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With the great development of big data and increasing attention on privacy protec-
tion, distributed machine learning has received significant research interests in the
last decade for its great ability in large-scale and privacy-related machine learning
problems. Compared to traditional machine learning, distributed machine learning
allows all participants to train a combined model, while keeping their private data
locally stored. This thesis proposes a consensus-based distributed machine learning
framework based on a decentralized communication topology, which frees the cen-
tral master and exhibits great robustness and expansibility. The main contribution
includes distributed supervised learning and distributed reinforcement learning.

First, a distributed training method based on the consensus algorithm is proposed for
neural networks connected over a decentralized topology, which only requires a single
consensus step after every training step. It is proved that the distributed training
allows all the agents over a decentralized topology to converge to the optimal model
based on the convergence analysis on empirical risk and model parameter. Second,
the distributed training method is promoted based on the heuristic adaptive consensus
algorithm and stochastic variance reduced gradient for agents connected in switching
communication topologies. Theoretical analysis shows that all agents in switching
graphs can still converge to the optimum and the stochastic variance reduced gradient
reduces the variance introduced by stochastic gradient with only a little extra com-
putational cost. Third, the error-compensated compression method with bit-clipping
is applied in distributed training to compress the model parameter before sharing,
which significantly saves communication costs with little decrease in model accuracy
and is suitable for both IID and non-IID datasets. In addition, the distributed train-
ing method is combined with the blockchain technology to further benefit the privacy
protection, and the proposed blockchain empowered distributed adaptive learning al-
gorithm is applied in vehicular network, which ensures communication security and is
immune to attack from a malicious participant.

Furthermore, the distributed training framework is extended to reinforcement learning,
where deep Q-network is taken as an example. The learning process of deep Q-network
is changed into a two-phase update process, where the Q-network of each agent is
locally updated based on its own experience first, and the Q-networks of all agents are
then globally updated using the consensus algorithm. This allows all agents to learn
from other agents’ experiences without the sharing of experience samples. Lastly,
the distributed deep reinforcement learning framework is applied in the intelligent
traffic light control problem, where a group of traffic light agents are connected in a
decentralized communication topology. The superiority of the proposed distributed
deep Q-networks method for traffic light control is verified by the simulation in SUMO
with homogeneous and heterogeneous traffic flow patterns on different intersections.
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Chapter 1

Introduction

1.1 Background

Recent years have witnessed the rapid development of artificial intelligence on both

theory and application [1], especially for machine learning [2], which has been widely

applied in many real-life scenarios. Machine learning mainly includes supervised learn-

ing, unsupervised learning, and reinforcement learning.

Supervised learning has been well developed with theoretical analysis and widely used

in varieties of applications [3], such as image recognition [4], speech recognition [5],

and text processing [6]. The primary task of supervised learning is to train a ‘black-

box’ model from limited data samples, where the training process is generally in a

single machine. However, this centralized training manner may not be suitable for

those large-scale or privacy-concerned problems, such as big data applications [7] and

recommendation systems [8], which could only be or better addressed in a distributed

manner [9, 10].

Firstly, the entire dataset may be too large to be processed by a single machine be-

cause of the hardware or software limitations, for example, processors in the vehicle

intelligent terminal [11]. Secondly, data samples are generated or collected by differ-

ent machines, which are intrinsically distributed, such as wireless sensor networks [12].

21



CHAPTER 1. INTRODUCTION 22

Thirdly, the data samples cannot be collected centrally in a single machine or shared

among different machines because of privacy or sensitivity issues, especially for those

data about personal behavior [13] and medical use [14,15].

However, we still expect that the model is trained based on the data from all agents,

even though without the sharing of data samples. The problem that we are now facing

is that the model or decision is better to be made based on all the data samples instead

of training with only local samples, while every agent cannot reveal its local data to

a central server or other agents. Therefore, parallel computation and distributed

optimization methods are proposed to address this problem.

Reinforcement learning is about an agent exploring an unknown environment to learn

an optimal policy for a given task by iteratively trial and learning, which shows great

potential in robot control [16], video games [17], and sequential decision-making prob-

lems [18]. The combination of supervised learning and reinforcement learning consider-

ably promotes the development of artificial intelligence, which has been widely used in

different engineering fields [19,20]. Generally, the performance of a deep reinforcement

learning algorithm for a specific task largely depends on the size of the experience data

on interacting with the environment. Limited by the computing power of a terminal

device (agent), the learning process with large-scale data is often conducted on a cloud

server [21], with the agent collecting experience data and uploading it to the server.

This centralized computing strategy offers a more powerful computational resource,

but also bring some practical problems.

First, the large-scale data makes it powerless for a single server to train the model, for

example, the AlphaGo Zero [22] requires the cooperation of hundreds of computation

nodes to train the model. Second, the server-based training manner stretches the dis-

tance between the learner and the actor, which not only increases the communication

costs but also decreases the response speed [23]. This weakness limits its application to

practical problems with high real-time requirements, such as autonomous vehicles [24],

especially when the communication systems are with high latency and low bandwidth.

Third, the growing concern on privacy protection also hinders the server from gather-

ing all data centrally, such as the data related to personal habits [25], medical use [26],



CHAPTER 1. INTRODUCTION 23

and commercial activity [27].

On the one hand, the exponentially rising computing capability makes it possible for

deep reinforcement learning to deal with more complex problems, such as chess [28],

video games [29], and autonomous driving [30]. On the other hand, a more complicated

problem commonly requires more computational resources to train the model, which

is incapable or inefficient for a single computation node. Therefore, there is a trend to

explore the distributed training framework to accelerate the learning process by the

cooperation of many computation nodes.

Different from the single-agent system, network-connected Multi-Agent System (MAS)

is more complex and challenging, especially for the coordination of this system for a

desired purpose. Inspired by the behavior of biological swarms, distributed control

strategies for MASs have been widely researched in both theory and applications,

where the information of connected agents are used for global objectives. Motivated

by the distributed control of MASs using neighboring information or sub-system in-

formation, we are expected to explore the distributed machine learning in network-

connected agents to achieve global optimal model by the cooperation or coordination

of a group of learning-based agents.

1.2 Literature Review

1.2.1 Distributed Supervised Learning

Different methods and algorithms for distributed optimization and distributed train-

ing are proposed, including distributed support vector machines (SVM) [31, 32] and

distributed neural networks [33,34].

One significant advance in distributed optimization is the alternating direction method

of multipliers (ADMM) method [35], which decomposes a large-scale optimization

problem into many small sub-problems, and then iteratively optimizes these sub-

problems in alternating direction. ADMM is widely used in parallel optimization
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problems [36], such as distributed support vector machines [31, 37]. Another method

for achieving distributed SVM is cascade SVM, related theoretical and practical issues

can be found in the literature [38, 39], the main idea of which is to share the support

vectors among connected agents. Castillo et al. [40] and Kim et al. [41] proposed the

distributed training algorithm for support vector machines, where the support vectors

from the local dataset are exchanged with connected neighbors, which exhibits a sim-

ple communication mechanism and fast convergence rate. However, as the support

vectors are exactly the useful data samples, the sharing of which makes it unsuitable

for privacy-concerned problems.

Federated learning [42] allows many agents to cooperatively train a shared model

without exchanging local data. During the training process, each agent downloads

the latest model from the central server and then trains this model with the local

data to obtain a local update. All agents’ local updates are subsequently collected

and averaged to optimize the shared model by the centralized server. A recurrent

neural network federated learning framework for keyboard next-word prediction is

developed in [43], which shows that the federated algorithm outperforms the server-

trained method on the language model, and benefits the privacy protection. Zhao et

al. [44] analyzed the accuracy reduction of federated learning on non-IID (indepen-

dent and identically distributed) data [45] and proposed a method to alleviate this

reduction, where a small sub-dataset is globally shared to warm up the local model.

Simulations show that this data-sharing strategy greatly improves the performance of

federated learning on non-IID data.

To reduce the communication costs and improve model accuracy in federated learning,

a multi-objective evolutionary algorithm is used in [46] to optimize the neural network

structure, and a scalable approach is used for encoding the connectivity of network

to improve the neural network evolution efficiency. The effectiveness of the proposed

method is verified by the simulation experiments, where it improves the performance

of federated learning, while reducing communication costs. After theoretical analyzing

the convergence bound of federated learning, Wang et al. [47] proposed an adaptive

method to balance the local update and global aggregation in resource-constrained

systems for minimizing the loss function, which shows optimal performance under
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different models and data distributions in experimental simulation.

Another important issue in distributed training systems is communication security, as

there may be dishonest participants in practical cooperative learning cases [48] and

it is even possible to extrapolate the original data from the shared gradient or model

information [49]. Blockchain technology is a good solution for the communication

security problems in distributed learning, and there has been a lot of work on the

combination of distributed learning and blockchain in applications.

Kong et al. [50] presented a blockchain-based distributed learning framework to re-

alized the collective intelligence of connected autonomous vehicles, where all vehicles

train their local models and then upload them to the blockchain for aggregation using

the federated learning algorithm, with blockchain protecting these distributed learned

models. Lu et al. [51] designed a data-sharing framework for the Internet of Vehicles

with the combination of federated learning and blockchain to promote the driving

experience while ensuring privacy security. In [52], a federated learning-based archi-

tecture is proposed to reduce the communication cost and protect the privacy of data

providers with a deep reinforcement learning algorithm selecting the participants in

the vehicular network, while a hybrid blockchain architecture is developed to ensure

the reliability and enhance the security of the shared model parameter. Chai et al. [53]

proposed a hierarchical blockchain-based federated learning framework for knowledge

sharing in vehicular networks, where each vehicle learns a local model from the en-

vironmental data and shares the learned model with other vehicles. This framework

is suitable for large-scale vehicular networks with a distributed pattern while meeting

the privacy requirement of the Internet of Vehicles. To avoid unreliable updates and

data poisoning attacks in federated learning, Kang et al. [54] proposed a worker selec-

tion method based on the metric of reputation to find out reliable workers, and took

advantage of blockchain to manage the reputation of works, which is unchangeable

and tamper-proof.

Different from federated training, the distributed training does not require a cen-

tral node to collect and integrate all agents’ information. The decentralized random

vector functional link networks were proposed using a consensus-based method and
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ADMM in [55], which shows that these two methods exhibit comparable performance

on the accuracy, while the consensus-based method has a faster convergence rate than

ADMM. Scardapane et al. developed the distributed learning algorithms echo state

networks [56], where the entire dataset is distributed evenly on all agents over a de-

centralized graph, and the consensus-based algorithm is taken to compute the global

average of the parameters over the graph. Although simulations show great perfor-

mance in effectiveness and efficiency, these distributed models may not be capable of

dealing with complex problems, because they have a quite simple structure and only

train parameters of the output layer using the least squares method. Georgopoulos

and Hasler [57] proposed a distributed algorithm for machine learning in networks,

where the entire dataset is divided on arbitrarily connected agents without a central

agent, and a consensus method is used to transform the centralized iterative learning

algorithm to a distributed manner. However, a large number of communications are

needed to reach consensus, which could be quite computationally expensive.

Yuan et al. [58] analyzed the convergence rate of decentralized parallel stochastic gra-

dient descent for convex functions with bounded gradient, which shows a linear con-

vergence rate. In reference [59], Lian et al. theoretically analyzed the centralized and

decentralized algorithms on their convergence rate, which shows that the decentralized

method has a faster convergence rate than its centralized counterpart on high latency

or low bandwidth system, and can bring asymptotically linear speedup when more

agents are available. Tang et al. [60] proposed a variance reduction method for de-

centralized parallel training on the distributed stored data with large variance. Chen

et al. [61] discussed the synchronization of multiple neural networks with time de-

lay and proposed the event-triggered control strategy to guarantee global exponential

synchronization under some convenient conditions. The criterion of synchronization

is feasible and does not require a Laplacian coupling matrix. Wang et al. [62] stud-

ied the coupled neural networks connected over both directed and undirected graphs,

and designed appropriate adaptive laws and controllers to achieve synchronization in

a limited time.

Sattler et al. [63] designed the sparse ternary compression to compress both the up-

stream and downstream communications, which considerably reduce communication
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costs. Tang et al. [64] provided extrapolation compression and difference compression

for decentralized training, which is proved to be able to match the convergence rate

of full precision and show good performance on networks with high latency and low

bandwidth. Two different methods are proposed in [65] to decrease communication

costs on the uploading process, one of which is to learn a restricted update with a part

of model parameters, while the other method computes a full model update and then

compresses it. However, combining the error-compensated strategy is not explored

to further improve its performance by decreasing the influence of the compression

operation.

Existing distributed training algorithms are mostly based on a central server to coordi-

nate the training process, such as federated learning. The main drawback of federated

learning is the strong dependence on the center, which may cause communication jam

and is not robust to single point of failure. Thus, distributed training algorithms

based on decentralized communication topology are expected to be intensively stud-

ied, including the training scheme, consensus strategy, communication compression,

and security, etc.

1.2.2 Distributed Reinforcement Learning

Combining with deep learning, deep reinforcement learning has made a great success

in recent years and has been applied in many different fields, such as chess [66], video

games [67, 68], robot control [69, 70], autonomous vehicles [71, 72]. Generally, it is

needed a huge number of experience samples to train a reinforcement learning model for

a given task, and more complex tasks commonly required more experience samples [73].

Besides, the diversity of the experience samples also greatly influences the performance

of the reinforcement learning model [74]. Thus, it is expected to collect as many

experience samples as possible in as many scenarios as possible for the modeling process

of reinforcement learning models. This poses a great challenge to traditional single-

agent reinforcement learning algorithm, as the collection of experience samples by

a single agent is inefficient and time-consuming. Therefore, distributed and parallel

training systems are considered, which allows many agents to train a combined model,
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while keeping their experience samples locally stored. This allows each agent to learn

from other agents’ experiences and avoid the direct sharing of experience samples.

Based on federated learning, Zhuo et al. [75] proposed federated reinforcement learning

to allow each agent to build its Q-network with other agents’ help without actually data

sharing, and the Gaussian differentials are applied on the share information to promote

privacy protection. In [76], Lim et al. designed a similar federated reinforcement

learning architecture to make multiple agents learn a control policy with the same type

but different dynamics, where the learning experience of each agent is shared to transfer

mature policy to other agents. This federated scheme promoted the reinforcement

learning process for multiple devices, which is positively related to the number of

agents. Anwar et al. [77] analyzed some attack methods from adversary participants in

multi-task federated reinforcement learning, where a number of agents collaboratively

improve the sum of their reward. An adaptive attack approach is proposed to achieve

a better attack effect, and the federated reinforcement learning algorithm is modified

to eliminate the effect of attack by adversary participants.

Nair et al. [78] designed a distributed architecture to train the agents using the rein-

forcement learning method, where each agent accumulates the experience data samples

to fill its replay memory by interacting with a copy of the environment. Each agent

computes the gradient of the loss based on its own replay memory and sent it to the

server asynchronously, while the server gathers all the gradients to update the model,

which is then pushed to all agents at a certain number of steps. Mnih et al. [79]

proposed a parallel framework for reinforcement learning methods, where all agents

explore in the same environment to accumulate experience data and optimize a shared

model asynchronously, which reduces the correlation of the experiences samples. This

architecture is suitable for both on-policy and off-policy algorithms and shows bet-

ter performance than the previous work [78, 80]. By decoupling acting from learning,

Horgan et al. [81] provided a distributed framework for deep reinforcement learning,

which consists of multiple actors and a single learner. During the learning process,

these actors explore in their copies of the environment and share the same model and

experience replay memory, while the learner optimizes the model with prioritized ex-

perience replay [82]. Barth et al. [83] proposed the distributed framework for the deep
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deterministic policy gradient algorithm to deal with the continuous control task, which

uses a number of distributed workers to write to the same replay memory. The pro-

posed algorithm shows state-of-the-art performance on many difficult tasks, combining

the use of prioritized experience replay and the N -step returns.

Sartoretti et al. [84] extend the asynchronous advantage actor-critic (A3C) to a dis-

tributed manner, which allows a number of agents to learn homogeneous goals without

explicitly interacting. The proposed algorithm is based on a centralized policy and a

decentralized execution to accelerates the learning process by the sum of all agents’

experience. The effectiveness of the method is demonstrated by a multi-robot con-

struction problem and additional training is not required for different test structures.

Lee et al. [85] proposed a primal-dual distributed gradient temporal difference to op-

timize the distributed reinforcement learning problem, where each agent obtains its

local reward and communicates with its neighbors to update their global value func-

tion regarding the sum of local rewards. After reformulating the problem into a convex

problem with consensus constraint, it is proved that all agents converge to the same

set of stationary points.

Liang et al. [86] developed an open library, RLlib, for reinforcement learning, which

allows parallel of different reinforcement learning algorithms to get state-of-the-art

performance, which distributes components of reinforcement learning using top-down

hierarchical control algorithm to encapsulate parallelism and resource in short-running

compute tasks. Chen et al. [87] designed a communication-efficient policy gradient

algorithm in distributed reinforcement learning with a central controller and a number

of learners, which is suitable for both multi-agent reinforcement learning and parallel

reinforcement learning. By skipping gradient communication adaptively, the proposed

method reduces the communication costs in distributed reinforcement learning without

a decrease in performance.

Currently, most distributed reinforcement learning algorithms in the literature require

a central server for aggregating all agents’ information, which suffers from the heavy

communication costs on the server. It is expected to explore the distributed reinforce-

ment learning process without a central server to reduce the communication burden



CHAPTER 1. INTRODUCTION 30

and alleviate the strong dependence on the server.

1.3 Contribution and Organization

In traditional machine learning, all the data are collected in a single agent (computing

node) to train a model, which is then used for classification, regression, or prediction.

This has made a great success in both theories and applications, while it has two

main problems. One is, for a large-scale problem, the entire dataset is too large to be

processed by a single agent or computing node. The other one is, the data cannot be

collected locally due to privacy issues or huge energy consumption. For this problem,

Google proposed federated learning in 2017, which allows a number of agents to train

a combined model, while keeping their private data locally stored.

In federated learning, it requires a central master to coordinate the whole training

process. More specifically, each agent trains its model based on its local data, and then

sent the model or gradient to the master, while the master aggregates all information

and then sends it back to each agent. This framework is effective and efficient, but

it also has two main issues. One is the strong dependence on the central master, as

every agent needs to communicate with the master at each iteration, this may cause a

communication jam on the center, especially for the system with low bandwidth and

high latency. More seriously, if the center fails for some reason, the whole training

process will stop.

To avoid the above problem, this thesis aims to design a fully decentralized train-

ing framework, where it does not require a central master, and can still allow all the

agents to train a combined model without data sharing. Besides, the distributed train-

ing based on a decentralized communication shows nearly the same performance as

federated learning on different applications (for example, classification and regression),

and the decentralized communication topology has great robustness and expansibility.

The research work mainly includes distributed supervised learning and distributed re-

inforcement learning. For distributed supervised learning, we propose the distributed



CHAPTER 1. INTRODUCTION 31

training framework and promote it with the heuristic adaptive consensus algorithm,

communication compression strategy, and blockchain technology. In terms of dis-

tributed reinforcement learning, we extend the distributed training framework to rein-

forcement learning and apply the distributed reinforcement learning method in traffic

light control problem.

The main contribution of this work can be summarized as follows:

1. A distributed training framework based on a fully decentralized communication

topology is proposed, which allows all the agents in the communication topology to

train a combined model, while keep their private data locally stored. Analysis on em-

pirical risk and model parameter shows that the proposed distributed training neural

networks can converge to the optimal model, based on the assumption of the convexity

of the empirical risk function.

2. A heuristic adaptive consensus algorithm is proposed for distributed training, which

adaptively adjusts the weighted connectivity matrix based on the performance of each

agent over the communication graph. Combining with the stochastic variance reduced

gradient to reduce computational costs, the distributed adaptive neural networks with

variance reduction is proposed, which also shows great robustness in switching com-

munication topologies.

3. The convergence of the distributed neural networks is proved without the assump-

tion on convexity, and an error-compensated model compression method is considered

to reduce the communication costs during the distributed training process, which shows

comparable performance with distributed training and centralized training, while sav-

ing a lot of communication costs.

4. Blockchain technology is combined with distributed learning to further promote

privacy protection, and an adaptive consensus strategy is designed based on the con-

tribution of each participant. The blockchain empowered distributed adaptive learning

method is applied in vehicular network, which encourages all participants to make more

contributions to the distributed learning process and prevent attack from a malicious

participant.
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5. The distributed training framework is extended to reinforcement learning, which

allows homogeneous agents to learn from other agent’s experiences to accelerate the

training process, without the actual sharing of experience data samples.

6. The distributed reinforcement learning method is applied in the traffic light control

problem, where the traffic light in each intersection is taken as a reinforcement learning

agent. After learning with its own experience data samples by interacting with the

environment, each agent communication with its neighbors to globally update their

model. This allows all agents to learn from other agents’ experience, which is effective

and efficient for both homogeneous and heterogeneous traffic scenarios.

There are nine chapters in this thesis. Chapters 1 and 2 introduce the background

and preliminary of the research work in this thesis. Chapters 3 to 6 propose the

distributed supervised learning, including distributed training, distributed adaptive

training, distributed training with communication compression, and blockchain em-

powered distributed adaptive training. Chapter 7 and Chapter 8 are about distributed

reinforcement learning, including the design, verification, and application of the dis-

tributed reinforcement learning algorithm. Finally, Chapter 9 discusses the limitations

and future work of the work. The detailed descriptions of each chapter are as follows.

Chapter 1 first introduces the background and motivation of distributed machine learn-

ing, and then conducts a literature review on distributed supervised learning and dis-

tributed reinforcement learning.

Chapter 2 presents some related preliminaries of this work, including graph theory,

consensus algorithm, neural network, and deep Q-network.

Chapter 3 first discusses the advantages and disadvantages of the master-slave and

decentralized communication topologies for parallel computation, which shows that

the decentralized communication topology could avoid the possible communication

jam on the central agent but incur extra communication costs. Then, a consensus

algorithm is designed to allow all agents over a decentralized graph to converge to each

other, and the distributed neural networks with enough consensus steps could have

nearly the same performance as the centralized training model. Through the analysis
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of convergence, it is proved that all agents over an undirected graph could converge

to the same optimal model even with only a single consensus step after every learning

iteration, and this can significantly reduce the communication cost. Simulation studies

demonstrate that the proposed distributed training algorithm for multi-layer neural

networks without data exchange could exhibit comparable or even better performance

than the centralized training model. The work in this chapter is published in [88].

Chapter 4 proposes a distributed adaptive training method for neural networks in

switching communication graphs to deal with the problems concerned with massive

data or privacy-related data. First, the stochastic variance reduced gradient is used

for the training of neural networks to reduce the variance introduced by the stochas-

tic gradient. Then, the authors propose a heuristic adaptive consensus algorithm for

distributed training, which adaptively adjusts the weighted connectivity matrix based

on the performance of each agent over the communication graph. Furthermore, it is

proved that the proposed distributed heuristic adaptive neural networks ensure the

convergence of all the agents to the optimum with a single communication among con-

nected neighbors after every training step, which is also suitable for switching graphs.

This theorem is verified by the simulation, which gives the results that fewer iterations

are required for all agents to reach the optimum using the proposed heuristic adaptive

consensus algorithm, and the stochastic variance reduced gradient can greatly decrease

the fluctuations caused by the stochastic gradient and improve its performance with

only a little extra computational cost. The work in this chapter is published in [89].

