
IMAGINATION-AUGMENTED DEEP
REINFORCEMENT LEARNING
FOR ROBOTIC APPLICATIONS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Student id: 10379350

Department of Computer Science

Contents

Abstract 10

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 15
1.1 Reinforcement Learning and Robotics 19

1.2 Imagination and Forward Models . 19

1.3 Agents That Know They Don’t Know 21

1.4 Research Objectives . 22

1.5 Contribution to Knowledge . 22

1.6 Thesis Structure . 23

2 Background 25
2.1 Deep Learning . 25

2.1.1 Feedforward Neural Networks 27

2.1.2 Convolutional Neural Networks 28

2.1.3 Bayesian Neural Networks 29

2.1.4 Variational Autoencoders . 31

2.1.5 Mixture Density Networks 33

2.2 Reinforcement Learning . 34

2.2.1 Value Function Approaches vs. Policy Search 37

2.2.2 Model-free vs. Model-based Methods 38

2.2.3 Q-learning . 39

2.2.4 The Dyna-Q Architecture 40

2

2.3 Deep Reinforcement learning . 40

2.3.1 Deep Q-Networks . 41

2.3.2 Deep Deterministic Policy Gradient 42

2.4 Literature Review . 43

2.4.1 Deep Reinforcement Learning 43

2.4.2 Reinforcement Learning for HRI 44

2.4.3 Model-assisted Deep Reinforcement Learning 45

2.4.4 Uncertainty Estimation in Deep Learning 46

2.4.5 Contribution . 47

3 Imagination-based Deep RL 49
3.1 Architecture . 50

3.1.1 Vision Encoder . 50

3.1.2 Environment Model . 52

3.1.3 Controller . 53

3.2 Experiment . 53

3.2.1 Experiment Setup . 53

3.2.2 Implementation and Training 55

3.2.3 Results . 59

3.2.4 Conclusion . 61

3.3 Summary and Discussion . 61

4 Uncertainty Estimation in Bayesian MDNs 63
4.1 The Bayesian Bias-Variance Decomposition 64

4.2 Decomposition for Multi-modal Density Estimation 65

4.3 Stationarity of the Estimator as Epistemic Uncertainty 68

4.4 Estimating Uncertainties in Bayesian MDNs 69

4.5 Experiments . 71

4.5.1 Toy Problem . 71

4.5.2 Robot Inverse Kinematics 73

4.6 Summary and Discussion . 78

5 An Architecture for Imagination-augmented DRL 80
5.1 Architecture . 81

5.2 Experiment . 82

5.2.1 Experiment Setup . 83

3

5.2.2 Implementation and Training 85
5.2.3 Results . 90
5.2.4 Conclusion . 95

5.3 Summary and Discussion . 97

6 Conclusion 100

Bibliography 105

Appendix A 115

Word Count: 24396

4

List of Abbreviations

A3C asynchronous advantage actor-critic. 44

AI artificial intelligence. 8, 15, 16, 17, 18, 44

BMDN Bayesian mixture density network. 8, 69, 70, 71, 74, 75, 101

BNN Bayesian neural network. 25, 29, 30, 47

CNN convolutional neural network. 25, 28, 29, 41

DDPG deep deterministic policy gradient. 42, 44

DL deep learning. 16, 17, 19, 25, 26, 41, 46, 63, 69

DQN deep Q-network. 8, 41, 42, 43, 44, 45, 56, 61, 87, 90, 91, 93, 94, 97, 99, 100,
102

DRL deep reinforcement learning. 3, 8, 19, 25, 40, 41, 43, 44, 47, 63, 80

ELBO evidence lower bound. 31

HRI human-robot interaction. 3, 24, 43, 44, 45, 47, 52, 53, 61

IK inverse kinematics. 7, 8, 73, 75, 79

KL Kullback-Liebler. 30, 31, 33, 85, 86

LSTM long short-term memory. 44, 45, 103

MC-dropout Monte Carlo dropout. 46, 47, 72, 78, 89, 101, 102

MCMC Markov chain Monte Carlo. 30

5

MCTS Monte Carlo tree search. 43

MDN mixture density network. 3, 24, 25, 33, 34, 45, 48, 52, 58, 59, 61, 62, 63, 64,
69, 72, 73, 75, 78, 87, 88, 89, 100, 101, 102, 103

MDP Markov decision process. 35

ML machine learning. 16, 17, 25

MLP multi-layer perceptron. 16

MPC model-predictive control. 38

MSE mean squared error. 56, 87

MVE model-based value expansion. 46

NN neural network. 16, 17, 25, 26, 27, 28, 29, 30, 31, 33, 41, 46, 47, 72, 73, 78

PPO proximal policy optimization. 44, 45

RL reinforcement learning. 3, 8, 19, 20, 21, 22, 23, 24, 25, 34, 35, 36, 37, 38, 39, 40,
41, 43, 44, 45, 47, 49, 50, 52, 54, 62, 63, 80, 81, 83, 99, 100, 102, 103

TD temporal differencing. 46

VAE variational autoencoder. 8, 25, 31, 45, 50, 51, 55, 57, 59, 61, 85, 86, 96, 100

6

List of Tables

3.1 Allowable states in the pick-and-place experiment 55

4.1 Results for uncertainty-aware decision-making in robot reaching ex-
periment with learned IK . 78

5.1 Mean percentage of successful test episodes for various numbers of
training episodes for the arrow puzzle task 91

5.2 Performance gain for augmented agents with and without uncertainty
estimation in the arrow puzzle task. 92

5.3 Mean percentage of successful test episodes for various numbers of
training episodes for the difficult variation of the task. Std. deviations
are given in parenthesis. For reference, a random agent scored 3.39%. 94

5.4 Performance gain for augmented agents with and without uncertainty
estimation in the difficult variation of the arrow puzzle task. 94

7

List of Figures

1.1 The prevalence of AI terms in printed material since 1950 18

2.1 Diagram of an artificial neuron . 26

2.2 An example feedforward neural network 27

2.3 An example convolutional neural network 29

2.4 The traditional autoencoder and the variational autoencoder architectures 32

2.5 Agent-environment interaction in RL 35

2.6 The relationship between acting, model learning, and planning. 39

2.7 The Dyna-Q architecture . 40

2.8 A typical DQN architecture . 42

3.1 An architecture for generating imaginary rollouts with a learned envi-
ronment model . 51

3.2 Experiment setup for the pick-and-place experiment. 54

3.3 The VAE architecture used in the experiments 57

3.4 A sample imaginary rollout generated by the environment model for
the pick-and-place task. 60

4.1 Estimation of uncertainties in the output of a BMDN 74

4.2 Distribution of training datapoints and errors for learned robot IK . . . 76

4.3 Uncertainty estimates for learned robot IK 77

5.1 An architecture for imagination-augmented DRL 82

5.2 Experiments setup with the Sawyer robotic arm 83

5.3 Examples of terminal states of the arrow puzzle task 84

5.4 Results for the arrow puzzle task . 91

5.5 Performance gain of augmented agents in the arrow puzzle task 92

5.6 Results for the difficult variation of the arrow puzzle task 93

8

5.7 Performance gain of augmented agents in the difficult variation of the
arrow puzzle task . 94

5.8 An example of an imaginary rollout for the arrow puzzle task 96
5.9 An example of model prediction for unseen transitions 97

9

Abstract

IMAGINATION-AUGMENTED DEEP REINFORCEMENT LEARNING

FOR ROBOTIC APPLICATIONS

Mohammad Thabet
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Deep reinforcement learning (RL) has recently emerged as a powerful technique
that allows agents to solve complex sequential tasks. Its application in the field of
robotics however has been held back by the impracticality of the enormous amount
of interaction data it requires. Collecting data with a physical robot is usually pro-
hibitively costly, prompting the need for more sample-efficient reinforcement learning
algorithms. This thesis aims to develop an architecture that drastically improves the
sample efficiency of RL and leads to faster learning with less data. The architecture in-
corporates a mechanism that mimics imagination in humans into model-free learning,
allowing agents to simulate scenarios internally to lessen the need for actual interaction
with the environment. In this model-assisted setting, an agent learns a stochastic en-
vironment model on-line from experience simultaneously with a policy. A variational
autoencoder (VAE) is used to compress visual input into abstract representations in the
latent space, and a mixture density network (MDN) is used to learn a forward model in
this latent space. The agent then uses the learned model to generate imaginary rollouts
to augment real data, which is then used to train a controller in an RL context. Un-
certainty in the model predictions is estimated using Monte-Carlo dropout to limit the
use of imaginary data, preventing the agent from using erroneous model predictions in
learning. The thesis presents experiments involving human-robot interaction scenarios
in an RL setting to verify the viability of the approach. The first experiment serves as

10

a proof of concept and involved an agent learning a pick-and-place task based on ges-
tures by a human. The second experiment was designed to demonstrate the advantages
of the approach and involved a robot learning to solve a puzzle based on gestures.
Results show that the proposed imagination-augmented agents perform significantly
better than baseline agents when data is scarce, proving the efficacy of the approach in
increasing sample efficiency.

11

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

13

Acknowledgements

First and foremost, I would like to wholeheartedly thank my supervisor, Professor
Angelo Cangelosi, for all the tremendous help he has been. His unending support, in
matters academic or otherwise, has been crucial for the success of this undertaking. I
will forever be grateful to him for the opportunities he has provided me. I would also
like to thank my second supervisor, Professor Jon Shapiro, for his insightful input that
helped shape my work.

I would like to thank Doctor Massimiliano Patacchiola for collaborating with me
on the work relating to reinforcement learning. I have learned a lot from his excellent
blog on reinforcement learning when I first started, and he has always been willing to
help and provide his input to my work. I would also like to extend my gratitude to
Professor Gavin Brown, head of the machine learning and optimization (MLO) group
at the University of Manchester, for his invaluable input on my work on uncertainty
estimation. He taught me to be a lot more precise in my writing, which also helped me
think more clearly.

Most of the funding for the PhD came from the Horizon 2020 Marie Skłodowska-
Curie Innovative Training Networks scheme as part of the SECURE project. I am
grateful to have been the recipient of such a generous grant that allowed me to solely
focus on research.

Last, but certainly not least, I would like to thank my mother, to whom I dedicate
this thesis. She taught me the most important things of all: kindness, perseverance,
responsibility, and conscientiousness. Any success I have had or will ever have is
because she is my mother.

14

Chapter 1

Introduction

During the twentieth century, public imagination was rife with dreams of intelligent
robots carrying out all sorts of manual labor. From robot factory workers tirelessly
churning out commodities to robot butlers pampering their owners, optimism about
practical robotics was abound. Rapid advances in technology and understanding of
computing and related sciences seemed to herald a new age of technological wonder
full of automatons. In 1956, the Dartmouth Summer Research Project on Artificial
Intelligence was held in what is widely regarded as the birth moment of artificial in-
telligence (AI) as a field of study [Buc05]. The nascent field promised to accelerate
the development of truly thinking machines, and by the 1960’s leading experts such
as Marvin Minsky and Herbert Simon were prophesizing that machines will be able to
do anything that humans can do within a couple of decades [Cre93]. And yet, several
decades later, general-purpose intelligent robots seem further away than it did back
then.

These unrealistically high expectations about AI and robotics seem to be an in-
stance of the Dunning-Kruger effect [Dun12] taking hold of the public en masse. The
scientific community was just starting to understand computing and neuroscience, and
the prevalent understanding back then was that high-level conscious processes such
as logical reasoning was almost all that there is to intelligence. Therefore, it seemed
logical that we can approximate human intelligence by programming logic into com-
puters, which seemed rather straightforward to do. Of course, things turned out to be a
lot more complicated than that.

By the 1980’s, researchers started to realize that they had grossly underestimated
the challenges of AI. It became apparent that higher-level reasoning was quite easy
for computers, and in fact it was sensorimotor skills what were extremely difficult.

15

16 CHAPTER 1. INTRODUCTION

This ran in direct opposition to previously held beliefs, and the incongruity came to
be known as Moravec’s paradox [Mor88]. Indeed, without the ability to efficiently
represent sensory information and carry out motor actions, there would be nothing
for higher-level logical processes to manipulate. Furthermore, researchers came to
understand that the embodiment of an agent is integral to its cognitive capacity, and
that higher level reasoning cannot be achieved in disembodied isolation (embodied
cognition). All these realizations conspired to spell the end of interest in the top-
down symbolic approach to AI, and focus began to shift towards bottom-up approaches
instead.

The interest in bottom-up AI began to gain traction in the 1990’s, aided by the ex-
ponential increase in computational power. Machine learning (machine learning (ML))
broke out of AI as a separate field, focusing on applying statistical and probabilistic
methods to learn from data [Lan11]. For robotics, that meant trying to build robots
that can learn simple sensorimotor skills from raw sensory data instead of symboli-
cally programming them to do certain actions.

A particular class of ML models suitable for bottom-up learning is the artificial
neural network (NN). NNs are inspired by how brains work; they consist of a network
of simple computational units, called neurons, connected to each other by weights.
Modern NNs have their origins in the 1950’s when Rosenblatt introduced perceptrons

[Ros58] which consisted of a single layer of neurons for binary classification. Soon af-
ter, perceptrons were hailed as the way to achieving true artificial intelligence [Ola96].
However, a sobering moment finally came when it was discovered that basic percep-
trons are unable to learn certain classes of tasks such as the exclusive-or (XOR) bi-
nary function [MP69]. Furthermore, even though it was pointed out that multi-layer
perceptron (MLP) can learn such tasks, there was no known training algorithm for
MLPs, and there was not enough computational power available at the time to effec-
tively handle training of such models. As a result, research on NNs stagnated until it
was revived in the early 1980’s when Hopfield networks were introduced that could
effectively serve as associative memories [Hop82]. The field then gained further mo-
mentum when the backpropagation algorithm that could effectively train MLPs was
rediscovered [RHW86].

Success of NNs and the interest in bottom-up AI led to the development of deep
learning (DL) as a distinct field of machine learning in the 2000’s. DL models are
NNs with many layers of neurons, and are usually trained on raw data. Layers can
learn progressively more abstract internal representations of the data through training

17

and thus require no engineered features to learn. This makes the learning end-to-end,
meaning that the model learns directly from one end, raw data, all the way to the other
end, required outputs, without any additional processing.

The 2010’s saw DL dominating the field of AI so much that the terms AI and
DL are often (erroneously) used interchangeably. This was sparked by the incredible
success of DL models in image classification, natural language processing, and speech
recognition. Algorithmic and architectural innovations, as well as the ever increasing
computational power and the seemingly endless stream of data on the internet, allowed
DL models to outperform other ML techniques in these areas. The victory in the
popular ImageNet image classification contest in 2012 by Krizhevsky et al. [KSH12]
is often regarded as what sparked what was dubbed the deep learning revolution.

The history of AI is summarized in Figure 1.1. The figure shows the frequencies
of AI-related terms as found in printed sources between 1950 and 2019 in Google’s
English text corpora. Frequency plots are juxtaposed with historical events that are
widely believed to have had the most impact on interest in the field. It is interesting to
observe how these events have reflected on the popularity of specific terms in the liter-
ature. We notice that prior to the Dartmouth workshop in 1956, AI has been virtually
non-existent as a field. A rise in interest in perceptrons soon followed after Rosen-
blatt’s work in 1958, only to completely die out after Minsky and Papert show their
severe limitations in 1969. An inflection point in AI is found at around 1980 when
the first commercially successful expert systems and Lisp machines start appearing.
The introduction of Hopfield networks ignites interest in neural networks, which is
further intensified after the rediscovery of backpropagation. The Lisp machine market
collapse of 1987 is quickly followed by a sharp decline in the interest in AI. Neu-
ral networks keep gaining momentum however, but it soon starts to slowly fade due
to lack of breakthroughs. The introduction of support vector machines (SVMs) with
the kernel trick in 1992 [BGV92] and their immense success kept interest in machine
learning afloat, but severely affected the perceived effectiveness of NNs as a practical
alternative. This changed in 2012 however, when huge successes such as the AlexNet
Imagenet victory kickstarted the deep learning revolution. It is interesting to note that
around this time, the frequencies of the terms AI and NN start to become almost identi-
cal, perhaps reflecting the fact that DL made NNs dominate so much that they became
almost synonymous with AI.

18 CHAPTER 1. INTRODUCTION

1
9

5
6

: Th
e D

artm
o

u
th

 Su
m

m
er

R
esearch

 P
ro

ject o
n

 A
rtificial

In
telligen

ce

1
9

5
8

: R
o

sen
b

latt in
tro

d
u

ces
th

e p
ercep

tro
n

.

1
9

6
9

: M
in

sky an
d

 P
ap

ert sh
o

w

th
e lim

itatio
n

s o
f p

ercep
tro

n
s.

1
9

8
0

: First co
m

m
ercial

exp
ert system

s an
d

LISP

 m
ach

in
es.

1
9

8
6

: Th
e red

isco
very

o
f b

ackp
ro

p
agatio

n
.

1
9

8
7

: Th
e co

llap
se o

f th
e LISP

m

ach
in

e m
arket.

1
9

9
2

: Su
p

p
o

rt vecto
r

m
ach

in
es w

ith
 th

e kern
el trick

in
tro

d
u

ced
.

2
0

1
2

: A
lexN

et w
in

s th
e

Im
ageN

et Large Scale V
isu

al
R

eco
gn

itio
n

 C
h

allen
ge.

1
9

8
2

: H
o

p
field

n

etw
o

rks in
tro

d
u

ced
.

Figure
1.1:

Frequencies
of

specific
A

I-related
term

s
as

found
in

G
oogle’s

E
nglish

textcorpora
betw

een
1950

and
2019.

Frequency
data

w
as

obtained
using

the
G

oogle
N

gram
V

iew
er.

E
vents

believed
to

have
significantly

influenced
the

shape
of

the
curves

are
highlighted.

1.1. REINFORCEMENT LEARNING AND ROBOTICS 19

1.1 Reinforcement Learning and Robotics

reinforcement learning (RL) is a branch of machine learning concerned with agents
learning optimal policies through interaction with the environment. It can be viewed
as an algorithmic formulation of how animals learn by trial and error. In RL, an agent
performs an action on the environment which changes its state in response. The agent
then receives a reward signal associated with the new environment state. This reward
signal is then used by the agent to discern bad actions from good ones. The goal of the
agent is to accumulate the most reward through the entire episode of interaction with
the environment. Naturally, since RL mimics animal learning, it was extensively used
in robotics research to teach robots to perform tasks [KBP13].

The deep learning revolution of the past decade led to the development of deep re-
inforcement learning (DRL), which incorporates the end-to-end paradigm of DL into
RL. DRL systems comprise a neural network to process data and select actions, and
they often learn policies from raw data such as a camera feed. DRL has found huge suc-
cess teaching agents to play video games from raw pixels [MKS+13]. Consequently,
there has been renewed interest in applying this variant of RL to robotics. The prob-
lem however is that DRL requires copious amounts of data to work. This is easy when
dealing with computer games since you can cheaply run large amounts of simulations
in little time. However, for physical systems this is very expensive. Robots will take
a lot of time to perform millions of physical actions, and wear and tear will pose a
significant problem.

To address this issue, there has been a lot of research on making DRL algorithms
more sample-efficient (i.e. to make them achieve comparable performance but with sig-
nificantly less data). Approaches to this end include transfer learning, model-assisted
learning, and the development of entirely new RL algorithms as well as an array of
algorithmic tweaks to existing ones. Out of these approaches, model-assisted learning
will be the focus in this thesis.

1.2 Imagination and Forward Models

Traditional RL is either model-free or model-based. In model-free RL the agent learns
the value of states and actions directly without understanding how the environment
works, and selects the actions with the highest expected value. This is akin to a human
instinctively choosing actions without any planning. For example, skilled drivers do

20 CHAPTER 1. INTRODUCTION

not need to think about what would happen every time they press the brake pedal; they
instinctively know that breaking is the optimal action when the car in front brakes.
Model-based RL agents on the other hand first learn a model of the environment, and
then use that model to derive a policy. One way to do this is to use the model to
simulate scenarios that can be used to learn the action-value function just as in model-
free methods. This is akin to using imagination in humans.

So which is better in general, model-free of model-based RL? An important clue to
answering this question, like many questions in artificial intelligence, lies in nature’s
own answer. Consider for example how people learn chess. Learning the rules of the
game (i.e. the environment model) is much simpler than learning an optimal strategy
(i.e. optimal action values). Beginners know very little about the true value of moves,
and they tend to think every move through and simulate the possible scenarios for each
before they choose one. But as players grow more experienced, they begin to learn the
values of their actions directly, and experts often instinctively know what move is best
without having to simulate outcomes at all. This suggests that humans use a learned
environment model to facilitate learning a value function, and as they become more
skilled they increasingly rely on the value function to make decisions without using
the environment model explicitly.

However, not all tasks can benefit from a learned environment model equally. Tasks
that focus on real-time motor control rely much more heavily on value functions since
there is no time to use an environment model to simulate scenarios. Furthermore, low-
level motor control learning problems by nature are not amenable to the same learning
strategies used in high-level decision-making problems such as chess. Nobody can
learn to swim by just imagining themselves in water. The only effective way to learn
here is by physical trial and error to learn a policy directly through an action value
function.

Nevertheless, RL algorithms do not have to belong to either of the these dichoto-
mous paradigms exclusively. Hybrid approaches that combine model-free and model-
based learning are possible. These approaches have the potential to draw on the
strengths of both extremes, while mitigating their respective shortcomings. Much like
the chess playing example, an RL agent can simultaneously learn a value function and
a model of the environment. The environment model can be used for simulating imag-
inary experience, which can be used in conjunction with real experience to learn value
functions. Such algorithms are sometimes referred to in the literature as model-assisted
RL [LR14, KB17], or simply imagination [KBP13, HS18].

1.3. AGENTS THAT KNOW THEY DON’T KNOW 21

When using imagination, it is important to be able to distinguish between correct
and incorrect predictions. If an agent relies on a bad model of its environment, it might
generate erroneous imaginary experience that hinders learning a good policy. In such
a situation, the agent is better off relying solely on actual experience, or directing its
efforts to learn more about the environment to improve its model. Agents therefore
must be able to tell when their predictions are likely to be wrong. In other words, they
must be able to estimate their uncertainty.

