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Abstract 

Topological photonics has attracted great interest in the past few years because it reveals 

exciting fundamental advances in the way we can control light with engineered 

materials and the vast opportunities for applications. This area of research draws 

inspiration from recent advances in condensed matter physics, highlighting the 

important connection between the topological features of the energy band diagram of 

infinite periodic media and the electronic response of finite samples. In particular, 

topological insulators are a class of insulating materials with non-trivial topological 

characteristics of their bandgap, based on which robust conduction properties are 

expected at the boundary of any finite sample of such materials. Their inherent 

robustness is rooted in these topological features and is unaffected by continuous 

perturbations and local disorder. These electronic properties are protected by the 

underlying symmetry protection that drives the nontrivial topology. The extraordinary 

robustness of the features has led to compelling new nano-optical devices such as 

reconfigurable waveguides, disorder-resistant irreversible transport, quantum optics, 

and intense lasers. 

In this thesis, we discovered the existence of a topological phenomenon in a plasmonic 

system. We observed the Berry phase for surface plasmon polaritons on a flat metallic 

surface. The observed Berry phase is determined by the thickness of the metal layer 

which changes the interplay between the directly reflected light and light that out-

coupled from the excited plasma. The interference of these out of phase components 

provides a topological character that can be observed in the complex optical reflectivity 

coefficient. We found that topological character can lead to stable boundary states 

which generate complete absorption of light at the boundary between topologically 

different domains. Our observations of the topological property of surface plasmon 

polaritons would lead to a new type of plasma-based nanophotonic device. In addition, 

these results also inspire the discovery of Berry phases and topological properties in 
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other optical systems such as optical resonators.  
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Chapter 1 Introduction 

Surface plasmon polaritons (SPPs) are localised surface waves that enable nanoscale 

light manipulation and the development of nanoscale photonic circuits. Owing to their 

inherent loss, they provide an ideal platform to study non-Hermitian topology by 

engineering the plasmonic band structure. Here, we provide a new topological 

perspective in the excitations of SPPs on a flat surface. We show that the balance 

between the internal loss and the excitation defines the topology of the reflection. We 

experimentally observed a topologically-protected 2π Berry phase by encircling a 

singularity in the reflectivity. We anticipate that these results provide realistic pathways 

for utilising topological properties in photonic circuits even on the visible spectrum. 

The thesis is structured as follow:  

Chapter 1 provides an overview of the thesis and the general idea.  

In Chapter 2, I will discuss the concept of wave impedance which provides a simple 

way of understanding electromagnetic waves and their reflectivity from interfaces. I 

will provide the basic formalism and derivation of wave impedance using circuit 

elements then generalize the impedance concept for electromagnetic waves. This 

formalism helps calculation of complex optical reflectivity and the phase singularity in 

the reflection.  

In chapter 3, I will talk about the concept of topology in optics. I will give a couple of 

examples from the literature that use different optical systems to demonstrate the 

topological character of light.  

Chapter 4 covers the topology of surface plasmon polaritons. I will discuss the basic 

experimental configuration.  

In Chapter 5, I will provide details of the materials and methods used in this thesis. We 

have built an interferometric spectrometer to measure the intensity and phase of the 

reflected light. the Berry phase from the recorded interference pattern.  



13 

 

In Chapter 6, I will discuss the results and topological interpretation of these results.  

Chapter 7 will provide the concussion and future direction for this research. 

 

Chapter 2 One dimensional wave dynamics 

2.1 The concept of impedance 

Since “impedance” is first introduced by Oliver Heaviside in 1886, it plays an important 

role in circuit analysis. Impedance is a general term for the resistance, inductance, and 

capacitance in the circuit that hinder the alternating current. Impedance is a complex 

number, the real part is called resistance, and the imaginary part is called reactance. 

Impedance extends the concept of resistance to the field of AC circuits, not only 

describing the relative amplitude of voltage and current but also describing their 

relative phase. When there is direct current running in the circuit, the resistance is equal 

to the impedance, and the resistance can be regarded as an impedance with zero phase. 

 

The concept of impedance can also be extended to the propagation of waves. The wave 

impedance of an electromagnetic wave is the ratio of the transverse component of the 

electric field and the magnetic field. That is: 

                               

𝑍 =
�⃗� 

�⃗⃗� 
(2.1.1) 

To accurately express impedance, we need to introduce the concept of the transmission 

line. The transmission line model can describe plane waves well, and plane waves are 

often used to represent radiation fields at radio, microwave, and optical frequencies. 
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Figure 1 The transmission line model consisting of series of capacitors and inductors. This model can be 

generalised to understand the broad range of wave systems including electromagnetic waves and 

plasmons.  

As shown in Figure 1, on any finite axial length, there is an infinite set of basic units, 

as shown in the figure, there are series capacitors and inductances. The parameters L 

and C are defined in terms of unit length. Therefore, for the section between z + Δz and 

z, LΔz is the series inductance of a section when the distributed line has a length of Δz 

(expressed in Henry's formula), and CΔz is the parallel capacitance (in Farads). At the 

limit of the incremental length Δz→0, the distribution parameter to the transmission 

line can be used as a model for three kinds of electromagnetic field propagation： 

 First, an accurate representation of uniformly polarized electromagnetic waves and 

plane waves is given 

 Secondly, the distributed parameter transmission line accurately represents the 

coordinate and time dependence of the transient electromagnetic wave propagating 

on the axially uniform perfect guide forming an arbitrary cross-section 

transmission line. 

 Thirdly, it approximates the dependence of coordinate and time on the system with 

a large aspect ratio. 

According to Kirchhoff's law, the currents into the node of the elemental section sum 

to zero: 

𝐼(𝑧) − 𝐼(𝑧 + ∆𝑧) = 𝐶∆𝑧
𝜕𝑉

𝜕𝑡
(2.1.2) 
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Similarly: 

𝑉(𝑧) − 𝑉(𝑧 + ∆𝑧) = 𝐿∆𝑧
𝜕𝐼

𝜕𝑡
(2.1.3) 

According to the definition of derivative: 

lim
∆𝑍→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
=

𝜕𝑓

𝜕𝑧
(2.1.4) 

Combining equation (2.1.2) with (2.1.3) (2.1.4) respectively, we can get: 

𝜕𝐼

𝜕𝑧
= −𝐶

𝜕𝑉

𝜕𝑡
(2.1.5) 

𝜕𝑉

𝜕𝑧
= −𝐿

𝜕𝐼

𝜕𝑡
 (2.1.6)                  

The evolution of the transmission line voltage 𝑉(𝑧, 𝑡)  and its related transient 

electromagnetic field is controlled by the one-dimensional wave equation. Combining 

the transmission line equations (2.1.2)-(2.1.6), an expression for V is obtained. 

𝜕2𝐼

𝜕𝑧𝜕𝑡
= −𝐶

𝜕2𝑉

𝜕𝑡2
 

𝜕2𝑉

𝜕𝑧2
= −𝐿

𝜕2𝐼

𝜕𝑧𝜕𝑡
 

 

𝜕2𝑉

𝜕𝑧2
= 𝐶𝐿

𝜕2𝑉

𝜕𝑡2
=

1

𝑐2

𝜕2𝑉

𝜕𝑡2
(2.1.7) 

This equation has a remarkably general pair of solutions： 

𝑉 = 𝑉+(𝛼) + 𝑉−(𝛽) (2.1.8) 

Where 𝑉+ and 𝑉− are arbitrary functions of the variables α and β, and they are defined 

as special combinations of the independent variables z and t. 

𝛼 = 𝑧 − 𝑥𝑡          𝛽 = 𝑧 + 𝑥𝑡 (2.1.9) 

Because I(z,t) also satisfies the one-dimensional wave equation, it can also be written 

as the sum of travelling waves. 
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𝐼 = 𝐼+(𝛼) + 𝐼−(𝛽) (2.1.10) 

Substitute equation (2.1.3) and (2.1.10) into either equation (2.1.5) or (2.1.6), we can 

get: 

𝐼 =
1

𝑍0

[𝑉+(𝛼) − 𝑉−(𝛽)] (2.1.11) 

Where: 

𝑍0 ≡ √
𝐿

𝐶
(2.1.12) 

If we consider the input wave as a sine wave: 

𝑉 = 𝑅𝑒�̂�(𝑧)𝑒𝑗𝜔𝑡          𝐼 = 𝑅𝑒𝐼(𝑧)𝑒𝑗𝜔𝑡 (2.1.13) 

Using transmission line equations (2.1.6) and (2.1.7), we get: 

𝑑𝐼

𝑑𝑧
= −𝑗𝜔𝐶�̂� (2.1.14) 

𝑑�̂�

𝑑𝑧
= −𝑗𝜔𝐿𝐼 (2.1.15) 

                           

Again because of the constant coefficients, these linear equations have two solutions, 

each having the form exp(−jkz). Substitution shows that  

�̂� = �̂�+𝑒−𝑗𝛽𝑧 + �̂�−𝑒𝑗𝛽𝑧 (2.1.16) 

𝐼 =
1

𝑍0
(�̂�+𝑒−𝑗𝛽𝑧 − �̂�−𝑒𝑗𝛽𝑧) (2.1.17) 

At any location on the line, the impedance is found by taking the ratio of �̂� and 𝐼  

𝑍(𝑧) ≡
�̂�(𝑧)

𝐼(𝑧)
= 𝑍0

1 + 𝑟𝑒2𝑗𝛽𝑍

1 − 𝑟𝑒2𝑗𝛽𝑍
(2.1.18) 

The reflection coefficient of the load: 

𝑟 ≡
�̂�−

�̂�+

(2.1.19) 
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The reflection coefficient is defined as a number that quantifies how much 

electromagnetic wave is reflected by impedance discontinuities in the transmission 

medium. The reflection coefficient is the ratio of the amplitude of the reflected wave 

to the amplitude of the incident wave. It's a vector with phase information as well as 

shown above. 

 

Figure 2 Representation of voltage wave on a transmission line. The voltage waves included two 

components V+ and V- representation waves propagating in positive and negative directions. Zo is 

defined as the characteristic impedance and 𝑍𝐿 is the load impedance. 

At z=0 where the line is connected to the load, this expression becomes 

𝑟 =

𝑍𝐿

𝑍0
− 1

𝑍𝐿

𝑍0
+ 1

(2.1.20) 

At a location z, the impedance of the transmission line is: 

𝑍(𝑧)

𝑍0
=

1 + 𝑟(𝑧)

1 − 𝑟(𝑧)
(2.1.21) 

𝑟(𝑧) =
�̂�−

�̂�+

𝑒2𝑗𝛽𝑍 (2.1.22) 

After determining the magnitude and phase of Γ at the load, the reflection coefficient 

can be obtained at another position by a simple rotation of 4π(z/λ). By mapping 
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impedance 
𝑍

𝑍0
 in the reflective coefficient r plane, we can infer the impedance implied 

by r elsewhere. 

To this end, we define the normalized impedance as having the resistive part a and the 

reactive part b: 

𝑍

𝑍0
= 𝑎 + 𝑗𝑏 (2.1.23) 

Draw contours of constant a and constant b on the Γ plane. In this way, we can directly 

see the Z implied by each value of r. 

These contour maps make up the Smith chart. 

Below shows a Smith chart with 𝑍𝐿 = 0 and 𝑍0 = 0 

 

Figure 3 The Smith chart is commonly used in electrical engineering to represents complex reflectivity 

and wave impedance on the same figure. The centre of the graph is the zero reflection r=0 which is the 

perfect impedance matching condition Z=Z0. 

2.2 Transmission of electromagnetic waves 

The description of the temporal and spatial evolution of the electric field on the 
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transmission line is also applicable to the description of electromagnetic waves. 