Chapter 5 proposes a consensus-based distributed training method with communica-

tion compression. First, the distributed training method is designed based on the

decentralized topology to reduce the communication burden on the busiest agent and

avoid any agent revealing its locally stored data. The convergence of the distributed

training algorithm is then analyzed, which demonstrates that the distributed trained

model can reach the minimal empirical risk on the whole dataset, without the sharing of

data samples. Furthermore, model compression combined with the error-compensated

method is considered to reduce communication costs during the distributed training

process. At last, the simulation study shows that the proposed distributed train-

ing with error-compensated communication compression is applicable for both IID
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and non-IID datasets, and exhibits much better performance than the local training

method. Besides, the proposed algorithm with an appropriate compression rate shows

comparable performance with distributed training and centralized training, while sav-

ing a lot of communication costs. The work in this chapter is published in [90].

Chapter 6 proposes a blockchain empowered distributed learning framework in vehicu-

lar networks for multi-vehicle intelligence, which consists of local learning, blockchain-

based communication, and contribution-based adaptive global consensus. Firstly, the

consensus-based distributed learning algorithm is presented based on the distributed

communication topology, which is more suitable for vehicular networks because of the

intermittent and unreliable communication among vehicles. Then an adaptive con-

sensus strategy is designed based on the contribution of each vehicle in the vehicular

network, including model accuracy and computing power. To protect the commu-

nication security, blockchain technology is introduced to encrypt the shard model

information and record the model sharing events as transactions in the block, which is

traceable and tamper-proof. Meanwhile, the proof of contribution protocol is proposed

to substitute the traditional proof of work protocol in blockchain, which greatly saves

computing costs, and urges vehicles to make more contributions to the distributed

learning process. Lastly, the simulation study shows that the proposed blockchain em-

powered distributed adaptive learning algorithm shows comparable performance with

the federated learning and distributed learning in a real-world traffic signal classifi-

cation task, and can prevent the attack from the malicious vehicle in the vehicular

network.

Chapter 7 proposes a distributed training framework for deep reinforcement learning

algorithms to address large-scale problems with privacy protection. First, we designed

the decentralized communication topology with a server to alleviate the heavy bur-

den on the central server. By pushing the model updating and data storage to the

edge side, it not only unleashes the computing potential of the terminal devices but

also shortens the response time. Second, the consensus algorithm is applied for all

agents over the decentralized topology to approach each other, where each agent only

requires neighboring information to achieve consensus. Then, the distributed training

framework for deep Q-networks (DQN) is designed based on the consensus algorithm,
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which consists of local learning and global consensus. Through the convergence anal-

ysis, it is proved that all the agents converge to the optimum using the distributed

reinforcement learning algorithm. At last, the simulation demonstrates that the pro-

posed distributed learning deep Q-networks shows better performance than its single

learning counterpart.

Chapter 8 proposes a distributed deep reinforcement learning algorithm for the traffic

light control problem, which consists of local learning and global consensus. Firstly,

the reinforcement learning environment for the traffic light control problem is built by

defining the three key elements of state, action, and reward. Then, the CNN-based

deep Q-network is designed to process the quantized traffic state information to ob-

tain the state-action values. After locally optimizing the deep Q-networks of multiple

traffic light agents based on their private experience samples, the consensus algorithm

is subsequently applied to globally update these agents that are connected over a de-

centralized communication topology. In this way, the distributed learning agents learn

from their neighbors’ experience to optimize the modeling process without actually

sharing experience data samples. Lastly, homogeneous and heterogeneous traffic flow

patterns on different intersections are simulated in SUMO to verify the superiority

of the proposed distributed deep Q-networks, with the comparison to the fixed-time

strategy, local learning, and centralized learning algorithms. The simulation study

demonstrates that the distributed learning algorithm without a central server shows

comparable performance with centralized learning, which is much better than fixed-

time strategy and the local learning method in both homogeneous and heterogeneous

traffic scenarios.

Chapter 9 summarizes the main research results of this thesis and discusses some

possible research directions for future work.



Chapter 2

Preliminaries

2.1 Graph Theory

A decentralized graph topology is assumed as an undirected graph G = (V , E ,A), with

V = {1, 2, ...K}, E ⊂ V × V and A = [aij] ∈ RK×K representing the set of agents, the

set of edges and the adjacency matrix, respectively. The connectivity of a graph with

K agents can be expressed by an adjacency matrix A, which is given by:

aij =

 1 if agent i is connected to j

0 otherwise
. (2.1)

An edge (i, j) ∈ E represents that the ith and jth agents can communicate with each

other and aij = aji = 1. The connectivity of the graph with K agents is known in

advance and can be formalized in the form of a K ×K weighted connectivity matrix

W , where wij > 0 if (i, j) ∈ E or i = j, otherwise wij = 0 [91]. More generally, the

value of the element wij represents the strength of the connection between these two

corresponding agents, and wij = 0 means agent i and agent j are disconnected.

36
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2.2 Consensus Algorithm

The undirected graph is concerned in this thesis, and the weighted connectivity matrix

W = [wij] ∈ RK×K of the graph should meet the following requirements to make all

the agents achieve consensus,

(i) wij ∈ [0, 1), ∀(i, j),

(ii) wij = wji, ∀(i, j),

(iii)
∑K

j=1wij = 1, ∀i.

We suppose that each agent k in the graph has a parameter row vector denoted by

θk ∈ R1×N , and the consensus algorithm can allow all agents to converge to their

average θ = 1
K

∑K
k=1 θk only with local communication by iteratively computing the

mean value of directly connected neighbors. The update of an agent i using the

consensus algorithm is given by:

θ′i =
K∑
j=1

wijθj, (2.2)

where θ′i is the updated parameter of θi after a single consensus step.

The update of parameters of all the agents with a single consensus step can then be

written as:

θ′ = C(θ,W ) = Wθ, (2.3)

where the matrices θ = [θ1, θ2...θK ]T ∈ RK×N and θ′ are defined as the concatenation

of parameter vectors of all the agents before and after the consensus process C, respec-

tively, and the kth row of θ is θk. Regardless of the initial status of each agent, this

method would allow all the agents to converge to their global average by repetitively

computing (2.3).

Different consensus strategies generate different weighted connectivity matrix W for

a certain decentralized graph, which may influence the convergence rate of the con-

sensus algorithm. Common consensus strategies include Max-Degree [92], Metropolis-

Hastings [93] and Laplacian method [94].
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2.2.1 Max-Degree

Max-degree weights matrix is a simple way to obtain the weighted connectivity matrix

W to ensure all the agents convergence to the global average, which is also a common

choice in real-world applications, and the matrix W is given by:

wij =


1

dmax+1
if i is connected to j

1− di
dmax+1

if i = j

0 otherwise

, (2.4)

where di is the degree of agent i, which means the number of agents connected with

agent i, and dmax is the maximum degree of the graph.

2.2.2 Metropolis-Hastings

Metropolis-Hastings is another way to obtain the weighted connectivity matrix W ,

which can also ensure the convergence. This method does not need the knowledge of

global information of the graph topology, while each agent needs to know the degrees

of all its neighbours. The weighted connectivity matrix W of Metropolis-Hastings is

given by:

wij =


1

max(di,dj)+1
if i is connected to j

1−
∑

j∈N (i)
1

max(di,dj)+1
if i = j

0 otherwise

, (2.5)

where N (i) represents the set of agents which are directly connected to agent i, with

di denoting the degree of agent i.

2.2.3 Laplacian Heuristic

Another efficient way to obtain the weighted connectivity matrix W is the Laplacian

method [95]. The Laplacian matrix L = [lij] ∈ RK×K of an undirected graph is

described by

lij =


∑K

j=1 aij if i = j ∈ V

−aij if i 6= j
. (2.6)
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The weighted connectivity matrix W is then obtained by

W = In − αL, (2.7)

where α ∈ (0, 1/max(lij)) is a user-defined factor to adjust the influence of its neighbors

on the agent.

A simple and efficient way to set α is given by:

α =
1

dmax + 1
, (2.8)

where dmax is the maximum degree of the graph.

2.3 Neural Network

The structure of an multi-layers neural network includes input layer, hidden layer and

output layer. Input layer and output layer are both single layers, whose number of

nodes depends on the numbers of inputs and outputs for a particular problem, while

hidden layer often contains one or several layers, which represents the complexity of a

neural network. Generally, more hidden layers means more complex network structure,

which is also more likely to lead to over-fitting and decrease the model’s generalization

ability. Researchers found that single hidden layer neural network could have good

enough performance with a sufficient number of nodes in hidden layer [96].

Back-propagation is a popular optimization method for training neural network to

minimize a cost function, and the training process of a neural network can be described

as two iterative steps. The empirical risk is computed at the first step, which can be

the mean squared error between the actual and estimated output, and an update of the

parameter θ is subsequently conducted based on the empirical risk. In the centralized

learning case, the empirical risk is defined by:

E(D, θ) =
1

n

n∑
i=1

l(xi, yi, θ), (2.9)

l(xi, yi, θ) =
1

2
(ŷi − yi)2, (2.10)

ŷi = f(xi, θ), (2.11)
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where E denotes the empirical risk over the entire training dataset D (n samples),

l(xi, yi, θ) is the loss function for a single data sample (xi, yi) over parameter θ, ŷi is

the estimated value of yi, and f represents a mapping from xi to yi with parameter θ.

The gradient of the empirical risk with respect to θ is given by:

OE(θ) =
∂

∂θ
E(D, θ) =

1

n

n∑
i=1

∂

∂θ
l(xi, yi, θ), (2.12)

where OE(θ) is the partial derivative of E over θ.

Then, the update of model parameter θ using back-propagation is described as:

θ′ = θ − ηOE(θ), (2.13)

where θ′ is the updated model parameter of θ, with η being the learning rate.

2.4 Deep Q-network

We define an experience data sample of the agent at step t by a tuple dt = (st, at, rt+1, st+1)

during the reinforcement learning process, where a single agent is interacting with an

environment to learn the optimal policy in discrete time steps. In detail, at denotes

the chosen action based on its policy π in the current state st of the environment,

with rt+1 and st+1 representing the reward from the environment and the next state,

respectively.

The value of the state-action pair (st, at) is defined by the accumulated reward Rt,

that is

Rt =
P∑
p=1

γkrt+p, (2.14)

where γ ∈ (0, 1] is the discount factor, P denotes the end of an episode or ∞ for a

task without a final state.

The main task of the reinforcement learning process is to estimate the values for all

pairs (s, a) in the environment under the policy π, which is defined as

Qπ(s, a) = E[Rt|st = s, at = a], (2.15)
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where Qπ(s, a) is the value of action a in state s, E[·] represents the expectation.

After that, we can obtain the optimal value Q∗(s, a) = maxπQπ(s, a) of the action-

state pair (s, a), and the optimal policy is to choose the action with highest value

Q∗(s, a) in all states of the environment. Q-learning records all the value Q(s, a) for

all action-state pairs in a table, and the table is updated based on the reward from

the environment until the convergence.

However, most practical problems are with too many or even infinite state-action

pairs, which makes it hard to calculate the values of all pairs of (s, a). Therefore,

approximation methods are proposed to estimate theQ∗(s, a), among which, the neural

network is a good choice to represent a parameterized state-action value function

Q(s, a; θ). Then the reinforcement learning problem is changed to the optimization

of the neural network parameter θ to estimate the Q∗(s, a) accurately, where the loss

function l about θ is defined as

l(θt, dt) = [qt −Q(st, at; θt)]
2, (2.16)

qt = rt+1 + γmax
at+1

Q(st+1, at+1; θt), (2.17)

where qt is taken as the actual value of Q(st, at; θt) over the current parameter on the

data sample dt.

The key idea of deep Q-network [80] is the use of experience replay and the target

parameter θ̂t. Instead of updating the model parameter θ on a single data sample dt

at every step, the DQN randomly chooses a batch of samples from its replay memory

e = {d1, d2, ...dN}, which stores the agent’s historical experience samples. Besides, the

target value qt is computed over an outdated model parameter, i.e., the target model

parameter θ̂t, rather than the current model parameter θt, which is modified as

qt = rt+1 + γmax
at+1

Q(st+1, at+1; θ̂t). (2.18)

The experience replay memory offers more training samples in each step and decorre-

lates the samples sequence, while the use of target Q-network disrupts the correlation

of the action value Q(st, at; θt) and its target qt. Combining with replay memory and

the target Q-network, the training process of DQN is more efficient and less likely to

fall into overfitting, and correspondingly, shows better performance.



Chapter 3

Distributed Multi-layer Neural

Networks by Consensus

3.1 Introduction

The affordable price and exponentially rising computing power of intelligent terminal

devices, such as private computers and intelligent phones, makes it possible for the

application of artificial intelligence in our daily life. This combination of information

technology and artificial intelligence greatly enriches our life but also brings some

practical problems.

First of all, a huge amount of data are generated and collected by different devices

in our daily life, which makes it difficult and inefficient for a central server to gather

and process all the data [97]. Besides, these devices are becoming increasingly multi-

functional and intelligent, which are usually equipped with a variety of sensors to

collect data, and even powerful hardware and software to process data. The advent

and development of 5G and Internet of things(IoT) [98] allow intelligent agents to com-

municate with each other, not just the central server. This combination of intelligent

devices with computational ability has promoted the progress of fog computing [99]

and edge computing [100], which considerably reduces the computation and commu-

nication burden on the cloud server, and provides more efficient service. Furthermore,

42
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there is a growing concern on data privacy and security issues [101], which makes this

central computing method unsuitable for processing private and sensitive data, such

as medical data [102] and personal habit data [103]. Based on the above consideration,

an increasing number of users prefer to store and process their data on the local agent

rather than reveal it to a central server.

It is important that the local agent can still use the information of other agents for

better modeling even though without actually sharing the original data. Therefore, we

are facing the problem that how to deal with the massive data distributed stored on

many connected intelligent devices with the limitation that each agent can not reveal

its local data to a central node or any other agents.

Parallel computation is a leading method for distributed training to solve large-scale

and privacy-concerned machine learning problems, such as deep learning [104], data

mining with big data [105] and inference on wireless sensor network [106]. Exiting

parallel algorithms are mostly designed for the centralized graph topology, such as the

parameter server topology [107], where there is a master (or central) agent connected

with multiple slave agents as shown in Figure 3.1(a). The central agent receives

information (weights or gradients for neural networks) from all other slave agents

and computes the sum or average of them, which is then fed back to the slave agents

as the update of the model parameter. There are many popular distributed training

algorithms designed for the parameter server topology, such as federated learning [108],

and asynchronous parallel gradient descent [109]. The potential bottleneck of this

master-slave graph topology is the possible communication traffic jam on the central

agent for the reason that all other agents need to communicate with the central agent

concurrently after each training iteration [110]. Too much pressure on the server

may lead to communication blocking or even the failure of the server, especially for

those communication systems with low bandwidth and high latency. In some extreme

cases, the whole distributed training architecture would be out of operation, if the

central node (server) fails. To avoid the communication jam on the central server, a

decentralized topology as shown in Figure 3.1(b) is proposed, where there is no central

agent, and all agents only need to communicate with its directly connected neighbors.
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We consider the scenario that data samples are distributed stored on multiple agents

over a graph, where the communication is only allowed among connected agents. How-

ever, data samples are unavailable to be exchanged among agents or collected centrally

for some reason. First, the hardware or software limitation makes it infeasible for a

Agent 1 Agent 2

Agent 3 Agent 4

Master

(a)

Agent 1 Agent 2

Agent 3

Agent 4Agent 5

Agent 6

(b)

Figure 3.1: (a) Centralized graph topology (b) Decentralized graph topology.
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single agent to process the massive data, for example, processors in mobile termi-

nals [111]. Second, data samples are intrinsically stored on different devices or multi-

sensors [112], where the data is generated or collected. Third, it is unavailable to

share the data samples among agents or upload them to a centralized server out of

privacy-related concerns, especially for those data about personal behavior [113] and

commercial use [114,115].

This chapter proposes a consensus-based distributed training method for multi-layer

neural networks, which requires only a single communication among connected neigh-

bors over a decentralized graph topology after each training iteration. The convergence

analysis shows that the proposed distributed training algorithm for multi-layer neu-

ral networks can converge to the optimal model in union, which is verified by the

simulation studies.

The remainder of this chapter is organized as follows. Section 3.2 compares the cen-

tralized graph topology and the decentralized graph topology for parallel computation

and introduces the consensus algorithm for distributed training. Section 3.3 analyzes

the convergence of distributed training for multi-layer neural networks over a decen-

tralized graph using the consensus algorithm. Section 3.4 details the simulation and

numerical results on four UCI datasets for binary classification, multi-labeled clas-

sification, and regression, which verify the effectiveness of the proposed distributed

training algorithm. Section 3.5 concludes this chapter.

3.2 Distributed Neural Networks

In the distributed training case, supposing that the entire dataset is divided into K

sub-datasets and distributed on K agents (or machines) with the same initialized

neural networks, the parameters (θ1, θ1...θK) of all agents are averaged and then fed

back to each agent as the updated parameter after each training iteration. In the

master-slave graph, the central agent computes the mean value, while the consensus

algorithm with enough consensus steps is used in the decentralized graph.
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The distributed neural networks would give nearly the same result as the centralized

training neural network based on the entire dataset when batch gradient descent is

taken as the optimization method for minimizing the empirical risk. For distributed

training, the entire empirical risk can be decomposed into local empirical risks,

E(Dk, θk) =
1

nk

nk∑
i=1

l(kxi,
k yi, θk), (3.1)

OE(θk) =
1

nk

nk∑
i=1

∂

∂(θk)
l(kxi,

k yi, θk), (3.2)

where Dk, nk, θk, and (kxi,
k yi) represent the dataset, the number of data samples,

model parameter and data sample i on agent k, respectively.

Substituting (3.1) and (3.2) into (2.9) and (2.12), respectively, the global empirical

risk and parameter can be obtained by averaging these parameters over all agents,

which leads to:

E(D, θ) =
K∑
k=1

nk
n

1

nk
l(kxi,

k yi, θk)

=
K∑
k=1

nk
n
E(Dk, θk),

(3.3)

OE(θ) =
K∑
k=1

nk
n

1

nk

∂

∂(θk)
l(kxi,

k yi, θk)

=
K∑
k=1

nk
n
OE(θk),

(3.4)

Equation (3.4) shows that the distributed neural networks can obtain the same gradient

vector OE(θ) as the centralized case by computing the average of gradient vectors

OE(θk) of all agents over the graph, and this can be easily extended to stochastic

gradient descent and mini-batch stochastic gradient descent [59].

Therefore, the distributed neural networks in a decentralized topology can be realized

by substituting the local gradient with the average of the gradients using the consensus

algorithm with enough consensus steps. The update procedures are as follows:

OE(θ̂) = C(OE(θ),W ), (3.5)
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θ′′k = θk − ηOE(θ̂k), (3.6)

where OE(θ) = [OE(θ1), E(θ2), ...E(θK)]T and OE(θ̂) represent the concatenation of

gradient vectors of all agents over the graph before and after the consensus process

C, and the kth row of OE(θ) is OE(θk). θ
′′
k is the updated parameter of θk after the

training process, OE(θ̂k) and η denote the gradient of agent k and the learning rate,

respectively.

It is noteworthy that the order of (3.5) and (3.6) can be exchanged, which will not affect

the theoretical analysis and can remove the requirement that all agents should have

the same initialized parameters. That is, the local parameters θk are firstly updated

with the local gradient vector OE(θ̂k), and then the average of the parameters of all

the agents are obtained using the consensus algorithm, the processes of which are as

follows:

θ′k = θk − ηOE(θk), (3.7)

θ′′ = C(θ′,W ), (3.8)

where θk and θ′k represent the parameter of agent k before and after the training

process, respectively. The matrices θ′ = [θ′1, θ
′
2, ...θ

′
K ]T and θ′′ are defined as the

concatenation of parameter vectors of all agents before and after the consensus process,

respectively. It is notable that repetitively computing similar to (2.3) is required for

(3.5) and (3.8) to reach their mean value.

Based on the above analysis, we find that the distributed neural networks over a fixed

and undirected graph using the consensus algorithm with enough consensus steps could

exhibit nearly the same result as the centralized training model based on the entire

dataset. However, the main drawback of this method is that repetitively computing

is required to reach the approximate average after each training iteration, and this

computation cost could be multiple times than training with the master-slave topology.

To tackle this problem, we propose the distributed training algorithm for multi-layer

neural networks with only a single consensus step after each training iteration, which

would significantly decrease the computation cost for consensus. And the proof, as

well as simulation, will be given in the following section to verify that the distributed

neural networks over an undirected graph allow all agents to converge to the globally



CHAPTER 3. DISTRIBUTED NEURAL NETWORKS BY CONSENSUS 48

optimal model.

The specific process of the distributed training algorithm for multi-layer neural net-

works is summarised in Table 3.1.

Table 3.1: The process of distributed training of neural networks

Algorithm 1: Distributed training for the multi-layer neural networks

Inputs: The structure of the neural networks, the number of agents K, the
sub-datasets (D1,D2, · · · ,DK) and the corresponding weighted connectivity
matrix W of the graph.
Outputs: The optimal model parameter θ∗.
1: Randomly select the model parameter θk for each agent over the graph.
2: Each agent k solves the local training problem using back-propagation with
corresponding sub-dataset Dk to obtain the locally updated θ′k.
3: Globally update the parameter θ′k over the graph using the consensus
algorithm with a single consensus step to obtain θ′′k .
4: Back to step 2 with globally updated θ′′k .
5: Check the termination criterion (such as a given number of iterations).
6: Return the optimal model parameter θ∗.

3.3 Convergence Analysis

We will prove that the proposed distributed training methods with only a single con-

sensus step after each training iteration would allow all the neural networks over an

undirected graph to converge to the same optimal neural network model. To illustrate

this point, we analyze the distributed neural networks from the perspectives of the de-

crease of empirical risks and the convergence of model parameters using two different

methods as presented in 3.3.1 and 3.3.2, respectively.

The over-parameterized neural networks with enough hidden layer nodes are consid-

ered in this chapter, which has a linear convergence rate to the optimal solution based

on the gradient descent method [116–118].

Assumption 1 : The model parameter gradually approaches to the optimal solution

with the increase of training steps, that is,

‖θi(t+ 1)− θ∗‖ ≤ ‖θi(t)− θ∗‖, i = (1, 2, ..., K), (3.9)
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where θ∗ and θi(t) denote the optimal model parameter and the model parameter of

agent i at iteration t, respectively.

3.3.1 Analysis on Empirical Risk

Assumption 2 : Empirical risk E(θ) is a quasiconvex function of θ, which satisfies

E(θi) ≤ E(θj) if ‖θi − θ∗‖ ≤ ‖θj − θ∗‖.

The parameter matrix θ′ = [θ′1, θ
′
2, ...θ

′
K ]T is defined as the updated parameter matrix

θ = [θ1, θ2, ...θK ]T after the training process T , which satisfies ‖θ′i − θ∗‖ ≤ ‖θi − θ∗‖

based on Assumption 1, thus E(θ′i) = E(T (θi)) ≤ E(θi) based on Assumption 2. E(θi)

and E(θ′i) could be aliased as Ei and E ′i, respectively.

The consensus process C with a single step for the parameter matrix θ′ = [θ′1, θ
′
2, ...θ

′
K ]T

of the empirical risk vector F ′ = (E ′1, E
′
2, ...E

′
K) over the weighted connectivity matrix

W can be given as:

E(θ′′i ) = E(
K∑
j=1

wijθ
′
j), i = (1, 2, ..., K), (3.10)

where E(θ′′i ) denotes the updated E(θ′i) after a single consensus step, which is aliased

as E ′′i .

