

Advances on mathematical modelling and optimization framework for

process scheduling

A thesis submitted to The University of Manchester for the degree

of Doctor of Philosophy

in the Faculty of Science and Engineering

2020

Nikolaos Rakovitis

School of Engineering

Department of Chemical Engineering and Analytical Science

Blank page

3

Contents

Abstract ... 7

Declaration .. 9

Copyright statement .. 11

Acknowledgements ... 13

Chapter 1: Introduction ... 15

1.1 Classification of process industry .. 15

1.1.1 Batch process industry .. 15

1.1.1.1 Multipurpose batch process industry ... 16

1.1.1.2 Multistage batch process industry .. 17

1.1.1.3 Multitasking batch process industry .. 18

1.1.2 Continuous process industry ... 18

1.2 Supply chain management ... 19

1.2.1 Scheduling decisions in the process industry ... 20

1.3 Motivation and Objectives .. 21

1.4 Research Contributions and Thesis Structure ... 24

1.4.1 Chapter 3 - Research contribution 1 ... 24

1.4.2 Chapter 4 - Research contribution 2 ... 25

1.4.3 Chapter 5 - Research contribution 3 ... 26

1.4.4 Chapter 6 - Research contribution 4 ... 26

1.4.5 Chapter 7 - Research contribution 5 ... 27

Chapter 2: Background & Literature review ... 29

2.1 Introduction in optimization .. 29

2.1.1 MILP & relaxed MILP optimization problem .. 31

2.1.2 Branch and bound algorithm .. 32

2.2 Process representations .. 34

2.2.1 State Task Network representation ... 34

2.2.2 Resource Task Network representation .. 35

2.2.3 State Sequence Network representation ... 35

2.2.4 Disjunctive graphs .. 36

2.3 Time representations ... 37

4

2.3.1 Discrete time representation ... 37

2.3.2 Continuous-time representations.. 39

2.3.2.1 Global event-based representation .. 39

2.3.2.2 Unit-specific event-based representation .. 40

2.3.2.3 Slot-based representation .. 41

2.3.3 Sequence-based representation .. 42

2.4 Scheduling of multipurpose batch processes .. 42

2.5 Scheduling of single and multi-stage batch processes .. 46

2.6 Scheduling of multitasking batch processes ... 48

2.7 Scheduling of job-shops ... 49

2.7.1 Scheduling of energy-efficient job-shop and flexible job-shops 52

2.8 Scheduling of continuous processes ... 53

2.9 Rolling horizon decomposition ... 54

2.10 Summary ... 55

Chapter 3: A new approach for Scheduling of multipurpose batch processes 57

3.1 Introduction ... 57

3.2 Research contribution 1 .. 59

Chapter 4: Generic mathematical formulations for scheduling of multipurpose batch

plants ... 95

4.1 Introduction ... 95

4.2 Research contribution 2 .. 97

Chapter 5: Scheduling of continuous processes ... 145

5.1 Introduction ... 145

5.2 Research contribution 3 .. 147

Chapter 6: Scheduling of multitasking multipurpose batch processes 191

6.1 Introduction ... 191

6.2 Research contribution 4 .. 193

6.3 Rolling horizon decomposition approach for large-scale multi-tasking multipurpose

batch process scheduling problems ... 245

6.3.1 Introduction .. 245

6.3.2 Enchased Rolling horizon decomposition approach 246

5

6.3.3 Computational results ... 248

6.3.4 Conclusions ... 251

Chapter 7: Energy-efficient scheduling of flexible job-shops 253

7.1 Introduction .. 253

7.2 Research contribution 5 ... 255

Chapter 8: Conclusions and Future Work ... 320

8.1 Conclusions.. 320

8.2 Future work .. 322

References ... 324

Publications and presentations .. 336

Supplementary materials for ... 338

Supplementary material 1: supplementary material for research contribution 2 340

Supplementary material 2: supplementary material for research contribution 4 368

Supplementary material 3: supplementary materials for research contribution 5 388

Word count: 83690

6

Blank page

7

Abstract

Chemical production scheduling is responsible for providing the allocation, sequencing

and timings of operations into units to produce several valuable products. As a result,

optimal scheduling is crucial for the vitality and prosperity of the chemical industry as it

directly affects its productivity and its operational costs. Although many mathematical

models have been developed in the past three decades, most models either lead to large

model sizes and intractable computational time or generate suboptimal solutions in some

cases. Additionally, mathematical models for scheduling of multipurpose batch plants do

not allow related production and consumption tasks in different units to start or/and end

at the same time points, which is different from the models for scheduling of semi-

continuous/continuous and multistage multiproduct batch plants. Therefore, there is no

generic and efficient framework for chemical production scheduling problems.

In this Thesis, a generic and efficient modelling framework is proposed using the unit-

specific event-based time representation. The main features of this framework include (a)

defining all timing variables based on units instead of tasks, (b) allowing related non-

recycling production and consumption tasks to take place at the same event-point where

a new definition for recycling tasks is presented, (c) sequencing different units processing

related production and consumption tasks only if there is an indirect material transfer (i.e.

there are not enough materials in the storage for consuming tasks), (d) aligning different

units processing related tasks only if there is a direct material transfer (i.e. there is not

enough storage for producing materials), (e) allowing processing units to hold materials

for multiple event points. It is demonstrated that the proposed framework outperforms

existing approaches in both solution quality and computational expenses. For large-scale

problems, which require significantly high computational time, an enhanced rolling-

horizon decomposition approach is developed in which a grouping strategy using the

mixed-integer programming is proposed to divide the entire problem into subproblems.

It is shown that the enhanced decomposition approach can generate optimal or near-

optimal solutions in significantly less computational time. Finally, a hybrid solution

approach through a combination of gene expression programming with the mathematical

programming approach is explored to solve large-scale energy-efficient flexible job-shop

scheduling problems. The results demonstrate that the hybrid approach can significantly

improve the solution quality.

8

Blank page

9

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

Nikolaos Rakovitis

10

Blank page

11

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may

be owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the University

IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442

0), in any relevant Thesis restriction declarations deposited in the University

Library, The University Library’s regulations (see

http://www.library.manchester.ac.uk/about/regulations/) and in The University’s

policy on Presentation of Theses

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442%200
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442%200
http://www.library.manchester.ac.uk/about/regulations/

12

Blank page

13

Acknowledgements

First of all, I would like to thank my supervisor Dr Jie Li for his valuable guidance as

well as his important and on-to-the-point suggestions regarding my work during the

whole period of my PhD studies. Thank you for the limitless hours that you spend with

me, despite your limited time, to teach me the concept of scheduling, to advise me of how

to conduct and improve this work and to provide me with a necessary boost in difficult

times. I truly believe that I would not be able to develop such work, without your

guidance. I would also like to thank my co-supervisor, Dr Nan Zhang for the useful

meetings I had with him, especially during the beginning of my PhD studies that helped

me proceed with my studies. Finally, I would like to thank Prof Liping Zhang from

Wuhan University, with whom I collaborated during her academic visit to The University

of Manchester in 2019. I would like to thank you for advising me and for providing me

with the necessary data to successfully conduct part of this work.

My studies in Manchester wouldn’t be so easy without the help I had from my old friends

Panagiotis Petsagkourakis and Anna Maria Tsakiroglou, which helped me a lot to have a

smooth settlement in Manchester. Thank you for helping me feel much more relaxed,

especially after a hard-working week. I would also like to thank all my colleagues from

the Centre for Process Integration. During my studies in Manchester, I made a lot of new

friends from and outside CPI, which I hope to see again any time soon. A big thanks to

the “late lunch” crew, Fernando Hector Almeida Trasviña, Gonzalo Mauricio Figueroa

and Jose Loyola Fuentes and of course my “office neighbour” Julia Jimenez Romero,

with whom we always had so nice conversations during our lunch break. A special thanks

to Yinjie Ma, Dan Li, Xi Cheng, Francesca Wang, Mohamed Al Jamri, Isabel Pazmino

Mayorga, Zekun Yang, Merve Ceylan, Allesandro Usai, Rahma Mutia, Kexin Xu,

Minerva Martinez Ledesma, Giannis Zacharopoulos and Rahul Kadam.

I would also like to thank my parents Panagiotis and Afroditi and my brother Dimitris for

their unlimited support and love they offered me during my studies even though they were

so far away.

Finally, I would like to thank my partner Danai who was always next to me even in all

good and bad times. There are not enough words to express my gratitude and love to you.

Without you, nothing would be the same.

14

Blank page

15

Chapter 1: Introduction

It is undeniable that the industrial revolution has drastically affected the everyday life of

most people around the globe during the past two centuries. Processing facilities construct

most of the tools and products that an average household uses every day. Furthermore,

the process industry has significantly advanced the health industry, transportation and

communications, which further improved the everyday life of numerous people. Only the

chemical industry is responsible for producing more than 70,000 different products in the

USA (SelectUSA, 2020). As a result, the process industry significantly affects the global

economy. More specifically, only in the UK, the process industry has contributed £200

billion in 2016, which is approximately 15% of the total UK economic output (office for

national statistics, 2016) However, the highly competitive market makes challenging for

an individual process facility to withstand. Therefore, a facility needs to produce one or

more valuable products at the minimum possible cost. Apart from surviving to such a

competitive market, there is also one more factor that leads facilities in the same direction;

their environmental footprint. By optimizing their processes, facilities can minimize the

use of raw material resources as well as to reduce their energy needs which leads to less

fuel consumption and as a result fewer gas emission without affecting their productivity.

Furthermore, facilities receive several orders every day and therefore, they require the

proper managerial tools that not only help them to optimize their process but also to

provide a quick solution to manage to meet their due dates.

1.1 Classification of process industry

In general, there are different types of processes that a facility can process to produce a

product. Therefore, the process industry can be classified into two main categories; batch

and continuous process industry. A facility can perform batch processes, continuous

processes or both, based on the type and the quality of the product that the facility

produces.

1.1.1 Batch process industry

Facilities that perform batch processes produce one or more products by processing

several raw materials. More specifically, the raw materials enter a batch vessel at the

beginning of the process, which converts them into final products after a specified time.

At the end of the processing time, the final products exit the batch vessel. It is suitable for

16

processing facilities to use batch processes if they require to produce multiple products

with different specifications in small quantities. Furthermore, it is preferable to use a

batch process in cases where there is a high risk of contamination. Batch process industry

can be further classified into the multipurpose, multistage and multitasking batch process

industry.

1.1.1.1 Multipurpose batch process industry

In the multipurpose batch process industry, a batch can split into one or more parts. In

this case, two different processing units can process each fraction. Additionally, mixing

two or more streams is also possible in such a facility. Therefore, a multipurpose batch

process facility can produce a final product by mixing several raw materials. Such

facilities also use several recycling streams mainly to increase product yields. Commonly

a multipurpose batch process facility produces more than one final products and each

product follows a different processing path. In other words, the number and the type of

processes that each raw material follows to produce a final product may differ. Finally, a

processing unit can process multiple tasks from different stages. For instance, a reactor

may be suitable for two reactions within the same facility.

Figure 1 depicts all different features of a multipurpose batch process facility. For

instance, raw materials 1 and 2 can mix into the same batch B1. Furthermore, the

intermediate product of batch B2 (material 4) can split into two different parts (batches

B3 and B4). Figure 1 also depicts a case of a recycling stream. In this case, batch B3

produces intermediate product 3 together with final product 5, which is separated and

mixed with the rest intermediate product 3 (Batch B2).

Figure 1 A multipurpose batch process facility

17

A specific case of a multipurpose batch process industry is the job-shop industry.

In the job-shop facility, only one out of the several available processing units (machines)

can process a specific operation in a job-shop facility. There are also cases, though where

two or more processing units that are suitable for the same operation/task within a facility.

Such facilities are commonly known as flexible job-shop facilities. Both job-shop and

flexible job-shop facilities can process multiple jobs, which consist of one or more

operations. The main difference between common multipurpose and job-shop/flexible

job-shop facilities is that the batch size is not involved in this problem. More specifically,

in such facilities, a processing unit receives one or more parts of an object/tool and

performs several modifications to an object or assembly the different parts.