Assume E has a component along the x-axis and H has a component along the y axis, 

using Maxwell’s equation 

�⃗� = �̂�𝐸0𝑒
𝑗(𝑤𝑡−𝑘𝑧) (2.2.1) 

𝑘 = √𝑤2𝜇𝜖 (2.2.2) 

�⃗⃗� = �̂�𝐻0𝑒
𝑗(𝑤𝑡−𝑘𝑧) (2.2.3) 

∇ × �⃗� = −𝜇
𝜕�⃗⃗� 

𝜕𝑡
(2.2.4) 

Where k is the wave vector, 𝑤  is the frequency of the wave, μ  is the magnetic 

permeability, 𝜖 is the electric permeability. Using equation (2.2.3) and equation (2.2.4), 

we know that: 

∇ × �⃗� = −𝜇𝑗𝑤 �⃗⃗� → �⃗⃗� =
∇ × �⃗� 

−𝜇𝑗𝑤
→ �⃗⃗� = �̂�

−jk𝐸0

−𝑢𝑗𝑤
𝑒𝑗(𝑤𝑡−𝑘𝑧) (2.2.5) 

Coming back to equation (2.2.3) we can see: 

�̂�𝐻0𝑒
𝑗(𝑤𝑡−𝑘𝑧) = �̂�

−jk𝐸0

−𝑢𝑗𝑤
𝑒𝑗(𝑤𝑡−𝑘𝑧) (2.2.6) 

𝐻0 =
𝑘

𝑤𝑢
𝐸0 = 𝐸0√

𝜖

𝜇
(2.2.7) 

𝐸0 = 𝐻0√
𝜇

𝜖
(2.2.8) 

Compare with Ohm's Law, 𝜂 which is the impedance of wave propagation, equals√
𝜇

𝜖
 

and it’s only related to the material of the medium. 

When it comes to non-magnetic material, 𝜇 = 𝜇0 

𝜂 = √
𝜇0

𝜖
= √

𝜇0

𝜖0

1

√𝜖𝑟

= √
𝜇0

𝜖0

1

𝑛
=

𝜂0

𝑛
(2.2.9) 
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Where 𝜇0 = 1.2566 × 10−6 H/m，𝜖0 = 8.854 × 10−12F/m,√
𝑢0

𝜖0
= 𝜂0 ≈ 377𝛺. 

n is the reflective index of a material. 

With reflective coefficient，𝑟 =
𝜂1−𝜂2

𝜂1+𝜂2
, in free space,  

𝑟 =
𝜂1 − 𝜂0

𝜂1 + 𝜂0
=

1
𝑛 − 1

1
𝑛 + 1

=
1 − 𝑛

1 + 𝑛
(2.2.10) 

Let A be a set of complex numbers, and if, and there is a rule defined on A so that, there 

are one or more complex numbers W corresponding to any complex number Z in A, 

then a complex variable function is defined on the complex number A, recorded as W 

= f (Z). If z = x + iy, w = u + iv, the complex function w = ƒ (z) can be decomposed 

into w = u (x, y) + iv (x, y); So a complex variable W = f (Z) corresponds to a real-

valued function of two real variables. 

Let's start with a simple single input and a single output, and if we want to solve for 

f(x)=g(x), all we can think about is how these two functions intersect, and where their 

intersection is the answer. To determine where this point is, we can apply the 

intermediate value theorem. In mathematical analysis, the intermediate value theorem 

states that if the domain is a continuous function f of [a, b], then at some point in the 

interval it can take any value between f (a) and f (b). That is to say, the intermediate 

value theorem states that within an interval of a continuous function the value of the 

function must be between the maximum and minimum value. By narrowing the distance 

between the two points, we can keep narrowing the range of answers. In the same way, 

we can apply this idea to two-dimensional equations, where the inputs and outputs are 

both two-dimensional. 

The other question is, in two dimensions, how do we define the position of the input 

and output values. One of the most effective ways to do this is to connect points in 

space with colours. So that's the chromatic scale. We can easily visualize the complex 

function by corresponding to the points of the same colour on the input and output 
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charts. 

In the one-dimensional equation, we use two points to constantly narrow the range of 

the answer, but in the two-dimensional equation, we will use a closed curve to examine 

the boundary of a region. If the loop hits all outputs of possible colours on the boundary, 

we can say that somewhere inside the region, it must go zero. But what if neither region 

contains a zero, then combining their boundaries is just the right way to get a complete 

colour map? It is not accurate. So this leads to the winding number. The winding 

number around a point on a closed curve in the plane is an integer, which represents the 

total number of times the curve circumnavigates that point. The number of winding is 

related to the orientation of the curve. If the curve goes clockwise around a certain point, 

the number of winding is negative. If 𝛾 is a closed curve then its winding number 

about 𝑍0 is defined as: 

𝑊(𝛾, 𝑍0) =
1

2𝜋𝑖
∫

1

𝑍 − 𝑍0𝛾

𝑑𝑍 (2.2.13) 

With the help of winding number, this time we can say if the loop hits all outputs of 

possible colours on the boundary while this loop has a non-zero winding number, we 

can say that somewhere inside the region, it must go zero. 

Since we found a way to solve complex functions, something is annoying which makes 

solving complex functions difficult, these are singularities. A singularity is usually a 

point when a mathematical object is said to be undefined, or when it is out of order in 

such a special case that the point appears in a set of exceptions. In singularities, the 

zeros and poles play an important role. 

According to the Argument principle: 

∫
𝑓′(𝑍)

𝑓(𝑍)𝛾

𝑑𝑍 = 2𝜋𝑖 (∑(𝑍𝑘)

𝑛𝑍

𝑘=1

− ∑(𝑃𝑘)

𝑛𝑃

𝑘=1

) = 2𝜋𝑖𝑊 (2.2.14) 

𝑍𝑘 means zero and 𝑃𝑘 means pole. When the loop goes around the singularity. There’s 

a 2𝜋 phase accumulation. 
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Since the reflective index is a complex number, then the refractive coefficient is a 

complex function. The pole and the zero for this function are -𝜂0 and 𝜂0 respectively. 

At this point, the real part of the value is 0 but the imaginary part is unknown, therefore 

the singularity brings up a lot of interesting things. 

𝑟 =
𝜂1 − 𝜂0

𝜂1 + 𝜂0
=

1
𝑛 − 1

1
𝑛 + 1

=
1 − 𝑛

1 + 𝑛
(2.2.15) 

In the complex plane using domain colour map in Figure 4:  

Since we can’t have a negative wave impedance in a classical lossy system, we can 

only achieve the zero point. The continuity of the function is destroyed due to the 

existence of this point (zero point), we can say that it is a singularity. 

 

According to the definition, the complex analytic set is a Hausdorff topological space 

that can be covered by a set. The graphs of the set can be identified as the following 

model: there are zero-loci in the open subset of the holomorphic function set. In addition, 

we also require that the change of the holomorphic graph is also holomorphic. In this 

way, the concepts of holomorphic functions and holomorphic mappings from one 

complex analytic set to another complex analytic set can be easily defined. In particular, 

we can say holomorphic isomorphism, also called holomorphic equivalence. 
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Figure 4 The colour map represents the phase of reflectivity as a function of complex impedance Z. 

There are two points where the phase is not defined Z=Z0 and Z=-Z0. These two points are called 

phase singularity of topological defects with a topological charge of =1 and -1. These singularity 

points will have a key role in our experiments. 

 

If two isolated singularities have representatives that can be identified by 

homomorphism sending one base point to another base point and keeping the direction 

(direction derived from the complex structure) outside the base point, it is called 

topological equivalence. How to encode a topological equivalence class of an isolated 

complex singular point? The usual method is to start with some of its representatives 

and define suitable tubular neighbourhoods of the base point, which are cones on a true 

smooth manifold, the boundary of the singular point or link. Therefore, the topological 

type of singularity can be captured by the topological structure of its boundary. 
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In combination with the previous analysis of two-dimensional functions, we can say 

that if two sets of two-dimensional numbers can be mapped to each other, they are 

topologically equivalent, and their winding numbers are the same. 
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Chapter 3 Topology and Photonics 

3.1 The concept of topology 

Topology is a branch of mathematics that deals with quantities that are maintained 

under continuous deformation. For example, each of the six objects in the figure has a 

different geometry, but only three different topologies. Spheres can be continuously 

transformed into spoons, so they are topologically equivalent. A torus is topologically 

equivalent to a coffee cup, and a double torus is topologically equivalent to a teapot. 

Different topologies can be represented mathematically by integers called topological 

invariants -- quantities that remain constant under any continuous deformation of the 

system. For the above-closed surface, the topological invariant is its genus, which 

corresponds to the number of holes in a closed surface. Objects with the same 

topological invariant are topologically equivalent; That is, they are in the same 

topological phase. The topological invariant changes only when a hole is created or 

removed from the object. This process is called a topological phase transition. 

 

 

Figure 5. The concept of topology uses integer numbers to clarify geometrical objects. These integer 

numbers are called topological invariants which stays constant during continuous deformations. In the 

figure, the genus represents the number of hole on these geometrical objects which stays constant under 

continuous deformations. This idea of topology helps to simplify a complex problem into a simple one 

where the solution is obvious. After solving the problem on a simple topologically identical surface, the 

solution can be transformed into the initial complex configuration. The concept of topology has been 

implemented for a physical system to classify materials and optical systems based on the topology of the 

electronic or optical band structures [[2]. 

In a complex plane, the topological property of a closed loop is determined by the 

winding number of the loop. 
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Figure 6 shows two closed loops 𝐶1 and 𝐶2 which are topologically different. Loop 𝐶1 has a winding 

number of 0 and 𝐶2 has a winding number of 1. 

For example, here the winding number of 𝐶1 is 0, the wingding number of 𝐶2 is 1, 

they are topologically different. 

Once a physical observable is written as a topological invariant, it can only vary 

discretely; therefore, it does not respond to continuous small perturbations or local 

errors. These perturbations may be any continuous variation of system parameters. The 

bulk-edge correspondence[[92]provides a deep physical meaning of topological 

invariants: when two materials with different topological invariants contact, there must 

be a spatially localized edge state at the interface where the energy is within the energy 

gap of the surrounding bulk materials. Bulk-edge correspondence can be understood 

heuristically in the following way: Under perturbation or deformation of the system, 

the integer topological invariant of a notched system cannot change its value unless the 

energy gap to the excited state closes somewhere. This means that when two materials 
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with different topological invariants come into contact, the energy gap in the interface 

region must close, resulting in the occurrence of local states in the region. In finite-size 

samples of nontrivial topological materials, the physical edge of the sample can be 

considered as the interface between the region with nonzero topological invariants and 

the topological trivial vacuum, thus ensuring the existence of local states on the system 

boundary. 

3.2 Progress in topological photonics 

In recent years, the topological properties of materials have become a hot topic in 

condensed matter physics and material physics. Topological physics involved in the 

quantum Hall effect and topological insulators has attracted the interest of researchers 

in many fields. Topologically protected edge states have been realized in many quantum 

and classical wave systems, such as condensed matter, optics and acoustics. 

The original idea of topological photonics came from the topological phase of matter 

in solid-state physics, and the great development of this field began in 1980 when The 

Integer quantum Hall effect was discovered. [[3] In other words, the Hall conductance 

of two-dimensional electronic gas will appear as a platform related to magnetic field 

degree under vertical strong magnetic field, and its value is an integer multiple of e^2/h. 

In addition, this quantized Hall conductance is insensitive to carrier concentration and 

mobility and has certain robustness. Thouless et al. [4] and Kohmoto[[5] soon realized 

the importance of this discovery, and they correlated the integer occurrence of Hall 

conductance with the topological invariant of the system —— Chern Number, which is 

a topological invariant with an integer value. It describes the global configuration of 

the wave function in momentum space. Later, this method of combining topological 

invariants with the conductivity of quantum Hall effect is summarized as Thouless-

Kohmoto-Nijs (TKNN) [[93] relation. The physical significance of topological 

invariants is embodied in the volume-edge correspondence of materials: in electronic 

systems with band gaps, integer topological invariants do not change due to 

perturbation or continuous deformation unless the band gap closes somewhere. This 
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means that when two materials with different topological invariants are spliced, the 

electrons at the interface will have a space field local at a specific energy, and the energy 

of the electrons at this time is in the bandgap of the bulk material. If topological 

nontrivial materials are of finite size, this splicing interface can be understood as the 

interface between topological nontrivial regions and topological trivial regions (e.g., 

vacuum or topological trivial materials with zero ordinary topological invariance), thus 

ensuring that the system interface has local boundary states. 

