics(Row,9) = (Tp+Tn)/(Tp+Fp+Fn+Tn)*100; 

        Accuracy_Metrics(Row,10) = Tp/(Tp+Fp); 

        Accuracy_Metrics(Row,11) = Tp/(Tp+Fn); 

        Accuracy_Metrics(Row,12) = ((Tp*Tn)-(Fp*Fn))/sqrt((Tp+Fp)*(Tp+Fn)*(Tn+Fp)*(Tn+Fn)); 

        Row = Row + 1; 

    end 

end 

% Saving results as a table 

Accuracy_Metrics = array2table(Accuracy_Metrics,'VariableNames',{'Removed_samples_Num' 

'Augmented_samples_Num' 'Cost_2_1' 'Tp' 'Fn' 'Fp' 'Tn'... 

'Loss_Classification_error' 'Accuracy' 'Precision' 'Recall' 'MCC'}); 

writetable(Accuracy_Metrics, 'Output directory\output file name.txt'); 
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The results (Table A2-25 to Table A2-28) showed that none of the imbalance handling 

techniques were effective in improving the performance of the final fitted binary classification. 

Thus, we just set the misclassification cost of the minority (or saline class) to be two since the 

number of samples in the saline class were half of the non-saline class.  

Table A2-25: Effect of variation of the misclassification cost on performance of the binary classifier for 

saline/non-saline classification task. 

Misclassification 

cost 
Tp

a Fn
b Fp

c Tn
d Classification error Accuracy (%) Precision Recall MCCe 

1.00 6,580 579 775 2,812 0.126 87.40 0.895 0.919 0.713 

1.25 6,512 647 816 2,771 0.143 86.39 0.889 0.910 0.691 

1.50 6,450 709 725 2,862 0.143 86.66 0.899 0.901 0.700 

1.75 6,526 633 618 2,969 0.128 88.36 0.913 0.912 0.739 

2.00 6,579 580 739 2,848 0.144 87.73 0.899 0.919 0.721 

2.25 6,426 733 496 3,091 0.121 88.56 0.928 0.898 0.748 

2.50 6,244 915 450 3,137 0.126 87.30 0.933 0.872 0.727 

2.75 5,964 1,195 433 3,154 0.140 84.85 0.932 0.833 0.684 

3.00 6,539 620 636 2,951 0.141 88.31 0.911 0.913 0.737 

3.25 6,470 689 591 2,996 0.139 88.09 0.916 0.904 0.734 

3.50 6,152 1,007 489 3,098 0.138 86.08 0.926 0.859 0.702 

3.75 6,199 960 480 3,107 0.134 86.60 0.928 0.866 0.712 

4.00 6,482 677 659 2,928 0.154 87.57 0.908 0.905 0.721 

a True positive 
b False negative 
c False positive 
d True negative 
e Matthews Correlation Coefficient 
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Table A2-26: Effect of over-sampling of the under-represented class (saline class) using SMOTE technique 

and variation of the misclassification cost on performance of the binary classifier for saline/non-saline 

classification task. 

Number of 

augmented 

samples 

Misclassification 

cost 
Tp Fn Fp Tn 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCC 

2,500 1.00 6,341 818 762 2,825 0.152 85.30 0.893 0.886 0.671 

2,500 1.50 5,990 1,169 766 2,821 0.187 81.99 0.887 0.837 0.608 

2,500 2.00 6,271 888 449 3,138 0.125 87.56 0.933 0.876 0.731 

2,500 2.50 5,990 1,169 381 3,206 0.129 85.58 0.940 0.837 0.701 

2,500 3.00 6,365 794 518 3,069 0.133 87.79 0.925 0.889 0.732 

2,500 3.50 5,916 1,243 340 3,247 0.120 85.27 0.946 0.826 0.699 

2,500 4.00 5,644 1,515 289 3,298 0.118 83.21 0.951 0.788 0.671 

5,000 1.00 6,494 665 675 2,912 0.133 87.53 0.906 0.907 0.719 

5,000 1.50 6,446 713 638 2,949 0.141 87.43 0.910 0.900 0.719 

5,000 2.00 6,430 729 572 3,015 0.136 87.89 0.918 0.898 0.731 

5,000 2.50 6,062 1,097 396 3,191 0.126 86.11 0.939 0.847 0.709 

5,000 3.00 6,458 701 629 2,958 0.151 87.62 0.911 0.902 0.723 

5,000 3.50 6,300 859 538 3,049 0.142 87.00 0.921 0.880 0.716 

5,000 4.00 6,348 811 666 2,921 0.167 86.26 0.905 0.887 0.694 

7,500 1.00 6,517 642 689 2,898 0.137 87.61 0.904 0.910 0.721 

7,500 1.50 6,403 756 575 3,012 0.136 87.61 0.918 0.894 0.725 

7,500 2.00 6,311 848 687 2,900 0.164 85.72 0.902 0.882 0.683 

7,500 2.50 5,863 1,296 468 3,119 0.147 83.58 0.926 0.819 0.660 

7,500 3.00 6,281 878 578 3,009 0.150 86.45 0.916 0.877 0.703 

7,500 3.50 6,377 782 586 3,001 0.150 87.27 0.916 0.891 0.718 

7,500 4.00 6,357 802 523 3,064 0.138 87.67 0.924 0.888 0.729 

10,000 1.00 6,486 673 701 2,886 0.144 87.21 0.902 0.906 0.712 

10,000 1.50 6,299 860 579 3,008 0.145 86.61 0.916 0.880 0.706 

10,000 2.00 6,250 909 827 2,760 0.195 83.85 0.883 0.873 0.639 

10,000 2.50 5,891 1,268 400 3,187 0.131 84.48 0.936 0.823 0.681 

10,000 3.00 5,740 1,419 354 3,233 0.124 83.50 0.942 0.802 0.669 

10,000 3.50 5,355 1,804 281 3,306 0.118 80.60 0.950 0.748 0.632 

10,000 4.00 5,676 1,483 389 3,198 0.129 82.58 0.936 0.793 0.651 
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Table A2-27: Effect of random under-sampling from the under-represented class (saline class) and 

variation of the misclassification cost on performance of the binary classifier for saline/non-saline 

classification task. 

Number of 

removed 

samples 

Misclassification 

cost 
Tp Fn Fp Tn Classification error 

Accuracy 

(%) 
Precision Recall MCC 

2,500 1.00 6,592 566 692 2,896 0.120 88.29 0.905 0.921 0.735 

2,500 1.50 6,381 777 555 3,033 0.130 87.60 0.920 0.891 0.726 

2,500 2.00 6,186 972 478 3,110 0.134 86.51 0.928 0.864 0.710 

2,500 2.50 5,629 1,529 616 2,972 0.189 80.04 0.901 0.786 0.588 

2,500 3.00 6,107 1,051 451 3,137 0.134 86.02 0.931 0.853 0.703 

2,500 3.50 5,226 1,932 267 3,321 0.140 79.54 0.951 0.730 0.619 

2,500 4.00 6,505 653 584 3,004 0.141 88.49 0.918 0.909 0.743 

5,000 1.00 6,436 722 633 2,955 0.131 87.39 0.910 0.899 0.718 

5,000 1.50 5,859 1,299 674 2,914 0.185 81.64 0.897 0.819 0.609 

5,000 2.00 6,037 1,121 394 3,194 0.130 85.90 0.939 0.843 0.706 

5,000 2.50 6,260 898 527 3,061 0.139 86.74 0.922 0.875 0.711 

5,000 3.00 6,073 1,085 467 3,121 0.137 85.56 0.929 0.848 0.694 

5,000 3.50 6,260 898 544 3,044 0.144 86.58 0.920 0.875 0.707 

5,000 4.00 6,197 961 443 3,145 0.126 86.93 0.933 0.866 0.720 

7,500 1.00 6,256 902 499 3,089 0.132 86.96 0.926 0.874 0.717 

7,500 1.50 6,050 1,108 479 3,109 0.143 85.23 0.927 0.845 0.687 

7,500 2.00 5,644 1,514 431 3,157 0.156 81.90 0.929 0.788 0.636 

7,500 2.50 6,155 1,003 473 3,115 0.135 86.26 0.929 0.860 0.706 

7,500 3.00 5,623 1,535 582 3,006 0.178 80.30 0.906 0.786 0.595 

7,500 3.50 5,115 2,043 261 3,327 0.130 78.56 0.951 0.715 0.605 

7,500 4.00 5,285 1,873 232 3,356 0.113 80.41 0.958 0.738 0.636 

10,000 1.00 6,006 1,152 502 3,086 0.151 84.61 0.923 0.839 0.675 

10,000 1.50 5,722 1,436 402 3,186 0.149 82.90 0.934 0.799 0.655 

10,000 2.00 5,989 1,169 454 3,134 0.139 84.90 0.930 0.837 0.684 

10,000 2.50 5,279 1,879 256 3,332 0.129 80.13 0.954 0.737 0.629 

10,000 3.00 5,194 1,964 247 3,341 0.123 79.42 0.955 0.726 0.620 

10,000 3.50 5,713 1,445 322 3,266 0.116 83.56 0.947 0.798 0.673 

10,000 4.00 6,034 1,124 491 3,097 0.141 84.97 0.925 0.843 0.682 
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Table A2-28: Effect of combined random under-sampling and over-sampling (using SMOTE technique) 

and variation of the misclassification cost on performance of the binary classifier for saline/non-saline 

classification task. 

Number of 

removed 

samples 

Number of 

augmented 

samples 

Misclassification 

cost 
Tp Fn Fp Tn 

Classification 

error 

Accuracy 

(%) 
Precision Recall MCC 

1,500 1,500 1.00 6,521 637 610 2,978 0.120 88.40 0.914 0.911 0.740 

1,500 1,500 1.50 6,267 891 571 3,017 0.141 86.39 0.916 0.876 0.702 

1,500 1,500 2.00 5,914 1,244 468 3,120 0.150 84.07 0.927 0.826 0.668 

1,500 1,500 2.50 5,942 1,216 453 3,135 0.143 84.47 0.929 0.830 0.676 

1,500 1,500 3.00 6,144 1,014 452 3,136 0.131 86.36 0.931 0.858 0.709 

1,500 1,500 3.50 5,584 1,574 574 3,014 0.179 80.01 0.907 0.780 0.591 

1,500 1,500 4.00 6,256 902 433 3,155 0.122 87.58 0.935 0.874 0.733 

1,500 1,500 4.50 6,299 859 493 3,095 0.133 87.42 0.927 0.880 0.726 

1,500 1,500 5.00 6,147 1,011 484 3,104 0.136 86.09 0.927 0.859 0.702 

3,000 3,000 1.00 6,387 771 677 2,911 0.142 86.53 0.904 0.892 0.699 

3,000 3,000 1.50 6,157 1,001 562 3,026 0.149 85.46 0.916 0.860 0.685 

3,000 3,000 2.00 6,100 1,058 534 3,054 0.148 85.19 0.920 0.852 0.682 

3,000 3,000 2.50 5,761 1,397 390 3,198 0.139 83.37 0.937 0.805 0.664 

3,000 3,000 3.00 5,449 1,709 290 3,298 0.130 81.40 0.949 0.761 0.643 

3,000 3,000 3.50 5,551 1,607 323 3,265 0.127 82.04 0.945 0.775 0.649 

3,000 3,000 4.00 5,703 1,455 591 2,997 0.174 80.96 0.906 0.797 0.605 

3,000 3,000 4.50 5,544 1,614 340 3,248 0.125 81.82 0.942 0.775 0.644 

3,000 3,000 5.00 6,145 1,013 540 3,048 0.149 85.55 0.919 0.858 0.689 

4,500 4,500 1.00 6,299 859 551 3,037 0.136 86.88 0.920 0.880 0.713 

4,500 4,500 1.50 6,081 1,077 471 3,117 0.139 85.59 0.928 0.850 0.694 

4,500 4,500 2.00 6,057 1,101 592 2,996 0.161 84.25 0.911 0.846 0.661 

4,500 4,500 2.50 5,355 1,803 313 3,275 0.138 80.31 0.945 0.748 0.624 

4,500 4,500 3.00 6,029 1,129 411 3,177 0.126 85.67 0.936 0.842 0.700 

4,500 4,500 3.50 5,372 1,786 309 3,279 0.126 80.50 0.946 0.750 0.628 

4,500 4,500 4.00 6,155 1,003 554 3,034 0.151 85.51 0.917 0.860 0.687 

4,500 4,500 4.50 6,006 1,152 630 2,958 0.173 83.42 0.905 0.839 0.644 

4,500 4,500 5.00 6,069 1,089 484 3,104 0.138 85.36 0.926 0.848 0.689 

6,000 6,000 1.00 6,214 944 543 3,045 0.142 86.16 0.920 0.868 0.700 

6,000 6,000 1.50 5,702 1,456 470 3,118 0.159 82.08 0.924 0.797 0.635 

6,000 6,000 2.00 5,631 1,527 366 3,222 0.137 82.38 0.939 0.787 0.650 

6,000 6,000 2.50 5,361 1,797 331 3,257 0.135 80.20 0.942 0.749 0.620 

6,000 6,000 3.00 6,108 1,050 559 3,029 0.154 85.03 0.916 0.853 0.678 

6,000 6,000 3.50 5,021 2,137 234 3,354 0.114 77.94 0.955 0.701 0.600 

6,000 6,000 4.00 5,844 1,314 725 2,863 0.199 81.03 0.890 0.816 0.594 

6,000 6,000 4.50 6,079 1,079 604 2,984 0.165 84.34 0.910 0.849 0.662 

6,000 6,000 5.00 6,020 1,138 441 3,147 0.129 85.31 0.932 0.841 0.692 
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One of the challenges in fitting the classification and regression models to target 

variables was optimisation of the hyperparameters. A hyperparameter is a parameter whose 

value should be set before launching the training process of a machine learning model. To 

handle this during the model training, we used MATALB hyperparameter optimiser which 

applies Bayesian optimisation algorithm to estimate the optimal hyperparameters. Since the 

Bayesian optimisation algorithm used for optimizing the objective function depends on the 

runtime (it avoids the areas with high run time in each iteration), results of the hyperparameter 

tuning jobs were not reproducible. Therefore, according to our computational resources we 

repeated the trainings 30 times and acquired confidence intervals for the mean of optimised 

hyperparameters using bootstrapping technique; we used bootstrapping because it was not 

possible to determine the exact distribution of optimised hyperparameters with only 30 

iterations. We applied 10-fold cross validation to calculate the accuracy metrics for trained 

models and similarly the confidence intervals of mean was reported to show the performance 

of the models. The following MATLAB code was used to fit an ensemble of classification trees 

on training datasets, optimise hyperparameters, and bootstrapping the results to calculate 95% 

confidence intervals of the mean: 

clc; 

clear; 

%% Training ensemble of regression trees for predicting ECe or ESP, 

%% Usage: This script returns the tuned fitcensemble hyperparameters and 

%% accuracy metrics calculated on the holdout set for 30 iterations using fitcensemble  

%% function in order to calculate the confidence intervals using bootstrapping technique. 

%% Due to non-repeatable nature of the hyperparameter optimisation jobs, training 

%% jobs are repeated 30 times and using bootstrapping, 95% confidence intervals for  

%% hyperparameters and accuracy metrics are calculated. Accuracy metrics include: Binomial  

%% deviance loss, Misclassification error, Accuracy,Precision, Recall, and MCC (Matthews  

%% Correlation Coefficient, useful for binary imbalanced classification). 

 

%% Classification using ensemble of trees (fitcensemble) 

% Here ECe is the target variable; however for ESP, all ECe values should be replaced by ESP 

 

% Importing the original dataset 

ECe = readtable(Location of the training datasets','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

 

% Pre-processing the original dataset 

table = standardizeMissing(ECe,-9999); 

table.FID = []; 

table.Year = []; 

table(sum(ismissing(table),2) > 0,:) = [];% Dropping the rows with missing values 

% Categorizing the categorical variables in the training set 

table.Main_litho = categorical(table.Main_litho); 

table.WRB = categorical(table.WRB); 

table.LC = categorical(table.LC); 

% Classifying the ECe values 

edges = [0 2 100]; % for ESP: edges = [0 1 100] 
table.ECe = discretize(table.ECe,edges); 

 

% Pre-allocating memory to variables with increasing size in each iteration 

Num_learning_cycles = zeros(30,1); Learn_rate = zeros(30,1); Min_leaf_size = zeros(30,1); 

Max_num_splits = zeros(30,1); Num_variables_to_sample = zeros(30,1); Binomial_deviance_loss = 

zeros(30,1); 

Mis_classification_error = zeros(30,1); Accuracy = zeros(30,1); Precision = zeros(30,1); 

Recall = zeros(30,1); MCC  = zeros(30,1); MinObjective = zeros(30,1); 

 

% Training: This loop repeats the fitting of the classification model 30 times 

for i = 1:30 

    % We used holdout method with the maximum 130 objective function evaluations to 

    % optimise the ensemble hyperparameters 

    % 'ens' is the object of the final trained model 

    % The misclassification cost for saline class is set to be 2 

    % Note the misclassification cost matrix was the default for ESP training dataset  

    ens = fitcensemble(table,ECe','Cost',[0 1;2 0], 

'ScoreTransform','logit','OptimizeHyperparameters',...       

{'Method','LearnRate','NumLearningCycles','MinLeafSize','MaxNumSplits','NumVariablesToSample',

'SplitCriterion'},'HyperparameterOptimisationOptions',struct('Holdout',.25,'UseParallel',true,

'MaxObjectiveEvaluations',130,'ShowPlots',true,'Repartition',true)); 
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    % Saving the created model objects 

    save(strcat('output folder\ens_',num2str(i)),'ens'); 

end 

Truelabels = table.ECe; 

% This loop cross-validates the fitted models using 10-fold cross validation technique   

parfor i = 1:30 

    % Loading the saved model objects 

    ens = load(strcat('Output location from the previous loop\ens_',num2str(i))); 

    % Acquiring hyperparameter tuning job results 

    MinObjective(i,1) = ens.ens.HyperparameterOptimisationResults.MinObjective; 

    Num_learning_cycles(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,2)); 

    Learn_rate(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,3)); 

    Min_leaf_size(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,4)); 

    Max_num_splits(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,5)); 

    Num_variables_to_sample(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,7)); 

    % Validation and Acquiring accuracy metrics 

    cvens = crossval(ens.ens,'Kfold',10); 

    Predictedlabels = kfoldPredict(cvens); 

    C = confusionmat(Truelabels,Predictedlabels); 

    % Tp = True Positive, Fn = False Negative , Fp = False Positive, Tn = True Negative 

    Tp = C(1,1); Fn = C(1,2); Fp = C(2,1); Tn = C(2,2); 

    Binomial_deviance_loss(i,1) = kfoldLoss(cvens,'Lossfun','binodeviance'); 

    Mis_classification_error(i,1) = kfoldLoss(cvens);% Binary misclassification loss 

    Accuracy(i,1) = (Tp+Tn)/(Tp+Fp+Fn+Tn)*100;% Binary classification accuracy 

    Precision(i,1) = Tp/(Tp+Fp);% Precision 

    Recall(i,1) = Tp/(Tp+Fn);% Recall 

    % MCC (Matthews Correlation Coefficient) for binary imbalanced classification 

    MCC(i,1) = ((Tp*Tn)-(Fp*Fn))/sqrt((Tp+Fp)*(Tp+Fn)*(Tn+Fp)*(Tn+Fn)); 

end 

  

% Exporting the output into a table 

Statistics = [Num_learning_cycles Learn_rate Min_leaf_size Max_num_splits 

Num_variables_to_sample Binomial_deviance_loss Mis_classification_error Accuracy Precision 

Recall MCC MinObjective]; 

Statistics_table = array2table(Statistics,'VariableNames',{'Num_learning_cycles'...     

     'Learn_rate' 'Min_leaf_size' 'Max_num_splits' 'Num_variables_to_sample'...    

     'Binomial_deviance_loss' 'Mis_classification_error' 'Accuracy' 'Precision'... 

     'Recall' 'MCC' 'MinObjective'}); 

 

% Saving the obtained statistics 

writetable(Statistics_table, 'Output directory\output file name.txt'); 

  

%% Bootstrapping 

 

% Computing the 95% confidence intervals of the mean for the statistics calculated in the 

% above loop using 1000 bootstrap iterations. bootci creates each bootstrap sample by sampling 

% with replacement from the rows of the data arguments and computes the confidence interval by 

% bias corrected and accelerated percentile method 

  

opt = statset('UseParallel',true); 

ci = bootci(1000,{@nanmean,Statistics},'type','bca','Options',opt); 

ci = array2table(ci,'VariableNames',{'Num_learning_cycles' 'Learn_rate' 'Min_leaf_size'... 

     'Max_num_splits' 'Num_variables_to_sample' 'Binomial_deviance_loss'... 

     'Mis_classification_error' 'Accuracy' 'Precision' 'Recall' 'MCC' 'MinObjective'}); 

 

% Exporting the output into a table 

writetable(ci, 'Output directory\output file name.txt'); 

 

Likewise, the following script in MATLAB was used to train an ensemble of regression 

trees (using MATLAB “fitrensemble” function) on each class of training datasets, optimise 

function’s hyperparameters, and bootstrapping the results to calculate 95% confidence 

intervals of the mean for hyperparameters and accuracy metrics: 

clc; 

clear; 

%% Fitting an ensemble of regression trees to each class, 

% This script returns the tuned fitrensemble hyperparameters and 
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% accuracy metrics calculated by 10-fold cross validation for 30 iterations using fitrensemble 

% function and calculates the confidence intervals for hyperparameters using bootstrapping  

% technique. Hyperparameters tuning job is conducted after log-transformation of the response 

% variable. Accuracy metrics including mean squared error (mse), mean absolute error (mae),  

% and NSE which ia a specifc definition of coefficient of determination (shown as R_squared in 

% this script) are computed for both logarithmic and non-logarithmic spaces. 