1.1.1.2 Multistage batch process industry

In multi-stage batch processes industry, processing units process several batches, which

consist of one or more raw materials, mixed before the start of the whole process, in

several predefined stages. The processing stages (processing path) are the same for all

batches, while no splitting or mixing is allowed during the whole process. Furthermore,

a multi-stage batch process facility does not contain any recycling stream. In each stage,

one or more processing units are available to process each batch. However, each

processing unit can only process operations of this stage, while it can only process one

operation at a time, similar to multipurpose batch processes. A specific case of multi-

stage batch processes is the single-stage batch process, where there is only one stage in

the processing path. Figure 2 depicts a general single and multi-stage batch process

facility.

Figure 2 A general single-stage and multi-stage representation

18

The food industry is an example of a multi-stage batch process industry. In the

food industry, it is crucial to avoid contamination between batches. Therefore, there is no

split or mix between food product batches. In this case, if there is any contamination, then

it only affects a small number of products (i.e. food processed in the same processing

units right before or after the contaminated product). Furthermore, in the case of a faulty

product, the facility can identify all affected products and remove them from the market,

before consumed by the final customer.

1.1.1.3 Multitasking batch process industry

As already discussed, in both multipurpose and multi-stage batch processes, a processing

unit can only process one task at a time. For instance, a reactor can only process one

reaction, while a separator can only perform one separation at a time. However, there are

several cases where a processing unit contains multiple departments or slots, and it can

process more than two tasks simultaneously. These are commonly known as multitasking

batch processes. A multitasking batch process facility can also perform both multi-stage

and multipurpose batch processes.

The scientific service industry is an example of a multitasking batch process

industry. Such facilities examine several samples from different customers for physical

and chemical properties, using multiple processing units. Each unit can process a large

number of those samples in their departments/slots. Furthermore, each department can

examine a property independently. As a result, a processing unit can process multiple

tasks simultaneously.

1.1.2 Continuous process industry

Continuous process industry processes one or more materials without interruption. In this

case, raw materials continuously enter a processing unit, while final products exit

uninterrupted. The use of continuous processes is desirable when the facility requires to

produce a large quantity of a specific product with the same specification. Using a batch

process is not suitable for generating such large amounts of a product, since the quality

may slightly differ from batch to batch. Additionally, a significantly large number of

batch vessels, which lead to high capital cost are required to fulfil the market demands.

Continuous processes can avoid those issues. However, their main drawback is that

unscheduled interruption of a processing unit can significantly affect the performance of

19

the facility. Therefore, it is more crucial to perform proper maintenance occasionally to

avoid such an unscheduled interruption than facilities that perform batch processes.

The refinery is an example of a continuous process facility. A refinery facility

processes large quantities of raw materials (crude oil) to produce enough products (fuel)

to fulfil the market demands. Additionally, there are strict specifications in the quality of

products, since it is essential to ensure optimal performance by simultaneously fulfilling

the environmental specifications. Therefore, only continuous processes are suitable for a

refinery.

1.2 Supply chain management

The number and the type of processes between facilities may significantly differ, even if

they produce similar final products. However, despite such differences, there are three

managerial levels at which every process industry needs to manage its operations. In the

first level, a processing facility should decide the number of different products is going

to produce. Multiple factors affect such a decision, including the predicted market

demands and the available technology for producing such products. Furthermore, the

facility must ensure that it follows the health and safety procedures to process the final

products. In this level, it also examines the effect of possible extensions or upgrades in

the profitability. For instance, if the market demand for a given product is high, then the

use of additional processing units will lead to larger productivity and profitability for the

facility. Likewise, a facility requires new types of processing units, if it decides to produce

new products. Such a facility should also examine if it contains a suitable amount of

storage tanks to store all products, which should operate within the safety limits. During

a process, a facility should also stock several intermediate products except for raw

materials and final products. Therefore, it should examine if the available storage tanks

can temporarily store such intermediate products. Finally, the existing or potential new

equipment should operate in the conditions required to produce intermediate or final

products. Such first-level operational decisions are commonly known as long-term

planning or strategic planning. Usually, strategic planning decisions consider periods

which can vary for one to multiple years, since changes the strategic planning require

high investments.

 In the next step, a processing facility needs to determine which products and in

which quantity is going to produce for a shorter period than the strategic planning period.

20

Different factors can affect these decisions, including the availability and the price of raw

materials, as well as the actual market needs. The available raw materials and final

products (produced in a previous period) can also affect such decisions. Those decisions

usually change more frequently than strategic planning decisions since most of these

factors fluctuate significantly during short periods. Such planning decisions are

commonly known as medium-term planning or tactical planning, the period of which

usually varies from multiple weeks to several months. In tactical planning, the processing

facility only decides for the type and amount of products among the products specified in

the strategic planning that will produce in this period. The structure remains the same,

even if a structural change can potentially lead to increased profitability. Similarly, the

processing facility can only produce a specific amount of products based on its storage

availability, even in cases of high demand for a product. In such a case, the strategic

planning of the next period should consider the extension of the facility with additional

processing units or storage tanks.

1.2.1 Scheduling decisions in the process industry

The third and last managerial level is commonly known as short-term planning or

scheduling. Facilities usually take scheduling decisions for shorter periods, which can

vary from multiple hours to one week. Despite the short period of the scheduling

decisions, this level is crucial in supply chain management. In this stage, the processing

facility decides the processes that are going to take place within the scheduling horizon,

which significantly affects the efficiency of the facility. Scheduling decisions includes

the allocation, the sequence and the timing of operation into units. More specifically,

scheduling decides the processing unit, as well as the start and end processing times for

all operations. Such a decision can significantly vary based on the objective of the facility;

maximizing the productivity, minimizing the makespan, or minimizing the cost are some

of the goals of a typical facility. Additionally, the facility needs to decide if maintenance

should take place in one or more processing units. In such a case, it should examine what

is the best schedule, that both fulfils the objectives of the facility and successfully perform

the maintenance.

 It is crucial for the smooth operation of each facility, to have the best schedule,

that not only fulfils the customer demands but also ensures that it also produces all

products in the minimum possible cost. The importance of such managerial level can

exceed the ones of the strategic and tactical planning since the scheduling decisions are

21

responsible for putting the plan into action. Taking bad scheduling decisions can

significantly affect the facility's vitality by leading to increased costs or losing customer

trust. Additionally, a facility needs to be able to generate a schedule in a short time. As

already discussed, a facility should take a scheduling decision for the next few hours.

Therefore, facilities should use a method that provides a schedule within a few seconds

to up to several minutes. In a case of an unplanned change (i.e. breakdown of a processing

unit, increase in product demand, additional customers and orders) the facility needs to

develop a new schedule that affects the functionality of the process as less as possible.

Even though several approaches can generate the best solution on a given problem, they

usually require high computational even for small-scale examples. Many other methods

can provide a solution to the scheduling problem in significantly less time. However, they

generate far for optimum solutions. It is, therefore, a challenging task up to this day for

facilities to find a methodology that can provide optimum or near-optimum schedules in

a reasonable time.

 In Figure 3, a general diagram of planning decisions that a processing facility

should take is presented.

Figure 3 Supply chain planning matrix (Sung and Maravelias 2007; Stadler et al. 2015)

1.3 Motivation and Objectives

Even though the optimization of strategic and tactical planning has been well established

since the 1950s, scheduling decisions have not gathered enough attention. The main

burden of developing an efficient methodology for optimal scheduling was the

22

significantly smaller computational power during the past few decades as well as the fact

that the most scheduling problems are NP-hard problems (Garey et al. 1976; Bruker et al.

1998). As a result, the first approaches use heuristic or spreadsheet approaches for

scheduling decisions. In most facilities in process industries, such methods are used even

up to this day. Since heuristic or spreadsheet approaches are only limited to generate a

feasible solution, which in some cases is far from optimum, there is still much room from

improvement.

 Development of mathematical models for scheduling of process scheduling has

gathered some attention during the past three decades. In most cases, those models can

solve the scheduling problem of a specific facility (i.e. refineries, steelmaking) or a type

of process (i.e. batch process or semi-continuous/continuous process). However, each

facility has notable differences and, as a result, it is not possible to use an approach

dedicated to a specific type of industry to solve a different scheduling problem. More

importantly, there is not a general mathematical modelling framework which can develop

the optimal scheduling decisions for all different types of processes. Such limitation is

crucial for the existing approaches since a facility may include more than one type of

operations.

 Another limitation of most existing mathematical models for developing scheduling

decisions is the lack of efficiency and robustness. Even though there are mathematical

models for most types of industries, they usually require high computational time to

generate optimal solutions. Additionally, such approaches fail to incorporate all facility’s

features in some cases, which limits the capability of those approaches. Such limitations

are the main reason that industries prefer using heuristic or spreadsheet approaches over

mathematical modelling approaches for their scheduling decisions. In this case, even

though they are only able to generate a feasible solution, they can provide such a solution

in significantly less computational time. It is, therefore, essential to develop efficient and

robust mathematical models to tackle such high computational burdens and inefficiency.

Such mathematical model should include all features of the process industry in the

mathematical framework and incorporate strategies that significantly reduce the

computational time, by reducing the resulting model size and tightening the MILP

relaxation of the problem.

23

 Although existing mathematical approaches usually require high computational

time to generate the optimal solution for small-scale examples, there are also large-scale

scheduling problems, where it is impossible, even for a very efficient mathematical

model, to generate the optimal solution in acceptable computational time. For such hard-

to-solve scheduling problems, different decomposition approaches have been developed.

Most of such algorithms use the strategy of dividing the scheduling horizon into smaller

sub-horizons, solving one subproblem at a time and fixing the resulted scheduling

decisions before solving the next subproblem. Such approaches are commonly known as

rolling horizon decomposition approaches. The division into smaller subproblems is

usually performed based on the due dates of each product. More specifically, orders with

earlier due dates are assigned to before those orders with later due dates. However, the

rolling horizon decomposition approach may fail to successfully divide the scheduling

problem if there are many orders with the same due date. Currently, there is not an

efficient rolling horizon decomposition approach to handle such cases.

 With significant advances in machine learning evolutionary techniques presented,

the use of such techniques combined with mathematical modelling can improve the

efficiency of developing scheduling decisions. For instance, an evolutionary approach

(i.e. gene expression programming) can generate effective rules based on existing

information on scheduling decisions for previous scheduling horizons and their effect in

the final solution. These rules can efficiently decide the allocation and sequencing of tasks

into units. Then, a mathematical model can generate the best timing and batching of each

process for the given task allocation and sequencing. This linear programming (LP)

problem require acceptable computational time. As a result, such an efficient hybrid

algorithm can significantly decrease the computational time. Despite the potential of such

hybrid algorithms, it still seems that there is not such an approach developed for process

scheduling.

 Based on those limitations of the existing mathematical models, the objective of

this thesis is:

1) To develop a new generic, robust and efficient framework for the process industry,

which lead to smaller model sizes and require less computational time to generate the

optimal solution, by introducing several features in the proposed framework, including;

24

 a) Allowing related production and consumption tasks to take place at the same event

point;

 b) Sequence processing units that process production and consumption tasks related

to the same state only if there is an indirect material transfer between those units.

Such indirect material transfer should take place if a consumption task consumes

more materials than the materials stored in the storage tanks;

 c) Align processing units that process production and consumption tasks related to

the same state only if there is a direct material transfer between those units. Such

direct material transfer should take place if storage capacity is not enough to store all

the producing materials. Therefore, they should immediately transfer to another unit;

 d) Allow processing units to store the materials that they produced for multiple event

points;

2) To enhance the rolling-horizon decompositions algorithms, by using mixed-integer

programming to group different products/orders that have the same due dates;

3) To explore a combination of gene expression programming and the mathematical

programming approach for energy-efficient scheduling of flexible job-shop scheduling

problems.