In 2005, Kane and Shousheng Zhang et al. proposed that a pair of conjugated spin-

opposite gapless boundary states, namely quantum spin Hall effect (2D) or topological 

insulator (3D), could also exist in a zero magnetic field by using spin-orbit coupling 

[[6-[7]. 

At this point, the total Hall conductance is zero, but the spin Hall conductance is non-

zero, which can be described by Z2 topological invariant or the spin Chern number (Cs), 

and the system has the spin transport property of symmetric protection of time inversion. 

When the material or lattice parameters are changed with the same topological 

properties, the boundary states of ordinary insulators must have an energy gap and are 

symmetric, while the topological boundary states of quantum Hall and quantum spin 

Hall effect do not open an energy gap. 

By applying the mathematical concept of topology to the photonic crystal band theory, 

similar quantized topological states can be realized.  

The combination of the concept of the topological phase of condensed matter and the 

optical system gives birth to a series of novel optical physical phenomena and potential 

optical application prospects. These physical phenomena, such as the optical integer 

quantum Hall effect [[8-[11], the optical quantum spin Hall effect [[12−[16], and the 

optical Floquet topological insulator [[17−[26], have boundary states protected by 

topology and suppressed by backscattering. It has a broad application prospect in 

optical transmission [[9,[12,[27,[28] and optical quantum computing [[25,[29−[31] and 
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thus has become a hotspot in the field of photonics. 

In these novel research directions, firstly, it is not very difficult to introduce the gain 

loss of materials in optical systems. It is necessary to consider the gain loss in many 

cases (such as optical transmission and coupling systems), which has triggered the 

research on non-Hermitian topological photonic systems [[32−[47]. Secondly, the 

nonlinear process has been a topic in the field of optics for a long time. As the concept 

of the topological phase is well known to more and more people, topological 

configurations with nonlinear optical effects come into being and develop towards 

richer contents [[20,[24,[48−[58]. Third, although the concept of higher-order topological 

phases originated from the tightly bound model of electronic systems, it has attracted 

more and more attention in the field of photons because it is possible to realize local 

field manipulation with topological protection [[59−[73]. 

After introducing some basic concepts in the field of topological photonics, I will start 

from the dimension of topological photon systems: Topological description method and 

application of Su-Schrieffer–Heeger (SSH) model in one-dimensional system, optical 

integer quantum Hall effect in two-dimensional system, optical quantum spin Hall 

effect and Floquet topological insulator. In addition, the non-Hermitian topological 

photonics, nonlinear topological photonics and high order topological insulators are 

briefly introduced and discussed given the current development trend of topological 

photonics. 

3.2.1 One dimensional topological photonic system  

The topological phase regulation of one-dimensional ordered structures is inseparable 

from the regulation of symmetry, among which chiral symmetry is the most important 

or widely discussed one. The most representative model is the SSH model proposed by 

Su et al. [[74] in 1979. 
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Figure 7 Schematic diagram of SSH model, each cell contains two lattice points. [91] 

Depending on the dimerization, the winding number W can have two possible values: 

0 when v > w and 1 when v < w. These two windings correspond to two different 

topological phases of the system. In an infinite lattice, the difference between the two 

cases does not matter, because it depends only on the choice of cells that define v and 

w. However, in semi-infinite chains, the unit is explicitly defined by terminations that 

set the chain's winding. When W =0, the lattice is topologically trivial and no edge state 

is expected, but when W = 1, the lattice is topologically nontrivial and the topological 

state is on the edge is expected. Similarly, when two semi-infinite SSH chains with 

different windings are connected, a local interface state occurs [[75]. 

In 2017, St-Jean et al. [[76] observed the generation of laser on one-dimensional 

topological boundary by using micro-nano manufacturing technology. As shown in 

Figure 8(a), the quantum well is placed in the distributed Bragg reflection micro-cavity 

by micro-nano manufacturing. The coupling between the two dipole modes 𝑃𝑋 and 

𝑃𝑌 of a single column is used, as shown in Figure 8(b). From Figure 8(c) the local 

boundary states are observed in the bandgap between the two bands of P state and the 

laser excitation is realized. In 2018, Parto et al. [[77] designed and experimentally 

prepared a micro-ring resonator array based on the SSH model, and realized the 

excitation of boundary states. As shown in Figure 8(d), corresponding local boundary 

states can be obtained in the coupled waveguide of the boundary through up-down 

coupling waveguide channels.  
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Figure 8 (a) Images of micro-nano machining (SSH model); (b) Patterns of individual columns; (c) States 

in different energy bands and existing boundary states; (d) Using waveguide annular array to realize SSH 

model [76][[77] 

The topological properties of the SSH Hamiltonian are very convenient for designing 

structures with isolated states in the middle of gaps. In addition, these states are 

remarkably robust to certain types of disorders. The topological properties of SSH 

Hamiltonians are closely related to the chiral symmetries of the above Hamiltonians, as 

the Hamiltonians are purely non-diagonal. The main result of chiral symmetry is that 

the spectrum is mirror-symmetric with respect to E = 0: every eigenstate of energy E 

has a partner eigenstate of energy -E. The topological edge or interface state at E = 0 

must be its companion, and thus its energy is insensitive to any modification of the 

Hamiltonian that preserves chiral symmetry. In particular, the disorder in bond between 
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v and w preserves this symmetry and does not affect the energy of the topological state 

as long as the gap between the two bands is clearly defined. In contrast, the energy of 

the edge mode is protected from disturbances that break the chiral symmetry.  

3.2.2 Two dimensional topological photonic system 

3.2.2.1 Photonic Integer Quantum Hall Effect in two dimensional topological optical 

systems 

The integer quantum Hall effect of light is derived from the experience of condensed 

electron-gas system. 

In 2005, Haldane and Raghu of Princeton University proposed that a boundary state of 

transverse electric polarized light could be constructed in triangular or hexagonal spin 

photonic crystals by breaking the time-reversal symmetry with external magnetic field. 

This leads to the Dirac point degeneracy open in the optical band structure, i.e. the 

optical analogy of integer quantum Hall effect [[8]. This boundary state can completely 

suppress the backscattering so that the electromagnetic wave can only propagate in one 

direction. 

Subsequently, the MIT team experimentally observed for the first time the 

backscattering suppressed single-pass topological photonic state of transverse 

magnetic(TM) polarized light [[10], in which the vanadium-doped Ca-Fe garnet 

cylinder was used to break the symmetry of the time inversion. Under an external 

magnetic field (0.20T) and at a frequency of about 4.5GHz, the amplitude ratio of 

forwarding propagation and backward propagation of chiral boundary states is greater 

than 50 dB, showing the robustness of defect immunity and one-way propagation 

around obstacles, as shown in the figure 9.  

Due to the low frequency of magnetic response, the realization of optical quantum Hall 

effect based on gyromagnetic materials is generally limited to the microwave band 

(gyroelectric materials are at most to the infrared band), so it is difficult to be applied 

in the infrared and even visible light. 
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3.2.2.2 Photonic Quantum Spin Hall Effect in two dimensional topological optical 

systems 

Another major category in topological photonics is quantum spin Hall effect systems 

that preserve the symmetry of time inversion or pseudotime inversion. For the 

electronic system, since the electron itself has + or - spin, for each spin S, a Chern 

number 𝐶↑  and 𝐶↓  can be separately specified to represent the band with the 

corresponding spin. Therefore, topological invariants can be used in two-scale signs, 

one is the traditional Chen number C, the other is the spin Chen number𝐶S . 

Since the system still has time inversion symmetry in a broad sense, the Chern number 

C = 0, while the spin Chern number Cs is an integer value, which can be used to describe 

the quantum spin Hall effect. It is worth noting that in the case of only time inversion 

symmetry, the spin number no longer has a clear definition and can be replaced by 

Figure 9 left a and b: Schematic of the waveguide composed of an interface between a gyromagnetic 

photonic crystal (PhC) slab (blue rods) and a metal wall (yellow). Right a, b, c: unidirectional 

backscattering-immune result.[[10] 
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topological invariants. 

The spin of the photonic system is very different from the intrinsic spin of the electrons. 

At present, there are three main schemes to realize the spin Hall effect of the photon.  

The first scheme is about using degree of freedom of polarization of photons. In 2016, 

He et al. [[78] proposed a photonic crystal model based on piezoelectric-piezomagnetic 

superlattice, and took left-handed and right-handed light as pseudospin states, as shown 

in Figure 10(a). The model adopts a tetragonal lattice configuration and ensures that the 

time reversal symmetry is broken. However, the symmetry of the electromagnetic 

coupling reversal and time reversal (pseudo-time reversal symmetry) is preserved. Thus 

confirming that the time reversal symmetry itself is also only for the inherent electric 

field and magnetic field system, even if the time reversal symmetry is broken, the 

photon spin Hall effect can still occur. As shown in Figure 10(b), when the selection of 

(pseudo) spin states changes, the corresponding (pseudo) time inversion symmetry 

operator may also change, which plays a great role in understanding the role of time 

inversion symmetry in the spin Hall effect of optical quantum spin hall effect. 

 

Figure 10 (a) Left circular polarization and right circular polarization on Poincaré spheres, as well as 

photonic crystals composed of piezoelectricity and piezomagnetic materials; (b) The absence of pseudo-

spin coupling and the band with pseudo-spin coupling and the projection band of the latter.[[78] 
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In addition to considering the degree of freedom of polarization to simulate the electron 

spin, the pseudo-time inversion symmetry can be constructed by designing the 

symmetry of crystals (which can be regarded as a kind of topological crystal insulator), 

and the mode degrees of freedom between optical Bloch states can be used to simulate 

the electron spin. Demonstrated in figure 11, NIMS researchers in Japan theoretically 

proposed that optical quantum spin Hall states based on Bloch state mode 

hybridizations can be constructed through the C6 rotational symmetry in the compound 

hexagonal lattice [[13]. This design does not need to consider the complicated 

polarization coupling and is more conducive to the construction of optical topological 

insulators using pure dielectric photonic crystals. 

 

Figure 11 A Photonic crystal with hexagonal lattice used to demonstrate a topologically trivial and 

nontrivial crystal by deforming the position of the pillars in the radial directions. The band structure of 

the photonic crystals for 3 different cases. For a perfect hexagonal lattice there is no photonic bandgap, 

however, when the pillars are deformed in the radial direction a topologically different bandgap can be 

opened.[[13] 

The third scheme is realized by coupling light into a ring resonator array system. By 

controlling the path of light travelling clockwise and counter-clockwise along the 
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resonator array, the system is given a degree of freedom to control the transmission of 

light, which is analogous to the spin of an electron. Since such a system naturally 

preserves the time-reversal symmetry and it can be analogous to the quantum spin Hall 

effect. 

In 2011, researchers from the University of Maryland proposed a theoretical design[[79], 

and then (2013) experimentally implemented a unidirectional boundary propagation 

state related to the clockwise and counter clockwise propagation modes of the ring 

resonator array based on the directional coupling of the resonant coupling loops on two 

lattices[[80]. 

As shown in the figure above, the clockwise (counter-clockwise) mode of propagation 

through a small cell produces an effective gauge potential with the opposite sign. These 

two modes of light, analogous to the "spin" of an electron, travel in one direction around 

the boundary. The unidirectional transmission of communication band light (1539 nm) 

and the absence of reflection bypassing the lattice defect are verified experimentally. 

This structure based on resonantly coupled microcavity can completely correspond to 

Figure 12 Coupled ring resonators which acquire different phase depending on the coupling direction. 

(a) Couple two adjacent resonators through a waveguide; (b) There is a non-zero hopping phase ϕ 

between the two adjacent resonators; (c) Putting an asymmetric coupler between the resonators provide 

a different optical path for light in CW and CCW directions. Through the resonant cavities periodically 

arranged in a two-dimensional plane Realize the Harper-Hofstadter model.[79] 
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Floquet topological insulator in the mesh model. It should be noted that in these two 

types of models, the two optical pseudospins are completely decoupled, so the defect-

immune properties of this topological state are limited to the case of no spin reversal. 