1.3 Agents That Know They Don’t Know

One of the hallmarks of truly intelligent agents is that when faced with a problem
unfamiliar to them, they know that they don’t know the answer. Intelligent agents such
as humans associate a degree of uncertainty with every inference they make, ranging
from full uncertainty when the problem is entirely novel, to full certainty when it is
entirely familiar. Traditional machine learning systems by contrast fail to incorporate
this estimate of uncertainty in the model outputs. The output of these systems is often
taken blindly to be correct when it might not be the case, which can have disastrous
consequences in safety-critical systems such as self-driving cars.

For classifier systems, it is tempting to think of class probabilities as measures of
uncertainty. However, as Kendall et al. point out [KG17], this is not necessarily the
case. The problem is even more pronounced in regression problems, where traditional
models output a point estimate of the regrissand and there is no way to tell how confi-
dent this estimate is.

When dealing with uncertainty, it is important to distinguish between two types:
epistemic uncertainty and aleatoric uncertainty. Epistemic uncertainty refers to the ig-
norance of the model, and can be explained away with more data. Aleatoric uncertainty
refers to the irreducible noise inherent in the data, and cannot be reduced by acquiring
more data. In other words, epistemic uncertainty tells you how much your model is
unreliable, while aleatoric uncertainty tells you how much your data is unreliable.

Intelligent agents must therefore be able to estimate their epistemic uncertainty
about the world, and use this knowledge to guide decision-making. For example, an
RL agent might try to learn an environment model to predict the outcome of its actions,
allowing it to plan and learn more efficiently. If it knows that its model is incomplete
and is lacking some data from a certain region, then it can direct its efforts to exploring
that region of the environment to fill the gaps in its knowledge. Indeed, the ability of an

22 CHAPTER 1. INTRODUCTION

agent to capture its own epistemic uncertainty can be very useful for artificial curiosity
and active learning.

1.4 Research Objectives

The main goal of this thesis is to develop an architecture that incorporates imagination
into model-free RL to improve sample efficiency. For such improvement to be possi-
ble, an environment model has to be learned efficiently on-line from visual data, si-
multaneously with the model-free path. A model learned in this manner can be used to
generate imaginary rollouts that augment the data already being collected by the agent,
thus leading to faster learning. To maximize the benefit from the model, uncertainty
estimates should be used to prevent erroneous model predictions from contaminating
the data and destabilizing learning.

The objectives of the thesis can be broken down into research questions as follows:

1. How can we implement a mechanism for visual imagination in RL agents? This
question is addressed in Chapter 3.

2. How can we efficiently estimate the uncertainty for neural networks with multi-
modal predictive distributions? This question is addressed in Chapter 4.

3. How can we leverage imagination in order to improve the sample efficiency of
model-free RL? This question is addressed in Chapter 5.

In Chapter 6, these research questions are revisited in a new light after the details
of the work has been presented in the thesis.

1.5 Contribution to Knowledge

The main scientific contributions of the thesis can be summarised as follows:

1. In Chapter 3, an architecture is developed that allows learning stochastic envi-
ronment models on-line from visual data simultaneously with a value function.
The architecture enables learning an environment model that can be used to in a
closed loop to generate imaginary rollouts for multiple timesteps into the future
without suffering from compounding errors1.

1The problem of compounding errors happens when a small error in an initial prediction quickly
compounds into larger and large errors in subsequent predictions due to feedback.

1.6. THESIS STRUCTURE 23

2. In Chapter 4, a method is developed for uncertainty estimation in Bayesian mix-
ture density networks, providing for the first time a mathematical treatment of
the problem.

3. In Chapter 5, an architecture for imagination-augmented RL is developed, which
can significantly improve performance when data is scarce. The architecture puts
together all the components and ideas developed throughout the thesis.

Section 2.4.5 revisits the contributions of the thesis and situates them within the
relevant literature.

Most of the original research in this thesis has been published in the following
peer-reviewed papers:

• Mohammad Thabet, Massimiliano Patacchiola, and Angelo Cangelosi. “Sample-

efficient Deep Reinforcement Learning with Imaginary Rollouts for Human-Robot

Interaction”. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2019). IEEE, 2019.

• Mohammad Thabet, Massimiliano Patacchiola, and Angelo Cangelosi. “Toward

Imagination-assisted Deep Reinforcement Learning for Human-robot Interac-

tion”. International PhD Conference on Safe and Social Robotics (SSR-2018),
2018.

1.6 Thesis Structure

This section provides an overview of the structure of the thesis and briefly describes
the topics discussed in each chapter. The thesis is structured as follows:

Chapter 2 explains the methods used in the thesis with some detail, as well as a brief
review of the relevant literature. Machine learning techniques such as deep learning
and reinforcement learning are discussed, enabling the reader to better understand the
rest of the thesis. In particular, the topics of mixture density networks, variational
autoencoders, and deep Q-networks are all essential to understanding the architectures
presented later in Chapters 3 and 5. Moreover, the topic of Bayesian neural networks
is required to understand the concepts relating to uncertainty estimation discussed in
Chapter 4.

Chapter 3 presents an architecture for learning stochastic environment models on-
line and using them for model-based RL. The chapter describes the architecture and

24 CHAPTER 1. INTRODUCTION

its components in detail, which will be also used in the architecture presented in Chap-
ter 5. It also includes the details of an experiment involving a simulated human-robot
interaction (HRI) task, in which the agent has to learn to perform the correct actions by
generating imaginary rollouts using a learned environment model. In this model-based
setting, the experiment aims to verify the efficacy of the model by training a controller
on imaginary rollout on testing it on the real environment. The concepts developed in
this chapter will be used heavily in Chapter 5.

Chapter 4 discusses uncertainty estimation in deep learning models, which allows
agents be aware of their own uncertainty when they are presented with novel inputs
they had not been trained on. It also includes experiments to test uncertainty estimation
in mixture density networks and how it can be useful for decision-making. Uncertainty
estimation in MDNs allows rejecting uncertain predictions generated by environment
models to improve the overall quality of imaginary data.

Chapter 5 describes an architecture for imagination-assisted RL. The architecture
integrates all the components and ideas developed in the rest of the thesis and to allow
agents to leverage imagination to accelerate learning. It achieves this by combining
model-free learning and model-based imagination with uncertainty estimation. An ex-
periment is conducted to validate the architecture in which a robot learns to solve a puz-
zle based on gestures from a human. The performance of the imagination-augmented
agent is compared to baseline DQN to assess the performance gain the architecture
provides.

Finally, Chapter 6 provides conclusions to the thesis as well as some discussion
and directions for future work. The chapter revisits the research questions of the thesis
in light of the findings of the previous chapters to draw conclusions.

Chapter 2

Background

This chapter serves as a concise introduction to the technical methods employed in
the rest of the thesis, as well as a brief review of recent and relevant literature. It is
intended for those with at least a rudimentary understanding of the topics of machine
learning, neural networks, and reinforcement learning. The material for deep learning
is largely based on [GBCB16], and reinforcement learning is on [SB18]. Interested
readers looking for a deeper understanding of these topics are encouraged to refer to
these books.

The chapter is organized as follows. Section 2.1 introduces basic concepts of NNs
and DL, including topics such as convolutional neural networks, Bayesian neural net-
works, mixture density networks, and variational autoencoders. Section 2.2 introduces
basic concepts of reinforcement learning, including perhaps the most popular RL algo-
rithm: Q-learning. It also introduces Dyna-Q, a basic architecture for model-assisted
RL. Section 2.3 introduces DRL as the intersection between DL and RL, and provides
a summary of two of the most important DRL algorithms: deep Q-networks, and deep
deterministic policy gradient. Finally, Section 2.4 presents a brief review of recent and
relevant research in the methods employed in this thesis

2.1 Deep Learning

DL is a family of ML algorithms employing artificial NNs comprising many succes-
sive layers of neurons, hence the adjective ”deep”. The key difference between DL and
other ML algorithms is the ability of DL models to automatically learn representations
of the raw input data. In traditional ML algorithms (e.g. linear regression), a feature
engineering step is performed to extract useful features from data before learning can

25

26 CHAPTER 2. BACKGROUND

begin. In contrast, features are automatically learned in DL models, where each suc-
cessive layer of neurons learns increasingly abstract features of the input. For example,
when a DL model is trained to perform image classification, the first layer will learn
to detect edges, the second will detect more abstract features such as basic shapes and
contours, while the third might detect even more abstract features like object parts
and so on. This ability of of DL models to perform automatic representation learning

makes it suitable for end-to-end learning, and is the main reason DL models are the
state of the art in so many ML tasks today.

Neurons in NNs are simple computational units that perform some operation on its
input to produce an output. A neuron can have multiple scalar inputs, but only one
scalar output. Each scalar input is multiplied by a scalar weight and the products are
summed together to produce the total input to the neuron. The neuron then performs
some operation on that sum to produce the output. Mathematically, artificial neurons
arranged in a layer are modeled by the following equation:

ym = φ

(i=N

∑
n=1

wmnxn

)
, (2.1)

where ym is the output of the m-th neuron in a layer, xn is the n-th input of N total inputs,
wmn is the weight of the connection between the n-th input and the m-th neuron, and
φ is the activation function. The relationship between the input and output of a single
neuron is illustrated in Figure 2.1.

x1

x2

x3
w3

w2

w1

y

𝜙

Figure 2.1: A single artificial neuron with three inputs.

Activation functions play an important role in NNs. The simplest activation func-
tion is the linear function whose output is exactly equal to its input. However, as will

2.1. DEEP LEARNING 27

be explained in the next section, nonlinear activation functions are crucial for any non-
trivial function approximation. Examples of non-linear activation functions include
the sigmoid, the hyperbolic tangent (tanh), or the rectified linear unit (ReLU).

2.1.1 Feedforward Neural Networks

Feedforward NNs are the simplest architecture of NNs. In this type of networks, con-
nections are exclusively made from one layer to the next with no intra-layer connec-
tions. Data flows one-way from the input layer to hidden layers to the output layer,
where the input to each layer is the output of the previous one. Figure 2.5 shows an
example of a feedforward network. For such a network with one hidden layer, the
overall transfer function of feedforward networks can be composed from that of single
neurons as follows:

Y = φ2
(
W2φ1(W1X)

)
, (2.2)

where Y is the vector of outputs, X is the vector of inputs, W1 and W2 are the ma-
trices of the weight associated with the hidden layer and the output layer respectively,
and φ1 and φ2 are the activation functions of hidden and the output layer respectively.

Input Layer Hidden Layer Output Layer

Figure 2.2: A feedforward neural network with 3 input units, one hidden layer with 5
units, and two output units.

To train NNs, one must first define a loss function that measures how much the out-
put of the model differs from desired output in training data. Common loss functions
include the squared error loss and the crossentropy loss. Training involves finding

28 CHAPTER 2. BACKGROUND

the derivatives of the loss function with respect to individual weights. The deriva-
tives are found using the backpropagation algorithm [RHW86], which makes use of
the chain rule to propagate the derivative of the error backwards through the network.
Once derivatives are found, an optimizer is used to find the optimal values for the
weights. Optimizers typically employ a variant of the stochastic gradient decent al-
gorithm [Rud16], which uses minibatches of the training data to approximate the loss
function and then iteratively nudges the weights in the direction of the gradient.

Feedforward NNs are immensely useful as function approximators. The universal
approximation theorem [HSW89] states that a feedforward NN with at least one hidden
layer with a nonlinear activation function can approximate any function arbitrarily well
provided that the network has enough hidden units. However, this does not guarantee
that any large-enough network will be able to learn a specific function. This is because
of two reasons. First, the optimizer might not be able to find the right parameters
of the network, perhaps because of an inadequate optimization algorithm, numerical
instability, or insufficient compute resources. For instance, if the learning rate used
with the optimizer is inadequate, training might not converge. Second, there might be
many functions that fit the data, and the training algorithm might find the parameters
for the wrong function. The problem of overfitting is a typical example of this, where
the learned function does indeed fit the data too well, but fail to generalize to unseen
data.

2.1.2 Convolutional Neural Networks

While feedforward NNs can in principle be used to process images, in practice they are
impractical for doing so. This is due to the large dimensionality of the images, which
in turn requires very large models that are difficult to optimize. For example, even a
very small 48×48 image means the input space is 2304-dimensional. A convolutional
neural network (CNN) alleviates this problem by exploiting the spacial structure of
images. Images usually have a strong inherent spacial structure. For example, to detect
a line, we only need to look at a small region of the image; pixels far away are unlikely
to provide useful information.

CNNs exploit spacial structure by employing the convolution operation. For a two-
dimensional input such as an image, a kernel is convolved with the input to produce the
output. This kernel can be thought of as a window that slides on the input, producing a
feature every time the window slides. The two-dimensional array of features produced
from convolving with a kernel is called a feature map. The kernel does not change

2.1. DEEP LEARNING 29

when it slides on the input, which in effect means that the weights are shared for each
point in a feature map. Convolution layers are composed by convolving with multiple
kernels to produce multiple feature maps. Another way CNNs exploit spacial structure
is by using pooling layers. Similar to convolutional layers, pooling layers are also
constructed by sliding a window on the input, but instead of convolving with a kernel
they simply perform a predefined pooling operation. Examples of pooling operations
include maximum pooling, which outputs the maximum value in the window, and
average pooling, which outputs the average value within the window. Pooling layers
effectively perform downsampling on the input feature map and makes the model more
robust to translations, and doing so efficiently since they have no trainable weights.
Typical CNNs are composed of alternations of convolutional layers and pooling layers,
with one or more regular feedforward (dense) layers at the end. Figure 2.3 shows an
example CNN.

Convolution Max-Pool Convolution Dense

3@128x128
8@124x124

8@62x62

24@60x60

1x128

Figure 2.3: An example convolutional neural network. The input is a 128×128 image
with 3 channels. The first convolution layers produces 8 feature maps that get down-
samples by the max-pool layer and then convolved again to produce 24 feature maps.
The output layer is fully connected to the previous layer.

2.1.3 Bayesian Neural Networks

Traditional NNs are trained to find a point estimate of the output by finding a point
estimate of the optimal weights. Conversely, a Bayesian neural network (BNN) is
trained to find the distribution of the output by finding the distribution of the weights.
The advantages of this are twofold. First, finding distributions allows us to evaluate

30 CHAPTER 2. BACKGROUND

the uncertainty in predictions. Second, BNNs naturally incorporate regularization, re-
ducing overfitting when data is scarce. Indeed, regularization methods in NNs such as
L1 or L2 regularization and dropout can be interpreted as approximations of Bayesian
inference on the weights. More generally, traditional NNs can be thought of as special
cases of BNNs in which the weights have a deterministic (degenerate) distribution 1.

Let w be the weights of a NN and D = {(xi,yi) : i = {1, . . . ,n}} be a dataset of n

inputs xi ∈ X and corresponding targets yi ∈ Y . The posterior distribution of w can be
found using Bayes theorem:

p(w|D) =
p(D|w)p(w)∫
p(D|w)d(w)

(2.3)

Here, p(D|w) is the likelihood of the data, p(w) is the prior distribution of the
weights and the denominator

∫
p(D|w)d(w)= p(D) is the evidence, where the integral

is taken over all possible values of w. For predictive models, we are generally more
interested in the predictive distribution p(Y |X ,w) rather than the joint data distribution
p(D|w) = p(X ,Y |w). Bayes theorem can be written using the predictive distribution
as:

p(w|D) =
p(Y |X ,w)p(w)∫
p(Y |X ,w)d(w)

. (2.4)

The problem with performing inference using Bayes theorem to find the posterior
is that the evidence integral is intractable. However, even though we can’t find the
exact posterior, we can approximate it since it is proportional to the product of the
likelihood and the prior, i.e. p(w|D) ∝ p(Y |X ,w)p(w). One technique that makes use
of this fact is Markov chain Monte Carlo (MCMC), which allows sampling from an
unknown distribution given that it is proportional to a known function. The downside
of MCMC is that it is rather computationally costly and not guaranteed to converge
[CC96]. Another more practical approach is to use variational inference. Variational
inference works by approximating the posterior with a variational distribution q(w)≈
p(w|D), and then minimizing the Kullback-Liebler (KL) divergence between p and q

as follows:

1Equivalent to a Gaussian distribution in the limit when the variance approaches zero.

2.1. DEEP LEARNING 31

DKL
(
q(w) || p(w|D)

)
=

∫
q(w) log

q(w)
p(w|D)

dw

= Eq
[

log
q(w)

p(w|D)

]
= DKL

(
q(w) || p(w)

)
−Eq

[
log p(D|w)

]
+ log p(D) (2.5)

Here, the first quantity is the divergence of q from the prior, the second quantity
is the likelihood of the data, and the third is the evidence. The negative of the first
two quantities is called the evidence lower bound (ELBO). Since the evidence (which
was intractable) does not depend on w and thus plays no part in optimization, mini-
mizing the KL divergence is equivalent to maximizing the ELBO. The problem is thus
transformed from one of inference into one of optimization, solving the intractability
problem.

To perform variational inference, one must select the form of the variational distri-
bution. Usually, a factorized Gaussian is used for simplicity. However, even for such a
simple distribution, variational inference is computationally costly since it effectively
doubles the number of weights (each weight now has mean and variance parameters).
Thus, approximate methods such as MC-dropout are frequently used, as previously
discussed in Section 2.4.4.

2.1.4 Variational Autoencoders

Autoencoders are NNs that can learn a compact representation of their inputs. They
are architecturally composed of two NNs in series. The first network is the encoder
that takes in inputs and encodes them into low-dimensional representations in the la-
tent space. The second network is the decoder that takes the encoded representations
and reconstructs the original input from it. Both networks are trained end-to-end to
reconstruct the inputs. Autoencoders are mainly useful for dimensionality reduction.

VAEs [KW14] are generative models that can be used to both generate synthetic
data, and to encode existing data into low-dimensional representations. Like tradi-
tional autoencoders, they consist of an encoding network and a decoding one. The
key difference is that they encode a data point x into a probability distribution over
the latent vector z (Figure 2.4). Variational inference is used to learn an approximate
factorized Gaussian posterior distribution q(z|x) = N (µ(x),Σ(x)I) which is assumed
to have a unit Gaussian prior p(z) = N (0,I). Similar to Equation 2.5, this can be done

32 CHAPTER 2. BACKGROUND

E
n
c
o
d
e
r
 n

e
t
w

o
r
k

D
e
c
o
d
e
r
 n

e
t
w

o
r
k

L
a
te

n
t

v
e
c
to

r

(a) Traditional autoencoder.

E
n
c
o
d
e
r

n
e
tw

o
rk

D
e
c
o
d
e
r

n
e
tw

o
rk

M
e
a
n
 v

e
c
to

r
V
a
ri
a
n
c
e
 v

e
c
to

r

S
a
m

p
li
n
g

L
a
te

n
t

v
e
c
to

r

(b) Variational autoencoder.

Figure 2.4: The traditional autoencoder and the variational autoencoder architectures.
While the traditional autoencoder (a) encodes the input as a latent-space vector, the
variational autoencoder encodes it as a probability distribution over the latent-space
vector.

2.1. DEEP LEARNING 33

by minimizing the KL divergence between q(z|x) and the true posterior p(z|x):

DKL(q(z|x)||p(z|x)) =−Eq
[

log p(x|z)
]
+βDKL

(
q(z|x)||p(z)

)
+ log p(x) (2.6)

Here, the first term is the reconstruction loss which incentivizes faithful reconstruction.
The second term penalizes divergence of the learned variational distribution from the
prior, and acts to limit the capacity of the latent information channel. The third term is
the evidence, which plays no part in optimization. The multiplier β is added to control
the latent channel capacity [HMP+17]. The expectation Eq[(x|z)] can be approximated
by sampling a vector z = µ(x)+Σ1/2(x)� ε with ε∼N (0,I) and decoding it with the
decoder network. Sampling with ε this way is known as the reparameterization trick,
and is done in order to be able propagate the errors backwards through the network.
For a factorized Gaussian q, minimizing Equation 2.6 is equivalent to minimizing:

L(θ,φ) =− log pφ(x|z,φ)+β

J

∑
j=1

(1+ logσ
2
j(x,θ)−µ2

j(x,θ)−σ
2
j(x,θ)), (2.7)

where the encoder and decoder networks are parameterized with θ and φ respectively,
J is the dimensionality of the latent space, and σ j are the diagonal elements of Σ(x;θ).
The encoder and decoder networks are trained back to back to minimize the loss given
by Equation 2.7. Note that if pφ(x|z) is Bernoulli, the reconstruction loss is equivalent
to the cross-entropy between the actual x and the predicted x̂.

2.1.5 Mixture Density Networks

Traditional NNs assume that the distribution of targets conditioned on inputs is uni-
modal. This is sufficient for single-valued functions that map each input to exactly one
output. What happens then when we have a multi-valued function that maps each input
to multiple correct outputs? For example, suppose we want to model the inverse of the
function x = y2 using a dataset of (xi,yi) points. The target function is thus y =±

√
x,

where each input x maps into two valid outputs y. If we train a traditional NN on the
data, it would learn to model the output as the average of the two valid outputs, which
is itself not a valid output. In other words, it would try to find the unimodal target
distribution that best covers the actual bimodal distribution. This effectively means it
would model the function y =

√
x−
√

x
2 = 0, which is the incorrect function. Therefore,

for such functions, we need to be able to model the multimodal distribution of targets.

MDNs [Bis94] are neural networks that model the predictive distribution of targets

34 CHAPTER 2. BACKGROUND

as a mixture of Guassians. Since the predictive distribution is allowed to be multi-
modal, this is useful for modeling multi-valued functions such as many inverse func-
tions or stochastic processes. MDNs model the distribution of target data y conditioned
on input data x as the Gaussian mixture:

p(y|x) =
m

∑
i=1

αi(x)N (y;µi(x),σi(x)2), (2.8)

where m is the number of components, αi are the mixture coefficients subject to

∑
m
i=1 αi = 1, and N (·;µ,σ2) is a Gaussian kernel with mean µ and variance σ2. MDNs

have a similar structure to feedforward networks, except that they have three parallel
output layers for three vectors: one for the means, one the variances, and one for the
mixture coefficients. The network weights w are optimized by minimizing the negative
log-likelihood of the data:

L(w) =− log
m

∑
i=1

αi(x;w)N (y;µi(x;w),σi(x;w)2) (2.9)

To predict an output for a given input, we sample from the resulting mixture distri-
bution by first sampling from categorical distribution defined by αi to select a compo-
nent Gaussian, and then sampling from the latter.

