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Inference of the internal structure of an object from passive radiation imaging has

many applications in modern day life, ranging from Medical Imaging to Nuclear Secu-

rity. In this thesis we focus on the joint reconstruction of attenuation a and radiation

source density f from the Attenuated Radon Transform (AtRT) Raf which models

Single-Photon Emission Computed Tomography (SPECT) data. Joint inversion in

the general case is known to be impossible and we instead consider the setting were

a takes only finitely many values, which we refer to as “multi-bang”, and f is once

differentiable with compact support. In this setting we are able to characterise singu-

larities appearing in the AtRT. With constraints on the support of f in relation to the

support of a and mild conditions on the boundaries of a, we are able to show unique

recovery of the sets on which a is constant. When the sets making up a are nested

convex sets, referred to here as nicely multi-bang, we show unique recovery of a and f .

It is also possible to obtain partial results for the more general case ranging from the

complete determination in special cases to situations where we can at least determine

a in certain sets. We also propose a numerical algorithm to jointly compute a and f

from Raf based on a weakly-convex regularizer, referred to as a multi-bang regular-

izer. Various numerical examples are given to show that the algorithm performs well

on synthetic examples.
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Chapter 1

Introduction

The ability to infer internal geometry from passive radiation data has many applica-

tions in modern day society. These include, but are not limited to, Medical imaging;

including PET [61] and SPECT imaging [61, 30, 31], Seismic Imaging [7] and Nuclear

Security [59].

One important medical imaging technique is Single-Photon Emission Computed

Tomography (SPECT) [30, 32, 55, 14]. In SPECT a radioactive tracer which produces

gamma rays is inserted into the body and the intensity of the radiation is recorded

by a gamma camera. This gamma camera is fitted with a collimator and so as well

as recording intensity, it also records orientation of the rays measured. These mea-

surements allow us to infer information about the internal geometry of objects. This

thesis focuses on the simultaneous recovery of two quantities a, which will be used to

denote the attenuation of the materials which make up that object, and f which will

be the radiation source density. In two dimensions these two quantities are linked with

passive radiation/SPECT measurements by the Attenuated Radon Transform (AtRT)

Raf(s, θ) =

∫ ∞
−∞

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt, (1.1)

where D is the beam transform

Da(x, θ) =

∫ ∞
0

a(x+ tθ) dt,

specific definitions of s, θ and θ⊥ are given in Definition 1.

The AtRT, given the attenuation and source density within an object, calculates the

radiation emitted along a given line.

11
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When a is fixed, the mapping f 7→ Raf is known to be analytically invertible under

certain mild conditions, and when these hold a closed form solution for the inverse is

known, see [48, 14, 38]. Furthermore similar formulae have been found for attenuated

tensor transforms [43] and the problem has been studied on surfaces both for functions

and tensor fields [36, 40]. The problem of recovering both a and f from the AtRT

is sometimes known as the SPECT identification problem [44, 56, 55], and a known

result, given in [55], shows non-uniqueness for radial a and f . In particular [55] shows

there are different pairs of a and f depending only on distance to the origin which

give the same AtRT, in some cases a solution pair may exist with a = 0. This non-

uniqueness property also holds for maps which are “close” to being radial, as shown

in [30], and numerical investigations in [54] also show evidence of non-uniqueness in

other situations. Another important assumption in the inversion of Raf is that f is

non-zero, this is as if f = 0 then any choice of a leads to an AtRT which gives 0.

Despite some negative results, under additional hypotheses determination of a and

f from Raf is still possible. In medical imaging literature there has been a lot of

work on determining numerical methods for the SPECT identification problem (e.g.

[58, 60, 31] and their references). Although we focus on simultaneous recovery of a and

f it is common for practical applications of SPECT to obtain the attenuation through

a separate transmission CT scan first; this is sometimes referred to as attenuation

correction [58, 31]. The AtRT is nonlinear in a which can cause a large amount of

computation strain in numerics and linearisation has been applied in order to obtain

numerical reconstructions of attenuation from SPECT data alone in [12], as well as

range conditions [13, 11]. Although we do not consider scattering effects here, some

studies have also attempted to make use of scattered photons for attenuation iden-

tification in SPECT ([21, 22]). However, this case requires the forward model to be

enriched with a scattering term, which yields a different mathematical problem.

There are not many positive theoretical results concerning recovery of both a and

f from emission data alone. In the case when Da in (1.1) is replaced by a constant

µ times t the transform is called the exponential Radon transform, and in [55] it is

shown that µ can be determined from the exponential Radon transform when f is

unknown, provided it is not radial. A linearisation of the problem is studied from a

microlocal point of view in [56], and used to establish some results for the nonlinear
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problem as well. A range characterisation of f 7→ Raf for given a originally found in

[48] and further explored in [49] was used in [3] to analyse recovery of both a and f .

Another related result is given in [16] which shows that unique recovery of a and f is

possible when a is a multiple of the characteristic function of a star shaped polygon.

In this thesis we assume that a takes on only finitely many values, and refer to such a

as multi-bang. As detailed below, we are able to show unique recovery of such a from

Raf in some cases.

Recently the authors of [18, 19] introduced a convex multi-bang regularization

technique intended to allow reconstructions of images in which there are only certain

known values, and our line of research leading to this thesis was originally inspired

by this technique. There are many applications where the multi-bang regularization

technique might be useful, particularly in many forms of medical imaging, e.g. SPECT

imaging [30] and X-ray Imaging [63], this is because there are only a handful of tissue

types e.g muscle, bone, skin and tumorous expected in the body. Another potential

application of multi-bang is in Seismic Imaging [7]. In Seismic Imaging geographical

artefacts are scanned and often the materials expected are typically known a priori

(for example scanning cliff faces of a known rock to find potential weaknesses [7])

and the internal structure of the artefact is the objective of the image reconstruction.

The convex multi-bang technique of [18, 19] was applied numerically to the problem

of recovering multi-bang a and f from Raf in [54] with mixed results, and we have

since modified the method to use a weakly-convex (rather than convex) multi-bang

regularization combined with Total Variation(TV) to promote the joint recovery of

multi-bang a and f from the AtRT Raf . We implement this by alternating updates

between a and f using [1] to prove convergence. The a update is the most compu-

tationally intensive step due to the nonlinearity and using recent work by [32, 5] we

apply a variant of the Alternating Direction Method of Multipliers (ADMM) with a

non-convex multi-bang regularizer, which we show lends itself to promoting multi-bang

solutions.

Furthermore, the combination of the weakly-convex multi-bang and TV regularizer

allows for good recovery with few projections. Here a projection refers to data ob-

tained for a single angle θ and many s. The Computerized Tomography (CT) problem

[17, 58, 4], in which the aim is to instead invert the Radon Transform R0f to recover
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multi-bang f , with limited projections is an example of a wider range of tomography

known as Discrete Tomography (DT) [34]. Multi-bang regularization seems to lend

itself to the CT case, as the reconstructions of f are typically binary or take a small

set of grayscale values which we could use as an admissible set. Since DT takes few

projections between 4− 32 [17, 63] (with higher resolution and more complex images

requiring more projections) the problem of numerically inverting is commonly under-

determined and the relationship between the known projection angles is important in

ensuring a unique reconstruction. One particularly important result is given in [34]

which shows that the angles should be chosen so that they are irrationally related in

order to ensure the best recovery.

The novel contributions of this thesis and [37] are summarised as follows. The

precise and rigorous versions of the theoretical results, which include a few other

technical assumptions, are presented in Chapter 3 for Lemma 15 and Chapter 4 for

Theorem 6 and Lemmas 18-20.

1. Lemma 15. Assuming that a is multi-bang, f ∈ C1
c (R2) is non-negative, and

with some additional assumptions about the regularity of the boundaries of the

regions of constant a, then we can uniquely determine the regions on which a is

constant.

2. Theorem 6. If a and f are as in Lemma 15 with the regions of constant a

being a sequence of nested convex sets and assuming supp(f) satisfies certain

hypotheses, then a and f can be uniquely determined from Raf .

3. Lemmas 18- 20. If a and f are as in Lemma 15 then we can uniquely determine,

in some cases, a and f from Raf . Futhermore, Lemmas 18-20 give conditions

required on a region Ω and f in order to uniquely determine the value of a in

some of its regions. Again we have a requirement on the supp(f).

4. We propose a numerical algorithm for joint recovery of multi-bang a and f

for limited projection data, and demonstrate its utility with some numerical

examples.

Point 2 in the above list is the main theoretical result from [37], and Algorithm 2 is

also given in [37]. All results given in Chapter 3, excluding Chapter 3.5, (which relate
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to points 1 and 3) are extensions of work from [37] are are novel contributions of this

Thesis. The Discrete Tomography Algorithm given in Algorithm 3 is also novel to this

thesis.

As it is presented in this thesis, the hypotheses of all results in Chapter 3 relating to

Theorem 6 imply that supp(f) 6⊂ supp(a) which is not realistic in practical applications

of SPECT. We would like to thank an anonymous referee for [37] who pointed out

that in the case where a = c on some circle of radius r, methods from [55] give a

counterexample to Theorem 2 with radial f supported within that circle. In general,

if supp(f) ⊂ supp(a) then the outermost boundary on which a is discontinuous cannot

be determined using techniques presented in this thesis. Numerically we have found

that the only phantoms we examined which had non-unique solutions were radial in a

and f and even small perturbations to make a non-radial produced unique solutions,

this evidence is presented at the end of Chapter 6.

The proofs for Lemma 15, Lemmas 18-20 and Theorem 6 are based on careful

analysis of the singularities which occur in Raf arising from the jumps of a, as well

as a result that if a is known outside of a convex region, then Raf determines f

uniquely also outside this convex region (see Lemma 17). We prove this latter result

by reducing it to the problem considered in [15, Theorem 3.1], although other proofs

using for example analytic microlocal analysis as in [29] should also be possible.

The rest of the thesis is structured as follows. Chapter 2 gives a literature review

on relevant background topics. Chapter 3 contains results relating to the unique

determination of the multi-bang regions of a and this Chapter is split into two sections.

The first contains results in the general case and the second involves a special case

where all the regions of a are nested convex sets, known as nicely multi-bang a. Chapter

4 is also split into two sections with the first outlining a complete proof of unique

recovery of a and f from Raf in the nicely multi-bang case. The second section gives

partial results on the unique recovery of a and f from Raf in the general multi-bang

case. Chapter 5 focuses on the numerical methods involved in recovering a and f from

the optimization problem. Chapter 6 gives some numerical reconstructions for various

cases of a and f as well as some discrete tomography reconstructions. Finally, Chapter

7 summarizes the results obtained in the thesis as well as some potential directions for

further research.



Chapter 2

Literature Review

2.1 Attenuated Radon Transform

Let a and f be compactly supported functions on R2 and let Ω ⊂ R2 be a simply

connected Lipschitz domain containing the supports. Then the 2-D photon transport

equation, without scattering, is

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x), (x, θ) ∈ Ω× S1,

u|Γ− = 0,
(2.1)

where u(x, θ) is the photon flux through the point x in a unit direction θ ∈ S1 and

Γ− = {(x, θ) ∈ ∂Ω× S1 | θ · n(x) ≤ 0},

where n(x) is the unit outward pointing normal to the boundary at x. Intuitively the

differential equation in (2.1) states that photons are created by a source with density

f and then move along straight lines while being attenuated at a rate given by a. The

boundary condition in (2.1) requires us to have no radiation entering the domain Ω.

We can also define an analogous set

Γ+ = {(x, θ) ∈ ∂Ω× S1 | θ · n(x) > 0}

which is the set of all points on the boundary and directions which point out of Ω.

Before we examine (2.1), we first explicitly define the Attenuated Radon transform

and the Beam transform.

16



2.1. ATTENUATED RADON TRANSFORM 17

Definition 1 (The Beam Transform). We define the beam transform of a via the

map D : L∞c (R2) −→ L∞(R2 × S1)

Da(x, θ) =

∫ ∞
0

a(x+ tθ) dt. (2.2)

Here x = (x1, x2) ∈ R2 is an arbitrary starting point and θ is a direction of travel such

that θ ∈ S1. This transform represents the total attenuation over a ray. It is often

more convenient and natural to work with rays which we parametrise by (s, θ), where

s is a scalar quantity representing the closest approach a ray makes to the origin. We

define θ⊥ := (−θ2, θ1) i.e, rotating θ by π/2 anticlockwise and then we can write any

point x ∈ R2 as a linear combination of θ and θ⊥. With this notation we can define

the Attenuated Radon Transform.

Definition 2 (The Attenuated Radon Transform). We define the Attenuated

Radon Transform, for fixed a ∈ L∞c (R2) via the map Ra : L∞c (R2) −→ L∞(R× S1)

Raf(s, θ) =

∫ ∞
−∞

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt. (2.3)

When a = 0 we recover the also well studied Radon transform [17, 56, 45, 34]

Rf(s, θ) =

∫ ∞
−∞

f(sθ⊥ + tθ) dt.

The photon transport equation (2.1) can be solved by method of characteristics to

produce the following result.

Theorem 1. If u is the solution of (2.1) then limt→∞ u(x+ tθ, θ) = Raf(x · θ⊥, θ).

Proof. We use the method of characteristics to solve this first order partial differential

equation. This leads us to the 3 first order ODEs,

dx1

dt
= θ1 (2.4a)

dx2

dt
= θ2 (2.4b)

du

dt
= f(x)− a(x)u(x, θ) (2.4c)

Here we have set θ = (θ1, θ2) and x = (x1, x2). Solving (2.4a) and (2.4b) leads us to

x = x0 + tθ, where x0 is some arbitrary fixed point. We can then replace x by x0 + tθ

in order to solve (2.4c) . Using this we can rewrite (2.4c) as,

du

dt
= f(x0 + tθ)− a(x0 + tθ)u(x0 + tθ, θ). (2.5)
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This ODE can be solved using integrating factors. The integrating factor here is

I(x0, ρ, θ) = e
∫ ρ
0 a(x0+pθ)dp.

Suppose the oriented line x = x0+tθ enters Ω when t = s then the boundary condition

given in (2.1) tells us that u(x0 +sθ, θ) = 0. Multiplying (2.5) by I(x0, ρ, θ) and using

the fundamental theorem of calculus we get,

u(x0 + τθ, θ)e
∫ τ
0 a(x+pθ)dp =

∫ τ

s

f(x0 + tθ)e
∫ t
0 a(x0+pθ)dpdt.

Rearranging this we get

u(x0 + τθ, θ) =

∫ τ

s

f(x0 + tθ)e−
∫ τ
t a(x0+pθ)dpdt.

Finally, using the substitution p̂ = p − t in the exponential involving a and letting

τ −→∞ and the fact that f(x+ tθ) = 0 for all t ≤ s, we get

lim
τ→∞

u(x0 + τθ, θ) =

∫ ∞
−∞

f(x+ tθ)e−
∫∞
0 a(x0+tθ+p̂θ)dp̂ dt.

With the Attenuated Radon Transform described we now move onto a section

giving a precise description of what a multi-bang a is.

2.2 Multi-bang attenuation

We begin by defining the types of regions, specially the boundaries of the regions, over

which a is constant that we consider in this thesis.

Definition 3. (Analytic boundary) Suppose Ω is a bounded region in R2. For a

point x∗ ∈ ∂Ω we say that ∂Ω is analytic near x∗ if there exists a neighbourhood V

of x∗ and a set of Cartesian coordinates centred at x∗ such that on V the boundary

is given by (x, f(x)) where f is a real analytic function. If ∂Ω is analytic near all

x∗ ∈ ∂Ω we say that ∂Ω is an analytic boundary.

Definition 4. (Corner) Let x∗ be a point on the boundary of a region Ω. Then x∗ is

a corner point of Ω if there exists a neighbourhood V of x∗ and Cartesian coordinates

centred at x∗ such that we can describe the boundary for x < 0 via (x, f(x)) and for

x > 0 via (x, g(x)), where both f and g are analytic, and
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lim
x→(x∗)+

f ′(x) 6= lim
x→(x∗)−

g′(x) (2.6)

with the extra requirement that we do allow either of these limits to be ±∞.

Definition 5. (Piecewise analytic boundary with corners) A set Ω has piecewise

analytic boundaries with corners if for every point x∗ in ∂Ω x∗ is either a corner point

for Ω, or ∂Ω is analytic near x∗.

With these Definitions we are now ready to define precisely what we mean by a

multi-bang a.

Definition 6. (Multi-bang) We say that a ∈ L∞(R2) is multi-bang if there exists a

finite set A = {a1, ... , an} ⊂ R, called the admissible set, and a collection of disjoint

bounded open sets {Ωj}nj=1 with piecewise analytic boundaries possibly having corners

such that

a =
n∑
j=1

ajχΩj . (2.7)

Here χΩj is the characteristic function of the set Ωj, and we assume that for all Ωj

the interior of the closure of Ωj is equal to Ωj. We also assume that any line only

intersects the boundaries ∪nj=1∂Ωj finitely many times.

Definitions 5 and 6 allow for a lot of different choices for a but eliminate some

pathological cases such as any boundary which crosses any given straight line infinitely

many times. We include Figure 2.1 for examples of multi-bang a.

Figure 2.1: Two examples of multi-bang a. The left is a general multi-bang example

with 6 values (as 0 is also considered a multi-bang value). The right is a nicely multi-

bang example, see Definition 14, with 4 multi-bang values

(a) General multi-bang example (b) Nicely multi-bang example
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With multi-bang a defined, we now give an outline of problem we wish to solve. In

particular we show how we can form a Variational problem which can be optimized to

simultaneously recover a and f .

2.3 Outline of problem

The aim of this project is as follows, given boundary data d on Γ+ from multi-bang a

(see Definition 6), with known admissible set A, and f ∈ C1
c (Ω) simultaneously and

stably recover a and f . The boundary data here is the Attenuated Radon transform or

equivalently the solution of the photon transport equation on Γ+. Here stably means

that the reconstruction depends continuously with respect to some norm on the data.

We aim to do this by solving the following optimization problem

argmin
a,f∈BV (Ω)

‖Raf − d‖2
L2(Γ+) + αM(a) + γaTV(a) + γfTV(f), (2.8)

where M and TV denote the multi-bang penalty and total variation regularizer re-

spectively (see (2.18) and (5.12)). Here α and γa, γf are regularization parameters

associated to multi-bang and TV respectively and BV is the space of functions of

bounded variation on, see [2]. An advantage of using (2.8) over an iterative regularisa-

tion method, as in [25], is that we obtain simpler expressions for updates, see Chapter

5.1.1-5.1.3, and have more control over the recovery of multi-bang images. Multi-bang

regularization is the more recent development and Section 2.4 examines the literature

relating to it in [19, 18, 54]. Total Variation is very well studied see [46, 18, 37, 54],

and their references, and the exact form of Total Variation we use numerically will be

examined in Chapter 5. In Chapters 5 and 6 we work in the discrete setting where the

domain Ω is split into square pixels and we assume a and f to be piecewise constant

over these pixels. This leads to the following discretised variational problem, which

we consider in Chapter 5,

argmin
a,f

‖R[a]af − d‖2
2 + αM(a) + γaTV(a) + γfTV(f), (2.9)

where R[a]af is a discretized version of the AtRT which depends on a.

Typical SPECT image sizes range from 256× 256 to 2048× 2048 [30, 17] or higher

and even in the smallest case we have 2562k possible multi-bang images, where k is
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the number of multi-bang values. This makes the problem infeasible to be solved by

just testing every combination of multi-bang values. Therefore it is necessary to solve

the optimization problem (2.9) via numerical optimization techniques.

With the problem outlined we now move onto the literature review. We begin by

looking at work carried out relating to multi-bang regularization.

2.4 Multi-bang regularization

This section of the Literature review is dedicated to multi-bang regularization first

introduced in [19] and further developed in [18]. The general idea behind multi-bang

regularization is as follows: Suppose that we have some quantity which takes only

finitely many known values from an admissible set A. Then produce a functional

which penalizes functions containing values outside A. In the literature [18, 19] a

function is called multi-bang if it takes values from A almost everywhere. The multi-

bang regularizer is then coupled with some data fidelity term to produce multi-bang

reconstructions.

Before examining the multi-bang regularizer itself we need some preliminary defi-

nitions and results which we present in the next subsection.

2.4.1 Multi-bang regularization preliminaries

This subsection contains important definitions which we will use throughout the thesis

when dealing with the multi-bang regularizer. We begin with the notion of Lower-

semicontinuity.

Definition 7. (Lower-semicontinuous function) A function f : Rn −→ R∪{∞},

n ∈ N, is called lower-semicontinuous at a point x0 if ∀ε > 0,∃U an open neighbourhood

of x0 such that f(x) ≥ f(x0) − ε ∀x ∈ U when f(x0) < ∞, and limx→x0 f(x) = ∞

when f(x0) = ∞. If f is lower-semicontinuous at all x0 ∈ Rn we say that f is

lower-semicontinuous. This can also be written as

lim inf
x−→x0

f(x) ≥ f(x0).

Lower semi-continuity is an important property relating to convergence of many nu-

merical techniques to a critical point [6, 10] and this will be examined in more detail
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in Chapter 5. We now give some important definitions related to convex functions.

Definition 8. (Proper convex function) Let X ⊂ Rn be a convex set. We say that

a function f : X → R∪{∞} is convex if for all x, y ∈ Rn and for all t ∈ [0, 1] we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Additionally, if there exists some x such that f(x) <∞ and f(y) > −∞ for all y then

we say that f is proper convex function.

Convex functions may not necessarily be differentiable but they do admit a well-defined

alternative called the convex subdifferential

Definition 9. (Convex subdifferential) Let X ⊂ Rn be a convex set and f : X →

R∪{∞} be a convex function. We say that a vector v ∈ X is a subgradient at a point

x0 ∈ X if for all x ∈ X we have

f(x)− f(x0) ≥ v · (x− x0).

The set of all subgradients at x0 is called the subdifferential of f at x0 and is denoted

∂f(x0).

Note that if f is differentiable at a point x0 then ∂f(x0) = {f ′(x0)} [54]. Although the

convex-subdifferential is only defined for convex functions, we can extend this definition

using techniques from [5] to the following class of functions known as weakly-convex

functions.

Definition 10. (Weakly-convex function) Let X ⊂ Rn be a convex set and f :

X → R∪{∞}. We say that f is ρ-weakly convex, or just weakly-convex, if there exists

some ρ > 0 such that the function

hρ(x) := f(x) +
ρ

2
‖x‖2 (2.10)

is convex.

The formula (2.10) allows us to extend the notion of convex subdifferentials to weakly-

convex functions.
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Definition 11. (Weakly-convex subdifferential) Let f be a ρ-weakly convex func-

tion. The weakly-convex subdifferential of f is given by

∂f(x) := ∂hρ(x)− ρx (2.11)

where hρ(x) is as in (2.10) and ∂hρ(x) is understood in the sense of Definition 9.

It is important to note that there may be many choices of ρ for a weakly-convex

function which make hρ convex. The following lemma shows that the weakly-convex

subdifferential is independent of the choice of ρ and therefore well-defined.

Lemma 1. Let f be weakly-convex as in Definition 10. Let ρ1, ρ2 > 0 be such that

hρ1(x) and hρ2(x) are convex. Then

∂hρ1(x)− ρ1x = ∂hρ2(x)− ρ2x

and therefore ∂f , as in Definition 11, is well-defined.

Proof. Let x0 ∈ X and suppose p ∈ ∂hρ1(x0)−ρ1x0 and therefore p+ρ1x0 ∈ ∂hρ1(x0).

By Definition 9 we have for any x ∈ X

f(x)− f(x0) +
ρ1

2
‖x‖2 − ρ1

2
‖x0‖2 ≥ (p+ ρ1x0) · (x− x0). (2.12)

We can rewrite (2.12) to obtain

f(x)− f(x0) +
ρ2

2
‖x‖2 − ρ2

2
‖x0‖2 ≥ (p+ ρ2x0) · (x− x0) + (ρ1 − ρ2) · (x− x0)

+

(
ρ1 − ρ2

2

)(
‖x0‖2 + ‖x‖2

)
= (p+ ρ2x0) · (x− x0) +

(
ρ1 − ρ2

2

)
‖x− x0‖2

≥ (p+ ρ2x0) · (x− x0),

this gives p+ρ2x0 ∈ ∂hρ2(x0) and therefore p ∈ ∂hρ2(x0)−ρ2x0. An identical argument

can be used to show any q ∈ ∂hρ2(x0)− ρ2x0 is also in ∂hρ1(x0)− ρ2x0. Since x0 ∈ X

was chosen arbitrarily this completes the proof.

With these definitions and results established we are now ready to examine the

multi-bang regularizer.
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2.4.2 Multi-bang regularizer

Let Ω be a bounded domain in R2 and suppose that we expect some unknown quantity

a to take values from the set A = {a1, a2, ..., ak}, with 0 = a1 < a2 < ... < ak. The

goal is to then obtain reconstructions which take values only from this set. We refer

to solutions only taking values from A as multi-bang solutions as in Definition 6[18].

This setup has real life applications, particularly in medical imaging since there are

limited materials expected in the human body [63, 42]. In the case of SPECT imaging

the quantity which we would expect to be multi-bang is attenuation. Other potential

applications where certain materials can be expected would be in seismic imaging

[7] and nuclear security [59]. In [19] the authors originally considered the following

pointwise multi-bang penalty term

m0(t) =


α
2

((ai + ai+1) t− aiai+1) t ∈ [ai, ai+1], 1 ≤ i < k,

∞ otherwise.

(2.13)

This is the convex envelope of

m∗0(t) =
α

2
t2 + βΠk

i=1|t− ai|0

where

|t|0 =

0 t = 0

1 otherwise

provided α and β satisfy certain criterion given in [19, 54]. See Figure 2.2 for an

example plot of m0(t).

Figure 2.2: A plot of the convex pointwise multi-bang regularizer m0(t) defined in

equation (2.13) with α = 1 and A = {0, 0.25, 0.5, 0.75, 1}.
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The penalty term m∗0(t) favours values of t in the admissible set U , as they are local

minimisers, however it is non-convex and so replacing m∗0(t) by its convex envelope

m0(t) is computationally advantageous. Although, in the convex penalty each ai is

not a local minima and instead corresponds to a change in gradient. It is important

to note that m0(t) is only the convex envelope of m∗0(t) when α and β are chosen in

accordance with specific rules [19, 18], for more details on what happens in other cases

see [19]. The global multi-bang regularizer for a function v ∈ Lp(Ω) is then given by

M0(v) =

∫
Ω

m0(v(t))dx. (2.14)

If we assume that v is piecewise constant over N pixels of length dx then (2.14)

simply becomes

M(v) = dx
N∑
i=1

m0(vi) (2.15)

where vi is the value of v in the i-th pixel and dx is the area of each pixel. In the case

of uniform pixels we can combine dx and α into one regularization parameter, which

we again denote α.

The multi-bang penalty given in (2.14) is convex, because the pointwise formula

(2.13) is convex. However, M does not promote spatial regularity in the variational

problem. In order to obtain a balance between multi-bang solutions and obtain piece-

wise constant objects, multi-bang regularization can be combined with a Total Varia-

tion regularizer [46, 32] as in [18, 54].

The optimization problem (2.9) can be solved via a variety of methods but the

approach we take is to solve via Alternating Direction Method of Multipliers(ADMM)

[10]. In particular we need to make use of the proximal map of the pointwise multi-

bang regularizer. The proximal map of m0(t), see Definition 25, is given by

prox 1
t
(αm0)(x) =



x+ tαak x < x0,−

ai xi,− ≤ x ≤ xi,+

x− αt
2

(ai + ai+1) xi,+ < x < xi+1,− for 1 ≤ i ≤ k − 1

x− tαak x > xk,+,

(2.16)
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where

xi,+ = ai +
tα

2
(ai + ai+1) for i ∈ 1, ..., k − 1 and xk,+ = ak + tαak

xi,− = ai +
tα

2
(ai−1 + ai) for i ∈ 1, ..., k and x0,− = a0 − tαak.