Proposition 1 : Given that all the entries of the weighted connectivity matrix wij ∈

[0, 1) and
∑K

j=1wij = 1, it can be obtained that,

‖(E ′′1 , E ′′2 , ...E ′′K)‖∞ ≤ ‖(E ′1, E ′2, ...E ′K)‖∞, (3.11)

where ‖·‖∞ represents the max-norm of a vector, and the ‘=’ holds only when all the

E ′k are equal.

Proof:

‖(E ′′1 , E ′′2 , ...E ′′K)‖∞ = max
k
‖E ′′k‖

= max
k
‖E(

K∑
j=1

wkjθ
′
j)‖

≤ max
k
‖E(θ′k)‖

= ‖(E ′1, E ′2, ...E ′K)‖∞.

(3.12)
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The update of θ with the combination of local training process T and global consensus

process C with a single step can then be given by:

θ′′ = C([θ′1, θ′2, ...θ′K ]T ,W )

= C([T (θ1), T (θ2), ...T (θK)]T ,W ).
(3.13)

Theorem 1 : Each empirical risk Ek will converge to the minimal empirical risk E∗ in

spite of their initial statuses, under Assumptions 1 and 2.

Proof: R(F ) is defined as the maximum gap between empirical risks F = (E1, E2, ...EK)

and the optimal E∗, which can be given by:

R(F ) = max
k

(‖Ek‖ − ‖E∗‖)

= ‖(E1, E2, ...EK)‖∞ − ‖E∗‖,
(3.14)

where it always holds that ‖E∗‖ ≤ ‖Ek‖.

By Proposition 1 and (3.14),

R(F ′′) = max
k

(‖E ′′k‖ − ‖E∗‖)

= ‖(E ′′1 , E ′′2 , ...E ′′K)‖∞ − ‖E∗‖

≤ ‖(E ′1, E ′2, ...E ′K)‖∞ − ‖E∗‖.

= R(F ′)

(3.15)

Under Assumption 1,

R(F ′) = max
k

(‖E ′k‖ − ‖E∗‖)

≤ ‖Ek‖ − ‖E∗‖

≤ ‖(E1, E2, ...EK)‖∞ − ‖E∗‖.

= R(F)

(3.16)

Therefore, we can get,

R(F ′′) ≤ R(F ′) ≤ R(F). (3.17)

Equation (3.17) shows that the maximum gap R(F) has a downward trend, with the

increase of training process combined with consensus process, which means that the
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empirical risks (E1, E2, ...EK) of all the agents over the graph would gradually converge

to the optimal E∗. This completes the proof. �

Remark 1 : Assumption 1 describes a general idea of the training process for an over-

parameterized neural network; that is, a better model should be obtained after a

single training step. In the case that the empirical risk decreases after several training

steps, we can take the several consensus steps during these training steps as a whole

consensus process, which will not affect Proposition 1 and the proof still holds.

Remark 2 : The convexity of empirical risk function is often used to prove the conver-

gence of neural networks [119–121]. Assumption 2 ensures that the upper bound of

the empirical risks of all the agents would decrease after a consensus step, which may

also apply to non-convex optimization problems, as long as all agents are restricted in

the same basin of attraction. We will verify it in the simulation experiments.

3.3.2 Analysis on Model Parameter

This section analyzes the proposed distributed training algorithm using the Lyapunov

method from the perspective of the convergence of model parameters of all agents.

We define ∆θi(t) = θi(t)− θ∗, i = (1, 2, ..., K) as the gap between θi(t) and θ∗, which

would exhibit a downward trend under Assumption 1, that is,

‖∆θi(t+ 1)‖ ≤ ‖∆θi(t)‖, i = (1, 2, ..., K). (3.18)

Assumption 3 : The parameter gap matrix of all agents satisfies the following equation,

with A being neutrally stable [122].

∆θ(t+ 1) = A∆θ(t), λmax(A) ≤ 1. (3.19)

where the matrix ∆θ(t) = [∆θ1(t),∆θ2(t), ...∆θK(t)]T is defined as the concatenation

of parameter gap vectors of all agents and the ith row of the matrix ∆θ(t) represents

the ∆θi(t), λmax(A) is the maximum eigenvalue of A.

Remark 3 : Neutrally stability only requires that the gap between the model parameter
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and the optimal parameter keep decreasing as the training moving on, which is an

extension of Assumption 1.

Theorem 2 : The parameters θi(i = 1, 2...K) of all neural networks over a fixed and

undirected graph would converge to an identical optimal parameter close to θ∗ using

the proposed distributed training method, under Assumption 3.

Proof : With the combination of the local training process and the global consensus

process, the update of agent i can be decomposed into two procedures:

θi(t+ 1/2) = θ∗ + ∆θi(t+ 1), (3.20)

θi(t+ 1) = Bθi(t+ 1/2) + Cui(t+ 1), (3.21)

where (3.20) and (3.21) describe the local training and the global consensus process,

with θi(t + 1/2) and θi(t + 1) being the updated parameter of agent i by this two

processes, respectively. For the neural network training problems, both B and C are

the identity matrix In, with n being the number of parameters of θi.

Over the fixed and undirected graph, the global consensus update process is taken as

an input ui(t + 1) of the local training updated parameter θi(t + 1/2) for each agent

i, which is described as:

ui(t+ 1) = G
K∑
j=1

aij(θi(t+ 1/2)− θj(t+ 1/2)), (3.22)

where aij is the entries of the adjacency matrix A of the graph, G is the control

parameter.

A normalized adjacent matrix A′ and a normalized Laplacian matrix can be obtained

by:

A′ = 1

dmax
A, (3.23)

L̃ = IK −A′, (3.24)

where dmax is the maximum degree of the graph, IK is an identity matrix, with K

representing the number of agents in the graph. L̃ is the normalized Laplacian matrix,

which is a diagonal matrix as a fixed and undirected graph is concerned in this chapter.
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By substituting (3.22) and (3.24) to (3.20), we have,

θ(t+ 1) = (IK ⊗ In + L̃ ⊗ InG)θ(t+ 1/2)

= (IK ⊗ In + L̃ ⊗ InG)(θ∗ + ∆θ(t+ 1))

= (IK ⊗ In + L̃ ⊗ InG)(θ∗ + A∆θ(t))

= IK ⊗ θ∗ + (IK ⊗ In + L̃ ⊗ InG)A∆θ(t).

(3.25)

Given that the θ∗ is constant, we can define a new state function as:

∆θ(t+ 1) = (IK ⊗ In + L̃ ⊗ InG)A∆θ(t)

= (IK ⊗ A+ L̃ ⊗ AG)∆θ(t).
(3.26)

The left and right eigenvalue corresponding to eigenvalue 0 of the normalized Laplacian

matrix L̃ are rT and 1, respectively, which satisfies rT1 = 1. We can then perform

state transform on (3.26) by ξ(t) = (M ⊗ In)∆θ(t), where M = (IK − 1rT ) and the

ith row of ξ(t) represents the error between each agent ∆θi and the mean of all the

agents ( 1
K

∑K
i=1 ∆θi).

Given that ∆θ(t) = ξ(t) + 1rT ⊗ In∆θ(t) and rT L̃ = 0, we can get:

ξ(t+ 1) = (M ⊗ In)∆θ(t+ 1)

= ((IK − 1rT )⊗ In)(IK ⊗ A+ L̃ ⊗ AG)∆θ(t)

= (IK ⊗ A+ L̃ ⊗ AG)ξ(t),

(3.27)

Then, a transform matrix T can be found to satisfy that T−1L̃T = Λ, where Λ is

the diagonal form of L̃, the first column of T is 1 and the first row of T−1 is r. Let

η = (T−1 ⊗ In)ξ, the equation (3.27) can be converted to:

η(t+ 1) = (IK ⊗ A+ Λ⊗ AG)η(t). (3.28)

And then,

ηi(t+ 1) = (IK ⊗ A+ λiAG)ηi(t), (3.29)

where λi denotes the ith eigenvalue of the diagonal matrix Λ, which is exactly the ith

diagonal element of Λ. ηi(t) is the ith row of matrix η(t).
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Given that λ1(L̃) = 0 and A is neutrally stable, we thus have η1(t+ 1) = Aη1(t)→ 0.

To design G, we set the Lyapunov function V (t) as:

V (t) = η(t)T (IK ⊗ P )η(t), (3.30)

where P is a positive definite matrix.

For i = 2, 3...K, it can be verified that

Vi(t+ 1)− Vi(t)

= ηi(t)
T (A+ λiAG)TP (A+ λiAG)ηi(t)− ηi(t)TPηi(t)

= ηi(t)
T [(A+ λiAG)TP (A+ λiAG)− P ]ηi(t).

(3.31)

Setting G = −(ATPA+ I)−1ATPA, then

(A+ λiAG)TP (A+ λiAG)− P

= ATPA− 2λiA
TPA(ATPA+ I)−1ATPA− P

+ (λi)
2ATPA(ATPA+ I)−1M1

= ATPA+ [−2λi + (λi)
2]ATPA(ATPA+ I)−1ATPA

+ (λi)
2ATPA(ATPA+ I)−1M2A

TPA− P

= ATPA+ [−2λi + (λi)
2]ATPA(ATPA+ I)−1ATPA

− (λi)
2ATPA(ATPA+ I)−2ATPA− P

≤ ATPA+ [−2λi + (λi)
2]ATPA(ATPA+ I)−1ATPA

− P,

(3.32)

where M1 = ATPA(ATPA+ I)−1ATPA, M2 = [−In + ATPA(ATPA+ I)−1].

Lemma 1 : By Gersgorin Circle Criterion [123], the range of λ(L̃) should be restricted

in a disc, that is,

|(λ− L̃ii)| ≤
K∑

j=1,j 6=i

|(L̃ij)|. (3.33)

It can be deduced from (3.24) that the entries of the normalized Laplacian L̃ij ∈ [0, 1),

all the eigenvalues of the normalized Laplacian L̃ should, therefore, locate within a

disc centered at 1 with radius of 1, that is, λ(L̃) ∈ (0, 2), and then [−2λi + (λi)
2] < 0.
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Therefore, with the condition that A is neutrally stable, we can get:

Vi(t+ 1)− Vi(t)

= ηi(t)
T (A+ λiAG)TP (A+ λiAG)ηi(t)− ηi(t)TPηi(t)

= ηi(t)
T [ATPA+ [−2λi + (λi)

2]M1 − P ]ηi(t)

< 0.

(3.34)

The matrix P should satisfy the following modified algebraic Riccati equation (MARE) [123]:

P = ATPA− (1− δ2)ATPA(ATPA+ I)−1ATPA+O, (3.35)

where O is a positive definite matrix, and 0 < δ < 1.

Therefore, we can conclude that ∆θ(t) will gradually converge to zero as the increase

of iteration t using the proposed distributed training method, and all agents would

converge to a unique model with their parameters θi(i = 1, 2..K) converging to the

optimal parameter θ∗. This completes the proof. �

Remark 4 : The normalized Laplacian matrix L̃ is a symmetric matrix and can be

transferred to the diagonal form Λ, because a fixed and undirected graph is concerned

in this chapter. However, in the case of the directed graph such that the normalized

Laplacian matrix L̃ cannot be transferred to the diagonal form Λ, we can obtain its

Jordan form, which will still make the above convergence analysis hold [124].

Remark 5 : Under Assumption 3, A is a constant matrix. However, the matrix A is

more likely to be varying with iterations in real simulation and application. In this

case, the above proof still holds, if only A(t) is neutrally stable at all iterations, and the

convergence property of finite products of SIA (stochastic, indecomposable, aperiodic)

matrices [125] can be used to support this proof.

Based on the above analysis, all empirical risks Ek(i = 1, 2, ..., K) converge to the

minimal empirical risk E∗ and all model parameters θi(i = 1, 2, ..., K) converge to the

optimal model parameter θ∗, which implies the same conclusion that the proposed

distributed neural networks can converge to the same optimal model.
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3.4 Simulation and Discussion

The proposed distributed training algorithm for multi-layer neural networks contains a

two-phase update procedure. The first phase is training with local sub-dataset, which

is performed simultaneously at all agents over the graph, that is, multiple neural

networks with the same structure are trained only with their own local sub-dataset.

In the second phase, these locally updated neural networks communicate with their

directly connected neighbors to globally update their model parameters using the

consensus algorithm. As described in the above section, this two-phase update process

allows all the agents to converge to the optimal model, and these models would show

comparable performance with a centralized training model based on the entire dataset.

Besides the fact that there is no need to exchange the data samples or collected all the

data samples centrally, another main advantage of this proposed distributed training

algorithm is its simple structure and great expansibility. That is, it will not affect

the convergence and effectiveness of this method when a new agent joins in or leaves

as long as it always exists a spanning tree over the graph, which is also suitable for

changeable graph topology [126].

The decentralized graph in Figure 3.1(b) is taken as an example, where the entire

dataset is partitioned and distributed evenly on six agents, and six neural networks

with the same structure are also initialized on each agent. For distributed training,

the information of the model parameter is allowed to be shared only among directly

connected neighbors, and there is no exchange of data samples. The following three

algorithms are compared to verify the effectiveness of the proposed distributed training

method.

• Centralized training: this is a single neural network training with the entire

dataset, which can be taken as a baseline for the distributed training method.

• Distributed training: in this case, the training dataset is distributed evenly on

each agent over the decentralized graph, and each agent trains a neural network

with its own sub-dataset, with the consensus algorithm globally updating their

model parameters.
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• Local training: as before, each agent only trains with its own sub-dataset

without communication, accuracy or error is averaged throughout the nodes.

In all of the above algorithms, Relu function is taken as the hidden layer activation

function, with model parameter extracted randomly from a uniform distribution over

the interval [−1,+1], and all the input variables are normalized between 0 and 1.

Classification Accuracy and Mean Absolute Percentage Error (MAPE) are used to

evaluate the performance of these algorithms for the task of classification and regres-

sion, respectively. The whole algorithms are implemented in Tensorflow and Matlab.

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi
| (3.36)

where n denotes the number of samples, yi and ŷi are the actual and estimated value

of the ith sample, respectively.

The proposed distributed training algorithm is tested on three public datasets (down-

loaded from UCI open datasets) for the tasks of binary classification, multi-labeled

classification, and regression, respectively. The characteristics of these datasets and

modeling parameters are summarized in Table 3.2, where η and α are the learning rate

and regularization coefficient of L2 regularization method [127].

Table 3.2: The description of the datasets and modeling parameters

Dataset twonorm pendigits cpusmall

Features 20 16 12
Train samples 6000 6000 6000
Test samples 1400 1494 2192
Hidden nodes 100 200 100

α 0.1 0.01 0.1
η 0.08 0.2 0.0001

Task
Classification Classification

Regression(2 classes) (10 classes)

Figures 3.2 to 3.4 are the simulation results on the above three datasets in Table 3.2,

where we can find that all of the six agents over the graph can exhibit a comparable

performance with centralized training using the proposed distributed training algo-

rithm, even though each agent of distributed training shows more fluctuations and
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Figure 3.2: The performance on dataset twonorm.
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Figure 3.3: The performance on dataset pendigits.
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Figure 3.4: The performance on dataset cpusmall.
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worse accuracy at the initial iterations. Local training shows only a little worse per-

formance than centralized training and distributed training, as these three problems

are relatively easy. It is worth noting that all the agents gradually converge to the

same model during a certain number of iterations, although their initial statuses are

significantly different, which can verify the theorems proposed in this chapter. For the

classification tasks, twenty and thirty steps are required for all the agents to achieve

consensus for the binary and multi-labeled classification, respectively, and a little more

steps are needed to allow all the agents to exhibit a similar classification accuracy as

the centralized training model. As for the task of regression, the six agents converge

to each other after fifteen iterations, while more iterations are required for them to

catch up with and even exceed the performance of the centralized training model.

Other optimization methods can also be taken for gradient descent and modeling

hyper-parameters (hidden agents, regularisation and learning rate) to further improve

the performance of distributed training, but it is out of the scope of this chapter. Com-

mon modeling methods are used in this chapter for the convenience of the comparison

between distributed training and centralized training.

As the above datasets are easy to fit, local training can also have good performance.

To further verify the superiority of distributed training, the proposed algorithm is

tested on a large-scale dataset BlogFeedback (downloaded from the UCI Machine

Learning Repository) which contains more than 50000 samples and 280 features for

the regression task. In this case, each agent has 6000 samples, and the rest samples

are taken as the test dataset, with Root Mean Squared Error (RMSE) used to evaluate

their performance. A head to head comparison is made between distributed training

and local training, the performance of which is shown in Figure 3.5, where node-i and

local-i (i=1,2,...6) denote the performance of agents with and without the consensus

process, respectively.

We can find from Figure 3.5 that all the agents in distributed training can converge

to the same optimal model after 110 iterations, which shows much better performance

than centralized training and local training. The training process helps each agent to

find a better solution in its basin of attraction, while the consensus process not only
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Figure 3.5: The comparison between distributed training and local training.
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decreases the upper bound of the parameter gaps between each agent and the optimal

model, but also helps agents escape the basin of attraction with a local minimum.

The partially magnified figure in Figure 3.5 specifically shows the influence of the

consensus process on each agent, where all agents converge to each other in 10 iterations

even though their initial statuses are significantly different. All locally trained agents

without consensus exhibit a slow converge rate individually, while all agents with the

consensus process approach each other significantly during the first a few steps and

then converge to the optimal model in union. This attraction of each other drives all

agents to a good status in a few consensus steps and to converge to the optimal model

faster in the long run, even though some agents (node-2 and node-5 in this experiment)

get worse at the beginning steps.

Generalization capability is a key factor for a trained model, which represents the

performance of a model on the data that it never learns from. Usually, we use a

testing dataset to evaluate the generalization capability of a model. From Figures

3.2 to 3.5, we find that the distributed training model shows great performance on

testing dataset for all of the four simulation experiments, which is comparable to the

performance of the model on training dataset. This verified the great generalization

capability of the proposed distributed training method.

3.5 Conclusion

Distributed training has received great attention over the last decade due to its wide

real-world applications on large-scale and privacy-concerned machine learning prob-

lems. It is common nowadays that all the data samples cannot be collected centrally

and the exchange of data samples is not allowed for computation restrictions or privacy

protection. However, the model needs to learn from the entire dataset instead of train-

ing with only local sub-dataset. For this problem, this chapter proposed a distributed

training method using the consensus algorithm for multi-layer neural networks over a

decentralized graph without a central agent. Theoretical analysis of distributed neural

networks shows that the performance of distributed training could exhibit nearly the
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same performance with centralized training when enough consensus steps are taken,

but this method is still computationally expensive. Furthermore, convergence analy-

sis gives the proof that distributed training allows all the agents over a decentralized

graph to converge to the optimal model even with only a single consensus step after

each training iteration, which could greatly decrease the communication cost. This

theorem is verified by simulation, which demonstrates that the proposed distributed

training algorithm for the multi-layer neural networks can achieve comparable or even

better performance as the centralized training model based on the entire dataset.



Chapter 4

Distributed Heuristic Adaptive

Neural Networks with Variance

Reduction in Switching Graphs

4.1 Introduction

Chapter 3 has proposed the distributed training framework for multi-layer neural net-

works, where the weighted connectivity matrix is fixed during the distributed training

process and the standard gradient descent method is used to optimize these neural

networks. Building on the above chapter, we are expected to optimize the consen-

sus process by adaptively adjust the weighted connectively matrix and optimize the

learning process to reduce the computational costs.

In this chapter, we propose a distributed heuristic adaptive training algorithm in

switching decentralized communication graphs, and similarly, a single consensus step

is required among connected agents after each training iteration. Besides, the stochas-

tic variance reduced gradient is used to optimize the neural networks on each agent

to improve its convergence rate. After the analysis of the consensus-based distributed

neural networks with a fixed weighted connectivity matrix, we design the heuristic

adaptive consensus algorithm to adaptively adjust the weighted connectivity matrix,

65
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which speeds up the agents to reach the optimum. The theoretical analysis and sim-

ulation experiments give the result that the proposed heuristic adaptive consensus

algorithm drives all agents to the optimal model faster, and the stochastic variance

reduced gradient can greatly reduce the fluctuation caused by stochastic gradient de-

scent and improve its convergence rate. The main contributions can be summarized

as follows:

1) The heuristic adaptive consensus algorithm is proposed to adaptively adjust the

weighted connectivity matrix for distributed training neural networks;

2) The proposed method is suitable for the switching communication graphs, which is

robust to the failure of any agent.

The remainder of this chapter is organized as follows. Section 4.2 designs the heuris-

tic adaptive consensus algorithm for distributed training; Section 4.3 presents the

stochastic variance reduced gradient with comparisons to batch gradient descent and

stochastic gradient descent; Section 4.4 analyses the convergence of the distributed

adaptive training algorithm in switching communication topology; Section 4.5 con-

ducts simulation experiment and compares four algorithms on a UCI dataset, which

demonstrate the superiority of the proposed distributed adaptive neural networks;

Section 4.6 concludes this chapter.

4.2 Heuristic Adaptive Consensus Algorithm

As explained in the above chapter, the weighted connectivity matrix W of the consen-

sus algorithm is fixed throughout the training process, which means that an agent’s

influence on its neighbors is constant and only depends on the graph topology and the

consensus strategy. This results in that all agents would approach each other equally

during the consensus process, no matter how good or bad an agent’s performance is.

A more reasonable idea is that the agent with better performance should exhibit more

influence on its neighbors, that is, all the agents should approach a larger step to its

better neighbors. Here, the root mean squared error (RMSE) is applied to assess the

performances of the agents. The straightforward idea is that, the smaller the error of
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an agent is, the larger value it should have in the weighted connectivity matrix W .

For a communication topology, we define a connectivity matrix D = [dij] ∈ RK×K ,

where dij = 1 if the edge (i, j) ∈ E or i = j, otherwise dij = 0. The weight matrix

C = [cij] ∈ RK×K in terms of the RMSE =
√
E(Di, θi) of all agents is given by

cij =
dijej∑K
j=1 aijej

, (4.1)

ei =
1√

E(Di, θi)
, (4.2)

where ei represents the reciprocal of the RMSE of agent i.

However, if the weight matrix C directly depends on their performance, all agents will

immediately converge to the currently better agent. This may lose the agents’ search

capability and impair its robustness. For example, in the situation that the currently

best agent is in a local minimum, all other agents are more likely to be attracted

into this basin of attraction with the local minimum based on the weight matrix C.

The idea from particle swarm optimization (PSO) [128,129] is therefore introduced to

design the weighted connectivity matrix W , where an agent with the smaller error only

leads to the bigger possibility of obtaining a large value in the weighted connectivity

matrix. Based on this, we can obtain the weighted connectivity matrix W by the

combination of a bounded random matrix B = [bij] ∈ RK×K and the weight matrix

C.

wij = bijcij, (4.3)

bij = σα + (1− σ), (4.4)

where α ∈ [0, 1] is a random number, σ∈ [0, 1] is a user-defined parameter to determine

the bound of the random matrix B.

In this way, wij ∈ [(1 − σ)bij, bij] is a random number defined by bij. Due to the

fact that the better the performance of an agent is, the larger bij is, the interval

[(1− σ)bij, bij], as well as the expectation of wij, thus adaptively changes according to

the performances of agent i and its directly connected neighbors. Even though that

wij is a random number within this interval, all agents will approach larger steps to

their better neighbors in the long run, and reserve the searching ability in the domain

based on all agents by the randomness.
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It is notable that the sum of any row of the matrix W obtained from (4.3) may be

smaller than 1, that is,
∑K

j=1wij =
∑K

j=1 bijcij ≤ 1 because bij ≤ 1 and
∑K

j=1 cij = 1,

and this will result in divergence. To satisfy the requirement that
∑K

j=1wij = 1, ∀i,

we define another weight parameter βi, which is allocated to the historical best model

parameter of agent i up to the current iteration. Then, we get the new adaptive update

rule for θ′i,

βi = 1−
K∑
j=1

wij, (4.5)

θ′′i =
K∑
j=1

wijθ
′
j + βiθ

′∗
i , (4.6)

where θ′′i denotes the optimized model parameter of θ′i using the heuristic adaptive

consensus algorithm, with θ′∗i being the historical best model parameter of agent i.