 

 

%% Regression using ensemble of trees (fitrensemble) 

% Note this is regression using the ensemble of trees (fitrensemble) on ECe as 

% a target variable and for ESP, all variables shown by ECe should be replaced by ESP 

  

% Importing the original dataset 

ECe = readtable('Training set file location','FileType',... 

                                'text','Delimiter',',','PreserveVariableNames',true); 

  

% Pre-processing the original dataset 

table = standardizeMissing(ECe,-9999); 

table.FID = []; 

table.Year = []; 

table(sum(ismissing(table),2) > 0,:) = [];% Dropping the rows with missing values 

% Classifying the table into two parts based on the values of target variable  

edges = [0 2 100]; % edges = [0 1 100] for ESP 

table.W = discretize(table.ECe,edges); % W would be 1 or 2 and is indicator of class  

table = table(table.W(:) == 2,:); % Removing the first class (non-saline) to do the regression 

% job on saline class; Similarly by setting table = table(table.W(:) == 1,:), second class 

% (saline) can be removed and regression can be done on the remaining class 

table.W = []; 

table.ECe = log10(table.ECe); Transforming the target variable to logarithmic scale; for 

% regression on the non-saline class, logarithm transformation of the values that 

% are 0 (zero) is not possible. Therefore, first a constant 

% (here one) should be added to the target variable values and then transform the target to 

% the logarithmic scale (table.ECe = log10(table.ECe + 1)) 

% Categorizing the categorical variables in the training set 

table.Main_litho = categorical(table.Main_litho); 

table.WRB = categorical(table.WRB); 

table.LC = categorical(table.LC); 

  

% Pre-allocating memory to variables with increasing size in each iteration 

Num_learning_cycles = zeros(30,1); Learn_rate = zeros(30,1); Min_leaf_size = zeros(30,1); 

Max_num_splits = zeros(30,1); Num_variables_to_sample = zeros(30,1); 

mse_log = zeros(30,1);mae_log = zeros(30,1); R_squared_log = zeros(30,1); 

mse = zeros(30,1);mae = zeros(30,1);R_squared = zeros(30,1);MinObjective = zeros(30,1); 

 

for i = 1:30 

    % Training and hyperparameter tuning job 

    % We used holdout method (25% held out) with 130 objective function evaluations to  

    % optimise the ensemble hyperparameters 

    % 'ens' is the object of the final trained model 

    ens = fitrensemble(table,'ECe','Method','LSBoost','OptimizeHyperparameters',... 

     {'NumLearningCycles','LearnRate','MinLeafSize','MaxNumSplits','NumVariablesToSample'},... 

      'HyperparameterOptimisationOptions',struct('Holdout',.25,'UseParallel',true,... 

      'MaxObjectiveEvaluations',130,'Repartition',true,'ShowPlots',true,'Verbose',1)); 

    % Acquiring and saving the hyperparameter tuning job results on the disk   

    save(strcat('Output directory\ens_',... num2str(i)),'ens'); 

end 

  

% Validation and Acquiring accuracy metrics 

ytrue_log = table.ECe; 

% Back-transformation of the predicted values from logarithmic scale 

ytrue = 10.^(table.ECe); % ytrue = 10.^(table.ECe)-1 for the non-saline class 

% This loop cross-validates the fitted models using 10-fold cross validation  

parfor i = 1:30 

    % Loading the saved model objects 

    ens =  

    load(strcat('Output location from the previous loop\ens_'\ens_',... 

    num2str(i))); 

    % Acquiring hyperparameter tuning job results 

    MinObjective(i,1) = ens.ens.HyperparameterOptimisationResults.MinObjective;   

    Num_learning_cycles(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,1)); 

    Learn_rate(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,2)); 

    Min_leaf_size(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,3)); 

    Max_num_splits(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,4)); 
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    Num_variables_to_sample(i,1) = ... 

table2array(ens.ens.HyperparameterOptimisationResults.XAtMinObjective(1,5)); 

    % Validation of the trained ensembles using 10-fold cross validation 

    cvens = crossval(ens.ens,'Kfold',10); 

    mse_log(i,1) = kfoldLoss(cvens,'mode','average');% Mean square error in logarithmic scale 

    yfit_log = kfoldPredict(cvens); 

    mae_log(i,1) = mean(abs(yfit_log - ytrue_log));% Mean absolute error in logarithmic scale%  

    % NSE in the logarithmic scale 

    R_squared_log(i,1) = 1 - sum((ytrue_log - yfit_log).^2)/sum((ytrue_log - ...   

    mean(ytrue_log)).^2); 

    yfit = 10.^(yfit_log); % ytrue = 10.^(table.ECe)-1 for the non-saline class 

    mse(i,1) = mean((ytrue - yfit).^2); % Mean square error 

    mae(i,1) = mean(abs(yfit - ytrue)); % Mean absolute error 

    R_squared(i,1) = 1 - sum((ytrue - yfit).^2)/sum((ytrue - mean(ytrue)).^2);  

    % NSE  

end 

rmse_log = sqrt(mse_log);% Root mean square error in the logarithmic scale 

rmse = sqrt(mse);% Root mean square error 

   

% Exporting the output into a table 

Statistics = [Num_learning_cycles Learn_rate Min_leaf_size Max_num_splits 

Num_variables_to_sample mse_log rmse_log mae_log R_squared_log mse rmse mae R_squared 

MinObjective]; 

Statistics_table = array2table(Statistics,'VariableNames',{'Num_learning_cycles' 'Learn_rate'     

     'Min_leaf_size' 'Max_num_splits' 'Num_variables_to_sample' 'mse_log' 'rmse_log'... 

     'mae_log' 'R_squared_log' 'mse' 'rmse' 'mae' 'R_squared' 'MinObjective'}); 

 

% Saving the table on the disk 

writetable(Statistics_table, 'Output directory\output file name.txt'); 

 

%% Bootstrapping 

 

% Computing the 95% confidence intervals of the mean for the statistics calculated in 

% above loop using 1000 bootstrap iterations. bootci creates each bootstrap sample by sampling 

% with replacement from the rows of the data arguments and computes the confidence interval by 

% bias corrected and accelerated percentile method. 

opt = statset('UseParallel',true); 

ci = bootci(1000,{@nanmean,Statistics},'type','bca','Options',opt); 

ci = array2table(ci,'VariableNames',{'Num_learning_cycles' 'Learn_rate' 'Min_leaf_size'... 

    'Max_num_splits' 'Num_variables_to_sample' 'mse_log' 'rmse_log'... 

    'mae_log' 'R_squared_log' 'mse' 'rmse' 'mae' 'R_squared' 'MinObjective'}); 

 

%Exporting the output into a table 

writetable(ci, 'Output directory\output file name.txt'); 

 

 

For both classification and regression jobs, increasing the number of weak learners 

(number of learning cycles) did not improve the performance of the ensembles. Among trained 

classifiers, the one with highest MCC and among regressions within each class, the one with 

highest NSE were selected for the rest of analysis, which means a total of six models, two for 

classification and four for per-class regression jobs. 

Generation of soil mask and spatio-temporal predictions 

Through applying the trained models to a global soil mask, we created the global maps of 

surface soil salinity and sodicity (0 - 30 cm) at 0.008333333˚ spatial resolution. To create that 

soil mask, first we re-projected the 2014 MODIS land cover map from sinusoidal coordinates 

system to WGS 1984 using the ArcMap “raster project” tool. During the re-projection, we also 

resampled the map (with 0.004˚ spatial resolution) to 0.008333333˚ resolution (which was our 

desirable resolution) by the nearest neighbour resampling method to minimise the data loss 

during resampling and re-projection steps. Then we masked out the pixels labelled as water 

bodies, permanent wetlands, urban and built-up lands, and permanent snow and ice (numbers 

11, 13, 15, and 17 in the map’s IGBP legend) using the “mask function” available in ArcMap 

image analysis window. During exporting the generated layer, the lower and upper extents 

were set to be -55 and 55, respectively. Using ArcMap “raster split tool”, we split the soil mask 

to smaller tiles so that the final smaller rasters were of maximum 3,600 pixels (60 rows and 60 
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columns). A total of 50,687 raster tiles were generated and converted to point feature classes 

in the World Mercator coordinates system using the following Python script: 

## Raster to point conversion, we used PyCharm Python IDE (Integrated Development Environment) 

## Usage: This code converts raster layers to point feature layers. 

 

import arcpy # Importing the ArcPy module 

import multiprocessing #Importing multi-processing module 

from multiprocessing import Process 

import os # Importing Miscellaneous operating system module required for reading the file 

names in a directory 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = r"Directory of the raster tiles created form splitting job" 

arcpy.env.extent = "MAXOF" 

# Setting the output coordinates system as World Mercator 

arcpy.env.geographicTransformations = arcpy.SpatialReference(54004) 

 

# Reading all raster files in a directory 

path = r" Directory of the raster tiles created form splitting job " 

pattern = "*.tif" 

Tiffs = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

 jj = range(ini,end)# Indicator of the raster file 

 for j in jj: 

   inRaster = Tiffs[j] 

   string = Tiffs[j] 

   outPoint = "Output directory of point feature layers/"+string[0:4]+"_"+str(j)+".shp" 

   field = "VALUE" 

   # Execution of the ArcPy raster to point tool 

   arcpy.RasterToPoint_conversion(inRaster, outPoint, field) 

 

if __name__ == '__main__': 

 count = 0 

 processes = [] 

 for i in range(0,number of system cores): 

   ini = count 

   end = count + The number of rasters that should be converted by each core 

   process = Process(target=cell, args=(ini,end,)) 

   processes.append(process) 

   process.start() 

   count = end 

 

The output point feature classes were in the World Mercator coordinates system. The 

values of static predictors in the World Mercator coordinates system were then extracted to the 

points in the generated point feature classes as follows: 

# Extracting static raster values to points in World Mercator coordinates system,  

# Usage: Extracts the cells’ values of multiple rasters as attributes in 

# the output point feature classes. Requirements: Spatial Analyst Extension. 

 

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * 

import multiprocessing #Importing multi-processing module 

from multiprocessing import Process 

import time 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.extent = "MAXOF" 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = r"Location of the point feature layers" # Raster layers must be in the  

# same directory 

 

# Reading all point feature layers in a directory 

path = r" Location of the point feature layers " 
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pattern = "*.shp" 

shape_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

 jj = range(ini,end) 

 for j in jj: 

   # j is the indicator for shape files 

   inRasterList = [["Global_DEM.tif","Elevation"],["Global_Plan.tif","Pla_cur"], 

   ["Global_Profile.tif","Pro_cur"],["Global_Slope.tif","Slope"], 

   ["Slope Length.sdat","Slope_Leng"],["Global_Terrain Ruggedness Index (TRI).sdat","TRI"]] 

   # The value of the cell will be calculated from the adjacent cells with  

   # valid values using bilinear interpolation 

   inPointFeatures = shape_files[j] 

   ExtractMultiValuesToPoints(inPointFeatures, inRasterList, "BILINEAR") 

 

if __name__ == '__main__': 

 processes = [] 

 count = 0 

 for i in range(0,number of system cores): 

   # To do each child process in a different temporary folder: 

   time.sleep(1.1) 

   newTempDir = r"C:\temp\gptmpenvr_" + time.strftime('%Y%m%d%H%M%S') + str(i) 

   os.mkdir(newTempDir) 

   os.environ["TEMP"] = newTempDir 

   os.environ["TMP"] = newTempDir 

   ini = count 

   end = count + The number of point features that should be processed by each core     

   process = Process(target = cell, args = (ini,end,)) 

   processes.append(process) 

   process.start() 

   count = end 

 

After extracting the static Mercator predictors’ values, the point feature classes were 

again projected to the WGS 1984 coordinates system using the following Python script: 

# Projecting point feature classes to WGS 1984 geographic coordinates. 

  

import multiprocessing # Importing the ArcPy module 

from multiprocessing import Process #Importing multi-processing module 

import arcpy 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.workspace = r"Location of the point feature classes" 

 

# Reading all point feature layers in a directory 

path = r" Location of the point feature classes " 

pattern = "*.shp" 

shape_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

# Setting the output coordinates system object (WGS 1984) 

sr = arcpy.SpatialReference(4326)  

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

  jj = range(ini,end) 

  for j in jj: 

    # j is the indicator for shape files 

    string = shape_files[j] 

    output_feature_class = r"Location of the projected point feature classes/"+string+".shp" 

    arcpy.Project_management(shape_files[j], output_feature_class, sr) 

 

if __name__ == '__main__': 

 processes = [] 

 count = 0 

 for i in range(0,number of system cores): 

   ini = count 

   end = count + The number of point feartures that should be re-projected by each core 

   process = Process(target = cell, args = (ini,end,)) 

   processes.append(process) 

   process.start() 

   count = end 
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Similar to extraction of the rasters values to points in the Mercator coordinates, we drew the 

information from the rasters in geographic coordinates system and attributed to the points. For 

static predictors in the WGS 1984: 

# Extract static predictors’ raster values to points in WGS 1984 coordinate system, 

# Usage: Extracts the cells’ values of multiple rasters as attributes in 

# the output point feature classes. Requirements: Spatial Analyst Extension. 

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * 

import multiprocessing # Importing multi-processing module 

from multiprocessing import Process  

import time 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.workspace = r"Directory of the point feature classes" 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.extent = "MAXOF" 

 

# Reading all point feature layers in a directory 

path = r" Directory of the point feature classes " 

pattern = "*.shp" 

shape_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

 for j in range(ini,end): 

  # j is the indicator for shape files 

  inRasterList1 = [["fertl_c3ann_Layer.tif","c3ann"],["fertl_c3per_Layer.tif","c3per"],   

  ["Global_water_table.tif","WTD"], 

  ["Global_Aspect.tif","Aspect"],["Topographic_index.tif","Topo_index"], 

  ["Clay.tif","Clay"],                 

  ["Silt.tif","Silt"],["Sand.tif","Sand"], 

  ["average_soil_and_sedimentary-deposit_thickness.tif","Soil_thick"], 

  ["95ecosys_rootdepth.tif","95_Root_D"]] 

  inRasterList2 = [["WRB.tif","WRB"],["Main_lithological_units_geographic.tif","Main_litho"]] 

  inPointFeatures = shape_files[j] 

  # The value of the cell will be calculated from the adjacent cells with valid values using       

  # bilinear interpolation 

  ExtractMultiValuesToPoints(inPointFeatures,inRasterList1,"BILINEAR") 

  # No interpolation will be applied to the categorical variables 

  ExtractMultiValuesToPoints(inPointFeatures,inRasterList2,"NONE") 

   

if __name__ == '__main__': 

 processes = [] 

 count = 0 

 for i in range(0,number of system cores): 

       # To do each child process in a different temporary folder 

       time.sleep(1.1) 

       newTempDir = r"C:\temp\gptmpenvr_" + time.strftime('%Y%m%d%H%M%S') + str(i) 

       os.mkdir(newTempDir) 

       os.environ["TEMP"] = newTempDir 

       os.environ["TMP"] = newTempDir 

       ini = count 

       end = count + The number of point features that should be processed by each core 

       process = Process(target = cell, args = (ini,end,)) 

       processes.append(process) 

       process.start() 

       count = end 

 

And for extraction of dynamic predictors in the WGS 1984 to attribute tables of the point 

feature classes: 

# Extract dynamic predictors’ raster values to points in WGS 1984 coordinate system,  

# Usage: Extracts the cells’ values of multiple rasters as attributes in 

# the output point feature classes. Requirements: Spatial Analyst Extension.  

import arcpy # Importing the ArcPy module 

from arcpy import env 

from arcpy.sa import * 
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import multiprocessing # Importing multi-processing module 

from multiprocessing import Process 

import time 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.workspace = r" Directory of the point feature classes" 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.extent = "MAXOF" 

 

# Reading all point feature layers in a directory 

path = r" Directory of the point feature classes" 

pattern = "*.shp" 

shape_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

 for j in range(ini,end): 

  # j is the indicator for shape files 

  inPointFeatures = shape_files[j] 

  Year = 1 

  for i in range(1980,2019): 

    # i is the indicator for year 

    inRasterList1 = [["dtr_mean_"+str(i)+".tif","dtr_"+str(Year)], 

    ["pre_mean_"+str(i)+".tif","Pre_"+str(Year)], 

    ["tmp_mean_"+str(i)+".tif","T_ave_"+str(Year)],    

    ["tmx_mean_"+str(i)+".tif","T_max_"+str(Year)], 

    ["tmn_mean_"+str(i)+".tif","T_min_"+str(Year)], 

    ["Soil_moisture_mean_"+str(i)+".tif","S_mo_"+str(Year)],    

    ["PDSI_mean_"+str(i)+".tif","PDSI_"+str(Year)], 

    ["SM_"+str(i)+"_smoothed.tif","Sat_SM_"+str(Year)], 

    ["Gleam_S_"+str(i)+".tif","Gleam_S_"+str(Year)],   

    ["Mod_EVI_"+str(i)+".tif","EVI_"+str(Year)], 

    ["Mod_NDVI_"+str(i)+".tif","NDVI_"+str(Year)], 

    ["FAPAR_"+str(i)+"_smoothed.tif","FAPAR_"+str(Year)], 

    ["LAI_"+str(i)+"_smoothed.tif","LAI_"+str(Year)], 

    ["WS"+str(i)+".tif","Wind_S_"+str(Year)], 

    ["Skin_temp_"+str(i)+".tif","Skin_T_"+str(Year)], 

    ["Soiltemp1"+str(i)+".tif","S_T_1_"+str(Year)], 

    ["Soiltemp2_"+str(i)+".tif","S_T_2_"+str(Year)], 

    ["Soiltemp3_"+str(i)+".tif","S_T_3_"+str(Year)], 

    ["Soiltemp4"+str(i)+".tif","S_T_4_"+str(Year)], 

    ["pet_mean_"+str(i)+".tif","Pet_"+str(Year)], 

    ["def_mean_"+str(i)+".tif","Def_"+str(Year)], 

    ["aet_mean_"+str(i)+".tif","aet_"+str(Year)]] 

    inRasterList2 = [["Land_cover_"+str(i)+".tif","LC_"+str(Year)]] 

    # The value of the cell will be calculated from the adjacent cells with valid values   

    # using bilinear interpolation      

    ExtractMultiValuesToPoints(inPointFeatures,inRasterList1,"BILINEAR") 

    # No interpolation will be applied to the categorical variables 

    ExtractMultiValuesToPoints(inPointFeatures,inRasterList2,"NONE") 

    Year = Year+1 

 

if __name__ == '__main__': 

 # To do each child process in a different temporary folder 

 count = 0 

 processes = [] 

 for i in range(0, number of system cores): 

   time.sleep(1.1) 

   newTempDir = r"C:\temp\gptmpenvr_" + time.strftime('%Y%m%d%H%M%S') + str(i) 

   os.mkdir(newTempDir) 

   os.environ["TEMP"] = newTempDir 

   os.environ["TMP"] = newTempDir 

   ini = count 

   end = count + The number of point features that should be processed by each core 

   process = Process(target = cell, args = (ini,end,)) 

   processes.append(process) 

   process.start() 

   count = end 

 

To more efficiently handle the size of the point feature classes and increasing the 

predictors’ value extraction speed, we copied all 50,687 files (with WGS 1984 projection) in 
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four different directories and in each directory, we extracted the values of the dynamic 

predictors for a decade since 1980. 1980 - 1987 in the first directory, 1988 - 1998 in the second, 

1999 - 2008 in the third, and 2009 - 2018 in the fourth directory. Data of static predictors in 

the geographic coordinates (WGS 1984) were attributed to the point feature classes in the first 

directory. So in total, we had five point feature classes for each spatial tile generated from the 

soil mask: one with data of static predictors in the Mercator coordinates, and four for the rest 

of predictors in the WGS 1984. The attribute tables of point feature layers were then merged, 

data of each individual year was extracted, and for each spatial tile, 39 comma delimited tables 

in .txt format were exported to 39 different directories using the following script in MATLAB 

(Mapping Toolbox license is required for MATLAB “shaperead” function): 

clc; 

clear; 

%% Shape file to text file converter, 

%% The global soil mask was split to 50,687 tiles and the smaller tiles 

%% were then converted to the point feature layers to extract the values of the predictors 

%% at each pixel. This script converts the attribute tables of the shapefiles (n = 50,687)  

%% to comma delimited tables with .txt format importable by MATLAB for 

%% further processing and making predictions.  

  

% Setting the directory of shapefiles 

Shape_files_Merc = dir('Directory of point feature classes in the World Mercator... 

system\*.shp'); 

Shape_files_1 = dir('First directory \*.shp'); 

Shape_files_2 = dir('Second directory \*.shp'); 

Shape_files_3 = dir('Third directory \*.shp'); 

Shape_files_4 = dir('Fourth directory \*.shp'); 

 

% Reading the shapefiles and merging, we kept X and Y coordinate values only from the first 

table in geographic coordinates system (WGS 1984)  

parfor i = 1:50687 

    S_Merc = shaperead(strcat(Shape_files_Merc(i).folder,'\',Shape_files_Merc(i).name)); 

    T_Merc = struct2table(S_Merc); 

    T_Merc.Geometry = []; T_Merc.X = []; T_Merc.Y = []; T_Merc.pointid = [];  

    T_Merc.grid_code  = []; 

    S_1 = shaperead(strcat(Shape_files_1(i).folder,'\',Shape_files_1(i).name)); 

    T_1 = struct2table(S_1); 

    T_1.Geometry = []; T_1.pointid = []; T_1.grid_code = []; 

    S_2 = shaperead(strcat(Shape_files_2(i).folder,'\',Shape_files_2(i).name)); 

    T_2 = struct2table(S_2); 

    T_2.Geometry = []; T_2.X = []; T_2.Y = []; T_2.pointid = []; T_2.grid_code = []; 

    S_3 = shaperead(strcat(Shape_files_3(i).folder,'\',Shape_files_3(i).name)); 

    T_3 = struct2table(S_3); 

    T_3.Geometry = []; T_3.X = []; T_3.Y = []; T_3.pointid = []; T_3.grid_code = []; 

    S_4 = shaperead(strcat(Shape_files_4(i).folder,'\',Shape_files_4(i).name)); 

    T_4 = struct2table(S_4); 

    T_4.Geometry = []; T_4.X = []; T_4.Y = []; T_4.pointid = []; T_4.grid_code = []; 

    table = [T_Merc T_1 T_2 T_3 T_4]; 

     

    % Extracting data of individual years from 1980 

    for j = 1:39 

            T = table(:,{'Elevation','Pla_cur','Pro_cur','Slope',... 