3.2.3 Floquet topological insulator 

By introducing time modulation or method equivalent to time modulation into the 

Hamiltonian, materials can also generate novel topological properties. This class of 

topological insulators is commonly known as Floquet topological insulators. 

In 2013, researchers at the Israel Institute of Technology proposed a scheme to generate 

an effective gauge potential (or an effective magnetic field) employing spiral 

modulation in the spatial dimension (Z direction), to achieve an optical Floquet 

topological insulator experimentally [[22,[81,[82]. The topological boundary states of 

the gaps can be obtained. 

The experimental results show that light (633 nm) can propagate around its boundary 

in the Z direction without backscattering (one-way spiralling) and has certain immunity 

to defects. 

Figure 13 Topological photonics using coupled waveguide arrays. Twisting the waveguide along the 

propagation direction mimics the breaking of time-reveal symmetry by the magnetic field.[22] 
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3.2.4 New topological effects in photonics 

3.2.4.1 Non-hermitian topological photonic effects 

Gain and loss in photonic systems have long been the focus of researchers. The 

combination of the traditional control methods in these photon systems with the 

topological research of condensed matter physics has led to the extensive study of non-

Hermitian photon systems. At present, the research of light transmission in Non-

Hermitian topological system can be divided into two aspects: first, topological system 

with a gapless mode; Second, topological systems with energy gaps. For Non-hermitian 

topological systems with no energy gap in photon band diagram, people mainly focus 

on exceptional point [[83], exceptional rings, skin effect [[37] and other physical 

mechanisms that have novel regulatory effects on the transmission of light in non-

Hermitian photonic bulk materials. At the same time, because the optical system has 

the advantages of easy control, less impurity and easy preparation, it has great 

advantages to study non-Hermitian phenomena in quantum mechanics by using optical 

system. 

Based on this theory, Zhao et al. proposed a method to realize topological light 

transmission through non-Hermitian modulation in Hermitian optical topological 

insulators. [[84] This is done by performing optical pumping in part of an optical 

topological lattice composed of InGaAsP, resulting in gains (through external pumping) 

and losses (intrinsic material losses without pumping), as shown in Figure 14. The gain 

(fundamental to lasers) and loss is a characteristic of an optical system that allows the 

system to be represented by a non-Hermitic Hamiltonian, which has no direct 

correspondence in electronic topological insulators. When gain-loss contrast exceeds 

exceptional point (EP, the position of the non-Hermitic Hamiltonian with coalescing 

eigenstates), the new topological boundary states are observed at the boundaries of the 

gain and loss regions. This method does not change the topological properties of the 

photonic lattice, but only designs specific pumping patterns on the photonic lattice and 

then performs non-Hermitian regulation. At the same time, light can travel along any 
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path in this way, completely using the space of the photon lattice. 

 

Figure 14 Non-hermitian light regulation in topological micro ring lattices. (a) A partial area of the optical 

topology lattice composed of InGaAsP is optically pumped, thereby generating gain (through external 

pumping) and loss (intrinsic material loss without pumping) (b) A specific pumping pattern is designed 

on the photonic lattice, and the new topological boundary state is observed at the boundary of the gain 

and loss regions. [[84] 

3.2.4.2 Nonlinear topological photonic effects 

Nonlinear optics is an important branch of modern optics, which is of great significance 

to the development of spectrum technology, imaging technology and optical 

information processing technology. The semi-classical nonlinear process can be 
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realized by introducing nonlinear terms into Maxwell equations and is the result of the  

 

Figure 15 Nonlinearity-induced photonic topological insulator and its regime. (a) Non-linearity induced 

photon Topological insulator. The low-power edge excitation (red) undergoes diffraction, indicating that 

the topology is trivial. In contrast, high-power light (yellow) produces self-guided unidirectional edge 

states that propagate along the perimeter of the structure. (b) Nonlinear directional detuning coupler. The 

intense laser pulse is launched into the low-index waveguide (smaller diameter) of the detuned coupler. 

Focusing Kerr nonlinearity allows the high-intensity part of the pulse to temporarily compensate for the 

detuning, thereby transmitting light to a higher index waveguide (larger diameter). In contrast, the lower 

intensity part exhibits linear dynamics and remains in the lower index waveguide. (c) Power dependent 

transmission ratio measured in detuned coupler (d) and (e) Simulation of light transformation in this 

detuned coupler with different intensity respectively. [[85] 
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nonlinear response of the electric polarization vector to the electric field. Combining 

the concept of topology and nonlinearity, may enable the generation of topological mott 

insulators, topological insulators generated by interactions (such as Kondo and non-

Abelian topological insulators), and may even drive the formation of topological 

solitons. Nonlinear optical topologies can change their topological properties by 

changing light intensity and can break optical reciprocity to achieve full topological 

protection.  

 

In view of this, Professor Alexander Szameit studied the topological properties of 

matter in nonlinear states [85].In figure 15, using the photon platform, optical 

nonlinearity can cause topological changes in the lattice properties of photons. We 

demonstrate theoretically and experimentally the nonlinearity-induced generation of 

photonic topological insulators, showing how nonlinearities drive an initial topological 

system into a transient topological phase where probe light is confined to propagating 

along the edges of the structure. At low excitation power, the probe light leaks evenly 

into the rest of the lattice, an optically insignificant phase. Above the threshold power, 

optical nonlinearity results in changes in the topological properties of photonic lattices. 

 

3.2.4.3 Higher order topological photonic effects 

It is generally considered that the topological boundary state of an N-dimensional 

topological photon system is N-1, which makes our control of the local field dimension 

very limited. Recent studies have shown that some topological insulators have N-1, N-

2…N-M-1 dimensional energy-gap boundary states up to the last dimensional N-M 

boundary state, which is called m-order topological insulators. This idea is constructed 

by tight-binding model in condensed matter physics [[62], 
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Recently, Wang et al. [86] have experimentally demonstrated a higher-order topological 

bound state in a continuous medium. Specifically, they demonstrated two methods for 

identifying bound states in continuous photonic lattices: single point and superposition 

state injection. The team demonstrated that angular states located in a continuum and 

co-existing with scattered waves can be excited well. In a tightly bound two-

dimensional Su-Schrieffer-Heeger (SSH) lattice, the second-order topological angular 

states are fixed at zero energy levels and embedded in the bulk mode. Intuitively, it 

seems that such angular states cannot be directly excited or observed. However, the 

team found that these angular states are orthogonal to the bulk mode in A Hilbert space, 

which makes it possible to excite them independently. 

Figure 16 A quad-coupler and the measured angular photon distribution probability. (a) Schematic 

diagram of photon lattice. A four-part coupler is designed in front of the lattice. (b) Structural details of 

section (I) and side section (II) of a quad-coupler. (c) Experimental results of angular states obtained by 

excitation lattice with single photon superposition states. [[86] 

 

As shown in the figure 16, they injected photons into a three-dimensional one-into-four 

photon coupler to create a four-input photon superposition state in the same phase and 

then injected the resulting photon superposition into the four corners of the lattice. Since 

the distribution probability of the photon in the lattice is the same as that of the zero-

energy angular state in the same phase, the system is excited to the zero-energy angular 

state during the injection. Due to the orthogonality between the eigenstates, the photon 
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superposition state in the lattice can be maintained, which means that a single angular 

state is excited. The photon distribution probability measured in the experiment also 

shows that the photon output probability distribution follows the angular distribution 

and does not change with the evolution distance. Thus, the target zero-energy angular 

state is exited successfully by making the initial state of the system into its zero-energy 

angular state eigenwave function. 

 

Compared with the electron system in condensed matter physics, the photon system has 

higher degrees of freedom in both structural design and regulation mode. In some 

aspects, it can construct a more perfect physical model and measure more abundant 

physical quantities compared with other natural material systems. Therefore, 

topological photonics has become an important platform for studying topological 

physical mechanisms. Furthermore, from the perspective of light field manipulation, 

boundary states with topological protection and backscattering suppression and higher-

order topological states have great basic research and application prospects in optical 

transport, field dimension regulation and quantum optical transport. 

 

The topological photonics field is, of course, facing some challenges. On one hand, the 

challenges for photonic devices, integrated topology band of photonic devices 

combined with existing silicon-based semiconductor process will have greater 

prospects in the direction of optical communication, optical computing, however 

infrared and even shorter wavelength band makes topological photonic devices need to 

do smaller, this is subject to micro/nano machining technology and topological structure 

design. On the other hand, the tenability of the devices. The construction of a tunable 

topological photonic system is limited by the characteristics of materials. This can be 

regulated by thermo-optic, electro-optic, phonon-optic and magneto-optic methods. 

However, they have various limitations in modulation rate and modulation amplitude. 
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In addition, there are theoretical and design challenges, for example, there are still many 

problems that need to be studied in non-Hermitian systems, three-dimensional (or 

higher dimensional) photonic topological insulators and higher-order topological 

insulators. 
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Chapter 4 Topology and geometrical phase 

4.1 Topology in Surface plasmon polaritons 

Surface plasmons are electronic resonance phenomena generated at the interface of 

positive and negative dielectric constant materials under the excitation of incident light. 

This phenomenon occurs when the wave vector of the incident light matches the 

electronic oscillation frequency of the inner surface of the metal, and the near-field field 

strength increases at the resonance wavelength. This near field is highly concentrated 

in the nanoparticle and decays rapidly as it enters the dielectric substrate away from the 

nanoparticle/dielectric interface. Surface plasmons are very sensitive to changes in the 

refractive index of the metal surface, and various sensors based on this principle have 

received extensive attention. 

As shown in the figure below, when light goes through a prism, the reflection happens 

at the interface between metal and prism. When the incident Angle (resonance Angle) 

increase so that the photon energy and metal surface plasmon excitation energy is the 

same in this system, electronic absorption of photons happens because of the light-

matter interaction from metal film, leading to resonance. The resonance is electronic 

surface plasmons. The result of surface plasmon resonance is a loss of the intensity of 

the reflected beam, which appears as a dark band on the detector. 

Prism coupling includes two configurations: one is the Otto structure(a): there is a gap 

between the prism with a high refractive index and the metal. The width of the slit is 

relatively small, about tens to hundreds of nanometers, which is not convenient to use, 

so it is only used occasionally in the process of scientific research. The other is 

Kretschmann structure(b): metal film directly plated on the prism, the incident light at 

the interface between metal - prism total reflection will happen, The evanescent wave 

of total reflection may match the wave vector of the surface ablation wave, and the 

energy of the light can be effectively transferred to the surface state, thereby generating 

the surface evanescent wave. 
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Figure 17 Two different configurations were used to excite surface plasmon polaritons. (a) shows 

Otto configuration where the plasmons are excited with evanescent filed in the gap between metal 

and prism surface. (b) shows the Kretschmann configuration where the SPP is excited on the metal-

air interface by the evanescent field in the metal. 

 

4.2 Geometric phase 

The term "phase" is commonly used in physics and engineering to describe certain 

properties of oscillating systems, such as the phase of alternating current, the phase of 

vibrating strings, the phase of the wave function in quantum mechanics, and so on. This 

phase is called the kinetic phase (=ωt) which provides the time evaluation of the 

periodic system. After one period, the system accumulates a 2π dynamic phase which 

returns the system to the initial conditions. There is another type of phase which is 

related to the history of the system, more specifically where the particle has been. 

Intuitively, if a system is controlled by slowly varying parameters, we would expect the 

system goes back to the initial state when the parameters are returned to the initial 

values.  For special cases, however, the system may accumulate an additional phase 

which is known as the geometrical phase. For example, if a particle goes through a 

closed-loop and comes back to the starting point, it may accumulate an additional phase 

depending on its path. Although it looks only an additional phase that does not affect 

observable physical quantities, it has interesting consequences: when the particle moves 
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on a path, this geometrical phase is related to the properties of the area covered by the 

path. Knowing the local forces on the path is not enough to find the final state of the 

system. Besides the local forces acting on the particle, there are additional nonlocal 

effects that provide this geometrical phase. Starting from the early days of quantum 

physics, the geometrical phase has been observed in many different classical physical, 

optical and quantum physical systems. Below, I would like to give some examples. 