This heuristic adaptive consensus algorithm is more efficient and robust, compared

with the consensus algorithm with a fixed weighted connectivity matrix. First, the

value of the weight matrix C depends on the performance of all agents, which means

that each agent will adaptively approach a larger step to its better neighbors. Second,

the introducing of the bounded random matrix B keeps the agents’ random searching

ability during the consensus process, where the tunable parameter σ can adjust the

agents’ local and global searching ability by defining the bound of matrix B. Third,

the consideration of the historical best model parameter θ′∗i , to some extent, avoids

the agent getting worse.

4.3 Stochastic Gradient Descent with Variance Re-

duction

Batch gradient descent methods for the training of a neural network is of great com-

putation cost, especially when it comes to large-scale machine learning problems.

Faced with this problem, stochastic gradient descent (SGD) is an excellent alter-

native method of gradient descent to reduce the computation cost and improve its

efficiency, which is also widely used to train the parameters of a model in distributed
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systems [107,130]. The local gradient of a randomly selected sample from the training

dataset was used to estimate the global average gradient, stochastic gradient descent

(SGD) can therefore greatly decrease the computation cost but introduce the variance

for the reason that there is a significant difference between the global average gradi-

ent and local gradient obtained from a single sample even though they are equivalent

in expectation. Too large variance introduced by SGD would impair the convergence

performance, although the decaying learning rate can be used to alleviate this negative

influence [131].

To improve the performance of SGD, those methods that help to reduce the variance

are of great interest to be designed, which contributes to better performance and

allows a relatively larger learning rate. The methods proposed by Roux et al. [132]

and Shalev-Shwartz and Zhang [133] can achieve such variance reduction effect for

SGD, which could lead to a linear convergence when the objective function is smooth

and strongly convex. These methods are suitable for training convex linear prediction

problems, such as logistic regression and least squared regression. In references [134–

136], a new variance reduction technique was presented to speed up the convergence of

SGD, which could keep SGD converging at a constant rate. However, these methods

are designed to be used in a centralized learning system instead of the distributed

learning system.

4.3.1 Batch Gradient Descent

Back-propagation is a popular method for the training of neural networks to minimize

the empirical risk on a dataset, which consists of two iterative steps. That is, the

computation of empirical risk and the optimization of model parameter using the

gradient descent method.

E(D, θ) =
1

n

n∑
i=1

l(di, θ), (4.7)

l(di, θ) =
1

2
(ŷi − yi)2, (4.8)

ŷi = f(xi, θ), (4.9)
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where n is the number of data samples of D, E(D, θ) and l(di, θ) are the empirical risks

over the model parameter θ on the dataset D and a sample di = (xi, yi), respectively.

f is a function over the model parameter θ, which maps xi to the yi, with ŷi being the

estimated output.

Batch gradient descent [137] is a standard method to optimize the parameter θ, the

update rule of which is

θ′ = θ − ηOE(D, θ), (4.10)

OE(D, θ) =
1

n

n∑
i=1

OE(di, θ) =
1

n

n∑
i=1

∂

∂θ
l(di, θ), (4.11)

where θ′ is the trained model parameter of θ, with η representing the learning rate.

OE(di, θ) denotes the gradient on the sample di over the model parameter θ.

4.3.2 Stochastic Variance Reduced Gradient

We can find from (4.11) that n derivatives need to be computed at each iteration for

batch gradient descent, which could be computationally expensive and time-consuming,

especially when the entire dataset is large. For this problem, stochastic gradient de-

scent (SGD) [138] is a good alternative method, which randomly selects a sample

di (i = 1, 2, ..., n) from the entire dataset to approximate the full gradient OE(D, θ).

The update rule of SGD is

θ′ = θ − ηOE(di, θ). (4.12)

It is important to point out that the expectation E[·]of the stochastic gradient OE(di, θ)

in (4.12) is the same as the full gradient in (4.10) because

E[OE(di, θ)] =
1

n

n∑
i=1

OE(di, θ) = E[OE(D, θ)]. (4.13)

By estimating the full gradient using a single randomly selected sample at each itera-

tion, SGD can greatly reduce the computational cost but incur the variance because of

randomness. This kind of randomness may be helpful for the algorithm to escape from

the local minimum, while too large variance also impairs its convergence rate, espe-

cially when the learning rate is large. For this problem, the stochastic variance reduced
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gradient (SVRG) [134] method is used to reduce the variance, where an estimated pa-

rameter θ̃ and its corresponding full gradient OE(D, θ̃) are kept as a reference, and

the gradient v of SVRG is calculated by the following equation

v = OE(di, θ)− OE(di, θ̃) + OE(D, θ̃), (4.14)

OE(D, θ̃) =
1

n

n∑
i=1

OE(di, θ̃), (4.15)

where di represents a randomly selected sample, the OE(di, θ) is the stochastic gradient

of the random sample di over the current model parameter θ, OE(di, θ̃) is the stochastic

gradient of the random sample di over the estimated model parameter θ̃, and OE(D, θ̃)

is the full gradient on the entire dataset over the estimated model parameter θ̃.

In (4.14), the item OE(di, θ̃) is to reduce the variance caused by randomness through

the minus of OE(di, θ) by OE(di, θ̃), and the full gradient item OE(D, θ̃) is to offset

OE(di, θ̃) because they are the same in expectation as explained in (4.13). We thus

have that the gradient v of SVRG is the same as the stochastic gradient in expectation,

that is

E[v] = E[OE(di, θ)− OE(di, θ̃) + OE(D, θ̃)]

= E[OE(di, θ)].
(4.16)

Notably, the full gradient does not need to be computed at every iteration but kept

fixed over m iteration, which only leads to less extra computational cost compared

with SGD. More specifically, the computational complexity of batch gradient descent

and SGD are O(n) and O(1) for each iteration, respectively, while that is O(2 + n
m

)

for SVRG.

To analyze the convergence of (4.14), suppose that both θ̃ and θ converge to the

optimal θ∗ after enough iterations, then OE(D, θ̃) −→ 0 and OE(di, θ̃) −→ OE(di, θ),

therefore OE(di, θ)− OE(di, θ̃) + OE(D, θ̃) −→ OE(di, θ)− OE(di, θ̃) −→ 0.

4.4 Convergence Analysis

In this section, it will be proved that, even though with a single consensus communica-

tion at every training step, the proposed distributed heuristic adaptive neural networks
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ensure all agents converge to the optimum. This also holds in the switching graphs and

the situation that any new agent quits or participates in the communication graph.

Assumption 1 : The training process T based on any dataset Di from the entire dataset

D would lead to a contraction of the empirical risk, that is

E(D, θ′i) = E(D, T (Di, θi)) ≤ µE(D, θi), 0 < µ < 1, (4.17)

where E(D, θi,) is the empirical risk of the ith neural network with parameter θi over

the entire dataset, θ′i represents the updated θi by the training process T with dataset

Di. For simplicity, E(Di, θi) and E(Di, θ′i) are aliased as Ei and E ′i, respectively.

Assumption 2 : E(D, θ) is a convex function about θ, with θ∗ and E∗ being the optimal

solution and the minimal empirical risk, respectively.

As shown in (4.6), θ′′i is the updated model parameter of θ′i using the heuristic adaptive

consensus algorithm, the corresponding empirical risk is

E(θ′′i ) = E(
K∑
j=1

wijθ
′
j + βiθ

′∗
i ), i = (1, 2, ..., K), (4.18)

where E(θ′′i ) represents the empirical risk over the model parameter θ′′i , which is aliased

as E ′′i .

Proposition 1 : Based on the condition that the weighted connectivity matrix satisfies

wij ∈ [0, 1) and
∑K

j=1wij + βi = 1 (i, j = 1, 2, ..., K), we have

‖(E ′′1 , E ′′2 , ...E ′′N)‖∞ ≤ ‖(E ′1, E ′2, ...E ′N)‖∞, (4.19)

where ‖·‖∞ denotes the max-norm, the ‘=’ holds when E ′i = E ′j,∀i, j. Here, we define

F ′ = (E ′1, E
′
2, ...E

′
N) and F ′′ = (E ′′1 , E

′′
2 , ...E

′′
N).
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Proof:

‖(E ′′1 , E ′′2 , ...E ′′N)‖∞

= max
k
‖E ′′k‖

= max
k
‖E(

K∑
j=1

wkjθ
′
j + βkθ

′∗
k )‖

≤ max
k
‖E(

K∑
j=1,j 6=k

wkjθ
′
j + (wkk + βk)θ

′∗
k ‖

≤ max
k
‖

K∑
j=1,j 6=k

wkjE(θ′j) + (wkk + βk)E(θ′k)‖

≤ max
k
‖E(θ′k)‖

= ‖(E ′1, E ′2, ...E ′N)‖∞.

(4.20)

Remark 1 : The switching of graph topology and the joining or leaving of a new

agent change the value and dimension of the connectivity matrix D, respectively.

However, these changes would only influence the value or dimension of the weighted

connectivity matrix W , which still meets the condition that
∑K

j=1wij + βi = 1 (i =

1, 2, ..., K). Therefore, Proposition 1 still holds in switching communication graphs

and the situation that any new agent quits or participates in the graph.

Theorem 1 : Under Assumptions 1 and 2, all Ek converge to the minimum E∗ in both

fixed and switching graphs, in spite of their initial statues for the proposed distributed

heuristic adaptive neural networks.

Proof: We define the maximal gap between the empirical risks of all agents F =

(E1, E2, ...EN) and the minimum E∗ as R(F), which is given by

R(F) = max
k

(‖Ek‖ − ‖E∗‖)

= ‖(E1, E2, ...EN)‖∞ − ‖E∗‖,
(4.21)

where it always holds that ‖E∗‖ ≤ ‖Ek‖.

For both the fixed graph and the switching graphs cases, by Proposition 1 to (4.21),
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we have

R(F ′′) = max
k

(‖E ′′k‖ − ‖E∗‖)

= ‖(E ′′1 , E ′′2 , ...E ′′N)‖∞ − ‖E∗‖

≤ ‖(E ′1, E ′2, ...E ′N)‖∞ − ‖E∗‖

= R(F ′).

(4.22)

Based on (4.17), it is obtained

R(F ′) = max
k

(‖E ′k‖ − ‖E∗‖)

≤ µ‖Ek‖ − ‖E∗‖

< µ(‖(E1, E2, ...EN)‖∞ − ‖E∗‖)

< R(F),

(4.23)

where 0 < µ < 1. Therefore, we can get

R(F ′′) ≤ R(F ′) < R(F). (4.24)

The equation (4.24) implies that the maximal gap R(F) keeps descending and all

agents’ empirical risks (E1, E2, ...EN) will approach the minimum E∗, as the dis-

tributed training process carries on. �

Remark 2 : Assumption 1 is a common concept for neural network training problem,

where a single or several training steps usually leads to a better model.

Remark 3 : Assumption 2 is generally used to prove the convergence of machine learn-

ing problems [119, 120]. The convexity of the empirical risk guarantees the decline of

the largest empirical risk among all agents with the consensus process. This idea may

be also suitable for the non-convex neural networks optimization problem, which is

validated in the numerical simulation.

4.5 Simulation and Discussion

There is a two-phase update process for the distributed heuristic adaptive neural net-

works, which consists of local training and global consensus. During the first phase
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Figure 4.1: The switching communication graphs for the simulations.
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of local training, each neural network (agent) trains the model parameter on its local

sub-datasets simultaneously, where the stochastic variance reduced gradient is used

to reduce the variance introduced by SGD and improve its convergence rate. Then,

all neural networks share their model parameters among connected neighbors to up-

date the models in the second phase of global consensus, where the heuristic adaptive

consensus algorithm is used to adaptively adjust the weighted connectivity matrix to

speed up the convergence rate. Combining local training and global consensus, all

agents converge to the optimum with only a single consensus communication at every

training step.

On the one hand, the sub-datasets of all agents are not required to be shared among

neighbors or uploaded to a centralized node, which helps to preserve the sensitive and

private data. On the other hand, this proposed distributed training framework is based

on the decentralized communication topology with great flexibility and expansibility.

This means that the convergence of the distributed neural networks is unaffected in

the switching graphs and the situation that an agent quits or participates in this

communication graph on the condition that it always remains a spanning tree [126].

The procedure for the distributed heuristic adaptive neural networks is detailed in

Table 4.1.

Table 4.1: The procedure of distributed heuristic adaptive neural networks

Algorithm: Distributed adaptive training for neural networks

Inputs: The neural network architecture, the sub-datasets (D1,D2, · · · Dk)
on each agent, the number of agents K, and the corresponding connectivity
matrix D of the communication topology.
Outputs: The optimum model parameter θ∗.
1: Initialize the model parameter θk for all agents in the communication
topology.
2: Each agent k optimizes the neural network using SVRG with its local
sub-dataset kD to get the updated θ′k.
3: Globally update all agents’ model θ′k using the proposed heuristic adaptive
consensus algorithm to obtain θ′′k .
4: Return to step 2 with globally updated θ′′k .
5: Check the stop condition (such as a certain number of training steps).
6: Obtain the optimum model parameter θ∗.

We take Figure 4.1(a) as an example of the communication topology for distributed
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training, where the entire dataset is evenly partitioned and stored on six initialized

neural networks (agents) over the graph. Firstly, these agents are trained on their local

sub-datasets and share their model parameters among directly connected neighbors

under the communication graph shown in Figure 4.1(a). After some iterations, we

assume that the connection between the agent 6 and the communication graph is cut

off. In this case, the agent 6 can only train with its own local sub-dataset but not

communicate with other agents, while the other five agents form a new communication

topology as shown in Figure 4.1(b). At last, the agent 6 joins in the graph again and

the six agents form another communication topology as shown in Figure 4.1(c). This

changing process of the topologies in the simulation is to demonstrate that all agents

still converge to the optimum in switching communication graph and the situation

that any agent quits or participates in the communication graph on the condition that

it always has a spanning tree.

In this chapter, four different algorithms are compared to validate the superiority of

the distributed heuristic adaptive neural networks with variance reduction. These

algorithms are tested on a large-scale dataset BlogFeedback [139] (downloaded from

the University of California, Irvine (UCI) Machine Learning Repository) for the task

of regression, which contains 52397 samples with 280 features. Besides, the neural

networks on all agents have the same structure, with the sigmoid function being the

activation function. All neural networks are randomly initialized in the uniform dis-

tribution [−1,+1] with all inputs normalized in [0, 1]. The following four algorithms

are conducted in the above-described switching graphs as shown in Figure 4.1, with

RMSE applied to assess their performance.

• Distributed heuristic adaptive training using batch gradient. Six neural

networks are trained locally using batch gradient methods and the heuristic

adaptive consensus algorithm is used to globally update their model parameters

over the graph.

• Distributed training using batch gradient. As before, batch gradient de-

scent is used to locally optimize the neural networks, while consensus algorithm

with a fixed weighted connectivity matrix is used to make all agents converge to
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each other.

• Distributed heuristic adaptive training using SGD. In this case, SGD

is used to optimize the neural networks, with the heuristic adaptive consensus

algorithm globally updating their model parameters.

• Distributed heuristic adaptive training using SVRG. Similar to before,

the heuristic adaptive consensus algorithm is used for distributed training, with

SVRG locally optimizing neural networks.

Figures 4.2 to 4.5 are the simulation results on the above four algorithms, where

we can find that the agents of all the four figures can approach the optimal model

while converging to each other after enough iterations, despite the great difference in

their initial statuses. Meanwhile, in all the figures except for Figure 4.4, there is a

clear gap between the agent 6 and the other agents from 21st to 31st iteration, when

the agent 6 leaves the graph 4.1(b) and joins in again to form a new graph 4.1(c),

respectively. More specifically, after the agent 6 leaves the communication graph at

21st iteration, the other five agents in Figure 4.1(b) can still converge to the optimum

in union, while the convergence speed of agent 6 slows down, comparing to other five

agents. This means that the proposed distributed heuristic adaptive training method

is more efficient and robust to the failure of an agent over the graph. Furthermore,

after the agent 6 joins in and form another communication graph at 31st iterations,

all the six agents in Figure 4.1(c) approach each other again and converge to the

optimum in union. This demonstrates that the distributed training method is suitable

for switching graphs with a spanning tree.

We can find from Figure 4.2 that the heuristic adaptive consensus algorithm requires

20 and 30 iterations for all agents achieving consensus and converging to the optimal

model, respectively. By comparison, as shown in Figure 4.3, it is required 10 and

50 iterations for consensus algorithm with the fixed weighted connectivity matrix to

reach consensus and the optimum, respectively. Although more iterations are needed

to achieve consensus when it is compared with the consensus algorithm, the heuris-

tic adaptive consensus algorithm requires much fewer iterations to reach the optimal

model, which means that this method is more efficient and suitable for distributed
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training neural networks.
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Figure 4.2: Distributed heuristic adaptive training using batch gradient.

0 10 20 30 40 50

iterations

2

3

4

5

6

7

8

9

R
M

S
E

agent-1

agent-2

agent-3

agent-4

agent-5

agent-6

24 26 28 30 32

3

3.5

4

4.5

Figure 4.3: Distributed training using batch gradient.
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Figure 4.4 is the performance of distributed training using SGD, where we can not find

the gap shown in other figures, because the agents have not converged between 21st to

31st iterations. Besides, we can find that there are more fluctuations in Figure 4.4 than

in Figure 4.2, which is harmful to the convergence. Therefore, a smaller learning rate

should be taken for SGD to ensure convergence, which would further impair the conver-

gence rate. As shown in Figure 4.5, the simulation result of distributed training with

SVRG exhibits nearly the same performance as the batch gradient (Figure 4.2), which

is more smoothly and shows fewer fluctuations, compared with SGD (Figure 4.4).

This verifies the effectiveness of the SVRG method, which shows better performance

with only a little extra computational cost. What deserves to be mentioned is that a

larger learning rate can be taken for SVRG because of the reduction of the variance

introduced by stochastic gradient, which would further improve their performance and

convergence rate. Here, the same learning rate was used in the simulations for all of

the four algorithms for the convenience of comparisons.
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Figure 4.4: Distributed heuristic adaptive training using SGD.
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Figure 4.5: Distributed heuristic adaptive training using SVRG.

4.6 Conclusion

In recent years, distributed training has become a hot research topic for its excellent

ability in machine learning problems on massive and privacy-related data. Besides, it

is common nowadays that data samples are not available to be centralized or shared

among agents because of computational limitations or privacy issues. However, it is

still expected that the model is built based on the whole dataset rather than only learns

from its local sub-dataset. For this problem, a distributed training method is designed

based on the stochastic variance reduced gradient and the heuristic adaptive consensus

algorithm for neural networks connected in switching communication graphs.

Through the theoretical analysis, we show that the SVRG reduces the variance intro-

duced by SGD and improve its convergence rate with only a little extra computational

cost. For distributed neural networks, it is proved that the consensus-based distributed

training with sufficient consensus communication obtains the identical performance as

the model built on the whole dataset. However, this method is computationally expen-

sive and too straightforward as all agents are considered equally during the consensus
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process. Furthermore, the heuristic adaptive consensus algorithm is proposed to adap-

tively adjust the weighted connectivity matrix, where a better agent is more likely to

have a larger influence on its neighbors. Convergence analysis demonstrates that all

agents in switching graphs can still converge to the optimum with a single consen-

sus communication at every training step, which saves plenty of communication costs.

At last, simulations give the results that the heuristic adaptive consensus algorithm

requires fewer iterations than consensus algorithm with the fixed weighted connec-

tivity matrix for all agents to reach the optimum, and SVRG greatly decreases the

fluctuation caused by SGD and improve its performance.



Chapter 5

Distributed Training Algorithm for

Deep Neural Networks with

Communication Compression

5.1 Introduction

Chapters 4 has promoted the distributed training algorithm (proposed in chapter 3)

with the heuristic adaptive consensus algorithm and the stochastic variance reduced

gradient to optimize the training process and reduce computational costs, which is

effective and efficient. However, another issue for the distributed training algorithms is

the expensive communication costs among connected agents, because all agents need to

share their model parameters or gradients with others frequently during the distributed

training process. This problem is especially important for deep neural networks, which

usually has a large amount of model parameters. Thus, we are expected to reduce the

communication costs in the distributed training process.

In this chapter, we explore to propose a distributed training framework for deep neu-

ral networks with communication compression, which not only reduces communication

costs but also ensures the model accuracy. Inspired by the idea from consensus control

83
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that decentralized connected agents can reach consensus with only local communica-

tion, we design a consensus-based distributed training algorithm, which is proved to be

able to make all agents converge to the optimum. Then, the error-compensated com-

pression method is applied to reduce the communication burden during the consensus

process of distributed training. Simulation study demonstrates that the distributed

training with communication compression shows great performance on both IID and

non-IID datasets, while significantly saving communication costs.

The remainder of this chapter is organized as follows. Section 5.2 proposes the

problem of distributed training based on some practical challenges. Section 5.3 de-

signs the distributed neural network with the convergence analysis, and proposes the

distributed training framework with communication compression combined with the

error-compensated compression strategy. Section 5.4 conducts the experimental simu-

lation to verify the effectiveness of the proposed algorithm. Section 5.5 concludes this

chapter.

5.2 Problem Formulation

A huge amount of data is generated and collected by different intelligent devices every

day, and these data are often concerned with privacy and security related issues.

This makes it not appropriate to be processed by a centralized server. Distributed

training seems a promising solution for this problem, but the main issue of which is

the massive communication costs among connected agents. Therefore, we expect to

reduce the amount of communication during the distributed training process. Besides,

the diversity of data should be also taken into account. The distributed stored data

may be particularly different on the distribution and size, as the data from different

devices depend heavily on their environmental usage scenarios.

For these problems, we plan to design a distributed training method, which should

meet the following requirements:

1) It is suitable for decentralized communication topology to alleviate the communi-

cation burden on the center node and improve its extensibility;
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2) There is no sharing of data samples among connected agents out of privacy issues;

3) Communication compression strategy is considered to reduce communication costs

during the training process;

4) It is robust to the non-IID dataset for the diversity of different agents.

5.3 Distributed Neural Networks with Communi-

cation Compression

5.3.1 Distributed Neural Networks

Since that the consensus algorithm can drive all models in a decentralized model to

their mean value, a simple idea for realizing distributed training is to average all models

with enough consensus steps after each training iteration. It is easy to demonstrate

that this distributed training method has almost the same performance as centralized

training. However, the large number of consensus steps among connected agents leads

to expensive communication costs, which is especially true for deep neural networks

with millions of model parameters.

Even though a single consensus communication does not drive all agents to their

average, but it still makes all agents approach each other. Given that the weighted

connectivity matrix W satisfies
∑K

j=1wij = 1 and wij ∈ [0, 1), we have

max
k
‖θ′k‖ = max

k
‖
K∑
j=1

wkjθj‖

≤ max
k
‖θk‖.

(5.1)

Similarly, we also have min ‖θ′k‖ ≥ min ‖θk‖, and this means that a consensus step

always reduces the upper bound and improve the lower bound of all the agents in the

communication topology.

