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Abstract
Deep Reinforcement Learning has been successfully used to control an agent in a high-

dimensional space. For this reason, an important question is whether these powerful

capabilities can be applied to highly dynamic spaces such as the stockmarket. This thesis

explores how multimodal �nancial data can be processed to obtain low-dimensional

features representing the economic state of a given country and exploited by a trading

system to maximize wealth and minimize risks.

Allocating resources is crucial when investing in the stock market, given that errors can

be very costly. In particular, it is essential that investors navigate the dangerous waters

of the collapsing markets unscathed during an economic crisis. With recent advances

in ML, it might be possible to do so by helping investors make better decisions when

allocating their wealth in a way that maximizes wealth while minimizing market risks.

In order to achieve these goals, custom loss functions that control the maximum amount

of cash allocated to a speci�c asset while selecting those shares that maximize wealth

are combined with a Deep Reinforcement Learning (DRL) system trained to learn stock

trading and evaluated using a set of �nancial metrics, including ROI and the Sharpe

ratio. Two loss functions are used: a barrier method that limits the cash allocation to a

maximum value of 35% and the same barrier method combined with a penalty method

that punishes the trading agent when the action did not add up to one.

When comparing these loss functions to a baseline, they earned higher ROI and obtained

better �nancial metrics. They outperformed the benchmark (S&P 500) and the baseline.

In particular, during periods of economic turmoil, they lost signi�cantly less wealth

than the benchmark and the baseline models. Conversely, during periods of economic

growth, they earned more wealth than the benchmark and the baseline models. Our

models developed a diversi�cation strategy that allocated almost an equal amount

of resources to each asset in the S&P 500. Based on the analysis of portfolios, this

diversi�cation strategy demonstrated that it could earn higher ROI than other strategies

and the benchmark and increase the initial capital 12-fold.
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1 Introduction

It is hard to see how any rational man can ever invest

—John Maynard Keynes.

This chapter provides the motivation for this thesis, its aim

and objectives, and its contributions. In addition, it also

presents the system overview and the thesis structure.
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Chapter 1. Introduction

1.1 Motivation

Financial crises have signi�cantly impacted society’s well-being as they erode wealth

or redistribute it to society’s highest echelons [1]. The 2008 �nancial crisis showed the

perils of letting the "experts" manage the world’s wealth.

As we move to a world where Arti�cial Intelligence becomes more integrated into each

part of our lives, it might be possible to decentralize investment and empower regular

people via ML systems to invest intelligently and prevent the risky behavior and bad

investments caused by misleading rumors or disinformation [2, 3, 4].

Unfortunately, ML in the �nancial markets has not obtained the same high-level per-

formance as in other areas such as computer vision, natural language processing, or

control system [5]. This underperformance is probably a consequence of the dynamical

nature of interconnected economies and erroneous �nancial models used to simplify

the economic system. An ML system capable of modeling these dynamic economic

interconnections without simplifying these relationships more than necessary should

design pro�table strategies while maintaining reasonable levels of risk and earn higher

returns on investment.

At its core, there are two main problems with using ML to invest in the market: 1) how

to reduce the high-dimensional space created by the complexities of the economic

system, and 2) when is the best moment to enter, remain, or exit the market.

Deep Learning models capable of learning the dynamics of high-dimensional data

through their non-linearities might solve the �rst point. RL models can learn optimal

control by discovering which action or actions obtain the highest return at a given state

might solve the second point [5, 6, 7].

As a result, the combination of these approaches might help investors allocate their

wealth e�ectively. While Deep Learning (DL) would simplify high-dimensional states,

RL would guide the agent through an intelligent exploration of the environment while

maximizing earnings.

However, even the best ML model will perform poorly with insu�cient or incorrect

data. Thus, it is also crucial to obtain accurate data from various sources to o�er a

complete picture of the global economy. Using those diverse data sources, the ML

model might overcome two critical problems of current models: a limited grasp of
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context and causality. The former is the circumstances that allow us to understand an

event or statement [8], and the latter is the connection between cause and e�ect [9].

These are essential elements when deciding what stocks to select, given the current

state of the economy.

For instance, after the system receives information about a plague a�ecting co�ee

production in the Asia-Paci�c region, it should conclude that co�ee yield will decrease.

This shortage, as supply may not be enough to cover demand, should impact the

market value of a�ected producers and their competitors, as well as the price of co�ee.

Ultimately, as prices increase, the earnings of co�ee stores whose arabica co�ee comes

mainly from this region—such as Starbucks—should decrease.

1.2 Aims and objectives

Identifying investment strategies that increase wealth consistently is an elusive task

for automated systems. This thesis aims to develop ML models that can learn stock

trading by designing a set of loss functions that promote strategies that maximize wealth

and encourage low-risk levels. The in�uence of a range of factors on investment is

investigated to assess if an automated system can exploit them to �nd pro�table trading

strategies.

The following objectives were identi�ed to achieve this aim:

• Collect �nancial and economic information fromprivate providers and government

agencies.

• Apply feature engineering techniques to the datasets without introducing data

biases and determine the procedures that achieve the highest prediction accuracy

and ROI.

• Develop NLP models to reduce the textual dataset to a �nancial dataset and to

expand this �nancial dataset with features created from �nancial articles such as

the sector and listed companies features.

• Add new features—factors, technical indicators, and anomaly signals—to the

original datasets and identify which ones have the most substantial in�uence on

the prediction accuracy and ROI.

• Determine which loss functions can better control wealth allocation to maximize
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ROI and minimize risk via �nancial performance metrics and use these losses to

develop a DRL system that selects appropriate trading strategies.

1.3 Contributions

The main contributions of this project are:

• Identi�cation of correct feature engineering procedures that handle multimodal

data—from collected �nancial and economic datasets and new features—and

avoid introducing biases.

• Development of DRL algorithms that process low- and high-dimensional data and

create pro�table trading strategies that can outperform some �nancial experts and

systems as evaluated by a set of �nancial performance metrics.

• Design of loss functions that encourage agents to �nd investment strategies that

vary wealth allocation and promote portfolio diversi�cation.

1.4 System overview

The system architecture is formed by two main blocks: the feature engineering block

and the DRL block. They are shown in �gure 1.1. While the �rst block is responsible

for adding, removing, and �xing features using di�erent types of datasets, the second

block is in charge of investing in the stock market and �nding suitable trading strategies.

Before creating the investment system, it is necessary to �nd adequate ways to acquire

data, engineer features, select the ML models, and test them.

First, di�erent numerical and textual data types will be acquired based on the litera-

ture review and availability. These datasets will be studied to �nd the most suitable

preprocessing methods for each of them and identify which of those sets contains

relevant �nancial information that an agent can leverage to increase its wealth. These

preprocessing methods include correct approaches to normalization so that models do

not receive data su�ering from a variety of biases such as look-ahead bias, data-mining

bias, time-period bias, among others.

Second, multiple ML models will be evaluated by performing tasks such as forecasting,

dimensionality reduction, and anomaly detection. With forecasting models, the goal is
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Figure 1.1: System architecture.
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to contrast their accuracy, processing time, and earnings. Similarly, for dimensionality

reduction and anomaly detectionmodels, the objective is to evaluate only their accuracy

and processing time.

Then, this knowledge will be combined to train an RL agent. This agent will explore

a trading environment to develop pro�table trading strategies with conservative risk

levels evaluated using �nancial metrics.

Lastly, the agent will output a vector representing its wealth distribution over the

available assets (including cash). Each value represents a percentage value, and the sign

of the value represents whether agent is taking a long or short position.

1.5 Thesis structure

The structure of this thesis is as follows:

• Chapter 2 presents the foundational information used as the basis in this thesis.

In particular, knowledge related to Finance—such as the stock market, risk, and

portfolio performance—and information regarding ML are included.

• Chapter 3 contains the Finance and ML literature review.

• Chapter 4 includes a description of the types of datasets used for the experiments.

• Chapter 5 contains information regarding the methodology applied in this work.

• Chapter 6 details the experiments and describes and critically assesses the experi-

ments’ results and the system’s �nancial performance results once integrated.

• Chapter 7 talks about future work and possible routes to further this research and

the conclusions.

1.6 Summary

This chapter detailed the motivation, aim, objectives, and contributions of this thesis,

the system overview, and thesis structure.

In chapter 2, key terms and concepts that form the backbone of this research are

introduced.
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2 Background

Don’t confuse brains and a bull market.

In this chapter, key concepts on which this thesis is based are

introduced.

Section 2.1 presents a de�nition of market, risk, portfolio’s

measurements, and approaches to investing. In terms of mar-

kets, an overview of electronic markets and microstructure

concepts are included. Regarding risk, a de�nition and types

of risk are brie�y mentioned. Concerning portfolios, com-

mon types of measurements to compare their performance

are included. As for approaches to investing, this subsec-

tion introduces fundamental analysis, technical analysis, and

quantitative analysis.

Section 2.2 contains a brief description of univariate time

series and their components.

Finally, in section 2.3, the ML models used in this thesis, RL

de�nitions, and numerical optimization methods to develop

the loss functions are presented.
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Chapter 2. Background

2.1 Finance

2.1.1 Electronicmarkets andmarketmicrostructureconcepts

A market, according to economists, is any situation in which exchange takes place [10].

An electronic market is one where buyers and sellers meet virtually to exchange assets

[10].

This thesis studies the U.S. stock market where �nancial securities are exchanged.

Among those securities, the focus is on shares listed on major stock exchanges—i.e.,

the New York Stock Exchange, NASDAQ, and American Stock Exchange.

A share (of corporate stock) is an equity security that confers ownership in a fraction

(or a share) of a company. Corporations issue shares—through Initial Public O�erings

or IPOs—to raise capital for diverse economic activities such as renewing equipment

or acquiring another company [10].

Once the shares are sold through the IPO at an initial price, traders can exchange them

in the secondary market. Any change in price in the secondary market does not a�ect

the company in any way unless the company had acquired some of the shares back—an

operation called share buyback or repurchase [10].

Secondary market participants involve corporate managers and traders. Corporate

managers participate in the market by increasing or decreasing share supply, while

traders are those who exchange these shares [11].

Market makers, who set bids (buy orders) and o�ers (sell orders) to facilitate exchange in

a particular asset, provide liquidity to the market. These agents pro�t from the [quoted]

spread, that is, the di�erence between the price some investors are willing to pay to

buy assets (bid price) and the price other investors are willing to accept to sell those

assets (ask price) [11].

The minimum distance between these prices (two adjacent price levels) that do not

trigger a trade is one tick. When these bid and ask prices are equal, they trigger a trade

(cross), and the market gets locked [11].
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2.1.1.1 Types of Orders

There are two basic types: MO and Limit Order (LO) to send buy or sell orders to an

exchange. The former is an aggressive buy or sell order that seeks to execute a trade

immediately at the best possible price, and the latter is a passive buy or sell order that

attempts to execute a trade at a given price [12, 11].

Exchanges use a record of outstanding limit orders called Limit Order Book (LOB) to

keep track of orders. The MOs consume these LOs at the best available price which

depends on the type of MO. When the MO is a sell order, the best available price

implies the highest price among the buy LOs. Conversely, when the MO is a buy order,

the best available price means the lowest price among the sell LOs [11].

Given that exchanges receive millions of orders per day, it is expected to have several

LOs at a given level and to receive more MOs than there are LOs at a certain level.

Walking the book—or going deeper into the book—refers to the consumption of selling

(buying) LOs by buying (selling) MOs at higher (lower) price levels [11].

An example of an LOB is showed in Figure 2.1. The image on the left is the initial state.

At time t+ 1, an MO of 250 shares gets to exchange one and consumes the bids at the

best available price, i.e., $23.09. However, there are only 200 shares at that price level

which means that, depending on the order type, the remaining 50 shares of that order

might consume the 50 shares at $23.07 (top right image) or be re-routed to another

exchange with a better price (bottom right), that is, $23.09 in exchange two.

In addition to the orders mentioned above, other types include day orders, hidden

orders, �ll-or-kill orders, good-till-time orders, among others. [11].

2.1.1.2 Types of market positions

At the heart of any investment strategy, there are two primary actions that economic

agents can take: long positions and short positions.

Long position: Taking a long position on a stock (or other security) refers to an opera-

tion in which an investor buys shares of a stock and sells them later. In this operation,

the investor hopes that the stock price increases to earn the di�erence between the

buying price and selling price.

Short position: Taking a short position on a stock (or other security) refers to an
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Figure 2.1: Example of a limit order book. An MO gets to exchange 1 and

consumes the bids at $23.09. Then depending on the order, the remaining

shares might consume the bids at the next price level (top right) or be

re-routed (bottom right).

operation in which an investor borrows shares of a company from a lender to sell

them immediately in the market and repurchase them at a later date to return them to

the lender plus a loan fee. In this operation, the investor hopes that the stock price

decreases to earn the di�erence between the selling price and the repurchase price.

Contrary to a long position where there is a maximum loss of 100% of the original

capital—when the price reaches $0—a short position does not have any maximum loss

limit as the price can grow inde�nitely. For this reason and the hazards mentioned

in section 2.1.2.1, taking short positions (i.e., short-selling) can be risky if it is not

well-thought.
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2.1.2 Risk

Investors take decisions where the outcome of some events is uncertain. For this reason,

understanding uncertainty can help themmake better decisions and earn higher returns.

There are two types of uncertain events: risks and opportunities.

A risk (an opportunity) is a random event that may occur and, if it did occur, it would

have a negative (positive) impact on the organization’s goals [13].

2.1.2.1 Risk types

There are several types of risks, but they are grouped into three classes [14]:

1. Systemic risk (also known as non-diversi�able risk or systematic risk) is the

risk that a�ects the whole market and, as such, cannot be eliminated through

diversi�cation. For this reason, this is the only risk that is compensated [15].

2. Idiosyncratic risk is the risk that can be reduced or removed by spreading the

risk over di�erent assets. In contrast to the systemic risk, the idiosyncratic risk is

not remunerated [15].

Idiosyncratic risk includes credit, political, �nancial, economic risks, among

others—de�nitions and examples of these risks can be found in section A.1.2 in

Appendix A.

3. Residual risk is the risk that remains after risk management measures have re-

duced other risks [16].

2.1.3 Portfolio’s measurements

Thewealth change and risk level are two dimensions to consider to evaluate a portfolio’s

performance. The assumptions regarding these dimensions are that more return is

favored over less and that less risk is preferred to more risk [17].

Although wealth change or return is a straightforward concept, the second element,

risk, does not have a widely accepted way to be measured, and as a result, di�erent

proxy measures have been developed to gauge this variable [17].
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2.1.3.1 Volatility measures

Volatility measures indicate the amount of data points variation from an average value.

In terms of �nancial markets, they refer to the risk or uncertainty of asset price changes.

High volatility means that prices move drastically in either direction. Conversely, low

volatility means that prices remain stable without extreme �uctuations. The expectation

is that volatility measures allow investors to separate companies whose prices are

resistant to positive or negative events from those whose prices move drastically due to

these events [14, 13, 18].

Variance and standard deviation

The variance and, by extension, the standard deviation are the foundational operations

of other �nancial metrics such as the Sharpe ratio. While the variance indicates how

much data is spread around an average value, the standard deviation measures the

average distance between data points from the mean [18, 15, 19].

In particular, in the stock market, the square root of the variance, i.e., the standard

deviation, is a risk measure [20, 15]. Moreover, the input data used for the calculation

includes stock’s returns, prices, and volume.

One limitation is that both operations are poorly suited for forecasting [20, 21].

Portfolio’s variance and standard deviation

When there are two or more assets, a portfolio’s variance and standard deviation of

returns are given by the following formulas [15]:

var(Rp) =

N∑
i=1

N∑
j=1

wiwjcov(Ri, Rj) (2.1)

σ(Rp) =
√
var(Rp) (2.2)

where wi and wj are the weight (percentage) of asset i and j in the portfolio p, Ri and Rj

represent the returns of assets i and j, and cov(Ri, Rj) is the covariance of these returns.
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Beta coe�cient

The beta coe�cient is another volatility measure that compares an asset or portfolio’s

volatility to a benchmark—usually the market’s volatility. In other words, it is a measure

of systematic risk [21, 15, 14].

β =
Cov (Ri, Rm)

var (Rm)
(2.3)

where Ri represents the return of asset i and Rm is the return of the benchmark,

cov(Ri, Rm) is the covariance of returns of asset i and benchmark m, and var (Rm) cor-

responds to the variance of the benchmark m.

This coe�cient indicates how much and in which direction a stock moves when the

market moves. These β values are described next. For β = 1.0, the stock has the

same amount of systematic risk as the market and moves in the same direction. For

0.0 < β < 1.0, the stock shows less systematic risk than the market, but the stock prices

still move in the same direction as the market. For β > 1.0, the stock has a higher

systematic risk than the market. When β = 0, it indicates that the stock’s prices move

independently from the market. Finally, in the case of negative β values, the same logic

applies, but the stock prices move in the opposite direction as those of the market

[21, 15].

2.1.3.2 Performance measurements

Performance measurements (PM) are values used to compare di�erent investment

options. Some PM use only the wealth change over a period of time, while others

combinewealth change and risk level. In the second case, a value—named risk-adjusted

return—is computed based on the change in wealth over time of the investment options

in proportion to the level of risk taken by the investor [17].

Return-to-risk methods and benchmarking

Return-to-risk (or risk-adjusted) methods allow investors to compare strategies directly

and between their strategies and a benchmark [22, 17].
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Benchmarking

A benchmark is a quanti�able standard used, as mentioned above, as an alternative to

compare portfolios’ returns in a process called benchmarking [22, 17].

This benchmark should be simpler or less costly than the investors’ portfolio as the key

idea is that using this benchmark alternative requires less e�ort. Nowadays, there is a

myriad of benchmark, i.e., from those attempting to mimic a country’s economy such

as the Dow Jones Industrial Average or S&P 500 to those based on factors such as some

of the Russell U.S. Indexes [17, 23].

The result of benchmarking is a value—termed excess return—representing the addi-

tional investor’s portfolio return over (or below) the benchmark’s portfolio return. The

excess return is de�ned as [17]:

ER = ri − rRF (2.4)

where ri is the return on asset i and rRF is the risk-free rate.

Return-to-risk methods

The return-to-risk measures used in this thesis are the Sharpe ratio, Omega ratio, and

Sortino ratio. As these ratios measure risk and return di�erently, investors bene�t from

combining these measures [22, 17].

For further details on these ratios, check section A.1.3 in Appendix A.

Remarks on return-to-risk methods

Given that the Sharpe ratio computes the risk-adjusted return using total risk, it is

better suited for evaluating entire portfolios as each of the asset’s residual risk might

be scattered in a well-diversi�ed portfolio. Regarding the Sortino ratio, it is suitable

when returns are suspected of having an asymmetric or skewed distribution or when an

investor de�nes the risk using a speci�c return target [17, 22, 24].

According to [17], there are two limitations with return-to-risk measures: First, their

susceptibility to outliers given their use of averages and standard deviations. Second,
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the distribution of future returns and past returns might be di�erent. In other words,

"past performance is no guarantee of future results."

2.1.4 Approaches to investing in the stock market

The study of stock markets is a complex task due to many interactions occurring within

and between these markets.

In the case of stock markets, stock prices are a�ected by the following factors:

• Traders’ actions and expectations;

• Supply and demand of stocks;

• Companies results;

• Sectors performances;

• Intervention from governments through monetary and �scal policies;

• Regional development; and

• World economic outlook.

The �rst point presents a crucial problem in modeling the markets because, just as Yanis

Varoufakis suggests, "economics is part of the phenomenon it tries to explain" [25]. This

means that even if experts had the perfect model of the Economy, it would still fail

because traders would adapt to the model’s expected outcome.

The most common approaches to investing are technical analysis, fundamental analysis,

quantitative analysis, or a combination of them.

2.1.4.1 Technical Analysis

Technical Analysis (TA) involves �nding patterns in the market history—including stock

prices, volumes, market sentiment indicators, etcetera—to identify trading opportuni-

ties [26, 27].

TA is commonly performed using technical indicators and candlestick charts.

• Technical indicators: They are calculated using stock prices in an attempt to

re�ect market psychology.

33



Chapter 2. Background

Figure 2.2: Candlestick chart created using Apple stock prices from

2013-09-17 to 2013-11-25.

The technical indicators used in this thesis are listed in Table 4.1, in chapter 4. For

more information regarding their de�nitions and formulas, the interested reader

can visit section B.2 in Appendix B.

• Candlestick : A candlestick is an alternative to synthesize assets’ OHLC (open,

high, low, close) prices and display that information in a way that that investors

quickly understand. It consists of a body, shadow, and color de�ned as follows

[28].

– Body: it is a rectangle formed by a range from the open price to the close

price.

– Shadow: it is a line connecting the high price and low price.

– Color: it is an indicator of the price movement. When close > open, there is

a price increase, and the candlestick is green (or white). When open > close,

there is a price decrease, and the candlestick is red (or black).

A series of candlesticks can be observed in Figure 2.2.
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Technical analysis investors believe that candlesticks can re�ectmarket psychology

through patterns [27].

2.1.4.2 Fundamental Analysis

Fundamental Analysis (FA) refers to assessing a company’s worth by using data that

provides information about its �nancial performance, valuation, management team

information, and macroeconomic trends [29, 30].

In order to assess a company’s worth, investors use mainly three reports: the income

statement, the balance sheet, and the statement of cash �ow [29].

• Income statement: It details the company’s performance during each quarter

and year. All income statements indicate, at the very least, revenue, production

costs, operating expenses, Earnings Before Interest and Taxes (EBIT), interest

expense, taxes, net income, and Earnings Per Share (EPS) [29].

EPS is a key element that indicates the portion of a company’s pro�t attached to

each share. It is calculated by dividing net income by the number of shares that

are owned by the public and the company’s employees [29].

• Balance sheet: It summarizes the company’s assets, liabilities, and shareholder’s

equity at a particular point in time. Assets are things owned by the company—

tangible such as buildings and equipment, and intangible such as patents, liabilities

refer to debt and things the company owes, and equity represents the capital

invested in the company and the pro�ts the company has kept [29].

The capital structure—howdebt and equity are used to �nance assets—determines

a company’s �nancial health and indicates whether or not it can withstand eco-

nomic turmoil [29].

• Statement of cash �ow: It analyzes how the cash is distributed into operating,

investing, and �nancing activities. This statement uni�es the balance sheet and

income statementwithout the bias introduced by accountingmethods and provides

an alternative view by tracing the activities in which cash is spent. It is calculated

by adding back items that did not use cash to the net income and subtracting those

that used cash from the net income [29].
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2.1.4.3 Quantitative Analysis

Quantitative Analysis (QA) is the application of mathematics—especially probability

theory and statistics—to �nancial markets to estimate numerical values that represent

market behavior, the price of �nancial assets, or the amount of risk of trading [31, 32].

Quantitative �nance has a greater focus on the stock and bond markets. When applied

to the former, investment strategies are developed to increase the returns of portfolios

and reduce risks. The most common types of strategies are momentum, reversals, based

on exogenous factors, econometric, and factor investing [15, 33, 32].

Of these types of strategies, this work focuses on factor investing strategies that use

one or more factors—i.e., any attribute that can explain the risk and return performance

of assets—to select pro�table assets [33, 34, 35].

At its core, factor investing states that investors are compensated for assuming risks—

instead of for holding assets—and views diversi�cation as a collection of risk factors—

instead of a collection of asset classes [33, 34, 35].

The factors considered in this work are momentum, size, pro�tability, value, and quality

factor. Formulas to calculate these factors can be found in section A.1.4.1 of Appendix

A.

• The momentum factor is a factor based on momentum—the short-term ten-

dency of �nancial assets to maintain their previous performance, i.e., if they

have performed well (poorly), they will continue to perform well (poorly) in the

short-term future [35].

There are two types of momentum factor [35]:

– The cross-sectional momentum factormeasures relative performance by

contrasting the return of an asset with the returns of assets within the same

class.

– The trend-following factor—or time-seriesmomentumfactor—measures

absolute performance by comparing the trend of an asset with itself.

• The size factor is an attribute based on market capitalization that explains small-

cap stock returns from large-cap stock returns. Size factor depends on the state of

the economy. When the economy is growing, small-cap companies earn a higher

premium than large-cap companies, but during restrictive periods, the size e�ect
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is not statistically signi�cant. This is because small-cap businesses are riskier than

large-cap ones as they are more volatile, are more vulnerable to changes in credit

conditions, and have lower levels of pro�tability [35, 36]. As a result, investors

demand a higher payout for taking greater risk.

• The pro�tability factor explains why �rms with high earnings have subsequent

high returns after controlling for Book-to-Market (BtM) ratio and investment.

According to Novy-Marx [37], pro�tability has roughly the same power as BtM

predicting the cross-section of average returns, which is why pro�tability is used

instead.

• The quality factor explains the quality premium of companies with high mar-

gins and asset turnover, and low earnings volatility, �nancial leverage, operating

leverage, and stock-speci�c risk—known as high-quality companies—over those

companies with the opposite attributes—known as low-quality companies [35].

• The value factor is an attribute that helps clarify why cheap assets outperform

relatively expensive ones.

2.2 Time series

Time series are sequences of observations—or random variables in some de�nitions—

collected over time [38, 19].

They are usually grouped according to the nature of their observations or the number

of variables. Based on the data points, they can be classi�ed as continuous or discrete.

Similarly, based on the number of variables, time series can be classi�ed as univariate

or multivariate [38, 19].

The following sections introduce characteristics of time series which are shared by both

univariate and multivariate time series.

2.2.1 Univariate time series

Time series are named univariate time series when there is only a single time series

[38, 19].
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2.2.1.1 Descriptive measures

These measures are used for describing how time series behave. For univariate time

series, themean function, the autocovariance function, and the autocorrelation function

(ACF) are commonly used [38, 19].

2.2.1.2 Time series components

To perform time series analysis and to improve forecasting accuracy, time series can

be decomposed into a set of unobservable components that display di�erent types of

temporal variations. These components are [39, 40]:

• A secular trend (Tt): it is a long-term increase or decrease in data.

• Cyclical movements (Ct): they are the rises and falls of values with variable periods

or frequencies. It is also named business cycle, and it usually involves a quasi-

periodic oscillation averaging from three to �ve years [40].

• Seasonal variations (St): they are �uctuations with a �xed and known frequency.

• Calendar variations: they are �uctuations due to calendar events. The main

variations are moving holidays, trading days, and other calendar e�ects.

• A remainder or irregular component (Rt): it is anything not included in the other

components. They represent variations caused by unpredictable events such as

strikes, �oods, data processing errors, etcetera.

The cyclical and the trend component are usually estimated together—and named

the trend-cycle component—because the trend’s de�nition as a long-term smooth

movement is statistically vague and relative as an estimate may become a cycle as more

data is received [40].

2.3 Machine Learning

ML is a branch of Arti�cial Intelligence that studies algorithms that allow computers

to acquire knowledge by extracting patterns from raw data [41]. It comprises a set of

methods that automatically detect patterns in data and use them to achieve a particular

task, such as classi�cation, regression, forecasting, clustering, etcetera. [42].
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2.3.1 MLmodels

ML architectures are the essence of the investing agents. When thesemodels are trained

correctly, agents might identify trading opportunities and develop trading strategies.

This thesis uses the following ML algorithms: SVM, RF, and NN, which are described

in the following section.

2.3.1.1 SVM

SVM is a popular type of statistical model widely used due to its �exibility and ef-

fectiveness as an ML tool that can be used in classi�cation and regression problems

[43].

In the case of classi�cation, the model attempts to �nd a linearly separable hyperplane

in the same dimensional space as the training data, but if this hyperplane does not exists,

the SVM algorithm moves the input data to a higher dimensional space via a non-linear

mapping where the model searches for a hyperplane that separates the data in this new

space [43, 44].

In the case of regression, the model maintains the same features as before, but it tries

to �nd a hyperplane that maps the input space to real numbers while minimizing the

error [45].

Kernel functions and the kernel trick

Most of the time, data in real-life applications is not linearly separable. A straight-

forward solution is to apply a basis function on the input data to transform it into

high-dimensional data so that these added dimensions capture non-linear interactions

within the original data. The advantage of this approach is that the problem stays

convex and well-behaved; however, a signi�cant disadvantage is that working on high-

dimensional spaces is expensive because algorithmsworking there become prohibitively

slow [46, 42, 47].

The kernel trick is a way to solve this problem by creating a function that avoids

the high-dimensional transformation and directly computes the results in the original

feature space using the inner product of the input data [48, 49, 46, 42, 47].
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Kernels

Three popular kernels are tested in this thesis: Radial Basis Function (RBF) kernel,

polynomial kernel, and sigmoid kernel.

AnRBF kernel is a real-valued functionwhich depends on themagnitude of the distance

between the arguments so that κ(x,x′) = κ(‖x− x′‖) [42, 47]. It is de�ned as:

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(2.5)

Where σ2 represents the bandwidth [42].

In other words, the kernel takes into account all points, but the nearby observations

receive higher weight in the calculation due to the use of the Euclidean distance. When

points are closer, κ approaches one, and when points are far away from each other, κ

approaches zero.

A Polynomial kernel is a type of Mercer kernel that uses a polynomial function to

map low-dimensional points into a high-dimensional feature space [42]. It is de�ned as:

κ(x,x′) =
(
γxTx′ + r

)M
, where r > 0 (2.6)

where M indicates the degree of the polynomial, r is a parameter that controls the

in�uence of higher-order and lower-order terms in the polynomial, γ is a parameter

used to con�gure the sensitivity to di�erences in the input vectors and x and x′ are

vectors in the input space.

A Sigmoid kernel is a non-Mercer kernel that is de�ned by:

κ(x,x′) = tanh(γxTx′ + r) (2.7)

where γ, r, and x and x′ have the same meaning as before.
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Algorithm

The SVM is a generalization of the Support Vector Classi�er (SVC) in which a non-linear

kernel is added so that the feature space can be transformed into a high-dimensional

space, and a non-linear boundary can be �t to separate two or more classes [50, 42, 44].

The optimization problem has the following equations:

maxα −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjκ(xi,xj) +

n∑
i=1

αi (2.8)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n,

n∑
i=1

αiyi = 0 (2.9)

where yi and yj correspond to the class labels, n is the number of observations, αi and

αj are the support vectors, κ(xi,xj) is a kernel, and C is a non-negative regularization

parameter.

The SVM general decision boundary for any kernel is given by [51, 44]:

f(x) =
n∑
i

αiyiκ(xi,x) + β0 ≥ 0 (2.10)

where β0 is a hyperplane parameter, and κ(xi,xj), n, yi, and αi have the same meaning

as before.

The use of a kernel helps the model create non-linear boundaries.

2.3.1.2 Random Forest

RF exploits the notion that tree structures vary signi�cantly with minor changes in data

by training a set of decision trees—each presented with di�erent versions of the training

data—to predict the model’s output and averaging the trees (regression) or using their

most voted class (classi�cation). This variability results in a model that increases the

predictive accuracy over individual decision trees [18, 52, 42].

The critical point of this algorithm is that the decision trees in themodel get decorrelated

by creating randomized versions of the training data—using bootstrap sampling alone

or in combination with subsampling of the observations—and the variables. In the
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second case, trees are decorrelated because using a subset of m features each time a

split is considered prevents the trees from selecting the strongest predictor every time

[18, 52, 42, 44].

As a result, the variance of an average of B identically distributed (i.d.) data points, each

with variance σ2, ρσ2 + 1−ρ
B σ2—where ρ is the correlation coe�cient)—reduces to only

1
Bσ

2 when the data points are identically and independently distributed (i.i.d.) [18, 42].

Random forests have three advantages in terms of datasets, performance, and statistical

metrics, and one disadvantage involving model complexity.

In the case of data sets, random forests inherit the majority of the bene�ts of trees,

including estimating the importance of variables and handling large data sets with

thousands of features, unbalanced datasets, and missing data points [53, 18, 42, 54].

In terms of performance, the algorithm achieves relatively high accuracy for classi�ca-

tion tasks while running quickly [53, 18].

Concerning statistical metrics such as variance and bias, creating a model ensemble

is especially suitable for high-variance, low-bias methods (such as trees) as averaging

these methods signi�cantly reduces the prediction variance [42, 54].

As for model complexity, the main disadvantage of using random forests is that this

element increases due to the myriad of splits created by the set of trees. Thus, one of

those bene�ts not inherited from trees is model interpretability [53, 18, 42, 54].

The Random Forests algorithm is described in Algorithm 1.
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Algorithm 1: Random Forest algorithm for regression and classi�cation taken

from [54].
• During the training phase:

1. For b = 1 to B (number of i.d. data points):

(a) Draw a bootstrap sample of N elements from the training data.

(b) Grow a tree Tb with this bootstrapped data until the minimum node size

nmin is reached by slightly modifying the Classi�cation And Regression

Tree (CART) steps:

i. Randomly select m elements from the p input points (with common

values for m ranging from 0 to
√
p).

ii. Find the best split point among the m data points.

iii. Split the parent node into two child nodes.

2. Output the ensemble of trees TbB1 .

• During the prediction phase with a new point x:

– Regression: f̃BRF (x) = 1
B

∑B
b=1 Tb(x)

– Classi�cation: C̃BRF (x) = majority voteC̃b(x)
B

1 where C̃b(x) is the class

prediction of the bth tree.

2.3.1.3 Deep Learning

DL is a subbranch of ML that focuses on algorithms that build hierarchical structures

where complex concepts are formed out of simpler concepts.

In DL, models are trained by adjusting a set of parameters using an optimizer. This

optimizer is guided by a loss function that generates a value indicating how well the

model is learning to perform a particular task.

Most DL models are based on Deep Neural Networks (DNN). They come in various

shapes and forms, but at their core, they are formed by di�erent types of layers that have

speci�c functions that exploit the structure within data. The only di�erence between a

regular NN and a DNN is the number of hidden layers; any network with two or more

hidden layers can be classi�ed as a DNN.
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Fully-Connected (FC) Network

It is a network with fully-connected layers in which each neuron within a layer is

connected to all the neurons in the previous layer [42].

Each of the neurons in the next layer receives an input x1, . . . , xHlayer where Hlayer is the

number of output elements from the previous layer—or the number of input elements

in the �rst layer—and applies a linear combination—or activation—of these elements.

The activations are controlled by a set of adjustable parameters called weights and are

further processed using a nonlinear activation function f(·) to generate the neuron’s

output.

For the �rst layer, this output is:

fs(x,w) = f

(
H1∑
i=0

winputs,i xi

)
(2.11)

where s = 1, . . . ,H2 is the number of outputs, H1 is the number of inputs, and w
input
s,i

refers to the weights in the input layer (including the biases wj,0).

Similarly, for the second layer, the output is:

f·(x,w) = f

(
H2∑
s=0

w2
·,sfs (x)

)
(2.12)

where · refers to the number of outputs in the current layer, s = 0, . . . ,H2 is now the

number of inputs, winput·,s refers to the weights in the second layer, and fs(x,w) is the

output from the previous layer.