 

 

Figure 18 Transporting a vector on parameter space. a, A vector is transported on a cartesian parameter 

space, where the vector goes back to the original state. However, if the vector is transported on a surface 

of a sphere, the vector will accumulate an additional phase. In the figure, the vector starts from point A 

and goes to B and N then returns to A. After this transport on a closed cycle, the vector is rotated by an 

angle alpha which is related to the solid angle of the path on the sphere. This phenomenon has a good 

explanation in the parallel transmission theory. 

 

Parallel transport is the key mechanism to understand the geometrical phases. Here a 

system is controlled by at least 2 parameters which define a multidimensional parameter 

space. When the parameters are changed slowly, the system moves on the parameter 

contour lines, this is called parallel transport. Figure 18(a) shows the parallel transport 

of a vector on a flat space and curved space on the surface of a sphere. As the vector is 

transported through a closed-loop on a flat parameter space (no curvature), it goes back 
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to the initial state without any phase accumulation or rotation. However, if the vector is 

transported on a curved parameter space, for example on a surface of a sphere shown 

in (b), when it comes back to the initial parameters, the vector rotates concerning the 

initial orientation. This rotation is the geometrical phase which appears as a rotation on 

the parameter space. In classical mechanics, this rotation is known as Hannay Angle 

[[87] which proves the existence of geometric phase even in classical systems.   

The most classical example in physics is the Foucault pendulum. The Foucault 

pendulum is popular because it is a straightforward indication that the Earth is rotating. 

At first glance, the pendulum appears to swing back and forth along a line that runs 

through the centre of its disk. However, anyone who had watched for a few minutes 

would have noticed that the pendulum's path would slowly change and that it would 

rotate around the disk like the minute hand of a watch. But the pendulum itself has not 

changed direction. The earth is spinning under a free-hanging pendulum.  If the 

Foucault pendulum were placed at the North Pole, it would appear that the pendulum's 

oscillations would rotate a full 360 degrees as the earth rotates over 24 hours, returning 

to its starting position by the end day. If the pendulum were hung at the South Pole, it 

would appear to rotate in the opposite direction. One particular aspect of the pendulum's 

motion didn't seem to bother anyone in Foucault's day, but it would have far-reaching 

consequences. If a pendulum were installed at the North Pole, the direction of its swing 

would rotate 360 degrees in a day. However, a pendulum placed at the equator does not 

rotate at all. In both cases, the pendulum ends the day swinging back in the direction it 

started. But when a pendulum is placed at a mid-latitude, the pendulum rotates less than 

360 degrees during a day. Foucault's alignment is therefore an example of showing a 

geometric phase. After a complete closed cycle, the pendulum accumulates a rotation. 

The basic geometry of the earth is such that the pendulum eventually returns to the same 

place, but the pendulum does not move in the same way it did when it started. 

The second example for the geometrical phase is from optics. As early as the 1860s, 

Maxwell had shown that light is an electromagnetic wave, consisting of electric and 
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magnetic fields oscillating together perpendicular to the direction of the wave's 

propagation. The direction of the electric field is known as the direction of light's 

polarization vector. If we could see the rapid oscillations of the electric field inside a 

beam of light, we would find that its trajectory is very similar to one of the possible 

motions of the Foucault pendulum described above. The "state" of polarization is 

generally determined by the elliptical shape of the electric field and its angle, which can 

be changed by various optical devices such as polarizers. Shivaramakrishnan 

Pancharatnam studied the continuous changes in the polarization vector of light from 

its initial state to various states and back again. He found that the final oscillating state 

of the electric field was slightly different from the original polarization state, a 

phenomenon that could only be attributed to the specific polarization process. This 

phenomenon, which Pancharatnam discovered many years ago, is an example of 

geometric phases. A similar geometric phase can be observed for light propagating in a 

fibre optic cable when the direction of propagation is changed on a closed-loop. 

 

The third example is from quantum physics. The geometric phase is also quite common 

in the quantum system because of the oscillating nature of the wave function. Consider 

a quantum system whose Hamiltonian H is assumed to depend on some control 

parameters (λ1, λ2...), as H(λ), and the parameter space is denoted as M. Now suppose 

we adjust the control parameters very slowly on a path C in the parameter space. 

Suppose the system is initially in an eigenstate energy  | 𝜓(𝜆)⟩ =

| 𝑢𝑛 (𝜆) ⟩   (| 𝑢𝑛 (𝜆) ⟩  is the 𝑛𝑡ℎ  eigen energy state), and assume that at each 

parameter point corresponding to path C, there is no crossover between corresponding 

energy levels. Then, if we adjust the parameters slow enough, the system will always 

stay in the same eigenstate | 𝜓(𝜆(𝑡))⟩. However, the wavefunction can differ by a 

phase factor, so the eigenstate instantaneous | 𝜓(𝜆(𝑡))⟩ can still differ a backlog of 

phase factors. Michael Berry from Bristol University found that in some physical cases, 

after deducting the kinetic phase, the wavefunction does not go back to initial states, 
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but accumulates an additional phase which is called the Berry phase. 

 

The instantaneous energy eigenequation of the system is： 

𝐻(𝜆)| 𝜓(𝜆)⟩ = 𝐸(𝜆)| 𝜓(𝜆)⟩ (4.2.1) 

Where E(λ) = 𝐸𝑛(λ) is the eigenenergy of the 𝑛𝑡ℎ energy eigenstate. According to the 

previous statement, as long as we adjust the parameters slowly enough, we can write 

the quantum state of the system as it evolves as follows: 

| Ψ(𝑡)⟩ = 𝑒𝑖𝑦𝑡 | 𝜓(𝜆(𝑡))⟩ (4.2.2) 

In the formula, 𝑒𝑖𝑦𝑡  is the undetermined phase factor mentioned in the previous 

paragraph. The time evolution state | Ψ(𝑡)⟩ generation into the time evolution of the 

Schrodinger equation 𝑖ℏ
𝜕

𝜕𝑡
| Ψ(𝑡)⟩ = 𝐻(𝜆(𝑡))| Ψ(𝑡)⟩, we can get: 

[−ℏ�̇�
𝜕

𝜕𝑡
+ 𝑖ℏ

𝜕

𝜕𝑡
] | 𝜓(𝜆(𝑡))⟩ = 𝐸(𝜆(𝑡))| 𝜓(𝜆(𝑡))⟩ (4.2.3) 

Using the bra | 𝜓(𝜆(𝑡))⟩ to and the inner product of the equation, we can get: 

�̇� =
𝐸(𝜆(𝑡))

ℏ
− 𝑖 ⟨𝜓(𝜆(𝑡))|

𝜕
𝜕𝑡

|𝜓(𝜆(𝑡))⟩ (4.2.4) 

If we integrate this equation with respect to time, we get: 

𝛾(𝑡𝑓) − 𝛾(𝑡𝑖) = −∫
𝐸(𝜆(𝑡))𝑑𝑡

ℏ
− 𝑖 ∫ 𝑑λ𝑖 ⟨𝜓(𝜆(𝑡))|

𝜕
𝜕λ𝑖

|𝜓(𝜆(𝑡))⟩

𝐶

𝑡𝑓

𝑡𝑖

 (4.2.5) 

The first term of this final expression is the ordinary dynamic evolution phase, and the 

second term is called the geometric phase because it depends only on the geometric 

path C of the parameter space. 

 

The appearance of geometric phase behaviour has injected new possibilities into the 

development of modern optical devices. In the case of Pancharatnam−Berry phase 
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modulation, since the azimuth varies continuously in space, this mapping from azimuth 

to phase allows for continuous phase changes and thus allows for more drastic phase 

changes without introducing discontinuities at the boundaries of 2π and 0 modes. This 

is very different from traditional liquid crystal phase modulators, which use changes in 

the polar angle (or inclination angle) to modulate the phase, resulting in a discontinuity 

at the 2π mode boundary. 

 

Based on this feature, many new lenses, gratings, and deflectors have been developed 

and show better optical properties. Pancharatnam -- Berry Lenses demonstrate better 

beam selectivity and faster optical response times[88]. Pancharatnam-Berry deflectors 

have large deflection angles, and light-based on phase modulation affects real light. 

This modulation allows good input and output coupling for waveguide-based AR 

devices [89]. Compared with traditional Holographic Gratings, Pancharatnam−Berry 

based reflective polarization volume grating can provide a much higher exponential 

contrast. Therefore, it shows higher efficiency and a greater angle of acceptance. A 

major difference between reflective volume grating and holographic gratings is 

polarization selectivity. Because holographic gratings are essentially tilted layers made 

of different isotropic materials, they are independent of polarization. On the other hand, 

reflective polarization volume is a uniaxial crystal with an inclined helical axis, which 

allows only one circularly polarized light to be deflected, while the other polarization 

will pass through. This increases the overall transmission of applications [90]. 
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Chapter 5 Experimental setup and materials： 

5.1 Materials and optical components used in the experiments 

name Supplier Properties Function 

Glass slide Thorlabs: CG15KH 1.5H (170 µm) 

Thickness and ± 5 

µm Tolerance 

Gold plating 

substrate 

Index matching 

gel 

Thorlabs: G608N3 Refractive Index 

at 589.3 nm: 

1.4646 

Filling the gap 

between the prism 

and the glass-gold 

slide 

gold Pi-kem 99.99% purity Source of gold 

plating 

Silicon wafer / Atomic level 

straight edge 

Shades of 

different metal 

thicknesses. 

polarizer Thorlabs: 

LPVISE100-A 

Ø1" 400-700 nm Linear Polarizer 

with N-BK7 

Windows. 

Adjustable lens Thorlabs: MVL25M23 25 mm EFL, 

f/1.4, for 2/3" C-

mount format 

cameras, with 

lock 

Concentrate light 

onto cameras. 
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BK7 right angle 

Prism 

Thorlabs: PS911 L=25mm Holding gold-

glass slide; 

generating SPP 

Wollaston prism Thorlabs: WP10 20° Beam 

Separation, 350 

nm - 2.3 µm 

Separating S and 

P polarized light 

into two different 

path ways 

Fiber Beam 

Collimator 

Thorlabs: C40FC-A f = 40 mm, 

FC/PC, ARC: 400 

- 650 nm 

Generating 400-

650nm 

collimating beam 

 

Laser1 Thorlabs: S1FC637 Fabry-Perot 

Benchtop Laser 

Source, 637 nm, 

8.0 mW, 

Laser source 

Laser2 NKT photonics: 

Superk compact 

supercontinuum laser. 

 

450-2400 nm Laser source 

CCD camera  ToupTek: TP705200A C-mount USB2.0 

CCD Camera 

Image catching 

CMOS camera Thorlabs: CS126MU Kiralux 12.3 MP 

CMOS Compact 

Scientific 

Cameras USB3.0 

Image catching 
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Sputter Coater agar scientific / Making metal 

coating 

 

Micro lens Thorlabs: MVL12X3Z 12X Zoom Lens 

with 3 mm Fine 

Focus and 

Coaxial 

Illumination Port 

Large 

magnification to 

help image fine 

features 

PC / / Data analysis 

camera software 

30mm cage 

system 

Thorlabs / Align the system 

Si Free-Space 

Amplified 

Photodetectors 

Thorlabs: PDA100A2 Si Switchable 

Gain Detector, 

320 - 1100 nm, 11 

MHz BW, 75.4 

mm2 

Detecting light 

intensity 

Table 1 Materials and equipment using in this project. 

5.2 Excitation of surface plasmon polaritons 

First, I have investigated the excitation of surface plasmon polaritons using the 

Kretschmann configuration. Figure 19 shows the experimental setup consisting of a 

fibre-coupled 633 nm diode laser, fibre optic collimator, a high refractive index prism 

and a Si photodetector. Shining a laser beam on a flat metal surface cannot excite SPPs 

because of the momentum mismatch between the excitation light (𝑘0 =
2𝜋

𝜆
) and SPP 
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(𝑘𝑠𝑝𝑝 = 𝑛𝑒𝑓𝑓𝑘0 > 𝑘0) To overcome the momentum mismatch we used a high glass 

prism with an index of refraction 1.5. When light enters into the prim the momentum 

increases to 𝑛𝑝𝑘0. This momentum increase enables us to match the momentum of 

SPP along the surface of the gold layer as 𝑛𝑝𝑘0 sin(𝜃) = 𝑛𝑒𝑓𝑓𝑘0 where np=1.5 And 

𝑛𝑒𝑓𝑓=1.061. 