Inspired by the idea that gradient descent method optimizes the model parameter and

the consensus algorithm draws all agents to approach each other, we proposed the
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consensus-based distributed training framework for neural networks, which requires

consensus communication only once at every training step. This algorithm consists of

two update phases, which are written as

θ′k = θk − ηOE(θk), (5.2)

θ′′ = Wθ′, (5.3)

where θ′k is the locally trained model parameter of θk ∈ R1×N , θ′ = [θ′1, θ
′
2...θ

′
K ]T ∈

RK×N and θ′′ are the parameter matrix of all agents before and after single consensus

communication, with K being the number of agents.

Local training defined by (5.2) is the first phase, where all agents over the graph

simultaneously train their model parameters based on locally stored sub-datasets using

gradient descent method. The second phase is globally consensus update described by

(5.3), where these locally trained agents share their model parameters with directly

connected neighbors to globally update their model parameters using the consensus

algorithm. By repeating these two procedures, all the agents converge to the optimal

model, and their overall performance is similar to the model trained on the entire

dataset.

On the one hand, each agent only needs consensus communication once after every

training step, which avoids repetitive consensus communication and alleviate the com-

munication costs. On the other hand, all agents are not required to share their local

data or upload them to a centralized server, which benefits the privacy protection.

Besides, this decentralized communication topology has great flexibility and expansi-

bility, that is, the training process is unaffected in switching communication graphs,

provided that the topology always remains a spanning tree [126].

The process of the distributed training algorithm for neural networks is detailed in

Table 5.1.
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Table 5.1: The process of distributed neural networks

Algorithm 1: Distributed training for neural networks

Inputs: The architecture of neural networks and sub-datasets
(D1,D2, · · · DK) stored on each agent, the communication topology with the
number of agents K, and the weighted connectivity matrix W .
Outputs: The optimum neural network model parameter θ∗.
1: Initialize the neural network model parameter θk of each agent over the
communication topology.
2: Every agent optimizes the neural network using gradient descent with its
stored sub-dataset Dk to obtain the locally optimized θ′k.
3: Update the parameter matrix θ′ for all agents with single consensus com-
munication to obtain θ′′.
4: Back to step 2 with globally updated θ′′.
5: Check the stop criterion (such as a predefined number of training itera-
tions).
6: Return the optimum neural network parameter θ∗.

5.3.2 Convergence Analysis

For the distributed training problem, the update rule for all agents’ model parameters

using the Algorithm 1 is

θt+1 = W (θt − ηOE(θt)), (5.4)

where θt = [θt1, θ
t
2...θ

t
K ]T and OE(θt) = [OE(θ1

t),OE(θ2
t)...OE(θK

t)]T are the concate-

nation of all agents’ model parameters and gradients at the tth iteration, respectively.

Assumption 1 : The gradients OE(θk) of all agents’ empirical risks are Lipschitz con-

tinuous with constant Le > 0.

Assumption 2 : The weighted connectivity matrix W satisfies W = W T and 1TW =

1T , where 1 = [1 1...1]T ∈ RK×1.

Theorem 1 : The overall empirical risk
∑K

k=1 e(θk) of all agents converge to the min-

imum using the proposed distributed training algorithm under Assumptions 1 and

2.

Proof : Inspired by [140], we design a function to represent the update process of the

model parameters using the distributed training method, which is defined as

J(θ) =
1

2η
‖θ‖2I−W + F (θ), (5.5)
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where ‖θ‖2I−W , 〈θ, (I − W )θ〉 with I being K × K unit matrix, and OF (θ) =

WOE(θ).

The gradient of J(θ) is

OJ(θ) =
1

η
(I −W )θ +WOE(θ). (5.6)

Then, we reformulate (5.4) as

θt+1 = θt − η[
1

η
(I −W )θt +WOE(θt)]

= θt − ηOJ(θt),

(5.7)

where we find that (5.5) generates the same sequences of θ as (5.4), using gradient

descent with the same learning rate η.

Also, it is obtained from (5.7) that

〈OJ(θt),θt+1 − θt〉 = −‖θ
t+1 − θt‖2

η
. (5.8)

Since that all OE(θk) is Le-Lipschitz, |OE(θt+1
k )− OE(θtk)| ≤ Le|θt+1

k − θtk|.

|OF (θt+1)− OF (θt)| = |W (OE(θt+1)− OE(θt))|

≤ Le|θt+1 − θt|.
(5.9)

Thus,

|OJ(θt+1)− OJ(θt)|

= |1
η

(I −W )(θt+1 − θt) + OF (θt+1)− OF (θt)|

≤ (
1

η
(1− λmin(W )) + Le)|θt+1 − θt|.

(5.10)

where λmin(W ) is the minimum eigenvalue of the matrix W .

We define Ll = 1
η
(1− λmin(W )) + Le, then OJ(θ) is Ll-Lipschitz.

It is therefore

J(θt+1)− J(θt) ≤ 〈OJ(θt),θt+1 − θt〉

+
Ll
2
‖θt+1 − θt‖2.

(5.11)
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Combining (5.8) and (5.11) we have

J(θt+1)− J(θt)

≤ −1

2
(
1

η
(1 + λmin(W ))− Le)‖θt+1 − θt‖2.

(5.12)

Sum (5.12) from 0 to +∞, we get

J(θt+1)− J(θ0)

≤ −1

2
(
1

η
(1 + λmin(W ))− Le)

∞∑
t=0

‖θt+1 − θt‖2.
(5.13)

Set the learning rate η to satisfy 0 < η < 1+λmin(W )
Le

, it is obtained that J(θ) is

non-increasing and upper bounded by J(θ0) < +∞. therefore

∞∑
t=0

‖θt+1 − θt‖ < +∞, (5.14)

‖θt+1 − θt‖ −→ 0, t −→∞, (5.15)

and we have θt+1 − θt −→ 0 ∈ RK×N , when t −→∞.

Combining with (5.4), when t −→∞ we have

W (θt + ηOE(θt)) = θt. (5.16)

Multiply both the right and left sides of (5.16) with 1T , it is obtained

1TW (θt + ηOE(θt)) = 1Tθt. (5.17)

Therefore, we have
∑K

k=1OE(θtk) = 0 when t −→ ∞, which means that E(θ) =∑K
k=1 e(θk) converges to the minimum. �

5.3.3 Error-compensated Compression Strategy

During the consensus process, all agents need to share the model parameters with their

neighbors, which brings heavy communication costs on the whole system, especially

for deep neural networks with a huge number of model parameters. We, therefore,
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intend to compress the model parameter before each agent shares its model parameter

with neighbors.

Bit-clipping is a simple and efficient compression method, which directly sets the lower

p bits into zero for any decimal real number. For example, provided p = 6 we compress

1.2345678 into 1.2 with its lower 6 bits set to zero. This compression method saves a lot

of storage memory but keeps the most valuable information on the model parameter.

A straightforward idea is to share the model parameter after compressing the model

parameter. In this way, only part model parameters are shared during the consensus

process, which greatly reduces communication costs.

However, the compression method still loses some important information of the model

parameter, which is harmful to the convergence. For this problem, the error-compensated

compression method [141] is proposed, the main idea of which is to store the residue of

the model parameter after the compression in the previous step and accumulate it to

the current model parameter. Thus, the compression residue is not discarded but accu-

mulated to update the model in the long run, which not only saves the communication

resource but also benefits the convergence [142].

The update rule of the error-compensated compression strategy mainly consists of two

steps. The first step is to compress the model parameter after combining it with the

stored error, and this error is then updated in the second step.

θ̃ = θ + δ, (5.18)

δ = θ̃ − P(θ̃), (5.19)

where θ and δ are the model parameter and the stored error, respectively. θ̃ and P(θ̃)

are the error-compensated model parameter before and after the compression process,

with P being the compression strategy. The process of the error-compensated compress

strategy is summarized in Table 5.2
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Table 5.2: The procedure of the error-compensated compress strategy

Algorithm 2: Error-compensated compression strategy

Inputs: The model parameter θ, the stored error δ, the compression strategy
P .

Outputs: The compressed model parameter P(θ̃) and updated error δ.

1: Compute the error-compensated model parameter θ̃ = θ + δ.

2. Compress the error-compensated model parameter to P(θ̃) using the com-
pression strategy P .

3: Update the error δ = θ̃ − P(θ̃).

4. Return the compressed model parameter P(θ̃) and the updated error δ.

5.3.4 Distributed Neural Networks with Error-compensated

Communication Compression

Combining with the consensus algorithm and the error-compensated compression strat-

egy, we propose the distributed training framework for neural networks with communi-

cation compression, which mainly consists of three steps. For each agent k, it maintains

a local model parameter θk, a compressed error-compensated model parameter P(θ̃),

and a stored error δ.

The first step is local training, where the model parameter θk is locally updated using

gradient descent by (5.2). The second step is model compression, where the stored error

is added to the locally updated model parameter in (5.18), which is then compressed

by the compression strategy P with error updating by (5.19). The third step is global

consensus, the compressed error-compensated model parameters are shared among

connected neighbors, and the new consensus update process for each agent k is

θ′′k = wkkθ
′
k +

∑
j∈N (k)

wijP(θ′j), (5.20)

where N (k) represents the set of the neighbors of agent k, and it is notable that

k /∈ N (k).

The specific process of the distributed neural networks with error-compensated com-

munication compression is summarized in Table 5.3.
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Table 5.3: The process of distributed neural networks with error-compensated com-
munication compression

Algorithm 3: Distributed training with communication compression

Inputs: The architecture of neural networks and sub-datasets
(D1,D2, · · · DK) stored on each agent, the compression strategy P , the com-
munication topology with the number of agents K, and the weighted connec-
tivity matrix W .
Outputs: The optimum neural network model parameter θ∗.
1: Initialize the neural network model parameter θk and the stored error δk
of each agent over the communication topology.
2: Every agent optimizes the neural network using gradient descent with its
stored sub-dataset Dk to obtain the locally optimized θ′k.
3: Compress the locally trained model parameter θ′k with the stored error δk
using Algorithm 2 to get P(θ̃) and the updated error δk.

4: Receive P(θ̃j) from its neighbor j ∈ N (k) and globally update the param-
eter θ′k over the graph using (5.20) to obtain θ′′k .
5: Return to step 2 with updated error δk and globally optimized θ′′k .
6: Check the stop criterion (such as a predefined number of training itera-
tions).
7: Obtain the optimum neural network model parameter θ∗.

5.4 Simulation and Discussion

5.4.1 Experimental Setup

We benchmark the distributed training framework with communication compression

on the handwritten digit images dataset MNIST [143], which is a standard image

classification task. This dataset consists of 55000 training samples and 10000 test

samples, where each sample (image) is given one of the 10 labels representing the

handwritten digit from 0 to 9. The convolutional neural network [144] is used for

this image classification task, and we use a four-layer CNN in this simulation, which

consists of two convolution layers and two fully connected layers with more than 3

million parameters.

The decentralized communication topology in Figure 5.1 is taken as an example, where

ten sub-datasets are stored on these agents over the graph, and ten CNNs with the same

structure are also initialized on each agent. In this distributed training framework,

there is no exchange of data samples, and all agents are only allowed to share the
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information of model parameters among their directly connected neighbors.
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Figure 5.1: The decentralized communication topology.

On the one hand, we consider the ideal situation that the sub-datasets stored on

different agents are IID data. For the balanced IID data case, the entire dataset is

partitioned and distributed evenly stored on the ten agents over the communication

graph. On the other hand, it is more reasonable in the practical scenario that the

training sub-datasets stored on different agents depend heavily on their local environ-

ments and usage patterns, these sub-datasets are non-IID and highly divergent from

the perspective of size and distribution. In the unbalanced non-IID data case, we con-

sider the extreme situation that each agent has access to the data with only one label.

The entire dataset is partitioned based on the label (from 0 to 9) and distributed on

the ten agents over the graph. For both the IID and non-IID data cases, the following

three algorithms are compared in this simulation.

• Local training: each agent trains its CNN model only based on the locally

stored sub-dataset, and there is no communication among these agents.

• Centralized training: all agents are connected in a centralized topology, and

the central server is used to average all local models after every local training

step.
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• Distributed training (Algorithm 1): all agents are connected over the de-

centralized communication graph, each agent trains the model on its sub-dataset

and share their full model parameters among directly connected neighbors, with

the consensus algorithm globally updating their model parameters.

• Distributed training with error-compensated communication compres-

sion (Algorithm 3): the consensus algorithm is used to globally update the

model parameters after local training, with the error-compensated compressed

model information shared among directly connected neighbors.

• Distributed training with communication compression (Algorithm 4):

the consensus algorithm is used to globally update the model parameters after

local training, while the compressed model information using bit-clipping only

(without error-compensation) are shared among directly connected neighbors.

5.4.2 Simulation Results

In general, the model parameter is stored and shared in the floating-point number

form, which usually has 8 significant digits. Bit-clipping with p = 6 (compression rate

is 1/4) is taken as the compression method for Algorithm 2 in this simulation, which

saves 3/4 communication costs. For both IID and non-IID datasets, we evaluate the

performance of all algorithms on the same test dataset, which contains 10000 samples

with all of the ten labels.

Figures 5.2 and 5.3 are the simulation results of the above five algorithms on the IID

and the non-IID datasets, respectively, where the averaged classification accuracy of all

the ten agents is taken as the performance for each algorithm. We find from Figure 5.2

that the classification accuracy on the test dataset of all the five algorithms increase

dramatically at the beginning training process and then achieve convergence. It is

notable that the distributed training with communication compression (Algorithm 4)

shows much worse performance than the other four algorithms. Especially, instead

of improving the model accuracy, distributed training with bit-clipping only (without

error-compensation) significantly decreases agents’ performance. This means that the
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sharing of incomplete or inaccurate model information hurts the model accuracy to a

large extent. Except for Algorithm 4, the local training exhibits the lowest model accu-

racy, although the classification accuracy of local training rises faster than distributed

training and distributed training with error-compensated communication compression

(Algorithm 3) at the beginning training stage. The centralized training, distributed

training, and distributed training with error-compensated communication compression

have nearly the same performance on the test dataset, which verifies the generalization

capability of the proposed Algorithm 3. In particular, the distributed training with

error-compensated communication compression algorithm saves 3/4 communication

costs while the brought decrease in accuracy is little and negligible.
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Figure 5.2: The performance of all algorithms on the IID dataset.

It is seen from Figure 5.3 that the classification accuracy of the local training algorithm

on the non-IID dataset is always around 0.1 over the whole training process, this is

because each agent learns the samples with only one label. Notably, Algorithm 4

on the non-IID dataset also cannot achieve convergence, and the model accuracies of

which are around 0.1. This shows that distributed training on the non-IID dataset is

more sensitive to the sharing of incomplete model information than on the IID dataset.

Besides, centralized training and distributed training have comparable good accuracy



CHAPTER 5. DISTRIBUTED NNS WITH COMM. COMPRESSION 96

0 20 40 60 80 100

Iterations (×50)

0

0.2

0.4

0.6

0.8

1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Local training

Centralized training

Distributed training

Algorithm3

Algorithm4

94 96 98 100

0.95

0.96

0.97

Figure 5.3: The performance of all algorithms on the non-IID dataset.

on the non-IID dataset, even though samples with only one label are available for

each agent. This means that the consensus process effectively helps each agent learn

from other agents’ sub-datasets, as long as all agents are connected over a graph

with a spanning tree. For Algorithm 3, the averaged accuracy of all agents shows

only a little worse performance than that of distributed training. However, it has far

better performance than the local training algorithm, which means that the distributed

training algorithm with an error-compensated compression strategy is robust to the

non-IID dataset.

To further analyze the influence of the compression rate of the compression strat-

egy with and without error-compensation on the classification accuracy of distributed

training, we test the distributed training with communication compression and error-

compensated communication compression (Algorithm 3 and Algorithm 4) using bit-

clipping with p from 0 to 7, on both IID and non-IID datasets. Correspondingly, the

compression rate ranges from 0 to 1 at 1/8 intervals, with the compression rate of 0 and

1 representing the local training and the distributed training without communication

compression (Algorithm 1), respectively.
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Figure 5.4: The influence of the compression rate on both IID and non-IID datasets.

Figure 5.4 describes the performance of Algorithms 3 and 4 on both IID and non-IID

datasets, with the compression rate ranging from 0 to 1, where each point shows the

averaged value, the lower bound, and the upper bound of the classification accuracies

for the ten agents in the decentralized communication topology. The classification

accuracies of these points that do not converge are around 0.1, which equals the recip-

rocal of the number of classification classes. As mentioned above, the local training

method does not converge on the non-IID dataset, while it shows fair performance

on the IID dataset. With 1/8 compression rate, neither Algorithm 3 nor Algorithm

4 achieve convergence on IID or non-IID datasets, which means that too aggressive

compression harms the convergence of the distributed training algorithms with com-

munication compression even though the error compensated strategy is applied.

It is easy to find from Figure 5.4 that Algorithm 3 shows far better performance than

Algorithm 4 on both IID and non-IID datasets. More specifically, with the increase of
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compression rate, Algorithm 3 starts to show good performance on both IID and non-

IID datasets when the compression rate is larger than 1/8, while Algorithm 4 cannot

achieve convergence or falls in local optimum with poor accuracy until the compression

rate reaches 5/8. When the compression rate reaches and exceeds 6/8, there is almost

no difference between Algorithm 3 and 4, as the main model information is kept and

only an unimportant part is clipped in these cases.

For the IID dataset, the performance of distributed training with a 2/8 communica-

tion compression rate is far better than that of the local training model (compression

rate is 0), which demonstrates that the error-compensated communication compression

strategy significantly improves the model accuracy with only 1/4 more communication

costs. After that, the classification accuracy rises slightly at the 3/8 compression rate

and then almost stays the same with the increase of the compression rate. Similarly, for

the performance on the non-IID dataset, the classification accuracy of the distributed

training with error-compensated communication compression first grows up (compres-

sion rate form 1/8 to 3/8) and then almost keeps unchanged with the increase of the

compression rate. It is also notable that the gap between the upper and the lower

bound of distributed training with communication compression on the IID dataset is

much smaller than that on the non-IID dataset. This shows that the unbalance of the

dataset is harmful to the convergence of the distributed training method.

From the overall view, the distributed training with error-compensated communication

compression using bit-clipping with p = 5 (compression rate is 3/8) shows nearly the

same performance as the centralized training and distributed training algorithm, but

saves 5/8 communication costs. This verified that the proposed distributed training

with error-compensated communication compression method is effective and efficient.

5.5 Conclusion

The combination of artificial intelligence, information technology, and IoT drives the

development of distributed computing to offer more efficient and diversified services.

This development considerably enriches our daily life but also brings new challenges to
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distributed machine learning, including the huge burden on the server for processing

massive data, privacy protection, communication costs on distributed training, and

dealing with non-IID data.

In this chapter, we propose a consensus-based distributed training framework with

error-compensated communication compression to deal with both IID and non-IID

datasets. The consensus-based distributed training algorithm is designed to free the

center node, which not only benefits the privacy protection but also ensures the flexi-

bility and expansibility of the communication system. It is proved in the convergence

analysis that the distributed neural networks converge to the model with minimal em-

pirical risk on the whole dataset by consensus communication on model parameters,

even though there is no sharing of data among all agents. The error-compensated

compression method with bit-clipping is then applied to compress the model parame-

ter before sharing, which significantly reduces communication costs. In the simulation

study, it is shown that distributed training with error-compensated communication

compression is applicable on both IID and non-IID datasets, and has much better

performance than the local training even with a small compression rate of 1/4. With

a 3/8 compression rate, it shows almost the same classification accuracy as distributed

training and centralized training but saves a lot of communication costs. Furthermore,

both distributed training methods with and without error-compensated communica-

tion compression exhibit more differences among agents on the non-IID dataset than

that on the IID dataset.

In future work, more efficient model compression methods can be considered to further

reduce the communication costs while ensuring model accuracy in distributed training

algorithms.



Chapter 6

Blockchain Empowered Distributed

Adaptive Learning in Vehicular

Networks

6.1 Introduction

Based on the distributed training algorithms proposed in the above chapters, this chap-

ter is to further promote privacy protection and communication security in distributed

training process combining with the blockchain technology, and apply the blockchain

empowered distributed learning algorithm in vehicular networks for the classification

of traffic lights.

Leveraging machine learning, a vehicle trains a model based on its collected data for

decision making or predicting in different driving-related applications. However, the

computing capability of a single vehicle is not enough to train an accurate and efficient

model [145]. Furthermore, the limitation on sensor quantity and driving scenarios of a

single vehicle also hinders the performance of the single-vehicle intelligence on complex

driving environments.

100
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To deal with this problem, a direct and effective solution is to take advantage of multi-

vehicle intelligence [146], which is realized by the cooperation of many vehicles in a

vehicular network. Cloud-based training [147] is widely adopted by manufacturers

and service providers, where a cloud server with powerful computing ability and huge

storage is used to gather the sensing data from vehicles to train a model, which is

subsequently pushed to each vehicle. Besides the heavy communication burden on

transmitting the huge raw data, the potential possibility of privacy leakage and security

issues are non-ignorable and noteworthy. In recent years, the blockchain is regarded

as a promising technology to build the trust mechanism and address privacy security

problems [148], especially for those systems with distributed communication protocol,

for example, the Internet of Things [149] and vehicular networks [150].

Federated learning requires a powerful central server to coordinate the whole dis-

tributed training process, which poses a heavy communication burden on the center,

especially for the systems with high latency and low bandwidth. As contrast, the de-

centralized communication topology is more flexible and expansible, and is also robust

to the failure or disconnection of any participants [88], which is thus more suitable for

vehicular networks.

In this chapter, we aim to design a distributed learning framework combined with the

blockchain technology to realize the multi-vehicle intelligence in vehicular networks,

which also ensures the data privacy security and defends against malicious participants

in the distributed learning process. The main contributions are summarized as follows:

1) A distributed learning framework combined with the blockchain is proposed to allow

all vehicles in a vehicular network to train a combined model, while keeping their

private data locally stored and ensuring the security of the communication process;

2) Based on the model accuracy and the computing power of each vehicle, an adaptive

consensus strategy and the proof of contribution protocol are designed to encourage

vehicles to make more contributions to the distributed learning process.
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6.2 System Model and Distributed Adaptive Learn-

ing

6.2.1 System Model

We consider the situation that a number of vehicles with sensing and computing ability

are connected in a vehicular network to collaboratively train a combined model for a

given task, without the sharing of raw data. To address the problems of privacy

protection and malicious vehicles, a secure information sharing and communication

mechanism needs to be built, which not only ensures the security of the data-sharing

process but also guarantee the data-sharing events traceable and unchangeable. The

designed vehicular network for collaborative learning is shown in Figure 6.1, which

consists of a blockchain module and a distributed learning architecture.

The distributed learning architecture makes it possible for all vehicles in the com-

munication topology to train a combined model without revealing their local data,

while the blockchain module builds secure communication connections among all the

vehicles by encrypting the sharing information and recording all data-sharing events

for further audit. More specifically, every data-sharing event is recorded as a transac-

tion in the blockchain, which needs to be verified before writing to a block. Because

of its limited storage, we only use blockchain to record the data-sharing events and

the corresponding retrieve information other than recording the raw shared model

information.

…

Blockchain

Blockchain

…
RSU Blockchain

Figure 6.1: The blockchain empowered vehicular network.
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6.2.2 Distributed Learning

The limited sensing and computing capacity of an independent vehicle makes it in-

sufficient to deal with the complex driving environment and the increasingly diverse

driving-related demands. A widely adopted approach is centralized modeling, where

a cloud server is used to process and analyze the data collected and uploaded by the

vehicles. After centrally trained the model on the server, vehicles download the global

model from the cloud server, which is then used for predicting or decision-making

combing with the real-time collected data. In this centralized strategy, the vehicles

are only responsible for collecting data and uploading it to the cloud server, while the

modeling and training process is conducted on the cloud server with powerful comput-

ing capacity. However, this strategy brings some potential problems, including privacy

leakage, huge data transmission and storage.