This has one important flaw when trying to obtain multi-bang solutions: the proximal

map is not stationary at any multi-bang value except the first. This means that unless

you choose α extremely small, in which case you are essentially not applying any multi-

bang regularization, reconstructions will not be multi-bang. However, the authors of

[18] obtain good results in a variety of linear inverse problems using the convex multi-

bang regularizer given by equation (2.13). An example plot of the proximal map for

m0 is shown in Figure 2.3.

Figure 2.3: A plot of the proximal map of m0 given in equation (2.16) with t = α = 1

and A = {0, 0.25, 0.5, 0.75, 1}.

In order to remedy this as in [37], we instead consider the function m : R → R

given by

m(t) =

 (ai+1 − t)(t− ai), if t ∈ [ai, ai+1] for some i

∞, otherwise.
(2.17)
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This choice of multi-bang regularizer m is non-convex, and is made up of a series

of upside down parabolas with each multi-bang value being a minimiser. A similar

penalty is used in [5] when trying to assign integer values to a problem, although we

derived this choice of m independently. A plot of m when A = {0, 0.25, 0.5, 0.75, 1} is

given in Figure 2.4.

Figure 2.4: Plot of pointwise multi-bang penalty m(t) given in equation (2.17) for

A = {0, 0.25, 0.5, 0.75, 1}
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The multi-bang regularization term M : Lr(Ω)→ R is again given by

M(u) :=

∫
Ω

m(u(x))dx, (2.18)

for 1 ≤ r <∞.

Although m is non-convex it is still ρ-weakly convex with ρ = 2 as in Definition 10.

This weak-convexity property of m allows us to calculate proximal maps, which is why

we use this over something like multiple well potentials which are differentiable but not

weakly-convex. With this choice of multi-bang regularizer we show that we obtain

a proximal map which has multi-bang values as stationary points, this allows much

larger values of α to be used in reconstructions and therefore promotes multi-bang

solutions.

The next section examines some of the literature relating to when you can uniquely

determine a and f from Raf , this is often called the SPECT identification problem

[13, 50, 14, 38].
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2.5 SPECT identification problem

As mentioned in the introduction, without additional constraints on the allowed set of

a and f , unique inversion of the AtRT is known to be impossible [24]. Furthermore,

even when smoothness constraints are placed on a, and a 6= 0, with a and f radial it

can be shown that a solution pair exists for any Raf of the form (0, f̃) [30, 53, 55, 24].

In the case of medical SPECT imaging we have the additional property that only

a small number of tissues are likely to be found in a scan of organic matter. This

raises the question: If we can restrict our inversion to the set of a taking values only

from the set of known values of tissue attenuation then can we uniquely determine a

and f simultaneously from the data? This problem is more commonly referred to as

the Identification problem for SPECT [44, 56]. In [48, 49] it has been shown that for

a, f ∈ L∞,1+ε(R2,R), for some ε > 0 where

L∞,σ(R2,R) := {u ∈ L∞(R2,R) | ‖u‖0,σ < +∞},

‖u‖0,σ = ess supx∈R2(1 + |x|2)σ|u(x)|, σ ≥ 0,

there is an explicit formula for f , when a is known a priori (so it is the identification

problem of f only), in terms of the beam transform (2.2) and the following projection

operators.

Definition 12. (H)± Let u ∈ L∞c (R) then we define the projection operators H± via

H±u(s) :=
1

π

∫
R

v(t)

s± 0i− t
dt = lim

ε→0±

1

π

∫
R

v(t)

s± εi− t
dt.

Assuming that a is known the AtRT uniquely determines f on R2 by

f(x) = − 1

4π

(
∂

∂x1

− i ∂
∂x2

)∫
S1
ψ(x, θ)(θ1 + θ2i) dθ,

ψ(x, θ) = exp {−Da(x,−θ)}m(x · θ⊥, θ),

m(s, θ)

= −iRe

(
exp

{(
i

2

)
H+R0a(s, θ)

}
H+

[
exp

{
−
(
i

2

)
H−R0a(s, θ)

}
Raf

]
(s, θ)

)
,

(2.19)

where x = (x1, x2) and R0f(s, θ) is the Radon transform of f given by Definition 2

when a is 0. In the case where a is multi-bang, a is clearly bounded and has compact

support and therefore a ∈ L∞,1+ε(R2,R) for any ε > 0. It is worth noting that this
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result is independent of the multi-bang values A. Furthermore the assumption that

f ∈ C1
c (Ω) (which is an assumption made at the start of Chapter 2.3), as well as the

fact that Ω is bounded, gives f ∈ L∞,1+ε(R2,R). This means that for the multi-bang

case we consider it is enough to be able to determine a and then use (2.19) to uniquely

determine f .

In [49, 48] they also obtain a set of conditions known as data consistency conditions

or range conditions which are requirements on a which must hold when the data is

given. In particular, for a, f ∈ L∞,1+ε(R2,R) we have the following range condition

∫
S1

exp [−Da(x,−θ)] Re {g(x, θ)} dθ = 0, (2.20)

where

g(x, θ) :=

exp

{(
i

2

)
H+R0a(x · θ⊥, θ)

}
H+ exp

{(
−i
2
H−R0a(x · θ⊥, θ)

)}
Raf(x · θ⊥, θ),

for all x ∈ R2. Apart from the data Raf(x · θ⊥, θ), (2.20) is independent of f and

so is really a condition on a. There have been multiple papers [3, 38] exploring joint

reconstruction of a and f by determining a second independent equation involving f ,

which they achieve by coupling the formula for f given in (2.19) with a linearization of

the consistency condition (2.20). Note that these simultaneous recovery results require

a and f to be smooth and compactly supported.

In terms of multi-bang a and differentiable f , some previous work has also been

carried out. We discuss two results for when a takes only 2 multi-bang values, i.e is

binary. The first result given in [57, 24] states that; if Ω∗ is an open convex bounded

set, f is supported in Ω∗ and a is constant in Ω∗ and 0 outside, then the AtRT can be

reduced to the exponential X-ray transform [45, 57, 24].

Definition 13 (Exponential X-ray transform). We define the exponential X-ray

transform, for some fixed c ∈ R via the map Ec : L∞c (R2) −→ L∞(R× S1)

Ecf(s, θ) =

∫ ∞
−∞

ectf(sθ⊥ + tθ)dt.

Let x+τ(s, θ⊥)θ denote the point at which the ray starting at x ∈ Ω∗ with orientation

θ hits the boundary of Ω∗, note that as f has support in Ω∗ which is convex there
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is only ever one point where the ray hits the boundary. If a = cχΩ∗ , c times the

characteristic function on Ω∗, then

Da(x, θ) = c(τ(x · θ⊥, θ⊥)− x · θ)

for x ∈ Ω∗, x · θ⊥ = s. Setting x · θ = t gives

Raf(s, θ) =

∫ ∞
−∞

e−c(τ(s,θ⊥)−t)f(sθ⊥ + tθ)dt

=e−c(τ(s,θ⊥)

∫ ∞
−∞

ectf(sθ⊥ + tθ)dt

=e−c(τ(s,θ⊥)Ecf(s, θ)

(2.21)

where Ecf(s, θ) is the exponential X-ray transform as in Definition 13. The exponential

X-ray transform has been examined extensively [45, 55, 57, 24] and we refer the reader

to these references for more in depth results. We note that although we assume multi-

bang a outside of Ω∗, i.e that a = 0, this assumption is not necessary outside the convex

domain Ω∗ for the results in [45, 57, 24] to hold. The results given in [45, 55, 57, 24]

do not apply to radial f or circular Ω. In particular [55] proves and gives a method

to construct a counterexample to the identification problem for the exponential radon

transform for radial f . Indeed, if a is constant on the circle of radius 1 and 0 outside

and we take f(x) = 1 + cos(π|x|) inside the unit circle and 0 outside. This choice of a

and f are radial and a is nicely multi-bang. Then, by [55] the function

u(r) := − 1

π

∫ 1

r

Raf(s)√
s2 − r2

ds

defines a radial function f , with |x| = r, which satisfies R0u(s) = Raf(s) for all s ∈ R

and is positive and smooth enough [57]. The second result related to the multi-bang

a identification problem in SPECT is presented in [16] and shows unique recovery of

a and f when a is a multiple of the characteristic function of a star-shaped polygon,

f is smooth and the support of f is contained in the support of a.

For the more general case multi-bang a there has been some progress in the identi-

fication problem. Sections of Chapters 3 and 4 relate to our most recent work in [37].

In [37] we consider a subset of multi-bang a known as nicely multi-bang.

Definition 14 (Nicely multi-bang). Let a be multi-bang, we say that a is nicely

multi-bang if it can written in the form

a =
N∑
i=1

cjχCj (2.22)
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where the sets Cj are all convex, bounded, open with smooth boundary possibly having

corners, as in Definition 5, and nested in the sense that

Cn b Cn−1 b ... b C1,

where Cj b Cj−1 means that Cj is contained in a compact set that is contained in

Cj−1.

When a is nicely multi-bang and f is C1 then we can uniquely determine a and

f by the behaviour and direction of the jumps in the AtRT and its derivatives with

respect to s and θ across a boundary. This is provided there is at least some section of

the outer most boundary ∂C1 contained in the support of f . Examining these jumps

allows recovery of non-zero curvature parts of the boundary as well as corners. An

argument involving the Gauss-Bonnet theorem and taking convex hulls as given in [37]

allows unique recovery of the boundary. Then applying integral geometry results from

[15] we can recover f in regions where a is known. It is important to stress that the

integral geometry results rely on the convex nature of the boundaries ∂Ωj. However,

in Chapter 3 we show that examining jumps in the derivatives of the data allows us

to uniquely determine the boundary of a multi-bang a in a large variety of non-convex

cases. Moreover, we can use the sign of jump in the derivative across the boundary to

determine which side of the boundary has a larger attenuation.

The next section examines the literature relating to the inversion formula for the

AtRT when a is known.

2.6 Inversion formula for the AtRT

This section relates to the material required to derive the inversion formula for f when

a is known given in (2.19).

This technique was originally shown in [28] and involved analyzing the equation(
1

2

(
λ+

1

λ

)
∂x1 +

1

2i

(
λ− 1

λ

)
∂x2

)
µ(x1, x2, λ) = f(x1, x2) λ ∈ C \ {0}, (2.23)

in order to determine an inversion formula for the Radon transform. Note that when

λ is on the unit circle, i.e, λ = 1 (2.23) becomes

(Re(λ)∂x1 + Im(λ)∂x2)µ(x1, x2, λ) = f(x1, x2).
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Using the ideas in [28] the authors of [26] derived the Attenuated Radon Transform

inversion formula for f when a is known given equation (2.19). The formula agrees

with the original inversion formula obtained by Novikov in [48]. The modification

made in [26] is to instead examine the PDE(
1

2

(
λ+

1

λ

)
∂x1 +

1

2i

(
λ− 1

λ

)
∂x2 + a(x1, x2)

)
µ(x1, x2, λ) = f(x1, x2),

λ ∈ C \ {0}.
(2.24)

The analysis of (2.24) in [26] requires some important results from complex analysis,

which we present in the next subsection.

2.6.1 Preliminaries

This subsection contains some necessary lemmas and definitions in order to analyse

(2.24). Further information on any of the results in here and detailed proofs can be

found in [27].

We first define two important classes of functions called Schwartz functions and

Hölder continuous functions.

Definition 15 (Schwartz Function). The space of Schwartz functions S(R2) is

defined as

S(R2) =
{
f ∈ C∞(R2) : ‖f‖α,β <∞

}
where α = (α1, α2), β = (β1, β2) and

‖f‖α,β := sup
x∈R2

∣∣xa11 x
a2
2

(
∂β1x1∂

β2
x2
f(x1, x2)

)∣∣ . (2.25)

The Schwartz space S(R2) consists of all smooth functions whose partial derivatives

decrease rapidly as |x| → ∞.

Definition 16 (Hölder condition). A real or complex valued function f : Cm → C,

where m is the dimension of the Euclidean space, satisfies a Hölder condition if there

exist real C, α > 0, such that

|f(x)− f(y)| ≤ C‖x− y‖α, (2.26)

where z, z′ ∈ C and ‖ · ‖ is the standard Euclidean 2-norm.
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Functions which satisfy a Hölder condition are called Hölder continuous functions

[8, 9, 48].

Throughout the analysis in this section we make use of the analytic property of a

complex function. The following result is helpful in proving analyticity of a function

and is called Morera’s Theorem [20].

Theorem 2 (Morera’s Theorem). Let f be a continuous function f : D → C for

some open set D in the complex plane. Suppose that for every closed triangle T ⊂ D∫
∂T

f(z)dz = 0 (2.27)

where ∂T is the boundary of the triangle T in the anti-clockwise direction, then f is

holomorphic on D.

Proof. A proof of this result can be found in [20]

Further generalizations of Theorem 2 for complex functions of several variables can

be found in [20]. We now present some important results from [26]. Let z = x + iy,

as we can write x = z+z̄
2

and y = z−z̄
2

, then we can consider any function f(x, y)

as f(z, z̄). Note that as z̄ = x − iy does not satisfy the Cauchy-Riemann equations

anywhere, z̄ is nowhere analytic. Therefore taking the derivative of a function with

respect to z̄ is really a measure of nonanalyticity. Conversely if f(z, z̄) is analytic then

∂z̄f(z) = 0. There is rich history of analysis with respect to ∂z̄, often known as d-bar

analysis [48, 26, 27]. In particular it is an important part of the following result, a

generalization of Cauchy’s integral theorem, also called Pompieu’s formula [52].

Lemma 2 (Pompieu’s formula). Let f(z, z̄) be a Schwartz function. Let D be a

finite closed region with simple boundary in which f and its partial derivatives are

continuous. Denote by ∂D the closed boundary of D which is oriented anticlockwise.

Then f(z, z̄) can be determined for any point z ∈ intD by

f(z, z̄) =
1

2iπ

(∮
∂D

f(ξ, ξ̄)
dξ

ξ − z
+

∫∫
D

∂f

∂ξ̄
(ξ, ξ̄)

dξ ∧ dξ̄

ξ − z

)
(2.28)

where the wedge product dξ ∧ dξ̄, ξ = ζ + iη is given by

dξ ∧ dξ̄ = −2idζdη.

Proof. A proof of this can be found in [27].
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In the derivation of the inversion formula for the Attenuated Radon transform

we analyse the PDE (2.24) as λ ∈ C approaches the unit circle from the inside and

outside. The following result, known as the Plemelj Formula [51], is extremely useful

for analysis when dealing with taking limits as we aproach the unit circle from both

directions.

Lemma 3 (Plemelj Formula). Let Γ be a smooth, oriented, contour, which can

open or closed. Suppose φ(t) satisfies a Hölder continuity condition on Γ. Then, the

Cauchy-type integral

ψ(z) =
1

2πi

∫
Γ

φ(τ)

τ − z
dτ, (2.29)

has well defined limiting values ψ−(t) and ψ+(t) as z approaches Γ from the right and

left respectively, provided that t is not an endpoint of Γ. These limits are given by

ψ±(t) = ±1

2
φ(t) +

1

2πi
p.v

∫
Γ

φ(τ)

τ − t
dτ. (2.30)

Where

p.v

∫
Γ

f(τ)dτ = lim
ε→0+

∫
Γ−Γε

f(τ)dτ,

with Γε the part of the contour Γ centred around t with length 2ε.

Proof. A proof of this can be found in [27].

A particularly useful application of Lemma 3 is when Γ = R as given below.

Corollary 1. Let g satisfy a Hölder continuity condition on R and be integrable. Then

the projection operators H±g(s) given in Definition 12 can be written in the form

(H±g)(s) = ∓ig(s) +Hg(s), (2.31)

where

Hg(s) =
1

π
p.v.

∫ ∞
−∞

g(s′)

s− s′
ds′

Proof. By Lemma 3 we have

ψ(z) =
1

π

∫ ∞
−∞

g(s′)

z − s′
ds′

has well-defined limits H± as z approaches the real axis from above and below. Fur-

thermore, formula (2.30) (after factoring out a multiple of (− 1
2i

)) gives the required

result.
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We will see later that the operators given in Corollary 1 occur naturally in the

inversion formula for the Attenuated Radon Transform.

We can use Lemma 3 to solve the following Riemann-Hilbert scalar problem.

Lemma 4. The unique solution of the Riemann-Hilbert problem

ψ+(t)− ψ−(t) = g(t), t ∈ Γ, (2.32)

where ψ is holomorphic on C1 \ Γ,satisfies

ψ(z) = O

(
1

z

)
, |z| → ∞, z /∈ Γ, (2.33)

and g satisfies as Hölder continuity condition on Γ and is integrable, is given by

ψ(z) =
1

2πi

∫
Γ

g(τ)

τ − z
dτ. (2.34)

Proof. We begin by showing that (2.34) is a solution to (2.32) and (2.33). By lemma

3, for any t ∈ Γ

ψ±(t) = ±1

2
g(t) +

1

2πi
p.v

∫
Γ

g(τ)

τ − t
dτ.

Therefore ψ+(t) − ψ−(t) = g(t) for all t ∈ Γ and so we satisfy condition (2.32).

Furthermore, as g is bounded on Γ and satisfies a Hölder continuity condition on Γ we

have that (2.33) is also satisfied. Hence, we have shown that ψ(z) is a solution of the

Riemann-Hilbert problem (2.32) and (2.33).

Now suppose that there is another solution ν(z) satisfying the Riemann-Hilbert

problem. Consider ψ(z)− ν(z). This function is holomorphic on C \Γ, as both ψ and

ν are, and is continuous on Γ. The continuity follows from the fact that both ψ and ν

satisfy the boundary condition (2.34). We aim to apply Theorem 2 to ψ(z)− ν(z) in

order to show that ψ(z)− ν(z) is entire. Let T be any triangle which does not contain

any part of the contour Γ,i.e., T lies entirely to the right or the left of the contour Γ.

As ψ(z)− ν(z) is holomorphic in T , we have∫
∂T

ψ(z)− ν(z)dz = 0.

The remaining case to consider is when T contains some portion of the contour Γ. In

this case we can approximate the integral by splitting the triangle into two parts T1

and T2, which lie to the left and right of the contour respectively. Again, as ψ(z)−ν(z)

is holomorphic off the contour Γ the only possible contributions around the contours
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∂T1 and ∂T2 will come from
∫
∂Ti∩Γ

ψ(z)− ν(z)dz for i = 1, 2. By construction we have

∂T1 ∩ Γ = −∂T2 ∩ Γ, where − refers to the reverse path. Finally by continuity of

ψ(z)− ν(z) we have that∫
∂T1∩Γ

ψ(z)− ν(z)dz = −
∫
∂T2∩Γ

ψ(z)− ν(z)dz

and so
∫
∂T
ψ(z)− ν(z)dz = 0 for any closed triangle T in C. Hence by Theorem 2 we

have ψ(z) − ν(z) is an entire function. Furthermore we have ψ(z) − ν(z) is bounded

and so by the Liouville theorem we have that ψ(z) − ν(z) is a constant. Finally the

constraint that ψ(z)− ν(z) = O(1
z
) as z →∞ gives that this constant must be 0 and

so ψ(z) = ν(z), as required.

With these preliminary results established we now derive the inversion formula for

the Attenuated Radon Transform.

2.6.2 Inversion formula for Attenuated Radon Transform

Although the inversion formula is obtained by analysis of the PDE (2.24), we need the

following result from [27] obtained by analyzing (2.23) first.

Lemma 5. Define a complex variable z by

z :=
1

2i

(
λ− 1

λ

)
x1 −

1

2

(
λ+

1

λ

)
x2 (2.35)

where x1, x2 are the real Cartesian coordinates, and λ is a complex variable with

λ 6= 0. Suppose that a(x1, x2) ∈ S(R2). Let µ(x1, x2, λ) satisfy the PDE (2.24) with

the boundary condition µ = O
(

1
z

)
as |x1|+ |x2| → ∞. Let λ+ and λ− denote the limits

of λ as it approaches the unit circle from inside and outside the unit circle respectively,

i.e.

λ± = lim
ε→0+

(1∓ ε)eiω, ε > 0, 0 ≤ ω ≤ 2π. (2.36)

Then

µ(x1, x2, λ
±) = ± 1

2i
H∓R0a(s, θ)−

∫ ∞
τ

a(sθ⊥ + t′θ)dt′, (2.37)

where (x1, x2) = sθ⊥ + tθ with θ = (cos(ω), sin(ω)) := (θ1, θ2), θ⊥ = (−θ2, θ1) and H±

are projection operators in the variable s

(H±g)(s, θ) = lim
ε→0+

1

π

∫ ∞
−∞

g(s′, θ)

(s± iε)− s′
ds′ = ∓ig(s, θ) +Hg(s, θ), (2.38)
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where

Hg(s, θ) =
1

π
p.v.

∫ ∞
−∞

g(s′, θ)

s− s′
ds′.

Proof. We follow the proof given in [27]. Note that the PDEs (2.23) and (2.24) moti-

vate the choice of z. Taking the complex conjugate of (2.35) gives

z̄ := − 1

2i

(
λ̄− 1

λ̄

)
x1 −

1

2

(
λ̄+

1

λ̄

)
x2. (2.39)

Then z, z̄ describes a change of coordinates from (x1, x2). We can use this to rewrite

the PDE (2.23). By the chain rule we have

∂x1 =
1

2i

(
λ− 1

λ

)
∂z −

1

2i

(
λ̄− 1

λ̄

)
∂z̄

∂x2 = −1

2

(
λ+

1

λ

)
∂z −

1

2

(
λ̄+

1

λ̄

)
∂z̄.

This then gives

1

2

(
λ+

1

λ

){
1

2i

(
λ− 1

λ

)
∂z −

1

2i

(
λ̄− 1

λ̄

)
∂z̄

}
=

1

4i

{(
λ+

1

λ

)(
λ− 1

λ

)
∂z −

(
λ+

1

λ

)(
λ̄− 1

λ̄

)
∂z̄

} (2.40)

and

1

2

(
λ+

1

λ

){
1

2i

(
λ− 1

λ

)
∂z −

1

2i

(
λ̄− 1

λ̄

)
∂z̄

}
=

−1

4i

{(
λ+

1

λ

)(
λ− 1

λ

)
∂z −

(
λ− 1

λ

)(
λ̄+

1

λ̄

)
∂z̄

}
.

(2.41)

Using (2.40) and (2.41) we have

1

2

(
λ+

1

λ

)
∂x1+

1

2i

(
λ− 1

λ

)
∂x2 =

− 1

4i

{(
λ+

1

λ

)(
λ̄− 1

λ̄

)
+

(
λ− 1

λ

)(
λ̄+

1

λ̄

)}
∂z̄

=
1

2i

(
1

|λ|2
− |λ|2

)
∂z̄.

(2.42)

Then rewriting (2.23) using (2.42) means µ(x1, x2, λ) must satisfy

1

2i

(
1

|λ|2
− |λ|2

)
∂µ(x1, x2, λ)

∂z̄
= a(x1, x2), |λ| 6= 1, (x1, x2) ∈ R2. (2.43)

For now keep λ fixed and assume that

∂µ(zr, zi)

∂z̄
= g(zr, zi)
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with z = zr + izi with both zr and zi real and finite. By assumption we also have the

boundary condition µ = O (1/z) as |z| → ∞. Provided that g is a Schwartz function,

we can apply Lemma 2 to obtain

µ(zR, zI) = − 1

π

∫∫
R2

g(z′R, z
′
I)

z′ − z
dz′Rdz′I .

Since

zR = Re

(
1

2i

(
λ− 1

λ

)
x1 −

1

2

(
λ+

1

λ

)
x2

)
=
x1

2
Im

(
λ− 1

λ

)
− x2

2
Re

(
λ+

1

λ

)
and

zI = Im

(
1

2i

(
λ− 1

λ

)
x1 −

1

2

(
λ+

1

λ

))
=
−x1

2
Re

(
λ− 1

λ

)
− x2

2
Im

(
λ+

1

λ

)
we have that

dz′Rdz′I =
1

4

∣∣∣∣ 1

|λ|2
− |λ|2

∣∣∣∣ dx′1dx′2. (2.44)

Combining (2.44), setting g(zR, zI) = 2ia
1
|λ|2
−|λ|2 and the fact that |z|/z = sgn(z) gives

µ(x1, x2, λ) =
1

2πi
sgn

(
1

|λ|2
− |λ|2

)∫∫
R2

a(x′1,
′ x′2)

z′ − z
dx′1dx′2, |λ| 6= 1. (2.45)

This gives us an integral representation of µ in terms of the function a for all complex

values of λ, provided |λ| 6= 1. Note that the only dependence of µ on λ is in the sign of

the integral and in z− z′, hence we see that µ is piecewise analytic inside and outside

the unit circle and there is a jump in µ across the unit circle |λ| = 1.

We next analyse the analyticity properties of µ with respect to λ in order to

determine an alternative representation for µ.

Firstly note that by (2.35) we have

z′ − z =
1

2i

(
λ− 1

λ

)
(x′1 − x1)− 1

2

(
λ+

1

λ

)
(x′2 − x2). (2.46)

Combining (2.46) with (2.45) implies that µ = O (1/λ) as |λ| → ∞ and hence µ is

bounded for all complex λ. In order to examine the behaviour of µ as λ approaches

the unit circle we set

λ±(ε) = (1∓ ε)eiω, 0 ≤ ω < 2π, ε > 0. (2.47)
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and let λ± = limε→0+ λ
±(ε). Note that all λ+(ε) are inside the unit circle and all λ−(ε)

are outside the unit circle. Therefore, taking the limit as ε→ 0+ for λ+ and λ− would

give us the limits of the function µ as λ approaches the unit circle from the inside and

outside respectively. Using (2.47) we have

λ+ ∓ 1

λ+
= (1− ε)eiω ∓ (1 + ε)e−iω +O(ε2) (2.48)

and

λ− ∓ 1

λ−
= (1 + ε)eiω ∓ (1− ε)e−iω +O(ε2) (2.49)

as ε → 0+, where we have used the Taylor series expansion for 1
1∓ε . Putting λ± into

(2.46) gives

z − z′ =(x′1 − x1) sin(ω)− (x′2 − x2) cos(ω)

± iε ((x′1 − x1) cos(ω) + (x′2 − x2) sin(ω)) +O(ε2).
(2.50)

Recall that any x = (x1, x2) can be written in terms of the orthogonal coordinate

vectors θ = (cos(ω), sin(ω)) and θ⊥ = (− sin(ω), cos(ω)) via

x = sθ⊥ + tθ. (2.51)

Equation (2.51) gives

t = cos(ω)x1 + sin(ω)x2

s = − sin(ω)x1 + cos(ω)x2.
(2.52)

Combining (2.52) and (2.50) yields

z′ − z = (s− s′)± iε(t′ − t) +O(ε2). (2.53)

Suppose that, for now, we only consider λ+. Substituting (2.53) into (2.45) and taking

the limit as ε→ 0 gives

µ(x1, x2, λ
+) = lim

ε→0+
− 1

2πi

∫∫
R2

a(x′1, x
′
2)

s′ − (s− iε(t′ − t))
dx′1dx′2. (2.54)

As the Jacobian of the transformation (x1, x2) 7→ (s, t) is 1 we have that dx′1dx′2 =

dt′ds′ and hence

µ(x1, x2, λ
+) = lim

ε→0+
− 1

2πi

∫∫
R2

a(s′θ⊥ + t′θ)

s′ − (s− iε(t′ − t))
dt′ds′. (2.55)
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We next simplify the expression by splitting the integral over dt′ into two parts∫ ∞
−∞

dt′ =

∫ t

−∞
dt′ +

∫ ∞
t

dt′.