Based on the previous outputs, the overall network function is calculated as:

yk(x,w) = f

Hlayer∑
j=0

wlayerk,j f

Hlayer−1∑
r=0

wlayer−1j,r f (. . . )

 (2.13)

where k = 1, . . . ,K with K being the number of outputs, and w, f(. . . ), and H have the

same meaning as before.
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Figure 2.3: LSTM architecture.

Several nonlinear activation functions are available, but those used in this thesis are:

the Recti�ed Linear Unit (ReLU), sigmoid, tanh, swish, and softmax function. Their

formulas are listed in Table 2.1.

Table 2.1: Activation functions.

Function Equation

ReLU max(0, x)

sigmoid 1
1+e−x

tanh ex−e−x
ex+e−x

swish x
1+e−x

softmax exi∑Classes
j=1 exj

Long-Short TermMemory Network

LSTM is a type of Recurrent Neural Network (RNN) capable of modeling sequential

data such as time series using a set of parameters called states shared across all timesteps

to track information from previous steps. LSTM improves over the original RNN by

learning long-sequences and reducing the vanishing gradient problem.

The LSTM is shown in Figure 2.3. In this diagram, each line represents a vector from

one node to another. Each rectangle represents a NN layer whose parameters are

adjusted during training to regulate the gates and add or remove information to the cell

state (C). This adjustment explains why all the branches are multiplied by, or directly

output, a sigmoid function with range [0, 1]—0 blocks the signal, and 1 allows it [55, 56].
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This model di�ers from RNN in that it adds four gates to the RNN structure: update,

relevance, forget, and output gates. The update gate determines how much previous

information should a�ect the current value. The relevance gate speci�es whether the

previous information should be dropped or kept. The forget gate decides if a cell should

be erased or not. Finally, the output gate controls how much information to reveal of a

cell [55, 56].

2.3.1.4 Comparison between models

The methods described in the previous sections have di�erent advantages and disad-

vantages. While tree-based models are more robust in terms of data and have better

computational scalability than NN and SVM models, they are only slightly better in

terms of interpretability. Conversely, NN and SVM models have higher predictive

power and can extract linear combinations of features better than trees [54].

2.3.2 Dimensionality reduction

Most ML algorithms su�er from the curse of dimensionality in which the density of data

points around a neighborhood decreases exponentially as the number of dimensions

increases [47, 42].

For this reason, dimensionality reduction algorithms can be used to obtain the most

important features and reduce the complexity of the data so that the ML models con-

verge more quickly. They are grouped in two major branches: linear projections and

manifold learning [57].

Linear projections use linear transformations to map high-dimensional data into low-

dimensional data. This group includes algorithms such as principal component analysis

(PCA), single-layer autoencoders, and random projection [57].

Manifold learning, or nonlinear dimensionality reduction, methods also map high-

dimensional data into low-dimensional data, but they use nonlinear transformations.

This group contains algorithms such as multi-layer autoencoders, t-distributed stochas-

tic embedding (t-SNE), among others [57].

Given the nonlinear nature of �nancial data, a multi-layer autoencoder is used for

dimensionality reduction and anomaly detection in this thesis.
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2.3.2.1 Autoencoders

Autoencoders are unsupervised learning models based on neural networks used for

di�erent tasks such as dimensionality reduction, anomaly detection, and data generation

[47, 42, 57].

The model is formed by two parts: an encoder that learns the most relevant aspects of

the data and a decoder that reconstructs the original input. In other words, the input

and output are the same, and the goal is to minimize the reconstruction error. As a

result, the encoder’s output contains the mapping to the low-dimensional space.

When designing the model, some strategies constrain the system from learning the

trivial identity mapping: 1) An architecture with a narrow bottleneck that makes the

model look like an hourglass (as shown in Figure 2.4). 2) An architecture with sparsity

constraints on the activation of the hidden units. 3) An architecture in which noise is

added to the inputs (called denoising autoencoder) [42].

Figure 2.4: Autoencoder diagram. An input passes through the encoder’s

hidden layers (left side), reaches the center where an encoding is generated,

and moves through the decoder’s hidden layers (right side), where the

encoding is reconstructed.

Usually, the encoder and decoder are symmetrical structures, although this is not
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a requirement. Moreover, the structures can be based on any neural network, i.e.,

Convolutional Neural Network (CNN) models, LSTM models, or FC models.

When an autoencoder contains only one hidden layer with linear functions, the weights

to the K hidden units span the same subspace as the �rst K principal components of

the data [42].

2.3.3 Anomaly detection

It is a process that involves identifying outliers or unexpected events in a dataset [58].

This process can be supervised, semi-supervised or unsupervised depending on the

type of data available, and is usually applied to detect fraud, spam, or pertaining to

this thesis, investing opportunities as a result of divergences in asset valuation, salient

economic news, volatility, etcetera [47, 42, 59].

Common algorithms used for anomaly detection include isolation forest, cluster-based

local outlier factor, histogram-based outlier detection, KNN, and autoencoders.

As de�ned in section 2.3.2.1, autoencoders are versatile models that use the training

data to determine a threshold and to separate normal data from outliers on the test

data.

2.3.4 Reinforcement Learning

RL is a branch of ML in which agents learn an optimal set of actions by interacting with

an environment to maximize a reward signal. RL systems contain three main elements:

a policy (π), a reward signal (R), and a value function (V (s)) [7].

A policy refers to a mapping from states of the environment to actions to be taken once

the agent gets to those states; a reward signal is a value given by the environment in

response to the agent’s actions; a value function indicates how good it is for an agent to

be in a particular state.

Policies can be categorized as deterministic and stochastic. The former are policies

that map a state to one action and are denoted by µ : at = µ(St). The latter are

policies that map a state to a probability distribution over actions and are represented

as π : at ∼ π(·|St).
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In addition to those main elements, a model of the environment is an optional compo-

nent that provides information regarding transition probabilities and rewards. Methods

that use it are called model-based methods, and those that do not are called model-free

methods.

For model-based methods, the environment is given, and the agent focuses on planning.

For model-free methods, the environment is initially unknown, but using exploration

and exploitation, the agent learns a representation of the environment and a set of

actions. Exploitation refers to selecting the action that up to that moment leads to the

highest expected reward. In contrast, exploration refers to testing other actions to �nd

an alternative that earns a higher expected reward.

At each time step t, the agent observes a representation of the environment state St ∈ S

(where S is the set of possible states) and takes an exploratory or exploitative action

At ∈ A(St) (where A(St) is the set of actions available in state St). At time step t+ 1, the

agent reach a new state St+1 and receives a reward Rt+1.

The sum of these rewards gives the expected reward. When a terminal state T exists,

it is de�ned as:

Gt = Rt+1 +Rt+2 + ...+RT (2.14)

where Rt+i is the reward at time t+ i.

For continuous tasks, it is de�ned as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.15)

where Rt+i is the reward at time t+ i, and γ is a discount factor.

2.3.4.1 Value function

Value functions de�ne a partial ordering over policies which the agents use to select

optimal policies. There are two types of value functions: state-value functions, and

action-value functions [7].

A state-value function is de�ned as:
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De�nition 2.3.1. The value of a state s under a policy π, denoted Vπ(s), is the expected

return when starting in state s and following policy π after that.

Vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
(2.16)

An action-value function is de�ned as:

De�nition 2.3.2. The value of taking an action a in state s under a policy π, denoted

qπ(s, a), is the expected return starting from s, taking the action a, and following policy

π after that.

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2.17)

In this thesis, agents are referred to as traders. Actions are a set of continuous elements

representing percentages of cash allocation. States are representations that summarize

�nancial information regarding stocks, and rewards refer to ROI.

2.3.4.2 Deep Reinforcement Learning

RL agents face the challenge of exploring the state space su�ciently so that an accurate

estimate of the reward can be calculated. When the state space is small, exploration is

simple, but when it is large, exploration becomes infeasible [7]. DL is an e�cient way to

ameliorate this problem. It works as a function approximator which means that instead

of storing each value, DL learns a function that maps states (or state-action pairs) to

their corresponding value [7, 5].

Deep Q-Learning

Deepmind proposed DRL in 2013 as a solution to learning control policies from high-

dimensional states [60, 61]. The model uses a CNN to extract low-dimensional repre-

sentations from the video game frames and approximate a Q-value function for each of

the actions.

The algorithm initializes a replay memory—a structure that stores tuples formed by

the state, action, and reward at time t and the state at time t+ 1—and a NN. Then, in

each episode, an agent explores or exploits the environment according to an ε-greedy

policy. This policy selects a random action with probability p (exploration) or the best
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action at a given state (exploitation). The selected action is executed in the emulator

to get a reward and a state t + 1, and form the tuple to store in the replay memory.

Next, mini-batches are sampled from the replay memory, and the NN is updated by

performing a gradient descent step. This cycle is repeated by the authors for 100 epochs,

with each epoch performing 50000 minibatch weight updates.

2.3.5 Optimization

Optimization is the process ofminimizing ormaximizing a function subject to constraints

on its variables [62].

The optimization problem can be de�ned as [62]:

min
x∈Rn

f(x) (2.18)

s.t. ci(x) = 0, i ∈ E (2.19)

ci(x) ≤ 0, i ∈ I (2.20)

where f and the functions ci are smooth, real-valued functions on a subset of Rn, and E

and I refer to two �nite sets of equality and inequality constraints, respectively.

A global minimizer of function is a point where the function attains its lowest value.

In contrast, a local minimizer of a function is a point that has the smallest value of a

function within a neighborhood.

2.3.5.1 Lagrangian function

The Lagrangian for the constrained optimization problem is de�ned as [62]:

L(x, λ, v) = f(x)−
∑
i∈E∪I

λici(x) (2.21)

where λi is a Lagrangian multiplier, and f and ci have the same meaning as before.

The minimum Lagrangian function is found by applying the ∇ operator:

∇L(x, λ, v) = ∇f(x)−
∑
i∈E∪I

λi∇ci(x) = 0 (2.22)
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2.3.5.2 Penalty function

Penalty functions are another alternative to convert constrained problems into uncon-

strained problems. An arti�cial penalty is introduced with these functions and gets

activated when the constraint is violated [62].

The combined objective /penalty function is de�ned as follows:

Q(x;µP ) = f(x) +
1

2µP

∑
i∈E

c2i (x) +
1

2µP

∑
i∈I

max (−ci, 0)2 (2.23)

where f and ci, E and I have the same meaning as before, and µP > 0 is the penalty

parameter that penalizes constraint violations with increased severity as it approaches

0; the �rst sum refers to the equality constraints; the second sum involves the inequality

constraints [62].

One important problem is that adding penalty functions can create severe slope changes

at the boundary and interfere with typical minimization programs [62].

2.3.5.3 Barrier method

The Barrier method is another alternative to represent constraints, but in this case, it

is only applied to inequality constraints. This method introduces a barrier function

B(x) ≥ 0 that approaches in�nity as the function gets closer to any constraints [62].

There are two types of barrier functions: inverse barrier and logarithmic barrier. How-

ever, the second is the most important barrier function as it is the one that will be used

in this thesis [62].

The combined objective /barrier method is de�ned as follows:

B(x;µ) = f(x)− µB
∑
i∈I

log ci(x) (2.24)

where f and ci, and I have the same meaning as before, and µB is referred as the barrier

parameter.

It is possible to combine the barrier method with the quadratic penalty function to use

equality constraints as follows:
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B(x;µB, µP ) = f(x)− µB
∑
i∈I

log ci(x) +
1

2µP

∑
i∈E

c2i (x) (2.25)

where µP , µB, f and ci, E, and I have the same meaning as in the previous equations.

2.4 Summary

This chapter introduced key �nance, time series, and ML concepts. Section 2.1 in-

cluded information related to the stock market, market microstructure, risk, portfolio

measurements, and approaches to market investment. Section 2.2 brie�y introduced

the concept of time series and tools used to obtain some of their properties. Finally, sec-

tion 2.3 presented theMLmodels, RL de�nitions, and numerical optimization functions

used in this thesis to train the trading agent.

In chapter 3, the �nancial and ML literature is reviewed to �nd the most suitable data,

processing, features, and models to develop a successful trading system.
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3 Literature Review

Learn every day, but especially from the experiences of others. It’s cheaper!

—John Bogle.

This chapter involves assessing related work in the areas of

�nance and ML.

The �nance section, sections 3.1 to 3.4, presents research

challenging the existence of perfect markets and individuals

to support the thesis that DRL agents can learn to exploit

�aws in the stock market.

The ML section, sections 3.5 to 3.7, explores papers that de-

scribe models using high-dimensional spaces to create dense

representations of economic information (including �nancial

information), agents trained using low-dimensional states to

develop strategies that maximize their rewards, and models

that combine DL and RL where the DL block works as a func-

tion approximator of low-dimensional states, while the RL

block works as a strategy creator.
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3.1 Finance

Financial markets have complex interconnections among them. These relations happen

among simple assets such as stocks, currencies, or bonds and between cities, countries,

regions, and the world, exempli�ed by �nancial crises [63, 10, 64]. Researchers have

found diverse relations between assets, assets and markets, and markets.

Ftiti et al. [65] studied the relationship between oil prices and stock markets indexes

of the G7 countries using evolutionary spectral analysis and wavelet analysis applied

to short-term and medium-term data adjusted for in�ation. They found that the co-

movement of stock return and oil price growth was con�ned to the short- to medium-

term time-scale �uctuations, and that this co-movement was relatively weaker for the

long time-scale �uctuations.

Shen and Jiang [66] investigated a correlation between the U.S. markets and the closing

prices of the markets that stopped trading immediately before the opening times of

the U.S. markets as those markets contain information regarding the U.S. markets’

sentiments and their daily trends. The authors found a high accuracy correlation

between thesemarkets and the NASDAQ. This result implies that markets are correlated,

and the information in one could a�ect other markets.

In [67], authors researched the e�ect of macroeconomic news on currency jumps—

discontinuous movements—and cojumps using intra-day data sampled at 5-minutes

intervals. The currencies included the dollar exchange rate for the British Pound

(GBP/USD), Euro (EUR/USD), Japanese Yen (JPY/USD), and Swiss Franc (CHF/USD)

and covered the period from January 2005 to December 2010, but unlike previous

studies that used low-frequency data, the authors utilized 5-minute interval data due to

its ability to better capture the immediate news price response.

The authors found slightly more negative jump events in which the U.S. dollar ap-

preciated than positive jump events in which it depreciated. Moreover, they found

that except for four-time points—4:35 am (only U.K.), 8:35 am, 10:05 am, and 6:05

pm—most jumps are evenly distributed across the day, with these exceptions being

mostly triggered by U.S. and U.K. announcements. In particular, the 5-minute interval

starting at 8:35 am explains 81%, 80%, 89%, and 78% of the jumps in GBP, EUR, JPY,

and CHF currencies, respectively, started after at least one U.S. news release.
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Regarding cojumps, the authors found that there is a higher probability of a cojump

between EUR and CHF (0.078%) than between GBP and EUR (0.034%) and GBP and

CHF (0.037%). Additionally, 23% to 44% of bivariate cojumps and 25% to 52% of

trivariate cojumps are started by macroeconomic news.

Finally, in terms of news, out of 34 macroeconomic events, the authors found, using a

regression model, that only 15 of them have signi�cant explanatory power. Of these

15, the U.S. nonfarm payroll, GDP, trade balance, and unemployment have a negative

and signi�cant impact on jump returns of all currencies. The e�ects of macroeconomic

events are not exclusive to currency exchange rate data. They also apply to other

high-frequency assets such as stock index futures and bond futures [68].

Financial crises have a signi�cant impact on the economies as they limit credit for

agents, a�ecting the level of activity leading to periods of low growth and recession.

These crises initially a�ect a few institutions or a particular sector of the economy but

spread to the rest of the economy by contagion [69, 10].

[70] studied �nancial network structures and how cascades of failures in one sector

are transmitted and ampli�ed in the network. Researchers posit that these contagions

occur in stages, starting with companies in one group and extending to others in interde-

pendent groups. Their methodology to calculate the probability of cascades considers

the level of company exposure to other companies’ risks (integration) and the degree of

concentration (diversi�cation)—how much risk is cross-held by other organizations.

Researchers examined integration and diversi�cation trade-o�s using analytical re-

sults of networks with tractable cascade failures and random cross-holding networks

simulations.

[69] built a model to analyze one channel of �nancial contagion in which liquidity

preference shock in one region spread throughout the economy. The economy consists

of several regions that contain a large number of identical consumers with di�erent

consumption preferences that decide whether to deposit on a bank or use their one

unit of homogeneous consumption good, and banks that can invest in short-term and

long-term assets. The authors excluded from the model other propagation mechanisms

such as the e�ect of international currency markets and incomplete information in

agents. Based on their model, the authors state that what leads to contagion is caused

by banks hoarding liquidity when there is an excess of demand for it and spillovers

resulting from interregional cross-holdings of deposits.
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3.1.1 Ine�cient markets

Classical economic theories are not based on reality; instead, these theories use a

highly restrictive assumption: rational agents can instantly solve complex dynamic

optimization problems [3]. This assumption presents an important problem because

they fail to predict market behavior accurately [71, 3, 72, 73].

In �nancial markets, the E�cient Market Hypothesis (EMH) has been suggested to

be a valid assumption. EMH states that, at any given time, share prices re�ect the

relevant information about their corresponding companies and adjust instantly to new

information [74]. Researchers and investors have demonstrated that markets are not

e�cient and cast doubts about the existence of the EMH [71, 3].

Behavioral economists and psychologists have proved the existence of agents who are

not completely rational in di�erent experiments [71, 3, 72, 73].

In [71], Camerer describes the results of a two-player game called the ultimatum game

that is played as follows: One of the players is given money and asked to make an o�er to

the other player to split this amount. The other player then decides whether to accept

it—which means that both players keep the agreed sum—or not—which means that

neither receives anything. Regardless of the country in which this game has been played,

the conclusion is the same: the second player refuses the o�er if the distribution is not

perceived as fair, which goes against the concept of totally rational agents who would

accept any o�er greater than zero. These results are not a�ected by increasing the

amount of money in play or removing the possibility of the second player rejecting the

o�er. In addition, results also suggest that people’s utility functions take non-�nancial

elements into account, such as fairness, pride, family, etcetera. [75, 71, 3, 72].

In [76], Bondt andThaler tested the overreaction hypothesis usingNYSE common stocks

data between January 1926 and December 1982. The test consisted of constructing

two types of portfolios; one of them contained the 35 stocks with the lowest returns

over the past 36 months—the loser portfolio—while the other had the 35 stocks with

the highest returns over the same period—the winner portfolio—which resulted in a

total of 16-loser portfolios and 16-winner portfolios. After portfolio creation, they

calculated the cumulative average residual return for each portfolio using the next 36

monthly returns and averaged over each portfolio type. The authors showed that the

average di�erence in returns between the loser portfolios and the winner portfolios
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was almost 8% annually over the test period.

In quantitative �nance, there are also voices doubting the existence of the EMH in any of

their versions—i.e., weak e�ciency, semi-strong e�ciency, and strong e�ciency. [32]

reasoned that information is imperfect as it contains human errors and is asymmetric—

i.e., it is not immediately (or at all) available for all market participants due to cost

or transfer and processing time. For this reason, he concludes that markets are not

information e�cient.

3.1.1.1 Market risks and arbitrage

Arbitrage refers to pro�ting from price disparities in two markets by buying the asset in

the cheap market and selling it in the expensive market.

EMH supporters believe that arbitrage—pro�ting from price disparities in two markets

by buying an asset in a cheap market and selling an equivalent asset or the same asset

in an expensive market— is not possible due to the Law Of One Price (LOOP). This law

states that "identical goods must have identical prices" [3], but it only holds in perfectly

competitive markets without transaction costs or barriers to trade [3].

In the real markets, there are di�erent situations of price disparity. Froot and Dabora

[77] studied twin securities—stocks listed on more than one exchange—and found that

many exhibit deviations from the LOOP theoretical price. The reluctance of investors

to close these valuation anomalies results from two types of risks: fundamental risk and

Noise Trader Risk (NTR) risk [3] —described in section A.1.2.

Thaler and Lamont [78] examined equity carve-outs and found overwhelming evidence

of widespread market mispricing. A carve-out is a corporate reorganization in which a

subsidiary is created, but the parent company retains management control.

The highest-pro�le case the authors examined was the split of 3Com and Palm. In this

case, Palm share prices, the same day the split was done, were higher than 3Com prices

($95.06 vs. $81.81), even though 3Com was the most valuable company of the two.

This statement is based on two facts: 1) 3Com investors would receive 1.5 Palm shares

for every 3Com share they owned as soon as the split was authorized, and 2) the same

day the split was done, 3Com still had 95% of Palm shares. This meant that the market

valued 3Com shares negatively, but the most interesting result was that the misprice

persisted for over two months [3].
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3.2 Fundamental analysis

Research on fundamental analysis is limited. Searching for the terms ’technical analysis

and �nancial markets’ and ’factor analysis and �nancial markets’ on Google Scholar

returns more than 22,000 results for each query, while searching for ’fundamental

analysis and �nancial markets’ only returns 13,600 results.

This could be explained due to the small number of data points in fundamental datasets

or the di�culty in collecting this data. On the one hand, the former is a consequence

of companies’ results being published quarterly which contrasts with other datasets

that are updated daily. On the other hand, the latter results from either researchers

not having access to expensive databases from �nancial providers—e.g., Bloomberg

($24,000 per year), Thomson Reuters ($22,000 per year), or Capital IQ ($13,000 per

user per year) [79]—and having to parse the web in search of this data or some of these

services having steep learning curves to obtain the correct information.

Beyaz et al. [80] trained ML architectures to predict the percentage change in the

stock price of a given company after 126 and 252 days using technical indicators,

fundamental indicators, or a combination of both. The authors used an 80/20% data

split with 10 random starting points and constant train/test size of 1892 and 473 data

points, respectively. Then, these datasets were used to train and test NN and Support

Vector Regression (SVR) models, which were evaluated using the RMSE metric.

On the one hand, the authors found that fundamental indicators outperformed technical

indicators regardless of the company’s sector. However, a combination of both types of

indicators yielded the best-performing model. On the other hand, they identi�ed the

SVR model as the superior architecture regardless of forecasting horizon, company’s

sector, and type of indicator.

3.3 Technical analysis

Several researchers have investigated the pro�tability of technical analysis using di-

verse indicators, including Simple Moving Average (SMA), Exponential Moving Average

(EMA), Relative Strength Index (RSI), ElliotWaves patterns, among others. These indica-

tors are used as inputs to various models ranging from ML architectures to econometric
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models [81, 82, 83, 84].

Regardless of the model and the indicators selected, the key assumption is that market

behavior and price prediction are based on historical data.

Silva de Souza et al. [84] developed an automated trading system based on moving

averages to assess the pro�tability of these indicators. They created buy and sell signals

using the crossover of two series: a long-term and a short-term moving average for

a portfolio composed of diverse holdings. The dataset was obtained from the daily

closing quotations of 1454 assets traded on the Brazil, Russia, India, China, and South

Africa (BRICS) stock exchanges. It covered the period from 2000 to 2016, except for

Brazil and Russia, in which it covered the interval from 2007 to 2016.

The authors created 4,428 strategies based on three types of long-term/short-term

moving average pairs—SMA-SMA, SMA-EMA, and EMA-EMA. While the short-term

element varied from 5 to 40 periods, the long-term element varied from 80 to 120.

Each of these 4,428 strategies was tested without transactions and with 2% and 5%

transaction costs.

Jabbur et al. [85] used automated market maker agents (see section 2.1.1 for further

details) to identify intraday trading opportunities in the stock market. The authors

built a discrete-event order book simulator that took into account price priority and

time precedence rules, latency between the participants and the stock market, and

self trading to assess the impact of granularity—time interval used to calculate the

candlesticks—and close variation—quote spread—on trading results.

Using �ve liquid stocks from the Brazilian stock market (Bovespa) index, the authors

created four types of candlesticks: 1-, 5-, 10-, and 15-minutes candlesticks (see section

2.1.4.1 for further details on candlesticks), and designed strategies based on ElliotWaves

patterns that later were implemented in the automatic trading agents.

The authors concluded that small granularity is detrimental to earnings for both types

(breakout and correction) of strategies as more opportunities increase the number of

trades and the risk of adverse stock price movements. Conversely, 10- and 15-minutes

intervals earned the highest ROI. As for close variation, the authors concluded that

stocks with higher prices get better results with large close variation, while the opposite

occurs for stocks with lower prices.

From a psychological perspective, supporters suggest that technical indicators re�ect
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the crowd’s mass psychology, which �uctuates between periods of fear or pessimism

and intervals of con�dence or optimism [84].

However, some of these researchers—Lopez de Prado, Shiller, and others [86, 87]—

have questioned the methodology and veracity of the experiments and the rationality

of investing using technical indicators.

3.4 Quantitative analysis

Although quantitative analysis includes other types of data, in this section, factor in-

vesting papers are reviewed.

3.4.1 Factor investing

Risk is an intrinsic characteristic of investing. As shown in section 2.1.2.1, di�erent

types of risks a�ect assets and their returns. Factor investing is a new type of model

from the asset management industry for long-term investment that helps investors

select robust and diversi�ed portfolios, monitor risks, enhance returns, and reduce

risks. Global institutions have widely adopted this type of investing as nine out of ten

investors are using factors in their investment management and a large proportion of

institutions plan to increase their use of them over the next few years signi�cantly [88].

In their paper "The death of diversi�cation has been greatly exaggerated," [89] argued

that factor diversi�cation strategies reduce portfolio volatility and market directionality

more e�ectively than traditional asset class diversi�cation. They showed that factor

diversi�cation could improve the portfolio’s Sharpe ratio to 0.7—an increase of 46%

over the asset class-diversi�ed portfolio—and reduce the average correlation to almost

zero—versus 0.4 of the other portfolio. The factors used in their diversi�cation strategy

were the value, momentum, carry, and trend-following factors.

Value factor was made famous by Eugene Fama and Kenneth French, but since 2006 the

value premium has been shrinking due to value stocks underperforming growth stocks

[90]. However, academic researchers keep �nding value premiums and explaining the

context in which it appears.

In "the value premium" [91], Zhang noted that the economic outlook in�uences the value

premium. During an economic downturn, value stocks become riskier than growth
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stocks, but during economic prosperity, the risk decreases so that value stocks are

slightly less risky than growth stocks. Yogo [92] made a similar observation suggesting

that value stocks depend on the economic outlook and are more pro-cyclical than

growth stocks. The author found that value stocks earn low returns during recessions.

Black, Mao, and McMillan [93] examined the value premium price index (VPPI) and

economic activity—assessed via macroeconomic variables such as the seasonally ad-

justed industrial production, in�ation, long-term interest rates, and seasonally adjusted

money supply. The VPPI is a price index "from buying value stocks and short selling

growth stocks" [93] that is calculated as V PPI = ln(V TRIt)− ln(GTRIt) where V TRI

is the total return index of value stocks, and GTRI is the total return index of growth

stocks. The data covers the period from January 1959 to December 2005, resulting in

564 monthly observations.

The authors found cointegration between VPPI and the macroeconomic variables.

When the relationship is negative, the value premium decreases in a growing economy

given that the value stock prices rise more than growth stock prices and increases in a

contracting economy because the value stock prices fall faster than growth stock prices.

According to Black et al., the cointegrations are as follows:

1. VPPI and industrial production have a negative relationship.

2. VPPI and money supply have negative cointegration because money supply is

suggested to increase stock prices [94].

3. VPPI and long-term interest rates have a positive relation, given that stock prices

fall with interest rates rise.

4. VPPI and in�ation have a negative cointegration, although it was not statistically

signi�cant.

The authors also found that value stocks are a�ected more by bad economic news,

while growth stocks, by good economic news.

In [95], the authors examined the e�ect of monetary conditions on a three-factor

model—pre-ranking beta (β), size or market equity (ME), and BtM equity— and average

stock returns. Jensen and Mercer built equally weighted portfolios sorted based on

�scal year-ends accounting data from the previous year, starting in July 1965 and

63



Chapter 3. Literature Review

ending in June 1997. Portfolios were re-formed at the end of every June using newly-

ranked stocks, which were created by applying each of the factors in series, i.e., �rst

creating β-ranked quintiles, then β:ME-ranked quintiles, and �nally, β:ME:BM-ranked

quintiles. To categorize the Federal Reserve’s monetary policy in either expansive or

restrictive, authors used three criteria: the discount rate (check section B.4.4 for an

explanation), the federal funds rate, and the Boschen and Mills measure—a narrative-

based measure that examines the Federal Reserve Open Market Committee records

and similar documents to assess the monetary policy stance. Jensen and Mercer found a

signi�cant small-cap company premium during expansionary monetary policy periods

and no statistically signi�cant e�ect during restrictive periods. The authors also found

that the three-risk factors contribute signi�cantly to explaining cross-sectional returns.

In a paper called "The �rm size e�ect and the economic cycle" [36], Kim and Burnie

tested the hypothesis that small �rms perform well during economic expansions and

poorly in economic contractions. They created ten size-based portfolios using com-

panies’ market values in 1976 and repeated this process until 1995. Then, statistics—

i.e. mean and standard deviation—of monthly returns for each portfolio were calcu-

lated under di�erent scenarios, namely for January-December, only January, February-

December, economic expansion and contraction based on the leading indicator from

the U.S. Bureau of Economic Analysis (BEA), National Bureau of Economic Research’s

boom and recession, and monthly bull and bear markets. The authors con�rmed previ-

ous �ndings of small �rms having greater mean returns than large �rms—specially in

January—but also greater risks, and found that portfolio mean returns are higher in ex-

pansion months, boom periods, and bull markets than in contraction months, recession

periods, and bear markets, respectively. Kim and Burnie also noticed a signi�cant size

e�ect in expansion months, boom periods, and bull markets, and almost no e�ect in

contraction months, recession periods, and bear markets.

Yogo [92] discovered that small-cap companies are more pro-cyclical than large-cap

companies and earn low returns during recessions when the marginal utility of con-

sumption is highest.

In their paper [96], Asness et al. challenged the notion that the size premium has had a

weak historical record. By controlling for the quality of a �rm, the authors found that a

signi�cant and robust size e�ect appears in which small quality and small junk stocks

outperform large quality and large junk stocks, respectively. Authors used equity data
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between July 1926 and December 2012 to build decile portfolios based on the Small

Minus Big (SMB) (size factor), market capitalization sorts, HighMinus Low (HML) (value

factor), RMRF (market factor), momentum factor, STREV (short-term reversal factor),

and non-price-based measures of size. To build quality and junk portfolios, they used

pro�tability, growth, safety, payout, credit, and investment measures individually, as

well as their combinations. Authors found that junk stocks (very small, low average

returns, and distressed and illiquid) show a strong negative relation between size and

quality, explaining their infrequent size premium. Asness et al. also found that higher-

quality stocks were more liquid, while high-beta stocks tended to be more speculative

and have poor historical returns as they were those with low-quality attributes.

A more robust factor than the size factor, the momentum factor has been present

without diminishing since at least 1801 in the U.S., and the Victorian age in the U.K.,

in 40 other countries, and across other asset classes [97, 98]. Similar to other factors,

there is no consensus about why the momentum premium persists.

In their article titled "Fact, Fiction and Momentum Investing," Asness et al. [98] de-

bunked ten common myths of momentum factor using academic papers from top-level

seminars and conferences, as well as data taken from Kenneth French’s website. The

evidence presented shows that the momentum factor outperforms both value and size

over a period of 87-years with a return from 1927-2013 of 8.3% versus 4.7% and 2.9%,

and Sharpe ratio of 0.5 vs. 0.39, and 0.26 for momentum, value, and size, respectively.

This result persists evenwhen trading costs and taxes are taken into account. In addition,

the authors show that some of those myths apply instead to the value factor—e.g., being

stronger among small-cap stocks than large-cap stocks with returns per year of 5.9%

(small caps) and 3.5% (large caps) over the entire sample period or experiencing return

degradation.

Eugene Fama and Kenneth French [99] split international stock returns from 23 coun-

tries covering the period from November 1989 to March 2011 into four regions—i.e.,

North America, Japan, Asia Paci�c and Europe— and found strong momentum returns

in all regions but Japan, as well as a momentum premium in all size groups, especially

in micro-cap stocks.

In [100], Geczy and Samonov studied the momentum factor across six assets—equities,

bonds, currencies, commodities, sectors, and stocks—over 215 years, starting in January

1800 and ending in May 2014. Their dataset contains 47 country-equity indices, 48
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currencies, 43 government-bond indices, 76 commodities, 301 country-sectors, and

34006 U.S. stocks. For each asset class, the authors built the price-only and total return

versions of momentum return time series using a momentum measure consisting of a

10-month change in price with a two-month skip—i.e., Pi,t−2/Pi,t−12.

They con�rmed the importance of the momentum premium within and across asset

classes.

3.4.1.1 But... what about smart betas?

Smart beta is a term used by some investors and �nancial institutions to refer to a subset

of factor investing techniques. Strategies based on them are a combination of active

strategies and passive ones [101, 102, 35, 103].

According to smart beta supporters, given the relatively passive strategies used in smart

betas products, it might be possible to obtain greater returns by investing in these

disruptive �nancial products than by investing in other low-cost and low-risk stock

market index funds. They also claim that any investor can manage a low-turnover

portfolio without taking any extra risk, beat the market, and pay lower fees than those

charged by active managers as these products are simple and based on transparent rules

[101, 102, 35, 103]. Kahn and Lemmon performed a questionable data analysis of a

sample of 79 global equity managers from the eVestment database who reported fee data

for a $50 million investment and monthly returns over a period of �ve years—January

2010 to December 2014. They calculated the regression on six smart beta factors using

the active returns and found that static exposure to these factors explains the amount

of smart beta delivered by active managers [102].

For smart beta detractors [104, 35, 103, 105], these products are marketing gimmicks.

They are criticized for including questionable factors—i.e., factors unsupported by

empirical evidence—and earning lower excess returns than regular factor investing

strategies [104], for being factor investing strategies embellished by the marketing team

[35, 103], or for introducing selection bias when designing investment strategies that

track a particular risk pro�le based solely on daily, weekly, monthly or yearly historical

market data [105].

In "Is Smart Beta Really Smart?" [103], Burton criticizes smart beta strategies and suggests

that most of their claims are false as they can be debunked by examining their results.
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The author questions smart beta’s three core claims: greater returns, lower risk, and

lower fees after analyzing the records smart beta portfolios with real money. The author

concludes that once the returns are risk-adjusted, smart beta portfolios do not produce

alphas and might even have higher fees than traditional capitalization-weighted index

funds once the transaction costs and taxes from the required periodic rebalancing are

taken into account. Burton reasoned that these superior returns earned by a subset of

assets in the smart beta portfolio do not come from investors using traditional broad-

base index funds—as they earn the average market return. Instead, these above-average

returns come from active managers or from assuming extra risk.

3.5 Machine Learning

There have been di�erent attempts to solve the investment problem using ML. Before

the DL boom, most researchers used classical MLmethods such as SVM and regular NN

to attack this problem with contradicting results regarding which model outperforms

the others [106, 107].

An area of improvement in this �eld is the need for replicability. Some publications

lack a proper description of their input data, preprocessing step, feature selection

process, hyperparameters selection procedure, or other element of their methodology

[106, 107, 86, 105, 108].