1.4 Research Contributions and Thesis Structure

The thesis format is “journal format” containing several published or submitted academic

papers in peer-reviewed scientific journals. Chapter 1 presents a brief introduction of the

thesis, while Chapter 2 presents a detailed literature review for existing approaches for

scheduling of process industry. The rest of the chapters contains the research

contributions as follows.

1.4.1 Chapter 3 - Research contribution 1

Chapter 3 contains a new approach for scheduling of multipurpose batch processes is

presented. In this approach, a new, slightly different definition of recycling and non-

recycling tasks, is proposed. Additionally, non-recycling production and consumption

tasks can take place at the same event point. Two mathematical models are developed,

based on unit-specific event-based time representation. While the first model uses task-

based timing variables, the second model uses unit-based timing variables. By solving

25

several well-established examples, it seems that the proposed approach can reduce the

number of event points, and it leads to smaller model sizes which improve the efficiency

of the model.

This research contribution is published in Frontiers of Chemical Science and Engineering.

Rakovitis, N., Zhang, N., Li, J. Zhang, L. A new approach for scheduling of multipurpose

batch processes with unlimited intermediate storage policy. Front. Chem. Sci. Eng. 13,

784–802 (2019) doi: doi.org/10.1007/s11705-019-1858-4

Author’s contribution

Nikolaos Rakovitis developed the two mathematical models, examined the models by

conducting all the computational studied and wrote the presented manuscript.

Nan Zhang reviewed and edited the manuscript.

Jie Li contemplated and supervised the work, reviewed and edited the manuscript.

Liping Zhang reviewed and edited the manuscript.

1.4.2 Chapter 4 - Research contribution 2

In Chapter 4, a generic framework is developed and implemented in the scheduling

problem of multipurpose batch processes. The features of the approach presented in

research contribution 1, was included together with the new features of indirect and direct

material transfer. Additionally, in the proposed formulation, processing units can store

materials for multiple event points. The solutions generated by solving several benchmark

examples demonstrate that the proposed model can generate the optimal solution in all

cases and it leads to the smallest model sizes and, as a result, it is more efficient.

This research contribution is submitted for publication to AIChE journal.

Rakovitis, N., Pan Y, Zhang, N., Li, J. Kopanos, G. Generic mathematical formulations

for scheduling of multipurpose batch plants, AIChE journal, submitted

Author’s contribution

Nikolaos Rakovitis developed the generic mathematical model, performed the

computational studies and wrote the presented manuscript.

Yueting Pan prepared several GAMS codes for the examples solved

file:///C:/Users/nikos/AppData/Roaming/Microsoft/Word/doi.org/10.1007/s11705-019-1858-4

26

Nan Zhang reviewed and edited the manuscript.

Jie Li contemplated and supervised the work, reviewed and edited the manuscript.

Giorgos Kopanos reviewed and edited the manuscript.

1.4.3 Chapter 5 - Research contribution 3

In Chapter 5, the proposed framework is implemented in the continuous process industry.

The results demonstrate that the proposed formulation requires significantly less

computational time than a recent existing formulation for scheduling of continuous

processes.

Rakovitis, N., Hasnuddin, W. M. A. W., Zhang, N., Li, J. A Generic Approach for

Scheduling of Semi-continuous and Continuous Processes, to be submitted to Chemical

Engineering Science

Nikolaos Rakovitis developed the generic mathematical model, performed the

computational studies and wrote the presented manuscript.

Wan Mohd Azril bin Wan Hasnuddin used the developed mathematical models to

solve a number of benchmark examples.

Nan Zhang reviewed and edited the manuscript.

Jie Li contemplated and supervised the work, reviewed and edited the manuscript.

1.4.4 Chapter 6 - Research contribution 4

In Chapter 6, the proposed framework is used for scheduling of multitasking batch

processes. Except from the proposed framework, another mathematical model is

developed, which is based on unit-specific event-based time representation with task-

based timing variables. The proposed framework leads to significantly less computational

time than all mathematical models and it can generate significantly better solutions than

the non-uniform discrete-time model of Lagzi et al. 2017b.

This research contribution is published in Computers and Chemical Engineering

Rakovitis, N., Zhang, N., Li, J. A novel unit-specific event-based formulation for short-

term scheduling of multitasking processes in scientific service facilities, Computers and

Chemical Engineering, 133(2), (2020) doi:

doi.org/10.1016/j.compchemeng.2019.106626

https://doi.org/10.1016/j.compchemeng.2019.106626

27

Author’s contribution

Nikolaos Rakovitis developed the two mathematical models, conducted all the

computational studied and wrote the presented manuscript.

Nan Zhang reviewed and edited the manuscript.

Jie Li contemplated and supervised the work, reviewed and edited the manuscript.

1.4.5 Chapter 7 - Research contribution 5

Chapter 7 presents three novel mathematical models for scheduling of energy-efficient

flexible job shops. The first model implements the framework developed in the previous

chapters to solve this model, while the second and third model uses the local sequence-

based representation. An enhanced rolling horizon decomposition approach is also

presented, where a grouping strategy using the mixed-integer programming divides the

entire problem into different subproblems. Such decomposition approach can

successfully decompose a large-scale problem, where all products/orders have the same

due date. Furthermore, the combination of those mathematical models with existing

evolutionary approaches has been examined. The results demonstrate that the models are

more efficient and robust than all existing mathematical models. Furthermore, combining

the models with the proposed rolling horizon decomposition approach leads to

significantly better solutions and less computational time. Several comparative studies

have shown that the proposed algorithm can generate better solutions than the best-

reported approach for this scheduling problem.

Rakovitis, N., Zhang, N., Li, J. Zhang, L. Novel Approaches for Energy-Efficient

Scheduling of Flexible Job-Shop Problems, to be submitted to European Journal of

Operational Research

Author’s contribution

Nikolaos Rakovitis developed the mathematical models, the enhanced rolling horizon

decomposition approach and the hybrid mathematical programming and evolutionary

approach algorithm, conducted the computational studies for the mentioned approaches

and wrote the presented manuscript.

Nan Zhang reviewed and edited the manuscript.

Jie Li contemplated and supervised the work, reviewed and edited the manuscript.

28

Liping Zhang provided the computational results of GEP approach, reviewed and edited

the manuscript.

29

Chapter 2: Background & Literature review

Scheduling problems in the process industry has gathered significant attention during the

past three decades. Multiple research groups proposed different approaches, especially

mathematical models, to generate optimal or near-optimal schedules for both batch and

continuous processes. In this chapter, a brief background on different programming

optimization approaches, as well as the process and time representations, will be

presented. Additionally, the formulations proposed for scheduling of single-stage, multi-

stage, multipurpose, flexible job-shop and multi-tasking batch processes, as well as

continuous processes, will be presented and discussed.

2.1 Introduction in optimization

In a processing facility, several actions, as well as physical and chemical phenomena, take

place. For instance, raw materials occasionally enter and exit a processing unit during the

scheduling horizon. Additionally, the facility should distribute the final products in the

market. Furthermore, multiple processes such as reactions, heating of materials and

separations take place to produce such products. Mathematical relations such as

equalities, inequalities and logical conditions can describe such activities and phenomena.

The combination of all these relations creates a mathematical model (Floudas 1995)

which describes the processing facility.

Several factors can affect the performance of the facility. Each facility aims to

choose those factors that lead to the best performance. An objective function

mathematically describes the performance of the facility. The objective usually differs in

each facility, since what is the best performance is subjective. For instance, it can be

desirable to either minimize the likelihood of undesirable events such as breakdowns or

to maximize the productivity of the facility. Even though both cases aim to maximize the

profitability of the facility, they may lead to different solutions and different process

performance. The objective function together with the mathematical model consisting of

all constraints is an optimization problem (Edgar and Himmelblau, 1989). A general

optimization problem can have the following structure.

30

 max
𝑥

 𝑓(𝑥)

 𝑠. 𝑡. 𝑔𝑖(𝑥) = 0, 𝑖 = 1,2, … , 𝑛

 ℎ𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … ,𝑚

 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛

Where 𝑥 is the vector of continuous variables, 𝑔𝑖(𝑥) is a set of equality constraints, ℎ𝑗(𝑥)

is a set of inequality constraints and 𝑓(𝑥) is the objective function.

Optimization problems are classified based on the type of variables and constraints

that the mathematical model contains (Figure 4). In the simplest case, the mathematical

model includes linear constraints and continuous variables. This optimization problem is

a linear programming (LP) problem. If the model also contains integer variables, then the

mathematical model is a mixed-integer linear programming (MILP) problem. Such

variables are necessary if the scheduling problem considers logical conditions. For

instance, assigning the process of a task to a processing unit requires several binary

decision variables. Examining if a processing unit is active during a specific time is also

imposed by using several binary variables. It is also possible to deal with restricted cases,

where, it is not possible to have a decimal number (i.e. the number of samples processed

in a processing unit). These types of variables should only take integer variables. If all

the variables are integer though, the optimization problem is named integer programming

(IP) problem. Furthermore, if the optimization problem contains non-linear terms (e.g. to

explain complicated phenomena), it is called non-linear programming (NLP) problem if

there are only continuous variables. Finally, if there are both continuous and discrete

variables, it is called mix-integer non-linear programming (MINLP) problem (Edgar and

Himmelblau, 1989; Floudas, 1995).

A process industry needs to make multiple decisions in all planning periods, such

as choosing the producing products, the processing units, as well as the detailed

sequencing and allocation of tasks into units. Such decisions can only be described in a

mathematical model by introducing several binary variables. As a result, most of the

planning and scheduling problems are MILP problems. Next, more details for the MILP

problems will be presented. Additionally, the branch and bound method will be presented,

which is the most common method to find the optimal solution of a MILP problem.

31

Figure 4 Classification of mathematical models

2.1.1 MILP & relaxed MILP optimization problem

As discussed, a MILP optimization problem contains multiple linear constraints and

several continuous and binary/integer variables. A general MILP problem has the

following structure.

 max
𝑥,𝑦

 𝑓(𝑥, 𝑦)

 𝑠. 𝑡. 𝑔𝑖(𝑥, 𝑦) = 0, 𝑖 = 1,2, … , 𝑛

 ℎ𝑗(𝑥, 𝑦) ≤ 0, 𝑗 = 1,2, … ,𝑚

 𝑥 ∈ 𝑋 ⊆ 𝑅𝑛

 𝑦 ∈ 𝑌 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Where 𝑥 is the vector of continuous variables, y is the vector of the integer variables

𝑔𝑖(𝑥, 𝑦) is a set of equality constraints, ℎ𝑗(𝑥, 𝑦) is a set of inequality constraints and

𝑓(𝑥, 𝑦) is the objective function.

Another optimization problem that is also solved is the relaxed mixed-integer linear

programming (rMILP) problem. The rMILP problem contains the same objective

function and constraints with the MILP problem. The main difference with the MILP

problem is that the integer variables are denoted as continuous variables instead. In other

words, all binary variables of the MILP problem can take values within the interval [0,1]

in the rMILP problem. Therefore, the rMILP problem is an LP problem which is usually

easy to solve. The solution to this problem provides an upper/lower bound to the MILP

32

problem. More specifically, in maximization problems, the solution of the rMILP

problem is the upper bound for the MILP problem.

An important factor that affects the efficiency of a mathematical model is the

difference between the solution of the MILP and the rMILP problem. A mathematical

model is tight if there is a small gap between those solutions. In this case, the rMILP

solution usually contains multiple relaxed variables with an integer solution, even though

those variables are continuous. It is desirable that the rMILP solution only contains

relaxed variables with integer solution. In such a case, the rMILP solution is also a

solution to the MILP problem. If the gap between the MILP and the rMILP solution is

large, then the problem may require excessive computational time even to generate a

feasible solution. A set of tightening constraints can tight the relaxation of the problem.

Those constraints, which may or may not have a physical meaning, they force relaxed

variables to have integer or close to integer values in the rMILP solution.