            'Slope_Leng','TRI','X','Y','c3ann','c3per','WTD',...   

            'Aspect','Topo_index','Clay','Silt','Sand','Soil_thick',... 

            'x95_Root_D','WRB','Main_litho',...  

            strcat('dtr_',num2str(j)),strcat('Pre_',num2str(j)),... 

            strcat('T_ave_',num2str(j)),strcat('T_max_',num2str(j)),...   

            strcat('T_min_',num2str(j)),strcat('S_mo_',num2str(j)),... 

            strcat('PDSI_',num2str(j)),strcat('Sat_SM_',num2str(j)),...   

            strcat('Gleam_S_',num2str(j)),strcat('EVI_',num2str(j)),... 

            strcat('NDVI_',num2str(j)),strcat('FAPAR_',num2str(j)),...  

            strcat('LAI_',num2str(j)),strcat('Wind_S_',num2str(j)),... 

            strcat('Skin_T_',num2str(j)),strcat('S_T_1_',num2str(j)),...  

            strcat('S_T_2_',num2str(j)),strcat('S_T_3_',num2str(j)),... 

            strcat('S_T_4_',num2str(j)),strcat('Pet_',num2str(j)),... 

            strcat('Def_',num2str(j)),strcat('aet_',num2str(j)),strcat('LC_',num2str(j))}); 

            T.Properties.VariableNames = {'Elevation','Pla_cur','Pro_cur','Slope',... 

            'Slope_Leng','TRI','X','Y','c3ann','c3per','WTD',...         

            'Aspect','Topo_index','Clay','Silt','Sand','Soil_thick',... 

            'dtr','Pre','T_ave','T_max','T_min',... 

            'S_mo','PDSI','Sat_SM','Gleam_S','EVI','NDVI','FAPAR','LAI','Wind_S','Skin_T',... 
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            'S_T_1','S_T_2','S_T_3','S_T_4','Pet','Def','aet','LC'}; 

            % Saving the final extracted tables in 39 different directories  

            % representing 39 years since 1980 

            writetable(T,strcat('The output directory on the disk\',num2str(1979 + j),'\',... 

            num2str(1979 + j),'_',num2str(i),'.txt')); 

   end 

end 

 

To create 39 folders in Microsoft Windows 10 (the name of each folder was the number of the 

corresponding year), we used the following code in the command prompt: 

@echo off 

Driver’s name (A capitalized letter like C or D):  

for /l %%i in (1980,1,2018) do (md The desirable directory\%%i\%%j) 

 

Model deployment 

Following the extraction of predictors’ values to points (we needed to make predictions of the 

soil salinity/sodicity for those points), we had 39 folders (representing 1980 to 2018) and in 

each folder there were 50,687 tables saved in .txt format. Each individual table was 

representative of a spatial tile created from the original soil mask, with 43 columns (2 for the 

x- and y- coordinates and 41 for the predictor values) and maximum of 3,600 rows. x- y- values 

were the coordinates of grids in the WGS 1984 coordinates system. For all observations, the 

sample’s upper and lower depths were set to be zero and 30, respectively.  

Tree based regression and classification models can handle the missing data by default; 

however, predictions for rows, which had more than five missing values of predictors were set 

as no data value. The indicator of no data value was 255. Each row in the tables was 

representative of a pixel from the original soil mask raster layer. The predictions made by 

models for each row, in addition to x- and y- values were later used to generate raster layers. 

The spatial resolution of these rasters was the same as original soil mask layer. We needed the 

area of each pixel to do zonal statistics and computing the area of different salinity classes at 

the country, biome, land cover, and climate levels. We directly calculated the area of each pixel 

in the WGS 1984 coordinates system from the x- and y- coordinates of input tables.  

Additionally, for the classification step of the two-part models, we produced pixel-level 

scaled Shannon Entropy Index (Shannon 1949) (Hs) to identify the certainty of the classifier in 

binary prediction of classes. For each particular class, the binary classifier returns a score 

indicating the probability that the predicted label comes from that class and the final predicted 

label is the class with the highest score. We transformed these scores to probability (a value 

between zero and one) using the “logit” transformation and computed the binary Hs by Hs = - 

(p (1) × log2 
p (1) + p (2) × log2

 
p (2)); where p (1) and p (2) were the per-class probabilities and 

log2 was the logarithm with base 2. Hs shows the ambiguity in the model predictions and is a 

different concept from the validity of the predictions. Even with a zero Hs, the predicted labels 

can be false and therefore, Hs must not be used instead of the accuracy metrics for inspecting 

the validity of model predictions. The following script shows how we deployed the trained 

models to the tables and calculated each pixel’s Hs and area in MATLAB: 

clc; 

clear; 

%% Model deployment for making predictions from the new data, 

%% This code gets tables of predictors as an input and returns vectors of the predicted values 

%% and X and Y coordinates for each row. The size of the output vectors is equal to the number 

%% of rows in the input tables (observations). Each row or observation in the input table is  

%% representative of a pixel in the original soil mask. This code also directly calculates the 

%% area of each pixel. 

  

% This code predicts the values of ECe; variables need to be changed to ESP to make 

predictions for ESP 
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% Loading the best trained classification and per-class regression models 

load('Location of the fitted ensemble object on the disk\ens_13') 

Classification = compact(ens); % Function compact removes unnecessary data from the fitted  

% model object (ens) 

clear ens; 

load('Location of the fitted ensemble object on the disk \ens_2') 

Regression_1 = compact(ens); % Fitted regression model on the saline class 

clear ens; 

load('Location of the fitted ensemble object on the disk \ens_20') 

Regression_2 = compact(ens); % Fitted regression model on the non-saline class 

clear ens; 

 

% Setting constant parameters required for calculation of the pixel area 

a = 6378137; 

b = 6356752.3142; 

% e = sqrt(1 - (b/a)^2) = 0.08181919084296; 

e = 0.08181919084296; 

cell_size = 0.008333333; 

edges = [0 4 8 16 100]; % Required for classifying the final predictions 

% for ESP: edges = [0 6 15 30 100] 
 

for ii = 1980:2018 

    % 'ii' is the index of year. Input tables for each year are recorded in a separate      

    % directory 

    Text_files = dir(strcat('directory of the text files on the disk\',num2str(ii),'\*.txt')); 

    parfor i = 1:numel(Text_files) % 'i' is the index of the input table 

        % Preparing the tables 

        T = readtable(strcat(Text_files(i).folder,'\',Text_files(i).name),'FileType',... 

            'text','Delimiter',',','PreserveVariableNames',true); 

        T = standardizeMissing(T,-9999); % Standardizing the missing values for MATLAB 

        T = fillmissing(T,'nearest'); % Filling the missing values 

        T.upper_dept = zeros(height(T),1); % Adding upper depth to the samples’ attributes 

        T.lower_dept = 30.*ones(height(T),1); % Adding lower depth to the samples’ attributes 

        % Categorizing the categorical variables in the training set 

        T.WRB = categorical(T.WRB); 

        T.LC = categorical(T.LC); 

        T.Main_litho = categorical(T.Main_litho); 

 

        % Predicting the labels for each class (classifying to saline and non-saline classes) 

        % 'predict' function also returns a matrix of the classification scores 

        % indicating the likelihood that the predicted label comes from a particular class 

        [T.ECe,score] = predict(Classification,T); 

 

        % Calculating scaled Shannon Entropy Index (Hs) using the per-class probability maps 

        % For ESP the score matrix must first back-transform to probability 

        % using: score = log(score./(1-score)); This is because 

        % for ESP the classifier uses 'Bag' method and the returned 

        % scores by this method are originally probabilities (values between 0 and 1); 

        % however, during the training process, we set the score transformation to 

        % be 'logit' and this transforms the scores to the values out of the 

        % range of 0 and 1 

        Hs = -(score(:,1).*log2(score(:,1)) + score(:,2).*log2(score(:,2))); 

        Hs(sum(ismissing(T),2) > 5) = 255; % Setting the rows with more than five missing  

        % values as no data 

        % The indicator of the no data values is 255 here 

        Hs = fillmissing(Hs,'constant',255); 

         

        T.ECe(T.ECe == 1) = 10.^(predict(Regression_2,T(T.ECe == 1,:)))-1; % Making  

        % predictions for the non-saline class 

        T.ECe(T.ECe == 2) = 10.^(predict(Regression_1,T(T.ECe == 2,:))); % Making predictions  

        % for the saline class 

        T.ECe(sum(ismissing(T),2) > 5) = 255; % Setting the rows with more than five missing  

        % values as no data 

        % The indicator of no data values is 255 here 

        T.ECe(T.ECe < 0) = 0; % Setting the negative predictions as zero 

        T.ECe = fillmissing(T.ECe,'constant',255); 

 

        %%%%%%%  Calculating m^2 area of a WGS 1984 square pixel  %%%%%% 

        % Adapted from: https://gis.stackexchange.com/a/127327/2397 

        % Parameters: 

        % cell_size (float): Pixel size in the Geographic coordinates (WGS 1984) 

        % Returns: Area of square pixel of side length cell_size in m^2 

        f_up = deg2rad(T.Y + cell_size/2); 

        f_down = deg2rad(T.Y - cell_size/2); 

        zm_up = (1 - e*sin(f_up)); 

        zp_up = (1 + e*sin(f_up)); 
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        area_up = pi * b^2 * (log(zp_up./zm_up)/(2*e) + sin(f_up)./(zp_up.*zm_up)); 

        zm_down = (1 - e*sin(f_down)); 

        zp_down = (1 + e*sin(f_down)); 

        area_down = pi * b^2 * (log(zp_down./zm_down)/(2*e) + ... 

        sin(f_down)./(zp_down.*zm_down)); 

        cell_area = cell_size/360.*(area_up - area_down); 

        grid = [T.X T.Y T.ECe Hs cell_area]; 

 

        % Exporting the predictions, scores, and calculated areas for each 

        % observation (pixel) as a table 

        T_result = array2table(grid,'VariableNames', {'X' 'Y' 'ECe' 'Hs' 'Area'}); 

        writetable(T_result,strcat('Output ...   

        directory\',num2str(ii),'\1\','ECe_',Text_files(i).name)); 

        % Here we divide the output tables into four parts: 

        % non-saline, slightly saline, moderately saline, and extremely saline 

        % based on the predicted values of ECe and save each part separately. These are needed   

        % later to do zonal statistics in ArcPy. From the variables of tables, only the area   

        % of each pixel was required. Similar to this was conducted   

        % for ESP and sodicity 

        T_result.ECe = discretize(T_result.ECe,edges);  

        % edges of the classes are defined before 'ii' loop 

        T_result.Hs = []; 

        for j = 2:4 

            Table = T_result(T_result.ECe == j,:); 

            Table.ECe = []; 

            if height(Table) ~= 0 % Removing the tables without any record 

                writetable(Table,strcat('Output directory\', ...   

                num2str(ii),'\',num2str(j),'\','ECe_', ... 

                num2str(j),'_',Text_files(i).name)); 

            end 

        end 

    end 

end 

 

The results of applying the trained models to input tables including each row’s 

(point/pixel) area, x-, y-, Hs, and the corresponding predictions were then exported as new 

comma delimited tables in .txt format. So the output was 39 folders with 50,687 text files within 

each folder. In addition, we separated the predicted ECe and ESP values into four smaller bins. 

For salinity: 0 - 4 dS m-1, 4 - 8 dS m-1, 8 - 16 dS m-1, and more than 16 dS m-1 and for sodicity: 

0 - 6%, 6 - 15%, 15 - 30%, and more than 30%. Each bin included the left bin edge. According 

to these bins, we generated smaller sub-tables including only the values of x-, y-, and pixel 

area. We needed these later to calculate the per-class salinity and sodicity areas at the country, 

biome, land cover, and climate levels (see “Zonal statistics” section). 

Trend analysis 

As mentioned earlier, within each of 39 folders we had 50,687 output tables. We used the 

values of predictions for target variables from those output tables to create annual time series 

of ECe and ESP between 1980 and 2018. By fitting a linear model to these time series, we 

generated different layers including trends of soil salinity variation since 1980, likelihood of 

soils with ECe 4 ≥ dS m-1 or ESP ≥ 6%, and change in the likelihood of soils with ECe 4 ≥ dS 

m-1 or ESP ≥ 6%. The calculated coefficients (slopes) for locations with p ≥ 0.05 were set as 

no data value. The trend values and x- y- coordinates were then converted to raster datasets and 

mosaicked to generate the variation of global longitude-latitude grid cells of ECe and ESP at 

30" spatial resolution. Additionally, for the classification step of the two-part models, we 

produced 39-year mean of the pixel-level Hs (Figure A2-23). Also we generated other layers 

including the average of ECe/ESP values between 1980 and 2018, and standard deviation of 

the predictions between 1980 and 2018. The following MATLAB code shows how we 

performed the trend analysis and computed the statistical layers:  

clc; 

clear; 

%% Trend analysis, 

%% This script returns the tables required for generation of the final raster layers. 
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%% It reads the predicted values from models and does trend analysis.  

%% Also it computes mean, standard deviation, and scaled Shannon Entropy Index  

%% of the predictions from 1980 to 2018. The code first reads the corresponding 39 tables from  

%% each of 39 folders (representing the individual years between 1980 and 2018); each table  

%% contains the X, Y, and predicted salinity values and is representative of a tile from the 

%% original soil mask. Then puts 39 predictions in a matrix with 39 columns and rows equal to 

%% the size of input tables (all 39 tables must have the same number of rows) and does trend 

%% analysis for each row of the matrix. This processes will be repeated 50687 times to cover 

%% all tables in all 39 directories. 

  

% Note this code is generated for ECe; variables should be replaced by ESP for soil sodicity 

 

parfor i = 1:50687 

    % To have X and Y coordinates 

    % 'i' is the index of tables in each folder 

    table = readtable(strcat('Directory of the folder containing the tables of   

        1980',num2str(i),'.txt'),'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

    % Pre-allocating memory to variables with varying size in each iteration 

    tile_ECe = zeros(height(table),39); 

    tile_Hs = zeros(height(table),39); 

    tile_Area = zeros(height(table),39); 

 

    jj = 1; % 'jj' is the index of the column in matrix created form the 39  

    % individual years' tables 

    for j = 1980:2018 

        % 'j' is the index of year 

        T = readtable(strcat('The directory where the output tables of the model deployment   

        are saved\ECe\',num2str(j),'\1\ECe_',num2str(j),'_',num2str(i),'.txt'),'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true);  

        % The predictions form 39 tables imported form 39 directories make a 

        % matrix here with 39 columns  

        T = standardizeMissing(T,255); 

        tile_ECe(:,jj) = T.ECe; 

        tile_Hs (:,jj) = T.Hs; 

        tile_Area (:,jj) = T.Area; 

        jj = jj+1; 

    end 

 

    % Pre-allocating memory to variables with varying size in each iteration 

    Coeff_value = zeros(height(table),1); 

    P_value = zeros(height(table),1); 

    Hs_mean = zeros(height(table),1); 

    Mean = zeros(height(table),1); 

    Std = zeros(height(table),1); 

    Frequency_2 = zeros(height(table),1); 

    Frequency_4 = zeros(height(table),1); 

    Frequency_change_2 = zeros(height(table),1); 

    Frequency_change_4 = zeros(height(table),1); 

 

    % To each row of the created matrix, a linear model is fitted 

    for ii = 1:height(table) 

        mdl = fitlm(1980:2018,tile_ECe(ii,1:39)); % mdl is the object created from the linear                   

        % model fitting 

        % Acquiring the slope coefficient and p-value for the t-statistic of the hypothesis   

        % test that the corresponding coefficient is equal to zero or not  

        % from the linear regression object   

        mdl_Coefficients = table2array(mdl.Coefficients); 

        Coeff_value(ii,1) = mdl_Coefficients(2,1); 

        P_value(ii,1) = mdl_Coefficients(2,4); 

        % Calculation of other required statistics 

        Hs_mean(ii,1) = nanmean(tile_Hs(ii,:)); % Average of the scaled Shannon Entropy Index  

        % between 39 years 

        Mean(ii,1) = nanmean(tile_ECe(ii,:)); % Average of the predicted ECe values between 39  

        % years 

        Std(ii,1) = nanstd(tile_ECe(ii,:)); % Standard deviation of the predicted ECe values  

        % between 39 years 

        % Computing the frequency of happening saline soil assuming saline 

        % soil has an ECe value more than 2 dS/m (or happening sodic soil with ESP value more   

        % than 6% for ESP) 

        Frequency_2(ii,1) = nansum(tile_ECe(ii,:) >= 2)/numel(1980:2018); 

        % Computing the frequency of happening saline soil assuming saline 

        % soil has an ECe value more than 4 dS/m 

        Frequency_4(ii,1) = nansum(tile_ECe(ii,:) >= 4)/numel(1980:2018); 

        % Computing the change in frequency of happening saline soil assuming saline 

        % soil has an ECe value more than 4 dS/m (or happening sodic soil with ESP value more  

        % than 6% for ESP) 
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        Frequency_change_4(ii,1) = log(((nansum(tile_ECe(ii,21:39) >= 4) + 0.5)... 

        /numel(2000:2018))/((nansum(tile_ECe(ii,2:20) >= 4) + 0.5)/numel(1981:1999))); 

    End 

 

    % Replacing the missing values with no data value indicators 

    Coeff_value = fillmissing(Coeff_value,'constant',-9999); 

    P_value = fillmissing(P_value,'constant',255); 

    Hs_mean = fillmissing(Hs_mean,'constant',255); 

    Mean = fillmissing(Mean,'constant',255); 

    Std = fillmissing(Std,'constant',255); 

    Frequency_2 = fillmissing(Frequency_2,'constant',255); 

    Frequency_4 = fillmissing(Frequency_4,'constant',255); 

    Frequency_change_2 = fillmissing(Frequency_change_2,'constant',255); 

    Frequency_change_2(Frequency_change_2 == Inf) = 255; 

    Frequency_change_4 = fillmissing(Frequency_change_4,'constant',255); 

    Frequency_change_4(Frequency_change_4 == Inf) = 255; 

 

    % Creating matrices form the results 

    Coeff_matrix = [table.X table.Y Coeff_value P_value]; 

    table_fitlm = array2table(Coeff_matrix,'VariableNames',... 

        {'X' 'Y' 'Coeff_value' 'P_value'}); 

    Hs_matrix = [table.X table.Y Hs_mean]; 

    table_Hs_mean = array2table(Hs_matrix,'VariableNames',... 

        {'X' 'Y' 'Hs_mean'}); 

    Mean_matrix = [table.X table.Y Mean]; 

    table_Mean = array2table(Mean_matrix,'VariableNames',... 

        {'X' 'Y' 'Mean'}); 

    Std_matrix = [table.X table.Y Std]; 

    table_Std = array2table(Std_matrix,'VariableNames',... 

        {'X' 'Y' 'Std'}); 

    Frequency_2_matrix = [table.X table.Y table.Area Frequency_2]; 

    table_Frequency_2 = array2table(Frequency_2_matrix,'VariableNames',... 

        {'X' 'Y' 'Area' 'Frequency_2'}); 

    Frequency_4_matrix = [table.X table.Y table.Area Frequency_4]; 

    table_Frequency_4 = array2table(Frequency_4_matrix,'VariableNames',... 

        {'X' 'Y' 'Area' 'Frequency_4'}); 

    Frequency_change_2_matrix = [table.X table.Y Frequency_change_2]; 

    table_Frequency_change_2 = array2table(Frequency_change_2_matrix,'VariableNames',... 

        {'X' 'Y' 'Frequency_change_2'}); 

    Frequency_change_4_matrix = [table.X table.Y Frequency_change_4]; 

    table_Frequency_change_4 = array2table(Frequency_change_4_matrix,'VariableNames',... 

        {'X' 'Y' 'Frequency_change_4'}); 

 

    % Exporting the required results as tables into different directories 

    writetable(table_fitlm(table_fitlm.P_value <= 0.05,1:3),strcat('Output... 

    directory\Coeff_05',num2str(i),'.txt'));  

    writetable(table_fitlm(:,1:3),strcat('Output directory\Coeff',num2str(i),'.txt')); 

    writetable(table_fitlm(:,[1 2 4]),strcat('Output directory\P_value',num2str(i),'.txt')); 

    writetable(table_Hs_mean,strcat('Output directory\Hs_mean',num2str(i),'.txt')); 

    writetable(table_Mean,strcat('Output directory\Mean',num2str(i),'.txt')); 

    writetable(table_Std,strcat('Output directory\Std',num2str(i),'.txt')); 

    writetable(table_Frequency_2(:,[1 2 4]),strcat('Output... 

    directory\Frequency_2',num2str(i),'.txt')); 

    writetable(table_Frequency_2(table_Frequency_2.Frequency_2 >= 0.75,1:3),... 

    strcat('Output directory\Frequency_2_area',num2str(i),'.txt')); 

    writetable(table_Frequency_4(:,[1 2 4]),strcat('Output...  

    directory\Frequency_4',num2str(i),'.txt')); 

    writetable(table_Frequency_4(table_Frequency_4.Frequency_4 >= 0.75,1:3),... 

    strcat('Output directory\Frequancy_4_area',num2str(i),'.txt')); 

    writetable(table_Frequency_change_4,strcat('Output... 

    directory\Frequency_change_4',num2str(i),'.txt')); 

end 
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Figure A2-23: Spatial distribution of the scaled Shannon Entropy index (Hs) for the classification part of 

the two-part models. Values close to zero indicate that the classifier is more certain about the results of binary 

classification task. Values of Hs should not be confused with the accuracy of classification. Even with a zero Hs, 

still the classifier can make wrong predictions.  