The following reasons might cause the partial or missing information:

• Lack of knowledge: Sometimes, knowledge is hidden in obscure journals or books,

and other times, it is spread across di�erent �elds, but researchers are not fortunate

enough to stumble upon it. Thus, there are limits to what researchers know or

understand. As Epstein notes in [109]:

Only years later . . . did I realize that I had committed statistical

malpractice in one section of the thesis . . . Like many a grad student, I

had a big database and hit a computer button to run a common statistical

analysis, never having been taught to think deeply (or at all) about how

that statistical analysis even worked. The stat program spit out a number

summarily deemed "statistically signi�cant." Unfortunately, it was almost

certainly a false positive, because I did not understand the limitations

of the statistical test in the context in which I applied it. Nor did the
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scientists who reviewed the work.

• Assumed information: Although these steps are sometimes mentioned in statistical

and data science books, research papers omit this information, perhaps because

authors assumed it is common knowledge or some journals have a strict limit on

the number of words, forcing authors to discard this information.

• Fail to remember: Another possibility is that authors forget to add this information

in writing and rewriting their research papers.

• Research misconduct: Although it happens in a small fraction of cases, some

researchers are willing to commit research misconduct to pursue career goals,

including concealing or fabricating information—a list of scienti�c misconduct

incidents can be reviewed in [110]).

In other cases, research papers use short timeframes of only a few years when using

daily prices for their analysis. This bias the results positively (negatively) if the timeframe

only covers a period where the economy performs well (poorly) [107].

3.5.1 Deep Learning

In [111], Takeuchi and Lee proposed a model formed by an autoencoder—based on

stacked restricted Boltzmann machines—and a feed-forward NN to discover features in

time series of stock prices that could predict future returns. The authors used 33 input

variables—12-monthly returns, 20-daily returns, and a January indicator variable—for

each stock and labeled their data as one or zero based on whether the return over

the next month was above or below the median. The median was computed using

the cross-sectional standard normalization of 12-monthly- and 20-daily-cumulative

returns.

Despite obtaining a low accuracy rate of 53.36%, the model was used to enhance a

momentum strategy which resulted in higher monthly returns when compared to a

normal momentum strategy—3.35% vs. 1.10%, fewer risky trades, and the creation of

a trading strategy that takes the short-term reversal e�ect into account.
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3.5.2 NLP

The use ofML and other statistical models to extract valuable information from �nancial

texts has been an elusive objective for years. As more techniques and new approaches

are discovered, more accurate and useful information gets extracted.

For NLP of �nancial information, these techniques involve simple and advanced feature

transformations such as word frequency [112], information extraction techniques [113,

114, 115, 116, 117, 118, 119], event embeddings [120, 121], or word embeddings

[122, 123, 124, 125].

For simple transformation, the idea is to pass basic features so that the model performs

most of the processing. For advanced features transformation, the point is to help the

model by extracting grammatical relationships between objects, compressing grammat-

ical and syntactical information, or synthesizing events so that the ML architecture

can focus only on the main task, i.e., news classi�cation, sentiment analysis, price

prediction, etc. [112, 124, 121, 125, 123].

Prior to the introduction of word embeddings and the wide adoption of NN, NLP used

mostly simple feature transformations. A summary of those methods is included in [126].

In this paper, the authors reviewed the literature on market prediction based on text-

mining of unstructured fundamental data and compared the diverse frameworks used

to �nd relationships between the textual information and the economy. Researchers

proposed three �elds of study to classify the literature: linguistics, machine learning,

and behavioral economics. The authors summarized the literature as follows:

• Regarding input data, text mining systems combined textual and market data.

For textual data, general and �nancial news sources included the Wall Street

Journal, Dow Jones, Bloomberg, Forbes, and Yahoo! Finance. However, most

systems used �nancial news as they contain less noise than general news. In

particular, news headlines o�ered less noise than news text. The rest of the

systems performed text mining on social media and blog posts, and annual reports,

press releases and corporate disclosures.

In terms of market data, stock market indexes—e.g., Dow Jones Industrial Average

and S&P 500—and stock prices of one or more companies were commonly added

as features. In only ten percent of the reviewed articles, FOREX data was used
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instead. In both cases, time frames vary greatly, with the majority covering only

a few years of daily data points and only three covering more than ten years.

Similarly, only a minority worked with intraday data ranging from 5-minutes to

3-hours data points.

• Concerning data preprocessing, systems applied feature selection, dimensionality

reduction, or feature representation.

– Feature selection: Three-quarters of the researchers used Bag-of-words

(BOW), almost one quarter applied N-grams, and the rest utilized other meth-

ods. In the case of BOW, additional features such as noun phrases and name

entities were added, with the latter having success identifying named entities

on tweets. In the case of N-grams, language-dependency problems were

caused by advanced word sequence and syntactic structures provided by this

technique.

– Dimensionality reduction: To �ght the curse of dimensionality (see section

2.3.2), researchers employed the diverse techniques: selecting top-N terms,

setting a minimum-occurrence-threshold, using a specialized dictionary to

map speci�c terms, applying word stemming, utilizing case-folding to change

upper to lower case, and tokenization techniques (See section A.2.1.1.3.1).

– Feature representation: To represent selected features from the previous

step as a numeric value, researchers transformed these features using one

of the six most popular methods, i.e., binary encoding, information gain,

Chi-square statistics, document frequency, accuracy balanced, and term

frequency-inverse document frequency.

• In terms of ML algorithms, most researchers used them for classi�cation, and only

a small number of researchers used them for regression. The authors grouped

these algorithms into six classes: SVM, regression algorithms, naive Bayes, decision

rules or trees, combinatory algorithms, and multi-algorithm experiments.

The next step for NLP was the used of word and event embeddings in an attempt to

condense information into vectors.
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3.5.2.1 Event embeddings

Nascimento and Cristo [120] proposed combining structured events and numeric fea-

tures to predict the S&P 500 daily index.

These structured events were extracted fromBloomberg and Reuter news datasets. First,

events were created using the Open Information Extraction approach from [127] on

those datasets to split them into relation triples of the formE = (Timestamp, Actor, Action,

Object). Second, these event triples were transformed in 100-D event-embeddings

using the Skip-gram algorithm. Finally, these event-embeddings were added to form a

structured event combined with numerical features—formed by a linear combination

of S&P 500 daily prices and quadratic and cubic time transformations—to form the

input dataset.

The authors tested these features and an alternative versionwithout the event-embeddings

using a linear autoregressive model and a random forest—consisting of one thousand

50-nodes trees and compared each version using Root Mean Square Error (RMSE) and

Mean Absolute Percentage Error (MAPE) metrics. They found that adding structured

events embeddings decreased the RMSE in 10% (random forest) and 7% (AR), and the

MAPE in 6% (RF) and 7% (AR).

Xiao Ding et al. [121] used three ML architectures to model the short-, medium-,

and long-term in�uences of events on market movements. The �rst model, a neural

tensor network (NTN), was responsible for creating event embeddings using Reuters

and Bloomberg news so that similar events were mapped to similar dense vectors even

when this news did not share commonwords. The secondmodel, a Deep Convolutional

Neural Network (DCNN) was used to perform semantic composition and extract salient

global features. As for the third model, a feed-forward NN was used to combine

these global features with the stock trends. The authors concluded that event-driven

stock prediction earned greater ROI than word-embeddings stock prediction and that

modeling semantic compositionality allows the architecture to learn deeper semantic

relations between event embeddings.

3.5.2.2 Word embeddings

Authors often use word embeddings in combination with other data types to help a

model learn additional capabilities. This is the case with Tsai et al., and Peng and Jiang.
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Tsai et al. [112] combined word embeddings created with the (CBOW) Word2Vec

algorithm and syntactic information to process 10-K �nancial reports and �nd new

�nancial keywords that improve predictability. The authors transformed a lexicon

from Loughran and McDonald containing �nancial-speci�c sentiment words into word

embeddings. For each word in the lexicon, they located its closest 20 words—based

on the cosine distance—to expand this lexicon. In addition, to incorporate syntactic

information, these words were tagged with their corresponding Part-Of-Speech (POS)

tag attachments.

To evaluate whether this expanded lexicon (EXP-SYN) could improve predictability,

the authors compared EXP-SYN’s predictability of four �nancial measures to the pre-

dictability of other lexicons—the original �nancial lexicon, a lexicon expanded using

LDA, and a lexicon without the syntactic information expansion. The 10-K �nancial

reports were transformed with these lexicons and used to train an SVR model to predict

either the post-event volatility, stock volatility, abnormal trading volume, or excess

return for each company report.

The authors concluded that their method could e�ectively discover predictability

keywords and capture syntactic and contextual regularities between words.

In the case of Peng and Jiang [128], they trained a DNN model to predict future stock

movements by combining textual features extracted from the Bloomberg and Reuters

datasets and price information.

On the one hand, the �nancial datasets were preprocessed by splitting each article

into sentences. Then each sentence was labeled—once for each company mentioned

in it—with the date of the article, the company and a label ("positive" or "negative")

according to the next day closing price, or discarded when the sentence did not contain

any company. Lastly, labeled sentences were grouped by date and company name to

create the samples.

Using these samples, the authors tested models using the following extracted features:

bag of keywords (BoK), polarity scores, and category tag.

Word embeddings were created for the BoK by manually selecting seed words used to

�nd 1000 similar words—these seed words were believed to have a strong indication of

price movement, e.g., surge, rise, drop, plunge, etc. Polarity scores were computed to

measure how each word was related to price movements. As for the category tag, a list
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of categories was manually de�ned and expanded using the top 100 closest words.

In the case of numerical features, samples containing the closing prices of the previous

�ve days per target date is standardized (see section 4.2.1.2) based on the mean and

variance of these closing prices in the training dataset. Then, the �rst- and second-

order di�erences were attached to the dataset resulting in a feature vector of the form

(P,∆P,∆∆P ).

The authors found that the DNN structure, combined with all the extracted features,

yielded the best performance.

3.5.2.3 Fromwordembeddings toBidirectionalEncoderRepresentations

from Transformers (BERT)

Word embeddings were popularized byMikolov et al.’s Word2Vec [129] and Pennington

et al.’s Glove [130]. Although they were powerful models, an important disadvantage

was that they could not represent polysemy—coexistence of multiple meanings for a

word or phrase [131].

Researchers solved this problem with the Embeddings from Language Models (ELMo)

architecture [132]. This architecture creates contextualized word embeddings contain-

ing complex word characteristics such as semantics and syntax, and linguistic context

via a two-layer bidirectional Language Model (LM)s (biLMs) [122, 132]. Each biLMs has

character convolutions in which each layer contains forward and backward LSTMs—

4096 units and 512 dimension projections.

The output of each layer are intermediate word vectors created by combining the

forward LSTM—containing information about the words and the context in the past—

and the backward LSTM—containing the same information from elements in the future.

The weighted sum of these two intermediate word vectors and the raw word vectors

become the �nal ELMo representation [122, 132].

The model is trained to predict the next word in a sequence of words as an unsupervised

task. With this, the pre-trained ELMo model can be added to a wide range of NLP

architectures and improve their metrics[122, 132].

Given that ELMo contains bidirectional LSTM, it su�ered the vanishing gradient prob-

lem [133].
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Vaswani et al. [134] introduced a network architecture, named Transformer, that is

based on an attention mechanism. This mechanism solves the vanishing gradient

problem and, as a result, allows learning dependencies between distant words while

reducing the number of operations required to relate signals from two arbitrary positions

in the sequence.

The architecture is based on an encoder/decoder structure where the encoder maps an

input sequence of symbol representations to a sequence of continuous representations,

while the decoder maps these continuous representations to an output sequence. To

compensate for the loss of positional information, they used sine and cosine functions

of di�erent frequencies to attach that type of information to the embeddings.

Their model outperformed previous SOTA models in di�erent NLP tasks.

In [123], the authors developed an NLP model based on the papers mentioned in this

section. The authors designed a deeply bi-directional model based on the transformer

model. Similar to ELMo, the point of using a bi-directionalmodel was to use right-to-left

and left-to-right contexts.

The model was pre-trained on unlabeled data over di�erent pre-training tasks: masked

language modeling where the model predicts randomly masked words using only their

context; and next sentence prediction, where the model predicts the likelihood that a

sentence B followed sentence A.

Two models were created, BERT base with 12 layers (or transformer blocks), 12 atten-

tion heads, and 110 million parameters, and BERT large with 24 layers, 16 attention

heads and, 340 million parameters.

The BERT model can be used to create contextualized word embeddings or as a block

in NLP tasks such as sentence pair classi�cation, single sentence classi�cation, question-

answering, and single sentence tagging.

The authors concluded that BERT is e�ective for �ne-tuning and feature-based ap-

proaches as it competes with SOTA methods.

3.5.2.4 BERT applied to Finance

Yang et al. [125] pre-trained a BERT model on �nancial-domain speci�c corpora and

tested it on three �nancial sentiment classi�cation tasks. The corpora used by the
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authors included the corporate reports 10-K and 10-Q, earning call transcripts, and

analyst reports with a total of 4.9 billion tokens.

The three �nancial sentiment classi�cation tasks included two sentiment label prediction

tasks (a neutral, positive, or negative label) and one sentiment score prediction (a value

from -1 to 1). For the �rst two tasks, the �nancial phrase bank and the analystTone

dataset were used, and for the third task, the FiQA dataset was used.

The authors compared FinBERT against BERT and concluded that their uncased Fin-

BERT model (trained from scratch) achieved higher accuracy over both uncase and

case BERT models.

In another paper similarly titled "FinBERT: Financial Sentiment Analysis with Pre-

trained Language Models" [124], Tan Araci trained a BERT model to perform �nancial

sentiment analysis.

The author also used the FiQA and Financial Phrase Bank datasets to perform �nancial

sentiment analysis, and pre-trained the FinBERT model using the TRC2-�nancial

dataset fromReuters. Then, the FinBERTmodel was compared to two other pre-trained

language models, ULM-Fit and ELMo, using three metrics: accuracy, cross-entropy

loss, and macro F1 average.

The author showed that FinBERT was capable of outperforming the other models

across all metrics.

3.6 Reinforcement Learning

In [135], Ritter adapted an RL agent’s reward to be a function of wealth increments

to maximize the utility. The author developed a market simulation with the following

characteristics: it obeyed the Markov property; it took into account arbitrage, trading

costs, impact costs, and the mean-reversion e�ect; trade size was limited to a maximum

ofK lots which made the action space the set of values from−K,−K + 1, ...,K; the state

space was de�ned by the price—ranging from 0.1 to 100 with a tick size of 0.1—and a

maximum position size ofM stock lots—ranging from −M to M .

The Q-learning agent was trained using the market simulation. At each step, the agent

acted on the market (by buying, selling, or keeping the same stock lots). When a trading

operation was performed, trading cost and impact cost (the e�ect a trade has on the
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stock price) were applied, and a reward was given.

The author noticed that the agent designed an arbitrage-like trading strategy and

learned other characteristics of the environment—such as arbitrage, trading costs, or

mean-reversion—directly from the rewards without explicitly receiving information

about them. They concluded that an RL agent is capable of maximizing the expected

utility in a model-free context.

Tan et al. [136] combined an Adaptive Network Fuzzy Inference System (ANFIS) with

an RL to trade. The system used cycles to identify trends, an ANFIS network to predict

in�ection points in these cycles, and an RL agent to select the best trading action. The

system achieved an ROI of 240.32% in 13 years, which outperformed the market by

around 50%.

A reusable element of this work is the optimization of the RL agent to maximize ROI.

Deng et al. [137] combined a fuzzy logic system, a DNN, and RNN to teach an agent to

generalize �nancial signals.

The fuzzy logic block reduced uncertainty in data introduced by speculation, the global

economy, �nancial rumors, etc. This block received a feature vector formed by the

most recent m return values and automatically learned data membership to one of

three fuzzy groups—increasing, decreasing, and no trend. In this case, m = 50 with 45

features formed by raw price changes of the last 45 minutes and �ve features formed by

the 3-hours-, 5-hours-, 1-day-, 3-days-, and 10-days momentum changes.

The output passed to the DNN block, which provided feature learning capabilities to

the framework and outputs a 150-dimension vector. This vector is the input to the

RNN block in which the trading actions—buy, sell, or neutral—are learned.

The system earned greater ROI when compared to a DCNN, an RNN, and an LSTM.

This paper showed that a DRL system could learn to select trading actions that maximize

ROI despite the uncertainty in the input data.

3.6.1 Partially Observable Markov Decision Process

Brown et al. [138] developed a system, named Libratus, capable of playing heads-up

no-limit Texas hold’em. In this type of poker game, each of two players seeks to obtain

the best hand after being dealt two cards face down, and then �ve community cards
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face up—in three stages. Rounds of betting—in which players can check, call, raise or

fold—take place before revealing the community cards and after each stage [139].

Libratus consists of three modules: the blueprint module, the nested subgame solving

module, and the self-improver.

In the blueprint module, the game is abstracted by reducing the betting space (action

space) and hand space (state space). The action space is reduced by considering only

$100-dollars increments, while the state space is simpli�ed by grouping similar poker

hands into abstract buckets.

Using this abstraction, the AI plays simulated games of poker against itself using an im-

proved version of an algorithm called Monte Carlo Counterfactual Regret Minimization

(MCCF). These simulations create a tree in which each node contains a regret value

representing the AI’s regret of not selecting that action in the past. As more games are

played, these regret values approach zero. The regret values control the exploration by

either skipping unpromising actions with very negative values or selecting high-value

branches with higher probability.

The second module constructs a more detailed abstraction and solves this subgame in

real-time, making sure that this solution �ts within the larger blueprint strategy without

assuming the opponent’s strategy.

An important point is that subgames cannot be solved in isolation as the optimal strategy

might depend on other branches in the tree, and for this reason, it is not possible to

discard other branches as the gamemoves down the tree. This contrasts with AlphaZero

as complete information games can discard branches in which the game is not being

currently played.

The self-improver module enhances the blueprint strategy by interacting with human

poker players and �lling missing branches of the tree based on the strategies they often

use.

Researchers found that Libratus beat top professional poker players by adapting to hu-

man strategies and using unpredictable strategies such as huge overbets, many di�erent

bet sizes, or even "donk betting"—a type of bet that usually inexperienced players make.
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3.7 Deep Reinforcement Learning

In [140], Foerster et al. proposed a Learning with Opponent-Learning Awareness

(LOLA) architecture in which the learning rule explicitly accounted for the impact of

other agents’ parameter updates. The authors modeled di�erent scenarios from those

in which the LOLA agent observed another agent’s update rule to those in which the

LOLA agent used another agent’s trajectories to estimate its behavior.

In addition, a higher-order LOLA was proposed to model the behavior of other agents

by assuming that those agents used a �rst-order LOLA learning rule.

It was found that LOLA agents learned to cooperate with high social welfare even

though they only knew that other agents were trying to maximize their return. In other

words, agents found the optimal cooperative solution (according to game theory) in

each game without being programmed to cooperate. In addition, the authors concluded

that adding higher-order LOLA led to suboptimal solutions.

In [141], Tampuu et al. used an NN as a function approximator to train an RL agent to

play pong alongside another agent without explicitly modeling the agents. The authors

used similar methods to other game-playing papers, such as replay memory and frame

skipping. While the former is a method that consists in storing experiences—formed

by tuples (state, action, reward, new state)—and uniformly sampling these experiences

during training to reduce learning instability, avoid local minima, and to ensure that

sequences are uncorrelated; the latter is a method that samples one frame every n

images to provide agents with enough information to discern motion.

A wide array of game statistics were collected to study the agents’ game style as they

varied the reward. The statistics included the average paddle-bounces per point, the

average wall-bounces per paddle-bounce, and the average serving time per point. It

was found that agents moved from fully cooperative—when the reward was -1—to fully

competitive—when the reward was +1—by analyzing the statistics and noticing that

competitive agents used the upper and lower edges to bounce the ball while cooperative

agents did not bounce the ball. These actions suggest that agents are aware that bouncing

the ball increase game di�culty.

In a series of papers, Silver et al. [60, 142, 143] showed that by combining DL and RL,

it is possible to teach an agent to play a variety of games by improving iteratively after
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each game.

In [142], an RL agent uses DNN and a Monte Carlo Tree Search (MCTS) to learn, tabula

rasa, the game of Go. The DNN is formed by residual blocks containing convolutional

layers and is fed a raw board representation of the position and history to produce the

probability of selecting each move and a scalar value indicating the player’s probability,

in turn, of winning from the current position. The MCTS uses DNN output to guide its

simulations to compute a vector of search probabilities recommending moves to play.

This vector is proportional to the exponential visit count for each move.

It was found that agents achieve higher performance than humans, and can discover

new knowledge by discarding ine�cient moves in favor of better ones.

In [143], a general RL algorithm named AlphaZero is used to train an agent tabula rasa

in the games of chess and shogi. The agent learns by self-playing games guided by a

DNN and an MCTS just as in the previous model; however, AlphaZero is di�erent in

three ways: there is no data augmentation given that chess and shogi board positions

are not symmetric; it optimizes the expected outcome taking into account three values

(win, lose, draw); and a single NN is updated continually, but noise is added to prior

policies to ensure exploration.

AlphaZero defeated previous Go algorithms, as well as state-of-the-art chess and shogi

programs. In addition, it was reported that AlphaZero independently discovered and

played the most common human openings [143].

In a paper titled "Adversarial Deep Reinforcement Learning in Portfolio Management"

[144], the authors implemented three continuous RL algorithms, i.e., Deep Determinis-

tic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and adversarial Policy

Gradient (PG) to manage a portfolio consisting ofm+1 assets (including a risk-free asset).

Their assumptions regarding the market were as follows: a continuous market—i.e.,

open pricet = close pricet−1—having the Markov property, daily reallocation at the end

of the day, and the existence of transaction costs.

The authors used a dual Deep Q-Network (DQN) with experience replay to stabilize

the DDPG training. Nevertheless, the DDPG and PPO models had an unsatisfactory

performance during training as they could not �nd optimal policies. Liang et al. pro-

posed adversarial training to solve this problem in which random noise—N (0, 0.002)—

was added to market prices, and the objective function was modi�ed to include the
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volatility of asset returns.

The authors performed their experiments using China stock data from which �ve assets

with at least 1200 trading days were randomly selected. This data was normalized using

the last day of the period’s closing price, and the missing data points for holidays and

weekends were �lled forward using the close price on the previous day for prices and

zero for volume.

Their backtest results show that the adversarial PG outperforms the other methods

and metrics. However, they noted that performance was unstable due to DRL being

susceptible to the data quality and noise.

Jiang et al. [145] developed a �nancial-model-free RL framework for the portfolio

management problem. The framework comprises an Ensemble of Identical Independent

Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic

Batch Learning (OSBL) scheme, and a reward function.

The �rst element represents a group of NNs that evaluates an asset’s short-term growth

potential based on its history and output weights for the next trading period. Three

models were used as EIIE, i.e., CNN, RNN, and LSTM. They are trained using an

OSBL scheme because it is compatible with pre-trade training, online training during

backtests, and online trading. The third element, PVM, records the portfolio weights

of each period. As for the reward function, it represents the average of the periodic

logarithmic returns.

Although their framework can be used in any market, the authors applied it to the

cryptocurrency market. The trading period is divided into intervals of equal length—30

minutes—and within each period, OHLC prices are recorded. At the beginning of each

period, funds can be reallocated across m assets, including a cash asset—i.e., Bitcoin

in their research—by buying or selling assets at the opening price of that interval plus

transaction fees. When portfoliot − portfoliot−1 > 0, the reallocation is a buy operation,

and when portfoliot − portfoliot−1 < 0, it is a sell operation.

In addition, the authors assume zero slippage and zero market impact. The former

means that the cryptocurrency market is liquid enough so that each trade can be

executed immediately at the price when an order was placed. The latter refers to the

negligible e�ect of the capital invested on the market.

Similarly, in a paper titled "Financial Trading as a Game" [146], Huang developed a
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trading system for 12 currencies using a deep recurrent Q-network. The exchange

market was modeled as a Markov Decision Process (MDP) with states containing 198

dimensions: a) three time-features for minutes, hours, and days of week encoded using

a sinusoidal function; b) 192 market features formed by the eight most recent log returns

on closing price and tick volume normalized using a 96 period for each of the 12

currencies used; and c) three position-features indicating the agent’s current position.

The author used tick-by-tick forex data from January 2012 toDecember 2017 resampled

to 15-minutes intervals and an LSTM architecture whose weights were initialized using

a Gaussian distribution N (0, 0.001).

The author found that the agent stayed pro�table under most simulation settings and

that the strategies discovered had low or no correlation with the baselines.

3.8 Common problems in this research area

Research in this area is prone to over�tting, which is a serious problem that explains

why investment models and strategies that look good on paper often underperform in

practice [105].

In this thesis, over�tting denotes two de�nitions: the case where an ML model mem-

orizes the training data and fails to generalize, and the case, referred to as backtest

over�tting, where too many variations of investment strategies are tried, relative to the

amount of data available leading to false positives.

While it is clear how backtest over�tting occurs, in �nance, the �rst situation appears

in the following situations:

• Training complex models that end up memorizing the data. For instance, using a

large number of neurons over�ts the data quicker.

• The usage of models that converge to a solution without guaranteeing that it is a

global optimum or does not over�t, like the SVM model.

• The application of methods that do not ensure i.i.d. data, such as standard cross-

validation methods.

Some alternatives to prevent it are listed next [147]:

• Applying early stopping ensures that MLmodels stop training if the loss function
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on the validation set has not improved after a speci�c number of iterations (i.e.,

tolerance).

• Using bagging (bootstrap aggregation) can reduce the variance in forecasts. It

involves creating N training sets using random sampling with replacement, �tting

N estimators (one per training set), and averaging the individual forecasts (or using

majority voting in the case of categorical variables) from theN models. RFs include

a similar mechanism to bagging but add a second layer of randomness, i.e., node

split, with the purpose of further decorrelating the estimators.

• Adding dropout layers in NNs decorrelate neurons that �re together by randomly

turning o� neuron connections during training.

• Removal of overlapping periods to reduce or eliminate leakage—when the training

set contains information also appearing in the test set.

• Running the experiments a limited number of times.

• Using di�erent seeds for random initialization to reduce the likelihood of getting

nice-looking results by chance.

• Applying cross-validation for time series to avoid introducing look-ahead bias and

giving the model future information beforehand.

Lopez de Prado and other researchers have questioned these, and other problems in a

series of papers [86, 105, 108]. In essence, any scheme based on searching over a large

set of strategies is susceptible to over�tting, given that the probability of selecting a false

positive and making backtest results worthless increases as the number of trials grows.

For this reason, failing to report the number of these trials is misleading. This comments

extends to any tasks that use low-frequency historical data (daily, weekly, monthly, or

yearly) to discern patterns, such as technical analysis, or to design investment portfolios

with a particular risk pro�le, such as with smart beta [105].

In this thesis, over�tting is reduced by using: early stopping, running experiments a

limited number of times, applying cross-validation for time series, using di�erent seeds

for random initialization, adding dropout layers, and using models—such as RF—that

create multiple estimators.
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3.9 Summary

Based on the literature review, it is possible to conclude that:

There remain researcherswho justify the existence of EMHby testing it under unrealistic

and restricted market scenarios, and rationalize their support with statements such as

"strictly speaking the EMH is false, but in spirit is profoundly true" [148]. However,

EMH does not appear to exist under regular conditions as elements such as asymmetric

information, human di�erences in intelligence (due to genetics, economic disparities,

and other factors), corruption, etc., seem to make the market skew away from the

e�cient market. As such, investors can take advantage of irrational investors and

ine�ciencies in the markets.

Economies and markets are interconnected locally, regionally, and globally to other

economies and markets. Although the level of correlation varies among economies

and markets and depends on di�erent economic variables, researchers suggest that ele-

ments such as shares, stock market indexes, currency exchange rates, macroeconomic

indicators, and news can help investors identify these relations.

Data points from these elements are collected at di�erent intervals ranging from seconds

to trimesters. Although it is suggested that high-frequency currency data captures the

immediate price response of macroeconomic news more accurately than low-frequency

data [67], most datasets in this thesis are low-frequency quarterly, monthly, weekly,

and daily data. For this reason, combining high-frequency data with low-frequency

data might bias the models towards the data with more data points.

In addition, data has two main types: numerical and textual datasets. In this thesis,

numerical data includes macroeconomic information, fundamental indicators, technical

indicators, quantitative information, while textual datasets include only �nancial news.

In terms of macroeconomic events, the literature suggests that some of them in�uence

asset movements. These macroeconomic indicators include the GDP, unemployment

rate, the Federal Reserve Bank (FED)’s rate, etc. For this reason, in this thesis, macroe-

conomic variables—described further in section B.4—are also considered in the model.

Concerning fundamental indicators, research is limited but it suggests that fundamental

indicators have better performance than technical indicators.

In terms of technical indicators, research has had mixed results. Supporters of technical
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analysis suggest that it is possible to identify trading patterns in data and apply these

patterns to the market to obtain better pro�ts than other methods such as buy and hold.

This part is con�rmed by most research only when trading costs are ignored. When

these costs are taken into account, pro�tability vanishes except for the Taiwanese,

Mexican, and Thai markets [83, 84].

In some cases where pro�tability is maintained after considering costs, research su�ers

from data mining bias as several combinations of the technical indicators are tried

[82, 83]. This is the case, for instance, in [84], where the authors tried 4,428 strategies

to �nd pro�table long-term/short-term moving average pairs that outperformed a buy

and hold strategy.

Given that these strategies are �xed, perhaps giving technical indicators to an RL agent

might be useful. For this reason, these indicators are also included in the dataset.

As for quantitative information, factor investing is said to earn higher returns than

technical and fundamental analysis because it selects assets based on the type of risk

instead of the type of asset. This approach results in a drastic reduction in the average

correlation among assets—some researchers a�rm that this correlation is almost zero

[89].

In the case of textual data, several models have been used to extract information. How-

ever, a problem in most �nancial models is the level of noise introduced by considering

the whole dataset. Usually, researchers reduce this noise by only keeping the �nancial

news [126]. For this reason, that alternative is also preferred in this thesis.

Results fromXiaoDing et al. [121] suggest that extracting complex semantic relationships—

in the form of event embeddings—from �nancial news perform better than using regu-

lar word embeddings. However, transformer-based embeddings are becoming more

prevalent given their SOTA metrics [149] and seem like a viable alternative to those

embeddings.

Moving to the ML research, there seems to be a reproducibility problem as researchers

in the area have failed to report their whole methodology, including data retrieval,

preprocessing, hyperparameters selection, to name a few. In addition, some of these

models are tested using a small timeframe of a few years—in some cases, during eco-

nomic expansion—which calls into question some of their conclusions [86, 108].

Despite these problems, ML models have been used to forecast di�erent economic
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elements such as stock prices, currency prices, etc., with mixed results. In the case of

numerical �nancial data, the models most commonly applied are SVM and NN, with

inconclusive results on which model outperforms the other. In this thesis, SVM, RF,

and NN architectures are evaluated to �nd a suitable brain for the trading agent.

In terms of text mining models, most publications utilize a small set of data types, i.e.,

stock prices and FOREX data [126]. This might impede an ML model from discovering

market dynamics. Moreover, most of them cover only a limited number of years—fewer

than �ve years—which call into question the models’ generalization capabilities.

Some researchers have opted to use market simulation. Although they are ideal for

testing RL investing agents, caution should be takenwith some assumptions made during

the implementation of these simulations. In particular, with random price movements

and trading costs.

The former is an unrealistic assumption, given that not all price movements occur ran-

domly. Events such as the publication of tweets from relevant people, the modi�cation

of credit ratings, the release of economic indicators, among other causes, can (and often

do) modify market prices. In some cases, even the time or date in which these events

get published does not happen randomly, especially with government data given that a

publication calendar is released months before the publication date.

The latter, in some cases, is faulty. For instance, in [135], the author added the trading

impact cost and assumed that this cost always increases stock prices after each trade.

However, in those cases of decreasing price movements, such as during panic selling,

prices are not a�ected by buyers but by sellers, and the impact cost is negative as bid

orders are being consumed.

With the wide adoption of deep learning and RL and new techniques, such as MCCF

and MCTS, it has been possible to solve complex games—i.e., poker, go, chess, Atari

games, etc.—by drastically abstracting high-dimensional spaces to maximize a reward

signal. Thus, it seems reasonable to see stock trading as a game with partially observable

states and use deep learning and RL to solve it.

In the next chapter, the methodology used to assess all the information suggested in

the literature review is described.
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Frankly, I tremble when I think that two of the key prices in any economy, the

interest rate and the exchange rate, are decisively influenced by the financial

decisions of some of the most credulous and worst-informed people in this world
—Jaime Francisco Javier Ros Bosch.

This chapter describes the methodology followed in this the-

sis.

Section 4.1 lists the di�erent data types, where they were

extracted from, and the results from exploring these datasets.

In section 4.2, the preprocessing, feature selection, feature

extraction, and feature construction steps applied to each of

the datasets are described.

Section 4.3 contains information regarding all the trained and

tested models and their hyperparameters and metrics to tune

and evaluate them.

Finally, in section 4.4, the method to test the model is pre-

sented, along with the justi�cation for using that method.
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This thesis follows a standard ML pipeline to develop the DRL investing system. The

pipeline involves the following blocks: data acquisition, feature engineering, model

selection, model testing, and deployment. An overview of these blocks can be observed

in Figure 4.1.

Figure 4.1:Machine Learning Pipeline. Overview of the steps from data

acquisition to model deployment.

4.1 Data acquisition

Involving collecting and exploring data, data acquisition is probably the most important

step in an ML pipeline. Data that is biased or contains other types of errors is useless—

or even dangerous [150]. Just as the saying goes: "garbage in, garbage out." For this

reason, collecting data, labeling data, or recording a reward signal correctly needs to be

performed cautiously.

In general, stock trading is challenging due to the vast amounts of data, dynamic interac-

tions between economic agents, and the constantly changing methodologies to report

the data. For instance, macroeconomic models used by governments are di�erent and

are changed from time to time.

4.1.1 Data Collection

There are di�erent types of data used by investors to predict price movements or

rationalize their speculative decisions. In this thesis, eight types of data are included to

help the model guide its investment decisions. These eight data types include stock

market, exchange indexes, technical and fundamental data, currencies, commodities,

macroeconomic data, and textual data.

While stockmarket, technical and fundamental data are included to provide an overview
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of the U.S. economy at a local level, exchange indexes, currencies, commodities, and

macroeconomic data are added to situate the U.S. economy within the international

context. As for textual data, it is incorporated to support the other types of data given

that �nancial news includes information about possible future events—e.g., companies

acquisitions or mergers pending the approval of some government institution—attempts

to explain market movements—regardless of how accurate or truthful these are—or

provides opinions about speci�c topics.

Data covers the time frame from 1987/01/02 to 2013/11/01, except for some cases

where it is not available yet—for companies such as Amazon or Google that had not

been founded—or currencies that had not been introduced (i.e., Euro).