A good solution is the popular federated learning, where all vehicles are involved in the

sensing and modeling process, and the central server is only responsible for gathering

and aggregating the model or gradient information from the vehicles. However, the

main shortcoming of federated learning is the requirement of a center to coordinate

the combined modeling process. This not only decreases the expansibility and the

robustness of the whole system but also poses a heavy communication burden on the

central server when a large number of vehicles are involved.

As mentioned in Chapter 3, the proposed consensus-based distributed learning algo-

rithm has a two-phase updating procedure, where gradient descent is first used to

train vehicles’ local models based on their local datasets, and the consensus algorithm

is then applied to drive all models to approach each other. The specific process is

described as follows:

θ′k = θk − ηOE(θk), (6.1)

θ′′ = Wθ′, (6.2)

where θ′k is the locally trained model θk ∈ R1×N of vehicle k, with η being the learning

rate, θ′′ is the updated models of θ′ = [θ′1, θ
′
2...θ

′
K ]T ∈ RK×N using the consensus

algorithm.
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6.2.3 Adaptive Consensus Algorithm

In the above distributed learning algorithm, the weighted connectivity matrix W is

kept fixed during the whole training process, which only depends on the consensus

method and the communication topology of vehicles. This means that the influence

of any vehicle on its neighbors is invariable and each vehicle approaches equally to

its neighbors in the consensus process, regardless of the performance and computing

contribution of each vehicle.

In practical applications, different vehicles in the distributed learning system com-

monly have different computing power, model accuracy, dataset size, batch size, etc.

If all vehicles are always taken equally in the distributed training process, it will make

vehicles unwilling to contribute more computing resources and better models to the

distributed training system. Thus, the vehicle with better performance and more com-

puting contribution should have a larger influence on its neighbors, which urges all

vehicles to make more contributions to the whole training process. The classification

accuracy and the root mean squared error are generally used to evaluate the perfor-

mance of each vehicle for the classification task and the regression task, respectively.

Here, we use the same verification dataset for each vehicle to evaluate their model.

Taking the classification task as an example, the vehicle with higher model accuracy

should have more influence on its neighbors, and corresponding a larger value in the

weighted connectivity matrix W . It is notable that there is a base accuracy (equals

to 1/L, L is the number of classes) for the classification task no matter how good

or bad a model is, and this part of accuracy should not be taken into consideration

for evaluating the performance of each vehicle. Besides, we define the computing

contribution ri of vehicle i as

ri = γ
bini

max(bi)max(ni)
, (6.3)

where γ is a user-defined parameter to balance the influence of model accuracy and

computing contribution, bi and ni are the batch size and the dataset size, respectively,

with max(bi) and max(ni) being their corresponding maximum value, respectively.
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The weighted connectivity matrix W in terms of model accuracy and computing con-

tribution is then defined as

wij =
aij(cj − λ)ri∑K
j=1 aij(cj − λ)

, (6.4)

where aij represents the connection status between vehicles i and j, cj denotes the

classification accuracy of vehicle j, with λ being the base accuracy that needs to be

omitted. Besides, as the model accuracy commonly rises with the training process

moving on, it is reasonable that the λ should rise with the increase of iterations, which

should also be bounded. We then define

λ =

 1/L+ α ∗ t if λ < β

β if λ ≥ β
, (6.5)

where t is the number of iterations, α and β are user-defined parameters to adjust the

λ.

Compared with the normal consensus algorithm with a constant W , the proposed

adaptive consensus algorithm is more efficient and robust. On the one hand, the

model accuracy is used to adaptively adjust the weighted connectivity matrix, which

means that better vehicle commonly has a larger influence on its neighbors. On the

other hand, the computing contributed is considered, where bi represents the consumed

computing resource at the current iteration, while ni reflects the size and diversity of

the data samples. With the consideration of model accuracy and computing contribu-

tion, the proposed adaptive consensus algorithm is used for the consensus process in

distributed learning.

6.3 Blockchain Empowered Distributed Learning

Framework

The distributed learning framework avoids the direct sharing of raw data by exchanging

the model information among connected vehicles. However, the sharing of models still

have the risk of data leakage, as the raw data may be extrapolated from the model

or gradient information [49]. Besides, in this framework, we originally assume that
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the vehicles in the communication topology are all honest, but there may be some

malicious vehicles in the vehicular network, such as the vehicles from the rivals or

hackers. They may share inaccurate or incorrect information with their neighbors

to damage the collaboratively learning process out of different motivations, and the

shared model information from honest vehicles may be intercepted and then used for

deducing the original data for unknown intention. To avoid these bad situations, a

trust mechanism need to be built to protect privacy security and prevent the attack

from malicious vehicles. Thus, the blockchain technology is considered.

6.3.1 Blockchain

Blockchain is commonly regarded as a decentralized ledger among all participants,

which is originally proposed to build the trust mechanism in digital currency trad-

ing [151]. In blockchain networks, no center is required and all participants have the

same status as they all have the entire copy of the blockchain, which contains all the

transaction information. Therefore, it is extremely hard or even impossible to forge

or tamper the information written in the block, which greatly benefits the privacy

security.

Hash algorithm [152] and asymmetric encryption [153] are two key techniques in

blockchain to ensure the security of communication and the integrity of the ledger.

The hash algorithm transforms an input with any length or size to output with fixed

length and this operation is irreversible. Because of the above two characteristics, the

hash algorithm is widely used in file verification and digital signature. The asymmetric

encryption algorithm includes a private key and a public key, where the file that is

encrypted by the private key can be only decrypted by the corresponding public key,

and vice versa. Compared with the traditional encryption method, the asymmetric

encryption algorithm avoids the sharing of keys that are used for both encryption and

decryption, which greatly improves communication security and has been applied in

authentication and secure communication.
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The three blockchain-related operations used in this chapter are as follows:

M̂i = H(Mi), (6.6)

M̃i = E(Mi, pi), (6.7)

Mi = Y(M̃i, qi), (6.8)

where Mi is the local model of vehicle i, M̂i is the hash value of Mi after the hash

operation H. (pi, qi) is the pair of private and public keys of vehicle i, M̃i is the

encrypted model of Mi, with E and Y being the encryption and decryption operations,

respectively.

6.3.2 Blockchain Empowered Vehicular Network

The connected vehicles are the main body of the blockchain empowered vehicular

network, which is responsible for the data collection, model training, as well as the

updating of the blockchain.

For a specific collaborative learning task, a vehicle broadcasts its request to all the

vehicles in the vehicular network, and write the first block of the blockchain, which

includes a verification dataset and all initialization information, such as the model

structure, hyper-parameters, etc. Vehicles that are willing to join in the collaborative

learning task first register in the blockchain, and generate a pair of public key and

private key, which is used to encrypt and decrypt the shared information, respectively.

Meanwhile, each vehicle shares its public key with its connected neighbors. During the

consensus communication, each vehicle first encrypts its local model using its neigh-

bors’ public keys, and then send the encrypted model information to its corresponding

neighbors. After receiving the encrypted model information from its neighbors, the

vehicle is able to decrypt the encrypted information using its private key to obtain the

local models from its neighbors, which are then used for the consensus process.

Meanwhile, every model sharing event is recorded as a transaction and stored in the

blockchain, the detail of which is shown in Figure 6.2. Even though the sharing

information of a local model is much smaller than the raw data, it is still intensive
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to put all local models on the blockchain, which generally has limited storage space.

Instead, we record the hash value of the local model in the blockchain.
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Figure 6.2: Records of the blockchain.

6.3.3 Blockchain Empowered Distributed Adaptive Learning

Framework

Combing the blockchain technology and the proposed adaptive consensus algorithm,

we design the blockchain empowered distributed adaptive learning (BDAL) algorithm.

After local training, each vehicle computes the hash value of its local model and

encrypts the local model, the encrypted model is then transmitted to its neighbors with

the sharing event transaction broadcast to the blockchain. The schematic diagram of

the communication process between any two connected vehicles is shown in Figure 6.3,

The procedure of the proposed BDAL algorithm is detailed as follows:

Step 1) Initialization: a vehicle broadcasts the task in the vehicular network and builds

the first block of the blockchain, other vehicles voluntarily register in the blockchain

and generate their own public and private keys (pi, qi), i ∈ [1, 2, ..., K]. After joining

in this blockchain, each vehicle i retrieves the initialization information from the first

block to initialize its local model, and sends its public key to its connected neighbors

j ∈ N (i).

Step 2) Local learning: each vehicle collect data from its environment and trains the

local model based on its private data samples using gradient descent method, as shown
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Figure 6.3: The communication process between any two connected vehicles.

in (6.1).

Step 3) Model sharing with encrypting: each vehicle i shares its local model Mi with

its directly connected neighbors N (i) after encrypting the local model using (6.7) with

corresponding public keys of their neighbors qj, j ∈ N (i). Meanwhile, the vehicle i

computes the hash value M̂i of its local model Mi using (6.6) and broadcasts these

model sharing event transactions (as detailed in Figure 6.2) in the vehicular network.

Step 4) Decryption and verification: after receiving the encrypted models from its

neighbors N (i), each vehicle i decrypts these models using (6.8) with its private key pi.

Besides, the vehicle computes the hash value of the decrypted model and compares it

with the model hash value recorded in the corresponding transaction for verification.

In practical application, we conduct the verification operation with an user-defined

small possibility to save computing resources.

Step 5) Global consensus: all vehicles globally update their model with these decrypted

models from their neighbors using the adaptive consensus algorithm, combining (6.2)

and (6.4).

Step 6) New block generation: all vehicles compete for the opportunity to write the

new block to the blockchain using the designed Proof of Contribution (PoC) protocol.

The vehicle that wins the competition broadcasts its new generated block to other

vehicles for verification. After passed the verification, the new block is added to the

blockchain.
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The step 2) - step 6) repeat until a good enough model is obtained or a pre-defined

number of iterations is reached.

6.3.4 Proof of Contribution

The traditional Proof of Work (PoW) protocol [154] brings heavy computing bur-

den and time consumption, which is unsuitable for vehicle terminal with relatively

low computing power. To address this problem, we propose the protocol of proof of

contribution (PoC) to elect the vehicle to write a new block, which consists of the

contribution of model accuracy and computing resources. Similar to 6.4, we define the

proof of contribution as Oi = (ci − λ)ri, where the vehicle with the highest value of

Oi has the opportunity to write the new block. This also encourages all vehicles to

contribute more computing power and offer better models to the vehicular network.

6.3.5 Security Analysis

The security of the proposed blockchain empowered distributed adaptive learning al-

gorithm is multi-fold. First, the proposed learning framework avoids sharing the raw

data, and encrypts the shared model information using the public key of a vehicle’s

directly connected neighbor. This means that only the designated recipient vehicle is

able to decrypt the shared model information and use it for model updating, which

avoids the data abuse and leakage. Second, the adaptive consensus algorithm ad-

justs the weighted connectivity matrix based on their model accuracy and computing

contribution, this alleviates the influence of malicious vehicles on the whole learning

process, as the malicious vehicle with bad model accuracy also has a corresponding

low value in the weighted connectivity matrix. Third, the verification process ensures

all vehicles to offer models with real accuracies, all model sharing events are recorded

as transactions in the blockchain, which are traceable and tamper-proof.
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6.4 Simulation and Discussion

We test the proposed algorithm on a traffic signal dataset, which consists of eight

different traffic signals as shown in Figure 6.4, and there are 500 samples in each class.

Taking the vehicle communication topology shown in Figure 6.5 as an example, where

eight vehicles are connected in the decentralized vehicular network. We first divide the

dataset into a training dataset, a verification dataset, and a testing dataset according

to the proportion of 7:1:2. Then, the training dataset is divided evenly into eight sub-

datasets and assigned to each vehicle, while all vehicles share the same verification

and testing datasets. To differentiate the computing contribution, the batch size is

designed to be B = [8, 8, 16, 16, 32, 32, 64, 64] for each vehicle, respectively, where the

batch size bi equals B[i].

A five-layer convolutional neural network is designed for this classification task, and

the Adam gradient descent [155] with 10−4 learning rate is taken as the optimization

method. The first convolution layer is 32 filters of the size 5× 5 kernel with 1 stride,

while the second convolution layer is 64 filters of the size 3×3 kernel with 1 stride, and

a max-pooling layer is connected behind each convolution layer. There are 256 and 8

nodes for the fully connected layer and the output layer, respectively. The rectified

linear unit (ReLU) is taken as the activation function for both convolution and fully

connected layers, with softmax being the activation function of the output layer. The

following four algorithms are compared in this simulation, which includes training with

and without a malicious vehicle. It is notable that the distributed training framework

is not sensible to the above hyper-parameters, even though these hyper-parameters

are carefully tuned for the local learning case for the specific classification task in this

chapter. This means that we do not need to additionally tune hyper-parameters for

the distributed training process.

• Federated learning: each vehicle computes the local gradient based on its

private dataset and uploads it to the central server, while the server aggregates

these local gradients to update the global model, which is then pushed to all

vehicles.
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• Distributed learning: all vehicles train the local models on their private

datasets and communicate with their connected neighbors in the decentralized

communication topology, while the consensus algorithm is used to globally up-

date their models.

• Blockchain empowered distributed adaptive learning (BDAL): All ve-

hicles are connected over a decentralized topology, and blockchain technology

is used to protect the data-sharing communication in the distributed learning

process, with the adaptive consensus algorithm globally updating their models.

• Local learning: each vehicle trains its model only based on its local dataset,

no communication happens among these vehicles.

       

a)           b)          c)           d) 

       

e)           f )           g)           h)  

 

 
Figure 6.4: Different traffic signals in the dataset.

First, we consider the ideal situation that all vehicles are honest in the vehicular net-

work. Figures 6.6 and 6.7 compare the above four algorithms on classification accuracy

on the same testing dataset and the training loss, respectively, where the averaged value

of all vehicles is used to represent the performance of each algorithm. It is seen from

Figure 6.6 that all algorithms except local learning achieve good performance on the

traffic signal classification task, and both distributed learning and the proposed BDAL

shows a little better performance than the federated learning algorithm, while local
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Figure 6.5: The communication topology of the vehicular network.

learning exhibits the worst accuracy. The generalization capability of the proposed

BDAL algorithm is verified by its great performance on the testing dataset. Besides,

the gaps between the upper and lower bounds of all vehicles’ accuracies for local

learning are quite large, which means that there are considerable differences among

different vehicles. This shows that the local learning algorithm depends heavily on

the initialization and local dataset, while the other three algorithms are all with little

differences among different vehicles, and thus the upper and lower bounds of them

are omitted in the figure. Similar results are also found from Figure 6.7, where the

loss of federated learning, distributed learning, and BDAL all converge to zero after a

number of iterations, while the loss of local learning does not reach the convergence.

To test the immunity to the malicious vehicle of the BDAL algorithm, we suppose that

there is a malicious vehicle (with red background in Figure 6.5) in the vehicular net-

work, which always shares a bad model with low accuracy. It is found from Figure 6.8

that federated learning and distributed learning are both vulnerable to the malicious

vehicle, and they show as bad accuracy as the malicious vehicle. As a comparison, the

BDAL algorithm still exhibits good accuracy on the classification task, which means

that the proposed BDAL algorithm is robust to the malicious vehicle in the vehicu-

lar network. Similar results are also seen from Figure 6.9, where the loss of BDAL

decreases to the minimum with the increase of iterations, while the loss of federated
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Figure 6.6: The classification accuracy on testing dataset of each algorithm without
malicious vehicle.
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Figure 6.7: The training loss of each algorithm without malicious vehicle.

learning and distributed learning are both affected by the malicious vehicle and stay

around the initial value.
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Figure 6.8: The classification accuracy on testing dataset of each algorithm with a
malicious vehicle.
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Figure 6.9: The training loss of each algorithm with a malicious vehicle.

6.5 Conclusion

In this chapter, a blockchain empowered distributed learning framework is proposed

to realize the multi-vehicle intelligence in vehicular networks, which consists of the
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distributed learning framework and blockchain-based communication module. To cir-

cumvent the heavy communication burden on the center and improve the robustness

of the centralized topology, the decentralized communication topology is developed for

the vehicles in the vehicular network, and the consensus strategy is introduced for dis-

tributed training. Furthermore, the adaptive consensus algorithm is designed, which

considers the model accuracy and computing contribution of each vehicle to adaptively

adjust the weighted connectivity matrix during the consensus process. Moreover, the

blockchain-based communication mechanism is introduced to ensure communication

security, where the communication process is encrypted and recorded in the tramper-

proof block. Besides, the proof of contribution protocol is designed to elect the vehicle

to generate the new block in the blockchain, which not only saves computing costs but

also encourage each vehicle to offer more computing power and a better model for the

distributed learning in a vehicular network.

At last, a real-world traffic signal dataset is used to test the proposed BADL algo-

rithm with comparison to local learning, federated learning, and distributed learning.

The comparison study shows that the BADL algorithm has much higher accuracy

than local learning and exhibits comparable performance with federated learning and

distributed learning. In particular, both the federated learning and distributed learn-

ing are vulnerable to the malicious vehicle in the vehicular network, while the BADL

algorithm is immune to the malicious attack.



Chapter 7

Distributed Training Framework

for Reinforcement Learning

7.1 Introduction

Chapters 3-6 have proposed the distributed training algorithms and provided some

optimization methods to improve its performance, reduce its computational costs and

communication costs, and enhance its communication security. In this chapter, we are

expected to extend the distributed training algorithm to reinforcement learning using

the similar consensus strategy.

Reinforcement learning is about an agent exploring an unknown environment to learn

an optimal policy for a given task by iteratively trial and learning. Through itera-

tively updating the values of actions based on the reward from the environment, the

agent obtains the optimal strategy for a specific task. In the conventional tabular

method [156], the values of all actions in different states are stored in a table, and an

agent learns to update this table by iteratively interacting with the environment until

the convergence of the table.

However, this tabular method is not suitable for complex reinforcement learning prob-

lems, especially for those with too many or even infinite states and actions, where the

117
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difficulties are not only about the storage of the large value table, but also the computa-

tional resources to fill them accurately. Therefore, the function approximation method

is proposed, which aims to construct a prediction function for the action value based

on the agent’s existing interactive experience with the environment. Neural network

approximation is a popular choice because of its excellent fitting capacity [157], among

which, a representative work is deep Q-network (DQN) [80]. With the combination

of Q-learning and deep neural networks, the deep Q-network has reached human-level

performance on atari games [158,159].

In recent years, the rapid development of mobile computing and Internet of Things pro-

vides a possibility to unleash the computing power of the device (or edge) side, where

the training data samples are generated or collected. By pushing the learning process

to the terminal devices, it not only takes better advantage of device computational

power and alleviates the cloud server burden, but also offers more efficient service (or

control) with a quicker response as it is closer to the practical control entities.

The existing distributed reinforcement learning algorithms are mostly based on the

parameter server framework, which requires a central server to summarize all agents’

model information or to gather all agents’ experience data samples. This framework

shows great efficiency by running multiple agents in parallel, but has two main issues.

One issue is the heavy communication burden of the central server because all agents

need to communicate with it simultaneously, and the other one is that the privacy issue

makes it unavailable to collect all agents’ experience data samples centrally. To deal

with these issues, this chapter aims to design a distributed deep reinforcement learning

framework based on a decentralized communication topology to free the central server

and avoid revealing the private experience data.

In the distributed learning setting, the data storage, model computing, and updating

are all pushed to the edge side, which unleashes the edge computing potential and

alleviates the burden of the central server. Without a center to integrate all agents’

information, the consensus algorithm is applied to make all agents approach each

other during the learning process. Based on this, the deep distributed reinforcement

learning framework is proposed, the convergence analysis of which demonstrates that
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the proposed method can drive all agents to the same optimum model. The simulation

study shows that the distributed learning method has far better performance than its

single learning counterpart.

The structure of this chapter is as follows. Section 7.2 proposes the distributed re-

inforcement learning problem; Section 7.3 designs the distributed deep reinforcement

learning framework based on the decentralized communication topology with a server,

and analyzes the convergence of the proposed algorithm. Section 7.4 conducts the

comparison simulation to demonstrate the superiority of the distributed learning al-

gorithm. Section 7.5 concludes this chapter.

7.2 Problem Formulation

Recently, the increasing computing power of intelligent devices and the development

of Internet-of-Things have promoted the progress of edge computing, which not only

takes better advantage of the distributed computational resources but also offers more

efficient service. This also drives the exploration of the distributed reinforcement learn-

ing framework to deal with more complex problems in a more efficient manner. The

current parallel training framework for reinforcement learning algorithms are mostly

based on the parameter-server communication topology, where a central server is re-

quired to gather the information from all working agents. The main shortcoming of

this architecture is the heavy communication burden on the central server, especially

for those systems with high latency and low bandwidth. Besides, the growing concern

on privacy protection also makes it unavailable to gather all agents’ experience data

centrally.

For these problems, we are trying to design a distributed training framework for the

deep reinforcement learning algorithm, which is mainly based on the decentralized

communication topology and requires only a little initialization information from the

central server. Furthermore, this framework allows homogeneous agents to learn from

other agents’ experience to accelerate the training process, without the actual sharing

of experience data samples.
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7.3 Distributed Reinforcement Learning Framework

7.3.1 Distributed Deep Q-networks

A reinforcement learning agent can be divided into a learner and an actor. Common

parallel reinforcement learning algorithms are based on the parameter-server communi-

cation architecture as shown in Figure 7.1 (a), where there is a central leaner connected

with many actors. In this learning process, the central learner gathers the experience

data from the actors, which is then used to update the reinforcement learning model.

It significantly improves efficiency by learning the experience from different actors

simultaneously. However, the centralization of experience data samples may not be

available in some practical situations out of privacy issues, and the physical distance

between the learner and actors also delays its response time.

Some researchers have proposed the asynchronous reinforcement learning framework [79,

160], where a central server connects with multiple agents in the parameter-server

topology, each learner asynchronously updates the Q-network on the central server

based on the experience of the corresponding actor on interacting with the environ-

ment. This not only benefits the privacy protection but also brings a quicker response,

as it shortens the distance between the learner and the actor.

Strong connection
Weak connection

Learner

Actor

Cloud server

Agent

(a) (b)

Figure 7.1: (a) Parameter-server communication topology. (b) Decentralized commu-
nication topology with a server.

However, the main disadvantage of the parameter-server architecture is the heavy com-

munication burden on the central server, especially when the server is connected with
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large numbers of agents, as all agents need to communicate with the server during the

training process. To circumvent this shortcoming, the decentralized communication

topology is considered, where each agent only shares information with its connected

neighbors, which do not require a center node. In addition, any agent’s experience

samples cannot be shared among agents due to privacy-preserving issues.

We explore to design a distributed training method for the communication framework

shown in Figure 7.1 (b), where there are weak connections between the cloud server

and the learners, and strong connections among these learners. In this communication

manner, each learner only receives the initialization information from the server, such

as the initialized Q-networks, the task, and the reinforcement learning environment.

Meanwhile, all learners are allowed to use their neighboring information during the

distributed training procedure to accelerate the learning process.

Generally, it requires more than ten times of consensus communication to drive all

agents to their average, which costs a lot of computation and communication resources.

However, a single consensus step still helps to make all agents approach each other.