Rasterizing the generated tables  

To reduce the required time for rasterising the output tables, first we merged the 50,687 tables 

and reduced the number of output tables to a number below 500. During this merging process, 

we also multiplied the predictions for target variables by 100, 10,000, or 100,000 (depending 

on the needed accuracy) and rounded the results to remove the decimal point from the 

predictions. Using the signed integer values substantially reduced the required disk space for 

saving the final raster layers generated from the output tables. The following MATLAB code 

shows how we merged the tables, converted the float predictions to integer, and defined no 

data value indicators of the final rasters (generated from the output tables): 

clc; 

clear; 

%% Table Merger, 

%% This MATLAB code merges a large number of tables in a directory, passes the contents of the 

%% merged table to a desirable number of tables, and export those tables into another  

%% directory. Also the table variables (exempt X and Y coordinates) 

%% will be converted from float to integer during the merging process.  

  

% Reading all tables in a directory (in .txt format) and copying them into the memory 

P = strcat('Directory of the original comma delimited input tables'); 

S = dir(fullfile(P,'*.txt')); 

C = cell(1,numel(S)); 

parfor k = 1:numel(S) 

    F = fullfile(P,S(k).name); 

    C{k} = readtable(F,'FileType',... 
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        'text','Delimiter',',','PreserveVariableNames',true); 

end 

 

% Merging tables 

Table = vertcat(C{:});  

 

% Multiplying table variables by 100, 10000,or 100000 depending on the needed accuracy and  

% rounding the results to remove the decimal point 

Table.var = round(Table.var * 10000);  

% Setting no data value indicators  

Table.var(Table.var == round(no data indicator of input tables * 10000)) = No data indicator;  

 

% Passing the contents of the merged table to a desirable number of tables 

[~,~,bin] = histcounts(1:height(Table),500);  

T = cell(1,500); 

for z  = 1:500 

    T{z} = Table(bin == z,:); 

end 

 

% Exporting the resulting tables to a desirable directory 

parfor z = 1:500 

    TT = vertcat(T{z}); 

    writetable(TT,strcat('Desirable output directory\desirable table name',... 

    num2str(z),'.txt')); 

end 

 

We converted the x- y- values in the output tables to in-memory point feature layers 

and afterwards converted the generated in-memory point feature layers to rasters using the 

ArcPy “point to raster” tool. The created rasters were then mosaicked in ArcMap GUI and 

exported as one single global raster with 0.008333333̊ spatial resolution. The following Python 

code shows how we converted the tables to rasters: 

# Table to raster converter,  

# this code gets X, Y, and predicted values for target variables in a .txt table and generates 

# the raster datasets. 

   

import multiprocessing # Importing the ArcPy module 

from multiprocessing import Process # Importing multi-processing module 

import arcpy 

import os 

import os, fnmatch 

 

# Setting the geo-processing environments 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = r"Directory of the tables" 

 

# Reading all .txt tables in a directory 

path = r"Directory of the tables" 

pattern = "*.txt" 

Text_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 

 

# Defining the function that will be passed to child processes 

# Function arguments: ini, end 

def cell(ini,end): 

 jj = range(ini,end) 

 for j in jj: 

  string = Text_files[j] 

  string = string[0:(len(string)-4)] 

  in_table = Text_files[j] 

  x_coords = "X" # Longitude in the table 

  y_coords = "Y" # Latitude in the table 

  # Making a point feature class from the variables in the tables on the memory 

  arcpy.MakeXYEventLayer_management(in_table, x_coords , y_coords, "out_Layer") 

  # Execution of the ArcPy point to raster tool,  

  # 0.008333333 is the resolution of the final raster  
  arcpy.PointToRaster_conversion("out_Layer", "Coeff_value", r"Output directory/"+string +  

  ".tif","","",0.008333333) 

 

if __name__ == '__main__': 

 ii = count = 0 

 for i in range(0, number of system cores): 

  ini = count 
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  end = count + + The number of tables that should be converted to raster by each core 

  process = Process(target = cell, args = (ini,end,)) 

  processes.append(process) 

  process.start() 

  count = end 

 

 

Zonal statistics 

As mentioned earlier in the “Model deployment” section, we classified the predicted values of 

ECe and ESP to four classes or bins for each variable (8 classes in total). This classification 

enabled us to do different analysis on the total area of salt-affected soils between various 

thresholds. From those four bins for each variable, only the bins with an ECe ≥ 4 dS m-1 and an 

ESP ≥ 6% were required for area analysis. Instead of saving the values of ECe or ESP, the 

calculated area of pixels (based on x- y- coordinates) were saved as the final tables (x-, y-, and 

Area) into the corresponding folders. The result for each target variable was 39 folders 

(representing each year between 1980 and 2018) with 3 sub-folders including the generated 

tables for each bin. A similar script to the one presented in previous section (Rasterizing the 

generated tables) was used to rasterise all tables within the sub-folders. Each raster was 

representing the area of pixels labelled with different classes of the soil salinity or sodicity. To 

make it clearer, we provide an example from the final arrangement of the generated raster files. 

For ECe as a target variable in the 1999 main folder, for example, we had three sub-folders with 

the names of 1, 2, and 3, representing the three bins of salinity: 4 - 8, 8 - 16, and equal or greater 

than 16, respectively. Within each sub-folder, we had a set of raster files. These raster files 

included information on the area of pixels, which were estimated to have an ECe value falling 

into the corresponding bin of salinity. The following script was used to mosaic the final 

generated raster files within each sub-folder: 

# Raster mosaicing,  

# This script gets a set of raster datasets in a directory and mosaic all of them into a new  

# raster.    

 

# Importing the required modules 

import arcpy   
from arcpy import env   
from arcpy.sa import *   
import os   
import os, fnmatch   
   
pattern = "*.tif"   
j = 1   
j = str(j)   
for i in range(1980,2019):   
 arcpy.env.workspace = r"Directory of the rasters on the disk/ECe/"+str(i)+"/"+j   
 path = r" Directory of the rasters on the disk /ECe/"+str(i)+"/"+j   
 tif_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)]   
 arcpy.CreateRasterDataset_management("…/ECe/"+str(i)+"/"+j," ECe_"+str(i)+"_"+j+ 
  ".tif","0.008333333","32_BIT_FLOAT","","1","","","LZ77","","")   
 arcpy.Mosaic_management(tif_files,"…/Mosaiced_rasters/ECe/"+str(i)+"/"+j+"/ECe_"+str(i)+"_"+j+ 
 ".tif" ,"BLEND","","","No Data Value","","","") 
 
 

Using ArcMap “zonal statistics as table” tool, the area of soils with ECe ≥ 4 dS m-1 or 

ESP ≥ 6% at the country, continent, biome, land cover, and climate level was calculated from 

the mosaicked rasters for different years. The following code in Python was used to calculate 

the sum of salt-affected areas between various thresholds in each zone delineated by input 

rasters of country, continent, biome, land cover, and climate:  

# Zonal statistics as table,  

# Summarizes the values of a raster within the zones of another dataset and reports the  

# results in a table. 

    

import arcpy 
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from arcpy import env 
from arcpy.sa import * 
import os 
import os, fnmatch 
 

# Setting the geo-processing environments 

arcpy.CheckOutExtension("Spatial") 
 

# Input rasters that delineate the zones 

pattern = "*.tif" 
inZoneData_1 = "…/Continent_level.tif" 
zoneField_1 = "Continent_name" 
inZoneData_2 = "…/gadm_country_level.tif" 
zoneField_2 = "Country_name" 
inZoneData_3 = "…/Biome_level.tif" 
zoneField_3 = "Biome_name" 
inZoneData_4 = "…/Land_cover_level.tif" 
zoneField_4 = "Land_cover_name" 
inZoneData_5 = "…/Climate_zone_level.tif" 
zoneField_5 = "climate_name" 
 
for i in range(1980,2019): 
# i represents the year 

 for j in range(1,4): # j represents the bin of salinity or sodicity 
  env.workspace = "…/Mosaiced_rasters/ECe/"+str(i)+"/"+str(j) 
  path = "…/Mosaiced_rasters/ECe/"+str(i)+"/"+str(j) 
  tif_files = [ff for ff in os.listdir(path) if fnmatch.fnmatch(ff, pattern)] 
  outZSaT = ZonalStatisticsAsTable(inZoneData_1, zoneField_1, tif_files[0], 
  "in_memory/dbf", "DATA", "SUM") 
  arcpy.TableToTable_conversion("in_memory/dbf","…/zonal_stat_results/ECe/"+str(i)+"/"+str(j),  
  "Continent_level_"+str(i)+".txt") 
  arcpy.Delete_management("in_memory/dbf") 
  outZSaT = ZonalStatisticsAsTable(inZoneData_2, zoneField_2, tif_files[0], 
  "in_memory/dbf", "DATA", "SUM") 
  arcpy.TableToTable_conversion("in_memory/dbf","…/zonal_stat_results/ECe/"+str(i)+"/"+str(j),  
  "Country_level_"+str(i)+".txt") 
  arcpy.Delete_management("in_memory/dbf") 
  outZSaT = ZonalStatisticsAsTable(inZoneData_3, zoneField_3, tif_files[0], 
  "in_memory/dbf", "DATA", "SUM") 
  arcpy.TableToTable_conversion("in_memory/dbf","…/zonal_stat_results/ECe/"+str(i)+"/"+str(j),  
  "Biome_level_"+str(i)+".txt") 
  arcpy.Delete_management("in_memory/dbf") 
  outZSaT = ZonalStatisticsAsTable(inZoneData_4, zoneField_4, tif_files[0], 
  "in_memory/dbf", "DATA", "SUM") 
  arcpy.TableToTable_conversion("in_memory/dbf","…/zonal_stat_results/ECe/"+str(i)+"/"+str(j),  
  "Land_cover_level_"+str(i)+".txt") 
  arcpy.Delete_management("in_memory/dbf") 
  outZSaT = ZonalStatisticsAsTable(inZoneData_5, zoneField_5, tif_files[0], 
  "in_memory/dbf", "DATA", "SUM") 
  arcpy.TableToTable_conversion("in_memory/dbf","…/zonal_stat_results/ECe/"+str(i)+"/"+str(j),  
  "Climate_level_"+str(i)+".txt") 
  arcpy.Delete_management("in_memory/dbf") 

 

The generated tables (saved in .txt format) were then imported to MATLAB for area analysis 

and generation of the figures. 

Figures 

Plots in Figure 3-2 were initially generated in MATLAB and then copy pasted into ArcMap. 

The final generated figure was exported by ArcMap. The following code shows the MATLAB 

part and it calculates the soil areas with an ECe ≥ 4 dS m-1/ECe ≥ 2 dS m-1 and/or ESP ≥ 6%/ESP 

≥ 15%: 
 

clc; 

clear; 

 

% Reading all tables in a directory containing the output tables of the trend analysis. 

% Each table containes X, Y, and pixel area.  

% Calculated areas are related to the pixels for which the likelihood of happening ECe or  

% ESP equal or greater than specific thresholds is more than 0.75; in other 
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% words, in three-fourths of the years between 1980 and 2018, the likelihood of happening ECe 

% or ESP for those pixels has been equal or greater than specific thresholds. 

 

P = strcat('…\Tables');% Reading the tables for likelihood of happening ECe >= 2 

S = dir(fullfile(P,'*.txt')); 

C = cell(1,numel(S)); 

parfor k = 1:numel(S) 

    F = fullfile(P,S(k).name); 

    C{k} = readtable(F,'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

end 

Table = vertcat(C{:}); % Merging all tables 

Table(Table.Y > 55,:) = []; 

longitude = unique(Table.X); 

longitude_area = zeros(length(longitude),1); 

for i = 1:length(longitude) 

    longitude_area(i) = sum(Table.Area(Table.X == longitude(i))); 

  

end 

Longitude_figure = [longitude longitude_area]; 

Longitude_figure = array2table(Longitude_figure,'VariableNames',... 

{'longitude' 'longitude_area'}); 

writetable(Longitude_figure,'…\ECe_2_Longitude_figure.txt'); 

latitude = unique(Table.Y); 

latitude_area = zeros(length(latitude),1); 

for i = 1:length(latitude) 

    latitude_area(i) = sum(Table.Area(Table.Y == latitude(i))); 

  

end 

Latitude_figure = [latitude latitude_area]; 

Latitude_figure = array2table(Latitude_figure,'VariableNames',{'latitude' 'latitude_area'}); 

writetable(Latitude_figure,'…\ECe_2_Latitude_figure.txt'); 

  

  

%%%%%%%%%%% 

clear; 

P = strcat('…\Tables');% Reading the tables for likelihood of happening ECe >= 4 

S = dir(fullfile(P,'*.txt')); 

C = cell(1,numel(S)); 

parfor k = 1:numel(S) 

    F = fullfile(P,S(k).name); 

    C{k} = readtable(F,'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

end 

Table = vertcat(C{:}); 

Table(Table.Y > 55,:) = []; 

longitude = unique(Table.X); 

longitude_area = zeros(length(longitude),1); 

for i = 1:length(longitude) 

    longitude_area(i) = sum(Table.Area(Table.X == longitude(i))); 

  

end 

Longitude_figure = [longitude longitude_area]; 

Longitude_figure = array2table(Longitude_figure,'VariableNames', ... 

{'longitude' 'longitude_area'}); 

writetable(Longitude_figure,'…\ECe_4_Longitude_figure.txt'); 

latitude = unique(Table.Y); 

latitude_area = zeros(length(latitude),1); 

for i = 1:length(latitude) 

    latitude_area(i) = sum(Table.Area(Table.Y == latitude(i))); 

  

end 

Latitude_figure = [latitude latitude_area]; 

Latitude_figure = array2table(Latitude_figure,'VariableNames',{'latitude' 'latitude_area'}); 

writetable(Latitude_figure,'…\ECe_4_Latitude_figure.txt'); 

%%%%%%%%%%%% Generation of subplots 

clear; 

P = strcat('…\Tables');% Reading the tables for likelihood of happening ESP >= 6 

S = dir(fullfile(P,'*.txt')); 

C = cell(1,numel(S)); 

parfor k = 1:numel(S) 

    F = fullfile(P,S(k).name); 

    C{k} = readtable(F,'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

end 

Table = vertcat(C{:}); 

Table(Table.Y > 55,:) = []; 
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longitude = unique(Table.X); 

longitude_area = zeros(length(longitude),1); 

for i = 1:length(longitude) 

    longitude_area(i) = sum(Table.Area(Table.X == longitude(i))); 

  

end 

Longitude_figure = [longitude longitude_area]; 

Longitude_figure = array2table(Longitude_figure,'VariableNames',{'longitude' 

'longitude_area'}); 

writetable(Longitude_figure,'…\ESP_6_Longitude_figure.txt'); 

latitude = unique(Table.Y); 

latitude_area = zeros(length(latitude),1); 

for i = 1:length(latitude) 

    latitude_area(i) = sum(Table.Area(Table.Y == latitude(i))); 

  

end 

Latitude_figure = [latitude latitude_area]; 

Latitude_figure = array2table(Latitude_figure,'VariableNames',{'latitude' 'latitude_area'}); 

writetable(Latitude_figure,'…\ESP_6_Latitude_figure.txt'); 

  

P = strcat('\Tables');% Reading the tables for likelihood of happening ESP >= 15 

S = dir(fullfile(P,'*.txt')); 

C = cell(1,numel(S)); 

parfor k = 1:numel(S) 

    F = fullfile(P,S(k).name); 

    C{k} = readtable(F,'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

end 

Table = vertcat(C{:}); 

Table(Table.Y > 55,:) = []; 

longitude = unique(Table.X); 

longitude_area = zeros(length(longitude),1); 

for i = 1:length(longitude) 

    longitude_area(i) = sum(Table.Area(Table.X == longitude(i))); 

  

end 

Longitude_figure = [longitude longitude_area]; 

Longitude_figure = array2table(Longitude_figure,'VariableNames',{'longitude' 

'longitude_area'}); 

writetable(Longitude_figure,'…\ESP_15_Longitude_figure.txt'); 

latitude = unique(Table.Y); 

latitude_area = zeros(length(latitude),1); 

for i = 1:length(latitude) 

    latitude_area(i) = sum(Table.Area(Table.Y == latitude(i))); 

  

end 

Latitude_figure = [latitude latitude_area]; 

Latitude_figure = array2table(Latitude_figure,'VariableNames',{'latitude' 'latitude_area'}); 

writetable(Latitude_figure,'…\ESP_15_Latitude_figure.txt'); 

  

%% Subplots related to ECe 

figure; 

  

subplot(5,6,25:29); 

Longitude_figure_2 = readtable('…\ECe_2_Longitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P1 = plot(Longitude_figure_2.longitude,Longitude_figure_2.longitude_area./1000000,... 

'Color','r','LineWidth',1.5); 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ax.TickLength = [0.004 0.035]; 

ylabel('Area (km^{2})','Color','k'); 

xlabel('Longitude (degree)','Color','k'); 

hold on  

Longitude_figure_4 = readtable('…\ECe_4_Longitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P2 = plot(Longitude_figure_4.longitude,Longitude_figure_4.longitude_area./1000000,... 

'Color','b','LineWidth',1.5); 

xlim([-180 180]); 

ytickformat('%,4.4g') 

L = legend([P1 P2],... 

{'EC_{e} \geq 2 dS m^{-1}','EC_{e} \geq 4 dS m^{-1}'},'Location','northwest','FontSize',14); 

title(L,'Salinity threshold:') 
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ax.YAxisLocation = 'left'; 

ax.XMinorTick = 'on'; 

ax.YMinorTick = 'on'; 

  

subplot(5,6,[12 18 24]); 

Latitude_figure_2 = readtable('…\ECe_2_Latitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P1 = plot(Latitude_figure_2.latitude_area./1000000,Latitude_figure_2.latitude,... 

'Color','r','LineWidth',1.5); 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ylabel('Latitude (degree)','Color','k'); 

xlabel('Area (km^{2})','Color','k'); 

hold on  

Latitude_figure_4 = readtable('…\ECe_4_Latitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P2 = plot(Latitude_figure_4.latitude_area./1000000,Latitude_figure_4.latitude,... 

'Color','b','LineWidth',1.5); 

ylim([-55 55]); 

ax.YTick = [-50 -25 0 25 50]; 

xtickformat('%,4.4g') 

L = legend([P1 P2],... 

{'EC_{e} \geq 2 dS m^{-1}','EC_{e} \geq 4 dS m^{-1}'},'Location','southeast','FontSize',12); 

title(L,'Salinity threshold:') 

ax.XMinorTick = 'on'; 

ax.YMinorTick = 'on'; 

ax.YAxisLocation = 'right'; 

  

subplot(5,6,[13 19]); 

Hor_bar_fig_2 = readtable('…\Continent_level.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_2_mid_chi = readtable('…\Middle_east_china.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_2_mid_chi.CONTINENT = Hor_bar_fig_2_mid_chi.NAME_0; 

Hor_bar_fig_2_mid_chi.NAME_0 = []; 

table_2 = [Hor_bar_fig_2;Hor_bar_fig_2_mid_chi]; 

Area_2 = sortrows(table_2,'SUM','descend'); 

Hor_bar_fig_4 = readtable('…\Continent_level.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_4_mid_chi = readtable('…\Middle_east_china.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_4_mid_chi.CONTINENT = Hor_bar_fig_4_mid_chi.NAME_0; 

Hor_bar_fig_4_mid_chi.NAME_0 = []; 

table_4 = [Hor_bar_fig_4;Hor_bar_fig_4_mid_chi]; 

Area_4 = sortrows(table_4,'SUM','descend'); 

Area = [Area_2.SUM Area_4.SUM]; 

b = barh(Area./1000000000,0.75); 

b(1).FaceColor = 'r'; 

b(2).FaceColor = 'b'; 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

xlabel('Area (1,000 km^{2})','Color','k'); 

Area_2.CONTINENT{3} = 'Middle E.'; 

Area_2.CONTINENT{6} = 'S. America'; 

Area_2.CONTINENT{7} = 'N. America'; 

ax.YTickLabel = Area_2.CONTINENT; 

ax.YDir = 'reverse'; 

L = legend({'EC_{e} \geq 2 dS m^{-1}','EC_{e} \geq 4 dS m^{-1}'},... 

'Location','southeast','FontSize',12); 

title(L,'Salinity threshold:') 

ax.Position = [0.1300 0.34 0.1 0.3]; 

ax.XTick = [0 2500 5000]; 

xtickformat('%,4.4g') 

ax.XMinorTick = 'on'; 

  

  

% %% Subplots related ESP 

figure; 
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subplot(5,6,25:29); 

Longitude_figure_6 = readtable('…\ESP_6_Longitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P1 = plot(Longitude_figure_6.longitude,Longitude_figure_6.longitude_area./1000000,... 

'Color','r','LineWidth',1.5); 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ax.TickLength = [0.004 0.035]; 

ylabel('Area (km^{2})','Color','k'); 

xlabel('Longitude (degree)','Color','k'); 

hold on  

Longitude_figure_15 = readtable('…\ESP_15_Longitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P2 = plot(Longitude_figure_15.longitude,Longitude_figure_15.longitude_area./1000000,... 

'Color','b','LineWidth',1.5); 

xlim([-180 180]); 

ytickformat('%,4.4g') 

L = legend([P1 P2],{'ESP \geq 6%','ESP \geq 15%'},'Location','northwest','FontSize',16); 

title(L,'Sodicity threshold:') 

ax.YAxisLocation = 'left'; 

ax.XTick = [-150 -100 -50 0 50 100 150]; 

ax.XMinorTick = 'on'; 

ax.YMinorTick = 'on'; 

  

subplot(5,6,[12 18 24]); 

Latitude_figure_4 = readtable('…\ESP_6_Latitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P1 = plot(Latitude_figure_4.latitude_area./1000000,Latitude_figure_4.latitude,... 