2.2 Reinforcement Learning

Reinforcement learning is concerned with agents acting in an environment to maximize
some perceived cumulative reward. An agent explores the space of possible strategies
in an environment and receives feedback for individual actions, and its goal is to find
the optimal policy that result in the greatest possible cumulative reward. Tasks can
be episodic if they have a clear end and can be restarted. In such a setting the goal
of the agent is to maximize the cumulative reward per episode. If the task is ongoing
with no clear end, the the agent’s goal is to maximize the reward over its lifetime. In
either case, maximizing the cumulative reward means taking actions that might not
necessarily provide the most immediate reward, but are believed to lead to states that
yield more reward in the future.

The problem of exploration-exploitation trade-off plays a central role in RL. It is
concerned with the dilemma of whether to take actions which are known to be good
(exploitation), or explore those whose value are unknown (exploration). If an agent

2.2. REINFORCEMENT LEARNING 35

only exploits known good actions, it might miss out on other possible better actions
just because it doesn’t know their value. On the other hand, if the agent only explores,
it will suffer from poor performance since it will not capitalize on known good actions.
The solution thus involves maintaining some sort of balance between exploration and
exploitation. Finding such good balance is an important problem in RL.

In RL, a task is modelled as a Markov decision process (MDP) where at any time
step t an agent influences its environment state st ∈ S with action at ∈ A. The en-
vironment then transitions into a new state st+1 ∈ S and provides the agent with a
reward signal rt = r(st ,at). The agent chooses its actions according to some policy
π(s) which can be deterministic or probabilistic. For deterministic policies, the agent
always selects the same action for a given state such that a = π(s). In the probabilistic
case, the agent randomly samples from the distribution over actions for a given state
such that a ∼ π(s,a) = p(s|a). Likewise, the environment dynamics T can be deter-
ministic such that st+1 = T (st ,at), or probabilistic such that st+1 ∼ T (st+1,at ,st) =

p(st+1|st ,at). This process repeats until the environment reaches a terminal state, con-
cluding an episode of interaction. The goal of the agent is to learn an optimal policy
π∗ and use it to maximize the expected return, which is the discounted sum of rewards,
Rt =E[∑T

t=0 γtrt], where γ∈ [0,1] is the discount factor and T is the timestep a terminal
state is reached.

Agent

Environment

A
c
ti
o
n

S
ta
te

R
e
w
a
rd

Figure 2.5: In reinforcement learning, an agent influence the environment with an
action. The environment then transitions to a new state and provides a reward.

In order to solve RL problems, we must first define a notion of value for states and
actions, which allows us to choose from the space of actions available. The state-value
function Vπ(s) of a state s under policy π is defined as the expected return from starting
in s and following π thereafter: Vπ(s) = E[R|s,π]. Similarly, the action-value function
Qπ(s,a) of an action a taken in state s under policy π is defined as the expected return

36 CHAPTER 2. BACKGROUND

starting from s and taking action a, then following π thereafter: Qπ(s,a) = E[R|s,a,π].
The action-value function is often referred to as simply the Q-function, a name which
we shall adopt in the rest of the thesis.

Of central importance in RL is the Bellamn equation which allows us to define
value functions recursively in terms of the value of succeeding states and actions. For
state value functions, the Bellman equation is given by:

Vπ(st) = Eat [rt(st ,at)]+ γEst+1

[
Vπ(st+1)|st

]
, (2.10)

where Eat [·] denotes the expectation over all possible actions at time t, and Est+1[·]
denotes the expectation over all possible next states.

Intuitively, the Bellman equation states that the value of any state is the sum of the
expected reward from that state and the expected value of the next state. This allows
us to estimate the value of earlier states from estimates of preceding states without
needing to finish an episode to get the return first. The bellman equation can be written
in terms of the Q-function as:

Qπ(st ,at) = rt(st ,at)+ γEst+1

[
max
at+1

Qπ(st+1,at+1)|st ,at
]

(2.11)

An optimal policy π∗, which an agent strives to find, is the one under which the
value of states are highest, i.e. Vπ∗(s) ≥ Vπ(s)∀s ∈ S. This results in an optimal state-
value function V ∗(s) defined as V ∗(s) = maxπVπ(s). Similarly, the optimal action-
value function is Q∗(s,a) = maxπ Qπ(s,a). We can rewrite Equations 2.10 and 2.11 in
terms of optimal value functions to get the Bellman optimality equation:

V ∗(st) = Eat [rt(st ,at)]+ γEst+1

[
V ∗(st+1)|st

]
(2.12)

Q∗(st ,at) = rt(st ,at)+ γEst+1

[
max
at+1

Q∗(st+1,at+1)|st ,at
]

(2.13)

Once Q∗(s,a) is found, it is straightforward to derive an optimal policy by greedily
choosing the action that maximizes Q∗(s,a), i.e. π∗(s) = argmaxa Q∗(s,a). The Bell-
man optimality equations can be used for temporal difference learning, where estimates
of the values of states and actions can be used to update the estimates of preceding
states and state-actions.

2.2. REINFORCEMENT LEARNING 37

2.2.1 Value Function Approaches vs. Policy Search

RL algorithms can be classified into two types: Value-function approaches aim to first
find optimal value functions and then derive optimal policies from them, while policy

search methods aim to find the optimal policy directly.

Value function approaches are conceptually simple. The tools for estimating op-
timal value functions are well-studied and rather straightforward for discrete or low-
dimensional state and action spaces, and as discussed in the previous section, deriving
an optimal policy is trivial once the optimal action-value function Q∗(s,a) is found.
For high-dimensional state and action spaces, value function approaches require func-
tion approximation. However, this introduces stability problems since a small change
in the policy may cause a large change in the value function, which in turn causes a
large change in the policy, thus destabilizing the learning. Furthermore, value func-
tion approaches require total coverage of the state-space, which may prove difficult or
time-consuming to do.

Policy search methods are concerned with optimizing the parameters of the policy
directly. For a stochastic policy π(a|s;θ) parameterized by parameter vector θ, the
gradient of the policy is found using the policy gradient theorem as [SMS+99]:

∇θJ(θ) = Eπ

[
Qπ(s,a)∇θ logπ(a|s;θ)

]
, (2.14)

while the policy gradient for a deterministic policy µθ(s) is given by [SLH+14]:

∇θJ(θ) = Es∼ρµ
[
∇aQµ(s,a)∇θµθ(s)|a=µθ(s)

]
, (2.15)

where ρµ is the state distribution under policy µ(s).

As such, policy gradient approaches are only concerned with the value function in
the vicinity of the policy, not globally as in value function approaches. This usually
leads to faster and more stable optimization. Furthermore, this method works well with
continuous space and action spaces. However, since value functions are not evaluated
globally, policy search usually find only locally optimal policies.

A variety of RL algorithms, called Actor-critic methods, aim to incorporate the
advantages of both value function approaches and policy search. These methods main-
tain both a value function and a policy separately and explicitly. The value function
(the critic) is not employed for action selection. Rather, it just evaluates the perfor-
mance of the actor (the policy), and suggests the direction in which the policy needs

38 CHAPTER 2. BACKGROUND

to be changed in order to increase performance. This way, actor-critic methods feature
the stability of policy search with the reduced variance of updates of value function
methods.

2.2.2 Model-free vs. Model-based Methods

Another important distinction between RL algorithms is whether they are model-based

or model-free. Model-based methods require a model of the dynamics of the envi-
ronment. This model can be either provided beforehand, or learned from interaction
with the environment. In simple environments, such as games like chess or Go, the
model is readily available as the rules of the game. In most real-world tasks how-
ever, the agent has no prior knowledge of the environment, and therefore the model
has to be learned. Once the model is provided or learned, dynamic programming,
Monte-Carlo, or even TD methods can be employed to learn optimal value functions
or perform policy search. In fact, learned models can be used just to simulate expe-
rience, and then learn policies using model-free algorithms trained on this simulated
experience. Learned models can also be used for planning, allowing methods such as
model-predictive control (MPC) to be used. in MPC, the model is used to generate a
plan by simulating trajectories and greedily selecting an action at every time step. The
agent then takes the first action in the plan, observes the result in the real environment,
and then plans again from there.

The performance of model-based algorithms depends heavily on the accuracy of
the learned model, assuming it is feasible to learn in the first place. Even slight er-
rors can compound when planning, leading to suboptimal asymptotic performance. In
contrast, model-free algorithms do not require an environment model. These methods
learn a value function or policy directly from experience. They are therefore most suit-
able if the environment dynamics are too complicated to learn efficiently. Moreover,
they often have better asymptotic performance than their model-based counterpart,
since they do not depend on imperfect learned models. However, they often suffer
from worse sample efficiency since they depend on sampling from the environment
and have no access to planning. Overall, model-free algorithms are more versatile and
general, and therefore have been historically preferred for applications that care little
about sample efficiency. In case sample efficiency is important, such as in robotic ap-
plications, model-based algorithms have an important advantage. Figure 2.6 shows the
relationship between collecting experience, learning a model, planning, and model-free
(direct) RL.

2.2. REINFORCEMENT LEARNING 39

Value/Policy

ExperienceModel
Model-free RL

Acting

Model learning

Planning

Figure 2.6: The relationship between acting, model learning, and planning.

2.2.3 Q-learning

One of the most known and widely used model-free RL algorithms is Q-learning
[WD92]. This algorithm uses TD learning to approximate the optimal action-value
function (Q-function) and derive an optimal policy from it. In Q-learning, the estimate
Q(st ,at) is updated as follows:

Q(st ,at)← Q(st ,at)+α
[
rt+1 + γmax

at+1
Q(st+1,at+1)−Q(st ,at)

]
(2.16)

where α is the step-size parameter (learning rate). Intuitively, the update moves the Q-
function estimate in the direction of the TD error by a distance controlled by the step-
size. The algorithm is trained on data composed of tuples of the form (st ,at ,rt+1,st+1)

which the agent collects as it is interacting with the environment. At test time, the
agent acts greedily with respect to the Q-function (full exploitation). While learning
however, the agent follows a different exploratory policy. One common such policy is
the ε-greedy policy, in which the optimal action is chosen with probability 1− ε and
a random action with probability ε. The parameter ε is usually decreased over time to
approach zero asymptotically as the policy converges to the optimal policy. Since Q-
learning uses a behavior policy different from the target policy, it is thus an off-policy

algorithm. This is contrasted with on-policy algorithms such as SARSA [SB18], in
which the behavior policy is the same as the target policy.

40 CHAPTER 2. BACKGROUND

2.2.4 The Dyna-Q Architecture

Model-based and model-free approaches can be combined to incorporate the advan-
tages of both. Perhaps the earliest and most well-known example is the Dyna-Q ar-
chitecture [Sut90], shown in Figure 2.7. Real experience obtained from observations
are used to learn the Q-function and an environment model simultaneously. For each
time step, the model is instantiated with a random state-action pair encountered before
and a successor state is predicted, producing simulated experience. This simulated ex-
perience is used to update the Q-function as in Q-learning. This process of applying
Q-learning on model-generated experience is called Q-planning. Generating simulated
transitions and Q-planning can be take place as many times each time step as time al-
lows.

Environment Model

Value/Policy

real
experience

simulated
experience

Observation

Q-planning

simulation

model learning

Q-learning

Figure 2.7: The Dyna-Q architecture. Real experience is used to learn the value func-
tion and the environment model simultaneously. The model generates simulated expe-
rience which is also used to learn the value function.

2.3 Deep Reinforcement learning

Reinforcement learning often requires function approximation. Value functions and
models for large and continuous state spaces cannot be learned in tabular form, and
therefore have to be approximated. Owing to their universal approximation property,
neural networks naturally present a solution for function approximation in RL.

DRL algorithms employ deep networks to approximate value functions, dynamics
models, or policies in solving RL problems. This is especially useful in tasks with
high-dimensional state spaces such as vision-related problems. RL agents that rely
on visual input are of immense importance in many applications such as robotics and

2.3. DEEP REINFORCEMENT LEARNING 41

autonomous driving. The huge success of DL in tackling vision tasks naturally leads
to the interest in employing these methods in the context of RL.

In the next two sections, two of the most widely used DRL algorithms will be
introduced: deep Q-networks and deep deterministic policy gradient. The former is a
model-free algorithm suitable for discrete action spaces, while the latter is an actor-
critic algorithm suitable for continuous action spaces.

2.3.1 Deep Q-Networks

DQNs [MKS+13] are deep NNs that approximate the Q-function. As in Q-learning,
transitions are stored as tuples of the form (st ,at ,rt+1,st+1) in memory, and used to
train the DQN. A DQN with weight vector w is trained to minimize the loss function
given by the squared Bellman error:

L(w) =
[
rt+1 + γmax

at+1
Qw(st+1,at+1)−Qw(st ,at)

]2 (2.17)

Given the gradients of the loss function with respect to w, the network can be
trained using some variation of stochastic gradient descent. Batches used for updates
are randomly samples from memory, in what is termed experience replay. Random
sampling ensures the transitions in each batch are uncorrelated, which helps stabilizes
learning. Furthermore, a separate target network is usually maintained in addition to
the Q-network. The target network is a copy of the DQN, but gets updated with the
weights of the DQN less often. The purpose of this network is to provide targets for
the update to the DQN, instead of getting targets from the same DQN. This prevents
the problem of chasing a moving target for the DQN and enhances stability.

Figure 2.17 shows the architecture of a typical DQN a task in which states are
given by images and the action-space is discrete. The state does through a CNN to
extract features. The output of the CNN then goes through a fully-connected (dense)
network which outputs an n-dimensional vector in which each element correspond to
the Q-function of the input and a certain action in the action-space. In some tasks
where velocities of objects are important features, a single image is not sufficient as
the state. In such cases, multiple successive frames can be used together as the state,
and fed together to the DQN.

42 CHAPTER 2. BACKGROUND

Convnet FCN
.
.
.

Q(s, a[1])

Q(s, a[n])

s

DQN

Figure 2.8: A typical DQN for a task in which states are images and actions are dis-
crete. The state s goes through a convolutional network and then a fully-connected
network to produce n outputs for n actions.

2.3.2 Deep Deterministic Policy Gradient

DQN algorithms are limited in that they only work for tasks with discrete action spaces.
This is not a problem for high-level tasks in which the agent has to choose from a
discrete set of decisions. However, it makes them unsuitable for low-level tasks that
require continuous control such as robot manipulation.

DDPG [LHP+15] is a popular actor-critic algorithm capable of learning contin-
uous control tasks. In DDPG, a critic network learns the Q-function, and an actor
network learns the policy. The critic gets updated as in DQN, while the actor gets up-
dated according to the gradients given by Equation 2.15. Separate target networks are
maintained for both the critic and the actor. However, instead of periodically copying
the weights of the networks to the target, ”soft updates” are performed where only a
fraction of the weights are transferred as follows:

θ
µ
targ← τθ

µ
targ +(1− τ)θµ (2.18)

θ
Q
targ← τθ

Q
targ +(1− τ)θQ (2.19)

where θµ and θQ are the weights of the actor and critic respectively, and θ
µ
targ and θ

Q
targ

are the weights of the corresponding target networks.

The advantage of using a deterministic policy instead of a stochastic policy such
as in regular policy gradient algorithms, is that the former is much more efficient to
compute. In stochastic policy gradient, state and action spaces have to be integrated
over to compute expectations. In contrast, only the state space need to be integrated
over in deterministic policy gradient. Consequently, stochastic policy gradient may
require more samples especially if the action space is high-dimensional.

2.4. LITERATURE REVIEW 43

2.4 Literature Review

This Section presents a brief review of recent and relevant research in the methods
employed in this thesis. The literature is far too expansive to exhaustively cover here,
so the chapter is limited to some selected research that is most relevant and impactful.

The rest of the chapter is organized as follows. Section 2.4.1 provides a review of
DRL techniques and recent advances in the field. Section 2.4.2 reviews work on RL in
HRI tasks. Section 2.4.3 is dedicated to some of the recent work on model-assisted RL.
Section 2.4.4 discusses recent work on uncertainty estimation in DRL models. Finally,
Section 2.4.5 situates the contributions of the thesis within the literature.

2.4.1 Deep Reinforcement Learning

The field of DRL is widely considered to begin when researchers in Google Deep-
mind published the DQN algorithm [MKS+13, MKS+15]. DQN consists of a deep
neural network that gets trained on targets given by the Bellman equation used in the
Q-learning algorithm [WD92]. In their work, Mnih et al. trained a DQN to play Atari
games at a superhuman level of performance. The input to the network was raw pix-
els from the frames of the video games, in contrast to the simple or engineered state
representations such as positions and velocities used in traditional RL. The output of
the network was commands that would usually be sent to the game via a joystick. The
DQN algorithm incorporated many algorithmic innovations that allowed the difficult
problem of network convergence in RL to be solved, such as random sampling from
experience replay and a separate target network.

Since the debut of DQN, the field has seen many milestones being reached by vari-
ous DRL algorithms. In 2016, DeepMind released AlphaGo [SHM+16], an algorithm
that beat the world champion in the game of Go, which is considered one of the most
challenging of classical games due to its huge search space. AlphaGo combined the
Monte Carlo tree search (MCTS) algorithm and deep neural networks to learn poli-
cies and value functions, with the policy network being pretrained on human expert
play in a supervised fashion. The algorithm was improved with the release of Alp-
haZero in 2017 [SHS+18], which could master chess and Shogi in addition to Go.
In 2019, DeepMind released AlphaStar, an agent that achieved grandmaster status in
competitive play of the popular real-time strategy game Starcraft II, and beat world
champions in the game [VBC+19]. A similar breakthrough was achieved by OpenAI’s
Five which beat world champions in Dota 2, a popular esports game. The achievement

44 CHAPTER 2. BACKGROUND

of AlphaStar and Five are especially notable since these games have long time horizons
and immensely complex continuous state-action spaces, which are key challenges for
more general AI systems.

DRL in robotics has focused mainly on continuous control tasks [LFDA16, LHP+15,
GHLL17, PHL+17], using algorithms suitable for continuous action spaces such as
DDPG [LHP+15], asynchronous advantage actor-critic (A3C) [MBM+16], and proxi-
mal policy optimization (PPO) [SWD+17]. Since collecting the huge amounts of data
required for training DRL algorithms is expensive on actual robots, researchers have
tried to alleviate this problem mainly in two ways. The first is to train cheaply in simu-
lators and then transfer skills to physical robots, possibly with some fine-tuning on the
robot [CSM+16, RVR+17, TDH+15]. The second is to improve the sample efficiency
of DRL algorithms [LA14, AWR+17, VHS+17, TZL+16, BHT+18]. One of the main
ways to improve sample efficiency is to incorporate model-based RL techniques, which
is the focus of section 2.4.3.

2.4.2 Reinforcement Learning for HRI

Deep reinforcement learning is increasingly being employed successfully for robots
in continuous control tasks [LFDA16, LHP+15, GHLL17, PHL+17], and in physical
HRI scenarios in which positions and forces have to be controlled [GBM+16]. How-
ever, its application to high-level tasks and in social HRI has been relatively limited
and only recently started to gather momentum. Qureshi et al. [QNYI16] used a multi-
modal DQN to teach a humanoid robot basic social skills such as successfully shaking
hands with strangers. Input to their system consisted of depth and greyscale images.
Interaction data were collected using the robot over a period of 14 days, where they
have separated the data collection and training phases and alternated between them for
practical reasons. The system was later modified to use intrinsic rewards resulting from
the difference between actual results and those of a learned predictive model and pro-
duced better results. [QNYI18]. Clark-Turner et al. used audio-visual signals to teach
a DQN agent appropriate social intervention skills from demonstrations [CTB18].

Cruz et al. used audio-visual feedback from a human teacher to train a robot to
correctly move objects as instructed using SARSA algorithm [CPTW16]. Lathuilere et
al. used audio-visual sensory information to train an long short-term memory (LSTM)-
based Q-function approximator for gaze control in social settings to maximize the
number of persons speaking and in the field of view of the robot [LMMH19]. Gao et
al. used visual information to teach an agent appropriate social approaching behavior

2.4. LITERATURE REVIEW 45

using the PPO algorithm where they used an autoencoder to compress the visual signal
into state representations [GYF+19]. Hussain et al. used speech features to teach a
DQN agent appropriate backchanneling such as laughing during dialogue [HESY19].
In [Cua20], a DQN is trained on visual information augmented with speech to learn to
play Tic-Tac-Toe interactively with a human. A recurrent DQN is used in [GCY+20]
to proactively assist a human in a packaging task by inferring the type of box they are
carrying. The DQN is trained on motion data sequences from a motion sensor suit with
the goal of minimizing the time it takes the robot to act correctly. A VAE was used to
compress the motion sequences into low-dimensional representations, which can then
be fed to the DQN for inference.

2.4.3 Model-assisted Deep Reinforcement Learning

There has been much interest in the literature about combining model-free and model-
based approaches to reinforcement learning. Such approaches are sometimes called
model-assisted RL (e.g. [LR14, KB17]) or model-based acceleration (e.g. [GLSL16]),
to distinguish them from pure model-based and model-free approaches. When the
learned model is used to simulate trajectories (i.e. imagine scenarios), it is sometimes
called imagination (e.g. [RWR+17]) or mental rehearsal (e.g. [KBP13]). Ha and
Schmidhuber [HS18] built models for various video game environments using a com-
bination of an MDN and an LSTM, which they call MDN-RNN. In their approach,
they first compress visual data into low-dimensional representations via a VAE, and
then train the MDN-RNN to predict future state vectors, which are used by the con-
troller as additional information to select optimal actions. However, they pretrained
the environment models on data collected by a random agent playing video games,
whereas in our work a model for an HRI task is learned online. .

The use of learned models to create synthetic training data has also been explored.
Kalweit et al. [KB17] used learned models to create imaginary rollouts to be used
in conjunction with real rollouts. In their approach, they limit model usage based
on an uncertainty estimate in the Q-function approximator, which they obtain with
bootstrapping. They were able to achieve significantly faster learning on simulated
continuous robot control tasks. However, they relied on well-defined, low-dimensional
state representations such as joint states and velocities, as opposed to raw visual data
as in our approach.

Racaniere et al. [RWR+17] used a learned model to generate multiple imaginary
rollouts, which they compress and aggregate to provide context for a controller that

46 CHAPTER 2. BACKGROUND

they train on classic video games. The advantage of this approach is that the controller
can leverage important information contained in sub-sequences of imagined rollouts,
and is more robust to erroneous model predictions.