The advantage gained in splitting the integral in this way is that in the first t′− t < 0

and in the second t′ − t > 0. Applying Corollary 1 to

µ(s, t, λ+) = − 1

2πi
lim
ε→0+

∫ ∞
−∞

{∫ t

−∞

a(s′θ⊥ + t′θ)dt′

s′ − (s− iε(t′ − t))

+

∫ ∞
t

a(s′θ⊥ + t′θ)dt′

s′ − (s− iε(t′ − t))

}
ds′

gives, after swapping orders of integration,

µ(s, t, λ+) = − 1

2πi

∫ t

−∞

{
−πia(sθ⊥ + t′θ) + πHa(s, t′, θ)

}
dt′

− 1

2πi

∫ ∞
t

{
πia(sθ⊥ + t′θ) + πHa(s, t′, θ)

}
dt′

= − 1

2i

∫ ∞
−∞
Ha(s, t′, θ)dt′ +

1

2

∫ t

−∞
a(sθ⊥ + t′θ)dt′

− 1

2

∫ ∞
t

a(sθ⊥ + t′θ)dt′.

(2.56)

Then adding and subtracting 1
2

∫∞
t
a(sθ⊥ + t′θ)dt′ to (2.56) gives

µ(s, t, λ+) = − 1

2i

∫ ∞
−∞
Ha(s, t′, θ)dt′ +

1

2
R0a(s, θ)−

∫ ∞
t

a(sθ⊥ + t′θ)dt′.

The first two terms on the right hand side of this equal 1
2i
H−R0a. A similar argument

can be made for the case involving λ−.

Although Lemma 5 relates more directly to (2.23), we have the following result as

an immediate consequence of Lemma 5 which is useful in analysis of (2.24).

Corollary 2. Let z and z̄ be as in Lemma 5. Let λ± as defined in (2.47) be the

limits of λ as λ approaches the unit circle from the inside and outside respectively and

suppose that µ(x1, x2, λ) satisfies (2.24). Set γ(λ) = 1
2i

(
1
|λ|2 − |λ|

2
)

. Then,

lim
λ→λ±

(
∂−1
z̄

{
a(x1, x2)

γ(λ)

})
= ± 1

2i
(H∓R0a)(s, θ)−

∫ ∞
t

a(sθ⊥ + t′θ)dt′ (2.57)

for (x1, x2) = sθ⊥ + tθ.
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Proof. In the proof of Lemma 5 we obtained (2.43) which implies that

µ(x1, x2, λ) = ∂−1
z̄

{
a(x1, x2)

γ(λ)

}
. (2.58)

Taking the limit of (2.58) as λ approaches the unit circle from the inside and the

outside yields

µ(x1, x2, λ
±) = lim

λ→λ±
∂−1
z̄

{
a(x1, x2)

γ(λ)

}
. (2.59)

Finally combining (2.37) and (2.59) completes the proof.

Note that Corollary 2 gives a formula for the operator ∂−1
z̄ in the limit where

λ → λ±. We can use the formula give in Corollary 2 directly in analyzing (2.24).

Before presenting the final result we need the following lemma relating to the recovery

of µ from its jump across the unit circle.

Lemma 6. Let z and z̄ be as in Lemma 5. Again suppose that µ satisfies

1

2i

(
1

|λ|2
− |λ|2

)
∂µ(x1, x2, λ)

∂z̄
= a(x1, x2), |λ| 6= 1, (x1, x2) ∈ R2

with the boundary condition µ = O(1
z
) as |z| → ∞. Then

µ(x1, x2, λ) =
1

2π

∫ 2π

0

J(x1, x2, ω)eiω

eiω − λ
dω (2.60)

where J(x1, x2, ω) = µ(x1, x2, λ
+)− µ(x1, x2, λ

−).

Proof. From the proof of Lemma 5 we have the following formula for µ

µ(x1, x2, λ) =
1

2πi
sgn

(
1

|λ|2
− |λ|2

)∫∫
R2

a(x′1,
′ x′2)

z′ − z
dx′1dx′2, |λ| 6= 1.

Note that the dependence of µ on λ in the above is only in the sign function and in

z′ − z. As shown in the proof of Lemma 5 we have that

z′ − z = O(λ)

as λ→∞. Therefore we have that µ = O
(

1
λ

)
as λ→∞. Now we define

J(x1, x2, λ) = µ(x1, x2, λ
+)− µ(x1, x2, λ

−) (2.61)

with λ± as in Lemma 5. Combining (2.61) and the boundary condition µ = O
(

1
λ

)
forms a scalar Riemann-Hilbert problem. By Lemma 4 we have

µ(x1, x2, λ) =
1

2πi

∫
|λ′|=1

J(x1, x2, λ
′)

λ′ − λ
dλ′. (2.62)
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As λ′ = eiω, dλ′ = ieiωdω. We can therefore rewrite (2.62) as

µ(x1, x2, λ) =
1

2π

∫ 2π

0

J(x1, x2, ω)eiω

eiω − λ
dω,

as required.

With these results established we now ready to present the inversion formula for

the attenuated Radon transform with known a.

Theorem 3. Let Raf be the attenuated Radon transform of a Schwartz function

f(x1, x2) attenuated by the Schwartz function a(x1, x2). Then

f(x1, x2) =

1

4π
(∂x1 − i∂x2)

∫
S1

exp

(∫ ∞
t

a(sθ⊥ + t′θ)dt′
)
M(x1, x2, θ)(θ1 + iθ2)dθ,

(2.63)

where

M(x1, x2, ω)

=
−1

2i

{
exp

(
−1

2i
H−R0a(s, θ)

)
H−

{
exp

(
1

2i
H−R0a(s, θ)

)
Raf

}
(s, θ)

+ exp

(
1

2i
H+R0a(s, θ)

)
H+

{
exp

(
−1

2i
H+R0a(s, θ)

)
Raf

}
(s, θ)

} (2.64)

θ = (θ1, θ2) = (cos(ω), sin(ω)) and (x1, x2) = sθ⊥ + tθ.

Proof. Let z and z̄ be defined by equations (2.35) and (2.39) respectively. For sim-

plicity, as in Corollary 2, we again set

γ(λ) =
1

2i

(
1

|λ|2
− |λ|2

)
.

Then we can rewrite (2.24), in a similar manner to (2.23) in the proof of Lemma 5, to

find
∂

∂z̄
µ(x1, x2, λ) +

a(x1, x2)µ(x1, x2, λ)

γ(λ)
=
f(x1, x2)

γ(λ)
. (2.65)

We can multiply (2.65) by the integrating factor exp
(
∂−1
z̄

(
a(x1,x2)
γ(λ)

))
to get

∂

∂z̄

{
µ(x1, x2, λ) exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))}
= exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))
f(x1, x2)

γ(λ)
.

(2.66)
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In a similar manner to Lemma 5, by setting z = zr + izi (provided that the right hand

side of (2.66) is a Schwartz function) we can apply Lemma 2 to find

µ(x1, x2, λ) exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))
=

1

2πi
sgn

(
1

|λ|2
− |λ|2

)∫∫
R2

exp
(
∂−1
z̄

(
a(x′1,x

′
2)

γ(λ)

))
f(x′1, x

′
2)

z′ − z
dx′1dx′2.

(2.67)

We can divide both sides of (2.67) by the integrating factor exp
(
∂−1
z̄

(
a

γ(λ)

))
to obtain

a representation for µ. There are two important conclusions which can be made from

(2.67). The first is that, as in the case of Lemma 5, µ is a sectionally analytic function

of λ (with there being two regions: one inside and the other outside the unit circle)

with a jump over the unit circle |λ| = 1. The second is that the dependence of µ on λ

is only in the sign function, the integrating factor and z′ − z. Since z′ − z = O
(

1
λ

)
as

λ→∞ and the order of λ of the integrating factor cancels on both sides we find that

µ(x1, x2, λ)→ O
(

1
λ

)
as λ→∞. Therefore we can apply the same logic as in Lemma

6 to deduce that

µ(x1, x2, λ) =
1

2π

∫ 2π

0

J(x1, x2, ω)eiω

eiω − λ
dω, (2.68)

where J(x1, x2, ω) = µ(x1, x2, λ
+) − µ(x1, x2, λ

−) with λ± as in Lemma 5. We now

determine this jump function J . From (2.66) we have

µ(x1, x2, λ) exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))
=

∂−1
z̄

{
exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))
f(x1, x2)

γ(λ)

}
.

(2.69)

In the limit λ→ λ±, applying Corollary 2 and using the parametrization of (x1, x2) in

terms of s and t gives

µ(x1, x2, λ
±) exp

(
± 1

2i
H∓R0a(s, θ)−

∫ ∞
t

(aθ⊥ + t′θ)dt′
)

=

lim
λ→λ±

∂−1
z̄

{
exp

(
± 1

2i
H∓R0a(s, θ)−

∫ ∞
t

(aθ⊥ + t′θ)dt′
)
f(x1, x2)

γ(λ)

}
.

(2.70)

We can then apply Corollary 2 to the right hand side of (2.70) to find

µ(x1, x2, λ
±) exp

(
± 1

2i
H∓R0a(s, θ)−

∫ ∞
t

a(sθ⊥ + t′θ)dt′
)

=

± 1

2i
H∓

{
exp

(
± 1

2i
H∓R0a(s, θ)

)
Raf

}
(s, θ)

−
∫ ∞
t

f(sθ⊥ + t′θ) exp(± 1

2i
H∓R0a(s, θ)) exp

(
−
∫ ∞
t′

a(sθ⊥ + τθ)dτ

)
dt′.

(2.71)
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Note that the second line in (2.71) is valid because H∓R0a(s, θ) is independent of t′,

so can be brought outside the Radon transform and the remaining terms are precisely

the definition of the Attenuated Radon Transform. Since exp(± 1
2i
H∓R0a(s, θ)) is

independent of t′ we can factor it out of the integral on the right hand side of (2.71).

After doing this and dividing to isolate µ(x1, x2, λ
±) we obtain

µ(x1, x2, λ
±) =

± 1

2i
exp

(∫ ∞
t

a(sθ⊥ + t′θ)dt′
)
×[{

exp

(
∓ 1

2i
H∓R0a(s, θ)

)
H∓

{
exp

(
± 1

2i
H∓R0a(s, θ)

)
Raf

}
(s, θ)

]
−
∫ ∞
t

f(sθ⊥ + t′θ) exp

(
−
∫ ∞
t′

a(sθ⊥ + τθ)dτ

)
dt′
}
.

(2.72)

Therefore the jump function J(x1, x2, ω) is given by

J(x1, x2, ω) =

1

2i
exp

(∫ ∞
t

a(sθ⊥ + t′θ)dt′
)
×{

exp

(
−1

2i
H−R0a(s, θ)

)
H−

{
exp

(
1

2i
H−R0a(s, θ)

)
Raf

}
(s, θ)

+ exp

(
1

2i
H+R0a(s, θ)

)
H+

{
exp

(
−1

2i
H+R0a(s, θ)

)
Raf

}
(s, θ).

}
(2.73)

By (2.68) and the Laurent series of 1

1− eiω
λ

for λ ∈ C1 with |λ| > 1 we have

µ(x1, x2, λ) = −
(

1

2π

∫ 2π

0

J(x1, x2, ω)eiωdω

)
1

λ
+O

(
1

λ2

)
(2.74)

as λ→∞. Subbing (2.74) into the PDE (2.24) and letting λ→∞ gives

f(x1, x2) = − 1

4π
(∂x1 − i∂x2)

∫ 2π

0

J(x1, x2, ω)eiωdω. (2.75)

Finally setting

M(x1, x2, θ) =

−1

2i

{
exp

(
−1

2i
H−R0a(s, θ)

)
H−

{
exp

(
1

2i
H−R0a(s, θ)

)
Raf

}
(s, θ)

+ exp

(
1

2i
H+R0a(s, θ)

)
H+

{
exp

(
−1

2i
H+R0a(s, θ)

)
Raf

}
(s, θ)

}
and noting θ = cos(ω) + i sin(ω) completes the proof.
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We note that Theorem 3 only holds for Schwartz a and f , which is not the case

under a multi-bang assumption on a, although it is shown that this formula holds for

the more general case of a, f ∈ L∞,1+ε(R2,R) with ε > 0 in [48].

In all previous analysis we have been examining µ as λ → ∞, we have seen that

µ is analytic, with respect to λ, inside the unit circle and so we can also examine the

behaviour of µ as λ→ 0. By examining µ as λ→ 0 we can derive the data consistency

condition (2.20) [48, 49] .

Theorem 4. Let f , a and M be as in Theorem 3, then

0 =

∫
S1

exp

(∫ ∞
t

a(sθ⊥ + t′θ)dt′
)
M(x1, x2, θ)dθ. (2.76)

Proof. From the proof of Theorem 3 we obtained the following formula

µ(x1, x2, λ) exp

(
∂−1
z̄

(
a(x1, x2)

γ(λ)

))
=

1

2πi
sgn

(
1

|λ|2
− |λ|2

)∫∫
R2

exp
(
∂−1
z̄

(
a(x′1,x

′
2)

γ(λ)

))
f(x′1, x

′
2)

z′ − z
dx′1dx′2.

(2.77)

Note that as exp
(
∂−1
z̄

(
a(x1,x2)
γ(λ)

))
appears on both sides (and we are only integrating

with respect to x′1 and x′2) that the behaviour of µ as λ→ 0 is determined by z′ − z.

In the proof of Lemma 5 we found that

z′ − z =
1

2i

(
λ− 1

λ

)
(x′1 − x1)− 1

2

(
λ+

1

λ

)
(x′2 − x2), (2.78)

which shows that z′ − z = O
(

1
z

)
as λ → 0. Therefore (2.77) combined with the two

comments above gives µ = O(λ) as λ→ 0, i.e

lim
λ→0

µ(x1, x2, λ) = 0. (2.79)

Now recall that in the proof of Theorem 3 we obtained the following alternative rep-

resentation of µ

µ(x1, x2, λ) =
1

2π

∫ 2π

0

J(x1, x2, ω)eiω

eiω − λ
dω, (2.80)

where J(x1, x2, ω) = − exp
(∫∞

t
a(sθ⊥ + t′θ)dt′

)
M(x1, x2, θ). As we are interested in

the behaviour of (2.80) as λ→ 0 we can use the Laurent series expansion of 1
1− λ

eiω

to

find

µ(x1, x2, λ) =
1

2π

∫ 2π

0

J(x1, x2, ω)dω +O(λ), (2.81)
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as λ→ 0. Combining (2.79),(2.81) and setting θ = eiω yields

0 =

∫
S1

exp

(∫ ∞
t

a(sθ⊥ + t′θ)dt′
)
M(x1, x2, θ)dθ.

as required.

The final section of the literature review examines some of the material relating to

Discrete Tomography.

2.7 Discrete Tomography

As mentioned in the introduction, a consequence of the inclusion of the joint multi-bang

and TV regularizer into the variation problem (2.9) is that we can obtain good recovery

of a and f whilst using a limited number of projections. At least numerically, this

property continues to hold when we instead consider the Computerized Tomography

(CT) case in which instead of the AtRT we aim to invert the Radon Transform

Rf(s, θ) :=

∫ ∞
−∞

f(sθ⊥ + tθ)dt (2.82)

for f .

The problem of recovering binary or f taking values from a discrete set, i.e multi-

bang f , from a limited number of angle projections is often called Discrete Tomography

(DT), see [34] and its references. DT has many practical uses, reduction in the number

of projections needed both reduces time taken to scan and reduces radiation doses

significantly [34, 47]. A reduction in the number of projections also results in being

able to perform numerical algorithms quicker. The downside to this is that there are

typically many solutions [47, 34] and a priori information about f , such as convexity

[17], is required to restrict the number of solutions [47].

There are some widely known results relating to sampling rates of projections

in order to be able to uniquely recover the original f from its Radon transform. The

Nyquist-Shannon sampling theorem implies that provided the change in angle between

each projection is sufficiently small compared to the largest non-zero power in the

Fourier series of Rf(s, θ), with respect to θ, then it is possible to recover f with no

knowledge lost [39]. From numerical evidence given in [35, 39] it is recommended that

the number of projections used is of the same order as the number of pixels a ray with
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s = 0 passes through, i.e a ray passing through the origin. When f is multi-bang this

number can likely be significantly reduced by the use of the multi-bang regularizer.

A common approach to projection sampling in the DT problem is to choose the

projections so that they are equally spaced around 360 degrees with some perturbation.

This perturbation is done to avoid data redundancy (Since Rf(s, θ) = Rf(s,−θ))[47,

17] and to make the angles irrationally related, which is known to improve the recon-

structions [47, 63, 34, 17]. Using fewer projections typically means the optimization

problem (2.9) is under determined. One major issue with the lack of data is in recov-

ery of discontinuities of f . It is well known [17, 63, 62] that in order to recover some

part of the boundary of a CT image you need data from the ray which intersects that

boundary tangentially. This means that more complicated f require more projections

to recover. Work in [62] and their references uses TV and Generalized Total Varia-

tion regularizers combined with a data fidelity term in order to make up for reduced

amount of available data and still recover the important boundary features.

As the Discrete tomography problem for CT concerns recovery of f which takes

discrete values between 0 and 1 [35], the multi-bang regularizer seems like a natural

choice for this application. Since the Radon Transform (2.82) is linear in f , determining

the gradient with respect to f of the data fidelity term in (2.9) is numerically less

intensive than in the joint a and f recovery methods. A description of the inversion

algorithm for the DT case is given in Chapter 5. Chapter 6 gives a numerical example

of recovery with 16 projections for a binary image. Other examples of binary recovery

from sparse view CT data is given in [63, 17].

This concludes the Literature review, the next chapter presents novel results on

the recovery of boundaries of a multi-bang a with f ∈ C1
c (Ω) from knowledge of Raf .



Chapter 3

Recovery of boundaries in the

SPECT Identification problem

This chapter focuses on extending the work carried out in [37] related to the iden-

tification problem for SPECT when a is multi-bang, as in definition 6. The proof

presented in [37] regarding unique recovery of a and f is for nested convex multi-bang

a and f ∈ C1(R2). The specific extension given in this section is assuming f ∈ C1(R2)

and that the boundaries ∂Ωj are piecewise analytic with corners then we can uniquely

determine the boundaries ∂Ωj from the data Raf(s, θ). The method is inspired by

results of microlocal analysis, although does not exactly use microlocal analysis (e.g.

see [56]), to show that jumps in a across boundaries of Ωj lead to singularities in Raf

at rays (s, θ) corresponding to lines which are either tangent to the boundaries ∂Ωj,

or pass through corners of ∂Ωj.

In particular we show that if a ray (s∗, θ∗) does not contain any line segment which

is also a boundary of a then Raf is continuous at (s∗, θ∗). This allows us to distinguish

between rays which contain edges and all other rays. For a ray (s∗, θ∗) containing an

edge, we can then pick a point p on the ray and then rotate about this point by an angle

ω and examine ∂p·θ∗ limω→ω∗ Raf(p · (θ∗)⊥, θ) with θ∗ = (cos(ω∗), sin(ω∗) to find that

∂p·θ∗ limω→ω∗ Raf is only non-zero when p · (θ∗)⊥ lies on an edge. Restricting ourselves

to the case where Raf is continuous at (s∗, θ∗) we are able to show that provided

this ray does not intersect a boundary tangentially or pass through a corner then Raf

is C1 at (s∗, θ∗). We then show that when (s, θ) passes through a corner ∂sRaf is

discontinuous but bounded and when (s∗, θ∗) passes the boundary tangentially ∂sRaf

48
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is discontinuous and unbounded. Points on the analytic parts of the boundary are able

to be determined by first finding rays for which ∂sRaf is unbounded and then fixing

a point p on the ray and rotating about that point by some angle ω and examining

the behaviour of ∂ωRaf . When (s∗, θ∗) passes only a single part of the boundary, if p

is not on the boundary we find that ∂ωRaf is unbounded and if p is on the boundary

then ∂ωRaf is bounded. If there are multiple points of tangency for a ray (s∗, θ∗) then

we can examine the singularity of ∂ωRaf as we vary the point p and find that jumps

in the derivative with respect to p coincide with points on the boundary. We can then

remove all the highest singularity terms from ∂sRaf and repeat until we end up with

something which is at worst discontinuous but bounded at (s∗, θ∗), i,e the ray also

passed through a corner. Therefore we can find all tangent points passed through by

a ray (s, θ). For the corner case, after determining all points on the analytical parts

of the boundary and removing their contributions to ∂sRaf is necessary, all but two

rays (the rays which are tangential to either side of the corner), passing through it

will have discontinuous but bounded derivative with respect to s and this allows us

to determine corner points. Exactly how all of this is done is given in detail Chapter

3.1-3.3.

If we have access to the complete data then we are able to determine where the

data or its derivatives jump and this information allows us to determine whether a ray

passes the boundary tangentially, at a corner or not at all. As mentioned previously

it is important to stress the requirement that every ray which either passes through

a corner or intersects the boundary tangentially also intersects the support of f . If

this condition is not met some parts of the boundary will be unrecoverable with the

method given in this Chapter.

We begin by setting up some useful definitions, the first clarifies what we mean by

a boundary point.

Definition 17. (Pa) For a multi-bang a with boundaries {∂Ωj}nj=1, which may overlap,

there are three types of boundary points x. Either x

1. lies only on analytic and non-flat parts of the boundaries ∂Ωj, i.e at least locally

to x we can define a Taylor series expansion, which is not simply a constant,

about x which describes the boundary, or
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2. lies on a straight edge of the boundary, we note that we do distinguish this case

separately to case 1, or

3. a corner for at least one of the boundaries ∂Ωj.

Furthermore we separate these boundary points into two sets, straight edges Pea which

are case 2 and let Pa be the set of x ∈ ∂Ωj which fall into case 1 or 3.

We aim show that we can recover all points on the boundary. Note that it is not

entirely necessary to be able to determine the points which are corners; this is because

there can be only finitely many corners. Then taking the closure of the edge points

and piecewise analytic points is enough to uniquely determine the boundary. We do

however include the formulas and techniques related to corner points as this may be

of independent interest and adds completeness to the result.

Following [37] we slightly modify the following definition in order to accommodate

our more general case.

Definition 18. (Ka) Suppose that a is multi-bang with sets {Ωj}nj=1 as in Definition

6 and Pa as in Definition 17. We define Ka to be the subset of {(s, θ) : s ∈ R, θ ∈ S1}

such that the line corresponding of (s, θ) is either tangent to ∂Ωj, contains a flat edge

of the boundary or passes through a corner of ∂Ωj for some j. Furthermore we define

Kea ⊂ Ka to be the set of all rays in Ka which also do not contain any flat edges of the

boundary. Finally, we define subsets of Ka which are the set Ka,1 of lines tangent at a

point which lies on an analytic part of the boundary, and Ka,2 the set of lines passing

through corners. (Note that Ka,1 and Ka,2 may not be disjoint.)

Before examining the behaviour of the jumps inRaf(s, θ) we first state the following

result about the continuity of the Raf(s, θ) at a ray (s, θ) which is not tangential to

any part of boundary nor passes through a corner.

Lemma 7. Suppose that f ∈ C1
c (R2), a is multi-bang, and (s∗, θ∗) ∈ (Ka)c. Then the

mapping (s, θ) 7→ Raf(s, θ) is C1 at (s∗, θ∗).

Proof. We can prove this result in a similar manner as in [37, Lemma 1]. Since

(s∗, θ∗) ∈ (K0
a)
c the line tangent to θ∗ with distance s∗ from the origin is neither tangent

to one of the boundaries ∂Ωj, nor passes through a corner of one of these boundaries.
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W.L.O.G we can rotate and translate the axis so that the line corresponding to (s∗, θ∗)

lies on the x-axis and θ∗ = (1, 0) or ω∗ = 0. Then we have

Raf(s, θ∗) =

∫ ∞
−∞

f(x, s)e−Da((x,s),θ∗)dx. (3.1)

For x ∈ R, recall that

Da((x, s), θ∗) =

∫ ∞
x

a(t, s)dt.

By assumption of a being multi-bang, the line given by (s, θ∗) only crosses the jumps of

a finitely many times and we label the ordered values of t for which these crossings oc-

cur (when the line is parametrised as t 7→ (t, s)) as {ti(s, θ)}Ni=1. Since (s∗, θ∗) ∈ (Ka)c

these functions ti are differentiable in a neighbourhood of (0, 0). Next we introduce

the functions

φi(x, s, ω) =

 ti(s, ω) x < ti(s, ω)

x x ≥ ti(s, ω).
(3.2)

Note that for all i, φi is continuous with bounded first derivative in a neighbourhood

of (s, ω) = (0, 0) which is also continuous when x 6= ti(s, ω). Using these functions we

have

Da((x, s), θ) =
N−1∑
i=1

ci(φi+1(x, s, ω)− φi(x, s, ω)) =
N∑
i=1

(ci−1 − ci)φi(x, s, ω) (3.3)

where for each i, ci is one of the admissible values or possibly zero (in particular c0

and cN are always zero). We thus see that Da((x, s), θ∗) also has bounded derivatives

in a neighbourhood of (s, θ∗) = (0, (1, 0)) that are continuous except when x = ti(s, θ)

for some i, and differentiating this with respect to s and ω gives

∂sDa((x, s), θ) =
N∑
i=1

(ci−1 − ci)∂sφi(x, s, ω)

and

∂ωDa((x, s), θ) =
N∑
i=1

(ci−1 − ci)∂ωφi(x, s, ω).

Since f ∈ C1(R2) as well, we can therefore differentiate under the integral sign in (3.1)

to get

∂sRaf(s, θ∗) =

∫ ∞
−∞

(∂sf(x, s)− ∂sDa((x, s), θ∗)f(x, s)) e−Da((x,s),θ∗)dx

=

∫ ∞
−∞

∂sf(x, s)e−Da((x,s),θ∗)dx

+
N∑
i=1

(ci − ci−1)∂sti(s, ω)

∫ ti(s)

−∞
f(x, s)e−Da((x,s),θ∗)dx.

(3.4)
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Since f ∈ C1
c (R2) and the derivatives ∂sti are all continuous, we see that in fact

∂sRaf(s, θ∗) is also continuous with respect to s at s = 0. It remains to be shown

what happens in the case of ω at ω = 0.

For ω a similar argument as in the s case shows we can differentiate under the

integral sign to obtain

∂ωRaf(s, θ) =

∫ ∞
−∞

(∂ωf(x, s)− ∂ωDa((x, s), θ)f(x, s)) e−Da((x,s),θ∗)dx

=

∫ ∞
−∞

∂ωf(x, s)e−Da((x,s),θ∗)dx

+
N∑
i=1

(ci − ci−1)∂ωti(s, ω)

∫ ti(s)

−∞
f(x, s)e−Da((x,s),θ∗)dx.

(3.5)

Again as f ∈ C1
c (R2) and the derivatives ∂ωti are all continuous we have Raf(s, θ)

is continuous with respect to ω at ω = 0. Combining (3.4) and (3.5) shows that

∇Raf(s, ω) is continuous in a neighbourhood of (s, ω) = (0, 0) as required.

The next section contains our analysis of the jumps of Raf resulting from a ray

passing through some part of a piecewise analytic boundary of ∂Ω.

3.1 Boundary points on a piecewise analytic part

of the boundary

We now begin the analysis of the jumps in Raf by looking at a ray which is tangent

to only a single point on a piecewise analytic part of the boundary.

Lemma 8. Suppose that f ∈ C1
c (R2) and a is multi-bang. Suppose that the ray

(s∗, θ∗) ∈ Ka,1 is tangential to a piecewise analytic boundary at a single point s∗(θ∗)⊥+

t∗θ∗ . Suppose that locally to the point s∗(θ∗)⊥+ t∗θ∗, with θ∗ = (cos(ω∗), sin(ω∗)), the

Cartesian co-ordinates of the boundary can be described via y′(x′) = (x′ − x′1)ng(x′),

where x′ = x cos(ω∗)+y sin(ω∗), y′ = −x sin(ω∗)+y cos(ω∗) and x′1 is the x′ coordinate

of the tangent point, for some g(x′) with g(0) = κ 6= 0. Furthermore, suppose that

a = c on the side (θ∗)⊥ = (− sin(ω∗), cos(ω∗)) points to at the point of tangency,

and a = c0 on the other side. Additionally assume that x∗ is a point on the line
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corresponding to (s∗, θ∗), then

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
n−1
n ∂ωRa(x

∗ · θ⊥, θ) =

2s2(c0 − c)
(
|x∗ · θ∗ − t∗|

n|κ|

) 1
n
∫ t∗

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

(3.6)

if n is even, and

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
n−1
n ∂ωR(x∗ · θ⊥, θ) =

s1(c0 − c)
(
|x∗ · θ∗ − t∗|

n|κ|

) 1
n
∫ t∗

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

(3.7)

if n is odd, where s1 is the sign of (t∗ − x∗ · θ∗)κ and s2 is the sign of κ.