'Color','r','LineWidth',1.5); 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ylabel('Latitude (degree)','Color','k'); 

xlabel('Area (km^{2})','Color','k'); 

hold on  

Latitude_figure_15 = readtable('…\ESP_15_Latitude_figure.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

P2 = plot(Latitude_figure_15.latitude_area./1000000,Latitude_figure_15.latitude,... 

'Color','b','LineWidth',1.5); 

ylim([-55 55]); 

xtickformat('%,4.4g') 

L = legend([P1 P2],{'ESP \geq 6%','ESP \geq 15%'},'Location','southeast','FontSize',12); 

title(L,'Sodicity threshold:') 

ax.YTick = [-50 -25 0 25 50]; 

ax.XMinorTick = 'on'; 

ax.YMinorTick = 'on'; 

ax.YAxisLocation = 'right'; 

  

subplot(5,6,[13 19]); 

Hor_bar_fig_6 = readtable('…\Continent_level.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_6_mid_chi = readtable('…\Middle_east_china.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_6_mid_chi.CONTINENT = Hor_bar_fig_6_mid_chi.NAME_0; 

Hor_bar_fig_6_mid_chi.NAME_0 = []; 

Hor_bar_fig_6.OID_ = [];Hor_bar_fig_6_mid_chi.Rowid_ = []; 

table_6 = [Hor_bar_fig_6;Hor_bar_fig_6_mid_chi]; 

table_6(9,:) = table_6(6,:); 

table_6(6,:) = []; 

Area_6 = sortrows(table_6,'CONTINENT','descend'); 

Hor_bar_fig_15 = readtable('…\Fre_15_area_continet_level.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_15_mid_chi = readtable('…\Fre_15_area_Middle_east_china.txt','FileType',... 

    'text','Delimiter',',','PreserveVariableNames',true); 

Hor_bar_fig_15_mid_chi.CONTINENT = Hor_bar_fig_15_mid_chi.NAME_0; 

Hor_bar_fig_15_mid_chi.NAME_0 = []; 

table_15 = [Hor_bar_fig_15;Hor_bar_fig_15_mid_chi]; 

table_15(8,2) = {'Europe'}; 

table_15.OID_ = []; 

Area_15 = sortrows(table_15,'CONTINENT','descend'); 
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Area = [Area_6.SUM Area_15.SUM]; 

b = barh(Area./1000000000,0.75); 

b(1).FaceColor = 'r'; 

b(2).FaceColor = 'b'; 

set(gca,'fontname','Arial','FontSize',20) 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

xlabel('Area (1,000 km^{2})','Color','k'); 

Area_6.CONTINENT{1} = 'S. America'; 

Area_6.CONTINENT{2} = 'N. America'; 

Area_6.CONTINENT{3} = 'Middle E.'; 

ax.YTickLabel = Area_6.CONTINENT; 

ax.XTick = [0 3000 6000]; 

L = legend({'ESP \geq 6%','ESP \geq 15%'},'Location','southeast','FontSize',12); 

title(L,'Sodicity threshold:') 

ax.XMinorTick = 'on'; 

ax.Position = [0.1300 0.34 0.1 0.3]; 

xlim([0 7000]); 

xtickformat('%,4.4g') 

 

Figure A2-1 was generated by a combination of MATALB, Microsoft PowerPoint, and 

ArcMap. The following script was used for creation of the Figure A2-1 in MATLAB and the 

generated figure was copy-pasted into the ArcMap GUI to become combined with the outputs 

of the Microsoft PowerPoint. The final version of Figure A2-1 was exported by ArcMap. 

clc; 

clear; 

% This code shows how we generated Figure A2-1 in the manuscript.  

  

% subplot (a) 

ens = ... load('…\Best binary classification model object for ECe.mat'); 

Truelabels = ens.ens.Y; 

% Validation and Acquiring accuracy metrics 

cvens = crossval(ens.ens,'Kfold',10); 

Predictedlabels = kfoldPredict(cvens); 

Variables = [Truelabels Predictedlabels]; 

Variables_table = array2table(Variables,'VariableNames',{'Truelabels' 'Predictedlabels'}); 

writetable(Variables_table, '…\ECe_Classification_cross_validation.txt'); 

T = readtable('…\ECe_Classification_cross_validation','FileType','text','Delimiter',',',... 

       'PreserveVariableNames',true); 

Truelabels = T.Truelabels; 

Predictedlabels = T.Predictedlabels; 

C = confusionmat(Truelabels,Predictedlabels); 

cm = confusionchart(C,'RowSummary','row-normalized','ColumnSummary','column-normalized'); 

% The generated figure was exported to Microsoft PowerPoint and after modifications was sent 

to ArcMap 

subplot(2,3,1); 

set(gca,'fontname','Arial','FontSize',20) 

ax = gca; 

box on 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ax.XTick = []; 

ax.YTick = []; 

ty = ylabel('True class','Color','k'); 

ty.Position = [-0.08 0.65 0]; 

tx = xlabel('Predicted class','Color','k'); 

tx.Position = [0.46 -.087 0]; 

tit = title('Soil salinity classification','FontSize',18); 

text(-0.12,1.1,0,'a','Units','Normalized','fontname','Arial','Color','k','FontSize',24,... 

'FontWeight','Bold'); 

 

% subplot (b) 

ens = load('…\Best binary classification object for ESP.mat'); 

Truelabels = ens.ens.Y; 

% Validation and Acquiring accuracy metrics 

cvens = crossval(ens.ens,'Kfold',10); 

Predictedlabels = kfoldPredict(cvens); 

Variables = [Truelabels Predictedlabels]; 
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Variables_table = array2table(Variables,'VariableNames',{'Truelabels' 'Predictedlabels'}); 

writetable(Variables_table,'…\ESP_Classification_cross_validation.txt'); 

T = readtable('…\ESP_Classification_cross_validation','FileType',... 

                  'text','Delimiter',',','PreserveVariableNames',true); 

Truelabels = T.Truelabels; 

Predictedlabels = T.Predictedlabels; 

C = confusionmat(Truelabels,Predictedlabels); 

cm = confusionchart(C,'RowSummary','row-normalized','ColumnSummary','column-normalized'); 

% The generated figure was exported to Microsoft PowerPoint and after modifications was sent 

to ArcMap 

subplot(2,3,4); 

set(gca,'fontname','Arial','FontSize',20) 

ax = gca; 

box on 

ax.XTick = []; 

ax.YTick = []; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ty = ylabel('True class','Color','k'); 

ty.Position = [-0.08 0.65 0]; 

tx = xlabel('Predicted class','Color','k'); 

tx.Position = [0.46 -.087 0]; 

title('Soil sodicity classification','FontSize',18); 

text(-0.12,1.1,0,'b','Units','Normalized','fontname','Arial','Color','k', ... 

'FontSize',24,'FontWeight','Bold'); 

  

% Figure 1 subplots (c to f) 

% subplot(c) 

ens = load('…\Best regression model object fitted to saline class.mat'); 

ytrue_log = ens.ens.Y; 

ytrue = 10.^(ytrue_log); 

% Validation and Acquiring accuracy metrics 

cvens = crossval(ens.ens,'Kfold',10); 

yfit_log = kfoldPredict(cvens); 

yfit = 10.^(yfit_log); 

Variables = [ytrue yfit]; 

Variables_table = array2table(Variables,'VariableNames',{'ytrue' 'yfit'}); 

writetable(Variables_table,'…\ECe_regression_cross_validation.txt'); 

T = readtable('…\ECe_regression_cross_validation','FileType',... 

                  'text','Delimiter',',','PreserveVariableNames',true); 

ytrue = T.ytrue; 

yfit = T.yfit; 

subplot(2,3,2); 

binscatter(ytrue,yfit,90) 

set(gca,'XScale','log','YScale','log','fontname','Arial','FontSize',20) 

title('Actual vs fitted: Saline class','Color','k','FontSize',18); 

ylabel('Predicted EC_{e} (dS m^{-1})','Color','k'); 

xlabel('Observed EC_{e} (dS m^{-1})','Color','k'); 

xlim([1.9 67]); 

ylim([1.9 100]); 

xticks([2 5 10 30 65]); 

yticks([2 5 10 30 65]); 

colormap hot 

c = colorbar; 

c.Label.String = 'Scatter density in bins'; 

box on 

ax = gca; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ax.LineWidth = 1; 

hold on 

x = 1.8:0.001:67;y = 1.8:0.001:67; 

line(x,y,'Color','r','LineWidth',1); 

text(0.025,0.89,'{\it n} = 42,984','Units','Normalized','fontname',... 

'Arial','Color','r','FontSize',14) 

text(0.025,0.96,'10-fold cross-validation {\it R^{2}} = 0.724', ... 

'Units','Normalized','fontname','Arial','Color','r','FontSize',14) 

text(-0.2,1.1,0,'c','Units', ... 

'Normalized','fontname','Arial','Color','k','FontSize',24,'FontWeight','Bold'); 

  

% subplots (d) 

ens = load('…\Best model object for regression on sodic class.mat'); 

ytrue_log = ens.ens.Y; 

ytrue = 10.^(ytrue_log); 

% Validation and Acquiring accuracy metrics 

cvens = crossval(ens.ens,'Kfold',10); 
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yfit_log = kfoldPredict(cvens); 

yfit = 10.^(yfit_log); 

Variables = [ytrue yfit]; 

Variables_table = array2table(Variables,'VariableNames',{'ytrue' 'yfit'}); 

writetable(Variables_table,'…\ESP_regression_cross_validation.txt');  

T = readtable('…\ESP_regression_cross_validation','FileType',... 

                  'text','Delimiter',',','PreserveVariableNames',true); 

ytrue = T.ytrue; 

yfit = T.yfit; 

subplot(2,3,5); 

binscatter(ytrue,yfit,100) 

set(gca,'XScale','log','YScale','log','fontname','Arial','FontSize',20) 

title('Actual vs fitted: Sodic class','Color','k','FontSize',18); 

ylabel('Predicted ESP (%)','Color','k');xlabel('Observed ESP (%)','Color','k'); 

xlim([1 102]); 

ylim([1 160]); 

xticks([1 5 10 100]); 

yticks([1 5 10 100]); 

colormap hot 

c = colorbar; 

c.Label.String = 'Scatter density in bins'; 

box on 

ax = gca; 

ax.LineWidth = 1; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

hold on 

x = 1:0.001:100;y = 1:0.001:100; 

line(x,y,'Color','r','LineWidth',1); 

text(0.025,0.89,'{\it n} = 

197,988','Units','Normalized','fontname','Arial','Color','r','FontSize',14) 

text(0.025,0.96,'10-fold cross-validation {\it R^{2}} = 0.726', ... 

'Units','Normalized','fontname','Arial','Color','r','FontSize',14) 

text(-0.2,1.1,0,'d','Units', ... 

'Normalized','fontname','Arial','Color','k','FontSize',24,'FontWeight','Bold'); 

  

% subplot (e) 

T = readtable('…\predicted_ECe','FileType',... 

                 'text','Delimiter',',','PreserveVariableNames',true); 

% T is the table including information on the present study predictions, HWSD predictions, and 

surface measurements of ECe 

ECe = T.ECe; 

ECe_predicted = T.ECe_predicted; 

t_ece_HWSD = T.ECe_HWSD; 

subplot(2,3,3); 

hold on  

p1 = scatter(ECe,ECe_predicted,7,'filled','o','MarkerFaceColor', ... 

[0.9290 0.6940 0.1250],'MarkerEdgeColor',[0.9290 0.6940 0.1250]); 

p2 = scatter(ECe,t_ece_HWSD,7,'filled','o','MarkerFaceColor', ... 

[0.6350 0.0780 0.1840],'MarkerEdgeColor',[0.6350 0.0780 0.1840]); 

set(gca,'XScale','log','YScale','log','fontname','Arial','FontSize',20) 

title('Soil salinity predictions','Color','k','FontSize',18) 

box on 

ax = gca; 

ax.XColor = 'k'; 

ax.YColor = 'k'; 

ax.LineWidth = 1; 

ylabel('Predicted EC_{e} (dS m^{-1})','Color','k'); 

xlabel('Observed EC_{e} (dS m^{-1})','Color','k'); 

xlim([0.01 110]); 

ylim([0.01 110]); 

xticks([0.1 1 10 80]); 

yticks([0.1 1 10 80]); 

x = 0.01:0.001:105;y = 0.01:0.001:105; 

line(x,y,'Color','k','LineWidth',1); 

text(0.025,0.93,'{\it n} = 9,293','Units','Normalized', ... 

'fontname','Arial','Color','k','FontSize',14) 

text(-0.16,1.1,0,'e','Units','Normalized', ... 

'fontname','Arial','Color','k','FontSize',24,'FontWeight','Bold'); 

R_squared_ECe_present = sum((ECe_predicted - mean(ECe)).^2)/sum((ECe - mean(ECe)).^2); 

R_squared_ECe_HWSD = sum((t_ece_HWSD - mean(ECe)).^2)/sum((ECe - mean(ECe)).^2); 

L = legend([p1 p2],'Present study',... 

    'HWSD','Location','southeast','FontSize',16); 

L.Title.Color = 'k'; 

ax.YAxisLocation = 'right'; 

  

% subplot (e) 
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T1 = readtable('F:\Other_maps_comparison\Gound_points\predicted_ESP_HWSD','FileType',... 

                 'text','Delimiter',',','PreserveVariableNames',true); 

% T1 is the table including information on the present study predictions, HWSD predictions, 

and surface measurements of ESP 

subplot(2,3,6); 
ESP_1 = T1.ESP; 
ESP_predicted = T1.ESP_predicted; 
t_esp_HWSD = T1.ESP_HWSD; 
hold on  
p1 = scatter(ESP_1,ESP_predicted,7,'filled','o','MarkerFaceColor', ... 

[0.9290 0.6940 0.1250],'MarkerEdgeColor',[0.9290 0.6940 0.1250]); 
p2 = scatter(ESP_1,t_esp_HWSD,7,'filled','o','MarkerFaceColor',[0.6350 0.0780 0.1840], ... 

'MarkerEdgeColor',[0.6350 0.0780 0.1840]); 
set(gca,'XScale','log','YScale','log','fontname','Arial','FontSize',20) 
title('Soil sodicity predictions','Color','k','FontSize',18) 
box on 
ax = gca; 
ax.LineWidth = 1; ax.YAxisLocation = 'right'; 
ax.XColor = 'k'; 
ax.YColor = 'k'; 
ylabel('Predicted ESP (%)','Color','k'); 
xlabel('Observed ESP (%)','Color','k'); 
xlim([0.01 600]); 
ylim([0.01 1700]); 
xticks([0.1 1 10 100]); 
xticklabels({'0.1','1','10','100'}); 
yticklabels({'0.1','1','10','100'}); 
yticks([0.1 1 10 100]); 
x = 0.01:0.001:2000;y = 0.01:0.001:2000; 
line(x,y,'Color','k','LineWidth',1); 
text(0.025,0.94,'{\it n}_{total} = 30,491','Units','Normalized','fontname', ... 

'Arial','Color','k','FontSize',14) 
text(-0.16,1.1,0,'f','Units','Normalized','fontname', ... 

'Arial','Color','k','FontSize',24,'FontWeight','Bold'); 
R_squared_ESP_present_HWSD = sum((ESP_predicted - mean(ESP_1)).^2)/ ... 

sum((ESP_1 - mean(ESP_1)).^2); 
R_squared_ESP_HWSD = sum((t_esp_HWSD - mean(ESP_1)).^2)/ ... 

sum((ESP_1 - mean(ESP_1)).^2); 
L = legend([p1 p2],'Present study','HWSD','Location','southeast','FontSize',16); 
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Appendix 3 

Table A3-1: Predictor importance (percentage) in the final 16 best fitted models. 

Model name 

Sample 

upper 

depth 

Sample 

lower 

depth 

WRB 
Clay 

content 
Elevation Slope 

Field 

capacity 

Wilting 

point 

Effective 

plant 

rooting 

depth 

dryssa wetssb evspsblc Pr-fred Pr-inte 

CMIP5 models 

GISS-E2-H 3.31 4.03 16.43 8.56 7.43 7.58 4.32 4.24 5.42 3.30 10.77 6.20 11.74 6.66 

GISS-E2-R 3.57 3.57 14.65 7.23 5.68 7.18 3.91 3.13 5.00 4.06 5.69 10.35 16.47 9.50 

MIROC5-ensemble 4.37 4.56 12.61 10.58 6.48 7.60 3.85 3.70 5.47 3.99 7.00 10.10 13.70 5.99 

MIROC-ESM-CHEM 5.36 4.70 14.14 8.72 10.77 6.18 3.45 4.84 5.02 6.39 5.47 8.12 12.43 4.39 

MIROC-ESM 5.54 5.86 12.95 7.71 11.26 6.50 3.73 5.00 4.81 5.98 6.10 9.01 10.83 4.72 

MRI-CGCM3 4.26 4.05 13.91 8.71 6.10 6.77 3.92 3.83 5.80 5.70 5.14 11.17 14.14 6.49 

MRI-ESM1 4.18 4.32 14.19 9.52 6.00 7.11 3.79 3.69 5.61 4.93 5.10 10.23 15.48 5.85 

NorESM1-M 5.36 4.96 11.38 7.31 6.18 8.11 3.95 3.53 5.95 4.60 4.69 13.46 14.94 5.57 

CMIP6 models 

CESM2-WACCM-ensemble 4.91 4.84 11.05 7.35 6.60 7.24 4.08 3.45 5.57 3.71 10.93 9.74 13.97 6.56 

CNRM-ESM2-1 5.39 4.75 12.83 7.95 6.20 7.22 3.70 3.40 6.08 5.52 5.28 9.00 17.40 5.27 

GFDL-ESM4 5.51 5.22 11.79 8.80 7.72 6.52 3.71 4.88 3.68 6.46 5.84 8.23 16.77 4.88 

INM-CM4-8- 4.82 5.61 11.69 7.37 6.74 7.75 4.40 3.61 5.75 4.51 10.40 8.83 12.80 5.73 

INM-CM5-0 3.78 4.61 13.79 7.61 6.74 7.91 4.07 3.57 5.71 3.65 9.02 8.12 15.87 5.54 

MIROC-ES2L 5.14 4.85 14.11 9.15 11.01 5.63 3.87 1.51 10.28 4.59 9.11 6.55 7.19 7.00 

MRI-ESM2-0 5.54 5.15 10.92 6.47 10.71 6.43 4.11 4.54 4.31 6.06 5.12 8.19 17.08 5.36 

NorESM2-LM 4.39 4.29 12.72 7.84 7.66 7.86 5.11 4.12 2.78 7.68 6.31 10.82 13.33 5.11 

Average 4.71 4.71 13.07 8.18 7.71 7.10 4.00 3.82 5.45 5.07 7.00 9.26 14.01 5.91 

a Five-year moving average of daily dry deposition rate of sea salts. 
b Five-year moving average of daily wet deposition rate of sea salts. 
c Five-year moving average of daily evapotranspiration.  
d Five-year moving average of annual precipitation frequency. 
e Five-year moving average of annual precipitation intensity. 
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Figure A3-1: The relation between predicted soil salinity level (represented by ECe) and the predictors used 

for training each of 16 predictive models of soil salinity. a to h, purely spatial predictors. i to k, long-term 

averages of the spatio-temporal predictors. The legend indicates the name of the corresponding original Global 

Circulation Models (GCMs) outputs.  
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Figure A3-2: The relation between predicted soil salinity level (represented by ECe) and long-term average 

of daily deposition rates of sea salts used as predictors for training each of 16 predictive models of soil 

salinity. a, dry deposition rate. b, wet deposition rate. Each line and colour is related to a model trained based on 

the original Global Circulation Models (GCMs) outputs (see Figure A3-1 for the full name of models and 

corresponding colours). 
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Figure A3-3: Multi-model ensemble mean of the change in deposition rates of sea salts by the end of the 

century (2071 - 2100), relative to the reference period (1961 - 1990) under different greenhouse gas 

concentration trajectories. a to d, change in the five-year moving average of daily dry deposition rate of sea 

salts. e to h, change in the five-year moving average of daily wet deposition rate of sea salts. Positive values 

indicate an increase in the deposition rate while negative values are indicative of a decrease. 
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Table A3-2: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the mid-term future (2031 - 2060) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under RCP 

4.5 greenhouse gas concentration trajectory. 