Model rollouts can be used to improve targets for temporal differencing (TD) algo-
rithms as well. Feinburg et al. [FWS+18] used a model rollout to compute improved
targets over many steps, in what they termed model-based value expansion (MVE).
More recently, Buckman et al. [BHT+18] proposed an extension to MVE, in which
they used an ensemble of models to generate multiple rollouts of various lengths, in-
terpolating between them and favoring those with lower uncertainty.

2.4.4 Uncertainty Estimation in Deep Learning

Kendall et al. define two types of model uncertainties: epistemic uncertinaty and
aleatoric uncertainty [KG17]. Epistemic uncertainty is defined as the uncertainty in
model parameters due to the ignorance of the model. This kind of uncertainty can be
reduced be acquiring more data. On the other hand, aleatoric uncertainty is the uncer-
tainty due to inherent noise in the data, and cannot be reduced by data. In DL, epis-
temic uncertainty is captured by the distribution of model weights, while aleatoric un-
certainty is modeled by the output distribution of the model. Estimating the epistemic
uncertainty thus requires either learning a distribution of the model weights, or the abil-
ity to indirectly sample from such distribution. Learning the weights distribution can
be done with Bayesian inference. However, exact Bayesian inference for non-trivial
networks is intractable. Consequently, approximate inference methods have become
popular for their simplicity and low computational cost [BCKW15, GG16, HLA15,
Gra11]. Another approach to estimating epistemic uncertainty is through model en-
sembles [LPB17, KCD+18, Osb16]. Each model in the ensemble can be considered as
a sample from the distribution of weights, and the uncertainty can be estimated from
the variance in the outputs of the individual models.

One popular method to estimate uncertainty in NNs is through Monte Carlo dropout
(MC-dropout). Gal et al. [GG16] have shown that training a network with dropout is
equivalent to approximate Bayesian inference to obtain an approximation of the poste-
rior distribution over the weights. Samples from the approximate posterior can then be
obtained by applying dropout at test time with different binary mask vectors. Thus, by
feeding the network the same input multiple times but with different dropout masks,
different outputs can be obtained for the same input, and the variance in the output
due to the different weight samples can be used to estimate the epistemic uncertainty.

2.4. LITERATURE REVIEW 47

MC-dropout has been used to estimate the uncertainty in computer vision applications
[KG17], reinforcement learning for collision avoidance [KVP+17], and in medical ap-
plications [LAA+17] among others.

ALakshminarayanan et al. [LPB17] used deep ensembles to estimate the uncer-
tainty, where each network modeled the density of the target data as a Gaussian dis-
tribution. The output of the ensemble is given by a uniformly-weighted mixture of
Gaussians, and the uncertainty is given by its variance. Instead of the variance, the
entropy of the predictive distribution can be also used to quantify the uncertainty. De-
peweg et al [DHLDVU17] used BNNs with latent variables to estimate the uncertainty
for bimodal function approximation. They used the reduction in the entropy of the pos-
terior distribution of weights as a criteria for active learning, where the agent collects
datapoints that result in the largest expected reduction in the entropy.

Model uncertainty has naturally found use in RL applications. Examples include
artificial curiosity [SGS11, HCD+16] and risk-sensitive RL [GF15, DHLDVU17].
Chua et al. [CCML18] used NN ensembles to estimate the epistemic uncertainty in the
dynamics model in order to prevent overfitting in the low-data regime at the beginning
of training. Kahn et al. [KVP+17] used both MC-dropout and model ensembles to es-
timate the uncertainty of a collision prediction network in order to make a robot move
cautiously when it is uncertain about the environment. Recently, Lee et al. [LLSA20]
proposed a framework for ensemble learning of Q-functions that utilizes uncertainty
estimates from the ensemble in two way. First, the uncertainty estimates are used to
reweigh the Bellman backup so as to mitigate the propagation of errors from the target
Q-function. Second, the uncertainty estimates are used to encourage exploration of
novel states where the ensemble uncertainty is high.

2.4.5 Contribution

Research on high-level or social HRI so far have largely neglected the sample com-
plexity problem in RL. For example, in [QNYI16], data was collected over a period of
14 days in a public area where there is a lot of visitors to interact with the robot. This
can be infeasible in many cases. The work in this thesis focuses on improving sample
efficiency to allow DRL to be more practical for HRI scenarios.

Furthermore, other similar work on model-based acceleration in RL has either used
simple state representations [KB17], offline learning of the dynamics model, or sepa-
rate and sequential learning of the dynamics and the controller [HS18]. To my knowl-
edge, this is the first work to focus on fully online and simultaneous learning of both

48 CHAPTER 2. BACKGROUND

the dynamics model and the controller from raw visual data. In addition, the thesis
shows how the dynamics model can be learned with a feedforward architecture and
simulated accurately multiple timesteps into the future with the compounding error
problem taking over.

With regard to uncertainty estimation, research discussed so far have focused mainly
on unimodal data. In contrast, we show how to obtain decomposed uncertainty esti-
mates for highly multimodal data with heteroscedastic noise, which is the most gen-
eral case. This thesis is also the first work to mathematically derive expressions for
uncertainty estimates for MDNs. Besides epistemic and aleatoric uncertainties, the
thesis introduces a third kind: modal uncertainty. This kind of uncertainty represents
the stochasticity inherent in multimodal distributions. This is important because the
modal uncertainty is not undesirable or something to be reduced, unlike the other two
kinds of uncertainty. Therefore, this allows us to better analyze the behavior of models
and to know whether the data is noisy or scarce in certain regimes of the input space.

Chapter 3

Imagination-based Deep RL

The ability of humans to use their imagination allows them to learn efficiently without
needing to interact with their environment as often. Once they have a model of how
the environment works, they can simulate scenarios in their mind and derive optimal
policies from them. The ability to implement a similar mechanism for RL agents can
be tremendously useful for increasing the sample efficiency. This is especially true for
robotic applications, since physically interacting with the environment for prolonged
periods can be prohibitively impractical.

This chapter introduces an architecture for learning RL-based tasks through imag-
ination. The agent first learns a model of its environment, and uses this model to
generate synthetic experience. Entire imaginary rollouts can be created by the model,
spanning multiple timesteps into the future. This imaginary experience can then be
used to train a controller as if it was real experience collected from the physical en-
vironment. The key difference between this imagination-based agents and regular
model-based ones is that the former use a generative model to ”imagine” new valid
states and transitions between them. In contrast, regular model-based agents can only
predict transitions for states they actually encounter.

The chapter is organized as follows. Section 3.1 presents an architecture to gener-
ate imaginary rollouts with a learned environment model and provides details for all
the components. Section 3.2 presents an experiment to validate the architecture and
show how the components can be trained and used. Finally, Section 3.3 concludes the
chapter with a summary and discussion.

49

50 CHAPTER 3. IMAGINATION-BASED DEEP

3.1 Architecture

The purpose of the architecture presented here is to allow an agent to generate imag-
inary rollouts that can be used to train an RL algorithm. The architecture consists of
three main components: the vision encoder module that produces abstract represen-
tations of input images, the environment model which generates imaginary rollouts
(simulated experience), and the controller that learns to map states into actions. For
the purpose of generating imaginary rollouts, the encoder and the environment model
are assumed to have been already trained. The controller is allowed to be any function,
depending on the nature of actions we wish to generate our rollouts with. It might be
random if we wish to generate random trajectories, or it may be trained if we wish to
generate optimal trajectories.

Figure 3.1 shows an overview of the architecture. The flow of data in the architec-
ture starts with the agent observing the environment through a camera. The raw image
obtained is the environment state s, which get passed to the encoder that transforms
it into an encoded state vector z. The controller receives the state vector z and selects
action a. The environment model receives a and z as input, and produces a predicted
next state z′ and a predicted reward r′. The predicted z′ in turn gets fed to the controller
which selects another action a′. The encoded old and new states (z and z′) are concate-
nated with the action a and the reward r′ to form a transition tuple (z,a,r′,z′), which is
then stored in the imaginary memory. The loop continues when z′ gets fed back to the
environment model along with a′ to produce the next predicted state. The environment
model keeps running in closed loop in this manner until a terminal state is predicted,
concluding the imaginary rollout. To determine when to terminate a rollout, a trained
classifier is used to classify the predicted states into terminal and non-terminal ones.

In the following sections, each of the components of the architecture will be exam-
ined in detail.

3.1.1 Vision Encoder

The vision encoder comprises the encoder part of a VAE, and is responsible for map-
ping the high-dimensional input images into low-dimensional state representations.
The encoder thus effectively serves as the perception module of the agent. It takes
in an image representing the state s, and outputs the distribution of the encoded state
vector p(z|x). The latent state vector can then be sampled from this distribution as
z ∼ p(z|x). In practice however, the mean of the distribution is taken to be the state

3.1. ARCHITECTURE 51

Environment

Encoder

Environment

model

Controller
Action

(a)

State

(s)

Encoded state

(z)

predicted

next state (z')

Imaginary

memory

Reward

model

Transition

(z, a, z', r')

predicted reward

(r')

Figure 3.1: Overview of the architecture for generating imaginary rollouts with a
learned environment model. The initial environment state s is encoded by the en-
coder into a state vector z, which get passed to the controller to select action a. The
environment model is seeded by the initial z and a, and predicts the next state z′ and
reward r′. The controller then selects an new action for z′ and the loop continues until a
predicted z′ is classified as terminal. The transitions generated by the model are saved
in the imaginary memory for training controllers.

vector. The main advantage of compressing states with the encoder is the significant
reduction in computational and memory costs when training the controller and the
environment model. The encoder gets trained in an offline manner before the actual
learning of the task. To train it, a dataset of images relevant to the task must be col-
lected beforehand. However, the same encoder can be used for multiple tasks, so long
as they share the same visual domain.

The choice of a VAE instead of a regular auto-encoder has two main advantages.
First, while the regular auto-encoder maps an input image into a point in the latent
space, the VAE maps it into a continuous region in the latent space defined by the
parameters of a factorized Gaussian distribution. Consequently, points in that region
basically represent the same state since they can all be produced from the same dis-
tribution. Thus, any prediction of the next state lying within that region is considered
correct, giving predictions a lot more margin for acceptable error. This makes the
environment model more robust and ensures that its output is meaningful and can be
mapped back into realistic images. Furthermore, it prevents the problem of compound-
ing errors when predicting successive next states from a given observed initial state. If
the environment model is to be used to predict multiple timesteps into the future, this
advantage becomes essential.

The second advantage is that the VAE is also a generative model, which means that

52 CHAPTER 3. IMAGINATION-BASED DEEP

it can be used to generate novel data similar to a certain datapoint. This allows the
environment model to generate entirely new imaginary experience, in which not only
the transition are novel, but also the states themselves in the transitions. Consequently,
the synthetic experience becomes much richer, further improving the ability of the
agent to learn. This sort of data augmentation is the main difference between this
approach and regular model-based RL.

3.1.2 Environment Model

The environment model learns a forward model of the environment dynamics. It is
responsible for generating synthetic transitions, and predicts the future state z′ and
reward r′ based on current states z and input action a. It can also predict multiple
timesteps into the future by running it in closed loop where its output is fed back into its
input along with the selected action. To generate an entire imaginary rollout, it is first
seeded with an initial state vector z, which can be the current state or any state sampled
from the real memory. The model is then left to run in closed loop for a predefined time
horizon or until the imaginary episode terminates. For each state prediction, the model
also predicts whether that state is terminal or not, so that it knows when to terminate
the rollout.

The environment model is composed of three component models: an MDN that
learns the transition dynamics, a reward predictor called the r-network, and a terminal
state classifier called the d-network. The MDN learns the conditional probability dis-
tribution of the next state p(z′|z,a). The next state vector is obtained by sampling from
the predictive distribution, i.e. z′ ∼ p(z′|z,a). The advantage of using an MDN is that
it allows learning a model of stochastic environments, in which an action taken in any
given state can lead to multiple next states. This is especially useful for multi-agent
environments such as HRI tasks, in which the response of other agents to actions taken
by the robot cannot be expected with certainty. Furthermore, modelling the next state
probabilistically is much more robust to errors in prediction, allowing the environment
model to run in closed loop.

The r-network learns to predict the reward for each state as a function of the state
vector as r = f (z). The choice to make the reward dependent on just the state instead
of the state-action pair is made for simplicity and ease of training. The d-network
learns to classify states into terminal and non-terminal. Both the r- and d-networks are
implemented as feed-forward neural networks. When the environment model is run in
closed loop to generate rollouts, the r-network predicts the reward for each predicted

3.2. EXPERIMENT 53

next state. The rollout is terminated whenever the d-network classifies the predicted
next state as terminal.

3.1.3 Controller

The controller is responsible for selecting the appropriate action in a given state, pre-
dicted or observed. The actions the controller selects control the evolution of the imag-
inary trajectories. The controller can be random if random imaginary trajectories are
to be generated. It can also be trained beforehand if we wish to generate optimal imag-
inary trajectories instead.

3.2 Experiment

The purpose of the experiment detailed in this section is the following. First, to validate
the method of generating complete and reliable imaginary rollouts. Second, to see if an
environment model can be learned on-line. Third, to test the performance of controllers
trained on imaginary data, and compare them to those trained on actual data. The
experiment involves a simulated pick-and-place task, in which a human requests the
agent to pick up objects and hand them over. The agent is expected to learn a model
of the high-level dynamics of the task from visual data, and to correctly perform the
actions requested by the human afterwards.

This section is organized as follows. Section 3.2.1 describes the experiment setup,
providing details about the task to be learned, the environment built for it, as well as
data collection. Section 3.2.2 provides implementation details of the components and
the training procedure. Section 3.2.3 presents the results obtained from the experiment,
while Section 3.2.4 presents conclusions drawn from the results.

3.2.1 Experiment Setup

The experiment is a simulated HRI task in which the agent learns to pick and place
objects as instructed by its human partner. In the experiment, the human starts by
pointing at any one of three objects placed on a table, which the agent picks up. The
human can then either point at another object at random, at which point the agent has
to place the object it currently holds back on the table and pick the new one, or they
can request a handover. Figure 3.2 shows an example image from the point of view of
the agent.

54 CHAPTER 3. IMAGINATION-BASED DEEP

Figure 3.2: An example image from the point of view of the agent, showing the exper-
iment setup. In this image, the human is pointing to the blue ball, requesting the robot
to pick it up.

The task is formulated as an RL problem in which the agent can choose from 4
discrete actions at any given time. The first three actions are to pick/place objects
1, 2, or 3 respectively, while the fourth is to perform a handover. The agent gets a
reward of +1 for correctly picking up an object, 0 for putting an object back, +5 for
correctly handing over, or -5 for choosing an incorrect action. An episode terminates
if either a handover is correctly performed, or the agent chooses an incorrect action.
The choice of the exact magnitude of rewards here is rather arbitrary, and any choice
of magnitudes should work, given that the signs (the values of the signum function) of
rewards is preserved and the difference between the values is not too large.

To create the simulated environment, approximately 100 RGB images were col-
lected for every possible configuration of object placements and hand gestures, for a
total of about 1200 images. The images were collected using the iCub robot eye cam-
era [MSV+08]. The images were then scaled down to a manageable 64×64 resolution.
The simulated environment was implemented as a finite state machine, in which each
state corresponds to a configuration of which object the agent has picked up, and what
gesture the human makes. The state machine has a total of 12 states, covering all com-
binations of possible hand gestures and object positions. Table!3.1 shows all allowable
states as implemented in the machine. Each state is associated with the set of images
collected for the corresponding configuration of the task. In each run, the environment
is initialized with a random initial state. It then receives a certain action as input, and
transitions into the next state and outputs the reward. At each state, the environment
also outputs an image randomly selected from the set of images associated with that
state.

3.2. EXPERIMENT 55

State
Left

object
Middle
object

Right
object

Gesture

1 placed placed placed left
2 placed placed placed middle
3 placed placed placed right
4 picked placed placed middle
5 picked placed placed right
6 picked placed placed handover
7 placed picked placed left
8 placed picked placed right
9 placed picked placed handover
10 placed placed picked left
11 placed placed picked middle
12 placed placed picked handover

Table 3.1: Allowable states in the pick-and-place experiment. Each state can have all
objects placed, or just one of them picked. Gestures can be to either point to any of the
objects, or request a handover if an object is picked.

3.2.2 Implementation and Training

In this section, the implementation details and training methods used for the individual
components are provided.

VAE

The architecture of the VAE used for the experiment is that used by Ha and Schmidhu-
ber in [HS18], except that the latent space is 4-dimensional. Figure 3.3 shows the VAE
architecture used. The VAE was trained on all the images collected for the task for
1000 epochs using the Adam optimizer with a learning rate of 0.0001. The objective
of the training was to minimize the loss given by:

L(θ,φ) =
N

∑
n=1

[
− log pφ(xn|zn,φ)+

J

∑
j=1

(1+ logσ
2
j(xn,θ)−µ2

j(xn,θ)−σ
2
j(xn,θ))

]
,

(3.1)
where the encoder and decoder networks are parameterized with θ and φ respectively,
N is the number of training examples, and J = 4 is the dimensionality of the latent
space. See Section 2.1.4 for more details on training VAEs.

The vision encoder network used in the experiment is simply the encoder part of
the VAE. The 4-dimensional mean of the distribution of the latent vector produced by

56 CHAPTER 3. IMAGINATION-BASED DEEP

the encoder was taken to be the latent space vector.

Controller

The controller was implemented as a DQN and trained on the simulated environment
in a regular Q-learning setting. The environment would provide an image representing
the state, which gets encoded into a state vector by the encoder and passed to the DQN.
The controller then outputs an action as input to the environment which responds by
changing its state and providing a reward signal. Transitions collected in this way were
stored in memory for and used for training via experience replay.

The DQN had 2 hidden layers (512 ReLU, 256 ReLU) and a linear output layer. It
was updated once on a batch of 64 transitions each timestep. The DQN was trained to
minimize the mean squared error (MSE) given by:

L(y, ŷ) =
N

∑
n=1

(yn− ŷn)
2, (3.2)

where N is the number of training examples, ŷn = Q(st ,at) is the output of the DQN
for the state (st) at time t, and y = rt+1 + γmaxat+1 Q(st+1,at+1) is the bellman target.
The Adam optimizer was used with a learning rate of 0.00025.

When selecting actions, the controller used an ε-greedy strategy with an exponen-
tially decreasing exploration rate ε given by:

ε = εmin +(εmax− εmin)e−λt (3.3)

with εmin = 0.001, εmax = 0.8, λ = 0.03, and t is the time step. Starting with a large
ε and decreasing it over time allows the controller to explore more in the beginning of
learning, and less towards the end when it has sufficiently explored the state space.

For the experiment, two separate controllers were trained. The first was trained
on the data obtained by interacting with the environment. The second controller was
trained on data generated by the environment model, where the controller interacted
with the model as if it was the actual environment. Both controllers were trained for
1000 episodes.

3.2. EXPERIMENT 57

Figure 3.3: The VAE architecture used in the experiment. Source: [HS18]

58 CHAPTER 3. IMAGINATION-BASED DEEP

Environment Model

The environment model is composed of three networks: an MDN for the dynamics
model, the reward model, and the terminal state classifier. The MDN had 3 hidden lay-
ers of 256 ReLU units and 3 parallel output layers for the distribution parameters: one
for the mixture coefficients with softmax activation, one for means and one for loga-
rithm of variances both with linear activation. The reason for outputting the logarithm
of the variance is to ensure the variance is always positive1. The input to the MDN
consisted of the state vector concatenated with the one-hot encoded action vector.

The MDN was trained to minimize the negative log likelihood given by:

L(y,θ) =
N

∑
n=1

[
− log

K

∑
k=1

αk(xn;θ)N (yn;µk(xn;θ),σk(xn;θ)2)
]
, (3.4)

where θ is the vector of network weights, y is the vector of target next states, N is the
number of training examples, K = 24 is the number of Gaussian components, αk is the
probability of component k, and µk and σk are the mean and variance vectors of the
k-th component respectively. The network was trained with the Adam optimizer with
a learning rate of 0.001.

The reward model (r-network) had a similar architecture to the controller, and was
trained to minimize the logarithmic hyperbolic cosine loss given by:

L(y, ŷ) =
N

∑
n=1

log
(

cosh(ŷn− yn)
)
, (3.5)

where y and ŷ are the target and the predicted output respectively, and N is the number
of training examples. The Adam optimizer was used with a learning rate of 0.001.

The terminal state classifier (d-network) shared the same input and hidden layers
with the r-network, but had its own output layer with sigmoid activation. It was trained
to minimize the binary cross-entropy loss given by:

L(y,θ) =
N

∑
n=1

yn log pθ(yn)+(1− yn) log
(
1− pθ(yn)

)
, (3.6)

where θ is the vector of network weights, y is the vector of target binary variables
representing whether a state is terminal or not, pθ(y) is the predicted probability of the
the state being terminal, and N is the number of training examples.

1The inverse of the logarithmic function is always non-negative

3.2. EXPERIMENT 59

During training, the MDN, the r-network and the d-network were all updated 4
times on batches of 64 transitions each timestep using the Adam optimizer with a
learning rate of 0.001.

3.2.3 Results

The controller was allowed to interact with the environment for 10 runs of 1000 episodes
each. It was noticed that the controller learned an optimal policy after about 500
episodes in each run. After each training run, a test run of 100 episodes was per-
formed, in which a separate set of validation images were used. The controller reached
an average success rate 2 of about 98% over all the test runs.

In each of the training runs, an environment model was also being trained, but
wasn’t being used to generate data. To test the learned environment models, another
controller was trained on imaginary rollouts by simply replacing the actual environ-
ment with the learned model. This controller had an identical architecture to the origi-
nal, and was trained in exactly the same manner, but on imaginary data. After training,
the controller was tested in the actual environment for 10 runs of 100 episodes each.
The controller achieved an average success rate of about 78%, compared to the 98%
percent of the original.

Visual inspection of the quality of the imaginary data showed that the model can
generate realistic rollouts. Figure 3.4 shows an imaginary rollout generated by the
model, in which only the first image is obtained from the actual environment. After
being seeded with the initial encoded image, the model ran in closed loop to gener-
ate the rollout. Actions for the rollout was selected using a trained controller. The
imagined states were mapped back to images using the decoder part of the VAE. It is
important here to note that, except for the first image that seeds the model, none of
these images are real; they are entirely imagined by the model. They represent what
the model thinks is going to happen next given a certain state-action pair. Further-
more, each imaginary rollout with the same initial state results is different, reflecting
the stochastic nature of the environment. The trajectory is stochastic due to sampling
from the different components of the MDN, and the images themselves are slightly
different for the same configuration due to sampling from the encoder.