Based on the property of the weighted connectivity matrix W that
∑K

j=1wij = 1,∀i

and wij ∈ [0, 1), ∀(i, j), it is obtained

min
k
‖θ′k‖ = min

k
‖
K∑
j=1

wkjθj‖ ≥ min
k
‖θk‖, (7.1)

where the ‘=’ holds only when all θj are equal. Similarly, it has max
k
‖θ′k‖ ≤ max

k
‖θk‖,

where we find that the lower bound of all model parameters and the upper bound of

that decreases after a single consensus communication.

Since the update process of gradient descent optimizes the Q-network and the consen-

sus process drives all Q-networks to approach each other, we propose the consensus-

based distributed reinforcement learning algorithm for deep Q-networks. The aim

is to train a shared Q-network model among connected agents over a decentralized

communication topology without the actual sharing of experience samples.

First, all agents receive the initialization information from the cloud server, and the

actors interact with the environment using random actions to accumulate the experi-

ence data samples in their replay memories. Then, the learning process begins, where
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the learner of each agent optimizes its Q-network using the gradient descent based on

its own replay memory. After every learning step, all learners communicate with their

neighbors to globally update their Q-networks using the consensus algorithm with a

single communication. The specific update strategy of the proposed distributed rein-

forcement learning is

θ′k = θk − ηOE(θk), (7.2)

θ′′ = W ⊗ Imθ′, (7.3)

where θ′k is the optimized Q-network of θk ∈ Rm×s using gradient descent method with

OE(θk) being the gradient, θ′′ is the updated model matrix of θ′ = [θ′1, θ
′
2, ...θ

′
K ]T ∈

RmK×s using the consensus algorithm with a single communication.

In this distributed training manner, each agent not only trains the Q-network based

on its own replay memory but also learns from other agents’ experience. Besides,

it reduces the correlation of experience samples by running different agents in paral-

lel as each agent can learn all agents’ experience simultaneously. On the one hand,

This decorrelation makes the selected data samples in a more stationary manner in

every learning round as these agents are usually in different states at any certain

time, which benefits the convergence of the learning process. On the other hand, this

distributed learning manner makes it suitable for those on-policy reinforcement learn-

ing algorithms, such as Sarsa, because these parallel agents generate more experience

data sample, which requires a small or even no replay memory, especially there are a

large number of agents in this communication topology. The detailed process of the

distributed deep Q-networks is summarized in Table 7.1.

7.3.2 Convergence Analysis

Let θ∗ be the optimal Q-network model parameter of the reinforcement learning prob-

lem.

Assumption 1 : The learning process makes each agent’s Q-network model parameter

θk approach the optimal Q-network model parameter θ∗. That is

‖θ′k − θ∗‖ ≤ ‖θk − θ∗‖, k = (1, 2, ...K), (7.4)
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Table 7.1: The process of distributed deep Q-networks

Algorithm 1: Distributed learning of deep Q-networks

Inputs: The initialization information from the server, including the re-
inforcement learning environment, the Q-network structure, the number of
agents K, and the weighted connectivity matrix W .
Outputs: The optimum deep Q-network model parameter θ∗.
1: Each learner initializes the Q-network model parameter θk and the target
model parameter θ̂k.
2: Each actor k interacts with its environment and accumulates the experience
data samples dkt = (skt , a

k
t , r

k
t+1, s

k
t+1) in the replay memory ek.

3: Each learner trains its Q-network model θk based on the replay memory ek
and updates the target model parameter θ̂k after every T iterations.
4: All learners communicate with each other and update their Q-networks θk
using the consensus algorithm.
5: Return to step 2 with the optimized Q-network model θk.
6: Check the stop criterion (such as a certain number of learning steps).
7: Obtain the optimal Q-network model θ∗.

where θ′k is the optimized Q-network model parameter of θk after the local learning

process.

Remark 1 : As the local learning is a complex non-convex optimization process, (7.4)

may not be satisfied at every learning step using gradient descent method, while it

should hold after multiple learning steps. In the situation that the model parameter

approaches the optimal θ∗ over multiple learning steps, we regard the multiple con-

sensus processes over these learning steps as an entire consensus process. This does

not influence the correctness of Proposition 1, and still makes the proof hold.

Assumption 2 : The communication topology is connected with a spanning tree, and

the weighted connectivity matrix W satisfies
∑K

j=1wij = 1 and wij ∈ [0, 1).

The update rule for each agent using the consensus algorithm is described by

θ′′k =
K∑
j=1

wkjθ
′
j, k = (1, 2, ...K), (7.5)

where θ′′i represents the updated Q-network model parameter θ′i after the consensus

process.

We define ∆θk = θk − θ∗ and ∆θ′k = θ′k − θ∗ as the gaps between the kth Q-network

model parameter and the optimal Q-network parameter before and after the learning
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process, respectively. And we always have ‖∆θ′k‖ ≤ ‖∆θk‖ based on the Assumption

1. Similarly, ∆θ′′k = θ′′k − θ∗ is defined as the gap between the optimal θ∗ and the

Q-network after the distributed learning process.

Proposition 1 : Based on the Assumption 2, we have

‖(∆θ′′1 ,∆θ′′2 , ...∆θ′′N)‖∞ ≤ ‖(∆θ′1,∆θ′2, ...∆θ′N)‖∞, (7.6)

where ‖·‖∞ denotes the max-norm, and the ‘=’ holds only when it satisfies ∆θ′i =

∆θ′j,∀(i, j).

Proof:

‖(∆θ′′1 ,∆θ′′2 , ...∆θ′′N)‖∞ = max
k
‖∆θ′′k‖

= max
k
‖
K∑
j=1

wkjθ
′
j − θ∗‖

≤ max
k
‖θ′k − θ∗‖

= ‖(∆θ′1,∆θ′2, ...∆θ′N)‖∞.

(7.7)

Theorem 1 : Under Assumptions 1 and 2, the distributed training Q-network model

parameters converge to the optimal Q-network θ∗ regardless of the difference in their

initial statuses.

Proof: Suppose G(θ) is the maximal gap between all Q-networks (θ1, θ2, ...θN) and the

optimal Q-network model parameter θ∗, this brings

G(θ) = max
k

(‖θk − θ∗‖) = ‖(∆θ1,∆θ2, ...∆θK)‖∞. (7.8)

Combining Proposition 1 with (7.8), we get

G(θ′′) = max
k

(‖θ′′k − θ∗‖)

= ‖(∆θ′′1 ,∆θ′′2 , ...∆θ′′N)‖∞

≤ ‖(∆θ′1,∆θ′2, ...∆θ′N)‖∞

= G(θ′).

(7.9)
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Based on Assumption 1,

G(θ′) = max
k

(‖θ′k − θ∗‖

≤ ‖θk − θ∗‖

≤ ‖(∆θ1,∆θ2, ...∆θN)‖∞

= G(θ).

(7.10)

Thus, it is obtained

G(θ′′) ≤ G(θ′) ≤ G(θ). (7.11)

The above equation (7.11) demonstrates that upper bound of the gaps between all Q-

networks and the optimal model keeps decreasing as the distributed learning process

carrying on. This means that the Q-networks of all the agents in the communication

topology converges to the optimal Q-network model parameters step by step. �

7.4 Simulation and Discussion

The proposed distributed deep reinforcement learning framework consists of two up-

date procedures of local learning and global consensus. After all agents pull the ini-

tialization information from the cloud server, the first step is local learning with their

own copies of the environment, where all agents simultaneously interact with their

environment and accumulate experience samples to trained their Q-networks. In this

stage, each agent’s Q-network is updated locally based on its experience reply mem-

ory. In the second step, all agents share the locally optimized Q-networks with their

neighbors to globally update their models using the consensus algorithm. This two-

phase update procedure makes all the agents converge to the optimum Q-network as

presented in the above section.

Besides that no central node and no sharing of experience samples are required for this

distributed training framework, another superiority is the flexibility and expansibility

of the communication topology. Specifically, there is no limitation of the number

of agents in this topology, and the convergence and efficiency of this method are
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unaffected in changeable communication topology [126] or the scenarios that any new

agent participate in or leave this topology, provided that it has a spanning tree all the

time.

We take the decentralized communication topology with a server in Figure 7.1(b) as

an example, where six agents are strongly connected over the graph. In this communi-

cation topology, the experience samples of each actor are not allowed to be exchanged,

and the sharing of Q-network information is only allowed among connected agents.

Besides, there is a weak connection between these agents and the server, by which the

agents pull the initialization Q-networks and some modeling hyper-parameter from

the server. A comparison between the distributed learning and the single learning

methods is made to demonstrate the effectiveness of the designed distributed training

method.

• Single learning: a single agent interacts with the environment to update its

Q-network, which is a baseline for the distributed learning method.

• Distributed learning: multiple agents are connected over a decentralized

graph, and each agent trains its own Q-network by interacting with its copy

of the environment, which is then globally updated by the consensus algorithm.

The inverted pendulum from the OpenAI gym environment (pendulum-V0) [161] is

used to test the proposed distributed deep Q-networks, where the state information is

taken as the input of the Q-network, while the corresponding output is the value of

the action. The task of the agent is to learn how to keep the pendulum upright based

on the reward from the environment, which is calculated by the following equation

r = −(α2 + α̇2 + 0.001 ∗ u2), (7.12)

where r denotes the reward, u ∈ [−2, 2] is the action, which is discretized by evenly

spaced actions. α ∈ [−π, π] is the angle between the inverted pendulum and the ver-

tical direction (clockwise direction is positive), and α̇ ∈ [−8, 8] is the angular velocity.

After pulling the initialized Q-networks from the server, each learner optimizes its
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Q-network to minimize the loss on the actor’s experience samples, which is given by

l(θ, di) =
1

n

n∑
i=1

(qi −Q(si, ai; θ))
2, (7.13)

where n is the number of samples, s′i is the next state of si for the sample di =

(si, ai, r, s
′
i). Q(si, ai; θ) and qi = r+ γmax

a′i

Q(s′i, a
′
i; θ̂) are the expected value of state-

action pair (si, ai) based on the current Q-network θ and the target value of that based

on the target Q-network θ̂, respectively.

In this simulation, we use the accumulated reward R(t) and the moving Q value

Q(t) to evaluate the performance of each agent, which are calculated by the following

equations:

R(t) =
t∑
i=1

r(i), (7.14)

Q(t) =

 Q(st, at; θt) t = 1

0.99Q(t− 1) + 0.01Q(st, at; θt) t > 1
, (7.15)

where R(t) is the reward from the environment computed by (7.12) at the tth iteration,

Q(st, at; θt) is value of state based on the current Q-network.

It is clear from (7.12) that the agent always receives the negative reward from the

environment, except the situation that the pendulum keeps upright, where the reward

is zero, and correspondingly, the accumulated reward stops going down. Thus, in

Figure 7.2, the horizontal part of each agent implies that the agent has finished the

task and learns how to keep the pendulum upright stably.

Besides, we can find from Figure 7.2 that the accumulated rewards of the agents of dis-

tributed learning are above that of the single learning agent on the whole, which means

that the distributed learning shows better overall performance than single learning.

Meanwhile, the horizontal parts of the distributed learning agents occur around 3000

iterations, while the horizontal part of single learning starts to occur around 5900 iter-

ations, which shows that the agents of distributed learning learn how to keep upright

earlier than the single learning agent.

As the actual Q value changes dramatically over iterations, we thus use the value

of moving Q computed by (7.15) to describe the changes in the current Q value
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Figure 7.2: The accumulated reward of all agents.
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Figure 7.3: The moving Q value of all agents.

Q(st, at; θt), but the moving Q would have some delay compared to the actual Q

value. An agent has learned how to keep the pendulum upright, when the moving Q

value closes to zero and keeps horizontal. In Figures 7.3, it is clear that the moving
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Q values of the agents using distributed learning are all larger than that of the single

learning agent, which means that the agents in distributed learning always choose the

actions with a higher value than that of single learning agent.

Furthermore, we use cos(α) to record the angular position of the inverted pendulum,

where the agent keeps the pendulum upright when the value of cos(α) is close to 1

(α is close to 0). In Figure 7.4, the values of cos(α) for both distributed learning and

single learning agents fluctuate between -1 and 1 at the beginning iterations, where

all agents are learning and trying how to keep the pendulum upright. The values of

cos(α) of agents in distributed learning reach and keep around 1 after 3000 iterations,

when the agents in distributed learning learn to keep the pendulum upright. For single

learning agent, the value of cos(α) keeps around 1 from 5900 iterations. This shows

that the agents in distributed learning learn to keep the pendulum upright faster than

the single learning agent. It is notable in Figures 7.3 and 7.4 that the agents deviates

from the ideal position occasionally, and this is because of the exploration. That is,

each agent has a small possibility to choose a random action other than the best action

in any state.
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Figure 7.4: The cos(α) of all agents.
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7.5 Conclusion

In this chapter, we propose a distributed training framework for deep Q-networks

to deal with the large-scale reinforcement learning problems with privacy protection,

where each agent can learn from other agents’ experience without the actual sharing

of experience data samples. This not only takes full advantage of edge computing

resources but also alleviate the burden on the central server. In this communication

topology, there is a weak connection between the server and the agents to transmit

the initialization information for the reinforcement learning task, while all agents are

strongly connected in a decentralized communication topology to share Q-network

models, where the consensus algorithm is applied to make all agents approach each

other. In this way, we change the learning process of deep Q-network into a two-phase

update process, where the Q-network of each agent is locally updated based on its

own experience first, and the Q-networks of all agents are then globally updated using

the consensus algorithm. It is proved that the Q-networks of all agents converge to

the optimum using the distributed learning framework for Q-networks. The proposed

algorithm is tested on the inverted pendulum environment, which gives the result that

the distributed learning algorithm shows better overall performance and learns how to

keep the pendulum upright faster than the single learning agent.



Chapter 8

Distributed Deep Reinforcement

Learning Method for Traffic Light

Control

8.1 Introduction

Building on Chapter 7, we promote the distributed deep Q-networks with convolutional

neural network to improve its capacity on image processing, and apply it in a traffic

light control problem.

Traffic light plays an important and irreplaceable role in the modern transportation

system, and the traffic light control strategy determines the efficiency of the trans-

portation system to a large extent. Inefficient traffic light control strategy is more

likely to result in more traffic congestion and longer waiting time for both vehicles and

pedestrians, which increases the consumption of energy and time [162]. Thus, how to

optimize the traffic light control strategy to improve traffic efficiency and shorten the

vehicle waiting time has been a long-standing hot topic in the traffic and transportation

field.

131
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Traditional methods for traffic light control mainly include the fixed-time control strat-

egy [163] and the adaptive control strategy [164]. By predefining the traffic light phase

and its duration based on traffic demand estimation, the fixed-time strategy shows

good performance in regular traffic flows, but performs poorly on time-varying traffic

flows. Adaptive control strategy overcomes this drawback by adjusting the traffic light

phase duration based on the real-time traffic conditions, such as the sensor data col-

lected by the camera and radar. However, the randomness and complexity of the traffic

system make it infeasible to build an accurate dynamic model to represent the actual

traffic system without simplification, while the simplified model is often inefficient or

inaccurate in real-world applications.

In recent years, the explosive development of artificial intelligence, especially deep

reinforcement learning [165], provides a novel and promising solution for the traffic

light control problem. Besides, the combination of Internet of Things [166] and the

sensor network [167] makes it possible to collect and process large-scale real-time traffic

data, which greatly benefits the modeling of the traffic system. Many researchers have

done a lot of work on solving the traffic light control problem using deep reinforcement

learning algorithms. For example, a convolutional neural network-based Q-network is

developed in [168] for optimizing the traffic light control strategy, and a DRQN model

is proposed in [169], which combines the convolutional neural network and recurrent

neural network to build the Q-network. In [170], the authors combined the double deep

Q-network, dueling, and prioritized experience replay to design the 3DQN model,

which shows great efficiency and better performance than the DQN model. These

researches focus on the optimization of the traffic light control strategy for either a

single intersection or a particular traffic flow pattern.

However, the practical traffic flow is mostly time-varying and with great variations,

such as the tidal traffic flow and non-uniform traffic demands [171], which makes the

problem more complex. Specifically, the traffic demand of one direction may be much

higher than its opposite in the morning rush hours (07:00-09:00) and be lower than its

opposite in the afternoon rush hours (18:00-20:00) because of the tidal crowd. This

situation is quite common for those intersections around large factories and schools.

Besides, the traffic demands may also be non-uniform, for example, the demand for



CHAPTER 8. DISTRIBUTED DEEP RL FOR TLC 133

left-turn is dominated at one intersection, while the demand for straight is the largest

at another intersection. Thus, multi-intersection with different traffic flow patterns

should be considered in real-world applications.

For multi-intersection traffic signal timing optimization, the authors proposed a dis-

tributed multi-agent Q learning in [172], which takes the traffic information at the

neighboring intersections into consideration to improve the overall performance. Ge

et al. [173] developed a cooperative deep Q-network with Q-value transfer model for

multi-intersection signal control, where the latest actions of neighboring intersections

are considered in policy learning for cooperatively working. In [174], a multi-agent

advantage actor-critic (A2C) algorithm is proposed, which includes neighbors’ poli-

cies, states, and rewards to improve the observability of each intersection. These

studies on multi-intersection problems consider the experience information of neigh-

boring intersections, which dramatically increases the modeling complexity because

more state space and/or action space are involved, especially when many intersections

are involved. Besides, even though the neighboring information is involved in the

reinforcement learning process, each agent still only learns from its own experience

samples, while the neighboring experience samples are discarded.

It is well known that reinforcement learning-based methods require a large number

of experience samples for the modeling process to optimize the policy for a given

task. Besides, the built reinforcement learning model on the experience of a single

intersection may turn to be powerless when it comes to the traffic conditions that it

never learned in its experience. This point is a common shortcoming for the current

deep learning and reinforcement learning algorithms [175], and a feasible solution is

to increase the training samples as much as possible, which brings more resource

consumption for a single agent. A direct idea is to collect the experience samples from

a number of different intersections to train a combined model. However, the collection

of traffic data from different intersections is time-consuming and energy-consuming

(especially for the traffic picture data) [176], which also increases the communication

burden.

Most existing distributed systems are based on centralized communication topology,
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such as the popular federated learning framework [177], which relies heavily on the

central server for the distributed training process. This centralized communication

topology suffers from the heavy communication burden on the center and may lead to

the whole system shut down because of the failure of the central server.

To circumvent these issues, we are expected to design a distributed reinforcement

learning algorithm based on a fully decentralized communication topology for the

traffic light control problem. The main contribution of this work is summarized as

follows:

1) A distributed reinforcement learning framework is proposed to train a combined

model on all agents’ experience, without the sharing of experience samples to save

communication costs;

2) The proposed method is based on a fully decentralized communication topology,

which doesn’t require a central server and has great expansibility;

3) The proposed method is suitable for the modeling of different intersections with

different flow patterns, which exhibits good robustness.

8.2 Motivations

The increasing vehicle ownership and transportation activities have promoted higher

demands on both the road efficiency and road safety. As the key hinge and coordinator,

traffic light plays an important role in the road traffic system. A proper traffic light

control strategy not only improves transportation efficiency and safety but also saves

energy and time consumption.

Nowadays, with the great development of sensor technology and computing power of

intelligent devices, it is easy to collect and process road traffic information. However,

a practical problem is how to use the rich traffic information and the strong computing

power to optimize the traffic light control strategy to offer better and more efficient

transportation services. The rapid progress of artificial intelligence offers a perfect

opportunity to solve this problem in a more intelligent manner. Besides, the advent
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of Internet of Things also brings us another possibility to optimize the traffic light

control strategy in a more efficient way under the cooperation of a number of traffic

light agents.

Based on the above statement, we promote the following two open problems on the

optimization of the traffic light control strategy.

1) How to design a deep reinforcement learning model to take full use of the traffic

information to optimize the traffic light control strategy;

2) How to take full advantage of the different traffic flow patterns at different intersec-

tions to optimize the modeling process for traffic light control and improve its efficiency

and effectiveness.

8.3 Traffic System Modeling

8.3.1 Traffic Light Control

Vehicles from different directions commonly have different destinations at an intersec-

tion, and the combination of traffic signals for different directions is required to allow

all vehicles to pass this intersection safely. A legal combination of traffic light signals

of all directions with their corresponding time durations is called a traffic light phase,

and the change of all phases in a given sequence forms a traffic light control cycle [178].

Taking the intersection shown in Figure 8.1 is as an example, this intersection contains

three in-lanes and three out-lanes at each leg of the intersection. Every in-lane has one

or multiple permissible destination directions, including straight, left-turn, right-turn,

and U-turn, while each leg has a traffic light signal to control the incoming vehicles.

A key problem for the intersection is to develop an optimized traffic light control cycle

to increase its traffic efficiency and decrease the total waiting time of all vehicles that

pass the intersection.
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Figure 8.1: An example of the intersection.

8.3.2 System Modeling

Besides the reinforcement learning algorithm design, another key point is to establish

the reinforcement learning environment, which consists of the three basic elements of

state, action, and reward.

1) State

the element of state s is to describe the agent’s current situation in the reinforcement

learning environment.

For this traffic light control problem, the element of state should at least include the

current traffic light signals and the current traffic flow information. In general, the

more useful information the state has, the better it benefits the modeling process. We

take the positions and velocities of all the vehicles that are within a certain distance

from the traffic light to represent the current traffic flow information. This information

is easy to obtain from the sensors, such as camera, radar, and inductive loop. To

quantize this traffic flow state, the lanes of each leg of the traffic light (east, west,

north, and south) that l length from the stooping line is discretized by a small length
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c, by which, each lane is divided into l/c small grids.

Figure 8.2 is taken as an example of the traffic flow state, which shows the traffic

information on the east side of the traffic light and its corresponding position and

velocity matrix. We can find from this figure that the east lanes are divided into

3× 12 grids, with the boolean value 1 and 0 representing whether there is a vehicle in

the grid or not, respectively. Correspondingly, the velocity matrix gives each vehicle’s

velocity, and the value defaults as 0 if there is no vehicle in the grid. Combining the

lanes of all directions (east, west, south, and north) together, the traffic flow state

forms two 12× 12 matrices, which describe all vehicles’ current position and velocity

information, respectively.

 
(a) 

1 1 1 1 1 1 0 0 0 0 0 0 

 1 1 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 

(b) 

0 0 0 0 0 0.56 0 0 0 0 0 0 

0 0 0 0 0 1.05 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

(c) 

Figure 8.2: (a) An example of traffic flow state information. (b) The corresponding
position matrix. (c) The corresponding velocity matrix.

As mentioned above, we also need to define the traffic light state. Figure 8.3 shows

four standard red-green traffic signals combination, which contains 8.3(a) N-S (North-

South) straight with right-turn, 8.3(b) N-S left-turn with U-turn, 8.3(c) E-W (East-

West) straight with right-turn, and 8.3(d) E-W left-turn with U-turn. The shift se-

quence of the above four red-green phases (a-b-c-d) makes up a traffic light cycle.

Notably, there is a red-yellow signal phase between any two red-green phases, that is,

all current green signals turn to yellow with red signals unchanged. The combination

of traffic flow state and traffic light state forms the state of the reinforcement learning

environment for the traffic light control problem.
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(d)

Figure 8.3: The four red-green traffic light phases.

2) Action

the element of action is to shift the agent from the current state to the next state, and

correspondingly, the agent receives feedback from the environment to evaluate this

chosen action.

For this traffic light control problem, we define the action as to whether or not to

shift to the next traffic light phase based on the current traffic flow state and traffic

light state, which is described by the boolean value 1 and 0. In this case, we only

need to take the four red-green traffic light phases as the traffic light state, as the

shift of traffic light states is automatically interrupted by a red-yellow phase. More

specifically, assuming that the current traffic light phase is (a), the traffic light remains

in phase (a) if the action is 0, and contrarily, the traffic changes to the next phase (b)
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if the action is 1, after a buffer of red-yellow signal phase.