Proof. As in [37] by rotating, translating and possibly reflecting about the x-axis we

assume W.L.O.G. that θ∗ = (1, 0), (θ∗)⊥ = (0, 1) and the point of tangency is at the

origin (i.e. t∗ = 0). We also assume that x∗ = (`, 0) and for now only consider the

case ` 6= 0. Note that the line corresponding to (x∗ · θ⊥, θ) is precisely the line through

x∗ tangent to θ, and we can change the parametrization of this line in the integral

definition of the AtRT so that t = 0 always corresponds with x∗. After doing this we

have

Raf(x∗ · θ⊥, θ) =

∫ ∞
−∞

f(x∗ + tθ)e−Da(x∗+tθ,θ) dt. (3.8)

Now we use the same notation as in [37] and label the ordered values of t along the

line t 7→ x∗+ tθ, for sgn(`)ω > 0 and |ω| sufficiently small, at which the line intersects

one of the boundaries ∂Ωj as {ti(ω)}Ni=1. The importance of |ω| being sufficient small

is to ensure that as ω → 0+ the intersection points, which depend on ω, behave

continuously. By hypothesis, at least locally to (0, 0) we can describe the boundary

by y = xng(x). If n is even then this corresponds to a locally convex or concave

part of the boundary. By locally convex or concave we mean that if we restrict the

domain enough the boundary is convex or concave. If the boundary is locally convex

or concave there are either two points or zero points of intersection, if n is odd then

there will be just the single intersection point for a suitable oriented line with angle

ω. Therefore at most two of the ti will correspond to the point of tangency and these

will satisfy ti(ω)→ −` as ω → 0−sgn(`).

W.L.O.G we orient the boundary such that it can be written y = xng(x) such that

κ := g(0) > 0. This orientation gives us two cases to consider: either (0, 0) is on a
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Figure 3.1: Visual aid for Lemma 8. Here the tangent point is an inflexion point on
the boundary with y(x) increasing. We can see that (x, y) = (−`+ ti cos(ω), ti sin(ω)).

(0, 0)

ti

` ω

convex part of the boundary, or it is an inflexion point for an increasing part of the

boundary( in the sense that y(x) is increasing). In either case we have

dy

dω
=
(
nxn−1g(x) + xng′(x)

) dx

dω
. (3.9)

Furthermore, for ti corresponding to an intersection we have

y = ti sin(ω)

x = ti cos(ω)− `

see Figure 3.1.

Therefore we have

dy

dω
= ti cos(ω) +

dti
dω

sin(ω)

dx

dω
= −ti sin(ω) +

dti
dω

cos(ω).

Dividing (3.9) by cos(ω) we find

t∗ +
dti
dω

tan(ω) = (nxn−1g(x) + xng′(x))

(
−t∗ tan(ω) +

dti
dω

)
,

=⇒ dti
dω

(
tan(ω)− (nxn−1g(x) + xng′(x))

)
= −(nxn−1g(x) + xng′(x))ti tan(ω)− ti,

=⇒ dti
dω

=
−(nxn−1g(x) + xng′(x))ti tan(ω)− ti

tan(ω)− (nxn−1g(x) + xng′(x))
.
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We now note we have the following geometric relations

tan(ω) =
y

x− `
=
xng(x)

|`|+ x

sin(ω) =
y

ti
=
xng(x)

ti
.

(3.10)

Since limω→0+ ti = −` = |`| and limω→0+ x = 0, taking the limit as ω → 0+ we obtain

lim
ω→0+

dti
dω

=
`

limω→0+ xn−1
(

tan(ω)
xn−1 − (ng(x) + xg′(x))

) ,
=

`

limω→0+ xn−1
(
xg(x)
x+|`| − (ng(x) + xg′(x))

)
=

|`|
limω→0+ xn−1 (ng(x))

.

Note that the limit of the denominator in the above is 0 but it is left in this form

for the following reason. Using (3.10), the fact that g(0) = κ and labelling ti± as the

values of t corresponding to an intersection

lim
ω→0+

| sin(ω)|
n−1
n

dti±
dω

= ±
(
|`|
nκ

) 1
n

(3.11)

if n is even and

lim
ω→0+

| sin(ω)|
n−1
n

dti
dω

=

(
|`|
nκ

) 1
n

(3.12)

when n is odd. When ` = 0 we can show in a similar manner to the previous derivation

that

lim
ω→0+

| sin(ω)|
n−1
n

dti
dω

= 0

lim
ω→0+

| sin(ω)|
n−1
n

dti±
dω

= 0.

(3.13)

Note that if we considered the point of tangency to be at a point β > 0 rather than

0 the formula obtained above would be the same but with the term |`| replaced by

|`− β|.

Now as in previous lemmas, define functions φi

φi(t, ω) =

 ti(ω) t < ti(ω)

t t ≥ ti(ω),

for −sgn(`)ω > 0. This gives

Da(x∗ + tθ, θ) =
N∑
i=1

(ci−1 − ci)φi(t, ω),
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where ci are the multi-bang values inbetween the boundaries passed through by the

line passing through (l, 0) and oriented at ω > 0, for −sgn(`)ω > 0. In the case ` = 0

we still have versions of the previous formula for ω 6= 0, but it will change depending

on the sign of ω. At this point we have 2 cases to consider, when n is even and when

n is odd, we begin by considering the case when n is even.

When n is even, we write φ± for those φ± corresponding to t±. Now let us take

the derivative of (3.8) in the case when −sgn(`)ω > 0 if ` 6= 0 or ω 6= 0 if ` = 0. We

then have

∂ωRaf(x∗ · θ⊥, θ) =

∫ ∞
−∞

(
∂ωf(x∗ + tθ)− ∂ωDa(x∗ + tθ, θ)f(x∗ + tθ)

)
e−Da(x∗+tθ,θ) dt.

(3.14)

First consider the case ` = 0. In this case when we multiply by | sin(ω)|n−1
n and take

the limit as ω → 0, using (3.13) we see that the limit is zero. Since ` = x∗ ·θ∗− t∗, this

proves the result when ` = 0. Now consider when ` 6= 0. In this case we multiply by

| sin(ω)|n−1
n and take the limit as ω → 0−sgn(`). The only terms that are not bounded

in (3.14) for ω close to zero are those that involve derivatives of φ±. We therefore have

lim
ω→0−sgn(`)

| sin(ω)|
n−1
n ∂ωRaf(x∗ · θ⊥, θ) =

(c− c0) lim
ω→0−sgn(`)

∫ t−(ω)

−∞
| sin(ω)|

n−1
n ∂ωt−(ω)f(x∗ + tθ)e−Da(x∗+tθ,θ) dt

+ (c0 − c) lim
ω→0−sgn(`)

∫ t+(ω)

−∞
| sin(ω)|

n−1
n ∂ωt+(ω)f(x∗ + tθ)e−Da(x∗+tθ,θ) dt.

Applying (3.11) and (3.12) to this we finally obtain

lim
ω→0−sgn(`)

| sin(ω)|
n−1
n ∂ωRaf(x∗ · θ⊥, θ) =

2(c0 − c)
(
|`|
nκ

) 1
n
∫ −`
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

(3.15)

Taking into account the translations, rotation and reflection from the beginning of the

proof, this formula agrees with (3.6).

The only remaining case to consider is when n is odd. As there is only one inter-

section point of interest here, we write φ for the φi corresponding to t∗. As before,

let us take the derivative of (3.8) in the case when −sgn(`)ω > 0 if ` 6= 0 or ω 6= 0 if

` = 0. We then have

∂ωRaf(x∗ · θ⊥, θ) =∫ ∞
−∞

(
∂ωf(x∗ + tθ)− ∂ωDa(x∗ + tθ, θ)f(x∗ + tθ)

)
e−Da(x∗+tθ,θ) dt.

(3.16)
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First consider the case ` = 0. Again, in this case when we multiply by | sin(ω)|n−1
n and

take the limit as ω → 0, using (3.13) we see that the limit is zero. Since ` = x∗ ·θ∗−t∗,

this proves the result when ` = 0. Now consider when ` 6= 0. In this case we multiply

by | sin(ω)|n−1
n and take the limit as ω → 0−sgn(`). The only term that is not bounded

in (3.16) for ω close to zero is the term involving the derivative of φ. By a similar

argument to the even n case we obtain

lim
ω→0−sgn(`)

| sin(ω)|
n−1
n ∂ωRaf(x∗ · θ⊥, θ)

= (c0 − c)
(
|`|
nκ

) 1
n
∫ −`
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

(3.17)

Taking into account the translations, rotation and reflection from the beginning of the

proof, the formula given in (3.17) agrees with (3.7), and so completes the proof.

Note that when n = 2 Lemma 8 agrees with Lemma 3 in [37]. Lemma 8 gives the

following useful corollary.

Corollary 3. Let f and a satisfy all the assumptions of Lemma 8, including the as-

sumption that the Cartesian co-ordinates of the boundary can be described via y′(x′) =

(x′ − x′1)ng(x′), where x′ = xcos(ω∗) + y sin(ω∗), y′ = −x sin(ω∗) + y cos(ω∗) and x1
1 is

the x′ co-ordinate of the tangent point , for some g(x′) with g(0) = κ 6= 0. Then, for

any m < n, with m ≥ 1 we have

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) = s2∞ (3.18)

if n is even and

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) = s1∞ (3.19)

if n is odd where s1 is the sign of (t∗ − x∗ · θ∗)κ, and s2 is the sign of κ.

Proof. W.L.O.G we can again consider the case where we can describe the boundary

locally to the tangent point via y = xng(x) with g(0) = κ 6= 0. Note that for any

value of m < n we can alternatively describe the y co-ordinate of the boundary via

y = xmĝ(x) except now ĝ(0) = xn−mg(x)|x=0 = 0. Writing y in this way we can

perform identical analysis as in Lemma 8 and note that κ = 0 and so the limits given

in (3.6) and (3.7) tend to ±∞, as required.
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With the generalization for a single tangent point established, the next case to

consider is the possibility of a single ray being tangent to a finite number of distinct

points on analytic parts of the boundary.

Lemma 9. Suppose that f ∈ C1
c (R2) and a is multi-bang. Suppose that (s∗, θ∗) ∈ Ka,1

passes the boundary tangentially at series of points s∗(θ∗)⊥+t∗i θ
∗, which are all distinct

and none of which are corners or lie on a straight edge. Suppose that local to each

point s∗(θ∗)⊥+t∗i θ
∗ = (xi, yi) the boundary can be described by y′(x′) = (x′−x′i)nigi(x′)

for some gi(x
′) with gi(xi) = κi 6= 0, ni ∈ N, x′, y′ as in Lemma 8 and x′i the x′

coordinate of each of the tangent points. Furthermore, suppose that a = ci on the side

(θ∗)⊥ = (−θ2, θ1) points to at the point s∗(θ∗)⊥ + t∗i θ
∗ and di on the opposite side.

Additionally assume that ω∗ ∈ [0, 2π] satisfies θ∗ = (cos(ω∗), sin(ω∗)) and let x∗ be a

point on the line corresponding to (s∗, θ∗) and set m = maxni. If m is odd let Im be

the set of t values which correspond with tangent points of order m then

lim
ω→(ω∗)+

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) =

∑
t∗i∈Im(x∗)

si(di − ci)
(
|x∗ · θ∗ − t∗i |

m|κi|

) 1
m
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt,

(3.20)

where si is the sign of (t∗i − x∗ · θ∗)κi. If m is even then for x∗ on the line (s∗, θ∗)

define I1
m(x) to be the set of t values corresponding to tangent points with κi > 0 and

ti ≥ x∗ · θ∗, that is to say the convex points after x∗ on the oriented ray, and I2
m(x∗)

be the set of t values corresponding to tangent points with κ < 0 and ti ≤ x∗ · θ∗ then

lim
ω→(ω∗)+

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) =

∑
t∗i∈I1m(x∗)

2(di − ci)
(
|x∗ · θ∗ − t∗i |

m|κi|

) 1
m
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

+
∑

t∗i∈I2m(x∗)

2(ci − di)
(
|x∗ · θ∗ − t∗i |

m|κi|

) 1
m
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt.

(3.21)

Proof. As in lemma 8 by rotating, translating and possibly reflecting about the x-axis

we assume W.L.O.G. that θ∗ = (1, 0), θ∗⊥ = (0, 1) and the points of tangency are at
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Figure 3.2: Demonstrating the effect of changing ` on the visible tangent points as
ω → 0+. With ` in the red position, as ω → 0+, α1 and α2 are visible and α2 is
invisible. In the blue position only α3 is visible. In the green position α2 and α3 are
visible. In the orange position only α2 is visible.

α1 α3
α2`

ω

(t∗) = 0 = α0, α1, α2, ..., αk, for some k ≥ 1. As before, by suitable re parametrization

we have

Raf(x∗ · θ⊥, θ) =

∫ ∞
−∞

f(x∗ + tθ)e−Da(x∗+tθ,θ) dt, (3.22)

where t = 0 corresponds with x∗. Again we assume that x∗ = (`, 0) and for the

moment consider only the case ` 6= 0. As in lemma 8 label the ordered values of t

along the line t 7→ x∗ + tθ, for ω > 0 and |ω| sufficiently small, at which the line

intersects one of the boundaries ∂Ωj as {ti(ω)}Ni=1, note that N ≥ k with equality only

if every point of tangency is an inflexion point.

By assumption we know that local to each αi the boundary can be described by

y(x) = (x − αi)
nigi(x). By Lemma 8 we know that the orders of the singularities

produced by this as ω → 0+ are of the order sin(ω)
n−1
n . Let m be the highest order

of singularity, that is m = maxni . If there is only one such singularity then using

the fact that all other tangency points will contribute nothing when multiplied by

sin(ω)
m−1
m we are in the setting of lemma 8 and so the result holds. Therefore we

can assume there are at least two tangents with order m. Assume that we have

n points of tangency, each with order m and label the set of tangents of order m

T = {αm1 , αm2 , ..., αmn} ⊆ {α1, ..., αk}. Local to each of the αmi the boundaries

can be described by (x− αmi)mgi(x) with gi(αmi) := κmi 6= 0. As in lemma 8 the ray

oriented with small but positive ω about (`, 0), with ` < 0 can intersect the boundaries

related to αmi in 0,1 or 2 places. 0 places corresponds to an αi on a locally concave part

of the boundary, 1 place corresponds to an inflexion point and 2 a convex part of the
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boundary. Since an αi corresponding to a locally concave/convex part of the boundary

must have even order and an inflexion point odd order then the set T contains either

only inflexion points or only a mix of locally concave/convex points. This gives us two

cases to consider.

Case 1- The set T consists of inflexion points.

As in lemma 8 define functions, for fixed `, φi

φi(t, ω) =

 ti(ω) t < ti(ω)

t t ≥ ti(ω),

then if we define bi (note some of these will be ci and di) to be the multi-bang values

in the regions between adjacent ti(ω), the beam transform can be written as

Da(x∗ + tθ, θ) =
N∑
i=1

(bi−1 − bi)φi(t, ω). (3.23)

Now taking the derivative of (3.22) with respect to ω yields, as in lemma 8

∂ωRaf(x∗ · θ⊥, θ) =

∫ ∞
−∞

(
∂ωf(x∗ + tθ)− ∂ωDa(x∗ + tθ, θ)f(x∗ + tθ)

)
e−Da(x∗+tθ,θ) dt.

(3.24)

Since f ∈ C1
c (R2) the term involving ∂ωf will be bounded as ω → 0 therefore any

unbounded terms will come from the derivative of the beam transform. Taking the

derivative of (3.23) with respect to ω we obtain

∂ωDa(x∗ + tθ, θ) =
N∑
i=1

(bi−1 − bi)∂ωφi(t, ω).

If we multiply by sin(ω)
m−1
m and then take the limit as ω → 0+ the only terms which

do not vanish will be those which involve derivatives related to one of the αmi . Note

that in this case the relevant bi will be given by dmi and cmi . This gives us, for ` < 0

lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

n∑
i=1

(dmi − cmi)
(
|`− αmi |
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.
(3.25)

Now consider the case where αmi < ` < αmi+1
for some i. As ω → 0+ the contribution

to the derivative from φmj , for N ≥ j ≥ i + 1 remains the same as in (3.25). There

will also be singular contributions to the derivative from the ∂ωφmj for 1 ≤ j ≤ i but
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as these are approached from below the sign on these contributions will be swapped,

therefore we have

lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

n∑
i=1

sign(αmi − `)(dmi − cmi)
(
|`− αmi |
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

(3.26)

Taking into account the translations, rotation and reflection from the beginning of the

proof this formula agrees with (3.20). We now consider the case where αmi are on

either locally convex or locally concave parts of the boundary.

Case 2- The set {αm1 , αm2 , ..., αmn} consists of points on locally convex or locally

concave parts of the boundary. Define I1
m(`) to be the set of t values which correspond

to the tangent points of order m αmi which are on locally convex parts of the boundary,

see Figure 3.2.

We first consider the case where ` < 0 and suppose that ω is sufficiently small and

positive. As in odd m case we have

Da(x∗ + tθ, θ) =
N∑
i=1

(bi−1 − bi)φi(t, ω). (3.27)

This again gives

∂ωRaf(x∗ · θ⊥, θ) =

∫ ∞
−∞

(
∂ωf(x∗ + tθ)− ∂ωDa(x∗ + tθ, θ)f(x∗ + tθ)

)
e−Da(x∗+tθ,θ) dt.

(3.28)

and

∂ωDa(x∗ + tθ, θ) =
N∑
i=1

(bi−1 − bi)∂ωφi(t, ω).

Again, if we multiply by sin(ω)
m−1
m and then take the limit as ω → 0+ the only terms

which do not vanish will correspond to the α1
mi
∈ I1

m(`). Note that as we approach

from above the singular behaviour of locally concave parts of the boundary will not

contribute to the derivative and so only the convex points contribute. The associated

bi will be given by dmi and cmi . This gives us for ` < 0

lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

|I1m(`)|∑
i=1

(dmi − cmi)
(
|`− αmi |
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

(3.29)
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Now consider the case where αmi < ` < αmi+1
for some i. Let I1

m(`) be the set of t

values which correspond to a tangent point αmj which lies on a locally convex part of

the boundary with αmj ≥ `, similarly define I2
m(`) as the set of t values corresponding

to a tangent point αmj which lies on a locally concave part of the boundary with

αmj ≤ `. As ω → 0+ the only contributions to the derivative the convex parts of the

boundary make are those in I1
m(`), note that the other convex parts of the boundary

are not singular as ω → 0+ (since for convex points αmi < ` as ω → 0+ we approach

the associated boundary from below and the derivative with respect to s bounded in

that limit). Furthermore the contributions the concave parts of the boundary make to

the derivative will be those in I2
m(`), as again the other concave parts do not contribute

any singularities as ω → 0+. Therefore we have

lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

|I1m(`)|∑
i=1

(dmi − cmi)
(
|`− αmi |
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt

+

|I2m(`)|∑
i=1

(cmi − dmi)
(
|`− αmi|
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

(3.30)

Note that if I2
m(`) is empty then the formula in (3.30) holds with the concave part

removed. A similar argument can be made for when I1
m(`) is empty. Taking into

account the translations, rotation and reflection from the beginning of the proof this

formula agrees with (3.21), as required.

In the case of lemma 8 we can easily determine the tangent point as this will be only

point where the RHS of (3.7) or (3.6) will be 0. Unfortunately in the case involving

multiple tangent points the formulas in lemma 9 cannot be used in the same way.

This is because there are contributions from each tangent point so it will be non-zero

at most values of `. We can however determine the points of tangency by taking the

derivatives with respect to x∗ · θ of formulas obtained in lemma 9. This idea is the

focus of the next corollary

Corollary 4. Assume the same hypothesis as in lemma 9. If m is odd

∂x∗·θ∗ lim
ω→(ω∗)+

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) =

∑
Im(x∗)

si(di − ci)
(m|κi|)

1
m

(|x∗ · θ∗ − t∗i |)
m∗
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt,

(3.31)
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and

∂x∗·θ∗ lim
ω→(ω∗)+

| sin(ω − ω∗)|
m−1
m ∂ωR(x∗ · θ⊥, θ) =

∑
t∗i∈I1m(x∗)

2(di − ci)
(m|κi|)

1
m

(|x∗ · θ∗ − t∗i |)m
∗
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt+

∑
t∗i∈I2m(x∗)

2(ci − di)
(m|κi|)

1
m

(|x∗ · θ∗ − t∗i |)m
∗
∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

(3.32)

if m is even, where m∗ = −
(
1− 1

m

)
.

Proof. W.L.O.G we can work with the formulas presented in the proof of lemma 9

involving `. The derivative we consider in this case will be with respect to `. We first

consider the inflexion points, i.e when m is odd. Recall that for ` < 0 we have

lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

n∑
i=1

(dmi − cmi)
(
|`− αmi |
mκmi

) 1
m
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

Note that there are only two where ` appears in the RHS of (3.25) is in the upper

limit and coefficient of each integral and in x∗. By re parametrizing we can remove the

dependence of ` in the upper limit. Therefore the only contributions to the derivative

with respect of ` of (3.25) will be from the coefficient so for ` < 0,

∂` lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

n∑
i=1

(dmi − cmi)
(mκmi)

1
m

(|`− αmi |)
−(1− 1

m)
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

By an identical argument we obtain for ` > 0

∂` lim
ω→0+

| sin(ω)|
m−1
m ∂ωRaf(x∗ · θ⊥, θ) =

n∑
i=1

si(dmi − cmi)
(mκmi)

1
m

(|`− αmi|)
−(1− 1

m)
∫ −`+αmi
−∞

f(x∗ + tθ∗)e−Da(x∗+tθ∗,θ∗) dt.

Taking into account the rotation and translation this agrees with the formula presented

in (3.31). By an identical argument using the formulas relating to (3.21) taking into

account the rotation and translation we obtain the result for even m, as required.

Note that this derivative gives us a way of determining tangent points as these will

be precisely the points where ∂x∗·θ∗ limω→0+ | sin(ω)|m−1
m ∂ωRaf(x∗ · θ⊥, θ) is discontin-

uous.
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This method of looking at derivatives with respect to `, as in the proof of Corollary

4 gives us a way to tackle straight edges. Applying results similar to those given in

this section but to the case of straight edges is the focus of the next section

3.2 Straight edge segments of the boundary

We first examine what happens when we have a single straight edge.

Note that without much analysis we can determine a ray which contains some

number of straight edges. This is because the only possibility for a jump in the AtRT

across a ray is that there is at least one straight edge on it. This alone is not enough

to determine start and end points or indeed how many edges actually lie on the ray.

We can however use the following lemmas in order to determine start and end points.

We first examine what happens when we have a single straight edge on a ray.

Lemma 10. Let f ∈ C1
c (R2) and a be multi-bang. Let (s∗, θ∗) be a ray which contains

only a single straight edge E := {s∗(θ∗)⊥+ tθ∗ : α < t < β} of a boundary and assume

E does not contain any corners for any other part of the boundary. Suppose that a = c

on the side θ⊥ points to at any point on E and c0 on the opposite side. Additionally

assume that θ∗ = (cos(ω∗), sin(ω∗)) and x∗ is a point on the ray (s∗, θ∗) then

∂x∗·θ∗ lim
ω→(ω∗)+

Raf(x∗ · θ⊥, θ) =(c− c0)
∫ 0

−∞ f(x∗ + tθ∗)e− limω→(ω∗)+Da(x∗)⊥+tθ∗,θ∗)dt. if α < x∗ · θ∗ < β

0 otherwise.

(3.33)

Proof. Assume that the intersection of the ray {s∗(θ∗)⊥ + tθ∗ | t < β} and {f > 0}

is non-empty, otherwise the result is trivially true. After a rotational transformation,

translation and possible reflection we can assume WLOG that θ∗ = (1, 0), θ∗⊥ = (0.1)

and the point s∗θ⊥α θα = 0 is the origin i.e, ω∗ = 0 and the edge E := {(t, 0) : 0 < t <

β}. Following the proof of lemma 8, we assume that x∗ = (`, 0) and for the moment

consider only the case ` 6= 0. Then the line corresponding to (x∗ · θ⊥, θ) is precisely

the line through x∗ tangent to θ, and we will change the parametrization of this line

in the integral definition of the AtRT so that t = 0 always corresponds with x∗. Then

we have
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Raf(x∗ · θ⊥, θ) =

∫ ∞
−∞

f(x∗ + tθ)e−Da(x∗+tθ,θ) dt.

We then label the ordered values of t along the line t 7→ x∗ + tθ, for ω > 0 at which

the line intersects one of the boundaries ∂Ωj, other than in the edge, as {ti(ω)}Ni=1.

We also set, for y · θ⊥ > x · θ⊥,

Day(x∗ + tθ, θ) = Da(x∗ + tθ, θ)−Da(y + tθ, θ).

We now have 3 cases to consider, either ` < 0, 0 ≤ ` ≤ β or β < `. If ` < 0 then

as ω → 0+ one of the ti = −` and since E contains no corners for any of the other

boundaries then ti+1 = β−`. Therefore we have, noting that (`, 0) = x∗ and θ = (1, 0)

lim
ω→0+

Raf(x∗, θ) =

∫ −`
−∞

f(x∗ + tθ)e−Da
(−`,0)(x∗+tθ,θ)−cβ−Da((β,0)−(`,0)+tθ,θ)dt

+

∫ β−`

−`
f(x∗ + tθ)e−c(β−`−t)−Da((β,0)−(`,0)+tθ,θ)dt

+

∫ ∞
β−`

f(x∗ + tθ)e−Da(x∗+tθ,θ)dt.

If we make the substitution t 7→ t− ` then the above formula has no dependence on `

and so

∂` lim
ω→0+

Raf(x∗, θ) = 0

when ` < 0. Now suppose ` > β, then since we are interested in taking the limit as

ω → 0+ the edge E is no longer part of the beam transform( see Figure 3.3) and so none

of the intersection points ti will correspond with the start and end of E. Furthermore

the intersection points ti as ω → 0+ are simply translations by ` therefore by making

the substitution t 7→ t − `, we can see that limω→0+ Raf(x∗, θ) does not depend on `

and we find

∂` lim
ω→0+

Raf(x∗, θ) = 0

when ` > β.
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Figure 3.3: Demonstrating the effect of changing ` on the visible edge.

α < ` < β

Only portion between ` and β is visible as ω → 0+

ω
(s∗, ω∗) = (s∗, 0)

t2(ω)

t1(ω)

α β`

Edge fully visible as ω → 0+

O

The final case to consider is when 0 < ` < β. Here the edge E is split into two

segments one between ` and β will be approached from above as ω → 0+ and one from

0 to ` which will be approached from below, again see Figure 3.3. In particular one of

the ti = 0 and ti+1 = β − `. In this case we have

lim
ω→0+

Raf(x∗, θ) =

∫ 0

−∞
f(x∗ + tθ)e−Da

(−`,0)(x∗+tθ,θ)−c0`−c(β−`)−Da((β,0)−(`,0)+tθ,θ)dt

+

∫ β−`

0

f(x∗ + tθ)e−c(β−`−t)−Da((β,0)−(`,0)+tθ,θ)dt

+

∫ ∞
β−`

f(x∗ + tθ)e−Da(x∗+tθ,θ)dt.