2The success rate here is defined as the ratio of episodes completed successfully to those that failed.

60 CHAPTER 3. IMAGINATION-BASED DEEP

(a) (b)

(c) (d)

Figure 3.4: A sample imaginary rollout produced by the environment model. The
images are visualizations of states imagined by the model. (a) the initial state in which
the human requests the agent to pick the blue ball. (b) the model predicts that the ball
will be picked up and the human will point to another object. (c)the model predicts the
agent will put down the ball. (c) The model predicts the agent will pick the car on the
right and the human will request a handover.

3.3. SUMMARY AND DISCUSSION 61

3.2.4 Conclusion

The experiment was designed to test three hypotheses. First, that it is possible to learn
an environment model in latent space. Second, that this model can be learned incre-
mentally as the agent is interacting with the environment. Third, that the imaginary
data are valid enough that if we train a controller on them, it would perform well in the
actual environment.

With regard to the first hypothesis, the results demonstrate that we can learn a
model in the latent space obtained by transforming images with an encoder. The roll-
outs obtained from running the model in closed loops are realistic, and can be used to
train a controller. The controller trained exclusively on imaginary rollout performed
reasonably well when tested in the real environment. Furthermore, visual inspection
of the imaginary rollouts showed realistic states and trajectories. The trajectories and
the states were stochastic, reflecting the stochastic nature of the HRI task.

With regard to the second hypothesis, the results showed that the model can be
learned incrementally while the agent is interacting with the environment, much like
how a DQN is trained. It is less efficient than offline learning, but still leads to good
models.

As for the third hypothesis, the results showed that the controller trained exclu-
sively on imaginary data performed reasonably well in the actual environment. The
results also show that it performed worse that the original controller, but this is to be
expected since model-free learning usually leads to better performance than model-
based learning.

3.3 Summary and Discussion

This chapter introduced methods for learning environment models online via experi-
ence replay, and for generating imaginary complete imaginary rollouts with the model.
The method involves using a VAE to encode images into latent state vectors, and an
MDN to model transition dynamics in this latent space. An experiment involving a
simulated HRI task showed that a model can be learned in such manner, and a DQN
can be trained on imaginary data generated by the model.

The use of probabilistic models makes the system robust enough to predict multiple
time steps into the future, enabling it to generate entire rollouts from an initial state.
The combined use of a VAE for the encoder and an MDN for the environment model
mitigates the problem of compounding errors when predictions are made based on

62 CHAPTER 3. IMAGINATION-BASED DEEP

earlier predictions. If point estimates were used instead, the model would only be able
to predict just one or two time steps into the future before predictions become totally
erroneous. Indeed, it was quite surprising (and thrilling) for me the first time I saw how
good the imaginary rollouts were. Granted, the environment was very simple. Yet, to
see the model actually visually imagine scenarios playing out was extremely exciting.

The experiment presented in this chapter served as a proof of concept, and did not
demonstrate any advantage to using imaginary rollouts for training. It was a sort of
sanity check to see if the components can work individually and together. In the next
chapter, we will see how to estimate the epistemic uncertainty in MDNs, which allows
us to discard uncertain imaginary rollouts to prevent them from adversely affecting
training the controller. Chapter 5 further builds on the architecture presented in this
chapter and presents an architecture that combines real and imaginary data to increase
the sample efficiency in RL.

Chapter 4

Uncertainty Estimation in Bayesian
MDNs

The ability to estimate the uncertainty in DL models is of great importance for DRL.
Uncertainty estimation allows DL-based agents to know what data to seek to improve
their performance, and prevents them from making erroneous decisions when pre-
sented with novel situations. In the architecture presented in chapter 5, the RL agent
learns an MDN model of a stochastic environment and uses it to produce synthetic
experience. It is thus important for the agent to estimate the epistemic uncertainty of
its model, which allows it to reject experience generated by the model if it has high
uncertainty, since that would mean it is most likely erroneous. This chapter explores
uncertainty estimation in DL models for the most general case, in which the data is
highly multimodal with heteroscedastic noise. It also details how these uncertainties
can be computed for Bayesian mixture density networks, and then used for decision
making.

Throughout this chapter the term random function is used to denote a function
whose value is a random variable. Whereas the output of a regular function is deter-
ministic given its inputs, the output of a random function is a random variable defined
by a probability distribution conditioned on its inputs. Similarly, a random function ap-

proximator is some function that approximates a target random function. The problem
of learning such an approximator will be treated as equivalent to that of multimodal
density estimation.

The chapter is organized as follows. Section 4.1 introduces the Bayesian bias-
variance decomposition, which allows us to decompose the mean squared error of

63

64 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

learning algorithms to obtain sources of uncertainty. In Section 4.2, this decomposi-
tion is applied to the problem of multi-modal density estimation. In Section 4.3, an
alternative view of epistemic uncertainty as the degree of stationarity of the predictive
distribution is discussed. Section 4.4 presents mathematical derivations of uncertainty
estimates for Bayesian MDNs and gives concrete formulas that can be used directly.
Section 4.5.1 presents a toy problem to show how uncertainties can be estimated for
MDNs with highly multimodal predictive densities. Section 4.5.2 presents a simulated
robot inverse kinematics problem that shows how uncertainty estimates can be used
to guide decision-making. Finally, Section 4.6 concludes the chapter with a summary
and discussion.

4.1 The Bayesian Bias-Variance Decomposition

The bias-variance decomposition is a method of analyzing the mean squared error of
a learning algorithm. It decomposes the error into three terms: the bias, the variance,
and the irreducible error [Bis06]. Let D = {(xi,yi) : i = {1, . . . ,n}} be a dataset of n

samples drawn form the distribution p(x,y) where x ∈ Rd and y ∈ Rk. Assume D is
generated by the process:

y = f(x)+η, (4.1)

where f(·) :Rd→Rk is some deterministic function and η∼N (0,σ2
ηI) is the measure-

ment noise with a diagonal k× k covariance matrix whose diagonal entries form the
vector σ2

η = (σ2
1, . . . ,σ

2
k). Thus, the true conditional density of the target data is given

by p(y|x) = N (f(x),σ2
ηI). Assume that instead of simply learning a function f̂(x) that

approximates f(x), we wish to estimate the true density as p̂(y|x) = N (f̂(x), σ̂2
ηI) and

use it to generate predictions ŷ(x). Applying the well-known bias-variance decompo-
sition to the expected squared error between ŷ and y for a certain value of x yields:∫

(y(x)− ŷ(x))2 p(D)d(D) = Ep(D)[(y(x)− ŷ(x))2]

= Ep(D)[(f(x)− ŷ(x))2]+σ
2
η

= (f(x)−Ep(D)[ŷ(x)])2

+Ep(D)[(ŷ(x)−Ep(D)ŷ(x))2]+σ
2
η,

= (f(x)−Ep(D)[ŷ(x)])2 +Vp(D)[ŷ(x)]+σ
2
η, (4.2)

4.2. DECOMPOSITION FOR MULTI-MODAL DENSITY ESTIMATION 65

where the expectations are taken over all possible datasets D with samples drawn from
the joint distribution p(x,y), i.e. p(D) = ∏

n
i=1 p(xi,yi). The first term in Equation 4.2

is the square of the bias, the second term is the variance of the approximator, and the
third term is the irreducible noise in the data.

The bias-variance decomposition in Equation 4.2 assumes a frequentist stance, in
which the weights of the approximator are fixed and the dataset is a random variable.
In contrast, we will approach the decomposition from a Bayesian perspective, in which
we consider the dataset fixed and instead assume the weights of the approximator to
be random variables. Consider an approximator with weight vector w distributed ac-
cording to some distribution function q(w|D). The variance in D in the frequentist
approach thus corresponds to that in w in the Bayesian one. As such, the expectation
over w can be substituted for the expectation over D , and Equation 4.2 can be written
as: ∫

(y(x)− ŷ(x))2q(w|D)d(w) = Eq[(y(x)− ŷ(x))2]

= Eq[(f(x)− ŷ(x))2]+σ
2
η.

= (f(x)−Eq[ŷ(x)])2 +Vq[ŷ(x)]+σ
2
η, (4.3)

Since the quantity Eq[(f(x)− ŷ(x))2] is a second moment (albeit a non-central one),
we shall, perhaps with a slight abuse of notation, denote it by σ2

e . Equation 4.3 can
thus be written as:

Eq[(y(x)− ŷ(x))2] = σ
2
e +σ

2
η. (4.4)

From a Bayesian perspective, Equation 4.4 decomposes the total uncertainty in ŷ
into two sources. The first term represents the ignorance of the model which is known
as the epistemic uncertainty . The second is the irreducible noise inherent in the data,
which is known as the aleatoric uncertainty.

4.2 Decomposition for Multi-modal Density Estimation

In some practical applications, f can be a random function that take on multiple values
for the same input, irrespective of the measurement noise. For example, f can be a
multi-valued function with a categorical distribution such as in robot inverse kinemat-
ics problems, where a certain endpoint pose (x, the input) can be achieved via multiple
joint configurations (y, the multi-valued output). In this case, when combined with

66 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

Gaussian measurement noise, the conditional distribution of the target data p(y|x) is a
Gaussian mixture. Another example is when there is incomplete information about the
inputs of a deterministic process. For instance, suppose that f(x1,x2) is a deterministic
process that we wish to model but only have access to one of its two input variables.
In this case, it might be necessary to model it as a random process f(x1; t) with some
index set T such that t ∈ T . In fact, the general case is when f(x; t) is a random func-
tion, with deterministic functions being special cases in which f(x) has a deterministic
distribution that does not depend on t, i.e. f(x) = E[f(x; t)] for all t.

We will now consider the more general case where f(x) is a random variable, and
the measurement noise is input-dependent (i.e. heteroscedastic) such that η = η(x)∼
N (0,σ2

η(x)I). In this case, the true conditional distribution p(y|x) can be arbitrar-
ily complex. As before, we are interested in learning an approximate distribution
p̂(y|x;w) with weights w and use it to make predictions ŷ. Let w be distributed ac-
cording to some distribution function q(w|D). The following notation is adopted for
expectations over the aforementioned distributions, keeping the dependence of y and ŷ
on x implicit:

Ep[· · ·] =
∫
[· · ·]p(y|x)dy

Ep̂[· · ·] =
∫
[· · ·]p̂(ŷ|x)dŷ

Eq[· · ·] =
∫
[· · ·]q(w|D)dw,

Applying a similar decomposition as in Equation 4.3 yields (see Appendix A for
derivation):∫∫∫

(y− ŷ)2 p(y|x)p̂(ŷ|x)q(w|D)dydŷdw = Eq,p,p̂
[
(y− ŷ)2]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]

+σ
2
η +Vp[f]+Eq

[
V p̂[ŷ]

]
= (Ep[f]−Eq,p̂[ŷ])2 +Vq

[
Ep̂[ŷ]

]
+σ

2
η +Vp[f]+Eq

[
V p̂[ŷ]

]
(4.5)

Now define:
σ

2
e = Eq

[
(Ep[f]−Ep̂[ŷ])2]

= (Ep[f]−Eq,p̂[ŷ])2 +Vq
[
Ep̂[ŷ]

]
(4.6)

σ
2
m = Vp[f] (4.7)

4.2. DECOMPOSITION FOR MULTI-MODAL DENSITY ESTIMATION 67

Then we have:
Eq,p,p̂

[
(y− ŷ)2]= σ

2
e +σ

2
η +σ

2
m +Eq

[
V p̂[ŷ]

]
(4.8)

Compared to Equation 4.3, the decomposition in Equation 4.8 introduces two extra
terms. σ2

m expresses the stochasticity inherent in f , which we refer to as the modal un-
certainty , and Eq

[
V p̂[ŷ]

]
is the variance in the prediction ŷ averaged over all possible

weights of the predictive distribution p̂, and approximates σ2
η +σ2

m. We call σ2
η the

aleatoric uncertainty because it has to be modeled explicitly and cannot be calculated
from other model weights, unlike its soft counterpart. Moreover, the modal uncer-
tainty can in principle be reduced by changing our assumption of the process so that it
includes more relevant information as input.

We are interested in estimating the uncertainty quantities given in Equation 4.8.
We will assume that the noise σ2

η can be explicitly modeled from the data, which
means that σ2

m can be estimated from V p̂[ŷ] which approximates σ2
η +σ2

m. However,
calculating σ2

e requires knowledge of the true distribution of p(y|x), which we want to
estimate in the first place. How can we estimate the epistemic uncertainty given only
our approximate model?

Let w? be the optimal values of the weights w such that p̂(w?) = p? ≈ p(y|x) and
let y? ∼ p?(x). Since Ep[f] = Ep[y]≈ Ep?[y?], we can rewrite Equation 4.6 as:

σ
2
e = (Ep[f]−Eq,p̂[ŷ])2 +Vq

[
Ep̂[ŷ]

]
≈ (Ep?[y?]−Eq,p̂[ŷ])2 +Vq

[
Ep̂[ŷ]

]
(4.9)

When the model is well trained, i.e. DKL(p?||Eq[p̂])< ε for some small positive ε,
we have Eq,p̂[ŷ] ≈ Ep? [y?], and the model bias becomes negligible. Then from Equa-
tion 4.9 we have:

σ̂
2
e = Vq

[
Ep̂[ŷ]

]
(4.10)

Since the squared bias is strictly non-negative, the variance Vq
[
Ep̂[ŷ]

]
provides a lower

bound on the epistemic uncertainty estimate, which means that the estimate can never
exceed the actual epistemic uncertainty even if the approximation Eq,p̂[ŷ] ≈ Ep?[y?]

does not hold.

Assuming that the noise σ2
η is explicitly modeled as σ̂2

η, the aleatoric uncertainty
can be estimated as:

σ̂
2
a = Eq[σ̂

2
η] (4.11)

68 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

Lastly, the modal uncertainty can be estimated as:

σ̂
2
m = Eq

[
Vp̂[ŷ]

]
− σ̂

2
a (4.12)

It is important here to note that the approximations above hold only when the model
is assumed to be well trained. This is generally a valid assumption since is only reason-
able to estimate the predictive uncertainty for a model that does indeed approximate
the target function.

4.3 Stationarity of the Estimator as Epistemic Uncer-
tainty

If we consider the estimator as a stochastic process, then we can interpret the epis-
temic uncertainty as defined earlier as a measure of the stationarity of the process.
To see how, assume that we draw T samples of the parameter vector w from the
distribution q(w|D) to obtain the collection of weights {wt} = {w1, . . . ,wT}. Then,
for a given value of x, the corresponding collection of random variables {ŷ(x;wt)}
= {ŷ(x;w1), . . . , ŷ(x,wT)} defines a stochastic process, in which each of these vari-
ables has the distribution p̂(y,wT |x). This distribution depends on wT , and the process
{ŷ(x;wt)} is thus non-stationary as long as the distribution q(w|D) is non-deterministic.

In light of this, the epistemic uncertainty approximation as defined in Equation 4.10
can be interpreted as the degree of stationarity for ŷ(x;w). If the process is stationary,
then q(w|D) is deterministic and the variance in ŷ due to q vanishes, yielding null
epistemic uncertainty estimate. Conversely, the more non-stationary the process is, the
more variance q will induce on ŷ, and the higher the epistemic uncertainty estimate
will become.

This result seems intuitive, since the true function f is assumed to be stationary in
the first place, in the sense that the distribution p(y|x) does not depend on time. There-
fore, it stands to reason that for values of x where the estimator closely matches the
true density, the estimate ŷ will be stationary as well. This suggests an alternative way
to estimate the epistemic uncertainty, namely by directly quantifying the stationarity of
ŷ. One possible way this can be done is by defining a metric for the variability among
the set of distributions {p̂(y;wt |x)}. However, this is left for future work.

4.4. ESTIMATING UNCERTAINTIES IN BAYESIAN S 69

4.4 Estimating Uncertainties in Bayesian MDNs

We will now turn to a concrete example of estimating the uncertainty in a DL model
with a multimodal predictive distribution. Consider a Bayesian mixture density net-
work (BMDN) [Bis94] with a Gaussian prior distribution over its weights w, and sup-
pose the posterior distribution is q(w). The conditional density of the target data as
predicted by the BMDN is given by

p(ŷ|x,w) =
K

∑
k=1

αk(x;w)N
(
ŷ;µk(x;w),σ2

k(x;w)
)

(4.13)

where K is the number of components, αk are the mixture coefficients subject to

∑
K
i=k αk = 1, and N (·;µ,σ2) is a Gaussian kernel with mean µ and variance σ2. From

Equation 4.13 we can obtain the following statistics:

E[ŷ|x,k,w] = µk(x;w) (4.14)

E[ŷ|x,w] =
K

∑
k=1

αk(x;w)µk(x;w) (4.15)

E[ŷ|x] = Eq

[K

∑
k=1

αk(x;w)µk(x;w)

]
(4.16)

V[ŷ|x,k,w] = σ
2
k(x;w) (4.17)

E
[
V[ŷ|x,k,w]|x,w

]
=

K

∑
k=1

αk(x;w)σ2
k(x;w) (4.18)

V[ŷ|x,w] = E
[
V[ŷ|x,k,w]|x,w

]
+V

[
E[ŷ|x,k,w]|x,w

]
(4.19)

where we have used the law of total variance in Equation 4.19. By applying the law of
total variance again, the total predictive variance of the BMDN can be written as

V[ŷ|x] = Vq
[
E[ŷ|x,w]|x

]
+Eq

[
V[ŷ|x,w]|x

]
= Vq

[
E[ŷ|x,w]|x

]
+Eq

[
E
[
V[ŷ|x,k,w]|x,w

]
|x
]

+Eq

[
V
[
E[ŷ|x,k,w]|x,w

]
|x
]

(4.20)

Equation 4.20 decomposes the predictive variance of the BMDN in terms of the
contributions of the variances of the three distributions governing ŷ. The first term is

70 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

the contribution of the distribution of the weights defined by q, the second is that of
the individual components Gaussians defined by µk and σk, and the third is that of the
categorical distribution of the components defined by αk. Now suppose that the model
of p(y|x) in Equation A.1 is a BMDN. Making the dependence of µk and σk on x and
w implicit, as well as the conditioning on x, then from Equations 4.10, 4.11, and 4.12
we have:

σ̂
2
e = Vq

[
E[ŷ|x,w]

]
= Vq

[K

∑
k=1

αkµk

]
= Eq

[(K

∑
k=1

αkµk

)2]
−Eq

[K

∑
k=1

αkµk

]2

(4.21)

σ̂
2
a = Eq

[
E
[
V[ŷ|x,k,w]|x,w

]]
= Eq

[
E
[
σ

2
k
]]

= Eq

[K

∑
k=1

αkσ
2
k

]
(4.22)

σ̂
2
m = Eq

[
V[ŷ|x,w]

]
− σ̂

2
a

= Eq

[
V
[
E[ŷ|x,k,w]|x,w

]]
= Eq

[
V
[
µk|w

]]
= Eq

[K

∑
k=1

αkµ2
k−
(K

∑
k=1

αkµk

)2]
(4.23)

where we have used Equation 4.19 and Equation 4.22 in Equation 4.23. Consequently,
Equation 4.20 becomes

V[ŷ|x] = σ̂
2
e + σ̂

2
a + σ̂

2
m (4.24)

which shows that the approximations of the three kinds of uncertainties can be obtained
by the decomposition of the total predictive variance of the BMDN.

The expectations with respect to q(w,D) can be approximated from samples of
the weights using Monte Carlo integration. In this case, the uncertainties in Equa-
tions 4.21, 4.22 and 4.23 can be approximated as:

σ̂
2
e ≈

1
T

T

∑
t=1

(K

∑
k=1

αk,tµk,t

)2

−
(

1
T

T

∑
t=1

K

∑
k=1

αk,tµk,t

)2

(4.25)

σ̂
2
a ≈

1
T

T

∑
t=1

K

∑
k=1

αk,tσ
2
k,t (4.26)

4.5. EXPERIMENTS 71

σ̂
2
m ≈

1
T

T

∑
t=1

[K

∑
k=1

αk,tµ2
k,t−

(K

∑
k=1

αk,tµk,t

)2]
(4.27)

where T is the number of samples drawn from the distribution of weights.

4.5 Experiments

In this section, the findings in previous sections will be verified in two experiments.
The first experiment illustrates the estimation of the different kinds of uncertainty for a
BMDN. The synthetic dataset created for this experiment is one-dimensional to allow
for clear visualization. The second experiment involves a simulated robot kinematics
problem, in which the robot has to learn its inverse kinematics function and estimate
the uncertainty in its prediction. The experiment is intended to show how epistemic
uncertainty can be used to guide decision-making.

4.5.1 Toy Problem

In this experiment, the uncertainty estimation methods discussed so far will be evalu-
ated on toy one-dimensional datasets that can be easily visualized. We will examine
the effects of low-data regimes as well as high-noise regimes on the estimates of the
different kinds of uncertainty. We will also examine uncertainty estimates when the
network is both interpolating and extrapolating. For the experiment, three synthetic
datasets were created. The first dataset serves as the base case and consists of 2000
(x,y) samples representing the input and output of the process given by:

y = f (x)+η,

where η∼N (0,σ2
η) with ση = 1 and f is randomly selected to be one of the following

functions with equal probability:

f1(x) = 7sin(0.75x)+0.5x

f2(x) = 3sin(0.5x)+3x−5

f3(x) = 2sin(0.3x)−0.2x+20

The input x ∈ R was drawn from a uniform distribution over the domain [−30,30].

The second dataset was similar to the first, except that the data was decimated by
a factor of 50 in the region [−10,10] of the domain of f to create a low-data region.

72 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

Similarly, the third dataset was similar to the first except that the noise was increased
to ση = 3 in the same region to create a high-noise region.