RCP 4.5 mid-term future (%) 

Country Mean Meanci-lowa Meanci-upb Semc Min Max STDEVd Variance 

Namibia 6.55 5.60 7.50 0.48 -17.35 26.20 7.92 62.65 

Brazil 4.86 3.69 6.04 0.60 -19.76 27.86 10.96 120.02 

Mexico 4.22 3.31 5.14 0.46 -22.39 27.98 10.12 102.42 

South Africa 4.21 3.34 5.08 0.44 -18.26 28.05 7.76 60.28 

Niger 3.67 2.62 4.72 0.53 -25.84 27.98 9.94 98.78 

Chad 3.19 2.09 4.28 0.56 -25.22 27.29 10.84 117.59 

United States 3.17 2.66 3.67 0.26 -22.90 27.42 10.05 100.99 

Mauritania 3.01 1.93 4.10 0.55 -25.78 27.30 9.80 95.97 

Mali 2.40 1.18 3.62 0.62 -26.28 28.07 11.94 142.48 

Argentina 2.12 1.43 2.82 0.35 -22.33 27.88 8.67 75.13 

Pakistan 1.94 1.15 2.73 0.40 -23.64 21.93 6.63 43.96 

China 1.60 1.17 2.04 0.22 -25.22 28.10 8.76 76.70 

Libya 1.24 0.46 2.03 0.40 -22.54 26.50 9.30 86.52 

Ethiopia 0.89 -0.08 1.86 0.49 -18.04 26.62 7.26 52.78 

Botswana 0.57 -0.52 1.67 0.56 -20.02 28.01 7.97 63.50 

Russia 0.57 0.13 1.01 0.22 -26.51 27.89 10.00 99.96 

India 0.43 -0.34 1.21 0.40 -26.43 28.00 9.89 97.89 

Australia 0.43 0.15 0.71 0.14 -25.55 28.08 7.00 49.06 

Kazakhstan 0.39 -0.14 0.91 0.27 -25.83 28.07 9.31 86.71 

Afghanistan 0.17 -0.44 0.79 0.31 -10.56 18.33 4.72 22.24 

Canada -0.19 -0.66 0.28 0.24 -22.69 24.51 6.92 47.93 

Iran -0.19 -0.76 0.38 0.29 -18.59 25.36 7.01 49.17 

Bolivia -0.69 -1.98 0.60 0.65 -24.65 25.54 9.18 84.29 

Somalia -0.80 -2.10 0.51 0.66 -26.90 27.68 9.41 88.57 

Sudan -1.72 -2.52 -0.93 0.40 -25.24 27.52 9.92 98.44 

Turkey -1.96 -3.12 -0.80 0.59 -20.59 27.02 9.24 85.45 

Algeria -3.88 -4.57 -3.18 0.35 -25.40 27.35 9.88 97.54 

Egypt -4.56 -5.22 -3.91 0.33 -18.03 25.50 6.40 41.00 

Mongolia -5.50 -6.61 -4.39 0.56 -26.74 25.34 11.96 143.02 

Saudi Arabia -5.81 -6.36 -5.27 0.28 -24.93 26.26 7.17 51.45 

a Lower limit of the 95% confidence interval for the mean. 
b Upper limit of the 95% confidence interval for the mean. 
c Standard error of the mean. 
d Standard Deviation. 
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Table A3-3: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the mid-term future (2031 - 2060) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under RCP 

8.5 greenhouse gas concentration trajectory. 

RCP 8.5 mid-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Namibia 7.15 6.31 7.99 0.43 -8.33 23.47 6.89 47.41 

South Africa 5.36 4.37 6.35 0.50 -22.73 24.01 8.52 72.53 

Brazil 4.76 3.77 5.76 0.51 -17.06 24.16 9.25 85.54 

Botswana 3.38 2.29 4.48 0.56 -20.60 23.91 7.88 62.14 

Mauritania 2.83 1.60 4.07 0.63 -20.95 23.95 10.88 118.34 

United States 2.44 2.03 2.85 0.21 -24.52 24.01 8.16 66.54 

Argentina 2.36 1.78 2.93 0.29 -18.92 23.41 7.21 52.00 

Australia 2.19 1.96 2.42 0.12 -15.52 24.08 5.66 32.05 

Niger 1.72 0.63 2.81 0.55 -24.22 23.50 10.02 100.41 

Bolivia 1.56 0.55 2.57 0.51 -18.60 23.48 7.48 56.02 

Mali 0.58 -0.47 1.63 0.54 -23.40 23.93 10.22 104.49 

Mexico 0.51 -0.34 1.35 0.43 -22.47 22.93 9.37 87.71 

Chad 0.33 -0.85 1.50 0.60 -24.92 23.89 11.33 128.32 

Pakistan -0.33 -1.02 0.35 0.35 -12.94 22.13 5.78 33.36 

Libya -0.63 -1.28 0.02 0.33 -18.39 23.93 7.77 60.37 

Somalia -0.94 -1.99 0.11 0.53 -18.35 23.68 7.64 58.41 

China -0.96 -1.44 -0.47 0.25 -24.84 23.81 9.47 89.69 

Canada -1.50 -1.94 -1.05 0.23 -21.11 23.34 6.61 43.67 

India -1.68 -2.23 -1.14 0.28 -23.26 23.84 7.11 50.48 

Russia -2.31 -2.65 -1.98 0.17 -23.66 23.24 7.66 58.65 

Afghanistan -2.39 -3.00 -1.77 0.31 -14.12 10.06 4.78 22.89 

Kazakhstan -2.55 -2.92 -2.18 0.19 -22.87 19.98 6.69 44.71 

Sudan -2.56 -3.21 -1.90 0.33 -21.44 24.12 8.30 68.92 

Ethiopia -2.59 -3.58 -1.60 0.50 -22.11 19.80 7.46 55.69 

Turkey -3.74 -4.72 -2.76 0.50 -23.70 22.09 7.89 62.29 

Egypt -4.59 -5.23 -3.94 0.33 -15.56 22.20 6.27 39.31 

Algeria -4.69 -5.33 -4.04 0.33 -20.08 24.11 8.99 80.79 

Iran -4.89 -5.44 -4.33 0.28 -23.86 23.11 6.84 46.84 

Mongolia -5.99 -7.00 -4.97 0.52 -24.58 23.89 10.93 119.39 

Saudi Arabia -6.92 -7.30 -6.54 0.19 -24.84 12.93 5.04 25.40 
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Table A3-4: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the mid-term future (2031 - 2060) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under SSP 

2-4.5 greenhouse gas concentration trajectory. 

SSP 2-4.5 mid-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Botswana 8.97 8.09 9.85 0.45 -3.03 22.05 6.11 37.29 

Mongolia 7.48 6.37 8.58 0.56 -10.61 21.78 8.17 66.79 

South Africa 6.24 5.46 7.02 0.40 -16.35 22.09 6.93 48.08 

Brazil 5.93 5.15 6.70 0.39 -18.27 22.02 7.41 54.91 

Australia 5.77 5.52 6.01 0.12 -14.28 22.05 5.96 35.47 

Namibia 5.44 4.73 6.16 0.36 -11.54 21.98 5.96 35.55 

Mauritania 2.32 1.83 2.80 0.25 -12.72 18.28 4.75 22.58 

Bolivia 1.19 0.30 2.07 0.45 -19.41 19.69 6.58 43.31 

China 0.75 0.33 1.18 0.22 -21.58 22.08 8.08 65.36 

Mexico 0.70 0.13 1.26 0.29 -17.72 20.89 6.38 40.70 

Algeria 0.30 -0.03 0.64 0.17 -10.70 19.37 4.89 23.90 

Libya 0.14 -0.31 0.59 0.23 -22.20 20.91 5.50 30.23 

Mali 0.03 -0.50 0.56 0.27 -21.86 17.93 5.46 29.84 

Egypt -0.24 -0.66 0.18 0.21 -9.57 15.81 4.07 16.59 

Sudan -0.59 -1.10 -0.07 0.26 -22.18 20.73 6.59 43.38 

Saudi Arabia -0.72 -1.24 -0.19 0.27 -18.86 18.83 7.00 48.99 

Argentina -0.92 -1.38 -0.47 0.23 -21.72 22.09 5.70 32.45 

Afghanistan -1.16 -1.85 -0.47 0.35 -16.47 19.73 5.36 28.77 

Turkey -1.61 -2.36 -0.86 0.38 -17.12 17.25 6.03 36.40 

United States -2.24 -2.62 -1.86 0.19 -21.30 22.01 7.83 61.23 

Kazakhstan -2.29 -2.65 -1.94 0.18 -21.53 22.04 6.43 41.32 

Pakistan -2.42 -3.28 -1.56 0.44 -19.23 13.76 7.29 53.10 

Canada -2.53 -2.86 -2.19 0.17 -20.11 12.00 4.98 24.77 

Chad -3.21 -3.90 -2.52 0.35 -22.31 17.93 7.02 49.21 

Iran -3.31 -3.80 -2.82 0.25 -18.82 22.06 6.08 36.97 

Ethiopia -3.78 -4.50 -3.05 0.37 -17.31 10.74 5.48 30.06 

India -4.22 -4.78 -3.67 0.28 -22.18 21.48 7.20 51.86 

Niger -4.58 -5.32 -3.84 0.38 -21.82 19.33 7.49 56.12 

Russia -5.50 -5.79 -5.20 0.15 -22.19 21.28 6.58 43.33 

Somalia -6.82 -7.66 -5.99 0.42 -20.25 19.53 6.13 37.55 

 

  



Appendix 3 

 

 

258 

 

Table A3-5: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the mid-term future (2031 - 2060) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under SSP 

5-8.5 greenhouse gas concentration trajectory. 

SSP 5-8.5 mid-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Botswana 9.53 8.56 10.50 0.49 -20.40 24.33 6.96 48.40 

South Africa 8.54 7.70 9.39 0.43 -12.86 24.36 7.40 54.75 

Brazil 8.00 7.12 8.87 0.45 -15.79 24.79 8.11 65.80 

Namibia 6.62 5.77 7.47 0.43 -9.47 24.65 7.06 49.90 

Mongolia 5.81 4.36 7.27 0.74 -19.68 24.29 10.91 118.96 

Australia 5.75 5.51 5.99 0.12 -16.52 24.76 5.98 35.70 

Mexico 3.55 2.86 4.25 0.35 -14.70 24.38 7.73 59.81 

Mauritania 3.23 2.67 3.78 0.28 -10.70 24.69 5.40 29.14 

Mali 1.23 0.58 1.88 0.33 -20.94 23.08 6.67 44.47 

Bolivia 1.13 0.10 2.16 0.52 -21.25 22.92 7.64 58.31 

Libya 0.80 0.32 1.27 0.24 -16.78 22.69 5.75 33.05 

Algeria 0.69 0.24 1.14 0.23 -18.33 24.17 6.58 43.25 

Afghanistan 0.21 -0.56 0.99 0.39 -13.76 21.02 6.01 36.16 

China 0.09 -0.33 0.51 0.21 -22.80 24.78 8.20 67.26 

Egypt -0.05 -0.56 0.46 0.26 -11.99 22.86 4.98 24.85 

Argentina -0.60 -1.06 -0.14 0.24 -18.37 23.22 5.82 33.82 

Sudan -0.97 -1.63 -0.30 0.34 -22.45 24.63 8.47 71.79 

United States -1.08 -1.56 -0.61 0.24 -24.89 24.72 9.71 94.19 

Turkey -1.89 -2.89 -0.88 0.51 -21.19 23.61 8.02 64.39 

Pakistan -2.34 -3.17 -1.51 0.42 -20.40 24.14 7.01 49.08 

Iran -2.70 -3.18 -2.22 0.25 -16.43 24.31 5.94 35.29 

Canada -2.90 -3.26 -2.54 0.18 -21.20 16.10 5.39 29.06 

Kazakhstan -3.06 -3.41 -2.71 0.18 -21.43 24.55 6.27 39.31 

India -3.18 -3.79 -2.56 0.31 -24.23 24.80 7.96 63.30 

Ethiopia -3.26 -4.34 -2.19 0.55 -23.83 24.41 8.09 65.38 

Saudi Arabia -3.70 -4.22 -3.18 0.26 -22.36 23.92 6.85 46.93 

Chad -4.00 -4.83 -3.17 0.42 -24.21 24.47 8.42 70.87 

Niger -4.31 -5.13 -3.49 0.42 -21.62 24.00 8.22 67.56 

Russia -5.43 -5.73 -5.14 0.15 -24.71 23.85 6.71 44.99 

Somalia -7.28 -8.32 -6.25 0.52 -24.21 20.27 7.54 56.87 
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Table A3-6: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the long-term future (2071 - 2100) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under RCP 

4.5 greenhouse gas concentration trajectory. 

RCP 4.5 long-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Namibia 12.36 11.36 13.36 0.51 -9.85 33.00 8.14 66.32 

South Africa 9.50 8.32 10.68 0.60 -13.59 32.63 10.17 103.47 

Brazil 6.55 5.14 7.96 0.72 -31.68 33.33 13.05 170.34 

Mexico 5.68 4.70 6.67 0.50 -25.42 32.06 10.91 119.02 

Mauritania 4.08 2.60 5.56 0.75 -21.73 32.97 13.15 172.81 

Mali 3.04 1.71 4.38 0.68 -29.36 33.42 13.01 169.31 

Botswana 2.77 1.11 4.42 0.84 -18.75 33.07 11.86 140.73 

United States 2.73 2.14 3.33 0.30 -34.46 33.47 11.97 143.35 

Niger 2.66 1.35 3.97 0.66 -26.86 33.31 12.20 148.89 

Libya 2.54 1.62 3.46 0.47 -23.31 33.43 10.99 120.83 

Chad 2.54 1.13 3.94 0.72 -31.16 33.43 13.80 190.35 

Australia 2.26 1.93 2.59 0.17 -25.25 33.41 8.30 68.91 

Argentina 2.01 1.27 2.74 0.37 -22.38 30.27 9.23 85.20 

Pakistan 0.94 0.09 1.79 0.43 -28.16 29.71 7.16 51.29 

China 0.34 -0.23 0.90 0.29 -34.53 33.48 11.37 129.19 

Ethiopia 0.21 -0.92 1.34 0.57 -25.69 27.68 8.48 71.89 

Bolivia -0.24 -1.46 0.97 0.62 -21.33 26.61 8.96 80.26 

Turkey -0.24 -1.77 1.28 0.77 -23.34 31.18 12.01 144.31 

Afghanistan -0.33 -1.14 0.47 0.41 -12.54 27.95 6.27 39.29 

Iran -0.53 -1.17 0.11 0.33 -21.01 27.60 7.92 62.72 

Somalia -0.54 -2.09 1.00 0.78 -32.74 30.66 11.19 125.12 

India -0.76 -1.60 0.08 0.43 -31.17 33.07 10.69 114.37 

Sudan -1.81 -2.65 -0.97 0.43 -29.66 33.03 10.75 115.46 

Canada -2.87 -3.61 -2.13 0.38 -32.82 31.59 11.04 121.85 

Algeria -3.29 -4.17 -2.41 0.45 -32.13 33.55 12.02 144.42 

Kazakhstan -4.59 -5.16 -4.02 0.29 -34.60 31.66 10.28 105.77 

Egypt -5.18 -6.14 -4.21 0.49 -30.94 33.02 9.37 87.82 

Russia -6.25 -6.79 -5.70 0.28 -34.46 33.59 12.53 157.03 

Mongolia -7.46 -8.54 -6.39 0.55 -33.54 27.81 11.67 136.13 

Saudi Arabia -9.42 -10.02 -8.83 0.30 -32.65 33.41 7.86 61.75 
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Table A3-7: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the long-term future (2071 - 2100) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under RCP 

8.5 greenhouse gas concentration trajectory. 

RCP 8.5 long-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Brazil 15.10 13.25 16.95 0.94 -27.92 39.92 15.09 227.64 

Namibia 13.57 12.10 15.04 0.75 -8.74 39.86 11.80 139.24 

South Africa 11.20 9.41 13.00 0.91 -21.17 39.96 14.48 209.64 

Mexico 6.38 4.96 7.80 0.72 -40.77 39.84 15.17 230.00 

Botswana 6.06 4.28 7.83 0.90 -19.94 39.66 12.52 156.81 

Mauritania 5.90 3.99 7.81 0.97 -22.07 39.73 16.50 272.32 

Argentina 4.76 3.83 5.69 0.47 -26.49 39.38 11.68 136.47 

Bolivia 4.34 2.53 6.15 0.92 -21.73 39.11 13.31 177.22 

United States 3.70 3.02 4.39 0.35 -34.41 39.72 13.66 186.59 

Australia 3.31 2.88 3.73 0.22 -21.55 39.96 10.57 111.67 

Libya 2.80 1.38 4.22 0.72 -21.55 39.95 15.91 253.12 

Somalia 2.77 0.98 4.56 0.91 -30.59 29.54 12.92 167.00 

Pakistan 2.69 1.83 3.54 0.43 -16.62 28.51 7.23 52.24 

Chad 2.38 0.72 4.03 0.84 -31.89 40.02 16.31 265.92 

Niger 2.19 0.88 3.51 0.67 -25.42 37.94 12.50 156.19 

Ethiopia 1.66 0.08 3.24 0.80 -29.61 38.14 11.76 138.39 

Mali 1.05 -0.41 2.52 0.75 -27.74 39.35 14.61 213.55 

Turkey -0.39 -2.55 1.77 1.10 -29.74 39.12 16.72 279.59 

China -0.80 -1.60 -0.01 0.41 -41.24 40.02 15.51 240.69 

Sudan -1.28 -2.42 -0.14 0.58 -33.08 39.15 14.51 210.49 

Canada -2.09 -2.91 -1.28 0.41 -26.59 35.76 12.10 146.53 

Afghanistan -2.12 -2.85 -1.39 0.37 -14.46 19.16 5.66 32.01 

India -2.20 -2.89 -1.50 0.35 -23.77 36.78 9.07 82.33 

Kazakhstan -5.01 -5.52 -4.49 0.26 -33.99 39.59 9.25 85.47 

Russia -6.13 -6.61 -5.65 0.25 -32.31 40.05 11.04 121.79 

Egypt -6.47 -7.65 -5.29 0.60 -21.77 34.51 11.51 132.47 

Iran -6.99 -7.70 -6.28 0.36 -33.32 32.16 8.82 77.71 

Algeria -7.33 -8.35 -6.31 0.52 -29.26 39.74 13.87 192.47 

Mongolia -8.78 -10.22 -7.34 0.73 -37.41 37.14 15.58 242.64 

Saudi Arabia -12.96 -13.45 -12.46 0.25 -34.86 18.45 6.56 43.08 
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Table A3-8: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the long-term future (2071 - 2100) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under SSP 

2-4.5 greenhouse gas concentration trajectory. 

SSP 2-4.5 long-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

South Africa 10.49 9.51 11.47 0.50 -12.10 29.16 8.48 71.88 

Botswana 9.73 8.84 10.62 0.45 -4.79 25.48 6.40 40.93 

Australia 9.31 8.97 9.65 0.17 -12.48 29.42 8.22 67.60 

Namibia 8.57 7.70 9.44 0.44 -7.92 29.00 7.31 53.46 

Brazil 7.78 6.73 8.83 0.53 -20.67 29.35 10.05 101.01 

Mongolia 7.71 6.07 9.36 0.83 -13.39 28.69 11.42 130.38 

Mexico 5.40 4.57 6.23 0.42 -17.17 29.15 9.27 86.01 

Mauritania 4.05 3.38 4.72 0.34 -18.78 25.51 6.53 42.70 

Mali 2.41 1.82 3.00 0.30 -15.53 22.84 6.12 37.44 

Bolivia 1.57 0.50 2.64 0.54 -17.18 24.38 7.97 63.49 

Algeria 1.04 0.58 1.50 0.24 -13.30 28.53 6.74 45.44 

Sudan 1.01 0.37 1.65 0.33 -19.91 29.35 8.19 67.11 

Libya 0.89 0.34 1.45 0.28 -26.50 29.13 6.67 44.46 

Afghanistan 0.60 -0.20 1.40 0.41 -14.23 22.22 6.20 38.47 

Egypt 0.35 -0.15 0.86 0.26 -12.05 15.36 4.89 23.93 

China -0.15 -0.67 0.37 0.26 -26.51 29.37 9.82 96.47 

Argentina -1.03 -1.58 -0.48 0.28 -28.14 27.12 6.95 48.32 

United States -1.32 -1.85 -0.80 0.27 -28.23 29.30 10.78 116.18 

Saudi Arabia -1.80 -2.30 -1.31 0.25 -19.13 16.06 6.62 43.79 

Chad -1.84 -2.60 -1.09 0.38 -26.42 23.57 7.73 59.71 

Pakistan -1.93 -2.73 -1.12 0.41 -16.99 25.26 6.82 46.48 

Iran -2.97 -3.47 -2.48 0.25 -18.90 18.71 6.11 37.35 

Turkey -3.09 -4.21 -1.98 0.57 -22.71 27.78 8.90 79.15 

Niger -3.23 -3.98 -2.48 0.38 -22.85 26.55 7.69 59.06 

India -4.23 -4.93 -3.52 0.36 -28.68 25.30 9.14 83.59 

Kazakhstan -4.30 -4.78 -3.81 0.25 -25.59 29.33 8.72 76.04 

Canada -4.76 -5.19 -4.33 0.22 -27.63 20.49 6.45 41.54 

Ethiopia -4.92 -6.20 -3.64 0.65 -26.72 26.95 9.58 91.73 

Russia -6.95 -7.30 -6.60 0.18 -28.39 28.68 7.81 60.96 

Somalia -9.91 -11.19 -8.63 0.65 -28.19 24.05 9.28 86.16 
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Table A3-9: Computed statistics based on the multi-model ensemble mean of the predicted gird-cell level 

relative change in soil salinity (ECe) in the long-term future (2071 - 2100) relative to the reference period 

(1961 - 1990) for the 30 countries with the highest number of dryland grid-cells in our analysis under SSP 

5-8.5 greenhouse gas concentration trajectory. 