The term −c0`− c(β− `) in the exponent of e arises from the fact that we see the edge

E from above for all points after (`, 0) and from below for all points before (`, 0), since

the multi-bang value is c above and c0 below this gives the term −c0`− c(β − `). The

third integral does not depend on `, after a substitution, and so makes no contribution

to the derivative with respect to `. The first and second do depend on `, although

the only contribution the second integral makes is to cancel the term obtained by

evaluating the limits when differentiating under the integral of the first. Therefore we

have

∂` lim
ω→0+

Raf(x∗, θ) =

(c− c0)

∫ 0

−∞
f(x∗ + tθ)e−Da

(0,0)(x∗+tθ,θ)−c(β−`)−Da((β,0)−(`,0)+tθ,θ)dt.

After taking into account the rotation translation and possible reflection this proves

the result.
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Remark 1. In the proof of lemma 10 we use the fact that changing ` translates all

of the intersection points in the limit as ω → 0+ in order to show independence of

the AtRT from `. The importance of ` when it lies between 0 and β is that as well as

translating the intersection points it also changes the length of the edge which is visible

as ω → 0+, as shown in Figure 3.3. In particular the contribution is only c(β− `) and

it is this change in visible edge which causes the jump in the derivative with respect to

`. This property of ` is very helpful when we move onto proving results with multiple

edges.

If f and a satisfy the conditions given in lemma 10 then we can determine the start

and end points of a single edge by examining the derivative with respect to x∗ · θ∗ of

the AtRT. Whenever this derivative jumps corresponds with either entering or exiting

the edge. We can extend the proof and techniques used in lemma 10 to prove the

following result about rays which pass through multiple edges.

Lemma 11. Let f ∈ C1
c (R2) and a be multi-bang. Let (s∗, θ∗) be a ray which contains

a finite number M of straight edges Ei := {s∗(θ∗)⊥+tθ∗ : αi < t < βi} of the boundary,

also Ei does not contain any corners for any other part of the boundary. Suppose that

a = ci on the side θ⊥ points to for any non end point of Ei and a = di on the opposite

side. Additionally assume that θ∗ = (cos(ω∗), sin(ω∗)) and x∗ is a point on the ray

(s∗, θ∗) then

∂x∗·θ∗ lim
ω→(ω∗)+

Raf(x∗ · θ∗⊥, θ) =(ci − di)
∫ 0

−∞ f(x∗ + tθ∗)e− limω→(ω∗)+Da(x+tθ∗,θ∗)dt. if α < x∗ · θ∗ < β

0 otherwise.

(3.34)

Proof. As in Lemma 10 we assume that all Ei intersect the set {f > 0} otherwise the

result is trivially true. As in lemma 10 after a rotational transformation, translation

and possible reflection we can assume WLOG that θ∗ = (1, 0), (θ∗)⊥ = (0.1) and the

α1 = 0 is the origin i.e, ω∗ = 0 and the edge E1 := {(t, 0) : 0 < t < β1}. Following

the proof of lemma 10, we assume that x∗ = (`, 0). Then the line corresponding

to (x∗ · θ⊥, θ) is precisely the line through x∗ tangent to θ, and we will change the

parametrization of this line in the integral definition of the AtRT so that t = 0 always

corresponds with x∗. Then we have
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Raf(x∗ · θ⊥, θ) =

∫ ∞
−∞

f(x∗ + tθ)e−Da(x∗+tθ,θ) dt.

We then label the ordered values of t along the line t 7→ x∗+ tθ, for ω > 0 at which

the line intersects one of the boundaries ∂Ωj as {ti(ω)}Ni=1. Again for y · θ⊥ > x · θ⊥,

set

Day(x∗ + tθ, θ) = Da(x∗ + tθ, θ)−Da(y + tθ, θ).

There are four cases of importance: ` < α1, αi < ` < βi for some M ≥ i ≥ 1,

βi < ` < αi+1 for some M − 1 ≥ ` ≥ 1 and ` > βM .

We first examine the case where ` < α1. Then we have M pairs of intersection

points which correspond with the start and end of the edges Ei. In particular, since

each edge contains no corners, the pairs of intersections points are adjacent to each

other in the set of intersection points. Furthermore, as each intersection point is of

the form βi − ` or αi − ` the only effect that `, provided ` < 0, has on the data is to

shift all of the intersection points. By the translation t 7→ t− ` we can again see that

the AtRT is independent of ` and so, recalling that x∗ = (`, 0),

∂`Raf(x∗ · θ⊥, θ) = 0

for ` < α1.

An identical argument as given in the case of ` > β in Lemma 10 can be used in

the case of multiple edges when ` > βM and so we again find that

∂`Raf(x∗ · θ⊥, θ) = 0

for ` > βM .

This leaves us with two cases to consider αi < ` < βi for some 1 ≤ i ≤ M , i.e the

point x∗ lies on one of the edges Ei or βi < ` < αi+1 for some 1 ≤ i ≤ M − 1, i.e

the point x∗ lies between two edges. We first consider the case when x∗ lies between

two edges. In this case the only edges which will be visible are the edges which lie to

the right of x∗ i.e Ek where M ≥ k ≥ i + 1. By remark 1 and the proof of lemma

10 we find that the only effect that ` has, provided βi < ` < αi+1, is to translate the

intersection points. Again by substituting we find that the AtRT is independent of `.

Therefore we have

∂`Raf(x∗ · θ⊥, θ) = 0
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when βi < ` < αi+1 for 1 ≤ i ≤M − 1.

We now move onto the final case which is when x∗ lies on one of the edges Ei. Let

x∗ lie on the ith edge so that αi < ` < βi. As in the previous case only edges which

lie to the right of Ei and the portion of Ei between ` and βi will be visible as ω → 0+.

In this case we have

lim
ω→0+

Raf(x∗, θ) =

∫ 0

−∞
f(x∗ + tθ)e−Da

(−`,0)(x∗+tθ,θ)−di(`)−ci(βi−`)−Da((βi,0)−(`,0)+tθ,θ)dt

+

∫ βi−`

0

f(x∗ + tθ)e−ci(βi−`−t)−Da((βi,0)−(`,0)+tθ,θ)dt

+

∫ ∞
βi−`

f(x∗ + tθ)e−Da(x∗+tθ,θ)dt.

Note that the edges on the right of Ei are completely visible and the intersection points

are just translated by ` so after translation they do not depend on `. As in remark

1 in addition to the translation ` effects the visible portion of Ei and so this has a

non-zero contribution to the derivative. The second and third integrals, exactly the

same as in Lemma 10 make, no contribution and so we have

∂` lim
ω→0+

Raf(x∗, θ) =

(ci − di)
∫ 0

−∞
f(x∗ + tθ)e−Da

(0,0)(x∗+tθ,θ)−ci(βi−`)−Da((βi,0)−(`,0)+tθ,θ)dt

for αi < ` < βi. After taking into account the rotation translation and possible

reflection this agrees with formula (3.34), as required.

Remark 2. Note that the proof of lemma 11 only requires the interior of the edges to

be disjoint and not their endpoints. Therefore we can have αi+1 = βi for some i and

the result still holds.

Lemma 11 gives us the desired technique to both determine how many edges on

the boundary lie on a single ray as well as their endpoints. The only case remaining

to deal with is when a ray passes through some number of corners. As stated at

the start of Chapter 3 it is not necessary to determine corners using jumps as we can

simply take the closure of all the edges and points on an analytic part of the boundary.

Nonetheless, we do include analysis even in the case as this may be on independent

interest.
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3.3 Corner points

The next few lemmas which we present relate to corners of the boundary. The first

result is also presented in [37] for nested convex domains but the result and the proof

extend naturally to the more general multi-bang setting.

Lemma 12. Suppose that f ∈ C1
c (R2), a is multi-bang, and (s∗, θ∗) ∈ Ka,2 \ Ka,1 and

passes though exactly one corner . Then s 7→ ∂sRaf(s, θ∗) is bounded near s∗.

Suppose additionally that the corner point occurs at s∗(θ∗)⊥ + t∗θ∗, is a corner for

N different components of the regions Ωj, and the boundaries of these regions make

angles {αk}Nk=1 with (θ∗)⊥ where the orientation is chosen so that θ∗ is at a positive

angle. Also suppose that the jump in a across the boundary with angle αk in the

direction of increasing angle is bk (see figure 3.4 and caption). Then there is a jump

in ∂sRaf(s, θ∗) across s = s∗ given by[
∂sRaf(s, θ∗)

]s∗+
s∗−

=

(
N∑
k=1

bk tan(αk)

)∫ t∗

−∞
f(s∗(θ∗)⊥ + tθ∗)e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt.

(3.35)
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Figure 3.4: This figure illustrates some of the notation used in the statement in lemma
12, this figure is taken from [37]. The line corresponding to (s∗, θ∗) is shown in red. The
jump b1 across the boundary corresponding to the angle α1 in the figure is b1 = c+

i+3
−c+

i+2
.

Proof. The proof we follow for this result is given in [37, Lemma 2]. We use the

same set-up and notation as in the proof of Lemma 7. By translating if necessary,

we also assume W.L.O.G. that the corner occurs at the origin. There may be a

different number of boundary crossings N when s > 0 and s < 0, and so we introduce

corresponding functions {t±i }N
±

i=1 giving the crossing points where the t+i are defined for
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s > 0 and the t−i are defined for s < 0. As in Lemma 7 these t±i will all have bounded

derivatives up to s = 0 (this is because the line given by (s∗, θ∗) is not tangent to

any boundary). We also introduce the corresponding φ±i defined as in (3.2) but only

for s > 0 and s < 0 respectively. The formula (3.38) still holds with ± added in

appropriate places, and we can still see that Da((x, s), θ∗) is continuous for s close to

zero. For the derivative ∂sDa((x, s), θ∗) we have for s 6= 0, where ± is the sign of s,

∂sDa((x, s), θ∗) =
N±∑
i=1

(c±i−1 − c±i )∂sφ
±
i (x, s). (3.36)

Since these derivatives are all bounded (but not necessarily continuous at s = 0) we

still have (3.40) for s 6= 0, and we see that ∂sRaf(s, θ∗) is bounded thus proving the

first statement of the theorem. It remains to analyse the jump at s = 0.

Let us first consider the jump in ∂sDa((x, s), θ∗) across s = 0. The only terms con-

tributing to this jump in (3.36) will be those with φ±i where t±i (s)→ 0 as s→ 0± since

the others correspond to boundaries which do not have corners along (s∗, θ∗) and the

line is not tangent to any of the boundaries. Let us reindex the indices i corresponding

to such ti using a new index k as {i±k }Ñ
±

k=1. Then the jump in ∂sDa((x, s), θ∗) is given

by [
∂sDa((x, s), θ∗)

]0+

0−
= lim

s→0+
∂sDa((x, s), θ∗)− lim

s→0−
∂sDa((x, s), θ∗)

=

 Ñ+∑
k=1

(c+

i+k −1
− c+

i+k
)∂sφ

+

i+k
(x, 0+)


−

 Ñ−∑
k=1

(c−
i−k −1
− c−

i−k
)∂sφ

−
i−k

(x, 0−)

 .
Using (3.40) we find that the jump of ∂sRaf(s, θ∗) across s = 0 will be[

∂sRaf(s, θ∗)
]0+

0−

= lim
s→0+

∂sRaf(s, θ∗)− lim
s→0−

∂sRaf(s, θ∗)

= −

 Ñ+∑
k=1

(c+

i+k −1
− c+

i+k
)∂st

+

i+k
(0+)

−
 Ñ−∑
k=1

(c−
i−k −1
− c−

i−k
)∂st

−
i−k

(0−)


×
∫ 0

−∞
f(x, 0)e−Da((x,0),θ∗) dx.

Taking into account the rotation and translation used at the beginning we see that

this corresponds with (3.35) and so completes the proof.
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This result can be extended to the case where a ray passes through multiple corners,

provided that the ray is not tangent to any boundary ∂Ωj. Note than the tangency

condition comes from the fact that, as shown in lemmas 8 and 9, the mapping s 7→

∂sRaf(s, θ∗) blows up near s∗. This blow up on first sight appears to obscure any

information about possible corners but we shall see later that even the case where a

ray passes through any number of corners and is tangent to some parts of the boundary

can be resolved. The next result tackles multiple corner cases.

Lemma 13. Suppose that f ∈ C1
c (R2), a is multi-bang, and (s∗, θ∗) ∈ Ka,2 \ Ka,1 and

passes though M corners. Then s 7→ ∂sRaf(s, θ∗) is bounded near s∗.

Suppose additionally that the corner points occur at s∗(θ∗)⊥ + ti
∗θ∗ and each is

a corner for Ni different components of the regions Ωj, and the boundaries of these

regions make angles {αik}
Ni
k=1 with (θ∗)⊥ where the orientation is chosen so that θ∗ is

at a positive angle. Also suppose that the jump in a across the boundary with angle αik

in the direction of increasing angle is bik. Then there is a jump in ∂sRaf(s, θ∗) across

s = s∗ given by

[
∂sRaf(s, θ∗)

]s∗+
s∗−

=

M∑
i=1

{(
Ni∑
k=1

bik tan(αik)

)∫ t∗i

−∞
f(s∗(θ∗)⊥ + tθ∗)e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

}
.

(3.37)

Proof. We use the same set-up and notation as in the previous lemmas, and we also

assume W.L.O.G. that the corner corresponding to t∗1 is now at the origin and the other

corners are located at {αi}Mi=2, with αi = (αi, 0) with αi > 0 and α1 = (0, 0). As in

Lemma 12, there may be a different number of boundary crossings at s∗(θ∗)⊥ + tiθ
∗

when s > 0 and s < 0. Again, we introduce functions {t±i }N
±

i=1 giving the crossing

points where the t+i are defined for s > 0 and the t−i are defined for s < 0. These t±i

will all have bounded derivatives up to s = 0 (this is because the line given by (s∗, θ∗)

is not tangent to any boundary). We also introduce the corresponding φ±i defined as

in lemma 9 but only for s > 0 and s < 0 respectively. In this case we have

Da((x, s), θ∗) =
N±−1∑
i=1

ci(φ
±
i+1(x, s)− φ±i (x, s)) =

N±∑
i=1

(ci−1 − ci)φ±i (x, s) (3.38)

and we have that Da((x, s), θ∗) is continuous for s close to zero. For the derivative



3.3. CORNER POINTS 73

∂sDa((x, s), θ∗) we have for s 6= 0, where ± is the sign of s,

∂sDa((x, s), θ∗) =
N±∑
i=1

(c±i−1 − c±i )∂sφ
±
i (x, s). (3.39)

Since these derivatives are all bounded (but not necessarily continuous at s = 0) we

have

∂sRaf(s, θ∗) =

∫ ∞
−∞

(∂sf(x, s)− ∂sDa((x, s), θ∗)f(x, s)) e−Da((x,s),θ∗)dx

=

∫ ∞
−∞

∂sf(x, s)e−Da((x,s),θ∗)dx

+
N±∑
i=1

(ci − ci−1)t±
′
i(s)

∫ t±i (s)

−∞
f(x, s)e−Da((x,s),θ∗)dx

(3.40)

for s 6= 0, and we see that ∂sRaf(s, θ∗) is bounded thus proving the first part of the

theorem. We now analyse the jump at s = 0.

We first consider the jump in ∂sDa((x, s), θ∗) across s = 0. The terms contributing

to this jump in (3.39) will be those arising from the corners i.e, with φ±i where t±i (s)→

0 as s→ 0± since the others correspond to boundaries which do not have corners along

(s∗, θ∗) and the line is not tangent to any of the boundaries. We relabel the indices

which are related to the jth corner by {ij±k }
Ñ±j
k=1. Note here that Ñ+

i + Ñ−i = Ni. With

this notation the jump in ∂sDa((x, s), θ∗) is given by[
∂sDa((x, s), θ∗)

]0+

0−
= lim

s→0+
∂sDa((x, s), θ∗)− lim

s→0−
∂sDa((x, s), θ∗)

=
M∑
j=1

{Ñj+∑
k=1

(c+

ij+k −1
− c+

ij+k
)∂sφ

+

ij+k
(x, 0+)

−
Ñj−∑
k=1

(c−
ij−k −1

− c−
ij−k

)∂sφ
−
ij−k

(x, 0−)

}.
By (3.40) we find that the jump of ∂sRaf(s, θ∗) across s = 0 is given by[

∂sRaf(s, θ∗)
]0+

0−
= lim

s→0+
∂sRaf(s, θ∗)− lim

s→0−
∂sRaf(s, θ∗)

= −
M∑
j=1

{( Ñ+
j∑

k=1

(c+

ij+k −1
− c+

ij+k
)∂st

+

ij+k
(0+)

−
 Ñ−j∑
k=1

(c−
ij−k −1

− c−
ij−k

)∂st
−
ij−k

(0−)

)Rj

}
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where

Rj =

∫ αj

−∞
f(x, 0)e−Da((x,0),θ∗).

Taking into account the rotation and translation used at the beginning we see that

this corresponds with (3.35) as required.

Something we have not yet talked about is the possibility for the formulas given

in lemmas 9 and 13 to be 0 for some x∗ on a line. This can only happen when certain

singularities or corners along a ray sum together to cancel out for a specific x∗, this is

not an issue however as they cannot cancel for all x∗ on a ray.

This concludes the corner section and the following small section brings all of the

results from Chapter 3.1-3.3 together to prove one of the main results.

3.4 Unique recovery of boundaries {∂Ω}nj=1

With Corollary 4, Lemmas 11 and 13 we are ready to present the main result in this

section.

Theorem 5. Suppose that f ∈ C1
c (R2) is non-negative, a is multi-bang as in definition

6. If for every point on the boundary x there exists some ray (s, θ) ∈ Ka which passes

the boundary tangentially at x and intersects the support of f , then we can uniquely

recover the boundaries {∂Ωj}nj=1.

Proof. We begin by focussing our attention on the tangent points on piecewise analytic

parts of the boundary. Let (s, θ) ∈ Ka,1, then using Corollary 4 we can determine

all points of tangency on the boundary with the largest singularity order. Once these

points have been identified we can use Lemma 9 to remove these singularities influence

on the data. We can then recursively determine tangency points of lower singularity

order until we have determined them all, with the possible exception of a countable

set. Note that since tangency points cause a blow up in the derivative along rays in

Ka,1 any corners which such a ray might pass through has no impact, since the jumps

for corners are bounded. Thus we are able to determine all points on the boundary

which lie on a piecewise analytic part of the boundary.

With the tangent points dealt with we can then use Lemma 11 to determine the

start and end points of all edges on the boundary.
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The only set we have left to deal with is the set of rays Ka,2, i.e those passing

through the corners. By lemmas 12 and 13, after recursively removing singularities

from the data any remaining corner on the boundary has the property that all but two

rays passing through that point have a bounded jump in the derivative with respect to

s. This is since the two tangents going into and out of the corner produce unbounded

jumps and have already been removed. Therefore we are able to determine all corners

of the boundaries {Ωj}nj=1. Since piecewise analytic boundaries with corners are made

up of precisely corners, flat edges and points on an analytic boundary we can uniquely

recover {∂Ωj}nj=1, as required.

Before moving onto the next chapter containing results about recovering a and f

from SPECT data, we include a small section about the special case of nicely multi-

bang a as in Definition 14.

3.5 Recovery of boundaries in the nicely multi-

bang case

The main result in this section Lemma 15 was presented as an intermediate step in

the proof of Theorem 6 in [37]. Before we go into detail we first define the notion of

curvature for the graph of a function.

Definition 19. Suppose we have a function y = f(x) with f(x) at least twice differ-

entiable. Then the curvature κ(x) is given by

κ(x) =
f ′′(x)

(1 + f ′(x))
3
2

. (3.41)

We can evaluate the signed curvature κ(x) at a point x∗ to obtain the curvature of the

graph (x, y) at the point x∗.

From Definition 5 for a point x∗ on an analytic part of a boundary the boundary

is given, at least locally, by y = (x − x∗)ng(x) with g(x∗) 6= 0 and n ≥ 2. In this

geometry we have dy
dx
|x=x∗ = 0. This gives

κ(x∗) =

0 if n ≥ 3

2g(x∗) if n = 2.

(3.42)
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Equation (3.42) shows we only have non-zero curvature when n = 2, we refer to any

x∗ with κ(x∗) 6= 0 as a point with non-zero curvature.

Remark 3. The choice to use the parameter κ in chapter 3 is to signify that curvature

is just a special case where n = 2.

Theorem 5 shows that we can recover the boundaries of a in the general multi-bang

case, and therefore the nicely multi-bang setting in which the formulas are significantly

simpler, but we make use of a potentially very large amount of the boundary. With

the notion of points of non-zero curvature we are able to recreate nicely multi-bang

boundaries without resorting to points on the boundary with zero curvature.

As boundaries of nicely multi-bang a are boundaries of nested convex sets, and we

intend to recover these sets with non-zero curvature points, a helpful concept is that

of a convex hull.

Definition 20 (Convex hull). Let P be a bounded set of points in 2D space. The

convex hull of P denoted conhull(P) is defined as the unique minimal convex set con-

taining all points in P.

In order to prove the main result in this section we first need the following geometric

lemma.

Lemma 14. Suppose that C ⊂ R2 is closed, convex, bounded and has smooth boundary

possibly with corners. Also let P be the subset of ∂C consisting of points which are

either corners of ∂C, or where ∂C has nonzero curvature. Then

C = conhull (P)

where conhull(P) is the convex hull of P as in Definition 20.

Proof. Since C is closed and convex, and P ⊂ C, we have conhull (P) ⊂ C. Thus it

only remains to show the opposite inclusion. Suppose that x ∈ ∂C \conhull (P). Then

there must be a neighbourhood U of x such that U∩∂C does not intersect P . Therefore

the curvature of ∂C is zero at all points in U ∩∂C, and since x is also not a corner for

∂C, this implies that U ∩ ∂C must contain a line segment containing x in its relative

interior. There must then be some maximally extended line segment containing x

which is contained in ∂C. At least one of the end points of this maximal line segment
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must also be in ∂C \ conhull (P) since otherwise we would have x ∈ conhull (P) by

convexity. However this is a contradiction since by the argument we have already

given this endpoint would be in the relative interior of a line segment contained in

∂C \ conhull (P). Thus ∂C \ conhull (P) = ∅, which then implies the result.

Lemma 14 allows the recovery of a single closed convex bounded set from a subset

of its boundary. Lemma 14 is also useful in determining multiple nested convex sets,

which is the case for nicely multi-bang a. Suppose that we have two nested closed

convex and bounded sets C2 ⊂ C1 and know the set of all points P which are either

points of non-zero curvature or corners of ∂C1 or ∂C2. We can take the convex hull of

P and note that as C2 ⊂ C1 the points in P relating to ∂C2 will lie in the interior of

˚conhull (P) and so will have no effect on the boundary of the convex hull. Therefore,

by Lemma 14 the convex hull of P is equal to C1 and we therefore know ∂C1. We

can then replace P by P \ ∂C1 to remove any points relating to the boundary of C1.

We can then use the convex hull of P \ ∂C1 and Lemma 14 to determine C2. This

technique can be generalized to any finite number of nested sets and this idea is the

basis of the proof of the following result.

Lemma 15. Suppose that a is nicely multi-bang (see Definition 14) and f ∈ C1
c (R2)

is non-negative. Also assume that

1. for all x ∈ Ka,1 the line tangent to a boundary at x passes through the set

{f > 0}, and

2. for all x ∈ Ka,2 there is a line passing through x that also passes through the set

{f > 0},

where Ka,1 and Ka,2 are as in Definition 18. Then we can determine from Raf the

sets Cj appearing in Definition 14 for a.

Proof. We first note that by Lemmas 7 and 12 and Corollary 3 the set of (s∗, θ∗) such

that ∂sRaf(s, θ∗) for s near s∗ is not bounded gives the set of lines which are tangent

to some boundary ∂Cj, possibly missing some of the lines which intersect a boundary

in a line segment. We can get rid of all of the (s∗, θ∗) corresponding to lines which

intersect a boundary ∂Cj in a line segment by looking at the continuity of Raf(s, θ∗)

near s∗ and using Lemma 10. Thus we can determine the set of (s∗, θ∗) such that the
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corresponding lines are tangent to a boundary ∂Cj at some point, and since the Cj

are nested convex sets the point of tangency along each such line must be unique. We

can determine the point of tangency along each line that is tangent at a point where

the curvature of ∂Cj is not zero using Lemma 8 or we can determine if at the point

of tangency the curvature is zero using Corollary 3. Thus we can identify all points in

the boundaries of the Cj at which the curvature of ∂Cj is not zero. Next we will show

that we can also find the corners of the boundaries ∂Cj.

By Lemma 12 and the hypotheses, for every corner point x for some ∂Cj there will

infinitely many lines passing through x such that for at least (s∗, θ∗) corresponding

to these lines ∂sRaf(s, θ∗) is bounded, but has a jump at s = s∗. This allows us to

determine the corner points, and combining this with the previous paragraph we see

that we can determine the Pa from Raf under the given hypotheses. We next show

that this is sufficient to determine all of the Cj.

By Lemma 14 the closure of the convex hull of Pa is equal to the closure of C1.

Therefore we can determine C1. The rest of the sets Cj can now be determined

inductively. Indeed, suppose that we know Cl for all l < j. Then by Lemma 14 again

Cj = conhull

(
Pa \

j−1⋃
l=1

∂Cl

)
,

and so we can determine Cj. This completes the proof.

This concludes the chapter on boundary recovery of a from SPECT data. The next

chapter contains results relating to the recovery of a and f SPECT data.



Chapter 4

Joint recovery of a and f from

SPECT data

This chapter contains novel results on the recovery of a and f from SPECT data when

a is multi-bang and f ∈ C1
c (Ω). This chapter is split into two sections. The first

section contains results relating to nicely multi-bang a, where each of the regions of a

are nested convex sets. The results from the first section are also given in [37]. The

second section relates to the more general not nicely multi-bang case. In the case of

nicely multi-bang functions uniqueness of a and f is explicitly shown. Unfortunately

the non-convex case is more involved and a full uniqueness proof is currently unknown.

However, we still have some novel intermediate results relating to the general multi-

bang case and also some conditions on a which guarantee a unique recovery.

4.1 Nicely multi-bang recovery

This section contains results from the paper [37] relating to the unique recovery of a

and f from SPECT data. In the case of nicely multi-bang a, as in Definition 14, Lemma

15 shows that we can uniquely determine the sets Cj which make up a. In theory we

would only need to uniquely determine a and then apply Theorem 3 to determine f .

Since the outermost layer must contain a point of non-zero curvature we can use either

Lemma 12 or 8 to determine a in this region. Unfortunately, determining the values

that a should take in any other region requires analysing the jumps in the derivative

of the data, and these depend on integrals of f . In the case of nicely multi-bang a it is

79
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useful to use the convex nature of the boundaries of a to determine f in the outermost

region of a and then use the knowledge of f to determine a in the next region.

In order to do this we make heavy use of the following integral geometry result

which is given in [15, Theorem 3.1].

Lemma 16. Suppose that in the strip D = {ξ, η|ξ ∈ R, η ∈ (0, h)} we have the set of

parabolas

γ(x, y) : η = y − (ξ − x)2, ξ ∈ (ξ1, ξ2)

with vertices x, y ∈ D and end points on the η = 0 axis. For a continuous weight

function w(ξ, x, y) and a finite continuous function u ∈ C0(Ω) set

Pu(x, y) =

∫
w(ξ, x, y)u(ξ, y − (ξ − x)2)dξ. (4.1)

Suppose that w is continuous with respect to y ∈ [0, h] analytic with respect to ξ,x in

the complex plane

|Imx| < δ, |ξ − x| < δ, x, ξ ∈ C,

and there exists some ρ > 0 such that |w(x, x, y)| ≥ ρ for all x ∈ C, |Imx| < δ, y ∈

[0, h]. Then the solution of the equation Pu = g is unique in L1(D).

Proof. A proof of this result is given in [15, Theorem 3.1].