 

Figure 19 Experimental setup showing the excitation of surface plasmon polaritons with Kretschmann 

configuration. A thin layer of gold is coated on a glass slide and attached to a right-angle prism. The high 

refractive index prism enables overcoming the momentum mismatch between SPPs and excitation light.    

I used a laser with a wavelength of 637nm as the excitation source. The output of the 

laser is made into a parallel beam by a fibre collimator. This beam of parallel light is 

polarized to P-polarized light after passing through a polymer polarizer. The P-

polarized light then enters a right-angle prism. The light couples to the SPPs on the 

gold-air interface. By monitoring the intensity of the reflected light, we observe the 

excitation of SPPs.  The intensity of the reflected light beam is detected by silicon 
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photodetectors. 

The fibre collimator is precisely positioned by the tail fibre and the self-focusing lens. 

It can transform the transmitted light in the optical fibre into collimating light (parallel 

light) or coupling the external parallel (approximately parallel) light into the single-

mode optical fibre. Its basic principle is that the lens can be used to transform a beam 

from a larger divergence angle (small waist) to a smaller divergence angle (large waist) 

so that it can be coupled into other optical devices with a lower loss. 

The polarizer has the function of shielding and passing through the incident light, which 

can make the transverse light passing through or shielding. It is a composite material 

laminated by polarization film, inner protective film, pressure-sensitive adhesive layer 

and outer protective film. Polarized light is produced mainly due to the existence of its 

internal polarization film, which is a polymer material with a linear structure, so the 

beam will become polarized light after passing through the polarization film. 

Photodetectors can transform light into an electrical signal in the optical communication 

system, which is mainly based on the photovoltaic effect of semiconductor materials. 

The so-called photovoltaic effect refers to the phenomenon that light causes a potential 

difference between different parts of a non-uniform semiconductor or a combination of 

a semiconductor and a metal. The basic working mechanism of photodetectors includes 

three processes: (1) photogenerated carriers are generated under light; (2) Current is 

formed by carrier diffusion or drift; (3) The photocurrent is amplified and converted 

into a voltage signal in the amplifier circuit. When the detector surface is irradiated by 
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light, if the material bandgap width is less than the energy of the incident light photon, 

i.e., Eg< hv, the valence band electron can transition to the conduction band to form a 

photocurrent if external field, or gradient of electron concentration exist. 

I observed the excitation of SPPs by changing the incidence angle. At the resonance 

angle 𝑛𝑝𝑘0 sin(𝜃) = 𝑛𝑒𝑓𝑓𝑘0  where the momentum of excitation matches the 

momentum of SPPs, the reflected intensity decreases due to the generation of SPPs. By 

changing the incident angle of the incoming light, we can have the characteristic 

reflection spectrum shown in Figure 20: 
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Figure 20 The variation of the reflected intensity as a function of incidence angle for different metal 

thicknesses. Here the resonance angle is 3 degrees more than the total internal reflection angle. Here 

metal thickness determines the efficiency of the SPP generation. I observe that 27.5 nm Au provides 

almost zero reflectivity at the resonance angle. This condition is known as the critical coupling condition 

which will play a very important role in the topological effects. 
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This experiment gave me a deeper understanding of surface plasmons and their 

excitation. The production of surface plasmons can happen when the energy of the light 

coincides with the excitation energy of the plasma on the metal. As it travels through 

the air, the momentum of light is less than the momentum of SPPs with the same energy. 

The prism is used to match the momentum of light and SPPs. Since only P-polarized 

light can excite SPPs, the change of incident angle adjusts the momentum value of the 

p-polarized wave along the metal surface. When the momentum is matched, a 

significant high optical absorption is observed in the reflected light. 

Figure 21 Dispersion curve of light and SPPs. This graph shows how the energy of light and SPP varies 

with the momentum. SPPs has higher momentum values than free propagating light due to their confined 

nature. For SPPs and light have the same energy, 𝑘𝑆𝑃𝑃  is larger than k of photons. Because of this 

momentum mismatch, shining light on a flat metal does not generate plasmon polaritons. We need to 

overcome this momentum mismatch with a high refractive index prism which is known as the 

Kretschmann configuration.   
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The metal thickness determines the efficiency of the SPP generation. I first fabricated 

various metal films to find the critical metal thickness which provides the larges 

adsorption, which is known as the critical coupling condition where the reflected light 

becomes zero. This is an interesting condition because the phase of reflected light is not 

defined at this point. We realized that the critical thickness may bring a topological 

singular in surface plasmons. 

To observe this topological singularity, I prepared a sample with two different 

thicknesses, one less than the critical thickness and the other more than the critical 

thickness. By imaging the reflected pattern, I observed an interesting feature: A distinct 

dark band appears at the junction of two different thicknesses. Through careful analysis, 

we preliminarily think that this phenomenon is produced by the change of reflection 

topology.   

 

Figure 22 Image of the reflected light from the sample with two different metal thicknesses. one less than 

the critical thickness and the other more than the critical thickness. The dark line between at the boundary 

is due to a topological singularity where the phase of reflected light is not defined. 
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5.3 Experimental setup used for measurement of reflection phase   

The main aim of this thesis is to measure the topological Berry phase of SPPs.  

Although the spectrum of reflected light can be measured with a simple spectrometer, 

measuring the phase of the reflected light is a challenging task. Here, the main technical 

issue is to separate the kinetic phase of light due to the propagation and the phase 

accumulation due to the geometrical or topological effects. Since the phase of light is a 

relative quantity, phase measurements require a reliable reference that does not change 

during the experiments. Only P-polarized light can generate SPPs, we decided to use 

S-polarized light as the reference. We have designed an optical setup resembling a 

spectroscopic ellipsometer which provides phase difference between S and P polarized 

light. The main working principle of this system is based on Fourier analysis of the 

interferogram generated by the S and P polarized light. Figure 23 shows the 

experimental setup and its schematic drawing. In this setup, we used a supercontinuum 

laser (SCL) as the light source. SCL generates a broadband (400-2600 nm) quasi-

coherent light source which is collimated with and fibre collimator. The fibre collimator 

is placed on a rotary stage to control the incidence angle on the prism. We placed a 

broadband polarizer at 45o angle to produce both S and P polarized light before the 

prism. Both S- P-polarized light propagate on the same optical path (i.e the same beam 

of light), the alignment of the interferometer is relatively easy. We placed the prism on 

another small rotary/tilt stage to compensate for the angle of the reflected light. After 

the reflection from the prism, the beam is split into S- P polarization using a Wollaston 

prism. WP consist of a two birefringent crystal that splits unpolarized incident light into 



61 

 

two orthogonally polarized outputs. After the WP, we used an imaging lens to merge 

these two orthogonally polarized outputs to a c-MOS camera. To form an interference 

pattern, we used a second polarizer (at 45o) after the imaging lens to convert the 

orthogonally polarized beams into 45o polarization. After the secondary polarizer, 

beams have the same polarization state therefore they can generate an interference 

pattern on the c-MOS camera. 

 

Figure 23 Schematics and photographs of the experimental setup used for the measurement of the 

reflection phase. The setup consists of a broadband supercontinuum laser, double-axis rotary stage, high 

refractive index prism, imaging lens and camera. We excite the SPPs using 45o polarized light. The 

reflected light is then split into s- and p-polarized light with a Wollaston prism. The interference of the 

beams on the camera generates an interferogram that includes both the intensity and phase of the reflected 

light.  
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5.4 Working principle of the Wollaston prism: 

The Wollaston prism is an optical device that produces two beams of linearly polarized 

light that are separated from each other and have mutually perpendicular vibrational 

directions. It is composed of two right-angled prisms, and the material used is calcite. 

The optical axes of the two prisms are perpendicular to each other. When natural light 

is incident vertically on the surface of the Wollaston prism, the P-polarized light and S-

polarized light propagate in the same direction without refraction, but at different 

speeds V, respectively. After they enter the second prism, the S-polarized light in the 

first prism becomes P-polarized light for the second prism because the optical axis of 

the second prism is perpendicular to that of the first prism, and the P-polarized light 

becomes S-polarized light for the second prism. Therefore, the S-polarized light in the 

first prism is refracted at the interface of the two prisms with the relative refractive 

index np/ns, while the P-polarized light in the first prism is refracted with the relative 

refractive index ns/np. Since calcite is a negative crystal (ns>np), the P-polarized light 

in the second prism propagates away from the normal at the intersection of the two 

calcites, and the S-polarized light in the second prism propagates close to the normal at 

the intersection of the two calcites. As a result, the two beams are separated in the 

second prism. Thus, the rightmost face is refracted again by the Wollaston prism and 

the two beams are polarized at a certain angle, and their vibrational directions are 

perpendicular to each other. When the angle at the top of the prism is not too large, the 

two refracted beams are separated almost symmetrically. The angle of separation of the 
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two beams is related to the material used in the Wollaston prism; if it is made of quartz, 

the angle of separation becomes much smaller. 

 

 

Figure 24 Schematic drawing of the Wollaston prism and the angular deviation as a function of 

wavelengths. (From Thorlabs Inc.) 

 

5.5 Interferogram of broad-band light source:  

To measure the phase spectrum of the reflected light, we created an interferogram using 

a broadband light source. The Fourier analysis of the interferogram provides the 

spectrum and phase difference (𝜃𝑠 − 𝜃𝑝 ). Figure 25 shows the optical path for the 

interferometer. Two orthogonally polarized outputs of the Wollaston prism (then 

converted to 45o) are merged on the camera with the imaging lens. We used a CMOS 

camera (Thorlabs CS126MU) with the number of active pixels 4096 (Horizontal) x 

3000 (Vertical) and a total of about 12.3 million pixels. The pixel size is 3.45 µm x 3.45 

µm. The imaging lens enhances the beam size which yields a position-dependent phase 

difference. The constant phase front of the beams is the plane perpendicular to the 

propagation direction. The zero-phase-difference (ZPD) position is at the centre of the 
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beam. Mowing away from the centre introduces an optical path difference (PD) 𝑃𝐷 =

𝑥/sin (
𝛼

2
) where x is the position from the beam centre and 𝛼 is the incidence angle 

of the beams. The period of the interference fringes can be calculated from a complete 

phase difference of pi,  𝜋 = 𝑘𝑃𝐷   which makes 𝛬 = 𝜆/2 sin (
𝛼

2
)  which is 

equivalent to 20 pixels on the camera.   

 

Figure 25 Schematic showing the optical path for the interferogram. Two orthogonally polarized outputs 

(then converted to 45o) are merged on the camera to generate an interference pattern on the camera. 

Because of the beam size of the outputs, there is position-dependent optical phase. The centre of the 

beam is the location of zero-phase difference.  

 

Figure 26 shows a representative interferogram obtained from the camera image. The 

ZPD position is located at the centre of the image where all wavelengths interfere 

constructively generating the highest intensity. Mowing away from the ZPD yields a 

position-dependent oscillation depending on the spectrum and phase of the beams.    
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Figure 26 The recorded image and the graph shows the interferogram of the reflected light from the prism. 

Fourier analysis of the interferogram provides intensity and phase spectrum.  

5.6 Fourier transform of the interferogram:  

The interferogram contains information about the spectrum and the phase of the 

interfering beams. To obtain this information, we used Fourier analysis of the 

interferogram.  This method has been extensively used for infrared spectrometers and 

magnetic resonance imaging.  Here we implement Fourier transform algorithm to 

obtain the spectrum and phase between s and p polarized light.  
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When two beams merge and convert into one beam, the constructive beam can be 

written as: 

𝐸 = 𝐸1𝑒
𝑖𝑤𝑡 + 𝐸2𝑒

𝑖(𝑤𝑡+𝜃) (5.6.1) 

Among them, 𝜃 is the phase difference between S polarized light and P polarized light. 

According to the results discussed previously. 