2.1.2 Branch and bound algorithm

Usually, MILP problems are hard to solve. One method to find the optimal solution in

small examples is to investigate the best solution by examining all possible permutations

of the integer variables. For instance, in a batch scheduling problem with two batch

processes and two processing units, there are four possible permutations in total. In such

an example, it is easy to examine all four permutations to find the best solution. However,

the possible permutations exponentially increase as the example size increases. As a

result, it is computationally expensive to examine all of them in a common problem.

Branch and bound is an algorithm that can solve MILP problems, mainly because it can

prove that a solution is the best solution without examining all permutations.

The branch and bound algorithm finds the best solution to a MILP problem as

follows. In the first step, the algorithm relaxes all integer variables. Therefore, the

resulting rMILP problem is solved first. The solution of the rMILP problem is the upper

bound (or lower bound in minimization problems) of the MILP problem. In other words,

it is not possible to find an integer solution with a better objective value. The rMILP result

is the root node of the branch and bound algorithm. In the root node, there are three

different cases. In the first case, the root node is infeasible, and as a result, it is not

necessary to examine any permutation since the MILP problem will also be infeasible. In

the second case, all relaxed variables have integer values. In that case, it is also

33

unnecessary to examine any permutation since the rMILP solution is also a solution of

the MILP problem. Since rMILP provides the upper bound of the problem, there is not

an integer solution with a better objective. Finally, in the last case, some or all relaxed

variables have non-integer values. In such a case, several permutations, to find the best

solution, should be examined.

The branch and bound algorithm does not examine the permutations randomly.

Instead, it introduces additional constraints in the relaxed model, and it evaluates the

solution before proceeding to the examination of a branch. Similar to the root node, the

algorithm does not examine any additional permutations of the branch if the node is

infeasible or if all relaxed values have integer values. However, there is one more case

that the algorithm stops examining a branch; if the solution of a node has an objective

value less than the best integer solution found so far. In this case, there is not a better

solution in this branch. The whole procedure continues until all the branches are examined

or pruned, or until the difference between the best integer solution and the upper bound

is less than the specified accuracy.

After the branch and bound algorithm examines a node, the algorithm continues as

follows. Let’s assume that the solution of a node contains relaxed variables with decimal

values. In this case, the algorithm chooses one of those variables, usually the one that is

further from the closest integer. For instance, if two relaxed variables have the values x1

= 2.3 and x2 = 4.4 respectively, then the algorithm chooses variable x2. In the next step,

the algorithm generates two new nodes by adding a constraint. In the first node, the chosen

variable can take values less or equal to the greatest integer value that is smaller than the

value of the variable, while in the second node, it takes values greater or equal to the

smallest integer values that are greater than the value of the variable. For instance, if the

same example is considered, where x2 is chosen, the algorithm adds the constraint x2 ≤ 4

to create the first node and the constraint x2 ≥ 5, to create the second node. For both nodes,

optimization takes place to find the best solution by using the new set of constraints.

In Figure 5, a simple tree, where all the possible cases are depicted. In each node,

the objective value is depicted. For instance, the root node has an objective value of 15,

while the best integer solution has a value of 10. Additionally, in each arrow, the

constraint included is depicted.

34

Figure 5 Branch and bound tree

2.2 Process representations

Process representation is essential to develop efficient mathematical models for the

process industry. Such representation should contain information for the available units,

the tasks that they are processing as well as the materials produced and consumed in each

process. Additional details for connection between processes, processing paths,

conversion rates and resources are also necessary. The most common-used

representations developed are the State Task Network (STN), the Resource Task Network

(RTN), the State Sequence Network (SSN) and the Disjunctive graphs. This chapter

presents a brief introduction to those process representations.

2.2.1 State Task Network representation

Kondili et al. (1993) was the first to introduce the state task network (STN)

representation. In STN representation, tasks denote all processes/operations in a facility

while states denote the consuming/producing materials. Simple shapes such as rectangles

and circles represent tasks and states of a facility, respectively Simple shapes such as

rectangles and circles represent tasks and states of a facility, respectively. For instance, if

35

the arrow points out the task, then it consumes the related state. Similarly, if the arrow

points out the state, then the related task produces this state.

Figure 6 depicts the STN representation of an illustrative example. In this example,

three states represent one raw material, one intermediate product and one final product.

Additionally, two tasks represent the two processes the processing facility uses to produce

the final product.

Figure 6 STN representation

2.2.2 Resource Task Network representation

The STN representation even though it is useful to represent a facility, it does not contain

any resources. As a result, the STN representation cannot provide all the necessary

information in examples with resource constraints. Pantelides (1994) tackled this issue,

with the Resource Task Network (RTN) representation. In RTN representation, circles

except for states, they also represent resources. If a task requires one of those resources,

then a dotted arrow depicts this relation.

Figure 7 presents an example of an RTN representation. In this example, there are

two resources available. The first task requires both resources, while the second task only

requires the second resource.

Figure 7 RTN representation

2.2.3 State Sequence Network representation

Majozi and Zhu (2001) proposed the State Sequence Network (SSN) representation. This

representation only represents the states by using rectangles. In contrast to STN and RTN

representation, an arrow represents the relation between two states. The direction of the

36

arrow denotes the processing path. For instance, if the arrow points out a state, then a

process produces this state by consuming the related state. In this way, the SSN

representation does not immediately represent the processes. Instead, it assumes that a

processing unit performs the conversion of one state to another one. Finally, a node

denotes the mixing of two states or the splitting of a batch.

Figures 8 and 9 present the SSN representation of two examples. The first example

in Figure 8 is the same as the example presented in Figures 6 and 7. Figure 9 depicts the

second example with five states in total; one raw material, two intermediate products and

two final products. In node 1, the raw material splits since two processing units consume

the same state. Each processing unit produces a different intermediate state. In node 2,

intermediate product 1 splits into two parts. A process consumes the first part to produce

final product 2. Finally, in node 3, another unit consumes a mixture of intermediate

products 1 and 2 to produce final product 2.

Figure 8 SSN representation a

Figure 9 SSN representation b

2.2.4 Disjunctive graphs

Roy and Sussmann (1964) developed disjunctive graphs to represent a job-shop facility.

In a disjunctive graph, a node represents an operation/task. Each node usually contains

two numbers to denote the job and the operation. Furthermore, two dummy nodes

represent the start and the end of all jobs. All operations can only start after the dummy

start node and before the dummy end node. Solid arks depict the relation between two

consecutive operations in a job, the direction of which denotes the sequence. In a job-

shop facility, each processing unit can process different operations/tasks. If a processing

unit can process two or more operations/tasks, then disjunctive arks connect all these

37

operations. Each type of ark (dotted, dashed) or colour denotes a different processing unit.

Finally, a disjunctive graph may also depict the earlier start time that an operation can

start based on the processing time.

The disjunctive graphs can successfully represent both classical and flexible job-

shop scheduling problems. Figure 10 depicts an example of a disjunctive graph with three

jobs and three operations/tasks in each job. Nodes 0 and 1 are the dummy start and the

dummy end node, respectively. This figure also depicts the relation between processing

units and operations. For instance, unit 1 can process operations (1,1), (2,1) and (2,2)

while unit 2 can process operations (1,2), (3,1) and (3,3). Finally, unit 3 processes

operations (1,3), (3,2) and (2,3).

Figure 10 disjunctive graph

2.3 Time representations

Before developing a mathematical model, it is necessary to decide the time representation

of the developed formulation. Different time representations lead to different model sizes

and relaxations, and as a result, they significantly affect the efficiency of the model. There

are two different types of time representations; discrete-time and continuous-time.

2.3.1 Discrete time representation

One of the first attempts to develop mathematical models for scheduling of process

facilities were based on the discrete-time representation (Bowman 1959). Such approach

divides the scheduling horizon into several time intervals. Each time interval has a fixed

and known length before the optimization problem, while the start and the end of a

process or activity can only take place at the bounds of a time interval. Mathematical

models based on discrete-time representation can either be uniform or non-uniform. In

38

the former models, the time intervals for all processing units have the same length during

the whole scheduling horizon. On the other hand, in non-uniform discrete-time models,

the duration of the time intervals can differ from unit to unit. Furthermore, for a given

processing unit, the length of the time intervals can also be different during the scheduling

horizon. However, in both models, the duration of each time interval cannot change

during optimization.

Figure 11 Division of scheduling horizon in discrete time formulations. The start and end

time of a task/operation/process must be exactly at the time interval

Discrete-time representation models are easy to implement, and they lead to

simple formulations with tight relaxations, especially if the objective is the maximization

of productivity. However, since the length of each time interval remains fixed,

significantly many time intervals are required in most cases. More specifically, their

duration should be equal to the greatest common factor of the processing time of all tasks

in all available units in uniform discrete-time models. Since the processing time can

significantly differ, usually a large number of time intervals are required to generate the

optimal solution. As a result, discrete-time models lead to large model sizes, even for

small examples. The use of time intervals with different length can significantly reduce

the model size of the problem. However, since a task can only start or finish at the bounds

time intervals, rounding the processing time to the closest multiple of the length is

required. In this case, it is possible to overestimate or underestimate the productivity of a

given processing unit.

Non-uniform discrete-time models can also lead to smaller model sizes. However,

since the length of time intervals between processing units can differ, the time intervals

between two units processing related tasks may not match. In this case, the consumption

task starts in the next available time interval. As a result, using such models may lead to

suboptimum solutions, where one or more units remain idle for specific periods.

39

2.3.2 Continuous-time representations

In contrast to discrete-time representations, in continuous time representations, the

scheduling horizon is not divided into time intervals of equal length. Instead, the division

of the scheduling horizon takes place during the optimization. Based on how the division

takes place, continuous-time representations are classified into slot-based, global event-

based and unit-specific event-based representations.

2.3.2.1 Global event-based representation

The global event-based representation uses multiple event points to divide the scheduling

horizon. In contrast to the discrete-time formulations, the position of each event point is

unknown. The optimization problem determines the location of each event point. As a

result, the length between consecutive event points can differ. Global event-based

representation requires fewer event points than discrete-time, which leads to significantly

smaller model sizes. However, models based on this representation usually have worse

relaxations since they contain several constraints with big-M terms. Another disadvantage

is that the start time for all processing units is the same for a given event point. In other

words, global event-based representation divides the scheduling horizon uniformly for all

event points (Reklaitis and Mockus 1995).

The optimal number of event points are unknown in advance. Instead, an iterative

procedure determines the best number of event points. More specifically, the model first

uses the minimum number of event points to solve the problem. In the next step, it uses

an additional event point to solve the same problem. If there is an improvement in the

solution, then the problem is further solved with more number of event points. The

procedure continues until there is no improvement in the solution.

 Figure 11 Global event-based representation

40

2.3.2.2 Unit-specific event-based representation

Similar to the global event-based, the unit-specific event-based representation divides the

scheduling horizon using several event points (Ierapetritou and Floudas 1998a). However,

in the unit-specific event-based approach, the event points split the scheduling horizon

differently for each processing unit. As a result, the start time during a specific event point

can differ between two units. This representation leads to less number of event points and

as a result, to smaller model sizes than global event-based representation. However, it

also leads to worse relaxations in some cases since they introduce constraints with big-M

terms. Additionally, the iteration procedure is also required to generate the optimal

number of event points in unit-specific event-based representation.

Figure 12 Unit-specific event-based representation

In the literature, there are two different types of unit-specific event-based

mathematical models. The main difference in these models lays in the modelled timing

variables. The first type of models, which is the most common ones, use timing variables

based on tasks. More specifically, the event points divide the scheduling horizon

differently for each task. In a mathematical model based on a unit-specific event-based

representation using task-based timing variables, the start or/and the finish time of a task

during an event point is defined as a variable. On the other hand, in the rest of unit-specific

event-based mathematical models, the start or/and the finish time of a processing unit

during an event point is defined as a variable. In other words, the event points divide the

scheduling horizon based on units. Using task-based timing variables usually leads to

worse relaxation and as a result, such models require tightening constraints to achieve the

same rMILP solution with models using unit-based models.