The general idea when trying to apply Lemma 16 to the problem of SPECT is to

consider first the outermost layer. First imagine that the support of a is above the

x axis. Suppose that we can find a shallow parabola which lies under the outermost

boundary of a and that we know a under this shallow parabola. Since f is compactly

supported we know that we can find some equally shallow parabola under the support

of f and the aim is to recover f in-between these two parabolas. From the data we

know all straight lines passing through the region between the two parabolas. We can

perform a change of variables to make the two parabolas flat and all the straight line

integrals become integrals along parabolas instead. With this setup we can then apply

the result in Lemma 16. Exactly how this is done is given in detail in proof of Lemma

17. The property of convexity in nicely multi-bang a ensures that finding parabolas in

this way is possible for every point on the outermost boundary, at which the boundary

is not flat. The nested property is needed to ensure that the weight function w, which

in our case is related to a, is analytic in the required region.
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Before presenting the major result of unique recovery of a and f we first present

the following lemma which allows us to determine f in regions where we know a.

Lemma 17. Suppose that f ∈ C1
c (R2), and a is nicely multi-bang with sets {Cj}nj=1,

and let C0 be an open ball centred at the origin that is sufficiently large so that C1 b C0

and supp(f) b C0. Then for j ≥ 1, f |Cj−1\Cj is uniquely determined if we know all of

1. Raf ,

2. the sets Cj,

3. a|R2\Cj , and

4. f |R2\Cj−1
.

Proof. For this proof we will write (x, y) as Cartesian coordinates for points in R2. By

translating and rotating as necessary we assume W.LO.G. that Cj is contained in the

upper half plane {y > 0}, and show that we can then uniquely determine f restricted

to the lower half-plane {y < 0}. By translating to bring Cj arbitrarily close to {y = 0}

and rotating this then shows we can determine f everywhere outside of Cj and so will

complete the proof. See Figure 4.1.

Having done the transformations described in the previous paragraph, we also

assume that Cj−1 ⊂ {y > −h}. Now choose ω > ε > 0 such that the parabola

{y = εx2} lies entirely outside of Cj and the parabola {y = ωx2 − h} lies entirely

outside of Cj−1. It is possible to find such ω and ε since the Cj are all bounded.

Now choose φ ∈ C∞(R2) such that φ(x, y) = 1 on Cj−1 and φ(x, y) = 0 on the set

{y < ωx2 − h}. Then define f̃ = φf so that f̃ has support contained in the set

{y ≥ ωx2 − h} and is such that f̃ |Cj−1
= f |Cj−1

. Also, supposing that a = c on

Cj−1 \ Cj, we set

ã =


ã(x, y) = a(x, y) (x, y) ∈ Cj−1

ã(x, y) = c (x, y) ∈ (R2 \ Cj−1) ∩ {y > εx2 − h− 1}

ã(x, y) = 0 otherwise.

The setup described in the last few lines is illustrated in figure 4.1.

Our next step is to show that we can determine Rãf̃(s, θ) if (s, θ) corresponds to

a line contained in the set {y < εx2} given the hypotheses of the lemma. If this line
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does not pass through Cj−1, then there is no problem since we know f̃ and ã outside

of Cj−1. Suppose on the other hand that the line does pass through Cj−1, and let the

two points of intersection between the line and ∂Cj−1 be denoted t1 < t2 (note there

will always be two such points by convexity and these can be determined from Cj).

We then have

Raf(s, θ) =

∫ t1

−∞
f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt+

∫ t2

t1

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt

+

∫ ∞
t2

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt.

The first and third terms on the right side of the last equation only involve a|R2\Cj and

f |R2\Cj−1
as well as t1 and t2, and thus are known functions of (s, θ) under the given

hypotheses. We combine these together, and also Raf , into one function G(s, θ), and

so, since also f |Cj−1
= f̃ |Cj−1

, we have

∫ t2

t1

f̃(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt = G(s, θ)

where G is a function which can be determined from the known information. Next

note that for t ∈ (t1, t2), F = −Da(sθ⊥ + tθ, θ) + Dã(sθ⊥ + tθ, θ) only depends on s

and θ, and can be determined under the hypotheses. Therefore we have

∫ t2

t1

f̃(sθ⊥ + tθ)e−Dã(sθ⊥+tθ,θ) dt = e−F (s,θ)G(s, θ).

Finally, we can add back in the integrals with f̃ and ã from −∞ to t1 and t2 to ∞

since these only involve ã|R2\Cj , and f̃ |R2\Cj−1
which are assumed to be known. Doing

this we see that Rãf̃ can be determined given the hypotheses. The problem has now

been reduced to determining f̃ |Cj−1∩{y<0}.
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x

y

y = εx2 − h

y = εx2

y = ωx2 − hCj−1

Cj

y = kx+ l

Figure 4.1: This illustrates the setup and some of the notation used in the proof of

Lemma 17. Note that we assume a = c in the region Cj−1 \Cj, and ã = c in the region

above the lowest parabola translated downwards by 1 and outside of Cj. f is assumed

to be known outside of Cj−1, and then f̃ is supported in the region above the middle

parabola.

Our final step is to change variables in order to reduce the problem to one for which

we can apply Lemma 16. For this we consider only Rãf̃(s, θ) for (s, θ) corresponding

to lines contained in {y < εx2}. We reparametrise such lines using y = kx + l where

the slope k and intercept l replace θ and s respectively. We will also write x+(k, l) =
k+
√
k2+4ε(l+h+1)

2ε
for the larger value of x at which {y = kx + l} intersects {y = εx2 −

h− 1}. When we parametrise the lines in this way, the beam transform becomes

Dã((x, kx+ l), k) =

∫ ∞
0

ã(x+ s, k(x+ s) + l)
√

1 + k2 ds = c(x+(k, l)− x)
√

1 + k2

and so the AtRT becomes

Rãf̃(k, l) =

∫ ∞
−∞

f̃(x, kx+ l)ec(x−x+(k,l))
√

1+k2
√

1 + k2 dx.

We now introduce the new coordinates (z, w) defined by z =
√
εx and w = y− εx2 +h.

With this change, the region {εx2 > y > εx2−h} becomes the strip {h > w > 0}, and

abusing notation slightly by writing f̃ also for the same function in these coordinates
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the AtRT becomes

Rãf̃(k, l) =

∫ ∞
−∞

f̃

(
z,−

(
z − k

2
√
ε

)2

+
k2

4ε
+ l − h

)
ec(
√
εz−x+(k,l))

√
1+k2

√
ε(1 + k2) dz

for any (k, l) corresponding to a line contained in {y < εx2} and passing through the

region {y > εx2− h}. The uniqueness of f̃ in the region {y < εx2}, and therefore also

f in the same region, now follows from Lemma 16 since we have that

w = ec(
√
εz−x+(k,l))

√
1+k2

√
ε(1 + k2)

is an analytic function of k/(2
√
ε) and z provided the imaginary part of k is sufficiently

small.

We are now ready to present the uniqueness result for nicely multi-bang a.

Theorem 6. Suppose that a is nicely multi-bang (see Definition 14) and f ∈ C1
c (R2)

is non-negative. Also assume that

1. for all x ∈ Ka,1 the line tangent to a boundary at x passes through the set

{f > 0}, and

2. for all x ∈ Ka,2 there is a line passing through x that also passes through the set

{f > 0}.

Then a and f are uniquely determined by Raf .

Proof. By Lemma 15 we can recover the sets Cj which make up the nicely multi-bang

a. We can determine the supp(f) from the set of rays (s, θ) which give Raf(s, θ) = 0.

Therefore we can pick some C0 such that supp(f) b C0 and note that we know

f |R2\C0
= 0 and a|R2\C1

= 0. Therefore applying Lemma 17 we can determine f |R2\C1
.

With f known in this region we can use either of the formulas in Lemma 8 or 12 to

determine aR2\C2
. We can then use Lemma 17 as the inductive step to complete the

proof.

Remark 4. As stated at the end of the introduction, the constraint that tangent lines

and lines passing through corners have non-empty intersection with the set {f > 0}

requires supp(f) 6⊂ supp(a). Furthermore, by the inversion formula for the AtRT given

in Theorem 3 it is not necessary to calculate f in the final region Cn as we know a

completely at this stage and can just apply the inversion formula.
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The proof of Theorem 6 makes use of both the nested and convex property of the

sets making up a. Unfortunately when we include potentially nonconvex piecewise

analytic boundaries with corners we can no longer end up with a problem which can

be transformed to one which satisfies the conditions given in Lemma 16. In the case

where some x ∈ ∂Ω is a boundary point for multiple regions Lemma 16 can not be

applied due to the fact that a will have discontinuities and hence not be analytic in

the required regions. That being said there are still some partial results which can

be useful in the more general multi-bang case and the next section presents these in

detail.

4.2 General multi-bang results

The first partial result we include relates to the ability to determine which side of a

boundary has the larger multi-bang value.

Lemma 18. Suppose that f ∈ C1
c (R2), f ≥ 0 and a is multi-bang. Suppose that

the ray (s∗, θ∗) ∈ Ka,1 is tangential to a piecewise analytic boundary at a single point

s∗(θ∗)⊥+ t∗θ∗ and that the ray (s∗, θ∗)∩ supp(f) 6= ∅. Let a = c on side θ⊥ = (−θ2, θ1)

points to at the point of tangency, and a = c0 on the other side.

Then we can determine whether c0 > c or c < c0 and hence which side of the

boundary has the larger value of a.

Proof. This result follows almost immediately from Lemma 8. Indeed, by Lemma 8

we have

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
n−1
n ∂ωR(x∗ · θ⊥, θ) =

2s2(c0 − c)
(
|x∗ · θ∗ − t∗|

n|κ|

) 1
n
∫ t∗

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

if n is even, and

lim
ω→(ω∗)s1

| sin(ω − ω∗)|
n−1
n ∂ωR(x∗ · θ⊥, θ) =

s1(c0 − c)
(
|x∗ · θ∗ − t∗|

n|κ|

) 1
n
∫ t∗

−∞
f(s∗(θ∗)⊥ + tθ∗))e−Da(s∗(θ∗)⊥+tθ∗,θ∗) dt

if n is odd, where s1 is the sign of (t∗−x∗ · θ∗)κ, and s2 is the sign of κ. By Lemma 5

we know the boundary of a, and therefore we know κ and n. Since f is non-negative



86 CHAPTER 4. JOINT RECOVERY OF A AND F FROM SPECT DATA

the integrals in these two limits are both non-negative. Hence the only unknown in

these limits is (c0− c). As everything else is known we can determine the sign of c0− c

and therefore whether c0 > c or c < c0, as required.

Unfortunately Lemma 18 is difficult to generalize to the case where we have multiple

tangent points along a single ray. This is because in that case the jump in the derivative

is a sum of contributions and, without further knowledge on f , means that the sign of

the jump does not uniquely determine the sign of each (ci − di).

The upside to a result such as Lemma 18 is that we only need to have a single point

on the boundary of a region to satisfy the constraints in order to tell the direction in

which a increases over a part of the boundary. Even knowing the regions that make

up a and in which direction across each boundary is not always enough to uniquely

determine a, this is because we can only determine the sign and not the size of c0 − c

in Lemma 18. We can however present a uniqueness proof in a special case. Before

presenting this we need the following technical definitions.

Definition 21 (Multi-bang pair (a, f) with directional jumps known). Let a

be multi-bang as in Definition 6 and that f ∈ C1
c (R2) is non-negative. Furthermore,

suppose that for every boundary between two regions there exists some ray (s∗, θ∗) sat-

isfying the assumptions for Lemma 18, then we call (a, f) a multi-bang with directional

jumps known.

If a is multi-bang with directional jumps known then we can also define the fol-

lowing.

Definition 22 (Ascending/Descending path). Let (a, f) be a multi-bang pair with

directional jumps known. Let Γ be a path from a point x0 to x1 with x0, x1 ∈ R2. We

say that Γ is ascending if every boundary of a crossed from x0 to x1 is in the direction

of increasing a. We call a path descending if every boundary of a crossed is in the

direction of decreasing a. See Figure 4.2 for an example.



4.2. GENERAL MULTI-BANG RESULTS 87

Figure 4.2: Demonstration of an ascending path from x0 to x1. At each boundary the

pair + and − shows which side has the larger value of a.
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We can now present a uniqueness proof for some multi-bang (a, f) with directional

jumps known.

Lemma 19. Let (a, f) be multi-bang with directional jumps known. Let A, the admis-

sible set of values a takes, contain k elements. Suppose there exists a finite collection

of ascending or descending paths {Γn} with each Γn passing through k distinct regions

and the set of regions passed through is equal to the sets making up a. Then a and

therefore f are uniquely determined from Raf

Proof. By Theorem 5 we can determine the boundaries of a. Then by by the assump-

tion that a is multi-bang with directional jumps known we have all the jump directions

of a. If Γn is an ascending or descending path and passes through k regions we know

that at each boundary crossing a either increases or decreases. Since there are k re-

gions and we have k admissible values, and there has to be a jump so no two adjacent

regions can take the same value, every region passed through by Γn can be uniquely
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assigned an admissible value. By assumption every region of a is passed through by

some ascending or descending path and therefore its multi-bang value can by uniquely

determined. Hence, we can uniquely determine a and by Theorem 3 f , as required.

Lemma 19 has strengths and weaknesses when compared to Theorem 6. Not every

nicely multi-bang a is also multi-bang with directional jumps known and so this is

not a direct strengthening of Theorem 6. However, Lemma 19 does allow for points

which are on the boundary for multiple regions. It also gives a uniqueness proof for

non-nested sets, as the region where a = 0 can be used in a path. However we do also

require the admissible set to be correct and to not contain any extra values for the

hypothesis to hold.

Lemma 19 is a little restrictive and so we present a weaker but more general result

relating to when we can determine the multi-bang value in a single region of a multi-

bang a from SPECT. It uses a similar idea as the one used in the proof of Lemma

17.

Lemma 20. Let a be multi-bang and f ∈ C1
c (R2). Let x ∈ R2 and suppose that there

exists a unique point z̄ which is the point which achieves the supremum of the set

{‖y− x‖ : y ∈ ∪nj=1∂Ωj}. If z̄ is not a corner then we can determine the value of a in

the region z̄ lies on the boundary of.

Proof. Let z be a point satisfying the hypothesis and z̄ be the corresponding point on

the boundary. The requirement of the existence of a closed ball containing no other

point of any of the sets Ωj requires the boundary z̄ lies on to be the outermost layer,

.i.e that one side of the boundary z̄ lies on is R2 \ ∪nj=1Ωj.

Similar to the proof of 17, we write (x, y) as Cartesian coordinates for points in

R2. By translating and rotating as necessary we assume W.LO.G. that Ω =
∑n

j=1 Ωj

is contained in the upper half plane {y > 0}, and show that we can then uniquely

determine f restricted to the lower half-plane {y < 0}. By translating to bring Ω

arbitrarily close to {y = 0} we can determine f in {y < 0}. The proof of this follows

directly from the proof of Lemma 17, the only difference being in this case that we

cannot necessarily rotate to determine f uniquely outside Ω. The assumption that z̄ is

not a corner is required in order to apply Lemma 16, as this would make a non-analytic

in the necessary region.
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Lemma 20 is useful when determining values of a uniquely in the outer regions but

cannot be used to determine any interior values in the general case. Since we only

need the hypothesis in Lemma 20 to hold for a single z, Lemma 20 does provide at

least partial recovery for a from Raf .

Unfortunately the results presented in this section do not provide uniqueness for all

multi-bang a. One potential method of solving this problem could come from exam-

ining the range condition (2.20) in order to prove that only one possible combination

of admissible values produces a with the desired properties in f .

One final remark to make in regards to uniqueness in the general multi-bang case

is that is it possible to use Lemma 20 to weaken the hypothesis required in Lemma

19. For example if we can determine all the outer most values of a then the number of

regions and ascending/descending paths required for a unique solution can be reduced

significantly.

This concludes the joint recovery of a and f from SPECT data part of the thesis.

The next chapters focus on the numerical problem of inverting the AtRT from data

and the theory behind the numerical convergence of the algorithm.



Chapter 5

Numerical methods

This chapter focuses on the numerical methods which we use to solve the optimization

problem

argmin
a,f∈BV (Ω)

‖Raf − d‖2
L2(Γ+) + αM(a) + γaTV(a) + γfTV(f). (5.1)

We begin by outlining how we descritize the problem and give explicit formulas for the

multi-bang regularizer M and total variation TV. In the previous chapters we have

been working under the assumption that Raf(s, θ) is known for all (s, θ). In practice

there can be only finitely many measurements.

Split Ω, the domain of interest, into M2 square pixels of resolution dx and order

the pixels lexicographically from the top left to the bottom right. We then assume

that a and f are piecewise constant over each pixel. Recall that for an oriented line

given by (s, θ) we defined the AtRT by

Raf(s, θ) =

∫ ∞
−∞

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ) dt (5.2)

where s is the signed closest approach to the origin and θ is a unit direction tangent to

the ray providing orientation. Since a and f are piecewise constant on each pixel, we

can discretize (5.2) exactly as follows. Let P be an ordered list of the pixels passed,

the order being in which order they are passed, along the oriented ray and let N be

the total size of this set. Note this is only well-defined when the ray is oriented. Let

K be the ordered set of t values which correspond to an intersection with an edge of a

pixel in the grid and let Z be the set of Euclidean distances between adjacent entries

90
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in K. With this notation we have

Raf(s, θ) =
N∑
i=1

∫ K(i+1)

K(i)

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ)dt. (5.3)

Considering both a and f to be piecewise constant over the pixels we can compute

the beam transform exactly. For the last pixel the ray passes through, i.e for t ∈

[K(N), K(N + 1)] we have

Da(sθ⊥ + tθ, θ) =

∫ K(N+1)−t

0

aP (N)dη = aP (N)(K(N + 1)− t).

Plugging this information into (5.3) for the last pixel the ray passes through, i.e the

N -th pixel, gives,∫ K(N+1)

K(N)

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ)dt =

∫ K(N+1)

K(N)

fP (N)e
−aP (N)(K(N+1)−t)dt

= fP (N)
1− e−Z(N)aP (N)

aP (N)

.

(5.4)

This form is not appropriate for calculations if a is very small, since then the numerical

calculation of the formula in (5.4) would include catastrophic cancellation. It turns

out that with a little algebraic manipulation we can rewrite (5.4) as,

fP (N)Z(N)e−
Z(N)aP (N)

2 sinhc

(
Z(N)aP (N)

2π

)
, (5.5)

where we define, in an analogous way to the sinc function,

sinhc(z) =


sinh(z)
z

z 6= 0

1 z = 0.

This form avoids catastrophic cancellation for small a values and can make use of the

sinc function which is already built in for programs such as MATLAB. We can use the

above information to build up the transform given in (5.3). For the j-th summand in

(5.3), 1 ≤ j ≤ N , ∫ K(j+1)

K(j)

f(sθ⊥ + tθ)e−Da(sθ⊥+tθ,θ)dt =

fP (j)Z(j)e−
Z(j)aP (i)

2 sinhc

(
Z(j)aP (j)

2

)
ΠN
k=j+1e

−Z(k)aP (k)

where we define a new vector S by S(N) = 1 and S(i − 1) = S(i)e−Z(i)aP (i) . We can

then use the above formula to rewrite (5.3) as

Raf(s, θ) =
N∑
i=1

fP (i)Z(i)e−
Z(i)aP (i)

2 sinhc

(
Z(i)aP (i)

2

)
S(i). (5.6)
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The formula given in (5.6) allows us to rewrite the AtRT as a vector equation

involving a and f . If we are given a data vector d for a set I of oriented rays (si, θi)i∈I ,

then we can combine the vector equations in (5.6) into the matrix equation

R[a]f = d. (5.7)

The discretised problem of interest is then to determine both a and f from d given by

(5.7) where a is multi-bang with the admissible set A = {a0, a1, ..., an} known (note

that for notational convenience we have reindexed the admissible values relative to

Definition 6). We next look at the regularizers for the discrete case.

Recall that the non-convex multi-bang regularizer is given by

M(a) :=

∫
Ω

m(a(x))dx (5.8)

where

m(t) =

 (ai+1 − t)(t− ai), if t ∈ [ai, ai+1] for some i

∞, otherwise.
(5.9)

When a is piecewise constant over pixels we can evaluate (5.8) exactly. In particular

we find

M(a) = dx2

M2∑
i=1

m(a(pi)) (5.10)

where dx is the resolution of the pixel and a(pi) is the attenuation of a in the pith

pixel. In practice we omit the term dx2 and absorb it into the regularization parameter

α. We note that each of the summands in (5.10) only depend on the value of a

at a single pixel. This has the advantage that formulas involving the multi-bang

regularizer can typically be separated and we need only deal with m instead of M.

Unfortunately this separability property means that multi-bang regularization gives

no spatial regularity and this is the main reason why we include total variation which

is well known to produce piecewise constant images with minimal perimeter. There are

two common types of total variation; anisotropic TV with multi-bang regularization is

studied in [18, 54], anisotropic TV is separable (after a change of variables linked by a

matrix equation) and so again is numerically easier to manipulate. However numerical

experiments in [54] show that anisotropic TV, which for an image x ∈ Rn×Rn is given

by
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TVan(x) =
n−1∑
i=1

n−1∑
j=1

|xi+1,j − xi,j|+ |xi,j+1 − xi,j|+
n−1∑
i=1

|xi+1,n − xi,n|

+
n−1∑
j=1

|xn,j+1 − xn,j|,
(5.11)

struggles to distinguish circular and square objects, see Remark 5. Instead we use

isotropic TV, as in [37], which is given, for an image x, by

TV(x) =
n−1∑
i=1

n−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 +

n−1∑
i=1

|xi+1,n − xi,n|

+
n−1∑
j=1

|xn,j+1 − xn,j|.
(5.12)

Using (5.12) as the total variation regularizer as in [54] allows recovery of circular

objects but at the cost of being more computationally challenging, particularly when it

comes to writing (5.1) in an appropriate form for performing an Alternating Direction

Method of multipliers update on a.

Remark 5. For a binary image, i.e each pixel is either 0 or 1, and with square pixels

the anisotropic TV is simply the perimeter of the shape as proven in general in [46].

This makes computation simple but if we take the image x to be a square with perimeter

4n and remove the bottom right pixel then the perimeter of this shape remains the

same. This argument holds for any pixel which lies on a corner. In particular an

approximation of a circle on any number of pixels has the same anisotropic TV given

by (5.11) as a square of the same diameter. Therefore we cannot distinguish shapes

based purely on their anisotropic TV.

After discretising, the optimization problem we aim to solve is

argmin
a,f∈RM2

R(a, f) := ‖R[a]f − d‖2
2 + αM(a) + γaTV(a) + γfTV(f). (5.13)

The optimization problem (5.13) is non-convex for two reasons. Firstly it is clear that

M is non-convex as m is non-convex. The second and perhaps more interesting reason

is related to the data fidelity term

‖R[a]f − d‖2.
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In particular this term is only guaranteed to be convex, with f fixed, when each of

entries of the vector R[a]f − d ≥ 0. This is because we can consider the data fidelity

term as a sum of squares of the individual vector entries, (R[a]f − d)j is a monotone

decreasing function (that is increasing any entry in a reduces or maintains the value

of (R[a]f − d)j). Then by using results from [54, 37] we have that the composition of

two non-negative convex monotone functions is a convex monotone function. This is

only satisfied when (R[a]f − d)j ≥ 0. In order to solve this non-convex optimization

problem we use the following alternating algorithm as in [1]

ak+1 ∈ argmin
a
R(a, fk) +

1

2ξk
‖a− ak‖2,

fk+1 ∈ argmin
f
R(ak+1, f) +

1

2ξk
‖f − fk‖2,

(5.14)

for sufficiently small {ξk}∞k=1. In particular [1] shows that for any problem which can

be written in the form

argmin
x,y

f(x) +Q(x, y) + g(y)

with f and g proper lower-semicontinuous, Q a C1 function with Lipschitz continuous

partial derivatives on bounded subsets of Rn×m, the iterates converge to a critical point

of the system, provided that the sequence ξk is sufficiently small and f and g are so

called Kurdyka- Lojasiewicz(KL)[32] functions.

Definition 23 (Kurdyka- Lojasiewicz(KL) functions). Let f : Rn → R be a

proper lower-semicontinuous function. For −∞ < c1 < c2 <∞, define

[c1 < f < c2] = {x ∈ Rn : c1 < f(x) < c2}.

The function f has the KL property at x∗ ∈ dom∂f , where dom∂f is the domain of ∂f ,

if there exist c ∈ (0,∞], a neighbourhood U of x∗, and a continuous concave function

φ : [0, c)→ R+ such that

1. φ(0) = 0;

2. φ is C1 on (0, c) and continuous at 0;
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3. φ′(s) > 0, ∀s ∈ (0, c);

4. for all x in U ∩ [f(x∗) < f < f(x∗)+c], the Kurdyka- Lojasiewicz inequality holds

φ′(f(x)− f(x∗))d(0, ∂f(x)) ≥ 1.

where d(0, ∂f(x)) = infy∈∂f(x) ‖0− y‖. Let Φc denote the set of functions which satisfy

conditions 1-3. If every φ ∈ Φc also satisfies the 4th condition then we call f a

Kurdyka- Lojasiewicz(KL) function.

The general idea behind KL functions is that there is a change of variables such

that resulting range of the function has a kink at the minimum and is steep close to

this minimum point.

Before showing that these conditions for convergence of the alternating method are

satisfied in (5.13), we first define what we mean by a Lipschitz continuous function

which is a special case of Definition 16 with α = 1.

Definition 24. (Lipschitz continuous) Let g be a function g : Rn → Rm, where

n,m ∈ N, we say that g is Lipschitz continuous if there exists some L > 0 such that

for all x1,x2 ∈ Rn

‖g(x1)− g(x2)‖ ≤ L‖x1 − x2‖.

In the case of R(a, f), the only mixed term is the data fidelity term

‖R[a]f − d‖2
2.

This term is differentiable in both a and f , this can be shown explicitly using (5.6) as

follows. Since R[a]f is linear in f the derivative is simply

∇f‖R[a]f − d‖2
2 = 2R[a]T (R[a]f − d),

which is Lipschitz continuous for bounded subsets of RN×N . Unfortunately, as F is

non-linear in a, finding ∇aF(a, f) is a significantly more computationally expensive

process. We tackle this gradient by looking at one ray at a time. In order to take this

approach, we first note that we have

da := ∇a‖R[a]f − d‖2
2 = 2

〈
∂R[a]

∂aL
f,R[a]f − d

〉
.



96 CHAPTER 5. NUMERICAL METHODS

We set h = R[a]f − d, so that the value of h corresponding to the j-th ray is hj. Then

as described earlier, let P be the ordered set of pixels passed through by the j-th ray

with the orientation θ, and let Z be the set of Euclidean lengths of the intersections

with each of these pixels. Let N be the total number of pixels that the j-th ray passes

through. Then we have by (5.6),

(R[a]f)j =
N∑
i=1

fP (i)Z(i)e−
Z(i)aP (i)

2 sinhc

(
Z(i)aP (i)

2

)
S(i)

where we define S(i) exactly as before. In order to simplify this expression we set

gi = e−
Z(i)aP (i)

2 sinhc

(
Z(i)aP (i)

2

)
.

Now from the definition of S we have that

S(i) = e−
∑N
k=i+1 Z(k)aP (k) .

Then the derivative with respect to a is given by,

∂(R[a]f)j
∂aP (l)

=
fP (l)Z(l)2

2

(
−gl + S(l)e−

Z(l)aP (l)
2 sinhc′

(
Z(l)ap(l)

2

))
−

l−1∑
i=1

fP (j)Z(j)Z(l)gj.

(5.15)

Evaluating sinhc′ causes an issue when a is very small, once again due to catastrophic

cancellation, and so we make use of the Taylor series for sinhc in order to rewrite

this derivative as a function which remains small as a is small. It can be shown that

provided a(l) < 1/Z(l)5 then we can approximate sinhc′ by

sinhc′
(
Z(l)aP (l)

2

)
'
(
Z(l)aP (l)

6
+

(Z(l)aP (l))
3

240

)
.