The fundamental and textual datasets limit the time frame. Fundamental data was only

available from 1990 onward (see subsection 4.1.1.5), while textual datasets covered only

1987 to 2013 (see subsection 4.1.1.9). Although the datasets could have been expanded

to include more recent data points, the 26-year time frame contained a signi�cant

sample of diverse economic events. As more data points would have required additional

training time, it was not considered crucial to parse the web to acquire these extra data

points.

Figure 4.2 shows the time frame covered by the datasets, and Table 4.1 lists the types

of datasets included and the features selected in each of them.

In this thesis, data can su�er from the following type of biases: data-mining bias, sample

bias, look-ahead bias, and time-period bias. Thus, special care was taken when handling

data to avoid introducing these biases—the interested reader can visit section A.1.1 in

Appendix A for a description of them.

Data-mining bias was prevented by using a limited number of runs per experiment,

cross-validation for time series, and random initializations. These steps decreased the

likelihood that good performance had been the result of chance.

Sampling bias was reduced due to the use of a �nancial index (i.e., the S&P 500 index)

which is created with the speci�c goal of selecting a sample of companies that are

representative of the economy, sector, or industry.

Look-ahead bias was eliminated using cross-validation for time series and careful

application of pre-processing steps. These steps prevented the model from knowing

future information beforehand.
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Figure 4.2: Time frame covered by datasets. Figure shows the available data

points for the di�erent datasets separated in two blocks: the blue block used

as a pre-fold set in the anomaly detector model (see section 4.2.3), and the

orange block used in the experiments.

Lastly, time-period bias was avoided via a broad timeframe that included a diverse set

of positive and negative economic events.

4.1.1.1 Stock market data

A key data set to study the behavior of markets and teach an agent how to invest is stock

market data. However, there are thousands of companies only in the U.S. [151]. For

this reason, it would be impossible to include the information of all of those companies.

One alternative to solve this problem is to sample companies, but this has the risk of

adding companies that are not representative of their industry. A better alternative is

to use companies that are part of a �nancial index such as the S&P 500, which is the

alternative used in this thesis.

With 425 stocks selected based on data availability from Yahoo Finance, a data set

containing OHLC prices, adjusted-close price, and volume is formed. The list of

companies is shown in Table B.1 in Appendix B.
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Table 4.1: Data types used in the experiments.

Type of data Features

Stock market data Open, close, low, high, and adjusted-close prices, and

volume.

Benchmark (S&P 500) Open, close, low, high, and adjusted-close prices, and

volume.

Technical data MACD, BB, TUO, TDI, Williams %R, ADX, EVWMA,

VWMA, CCI, and RSI.

Fundamental data See Table B.3.

Stock exchange indexes AS30 (Australia), CAC 40 (France), DAX (Germany), DJIA

(US), FTSE MIB (Italy), IBEX (Spain), IBOVESPA (Brazil),

IPC (Mexico), KOSPI (Korea), MERV (Argentina), NAS-

DAQ (US), Nikkei ( Japan), SENSEX(India), SHCOMP

(China), and FTSE 100 (UK)

Commodities Agricultural raw material index, aluminum, banana, beef,

coal, co�ee (Arabica and robusta), copper, corn, cotton,

gasoline, gold (London), industrial material index, iron,

metal index, oil (Brent, Dubai and WTI), rubber, shrimp,

soybeans, sugar, sun�ower oil, uranium, and wheat.

Currency exchange rates BRL / USD, CAD / USD, CNY / USD, DKK / USD, HKD /

USD, INR / USD, JPY / USD, KRW / USD, MXN / USD,

NOK / USD, SEK / USD, TWD / USD, USD / EUR.

Macroeconomic data See Table 4.3

Textual data New York Times Annotated Corpus; Bloomberg News

dataset; Mergers and acquisitions dataset from Thomson

ONE.

91



Chapter 4. Methodology

4.1.1.2 S&P 500

As mentioned in section 2.1.3.2, a benchmark is used to compare portfolios. Thus,

having this information available will be useful. On the one hand, it might help the

model discard unpro�table investment strategies sooner as the agent is not limited to

compare only among its investment strategies, but can compare with the benchmark.

On the other hand, it will help evaluate the agent’s performance after the experiments

within the market context.

Since S&P500 stockmarket data is being used, it seems reasonable to use that capitalization-

weighted index as a benchmark as it attempts to mirror the U.S. economy by carefully

selecting assets based on their liquidity, sector, industry, and capitalization [17].

Like the stock data, the S&P 500 index data includes OHLC and adjusted-close prices,

and volume information.

4.1.1.3 Stock exchange indexes

Given that economies do not exist in a vacuum, it is imperative to consider the e�ects

of economic markets given that assets, markets, economies and regions in other time

zones can provide relevant investing information in terms of market sentiments and

expectations ahead of market openings in other regions [66, 67, 65].

To capture this information, stock exchange indexes from the top economies—as

measured by the International Monetary Fund (IMF)’s 2017 GDP ranking—are used.

Depending on their availability, datasets are retrieved from Yahoo Finance which results

in 16 datasets from 14 countries, listed in Table 4.1.

4.1.1.4 Technical data

Technical data consists of technical indicators calculated using the Technical Trading

Rules (TTR) package in R from stock market data. They are used due to their popularity

and apparent e�ciency [152, 26, 27].

The indicators used in this thesis are listed in Table 4.1, and further details can be

consulted in section B.2.1 in Appendix B.
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4.1.1.5 Fundamental data

Fundamental data is extracted from Thomson ONE. It included the income statement,

balance sheet, and statement of cash �ow data, but due to its high dimensionality,

�nancial metrics and ratios were calculated from them instead [153].

To evaluate most companies, [153] suggests the �rst �ve groups, and to evaluate banks,

[154] recommends key bank values. These groups are de�ned as follows:

• Return and pro�tability ratios: These are ratios that serve as fundamental

tools in the valuation process. They indicate the quality of a company in terms of

pro�tability within the context of other indicators.

• Financial stability ratios: These ratios validate and quantify a company’s �nan-

cial stability, which helps investors select companies with stable capital structures

and su�cient cash �ow.

• Working capital management ratios: They tell investors which companies

have su�cient cash �ow to meet their short-term operating cost and short-term

debt obligations and which companies risk being unable to pay their liabilities.

The termworking capital management refers to a business strategy that optimizes

inventory, receivables, and cash on hand to increase pro�tability.

• Valuation ratios: These ratios help investors compare share prices of di�erent

companies and determine their value.

• Key bank values: They are used to assess bank pro�tability, activities, and

growth.

Table 4.2 shows the ratios included in this thesis, and additional information regarding

them is presented in section B.3 in Appendix B.

4.1.1.6 Currency data

Additionally to the stock exchange index information, currency exchange rates also

convey information regarding market correlations and mood [67].

Currency exchange rates are retrieved from the Federal Reserve Bank of St. Louis

(FRED) based on two criteria: a country’s rank from a list of nations ordered according
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Table 4.2: Fundamental data.

Group Ratios

Return and pro�tability ratios Asset turnover, operating cash �ow margin,

EBIT margin, EBITDA margin, net pro�t mar-

gin, ROA, ROE, ROI, and ROCE.

Financial stability ratios CAPEX ratio, current assets to total assets ra-

tio, debt to EBITDA, dynamic gearing ratio,

equity and long term debt to �xed assets ra-

tio, equity ratio, equity to �xed assets ratio,

gearing, goodwill ratio, productive asset in-

vestment ratio, and noncurrent assests to total

assets ratio.

Working capital management ratios Days payable outstanding, days sales outstand-

ing, cash ratio, quick ratio, current ratio, inven-

tory intensity, inventory turnover, inventory

days, and cash conversion cycle.

Valuation ratios Market capitalization, price to earnings ratio,

price to book ratio, price to cash �ow ratio,

price to free cash �ow ratio, free cash �ow

yield, price to sales ratio, enterprise value (EV),

EV to EBITDA, EV to EBIT, EV to free cash

�ow, and EV to sales.

Key bank values Earning assets ratio, loan loss provision, loans

to deposits, non-interest income, operating

expense ratio, spread, and tangible common

equity ratio.

94



Chapter 4. Methodology

to the IMF’s 2017 GDP ranking and availability. This process results in 13 currency

pairs.

4.1.1.7 Commodity data

Commodity data is also queried from FRED. Commodity datasets are selected based on

data availability and subjective assessment of which is more likely to a�ect the market

based on the literature review.

Commodities related to food were included because their prices might a�ect in�ation

and the companies that use it as input for their products, such as Starbucks.

Commodities related to production, i.e., gold, iron, the industrial material index, cop-

per, and rubber were selected because their prices a�ect, directly, companies using

them as input for their products (e.g., Alcoa producing aluminum trim coil) and, indi-

rectly, companies using intermediate goods made with these commodities as input (e.g.,

Volkswagen using aluminum in its cars).

4.1.1.8 Macroeconomic data

To evaluate the economy’s overall health, di�erent institutions, government agencies,

and organizations collect information about the economy using surveys of people and

companies.

This thesis uses the indexes and reports listed in Table 4.3 and described in section B.4

in Appendix B. They were selected based on data availability and the literature review

regarding variables a�ecting the global economy.

Macroeconomic, fundamental, and commodity data have a variety of sampling frequen-

cies. These values were resampled to a 1-day resolution and, to minimize the sampling

frequencies’ e�ects, two steps were taken: 1) collect originally published data and 2)

carry forward the last observation.

In the �rst case, attempts to collect the original data points weremade for all the datasets

assuming that these values were the ones observed by the market on a given day. The

only exception was the GDP report—revised periodically and up to three years after its

release—as restated values were used with a negligible e�ect on the results.
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In the second case, it was assumed that, until new o�cial reports or values were

published, the most recent value was the value used by the market.

Table 4.3: List of Macroeconomic data, frequency, and publisher.

Report Frequency Published by

The Consumer Sentiment In-

dex

Monthly University of Michigan (UM)

Consumer Con�dence Index Monthly OECD databank

Employment Situation Re-

port
Monthly U.S. Bureau of Labor Statistics

Consumer Price Index

Producer Price Index

Median Consumer Price In-

dex

Monthly Cleveland FED

Industrial Production and

Capacity Utilization Report

Monthly The Federal Reserve

Advance Report On Durable

Goods

Monthly U.S. Census BureauNew Residential Construc-

tion

New Residential Sale

Retail Trade Report

Gross Domestic Product Quarterly
U.S. Bureau of Economic Analysis

Personal Income andOutlays

Report

Monthly

Delinquencies on All Loans

and Leases, Commercial and

Industrial, All Commercial

Banks

Quarterly

FRED
Money supply (M3) Monthly

Unemployment Insurance

Weekly Claims Report Weekly

Continued on next page
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Table 4.3: List of Macroeconomic data, frequency, and publisher.

Report Frequency Published by

30-Year FixedRateMortgage

Average in the United States

Interest rates

Daily
TED spread

Bank Prime Loan Rate

4.1.1.9 Textual data

Although numeric information is useful, other data types cannot be directly quanti�ed

but are equally valuable. For instance, satellite and CCTV images can provide informa-

tion about parked vehicles at supermarkets that work as a proxy to estimate quarter

revenue. Tweets and Google trends can provide real-time information about events

worldwide, and news can present further context and information about an event [147].

In this thesis, news data is the best alternative because obtaining satellite and CCTV

images is expensive, and tweets and Google trends do not contain enough details.

Conversely, news data is cheaper to get using web scraping techniques, and contains

more detail about an event that can help a model make an informed decision [147].

In order to cover the period of study from 1987 to 2013, three datasets are used: New

York Times Annotated Corpus (NYTAC), the Bloomberg news, and the mergers and

acquisitions datasets.

The NYTAC contains over 1.8 million articles (excluding wire services articles) written

by the New York Times between January 1, 1987, and June 19, 2007 [155].

Most articles contain metadata added by the New York Times Newsroom, Indexing

Service, and sta� in the form of tags or summaries. Tags are normalized and grouped

according to �ve categories—persons, places, organizations, titles and topics—and

summaries are written by library scientists. While more than 1.5 million documents are

manually tagged with at least one of these tags and over 275,000 algorithmically tagged,

only 650,000 articles include a summary [155].

The text is formatted using the News Industry Text Format (NITF), an XML speci�cation

that "provides a standardized representation for the content and structure of discrete
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news articles" [155] to answer who, what, when, where, and why questions.

The Bloomberg dataset contains 450,341 news from Bloomberg spanning from October

20, 2006, to November 20, 2013. Unfortunately, because this dataset was scraped, it

does not contain the additional metadata that the NYTAC has [155].

The mergers and acquisitions dataset contains information about company mergers and

acquisitions events between January 2, 1987, and November 1, 2013. The dataset was

retrieved from Thomson ONE.

It includes 263,216 rows, each of which has the ten following �elds:

• Target: company to acquire or to be merged with, or the assets to acquire.

• TargetNation: country in which the company or assets are located.

• DateAnnounced: date of the announcement.

• Acquiror: company proposing the operation.

• AcquirorNation: country in which the acquiror is located.

• TransactionValue: value of the transaction formatted as a percentage, decimal, or

Dollar value.

• TargetBusinessDesc: business description of the target company.

• PercSharesAcq: percentage of company shares acquired (when applicable).

• Synopsis: context description of the acquisition or merger.

• DealType: type of deal.

4.1.2 Data exploration

Data exploration is used to identify features that need to be �xed or discarded and

features that can be combined or transformed.

Regarding the �rst group, missing or erroneous values appear when values are not

measured, measured but lost, or measured with a damaged instrument—causing an

erroneous and unusable value—and might cause problems further in the pipeline as the

next blocks often expect complete data [156, 157].
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Concerning the second point, adjusting and transforming data are utilized with two

goals: to homogenize data variability and simplify the data structure [38, 42].

After data exploration, the following information was gathered:

• All numerical data sources contain missing values.

• The commodities dataset contains invalid values.

• The currency dataset contains missing values for the Euro as it was introduced in

1999.

• The fundamental dataset is sparse and contains a signi�cant number of features.

• News sources are formed by di�erent types of news and might contain high levels

of noise in terms of irrelevant news from a �nancial perspective.

– The maximum number of characters in an article is 232721.

– The minimum number of characters in an article is 1.

– The average number of characters per article is 3260.

• The Bloomberg and Reuters datasets do not contain metadata as the NYTAC does.

• The merger and acquisitions dataset contains a signi�cant number of typos and

the target column has noise in the form of amounts, e.g., the area of acquired

property.

• Data distribution varies across datasets which might suggest that di�erent normal-

ization techniques are needed.

This information is summarized in Table 4.4. Descriptive statistics are included in

Tables 4.5, 4.6, and 4.7 in this section, and in Tables C.1, C.2, C.3, C.4, C.5, and C.6 in

appendix C. In addition, a sample of some datasets’ histograms is included in Figures

4.3, 4.4, and 4.5 in this section.

Table 4.4: Results of data exploration.

Dataset Subset Percentage of NANs Number of features

Stocks data 22.01% 2550

Fundamental data

Balance sheet 95.88%

18770Cash �ow 95.9%

Continued on next page
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Table 4.4: Results of data exploration.

Dataset Subset Percentage of NANs Number of features

Income statement 95.53%

Technical data 22.22% 9775

Benchmark 0.00% 6

Exchange indexes 30.67% 90

Macroeconomic data 95.03% 432

Currency data 11.9% 13

Commodities 88.64% 25

Table 4.5: Descriptive statistics of all the stock market prices.

Fields Close High Low Open Volume

count 2.42e+06 2.42e+06 2.42e+06 2.42e+06 2.42e+06

mean 2.96e+01 3.00e+01 2.92e+01 2.96e+01 4.52e+06

std 5.37e+01 5.43e+01 5.31e+01 5.37e+01 1.40e+07

min 6.50e-04 1.30e-03 6.50e-04 6.50e-04 0.00e+00

25% 9.22e+00 9.36e+00 9.08e+00 9.22e+00 4.91e+05

50% 2.09e+01 2.11e+01 2.06e+01 2.09e+01 1.41e+06

75% 3.75e+01 3.80e+01 3.70e+01 3.75e+01 3.77e+06

max 2.074e+03 2.08e+03 2.04e+03 2.07e+03 1.86e+09

Figure 4.3: Stock, benchmark and indexes histograms.
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Table 4.6: Descriptive statistics of a random features sample of technical data.

Fields ADX atr di trueHigh up

count 7261.00 7274.00 7279.00 1014.00 7269.00

mean 26.58 0.75 0.79 40.056 14.56

std 12.06 0.38 10.88 10.89 11.55

min 6.09 0.21 -60.40 22.18 1.95

25% 18.09 0.44 -4.51 29.84 7.46

50% 23.64 0.68 1.38 40.27 11.27

75% 31.85 0.96 6.91 50.42 16.04

max 83.85 2.29 42.69 59.87 60.44

Figure 4.4: Features sample histogram of technical data.
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Table 4.7: Descriptive statistics of a random features sample of currency data.

Fields DEXCHUS DEXHKUS DEXJPUS DEXKOUS DEXTAUS

count 6980.00 7040.00 7041.00 6997.00 6814.00

mean 6.83 7.77 115.44 996.47 30.60

std 1.68 0.027 20.77 211.87 3.22

min 3.19 7.71 75.72 667.20 24.51

25% 5.74 7.75 102.94 801.30 27.51

50% 7.42 7.77 115.14 985.00 30.83

75% 8.28 7.80 127.05 1163.00 32.99

max 8.74 7.83 202.70 1960.00 39.87

Figure 4.5: Currency data histogram.
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4.2 Feature engineering

Feature engineering refers to the process of extracting, transforming, or creating features

that better represent the underlying problem and are suitable for the ML models to

train the algorithms faster, reduce model complexity and over�tting, and increase

interpretability and model accuracy [42, 158, 159].

Figure 4.6: Feature engineering steps. The diagram contains the optional

steps during feature engineering.

Feature engineering consists of four steps: preprocessing, feature selection, feature

extraction, and feature construction [159, 160]. These blocks are displayed in Figure

4.6. While preprocessing is always applied at the beginning of the feature engineering

process, feature selection, feature extraction, and feature creation can be applied in

any order or even recursively as implied by Motoda and Liu in [161].

4.2.1 Preprocessing

Consisting of data imputation and data transformation methods, preprocessing is a step

that is used to �x data so that ML models can learn from data correctly. Although this

step might help or hinder convergence, it might not even be necessary depending on

the results of the data exploration process and the type of ML model to use [38, 42].

4.2.1.1 Data imputation

The process of replacing missing values with reasonable values is called imputation. The

methods used for this process depend on the assumption of themissing-datamechanism.

These mechanisms are categorized according to three groups: Missing Completely At
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Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR)

[162].

The �rst one, MCAR, states that data missing from a dataset does not depend on

the values of the missing or observed data. MAR, a more �exible version of MCAR,

states that missing data may depend on the observed components but is conditionally

independent of the missing components given the observed elements. Lastly, when

the MAR conditions are violated, the mechanism depends on the missing data, and the

imputation mechanism becomes MNAR [162, 163].

In this thesis, most �nancial datasets fall under MAR, while textual datasets fall under

MCAR. Financial MAR points are caused by holidays that vary from country to country.

According to [163], missingness due to holidays can be considered as missing at random

because the "probability of a speci�c day being designated as a holiday in any country

is unrelated to the stock price on that particular day if the price had been observed." At

the same time, �nancial MNAR points are caused by �xed events such as weekends

and some calendar events (refer to section 2.2.1.2 for further details).

[162] also states that the most realistic and frequently used assumption on the missing-

data mechanism is MAR, given that, empirically, models that use this assumption have

been found to have higher accuracy than standard nonignorable models (i.e., models in

which missing-data mechanisms are not ignored; instead, the missing data process is

explicitly modeled).

For time-independent data, the list-wise deletion method is used to impute data. This

method is the simplest and most direct method to handle missing data. It consists of

removing the data that has missing values with the assumption of MCAR. However,

if this assumption is violated, this method can result in serious bias in analytic results

[162].

For time-dependent data, popular methods to handle missing data include Last Obser-

vation Carried Forward (LOCF), Next Observation Carried Backward (NOCB), linear

interpolation, and spline interpolation—the interested reader can �ndmore information

in section A.2.1.1.1 in A. In this thesis, the LOCF imputation method is used to avoid

introducing look-ahead bias [162, 164].

The datasets described in section 4.1 contain missing values that were imputed based

on the data type. The process used in each of these data types is described next.
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Numerical data

Most numerical datasets were imputed using the LOCF method and a constant value

(zero), but the imputation for some datasets, based on their type, exploited their struc-

ture. Both methods were used to avoid introducing look-ahead bias into the data and

giving future information to the model beforehand.

The imputation process is described next:

• For datasets with OHLC data—benchmark, stock, and stock exchange index

data—missing values were imputed by carrying the closing price forward.

• For fundamental data, missing featureswere attached as zero vectors to standardize

the dimensions of the �nancial and regular companies’ datasets. As mentioned

in subsection 4.1.1.5, �nancial institutions are evaluated using a di�erent subset

of values and ratios. In addition, missing values were imputed with the LOCF

method.

• For the rest of the datasets—commodity, technical, macroeconomic, and currency

data—missing values were only imputed using the LOCF method.

• In all cases, data points happening before the �rst value in the series were �lled

with zero—which was the scenario for companies created between 1987 and

2013, or currencies introduced after 1987, such as the Euro.

Mergers and acquisitions dataset

Preprocessing of the mergers and acquisitions dataset consisted of the following steps:

1. Keep �ve columns: DateAnnounced, Target, TargetNation, Acquiror, and Synop-

sis.

2. Delete rows from companies not included in the S&P500 index.

3. Normalize TargetNation column using sine transformation so that the range of

values falls within the range [−1, 1].

This process results in a dataset with 10,170 rows.
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4.2.1.2 Data transformation

The consensus about the appropriate use of transformations is that, when �tting any

model, the right transformation often achieves a better �t and forecast [38]. Given that

�nding the right transformation requires the right statistical model and viceversa, one

approach suggested in [38] is to proceed iteratively using a transformation, �tting a

model, then checking the transformation, and so on.

Numerical features

For numerical features, the techniques tested in this thesis to remove undesired e�ects—

e.g., outliers’ in�uence—include di�erencing, max-min normalization, standardization,

feature clipping, robust scaling, quantile transformation, and power transformations.

Di�erencing

This technique involves taking the di�erence between consecutive observations. It

can help stabilize the mean of a time series by "removing changes in the level of a time

series, and therefore eliminating (or reducing) trend and seasonality" [39].

When di�erenced data is not stationary, it can be di�erenced more than one time until

it becomes stationary. However, n-order di�erencing is rarely necessary [39].

To perform di�erencing, the following calculation is used:

xdifft (d) = xt − xt−d

where xt is the input value at time t, xt−d is the input value at time t − d, and d is an

integer representing the number of periods.

Di�erencing is used in the log-transformation method described below.

Max-min Normalization

This normalization adjusts the input values to the range [0, 1] [165]. According to [166],

this method is a good alternative when the upper and lower bound are known, data
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contains few or no outliers, and it is approximately uniformly distributed across that

range.

The formula to perform this normalization is:

xmax -min normalization =
x−min

max−min

where min, max and x are the minimum, maximum, and input value, respectively.

A variation of this technique that used a expanding window was tested to normalize

di�erent data types, but ultimately discarded because it was not e�ective.

Standardization

Standardization centers the data—µ = 0—and standardizes the variance for each

feature—σ2 = 1—by subtracting the mean from the input feature and dividing by

its standard deviation. It helps NN models move the data to a region near the origin

which is where activation functions work better and training becomes more stable

[165, 166].

Standardization is calculated as follows:

xstandardization =
x− µ
σ

where µ refers to the mean, σ is the standard deviation, and x is the input value.

Similarly, an expanding-window standardization was used to normalize data types with

large values, but log-normalization was preferred with stock prices and similar data

types.

Feature clipping

This technique is used when data contains extreme outliers. It consists of setting to

a �xed value those feature points above (or below) a certain number. It can also be

combined with the previous method, standardization, to remove values above or below

three standard deviations [166].
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Feature clipping is performed as follows:

xclipped =


x, if x ≤ z

z, otherwise
(4.1)

where z is the clipping value and x refers input value.

This method is applied by the Adam optimizer used to train diverse ML models.

Robust scaling

Robust scaling adjusts the input features using themedian and interquartile range (IQR)—

the values between 25% and 75% of the ordered data. It centers the values using the

median and then scales them using the IQR [165, 167]. Unlike standardization, where

outliers in�uence the mean and variance, robust scaling eliminates the e�ect of outliers

[167].

The formula to calculate robust scaling is:

xmedian = x−median

xrobust =
xmedian −Q1(xmedian)

Q3(xmedian)−Q1(xmedian)

where median corresponds to the median value, Q1(xmedian) and Q3(xmedian) are �rst

and third quartile value of the transformed data, respectively.

Robust scaling was tested in data normalization, but ultimately discarded in favor of

log-normalization.

Quantile transformation

Quantile transformation is another robust non-linear transformation that maps input

values to a distribution. This transformation spreads out the most frequent values and

reduces the e�ect of outliers [168].

It estimates the features’ cumulative distribution function and uses it to map the values

to a uniform or normal distribution by applying a quantile function. Outlier values are
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clipped to the lower or upper bound of the output distribution [168]. Although clipping

the values alters linear correlations, it allows comparing input variables with di�erent

scales [168].

Quantile transformation can be calculated as follows:

xcdf = cdf(x)

xquantile = QF (xcdf )

where cdf corresponds to the cumulative distribution function and QF is the quantile

function.

Power transformations

They refer to a family of parametric, monotonic transformations that adjusts data so

that it is as close as possible to a normal distribution to ameliorate heteroscedasticity—

non-constant variance—and other problems [165].

Two members of the power transformation family are the Box-Cox transformation and

the Yeo-Johnson transformation. Although the log transformation is often the preferred

transformation for economic and �nancial time series, a more general transformation

can sometimes be more suitable. However, one important restriction is that it can only

be applied to data spanning a wide range, that is max (xt)
min (xt)

> 3 [38].

While the Box-Cox transformation is very sensitive to outliers and can only be used

with positive values, the Yeo-Johnson transformation can be used on variables with any

value [160]. The interested reader can visit Appendix A, section A.2.1.1.2.1 for the

Box-Cox and the Yeo-Johnson transformation equations.

Log transformation

As mentioned above, the log transformation is a particular case of the Box-Cox family

of transformations. It is used when the main concern is relative changes. It makes the

variability of time series showing more or less stationary percentage growth over time

more stable [38]. A log-transform value is calculated as follows:
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xlog - transform = log(x)

It is often an appropriate transformation for economic and �nancial time series as it

can be used to make highly skewed distribution less skewed [169, 38, 170, 166].

Based on this type of transformation, an alternative when using stock prices is log

returns. This transformation has the following form:

xlog - returns = log(1 + ri)

ri =
pi − pj
pj

where pi and pj are the prices at time i and j, respectively.

It has three bene�ts [171, 38]:

• Log-normality: if it is assumed that prices are log-normal, the transformation

makes data normally distributed.

• Time-additivity: the sum of normally-distributed variables is normal when all

variables are uncorrelated and provides numerical stability as the addition of small

numbers is numerically safe, while multiplication can lead to arithmetic under�ow.

• Approximately linear: for small values of r (r � 1), the logarithmic function is

approximately a linear, log(1 + r) ≈ r.

Categorical features

Categorical features are those features that take their values from a discrete set of

categories or labels. When the elements of this set have an intrinsic order, they are

named ordinal categorical features—Moody’s and S&P 500’s credit rating scales are

examples of this type of categorical features. When that information is not present,

they are called nominal categorical variables—the set of labels used to indicate

companies’ sectors is an example of this type of feature [160].

While ordinal categorical features can be transformed into numeric values that preserve

the order by encoding that information directly, nominal categorical features can be
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converted to numeric values using one-hot encoding, label encoding, binary encoding,

etc. [160, 165].

In this thesis, features with a limited number of values such as �nancial sectors, company

names, and industries were encoded using a cosine function to obtain categorical

features, prevent sparsity, and place values within NN’s activation region.

Textual features

In the case of text, Jurafsky [172] suggests applying three preprocessing steps: tokenizing

words, normalizing word formats, and segmenting sentences.

Tokenization is the segmentation of text into tokens which might refer to words, mor-

phemes, or subwords. Normalization is a process to reduce the dimensionality of the

vocabulary by applying standardization, lemmatization, or stemming. Segmenting sen-

tences refers to the task of separating strings into sentences via rules or ML techniques

[172, 173]. Additional information is provided in Appendix A, sections A.2.1.1.3.1,

A.2.1.1.3.2, and A.2.1.1.3.3.

In this thesis, di�erent preprocessing steps were applied to textual features based on

the tasks at hand.

• Word normalization and sentence segmentation were used to �x the merger and

acquisition dataset.

– Several RegEx �lters were applied to the sentences to reduce word variations

(e.g., Corp, Corp., Corporation, Co, Co., etc.).

– A list of incorrect words was created to correct typos.

– A dictionary with each of the company’s name variations was created to

normalize their names using a RegEx �lter.

• Tokens were extracted from news articles using a BERT tokenizer to extend the

Bloomberg dataset with taxonomy tags.

4.2.2 Feature selection

Feature selection refers to choosing one or more subsets from the preprocessed dataset

and remove irrelevant features that do not help the ML model solve a particular task.
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The methods to perform feature selection are divided into �lter methods, wrapper

methods, and embedded methods. However, in this thesis, feature selection methods

are not applied to the datasets; instead, feature selection is guided by the literature

review. In other words, it is assumed that the indicators listed in the literature review

that led to promising results were correctly identi�ed.

The following list contains the datasets used in this thesis and the research that used

these indicators:

• Stock market data is used in most papers in this area.

• The technical indicators listed in table 4.1 are proposed in the following papers:

[82, 80, 174, 175, 176, 177, 27, 26, 83, 84, 178]

• The use of fundamental indicators to valuate regular companies is proposed in

[82, 80, 179, 174, 29, 175], but another set of fundamental indicators is listed in

[154] for �nancial institutions.

• Although only a few papers, [68, 66], suggest a direct relation between di�erent

countries—via stock exchange indexes—the literature implies a correlation be-

tween di�erent countries, sectors, and industries. For this reason, stock exchange

indexes are also included.

• Research and books, such as [180, 100, 181, 10], propose that commodities

impact sectors, industries, and economies. For this reason, commodities listed in

these documents and other commodities that were thought to correlate with the

price of companies, such as co�ee price and Starbucks’ share price, are included

in table 4.1.

• In the case of currency exchange rates, researchers such as [182, 67, 180] in-

dicate that currencies o�er a premium. It is hypothesized that data from more

in�uential economies with more stable currencies might contain helpful informa-

tion.

• Books and papers such as [68, 67, 183, 181, 184] list di�erentmacroeconomic

indicators that impact the economy.

• Factors such as momentum, pro�tability, quality, size, and value, were found to

generate a premium— [100, 96, 93, 37, 91, 185, 35].

• Textual data in the form of news is suggested (and used) in the following papers:
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[179, 177, 178, 181, 128, 121, 186].

In the case of the NYTAC, only the date, taxonomy, lead, and body of the news were

preserved because other metadata had missing values and was not as relevant. For the

Bloomberg dataset, the date, lead, and body of the news articles were kept. As for

the merger and acquisition dataset, the TransactionValue, TargetBusinessDesc, Target,

PercShareAcq, and DealType features were removed as these features did not have

relevant information or were noisy with a signi�cant number of unique values containing

measures, such as the size of a property or the number of assets.

For the rest of the numerical data sources, section 4.1 contains the datasets and features

selected, and chapter 3 lists the research papers suggesting those datasets and features.

4.2.3 Feature extraction

Feature extraction involves identifying salient and stable features—in the original dataset

or the output from the previous step—that contain the central properties of a dataset

and representing them in a low-dimensional space to facilitate learning [42, 187].

Word embeddings

Feature extraction was applied to textual datasets in the form of word embeddings and

news embeddings.

Word embeddings were created using a BERT model and used for the taxonomy classi-

�cation model and the experiment with the merger and acquisition dataset.

Similarly, news embeddings were created using SBERT [188] and applied to the �nancial

dataset to summarize news articles for the dataset types experiment (see chapter 5 for

more details on experiments).

Dimensionality reduction

The goal of an autoencoder in this part is to perform dimensionality reduction by

decreasing the reconstruction error between the input and output while learning the

essential elements of the dataset.
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In this thesis, the expectation is that high-dimensional data gets transformed into low-

dimensional data containing a summary of the local and global economic context by

applying dimensionality reduction. The critical point of the dimensionality reduction

model is that features are not simply discarded; instead, the model combines them

while extracting the essential parts—in other words, key information is not lost; noise

and irrelevant information are removed.

In this work, an autoencoder was trained to reduce the dimensionality of most feature

types. The exception was the fundamental dataset, given that its low number of data

points and high dimensionality caused a signi�cant reconstruction error. Once the

dimensionality reduction model �nished training, its encoder was used to reduce the di-

mensionality of each dataset in half (based on the hyperparameters tuning experiment’s

results described in section 4.3.2).

Anomaly signals

Anomaly signals were created using an anomaly detector model. These features were

precalculated to accelerate training and were only available for stock, technical, bench-

mark, commodity, currency data, and stock exchange indexes because they had enough

data points available, and their values were suitable for anomaly detection. This was

not true for ranked data such as factors and ranking features.

Datasets were split into six folds to precalculate the anomaly signals: �ve folds covering

the interval from January 1, 1990, to October 1, 2013, and another pre-fold from January

1, 1987, to December 31, 1989. The reason for a pre-fold is that an anomaly detector

system compares what is normal (i.e., the training fold) to what is abnormal (i.e., the

test fold). However, it would have not been possible to calculate the training anomaly

signals for the �rst fold without the pre-fold which means the RL agent wouldn’t have

had this �rst-fold data available during training in other experiments.

4.2.4 Feature construction

Feature construction is a process in which new features are added to the dataset. These

new features are expected to contain new information and create new patterns to be

exploited by ML models to increase performance [159]. Two possible approaches were

followed to create new features:
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4.2.4.1 New features from existing features

The �rst approach creates numerical or textual features based on one or more attributes

in the original dataset. The main idea is that these additional features will introduce

new information to the dataset, which will help ML algorithms to perform better on a

given task [159].

In this thesis, time-dependent features and textual features were created from existing

ones.

Time-dependent features

Time-dependent features included calendar features, cumulative and ranking features,

factor features, and anomaly signals. These features are detailed in the following

subsections.

Calendar features

Calendar features were created from date information and added to the dataset. These

features are listed next.

• Timestamp features: Companies in di�erent sectors are a�ected by events oc-

curring during the year on speci�c dates. For instance, retail companies experience

an increase in their customer base during Christmas, or movie studios release their

blockbustermovies during the summer. Asmentioned in [189, 190, 191], evidence

suggests the existence of signi�cant calendar e�ects with positive returns.

For this reason, features derived from date variables might be bene�cial to the

RL agent. Although these features can be represented as numerical or categorical

types, these representations remove the features’ cyclical nature [192]. For in-

stance, the day di�erence between December 31 and January 1 using a numerical

type is equal to 364 (or 365 in a leap year) days instead of the real distance of one

day.