Three identical MDNs were trained, one for each dataset. Each MDN had three
hidden layers of 256 ReLU units with a dropout rate of 0.2 and L2 regularization with
weight decay of 0.02 in all hidden layers. Batch normalization was used before all
layers. Each MDN had three parallel output layers, one for αk with softmax activation,
one for µk with and one for eσk both with linear activation. The Adam optimizer was
used with a learning rate of 0.001 to minimize the negative log likelihood given by:

L(w) =− log
K

∑
k=1

αk(x;w)N
(
y;µk(x;w),σ2

k(x;w)
)

(4.28)

The MDNs had K = 10 components, and we used T = 50 MC-dropout samples to
make predictions and calculate the uncertainties given by Equations 4.25, 4.26, and
4.27 for each prediction. To make a prediction for a given test point, the averages
ᾱk =

1
T ∑

T
t=1 αk, µ̄k =

1
T ∑

T
t=1 µk, and σ̄2

k =
1
T ∑

T
t=1 σ2

k are calculated first. Afterwards, a
sample is drawn from the categorical distribution defined by ᾱk to select a component
Gaussian N (µ̄k, σ̄

2
k), and then a sample is drawn from the latter to obtain ŷ.

Figure 4.1 shows the predictions and the estimates of the different kinds of uncer-
tainties for an MDN trained on the three datasets for 3000 epochs. The test input was
1000 points drawn from a uniform distribution over the interval [−30,40]. In addi-
tion to the estimates, the actual values for the uncertainties calculated from Equations
4.6, 4.7, and the actual noise value are also shown. For all the datasets, the estimated
epistemic uncertainty accurately reflected the actual epistemic uncertainty in the ex-
trapolating region (x > 30), which increases the further away we go from the training
data. Moreover, the aleatoric uncertainty estimate increases rapidly when extrapolat-
ing and start taking arbitrarily large values. In the low-data regime (the area shaded
yellow in the middle column in the figure), the epistemic uncertainty is much higher
than in the base case, while the aleatoric uncertainty is only slightly higher. In con-
trast, in the high-noise region the aleatoric uncertainty is higher while the epistemic
uncertainty is the same. The modal uncertainty traces the distance between the means
of the Gaussian components in all cases.

The results also show that epistemic uncertainty estimates are higher in the extrap-
olating case than in the interpolating one. This is expected since NNs are better at
interpolating than extrapolating. The epistemic uncertainty is also proportional to the
distance of the input from the training set. Furthermore, the networks experience high

4.5. EXPERIMENTS 73

aleatoric uncertainty when extrapolating (not just epistemic uncertainty), since they
have no way of knowing what is the actual source of uncertainty there. For the same
reason, the networks sometime interpret some of the uncertainty in low data regions as
aleatoric uncertainty as in the bottom center plot in Figure 4.1, but the effect is much
less pronounced.

4.5.2 Robot Inverse Kinematics

In this experiment we will see how uncertainty estimation can be used to guide decision-
making using a simulated robot inverse kinematics (IK) problem. IK is a good example
of a multi-valued mapping that cannot be learned by a regular NN. Consider an over-
actuated three-link robot arm moving in a two-dimensional plane. For some given
joint angles (q1,q2,q3), the position of the end-effector (x1,x2) is given by the IK as
follows:

x1 = L1 cos(q1)+L2 cos(q1 +q2)+L3 cos(q1 +q2 +q3)

x2 = L1 sin(q1)+L2 sin(q1 +q2)+L3 sin(q1 +q2 +q3),

}
(4.29)

where L1, L2, and L3 are the length of the links. For this experiment we will consider
the case where L1 = 0.5, L2 = 0.3, and L3 = 0.2. We will also constrain the range of
q1 to the interval [−2π/3,2π/3] and both q2 and q3 to [−3.6,3.6].

Now suppose the robot has no knowledge of its IK function and has to learn it in
order to know how to reach any point in its workspace. The robot collects data for
training by randomly setting its joint positions a number of times and observing the
corresponding end effector positions (motor babbling). This scenario was simulated
by generating 2000 points from a uniform distribution over the range of the joints as
the target values, and Equation 4.29 was used to calculate the corresponding input
values. Gaussian noise with std. deviation of 0.01 was added to the joint positions
before training. An MDN was then used with the same architecture as in the previous
experiment to learn the mapping, with the difference being the number of inputs and
output dimensions. The MDN was trained for 3000 epochs. To test the model, an-
other 2000 test points were generated randomly over the joint space and used as input
to the model. The error was then measured as the euclidean distance (error) between
the coordinates predicted by the model and the corresponding true coordinates calcu-
lated from Equation 4.29. Predictions were made in the same way as in the previous
experiment.

74 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

20
10

0
10

20
30

40
40 20 0 20 40

Training
Reconstructed

20
10

0
10

20
30

40
40 20 0 20 40

Training
Reconstructed

20
10

0
10

20
30

40
40 20 0 20 40

Training
Reconstructed

20
10

0
10

20
30

40
0 50

100

150
EU Actual
EU Estim

ate

20
10

0
10

20
30

40
0 50

100

150
EU Actual
EU Estim

ate

20
10

0
10

20
30

40
0 50

100

150
EU Actual
EU Estim

ate

20
10

0
10

20
30

40
0

200

400

600
M

U Actual
M

U Estim
ate

20
10

0
10

20
30

40
0

200

400

600
M

U Actual
M

U Estim
ate

20
10

0
10

20
30

40
0

200

400

600
M

U Actual
M

U Estim
ate

20
10

0
10

20
30

40
x

0 10 20 30 40 50
AU Actual
AU Estim

ate

20
10

0
10

20
30

40
x

0 10 20 30 40 50
AU Actual
AU Estim

ate

20
10

0
10

20
30

40
x

0 10 20 30 40 50
AU Actual
AU Estim

ate

Figure
4.1:E

stim
ation

ofuncertainties
in

the
outputofa

B
M

D
N

.T
he

leftcolum
n

is
the

base
dataset.T

he
region

shaded
in

yellow
is

the
low

-data
region

in
the

m
iddle

colum
n,and

the
high-noise

region
in

the
rightcolum

n.
T

he
regions

shaded
in

red
are

extrapolated
out-of-distribution

predictions.
T

he
second

row
show

s
the

epistem
ic

uncertainty
(E

U
),the

third
show

s
the

m
odaluncertainty

(M
U

),
and

the
bottom

row
show

s
the

aleatroic
uncertainty

(A
U

).

4.5. EXPERIMENTS 75

Figure 4.2 shows the distribution of the training data over the workspace and the er-
ror in the test data, while Figure 4.3 shows the different uncertainty estimates for each
output dimension. Even though the training points were sampled uniformly from the
joint space, their distribution in Cartesian space in not uniform since there are points
in the workspace that are more reachable than others (i.e. can be reached by more joint
configurations). This leads to a low data region directly to the left of the base around
x1 =−0.5 and x2 = 0, which in turn leads to high epistemic uncertainty in that region
(Figure 4.3 bottom row). In general, it can be seen that high error is correlated with
high epistemic uncertainty and aleatoric uncertainty. The modal uncertainty for each
output dimension gives a measure of the distance in joint space between the number
of different positions for the corresponding joint that can result in a certain end ef-
fector position. For example, the modal uncertainty is particularly high for q1 in the
low data region described before since it can only be reached by setting q1 to one of
the two extremes of its range. The modal uncertainty is also nil for all joints on the
edges of the workspace since these point can only be reached through exactly one joint
configuration, which is fully extending the arm.

To show how uncertainty estimation can be used in decision making, the trained
BMDN (the robot) was presented with 20 points drawn from a uniform distribution
over the workspace. The robot has to choose one point to try to reach, and gets a
score equal to the error between the achieved position of the end-effector and that of
the point. The goal of the robot is to choose a point that will minimize this score.
Therefore, it has to make an informed decision on which point to attempt to reach. To
this end, 10 identical MDNs were trained on 10 different randomly generated datasets,
and the test was repeated 50 times for each MDN. The results were averaged over the
10 MDNs and over the 50 runs. The whole experiment was repeated 3 times, each
time after the robot has collected a certain number of datapoints to train its IK. The
amounts used for each experiment were 1000, 2000, and 3000 datapoints. This was
done to highlight the effect of the abundance of data on the epistemic uncertainty.

Table 4.1 shows the cumulative score over the 50 runs averaged over the 10 MDNs
for different uncertainty-based decision criteria. For each criteria, the robot chooses
to reach for the point with the minimum value of the corresponding uncertainty. The
results are shown for different amounts of training datapoints that the robot collected.
The results show that choosing the point with the least epistemic uncertainty yields sig-
nificantly better score than choosing at random, which supports the use of epistemic
uncertainty as a heuristic for success. However, the epistemic uncertainty score is also

76 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

0.75
0.50

0.25
0.00

0.25
0.50

0.75
1.00

x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x2

Training data

0.6
0.4

0.2
0.0

0.2
0.4

0.6
0.8

1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error

Figure
4.2:L

eft:D
istribution

oftraining
datapoints.R

ight:distance
betw

een
the

testdata
and

actualposition
achieved

by
the

arm
.

4.5. EXPERIMENTS 77

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

x2
q 1

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

q 2

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

q 3

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

No
rm

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

x2

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

0.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

0.
0

0.
5

1.
0

x 1

1.
0

0.
5

0.
0

0.
5

1.
0

x2

0.
5

0.
0

0.
5

1.
0

x 1

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

0.
0

0.
5

1.
0

x 1

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

0.
0

0.
5

1.
0

x 1

1.
0

0.
5

0.
0

0.
5

1.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
6

0.
8

1.
0

1.
2

1.
4

2 h

0.
5

1.
0

1.
5

2.
0

2.
5

2468

1234567

246810

2 s

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
1

0.
2

0.
3

0.
4

0.
1

0.
2

0.
3

0.
4

0.
5

2 e

Fi
gu

re
4.

3:
D

iff
er

en
tu

nc
er

ta
in

ty
es

tim
at

es
fo

ra
ll

ou
tp

ut
di

m
en

si
on

s
fo

rt
he

in
ve

rs
e

ki
ne

m
at

ic
s

pr
ob

le
m

.T
he

to
p

ro
w

is
th

e
al

ea
to

ri
c

un
ce

rt
ai

nt
y,

th
e

m
id

dl
e

is
th

e
m

od
al

un
ce

rt
ai

nt
y,

an
d

th
e

bo
tto

m
is

th
e

ep
is

te
m

ic
un

ce
rt

ai
nt

y.
T

he
fir

st
th

re
e

co
lu

m
n

fr
om

th
e

le
ft

ar
e

th
e

es
tim

at
es

fo
rq

1,
q 2

an
d

q 3
re

sp
ec

tiv
el

y.
T

he
ri

gh
tm

os
tc

ol
um

n
is

th
e

L
2

no
rm

of
th

e
ve

ct
or

of
es

tim
at

es
.

78 CHAPTER 4. UNCERTAINTY ESTIMATION IN BAYESIAN S

significantly worse than the minimum achievable on all points. This is expected since
the epistemic uncertainty is just a heuristic and does not guarantee best results. Further-
more, in some cases the combination of epistemic uncertainty and aleatoric uncertainty
can yield marginally better results than epistemic uncertainty alone. Unsurprisingly,
the advantage of choosing based on uncertainty estimates diminishes as the amount of
datapoints collected increases, since collecting lots of data decreases the variance in
uncertainty across all points.

Data-
points

epistemic aleatoric
epistemic

+
aleatoric

min max rand

1000
3.89

(0.67)
3.88

(0.72)
3.98

(0.83)
0.92

(0.15)
29.24
(4.24)

6.35
(1.51)

2000
2.36

(0.45)
2.75

(0.85)
2.56

(0.52)
0.52

(0.06)
21.36
(3.8)

4.00
(0.94)

3000
2.37

(0.59)
2.37

(0.63)
2.35

(0.64)
0.45

(0.04)
19.12
(3.92)

3.92
(1.14)

Table 4.1: Cumulative results for the robot arm reaching experiment. The lower the
score the better. Std. deviations are given in parentheses.

4.6 Summary and Discussion

In this chapter we have seen how uncertainty can be estimated for multimodal pre-
dictive density estimation with heteroscedastic noise, which is the most general case.
We have seen how the error of the estimator can be decomposed in a Bayesian con-
text into 3 components: epsitemic, aleatoric, and modal uncertainties. While epistemic
and aleatoric uncertainties are present in all function approximators, modal uncertainty
arises only in multimodal density estimation problems. It is thus important for such
problems to isolate the different kinds of uncertainties, so that useful information can
be extracted from the individual uncertainties. We have also seen how the three kinds
of uncertainty can be estimated for MDNs, which is a type of NN used for multimodal
predictive density estimation.

As a concrete realization of the concepts discussed in the chapter, a toy problem
concerned with multimodal predictive density estimation was presented in which un-
certainties was estimated using MC-dropout. The technique proved successful in esti-
mating the different type of uncertainties in both high- and low-data regimes, in high-

4.6. SUMMARY AND DISCUSSION 79

and low-noise regimes, as well as in extrapolation and interpolation. To show how the
epistemic uncertainty can be used to guide decision-making, an experiment involving
a simulated robot learning its IK through motor babbling was conducted. The robot
was tasked with minimizing the error when reaching for a point in its workspace. It
used the epistemic uncertainty estimate to decide which point to reach for, yielding
significantly lower error on average than choosing randomly.

Out of the three kinds of uncertainties discussed so far, perhaps the most important
is epistemic uncertainty, since it is the only one we can do anything about. An agent
can go look for more data to improve its model and reduce the epistemic uncertainty,
but there is nothing it can do to reduce the aleatoric and modal uncertainties. This
does not mean however that the latter two are useless. If the data is very noisy in some
region, the agent can simply not trust its model in that region. It can know not to give
much weight to its noisy predictions in that region. Likewise, if the modal uncertainty
is high in some region, the agent should know to expect multiple different outcomes,
and perhaps plan accordingly for all possible eventualities.

Chapter 5

An Architecture for
Imagination-augmented DRL

In Chapter 3, we have seen how a stochastic environment model can be learned on-
line, and how it can be used to generate imaginary rollouts. We have also seen that an
agent trained solely on imaginary rollouts can perform reasonably well in the actual
environment. However, training such an agent still suffers from the main drawback
of model-based RL, namely sub-optimal asymptotic performance. The question this
chapter tries to answer is: how can we utilize imagination to improve the sample-
efficiency while achieving the same asymptotic performance of model-free RL?

This chapter describes an architecture that integrates imagination and model-free
RL. In this approach, an agent encodes sensory information into low-dimensional rep-
resentations, and learns a model of its environment on-line in latent space, while simul-
taneously learning an optimal policy. The model can be learned much faster than the
policy, and therefore can be used to augment transitions collected from the real envi-
ronment with synthetic transitions, improving the sample-efficiency of RL. The agent
can simulate different scenarios internally and make use of this simulated experience
just as if it was real experience. This approach requires no prior knowledge of the task;
only the encoder needs to be pretrained on task-relevant images, and can generally be
reused for multiple tasks.

The chapter is organized as follows. Section 5.1 describes the architecture and its
inner workings. Section 5.2 presents an experimental evaluation of the architecture.
Section 5.3 concludes the chapter with a summary and discussion.

80

5.1. ARCHITECTURE 81

5.1 Architecture

The architecture developed in this chapter is concerned with improving the sample
efficiency of RL agents. The key idea is to incorporate model-free and model-based
approaches to improve the sample efficiency while not sacrificing asymptotic perfor-
mance. The basic concept of the architecture is similar to that of the Dyna-Q architec-
ture discussed in Section 2.2.4. However, the architecture employs imagination-based
learning instead of regular model-based learning. Imagination here refers to using
generative models to not just predict transitions, but also to ”imagine” new states.

The architecture consists of three main components: the vision encoder that en-
codes images into low-dimensional state representations, the environment model that
predicts next states and rewards, and the controller that selects actions. The archi-
tecture also includes two separate memories: the real memory stores real experience
generated by interaction with the environment, and the imaginary memory stores sim-
ulated transitions generated by the environment model.

Figure 5.1 shows an overview of the architecture. The agent starts by observing
the environment through a camera at a certain timestep t. The raw image obtained is
the environment state st , which get passed to the encoder that encodes it into a state
vector zt . The agent takes action at that influences the environment and changes its
state. The agent then observes the new state st+1, encodes it into zt+1, and observes the
reward signal rt+1. The encoded old and new states (zt and zt+1) are concatenated with
the action at and the reward rt+1 to form a transition tuple (zt ,at ,rt+1,zt+1), which is
then stored in the real memory. Two sets of mini-batches of transitions are randomly
sampled from the real memory and used to incrementally train the controller and the
environment model each timestep. The environment model generates a number of
imaginary rollouts starting from the current observes state zt at each timestep. The
generated imaginary transitions are stored in the imaginary memory. Mini-batches of
imaginary transitions are randomly sampled from the imaginary memory to train the
controller in conjunction with real transitions. Finally, the controller issues an action
at+1 that again influences the environment, starting the process for the new timestep
t +1 and closing the loop. The details of the individual components and the process of
generating imaginary rollouts are given in Section 3.1.

The architecture aims to boost the sample efficiency in RL by making the most use
out of the data collected by the robot. The data is simultaneously used to train the
controller and the environment model, which helps extract more useful information
from it. It is assumed that the environment model can be learned faster than the optimal

82 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

Environment

Encoder

Env. Model

Real

memory

Imaginary

memory

Controller
Transition

Simulated

transitions

Training

batch
Training

batch

Action

(a)

State

(s)

Reward

(r)

Encoded

state

(z)

Training

batch

Figure 5.1: Overview of the proposed architecture. The controller influences the envi-
ronment with an action, which produces state s and reward r. The encoder V encodes
s into latent state vector z. The environment model can be trained on real transitions
and then used to generate imaginary transitions. The controller can then be trained on
both real and imaginary transitions.

policy, and therefore the controller would benefit from the data augmentation provided
by the model.

5.2 Experiment

The experiment detailed in this section is designed to evaluate the architecture as a
whole and to verify whether it improves sample efficiency. It also aims to evaluate the
advantage of using uncertainty estimates of the environment model predictions as a
limiting factor in using imaginary rollouts for training the controller. The experiment
involves the Sawyer robot learning to solve a puzzle in which a human provides the
goal state using gestures.

This section is organized as follows. Section 5.2.1 describes the experiment setup,
providing details about the task to be learned, the environment built for it, and data
collection. Section 5.2.2 provides implementation details of the architecture and the
training procedure. Section 5.2.3 presents the results obtained and their analysis. Fi-
nally, Section 5.2.4 presents conclusions drawn from the results as regards the ques-
tions posed in the experiment.

5.2. EXPERIMENT 83

5.2.1 Experiment Setup

To test the architecture, a task was designed in which a robot has to solve a puzzle
based on pointing gestures made by a human. The robot sees three cubes with arrows
painted on them, with each arrow pointing either up, down, left, or right. The human
can point to any of the three cubes, but may not point to a different cube during the
same episode. To successfully complete the task, the robot has to rotate the cubes so
that only the arrow on the cube being pointed to is in the direction of the human, with
the constraint that at no point should two arrows point to the same direction. Figure 5.2
shows the experiment in which the Sawyer robot acts as the agent. The task is similar
to puzzle games typically used in studies about robot learning, such as the Towers of
Hanoi puzzle [LSKD13].

Figure 5.2: Experiments with the Sawyer robotic arm. The robot has to solve a puzzle
by rotating the cubes to reach a goal state based on the pointing gesture by the human.

The task is formulated as an RL problem in which the agent can choose from 6
discrete actions at any given time. Three of the actions are for rotating any of the
three cubes 90◦clockwise, and the other three are for rotating counterclockwise. The
robot gets a reward of +50 for reaching the goal state, -5 for reaching an illegal state,
and -1 otherwise to penalize unnecessary actions and incentivize solving the task as
efficiently as possible. An episode terminates if the robot reaches either a goal state or
an illegal state, or after it performs 10 actions to prevent the robot from getting stuck
in an episode. Figure 5.3 shows an example of goal and illegal terminal states.

To train the robot, a simulated environment was created for the agent to interact

84 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

(a) (b)

Figure 5.3: Examples of terminal states of the task. (a) is a goal state, while (b) is an
illegal state.

with. The environment receives the selected action from the agent (the robot) as input,
and outputs an image representing its state, along with a reward signal and a flag to
mark terminal states. The environment is implemented as a finite state machine with
192 macrostates, where each macrostate is the combination of 3 microstates describ-
ing the directions of each of the three arrows, plus another microstate describing which
box the hand is pointing to (43× 3 = 192). In the beginning of each episode, the en-
vironment is initialized with a random non-terminal state. Whenever the environment
transitions to a new state, it outputs a random image from the set of images associated
with that state, thus producing the observable state that the agent perceives.

To produce the images used for the environment, multiple image fragments were
first collected for each of the possible microstates of the environment. Each of these
fragments depicts a slight variation for the same microstate, for example slightly differ-
ent box positions or hand positions. A pool of multiple image fragments is thus created
for each possible microstate. To synthesize a complete image for a given macrostate,
a random fragment is chosen for each of its constituent microstates. The fragments
are then patched together to produce the final image, which then undergoes gamma
correction to enhance contrast. For the experiments, 50 fragments were collected for
each possible hand microstate, and 16 fragments for each possible arrow microstate,
resulting in about 4×107 possible unique synthesized images. The images were taken
with the Sawyer robotic arm camera (Fig. 5.2). For the experiments, 100,000 training
images and 10,000 test images were synthesized.

5.2. EXPERIMENT 85

5.2.2 Implementation and Training

The training procedure for the entire system can be summarized as follows:

1. Synthesize 100,000 training images and 10,000 test images.

2. Train the VAE on all training images.

3. Start collecting real experience and training the controller.

4. After some amount of episodes, start training the environment model on col-
lected rollouts.

5. Use the environment model to generate imaginary rollouts as real experience is
being collected.

6. Estimate the epistemic uncertainty for each transition generated by the model,
and discard those with uncertainty above a certain value.

7. Continue training the controller using both real and synthetic rollouts.

The exact training procedure is given in Algorithm 1. In the following, the details
of the training procedure for each component of the system are given.