Then we find that the individual contribution to daP (l) from the j-th ray is given by

dajP (l) := 2
∂(R[a]f)j
∂aP (l)

hj.

This is simply the formula in (5.15) multiplied by hj. If we then set dajp = 0 for all

p /∈ P , then finally we have ∇aF(a, f) by summing over all lines (s, θ) in our data set,

i.e

∇a‖R[a]f − d‖2
2 =

∑
r

dar. (5.16)
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The formula given in (5.15) is again differentiable for each aj and the derivative is

continuous and therefore (5.16) is also continuously differentiable and so Lipschitz

continuous on any bounded subset of RN×N . Hence, the conditions on Q are satisfied.

Then the terms involving just a are

F1(a) := αM(a) + γaTV(a)

and the terms involving just f are

F2(f) := γfTV(f).

In can be shown that F1 and F2 are subanalytic [41], the details are very technical

and beyond the scope of this research. We can apply results directly from [32] to show

that both F1 and F2 are KL. Therefore in our setting the alternating method given in

(5.14) converges, provided ξk is sufficiently small.

Remark 6. Although theoretical convergence of (5.14) has been proved in [1] for suf-

ficiently small ξk, we have had success in reconstruction when the terms ‖a − ak‖2

and ‖f − fk‖2 are omitted which corresponds to ξk → ∞. We have not yet been able

to prove this result theoretically but for the examples given in this report, and indeed

all the examples we have currently tested, the algorithm converges typically in fewer

iterations for the same range of initial guesses of parameters when ξk → ∞ as when

it is taken to be small.

We first turn our attention to the more computationally challenging part of the

algorithm which involves updating a.

5.1 Updating a

After removing terms which only depend on f , we can find ak+1 via the first order

optimality condition

ak+1 ∈ argmin
a
‖R[a]fk − d‖2 + αM(a) + γaTV(a) +

1

2ξk
‖a− ak‖2. (5.17)

This sort of problem can be solved by splitting the objective function into two parts

each depending on separate parameters which are linked together by a matrix equation.
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We split the objective function, and a, into two parts

f(x) := ‖R[x]fk − d‖2 + αM(x) +
1

2ξk
‖x− ak‖2 (5.18)

where x is related to the data fidelity and multi-bang part of a and

g(y) := γa

M2−1∑
i=1

‖yi‖2 (5.19)

where yi is a discrete derivative of a in the i-th pixel. We then concatenate the yi

to obtain y which is an approximation of the gradient of a. Precisely how we do this

split and obtaining linear constraints on the separation will be examined at the end of

section 5.1. Once the objective function is split, optimizing can then be done via the

Alternating Direction Method of multipliers algorithm [10] which we outline below.

Suppose that an optimization problem can be written in the form

argmin
x,y

f(x) + g(y)

s.t Ax+ y = 0

(5.20)

where Ax+ y = 0 is a linear constraint and f and g are proper lower-semicontinuous

and convex functions. For β > 0 we construct the augmented Lagrangian

Lβ(x, y, λ) := f(x) + g(y)− λT (Ax+ y) +
β

2
‖Ax+ y‖2

2

where λ is a vector of Lagrange multipliers; here augmented is used to refer to the

additional term β
2
‖Ax + y‖2. The ADMM algorithm is then given by the following

update scheme

xk+1 = argmin
x

Lβ(x, yk, λk)

yk+1 = argmin
y

Lβ(xk+1, y, λk)

λk+1 = λk − β(Axk+1 + yk+1),

which terminates when the primal residual rk := ‖Ax+ y‖2 and an approximate dual

residual sk := βDT (yk+1 − yk) originally obtained and used in [10] are sufficiently

small. It is worth noting that in the general case the xk+1 and yk+1 can belong to

a potential set of minimisers, as so we would need to replace = with ∈ for the first

two lines of the ADMM algorithm. With an additional requirement on A given the
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list below, since g is assumed convex and the weak convexity of f can be countered

by the convexity of β
2
‖Ax+ y‖2, provided β is suitably large, we do have equality for

the xk+1 and yk+1 with our hypothesis. This algorithm is a specific example of the

more general class of saddle-point algorithms studied in [10], as the x and y updates

are descent directions and the λ update is an ascent update. If both f and g are

convex [10] gives a series of mild conditions which will guarantee convergence of the

sequence {xk+1, yk+1, λk+1}k≥1. Recently [32] has extended convergence of the iterates

{xk+1, yk+1, λk+1}k≥1 to the case where f and g are non-convex, with the constraints

that the derivative of g is Lipschitz continuous and both f and g are KL functions.

Before continuing we give an important result relating to convergence of the ADMM

algorithm in the non-convex case based on [32]. A proof is also included because it

introduces an important quantity we discuss later in the numerical section.

Suppose that we have the following conditions on (5.20)

• f is weakly-convex and lower-semicontinuous as in Definitions 10 and 7.

• g is convex, with Lipschitz continuous gradient as in Definition 24, i,e there exists

some L > 0 such that

‖∇g(y)−∇g(y′)‖ ≤ L‖y − y′‖.

• ATA ≥ µI, for some µ > 0. Here this means the matrix ATA − µI is positive

semi-definite and guarantees that the augmented term is strongly convex.

• The dual update β satisfies both(
β

2
− L2

2

)
> 0 (5.21)

and (
βµ

2
− ρ

2

)
> 0 (5.22)

where ρ is the associated weak convexity of f .

With these conditions we have the following result given in [32].

Lemma 21. Let f, g and A satisfy the conditions given above. Then there exists δ > 0

such that for β satisfying (5.21) and (5.22), the ADMM iterates satisfy

Lβ(xk+1, yk+1, λk+1) ≤ Lβ(xk, yk, λk)− δ
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)
.
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Proof. To prove this result we follow the proof given in [32]. We aim to show the result

in the lemma by rewriting

Lβ(xk+1, yk+1, λk+1)− Lβ(xk, yk, λk) =
(
Lβ(xk+1, yk+1, λk+1)− Lβ(xk+1, yk+1, λk)

)
+
(
Lβ(xk+1, yk+1, λk)− Lβ(xk, yk+1, λk)

)
+
(
Lβ(xk, yk+1, λk)− Lβ(xk, yk, λk)

)
.

(5.23)

From the definition of the augmented Lagrangian function Lβ(·), it follows that

Lβ(xk+1, yk+1, λk+1) = Lβ(xk+1, yk+1, λk) + 〈λk − λk+1, Axk+1 + yk+1〉

= Lβ(xk+1, yk+1, λk) +
1

β
‖λk − λk+1‖2,

where the last line follows from λk+1 = λk − β(Axk+1 + yk+1). We have already found

an equality for the first of the three terms in (5.23) and we proceed by bounding the

other two parts.

Consider

Lβ(xk, yk+1, λk)− Lβ(xk+1, yk+1, λk)

=f(xk) + g(yk+1)− 〈λk, Axk + yk+1〉+
β

2
‖Axk + yk+1‖2

−
{
f(xk+1) + g(yk+1)− 〈λk, Axk+1 + yk+1〉+

β

2
‖Axk+1 + yk+1‖2

}
=f(xk)− f(xk+1) + 〈λk, A(xk+1 − xk)〉+

β

2
‖Axk + yk+1‖2

− β

2
‖Axk+1 + yk+1‖2.

(5.24)

We now make use of the weakly-convex property of f . Let ρ > 0 be chosen so that

f(x) +
ρ

2
‖x− xk+1‖2

is convex. Then by the first order optimality condition

ATλk+1 + βAT (yk+1 − yk) + ρ(x− xk+1)

∣∣∣∣
x=xk+1

∈ ∂
(
f(x) +

ρ

2
‖x− xk+1‖2

)∣∣∣∣
x=xk+1

we have

f(xk)− f(xk+1) +
ρ

2
‖xk − xk+1‖2 ≥ 〈AT (λk+1 + β(yk+1 − yk)), xk − xk+1〉

=⇒ f(xk)− f(xk+1) ≥ 〈AT (λk+1 + β(yk+1 − yk)), xk − xk+1〉 − ρ

2
‖xk − xk+1‖2.

(5.25)
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Combining (5.24) and (5.25) gives

Lβ(xk, yk+1, λk)− Lβ(xk+1, yk+1, λk)

≥〈(λk+1 − λk) + β(yk+1 − yk), A(xk − xk+1)〉 − ρ

2
‖xk − xk+1‖2

+
β

2
‖Axk + yk+1‖2 − β

2
‖Axk+1 + yk+1‖2.

(5.26)

Similarly, we have

Lβ(xk, yk, λk)− Lβ(xk, yk+1, λk)

=g(yk)− g(yk+1) + 〈λk, yk+1 − yk〉

+
β

2
‖Axk + yk‖2 − β

2
‖Axk + yk+1‖2.

(5.27)

As g is convex and by the optimality condition λk+1 = ∇g(yk+1) we have

g(yk)− g(yk+1) ≥ 〈λk+1, yk − yk+1〉. (5.28)

Combining (5.27) and (5.28) we obtain

Lβ(xk, yk, λk)− Lβ(xk, yk+1, λk)

≥〈λk+1 − λk, yk − yk+1〉+
β

2
‖Axk + yk‖2 − β

2
‖Axk + yk+1‖2.

(5.29)

If we combine (5.29) and (5.26) we have

Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk)

≥〈λk+1 − λk, yk − yk+1〉+
β

2
‖Axk + yk‖2 − β

2
‖Axk+1 + yk+1‖2

〈(λk+1 − λk) + β(yk+1 − yk), A(xk − xk+1)〉 − ρ

2
‖xk − xk+1‖2.

(5.30)

Recall

λk+1 = λk − β(Axk+1 + yk+1)

=⇒ Axk+1 + yk+1 =
1

β
(λk − λk+1)

=⇒ Axk + yk =
1

β
(λk − λk+1) + (yk − yk+1) + A(xk − xk+1),

combining this with the fact that

2〈x, y〉+ ‖x− y‖2 = ‖x‖2 + ‖y‖2
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gives

β

〈
1

β
(λk+1 − λk) + (yk+1 − yk), A(xk − xk+1)

〉
+
β

2
‖Axk + yk‖2 =

β

〈
1

β
(λk+1 − λk) + (yk+1 − yk), A(xk − xk+1)

〉
+
β

2

∥∥∥∥ 1

β
(λk − λk+1) + (yk − yk+1) + A(xk − xk+1)

∥∥∥∥2

=
β

2

∥∥A(xk − xk+1)
∥∥2

+
β

2

∥∥∥∥ 1

β
(λk+1 − λk) + (yk+1 − yk)

∥∥∥∥ .
(5.31)

Repeating this process again we find

〈λk+1 − λk, yk − yk+1〉+
β

2

∥∥∥∥ 1

β
(λk+1 − λk) + (yk+1 − yk)

∥∥∥∥2

=
β

2

∥∥yk − yk+1
∥∥2

+
1

2β

∥∥λk+1 − λk
∥∥2
.

(5.32)

Combining (5.31),(5.32) and (5.30) we have

Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk)

≥β
2

∥∥yk − yk+1
∥∥2

+
1

2β

∥∥λk+1 − λk
∥∥2

+
∥∥A(xk − xk+1)

∥∥2

− β

2

∥∥Axk+1 + yk+1
∥∥2 − ρ

2
‖xk − xk+1‖2.

(5.33)

Again, from

λk+1 = λk − β(Axk+1 + yk+1),

we find

λk+1 − λk = −β(Axk+1 + yk+1)

=⇒
∥∥λk+1 − λk

∥∥2
= β2

∥∥Axk+1 + yk+1
∥∥2

=⇒ 1

2β

∥∥λk+1 − λk
∥∥2

=
β

2

∥∥Axk+1 + yk+1
∥∥2
.

Therefore we can write (5.33) as

Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk)

≥β
2

∥∥yk − yk+1
∥∥2

+
∥∥A(xk − xk+1)

∥∥2 − ρ

2
‖xk − xk+1‖2.

(5.34)

Now since ATA ≥ µI we have

‖A(xk − xk+1)‖2 ≥ µ
∥∥xk − xk+1

∥∥2
,
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and so (5.34) can be written as

Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk)

≥β
2

∥∥yk − yk+1
∥∥2

+

(
βµ

2
− ρ

2

)
‖xk − xk+1‖2.

(5.35)

Therefore we have

Lβ(xk+1, yk+1, λk+1)− Lβ(xk, yk, λk)

≤− β

2

∥∥yk − yk+1
∥∥2 −

(
βµ

2
− ρ

2

)
‖xk − xk+1‖2

+
1

β
‖λk − λk+1‖2.

(5.36)

Finally using the fact the gradient of g is Lipschitz continuous, as well as the first

order optimality condition for y, we have

1

β
‖λk+1 − λk‖2 ≤ L2

β
‖yk+1 − yk‖2.

Combining all of this then gives

Lβ(xk+1, yk+1, λk+1)− Lβ(xk, yk, λk)

≤−
(
β

2
− L2

β

)∥∥yk − yk+1
∥∥2 −

(
βµ

2
− ρ

2

)
‖xk − xk+1‖2.

(5.37)

Since we assume that both
(
β
2
− L2

β

)
and

(
βµ
2
− ρ

2

)
are positive, taking

δ = min
{(

β
2
− L2

β

)
,
(
βµ
2
− ρ

2

)}
gives

Lβ(xk+1, yk+1, λk+1) ≤ Lβ(xk, yk, λk)− δ
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

)
,

as required.

The proof that the iterates converge then follows using an identical method of

analyzing KL inequalities as in [32, Lemmas 3.1-3.4 and Theorem 3.1].

Remark 7. We remark that the isotropic TV regularizer given in (5.12) is non-smooth

and therefore does not have Lipschitz continuous gradient. This means that the proof

given in lemma 21 no longer holds. One potential method of dealing with this could be

to consider the Bregman distance on g rather than the two norm as in [25] and this

is potential further avenue of research. At this time we are unable to prove theoretical

convergence of the ADMM algorithm when the Lipschitz conitinuity condition on g
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is removed, the condition on g being convex is unchanged even with non-smooth TV.

However most of the proof of Lemma 21 is unchanged when we consider the non-smooth

version, in fact we can follow identical logic all the way to (5.36). We do examine a

parameter arising from (5.36) which would guarantee convergence at the end of this

section. Numerically using the non-smooth TV gives convergence for a vast array of

examples with large variations in initial guesses. The smoothed TV given by (5.43) is

continuously differentiable and therefore Lipschitz continuous for any bounded subset

of RN and so satisfies the assumptions of Lemma 21.

With this result established we return to solving the optimization problem (5.13),

first we obtain the matrix equation relating x the data fidelity and multi-bang part of

a and the total variation part y.

Recall that the entry in the i-th position of x corresponds to the value of x in the

i-th pixel and we order lexicographically from top left to bottom right. We can define

a series of matrices Di ∈ R2,N2
which have two rows. The first row contains a 1 in

the position corresponding to xi and a -1 in the position corresponding to the pixel

directly to the right of xi. If the pixel xi is on the right hand edge of the grid then

the first row is simply all zeros. Similarly the second row contains a 1 in the position

corresponding to xi and a -1 corresponding to the pixel directly below of xi. Again if

the pixel is on the bottom of the grid we set the second row to be all zeros. Combining

this together, for a given vector x ∈ RN2
we see that

Dix =



 xi − xi+1

xi − xi+M

 if 1 ≤ i ≤M2 −M & mod (i, N) 6= 0

 0

xi − xi+M

 if 1 ≤ i ≤M2 −M & mod (i,M) = 0

xi − xi+1

0

 if M2 −M + 1 ≤ i ≤M2 − 1.

(5.38)

In particular this allows us to rewrite (5.12) as

TV(x) =
M2−1∑
i

‖Dix‖2. (5.39)
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If we stack all of these Di matrices on top of each other and compare with the formula

given in (5.12) we obtain the linear constraint

y = Dx.

We further split y into a series of 2 by 1 column vectors which are linked to x by the

matrix equations

Dix = yi.

Remark 8. As it is written D is not positive semi-definite, its null space is the set

of all constant vectors, we can eliminate this problem by fixing the top left most pixel,

i,e the first entry in the vector x, to be 0. With this modification we then satisfy the

requirements of Lemma 21.

Then we can rewrite the variational problem for a as

argmin
x
‖R[x]f − d‖2

2 + αM(x) + γa

M2−1∑
i=1

‖yi‖2 +
1

2ξk
‖x− ak‖2

s.t yi = Dix, for i = 1, 2, ...,M2 − 1.

(5.40)

The augmented Lagrangian corresponding to (5.40) is given by

Lβ(x, y, λ) =
∑
i

(
γa‖yi‖2 − λTi (yi −Dix) +

β

2
‖yi −Dix‖2

)
+ ‖R[x]f − d‖2

2 + αM(x) +
1

2ξk
‖x− ak‖2

where each λi ∈ R2, and λ ∈ R2N(N−1) is a reordering of λi, similar to y. With this

we are now ready to start outlining the numerical method of updating a. We begin

by first considering the update of x, the data fidelity and multi-bang part of a.

5.1.1 Updating x

If we only consider the terms involving x in (5.13), we have

argmin
x
||R[x]f − d||22 − λT (y −Dx) +

β

2
||Dx− y||22 +

1

2ξk
‖x− ak‖2

+ αM(x).

(5.41)
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The top line of (5.41) is the sum of functions with Lipschitz continuous gradients,

Lipschitz continuity follows from the fact that the data fidelity term is Frechet dif-

ferentiable [23], and the second line is a weakly-convex. This type of update can be

performed by Iterative Shrinking Thresholding algorithm (ISTA) [6] or its variants

such as Fast Iterative Shrinking Thresholding Algorithm (FISTA) [6]. In order to

apply the FISTA algorithm we make use of the proximal map of M. The proximal

map is typically only well-defined when both parts of (5.41) are convex, recently [5]

extended the definition of a proximal map to weakly-convex functions for an interval

of proximal parameter.

Definition 25. (Proximal map) Let f be a lower-semicontinuous, convex function.

Then the proximal map of f for a proximal parameter t is given by

proxt(f) (y) := argmin
x

(
f(x) +

t

2
||x− y||2

)
.

In the case of where f is only weakly-convex the proximal map defined by the

formula in Definition 25 is still well-defined provided that t < 1
ρ

[5]. We now determine

the proximal map of M.

SinceM(x) is a sum over pixels and each term is independent from any others, we

can determine the proximal map of M(x) by first finding the proximal map of m(t).

The proximal map of m(t) is given in the following theorem.

Theorem 7. Let m be as in (2.17). The proximal map for m, for t < 1
2

is given by

prox 1
t
m(x) =



a0 if x ≤ x0,+

ai if xi,− ≤ x ≤ xi,+ for i ∈ {1, ..., k − 1}

ak if xk,− ≤ x

1
1−2t

(
x− t(ai+1 + ai)

)
if xi,+ < x < xi+1,− for i ∈ {0, ..., k − 1}

(5.42)

where

xi,− = ai − t(ai − ai−1) for i = 1, ..k

xi,+ = ai + t(ai+1 − ai) for i = 0, ..., k − 1.

Proof. Recall from Definition 25 that for a given x we define the proximal map as the

unique y with the property

prox 1
t
(m)(x) = argmin

y

{
m(y) +

1

2t
‖y − x‖2

}
.
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We can find this by considering the first order optimality condition

0 ∈ ∂
{
m(y) +

1

2t
‖y − x‖2

}
=⇒

0 ∈ ∂
{
m(y) +

ρ

2
‖y‖2 +

1

2t
‖y − x‖2 − ρ

2
‖y‖2

}
=⇒

0 ∈ ∂ {hρ(y)}+ ∂

{
1

2t
‖y − x‖2 − ρ

2
‖y‖2

}
=⇒

0 ∈ ∂hρ(y) +
1

t

(
y − x

)
− ρy =⇒

0 ∈ ∂m(y) +
1

t

(
y − x

)
=⇒

1

t

(
x− y

)
∈ ∂m(y),

where ∂m(y) is understood in the sense of Definition 11. The left hand side of this

optimality condition is a line of gradient −1
t

in y with intercept x
t
. The right hand

side of this condition is given by

∂m(y) =



(ai + ai+1)− 2y y ∈ [ai, ai+1]

[−∞, a1 − a0] y = a0

[ai−1 − ai, ai+1 − ai] y = ai, i = 1, ..., k − 1

[ak−1 − ak,∞] y = ak.

We can determine prox 1
t
(m(x)) by finding intersection points between 1

t
(x − y) and

the subderivative of m(y). These intersection points can be found by using a similar

approach to the case of dealing with the convex m0(y) examined in [54]. We focus

initially on finding what values of x lead to intersections at “corners” of ∂m.

The first corner of ∂m occurs at (a0, a1 − a0). If we wish to find x0,+, which we

define to be the intercept leading to intersection at this first corner, we can use the

formula for a straight line as follows

(x0,+

t
− (a1 − a0)

)
= −1

t
(0− a0) =⇒

x0,+ = a0 + t(a1 − a0)

.

Then for any value of x ≤ x0,+ the intersection will occur at y = a0. Figure 5.1 gives

a graphical representation of how we find these intersection points.



108 CHAPTER 5. NUMERICAL METHODS

Figure 5.1: Demonstration of finding x±,i graphically. Here the set of admissable

values is {a0 = 0, a1, a2}. Each blue line has slope −1
t
.

y

x

a0 a1 a2

x0,+

x1,−

x2,−

x1,+

We now define some important x values: xi,− is the intercept leading to an inter-

section at the lowest point on the graph of ∂m(y) at y = ai and xi,+ the intercept

leading to an intersection at the the highest point of the graph of ∂m(y) at y = ai. We

then have any x satisfying xi,− ≤ x ≤ xi,+ leads to an intersection at y = ai. Again

we can use the formula for a straight line to find, for 1 ≤ i < k − 1,

(xi,−
t
− (ai−1 − ai)

)
= −1

t

(
0− ai

)
=⇒

xi,− = ai − t(ai − ai−1)

and (xi,+
t
− (ai+1 − ai)

)
= −1

t

(
0− ai

)
=⇒

xi,+ = ai + t(ai+1 − ai).
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For i = k we have (xi,−
t
− (ak−1 − ak)

)
= −1

t

(
0− ak

)
=⇒

xk,− = ak − t(ak − ak−1).

Note that in order to avoid overlapping regions, and hence lead to a non well-defined

proximal map, we must have t < 0.5

Finally we need to determine where the intersection point occurs for xi,+ ≤ x ≤

xi+1,− for some i. In this case the intersection occurs somewhere on the non-vertical

parts of the graph of ∂m(y). The intersection point occurs at (y, (ai+1 + ai)− 2y)(x
t
−
(
(ai+1 + ai)− 2y

))
=

1

t

(
y

)
=⇒

x− t(ai+1 + ai) = (1− 2t)y =⇒

y =
1

1− 2t

(
x− t(ai+1 + ai)

)
.

Combining all of this gives

prox 1
t
m(x) =



a0 if x ≤ x0,+

ai if xi,− ≤ x ≤ xi,+ for i ∈ {1, ..., k − 1}

ak if xk,− ≤ x

1
1−2t

(
x− t(ai+1 + ai)

)
if xi,+ < x < xi+1,− for i ∈ {0, ..., k − 1}

as required.

This shows that the choice of a weakly-convex multi-bang regularizer gives the

desirable property that prox 1
t
m(ai) = ai, at the cost of limiting the values of t which

give a well-defined proximal map. Figure 5.2 shows a comparison of the proximal

maps for both the convex multi-bang regularizer m0 and the weakly-convex multi-

bang regularizer for a specific example. By the definition of the proximal map we

have, for any α > 0

prox 1
t
(αf)(y) := argmin

x
{αf(x) +

1

2t
‖x− y‖2}

= argmin
x
{f(x) +

1

2αt
‖x− y‖2}

=prox 1
tα

(f)(y).
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Figure 5.2: Comparing proximal maps. The left shows the proximal map obtained
using the convex multi-bang penalty m0 used in [19] and the right is the weakly
convex multi-bang penalty m proximal map. Here A = {0, 0.25, 0.5, 0.75, 1}.
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(a) Convex proximal map
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x
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Weakly Convex Multibang Penalty proximal map

(b) Weakly convex proximal map

Therefore, the proximal map for αm is just the formula for the proximal map of m

with t replaced by αt, with the additional change that the proximal map is only well-

defined for αt < 1
2
. As stated at the start of the section, we can sum over all pixels to

obtain the proximal map for αM. The gradient, with respect to x of the function

F(x) := ‖R[x]f − d‖2
2 − λT (y −Dx) +

β

2
‖Dx− y‖2

2 +
1

2ξk
‖x− ak‖2

is

∇x(‖R[x]f − d‖2
2) +DTλ+ ρDT (Dx− y) +

1

ξk
(x− ak),

and with this we are ready to explicitly write out the Fast Iterative Shrinkage Thresh-

olding Algorithm(FISTA)[6] for our problem.
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Algorithm 1 FISTA algorithm

1: Input x0 an initial guess, a step size t and tolerance δ1. Set p1 = x0.

2: Let s1 = 1.

3: for k ≥ 1 do

uk = pk − t∇F(pk)

xk = prox 1
t
(αM)(uk),

sk+1 =
1 +

√
1 + 4s2

k

2

pk+1 = xk +
sk − 1

sk+1

(xk − xk−1) .

4: Terminate when ‖xk − xk−1‖2 < δ1.

Note that our choice of 1
t

rather than t makes the first step in FISTA more like

gradient descent. Since

||R[x]f − d||22 + λT (Dx− y) +
β

2
||Dx− y||22 +

1

2ξk
‖x− ak‖2

has Lipschitz continuous gradient, as each term is smooth, and αM(x) is a ρ-weakly

convex lower-semicontinuous function, provided that we choose t sufficiently large [6,

Section A: Proposition 5], we have convergence of FISTA to a critical point of

argmin
x
||R[x]f − d||22 + λT (Dx− y) +

β

2
||Dx− y||22 +

1

2ξk
‖x− ak‖2

+ αM(x).

Therefore to perform the x minimisation step of the ADMM algorithm we use FISTA

given above. Since FISTA only gives an approximate minimiser for x, and theoretical

convergence of ADMM requires exact minimisers, we use a small tolerance δ1 > 0

to terminate when successive iterates become sufficiently close with respect to the

2-norm. We now look at updating the y or total variation part of a.

5.1.2 Updating y

As mentioned at the beginning of chapter 5 we use the non-smooth variant of TV

(5.12) in the numerics given in section 6, we do however give details on how we update

y when we use a smoothed TV given by
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TVc(a) =
M2−1∑
i=1

√
‖Dia‖2

2 + c. (5.43)

We first examine the non-smooth case. Omitting terms not involving y and after some

algebraic manipulation as in [46], we can write the y update as

yk+1
i = argmin

{
γa‖yi‖2 +

β

2

∥∥∥∥yi − (Dix+
1

β
λki

)∥∥∥∥2

2

}
. (5.44)

Problems of the form (5.44) have been studied before [10, 32], one particularly useful

result comes from [32].

Proposition 1. For any β > 0 and v, y ∈ Rn, the minimiser of

J (y) = ‖y‖2 +
β

2
‖y − v‖2

2

is given by

y(v) = max

{
‖v‖2 −

1

β
, 0

}
v

‖v‖2

.

Proof. A proof of this can be found in [32].

By applying Proposition 1 with v = Dix we can explicitly write out the y update

step. For each yi we find that

yk+1
i = max

{∥∥∥∥Dix
k+1 +

1

β
λki

∥∥∥∥− γa
β
, 0

}
Dix

k+1 + 1
β
λki

‖Dixk+1 + 1
β
λki ‖

(5.45)

where 0
0

= 0. Since y is simply a reordering of entries in all of the yi updating the

M(M − 1) yi allows us to fully update y. This completes the non-smooth update. We

now move onto the case where we use

TVc =
M2−1∑
i=1

√
‖Dia‖2

2 + c.