41

2.3.2.3 Slot-based representation

Slot-based representations divide the scheduling horizon using several time slots (Pinto

and Grossmann, 1994). Similar to other continuous-time representations, the optimization

problem specifies the length of each time slot. In contrast to global and unit-specific

event-based representation, the end time of a time slot should coincide with the start time

of the next time slot. There are two different types of models using slot-based

representation; process slot-based and unit-slot models. In process slot-based models, the

time slots are common to all processing units, similar to the global event-based

formulations. In unit-slot models, the time and length of time slots, as well as the start

and end times, can differ in each processing unit, which is the same as unit-specific event-

based representation. The iteration procedure determines the optimal number of time slots

for both types of models. The main difference is that slot-based representation models

introduce the duration of each slot as continuous variables. On the contrary, in global

event-based and unit-specific event-based, the position of each event point is defined

instead.

Figure 13 Process slot-based representation

Figure 14 Unit slot-based representation

42

2.3.3 Sequence-based representation

Sequence-based representation, do not divide the scheduling horizon into time

intervals/time slots/event points. Instead, they define the sequencing of operations into

units (Ku and Karimi, 1988). There are two different types of sequence-based models;

local sequence-based and global sequence-based representations. The former models

define the sequencing between two successive operations, while the later models only

examine whether an operation precedes another operation in a processing unit. Since such

formulations determine the sequence of two tasks, time is not explicitly modelled. As a

result, there are no event points or time slots that need to define a priori with an iteration

procedure. One of their disadvantages, However, the number of batches have to be

determined a priori. Additionally, they do suffer from the difficulty in monitoring

resource levels.

Figure 15 Local Sequence-based and Global-Sequence-based representations

2.4 Scheduling of multipurpose batch processes

Developing methodologies for scheduling of multipurpose batch processes is not a recent

trend. Instead, it has gathered much attention since the 1990s. Kondili et al. (1993) were

one of the first attempts to tackle this problem. To generate the schedule of a general

multipurpose batch process, they proposed the STN representation based on which they

developed a simple discrete-time formulation. The pioneering work of Kondili et

al. (1993) inspired multiple researchers to formulate efficient mathematical models and

the examples solved are used to examine and compare new mathematical models in the

past three decades.

Despite the novelty of the Kondili’s et al. (1993) work, it seems that the proposed

model leads to significantly large model sizes which affect the performance of the model,

even after reformulating some of the constraints to improve the relaxation of the problem

43

(Shah et al. 1993). Such inefficiency is due to the many time intervals required even for

the small examples. This issue motivated the research community to develop

mathematical models, using continuous-time representations to reduce the number of

time intervals required and as a result, reduce the model size the improve the efficiency.

Mockus and Reklaitis presented the first global event-based mathematical model

(Reklaitis and Mockus 1995; Mockus and Reklaitis 1997). They simplified their MINLP

model by using exact linearization. Ierapetritou and Floudas (1998a, b) introduced the

unit-specific event-based time representation for the same problem. Both models based

on continuous time-representations require significantly fewer slots/event points, and as

a result, they lead to smaller model sizes. Between those models, the model of Ierpetritou

and Floudas (1998a) is the most efficient since it requires the least number of event points.

The models followed the one of Kondili et al. (1993), even though they managed

to reduce the model size, they still require excessive computational time to generate the

optimal solution. One of the reasons is that those models are MINLP models, which need

linearis ation and as a result, it increases the complexity of the model (Reklaitis and

Mockus 1995; Mockus and Reklaitis 1997). Furthermore, the model of Ierapetritou

(1998a, b) generates schedules with the scheduling horizon violation (Castro et al. 2001).

As a result, in later attempts, a new type of binary and continuous variables and

constraints were examined to reduce the model size, as well as different time

representations. Additional features were also added in many formulations to create a

more general formulation. Zhang and Sargent (1996) developed a new global-event based

mathematical model. Even though the constraints used contain non-linear terms which

lead to an MINLP model linearisation can convert it into an MILP problem. Schilling and

Pantelides (1996) presented an MINLP model for scheduling of multipurpose batch

processes, which they converted to MILP by using Glover’s transformation (Glover

1975). They also used global event-based time representation. Both models still require

intractable time, even with the developed simplifications. Castro et al. (2001) managed

to reduce the number of event points in global event-based representations, by allowing

the length between two event points to be larger than the processing time of a task

processed in the first event point. As a result, their model is significantly more efficient

than the mathematical model of Schiling and Pantelides (1996), and it can generate a

schedule with no scheduling horizon violation by using the same number of event points.

Their model does not contain any non-linear term, and as a result, it leads to a MILP

44

problem. Castro et al. (2004) later improved the model of Castro et al. (2001) by

introducing a different set of constraints that lead to tighter relaxation. Majozi and Zhu

(2001) proposed the SSN representation. Based on the SSN representation, they presented

two mathematical models, where they use different timing variables for each state. These

models do not introduce binary variables for tasks, since in SSN only introduce states.

However, it seems that the proposed model requires significantly larger model sizes with

more continuous variables and constraints. Lee et al. (2001) used three sets of binary

variables to denote whether a unit starts, continues or ends processing a task during an

event point, which can reduce the number of binary variables. They implemented their

approach in a unit-specific event-based model. Gianelos and Georgiadis (2002) reduced

the number of event points required in unit-specific event-based formulations by

introducing a different set of sequencing constraints than Ierapetritou and Floudas

(1998a). Their proposed model does not lead to scheduling horizon violation, in contrast

to the model of Ierapetritou and Floudas (1998a). Maravelias and Grossmann (2003) used

the global event-based and the unit-specific event-based representation for tasks that

produce or do not produce a state with zero-wait policy, respectively. Janak et al. (2004)

modified and extended the model of Ierapetritou and Floudas (1998a) to include different

storage policies. Sundaramoorthy and Karimi (2005) developed a slot-based

mathematical model for scheduling of multipurpose batch processes. Shaik and Floudas

(2008) implemented the RTN process representation in a unit-specific event-based

mathematical model for the first time. Shaik and Floudas (2009) introduced a parameter

to control the number of event points that a task can span, which leads to smaller model

sizes than the model of Janak et al. (2004). They also extended this model to solve

problems with limited resources. Vooradi and Shaik (2012) improved the mathematical

model of Shaik and Floudas (2009), by introducing a single set of allocation constraints

and removing the big-M terms from duration and different task in different unit

sequencing constraints. Even though the improved model leads to smaller model sizes

and tighter relaxation, it seems that in some cases, the model leads to more number of

event points, which leads to significant increases in computational expenses. Lee and

Maravelias (2017) attempted to improve the efficiency of discrete-based models by

presenting two models using the STN and RTN representation, respectively. Finally, Lee

and Maravelias (2018) developed a solution approach by combining discrete and

continuous-time formulations to reduce the computational time required. Even though

45

they managed to reduce the computational time, their model can lead to a suboptimum

solution, especially if the necessary parameters are not correctly tuned.

Despite the multiple proposed models, extensions and improvements presented in

the literature, it is still computationally expensive to solve the multipurpose batch process

scheduling problem. One of the reasons that those mathematical models lead to high

computational time is the unnecessary sequence and alignment of related production and

consumption tasks, which was leading to large model sizes. Seid and Majozi (2012)

managed to reduce the model size by conditionally sequence all related production and

consumption tasks, based on the availability of the consuming state. They also aligned all

those production and consumption tasks, based on the availability of storage. However,

their model leads to schedules with real-time storage violations. Vooradi and Shaik

(2013) also conditionally sequence and align related production tasks, based on whether

the consumption task consumes materials from the production task, or whether the

materials produced by the production task can be stored, respectively. Even though they

avoided to generate schedules with a real-time violation, their formulation introduced a

significantly large number of binary variables, which deteriorate the performance of the

model in some cases.

As discussed before, mathematical models based on continuous-time

representations require an unknown number of time slots/event points. In this case, the

iterative procedure finds the optimum amount of time slots or event points. This

procedure first solves the problem using the minimum number of event points. The

number of time slots/event points are increased by one until there is no improvement in

the solution using two consecutive event points. However, using such a procedure to find

the optimal solution may lead to intractable computational time. Li and Floudas (2010)

developed a framework for optimal event point determination in unit-specific event-based

mathematical models to decrease the time required to find the number of event points to

generate the optimal solution.

Recently, the use of metaheuristics to solve the multipurpose batch process

problems gained attention. Research groups using metaheuristics aim to develop near-

optimum solutions in significantly less computation time than the existing mathematical

models. He and Hui (2010) analyzed an example from Kondili et al. (1993). For this

example, they defined the crucial factors that significantly affect the makespan, such as

46

units, tasks and products. Based on this analysis, they developed a genetic algorithm to

assign the key-tasks in the key-units. By using the classical approaches of selection,

mutation and crossover, they were able to generate a good schedule in small

computational time. Woolway and Majozi (2018) developed a general framework for

scheduling of multipurpose batch processes. Similar to He and Hui (2010), they proposed

a genetic algorithm which uses the techniques for selection crossover and mutation. They

also used a chromosome with two distinct parts, which determine the assignment of a unit

to an event point and the length between two event points, respectively. Finally, Woolway

and Majozi (2019) modified the approach of Woolway and Majozi (2018) to consider a

discrete-time framework. They also tested the simulated annealing (SA) algorithm and

the migrating bird optimization (MBO) algorithm. Even, though such approaches can

significantly reduce the computational time, it still seems that they are unable to prove

the optimality of the solution and it is still possible to generate a far from the optimum

solution.

2.5 Scheduling of single and multi-stage batch processes

Scheduling of single- and multi-stage batch processes has also gathered considerable

attention in the past three decades. In some of the early attempts, researchers developed

models for the single-stage batch process with multiple parallel processing units, due to

its simplicity. Cerdá et al. (1997) were the first to propose a mathematical model to solve

the single-stage batch process problem. Their model uses immediate sequence-based time

representation. Méndez and Cerdá (2000) included the problem of limited storage by

introducing a separate stage. They also used the same time representation as with Cerdá et

al. (1997). Both models of Cerdá et al. (1997) and Méndez and Cerdá (2000) predefine

the number and the size of batches that are going to be processed. Méndez et al. (2000)

dropped this assumption by considering the batching problem. More specifically, they

propose a two-step approach, where the first step determines the optimum number and

size of batches are determined. In the second step, a direct sequence-based model solves

the scheduling problem, based on the first step. Lamba and Karimi (2002) solved the

single-stage problem with limited resources. Finally, Castro and Grossmann (2006)

examined the performance of different time representations, including discrete and

continuous-time representations (global- and unit-specific event-based representations)

in the single-stage problem. The authors concluded that the unit-specific event-based time

47

representation leads to significantly smaller model sizes than the rest of the time

representations.