SSP 5-8.5 long-term future (%) 

Country Mean Meanci-low Meanci-up Sem Min Max STDEV Variance 

Botswana 24.94 22.71 27.16 1.12 -5.89 44.10 13.10 171.74 

South Africa 21.35 19.84 22.85 0.76 -15.09 43.32 12.51 156.41 

Namibia 17.69 16.14 19.24 0.79 -7.07 43.52 12.54 157.13 

Brazil 16.21 14.77 17.66 0.73 -16.80 44.09 13.07 170.80 

Australia 14.60 14.17 15.03 0.22 -41.51 44.12 10.39 107.91 

Mexico 12.66 11.38 13.94 0.65 -19.32 43.38 13.87 192.43 

Mongolia 6.18 3.67 8.69 1.27 -34.40 44.21 20.04 401.77 

Mali 5.76 4.78 6.73 0.50 -14.98 42.29 10.10 102.05 

Mauritania 4.12 3.25 4.99 0.44 -14.54 31.63 8.45 71.46 

Afghanistan 3.15 2.17 4.14 0.50 -17.56 25.87 7.64 58.37 

Libya 2.87 2.20 3.55 0.35 -19.15 41.13 8.14 66.26 

Bolivia 2.37 0.82 3.92 0.79 -19.19 42.96 11.55 133.39 

Argentina 1.57 0.82 2.32 0.38 -21.11 43.57 9.40 88.40 

Egypt 0.44 -0.14 1.01 0.29 -13.14 34.62 5.62 31.57 

Sudan 0.43 -0.47 1.32 0.46 -24.87 43.55 11.46 131.34 

Turkey -0.04 -1.82 1.74 0.90 -26.92 42.28 14.18 201.19 

United States -0.11 -0.89 0.67 0.40 -39.52 42.90 15.91 253.14 

China -0.72 -1.39 -0.06 0.34 -38.33 43.81 13.09 171.32 

Algeria -1.14 -1.84 -0.44 0.36 -22.39 42.55 10.10 102.10 

Pakistan -1.15 -2.35 0.05 0.61 -20.74 37.28 10.14 102.91 

India -1.92 -2.76 -1.07 0.43 -27.94 42.21 10.96 120.06 

Saudi Arabia -2.64 -3.33 -1.96 0.35 -24.21 21.90 9.13 83.42 

Iran -2.79 -3.49 -2.09 0.35 -23.79 40.07 8.60 73.92 

Ethiopia -2.95 -4.88 -1.02 0.98 -30.30 41.58 14.40 207.24 

Chad -4.89 -5.91 -3.87 0.52 -28.99 39.68 10.48 109.82 

Niger -5.68 -6.88 -4.49 0.61 -40.41 41.24 12.13 147.14 

Kazakhstan -7.00 -7.61 -6.39 0.31 -32.99 43.51 11.05 121.99 

Canada -7.10 -7.60 -6.59 0.26 -31.75 24.19 7.54 56.80 

Russia -7.95 -8.44 -7.46 0.25 -40.19 43.63 11.21 125.58 

Somalia -12.03 -13.84 -10.22 0.92 -37.56 36.36 13.30 176.98 
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Table A3-10: Countries with the highest number of dryland grid-cells and the estimates of their total 

dryland area used in the present study. 

Country Number of grid-cells Total dryland area (km2) 

Australia 2,421 6,717,230.56 

United States 1,647 3,907,880.47 

China 1,595 3,697,849.00 

Russia 2,056 3,660,984.24 

Kazakhstan 1,271 2,619,580.23 

Algeria 825 2,243,524.51 

Saudi Arabia 684 1,921,997.39 

Sudan 633 1,870,833.54 

India 656 1,859,113.43 

Libya 582 1,597,000.93 

Canada 862 1,555,847.54 

Iran 590 1,537,911.25 

Argentina 620 1,490,518.78 

Mexico 511 1,414,650.16 

Brazil 429 1,294,077.03 

Mali 418 1,226,669.13 

Chad 409 1,211,794.68 

Niger 404 1,186,006.78 

Mauritania 369 1,065,585.74 

Egypt 366 1,009,647.31 

Mongolia 463 999,368.89 

South Africa 317 853,035.45 

Namibia 281 801,629.98 

Pakistan 278 749,601.24 

Ethiopia 222 675,178.49 

Somalia 210 641,504.11 

Bolivia 217 634,507.78 

Turkey 253 608,965.38 

Afghanistan 234 601,733.75 

Botswana 206 588,102.91 
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Figure A3-4: Continental-level predicted annual change in the total area of soils with an ECe ≥ 2 dS m-1 

relative to the 20th century average (1904 - 1999) for the models obtained from CMIP5 data project. a to f: 

Relative change under RCP 4.5 greenhouse gas concentration trajectory. g to l: Relative change under RCP 8.5 

greenhouse gas concentration trajectory. Shaded areas show the minimum and maximum range of the relative 

changes predicted by multi-model ensemble members. Red lines show the low-pass filtered (5-year running 

window) of the multi-model ensemble mean of the predicted variations; since all spatio-temporal predictors are 

five year moving averages, 1904 is the beginning of the period. 
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Figure A3-5: Predicted annual change in the total area of soils with an ECe ≥ 2 dS m-1 relative to the average 

of 1904 - 1999 period under different greenhouse gas concentration trajectories on the global scale. Shaded 

areas show the minimum and maximum range of the relative changes predicted by multi-model ensemble 

members. Red lines show the low-pass filtered (5-year running window) of the multi-model ensemble mean of 

the predicted variations; since all spatio-temporal predictors are five year moving averages, 1904 is the beginning 

of the period. 

  



Appendix 3 

 

 

266 

 

 

Figure A3-6: Predicted annual change in the total area of soils with an ECe ≥ 4 dS m-1 relative to the average 

of 1904 - 1999 period under different greenhouse gas concentration trajectories on the global scale. Shaded 

areas show the minimum and maximum range of the relative changes predicted by multi-model ensemble 

members. Red lines show the low-pass filtered (five-year running window) of the multi-model ensemble mean of 

the predicted variations; since all spatio-temporal predictors are five-year moving averages, 1904 is the beginning 

of the period. 
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Figure A3-7: Continental-level predicted annual change in the total area of soils with an ECe ≥ 4 dS m-1 

relative to the 20th century average (1904 - 1999) for the models obtained from the CMIP5 data. a to f: 

Relative change under RCP 4.5 greenhouse gas concentration trajectory. g to l: Relative change under RCP 8.5 

greenhouse gas concentration trajectory. Shaded areas show the minimum and maximum range of the relative 

changes predicted by multi-model ensemble members. Red lines show the low-pass filtered (five-year running 

window) of the multi-model ensemble mean of the predicted variations; since all spatio-temporal predictors are 

five-year moving averages, 1904 is the beginning of the period. 
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Figure A3-8: Continental-level predicted annual change in the total area of soils with an ECe ≥ 4 dS m-1 

relative to the 20th century average (1904 - 1999) for the models obtained from CMIP6 data project. a to f: 

Relative change under SSP 2-4.5 greenhouse gas concentration trajectory. g to l: Relative change under SSP 5-

8.5 greenhouse gas concentration trajectory. Shaded areas show the minimum and maximum range of the relative 

changes predicted by multi-model ensemble members. Red lines show the low-pass filtered (five-year running 

window) of the multi-model ensemble mean of the predicted variations; since all spatio-temporal predictors are 

five-year moving averages, 1904 is the beginning of the period. 
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Table A3-11: Country-level predicted change in the total area of soils with an ECe ≥ 2 dS m-1 at the long-

term future (2071 - 2100), compared to the 20th century average (1904 - 1999) under different greenhouse 

gas concentration trajectories. 

Country 

Scenarios 

RCP 4.5 

mid-term 

future (%) 

RCP 4.5 

long-term 

future (%) 

RCP 8.5 

mid-term 

future (%) 

RCP 8.5 

long-term 

future (%) 

SSP 2-4.5 

mid-term 

future (%) 

SSP 2-4.5 

long-term 

future (%) 

SSP 5-8.5 

mid-term 

future (%) 

SSP 5-8.5 

long-term 

future (%) 

Afghanistan -1.69 -2.55 -3.05 -4.29 -0.60 -0.33 -0.45 -0.28 

Algeria 0.38 0.98 0.57 -0.03 0.36 0.48 0.55 0.68 

Argentina 0.02 -1.68 -0.12 -0.36 -0.95 -1.03 -0.53 -0.11 

Australia 0.02 0.70 0.79 0.60 1.59 2.40 1.36 3.38 

Bolivia -1.33 -2.79 -0.03 -1.52 0.47 0.30 -0.06 -0.54 

Botswana 1.03 3.63 3.74 4.82 5.59 5.11 5.13 7.52 

Brazil 12.19 14.32 8.57 29.50 18.69 23.92 24.81 43.08 

Canada -4.22 -5.86 -3.19 -5.85 -5.01 -6.96 -5.38 -9.98 

Chad -2.47 -2.23 -2.02 -3.20 1.19 1.17 0.50 0.81 

China -1.00 -2.18 -1.65 -2.37 0.73 1.03 0.88 1.97 

Egypt -2.15 -2.25 -2.18 -5.74 0.21 0.23 0.15 0.21 

Ethiopia 0.39 1.31 -0.08 3.83 -3.11 -6.23 -3.89 -4.99 

India -1.30 -1.60 -1.63 -0.92 -3.20 -3.24 -2.48 -2.94 

Iran 0.20 0.49 -0.49 -1.88 -0.64 -1.45 -0.98 -1.47 

Kazakhstan -1.02 -2.44 -0.27 -2.58 -0.14 -1.09 -0.15 -2.52 

Libya 0.26 -0.07 -1.34 1.13 0.55 0.69 0.58 0.47 

Mali 0.17 0.37 -0.68 -1.97 -0.76 -0.23 -0.77 0.33 

Mauritania 1.43 1.88 2.47 4.85 -0.02 0.61 0.55 0.60 

Mexico 4.32 6.54 0.29 12.57 0.69 6.75 5.13 14.51 

Mongolia -5.71 -9.22 -10.49 -13.30 4.59 7.29 5.76 8.05 

Namibia 2.30 3.63 2.56 4.40 1.25 1.80 1.75 2.72 

Niger 1.55 1.14 1.34 0.28 0.09 0.34 0.89 0.53 

Pakistan 0.03 0.05 0.09 0.29 0.26 0.27 0.30 0.33 

Russia -4.45 -7.93 -2.50 -7.82 -1.71 -2.88 -2.01 -4.16 

Saudi Arabia -0.46 -1.48 -0.68 -2.63 0.28 0.20 0.04 0.56 

Somalia -1.75 -1.90 -1.82 0.88 -3.42 -6.22 -4.19 -8.53 

South Africa 1.02 3.88 2.92 5.65 1.30 3.45 2.94 7.18 

Sudan -1.51 -2.15 -1.92 -4.16 -0.25 0.43 0.25 1.22 

Turkey -2.36 -1.41 -5.21 -5.35 -0.35 -2.83 -1.03 -1.00 

United States 1.22 1.54 2.12 2.30 -3.59 -3.10 -2.57 -2.63 
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Table A3-12: Continental-level predicted change in the total area of soils with an ECe ≥ 4 dS m-1 in the mid 

and long-term futures relative to the average of the 1904 - 1999 period under different greenhouse gas 

concentration trajectories. 

Scenarios 
Continent 

Africa Asia Australia North America Europe South America 

RCP 4.5; mid-term (%) -0.37 -3.73 -0.50 0.04 -15.72 2.27 

RCP 4.5; long-term (%) -0.32 -5.35 0.26 0.00 -20.07 1.03 

RCP 8.5; mid-term (%) -1.60 -4.80 2.38 1.21 -8.26 3.26 

RCP 8.5; long-term (%) -1.99 -7.99 0.65 3.04 -12.77 5.97 

SSP 2-4.5; mid-term (%) 0.08 -1.17 3.76 -7.50 -8.14 1.00 

SSP 2-4.5; long-term (%) 0.76 -2.56 6.78 -9.10 -10.79 -0.75 

SSP 5-8.5; mid-term (%) 0.07 -1.89 2.94 -6.34 -6.96 1.09 

SSP 5-8.5; long-term (%) 1.60 -4.26 10.40 -9.54 -8.25 5.19 
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Table A3-13: Country-level predicted change in the total area of soils with an ECe ≥ 4 dS m-1 at the long-

term future (2071 - 2100), compared to the 20th century average (1904 - 1999) under different greenhouse 

gas concentration trajectories. 

Country 

Scenarios 

RCP 4.5 

mid-term 

future (%) 

RCP 4.5 

long-term 

future (%) 

RCP 8.5 

mid-term 

future (%) 

RCP 8.5 

long-term 

future (%) 

SSP 2-4.5 

mid-term 

future (%) 

SSP 2-4.5 

long-term 

future (%) 

SSP 5-8.5 

mid-term 

future (%) 

SSP 5-8.5 

long-term 

future (%) 

Afghanistan -3.20 -4.57 -6.90 -10.31 -1.23 0.71 0.07 3.36 

Algeria -4.30 -3.74 -5.58 -12.48 -0.62 -1.90 -3.67 -2.91 

Argentina 3.32 -0.24 3.06 2.70 -3.20 -7.19 -3.93 -4.92 

Australia -0.50 0.26 2.38 0.65 3.76 6.78 2.94 10.40 

Bolivia -2.78 -3.61 -0.96 -3.77 -3.65 -6.55 -5.53 -9.02 

Botswana -1.50 -0.34 2.93 4.28 14.37 11.59 15.79 25.44 

Brazil 2.10 1.45 4.48 27.61 14.73 20.31 19.85 62.34 

Canada -3.82 -4.44 -7.06 -7.68 -9.45 -14.06 -10.30 -19.17 

Chad 1.18 0.86 -0.84 3.28 -7.50 -4.54 -8.43 -9.06 

China -0.10 -0.59 -2.73 0.28 -1.32 -4.08 -1.93 -9.77 

Egypt -4.85 -7.45 -5.74 -11.77 0.13 -0.44 0.18 0.03 

Ethiopia -8.68 -9.84 -9.24 8.80 -7.51 -10.80 -9.37 -12.79 

India -4.81 -5.91 -4.98 -11.19 -5.97 -7.23 -5.30 -6.08 

Iran -3.54 -3.66 -6.96 -10.73 -2.12 -2.88 -2.16 -2.47 

Kazakhstan -7.01 -9.63 -6.27 -9.49 -3.49 -7.01 -4.09 -10.21 

Libya 0.61 0.23 -0.79 1.18 -1.73 -0.91 -1.57 -0.97 

Mali -1.30 1.75 1.20 -3.33 5.96 8.94 11.28 22.00 

Mauritania 2.13 3.12 4.61 7.55 5.30 7.30 6.87 1.48 

Mexico 8.31 12.51 7.27 24.73 8.53 18.28 16.02 38.15 

Mongolia -14.66 -16.69 -16.47 -18.85 5.80 8.07 4.72 3.64 

Namibia 10.63 14.75 8.44 15.37 4.85 8.54 6.29 14.99 

Niger 7.52 10.29 9.22 10.63 -5.51 -3.71 -4.55 -4.70 

Pakistan 1.32 0.28 -0.06 2.56 -1.25 -0.69 -0.83 -1.08 

Russia -15.57 -21.50 -13.97 -23.93 -11.35 -14.64 -11.05 -20.87 

Saudi Arabia -3.22 -5.81 -4.10 -10.96 4.48 3.13 0.92 3.79 

Somalia -3.81 0.64 -0.98 10.04 -6.69 -16.02 -9.46 -20.77 

South Africa 8.88 18.62 10.71 24.53 6.73 14.10 10.08 24.38 

Sudan -4.46 -5.77 -6.13 -8.18 0.01 1.80 -1.63 0.85 

Turkey -10.34 -7.68 -17.97 0.21 -3.98 -10.04 -6.91 -8.31 

United States 1.09 0.73 5.03 6.38 -9.74 -11.17 -8.39 -12.67 
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Table A3-14: The optimal values of hyperparameters and goodness-of-fit quantified by accuracy metrics 

for the final 16 best fitted models. 

Model name 

Number of 

learning 

cycles 

Learn 

rate 

Minimum 

leaf 

size 

Maximum 

number of 

splits 

Number of 

variables to 

sample 
MSEa RMSEb MAEc NSEd R2 

Minimum 

Objective 

function 

Ensemble aggregation method 

CMIP5 models 

GISS-E2-H 210 0.090 14 487 2 13.30 3.65 1.60 0.72 0.72 2.659 LSBoost 

GISS-E2-R 79 0.101 20 21,996 3 13.47 3.67 1.57 0.72 0.72 2.712 LSBoost 

MIROC5-ensemble 69 0.137 8 35,913 2 13.11 3.62 1.51 0.72 0.72 2.737 LSBoost 

MIROC-ESM-CHEM 337 0.039 6 1,824 1 12.68 3.56 1.45 0.73 0.73 2.643 LSBoost 

MIROC-ESM 38 0.146 16 640 6 12.61 3.55 1.41 0.73 0.73 2.766 LSBoost 

MRI-CGCM3 73 0.107 9 8,266 3 12.83 3.58 1.47 0.73 0.73 2.652 LSBoost 

MRI-ESM1 43 0.135 3 2,290 7 13.39 3.66 1.54 0.72 0.72 2.736 LSBoost 

NorESM1-M 66 0.110 3 3,375 3 13.05 3.61 1.45 0.73 0.73 2.729 LSBoost 

CMIP6 models 

CESM2-WACCM-ensemble 210 0.090 14 487 2 13.30 3.65 1.60 0.72 0.72 2.659 LSBoost 

CNRM-ESM2-1 79 0.101 20 21,996 3 13.47 3.67 1.57 0.72 0.72 2.712 LSBoost 

GFDL-ESM4 69 0.137 8 35,913 2 13.11 3.62 1.51 0.72 0.72 2.737 LSBoost 

INM-CM4-8- 337 0.039 6 1,824 1 12.68 3.56 1.45 0.73 0.73 2.643 LSBoost 

INM-CM5-0 38 0.146 16 640 6 12.61 3.55 1.41 0.73 0.73 2.766 LSBoost 

MIROC-ES2L 73 0.107 9 8,266 3 12.83 3.58 1.47 0.73 0.73 2.652 LSBoost 

MRI-ESM2-0 43 0.135 3 2,290 7 13.39 3.66 1.54 0.72 0.72 2.736 LSBoost 

NorESM2-LM 66 0.110 3 3,375 3 13.05 3.61 1.45 0.73 0.73 2.729 LSBoost 

a Mean Squared Error. 
b Root Mean Squared Error. 
c Mean Absolute Error. 
d Nash–Sutcliffe Model Efficiency Coefficient. 
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Table A3-15: Lower and upper limits of 95% confidence intervals of the mean for 10-fold cross-validation 

accuracy metrics calculated for trained models. We repeated the model trainings and hyperparameter tuning 

jobs for each of 16 datasets for 30 times and calculated confidence intervals of the mean based on 1,000 

bootstrapped samples (with replacement) derived from the 30 validation metrics. 

Model name 
MSE RMSE MAE NSE R2 

Minimum 

Objective 

function 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

CMIP5 models 

GISS-E2-H 14.331 15.420 3.784 3.925 1.612 0.698 0.675 0.698 0.676 0.699 2.766 2.820 

GISS-E2-R 14.331 15.420 3.784 3.925 1.612 0.698 0.675 0.698 0.676 0.699 2.766 2.820 

MIROC5-ensemble 13.874 14.595 3.724 3.819 1.572 0.708 0.693 0.708 0.694 0.709 2.728 2.795 

MIROC-ESM-CHEM 13.776 15.018 3.708 3.871 1.573 0.710 0.684 0.710 0.685 0.710 2.708 2.781 

MIROC-ESM 13.300 14.194 3.647 3.766 1.518 0.720 0.701 0.720 0.702 0.720 2.667 2.755 

MRI-CGCM3 13.968 15.233 3.735 3.900 1.583 0.706 0.679 0.706 0.681 0.707 2.719 2.792 

MRI-ESM1 14.221 15.307 3.770 3.910 1.552 0.701 0.678 0.701 0.681 0.702 2.728 2.794 

NorESM1-M 14.363 15.592 3.786 3.944 1.576 0.698 0.672 0.698 0.674 0.699 2.768 2.826 

CMIP6 models 

CESM2-WACCM-ensemble 13.402 14.584 3.658 3.816 1.544 0.718 0.693 0.718 0.694 0.718 2.687 2.776 

CNRM-ESM2-1 14.174 15.675 3.758 3.955 1.591 0.702 0.670 0.702 0.673 0.703 2.738 2.805 

GFDL-ESM4 14.127 15.361 3.757 3.918 1.556 0.703 0.677 0.703 0.681 0.704 2.741 2.818 

INM-CM4-8- 14.179 15.327 3.763 3.912 1.574 0.701 0.677 0.701 0.679 0.703 2.738 2.817 

INM-CM5-0 13.753 14.842 3.706 3.849 1.586 0.710 0.687 0.710 0.688 0.711 2.745 2.781 

MIROC-ES2L 14.264 15.267 3.774 3.904 1.572 0.700 0.679 0.700 0.681 0.701 2.743 2.809 

MRI-ESM2-0 14.300 15.263 3.778 3.905 1.590 0.699 0.679 0.699 0.680 0.700 2.735 2.802 

NorESM2-LM 14.262 15.147 3.775 3.891 1.623 0.700 0.681 0.700 0.685 0.701 2.709 2.810 

Average 14.020 15.122 3.742 3.886 1.575 0.705 0.682 0.705 0.684 0.706 2.728 2.799 
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Table A3-16: Coefficients of determination (R2) between measured and predicted values of soil salinity 

(ECe) by 16 best fitted models at different soil depth intervals. 

Model name 

Depth below the surface (cm) 

0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 100 - 200 

CMIP5 models 

GISS-E2-H 0.62 0.73 0.76 0.76 0.78 0.71 

GISS-E2-R 0.62 0.73 0.76 0.76 0.78 0.71 

MIROC5-ensemble 0.64 0.73 0.76 0.78 0.80 0.72 

MIROC-ESM-CHEM 0.65 0.74 0.79 0.77 0.81 0.73 

MIROC-ESM 0.64 0.74 0.80 0.79 0.82 0.73 

MRI-CGCM3 0.64 0.74 0.78 0.77 0.79 0.73 

MRI-ESM1 0.63 0.72 0.77 0.77 0.80 0.72 

NorESM1-M 0.62 0.72 0.75 0.77 0.80 0.73 

CMIP6 models 

CESM2-WACCM-ensemble 0.64 0.73 0.77 0.78 0.80 0.73 

CNRM-ESM2-1 0.66 0.74 0.78 0.78 0.80 0.73 

GFDL-ESM4 0.63 0.73 0.79 0.77 0.79 0.73 

INM-CM4-8- 0.64 0.72 0.77 0.78 0.81 0.74 

INM-CM5-0 0.65 0.74 0.77 0.76 0.79 0.72 

MIROC-ES2L 0.62 0.72 0.76 0.77 0.77 0.71 

MRI-ESM2-0 0.64 0.72 0.78 0.78 0.80 0.73 

NorESM2-LM 0.63 0.74 0.78 0.78 0.79 0.72 

Average 0.64 0.73 0.77 0.77 0.80 0.73 
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Computer codes 

This section makes the scripts and codes, required to regenerate the results, available to readers. 