To represent dates correctly and to prevent losing cyclical information, one ap-

proach is to encode date features using a cyclical function such as the cosine

function. In this thesis, dates are represented using this function to create four
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features: month, day of the year, day of the month, and day of the week.

The key advantages of using the cosine (or sine) function to encode date informa-

tion are: 1) the cyclical nature of dates is preserved so that the model can take

advantage of, for instance, speci�c events occurring on a given day of the week

(the Weekend E�ect [193]), day of the year (the day after Christmas [194]), day of

the month (double witching and quadruple witching), or month (the September

E�ect [195]); 2) features are compact, which prevents sparsity (that other methods

such as one-hot encoding does not); and 3) features’ values are situated within the

NN’s activation region (which helps the model to converge faster).

The four date features are de�ned as follows:

featuremonth = cos

(
2 · π ·month

12

)
(4.2)

featureday of year =


cos
(
2·π·day of year

366

)
, if leap year

cos
(
2·π·day of year

365

)
, otherwise

(4.3)

featureday of month = cos

(
2 · π · day of month
days in month

)
(4.4)

featureday of week = cos

(
2 · π · day of week

7

)
(4.5)

The result of applying these functions to create temporal features can be observed

in �gures 4.7 and 4.8. These �gures show that the cyclical nature of the temporal

features from a weekly, monthly, and yearly perspective is preserved.

• Witching features: There are speci�c dates of interest for the markets where

di�erent derivative contracts expire—stock options, index options, stock index fu-

tures, or single stock futures. These contracts need to be renewed when economic

agents only want to remain exposed to the risk of these derivative instruments.

Otherwise, they may need to exchange the underlying security—a security on

which the derivative contract’s value is based—depending on whether the instru-

ment is optional or want to let the contract expire [196, 197, 198].
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Figure 4.7: Temporal features using a cosine function: Month and day of the

year.

Figure 4.8: Temporal features using a cosine function: Day of the week and

the month.
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Derivative instruments are used to speculate and manage risk [196]. For instance,

an airline company concerned about fuel prices increasing signi�cantly in the

future can acquire a fuel call optionwhich is a derivative with fuel as the underlying

security that gives the airline the right to buy fuel at a given price in the future,

while it gives the vendor the obligation to sell it. The company can use this call

option to mitigate this risk by paying an upfront premium cost. If the price has

increased on the expiration date, the airline only pays the price agreed on the

option contract. Conversely, if the price has decreased, the airline buys the fuel

at a lower price directly from the market without exercising the purchase option

(and letting the contract expire).

The third Friday of eachmonth except forMarch, June, September, andDecember,

when two di�erent derivative contracts expire, is a day named double witching.

Similarly, the third Friday of March, June, September, and December, when

four di�erent derivative contracts expire, is a day called quadruple witching.

What is special about these days is the signi�cant increase in trading volume and

volatility—in particular, during the �nal hour of trading—as investors try to close

or change their contracts [197, 198].

For this reason, adding double and quadruple witching as categorical features

might help an ML model to take advantage of these agents’ urgency to drop these

contracts (and their obligations).

Cumulative and ranking features

Cumulative features are based on stock returns aggregated over three windows, i.e.,

30, 60, and 90 days. Similarly, ranking features are created from cumulative features,

but instead of representing these features as ordinal numbers, they are encoded as

decimal numbers in the interval [−1, 1], with −1 given to the company with the lowest

cumulative return and +1 assigned to the company with the highest cumulative return.

This encoding is used as a pseudo-normalization to avoid big numbers (for those sce-

narios with thousands of companies to pick from).
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Factor features

Factor features are calculated using the momentum, pro�tability, quality, size, and

value factors de�ned in chapter 2, section 2.1.4.3, and in Appendix A, section A.1.4.1.

These factors are constructed using fundamental indicators and stock prices. Then,

similar to the ranking features, these factors are encoded as decimal numbers in the

same interval [−1, 1], and aggregated to avoid having sparse features and increasing the

number of features signi�cantly.

Textual features

Although [199, 159] consider word embeddings as feature creation, it seems more

suitable to label it as feature extraction given that in the case of feature creation, new

features are combinedwith the original dataset, while in feature extraction, new features

are used instead of the original dataset. For this reason, no textual features were created

from existing ones.

4.2.4.2 New features created byMLmodel

The second approach creates new attributes by teaching an ML architecture to perform

a given task such as classi�cation, regression, clustering, among others. The output

from these tasks can be added to the input dataset as new attributes that might help

increase performance regardless of data type [159].

This approach was taken with the Bloomberg dataset, for which a semi-supervised

model based on BERT was trained using the NYTAC taxonomy labels and then used

to predict the topic tags for the Bloomberg dataset. However, only those tags that

the model was con�dent about (p > 0.75) and the corresponding news were added

to the dataset. Lastly, news articles from the Bloomberg and NYTAC datasets with

a business, economic, or �nancial tag were kept while the rest were discarded. The

resulting dataset contained the news set from January 1, 1987, to November 20, 2013,

tagged by topic.

In addition, a question-answering model using a variant of the BERT model was used

to add to the �nancial dataset the name of the company, the sector, and the main actor

119



Chapter 4. Methodology

mentioned in a news article. Although it worked for some news, it introduced more

noise than good results, which is why these features were discarded.

4.3 Model selection

This step refers to �tting and estimating the performance of multiple models to select

the best one. Model selection involves the following steps—shown in Figure 4.9: model

training, hyperparameter tuning, and model evaluation.

These blocks are iterative, and as soon as the model’s performance is acceptable, the

iteration ends, and themodel moves to the next block. However, if it is never acceptable,

it is possible to move back to previous steps in the pipeline [44, 54, 47].

In this thesis, model selection is performed via resampling methods which involves

model training, hyperparameter tuning, and model evaluation.

Figure 4.9:Model selection block. The two paths towards model testing: via

resampling methods or model selection criterion.

• Model training: In this �rst block, models’ parameters are adjusted to �t the

training data and optimize a cost function.

• Hyperparameter tuning: It is a meta-optimization task that involves search-

ing for the best hyperparameters by evaluating them on a validation set. Un-

like model parameters learned during training, hyperparameters are a set of

dataset-dependent values speci�ed outside of the training procedure that help pre-

vent over�tting. There are di�erent hyperparameters; some control the model’s

structure—model hyperparameters—while others govern the cost function—cost

hyperparameters [200, 201].
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Three classes of methods can be used to �nd the best hyperparameters: grid

search, random search, and smart hyperparameter tuning [200, 47].

• Model evaluation: In this last block, metrics are used to assess models’ perfor-

mances.

4.3.1 MLModel Selection

First, it is necessary to �nd the best ML classi�er to identify trading opportunities. In

order to do so, ML model selection blocks are:

• Model training: Four ML architectures are used: SVM, RF, NN, and LSTM.

These models are trained using cross-validation for time series.

• Hyperparameters tuning: Despite being computationally expensive, this work

uses grid search to study the four architectures’ hyperparameters.

– For the SVM architecture, the hyperparameters include C and kernels.

– For the RF model, the hyperparameters are the number of estimators, the

maximum tree depth, and the minimum number of samples to split.

– For the NN and LSTM models, the hyperparameters comprise the number

of neurons per layer, the activation functions per layer, and the number of

epochs.

• Model evaluation: Accuracy and ROI metrics are used to evaluate the models.

4.3.2 Autoencoder Model Selection

This thesis uses autoencoders for Anomaly Detection and Dimensionality Reduction.

The model selection blocks for this model are de�ned as follows:

• Model training: Autoencoders for both tasks are trained similarly. An input data

source is received, and the main goal is to reduce the reconstruction error between

this input and the autoencoder’s output.

The di�erence is that for anomaly detection, theMean Squared Error (MSE) values

are used to obtain an indicator of what is normal in the dataset so that abnormal

values in the test set raise the alarm.
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For dimensionality reduction, the encoder’s output, which contains the low-

dimensional representation, is utilized.

• Hyperparameters tuning for dimensionality reduction: The following hy-

perparameters were varied in this scenario:

– Number of encoding features: The number of neurons in the encoder’s output

that controlled the reduction level was varied from 100% to 16%.

– Activation functions: Autoencoders were built using one type of activation

function for all the layers. These activation functions included the sigmoid,

tanh, ReLU, and swish functions.

– Input data: The models receive one of two options. Either data with similar

features, e.g., OHLC prices, or data with drastically varying features, e.g.,

OHLC prices and Volume.

• Hyperparameters tuning for anomaly detection: The only hyperparameter

varied for anomaly detection was the function to calculate normality. The other

hyperparameters were taken from the best-performing dimensionality reduction

model.

These functions included the mean, minimum, maximum, median, and bands

placed one or two standard deviations above the mean.

• Model evaluation: To evaluate dimensionality reduction, the reconstruction

error as measured by the MSE was used. As for the anomaly detector, features

were plotted against stock prices and subjectively evaluated.

4.3.3 RLModel Selection

A trading system is built based on the results from the previous sections. The ML model

selection section indicated the most suitable model to forecast the market direction.

In addition, the ablation experiment (described in chapter 5) provided information

regarding which data sources were more in�uential when trading.

Based on that knowledge, the trading system selection follows these steps:

• Model training: In the case of the RL model, training begins when the stock

market environment randomly selects a starting date and returns an initial state to
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the DRL agent. This high-dimensional state contains variable information that

can include any of the datasets explored throughout this thesis. This information

is supposed to indicate the state of the global economy.

With this information, the agent uses a NN model to handle high-dimensional

data and determines the percentage of cash allocated to each company. Then,

the agent takes an action and adjusts the cash allocation. This cash allocation is

rounded down to buy an integer number of shares. At the same time, the fees and

total reward are calculated and subtracted from the agent’s cash.

As the simulation moves one step ahead, the agent takes the action (i.e., the ad-

justed cash allocation) and receives the reward signal that guides future actions

until the end of the episode. At that point, the agent reviews the actions and

rewards during the episode and tries to learn which ones lead to the best per-

formance based on the loss function. In essence, the model is based on a Deep

Q-Learning algorithm.

The proposed model considers transaction fees (i.e., Saxo capital markets’ fee

of 0.1% per transaction) but ignores latency between the agent and the stock

market—although it could be added to the simulator and provided as a feature

to the agent. It also ignores other trading costs that depend on market dynamics,

such as trading impact costs, because a mathematical formulation such as those

used in [135] is a subjective simpli�cation that might be unrealistic, as suggested

in chapter 3’s summary.

The NN model is optimized as follows. Every time the agent has to take an

action, the algorithm enters a cycle of optimization for the current state and

suggests an action. Then, the algorithm evaluates if the action is valid, that is, if

the sum is close to one—values above one would mean that the agent is using

more money than available. In contrast, values below one would indicate that the

money is disappearing. If the action is invalid, the algorithm repeats this process

in an attempt to optimize the action. When several cycles have passed without

converging, the algorithm exits the cycle and uses a softmax operation to output a

cash distribution equal to one.

• Hyperparameters tuning: Two elements are varied: input data and loss func-

tions.
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Input datasets are varied according to the ablation test. Only those that obtained

good performance metrics advanced to this phase.

In terms of loss functions, there are three used in this work:

– LossM: a loss function that maximizes actions given stock prices. It is de�ned

as follows:

lossM = −
A∑
i=1

ai · pci (4.6)

where A is the number of assets (and actions) available for trading, ai cor-

responds to the percentage allocation for asset i, and pci refers to the price

change for asset i.

– Loss B: a logarithmic barrier loss function that maximizes actions given stock

prices while allocating the agent’s wealth in a given asset up to a threshold

value. It is de�ned as follows:

f(x) = −
A∑
i=1

ai · pci (4.7)

B(x;µB) = −µB
A∑
i=1

log(threshold− ai) (4.8)

lossB = f(x) +B(x;µB) (4.9)

where A, ai, and pci have the same meaning as before, µB refers to the barrier

parameter, and threshold is a value indicating the maximum cash allocation

for any asset.

– Loss BQ: a combination of a logarithmic barrier loss function and a penalty

loss function. The function f(x) maximizes earnings, while the constraints

limit the cash allocation. The equality constraint penalizes cash allocations

that do not add up to 100%, while the inequality constraint protects against

allocating wealth to a given asset beyond a threshold value. It is de�ned as

follows:

f(x) = −
A∑
i=1

ai · pci (4.10)
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B(x;µB) = −µB
A∑
i=1

log(threshold− ai) (4.11)

Q(x;µP ) =
1

2µP
(1.0−

A∑
i=1

ai)
2 (4.12)

lossBQ = f(x) +B(x;µB) +Q(x;µP ) (4.13)

where A, ai, pci, µB, and threshold have the same meaning as before, and µP

corresponds to the penalty parameter.

The M loss is used as a baseline that computes the portfolio’s expected return—

calculated as a weighted sum of the individual assets’ returns.

The other two loss functions (losses B and BQ) are created subjectively based on

the literature review on optimization to obtain high model evaluation metrics.

The rationale for selecting a logarithmic barrier loss function is to discourage

allocating wealth in a small number of stocks. By setting a threshold of 35%, the

agent incurs a greater loss as it allocates a larger proportion of wealth to a given

stock.

The reason to add a penalty function is to force the agent to use 100% of its wealth

on all assets (cash plus stocks). By adding the penalty function, the agent gains the

ability to short-sell.

• Model evaluation: The return-to-risk methods (listed in section A.1.3 of Ap-

pendix A), the annual return, and maximum drawdown are utilized to evaluate

the trading system.

4.4 Model testing

Resampling methods are used to compare these metrics and select the best performing

model. These methods estimate the test error through the creation of new versions

of the original dataset [44, 201, 54, 202]. They include bootstrap, train/validation/test

split, and cross validation.

As mentioned above, in this work, cross-validation is used. In particular, due to �-

nancial data being time-dependent, time-series cross-validation is selected to avoid

introducing look-ahead bias to the model. Figure 4.10 displays the di�erent folds in
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which the data is divided during training and testing. In each iteration, a fold is added

as a test fold, while the previous test fold becomes the training fold. The key idea is to

prevent future information to be passed to the model beforehand.

For more information regarding these resampling methods, section A.2.2 in Appendix

A is the place to go.

Figure 4.10: Time-series cross-validation. Figure shows the way in which the

data is split into folds to prevent look-ahead bias.

For all the experiments, a k = 5 is selected as it divides the interval of analysis into

blocks of 4.6 years, each containing at least one �nancial crisis. That is, between

1990-1994, a recession in the U.S. and the beginning of the Tequila e�ect appeared,

between 1994-1999, the 1997 Asian �nancial crisis happened, between 1999-2004, the

dot-com bubble ended, between 2004-2008, the 2008 global �nancial crisis occurred,

and between 2008 and 2013, a period of recession and the 2013 U.S. debt-ceiling crisis

a�ected the economy.

4.5 Summary

This chapter went through the blocks of an ML pipeline to explain the methodology

followed to obtain the most suitable ML models and their hyperparameters for diverse

126



Chapter 4. Methodology

ML tasks, including classi�cation, anomaly detection, dimensionality reduction, and

stock trading.

In addition, details regarding the data used during the training process and the experi-

ments and the feature engineering steps to �x and impute data, select, extract, or create

features were provided.

Finally, the model testing contained information concerning which sampling method

is used during experimentation and model training. By utilizing time-series cross-

validation, no look-ahead bias is added.

In the next chapter, the experiments and their results are described.
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5 Experiments

It’s not an experiment if you know it’s going to work

—Jeff Bezos.

This chapter describes the experiments and their results for

the blocks presented in the methodology.

Section 5.1 shows the output of exploring and analyzing the

data in search of patterns to use or errors to �x in the following

stages.

Section 5.2 describes the experiments regarding news em-

beddings, dimensionality reduction, and anomaly detection.

Section 5.3 contains the important part of this thesis. This

section attempts to �nd a suitable ML model that can be

adapted to the RL trading agent.

This section also contains the ablation test used to determine

which data features a�ect the ROI the most.
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5.1 Data acquisition

This section only describes the results of data exploration as no experiment was per-

formed for data collection.

5.1.1 Data exploration

Data exploration describes the key points noticed during data analysis that might help

during feature engineering.

5.1.2 Stock market data exploration

In this subsection, the descriptive statistics of stock market returns are computed to

summarize data and identify any salient characteristics. In addition, general assumptions

about the distribution of �nancial returns are also tested.

Daily returns are calculated using close prices. Missing data and in�nite values are

removed from the analysis, accounting for less than 5% of the data.

In addition, betas are also calculated using the same daily returns with respect to the

S&P 500 values.

5.1.2.1 Stock market returns distribution

The results are shown in Table 5.1:

Table 5.1: Percentage of positive, negative, and unchanged daily returns.

Number of elements 2407169

Percentage of daily returns with positive change 48.38%

Percentage of daily returns with negative change 46.97%

Percentage of daily returns without change 4.65%

The descriptive statistics of the daily returns are listed in Table 5.2. It can be observed

that skewness and kurtosis are both positive, which means that the data is skewed right

and is heavy-tailed. In other words, positive returns occur more often than negative

returns, and extreme returns occur more frequently than in a normal distribution.
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Table 5.2: Descriptive statistics of S&P 500 daily returns.

Min -0.9667

Max 2.2500

Mean 0.00075909

Variance 0.00063864

Skewness 1.2544

Kurtosis 86.7405

Figure 5.1: Returns distribution using 1000 bins compared to a Gaussian

distribution.

In addition, the daily return distribution is compared to aGaussian distribution given that

some parts of the �nancial industry assume normally distributed returns [203, 204, 205].

In Figure 5.1, it can be noticed that the returns distribution does not approximate a

Gaussian distribution. Fama and French wrote that "distributions of daily and monthly

stock returns are rather symmetric about their means, but the tails are fatter (i.e., there

are more outliers) than would be expected with normal distribution" [206]. Fat tails are

a problem because some traders use this or other assumptions to invest in the stock

market and introduce noise, making it di�cult for models to recognize patterns. So,

even though it is a mistake to trade using these assumptions, it is impossible to isolate

this e�ect.

These �ndings have been noticed in the literature [207]; however, there has not been

any signi�cant attempt to modify the neoclassical assumptions, which are at the heart

of the �nancial markets [208].
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5.1.2.2 Beta histogram

Similarly, returns can be used to calculate the systemic risk of all the companies forming

the S&P 500 index. Figure 5.2 contains the distribution of betas for all the companies

combined and all the companies divided by industry.

On the left, it can be noticed that the distribution is unimodal, and the majority of its

betas are close to 1.0, indicating that those returns have the same volatility as the S&P

500. On the right, the image shows four signi�cant peaks: health care with betas lower

than 1.0, industrials and consumer discretionary with betas near 1.0, and �nancials with

betas greater than 1.0.

Figure 5.2: Distribution of betas of the S&P 500 index. Left: All companies.

Right: Companies divided by industry.

Once the image on the right is further separated, a better picture of the systemic risk of

each industry can be presented. This is showed in Figure 5.3. While most industries’

betas fall between 1.0 and 1.5, the consumer staples, utilities, and material industries’

betas have values lower than 1.0, which implies less volatility. Companies in the �nancial

industry exhibit a wider set of beta values ranging from 0.6 to 2.0. The majority of them

have a beta of 1.5—this means that companies are 50%more volatile than the S&P 500

index.

There are two points in showing the beta histogram in Figure 5.3. On the one hand, it

provides general insight on the behavior of stock prices with respect to the market and

helps validate that the S&P 500 index is a representative market sample—which seems

to be, given that the systemic risk or beta coe�cient is close to 1.0.

On the other hand, it indicates that industry information could help the model classify

companies according to their risk levels. For example, a model could exploit strategies

that invest in companies with large betas during economic growth—expecting the
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price of these companies to increase more than the price of the benchmark—and in

companies with small betas during economic contraction—anticipating the price of

these companies to decrease less than the price of the benchmark.

Figure 5.3: Distribution of betas of the S&P 500 index.

5.2 Feature engineering

5.2.1 Clustering news using news embeddings

This experiment assesses whether textual data can be summarized using embeddings

so that a variable number of daily news articles can be passed to an ML model while

preserving salient information.

The news dataset is �ltered to keep 10,508 articles mentioning S&P 500 companies.

Then, each news is transformed to one news embedding using a variation of the BERT

model, i.e., RoBERTa. The resulting embeddings are then passed to a KMeans model

to group them into one of 50 clusters.

A subsample of these articles was combined with their corresponding cluster, and

name, sector, and industry of the company referred in the news and projected to a

two-dimensional space using the t-SNE algorithm.
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Figure 5.4 shows the 50 clusters and a corresponding label based on the name, sector,

or industry.

It can be noticed that the news embeddings capture key information that the KMeans

and t-SNE algorithms use to project vectors with similar information close to each

other.

Figure 5.4: 2D-cluster projection of news embeddings by sector.

It can be observed in �gures—5.4, 5.5, and 5.6—that news embeddings can extract

critical information from news articles as similar articles are close to each other.

The grouping capabilities of news embeddings can also be con�rmed in Figure 5.7,

where the news in one cluster is sampled to review the key information contained

within the embeddings. More news from that cluster can be found in Table C.12 in

Appendix C.
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Figure 5.5: 2D-cluster projection of news embeddings by industry.

By examining the �gure and table, the news articles contain information about phar-

maceutical companies, such as Johnson and Johnson and P�zer. In particular, this

cluster seems to include negative news from Johnson and Johnson, suggesting that news

embeddings summarized the information based on a deeper understanding of the news

and not only based on a super�cial attribute, such as its industry. The only exception

appears to be the one colored in orange as it contains the name Johnson and Johnson

without being a pharmaceutical story.

These results show that news embeddings can extract the article’s essence into vectors

that get clustered near each other in terms of sector, industry, company, and sentiment

polarity. With these embeddings, the RL model might encapsulate high-dimensional

articles in low-dimensional states that help it redistribute cash from companies with
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Figure 5.6: 2D-cluster projection of news embeddings by corporation.

speci�c types of negative news to companies with positive ones—speci�c types in the

sense that not all positive or negative news articles a�ect stock prices.

These news embeddings have a �xed size that can be directly passed to the RL model.

However, there are several news articles written per day. For that reason, three ap-

proaches were considered: 1) to average the embeddings to represent the general

expectation over the economic environment; 2) to add the embeddings to represent a

particular economic situation; 3) to combine each news with the economic state of the

day.

After careful consideration, options 2) and 3) were discarded, and option 1) was used in

this thesis. On the one hand, option 2) was discarded because adding the embedding

vectors resulted in a drastically isolated point. On the other hand, option 3) was
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discarded because it required more complex logic to split the training and test folds

so that all the news embeddings from one day were put on only one of these folds to

prevent look-ahead bias.

Figure 5.7: News extracts from one of the clusters using news embeddings.

5.2.2 Dimensionality reduction

5.2.2.1 Best activation function

In this experiment, an autoencoder is evaluated in a dimensionality reduction task.

The dataset contains only stock features (OHLC, adjacent close, and volume) of 203

companies to guarantee a con�dence level of 95% and a margin of error of 5%. Each

company’s dataset was reconstructed individually, but the reconstruction errors were

averaged over the number of companies.

Four experiments were run: a baseline with the same number of input and output

features (6 dimensions), a model with 50% dimensionality reduction (3 dimensions), a

model with 84% dimensionality reduction (1 dimension), and a model with the same

number of input and output features, but removing dissimilar features, i.e., OHLC prices

were preserved, and volume was discarded (adjacent close was also discarded, but it

could have been used given that it is similar to the OHLC prices).

The model was created using three layers for the encoder with 64, 32, and n (the target

dimension) neurons and three layers for the decoder with 32, 64, and s (the original

input dimension) neurons. In addition, four activation functions are tested, but each

model uses the same activation function in all six layers. These activation functions
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were the sigmoid, tanh, ReLU, and swish activation functions. The architectures were

trained using an Adam optimizer with a learning rate adjusted using an exponential

decay rate of 0.96 for every 10 thousand steps.

Table C.9 contains the results of this experiment. Tanh was the best activation function

for the dimensionality reduction task as it outperformed the second place, the swish

activation function, in most experiments. In the last experiment, it can also be noticed

that the reconstruction error for models using features with similar characteristics was

the smallest. This result con�rms pre-experimental observations where reconstruction

errors formodels using drastically di�erent datasets (e.g., fundamental data and currency

rates) were large and never converged. In contrast, datasets derived from others could

be reduced together (e.g., stock, cumulative, and ranking features, and factor and

fundamental features).

5.2.2.2 Accuracy and ROI

An autoencoder was used for this experiment. The encoder reduced the number of

features in the input by 50%, with 128 and 64 neurons for the �rst two layers. The

decoder also had three layers with 64 and 128 neurons in the �rst two hidden layers

and the original shape in the last layer. The activation function used was tanh, as the

previous experiment showed it had the lowest reconstruction error. The model also

uses an Adam optimizer with the same con�guration as in the previous experiment.

Di�erent datasets covering the timeframe from January 1, 1990, to January 1, 2013, were

tested. They included stock, technical, fundamental, factor, textual, macroeconomic,

temporal, commodity, currency, benchmark, cumulative and ranking features, and

stock exchange indexes. These datasets were reduced one by one because previous

experiments had shown that combining datasets with dissimilar characteristics, e.g.,

OHLC data with volume or with GDP, resulted in a higher reconstruction error.

The experiment was repeated �ve times for the NN and RF models and the results were

averaged. The task consisted of predicting the price change direction of one company.

The results are shown in tables C.10 and C.11 in Appendix C.

In Table C.10, the NN model consistently outperformed both RF models in terms of

accuracy. On the other hand, while both NNs got similar accuracies, the dimensionality

reduction NN model obtained the highest accuracy with 68.60% and stock, technical,
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fundamental, textual, and macroeconomic features. This result was a surprise because

the model with fewer dimensions was expected to perform a little bit worse. However,

this result might be explained due to the weights’ random initialization or useless

information (and noise) being eliminated during this process.

In Table C.11, average earnings by models with and without dimensionality reduction

are compared. In terms of frequency, neither of those models outperformed the others.

However, in terms of earnings, the RF with dimensionality reduction got the highest

ROI, i.e., 38.60%, using stock, technical, fundamental, factor, textual and temporal

features.

5.2.3 Anomaly signals

For the anomaly detector model, an autoencoder was trained to generate the MSE

for each data type. Then, a function was used to separate normal data points from

outliers in di�erent datasets. These outliers could signal investment opportunities to be

exploited by the agent.

The data was preprocessed using a log transformation to train the anomaly detector.

The log transformation is used as a �rst approximation to this problem, but if time

permits, additional transformations will be tested. This is because this transformation

is often appropriate for economic and �nancial time series [169, 38, 170].

The four operations used were minimum, mean, median, and maximum. In each

experiment, one of these operations was applied to the loss values to obtain a threshold

value representing normal data.

In addition, two anomaly detector models were tested: an FC autoencoder and an

LSTM autoencoder.

Figure 5.8 shows the anomaly signals raised by the NN model. In the case of the max

function, no signals were identi�ed because the threshold created by this function was

too drastic that no values in the test set passed the threshold. Conversely, the min

function created a threshold so low that every point was a signal. For this reason, it did

not seem feasible to use any of these four operations in the RL model.

For the other two functions, mean and median, it can be noticed in the same �gure that

although these functions generated fewer anomaly signals than the min function, these
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(a)Max function

(b)Median function

(c)Mean function

(d)Min function

Figure 5.8: Anomaly detection signals raised by the NN model using the max,

median, mean, and min functions.
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signals were still numerous causing a lot of false positives. For this reason, they were

not suitable for anomaly detection.

Similar results were observed for the LSTM model and can be found in section C.6 in

Appendix C.

5.2.3.1 Bollinger anomaly signals

An alternative to the functions used in the previous experiment was adding Bollinger

bands one or two standard deviations away from the mean.

The bands were used as follows:

• When the value touched the lower threshold, a buy signal was raised.

• When the value touched the upper threshold, a sell signal was raised.

The result of this is shown in Figure 5.9. It can be noticed that the number of anomalies

was drastically reduced to just a few. In addition, some of those trading signals appeared

to be pro�table.

Figure 5.9: Anomaly detection with NN model using Bollinger bands.

5.3 Model selection

5.3.1 MLModel Selection

This experiment involves testing the NN, LSTM, RF, and SVM models. A grid search

of their hyperparameters was used to test these models. These hyperparameters are

listed next:

• SVM: C (0.01 - 1) and the kernels (RBF, polynomial, and sigmoid) were varied.

• NN and LSTM: neurons ([(25, 50, 2),(100, 200, 2),(256, 512, 2)]) and activations

(ReLU, tanh, swish, and sigmoid, plus a softmax layer as the last layer) were varied.
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• RF: the number of estimators (25, 50, 100, 200), the maximum depth (25, 50, 100,

200, 500), and the minimum samples to split (2, 25, 50, 200) were varied.

For RF, LSTM, and NN, the number of trials was 5. For SVM, the number of trials was

only one as it always converges to the optimal solution. Additionally, these models

were evaluated using F1 score, accuracy, and log loss.

The results of this experiment are presented in section C.4, Appendix C.

Unfortunately, the results seem to vary signi�cantly. In the case of RF, maximum depth

seemed to be the parameter that a�ected the metrics. When the maximum depth

increased, the accuracy increased, but the F1 score and the log loss decreased, and the

other way around.

In the case of NN and LSTM, epochs did not signi�cantly a�ect these metrics, but the

number of neurons and the activation function in�uenced them. In particular, tanh

and swish seemed to obtain the highest accuracy and the lowest F1 score. However,

something curious was that the models achieved high accuracy when the number of

neurons was small, i.e., the combination (25, 50, 2) outperformed the combinations

(100,200,2) and (256, 512, 2). This di�erence might be explained by the models with

more neurons over�tting the data quicker.

Finally, in the case of SVM, the kernels seemed to in�uence the metrics. In particular,

the polynomial kernel achieved high accuracy and high log loss with almost any value

of C. Regarding the RBF kernel, it seemed to work only to increase accuracy as both

the F1 score and the log loss collapsed with this kernel.

One problem with SVM is that the model did not converge beyond a certain number of

data points and features. For that reason, this model was discarded for the subsequent

experiments.

5.3.1.1 Ablation of data sources

It is also important to identify which datasets in�uence trading results the most because

using irrelevant datasets could introduce noise and a�ect convergence, and because by

using less data, models converge faster. To this end, feature ablation—a technique to

calculate features importances—is used.

This experiment was designed to do so by training the top MLmodels from the previous
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subsection, 5.3.1, to predict the price direction of a company (3M).

Di�erent data sources were combined and input into the model. After training, the

model was evaluated using earnings and accuracy.

Given that there are 13 datasets, it would be unrealistic to try all data combinations as it

would require 8192 experiments. Plus, as Lopez de Prado mentions, it would probably

su�er from data-mining bias. Instead, the following procedure was followed to reduce

these combinations drastically:

• Stock features were always added.

• Technical, fundamental, factors, textual, macroeconomic, and temporal features

were combined systematically, resulting in 26 = 64 combinations.

• Rankings, cumulative, benchmark, stock exchange indexes, currency, and com-

modity features were added in tandem, one after the other, only after all the

features in the previous group had been added. This process resulted in 6 addi-

tional combinations for a total of 70.

Tables C.7 and C.8 in Appendix C contain the results of this experiment.

Table C.7 indicates that the NN achieved the highest accuracy, 68.59%, among the

models when it used stock, technical, fundamental, textual, and macroeconomic fea-

tures.

The second table, Table C.8, shows a di�erent picture. The three models were more

competitive than before, but the LSTM model outperformed the other two by earning

the highest ROI with all but commodity, currency and index features.

Although performing the feature ablation experiment several times does not help mea-

sure the relative importance of the dataset types—i.e., identify which features have

greater impact in forecasting daily price changes—it does allow to identify the overall

conclusion, that is, NNs outperform LSTM and RF in terms of accuracy, but underper-

form LSTM in terms of ROI.

5.3.2 Historical RLModel Selection
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5.3.2.1 RL model experiment

In this experiment, an agent was trained using RL models to assess which one obtains

higher earnings and to evaluate subjectively whether their strategies are sensible.

Every episode, technical data from a new company was selected, and the agent inter-

acted with the environment until he ran out of money or the data for that company was

exhausted.

Technical data contained ten non-normalized features and takes three values -1, 0, and

1.

Stock market prices were used to compute the rewards.

The state was de�ned as a tuple (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 11), where the last digit repre-

sented the number of industries.

Q-learning state representation experiment.

This experiment compared two ways of representing states for the Q-learning model

resulting in: tuples with three dimensions for each technical signal—i.e., (31, ..., 3k, 11)—

and tuples with one dimension of m-levels where m = (2 · technical signals) + 1 = 21,

and 11 industry sectors—i.e., (m, 11).

The calculation of the number of complex and simple states and Q-table indexes can

be observed in Figure 5.10. The numbers of Q-table indexes in Table 5.3 are derived

from this �gure.

State tuples in the �rst scenario were directly used as matrix indexes to update the Q

table, and in the second scenario, they were �rst summed, and the result was then used

as a matrix index.

Table 5.3 displays the experiment results where the complex state achieves lower

average reward and average earnings while maintaining a lower standard deviation than

the simple state. Conversely, the simple state achieves better results at the expense of

a higher standard deviation. It generates a Q-table with signi�cantly fewer elements

(2, 079 vs. 5, 845, 851) and fewer zeros (26.26% vs. 98.91%) which means that the simple

state generates less sparse Q-tables. However, in both cases, the Q-tables are large,

which means that the agent would need to explore the space for many iterations. A
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(a) Complex

(b) Simple

Figure 5.10: Calculation of the number of complex- and simple-states and

Q-table indexes.
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signi�cant limitation would be that stock market data is insu�cient for this approach

compared to the billions of states that can generate other environments, such as the

Atari games or the Go game.

In addition, neither using a simple nor complex model resulted in positive earnings

suggesting that the agent does not �nd any pro�table strategy.

Table 5.3: Accuracy of complex and simple states.

Q-learning

with com-

plex state

Q-learning

with simple

state

Average

reward

-0.0028 -0.0021

Average

earnings

99734.62 99798.76

Standard de-

viation

0.0135 0.0221

Elements in

Q-table

5,845,851 2,079

Percentage

of zeros

98.91 26.26

In Figure 5.11, it can be observed that the simple agent selected actions less randomly

and, it appears like the agent refrained from buying when there was a downward trend.

Given the high-dimensionality of simple and complex states, an alternative is needed to

drastically summarize them and select better actions that maximize the agent’s earnings.

5.3.3 RLModel Selection

For the experiments in this section, the stock market environment was run for ten

epochs with random date initialization during training but starting at t = 0 during

testing.
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(a) Complex state

(b) Simple state

Figure 5.11: Prices and actions taken by the complex-state and simple-state

agent.
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5.3.3.1 Loss functions

The agent was trained using a NN model with di�erent types of losses (refer back to

chapter 4 for additional details on these losses) to optimize. The output of this network

had a softmax activation function to allow only long positions for losses M and B but

a linear output to allow short-selling for loss BQ. However, to avoid getting stuck on

local optima, the agent had a limit in the number of iterations it performed.