Despite the progress in developing schedules for single-stage batch process

examples, such approaches cannot directly solve process industry problems. Processing

of a batch in more than one stages is familiar in the process industry. In this case, an

efficient mathematical model should not only determine the best assignment and timing

of tasks into products but also ensure that a process of a batch starts before the finish time

of all other processes in all previous stages. Such case led researchers to extend their

models to consider multi-stage models or to develop new ones. Pinto and Grossmann

(1995) developed a mathematical model for scheduling of multi-stage batch processes,

even before the first models for single-stage problems. The authors used unit-based and

task-based timing variables, which they connect by using a set of time matching

constraints. However, since the model requires significant computational time, they

examined the preordering of the sequencing of tasks. Pinto and Grossmann (1996)

proposed an improved model of Pinto and Grossmann (1995), which requires less

continuous variables and constraints to generate the optimal solution. Even though they

improved the efficiency of their model, they still lead to significant computational

expenses. Hui and Gupta (2000) and Hui et al. (2000) used a different time

representation. More specifically, they developed a direct sequence-based model for

scheduling of multi-stage batch processes. To improve the efficiency of their approach,

they also proposed a preordering heuristic, which assigns the sequencing of tasks based

on their due dates. Méndez et al. (2001) also solved the problem of scheduling of multi-

stage batch processes with limited resources by developing an indirect sequence-based

model. Harjunkoski and Grossmann (2002) developed two additional efficient

decomposition strategies for multi-stage scheduling problems to improve computational

efficiency. Méndez and Cerdá (2003) considered more than one clusters producing the

same resources as well as unit-dependent resources. Gupta and Karimi (2003a) developed

an improved direct sequence-based mathematical model for scheduling of multi-stage

batch processes, which outperforms the models of Pinto and Grossmann (1995), Hui and

Gupta (2000) and Hui et al. (2000), by examining multiple different unit assignment

constraints. Gupta and Karimi (2003b) developed a two-step method for solving the

batching and the scheduling problem, where the first step, determines the optimal number

and size of batches, while the second stage sequences the operations into units. Castro

48

and Grossmann (2005) extended the studies presented in Castro and Grossmann (2006)

for the multi-stage problem, while Liu and Karimi (2007) examined multiple variations

of models based on slot-based representation for the multi-stage problem.

Sundaramoorthy and Maravelias (2008) solved the batching and scheduling problem

simultaneously by developing an indirect sequence-based mathematical model.

Sundaramoorthy et al. (2009) considered the simultaneous batching and scheduling of

multi-stage batch processes with limited resources by proposing a uniform discrete-time

representation. Fumero et al. (2012) developed a slot-based mathematical model for

multi-stage batch plants operating in campaign mode. They also presented a simplified

model where they define the maximum number of slots postulated in each unit and used

several preordering constraints. The same research group also proposed an optimization

framework for multiple (multisite) multi-stage batch process facilities (Ackermann et al.

2018) Finally, Novara et al. (2016), developed an efficient constraint programming model

for multi-stage batch plants, by considering limited resources and campaign mode

operation.

2.6 Scheduling of multitasking batch processes

In contrast to the scheduling of multipurpose and multi-stage batch processes, scheduling

of multitasking batch process has not gathered adequate attention. Only a few models,

developed in the past five years, consider this problem. Patil et al. (2015) were the first

to propose a mathematical model for scheduling of multitasking batch processes. They

developed a model based on uniform discrete-time representation, and they solved several

examples from scientific service facilities. Lagzi et al. (2017a), solved the same problem

by using a process-slot formulation to generate the optimal solution. Lagzi et al. (2017b)

developed a non-uniform discrete-time model. They also performed comparative studies,

where they concluded that the non-uniform discrete-time model is the most efficient.

Santos et al. (2018) extended the non-uniform discrete-time model of Lagzi et al. (2017b)

to consider personnel allocation for multitasking environments. Finally, Lee et al. (2019)

investigated the multitasking problem of conflicting objectives for the same problem.

Despite those attempts, it still seems that excessive computational time is required to

generate a schedule for multitasking batch processes, which makes it intractable to use

such models

49

2.7 Scheduling of job-shops

The job-shop scheduling problem has gathered significant attention since the late 50s.

Even though the first attempts to solve this problem used mathematical modelling

programming approaches (Bowman 1959; Manne 1960; Greenberg 1966), the complexity

of the problem and the small computational power of computing machines during this

period made it impossible to solve this problem using such models. Instead, to solve this

NP-hard problem, researchers developed various dispatching rules. During the next two

decades, a great variety of such dispatching rules proposed and examined in existing job-

shop scheduling problems. Panwalkar and Iskander (1977) reviewed and analyzed all

these dispatching rules.

Dispatching rules, even though they can generate a sequence of jobs into units fast,

they can only generate a feasible schedule. As a result, later attempts focused on using

enumeration procedures as well as branch and bound methods. Balas (1969) developed

an implicit enumeration technique for the first time. In this work, he randomly generated

an initial solution (root node), while for the next solution, he examined whether reversing

an arc can lead to a better solution. They were multiple works that followed the work of

Balas (1969) to develop more efficient enumeration techniques. Schrage (1970) presented

five different cases where he proved that the schedule does not improve, even if there is

any change in the sequence. As a result, Schrage showed there is no need to examine all

cases to prove optimality. Florian et al. (1971), used the disjunctive graph to generate the

nodes of each branch of their approach. More specifically, the root node contains all the

disjunctive arcs, while for the next nodes, they removed those arcs one by one until the

schedule is feasible. Ashour and Hiremath (1973) also propose a branch and bound

method. This method assigns all operations of a job to the available units in the root node,

without considering any other jobs. In the next nodes, this approach refines the schedule,

which violates the allocation constraints by modifying the timing and sequence of the

conflicting operations that lead to the best solution. Fisher et al. (1983) presented two

mathematical models with surrogate duality relaxation in the capacity and precedence

constraints. Barker and McMahon (1985) developed a similar methodology with Balas

(1969). The authors used different rearrangement techniques to improve the efficiency of

their approach. Adams et al. (1988) used an approximation method to solve the job-shop

scheduling problem.

50

Heuristic and metaheuristic methods were also applied to the job-shop scheduling

problem, the use of which led to more efficient approaches to solve this problem.

Applegate and Cook (1991) combined the branch and bound algorithm with a new

heuristic method. They also introduced several branch cuts to obtain better bounds.

Falkenauer and Bouffouix (1991) proposed a genetic algorithm to generate feasible

solutions for the job-shop scheduling problem, while Laarhoven et al. (1992) solved

multiple small examples by using a simulating annealing algorithm. For the same

problem, Dell'Amico and Trubian (1993) presented a tabu search algorithm, while

Colorni et al. (1994) developed an ant colony approach. Park et al. (2003) developed a

hybrid genetic algorithm. Watanabe et al. (2005) also developed a genetic algorithm,

which they combined with an approach that can find an area with a high probability of

containing higher quality solutions. Finally, Sha and Hsu (2006) examined the particle

swarm optimization algorithm for developing schedules for job-shop problems.

The flexible job-shop scheduling problem has also gathered significant attention.

Wagner (1959) proposed a mixed-integer mathematical model for this problem. However,

similar to the job-shop scheduling problem, it was impossible to solve such mathematical

models. Additionally, in the flexible job-shop scheduling problem except for the

sequence, the assignment of tasks to units should also be determined, which increases the

difficulty. As a result, the first approaches attempted to solve the assignment and

sequencing problem independently. Brandimarte (1993) developed a two-level tabu

search algorithm, where the first level determines the assignment of tasks into units.

Based on this assignment, the second level examines the best sequencing of operations in

all machines. Paulli (1995) also used a hierarchical algorithm to solve this problem. More

specifically, the algorithm first develops a feasible schedule by using several dispatching

rules, while in the next step, the approach reassigns the operations into units. Hussain and

Joshi (1998) developed a genetic algorithm to define the assignment problem and an NLP

mathematical model to find the best sequence.

Later attempts focused on solving the assignment and sequencing problem

simultaneously. Using genetic algorithms to determine both cases in the flexible job-shop

scheduling problem gained significant attention during the past decades. To develop an

efficient genetic algorithm approach, the research community examined multiple

different aspects, including encoding, initialization of the population, decoding, selection,

crossover and mutation. Mesghouni et al. (1997) was the first work to propose the parallel

51

job representation for the chromosome. They presented a simple genetic algorithm, where

it randomly initializes the population. According to the selection methodology used, the

fittest individuals have a polynomial increase from generation to generation. Lee et

al. (1998) presented a similar genetic algorithm for solving the same problem. Chen et

al. (1999) used two chromosomes to represent the assignment and the sequence of

operations into machines, respectively. This algorithm also examines if the given

chromosomes can generate a feasible solution, while an order-preserving crossover also

ensures that the new chromosomes will not lead to an infeasible schedule. Kacem et

al. (2002) used the parallel job representation for the chromosomes, similar to

Mesghouni et al. (1997). The authors also proposed an assignment algorithm that

investigates the assignments that will fail to generate the optimal solution (forbidden

assignments) and the ones that will lead to the optimal solution (obligatory assignments).

Jia et al. (2003) developed a genetic algorithm for scheduling of the distributed flexible

job-shop problem. They proposed an appropriate encoding, which includes both the

information for jobs and facilities. Ho and Tay (2004) used composite dispatching rules

to initialize the population of their genetic algorithm approach. They also used a new

chromosome representation which consists of two parts; the operation order part and the

selection machine part. Tay and Wibowo (2004) combined the approaches of Chen et

al. (1999) and Ho and Tay (2004). They also used two parts to denote the assignment and

sequence of operations to machines. Chan et al. (2006) developed an improved genetic

algorithm for the distributed flexible job-shop problem. Pezzella et al. (2008) examined

three new chromosome selection methods in the genetic algorithm of Kacem et

al. (2002). Gao et al. (2008) combined the genetic algorithm with a variable

neighbourhood search algorithm to reduce the generations required for the genetic

algorithm to terminate. Giovani and Pezella (2010) also developed an improved genetic

algorithm for the distributed and flexible job-shop scheduling problem. Zhang et

al. (2011) used a similar chromosome representation with Chen et al. (1999). They also

developed two algorithms to generate the initial population. They also examined different

existing crossover and mutation methods to create new chromosomes (Watanabe et

al. 2005; Gao et al. 2008; Lee et al. 1998). Al-Hinai and ElMekkawy (2011) used an

operation-based representation for the chromosomes. To improve the efficiency of their

approach, they combined the genetic algorithm with a local search algorithm. According

to their method, local search slightly modifies the solution generated by a chromosome

52

to examine if the new assignment leads to a better solution. The local search algorithm

only analyzes chromosomes after several generations.

Using different metaheuristics for effectively solving the job-shop scheduling

problem was also examined in the past three decades. For instance, Hurink et al. (1994),

Mastrolilli et al. (2000), Saidi-Mehrabad and Fattahi (2007), Fattahi et al. (2007) and

Liouane et al. (2007) developed tabu search algorithms to solve this problem. Bagheri et

al. (2010) and Roshainaei et al. (2013) used artificial immune algorithm and hybrid

artificial immune algorithm and simulated annealing respectively to solve this scheduling

problem. Apart from the tabu search algorithm, Liouane et al. (2007) also developed an

ant colony algorithm, while Fattahi et al. (2007) proposed a simulating annealing

approach. Gao et al. (2006) and Gao et al. (2008) combined a genetic algorithm with a

local search methodology to improve the efficiency of the developed approach. Zhang et

al. (2009) developed a hybrid tabu search and particle swarm optimization. Finally,

Yazdani et al. (2010) proposed a variable neighbourhood search algorithm.

Mathematical modelling also gained attention to solve the flexible job-shop

problem in the past two decades. Choi and Choi (2002) developed a direct sequence-

based mathematical model for flexible job-shop scheduling problem. Fattahi et al. (2007)

used both unit-based and task-based timing variables to model the problem, while they

matched those variables for operation processed in the same processing unit. Özgüven et

al. (2010) also developed a mathematical for the same problem. Roshainaei et al. (2013)

presented an improved mathematical model also based on direct sequence-based time

approach Finally, Karimi et al. (2017) developed a sequence-based mathematical model

to solve this problem.

2.7.1 Scheduling of energy-efficient job-shop and flexible job-shops

Despite the interest into the job-shop and the flexible job-shop scheduling problem, it

seems that most of these cases consider minimization of makespan, tardiness or cost as

objective. On the contrary, limited approaches consider the examination of minimizing

energy consumption. May et al. (2015) developed a genetic algorithm to solve the multi-

objective problem of both minimizing makespan and total energy consumption in a job-

shop. Dai et al. (2013) developed a hybrid genetic algorithm and simulating annealing

approach to solve the same multi-objective problem for the flexible job-shop problem.