We again split the y update into sub problems involving yi. The first order opti-

mality condition for each of the yi updates in this case gives

0 = γa
yi√

‖yi‖2
2 + c

− λi + β(yi −Dix
l+1) (5.46)

for all i. Whilst this cannot be explicitly solved for yi easily, we can make use of the

gradient, which is the right hand side of (5.46) to solve the y update via gradient
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descent. Again we use a small tolerance δ2 > 0 for the maximum difference between

successive iterates i.e, ‖yik+1 − yik‖2 before we terminate, in order to speed up con-

vergence of ADMM. Once we have updated all of the yi in this way we can combine

them to update y. With the x and y updates examined the λ update is simply given

by

λk+1 = λk + β(yk+1 −Dxk+1).

To complete the algorithm we set ak+1 = xk, where xk is the final x output from

performing the ADMM algorithm. In practice having an adaptive technique for varying

β leads to improved speed of convergence [10], although the theoretical proof does rely

on constant β. For all of our numerical reconstructions we use the following simple

update for β as in [10]

βk+1 :=


τ+βk if‖rk‖2 > µ‖sk‖2

βk

τ−
if‖sk‖2 > µ‖rk‖2

βk otherwise

(5.47)

where rk := Dxk − y and sk := βDT (yk+1 − yk) as before. We now move onto the f

update.

5.1.3 Updating source radiation density f

Since the AtRT is linear in f updating f is much less computationally expensive.

Removing the parts of the objective function (5.13) we obtain

fk+1 ∈ argmin
f
‖R[ak+1]f − d‖2 + η

M2−1∑
i=1

√
‖Dif‖2

2 + c+
1

2ξk
‖f − fk‖2 (5.48)

when we use smoothed TV and

fk+1 ∈ argmin
f
‖R[ak+1]f − d‖2 + η

M2−1∑
i=1

‖Dif‖2 +
1

2ξk
‖f − fk‖2 (5.49)

when using the non-smooth version. As in the a update we find numerically that using

the non-smooth TV yields convergence over a wider range of regularization parameters

and so use the non-smooth version. We can then split either (5.48) or (5.49) as in the

case of a and solve the resulting problem via ADMM, although since we do not have a
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multi-bang regularizer in this case the computation is faster and does not require the

use of a proximal map. We can now fully describe the joint recovery algorithm

Algorithm 2 Joint reconstruction algorithm

1: Input a0 as initial guess, step sizes t, β0, tolerances δ1, δ2, δ3, δ4, δ5, δ6 and regular-

ization parameters α, λ and µ.

2: Set f 0 to be the least squares solution of ‖R[a0]f − d‖2.

3: for k ≥ 0 do

4: Set x0 = ak and y0 = Dx0.

5: for l ≥ 0 do

6: Update xl+1 via ISTA or FISTA with δ1 as a tolerance on ‖xl+1 − xl‖.

7: Update yl+1 via gradient descent on (5.46) terminate when ‖yl+1−yl‖ < δ2.

8: Set µl+1 = µl + βl(yl+1 −Dxl+1).

9: Update βl+1 via (5.47)

10: Terminate when rl < δ3 and sl < δ4 and output ak+1 = xl+1.

11: Update fk+1 via (5.48) or (5.49) using ADMM with tolerance δ5.

12: Terminate when ‖ak+1 − ak‖2 < δ6 and ‖fk+1 − fk‖2 < δ6.

We point out that in this algorithm β0 is reset to the same initialised value whenever

the inner iterations aimed at the a update in (5.14) (those indexed by l) restart. Before

presenting numerical results we also cover the Discrete Tomography case discussed in

section 2.5.

5.2 Discrete Tomography algorithm

In the case when we work with the Radon transform we are only inverting to recover

f and so do not need to alternate updates. Note that when working with the Radon

transform the matrix R[0] is not changed at each iteration and can be calculated before

beginning. As we are working in the DT setting we expect f to take values from a

discrete set, as stated before this lends itself nicely into using multi-bang regularization

with the admissible set containing the expected values. In this case our optimization

problem is given by
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argmin
f∈RM2

‖R[0]f − d‖2
2 + αM(f) + γfTV(f) (5.50)

This optimization problem can be split into two parts x and y, in a similar way to both

a and f in the joint reconstruction setting, and solved using ADMM. The algorithm

for updating in this case is given below

Algorithm 3 Discrete Tomography algorithm

1: Input f 0 as initial guess, step sizes t, β0, tolerances δ1, δ2, δ3, δ4 and regularization

parameters α, λ and β.

2: for k ≥ 0 do

3: Set x0 = fk and y0 = Dx0.

4: for l ≥ 0 do

5: Update xl+1 via ISTA or FISTA with δ1 as a tolerance on ‖xl+1 − xl‖.

6: Update yl+1 via gradient descent on (5.46).

7: Set λl+1 = λl + βl(yl+1 −Dxl+1).

8: Update βl+1 via (5.47)

9: Terminate when rl < δ2 and sl < δ3 and output fk+1 = xl+1.

10: Terminate when ‖fk+1 − fk‖2 < δ4.

Before presenting some numerical reconstructions obtained by using Algorithms 2

and 3, we first briefly discuss a possible parameter which controls behaviour of both

algorithms 2 and 3 when using non-smooth TV.

5.2.1 µk and a possible condition on convergence

Recall that in the proof of lemma 21 we obtained the following inequality

Lβ(xk+1, yk+1, λk+1)− Lβ(xk, yk, λk)

≤− β

2

∥∥yk − yk+1
∥∥2 −

(
βµ

2
− ρ

2

)
‖xk − xk+1‖2

+
1

β
‖λk − λk+1‖2.

(5.51)

In the case where g(y) has Lipschitz continuous gradient, we were able to replace

‖λk − λk+1‖ by L‖yk − yk+1‖ and obtain the result we needed. However, when the
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gradient of g(y) is not Lipschitz continuous things are not so straightforward. Even

though there is currently no proof of theoretical convergence of ADMM when g does not

have Lipschitz continuous gradient we have, at least in all the numerical experiments

we have examined, observed numerical convergence for a wide variety of examples. In

fact if we define a parameter

µk :=
1

4

{
β‖yk − yk+1‖2 + (βµ− ρ)‖xk − xk+1‖2

‖rk+1‖2

}
, (5.52)

where rk+1 = Axk+1 + yk then, using (5.52) and the λk+1 update we can rewrite (5.51)

as

Lβ(xk+1, yk+1, λk+1)− Lβ(xk, yk, λk)

≤− β

4

∥∥yk − yk+1
∥∥2 −

(
βµ

4
− ρ

4

)
‖xk − xk+1‖2

+ (β − µk)‖rk+1‖2.

(5.53)

The quantity µk therefore gives access to a method of proving convergence, provided

β−µk < 0, the exact behaviour of µk for convergent numerical examples is something

which could be studied further. The quantity µk has the following very important

property. If (β − µk) < 0 for all k ≥ k̃, for some k̃ then in a similar manner as in the

proof of lemma 21 choosing

δ = min

{
β

4
,

(
βµ

2
− ρ

2

)
,
(
µk − β

)}
gives the following corollary.

Corollary 5. Let f and A satisfy the conditions given in Lemma 21 and suppose g is

a proper convex function. Additionally suppose that (µk − β) > 0 for all k sufficiently

large, then there exists δ > 0 such that the ADMM iterates satisfy

Lβ(xk+1, yk+1, λk+1) ≤ Lβ(xk, yk, λk)− δ
(
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2 + ‖rk+1‖2

)
.

The proof of convergence would then follow by a similar argument involving KL

functions as for the Lipschitz continuous case given in [32]. Accounting for the fact

that we actually update β at each iteration if we have µk − βk > 0 at every iteration

after some finite step we would be able to ensure convergence. Further work needs to

be done to precisely identify the relationship between (µk − βk) and the convergence

of the algorithm but we present an example that shows if this quantity is negative for
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a large number of iterations the algorithms diverge and when it is positive after some

number of iterations the method converges.

We now present the numerical reconstructions.



Chapter 6

Reconstructions

Throughout this section we have produced data on a 340 by 340 pixel grid and recon-

structed on a 200 by 200 grid to avoid inverse crimes. The size of each pixel in all

examples presented is 0.2 by 0.2 (i.e. dx = 0.2), the size of the domain is of particular

importance in the joint reconstruction case as large attenuation values typically cause

reconstructions of a from noisy data to be poor [17]. All of the following examples

have 5% added Gaussian white noise and were produced on a standard 4 core laptop

using MATLAB. Note that much of the computational time is spent computing and

recomputing the matrix representation of R[a] when a is updated, and many of the

steps in this reconstruction can be done using parallel computing toolboxes. When

we consider the Radon case where we only reconstruct f this computation time is no

longer a concern. Unless otherwise stated the following reconstructions use 16 parallel

ray projections which are equally spaced with some small perturbation to make the

angles irrationally related (i.e. unless otherwise stated we only use data with 16 dif-

ferent values of θ). Irrationally related angles have been shown to reduce the number

of projections required to obtain good reconstructions [17, 63]. For 16 projections

the simultaneous reconstruction algorithm takes approximately 15 minutes and the

Discrete Tomography algorithm takes approximately 3 minutes.

In both algorithms there are a large number of parameters to control. This gives

good flexibility but does require extensive parameter tuning in order to obtain op-

timal results. Therefore, parameter selection is an important part of the algorithm.

Although optimal results require fine tuning, we typically find that a large range of the

parameters β0, t, α, γa and γf lead to good results. Firstly, the step sizes t and β0 can

118
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be chosen quite widely, and only the number of iterations required for convergence are

affected. Since it is actually the quantity 1
t

that we use as the step size, small values

of t lead to large step sizes. For a given α, the strength of the multi-bang penalty,

there is an upper bound on the value of t that can be used which is determined by

(5.42), since the proximal map is not well-defined if αt is too large. As we update

β0 at each iteration, the initial choice of β0 can be widely varied and still produce

good results. Perhaps the most interesting parameter choice concerns α. Since we

are interested in the quantity αt, taking α too large causes the proximal map to be

ill-defined. If α is close to the limit allowed by αt then in numerical experiments we

found the algorithm produced completely multi-bang reconstructions but the bound-

aries were poorly recovered, whereas taking α too small tends to give non multi-bang

reconstructions. Again there is a large range, several orders of magnitude, for which

good reconstructions are obtained. For example, in the reconstructions shown in this

section a choice of α ∈ [10−3, 0.5] and t ∈ [0.001, 0.1] would yield similar results.

There is some interaction between the choice of α and γa; in particular if one is much

larger than the other the reconstructions essentially become purely multi-bang or total

variation reconstructions. Keeping the orders of α and γa the same, at least in the

experiments we have tried, produces a with both good multi-bang and shape recovery.

Finally a large range of γf yield good recovery and so this parameter is not extensively

tuned.

In the following examples we use initial guesses where a is constant. In practice

convergence is obtained for all tested phantoms for any constant initial guess of a,

provided the constant value lies between a0 and an in the admissable set. We therefore

use initial guess a0 = 0 for all numerical results presented here. The last general

comment we make is that if we set ξ = ∞, effectively removing the added terms

‖a − ak‖2 and ‖f − fk‖2 from (5.14) we still obtain convergence. In many cases

removing this part improves the speed of convergence, although the theoretical proof

of convergence does not hold in this case. Throughout this chapter we fix ξ = 50 and

set all tolerances δi to 1× 10−3.

Figure 6.1 shows an example of numerical reconstruction in the DT case. The

true phantom for f is a binary image of a maze with admissible set A = {0, 1}.

The top right reconstruction is obtained with α = γf = 0.05 with the correct set
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Figure 6.1: Discrete Tomography phantom recovery, here the true image (top left) is
binary with A = {0, 1}.

A and initial step sizes t = 0.025 and β0 = 0.1. The bottom left reconstruction is

obtained with α = 0.1, γf = 0.05 and initial step sizes t = β0 = 0.05. The bottom

right reconstruction is obtained with α = 0.075, γf = 0.05 and initial step sizes

t = β0 = 0.075. When the correct set A is used the reconstruction is multi-bang and

recovery is good with only a few pixels on the upper most edge not being correctly

assigned. When we input incorrect but “close” multi-bang values into the admissible

set, as in the bottom right reconstruction in Figure 6.1 (here the largest value is 0.9),

we again obtain multi-bang reconstructions however there is more variation and the

image is no longer binary. When the incorrect values are further away, such as the

bottom left reconstruction where the largest value is 0.5, we see that the reconstruction

is much poorer, the recovered f is still multi-bang but the much lower values in A have

caused the recovered f to grow in order to compensate. This behaviour is good in

some aspects as, at least in this example, you can obtain good results provided that

you have a good approximation of the correct set A.

Figure 6.2 shows the effect of the number of projections on reconstruction quality

in a joint reconstruction example. Here the phantom for a is made up of 3 regions with

A = {0, 50, 100}. The left column shows the true phantoms for a and f . The middle
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Figure 6.2: Demonstration of the effect the number of projections has on the joint
reconstruction of a and f . In this case f is continuous and a is multi-bang with
admissible set A = {0, 50, 100}

column is an optimized reconstruction using 4 projections with α = 0.1 and λ = η =

0.05. The right column shows an optimized reconstruction using 12 projections with

α = 0.1, λa = 0.05 and λf = 0.15. In both reconstructions for a we obtain multi-bang

solutions. The middle column shows a poor recovery of the structure of a and f . The

recovered a has a lot of misclassification and has been unable to separate the regions.

The inaccuracies in a have an impact on the recovery of f , with the outer most regions

of f being poorly recovered. The rightmost column is a very good recovery of both a

and f , with just a small section on the left bracket being misclassified. The matching

f is also very well recovered.

Figure 6.3 shows a graph of the 2-norm error between an optimized reconstruction

and the true a against the number of projections used. As stated earlier in this

Chapter, the angles used are evenly spread and then perturbed slightly to make them

irrationally related. The reconstructions obtained for fewer projections than 4 are

very poor and not included in the plot. We can see that the increasing the number of

projections rapidly increases reconstruction quality up until 12 projections. After 12

projections the improvement is minimal and there is no improvement after 20. It is

important to mention that we found more complex phantoms generally required more
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Figure 6.3: Plot of the 2-norm error of the reconstructed a against number of projec-
tions used. Here the true a is the same as in Figure 6.2.

projections to obtain a good reconstruction than the more simple examples.

Figure 6.4 gives a joint reconstruction example when a and f have the same support

and are both multi-bang. Note that even though f is multi-bang we do not include

multi-bang regularization in the update steps of f in Algorithm 2; it is only TV

regularized. The left hand column gives the true a and f , the correct admissible set

for a is {0, 10, 20, 100} and for f is {0, 0.2, 0.7}. The choice of a being much larger

than f is to make the chest model more realistic [42]. The middle column gives an

optimized reconstruction when the admissible set for A is known, here the parameters

are α = 0.05, γa = 0.05, γf = 0.5 and initial step sizes t = β0 = 0.1. The right

hand column gives an optimized reconstruction when the admissible set is incorrectly

chosen as {0, 10, 20, 30, 80}; here the parameters are α = 0.075, γa = 0.05, γf = 0.5

and initial step sizes t = β0 = 0.1. In both reconstructions the multi-bang property

of a is recovered. More interestingly this also seems to have given f the multi-bang

property without actually having to apply multi-bang regularization directly to f .

Figure 6.5 shows the absolute error in the reconstructions given in 6.4 divided by 100.

In the case where A is correct the reconstruction of a and f is good with only a few

pixels on the boundary of the highest attenuation circles being mislabelled. When we

reduce the maximum known value to 80 the reconstruction still captures the features
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Figure 6.4: Joint reconstruction where a and f are both multi-bang. Here a is a chest
phantom from in [42] with admissible set A = {0, 10, 20, 30, 100}.

of a but the circles of highest attenuation have a constant error across them, which is

to be expected. This reduction in maximum a value causes f to generally be smaller

than it should. This may be because with lower a a lower value of f along a ray (s, θ)

would be able to produce the same Raf(s, θ).

Figure 6.6 gives a plot of the objective function against iteration number for the

chest reconstructions given in Figure 6.4. Here the objective function at the i − th

iteration is found by evaluating (5.13) at ai and fi. The top graph corresponds to the

middle column and the bottom graph corresponds to the right column of Figure 6.4. In

both cases the general behaviour is the same, we have a decreasing objective function

with a sharp decrease in the first 10 or so iterations and a slower decrease after this.

There are two differences however, the first is in the value of the objective function

itself. In the top graph we have a much lower value achieved at around 0.5 whereas in

the bottom the objective function reaches 1.5. The second difference is in the number

of iterations. The top graph corresponding to the correct admissible set terminates

after 38 iterations whereas the reconstruction with a partially incorrect set terminates

after 53. When the joint algorithm converges, this behaviour of the objective function

is typical of the numerical reconstructions we have computed throughout this project.
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Figure 6.5: The absolute error of reconstructions given in Figure 6.4 divided by 100.
The left hand column shows reconstructions obtained using the correct admissible set
and the right hand column shows reconstructions obtained using a spurious admissible
set.

Figure 6.7 gives a joint reconstruction example where again both a and f have the

same support but here f is continuous and not multi-bang. The left hand column

gives the true a and f , and the admissible set for a is {0, 50, 100}. The middle column

gives an optimized reconstruction when the admissible set for A is known. Here the

parameters are α = 0.05, γa = 0.15, γf = 0.25 and initial step sizes t = β0 = 0.1.

The right hand column gives an optimized reconstruction when the admissible set is

incorrectly set as {0, 10, 20, 30, 50, 80}, here the parameters are α = 0.075, γa = 0.05,

γf = 0.5 and initial step sizes t = 0.05 β0 = 0.15. Again in both reconstructions

the multi-bang property of a is well recovered. When the admissible set is incorrect

we again lose more detail in both a and f . We also see that the non-zero regions

of a grow when the maximum multi-bang value is lowered. The growth in a is also

shown in f where it has also grown to compensate. Figure 6.8 gives the absolute error

between the reconstructions in a and f and the true phantom divided by 100. The

left column corresponds with the middle column of Figure 6.7 and the right column

corresponds with the right column of Figure 6.7. In both cases we see that the error is
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Figure 6.6: Plot of objective function against iteration number for the example given
in Figure 6.4. Here the top graph corresponds to the middle column and the bottom
the right column in Figure 6.4.

Figure 6.7: Joint reconstruction where only a is multi-bang with a and f sharing the
same support. Here a and f are based on a walnut phantom from [33]. The true
admissible set is A = {0, 50, 100}.
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Figure 6.8: The absolute error of reconstructions given in Figure 6.7 divided by 100.
The left column shows reconstructions obtained using the correct admissible set and
the right hand column shows reconstructions obtained using a spurious admissible set.

concentrated on the boundaries of a and f , with there being significantly more error

in the case where the admissible set is incorrect. The areas in which a and f are 0 are

well recovered in both examples.

The next figure we examine relates to the parameter µk which discussed in Chapter

5.2.1. The first row Figure 6.9 shows two examples of reconstructions for the DT case

where the true phantom for f is the same as the true phantom for a in Figure 6.9.

The second row shows a plot of the quantity µk − βk as defined in (5.52). In the left

hand column the algorithm converged in 69 iterations, the right hand column does

not converge and was terminated at 69 iterations. In both cases we choose initial

parameters so that µ0 = β0 is positive and at this time we are unsure as to whether

this aids convergence or not. All parameters bar two remain the same in each of these

reconstructions, on the left we use t = 0.1 and α = 0.15 and on the right t = 0.5 and

α = 0.001. In the convergent case we see that after about 25 iterations µk−βk remains

positive and seems to converge after about 40 iterations. When the algorithm diverges

the value of µk − βk rapidly oscillates and the oscillations get worse as the iterations

increase. It is worth noting that even though the algorithm is diverging some features

of f are recovered particularly in the upper half of the image which corresponds to
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Figure 6.9: A plot of µk − βk at each iteration for a Discrete Tomography reconstruc-
tion. Here the phantom for f is the same as the phantom for a in Figure 6.7. The left
hand column shows a convergence example and the right hand side a divergent.

the larger values of a. Further study into the properties of µk during reconstruction is

something which could be an area for future research.

The last set of results relate to the non-unique solution for radial a and f which

was discussed in Introduction and Literature review.

6.1 Radial and close to radial reconstructions

This section contains results relating to the case where the data used for reconstruction

is produced from a which is multi-bang and consists of a single circle. The f used is

supported on the circle and goes to 0 on the edge. The exact f we use in this section

is given by f = 1 + cos(|x|). As discussed in section 2.5, [55] gives a method which

shows that with this choice of a and f a solution exists with a = 0. We present three

figures. The first shows that numerically in the case of the radial a and f this can

lead to a second solution being recovered. The other two figures show that, using the

same parameters which led to different solutions in the first case, when a is perturbed

slightly we can only obtain one reconstruction. This does not contradict the result in
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Figure 6.10: Joint reconstruction of a and f where both are radial and share the same
support. The admissible set here is A = {0, 50}.

[55] as the theoretical results used to obtain a second solution requires a and f to be

radial.

Figure 6.10 shows reconstructions in the case where a and f are both radial. The

admissible set is A = {0, 50}. The middle column gives a reconstruction where we

obtain a solution close to the true phantom and the right column gives a reconstruction

which recovers a = 0 and a different, but still radial f . For the middle column the

parameters are α = 0.1, γa = 0.15, γf = 0.025 and initial step sizes t = β0 = 0.05.

For the right column we have α = 0.005, γa = 0.5, γf = 0.025 and initial step sizes

t = β0 = 0.075. In all reconstructions shown in this section we use the initial guess

a = 0 in every pixel. This demonstration of non-unique recovery matches the theory

about radial a and f given in [55] and section 2.5. In the right hand column we have a

similar effect to that shown in Figure 6.4 where the value of the recovered f is smaller

than that of the true f to compensate for the lower attenuation. It is worth noting that

the vast majority of parameter choices which lead to a convergent solution produce

reconstructions resembling the middle column. Numerically the ADMM algorithm we

use based on [32] only guarantees convergence of the iterations to a critical point of the

system and this is one possible explanation as to why we can obtain two convergent
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but distinct solutions.

Figure 6.11: Joint reconstruction of a and f where a is an ellipse and f is the same

as in Figure 6.10. The admissible set here is A = {0, 50}.

Figures 6.11 and 6.12 show reconstructions where f is the same radial example as

in Figure 6.10 but with a slightly perturbed. In Figure 6.11 a is an ellipse with major

axis 1.1 and minor axis 1 and in Figure 6.12 two small circles have been removed from

the edge of a. In both cases the middle and right column use the same parameters as

the middle and right columns of Figure 6.10. For both modified phantoms we recover

the same a and f and do not obtain a second solution. Furthermore, at least from

the numerical testing we carried out, we were unable to choose convergent parameters

which led to another solution being obtained.
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Figure 6.12: Joint reconstruction of a and f where a is close to radial and f is the

same as in Figure 6.10.The admissible set here is A = {0, 50}.

6.2 Comparison with another joint approach

This short section makes a visual comparison between another joint approach given

in [25]. In [25] they aim to simultaneous recover an image and a segmentation from

Magnetic Resonance Imaging (MRI) data, see [25] and their references. Here a seg-

mentation refers to a colour map which identifies all points on the same object as one

colour, i.e they obtain a purely multi-bang image for the segmentation. The authors of

[25] make use an iterative regularization technique in contrast to the variational prob-

lem we solve given in (2.8) and physical factors mean that instead of under sampling

the projections they under sample the k-space (Fourier Space). Both our approach

and the one given in [25] make use of Total Variation but we also include multi-bang

regularization. At the additional a priori cost of needing to know the admissible set

A we can obtain an image which is very close to being purely multi-bang, even when

restricted to limited projections (although the numerics given in this Chapter have

roughly equal spacing rather than being focussed in some region). This leads to the

production of an a image which is easy to segment by inspection. Performing the
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reconstruction of an image from some physical data and then performing the segmen-

tation on the reconstruction is one standard approach to segmentation, which makes

this approach very susceptible to errors in the construction. One advantage that [25]

has over the joint multi-bang TV regularizer we have used is that they do not need

prior knowledge of the values to obtain a good reconstruction. As shown in Figure 6.1,

which is a Discrete tomography example which uses the joint regularizer, an incorrect

admissible set leads to bloating and then the multi-bang images we recover are poor

and the resulting image cannot be segmented accurately. In practice the physical ap-

plication to which we are applying the joint regularizer is important, if the admissible

set is known very well then we recover good reconstructions and if the set is not so

well known an approach such as the one given in [25] may be more suitable.



Chapter 7

Conclusions

Throughout this thesis we have considered recent work by [54, 19, 18, 37] relating

to multi-bang regularization. There have been new results obtained both in theory

with the nicely multi-bang SPECT uniqueness result as well as non nicely multi-bang

partial recovery and a proposed joint reconstruction method making use of a variety

of known algorithms.

A number of new theoretical results have been produced during this project. Orig-

inally presented in [37] we have shown unique recovery of a and f from Raf when

a is nicely multi-bang. Partial recovery results for more general multi-bang a have

also been obtained and some complete recovery results have been shown in special

cases. More generally, we have shown that the unique recovery of the boundaries of

multi-bang a is possible, provided that the support of f contains a sufficient amount

of each boundary of a. The method of boundary recovery has potential uses in other

fields, although it would take further research to examine the case where some of the

boundaries are invisible, i.e when the lines tangential to the boundary do not intersect

the support of f .

Another addition is the successful implementation of the joint reconstruction tech-

nique with relatively few projections. The results for DT are comparable to those in

[63] in terms of the number of projections and number of rays used to obtain a “usable

image”. Extensive improvements to the coding of algorithms has seen a significant

improvement in both reconstruction quality and speed. Much of the code uses parallel

computing and so would gain a significant speed increase when using a GPU.

A complete list of inversion parameters is:

132
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1. a0, the initial guess for a.

2. α, the multi-bang penalty weight.

3. γa, the TV penalty weight on a.

4. γf , the TV penalty weight on f .

5. t, primal step size for the ADMM algorithm for a and f .

6. β0, initial guess for dual step size in ADMM algorithm.

7. λ, as the initial Lagrange variable.

8. δ1, the tolerance for difference in iterates to terminate the FISTA algorithm.

9. δ2, the tolerance for difference in iterates to terminate the gradient descent al-

gorithm for y.

10. δ3, the tolerance for the primal residual r in the ADMM algorithm for a.

11. δ4, the tolerance for the approximate dual residual s in the ADMM algorithm

for a.

12. δ5, the tolerance for difference in iterates in the ADMM algorithm for f .

13. δ6, the tolerance for the difference in iterates of a and f to terminate joint

inversion algorithm.

Due to the large number of inversion parameters, some work needs to be done in

order to determine suitable bounds for good choices of inversion parameters. This

could be done by the use of L-curves and finding methods to calculate the Lipschitz

constant of the gradient of the objective function (since this provides optimal FISTA

convergence [6]). Another option would be to use machine learning in order to try

to learn the best parameters for convergence and this could be a potential avenue for

further research.

Although the joint reconstruction algorithm obtains good results, there is room for

improvement in the speed at which we can achieve a good reconstruction. The largest

time sink in the joint reconstruction is the need to recreate the discrete attenuated
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Radon transform matrix for each FISTA step in the inner iteration when recovering

a. One calculation of this for 16 projections, which corresponds to 1600 rays, takes

just under 2 seconds and we typically have to calculate this several hundred times per

reconstruction. Any reduction in the time to calculate this sparse matrix would cause

a huge time reduction for the overall algorithm.

Finally, we have yet to prove convergence in the non-smooth TV case even though

it produces convergent results in our numerical investigations. From a proof of conver-

gence given in [32], we have found the quantity µk − βk which, if it remains positive,

coincides with successful reconstructions and theoretical convergence. It is currently

not yet known whether µk − βk being positive for sufficiently large k is necessary for

convergence. Proving convergence in this case where µk − βk is potentially negative

would have wide applications and is another possible avenue for further research.
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