The results of this experiment are shown in Figure 5.12. The image shows that losses that

did not limit cash allocation, such as loss M, achieved signi�cantly higher ROI during

periods of strong economic growth (i.e., 1993-2000). However, when the economy

grew slowly, su�ered a �nancial crisis, or was in the middle of a recession (2001-2013),

the agent su�ered large losses. Conversely, when losses had cash allocation limits, such

as losses B and BQ, ROIs were less impressive in times of economic growth but positive

in times of economic turmoil.

A disadvantage of using the BQ loss was that it took a signi�cant amount of time for each

action to converge. When it did not converge, the stopmechanism used a softmax action

that biased the agent towards long positions from that moment onward, preventing the

agent from taking advantage of short-selling. Conversely, the B loss was signi�cantly

faster at the expense of not being able to short-sell.

When the stop mechanism was removed, actions were much larger than 1.0, which

meant that, even when there was a penalty for trading using more cash than the cash

available, the agent willingly accepted that loss penalty and the market risk to earn more

money. Was the agent mimicking the risky behavior of Wall Street’s fund managers?

5.3.3.2 Fixed loss experiment

For this experiment, the loss type (loss B) was �xed while the models varied the number

of companies, the input data, and the type of data transformation used.

The nine models used are listed in Table 5.4.

The results are shown in Figure 5.13. It can be noticed that there is no signi�cant

di�erence between the models using 50 companies regardless of the con�guration. It

appears that the agent could not �nd any helpful feature to exploit and increase its

wealth. Instead, it decided to diversify its portfolio to eliminate the portfolio risk (as
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Figure 5.12: ROI per fold and loss functions.

mentioned in Appendix A section A.1.5).

The diversi�cation scenario is supported by the logs, which track the maximum and

minimum asset allocation at the end of each test phase. On average, for all the models

using loss B, the di�erence between the maximum and minimum allocations is less than

0.05244% which means that the agent’s wealth is allocated almost evenly across assets.

However, there is a di�erence between the model using 425 companies and all the

models using 50 companies. In the same �gure, it can be noticed that the models earned

similar ROIs when the economy was growing. This changed during slow-growth and

the recession periods as the models investing in 50 companies performed better than

the model investing in 425 companies. Conversely, during the 2008 �nancial crisis, the

diversi�ed model outperformed the concentrated model, but only by half of what the

concentrated model earned during the slow-growth and recession periods.

Another di�erence between the diversi�ed and concentrated model was the number of

trades made. As the number of companies increased, the number of trades also grew.

This result seems reasonable as the agent had to trade at least once the shares of those

425 companies.
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Table 5.4:Model con�gurations.

Model No. of Corp. Transformation Datasets

1 425 % change Stock, cumulative, ranking, dates.

2 50 % change Stock anomalies, cumulative, ranking,

dates.

3 50 % change Dates.

4 50 % change Stocks.

5 50 % change Stock Dim Redux.

6 50 % change Stock anomalies.

7 50 % change Best dataset for accuracy.

8 50 Rolling norm Stocks, cumulative, ranking, dates.

9 50 % change Stocks, cumulative, ranking, dates.

5.4 Model testing

This section uses the results from the previous experiments to obtain the �nancial

metrics via Pyfolio and compare the trading agents. These numbers are shown in Tables

5.5 and 5.6.

Table 5.5: Results of di�erent loss functions.

Loss M Loss B Loss BQ

Annual return 1.80% 9.60 % 9.53%

Sharpe ratio 0.19 0.77 0.76

Omega ratio 1.05 1.18 1.18

Sortino ratio 0.28 1.11% 1.10

Max drawdown -82.82 % -39.04% -39.364%

The table indicates that the lossMmodel performs worse than the loss B and BQmodels,

with lower metrics. In particular, the loss M model su�ered a maximum drawdown of

82.82%, which represents a signi�cant wealth loss. The diversi�ed models also su�ered

drawdowns, but they were 50% lower than the loss M model’s value. In addition, the

diversi�ed models obtained very similar results, but the loss BQ model took more time

to train. Thus, the loss B model seems to be better than the other two models.
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Figure 5.13: ROI per fold using a �xed loss while varying input data, number

of companies, and data transformation methods.

Although the agents could trade by diversifying their portfolios, the results suggest

that adding that exit loop into the algorithm might have forced the agents to converge

prematurely. That is, the agents were not even trying to short-sell the stocks.

In particular, it did not matter the type of input data, preprocessing, additional features

added as the agents diversi�ed their wealth without taking any risk.

Table 5.6 was intended to be bigger, but most of the models obtained similar results.

This table shows the �nancial metrics for di�erent loss B models. As it can be noticed,

these values are very similar, suggesting that the agents ignored the data and diversi�ed

their initial capital across the assets. Their Sharpe ratios indicate that the diversi�cation

strategy earns positive returns, but the risk of an adverse event might a�ect earnings.

The Omega ratio con�rms that the strategy earns above-average returns, with a small

probability of su�ering extreme losses. As for the Sortino ratio, it indicates a positive

return per unit of downside risk. Finally, the L 425 model achieves the lowest maximum

drawdown due to being completely diversi�ed.

Figure 5.14 compares four models: loss M, B, and BQ models, and the 425-companies

model. Each column contains, from top to bottom, the comparison between the

portfolio’s and benchmark’s cumulative returns, the 6-month rolling Sharpe ratio, the

top 5 drawdown periods, the monthly and annual returns, and the distribution of

monthly returns.
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Table 5.6: Financial metrics of di�erent model variations using loss B.

L 425 L Anomaly Best DC

Annual return 9.004% 9.602% 9.60%

Sharpe ratio 0.780 0.770 0.77

Omega ratio 1.18 1.18 1.18

Sortino ratio 1.12 1.11% 1.11

Max drawdown -36.069% -39.084% -39.112%

The �rst plot, portfolio’s vs. benchmark’s cumulative returns, is similar for the loss B,

loss BQ, and 425-companies models but di�erent for the loss M model. For the loss M

model, the returns collapsed during the �nancial crisis and barely recovered by the end

of the investment period. Although the agent almost duplicated the initial capital, it

underperformed the benchmark and the other portfolios.

For the other three models, the plots have a similar behavior due to the agents di-

versifying their capital across the assets, causing the cumulative returns to follow the

benchmark’s returns closely. However, during the 2008 �nancial crisis, they diverged,

and the agents’ cumulative returns outperformed the benchmark’s and loss M model’s

cumulative returns. As a result, these three models earn 12 (425-companies model) and

14 (the other two models) times their initial capital.

In the second plot, the rolling Sharpe ratio is similar for the diversi�ed models, ranging

from -2 to 4 and an average value close to 1.0. For the loss M model, the rolling Sharpe

ratio ranges from -4 to 4 and an average value near 0.2, suggesting the model’s strategy

is signi�cantly more risky than the diversi�ed models’ strategy. This is con�rmed by

the previous results, given that the loss B model’s earnings were underwhelming.

The top 5 drawdown periods plot shows those intervals during the investment period

where the strategies lost money. For the loss M model, a vast purple block on the right

side of the plot indicates the collapse of the agent’s strategy (i.e., investing all its capital

in only one stock) as it loses most of its earnings. There are small purple blocks for the

diversi�ed portfolios, which means that their diversi�cation strategies were e�ective.

Their earnings at the end of the investment period can be con�rmed.

Finally, the returns plots show another perspective of the previous results. For the

loss M model, the monthly returns plot shows strong returns during the �rst years,
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but meager returns from 2001 onward, con�rmed by the distribution plot, which has

a prominent peak near 0%. In terms of annual returns, the blue plot shows that the

average value was near 5% and was negative during the 2008 �nancial crisis, with a

shocking loss of 40%.

In the case of the diversi�ed models, the monthly returns showed strong results through-

out the period, especially in 2003, when the model achieved a 38% annual return.

Although these models could not avoid losses during the 2008 �nancial crisis, they lost

less capital than the benchmark and the loss M agent.

Figure 5.14: Analysis of portfolios. Comparison between portfolios and

benchmark, rolling Sharpe ratio, top 5 drawdown periods, and returns

5.5 Summary

In this chapter, we performed the experiments and analyzed the results. Although there

were some disappointing results, the models were able to generate positive ROIs that

are higher than the benchmark.

In the following chapter, we conclude this thesis.
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6 Conclusions

The most dangerous people on the planet are those who sincerely believe

something that is false
—Steve Keen.

In the last chapter, key �ndings and contributions of this

thesis are summarized, and directions in which this work can

be expanded and enhanced are suggested.
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6.1 Conclusions

This thesis studied the investment problem and attempted to answer what information

is needed to summarize the stock market, what ML model works best for �nancial data,

and whether an ML model can learn to distribute wealth so that pro�t is maximized

while risks are minimized.

Regarding the �rst objective, diverse �nancial and economic datasets were collected

from private provides and government agencies with the assumption that these datasets

contained enough information to represent the economic state of the stock market. The

collected data included stock market information, fundamental data, stock exchange

indexes, commodities, currency exchange rates, macroeconomic data, and textual data

covering the time frame from 1987/01/02 to 2013/11/01.

To ful�ll the second objective, the application of feature engineering techniques to

the di�erent types of datasets allowed the creation of a multimodal input that helped

the model represent the �nancial and economic state of the U.S. economy without

introducing biases.

Datasets were preprocessed using di�erent techniques to identify the most suitable

technique for each data type. It was found that the use of the LOCF method and a

zero value (for data that did not exist at a particular point in time), a limited number

of runs per experiment, cross-validation for time series, random initialization, a broad

time frame, and a suitable �nancial index (i.e., S&P 500) helped avoid introducing the

look-ahead, data-mining, sampling, and time-period biases.

Regarding data transformation, log transformation was the best option for stock prices

and similar data, and rolling normalization helped standardize datasets with large values.

Unfortunately, it was impossible to determine the most suitable transformation or the

ideal input features in terms of ROI maximization because the ML models could not

e�ectively reduce the datasets’ high-dimensional space.

In terms of feature extraction, word and event embeddings assisted NLP models to

achieve their goals (i.e., creating new features and summarizing news articles). Low-

dimensional data containing the essential datasets’ elements—obtained using dimension-

ality reduction models—helped models train faster and obtain similar results than the

original data, and anomaly signals—triggered by anomaly detection models—indicated
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abnormal events in the economy.

These last two models—i.e., anomaly detection and dimensionality reduction models—

were based on the autoencoder architecture.

The anomaly detection models (NN and LSTM) analyzed training points and applied

�ve functions to extract a threshold and identify abnormal data values. While minimum,

median, and mean functions raised a signi�cant number of anomalies, the maximum

function did not raise any anomalies. The function that seemed to work better was a

variation of the Bollinger Bands, as it raised only a few anomalies. Unfortunately, the

models did not take advantage of the anomaly data.

The dimensionality reduction model was used to reduce the number of features in half.

While the reconstruction error was high when di�erent data sources were reduced,

separating the datasets by type and reducing them one by one resulted in drastically

low reconstruction errors. This trick also worked for datasets with similar data types,

such as stock market data and the cumulative and ranking datasets.

As for feature creation, a series of features were added to help models identify more

accurately economic states. These new data included time-dependent features using

numerical datasets—such as calendar features, cumulative and ranking features, and

factor features—technical indicators using stock prices, and taxonomy features using

textual datasets.

To accomplish the third objective, NLP models were trained to create taxonomic labels

for the incomplete Bloomberg dataset—which helped include �nancial and economic

articles—add new features—that were ultimately discarded as they added noise—and

create word and event embeddings.

In the case of event embeddings, it was found that they are a good alternative to

summarize news articles, and that they can be combined (averaging them) to obtain a

summary of the economic state.

The fourth objective was not ful�lled. Data ablation was performed by training ML

models—NN, LSTM, and RF—to predict the direction of stock prices, but repeating

the experiment produced slightly di�erent outcomes. These outcomes preserved the

overall tendency—i.e., NN models obtained higher accuracy than LSTM and RF, and

RF got higher ROI than the other models except for the last re-run where LSTM

outperformed both of them—in all cases, it did not help identify a set of features that
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had a clear advantage over the others.

As for the last objective, a NN was used on the RL trading system to summarize high-

dimensional data into low-dimensional states. Then, the agent learned to take suitable

actions in the stock market based on these states and guided by loss functions that

encourage diversi�cation (low-risk) and wealth maximization. Two loss functions were

used: a barrier method that limited the cash allocation to a maximum value of 35% and

the same barrier method combined with a penalty method that punished the trading

agent when the action did not add up to one.

With these loss functions, the agent could earn a higher ROI than using any other loss

function. When these losses were tested in periods of economic turmoil, the agent

could outperform the benchmark and other agents with a regular loss M function.

In particular, the loss M model performed worse than the other models by any �nancial

metric. It got lower Sharpe, Sortino, and Omega ratios. In addition, it also su�ered the

greatest loss with a maximum drawdown of 82.82%, resulting in an annual return of

1.80%. Conversely, the diversi�edmodels got higher Sharpe, Sortino, andOmega ratios.

Although they were a�ected by the 2008 �nancial crisis, their maximum drawdown

was approximately 39%, resulting in an annual return of 9.60% (loss B) and 9.53% (loss

BQ).

The agent developed a diversi�cation strategy that allocated almost an equal amount of

money to each asset in the S&P 500. Based on the analysis of portfolios, a diversi�cation

strategy demonstrated that it could earn higher ROI than other strategies and the

benchmark. The key lesson is that a strategy that does not lose much capital during

a �nancial crisis is better than any strategy that loses a signi�cant amount of capital

in adverse periods regardless of how well it performs during periods of economic

growth. Using a diversi�cation strategy, the agent could outperform the benchmark and

other strategies and increased the initial capital 12-fold (compared to the benchmark’s

seven-fold increase). These results were similar for models that used 50 companies

and those that used 425 companies. The main di�erence was that, during periods of

economic growth, the diversi�ed model earned slightly lower ROIs, and during periods

of economic turmoil, the model earned slightly higher ROIs.

The aim of the thesis was achieved as it was possible to develop ML models that learn

stock trading guided by a set of loss functions that promoted diversi�cation and wealth

maximization.
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Although some results were encouraging, it is clear that work is still needed for ML

models to compete or even beat human investors. In particular, it is di�cult for ML

models to adapt to speci�c changes automatically, model human behavior, and identify

misleading information from economic agents—i.e., governments, companies and

investors.

In terms of adaptability, continual learning research tries to create agents that can adapt

to evolving environments. However, current ML models cannot adapt automatically to

changes, such as new or updated regulations, disruptive technologies, new �nancial

instruments, etc. This means that the models waste resources as they need to be

retrained to consider these changes and miss investment opportunities because they

fail to account for the e�ects of these changes in the market.

Concerning modeling human behavior, it becomes complicated as people are emotional

beings with a thin layer of rationality and have a high variability level. On the one

hand, emotions cause individuals to develop biases that cloud their judgment—e.g.,

loss aversion. On the other hand, variability among individuals produces people with

di�erent skill levels and diverse characteristics. Thus, it is challenging forML algorithms

to predict the precise behavior of one investor, let alone of all the investors.

As for misleading information, governments, companies, and investors embellish, ma-

nipulate, omit, or hide economic data to have an advantage over other economic agents

[209, 210, 211, 212, 213, 214, 215].

If a model could solve these problems, a new era of stock trading would commence.

6.2 Suggestions of FutureWork

This work can be extended in di�erent ways.

Although algorithmic trading accounts for 60-73% of the U.S. equity trading, the rest

of the trades are still made by at-times-irrational investors. For that reason, one option

would be to focus on ML architectures that learn human behavior in competitive games

using behavioral game theory foundations to predict stock price movements [216].

The ML model could exploit irrational behavior by identifying discrepancies in the

market. For instance, �nding cult stocks—those stocks that have "a sizable investor

following despite the underlying company lacking when it comes to underlying fun-
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damentals" [217]—and invest in them. For instance, as of December 2020, Tesla �ts

the cult stock de�nition with a P/E ratio of over 900, a forward P/E ratio of over 120,

and a market capitalization of 460 billion dollars—more than the world’s three largest

carmakers combined [218].

Similarly, a second option would be to train ML architectures to predict algorithmic

trading behavior. Despite trading algorithms being faster than ML ones, it might be

possible to teach an ML model to think a few steps ahead to account for trading

algorithms’ actions.

A third option would be to use other features. Two alternatives are:

• Information about which companies are included or excluded when �nancial

indexes (e.g., S&P 500) are rebalanced is a good predictor of stock price changes

as large �nancial institutions tracking the index are forced to buy or sell these

stocks.

• In�uential people’s comments, press releases, and tweets such as those about

companies, other investors, countries’ economic outlooks, cryptocurrencies, and

regular currencies could be good indicators of stock price movements.

For instance, Trump’s tweets on Boeing, Carl Icahn’s statement on Herbalife’s 13%

stake acquisition, or Elon Musk’s tweet on Tesla’s price being ’too high’ caused a

signi�cant price movement in the stock prices of those companies [219, 220, 221].

A fourth option would be to include additional assets, namely derivative securities. By

letting an ML agent use these instruments for risk management, it could, for instance,

buy bonds in a country with high- interest rates and use a currency future—a contract

to exchange a currency for another at a given exchange rate on a speci�c date—to

eliminate the risk that the foreign currency depreciates and the bond gains get lost

when they are exchange back to the local currency.

Another alternative would be to teach a system to identify and build directed acyclic

graphs containing economic agents and elements’ causal relationships. With this knowl-

edge, a system could take more accurate and logical decisions. For example, suppose a

virus of unknown origin caused a pandemic. In that case, the system could identify the

companies that would bene�t from it (i.e., technology businesses, multinational retail

corporations, e-commerce businesses, antibacterial-items producers, etc.) or quickly

adapt and enter another market.
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Related to this work, given that the trading agent refused to trade actively, using any

method that forces exploration, such as adding random noise, would help the agent

select better actions. In addition, in this work, the RL model was not as advanced as

current RL models. For that reason, exploring more powerful RL models could improve

the trading agent and the strategies.

Finally, some of the results suggest that the RF model could be an interesting alternative

if it were integrated into the RL framework because it obtained higher ROIs than the

other models despite having lower accuracy.
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A Additional Concepts

The following sections contain additional Economics andML concepts for the interested

reader.

A.1 Additional Economics information

This section includes information regarding data biases, types of idiosyncratic risks,

and why diversi�cation is important.

A.1.1 Data Bias

Data bias represents a group of errors in which the sample distribution of speci�c

data points drastically di�ers from that of the population distribution [222]. It provides

incorrect or inaccurate information toMLmodels andmakes them converge to incorrect

solutions that can result inML systems that discriminate unfairly based on race or gender

[223, 224].

In [225, 222, 226], they are de�ned as follows:

• Data-mining bias appears when a statistically signi�cant pattern is found due to

repeating a search in the same data multiple times, making the results seem more

signi�cant than they are.

There are two ways of eliminating this bias: 1) limiting the number of experiments

performed with a data sample and 2) using an out-of-sample test.

The �rst point reduces the possibility of obtaining a statistically signi�cant result

by chance.

The second point ensures that, even if a statistically signi�cant result is obtained,

it is unlikely to remain that way by chance once the out-of-sample data is used.
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When the result is statistically signi�cant in this data, it is more likely that there is

some economic signi�cance.

In �nancial markets, this bias occurs with brokers or investors who excessively

analyze historical data looking for statistically signi�cant patterns or signals that

are non-existent or turn out to be irrelevant.

• Sample bias manifests when sample data excludes elements representing the

population distribution due to a �aw in the sample selection process.

• Survivorship bias is a type of sample bias in which, by sampling the current ver-

sions of market funds or indexes, those companies that went bankrupt are ignored.

This type of bias can result in the "overestimation of historical performance and

general attributes of a fund or market index" [227].

For instance, using tech companies to analyze market performance during the

2020 health crisis as these companies are not representative of the economy and

can perform their activities remotely.

• Look-aheadbias happenswhen data is processed in away that future information

is available beforehand.

For instance, standardizing a price series of n elements using its average price gives

future information to the time series’ previous values. This error can be observed

in the following time series: (2, 1, 1, 1, 1, 1, 1, 1, 1, 20) with a mean value equal to 3.

This value passes future information to the previous elements and indicates to a

model—as it processes a new value each time step—that the last one will be a

large number. Thus the model is biased, and it could take advantage of this future

information by waiting and investing everything at the second-to-last moment.

Similarly, using any macroeconomic report—see section B.4—without shifting the

date one period forward provides future information given that macroeconomic

data is reported with a one-period delay.

• Time-period bias appears when the time-period length or starting point in�u-

ences the results. In terms of length, shorter periods might give more noteworthy

results at the expense of lacking statistical signi�cance. In comparison, more

extended periods might be statistically signi�cant at the expense of containing

relevant results.
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Regarding starting points, there might be a noticeable di�erence between two

points. e.g., buying stocks at the bottom of a crisis than just before the crisis.

A.1.2 Idiosyncratic risks

As described in [228, 17, 15], idiosyncratic risk includes:

1. Credit risk refers to the probability of losing money due to companies or govern-

ments defaulting on their loans. The greater the uncertainty about the payment

capacity, the higher the lenders’ interest rate.

2. Political risk arises from the odds that a country’s government instability, cor-

ruption, religious and ethnic tensions become a problem for investors.

3. Financial risk emerges from the possibility that a country cannot pay its debt

obligations (called sovereign default) due to a high foreign debt-to-GDP ratio—

such as Greece’s debt crisis in 2009—or unstable exchange rate—such as Mexico

during the Tequila crisis in 1994.

4. Economic risk appears from the prospect of a country’s economic slowdown as

measured by GDP growth rate, GDP per capita, in�ation rate, among others.

5. Foreign exchange risk is caused by the likelihood of unfavorable exchange rate

�uctuations.

For example, a U.S. company that buys raw material on credit from an Italian

company is exposed to the risk of dollar depreciation. If this were the case, the

U.S. company would pay a higher price than if it had liquidated the total amount

immediately; however, paying the full amount would limit its growth as it could

only buy a limited amount of raw material.

6. Arbitrage and short-selling risks are the risks faced by investors when they

perform any of these operations. There are two types of risk for these operations:

(a) Fundamental risk refers to the risk that an event in the market moves the

price di�erently from what the arbitrageur or short-seller expects.

(b) NTR is the potential of an adverse price movement caused by other traders

with di�erent beliefs than the arbitrageur or short-seller. It is further subdi-

vided into:
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i. Horizon risk stems from the amount of time needed for a price to reach

the expected target.

ii. Margin risk describes the risk of facing margin calls—demand for a

partial payment to cover possible losses.

iii. Short-covering risk is the risk of involuntary liquidation due to the

owners requesting their stocks back.

For instance, the Herbalife and Bill Ackman’s controversy in which Ackman

short-sold Herbalife stock thinking its price would decrease is an example of

horizon risk and margin risk. Despite what appeared a correct fundamental

analysis, less rational participants drove the price up for �ve years which

caused margin calls. In 2018, he closed his position losing around 1 billion

dollars [229].

A.1.3 Return-to-risk methods

In this subsection, three return-to-risk methods are described: the Sharpe ratio, the

Omega ratio, and the Sortino ratio.

• Sharpe ratio: it is a measure that assumes normally distributed data and indicates

how much investors are compensated for the risk taken but does not incorporate

information about the correlation between the portfolio and other assets [22, 17,

24]. It has the following de�nition:

Sharpe Ratio =
E [Rp −Rrf ]

σp
(A.1)

where σp is the portfolio’s standard deviation, Rp is the portfolio return, and Rrf

refers to the risk-free rate [17, 24, 22].

When comparing portfolios, the portfolio with the highest Sharpe ratio either

earns the greatest return with the same level of risk or earns the same return with

the lowest level of risk [22, 17].

Themain disadvantages of the Sharpe ratio are that, as a risk measure, the standard

deviation considers price changes in both directions as equally risky and that this

ratio assumes normally distributed stock market data [17, 24].
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• Omega ratio is an alternative to the Sharpe ratio that considers the higher mo-

ments of the distribution. It is de�ned as the probability-weighted ratio of gains

divided by the losses for a minimum acceptable return [230].

It is calculated as follows:

ω(θ) =

∫∞
r (1− F (x)) dx∫ r
−∞ F (x)dx

(A.2)

where F is the cumulative distribution function of the returns, and r refers to the

minimum acceptable return that the investor considers a gain or a loss.

• Sortino ratio : it divides the portfolio’s return by the portfolio’s downside risk.

Unlike the Sharpe ratio that assumes normally distributed data, the downside risk

helps the Sortino ratio remove this requirement [22, 17]. The Sortino ratio is

calculated as follows:

Sortino ratio =
E [Rp − τ ]

σd
(A.3)

where Rp remains the same as before, τ is a target value, and σd is the standard

deviation of negative asset returns relative to the target τ . This τ sometimes takes

the value of the risk-free rate, Rrf , and even though the two versions di�er only

by a constant, portfolio rankings are likely to be the same [17].

A.1.4 Quantitative data

A.1.4.1 Factors

• The momentum factor: Also called Up Minus Down (UMD), the following for-

mula is applied to calculate the momentum factor [35]:

UMDt = E[rTS ]− E[rBS ]

Where E[rTS ] is the average return of the top 30% of stocks, and E[rBS ] is the

average return of the bottom 30% of stocks ordered by the momentum value.
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Although ETFs use a di�erent momentum calculation, in academia, it is usually

computed as follows [231, 232, 35]:

Momentumt =
Pt−1 − Pt−11

Pt−11

where Pt−1 and Pt−11 are the prices at month 1 and 11—with the �rst month being

0.

The formula excludes the most recent month to eliminate or reduce the inver-

sion e�ect—in which winner stocks in one month tend to be loser stocks in the

following month [232].

• The size factor: To calculate the size factor—also known as SMB—the following

formula is used:

SMB = E12[rSCS ]− E12[rLCS ]

Where E12[rSCS ] is the annual average return of small-cap stocks, and E12[rLCS ] is

the annual average return of large-cap stocks. Stocks in deciles 6-10 of the Center

of Research in Security Prices (CRSP) index are classi�ed as small-cap stocks,

while those in deciles 1-5 are classi�ed as large-cap stocks [35].

• The pro�tability factor: The following formula is used to compute the prof-

itability factor—also known as Robust Minus Weak (RMW) [37]:

RMW = E12[rHPS ]− E12[rLPS ]

Where E12[rHPS ] is the annual average return of the top 30% of high-pro�tability

companies, and E12[rLPS ] is the annual average return of the bottom 30% of

low-pro�tability companies.

From which, pro�tability is computed as follows:

profitability =
sales− COGS

assets

Where COGS refers to the cost of goods sold.
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• The quality factor: This factor is computed as follows:

RMW = rHQC − rLQC

Where rHQC are the returns of high-quality companies, and rLQC refers to the

returns of low-quality companies.

• The value factor: To calculate the value factor—also referred to as HML (High

BtM stocksMinus the return on Low BtM stocks)—the following formula can be

used [35]:

HML = E12[rV S ]− E12[rGS ]

Where E12[rV S ] is the annual average return of value stocks, and E12[rGS ] is the

annual average return of growth stocks. Stocks within 30% of the highest BtM

ratio are value stocks, and those within 30% of the lowest BtM ratio are growth

stocks.

A.1.5 The importance of diversi�cation

Diversi�cation, also known as "don’t put all your eggs in one basket," is a practical

method to distribute risk among a group of assets. Mathematically, investing an equal

amount on N i.i.d. assets with returns R1, . . . , RN generates the following portfolio

return:

Rp =
1

N

N∑
i=1

Ri (A.4)

When N is su�ciently large, this return is approximately normally distributed. The

variance of this portfolio, given the Central Limit Theorem, is:

var(Rp) =
1

N2

N∑
i−1

var(pi) =
1

N2
N · σ2 =

σ2

N
lim
N→∞

σ2

N
= 0 (A.5)
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Where σ2 is the assets’ variance [15].

In other words, as the number of assets increases, the risk level of the portfolio decreases

until it is eliminated. In practice, there is a non-diversi�able risk (see section 1) that is

never removed given that assets are not i.i.d. [15, 147, 228].

A.2 ML information

This section includes more information regarding feature engineering and resampling

methods.

A.2.1 Feature engineering

The following subsection contains additional information regarding preprocessing,

feature selection, feature extraction, and feature construction.

A.2.1.1 Preprocessing

A.2.1.1.1 Time series data imputation

For time-series data, popular methods to handle missing data include LOCF, NOCB,

linear interpolation, and spline interpolation [164, 162].

• LOCF is a procedure in which missing values are �lled with the last available value

before them.

xmis,t = xobs,t−k (A.6)

where the missing value at time t, xmis,t, is replaced by the last available value

before the missing value at time t − k, xobs,t−k. When k is �xed, the interval is

restricted, and an available value is not guaranteed—in which case the missing

value remains, and other methods might need to be used to replace the missing

value. Conversely, when k is variable, the entire interval until t is considered, and

a value is guaranteed.
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An example of this method can be observed in the �rst row of table A.1. The

method takes the last available value before the gap of missing values (i.e., 2) to �ll

in the gap.

• NOCB is a method in which missing values are �lled with the next available value

after them.

xmis,t = xobs,t+k (A.7)

where themissing value at time t, xmis,t, is replaced by the next available value after

the missing value at time t+ k, xobs,t+k. The same considerations for k mentioned

in the previous item apply here, except that t+ k involves the values after t.

The second row of table A.1 shows an example of the NOCBmethod. The method

takes the next available value after the gap of interrupted values (i.e., 5) to replace

the missing values.

• Linear interpolation is an approach that replaces missing values using points

from a line which is computed from the �rst available data point before and after

a gap of missing values.

The equation to calculate the line is given by:

Py = Py0 + (Px − Px0)

(
Py1 − Py0
Px1 − Px0

)
(A.8)

where Px0 , Px1 , Py0 , Py1 are the x and y points used to create the line, and Py is the

value to interpolate.

In table A.1, the values 2 and 5 in the original dataset (X = [1, 4, 5, 2, na, na, 5, 9])

are taken to create the line Py = 2 + (Px − 0)
(
5−2
3−0

)
= Px + 2. This line is then used

to interpolate values 3 and 4 for Px = 1 and Px = 2, respectively.

• Spline interpolation is a technique that creates a piecewise polynomial—a poly-

nomial de�ned by multiple subfunctions that are applied to di�erent intervals in

the domain—called spline to substitute the missing values in the dataset [44].

Intervals are delimited by knots and are used to �t di�erent polynomial functions.

The piecewise polynomial increases its �exibility the more knots it has, but this
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�exibility causes signi�cant discontinuities. Splines use constraints to create a

continuous curve and remedy these discontinuities [44].

A cubic spline with K knots can be modeled using:

Pyi = β0 + β1b1(Pxi) + β2b2(Pxi) + · · ·+ βK+3bK+3(Pxi) + εi (A.9)

where b1, b2, . . . , bK+3 are basis functions that are selected appropriately, β0, . . . , βK+3

are the spline coe�cients, and Pyi is the value to interpolate.

For instance, in the last row of table A.1, the Python Pandas library is used to

impute the missing values using the cubic spline interpolation.

Table A.1: Example of time series imputation methods.

Imputation Method Original data Imputed data

LOCF

[1, 4, 5, 2, na, na, 5, 9]

[1, 4, 5, 2,2,2, 5, 9]

NOCB [1, 4, 5, 2,5,5, 5, 9]

Linear interpolation [1, 4, 5, 2,3,4, 5, 9]

Cubic spline interpola-

tion

[1, 4, 5, 2,2.31,2.32, 5, 9]

A.2.1.1.2 Numerical TransformationMethods

A.2.1.1.2.1 Power transformations: Box-Cox transformation

The normalized Box-Cox transformation is de�ned as [38, 160]:

xBox-Cox =


xλ−1
λẋλ−1 if x 6= 0

ẋ ln (x) if x = 0

(A.10)

where ẋ = exp 1
T

∑T
t=1 lnxt is the geometric mean of the data points and works as a scale

factor that allows comparing di�erent models, and λ is a transformation parameter. To

�nd the optimal λ, several values of this variable are used to transform the data and �t

models. Then, the model that results in the smallest residual sum of squares indicates

which λ is selected [38].
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When λ = 0, the theoretical formulation (the Box-Cox transformation without the ẋ

scale factor) becomes the log transformation.

A.2.1.1.2.2 Power transformations: Yeo-Johnson transformation

The Yeo-Johnson transformation is de�ned as:

xYeo-Johnson =



(x+1)λ−1
λ if λ 6= 0 and x ≥ 0

ln (x+ 1) if λ = 0 and x ≥ 0

− (−x+1)2−λ−1
2−λ if λ 6= 2 and x < 0

−ln(−x+ 1) if λ = 2 and x < 0

(A.11)

where λ is the same transformation parameter.

A.2.1.1.3 Textual TransformationMethods

Jurafsky [172] mentions three preprocessing steps: tokenizing words, normalizing word

formats, and segmenting sentences.

A.2.1.1.3.1 Tokenizing words

Tokenization is the segmentation of text into words, morphemes, or subwords. The �rst

element represents a single distinct meaningful element. The second, morpheme, refers

to a unit of meaning which can be classi�ed as a stem—a central word that provides the

main meaning—or an a�x—a word that provides additional meaning.

There are three approaches to tokenizing text:

1. Tokenize text using one ormore special characters—usually a space and punctuation—

to mark word boundaries.

2. Tokenize text from languages without a word-boundary character using a su-

pervised neural sequence model trained with a hand-segmented training set.

Tokenization of these types of languages is complex given that characters might

combine to form more complex concepts. Thus, splitting a word incorrectly can

change the meaning of the sentence [172].
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3. Tokenize text by letting an algorithm de�ne the token size. This is helpful because

the algorithm can add an entry in the dictionary for multiword expressions, single

words, a�xes, stems, and subwords. The advantage of learning a�xes, stems, and

subwords is that they can help ML systems handle unknown words. For example,

if the training set contains the words smart and smartest, but smarter only appears

in the test set, using this approach, the system can still represent this unknown

word combining a�xes (-er) and stems (smart) in the dictionary [172].

A.2.1.1.3.2 Normalizing word formats

Given the constant growth of words in the English language, normalization can reduce

vocabulary size and standardize words [172]. There are four techniques to normalize

text:

• Normalization: it standardizes words or tokens to a single form. For instance,

the USA, the US, America, and the States, all refer to the same idea. Thus, it can

be normalized to the USA.

• Case folding: another type of standardization which transform upper cases to

lower cases. However, this method is only applied when the advantages of gener-

alization outweighs the loss of meaning.

• Lemmatization: it determines the root of words so that those that share the

same root have similar behavior. For instance, searching on an online store for the

word "dessert" or "desserts" should retrieve similar results. Ideally, lemmatization

is performed using a morphological parser to extract stems and a�xes; however,

this type of parser can be complex.

• Stemming: it is a simpler method used to remove word-�nal a�xes to simulate

lemmatization. It is faster but not as accurate.

A.2.1.1.3.3 Segmenting sentences

This preprocessing step involves deciding based on rules or ML techniques, where to

separate one string into sentences.