Zhang et al. (2017) proposed two different methods to solve the flexible job-shop

53

scheduling model with minimization of energy consumption as an objective. In the first

method, they developed an MINLP mathematical model which they later linearize to a

MILP model. In the second method, they generated efficient dispatching rules by using

genetic evolutionary programming approach. Wu and Sun (2018) solved the multi-

objective problem of minimizing total energy consumption and makespan in a flexible

job-shop environment by using a non-dominated sorting genetic algorithm. In their work,

they assumed that each processing unit process the available operations in multiple

processing times, while the processing units must remain idle for a specified time after

before they can switch off. Wang et al. (2018) separately solved the assignment and

sequencing in a two-stage optimization method. A genetic algorithm performs the

sequencing of operations into units, while a hybrid genetic and particle swarm

optimization approach is responsible for sequencing operations. In this work, they

assumed that a processing unit remains idle if it does not process any operations. Zhang et

al. (2019) used the non-dominated sorting genetic algorithm to solve the simultaneous

assignment and sequencing problem in the flexible job-shop scheduling problem with the

multi-objective of minimization of makespan and energy consumption. Finally, Meng et

al. (2019) developed six mathematical models based on Wanger’s modelling approach

(Wanger 1959) for scheduling of flexible job-shop with minimization of makespan as

objective. A comparative study between those models and the proposed models showed

that the model of Zhang et al. (2017) is less efficient than the proposed models.

2.8 Scheduling of continuous processes

Developing methods for scheduling of continuous processes have also been considered.

While in some cases, researchers developed mathematical models only for this problem,

others incorporated both batch and continuous processes in their models. For instance,

Schiling and Pantelides (1996) developed their slot-based model to handle both batch and

continuous processes. Similarly, Lee et al. (2001) also considered continuous processes

in their model. On the other hand, Karimi and McDonald (1997) developed a slot-based

mathematical model solely for semi-continuous processes. The models proposed also use

different time representations, similar to the models for batch process problems. In several

cases, the researchers improved their existing mathematical models for scheduling of

multipurpose batch processes. For instance, Zhang and Sargent (1998) extended their

global event-based model of Zhang and Sargent (1996) to consider continuous processes.

Ierapetritou and Floudas (1998b) used their unit-specific event-based formulation to

54

consider continuous and semi-continuous processes. Mockus and Reklaitis (1999 a, b)

examined the same problem in their extended global event-based mathematical model

(Mockus and Reklaitis 1997), which does not use direct linearization, and as a result, it

avoids solving a series of large-scale MILPs. In their model, they also considered the case

that the customer demands are not strictly satisfied in the given time, but at a later time

(soft due date constraints). Méndez and Cerdá (2002) developed a sequence-based

mathematical model for multipurpose facilities with continuous processes. Catro et

al. (2004) improved the model Castro et al. (2001) by using a new set of timing

constraints and considering zero-wait policies. In their updated model, they also included

continuous processes. Shaik and Floudas (2007) developed an improved mathematical

model of Ierapetritou and Floudas (1998b). This model, except for continuous processes,

it also considers different storage requirements such as flexible, finite, unlimited and no-

intermediate storage policies. Li et al. (2010) developed a unit-specific event-based

mathematical model for continuous gasoline blending operations. Finally, Li et al. (2012)

developed a unit-specific event-based model for continuous steel casting.

2.9 Rolling horizon decomposition

Even though the process industry takes scheduling decisions for short periods (one day),

in some cases, it also needs to develop a detailed schedule for several weeks. Furthermore,

a processing facility may process a significantly high amount of products during the

scheduling period. Such large-scale examples are hard to solve, and as a result, it is

common to decompose them into smaller subproblems. Decomposing a problem can

significantly affect the solution since a unit can only produce a product within a part of

the whole scheduling period or to all processing units.

Rolling horizon is a commonly used approach to decompose large-scale problems.

This approach divides the scheduling horizon into smaller sub-horizons and determines

the materials included in each sub-horizon. The availability of materials and units as well

as the due dates significantly affects those decisions. After the rolling horizon

successfully divides the problem into smaller sub-problems, a mathematical model

determines the best schedule for each sub-problem. More specifically, the model

determines and fixes the assignment, allocation and timings of tasks into units at the first

sub-problem before solving the next sub-problem. The procedure continues for all sub-

problems.

55

By using the rolling horizon decomposition approach, it is possible to generate near-

optimum solutions in significantly less computational time than directly solving the large-

scale problem. Several research groups successfully implemented the rolling horizon

decomposition in the scheduling of batch and continuous processes. Singer (2001)

developed a rolling horizon decomposition approach for scheduling of job-shops. In their

model, they divided the scheduling horizon in time windows, and they included each job

in a time window using three heuristic rules, based on the total workload, the variation of

processing times included in each time window and the overlapping factor. Lin et

al. (2002) developed a rolling horizon decomposition method for scheduling of

multipurpose batch processes. They divided the scheduling horizon into days and the

mathematical model proposed defines how many days each subproblem includes. They

also extended their algorithm to take into consideration tradeoffs between demand

satisfaction, unit utilization and model complexity. Shaik et al. (2009) and Li et al. (2012)

implemented Lin's algorithm in industrial cases for continuous processes with small

improvements and modifications. Yan et al. (2013) also divided the scheduling horizon

in time windows similar to Singer (2001) for the job-shop scheduling problem. An

optimization model determines the operations included in each time window in their

approach. Finally, Mohammadi and Poursabzi (2014) developed two heuristics for

decomposing the job-shop scheduling problem. In their formulation, they divide the

scheduling horizon into three parts, where they fix all binary variables in the first part,

while they relax them in the third part.

2.10 Summary

As presented in this chapter, there are several process representations to efficient

represent different types of processes and scheduling problems (i.e. problems with or

without resource constraints). Additionally, the research community proposed multiple

timing representations to improve the efficiency of the mathematical modelling approach.

Even though numerous mathematical models have been presented in the literature during

the past three decades, using such process and time representations, it still seems that the

majority of those models fail to generate a feasible solution in reasonable computational

time. Furthermore, there is not a general efficient framework that can directly solve all

various types of process industry.

56

For large-scale or computationally expensive problems, there is a common approach to

decompose them by implementing a rolling horizon decomposition algorithm. Various

rolling horizon decomposition algorithms have been presented in the literature to

effectively divide the problem into smaller subproblems, based on the due dates or on

fixed time windows. However, it seems that there is not an efficient rolling horizon

decomposition approach which can decompose problems that contain orders/products

with the same due date for all of them. Additionally, up to this date, it seems that there is

any hybrid gene-expression programming and mathematical programming approach to

solve large-scale process scheduling problems. Combining those programming

approaches could potentially lead to a significant reduction in the computational time

required. Such improvement is possible by using effective dispatching rules, generated

by gene-expression programming, to define the assignment and sequencing of operation

into units and mathematical programming to determine the optimal batching and timing

of operations for the given allocation and sequencing.

57

Chapter 3: A new approach for Scheduling of

multipurpose batch processes

3.1 Introduction

Process industry commonly uses batch processes, especially from facilities that produce

multiple high-value products. A processing facility prefers batch processes instead of

continuous processes when its long-term planning is to develop several high-value

materials with distinct differences in properties in small quantities. In most of these cases,

a product requires a combination of different materials, and each product may follow a

different processing path. Furthermore, facilities should increase their conversion rate of

raw materials, and therefore they recycle the unreacted materials back to the upstream

process. As already discussed, such facilities are known as multipurpose batch process

facilities, the optimal scheduling of which is crucial to ensure the prosperity of the

processing facility.

During the past three decades, multiple mathematical models for scheduling of

multipurpose batch processes have been presented based on discrete and continuous-time

representations including slot-based, global event-based, unit-specific event-based and

sequence-based time representations. More and more improved mathematical models

attempt to develop an efficient approach to generate optimal solutions. Despite such

attention on developing mathematical models for this type of problem, it still seems that

the proposed models lead to large model sizes that significantly affect the efficiency of

those models. As a result, process industry usually refrains from using such mathematical

models. The main reason lays into the fact that all proposed models require an

unnecessarily large number of time intervals/time slots/event points to generate the

optimal solution, which affects the model size. Such increase in the model size can

significantly affect the efficiency of the model even for small examples.

Among existing formulations, models based on unit-specific event-based time

representation require the least number of event points than the time intervals/time

slots/event points of different time representations to generate the optimal solution. As

discussed before, unit-specific event-based models divide the scheduling horizon

58

independently for each unit and, as a result, it is possible for the start time of two

processing units during the same event point to differ. Therefore, models based on unit-

specific event-based time representations lead to smaller model sizes in most cases.

However, similar to models based on different time representations, they do not allow

related production and consumption tasks to take place at the same event point. More

specifically, a task that consumes a state during event point n can only start after all

related production tasks finish at event point (n - 1). In this case, the model requires two

event points to generate the optimal solution, while both processing units only process

one task. Allowing related production and consumption tasks to take place at the same

event point can eliminate the excess event points required.

In this chapter, the effect of allowing related production and consumption tasks to

take place at the same event point is examined. First, it is investigated whether all those

production and consumption tasks are allowed to take place at the same event point. Based

on this analysis, a new definition of recycling tasks is developed. Two unit-specific event-

based mathematical models for scheduling of multipurpose batch processes are also

developed, where related non-recycling production and consumption tasks are allowed to

take place at the same event point. While in the first model uses timing variables based

on tasks, similar to the most common unit-specific event-based models in the literature,

the second model uses unit-based timing variables. The proposed model can reduce the

model sizes and computational time. Therefore, using such an approach in a generic

framework for process scheduling (Chapter 4) can be beneficial.

59

3.2 Research contribution 1

Rakovitis, N., Zhang, N., Li, J. Zhang, L. A new approach for scheduling of multipurpose

batch processes with unlimited intermediate storage policy. Front. Chem. Sci. Eng. 13,

784–802 (2019) doi: doi.org/10.1007/s11705-019-1858-4

file:///C:/Users/nikos/AppData/Roaming/Microsoft/Word/doi.org/10.1007/s11705-019-1858-4

60

Blank page

61

A new approach for scheduling of multipurpose batch

processes with unlimited intermediate storage policy
Nikolaos RAKOVITIS,1 Nan ZHANG,1 Jie LI(),1 Liping ZHANG2

1Centre for Process Integration, School of Chemical Engineering and Analytical Science, The

University of Manchester, Manchester, M13 9PL, United Kingdom

2Department of Industrial Engineering, School of Machinery and Automation, Wuhan University of

Science and Technology, Wuhan, Hubei, 430081 P. R China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Received MM DD, 2018; accepted MM DD, 2018

E-mail: jie.li-2@manchester.ac.uk

Abstract

The increasing demand of goods, the high competitiveness in the global marketplace as

well as the need to minimize the ecological footprint lead multipurpose batch process

industries to seek ways to maximize their productivity with a simultaneous reduction of

raw materials and utility consumption and efficient use of processing units. Optimal

scheduling of their processes can lead facilities towards this direction. Although a great

number of mathematical models have been developed for such scheduling, they may still

lead to large model sizes and computational time. In this work, we develop two novel

mathematical models using the unit-specific event-based modelling approach in which

consumption and production tasks related to the same states are allowed to take place at

the same event points. The computational results demonstrate that both proposed

mathematical models reduce the number of event points required. The proposed unit-

specific event-based model is the most efficient since it both requires a smaller number

of event points and significantly less computational time in most cases, especially for

those examples which are computationally expensive from existing models.

Keywords Scheduling, multipurpose batch processes, simultaneous transfer, mixed-

integer linear programming

1 Introduction

Nowadays, it is more important than ever for the multipurpose batch process industry to

maximize their productivity by simultaneously minimize their costs, fuel and raw material

consumption and ecological footprint to be able to survive in a highly competitive market.