Variational Autoencoder

To train the VAE, we split the grayscale training images along the horizontal axis into
3 strips, where each strip contains a single box. We then fed the strips into the VAE
as 3 channels to help the VAE learn more task-relevant features. The architecture used
for the VAE is the same as that used in Chapter 3 (Figure 3.3, except that the images
are encoded into an 8-dimensional latent space. The VAE was trained on the 100,000
synthesized training images after scaling them down to a manageable 64×64 resolu-
tion for 1000 epochs. The VAE was trained to minimize the combined reconstruction
and KL losses given by:

L(θ,φ) =
N

∑
n=1

[
− log pφ(xn|zn,φ)+β

J

∑
j=1

(1+ logσ
2
j(xn,θ)−µ2

j(xn,θ)−σ
2
j(xn,θ))

]
,

(5.1)
where the encoder and decoder networks are parameterized with θ and φ respectively,
N is the number of training examples, J = is the dimensionality of the latent space, and

86 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

Algorithm 1: Training procedure for agents.
Require: Pretrained encoder V

1 Initialize controller C and environment model Eθ

2 Initialize real memory MR and imaginary memory MI
3 for e = 0 to num episodes do
4 Observe initial state s0
5 st = s0
6 while st is not terminal do
7 Use V to encode st into µt and σt
8 Apply action at =C(µt)
9 Observe st+1, reward rt , terminal signal dt+1

10 Encode st+1 into µt+1 and σt+1
11 Save transition (µt ,σt ,at ,µt+1,σt+1,rt ,dt+1) in MR
12 for i = 0 to NE do
13 Train Eθ on minibatch from MR

14 for i = 0 to NR do
15 Train C on minibatch from MR

16 if e≥ Istart then
17 Use Eθ to generate IB imaginary rollouts of depth ID
18 foreach imaginary transition T do
19 Use MC-dropout to estimate the uncertainty σT
20 if σT >threshold then
21 Discard T and all subsequent transitions in the rollout

22 Save imaginary transitions in MI
23 for i = 0 to NI do
24 Train C on minibatch from MI

25 st = st+1

β is the weighting factor of the KL divergence from the prior. See Section 2.1.4 for
more details on training VAEs. In general, increasing β yields more efficient compres-
sion of the inputs and leads to learning independent and disentagled features, at the
cost of worse reconstruction [HMP+17]. For this experiment, it was found that β = 4
produced the best results. The Adam optimizer was used with a learning rate of 0.0005
and a batch size of 2000.

The vision encoder network used in the experiment is simply the encoder part of
the VAE. The 8-dimensional mean of the distribution of the latent vector produced by
the encoder was taken to be the latent space vector.

5.2. EXPERIMENT 87

Controller

The controller was implemented as a DQN and trained on the simulated environment
in a regular Q-learning setting. The environment would provide an image representing
the state, which gets encoded into a state vector by the encoder and passed to the DQN.
The controller then outputs an action based on the Q-function.

The controller was implemented as a DQN consisting of 3 hidden layers (512
ReLU, 256 ReLU, 128 ReLU) and a linear output layer. It was updated once on a batch
of 64 real transitions and once on a batch of 64 imaginary transitions each timestep.
It was found that for such a relatively simple task, updating the controller more often
led to worse performance. It was also found that using popular DQN extensions like
a separate target network or prioritized experience replay did not significantly affect
performance. The DQN was trained to minimize MSE given by:

L(y, ŷ) =
N

∑
n=1

(yn− ŷn)
2, (5.2)

where N is the number of training examples, ŷn = Q(st ,at) is the output of the DQN
for the state (st) at time t, and yn = rt+1+ γmaxat+1 Q(st+1,at+1) is the bellman target.
The Adam optimizer was used with a learning rate of 0.001.

When selecting actions, the controller used an ε-greedy strategy with an exponen-
tially decreasing exploration rate ε given by:

ε = εmin +(εmax− εmin)e−λt (5.3)

with εmin = 0.001, εmax = 0.8, λ = 0.03, and t is the time step.

Environment Model

The environment model is composed of three networks: an MDN for the dynamics
model, the reward model, and the terminal state classifier. The MDN had 3 hidden
layers of 256 ReLU units with 50% dropout, and 3 parallel output layers for the dis-
tribution parameters: one for the mixture coefficients with softmax activation, one for
means and one for the logarithm of variances both with linear activation. The input to
the MDN consisted of the state vector concatenated with the one-hot encoded action
vector.

88 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

The MDN was trained to minimize the negative log likelihood given by:

L(y,w) =
N

∑
n=1

[
− log

K

∑
k=1

αk(xn;w)N (yn;µk(xn;w),σk(xn;w)2)
]
, (5.4)

where w is the vector of network weights, y is the vector of target next states, N is the
number of training examples, K = 5 is the number of Gaussian components, αk is the
probability of component k, and µk and σk are the mean and variance vectors of the
k-th component respectively. The network was trained with the Adam optimizer with
a learning rate of 0.001.

When collecting transitions, the parameters µ and σ produced by the vision encoder
for each frame were stored. Latent space vectors were then sampled from N (µ,σ)

when constructing a training batch. This ensures that the state vectors in each batch
were unique, and slightly different from any previous one obtained. This form of data
augmentation was found to greatly improve the generalization and performance of the
model.

The reward model (r-network) had 3 hidden layers of 512 ReLU units each with
50% dropout, and a linear output layer. It was trained to minimize the logarithmic
hyperbolic cosine loss given by:

L(y, ŷ) =
N

∑
n=1

log
(

cosh(ŷn− yn)
)
, (5.5)

where y and ŷ are the target and the predicted output respectively, and N is the number
of training examples. The Adam optimizer was used with a learning rate of 0.001.

The terminal state classifier (d-network) had 2 hidden layers of 256 ReLU units
each with 50% dropout, and a sigmoid output layer. It was trained to minimize the
binary cross-entropy loss given by:

L(y,w) =
N

∑
n=1

yn log pw(yn)+(1− yn) log
(
1− pw(yn)

)
, (5.6)

where w is the vector of network weights, y is the target binary variable representing
whether a state is terminal or not, pw(y) is the predicted probability of the the state
being terminal, and N is the number of training examples.

During training, the MDN, the r-network and the d-network were all updated 16
times on batches of 512 transitions each timestep using the Adam optimizer with a

5.2. EXPERIMENT 89

learning rate of 0.001. For extra regularization, a constraint was imposed on the net-
work weights for all the networks such that the norm of the weights in each layer does
not exceed 3.

Uncertainty Estimation

To prevent erroneous imaginary data from being used to train the controller, the epis-
temic uncertainty was estimated for the data generated by the environment model. Be-
fore getting stored in the imaginary memory, MC-dropout was applied to all transitions
in the imaginary rollouts generated by the environment model. Transitions produced
with uncertainty above a certain threshold were discarded, along with all subsequent
transitions in their respective rollout. Thus, only transitions produced with some cer-
tainty get stored in memory.

The process of estimating the epistemic uncertainty with MC-dropout proceeded
as follows. First, each state-action input to the environment model was duplicated T

times. Afterwards, all the duplicated inputs were fed to the model with dropout at
test time enabled, producing T samples of predictions. Even though the input is the
same, each prediction is different since a different dropout mask is applied for each
duplicate. In other words, each prediction is obtained using a different sample from
the distribution of the MDN weights. Finally, the epistemic uncertainty σ̂2

a can be
estimated from the outputs as:

σ̂
2
e ≈

1
T

T

∑
t=1

(K

∑
k=1

αk,tµk,t

)2

−
(

1
T

T

∑
t=1

K

∑
k=1

αk,tµk,t

)2

(5.7)

where αk,t is the weight of component k for sample t, and µk,t and σk,t are the mean
and variance vectors of the k-th component respectively.

Parameters

When training the agents, the depth of imaginary rollouts ID was set to 10, and the
breadth IB to 3. The size of the real memory was 50,000 transitions, and that of the
imaginary memory was 3,000. It was found that training the controller only on re-
cently generated transitions leads to better performance, since more recent imaginary
data are more accurate as the environment model gets better. This was achieved by
both limiting the imaginary memory size, and generating multiple rollouts simultane-
ously. Furthermore, it was found that setting the update rate of the controller on both

90 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

real and imaginary transitions (NR and NI in Algorithm 1) to more than 1 can lead to
stability issues. Another parameter that had to be tuned was the number of episodes
to wait before staring to generate imaginary rollouts (Istart in Algorithm 1), since the
environment model will produce erroneous predictions early on in the training. It
was found that waiting for about 1000 episodes provides best results. The uncertainty
threshold for discarding imaginary transitions was set to 0.3, as this value provided the
most advantage in the experiment. In general, hyperparameters were chosen based on
a trial-and-error approach and grid search.

5.2.3 Results

The purpose of the experiment is to test two hypotheses. First, that augmenting the
data with imaginary rollouts leads to faster learning, and second, that limiting the use
of imaginary data based on uncertainty estimates leads to better performance.

To test the first hypothesis, the performance of agents augmented with imaginary
transitions is compared with a baseline DQN trained only on real transitions. To aid
comparison, all hyperparameters and architectural choices were the same for aug-
mented agents and the baseline DQN. For a given number of training episodes, 5
agents were trained from scratch and then tested on the simulated environment for
1000 episodes. The percentage of successfully completed episodes of all 5 agents in
all test runs was then averaged to produce the final result. The experiment was repeated
using agents trained for 2000, 3000, 4000, 5000, and 6000 episodes.

To test the second hypothesis, the experiment was repeated but without limiting
the use of imaginary data based on uncertainty. In other words, the experiment was
repeated without step 6 in the training procedure described in Section 5.2.2. The per-
formance of agents with and without uncertainty estimation was compared.

Figure 5.4 shows the results of the experiment on the arrow puzzle task. Agents
trained using the architecture performed significantly better than the baseline DQN
when trained for a small amount of episodes. For agents trained for just 2000 episodes,
augmented agents with uncertainty estimation successfully completed 44.4% more
episodes than the baseline, compared to just 35.9% more episodes without uncertainty
estimation. The performance gain then starts to decline the more episodes the agent
is trained. This is to be expected since at higher episodes, the agent has collected
enough real transitions and no longer needs the extra data generated by the environ-
ment model. Moreover, the gain due to limiting training on uncertain model predictions
declines similarly as well, since the epistemic uncertainty of the environment model

5.2. EXPERIMENT 91

decreases with more data. These results are illustrated in Figure 5.5, which shows the
performance gain for augmented agents with and without uncertainty estimation com-
pared to the baseline. The performance gain was calculated as (Paug−Pbase)/Pbase,
where Paug and Pbase are the percentages of test episodes completed successfully for
augmented and baseline agents, respectively. Table 5.1 shows the exact results for the
experiment, while Table 5.2 shows the performance gain.

2000 3000 4000 5000 6000
Training episodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o
f t
es
t e

pi
so
de
s s

uc
ce
ss
fu
l

Baseline
Augmented
Augmented + unc

(a)

Figure 5.4: Test results for various numbers of training episodes for the task. Error
bars represent standard deviations.

Episodes Base DQN Augmented Aug. + unc.
2000 42.18 (6.01) 57.34 (6.37) 62.17 (4.37)
3000 62.88 (4.91) 81.4 (2.95) 83.8 (2.23)
4000 81.44 (3.13) 91.88 (2.38) 92.69 (2.01)
5000 88.22 (3.07) 95.1 (3.76) 95.2 (3.21)
6000 92.16 (2.57) 96.96 (2.1) 96.97 (2.08)

Table 5.1: Mean percentage of successful test episodes for various numbers of training
episodes for the arrow puzzle task. Std. deviations are given in parenthesis. For
reference, a random agent scored 3.72%.

92 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

2000 3000 4000 5000 6000
Training episodes

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce
 in

cr
ea

se
 fa

ct
or

Augmented
Augmented + unc

Figure 5.5: Performance gain for augmented agents in the arrow puzzle task. Agents
were tested after training for different numbers of episodes given in the horizontal axis.

Episodes Augmented Aug. + unc.
2000 35.94 47.39
3000 29.45 33.27
4000 12.81 13.81
5000 7.79 7.91
6000 5.2 5.22

Table 5.2: Average percentage performance gain for augmented agents with and with-
out uncertainty estimation.

5.2. EXPERIMENT 93

Relationship Between Task and Environment Complexity

The gain in performance from using synthetic data is attributed to the relative simplic-
ity of the environment dynamics with respect to the task itself. It is interesting to see
the effect of this difference in complexity on the performance gain. To this end, another
experiment was conducted using a slightly more difficult variation of the task. The dif-
ficulty of the task was increased while keeping the dynamics the same by additionally
requiring the goal state not to have any arrows pointing towards the agent. All the
architectural and parameter choices were the same for this new variation of the task,
and the same training and testing procedures were used. Figure 5.6 shows the results
for the difficult variation of the task, while Figure 5.7 shows the performance gain
of augmented agents with and without uncertainty. Augmented agents showed even
greater performance gain compared to the baseline DQN, with up to 94% increase in
performance at 2000 training episodes. This shows that the performance increase due
to using synthetic transitions is proportional to the difference in complexity between
the task itself and the environment dynamics. The exact results are listed in Table 5.3,
while Table 5.4 lists the performance gain with and without uncertainty estimation.

2000 3000 4000 5000 6000
Training episodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o
f t
es
t e

pi
so
de
s s

uc
ce
ss
fu
l

Baseline
Augmented
Augmented + unc

(a)

Figure 5.6: Test results for various numbers of training episodes for the difficult varia-
tion of the task. Error bars represent standard deviations.

94 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

2000 3000 4000 5000 6000
Training episodes

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 in

cr
ea

se
 fa

ct
or

Augmented
Augmented + unc

Figure 5.7: Performance gain for augmented agents in the difficult variation of the
arrow puzzle task. Agents were tested after training for different numbers of episodes
given in the horizontal axis.

Episodes Base DQN Augmented Aug. + unc.
2000 30.12 (4.16) 53.78 (3.16) 58.45 (1.57)
3000 49.56 (8.48) 75.1 (3.5) 78.2 (2.13)
4000 62.54 (2.92) 81.12 (5.35) 85.08 (3.38)
5000 79.44 (2.97) 94.88 (1.8) 94.91 (1.67)
6000 84.66 (2.73) 95.03 (2.23) 95.02 (1.91)

Table 5.3: Mean percentage of successful test episodes for various numbers of training
episodes for the difficult variation of the task. Std. deviations are given in parenthesis.
For reference, a random agent scored 3.39%.

Episodes Augmented Aug. + unc.
2000 78.55 94.05
3000 51.53 57.78
4000 29.7 36.04
5000 19.43 19.47
6000 12.24 12.23

Table 5.4: Average percentage performance gain for augmented agents with and with-
out uncertainty estimation for the difficult variation of the task.

5.2. EXPERIMENT 95

Generating Plans

One of the advantages of learning an environment model is that it allows a trained agent
to produce entire plans given only the initial state1. This can be achieved by initializing
the environment model with the initial state, and then generating an imaginary rollout
in which the controller always chooses the optimal action for each state. To demon-
strate this, controller and an environment model were deployed on the Sawyer robotic
arm (Fig 5.2), where both networks had been previously trained for 6000 episodes us-
ing the training method described in Section 5.2.2. Afterwards, tests were conducted
to evaluate the planning capabilities of the system. Each test began by setting the
cubes to a random state, with the experimenter pointing to a random cube. Then, the
robot observed the configuration with the camera, and was asked to produce a plan
consisting of a trajectory of actions to solve the task in its original form. The robot can
execute the plan by selecting successively from a set of pre-programmed point-to-point
movements to rotate the boxes. Out of 20 test runs, the robot successfully solved the
task 17 times. The correct generated plans varied in length from 1 to 5, depending on
the initial state. Moreover, the generated plans for all successful runs were optimal,
containing only the fewest possible actions required to solve the task. Fig 5.8 shows an
example of an imaginary rollout according to an optimal plan of length 5 as generated
by the agent.

Model Generalization

One of the interesting results we noticed is that the model showed some generalization
capabilities to transitions it had not experienced before. Since episodes always termi-
nated after encountering a terminal state, the model never experienced any transitions
from this kind of state. To test model generalization, we deliberately set the model
state to a random terminal state 20 times, and then asked it to predict the next state for
a random action each time. A model trained for 5000 episodes was able to correctly
predict the next state 75 % of the time. Fig 5.9 shows an example of model prediction
for unseen transitions.

5.2.4 Conclusion

The experiment presented in this chapter was designed to test two hypotheses. The first
hypothesis is that faster learning can be achieved by training an agent on imaginary

1This is only possible for environments with deterministic underlying dynamics

96 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: An example of an imaginary rollout of length 5. (a) is the initial state
as observed by the robot. (b) through (f) are imagined next states after successively
applying actions in the optimal plan. The visualizations of the model predictions were
obtained by mapping the latent space vectors to images via the decoder part of the
VAE.

5.3. SUMMARY AND DISCUSSION 97

(a) (b)

Figure 5.9: An example of model prediction for unseen transitions. The action selected
here is to rotate the rightmost cube clockwise. (a) is the state before the action, and (b)
is the state after.

rollouts in conjunction with real experience. The second hypothesis is that limiting
the use of imaginary data based on uncertainty estimates of model predictions leads to
better performance.

Results show that a significant gain in performance was achieved by imagination-
augmented agents compared to base DQN agents. This gain was highest when the
agents were trained for fewer episodes, and vanished as the number of training episodes
increase. This shows that using imaginary rollouts leads to faster learning when data
is scarce. Moreover, the performance gain increased when the difficulty of the task in-
creased while keeping the environment dynamics the same. This suggests that the gain
is proportional to the difference in complexity between the task and the environment
dynamics. However, as more and more real data becomes available to the agent, the
benefit from data augmentation becomes insignificant. Results also showed that esti-
mating the epistemic uncertainty of the environment model and discarding prediction
above a certain uncertainty threshold improved performance. Uncertainty estimation
ensures that the agent’s memory is not contaminated by erroneous transitions, and re-
moves a significant source of noise in the data.

5.3 Summary and Discussion

In this chapter, an architecture was presented that allows an agent to use imaginary
rollouts and use them in conjunction with real experience to improve its policy. This

98 CHAPTER 5. AN ARCHITECTURE FOR IMAGINATION-AUGMENTED

allows the agent to significantly reduce the amount of interactions it needs to make
with the actual environment. This is especially useful for tasks involving real robots in
which collecting real data can be prohibitively expensive. An algorithm was developed
to train both the agent and the environment model simultaneously, and to train a con-
troller on synthetic data in conjunction with real data. The architecture was validated
through an experiment involving a high-level robotic task in which an agent has to si-
multaneously interpret a human gesture and solve a puzzle based on it. Results show
that agents augmented with synthetic data outperform baseline methods especially in
situations where only limited interaction data with the environment are available.

One of the main challenges in learning a model online is avoiding overfitting on the
small subset of data that are made available early in the training. A model can easily
get stuck in a local minimum if it gets trained excessively on initial data, and fail to
converge later to an acceptable loss value in a reasonable amount of time as more data
are made available2. This problem was alleviated through three things. First, the model
capacity was limited by deliberately choosing smaller model sizes. Second, a proba-
bilistic approach was adopted to encoding latent space representations and modeling
environment dynamics. Third, high dropout rates were employed in the models. It was
also found that selecting an unnecessarily large latent space dimensionality leads to
worse models.

Probabilistic models are also much more robust, which is essential when using
the dynamics model in closed loop to generate rollouts. Traditional models based on
point estimates will produce some error in prediction, which will quickly compound
resulting in completely erroneous predictions sometimes as early as the second pass.
This of course makes using imaginary rollouts detrimental to learning.

The ability to learn stochastic models can be useful even for environments whose
underlying dynamics are deterministic. An environment with deterministic underlying
dynamics can have stochastic observable dynamics, since each latent state of the en-
vironment can produce multiple observable states. For example, the task we used for
the experiments has deterministic underlying dynamics, since the configuration of the
arrows will always change in the same way in response to a certain action. However,
the observable state will change stochastically. The positions of the boxes or the hand
may differ for the same configuration. The agent has no knowledge of the underlying
dynamics since it only has access to observable states. Therefore, it needs to be able to

2When trained online, high-capacity models often exhibited a behaviour reminiscent of the Dunning-
Kruger effect. They would achieve a very low loss value early in the training, which would quickly rise
as more data are acquired, before eventually settling at a value in between.

5.3. SUMMARY AND DISCUSSION 99

model the observable dynamics stochastically in order to produces realistic imaginary
rollouts.

The generalization capabilities of the dynamics model can in principle be used to
facilitate learning other similar tasks. The two variations of the task we used for the
experiments share the exact same dynamics; they are only different in the definition
of the reward functions. Indeed, for any given dynamics, an arbitrarily large family of
tasks can be defined by specifying different reward functions. If learning the reward
function can be separated from learning the dynamics, and assuming that the former is
easier to learn than the latter, then learning new tasks in the same family will become
much faster once the agent learns a dynamics model. However, this is left for future
work.

The architecture presented is general enough to work with any model-free RL al-
gorithm, not necessarily DQN. DQN was chosen here as it seems the most suitable
algorithm for the task. Any algorithm that can make use of rollouts can be used just as
well.

Even though the sample efficiency was drastically improved by using the architec-
ture, the thousands of transitions that were collected for training were still too much
to collect physically. The result was that a simulated environment had to be created
to train the robot. The models performed reasonably well however when tested in the
real world, suggesting that the simulation was faithful to the real world. Hopefully in
future work the sample efficiency can be improved further to allow training in the real
world directly.

Chapter 6

Conclusion

The main goal of the thesis was to develop an architecture that improves the sample ef-
ficiency of RL algorithms by incorporating a mechanism for imagination. The empha-
sis was on robotic applications, where collecting real experience can be prohibitively
costly. Now that the concepts and experiments of the thesis were presented in detail,
it is time to revisit the contributions to knowledge more thoroughly. The results of the
experiments will be assessed and conclusions drawn in light of the research questions
posed in Section 1.4.

The first research question was about how to implement a mechanism for visual
imagination in RL agents. In chapter 3, such a mechanism was implemented by com-
bining three components. The first of these was the vision encoder, which transforms
images into abstract low-dimensional state representations. The encoder was imple-
mented as the encoder part of a VAE, which was pre-trained on task-relevant images.
The second component was the controller, which selects an action for each state. The
controller was implemented as a DQN, but could be kept relatively simple since much
of the complexity required to process high-dimensional input images was relegated
to the encoder. The third component was the environment model, which predicts the
next state given the current state and the selected action. The environment model was
implemented as an MDN, which could effectively model stochastic environments in
which a state can lead to multiple next states given the same action.

Chapter 3 also presented an experiment that served as a proof of concept for the
architecture. In the experiment, a simulated environment was created for the agent in
which a human requests the agent to pick up objects or hand them over using gestures.
The purpose of the experiment was to verify that an environment model can be learned
on-line to produce realistic imaginary rollouts. To this end, a controller was trained

100

101

entirely on imaginary data and tested on the actual environment (which was still sim-
ulated, but not internally by the agent). The controller was found to perform relatively
well, with about 80% of the performance of a controller trained on real data. Further-
more, visual inspection of the imaginary rollouts showed extremely realistic stochastic
rollouts.