𝜃 = 𝑘 ∙ 𝑃𝐷 =
𝑘𝑥

𝑠𝑖𝑛
𝛼
2

=
2𝜋𝑥

𝜆 ⋅ 𝑠𝑖𝑛
𝛼
2

(5.6.2) 

k is the wavenumber, which is 𝑘 =
2𝜋

𝜆
. 

Due to the presence of the 45° polarizer, the intensity of the P-polarized light and S-

polarized light are equal, thus: 𝐸1 = 𝐸2=𝐸0, So we can have the intensity catching by 

the camera, which is: 

𝐼 = |𝐸 ∙ 𝐸∗| = 2𝐸0
2(1 + 𝑐𝑜𝑠𝜃) = 2𝐸0

2(1 + cos(𝑘 ∙ 𝑃𝐷)) (5.6.3) 

then 

𝐼(𝑃𝐷) = 𝐼(𝑘)(1 + 𝑐𝑜𝑠𝜃) = 2𝐸0
2(1 + cos(𝑘 ∙ 𝑃𝐷)) (5.6.4) 

where  I(k) = 2E0
2   is a constant that depends only upon k and  I(PD)  is the 

interferogram. 

Thus, for all different wavevector, the intensity on the screen should be: 

𝐼(𝑃𝐷) = ∫ 𝐼(𝑘)(1 + cos(𝑘 ∙ 𝑃𝐷))𝑑𝑃𝐷

∞

0

(5.6.5) 

Written this equation into two parts: AC and DC 

𝐼𝐷𝐶(𝑃𝐷) = ∫ 𝐼(𝑘)𝑑𝑃𝐷

∞

0

= I(k) = 2E0
2 (5.6.6) 

which is a constant. 
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𝐼𝐴𝐶(𝑃𝐷) = ∫ 𝐼(𝑘) cos(𝑘 ∙ 𝑃𝐷) 𝑑𝑃𝐷

∞

0

(5.6.7) 

Since COS function is an even function along x=0 axis, and cos(x) can be written as 

sin(ix), thus: 

𝐼𝐴𝐶(𝑃𝐷) = ∫ 2𝐼(𝑘) cos(𝑘 ∙ 𝑃𝐷) 𝑑𝑃𝐷

∞

−∞

= ∫ 𝐼(𝑘)[𝑐𝑜𝑠(𝑘 ∙ 𝑃𝐷) + 𝑖𝑠𝑖𝑛(𝑘 ∙ 𝑃𝐷)]𝑑𝑃𝐷

∞

−∞

= ∫ 𝐼(𝑘)𝑒𝑖𝑘𝑃𝐷𝑑𝑃𝐷

∞

−∞

(5.6.8)

 

Substitute (5.6.2) into (5.6.8), finally we have: 

𝐼(𝑥) = 2E0
2 +

1

𝑠𝑖𝑛
𝛼
2

∫ 𝐼(𝑘)𝑒
𝑖𝑘

𝑥

𝑠𝑖𝑛
𝛼
2𝑑𝑥

∞

−∞

(5.6.9) 

From this equation, we proved the mathematical principles behind this Fourier 

transform visible spectrum. If any waveform can be transformed into a linear 

combination of constant, several sine and cosine functions, we can complete the 

conversion from the time domain to the frequency domain. This is the core idea of 

Fourier transformations: any continuous periodic signal can be combined by an 

appropriate set of sinusoidal curves. 

Below is the spectrum and the phase information getting from Figure 26 based on this 

principle. 
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Figure 27 (a) Spectral and (b) phase changes of the beam obtained by Fourier transform visible 

interferogram. 

5.7 Imaging camera:  

We used an imaging camera to record the interferogram. There are currently two core 

imaging components of digital cameras: one is the widely used CCD (Charge Coupled 

Device) element; the other one is the CMOS (Complementary metal–oxide–

semiconductor) device. Charge-coupled device image sensor CCD, which uses a high-

sensitivity semiconductor material made of light into electric charge, through the 

analogue-to-digital converter chip into a digital signal, the digital signal after 

compression by the camera internal flash memory or built-in hard disk card to save, so 

you can easily transfer the data to the computer, and with the computer's processing 

means, according to the need and imagination to modify the image. 

Complementary Metal-Oxide Semiconductor (CMOS) is the same semiconductor that 

records light changes in digital cameras as CCD. The current generated by these CCD 

and COMS complementary effects can be recorded and interpreted into images by the 

processing chip. 
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CCD and CMOS image sensor photoelectric conversion principle is the same, their 

main difference is that the signal readout process is different; because the CCD only 

one (or a few) output node unified readout, the consistency of its signal output is very 

good; and CMOS chip, each pixel has its signal amplifier, each charge-voltage 

conversion, the consistency of its signal output is poor. However, the CCD requires a 

wide signal bandwidth of the output amplifier to read out the whole image signal, while 

in the CMOS chip, the bandwidth of the amplifier in each image element is lower, which 

greatly reduces the power consumption of the chip, which is the main reason why the 

CMOS chip consumes less power than the CCD. Despite the reduced power 

consumption, but millions of amplifier inconsistency brings a higher fixed noise, which 

is the inherent disadvantage of CMOS relative to CCD. 

5.8 Data acquisition and analysis software:  

To make data acquisition and analysis easier, we use LabView to simplify the process 

of measuring and analyzing data. 

① We use the LabView code provided by ThorLabs official website to obtain the data 

of the camera's real-time photos, that is, the image information into the LabView 

block diagram. 

② This program execution block diagram shows the logical relationship between data 

measurement and processing. After the image is taken, the image data is converted 

into a matrix by the "Get Image Data" module, that is, the image is converted into 

the intensity of light on each pixel. 
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Figure 28 The LabView program logic block diagram of the interferometer to perform data acquisition 

and analysis. 
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③ In this step, the Image data matrix is first transposed to obtain the strength data of 

the image horizontal lines, and then input into a for loop statement to take multiple 

horizontal lines for analysis. The meaning of "400" is to take a total of 600 

horizontal lines from the 400th pixel vertical and average them. The orange line is 

connected to the meaning of filling the rest of the data obtained by the average with 

zeros to form a matrix for the convenience of subsequent calculation. 

④ The fourth step is to eliminate noise. As shown in Figure 26, the curve of intensity 

showed a linear increase, which was caused by noise and background. To reduce its 

influence, we subtracted the sum of a horizontal intensity from the obtained data 

and divided it by a constant correction curve, so as to obtain a noise-cancelling, flat 

interference pattern intensity curve. 

⑤ The fifth step is to screen the data. Since the interference pattern is concentrated in 

the middle part of the whole image, in order to improve the operation efficiency of 

the program and save time, we choose the intensity of 20-4046 pixels in the 

horizontal direction and re-make it into a new matrix. 

⑥ The sixth step is to Fourier transform the data to obtain spectral and phase 

information. First, the "Build waveform" module was used to enable LabView to 

identify and process the data, and then Fourier transform was performed on the data. 

The obtained data were spectrographs and phase changes, which were the key 

information of the experiment and the most important part of our requirements. 

When finished, it is imported into the output module. 

⑦ This step is the method and logic of determining the wavelength of the spectrum." 

3214160 "is the result of correcting the software results in reverse for a given 

wavelength range by using different filters. 

This figure below is the front panel of LabView and a block diagram of its results. The 

processed data will be displayed here. It should be noted that since the CMOS camera 
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here is made of a silicon, the maximum wavelength that can be detected is 1100 nm. 

By the above method, we have built a new interferometer for the 300-1100 nm band 

and can change the angle of incidence for angular scanning. 

Figure 29 Block diagram of the Labview results of the interferometer. ① and ④ are image and data 

saving buttons, respectively. ②Exposure time setting box. ③ Single data acquisition and processing 

run button. ⑤ Display of the acquisition image. ⑥Waveform graph of the interference curve. 

⑦Spectrum diagram of the measured light. ⑧Phase change of the measured light. 
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5.9 Sample preparation method:  

We use index matching gel to connect BK7 prism and gold on glass slide together and 

the gold(99.99% Pi-Kem) coating is deposited on the surface of the glass by magnetron 

sputtering (agar scientific： High-Resolution Sputter Coater AGB7234).  

Magnetron sputtering coating starts by placing the substrate or substrates to be 

deposited with thin films on the anode of the DC power supply of the magnetron 

sputtering system (high potential) and placing the original material of the thin film to 

be generated on the substrate as the sputtering target (to be bombarded by ions to be 

ionized) on the cathode of the magnetron sputtering system. Subsequently, the working 

chamber of the magnetron sputtering system is pumped to a certain air pressure under 

vacuum and certain air pressure of Argon (Ar) gas is passed to maintain the air pressure 

inside the chamber. Then the system is operated to energize the cathode and anode, and 

the voltage is gradually increased. After reaching a certain voltage, a glow discharge 

phenomenon is generated between the cathode and anode, and a large number of 

electrons and Ar ions are produced. Due to the electric field of the cathode and anode, 

the electron accelerates toward the anode, while the magnetic field near the cathode 

binds the range of motion of the electron (Lorentz force does not do work and does not 

affect the kinetic energy) and gathers near the cathode, which significantly increases 

the concentration of plasma near the target, so the electron does a compound motion of 

pendulum and spiral motion near the cathode due to Lorentz force and electric field 

force, and keeps hitting the Ar ions are positively charged, and the generated large 

amount of Ar ions are accelerated to the target of the cathode under the action of electric 

field, bombarding the target with Ar ions, which on the one hand leads to part of the 

target surface atoms gaining recoil energy and leaving the target surface to become 

sputtered atoms and finally deposited on the substrate surface; on the other hand leads 

to secondary electrons being emitted from the target surface and accelerated into the 

glow discharge plasma under the action of the cathode target sheath layer. The 

secondary electrons are accelerated into the glow discharge plasma region under the 
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action of the cathode target sheath. The secondary electrons entering the plasma region 

are bound by the magnetic field at the target surface and collide with the sputtering gas 

atoms to ionize them, so the secondary electrons are an important source of energy for 

the magnetron discharge to be self-sustaining. 

Magnetron sputtering can be used to prepare a variety of materials such as metals, 

semiconductors, and insulators, and has the advantages of simple equipment, easy 

control, large coating area, and strong adhesion. 

 

Figure 30 Desktop sputtering system used for the deposition of metal for surface plasmonic experiments. 

To obtain a relatively sharp boundary between a thick and a thin metal coating, we used 

silicon wafers as the shadow mask of the thin metal coating during the production of 

the thick metal coating due to the unique atomic structure of silicon. 
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Chapter 6 Results and discussion: 

In this chapter, I will discuss the experimental observation of the Berry phase for 

excitation of surface plasmon polaritons using the Kretschmann configuration shown 

in Figure 31a. We used a high refractive index prism to excite surface plasmon on a thin 

metal coated on a glass substrate. When the light goes into the prism and is reflected at 

the gold/glass interface, the free electrons in the gold layer are subjected to the action 

of an external electromagnetic field producing a collective forced vibration. SPP on the 

gold/air interface is excited by the evanescent electric field. The role of the prism is to 

overcome the momentum mismatch between SPP and light. The dispersion curve of 

SPPs is located outside the light cone and possesses a larger wave vector than the light 

with the same energy. Due to the strong optical absorption of the metal in the visible 

wavelengths, the propagation distance for the polaritons at the interface is usually only 

a few microns.  

In our experiment, we predict that the metal thickness is a vital parameter that can shift 

the topology in the light reflection in this structure.  The topological change can lead 

to drastic phase modulation. When there is topological change, that is the metal 

thickness is changed, there should be a strong change in the reflection. As shown in 

figure 31b, due to the topological theory, if you want to change the blue loop into the 

red one, you must cross the singularity point.  

This singularity can provide us with a new method to control light and its phase. 

In the Kretschmann configuration, the reflected light includes two components, (1) light 

directly reflected from the gold/glass interface, (2) light that outcouples from the SPPs. 