3) Reward

The above-mentioned feedback from the environment is called as reward.

We define the reward for this traffic light control problem as the change of the total

vehicle waiting sequence length (the number of vehicles that are waiting) before and

after the action, that is

r =
n∑
i=1

l′i −
n∑
i=1

li, (8.1)

where n is the number of lanes of the intersection, li and l′i are the vehicle waiting

sequence length of lane i before and after the action, respectively.

At last, we evaluate the performance for this traffic light control problem by the total

waiting time of all vehicles that pass the intersection during an episode (a period of

time). Therefore, the reinforcement learning algorithm aims to minimize the total

waiting time, which is defined by

L =
T∑
t=1

n∑
i=1

li, (8.2)

where L represents the total waiting time during the period of time T .

8.4 Distributed Deep Reinforcement Learning Ar-

chitecture

8.4.1 Deep Q-network Model for Traffic Light Control

As described in section 8.3.2, we have quantized the traffic flow state into two matrices,

which retains almost all useful traffic flow information. The next problem is how to

design the Q-network to learn the state information, and we hope to take advantage

of the position and velocity matrix as well as possible, which helps the traffic light

agent to understand the traffic state better. Convolutional neural network [179] seems



CHAPTER 8. DISTRIBUTED DEEP RL FOR TLC 140

a good choice for the design of the deep Q-network structure for traffic light control

problem, as it has shown great success in image processing, which is quite similar to the

digital matrix. Through the operations of convolution and pooling, the convolutional

neural network takes full use of the image to extract useful information, which greatly

benefits the modeling process.

The designed CNN-based deep Q-network structure is shown in Figure 8.4, which

includes convolutional layers and fully-connected layers. After the operation of convo-

lution and pooling, the processed traffic flow state information is combined with the

traffic light state, which is then transmitted to the fully-connected layer to compute

the output. This structure takes advantage of CNN to understand the complex traffic

flow information, which significantly improves the information utilization and model

efficiency. This answers the first question promoted in section 8.2.
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Traffic light state
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Figure 8.4: The CNN-based deep Q-network structure.

8.4.2 Distributed Deep Q-networks

As stated in section 8.2, it is reasonable that the cooperation of a number of traffic light

agents in different intersections benefits the modeling process. Parallel computation is

a promising method for multi-agent machine learning modeling, which is mainly based
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on the centralized and the decentralized communication topologies. The centralized

topology as shown in Figure 8.5(a) needs a central server to coordinate all agents

during the modeling process, and all agents need to communicate with the server at

every iteration [110]. This poses a heavy communication burden on the server and

even may cause communication jam, especially for those systems with high latency

and low bandwidth.

To circumvent this drawback, the decentralized topology is designed as shown in Fig-

ure 8.5(b), where there is no central server and the communication is only required

among connected neighbors. This not only frees the server to avoid communication

jam but also shows great expansibility and robustness, where the change of communi-

cation topology does not affect the convergence and effectiveness of the whole system,

provided a spanning tree exists in the topology [89].
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Figure 8.5: Two typical communication topologies for traffic lights.

The consensus algorithm is designed to make all agents over a decentralized topology

to approach each other with only communication among connected neighbors. We

assume that the decentralized topology is an undirected graph in this chapter, and the

Max-degree [92] strategy is used to obtain the weighted connectivity matrix W in this

chapter.

As mentioned in Chapter 7, the main process of the proposed distributed training

framework for deep Q-networks is as follows,

θ′k = θk − ηOE(θk), (8.3)
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θ′′ = W ⊗ Imθ′, (8.4)

where θ′k is the locally trained deep Q-network of agent k with η and OE(θk) being

the corresponding learning rate and gradient, respectively. θ′′ = [θ′′1 , θ
′′
2 , ..., θ

′′
N ] and

θ′ = [θ′1, θ
′
2, ..., θ

′
N ] is the concatenation of all agents’ deep Q-networks after and before

the consensus process.

The proposed distributed deep Q-networks for the traffic light control problem consists

of a two-phase updating process of local learning and global consensus. Local learning

described by (8.3) is the first phase, where all traffic light agents optimize their deep Q-

network models based on their local experience samples on interacting with the traffic

environment. In the second phase of global consensus (8.4), each traffic light agent

shares its local model with its connected neighbors, and the consensus algorithm is

applied to update their deep Q-networks globally. This answered the second question

promoted in section 8.2.

8.5 Simulation and Discussion

The decentralized topology in Figure 8.5(b) is taken as an example, where four traffic

light agents are connected over the decentralized communication graph. Here, we as-

sume that the distance between any two intersections in this figure are far enough that

the vehicles from an intersection do not affect the traffic flow of another intersection.

In other words, these traffic intersections are uncoupled.

During the distributed learning process, the experience samples of different traffic light

agents are not permitted to be shared, while the exchange of deep Q-network model

parameters is only allowed among connected neighbors to globally update their deep

Q-networks. The CNN-based deep Q-network consists of two convolution layers, two

pooling layers, and a fully connected layer. In detail, the first convolution layer is 16

filters of size 4 × 4 with 1 stride, while the second convolution layer is 32 filters of

size 2× 2 with 1 stride, and a max-pooling layer is connected behind each convolution

layer. Besides, there are 256 and 2 nodes for the fully connected layer and the output

layer, respectively. Except that the output layer takes softmax activation function,
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both convolution and fully connected layers adopt the rectified linear unit (ReLU)

activation function, and the Adam gradient descent [155] with 1× 10−4 learning rate

is used for the optimization process. A comparison among the following four algorithms

is made to verify the superiority of the proposed distributed deep Q-networks on the

traffic light control problem. All the simulations are conducted in SUMO (Simulation

of Urban Mobility) [180] and Python.

• Fixed-time: the duration of each phase of the traffic light cycle is fixed, and

the performance of which is a baseline for the other methods.

• Local learning: each agent (traffic light) optimizes the deep Q-network based

on its own experience of interacting with the environment, and there is no com-

munication among all agents.

• Distributed learning: a number of agents are connected in a decentralized

communication topology as shown in Figure 8.5(b), and the consensus algorithm

is applied to globally update their deep Q-networks after every local optimization

process based on each agent’s experience samples.

• Centralized learning: agents are connected in a centralized topology as shown

in Figure 8.5(a), where a central server is used to average all agents’ model after

every local learning step.

For all of the above four algorithms, we fix the red-yellow phase on 4s for safety

concerns, and set the measuring unit of the red-green phase as 6s to ensure more

flexibility and adaptiveness of the control strategy. As the action of the traffic light

agent is whether to shift to the next traffic light phase or not, the duration of the red-

green phase should be an integer multiple of 6s for local learning, distributed learning

and centralized learning algorithms. As the comparison, we try different red-green

phase durations in the range of [6s, 60s] with the interval of 6s to obtain the fixed-time

control strategy with the minimum average waiting time.
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8.5.1 Simulation Results on Homogeneous Traffic Flow

First, we consider the ideal situation that the traffic demands (straight, left-turn,

right-turn, and U-turn) from each direction are uniform, that is, the vehicles come

from the four directions and their corresponding traffic demand are with the same

possibility. Besides, we assume that the four intersections shown in 8.5(b) are under

the homogeneous traffic flow pattern. The details of vehicle generation probability are

given in Table 8.1, where the value in the table means the probability of generating

a corresponding vehicle at every second. Notably, as the demand of U-turn is usually

small in practice, we thus still set it with a small value.

Table 8.1: The vehicle generation probability of the homogeneous traffic flow.

To
From

east west south north

straight 0.03 0.03 0.03 0.03
right-turn 0.03 0.03 0.03 0.03
left-turn 0.03 0.03 0.03 0.03
U-turn 0.005 0.005 0.005 0.005

For this ideal traffic pattern, we test the above four algorithms in a traffic episode with

900s, and the simulation results are shown in Figure 8.6, where the full lines are the

medians with the shaded area representing the minimum and maximum of all agents.

All agents in local learning, distributed learning, and centralized learning are with the

same initialization to train their deep Q-network models, while interacting with the

traffic environment as detailed in section 8.3.2.

We find from Figure 8.6 that, for the homogeneous traffic situation, distributed learn-

ing and centralized learning have similar performance in average waiting time, which

is much lower than that of local learning and fixed-time control strategy. Besides, the

median of local learning agents shows less average waiting time than the fixed-time

control strategy in the last few episodes, while it exhibits remarkable fluctuations dur-

ing the learning process, as a small batch size is taken for the gradient descent method

in this simulation. As a comparison, the distributed learning and centralized learning

agents have few fluctuations during the learning process, because the consensus process

of multiple agents in distributed learning, to some extent, decreases this fluctuation
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Figure 8.6: The performance of all algorithms on homogeneous traffic flow

introduced by the randomness.

8.5.2 Simulation Results on Heterogeneous Traffic Flow

As the traffic flow pattern in the above simulation is simple and ideal, we further verify

the proposed distributed learning algorithm in a more practical traffic situation, where

different intersections are under heterogeneous traffic flow patterns. Here, we consider

the extreme case that there is only one major demand for each intersection, while the

other demands are small. For example, the E-W straight is the major demand for

the traffic pattern T1, which thus has a larger vehicle generation probability, while

the other demands are with a small probability. The detail of vehicle generation

probabilities for the four heterogeneous traffic flow patterns are shown in Table 8.2.

In this scenario, different traffic light agents are in different traffic flow patterns and

each agent only has access to the experience samples generated in its own environ-

ment. That is, the traffic light agent-k (k ∈ {1, 2, , 3, 4}) are under the corresponding
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Table 8.2: The vehicle generation probability of the four traffic flow patterns.

Traffic pattern
To

From
east west south north

T1
straight 0.08 0.08 0.01 0.01

right-turn 0.02 0.02 0.02 0.02

(E-W left-turn 0.02 0.02 0.02 0.02

straight major) U-turn 0.005 0.005 0.005 0.005

T2
straight 0.015 0.015 0.015 0.015

right-turn 0.06 0.06 0.06 0.06

(right-turn left-turn 0.01 0.01 0.01 0.01

major) U-turn 0.005 0.005 0.005 0.005

T3
straight 0.015 0.015 0.015 0.015

right-turn 0.01 0.01 0.01 0.01

(left-turn left-turn 0.06 0.06 0.06 0.06

major) U-turn 0.005 0.005 0.005 0.005

T4
straight 0.01 0.01 0.08 0.08

right-turn 0.02 0.02 0.02 0.02

(S-N left-turn 0.02 0.02 0.02 0.02

straight major) U-turn 0.005 0.005 0.005 0.005

Tk (k ∈ {1, 2, , 3, 4}) traffic flow pattern. In Figure 8.7, “Local-k”, “Distributed-k”

and “Centralized-k” (k ∈ {1, 2, , 3, 4}) denote the simulation results of each agent on

the training process for local learning, distributed learning, and centralized learning,

respectively. It is seen from Figure 8.7 that the average waiting time of local learning,

distributed learning, and centralized learning agents are similar during the training

episodes on all of the four traffic patterns, which are lower than those of fixed-time

strategy. This means that agents in all three learning methods achieve convergence on

their own traffic flow patterns. However, these agents may not be robust enough to

adapt to the traffic flow patterns at other intersections that they never learn in their

experience.

To test the performance of local learning, distributed learning, and centralized learn-

ing models, we design a time-varying testing episode with 3600s, which consists of

four traffic flow patterns in the order of T1 − T2 − T3 − T4, and each pattern lasts

for 900s. Figure 8.8 describes the performance of the four methods on the designed

testing episode, where the full lines represent the medians while the shaded area de-

notes the maximum and minimum of all the agents. It is seen from this figure that
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Figure 8.7: The training performance in heterogeneous traffic flows.

distributed agents and centralized learning agents have comparable good performance,

which are much better than that of fixed-time strategy and local learning agents. In

particular, the average waiting time of local learning agents are far higher than that of

the other three methods. This means that local learning agents haven’t achieved con-

vergence on the testing episode and result in long average waiting time, even though

they have nearly the same performance as distributed learning agents and centralized

learning agents on the training episodes. This demonstrates that the distributed learn-

ing method is more efficient and robust as each agent in distributed learning only has

access to the experience on a single traffic flow pattern but shows superior performance

in all the four traffic patterns. Through the operation of the consensus process, each

agent learns from other agents’ experience without revealing its own data to other
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Figure 8.8: The testing performance in time-varying traffic flow.

agents, which greatly saves communication costs and computational time.

To further analyze the performance of all the four algorithms on each traffic pattern,

we test the trained models on all of the four traffic patterns case by case, where

each pattern represents an episode with 900s traffic flow under its vehicle generation

probability as detailed in Table 8.2. It is seen from Figure 8.9 that the fixed-time

control strategy exhibits fair performance in all of the four traffic pattern testing

episodes, which is a baseline for the other three algorithms.

We can find from Figure 8.9 that distributed learning and centralized learning methods

show great overall performance in all traffic flow patterns. For local learning, it only

has acceptable performance in traffic patterns T1 and T4, even though it is still worse

than those of distributed learning and centralized learning. As for the traffic patterns

T2 and T3, only local learning agents that learn from this pattern (i.e., local-2 on T2

and local-3 on T3) show the performance as good as distributed learning agents, while

the other situations of local learning agents even do not converge. Besides, for all the

four patterns, the local learning agents show the best performance in the traffic pattern

where it learns from (for example, local-1 on T1) than the other situations (for example
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local-2 on T1). This means that the local learning agents are more likely to fall into

their local minimum on their own traffic patterns. As a comparison, the distributed

learning agents exhibit similar and good performance in all the traffic patterns, no

matter whether it learns from the traffic pattern or not.
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Figure 8.9: The performance of all algorithms on the four traffic patterns.

The above analysis demonstrates the superiority of the distributed learning on the

traffic light control problems, especially in the more practical situation that different

intersections are under heterogeneous traffic flow patterns.

8.6 Conclusion

In this chapter, we develop a distributed deep reinforcement learning method for the

traffic light control problem. First, the three key elements of state, action, and reward

of the reinforcement learning algorithm are defined to build the traffic environment.

The traffic flow state is quantized by the position and velocity matrices, which is then

processed by the convolutional layer. The processed traffic flow state is combined with

the traffic light state, and then transmitted to a fully connected layer to obtain the
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state-action values. After the local optimization of the CNN-based deep Q-network

based on each traffic light agent’s experience of interacting with the environment, the

consensus algorithm is applied to globally update the deep Q-networks of these traffic

light agents connected over a decentralized communication topology.

At last, we design two simulation experiments to demonstrate the superiority of the

proposed distributed learning algorithm with the comparison to the fixed-time control

strategy, centralized learning, and local learning methods. The simulation shows that

distributed learning method has similar performance with the centralized learning

algorithm, and exhibits far better performance than the fixed-time strategy and local

learning algorithms on both the homogeneous and heterogeneous traffic flow patterns.



Chapter 9

Conclusion and Future Work

In this chapter, we summarize the main contribution of this thesis, and discuss some

possible future research work.

9.1 Conclusion

In this thesis, consensus-based distributed machine learning problems are systemati-

cally discussed, including theory, algorithm design, and engineering applications. With

the explosive increase of data volume and more and more attention on privacy protec-

tion, traditional machine learning seems incapable of large-scale and privacy-related

machine learning, as it needs to collect all data in a single agent (or computing node)

for modeling. For this problem, Google proposed the federated learning in 2017, which

allows all the agents to train a combined model, while keeping their private data lo-

cally stored. A potential bottleneck of this centralized training framework is the strong

dependence on the central master, which causes a heavy communication burden. De-

centralized topology is a promising alternative to the centralized topology, which does

not require a central master but still allows all participants to approach each other

and converge to their average. By deploying the machine learning algorithm in a

decentralized communication topology, distributed learning is proposed, which allows

all network-connected agents to train a combined model without the sharing of data

151



CHAPTER 9. CONCLUSION AND FUTURE WORK 152

samples. In this way, the central master is freed, which avoids the possible communi-

cation jam on the center, and the decentralized communication topology shows great

robustness and expansibility. Based on this key idea, the main contributions of this

thesis are summarized in the following two aspects.

1) Distributed supervised learning. We first propose a distributed training method

based on the consensus algorithm for multi-layer neural networks over a decentralized

communication topology, which only requires a single consensus step after every train-

ing step. The convergence analysis on empirical risk and model parameter gives the

proof that distributed training allows all the agents connected in a decentralized com-

munication topology to converge to the optimal model using the consensus algorithm.

This is verified by the simulation experiment, which demonstrates that the proposed

distributed training algorithm achieves comparable or even better performance than

the centralized training model based on the entire dataset.

Furthermore, a heuristic adaptive consensus algorithm is proposed to adaptively adjust

the weighted connectivity matrix, where a better agent is more likely to have a larger

influence on its neighbors. Combining with the stochastic variance reduced gradient,

the distributed training method is redesigned based on the SVRG and the heuristic

adaptive consensus algorithm for neural networks connected in switching communica-

tion graphs. Theoretical analysis shows that SVRG reduces the variance introduced

by SGD and improve its convergence rate with only a little extra computational cost,

and all agents in switching graphs can still converge to the optimum with a single

consensus communication at every training step, which verified the robustness of the

distributed training framework. Simulations give the results that the heuristic adap-

tive consensus algorithm requires fewer iterations than the consensus algorithm with

the fixed weighted connectivity matrix for all agents to reach the optimum, and SVRG

greatly decreases the fluctuation caused by SGD and improves its performance.

To reduce the heavy communication costs during the distributed training process, the

error-compensated compression method with bit-clipping is applied to compress the

model parameter before sharing, which significantly saves communication costs. Then,
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a consensus-based distributed training framework with error-compensated communi-

cation compression is proposed to deal with both IID and non-IID datasets. The

simulation study shows that distributed training with error-compensated communica-

tion compression is applicable on both IID and non-IID datasets, and shows compa-

rable performance as distributed training and centralized training but saves a lot of

communication costs.

In addition, a blockchain empowered distributed learning framework is proposed to

realize the multi-vehicle intelligence in vehicular networks, which consists of the dis-

tributed learning framework and blockchain-based communication module. Besides,

a new adaptive consensus algorithm is designed, which considers the model accuracy

and computing contribution of each vehicle to adaptively adjust the weighted con-

nectivity matrix during the consensus process. With comparison to local learning,

federated learning, and distributed learning, the proposed blockchain empowered dis-

tributed adaptive learning algorithm is tested on a real-world traffic signal dataset,

which shows that the proposed BADL algorithm has comparable performance with

federated learning and distributed learning, and is immune to the malicious attack.

2) Distributed reinforcement learning. We extend the distributed training framework

to reinforcement learning, where the classical reinforcement learning algorithm, deep

Q-network, is taken as an example. In distributed deep Q-networks, all agents are con-

nected over a decentralized communication topology to share their Q-network models,

and the consensus algorithm is applied to make all agents approach each other. We

change the learning process of deep Q-network into a two-phase update process, where

the Q-network of each agent is locally updated based on its own experience first, and

the Q-networks of all agents are then globally updated using the consensus algorithm.

In this way, each agent learns from other agents’ experiences without the actual sharing

of experience data samples.

Moreover, we applied the distributed deep reinforcement learning framework in the

traffic light control problem. The reinforcement learning environment for the traffic

light control problem is built by defining the three key elements of state, action, and

reward. After the local optimization of the CNN-based deep Q-network based on
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each traffic light agent’s experience of interacting with the environment, the consensus

algorithm is applied to globally update the deep Q-networks of these traffic light agents

connected over a decentralized communication topology. The simulation experiments

demonstrate the superiority of the proposed distributed learning algorithm with the

comparison to the fixed-time control strategy, centralized learning, and local learning

methods.

9.2 Future work

Distributed learning is a hot research topic for its great ability in large-scale and

privacy-related machine learning problems. Even though that remarkable progress

has been made in recent years, there still exists some open issues for both supervised

learning and reinforcement learning in theory, algorithms, and applications. In terms

of distributed supervised learning, potential future research directions are as follows:

• The convergence analysis for distributed training is based on some strong as-

sumptions, such as convexity. A next plan is to prove the convergence of dis-

tributed training based on weaker assumptions, where specific neural networks

can be considered for theoretical analysis, such as the over-parameterized neural

networks [181].

• For algorithm design, more efficient model compression methods in distributed

training should be considered to further reduce the communication costs. Mean-

while, the convergence of distributed training with communication compression

should be carefully analyzed.

• During the proposed distributed training process, each agent needs to commu-

nicate with its neighbors synchronously after every learning step, which brings

heavy communication costs. Future work can be to explore asynchronous com-

munication strategy, where each agent shares its model after several learning

steps. This strategy should be carefully designed to ensure convergence and

model accuracy.
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• For neural networks considered in this thesis, it is required to pre-define an

appropriate structure before training, which is quite challenging. Other kinds of

neural networks, such as the stochastic configuration networks [182], are worth

careful study and extending to a distributed manner.

For distributed reinforcement learning, the following research topics are considered in

future works:

• In the proposed distributed reinforcement learning setting, all agents are facing

a similar task, this restricts the possible application of distributed reinforce-

ment learning algorithms. A possible future work is to extend the distributed

reinforcement learning for multi-agent reinforcement learning applications with

diverse tasks.

• Notice that deep Q-network is designed for discrete reinforcement learning tasks.

In future research, it is expected to extend the distributed reinforcement learning

framework to other reinforcement learning algorithms for continuous tasks and

apply the distributed reinforcement learning algorithms in practical engineering

problems.
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[11] A. Broggi, A. Zelinsky, Ü. Özgüner, and C. Laugier, “Intelligent vehicles,” in

Springer Handbook of Robotics. Heidelberg, Springer, 2016, pp. 1627–1656.

[12] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fusion

in body sensor networks: state-of-the-art and research challenges,” Information

Fusion, vol. 35, pp. 68–80, 2017.

[13] N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “Fusing visual

and behavioral cues for modeling user experience in games,” IEEE Transactions

on Cybernetics, vol. 43, no. 6, pp. 1519–1531, 2013.

[14] L. Lin, W. Yang, C. Li, J. Tang, and X. Cao, “Inference with collaboratives

model for interactive tumor segmentation in medical image sequences,” IEEE

Transactions on Cybernetics, vol. 46, no. 12, pp. 2796–2809, 2016.

[15] B. Lei, P. Yang, T. Wang, S. Chen, and D. Ni, “Relational-regularized discrimi-

native sparse learning for alzheimer’s disease diagnosis,” IEEE Transactions on

Cybernetics, vol. 47, no. 4, pp. 1102–1113, 2017.

[16] S. Li, L. Ding, H. Gao, C. Chen, Z. Liu, and Z. Deng, “Adaptive neural network

tracking control-based reinforcement learning for wheeled mobile robots with

skidding and slipping,” Neurocomputing, vol. 283, pp. 20–30, 2018.

[17] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforcement learn-

ing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,

no. 1, 2017.



BIBLIOGRAPHY 158

[18] J. Supancic III and D. Ramanan, “Tracking as online decision-making: Learning

a policy from streaming videos with reinforcement learning,” in Proceedings of

the IEEE International Conference on Computer Vision, 2017, pp. 322–331.

[19] E. A. O. Diallo, A. Sugiyama, and T. Sugawara, “Coordinated behavior of co-

operative agents using deep reinforcement learning,” Neurocomputing, vol. 396,

pp. 230–240, 2020.

[20] F. Aznar, M. Pujol, and R. Rizo, “Obtaining fault tolerance avoidance behavior

using deep reinforcement learning,” Neurocomputing, vol. 345, pp. 77–91, 2019.

[21] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud com-
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