These results suggest that the architecture can indeed endow agents with an imagi-
nation mechanism. Given an initial state, the agent could imagine entire scenarios into
the future, and simulate outcomes for different actions. The agent does not imagine
images, but low-dimensional abstract state vectors that capture the essence of a scene.

The second research question was about how to efficiently estimate the uncertainty
for neural networks with multi-modal predictive distributions. In the context of the
architecture presented in Chapter 3, the importance of this question lies in the need to
estimate the uncertainty of the environment model in order to prevent the controller
from being trained on erroneous imaginary data. Predictions which have high epis-
temic uncertainty are likely to be erroneous, and therefore need to be discarded so as
not to contaminate memory. Chapter 4 tackled this question, showing mathematically
how to estimate the uncertainty of random function approximators. The mean squared
error of predictions was decomposed in a Bayesian context into three components:
epistemic, aleatoric, and modal uncertainties. Formulas were derived for the concrete
case of BMDNs that can calculate estimates of the three kinds of uncertainties from
samples drawn from the distribution of weights.

Chapter 4 also presented experiments to verify the findings. The first experiment
involved a synthetic dataset with multimodal targets. An MDN was trained on the
dataset, and MC-dropout was used to approximate the process of drawing samples
from the weight distribution. Results showed that reasonably accurate uncertainty es-
timates can be obtained using this technique. In particular, predictions in low-data
regimes in the dataset was associated with high epistemic uncertainty. The second
experiment was concerned with the use of epistemic uncertainty estimates to guide
decision making. The experiment was a simulation in which a robotic arm had to
learn its inverse kinematics function from data collected through motor babbling. The
robot was then presented with multiple points in its workspace, and it had to decide
which point to try to reach so as to minimize the error between the final position of its
end-effector and the point. In multiple test runs, results showed that choosing points
with the lowest epistemic uncertainty led to significantly lower error than choosing
randomly.

102 CHAPTER 6. CONCLUSION

The results suggest that this method of uncertainty estimation is effective in ob-
taining decomposed uncertainty estimates for MDNs. Furthermore, they show that
epistemic uncertainty estimates in particular can be used as a heuristic to guide deci-
sion making, as they reflect the quality of the model’s predictions.

The third research question was about how to leverage imagination to improve the
sample efficiency of model-free RL. In chapter 5, an architecture was developed to
incorporate imagination into model-free RL. The overall architecture used the same
components from Chapter 3, but arranged differently to allow the controller to be
trained simultaneously on both real and imaginary data. Data collected by the agent
through interacting with the environment was saved in the real memory after being
encoded, and used to simultaneously train the controller and the environment model.
After a certain amount of episodes, the model was used to generate imaginary rollouts.
the epistemic uncertainty of the transitions in the imaginary rollouts was estimated,
and those above a certain threshold were discarded, while the rest were saved in the
imaginary memory. The controller would then get trained simultaneously on real and
imaginary data.

Chapter 5 also presented an experiment to evaluate the architecture and its perfor-
mance compared to baseline DQN. The experiment involved a task in which an agent
had to solve a puzzle based on pointing gestures made by a human. The controller was
trained simultaneously on both real and imaginary data, after uncertainty estimation
was applied on the latter using MC-dropout. Results show that augmenting the agent
with imagination led to significantly better performance when the data is scarce. The
advantage vanished however when enough data has been collected from the real envi-
ronment. Furthermore, discarding imaginary data with high epistemic uncertainty was
found to improve the performance, especially during the early phase of the training
when the environment model has not yet collected enough data.

These findings suggest that the imagination-augmented learning architecture de-
veloped in Chapter 5 can indeed drastically improve the sample efficiency of RL.
Moreover, the experiment demonstrated one way uncertainty estimation can be used to
further improve performance.

Future Work

There are many ways the work presented so far can be extended to address the lim-
itations of the architectures presented in chapters 3 and 5. Such extensions have the

103

potential to make the approach more sample-efficient, more adaptable, or applicable to
more classes of tasks. In the following, some of the future research directions will be
discussed.

Non-Markovian Environments

The environments used in the experiments were assumed to be Markovian1, meaning
that the state of the environment is entirely contained within the image. This is not
generally the case, as many tasks require memory of past observations2. In such cases,
the environment model or the encoder can include some sort of recurrence mechanism
so that information contained in the sequence of images are extracted. One way to do
this is to combine the MDN of the environment model with an LSTM, which is what
Ha et al. did in [HS18]. Alternatively, the recurrence mechanism can be implemented
in the encoder instead of the environment model, such as in variational recurrent au-
toencoders [FvAK15], which can encode sequences into a latent vector representation.

Artificial Curiosity

One way to improve the sample efficiency in RL is to collect higher quality samples
that contain more information about the task or the environment. Instead of having
the agent explore its environment randomly, a mechanism for artificial curiosity can
drive it. Under such mechanism, an intrinsic reward signal would motivate the agent
to actively seek novel experiences that rapidly improves its model or policy. For ex-
ample, Pathak et al. [PAED17] used a formulation for artificial curiosity as the error
in the agent’s predictions of its environment state. Perhaps a better formulation for
curiosity would be one based on the epistemic uncertainty in the agent’s model of the
environment, as this does not require actually taking certain actions to measure the
error. We have already seen in Chapter 4 how the epistemic uncertainty can be used as
a heuristic for the prediction error. Bechtle et al. [BLR+20] used a similar concept in
an model-based RL context in which agents explored areas with high uncertainty in its
environment model. However, they made no distinction between the different kinds of

1A system is said to be Markovian if the current state depends solely on the previous state, indepen-
dently from any earlier states.

2The Markovian property of a system actually depends on the state representation. For example, a
mass-spring system is non-Markovian if the state representation is taken to be the vector of positions,
but is Markovian if the velocities are also included.

104 CHAPTER 6. CONCLUSION

uncertainty. It seems reasonable that a similar approach based on the epistemic uncer-
tainty specifically would lead to better performance, especially in noisy or stochastic
environments.

Programming by Demonstration and Teacher Feedback

To improve sample-efficiency even further, programming by demonstration techniques
[BCDS08] can be used as a way to bootstrap learning. Instead of starting from scratch,
an agent can start learning an environment model and a policy from human demonstra-
tions, allowing it to require less samples to collect itself. While the agent is interacting
with the environment, a human teacher can also provide feedback to allow the agent to
learn a reward model faster.

Bibliography

[AWR+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel,
and Wojciech Zaremba. Hindsight experience replay. arXiv preprint

arXiv:1707.01495, 2017.

[BCDS08] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal.
Robot programming by demonstration. Springer handbook of robotics,
pages 1371–1394, 2008.

[BCKW15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural networks. arXiv preprint

arXiv:1505.05424, 2015.

[BGV92] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A train-
ing algorithm for optimal margin classifiers. In Proceedings of the fifth

annual workshop on Computational learning theory, pages 144–152,
1992.

[BHT+18] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and
Honglak Lee. Sample-efficient reinforcement learning with stochastic
ensemble value expansion. In Advances in Neural Information Pro-

cessing Systems, pages 8234–8244, 2018.

[Bis94] Christopher M Bishop. Mixture density networks. 1994.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[BLR+20] Sarah Bechtle, Yixin Lin, Akshara Rai, Ludovic Righetti, and
Franziska Meier. Curious ilqr: Resolving uncertainty in model-based

105

106 BIBLIOGRAPHY

rl. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, edi-
tors, Proceedings of the Conference on Robot Learning, volume 100 of
Proceedings of Machine Learning Research, pages 162–171. PMLR,
30 Oct–01 Nov 2020.

[Buc05] Bruce G Buchanan. A (very) brief history of artificial intelligence. Ai

Magazine, 26(4):53–53, 2005.

[CC96] Mary Kathryn Cowles and Bradley P Carlin. Markov chain monte
carlo convergence diagnostics: a comparative review. Journal of the

American Statistical Association, 91(434):883–904, 1996.

[CCML18] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey
Levine. Deep reinforcement learning in a handful of trials using prob-
abilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.

[CPTW16] Francisco Cruz, German I Parisi, Johannes Twiefel, and Stefan
Wermter. Multi-modal integration of dynamic audiovisual patterns
for an interactive reinforcement learning scenario. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pages 759–766. IEEE, 2016.

[Cre93] Daniel Crevier. AI: the tumultuous history of the search for artificial

intelligence. Basic Books, Inc., 1993.

[CSM+16] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor
Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba.
Transfer from simulation to real world through learning deep inverse
dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[CTB18] Madison Clark-Turner and Momotaz Begum. Deep reinforcement
learning of abstract reasoning from demonstrations. In Proceedings

of the 2018 ACM/IEEE International Conference on Human-Robot In-

teraction, pages 160–168, 2018.

[Cua20] Heriberto Cuayáhuitl. A data-efficient deep learning approach for de-
ployable multimodal social robots. Neurocomputing, 396:587–598,
2020.

BIBLIOGRAPHY 107

[DHLDVU17] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez,
and Steffen Udluft. Decomposition of uncertainty in bayesian deep
learning for efficient and risk-sensitive learning. arXiv preprint

arXiv:1710.07283, 2017.

[Dun12] David Dunning. Self-insight: Roadblocks and detours on the path to

knowing thyself. Psychology Press, 2012.

[FvAK15] Otto Fabius, Joost R van Amersfoort, and Diederik P Kingma. Varia-
tional recurrent auto-encoders. In ICLR (Workshop), 2015.

[FWS+18] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan,
Joseph E Gonzalez, and Sergey Levine. Model-based value estima-
tion for efficient model-free reinforcement learning. arXiv preprint

arXiv:1803.00101, 2018.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[GBM+16] Ali Ghadirzadeh, Judith Bütepage, Atsuto Maki, Danica Kragic, and
Mårten Björkman. A sensorimotor reinforcement learning framework
for physical human-robot interaction. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 2682–
2688. IEEE, 2016.

[GCY+20] Ali Ghadirzadeh, Xi Chen, Wenjie Yin, Zhengrong Yi, Marten Bjork-
man, and Danica Kragic. Human-centered collaborative robots with
deep reinforcement learning. IEEE Robotics and Automation Letters,
2020.

[GF15] Javier Garcıa and Fernando Fernández. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

[GG16] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In international

conference on machine learning, pages 1050–1059, 2016.

108 BIBLIOGRAPHY

[GHLL17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine.
Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 3389–3396. IEEE, 2017.

[GLSL16] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine.
Continuous deep q-learning with model-based acceleration. In Inter-

national Conference on Machine Learning, pages 2829–2838. PMLR,
2016.

[Gra11] Alex Graves. Practical variational inference for neural networks. In
Advances in neural information processing systems, pages 2348–2356.
Citeseer, 2011.

[GYF+19] Yuan Gao, Fangkai Yang, Martin Frisk, Daniel Hemandez, Christopher
Peters, and Ginevra Castellano. Learning socially appropriate robot
approaching behavior toward groups using deep reinforcement learn-
ing. In 2019 28th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN), pages 1–8. IEEE, 2019.

[HCD+16] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck,
and Pieter Abbeel. Vime: Variational information maximizing explo-
ration. In Advances in Neural Information Processing Systems, pages
1109–1117, 2016.

[HESY19] Nusrah Hussain, Engin Erzin, T Metin Sezgin, and Yucel Yemez.
Speech driven backchannel generation using deep q-network for en-
hancing engagement in human-robot interaction. arXiv preprint

arXiv:1908.01618, 2019.

[HLA15] Jose Miguel Hernandez-Lobato and Ryan Adams. Probabilistic back-
propagation for scalable learning of bayesian neural networks. In Fran-
cis Bach and David Blei, editors, Proceedings of the 32nd Interna-

tional Conference on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 1861–1869, Lille, France, 07–09
Jul 2015. PMLR.

[HMP+17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier

BIBLIOGRAPHY 109

Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerch-
ner. beta-vae: Learning basic visual concepts with a constrained varia-
tional framework. In International Conference on Learning Represen-

tations, 2017.

[Hop82] John J Hopfield. Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the national

academy of sciences, 79(8):2554–2558, 1982.

[HS18] David Ha and Jürgen Schmidhuber. Recurrent world models facili-
tate policy evolution. In Advances in Neural Information Processing

Systems, pages 2455–2467, 2018.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[KB17] Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagi-
nation for continuous deep reinforcement learning. In Conference on

Robot Learning, pages 195–206, 2017.

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[KCD+18] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter
Abbeel. Model-ensemble trust-region policy optimization. arXiv

preprint arXiv:1802.10592, 2018.

[KG17] Alex Kendall and Yarin Gal. What uncertainties do we need in
bayesian deep learning for computer vision? In Advances in neural

information processing systems, pages 5574–5584, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in

neural information processing systems, 25:1097–1105, 2012.

[KVP+17] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and
Sergey Levine. Uncertainty-aware reinforcement learning for collision
avoidance. arXiv preprint arXiv:1702.01182, 2017.

110 BIBLIOGRAPHY

[KW14] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. In International Conference on Learning Representations,
2014.

[LA14] Sergey Levine and Pieter Abbeel. Learning neural network policies
with guided policy search under unknown dynamics. In NIPS, vol-
ume 27, pages 1071–1079. Citeseer, 2014.

[LAA+17] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp
Berens, and Siegfried Wahl. Leveraging uncertainty information from
deep neural networks for disease detection. Scientific reports, 7(1):1–
14, 2017.

[Lan11] Pat Langley. The changing science of machine learning, 2011.

[LFDA16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine

Learning Research, 17(1):1334–1373, 2016.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

[LLSA20] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sun-
rise: A simple unified framework for ensemble learning in deep rein-
forcement learning. arXiv preprint arXiv:2007.04938, 2020.

[LMMH19] Stéphane Lathuilière, Benoı̂t Massé, Pablo Mesejo, and Radu Ho-
raud. Neural network based reinforcement learning for audio–visual
gaze control in human–robot interaction. Pattern Recognition Letters,
118:61–71, 2019.

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep en-
sembles. In Advances in neural information processing systems, pages
6402–6413, 2017.

BIBLIOGRAPHY 111

[LR14] Thomas Lampe and Martin Riedmiller. Approximate model-assisted
neural fitted q-iteration. In 2014 International Joint Conference on

Neural Networks (IJCNN), pages 2698–2704. IEEE, 2014.

[LSKD13] Kyuhwa Lee, Yanyu Su, Tae-Kyun Kim, and Yiannis Demiris. A syn-
tactic approach to robot imitation learning using probabilistic activ-
ity grammars. Robotics and Autonomous Systems, 61(12):1323–1334,
2013.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning, pages 1928–
1937. PMLR, 2016.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533,
2015.

[Mor88] Hans Moravec. Mind children: The future of robot and human intelli-

gence. Harvard University Press, 1988.

[MP69] M.L. Minsky and S. Papert. Perceptrons; an Introduction to Computa-

tional Geometry. MIT Press, 1969.

[MSV+08] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and
Francesco Nori. The icub humanoid robot: an open platform for re-
search in embodied cognition. In Proceedings of the 8th workshop on

performance metrics for intelligent systems, pages 50–56, 2008.

[Ola96] Mikel Olazaran. A sociological study of the official history of the
perceptrons controversy. Social Studies of Science, 26(3):611–659,
1996.

112 BIBLIOGRAPHY

[Osb16] Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap
and the dangers of dropout. In NIPS Workshop on Bayesian Deep

Learning, volume 192, 2016.

[PAED17] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-

tional Conference on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 2778–2787. PMLR, 06–11 Aug
2017.

[PHL+17] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner,
Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa,
Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement
learning for dexterous manipulation. arXiv preprint arXiv:1704.03073,
2017.

[QNYI16] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and
Hiroshi Ishiguro. Robot gains social intelligence through multimodal
deep reinforcement learning. In 2016 IEEE-RAS 16th International

Conference on Humanoid Robots (Humanoids), pages 745–751. IEEE,
2016.

[QNYI18] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and
Hiroshi Ishiguro. Intrinsically motivated reinforcement learning for
human–robot interaction in the real-world. Neural Networks, 107:23–
33, 2018.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature,
323(6088):533–536, 1986.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

BIBLIOGRAPHY 113

[RVR+17] Andrei A Rusu, Matej Večerı́k, Thomas Rothörl, Nicolas Heess, Raz-
van Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels
with progressive nets. In Conference on Robot Learning, pages 262–
270. PMLR, 2017.

[RWR+17] Sébastien Racanière, Théophane Weber, David Reichert, Lars
Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomenech
Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Advances in

neural information processing systems, pages 5690–5701, 2017.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[SGS11] Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be
surprised: Optimal bayesian exploration in dynamic environments. In
International Conference on Artificial General Intelligence, pages 41–
51. Springer, 2011.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforce-
ment learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018.

[SLH+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller. Deterministic policy gradient algorithms.
In International conference on machine learning, pages 387–395.
PMLR, 2014.

[SMS+99] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Man-
sour, et al. Policy gradient methods for reinforcement learning with

114 BIBLIOGRAPHY

function approximation. In NIPs, volume 99, pages 1057–1063. Cite-
seer, 1999.

[Sut90] Richard S Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine

learning proceedings 1990, pages 216–224. Elsevier, 1990.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[TDH+15] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao
Peng, Sergey Levine, Kate Saenko, and Trevor Darrell. Towards adapt-
ing deep visuomotor representations from simulated to real environ-
ments. arXiv preprint arXiv:1511.07111, 2(3), 2015.

[TZL+16] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wol-
fram Burgard. A survey of deep network solutions for learning con-
trol in robotics: From reinforcement to imitation. arXiv preprint

arXiv:1612.07139, 2016.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël
Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard
Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

[VHS+17] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe,
and Martin Riedmiller. Leveraging demonstrations for deep rein-
forcement learning on robotics problems with sparse rewards. arXiv

preprint arXiv:1707.08817, 2017.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine

learning, 8(3-4):279–292, 1992.

Appendix A

Decomposition of MSE for Multimodal
Predictive Density Estimation

Let D = {(xi,yi) : i = {1, . . . ,n}} be a dataset of n samples drawn form the distribution
p(x,y) where x ∈ Rd and y ∈ Rk. Assume D is generated by the process:

y = f(x)+η, (A.1)

where f(·) : Rd → Rk is some random function and η∼N (0,σ2
η(x)I) is the measure-

ment noise with a diagonal k× k covariance matrix whose diagonal entries form the
vector σ2

η(x) = (σ2
1(x), . . . ,σ

2
k(x)). Let the true conditional density of the target data

be p(y|x), and let its approximation be p̂(y|x) which we use to draw predictions ŷ(x).
Applying the well-known bias-variance decomposition to the expected squared error
between ŷ and y for a certain value of x yields [Bis06]:

Ep,q,p̂[(y− ŷ)2]

= Ep,q,p̂[(y− f+ f− ŷ)2]

= Ep,q,p̂[(y− f)2 +(f− ŷ)2 +2(y− f)(f− ŷ)]

= Ep[(y− f)2]+Ep,q,p̂[(f− ŷ)2]

+Ep,q,p̂[(y− f)(f− ŷ)]

= E[η2]+Ep,q,p̂[(f− ŷ)2]

+2E[η]Ep,q,p̂[(f− ŷ)]

= σ
2
η +Ep,q,p̂[(f− ŷ)2] (A.2)

115

116 APPENDIX A.

The second term in Equation A.2 can be written as:

Ep,q,p̂[(f− ŷ)2]

= Ep,q,p̂
[
(f−Ep[f]+Ep[f]− ŷ)2]

= Ep
[
(f−Ep[f])2]+Eq,p̂

[
(Ep[f]− ŷ)2]

+2Ep,q,p̂[(f−Ep[f])(Ep[f]− ŷ)] (A.3)

Rewriting the second term in Equation A.3 in a similar fashion yields:

Eq,p̂
[
(Ep[f]− ŷ)2]

= Eq,p̂
[
(Ep[f]−Ep̂[ŷ]+Ep̂[ŷ]− ŷ)2]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]+Eq,p̂

[
(Ep̂[ŷ]− ŷ)2]

+2Ep,q,p̂[(E[f]−E[ŷ])(E[ŷ]− ŷ)]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]+Eq,p̂

[
(Ep̂[ŷ]− ŷ)2]

+2(Ep[f]Eq,p̂[ŷ]−Ep[f]Eq,p̂[ŷ]

−Eq,p̂[ŷ]2 +Eq,p̂[ŷ]2)

= Eq
[
(Ep[f]−Ep̂[ŷ])2]+Eq,p̂

[
(Ep̂[ŷ]− ŷ)2] (A.4)

Expanding the last term in Equation A.3 yields:

2Ep,q,p̂
[
(f−Ep[f])(Ep[f]− ŷ)

]
= 2Ep,q,p̂

[
fEp[f]− fŷ−Ep[f]2− ŷEp[f])

]
= 2(Ep[f]2−Ep[f]Eq,p̂[ŷ]

−Ep[f]2 +Ep[f]Eq,p̂[ŷ])

= 0, (A.5)

where we have used the fact that ŷ and f are independent given x. Using Equations A.3,
A.4 and A.5 in A.2, we have:

Ep,q,p̂
[
(y− ŷ)2]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]+Ep[(y− f)2]

+Ep
[
(f−Ep[f])2]+Eq,p̂

[
(Ep̂[ŷ]− ŷ)2]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]

+σ
2
η +Vp[f]+Eq

[
Vp̂[ŷ]

]
. (A.6)

117

The first term in Equation A.6 can be expanded as:

σ
2
e = Eq

[
(Ep[f]−Ep̂[ŷ])2]

= Ep[f]2 +Eq
[
Ep̂[ŷ]2

]
−2Ep[f]Eq

[
Ep̂[ŷ]

]
= (Ep[f]−Eq

[
Ep̂[ŷ]

]
)2 +Eq

[
Ep̂[ŷ]2

]
−Eq

[
Ep̂[ŷ]

]2
= (Ep[f]−Eq,p̂[ŷ])2 +Vq

[
Ep̂[ŷ]

]
, (A.7)

which finally yields:
Ep,q,p̂

[
(y− ŷ)2]

= Eq
[
(Ep[f]−Ep̂[ŷ])2]

+σ
2
η +Vp[f]+Eq

[
V p̂[ŷ]

]
= (Ep[f]−Eq,p̂[ŷ])2 +Vq

[
Ep̂[ŷ]

]
+σ

2
η +Vp[f]+Eq

[
V p̂[ŷ]

]
(A.8)