The second component is out of phase from the directly reflected light. The interference 

of these out of phase components forms two distinct topologies indicated the dominant 

component. By tuning the thickness of the metal layer, we can control the reflection 

topology.   
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Figure 31 (a), Schematic representation of the Kretschmann configuration used for the observation of the 

Berry phase. The topology of the reflection is defined by the two-phase component coming from the 

direct reflection and outcoupling from the SPP. The thickness of the metal layer defines the ratio of the 

out of phase components and the resulting topology. (b), The complex representation of the Fresnel 

reflection coefficient forms a closed loop. The winding number of these loops defines the topology. (c), 

The map of the reflection phase is plotted as a function of the wavelength and thickness of the metal. The 

topological singularity with a charge of +1 is seen on the map.      

 

The topology of the reflected light can be visualized using a complex reflectivity that 
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provides both amplitude and phase of the reflected light. Figure 31(b) shows the 

complex representation of the Fresnel reflection coefficient 𝑟 = |𝑅|𝑒𝑖𝜃  for three 

different metal thicknesses. As these three closed loops are placed in a coordinate 

system with Re r and Im r. The formation of the loop is plotted by sweeping the 

frequency of the excitation. The integer winding number of these loops defines the 

topology of the reflection. The reflection topology changes when the metal thickness is 

varies. Three different loops represent the reflection coefficients for three different 

metal thicknesses. Here the topological phase transition occurs at the critical metal 

thickness which generates zero reflectivity. Zero reflection is an indication of a phase 

singularity. When r=0, the phase of light is not defined. Winding this singularity point 

provides topologically different reflection which provides 2π Berry phase.  

The metal thickness of the blue loop is less than the critical thickness, and there is no 

singularity in the blue loop, so its winding number is 0. The thickness of the black loop 

is exactly equal to the critical thickness. Thus, there is exactly a singularity point in its 

path, so its winding number is not defined for the critical metal thickness.  The 

thickness of the red loop is larger than the critical thickness, there is a singularity inside 

the loop, which means its winding number is 1. Note that, all three loops pass through 

the point r=-1 indicating the direct reflectivity from a metal surface with a pi phase shift.   

Figure 31(c) is the phase map of the complex reflection coefficient defined by two 

parameters, the wavelength and thickness of the metal. The results of the simulation 

show that there is a singularity with a topological charge of +1 in the parameter space. 

When the metal thickness is larger than the critical thickness, there is an additional 

phase accumulation of 2π. This additional phase accumulation is called the Berry phase. 

From a broader view, when the system goes back to initial conditions after mowing a 

closed loop, the system accumulates an additional phase depending on the topology of 

the loop, i.e., winding number.  
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Figure 32: Experimental results showing the reflection phase and amplitude for different metal thickness 

for a spectral range from 450 to 800 nm. The critical metal thickness is between 29-30 nm. There is a 

clear difference in the phase behaviour for metal thickness larger less 29nm. There is an additional phase 

accumulation of 2π. c, shows the winding number of the reflection curves as a function of metal thickness. 

The topological phase transition happens around 29.5 nm.  

 

Figure 32 shows the variation of intensity and phase change with the wavelength for 

different metal thicknesses. From Figure 32(a), we can see two different phase 

behaviours. For metal thickness >30nm, the curves show phase variation with the 

wavelength from 450nm to 800nm. After sweeping the wavelength from 450nm to 800 

nm, the reflection phase goes back to the same value without any additional phase. 

However, for metal thickness, <30nm we observed a phase accumulation of 2π. There 

is a steep phase change around the resonance. The phase change is sharper around the 
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resonance for the critical thickness because the critical thickness can be treated as a 

singularity and the phase is not defined at this point. 

In this figure, the resonance occurs at around 620 nm. As the gold thickness increases, 

the absorption at resonance increases with the metal thickness starting at 27 nm and 

reaches a maximum at 29 nm, reaching about 95% absorption. However, when the 

thickness changes to 30 nm, the absorption rate at resonance decreases compared with 

29nm and with the increase of the metal layer thickness, the adsorption is lower and 

lower. 

It is worth noting that a reference is needed for the phase measurements. We used the 

phase of the beam passing through a right-angle prism without a metal coating. This 

reference is subtracted from the measured results to obtain the final phase change 

diagram for different metal thickness layers. We also normalized the reflection intensity 

using the spectrum recorded from the bare prism.   

Figure 32(c) represents the winding number for different gold metal thickness. For 

thickness of 27, 28 and 29nm, the winding number is 0; for thickness larger than 30nm, 

the winding number is 1 indicating different topological invariant for different thickness.  

Figure 33 shows the domain colour map obtained from the experimental results.  The 

horizontal axis indicates the metal thickness, and the vertical columns indicate the 

variation of wavelengths at the same thickness. There is a clear line in the upper left 

part of the diagram, showing a 2π phase shift starting at the singularity. This map 

indicates two different topological domains. Thick metal generates a trivial reflection 

with zero Berry phase. Thin metals <30nm, generate a nontrivial reflection with a 2π 

Berry phase. We believe that this is the first observation of the Berry phase for surface 

plasmons. 
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Figure 33 Experimentally obtained phase map of reflection plotted against thickness and wavelength. 

The phase singularity is around 620nm and 29 nm thick film.  

Next, we would like to study the boundary between two regions with different reflection 

topologies. The hallmark of topological systems is the robust boundary modes between 

topologically distinct regions. For example, in condensed matter systems, the boundary 

between two topologically different semiconductors shows metallic behaviour because 

of the requirement of a zero bandgap at the boundary. Similarly in photonic systems, 

photonic crystal with a photonic bandgap shows waveguide modes at the boundary 

between two topologically different domains. The unifying concept of these topological 

boundary modes is the out of phase response of these domains at the boundary.  In our 

system, we expect to see a boundary mode, a region with strong absorption, between 
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two regions with metal thickness less and higher than the critical thickness. 

 

As discussed before, to verify this strange phenomenon caused by the change of metal 

thickness and to explore what exactly it is, we made an NK7 glass piece plated with 

different thicknesses of gold, as shown in (a), one is larger than the critical coupling 

thickness and the other is smaller. When we shine single-wavelength light on this 

junction area, we can get a black dark line as shown in Figure 34, and after measurement 

we find that the light intensity of this line is 0, indicating that this thickness junction 

region produces perfect 100% absorption. 

To prove that this behaviour is coming from the topological change of the structure, we 

made use of the Fourier visible interferometer introduced in our previous experimental 

section. The light reflected through the thickness junction region was made into an 

interferogram pattern by such an experimental setup as shown in Figure 23. In this 

picture, there is a clear straight dark line in the middle, which is the boundary of 

different metal thicknesses. We can see that whether bright or dark lines, the upper and 

lower parts of the black boundary are not continuous, and there is always some offset 

that prevents these bright and dark lines from being straight, due to the phase transition. 

To determine the value of the phase transition more accurately, we took two different 

lines, the green and blue lines as shown in (c), on the interferogram pattern for each 

thickness and perform profile analysis on them. 

(b) is the line profile of the two lines. we can see that there is a phase difference of π 

between the two lines, which is reflected in the plot, i.e., the peak of the blue line 

corresponds to the valley of the green line, while the peak of the green line corresponds 

to the valley of the blue line. 
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Figure 34. Schematic showing the excitation of SPPs on topologically different surfaces using a 

monochromatic light source which generates a uniform interference pattern. The interference pattern 

generated from these topologically different domains is out of phase. 
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Figure 35 shows us more about the perfect absorption of this topological change. In (a), 

we made four different thicknesses of gold plating, their thickness relationship is 𝑡1 <

 𝑡2  <  𝑡3  <  𝑡𝑐  <  𝑡4 , using a single wavelength light source irradiated at the 

junction area of the four thicknesses and observe the reflected image. In the figure, we 

can find that only when the thickness of the two metals between the inclusion of critical 

thickness, there will be a clear dark band, and not 𝑡𝑐 not in the two-thickness range of 

gold plating at the border, there are no obvious black stripes. 

Figure 35 (a) An Image shows the reflection image from a surface with 4 different metal thicknesses. 𝑡4 

is topologically different from the rest, therefore there is a clear boundary mode around t4.(b) shows the 

reflection image from a pattern Chinese character "王" which demonstrate a boundary mode around the 

character. 

 

In (b), a Chinese character "王" is shown. This symbol has a large plating thickness 

𝑡𝑠>𝑡𝑐 compared to the plating thickness of the substrate (t<𝑡𝑐). From the image formed 

by the reflected beam, we can see that the Chinese character is wrapped in a distinct 

black stripe between the character and the substrate and that the nature of the stripe is 

not altered by the direction of the boundary, showing a uniform black colour. Not only 

that, some small features, such as imperfect boundaries when plated, can still be 

demonstrated, indicating the high resolution of this property. These above-mentioned 

features demonstrate the robustness of the characteristics brought about by this 
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topological change. 

These results provide a piece of direct evidence for the topological character of the 

surface plasmon polaritons. The reflected light in the Kretschmann configuration 

includes two out of phase components, (1) directly reflected light from the metal surface 

and (2) the out coupled light from the surface plasmons. These two components are out 

of phase. The thickness of the metal determines the ratio of these components. When 

we reach the critical thickness, two components have the same amplitude therefore they 

interfere destructively generating zero reflection. By tuning the metal thickness we can 

change the topology of the reflectivity which tell which component is dominant. When 

the metal thickness is large, direct reflection is dominant resulting in a trivial topology. 

However, when the metal thickness is less than 30 nm, the outcoupled light is dominant 

resulting in a nontrivial topology with 2𝜋 Berry phase. The topology of the reflection 

appears on the complex reflectivity plane where the topological invariant is the winding 

number which can be express as: 

𝑤 =
1

2𝜋𝑖
∮

𝑑𝑟

𝑟
 

The winding number can take only integer values of 0 and 1.  By tuning the metal 

thickness we can switch the topology of the reflection from the plasmonic surface. 

These topological features have consequences due to the bulk boundary correspondence 

principle. If we place two topologically different domains next to each other, at the 

boundary, we expect a localised boundary mode. We observe these localised modes in 

our case as perfect absorption lines around topologically different domains. These 

modes can be called non-Hermitian line modes which is a characteristic feature for 

lossy topological systems. These ideas can find different applications for optical devices 

however, they require electrical control of topological features. By electrically tuning 

the loss in the plasmonic system the topology can be switched by an electrical signal. 

This may enable an interesting device concept that uses topology to control the phase 

of light.  
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Chapter 7 Conclusion 

As a summary, we present the observation of the Berry phase for the excitation 

of surface plasmon polaritons. Berry phase is a quantized geometrical phase that is 

determined by the topology of the system. In our experiments, the topological concept 

is related to the closed curves on complex reflectivity space. Our impedance analysis 

shows that the zero-reflectivity condition is a phase singularity on a complex 

reflectivity plane. The topology of the curves could be trivial or non-trivial depending 

on the encircling of the singularity point (zero-reflectivity r=0). We built an 

interferometric spectrometer to measure the phase and intensity of the reflected light in 

the visible spectrum. Using this experimental setup, we show that the topology of the 

reflection can be changed by tuning the thickness of the metal layer. The critical 

thickness provides the zero-reflectivity at the plasmonic resonance for p-polarized light. 

We studied the boundary between topologically different domains. We show that 

perfect P-polarized light absorption conditions appear at the boundary between 

topologically distinct regions. These topological patterns appear when the number of 

windings of the Fresnel reflection changes at the boundary. These perfect absorption 

lines are evidence for non- Hermitian edge modes that generate coherent localized light 

adsorption. The perfect adsorption coming from topologically protected robust property 

ensures that observing surface plasmon polaritons using a topological perspective will 

provide new insights and design tools that have potential applications in optical 

computing and optical artificial learning. 

 

Being a materials science student, during this thesis, I have learned many new concepts 

in physics (such as wave impedance, topological physic) and I have gained a broad 

range of experiences in experimental optical techniques (including building optical 

setups, interferometers and data acquisition tools). It has been an interesting journey 

started from an idea of a mathematical concept of topology, building a new 

experimental setup and eventually observing a very abstract concept of Berry phase in 
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an experiment. I will prepare a scientific paper to report these observations. During my 

PhD study, I would like to extend this observation for other optical systems and want 

to build devices that exploit these unusual topological features of plasmons. 
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