Please note ArcGIS Desktop 10.x license is needed to run ArcPy module. Also, MATLAB 

Parallel Computing plus Statistics and Machine Learning toolboxes are required for running 

the MATLAB codes provided here. 

Purely spatial predictors were directly pre-processed (including projections and 

resampling) in ArcGIS for Desktop environment (herein we refer to its central application: 

ArcMap). Soil texture raster datasets of clay content at different depths were averaged using 

ArcMap “raster calculator” tool. We extracted the values of predictors at the training input 

profiles locations by ArcMap “Extract Multi Values to Points” tool and saved the results as a 

table in .text format. The netCDF files of spatio-temporal predictors were processed by Climate 

Data Operators software and converted to multi-band rasters by ArcMap “Make NetCDF 

Raster Layer” tool. We extracted the values of these predictors at the locations of input profiles 

data too and saved them as tables in .text format. At each location there were 201 values, 

representing the years between 1900 and 2100. These data were finally merged, five-year 

moving averages of the spatio-temporal predictors were calculated and we attributed the 

moving averages of values of the spatio-temporal predictors at the locations to the input profiles 

data based on the year of acquisition of the sample profile using the following code: 

 
clc; 

clear; 

  

%% This code merges the purely spatial and spatio-temporal predictors for each of the 16 input 

datasets and prepare them for model training 

  

% Importing the static predictors input data table 

Soil_pro = readtable('D:\Projection_ML\Training_data_spatial\... 

Training_data_static_predictors.txt','FileType','text','Delimiter','comma'); 

  

Model_name = {'Model_name_1'... 

    'Model_name_2'... 

    'Model_name_n'}; 

  

  

for ii = 1:length(Model_name) % Repeating the process for all 16 models 

     

    % Importing input spatio-temporal data tables computed based on the 

    % output of each of the 29 GCMs 

    dryss_table = readtable(strcat('D:\Projection_ML\Training_data_spatio-... 

    temporal\',Model_name{ii},... 

    '\dryss_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

    wetss_table = readtable(strcat('D:\Projection_ML\Training_data_spatio-...   

    temporal\',Model_name{ii},'\wetss_',Model_name{ii},'.txt'), ... 

    'FileType','text','Delimiter','comma'); 

    evspsbl_table = readtable(strcat('D:\Projection_ML\Training_data_spatio-  ... 

    temporal\',Model_name{ii},'\evspsbl_',Model_name{ii},'.txt'), ... 

   'FileType','text','Delimiter','comma');  

    pr_mean_table = readtable(strcat('D:\Projection_ML\Training_data_spatio-... 

    temporal\',Model_name{ii},'\pr_mean_',Model_name{ii},'.txt'), ... 

    'FileType','text','Delimiter','comma');  

    pr_fre_table = readtable(strcat('D:\Projection_ML\Training_data_spatio- ... 

    temporal\',Model_name{ii},'\pr_fre_',Model_name{ii},'.txt'), ... 

    'FileType','text','Delimiter','comma'); 

     

     

    % Joining the tables 

    T_dryss = ... 

    join(Soil_pro,dryss_table,'LeftKeys','profile_id','RightKeys','Base_points_summarised'); 

    T_wetss = ... 

    join(Soil_pro,wetss_table,'LeftKeys','profile_id','RightKeys','Base_points_summarised'); 

    T_evspsbl = ... 

    join(Soil_pro,evspsbl_table,'LeftKeys','profile_id','RightKeys','Base_points_summarised'); 

    T_pr_mean = ... 
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    join(Soil_pro,pr_mean_table,'LeftKeys','profile_id','RightKeys','Base_points_summarised'); 

    T_pr_fre =  ...  

    join(Soil_pro,pr_fre_table,'LeftKeys','profile_id','RightKeys','Base_points_summarised'); 

     

    % Calculation of the five-year moving averages 

    Year_matrix = table2array(Soil_pro(:,7)); 

    dryss_matrix = table2array(T_dryss(:,22:222)); 

    dryss_matrix = movmean(dryss_matrix,[4 0],2,'omitnan','Endpoints','discard'); 

    wetss_matrix = table2array(T_wetss(:,22:222)); 

    wetss_matrix = movmean(wetss_matrix,[4 0],2,'omitnan','Endpoints','discard'); 

    evspsbl_matrix = table2array(T_evspsbl(:,22:222)); 

    evspsbl_matrix = movmean(evspsbl_matrix,[4 0],2,'omitnan','Endpoints','discard'); 

    pr_mean_matrix = table2array(T_pr_mean(:,22:222)); 

    pr_mean_matrix = movmean(pr_mean_matrix,[4 0],2,'omitnan','Endpoints','discard'); 

    pr_fre_matrix = table2array(T_pr_fre(:,22:222)); 

    pr_fre_matrix = movmean(pr_fre_matrix,[4 0],2,'omitnan','Endpoints','discard'); 

     

    dryss = zeros(size(Year_matrix,1),1); 

    wetss = zeros(size(Year_matrix,1),1); 

    evspsbl = zeros(size(Year_matrix,1),1); 

    pr_mean = zeros(size(Year_matrix,1),1); 

    pr_fre = zeros(size(Year_matrix,1),1); 

     

     

    % Attributing spatio-temporal data to location of the points based on 

    % the year of sampling the profile 

    for i = 1:size(Year_matrix,1) 

        dryss(i,1) = dryss_matrix(i,Year_matrix(i,1)-1903); 

        wetss(i,1) = wetss_matrix(i,Year_matrix(i,1)-1903); 

        evspsbl(i,1) = evspsbl_matrix(i,Year_matrix(i,1)-1903); 

        pr_mean(i,1) = pr_mean_matrix(i,Year_matrix(i,1)-1903); 

        pr_fre(i,1) = pr_fre_matrix(i,Year_matrix(i,1)-1903); 

    end 

     

    input_matrix = [Soil_pro.profile_id Soil_pro.profile_la Soil_pro.POINT_X Soil_pro.POINT_Y 

... 

    Soil_pro.Year... 

        Soil_pro.upper_dept Soil_pro.lower_dept Soil_pro.WRB Soil_pro.Clay... 

        Soil_pro.Elev Soil_pro.Slope Soil_pro.Field_capa Soil_pro.Wilt_point  

        Soil_pro.Root_depth... 

        dryss wetss evspsbl pr_fre pr_mean Soil_pro.elcosp_v_1]; 

    Table = array2table(input_matrix,'VariableNames',{'profile_id' 'profile_la' 'X' 'Y' 

'Year'... 

        'upper_dept' 'lower_dept' 'WRB' 'Clay'... 

        'Elevation' 'Slope' 'Field_capa' 'Wilt_point' 'Root_depth' 'dryss'... 

        'wetss' 'evspsbl' 'pr_fre' 'pr_mean' 'ECe'}); 

     

    % Saving output in a table format on disk 

    writetable(Table,strcat('D:\Projection_ML\Training_input\',Model_name{ii},'.txt')); 

     

end 

 

16 input tables were generated for model training. These tables were later imported to 

MATAB to train an ensemble of regression tree learners using the following code:  

clc; 

clear; 

  
%% Fitting an ensemble of regression trees for the 16 input datasets 
% This script returns the tuned fitrensemble hyperparameters for 30 iterations using 

fitrensemble % function in order to calculate the confidence intervals using bootstrapping 

technique. 
% This is regression using ensemble of trees (fitrensemble) on ECe as 
% a target variable 

  

  
Model_name = {'Model_name_1'... 

    'Model_name_2'... 

    'Model_name_n'}; 

  
for ii = 1:length(Model_name) % Repeating the process for all 16 models 
    % Importing the original datasets prepared for training 
    % Preprocessing the original dataset 
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    ECe = ... 

    readtable(strcat('D:\Projection_ML\Training_input\',Model_name{ii},'.txt'),'FileType',... 
        'text','Delimiter',',','PreserveVariableNames',true); 

     
    table = standardizeMissing(ECe,-9999); % Replacing the missing values with -9999 
    table(sum(ismissing(table),2) > 0,:) = [];% dropping the rows with missing values 
    X = table(:,6:20); 
    X.WRB = categorical(X.WRB);% Categorizing the categorical variables in the training set 

    
    % Training and hyperparameter tuning job for 30 times 
    % We used holdout method (25% held out) with the maximum 100 objective  

    % function evaluations to optimize the ensemble hyperparameters  

    % “ens” is the object of the final trained model 
    for i = 1:30 
        ens = fitrensemble(X,'ECe',... 
            'OptimizeHyperparameters','all',... 
            'HyperparameterOptimizationOptions',struct('Holdout',0.25,'UseParallel',true,... 
            'MaxObjectiveEvaluations',100,'Repartition',true,'ShowPlots',false,'Verbose',1)); 
        % Acquiring and saving hyperparameter tuning job results on disk 
         

    

save(strcat('D:\Projection_ML\Trained_ensemble\',Model_name{ii},'\ens_',num2str(i)),'ens'); 
    end 
end 

  

The training process on each of the 16 input datasets was repeated for 30 times. Using 

the following code, we cross-validated the models, calculated the accuracy metrics, and built 

their 95% confidence intervals of the mean: 

clc; 

clear; 

  

  

%% Calculation of the confidence intervals of the mean for 10-fold cross-validation accuracy  

% metrics 

% Accuracy metrics including mean squared error (mse), mean absolute error (mae),  

% NSE, and coefficient of determination (R^2) are computed 

  

Model_name = {'Model_name_1'... 

    'Model_name_2'... 

    'Model_name_n'}; 

  

for ii = 1:length(Model_name) % Repeating the process for all 16 models 

     

    ECe = ... 

    readtable(strcat('D:\Projection_ML\Training_input\',Model_name{ii},'.txt'),'FileType',... 

        'text','Delimiter',',','PreserveVariableNames',true); 

     

    table = standardizeMissing(ECe,-9999); 

    table(sum(ismissing(table),2) > 0,:) = []; 

     

    % % Pre-allocating memory to variables with increasing size in each iteration 

    Num_learning_cycles = zeros(30,1); Learn_rate = zeros(30,1); Min_leaf_size = zeros(30,1); 

    Max_num_splits = zeros(30,1); Num_variables_to_sample = zeros(30,1); 

    mse = zeros(30,1); mae = zeros(30,1);NSE = zeros(30,1); MinObjective = zeros(30,1); 

    R2= zeros(30,1); Method = cell(30,1); 

     

    % % Validation and Acquiring accuracy metrics 

        ytrue = table.ECe;  

    % This loop cross-validates the fitted models using 10-fold cross-validation 

    for i = 1:30 

        % Loading the saved model objects 

        ens = ... 

        load(strcat('D:\Projection_ML\Trained_ensemble\',Model_name{ii},'\ens_',num2str(i))); 

        % Saving tunned hyperparameters 

        MinObjective(i,1) = ens.ens.HyperparameterOptimizationResults.MinObjective; 

        Method{i,1} = ...    

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,1)); 

        Num_learning_cycles(i,1) = ... 

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,2)); 

        Learn_rate(i,1) = ... 

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,3)); 

        Min_leaf_size(i,1) =  ... 

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,4)); 
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        Max_num_splits(i,1) = ... 

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,5)); 

        Num_variables_to_sample(i,1) = ... 

        able2array(ens.ens.HyperparameterOptimizationResults.XAtMinObjective(1,6)); 

        % Validation of the trained ensemble using 10-fold cross-validation 

        cvens = crossval(ens.ens,'Kfold',10); 

        yfit = kfoldPredict(cvens); 

        mse(i,1) = mean((ytrue - yfit).^2); 

        mae(i,1) = mean(abs(yfit - ytrue)); 

        NSE(i,1) = 1 - sum((ytrue - yfit).^2)/sum((ytrue - mean(ytrue)).^2);  

        % Coefficent of determination 

        R2(i,1) = (sum((ytrue-mean(ytrue)).*(yfit-mean(yfit)))... 

            /(sqrt(sum((ytrue-mean(ytrue)).^2))*sqrt(sum((yfit-mean(yfit)).^2))))^2; 

    end 

    rmse = sqrt(mse);% Root mean square error 

     

     

    % Exporting the output into a table 

    Statistics = [Num_learning_cycles Learn_rate Min_leaf_size Max_num_splits ... 

    Num_variables_to_sample... 

        mse rmse mae NSE R_2 MinObjective]; 

    ststistics_bootci = [mse rmse mae NSE R2 MinObjective]; 

    Statistics_table = array2table(Statistics,'VariableNames',{'Num_learning_cycles’  

'Learn_rate'  'Min_leaf_size'... 

    'Max_num_splits' 'Num_variables_to_sample'... 

    'mse' 'rmse' 'mae' 'NSE' 'R2' 'MinObjective'}); 

    % Saving the table on disk 

    Statistics_table.Method = Method; 

    writetable(Statistics_table,strcat('D:\Projection_ML\Trained_ensemble\',Model_name{ii},... 

    '\Bootstrapping_input.txt')); 

     

    % % Bootstrapping 

    % Computing the 95% confidence intervals of the mean for the statistics calculated  

    % in the  above loop 

    % using 1,000 bootstrap iterations. “bootci” creates each bootstrap sample  

    % by sampling with replacement from the rows of the data arguments and  

    % computes the confidence interval by bias corrected and accelerated percentile method. 

     

    opt = statset('UseParallel',false); 

    ci = bootci(1000,{@nanmean,ststistics_bootci},'type','bca','Options',opt); 

    ci = array2table(ci,'VariableNames',{'mse' 'rmse' 'mae' 'NSE' 'R_2' 'MinObjective'}); 

    % Exporting the output into a table 

    writetable(ci,strcat('D:\Projection_ML\Trained_ensemble\',Model_name{ii},'\Reg_CI.txt')); 

end 

 

Similar to the procedure used for input training profiles data, we extracted the values 

of pure spatial and spatio-temporal predictors to the locations of the drylands that we needed 

to make predictions for. The best fitted models were chosen from the 30 models trained for 

each of the 16 input datasets and used for prediction of the soil salinity (ECe) at different depths. 

Different predictions were then averaged using trapezoidal rule to the depth of one meter from 

the surface and saved in .text tables for further analysis and calculation of the soils with salinity 

of ECe ≥ 2 dS m-1. For each location, x- y- coordinates and 197 prediction from 1904 to 2100 

were made. The following script shows how we merged the tables of purely spatial and spatio-

temporal predictors and made predictions for soil salinity: 

clc; 

clear; 

  

% This code merges the pure spatial and spatio-temporal predictors'  

% values and use them to predict the soil salinity (ECe) at new locations 

  

% Importing the purely spatial predictors table 

Soil_pro = 

readtable('D:\Projection_ML\new_data\Base_points\Spatial_preditors.txt','FileType','text','Del

imiter','comma'); 

Soil_pro = standardizeMissing(Soil_pro,-9999); 

Soil_pro = fillmissing(Soil_pro,'nearest'); 

Model_name = {'Model_name_1'... 

    'Model_name_2'... 

    'Model_name_n'}; 
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for ii = 1:length(Model_name) % Repeating the process for all 16 models 

    % Finding the trained ensemble with the lowest RMSE 

    Table = readtable(strcat('D:\Projection_ML\Trained_ensemble\', ... 

    Model_name{ii},'\Bootstrapping_input.txt'),'FileType', ... 

   'text','Delimiter',',','PreserveVariableNames',true); 

    Table.Num = (1:30)'; 

    Table = sortrows(Table,'rmse','ascend'); 

     

    % Loading the best model     

    Regression =  load(strcat('D:\Projection_ML\Trained_ensemble\', ... 

    Model_name{ii},'\ens_',num2str(table2array(Table(1,13))))); 

     

    % Importing the tables of spatio-temporal predictors 

    dryss_table = readtable(strcat('D:\Projection_ML\new_data\',Model_name{ii},... 

    '\dryss_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

    wetss_table = readtable(strcat('D:\Projection_ML\new_data\',Model_name{ii},... 

    '\wetss_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

    evspsbl_table = readtable(strcat('D:\Projection_ML\new_data\',Model_name{ii},... 

    '\evspsbl_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

    pr_mean_table = readtable(strcat('D:\Projection_ML\new_data\',Model_name{ii},... 

    '\pr_mean_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

    pr_fre_table = readtable(strcat('D:\Projection_ML\new_data\',Model_name{ii},... 

    '\pr_fre_',Model_name{ii},'.txt'),'FileType','text','Delimiter','comma'); 

     

    % Merging the tables of purely spatial and spatio-temporal predictors 

    T_dryss = 

join(Soil_pro,dryss_table,'LeftKeys','pointid','RightKeys','Base_points_drylands'); 

    T_wetss = 

join(Soil_pro,wetss_table,'LeftKeys','pointid','RightKeys','Base_points_drylands'); 

    T_evspsbl = ... 

    join(Soil_pro,evspsbl_table,'LeftKeys','pointid','RightKeys','Base_points_drylands'); 

    T_pr_mean = ... 

    join(Soil_pro,pr_mean_table,'LeftKeys','pointid','RightKeys','Base_points_drylands'); 

    T_pr_fre = ... 

    join(Soil_pro,pr_fre_table,'LeftKeys','pointid','RightKeys','Base_points_drylands'); 

     

     

     

    WRB = table2array(Soil_pro(:,12)); % Categorizing the categorical variables in the 

    % training  set 

    upper_dept = repmat([0 10 30 60 100],length(WRB),1); 

    Clay = table2array(Soil_pro(:,15)); 

    Elevation = table2array(Soil_pro(:,14)); 

    Slope = table2array(Soil_pro(:,13)); 

    Root_depth = table2array(Soil_pro(:,5)); 

    Wilt_point = table2array(Soil_pro(:,8)); 

    Field_capa = table2array(Soil_pro(:,7)); 

     

    % Attributing spatio-temporal data to location of the points based on 

    % the year of sampling the profile 

    dryss = fillmissing(table2array(T_dryss(:,19:219)),'nearest'); 

    dryss = movmean(dryss,[4 0],2,'omitnan','Endpoints','discard'); 

    wetss = fillmissing(table2array(T_wetss(:,19:219)),'nearest'); 

    wetss = movmean(wetss,[4 0],2,'omitnan','Endpoints','discard'); 

    evspsbl = fillmissing(table2array(T_evspsbl(:,19:219)),'nearest'); 

    evspsbl = movmean(evspsbl,[4 0],2,'omitnan','Endpoints','discard'); 

    pr_mean = fillmissing(table2array(T_pr_mean(:,19:219)),'nearest'); 

    pr_mean = movmean(pr_mean,[4 0],2,'omitnan','Endpoints','discard'); 

    pr_fre = fillmissing(table2array(T_pr_fre(:,19:219)),'nearest'); 

    pr_fre = movmean(pr_fre,[4 0],2,'omitnan','Endpoints','discard'); 

     

    % Predicting the soil salinity at the five depths: 0, 10, 30, 60, and 100 cm  

    % and averaging the output by the trapezoidal rule 

    Salinity = zeros(length(WRB),size(dryss,2)); 

    Y = zeros(length(WRB),5); 

    for i = 1:size(dryss,2) 

        for j = 1:5 

            X = [upper_dept(:,j) upper_dept(:,j) WRB Clay Elevation... 

                Slope Field_capa Wilt_point Root_depth... 

                dryss(:,i) wetss(:,i) evspsbl(:,i) pr_fre(:,i)... 

                pr_mean(:,i)]; 

            X = array2table(X,'VariableNames',{'upper_dept' 'lower_dept'... 

                'WRB' 'Clay' 'Elevation' 'Slope' 'Field_capa'... 

                'Wilt_point' 'Root_depth' 'dryss' 'wetss' 'evspsbl' 'pr_fre' 'pr_mean'}); 

            X.WRB = categorical(X.WRB); 
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            Y(:,j) = predict(Regression.ens,X); 

        end 

        Salinity(:,i) = trapz([0 10 30 60 100],Y,2)/100; 

    end 

     

    % Replacing the missing values with flag of the missing values (-9999)  

    Salinity = fillmissing(Salinity,'constant',-9999); 

     

    % Preparing a tables for saving the results in 

    Years = cell(1,201); count = 1904; 

    for i = 5:201 

        Years{i} = num2str(count); 

        count = count + 1; 

    end 

     

    % Saving the table of results on disk 

    Years{1} = 'pointid'; Years{2} = 'grid_code'; Years{3} = 'X'; Years{4} = 'Y'; 

    grid = [Soil_pro.pointid Soil_pro.grid_code Soil_pro.POINT_X Soil_pro.POINT_Y Salinity]; 

    T_result = array2table(grid,'VariableNames',Years); 

 writetable(T_result,strcat('D:\Projection_ML\Results\',Model_name{ii},'_future{ii}','.txt'));  

end 

 

The following code was used for calculation of the cell area in WGS 1984 spatial 

coordinates system.  

 

Calculating m^2 area of a WGS 1984 square pixel   

% Adapted from: https://gis.stackexchange.com/a/127327/2397 

% Parameters: 

% cell_size (float): Pixel size in the Geographic coordinates (WGS 1984)which is 0.5 here 

% Returns: Area of square pixel of side length cell_size in m^2 

 

f_up = deg2rad(T.Y + cell_size/2); 

f_down = deg2rad(T.Y - cell_size/2); 

zm_up = (1 - e*sin(f_up)); 

zp_up = (1 + e*sin(f_up)); 

area_up = pi * b^2 * (log(zp_up./zm_up)/(2*e) + sin(f_up)./(zp_up.*zm_up)); 

zm_down = (1 - e*sin(f_down)); 

zp_down = (1 + e*sin(f_down)); 

area_down = pi * b^2 * (log(zp_down./zm_down)/(2*e) + ... 

sin(f_down)./(zp_down.*zm_down)); 

cell_area = cell_size/360.*(area_up - area_down); 
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