The symbols most commonly used for segmentation are punctuation characters such

as periods, question marks, and exclamation points. However, in the case of periods, it
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can be unclear if they are acting as an abbreviation—e.g.,M.Sc.—a sentence boundary

marker or both—e.g., Inc. Abbreviation dictionaries built manually or usingMLmethods

can be added to the preprocessing pipeline to help reduce ambiguous cases.

A.2.2 Resampling methods

Resampling methods involve the following steps [44, 201]:

• Repeatedly draw samples from a training set.

• Re�t a model of interest on each sample.

• Study re�tted model to obtain additional information about it.

Although these techniques are computationally expensive and ignoremodel complexity—

a problem because high complexity might cause over�tting—they can be used with any

loss function and nonlinear, adaptive �tting techniques to assess model performance

[54, 202].

There are two resampling methods commonly used in ML: train/validation/test split

and cross-validation.

• Train/validation/test split is a method in which data is separated into train,

validation, and test groups, usually 70:15:15 or 70:20:10. The problem with this

method is that the model might su�er from sampling bias if one group is assigned

mostly one type of data [47].

• Cross-Validation is a set of methods that split data into two blocks. One block

is used as a training set, while the other is used as a test set. These methods

have lower sampling bias—which overestimates the test error rate—than the

train/validation/test split and more stable test error rates [44, 54].

Variations of the original concept are listed below:

– k-fold cross-validation is a similar technique in which data is divided into

blocks of roughly equal size called folds. The model is then trained using k−1

folds and tested in the held-out fold. This process repeats k times—until each

fold has been used as the test set—resulting in k test error estimates [47, 44].

The k-fold CV estimate is calculated by averaging these error values:
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CVk =
1

k

k∑
i=1

Errori (A.12)

– Leave-one-out cross-validation (LOOCV) is a variant of k-fold CV in that

k = N where N is the number of data points.

Although it also reduces the e�ect of sampling bias, LOOCV has two key

disadvantages over k-fold CV: 1) it is computationally expensive because

it requires N models to be trained. 2) Despite lower bias than the k-fold

CV, it has a higher variance, which often gives less accurate estimates of the

prediction error rate.

The lower bias and higher variance are caused by the N training sets created

by LOOCV. The use of N − 1 data points to train each model ensures high

average prediction accuracy (low bias). Similarly, the N training sets contain

highly correlated data points which cause the sum of correlated variables to

increase with the amount of covariance (high variance) [54, 233].

For this reason, k-fold CV is preferred as a good compromise [47, 44, 54].

The LOOCV estimate for the test error is the average test error estimates:

CVn =
1

n

n∑
i=1

Errori (A.13)

– Time series cross-validation (TSCV) is another variant of k-fold CV used

for time series. The key di�erence is that, given the correlation between data

points in a time series, the train folds contain those values occurring before

the points in the test fold. In other words, the number of folds increases over

time from 2—one train fold and one test fold—to k—k− 1 train folds and one

test fold.

Similarly, the TSCV estimate is calculated as the k-fold CV. That is:

TSCVk =
1

k

k∑
i=1

Errori (A.14)
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B.1 Stock market data

The following table lists the 425 companies used in this project.

Table B.1: The 425 companies used in the stock market dataset.

3M Company Abbott Labo-

ratories

AbbVie Accenture plc Activision Bliz-

zard

Acuity Brands

Inc

Adobe Sys-

tems Inc

Advance Auto

Parts

AES Corp A�liated Man-

agers Group

Inc

AFLAC Inc Agilent Tech-

nologies Inc

Air Products &

Chemicals Inc

Akamai Tech-

nologies Inc

Alaska Air

Group Inc

Albemarle

Corp

Alexion Phar-

maceuticals

Alliance Data

Systems

Alliant Energy

Corp

Allstate Corp

Alphabet Inc

Class A

Altria Group

Inc

Amazon.com

Inc

Ameren Corp American Air-

lines Group

American

Electric Power

American Ex-

press Co

American

International

Group Inc.

American

Tower Corp A

American

Water Works

Company Inc

Ameriprise Fi-

nancial

Amerisource

Bergen Corp

AMETEK Inc Amgen Inc Amphenol

Corp

Analog De-

vices Inc.

Anthem Inc. Aon plc Apache Cor-

poration

Apartment

Investment &

Mgmt
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Apple Inc. Applied Mate-

rials Inc

Archer-

Daniels-

Midland

Co

Arthur J. Gal-

lagher & Co.

Assurant Inc

AT&T Inc Autodesk Inc Automatic

Data Process-

ing

AutoNation

Inc

AutoZone Inc

AvalonBay

Communities

Inc.

Avery Denni-

son Corp

Ball Corp Bank of Amer-

ica Corp

Baxter In-

ternational

Inc.

Becton Dickin-

son

Bed Bath & Be-

yond

Best Buy Co.

Inc.

BIOGEN

IDEC Inc.

BlackRock

Block H&R Boeing Com-

pany

BorgWarner Boston Proper-

ties

Boston Scien-

ti�c

Bristol-Myers

Squibb

Broadcom Cabot Oil &

Gas

Campbell

Soup

Capital One Fi-

nancial

Cardinal

Health Inc.

Carmax Inc Carnival Corp. Caterpillar

Inc.

CBOE Hold-

ings

Centene Cor-

poration

CenterPoint

Energy

CenturyLink

Inc

Cerner CF Industries

Holdings Inc

Charles

Schwab Cor-

poration

Charter Com-

munications

Chesapeake

Energy

Chevron

Corp.

Chipotle Mex-

ican Grill

C. H. Robin-

son World-

wide

Chubb Lim-

ited

Church &

Dwight

CIGNA Corp. Cimarex En-

ergy

Cincinnati Fi-

nancial

Cintas Corpo-

ration

Cisco Systems Citigroup Inc. CME Group

Inc.

CMS Energy Coca Cola

Company

Cognizant

Technology

Solutions

Colgate-

Palmolive

Comcast

Corp.

Comerica Inc. ConAgra

Foods Inc.

Concho Re-

sources

Conoco

Phillips

Consolidated

Edison
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Constellation

Brands

Corning Inc. Costco Co. Crown Castle

International

Corp.

CSX Corp.

Cummins Inc. CVS Health Danaher Corp. Darden

Restaurants

DaVita Inc.

Deere & Co. Delphi Auto-

motive

Delta Air Lines Dentsply

Sirona

Devon Energy

Corp.

Digital Realty

Trust

Discover

Financial

Services

Discovery

Comms-A

Discovery

Comms-C

Dollar General

Dollar Tree Dominion Re-

sources

Dover Corp. D. R. Horton DTE Energy

Co.

Duke Energy Eastman

Chemical

Eaton Corpo-

ration

eBay Inc. Ecolab Inc.

Edison Int’l Edwards Life-

sciences

Electronic

Arts

Emerson Elec-

tric Company

Entergy Corp.

EOG Re-

sources

EQT Corpora-

tion

Equifax Inc. Equinix Equity Resi-

dential

Essex Prop-

erty Trust

Inc.

Estee Lauder

Cos.

E*Trade Eversource

Energy

Exelon Corp.

Expedia Inc. Expeditors

Int’l

Extra Space

Storage

Exxon Mobil

Corp.

F5 Networks

Facebook Inc. Fastenal Co Federal Realty

Investment

Trust

FedEx Corpo-

ration

Fidelity Na-

tional Informa-

tion Services

Fifth Third

Bancorp

FirstEnergy

Corp

First Solar Inc Fiserv Inc FLIR Systems

Flowserve

Corporation

Fluor Corp. FMC Corpora-

tion

Foot Locker

Inc

Ford Motor

Fortune

Brands Home

& Security

Franklin Re-

sources

Freeport-

McMoRan

Inc.

Gap (The) Garmin Ltd.
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General Dy-

namics

General Elec-

tric

General Mills General Mo-

tors

Genuine Parts

Gilead Sci-

ences

Global Pay-

ments Inc

Goldman

Sachs Group

Goodyear Tire

& Rubber

Grainger

(W.W.) Inc.

Halliburton

Co.

Hanesbrands

Inc

Harley-

Davidson

Hartford

Financial

Svc.Gp.

Hasbro Inc.

HCA Holdings Helmerich &

Payne

Henry Schein Hess Corpora-

tion

Hologic

Home Depot Honeywell

Int’l Inc.

Hormel Foods

Corp.

Host Hotels &

Resorts

HP Inc.

Humana Inc. Huntington

Bancshares

IDEXX Labo-

ratories

Illinois Tool

Works

Illumina Inc

Incyte Ingersoll-

Rand PLC

Intel Corp. Intercontinen-

tal Exchange

International

Business

Machines

International

Paper

Interpublic

Group

Intl Flavors &

Fragrances

Intuit Inc. Intuitive Surgi-

cal Inc.

Invesco Ltd. Iron Mountain

Incorporated

J. B. Hunt

Transport

Services

JM Smucker Johnson

Controls

International

Johnson &

Johnson

JPMorgan

Chase & Co.

Juniper Net-

works

Kansas City

Southern

Kellogg Co.

KeyCorp Kimberly-

Clark

Kimco Realty Kinder Mor-

gan

KLA-Tencor

Corp.

Kohl’s Corp. Kroger Co. Laboratory

Corp. of

America Hold-

ing

Lam Research L Brands Inc.

Leggett & Platt Lennar Corp. Lilly (Eli) &

Co.

Lincoln Na-

tional

LKQ Corpora-

tion

Lockheed

Martin Corp.

Loews Corp. Lowe’s Cos. LyondellBasell Macerich
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Macy’s Inc. Marathon Oil

Corp.

Marathon

Petroleum

Marriott Int’l. Marsh &

McLennan

Martin Mari-

etta Materials

Masco Corp. Mastercard

Inc.

Mattel Inc. McCormick &

Co.

McDonald’s

Corp.

McKesson

Corp.

Medtronic plc Merck & Co. MetLife Inc.

Mettler

Toledo

Microchip

Technology

Micron Tech-

nology

Microsoft

Corp.

Mid-America

Apartments

Mohawk

Industries

Molson Coors

Brewing Com-

pany

Mondelez In-

ternational

Monster Bev-

erage

Moody’s Corp

Morgan Stan-

ley

Motorola Solu-

tions Inc.

M&T Bank

Corp.

Murphy Oil Mylan N.V.

NASDAQ

OMX Group

NetApp Net�ix Inc. Newell Brands Newmont

Mining Corp.

(Hldg. Co.)

NextEra En-

ergy

Nielsen Hold-

ings

Nike NiSource Inc. Noble Energy

Inc

Nordstrom Norfolk South-

ern Corp.

Northern

Trust Corp.

Northrop

Grumman

Corp.

NRG Energy

Nucor Corp. Nvidia Corpo-

ration

Occidental

Petroleum

Omnicom

Group

ONEOK

Oracle Corp. O’Reilly Auto-

motive

PACCAR Inc. Parker-

Hanni�n

Patterson

Companies

Paychex Inc. Pentair Ltd. People’s

United Finan-

cial

PepsiCo Inc. PerkinElmer

Perrigo P�zer Inc. PG&E Corp. Philip Morris

International

Phillips 66

Pinnacle West

Capital

Pioneer Natu-

ral Resources

PNC Financial

Services

Polo Ralph

Lauren Corp.

PPG Indus-

tries
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PPL Corp. Principal Fi-

nancial Group

Procter &

Gamble

Progressive

Corp.

Prologis

Prudential Fi-

nancial

Public Serv.

Enterprise

Inc.

Public Storage Pulte Homes

Inc.

PVH Corp.

QUALCOMM

Inc.

Quanta Ser-

vices Inc.

Quest Diag-

nostics

Range Re-

sources Corp.

Realty Income

Corporation

Regency Cen-

ters Corpora-

tion

Regeneron Regions Finan-

cial Corp.

Republic Ser-

vices Inc

Robert Half In-

ternational

Rockwell Au-

tomation Inc.

Roper Indus-

tries

Ross Stores Royal

Caribbean

Cruises Ltd

Ryder System

Salesforce-

.com

Schlumberger

Ltd.

Seagate Tech-

nology

Sealed Air Sempra En-

ergy

Sherwin-

Williams

Signet Jewel-

ers

Simon Prop-

erty Group

Inc

Skyworks So-

lutions

SL Green Re-

alty

Snap-On Inc. Southern Co. Southwest Air-

lines

Southwestern

Energy

Stanley Black

& Decker

Starbucks

Corp.

State Street

Corp.

Stericycle Inc Stryker Corp. Sysco Corp.

Target Corp. TE Connectiv-

ity Ltd.

Tegna Inc. Teradata

Corp.

Texas Instru-

ments

Textron Inc. The Bank of

New York Mel-

lon Corp.

The Clorox

Company

The Cooper

Companies

The Hershey

Company

The Mosaic

Company

Thermo

Fisher Scien-

ti�c

The Travelers

Companies

Inc.

The Walt Dis-

ney Company

Ti�any & Co.

TJX Compa-

nies Inc.

Tractor Supply

Company

TransDigm

Group

Transocean TripAdvisor
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T. Rowe Price

Group

Tyson Foods UDR Inc Ulta Salon

Cosmetics &

Fragrance Inc

Under Armour

Union Paci�c United Conti-

nental Hold-

ings

United Health

Group Inc.

United Parcel

Service

United Rentals

Inc.

Universal

Health Ser-

vices Inc.

Unum Group Urban Out�t-

ters

U.S. Bancorp Valero Energy

Varian Medi-

cal Systems

Ventas Inc Verisign Inc. Verisk Analyt-

ics

Verizon Com-

munications

Vertex Phar-

maceuticals

Inc

V.F. Corp. Visa Inc. Vornado

Realty Trust

Vulcan Materi-

als

Walgreens

Boots Alliance

Wal-Mart

Stores

Waste Man-

agement Inc.

Waters Corpo-

ration

Wec Energy

Group Inc

Wells Fargo Western Digi-

tal

Western

Union Co

Weyerhaeuser

Corp.

Whirlpool

Corp.

Williams Cos. Willis Towers

Watson

Wynn Resorts

Ltd

Xcel Energy

Inc

Xerox Corp.

Xilinx Inc Xylem Inc. Yum! Brands

Inc

Zimmer

Biomet Hold-

ings

Zions Bancorp

B.2 Technical data

This section presents the technical indicators used in this work.

B.2.1 Indicators

• MACD: it uses two indicators, a longer EMA and a shorter EMA of closing prices

to create a trend-following momentum oscillator that can be used to trigger buying

and selling signals [234].
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A MACD line is computed by subtracting the longer EMA from the shorter EMA,

which is then used to calculate a signal line using a nine-day EMA of this MACD

line. The signal line is used to indicate bullish or bearish crossovers. The former—

a buy signal—occurs when the MACD line turns up and crosses the signal line,

while the latter—a sell signal—appears when the MACD line turns down and

crosses the signal line.

Usually, the longer EMA is computed using 26 days, the shorter EMA is calculated

using 12 days, and the signal line is determined using nine days.

It is calculated as follows [234]:

k-p SMAt =
1

t− k

t∑
i=t−k

pi

k-p EMAt =
2

k + 1
· (pt − EMAt−1) + EMAt−1

MACD line = (12-day EMAt − 26-day EMAt)

Signal line = 9-day EMAt of MACD line

where k-p refers to a k-period such as 9-, 12-, 26-days, and pt indicates the price

at time t.

The SMAt−1 is used to calculate the �rst EMA value. It replaces EMAt−1 in the

formula. For instance, for a 15-days EMA, the previous 15 price values to time t

are taken to compute SMA0. Then, the EMA calculation becomes 15-days-EMA1 =

2
k+1 · (p1 − SMA0) + SMA0.

• BB: They are volatility bands placed above and below an SMA [235]. The volatility

is measured by the standard deviation of the n−most recent prices.

Common values used in the BB are 20 days for the SMA with bands situated two

standard deviations above and below the SMA. A buy signal appears when the

price touches the lower band, while a sell signal occurs when the price touches

the upper band [235].

It is computed using this formula [235]:

Upper band = k-p SMAt + 2 · σk-p p
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Lower band = k-p SMAt − 2 · σk-p p

where k − p and p have the same meaning as before, and σk-p−p is the volatility.

• TUO: It is a momentum oscillator that uses three di�erent time frames to indicate

buying and selling signals. Its most common values are 7, 14, and 28 days [236].

It is de�ned as [236]:

BP = Ct −min (L,Ct−1)

TR = max (Ht, Ct−1)−min (Lt, Ct−1)

k-p BP =

t∑
i=t−k

BPi

k-p TR =
t∑

i=t−k
TRi

UO =
100

4 + 2 + 1

[
4 · 7-p BP

7-p TR
+ 2 · 14-p BP

14-p TR
+

28-p BP

28-p TR

]

where k-p has the same meaning as before, BP refers to buying pressure, Ht, Lt,

Ct are the high, low, and close prices at time t, and TR means true range.

A buy signal is raised when the TUO value is greater than 70, while a sell signal

appears when the TUO value is lower than 30 [236].

• TDI: It is an indicator that tries to identify when a trend starts and when it ends.

It has the following formula [237]:

momentumk = pt − pt−k

AMk =

∣∣∣∣∣
t∑

i=t−k
momentumk

∣∣∣∣∣
SAMk,d =

t∑
i=t−d

AMk

TDI = AM20 − (SAM20,40 − SAM20,20)

DI20,20 =
t∑

i=t−20
momentum20
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where pt is the price at time t, AMk refers to the absolute momentum over a

k interval, SAMk,d corresponds to the sum of absolute momentums, DI is the

direction indicator, and t, k, and d refer to days, such that d ≤ k < t.

TDI signals a trend if the value is positive and a consolidation if it is negative. The

direction indicator is used to enter a long position if both TDI and DI are positive

and a short position if TDI is positive and DI is negative [237].

• Williams %R: It is a momentum indicator that "re�ects the level of the close

relative to the highest high for the look-back period" [238]. Values ranging from 0 to

−20 indicate overbuying, while values ranging from−80 to−100 denote overselling.

This indicator can be calculated using [238]:

%R = 100 ·
Hk−p − Ct
Hk−p − Lk−p

where Hk−p is the maximum high price within a k-period, Ct corresponds to the

close price at time t, and Lk−p refers to the minimum low price within a k-period.

• ADX: It is an indicator derived from the smoothed averages of the di�erence

between the Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI)

that measures the trend’s strength over time [239, 240]. The following values are

required to calculate the ADX indicator [241, 239, 242, 243, 240, 244]:

DM+
t =


Ht −Ht−1, if (Ht −Ht−1 > Lt−1 − Lt) and (Ht −Ht−1 ≥ 0)

0, otherwise

DM−t =


Lt−1 − Lt, if (Ht −Ht−1 < Lt−1 − Lt) and (Lt−1 − Lt ≥ 0)

0, otherwise

where Ht and Lt have the same de�nition as before. These values and the true

range, TR, are then smoothed out as follows:

Df-k =
k∑
i=1

Di

SMDt,k = Df-k −
∑t

i=t−kDi

k − 1
+Dt
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where Df-k represents the �rst k periods of D, and D corresponds to TRt, DM+
t ,

and DM−t values used to calculate their smoothed versions, i.e., ATR, SMDM+
t ,k
,

and SMDM−
t ,k

, respectively.

With these values, the +DI and -DI are obtained using:

DI+k =
SMDM+

t ,k

ATRt

DI−k =
SMDM+

t ,k

ATRt

For ADX, the values are smoothed over 14 periods, resulting in the ADX calcula-

tion:

DXt = 100 · |DI+14 −DI−14|
DI+14 + DI−14

ADXt =
13 ·ADXt−1 + DXt

14

ADX values are divided in four groups: 0-25, 26-50, 51-75, and 76-100. These

groups indicate an absent of trend, weak trend, strong trend, very strong trend,

and extremely strong trend, respectively. A buy signal is triggered when +DI

crosses above -DI and ADX is above 25 but fails when the price moves below the

low value on the signal day. Conversely, a sell signal is raised when -DI crosses

above +DI and ADX is above 25 but fails when the price moves above the high

value on the signal day [244].

• EVWMA: It is a moving average that uses volume to de�ne its period. It is calcu-

lated using the following formula [245]:

k − p EVWMAt =
(N − Vt) · k-p EVWMAt−1 + Vt · pt

N

Where V indicates the volume at time t, p is the price at time t, and N refers to

the volume period, which can be a constant value or a multiple of recent average

volume—the N value in�uences the sensitivity of the averaging process [246].
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A buy signal occurs when the price crosses above the EVWMA, while a sell signal

appears when the price crosses below the EVWMA. A signi�cant divergence

between the price and the EVWMA value indicates an overbought or oversold

market [245].

• VWMA: It is a moving average used to identify emerging, existing, and ending

trends by calculating the volume-weighted moving average price [247, 248].

It is de�ned as [247, 248]:

k-p VWMAt =

∑t
i=t−k wi · Vi∑t
i=t−k Vi

where k-p and Vi have the same meaning as before, and wi represents the weights

associated with a given volume.

A bearish trend is con�rmed when a VWMA crosses below an SMA, and the price

moves below both moving averages. Conversely, a bullish trend is con�rmed when

a VWMA moves above an SMA and the price breaks above both moving averages

[247, 248].

• CCI: It is an indicator used to identify starting and ending trends and to warn of

extreme conditions [249].

It is computed using the following formulas [249]:

TPt =
Hk−p + Lk−p + Ct

3

MDevt =

t∑
i=t−k

abs(TPi − k-p SMATP)

CCIt =
TP− 20-p SMATP

0.015 ·MDevt

where k-p, Hk−p, Lk−p, and Ct have the same meaning as before, TP refers to the

typical price, MDevt is the mean deviation, and k-p SMATP is the simple moving

average of the typical price over a k-period.

CCI values below −100 signal the start of a downtrend (overbought market), while

values above +100 indicate the start of an uptrend (oversold market) [249].

188



Appendix B. Project Data

• RSI: It is a momentum oscillator with values ranging between zero and 100 that

determines the speed and change of price movement. It has this de�nition [250]:

µG,t =
(µG,t−1 · (k − 1)) + Gaint

k

µL,t =
(µL, t− 1 · (k − 1)) + Losst

k

RSIt = 100− 100

1 +
µG,t
µL,t

where µG,t refers to the average gain with the �rst value—µG,0—initialized as the

sum of gains over the past k-periods, µL,t is the average loss with an initial value

µL,0 equal to the sum of losses over the past k-periods, and k is the number of

periods—with a typical value of 14.

RSI signals an overbought market when its value is above 70 and an oversold

market when its value is below 30 [250].

B.3 Fundamental data

B.3.1 Return and pro�tability ratios

Ratios in this group include [153]:

• Asset turnover: It measures how e�ectively a company uses its total capital and

allows comparing companies within the same industry.

Asset turnover =
sales

average total assets

• Operating cash �owmargin: It represents the fraction of cash �ow from oper-

ating activities—those activities directly associated with core business’s activities

that generate revenue [251]—with respect to sales.

Operating cash flow margin =
operating cash flow

net sales
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• EBITmargin: It is the proportion of EBIT with respect to sales.

EBIT margin =
EBIT

sales

• EBITDAmargin: It is the proportion of EBITDA with respect to sales.

EBITDA margin =
EBITDA

sales

• Net pro�t margin: It shows the proportion of earnings left from sales after

removing production costs and taxes.

Net profit margin =
net profit

sales

• ROA: It measures how e�ectively a company is using its assets to generate earnings

[252].

ROA =
net income

total assets
=
net profit+ interest expenses

average balance sheet total

• ROE: It indicates the share of pro�t the company earned on the capital provided

by shareholders.

ROE =
net profit

average shareholder′s equity

• ROI: It is the fraction of earnings relative to the investment.

This ratio has di�erent formulations, but the most general form is:

ROI =
income

investment

Income could be replaced with operating income, EBIT, net income, or net cash

in�ows; while investment could be substituted with total assets, working capital,

stockholders’ equity, or initial cash outlay [253].
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This work uses the formulation from [153], i.e., income = EBIT and investment =

total assets.

• ROCE: It indicates how successfully a company invests its capital.

ROCE =
ebit

average capital employed

Where capital employed is the total amount of capital used for the acquisition of

pro�ts.

capital employed = noncurrent assets+ net working capital

B.3.2 Financial stability ratios

This group includes [153]:

• CAPEX ratio: It indicates the fraction of operating cash �ow used in capital

expenditure—long-term assets.

CAPEX ratio =
capital expenditure

operating cash flow

• Current assets to total assets ratio: This ratio measures current assets as a

proportion of total assets. It needs to be combined with other indicators because

its meaning is variable. For instance, a high value could mean �exibility or large

inventories, while a low value could mean that most assets are buildings and

machinery.

Current assets to total assets ratio =
current assets

total assets

• Debt to EBITDA: It is a proportion of the company’s net debt to the EBITDA. It

gauges if a company is earning enough to cover its net debt.

Debt to EBITDA =
net debt

EBITDA
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• Dynamic gearing ratio: This ratio indicates the debt repayment period in years.

Dynamic gearing =
financial liabilities− cash and equivalents

free cash flow

• Equity and long-term debt to �xed assets ratio: It indicates how much non-

current assets are protected by long-term debt and equity.

Equity and long - term

debt to fixed - assets ratio
=
shareholders′ equity − long - term borrowed capital

noncurrent assets

• Equity ratio: It is the proportion of total assets funded by shareholders’ equity.

Equity ratio =
shareholders′ equity

balance total

• Equity to �xed assets ratio: It measures howmuch noncurrent assets are backed

up by equity.

Equity to fixed assets ratio =
shareholders′ equity

noncurrent assets

• Gearing: It shows what proportion of �nancial debt is funded by equity.

Gearing =
financial liabilities− cash and equivalents

shareholders′ equity

• Goodwill ratio: This ratio is the premium value paid by a company purchasing

another as a proportion of shareholders’ equity.

Goodwill ratio =
goodwill

shareholders′ equity

• Productive asset investment ratio: It measures capital expenditure as a propor-

tion of depreciation expenses. If CAPEX is greater than depreciation, it means

that the company is usually expanding.

Productive asset investment ratio =
CAPEX

depreciation expenses
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• Noncurrent assets to total assets ratio: It is noncurrent assets as a proportion

of total assets.

Noncurrent assets to total assets ratio =
noncurrent assets

total assets

B.3.3 Working capital management ratios

The ratios used in this group are [153]:

• Days payable outstanding: It indicates how long it takes a company to pay its

suppliers.

Days payables outstanding =
average accounts payables · 360

cost of sales

• Days sales outstanding: It calculates how long it takes a company to collect bills

from customers.

Days sales outstanding =
average accounts receivables · 360

sales

• Cash ratio: This ratio measures a company’s liquidity using the proportion of

liquid assets to current liability.

Cash ratio =
cash on hand+ short - term investments

current liabilities

• Quick ratio: This is similar to the cash ratio, but it adds receivables as liquid

assets.

Quick ratio =
cash on hand+ short - term

investments + receivables

current liabilities

• Current ratio: It indicates whether or not current assets are enough to cover

current liabilities.

Current ratio =
current assets

current liabilities
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• Inventory intensity: It measures the ratio of inventory as a proportion of total

assets.

Inventory intensity =
raw materials and supplies

total assets

• Inventory turnover: It shows the rate at which a company replaces its inventory

within a period.

Inventory turnover =
cost of sales

average inventory

• Inventory days: It calculates the average number of days products remain in a

company’s stock.

Inventory days =
360

inventory turnover

• Cash conversion cycle: It refers to the number of days cash �ow from sales is

tied up in inventory and other resources before it is converted into cash received

[254].

Cash conversion cycle = days sales outstanding + inventory days− days payable outstanding

B.3.4 Valuation ratios

These ratios include:

• Market capitalization: It refers to the current value of a company.

• Price to earnings ratio: It calculates a company’s market valuation as a propor-

tion of its earnings.

• Price to book ratio: It computes the premium, i.e., a company’s current market

price to its book value.

• Price to cash �ow ratio: It is a company’s market value relative to its operating

cash �ow.
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• Price to free cash �ow ratio: It is considered a more exact measure than the

price to cash �ow ratio as it subtracts CAPEX from total operating cash �ow.

• Free cash �ow yield: It is the inverse of price to free cash �ow.

• Price to sales ratio: It gauges a business valuation in terms of its sales.

• Enterprise value (EV): It represents a company’s market value.

• EV to EBITDA: It computes the enterprise value as a proportion of EBITDA.

• EV to EBIT: It calculates the enterprise value as a fraction of EBIT.

• EV to free cash �ow: It is a company’s market value divided by its free cash �ow.

It is less susceptible to �uctuations than other ratios.

• EV to sales: It is the enterprise value compared to sales.

B.3.5 Key bank values

Besides ROE and ROA de�ned in section B.3.1, they include the following ratios:

• Earningassets ratio: It computes earning assets—income-producing investments—

as a proportion of total assets.

• Loan loss provision: It is the annual loan loss provision as a proportion of total

loans.

• Loans to deposits: It calculates the fraction of loans covered by deposits.

• Non-interest income: It is the proportion of non-interest income to total rev-

enue.

• Operating expense ratio: It computes the non-interest income as a fraction of

total revenue.

• Spread: It is the quotient of net interest income divided by total loans. The net

interest income is the di�erence between interest income and interest expense.

• Tangible common equity ratio: It represents the value of tangible common

equity to total assets.
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B.4 Macroeconomic data

Macroeconomic data is used as an attempt to measure the world’s economic health.

These datasets are published periodically by institutions, government agencies, and

organizations. The following subsections describe the macroeconomic variables used

in this thesis.

B.4.1 Consumer Sentiment Index

The University of Michigan publishes a report which contains three indexes: Con-

sumer Sentiment Index, Current Conditions Index, and Consumer Expectations Index.

Of them, the Consumer Sentiment Index is the most popular. This index measures

consumers’ outlook on national economic conditions and purchasing plans [181, 255].

The Consumer Sentiment Index is an index that measures consumers’ outlook about

national economic conditions and purchasing plans. Normal values fall between 70

and 100, while values below 80 and over 90 suggest poor economic performance and

economic growth, respectively [181, 255].

B.4.2 Consumer Con�dence Index

This index provides "an indication of future developments of households’ consumption

and saving, based upon answers regarding their expected �nancial situation, their

sentiment about the general economic situation, unemployment and capability of

savings" [256].

A value above 100 indicates a positive consumers’ future economic outlook as indicated

by their propensity to save less and spend more in the next year. Conversely, a value

below 100 indicates a negative outlook as measured by their inclination to save more

and consume less [256].
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B.4.3 Delinquencies on All Loans and Leases, Commercial

and Industrial, All Commercial Banks

Delinquent loans and leases refer to "those past due thirty days or more and still accruing

interest as well as those in nonaccrual status" [257].

This time series is important as it indicates the value of those loans and leases that are

not paid on time. During an economic downturn, as unemployment increases, people

struggle to pay these loans, and this indicator increases. Conversely, during economic

growth, this indicator decreases as more people pay their loans and leases [181].

B.4.4 Money supply

It is the currency and liquid instruments—those that can be exchanged quickly for legal

tender—in a country’s economy [258]. In most countries, central banks have four policy

tools to achieve their monetary policy goals: the discount rate, reserve requirements,

open market operations, and interest on reserves [259, 260, 258].

The discount rate is the interest rate central banks charge commercial banks for short-

term loans. Lowering discount rates is considered expansionary as borrowing money

from banks becomes cheaper, encouraging investment from businesses and spending

from consumers. Conversely, increasing discount rates is considered contractionary as

borrowing money from banks becomes more expensive, discouraging investment and

consumption [259, 260, 258].

Reserve requirements refer to deposits that banks must hold in cash at the central

bank or their vaults. When this requirement is high—a contractionary policy—banks

have less cash available to loan, and when this requirement is low—an expansionary

policy—banks have more cash to loan customers [259, 260, 258].

Openmarket operations involve buying and selling government securities from com-

mercial banks and institutions. When the objective is to increase the money supply, a

central bank purchases government securities, and when the intention is to reduce the

money supply, it sells them [259, 260, 258].

Interest on reserves is a new tool—introduced by some central banks after the Fi-

nancial Crisis of 2008—in which central banks pay interest on excess reserves held
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at a central bank. Excess reserves refer to the funds above the reserve requirements.

Lowering this interest encourages banks to move the cash out of the central bank and

borrow it at higher interest rates. Conversely, increasing this interest can discourage

banks from moving the money out or even encourage banks to move money back in

[259, 260, 258].

The money supply is an important macroeconomic variable because it a�ects interest

rates, and prices of goods and services, i.e., saving, investment and consumption [259,

260, 258].

B.4.5 Unemployment InsuranceWeekly Claims Report

The Department of Labor releases the Unemployment InsuranceWeekly Claims Report.

Investors use this report to look for early signs of economic growth or weakness. When

the number of insurance claims is large (i.e., more than 400,000 weekly claims or

greater than 3 million continued claims), the markets get agitated and perform poorly

[261, 181].

B.4.6 30-Year Fixed-Rate Mortgage Average in the United

States

As the most common mortgage rate chosen by �rst-time homeowners, this rate, com-

bined with other indicators, is helpful to gauge three elements of the economy: housing

a�ordability for families, residential construction for developers, and economic outlook

for the government [262].

B.4.7 Interest Rates

Interest rates represent a percentage charged (or paid) on the total amount that a person

borrows (or saves). A central bank’s interest rate is one of the most critical rates as

it in�uences other interest rates in the economy. Its e�ect is similar to those of the

discount rate [263].

Central banks cannot directly in�uence interest rates; instead, they can use any mone-

tary policy tools mentioned in the money supply subsection (B.4.4) [263].
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B.4.8 TED spread

The TED spread is the di�erence between the three-month Treasury bill and the three-

month LIBOR based on U.S. dollars [264]. The LIBOR (London Inter-Bank O�ered

Rate) is the benchmark interest rate used by major global banks to lend among them

[265].

While the Treasury bill (T-bill) is the rate at which the U.S. government borrows money

from investors, the LIBOR represents the rate that large banks pay investors for saving

their money with them. Because the T-bills are considered risk-free, the TED spread is

ultimately an indicator of credit risk [264].

During periods of economic downturn, the TED spread widens as defaults are more

likely to occur. On the contrary, when the economy is growing, it narrows as default

risk decreases.

B.4.9 Bank Prime Loan Rate

It refers to the interest rate charged by commercial banks to their customers with good

credit. This rate is important because it is the minimum rate charged by commercial

banks and used as the starting point for other interest rates [266].

B.4.10 Employment Situation Report

This report is one of the most important indicators for the markets released by the US

Bureau of Labor Statistics (BLS). It contains information on average hourly compensa-

tion, the number of new jobs created, the total employment, and the unemployment

rate [181, 267].

Only people who are 16 years old or older and civilians are included in the report and

classi�ed as employed, unemployed, or not in the labor force [181, 267].

Governments and markets use unemployment numbers as another piece to evaluate a

nation’s economic health [181, 267].
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B.4.11 Consumer Price Index

The Consumer Price Index measures in�ation by averaging the price changes of house-

hold goods and services over time using 36 months from 1982 to 1984 as its reference

value of 100 [181].

In addition to price changes, in�ation a�ects the economy due to the central bank’s

actions. For instance, the FED might increase interest rates to reduce in�ation. This

increment discourages investment because borrowing becomes more expensive and

slows down economic growth and in�ation.

For this reason, themarkets pay attention to theCPI as an indicator of future government

intervention—via �scal policies—or FED intervention—via monetary policies.

B.4.12 Producer Price Index

The Producer Price Index measures the average change over time in the selling prices—

from the �rst commercial transaction—received by domestic producers for their output

[268].

It is used by the government and businesses to "make better-informed decisions for

things like contract adjustment, tracking speci�c products and industries, forecasting,

LIFO inventory valuation, and as an economic indicator" [269] as it is accurate, timely,

objective, and relevant.

B.4.13 Median Consumer Price Index

The Cleveland Fed calculates the median CPI by looking at the prices of the goods and

services published by the BLS, ranking the in�ation rates of the components of the CPI,

and selecting the one that falls in the middle of the ordered distribution [270, 181].

It is used as an alternative to the CPI because it excludes items whose prices vary

frequently, such as food and energy, which prevents the CPI from measuring the

underlying rate of in�ation—the in�ation likely to persist over medium-run horizons of

several years—appropriately [270, 181].
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B.4.14 IndustrialProductionandCapacityUtilizationReport

This report contains information about manufacturing, mining, and electric and gas

utilities. Investors use the report to have a comprehensive perspective of a cross-section

of manufacturing industries, while economists use it to gauge early signs of in�ationary

pressure [181].

It comprises two indexes: the Industrial Production Index and the Capacity Utilization

Index. The former measures how much is currently produced—industrial production

volume as a percentage of the output in the base year—and strongly correlates with the

GDP, while the latter indicates how much could be produced and the amount of the

nation’s current industrial capacity in use [181].

In terms of capacity utilization, the highest value is named fullest capacity and it is

de�ned by the FED as sustainable maximum output—i.e., the output level a facility can

sustain after factoring in downtime for maintenance and the continuous availability of

labor and materials required for production [181].

B.4.15 Advance Report On Durable Goods

The Manufacturers’ Shipments, Inventories, and Orders of the Advance Report On

Durable Goods is a survey that provides monthly statistical data on economic conditions

in the domestic manufacturing sector [271].

The advance report on durable goods contains "statistics on manufacturers’ value of

shipments, new orders (net of cancellations), end-of-month order backlog (un�lled

orders), end-of-month total inventory, materials and supplies, work-in-process, and

�nished goods inventories (at current cost or market value)" [272] which indicate future

business trends.

The government uses the report tomakeGDP estimates and develop �scal andmonetary

policy, while investors, researchers and the media use it for analysis and economic

forecasting [272].
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B.4.16 New Residential Construction and New Residential

Sale report

These reports are based on two surveys: the Building Permits Survey and the Survey of

Construction.

TheBuilding Permits Survey contains national, state, and local statistics on newprivately-

owned residential construction. This includes statistics on building permits, construc-

tion authorized but not started, housing starts, housing under construction, and housing

completions [273].

The Survey of Construction provides national and regional statistics on "starts, com-

pletions, and characteristics of new, privately-owned single-family and multifamily

housing units and on sales of new single-family houses" [274].

B.4.17 Retail Trade Report

The report produces "the most comprehensive data on retail economic activity in the

United States" [275] and can be used to identify changes in consumer spending patterns

and anticipate economic changes [276].

The Retail Trade Report allows investors to measure consumer demand for durable

and nondurable goods. Durable goods are those that last at least three years, while

nondurable goods are those that last less than three years [276].

B.4.18 GDP

The GDP is a measure of the country’s economic output that considers the market value

of �nal goods and services produced by labor and property located within a country. It

includes details about personal income and spending, national income and spending,

corporate spending and production, and in�ation [277, 181].

The economic report is essential because it contains a country’s annualized economic

real growth during the last quarter. It a�ects the stock, currency, and commodity

markets to di�erent degrees. Moreover, it helps to identify periods of recession—

de�ned as a period with two consecutive quarters of GDP decline— and depression—

de�ned as any time the GDP falls by 10% or more [277, 181].
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Despite its importance, there are two key factors to take into account when using this

indicator [277, 181]:

1. BEA makes periodic revisions in which it can change de�nitions, concepts, and

statistical methods used to collect and tabulate the data.

2. The GDP report can be revised up to three years after its release.

These factors are worthy of taking into account as they are sources of look-ahead bias.

B.4.19 Personal Income and Outlays Report

Personal income refers to the income people get from all sources such as wages and

salaries, social security, and other government bene�ts; personal outlays refer to the sum

of personal consumption expenditure of durable and nondurable goods and services,

personal interest payments, and personal current transfer payments; and personal

savings is what is left of personal income after subtracting personal spending [278, 279].

It is useful for the government and investors because it provides another perspective of

economic performance [278, 279].
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C Extended Results

C.1 Data exploration results

C.1.1 Fundamental data

Table C.1: Descriptive statistics of a random features sample of balance sheet data.

Fields C
o
m
m
o
n
S
to
ck

T
re
as
u
ry

S
to
ck

C
o
m
m
o
n
E
q
u
it
y

C
u
rr
en

t
L
ia
b
il
it
ie
s

D
ef
er
re
d
T
ax
es

count 7.80e+01 8.10e+01 7.40e+01 8.10e+01 6.10e+01

mean 3.71e+06 8.42e+08 1.96e+10 5.66e+08 9.41e+08

std 2.48e+06 6.90e+08 1.30e+10 3.07e+08 7.51e+08

min 1.20e+06 0.00e+00 3.59e+09 2.34e+08 -1.29e+08

25% 2.40e+06 1.93e+08 8.93e+09 2.98e+08 3.64e+08

50% 2.60e+06 7.49e+08 1.66e+10 4.62e+08 7.47e+08

75% 5.60e+06 1.37e+09 2.67e+10 8.30e+08 1.62e+09

max 2.05e+07 2.59e+09 5.12e+10 1.29e+09 2.50e+09
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Table C.2: Descriptive statistics of a random features sample of cash �ow data.

Fields D
ec
(I
n
c)
In
ve
n
to
ri
es

O
S
-
F
in
an

ci
n
g

C
as
h
D
iv
id
en

d
s
P
ai
d

E
x
tr
ao
rd
in
ar
y
It
em

s

O
S
-
In
ve
st
in
g

count 7.30e+01 3.90e+01 37.0 75.0 7.90e+01

mean -1.81e+07 2.93e+07 0.0 0.0 2.19e+06

std 2.51e+07 5.61e+07 0.0 0.0 5.28e+06

min -1.24e+08 0.00e+00 0.0 0.0 0.00e+00

25% -2.39e+07 2.50e+06 0.0 0.0 0.00e+00

50% -1.22e+07 1.40e+07 0.0 0.0 0.00e+00

75% -2.50e+06 2.60e+07 0.0 0.0 1.10e+06

max 1.50e+07 2.69e+08 0.0 0.0 2.22e+07

Table C.3: Descriptive statistics of a random features sample of income statement data.

Fields In
ve
st
m
en

t
In
co
m
e

C
o
st
o
f
G
o
o
d
s
S
o
ld

D
is
co
n
ti
n
u
ed

O
p
er
at
io
n
s

E
P
S
In
cl
E
x
tr
ao
rd
in
ar
y
It
em

s

In
te
re
st
E
x
p
en

se
T
o
ta
l

count 8.00e+01 8.10e+01 59.0 76.000000 8.00e+01

mean 4.40e+09 3.40e+08 0.0 0.53 1.76e+08

std 2.25e+09 6.28e+07 0.0 0.55 1.03e+08

min 1.28e+08 2.04e+08 0.0 -0.24 6.52e+07

25% 3.25e+09 2.94e+08 0.0 0.09 9.97e+07

50% 3.95e+09 3.38e+08 0.0 0.26 1.40e+08

75% 5.25e+09 3.91e+08 0.0 0.88 2.11e+08

Continued on next page
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Table C.3: Descriptive statistics of a random features sample of income statement data.

Fields In
ve
st
m
en

t
In
co
m
e

C
o
st
o
f
G
o
o
d
s
S
o
ld

D
is
co
n
ti
n
u
ed

O
p
er
at
io
n
s

E
P
S
In
cl
E
x
tr
ao
rd
in
ar
y
It
em

s

In
te
re
st
E
x
p
en

se
T
o
ta
l

max 1.68e+10 4.86e+08 0.0 2.13 4.42e+08

C.1.2 Exchange indexes data

Table C.4: Descriptive statistics of exchange indexes data.

Fields Close High Low Open Volume

count 99394.00 99396.00 99396.00 99396.00 9.23e+04

mean 9699.77 9774.23 9622.23 9700.82 2.91e+08

std 12291.39 12386.35 12192.59 12291.81 5.13e+08

min 0.19 0.20 0.19 0.196800 0.00e+00

25% 2044.56 2057.64 2030.00 2043.85 4.26e+04

50% 5051.53 5086.81 5016.00 5050.87 6.98e+07

75% 11382.63 11466.06 11292.72 11383.36 3.02e+08

max 73517.00 73920.00 72534.00 73508.00 5.64e+09

C.1.3 Macroeconomic data
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Table C.5: Descriptive statistics of a random features sample of macroeconomic data.

Fields F
in
is
h
ed

go
o
d
s
in
ve
n
to
ri
es

E
le
ct
ro
n
ic
s
an

d
ap

p
li
an

ce
st
o
re
s

G
ro
ss
p
ri
va
te

d
o
m
es
ti
c
in
ve
st
m
en

t.
..

E
x
p
o
rt
s

A
ir
tr
an

sp
o
rt
at
io
n

count 341.00 3.23e+02 142.00 142.00 347.00

mean 8670.59 7.64e+09 94.76 85.85 509914.12

std 2349.37 1.38e+09 6.01 8.84 46337.36

min 4943.00 3.87e+09 80.53 72.08 439300.00

25% 6608.00 6.96e+09 90.28 79.10 472250.00

50% 8038.00 8.12e+09 95.97 81.81 509100.00

75% 11080.00 8.65e+09 99.69 94.64 530450.00

max 12685.00 9.56e+09 104.13 100.85 633600.00

C.1.4 Commodity data

Table C.6: Descriptive statistics of a random features sample of commodity data.

Fields Co�ee Arabica Co�ee robustas Corn Cotton Shrimp

count 323.00 323.00 323.00 323.00 323.00

mean 121.40 74.73 137.70 73.04 12.31

std 51.63 30.80 63.66 24.68 2.21

min 52.02 21.26 66.93 37.22 7.94

25% 79.84 48.66 97.42 57.72 10.47

50% 116.38 76.24 110.12 68.21 11.90

75% 144.70 95.89 159.53 82.31 14.06

Continued on next page
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Table C.6: Descriptive statistics of a random features sample of commodity data.

Fields Co�ee Arabica Co�ee robustas Corn Cotton Shrimp

max 302.71 182.96 332.95 229.67 16.89

C.2 Datasets results

Table C.7: FCNN, LSTM and RF’s average accuracies according to dataset type.

S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 0.6838 0.6764 0.6575

3 3 0.6813 0.6692 0.6497

3 3 0.6820 0.6670 0.6569

3 3 3 0.6815 0.6706 0.6557

3 3 0.6814 0.6817 0.6678

3 3 3 0.6827 0.6797 0.6604

3 3 3 0.6783 0.6783 0.6617

3 3 3 3 0.6842 0.6831 0.6629

3 3 0.6839 0.6777 0.6480

3 3 3 0.6813 0.6805 0.6540

3 3 3 0.6771 0.6829 0.6532

3 3 3 3 0.6832 0.6735 0.6566

3 3 3 0.6763 0.6838 0.6613

3 3 3 3 0.6832 0.6666 0.6614

3 3 3 3 0.6825 0.6761 0.6610

3 3 3 3 3 0.6810 0.6736 0.6577

3 3 0.6850 0.6781 0.6676

3 3 3 0.6851 0.6780 0.6581

3 3 3 0.6845 0.6732 0.6666

3 3 3 3 0.6848 0.6725 0.6634

Continued on next page
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Table C.7: FCNN, LSTM and RF’s average accuracies according to dataset type.
S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 3 3 0.6857 0.6837 0.6638

3 3 3 3 0.6854 0.6731 0.6660

3 3 3 3 0.6851 0.6831 0.6629

3 3 3 3 3 0.6854 0.6800 0.6661

3 3 3 0.6831 0.6757 0.6611

3 3 3 3 0.6847 0.6791 0.6634

3 3 3 3 0.6852 0.6805 0.6577

3 3 3 3 3 0.6838 0.6811 0.6577

3 3 3 3 0.6856 0.6761 0.6627

3 3 3 3 3 0.6842 0.6764 0.6639

3 3 3 3 3 0.6848 0.6827 0.6629

3 3 3 3 3 3 0.6846 0.6568 0.6676

3 3 0.6825 0.6690 0.6636

3 3 3 0.6827 0.6697 0.6571

3 3 3 0.6839 0.6586 0.6572

3 3 3 3 0.6838 0.6752 0.6632

3 3 3 0.6819 0.6761 0.6605

3 3 3 3 0.6838 0.6696 0.6668

3 3 3 3 0.6800 0.6800 0.6675

3 3 3 3 3 0.6815 0.6725 0.6582

3 3 3 0.6817 0.6797 0.6516

3 3 3 3 0.6836 0.6707 0.6531

3 3 3 3 0.6824 0.6832 0.6511

3 3 3 3 3 0.6782 0.6791 0.6566

3 3 3 3 0.6775 0.6820 0.6668

3 3 3 3 3 0.6841 0.6814 0.6617

3 3 3 3 3 0.6829 0.6839 0.6603

Continued on next page
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Table C.7: FCNN, LSTM and RF’s average accuracies according to dataset type.

S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 3 3 3 3 3 0.6838 0.6712 0.6625

3 3 3 0.6847 0.6755 0.6690

3 3 3 3 0.6855 0.6739 0.6631

3 3 3 3 0.6843 0.6676 0.6614

3 3 3 3 3 0.6843 0.6711 0.6595

3 3 3 3 0.6851 0.6836 0.6670

3 3 3 3 3 0.6852 0.6767 0.6662

3 3 3 3 3 0.6859 0.6836 0.6631

3 3 3 3 3 3 0.6850 0.6801 0.6641

3 3 3 3 0.6851 0.6781 0.6666

3 3 3 3 3 0.6847 0.6724 0.6623

3 3 3 3 3 0.6850 0.6805 0.6606

3 3 3 3 3 3 0.6809 0.6811 0.6549

3 3 3 3 3 0.6854 0.6820 0.6639

3 3 3 3 3 3 0.6846 0.6699 0.6674

3 3 3 3 3 3 0.6850 0.6833 0.6643

3 3 3 3 3 3 3 0.6831 0.6843 0.6657

3 3 3 3 3 3 3 3 0.6806 0.6692 0.6650

3 3 3 3 3 3 3 3 3 0.6789 0.6694 0.6610

3 3 3 3 3 3 3 3 3 3 0.6827 0.6690 0.6625

3 3 3 3 3 3 3 3 3 3 3 0.6837 0.6569 0.6569

3 3 3 3 3 3 3 3 3 3 3 3 0.6769 0.6692 0.6641

3 3 3 3 3 3 3 3 3 3 3 3 3 0.6790 0.6748 0.6562
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Table C.8: FCNN, LSTM and RF’s average earnings according to dataset type.
S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 1.2243 1.2100 1.0733

3 3 1.2000 1.1596 0.9784

3 3 1.2064 1.2238 1.1836

3 3 3 1.2161 1.1881 1.0235

3 3 1.2274 1.2342 1.1973

3 3 3 1.2244 1.1653 1.1804

3 3 3 1.1916 1.1798 1.1537

3 3 3 3 1.2290 1.2258 1.1856

3 3 1.2250 1.1799 1.0375

3 3 3 1.2182 1.2411 0.9591

3 3 3 1.1642 1.2177 1.2329

3 3 3 3 1.2145 1.1929 1.2908

3 3 3 1.2091 1.2249 1.1932

3 3 3 3 1.2240 1.1761 1.1639

3 3 3 3 1.2255 1.1883 1.1953

3 3 3 3 3 1.2117 1.2828 1.2546

3 3 1.2359 1.2039 1.1493

3 3 3 1.2499 1.1776 0.9849

3 3 3 1.2362 1.1825 1.0561

3 3 3 3 1.2366 1.1623 1.2138

3 3 3 1.2404 1.2275 1.1961

3 3 3 3 1.2409 1.1850 1.1589

3 3 3 3 1.2298 1.2180 1.1250

3 3 3 3 3 1.2389 1.1942 1.1288

3 3 3 1.2126 1.1702 1.2292

3 3 3 3 1.2326 1.2070 1.1837

3 3 3 3 1.2353 1.2165 1.0922

Continued on next page

212



Appendix C. Extended Results

Table C.8: FCNN, LSTM and RF’s average earnings according to dataset type.

S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 3 3 3 3 1.2128 1.2067 1.0152

3 3 3 3 1.2358 1.2348 1.2083

3 3 3 3 3 1.2363 1.2043 1.1413

3 3 3 3 3 1.2201 1.2211 1.2120

3 3 3 3 3 3 1.2387 1.2713 1.1913

3 3 1.2233 1.1666 1.1321

3 3 3 1.2152 1.1667 1.0470

3 3 3 1.2242 1.1465 1.0244

3 3 3 3 1.2222 1.2378 1.0745

3 3 3 1.2055 1.2006 1.1034

3 3 3 3 1.2254 1.1989 1.0996

3 3 3 3 1.1999 1.1740 1.1890

3 3 3 3 3 1.2027 1.1797 1.1198

3 3 3 1.2078 1.1924 1.0952

3 3 3 3 1.2252 1.1824 1.0321

3 3 3 3 1.2144 1.2246 1.0240

3 3 3 3 3 1.2049 1.1803 1.0158

3 3 3 3 1.2155 1.2147 1.2095

3 3 3 3 3 1.2246 1.2026 1.1520

3 3 3 3 3 1.2172 1.2241 1.1843

3 3 3 3 3 3 1.2206 1.2109 1.1661

3 3 3 1.2272 1.1901 1.0273

3 3 3 3 1.2443 1.1678 0.9985

3 3 3 3 1.2392 1.1570 1.1526

3 3 3 3 3 1.2371 1.1394 1.0348

3 3 3 3 1.2332 1.2283 1.1929

3 3 3 3 3 1.2237 1.2347 1.1455
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Table C.8: FCNN, LSTM and RF’s average earnings according to dataset type.
S
to
ck

T
ec
h
n
ic
al

F
u
n
d
am

en
ta
l

F
ac
to
rs

T
ex
tu
al

M
ac
ro

D
at
es

C
o
m
m
o
d
it
y

C
u
rr
en

cy

In
d
ex
es

B
en

ch
m
ar
k

C
u
m
u
la
ti
ve

R
an

k
in
gs

F
C
N
N

L
S
T
M

R
F

3 3 3 3 3 1.2404 1.2201 1.1466

3 3 3 3 3 3 1.2309 1.2123 1.2619

3 3 3 3 1.2367 1.1878 1.2082

3 3 3 3 3 1.2383 1.1868 1.0148

3 3 3 3 3 1.2284 1.1932 1.1721

3 3 3 3 3 3 1.2286 1.2243 1.0782

3 3 3 3 3 1.2298 1.2170 1.1770

3 3 3 3 3 3 1.2314 1.2149 1.1448

3 3 3 3 3 3 1.2345 1.2242 1.1768

3 3 3 3 3 3 3 1.2412 1.2269 1.1690

3 3 3 3 3 3 3 3 1.2700 1.2998 1.1883

3 3 3 3 3 3 3 3 3 1.2475 1.2746 1.2978

3 3 3 3 3 3 3 3 3 3 1.2539 1.3030 1.1678

3 3 3 3 3 3 3 3 3 3 3 1.2298 1.2346 1.1002

3 3 3 3 3 3 3 3 3 3 3 3 1.2580 1.2644 1.1456

3 3 3 3 3 3 3 3 3 3 3 3 3 1.2346 1.2102 1.1219

C.3 Dimensionality reduction results
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Table C.9: Reconstruction error in dimensionality reduction for �nancial data using

four NN models.

Experiment Transformation Sigmoid Tanh ReLU Swish

No 0.02495 0.00145 0.01569 0.00538

Reconstruction error MinMax 0.01452 0.00126 0.05841 0.00285

original size (6 dims) Gaussian 0.59082 0.17532 0.39921 0.24531

Quantile 0.06206 0.00249 0.04324 0.00500

No 0.02496 0.00152 0.01746 0.00552

Reconstruction error MinMax 0.01452 0.00259 0.07234 0.00538

with 3 dims Gaussian 0.60281 0.25280 0.43688 0.27962

Quantile 0.06211 0.01325 0.06629 0.01746

No 0.02496 0.00466 0.01971 0.00799

Reconstruction error MinMax 0.01452 0.01023 0.13202 0.01007

with 1 dim Gaussian 0.63746 0.50097 0.57318 0.48848

Quantile 0.06211 0.04038 0.13326 0.04060

Reconstruction error No 0.00046 0.00001 0.00024 0.00007

original size without MinMax 0.00598 0.00043 0.07296 0.00121

vol. (4 dims) Gaussian 0.33209 0.08601 0.26353 0.14301

Quantile 0.05555 0.00200 0.04586 0.00475
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Table C.10: FCNN and RF’s average accuracies with and without dimensionality

reduction and log normalization datasets.

S
to
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h
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l
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d
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C
u
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d
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B
en
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C
u
m
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R
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D
-R
ed

u
x
F
C
N
N

N
o
D
-R
ed

u
x
F
C
N
N

D
-R
ed

u
x
R
F

N
o
D
-R
ed

u
x
R
F

3 0.6841 0.6838 0.6628 0.6575

3 3 0.6841 0.6813 0.6564 0.6497

3 3 0.6839 0.6820 0.6527 0.6569

3 3 3 0.6838 0.6815 0.6586 0.6557

3 3 0.6841 0.6814 0.6641 0.6678

3 3 3 0.6839 0.6827 0.6676 0.6604

3 3 3 0.6803 0.6783 0.6651 0.6617

3 3 3 3 0.6837 0.6842 0.6629 0.6629

3 3 0.6839 0.6839 0.6474 0.6480

3 3 3 0.6841 0.6813 0.6493 0.6540

3 3 3 0.6841 0.6771 0.6474 0.6532

3 3 3 3 0.6841 0.6832 0.6524 0.6566

3 3 3 0.6839 0.6763 0.6657 0.6613

3 3 3 3 0.6833 0.6832 0.6624 0.6614

3 3 3 3 0.6768 0.6825 0.6633 0.6610

3 3 3 3 3 0.6787 0.6810 0.6613 0.6577

3 3 0.6847 0.6850 0.6744 0.6676

3 3 3 0.6845 0.6851 0.6636 0.6581

3 3 3 0.6848 0.6845 0.6590 0.6666

3 3 3 3 0.6850 0.6848 0.6669 0.6634

3 3 3 0.6851 0.6857 0.6706 0.6638

3 3 3 3 0.6851 0.6854 0.6682 0.6660

3 3 3 3 0.6843 0.6851 0.6669 0.6629

3 3 3 3 3 0.6850 0.6854 0.6712 0.6661
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Table C.10: FCNN and RF’s average accuracies with and without dimensionality

reduction and log normalization datasets.
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N
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D
-R
ed

u
x
F
C
N
N

D
-R
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u
x
R
F

N
o
D
-R
ed

u
x
R
F

3 3 3 0.6850 0.6831 0.6715 0.6611

3 3 3 3 0.6848 0.6847 0.6639 0.6634

3 3 3 3 0.6837 0.6852 0.6585 0.6577

3 3 3 3 3 0.6848 0.6838 0.6629 0.6577

3 3 3 3 0.6852 0.6856 0.6687 0.6627

3 3 3 3 3 0.6854 0.6842 0.6670 0.6639

3 3 3 3 3 0.6857 0.6848 0.6659 0.6629

3 3 3 3 3 3 0.6852 0.6846 0.6660 0.6676

3 3 0.6841 0.6825 0.6666 0.6636

3 3 3 0.6841 0.6827 0.6610 0.6571

3 3 3 0.6834 0.6839 0.6569 0.6572

3 3 3 3 0.6838 0.6838 0.6540 0.6632

3 3 3 0.6841 0.6819 0.6618 0.6605

3 3 3 3 0.6843 0.6838 0.6624 0.6668

3 3 3 3 0.6848 0.6800 0.6655 0.6675

3 3 3 3 3 0.6842 0.6815 0.6660 0.6582

3 3 3 0.6839 0.6817 0.6582 0.6516

3 3 3 3 0.6839 0.6836 0.6608 0.6531

3 3 3 3 0.6828 0.6824 0.6492 0.6511

3 3 3 3 3 0.6836 0.6782 0.6473 0.6566

3 3 3 3 0.6791 0.6775 0.6633 0.6668

3 3 3 3 3 0.6841 0.6841 0.6637 0.6617

3 3 3 3 3 0.6675 0.6829 0.6642 0.6603

3 3 3 3 3 3 0.6837 0.6838 0.6617 0.6625

3 3 3 0.6847 0.6847 0.6758 0.6690
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Table C.10: FCNN and RF’s average accuracies with and without dimensionality

reduction and log normalization datasets.
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3 3 3 3 0.6851 0.6855 0.6662 0.6631

3 3 3 3 0.6856 0.6843 0.6631 0.6614

3 3 3 3 3 0.6848 0.6843 0.6600 0.6595

3 3 3 3 0.6848 0.6851 0.6698 0.6670

3 3 3 3 3 0.6850 0.6852 0.6710 0.6662

3 3 3 3 3 0.6860 0.6859 0.6662 0.6631

3 3 3 3 3 3 0.6854 0.6850 0.6671 0.6641

3 3 3 3 0.6848 0.6851 0.6704 0.6666

3 3 3 3 3 0.6847 0.6847 0.6642 0.6623

3 3 3 3 3 0.6850 0.6850 0.6610 0.6606

3 3 3 3 3 3 0.6851 0.6809 0.6631 0.6549

3 3 3 3 3 0.6822 0.6854 0.6722 0.6639

3 3 3 3 3 3 0.6847 0.6846 0.6639 0.6674

3 3 3 3 3 3 0.6854 0.6850 0.6693 0.6643

3 3 3 3 3 3 3 0.6851 0.6831 0.6696 0.6657

3 3 3 3 3 3 3 3 0.6854 0.6806 0.6706 0.6650

3 3 3 3 3 3 3 3 3 0.6857 0.6789 0.6605 0.6610

3 3 3 3 3 3 3 3 3 3 0.6839 0.6827 0.6650 0.6625

3 3 3 3 3 3 3 3 3 3 3 0.6735 0.6837 0.6627 0.6569

3 3 3 3 3 3 3 3 3 3 3 3 0.6848 0.6769 0.6673 0.6641

3 3 3 3 3 3 3 3 3 3 3 3 3 0.6824 0.6790 0.6670 0.6562
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Table C.11: FCNN and RF’s average earnings with and without dimensionality

reduction and log normalization datasets
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3 1.2245 1.2243 1.1481 1.0733

3 3 1.2245 1.2000 1.1123 0.9784

3 3 1.2250 1.2064 1.2252 1.1836

3 3 3 1.2257 1.2161 1.1534 1.0235

3 3 1.2245 1.2274 1.2365 1.1973

3 3 3 1.2205 1.2244 1.1021 1.1804

3 3 3 1.2100 1.1916 1.1681 1.1537

3 3 3 3 1.2189 1.2290 1.1244 1.1856

3 3 1.2250 1.2250 1.2106 1.0375

3 3 3 1.2245 1.2182 1.1573 0.9591

3 3 3 1.2245 1.1642 1.1915 1.2329

3 3 3 3 1.2245 1.2145 1.1746 1.2908

3 3 3 1.2122 1.2091 1.2689 1.1932

3 3 3 3 1.2275 1.2240 1.2101 1.1639

3 3 3 3 1.2226 1.2255 1.1622 1.1953

3 3 3 3 3 1.2062 1.2117 1.1134 1.2546

3 3 1.2272 1.2359 1.2236 1.1493

3 3 3 1.2316 1.2499 1.1497 0.9849

3 3 3 1.2356 1.2362 1.1269 1.0561

3 3 3 3 1.2302 1.2366 1.1652 1.2138

3 3 3 1.2290 1.2404 1.2813 1.1961

3 3 3 3 1.2262 1.2409 1.1665 1.1589

3 3 3 3 1.2340 1.2298 1.2992 1.1250

3 3 3 3 3 1.2277 1.2389 1.1881 1.1288

Continued on next page
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Table C.11: FCNN and RF’s average earnings with and without dimensionality

reduction and log normalization datasets
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3 3 3 1.2284 1.2126 1.2384 1.2292

3 3 3 3 1.2299 1.2326 1.1575 1.1837

3 3 3 3 1.2349 1.2353 1.2471 1.0922

3 3 3 3 3 1.2272 1.2128 1.1461 1.0152

3 3 3 3 1.2305 1.2358 1.2525 1.2083

3 3 3 3 3 1.2305 1.2363 1.1874 1.1413

3 3 3 3 3 1.2358 1.2201 1.2080 1.2120

3 3 3 3 3 3 1.2299 1.2387 1.1598 1.1913

3 3 1.2245 1.2233 1.1573 1.1321

3 3 3 1.2245 1.2152 1.1808 1.0470

3 3 3 1.2195 1.2242 1.2312 1.0244

3 3 3 3 1.2243 1.2222 1.0735 1.0745

3 3 3 1.2247 1.2055 1.2636 1.1034

3 3 3 3 1.2208 1.2254 1.1809 1.0996

3 3 3 3 1.2276 1.1999 1.1545 1.1890

3 3 3 3 3 1.2049 1.2027 1.1606 1.1198

3 3 3 1.2250 1.2078 1.2631 1.0952

3 3 3 3 1.2250 1.2252 1.1800 1.0321

3 3 3 3 1.2233 1.2144 1.1259 1.0240

3 3 3 3 3 1.2264 1.2049 1.1007 1.0158

3 3 3 3 1.2619 1.2155 1.1859 1.2095

3 3 3 3 3 1.2245 1.2246 1.1402 1.1520

3 3 3 3 3 1.3101 1.2172 1.2229 1.1843

3 3 3 3 3 3 1.2167 1.2206 1.2318 1.1661
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Table C.11: FCNN and RF’s average earnings with and without dimensionality

reduction and log normalization datasets
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3 3 3 1.2287 1.2272 1.2116 1.0273

3 3 3 3 1.2293 1.2443 1.2012 0.9985

3 3 3 3 1.2381 1.2392 1.1818 1.1526

3 3 3 3 3 1.2360 1.2371 1.1313 1.0348

3 3 3 3 1.2257 1.2332 1.2808 1.1929

3 3 3 3 3 1.2299 1.2237 1.2562 1.1455

3 3 3 3 3 1.2347 1.2404 1.1847 1.1466

3 3 3 3 3 3 1.2324 1.2309 1.2034 1.2619

3 3 3 3 1.2272 1.2367 1.2460 1.2082

3 3 3 3 3 1.2333 1.2383 1.1567 1.0148

3 3 3 3 3 1.2408 1.2284 1.1883 1.1721

3 3 3 3 3 3 1.2262 1.2286 1.1908 1.0782

3 3 3 3 3 1.2566 1.2298 1.2223 1.1770

3 3 3 3 3 3 1.2272 1.2314 1.3860 1.1448

3 3 3 3 3 3 1.2468 1.2345 1.1456 1.1768

3 3 3 3 3 3 3 1.2312 1.2412 1.1968 1.1690

3 3 3 3 3 3 3 3 1.2354 1.2700 1.2000 1.1883

3 3 3 3 3 3 3 3 3 1.2439 1.2475 1.1683 1.2978

3 3 3 3 3 3 3 3 3 3 1.2062 1.2539 1.2732 1.1678

3 3 3 3 3 3 3 3 3 3 3 1.2228 1.2298 1.1621 1.1002

3 3 3 3 3 3 3 3 3 3 3 3 1.2406 1.2580 1.2166 1.1456

3 3 3 3 3 3 3 3 3 3 3 3 3 1.2283 1.2346 1.2101 1.1219

C.4 ML hyperparameters results
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Figure C.1: RF results.
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Figure C.2: SVM results.
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Figure C.3: NN results.
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Figure C.4: LSTM results.
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C.5 Analysis of news embedding clusters

Table C.12: Additional news extracts from one of the clusters using news embeddings.

Johnson & Johnson is in danger of once again becoming an also-ran in a market it

pioneered. Having introduced in the United States a promising new drug-coated

device to treat heart disease nearly a year before anyone else, the company has

already lost its lead, analysts say.

Johnson & Johnson said yesterday that it had voluntarily recalled 300 Cypher heart

stents after an internal audit of manufacturing records showed that six of them

were not as thoroughly coated as speci�cations required.

Heart doctors at the Cleveland Clinic, one of the nation’s largest centers for cardiac

care, have voted unanimously to severely curtail or even ban the clinic’s use of the

Johnson & Johnson drug Natrecor.

Johnson & Johnson ( JNJ), the health-care company beset by product recalls the last

two years, said it was asking retailers to return about 12 million bottles of Motrin

over concerns the painkiller may dissolve too slowly.

Johnson& Johnson ( JNJ) rejected requests to o�er patent rights on its HIVmedicines

to generic drug companies through a pool system over concern it could increase

resistance to the drugs, the Financial Times said, citing an interview with head of

pharmaceuticals, Paul Sto�el.

(Corrects Jones’s present employer in 27th paragraph of story published Sept.

25.) Johnson & Johnson ( JNJ) promoted illegal marketing of its antipsychotic drug

Risperdal by paying physicians to give favorable speeches.

(Corrects school name in third paragraph of article published Nov. 13.) Johnson &

Johnson ( JNJ) hasn’t given up on the ability of its experimental drug bapineuzumab

to alter the course of Alzheimer’s disease, even after two key studies failed to �nd

a bene�t, the company’s neuroscience unit head said.
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Johnson & Johnson ( JNJ) anticipates submitting more than 10 newmedicines for ap-

proval by regulators worldwide by 2017, including a modi�ed version of a decades-

old anesthetic that has been misused as a date-rape drug.

P�zer Inc. said yesterday that it had awarded the assignment to create campaigns

aimed at consumers for Relpax, an anti-migraine drug awaiting approval from the

Food andDrugAdministration, toD’ArcyMasius Benton&Bowles Communications

in New York, part of the MacManus Group.

Alzheimer’s disease patients who switched to P�zer Inc. and Eisai Co.

NPG45T8UG6CD were more likely to maintain or improve brain function.

The world’s biggest generic-drug company, may have sold 14 million pounds ($22.5

million) of its generic version of P�zer Inc. (PFE)’s anti-cholesterol drug Lipitor

last month, although the patent doesn’t expire until next year, the Financial Times

reported, citing unidenti�ed industry analysts.

C.6 Anomaly detection

The following section contains additional images from the LSTM anomaly detector.
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(a)Max function

(b)Median function

(c)Mean function

(a)Min function

Figure C.5: Anomaly detection signals raised by the LSTM model using the

max, median, mean, and min functions.
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