Developing optimal schedules is one of the main tools that multipurpose batch process

industry can utilize to optimize their processes. Although heuristics-based and

62

spreadsheet-based methods are often used to generate schedules, they are restricted to

simple batch processes and often produce suboptimal schedules. Mathematical

programming especially mixed-integer programming approaches have been received

much attention in the past three decades because they can be used for more complicated

batch processes and often provide optimal schedules. Before developing mathematical

models, it is crucial to well represent the multipurpose batch process. Two representations

have been proposed including state-task network and resource-task network

representations. The state-task network representation (STN) is proposed by Kondili et

al. [1], in which all materials in the process are represented by states and processing

operations in units are treated as tasks. While states are represented with circles (state

nodes), tasks are depicted with rectangles (task nodes). The connections between states

and task nodes are depicted with arrows. No resources such as processing units, storage

tanks, utilities and manpower are demonstrated in the STN representation. Therefore, the

resource-task network representation (RTN) is proposed by Pantelides [2], in which

resources used by tasks are explicitly included.

 Based on the STN and RTN representations, several modelling approaches have

been proposed for optimal scheduling of multipurpose batch processes resulting in a great

number of mathematical models in the last three decades [3-7]. These modelling

approaches include discrete-time [1, 8, 9], and continuous-time modelling approaches.

The continuous-time modelling approaches include slot-based [10]-[12], global event-

based [13-15], unit-specific event-based [16-19] and sequence-based modelling

approaches [20-22]. The slot-based modelling approaches can be further classified into

process-slot [11, 12] and unit-slot [12, 23] modelling approaches.

 In the discrete-time modelling approach, the scheduling horizon is divided into time

intervals of uniform or non-uniform lengths, where the start and end times of each interval

are known, and batches, tasks, or activities are assigned to intervals. Mathematical models

developed using this modelling approach are often simple, and they usually lead to tight

mixed-integer linear programming (MILP) relaxation. A batch, task or activity should

start or end exactly at the time interval points. The model sizes largely depend on the

number of time intervals required. A great number of time intervals are often required to

generate exact solutions, leading to computationally intractable model sizes even for

small-scale problems since the length of each time interval is equal to the greatest

common factor of the processing times of all units. To avoid an intractable number of

63

time intervals required, continuous-time modelling approaches have been proposed in

which the scheduling horizon is divided into ordered slots or event points with non-

uniform unknown lengths. Batches, tasks, or activities are assigned to slots or event

points. A batch, task or activity should start or end exactly at the slot points or event

points. The model sizes also largely depend on the number of slots or event points

required. The continuous-time modelling approaches require a significantly smaller

number of time slots or event points. However, they often lead to worse MILP relaxation

than the discrete-time modelling approach mainly since they have to introduce several

big-M terms in sequencing constraints. In the process slot-based and global event-based

continuous-time modelling approaches, time slots or event points are common or shared

for all processing units in the process. In other words, batches, tasks or activities in all

processing units must start or end at the same slots or event points. In the unit-specific

event-based and unit-slot modelling approaches, each unit has independent or separate

time slots or event points. The same time slots or event points for different units can start

or end at different times. Therefore, the unit-specific event-based or unit-slot modelling

approaches often require a smaller number of slots or event points compared to the

process slot-based and global event-based modelling approaches, leading to smaller

model size and less computational time in general. While the unit-specific event-based

modelling approach divides the scheduling horizon using event points where the next

event point is not necessarily immediately start after its previous event point end, the unit-

slot modelling approach divides the scheduling horizon based on slots where the next slot

must immediately start after the end of its previous slot. In general, the unit-slot modelling

approach is very similar to the unit-specific event-based modelling approach. Finally, the

sequence-based modelling approach employs direct (immediate) or indirect (general)

sequencing (precedence) of task-pairs on units to define a schedule. Time is not explicitly

modelled in terms of slots or event points. Although it is not necessary for the sequence-

based modelling approach to postulate the numbers of slots or event points a priori, they

must postulate the number of batches, tasks or activities a priori. They also do suffer from

the difficulty in monitoring resource levels.

 The capabilities of the unit-specific event-based modelling approach have been well

established in the literature [17, 24-25] with a fewer number of event points and smaller

model size, which often lead to smaller computational expenses. In most mathematical

models developed using the unit-specific event-based modelling approach, the timing

64

variables are defined based on tasks, not on units. In other words, the independent or

separate event points are used for tasks, not for units. Therefore, we call them as task-

specific event-based models in this work. Most of these task-specific event-based models

still require a high number of event points to generate optimal schedules, leading to large

model sizes and computational time. This is because most of these models do not allow

consumption and production tasks related to the same states to take place at the same

event points, unnecessarily increasing the number of event points required. Recently,

Shaik and Vooradi [26] proposed a task-specific event-based model for scheduling of

multipurpose batch processes, allowing production and consumption tasks related to the

same states to take place at the same event points. However, their model is only applicable

to the batch process without any recycling loop.

 In this work, we develop two novel mathematical models using the unit-specific

event-based modelling approach in which related consumption and production tasks are

allowed to take place at the same event points. While we define timing variables based

on units in one model (called unit-specific event-based model), the timing variables are

defined based on tasks in the other model, (called task-specific event-based model). Both

formulations are developed based on the STN representation. To make our models

applicable for any batch processes, we introduce a definition of recycling tasks slightly

different than the definition of recycling tasks of Li et al. [5]. We only allow non-recycling

production and consumption tasks to take place at the same event points to avoid

suboptimality. The computational results demonstrate that both proposed mathematical

models are very general and can be applied for all batch processes even those with

recycling loop and reduce the number of event points required. The proposed unit-specific

event-based model is the most efficient since it both requires a smaller number of event

points and significantly less computational time in most cases, especially for those

examples which are computationally expensive from existing models.

2 Problem description

A general multipurpose batch process facility including J (j = 1, 2,…, J) processing units

such as reactors, separators and heaters. The STN representation of a multipurpose batch

process facility is presented in Figure 1. These units are used to produce P (p = 1, 2,…,

P) final products using F (f = 1, 2,…, F) feeds. I (i = 1, 2,…, I) tasks will be processed in

the processing units. Each processing unit can process Ij tasks. At each time, at most one

65

task can be processed in a processing unit. Besides final products, intermediate states are

also produced. There are total S (s = 1, 2,…, S) states including feeds, intermediate states,

and final products. The feeds are denoted as SR, the intermediate states are denoted as SIN,

and the final products are included in the set of SFP. The proportion of each state s

produced or consumed by a task i in a unit j is denoted by 𝜌𝑖,𝑗,𝑠. While positive values of

𝜌𝑖,𝑗,𝑠 denote production of state s during the processing of task i in unit j, negative values

of 𝜌𝑖,𝑗,𝑠 denote consumption of state s during the processing of task i in unit j. After

production, each batch is allowed to be mixed with other batches or split into several

batches for further processing. Some intermediate states are also allowed to be recycled

back if necessary. Each intermediate state has its dedicated storage. If the storage capacity

for an intermediate state is unlimited, then it is called unlimited intermediate storage

(UIS) policy. If the storage capacity is limited or finite, then it is called finite intermediate

storage (FIS) policy. If there is no intermediate storage, then it is called no intermediate

storage (NIS) policy. In this paper, we assume UIS for all states, including intermediate

states, feeds and final products. After production in a processing unit, an intermediate

state may or may not be allowed to remain in this processing unit. If an intermediate state

has to be transferred immediately to storage or other processing units after production, it

is called zero wait (ZW) policy. If an intermediate state is allowed to remain in a

processing unit with unlimited time, then it is called unlimited wait (UW) policy. If an

intermediate state is allowed to be held in a processing unit with a certain time, then it is

called limited wait (LW) policy. In this paper, we also assume UW policy for all

intermediate states. By introducing this, the scheduling problem can be stated as follows,

 Given:

1) STN representation of a multipurpose batch facility;

2) J units, unit capacities, suitable tasks and their processing times;

3) S states, the portion of states produced or consumed from a task in a processing

unit;

4) Product prices;

5) Scheduling horizon.

Determine:

1) Optimal production schedule involving task allocations, start and end timings,

sequences and batch sizes;

66

2) Inventory profiles.

Operating rules:

1) At most one task can be processed in a processing unit at any time;

2) Batch mixing and splitting is allowed.

Assumptions:

1) All parameters are deterministic;

2) The processing time of a task in a processing unit depends on a fixed processing

time (denoted as 𝛼𝑖𝑗 plus a variable process time based on the batch sizes, which

is denoted as (𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗);

3) Unlimited feed materials are available;

4) Unlimited storage policy for all states;

5) Unlimited resources where required are available;

6) Unlimited wait policy for intermediate states.

 The objective is to maximize productivity or minimize makespan. The makespan is

defined as the time required to produce a specified demand.

Fig. 1 STN representation of a multipurpose batch process facility (Example 2)

3 Motivating example

Let consider an example whose STN representation is depicted in Figure 2. In this

example, a raw material S1 is converted into a final product S3 through two tasks (i.e., I1

and I2) in two processing units (J1 and J2). The scheduling horizon is 9 h. The objective

is to maximize the productivity of product S3. All relevant data for this example are given

in Table 1. We use the mathematical model of Shaik and Floudas [25] to solve this

example. We obtain the optimal solution of 500.00 cu using 2 events. The optimal

67

schedule is illustrated in Figure 3. As seen from Figure 3, the task I1, processed in unit

J1, produces 100 cu of S2 at event point N1, which is further processed at task I2 in unit

J2 to produce final product S3 with 100 cu at event point N2. This is because the task I2

in unit J2 is a consuming task of S2 and the task I1 in unit J1 is a production task for S2.

Therefore, the task I2 must always start at event point N2 since the production task I1

take place at event point N1 based on the model of Shaik and Floudas [25]. However, we

can use one event point for the optimal schedule through analysis. Figure 4 illustrates the

optimal schedule with only one event point. From Figure 4, it can be observed that the

consuming task I2 takes place at the same event point as the production task I1, but not

in real time. In real time, task I2 still takes place after I1 is completed. By doing this, we

can reduce one event point required for generating the optimal solution. As discussed

previously, the model size and computational performance largely depend on the number

of event points required. This motivates us to develop new mathematical formulations for

scheduling of multipurpose batch facilities by allowing consuming and production tasks

related to the same states take place at the same event points to reduce the number of

event points required.

Fig. 2 STN representation of the motivating example

Fig. 3 Optimal schedule for the motivating example using two event points from the

model of Shaik and Floudas [25]

68

Table 1 Data for motivating example

Unit Maximum capacity (mu) Minimum capacity (mu) 𝛼𝑖 (h) 𝛽𝑖 (h)

J1 100 0 3 0.02

J2 100 0 2 0.01

Fig. 4 Optimal schedule for the motivating example using one event point

4 Definition of recycling tasks

Despite the fact that allowing all related production and consumption tasks take place at

the same event points can potentially reduce the number of event points and increase

computational efficiency, we could obtain suboptimal solutions in some cases by

allowing all production and consumption tasks related to the same states to take place at

the same event points. Consider the following example, which is depicted in Figure 5. If

production and consumption tasks related to the same states are not allowed to take place

at the same event points, the optimal productivity of 1656 cu is generated with four event

points from the model of Shaik and Floudas [25]. However, if all production and

consumption tasks related to the same states are allowed to take place at the same event

points, then the suboptimum productivity of 1511 cu is generated. This occurs from tasks

I3, I4 and I5. Note that tasks I4 and I5 produce two states S2 and S4 and task I3 consumes

state S2 and produces state S3. If these tasks (i.e., tasks I3, I4, and I5) are allowed to take

place at the same event points, it is not possible for these tasks to take place at the same

time in real time, which leads to suboptimum solutions.

69

Fig. 5 STN representation of motivating example 2

Table 2 Results for motivating example 2

Example Model
Event

points

CPU

time

(s)

RMILP

(cu)

MILP

(cu)

Discrete

Variables

Continuous

Variables
Equations

1 SF 4 0.094 1800.00 1656.16 20 78 115

(H=8h) T-S 4 0.156 3300.83 1511.66 20 78 121

SF: the model of Shaik and Floudas [25]. T-S: the revised model of Shaik and Floudas [25] allowing all production and

consumption tasks related to the same states take place at the same event points.

To avoid suboptimality in such cases, a new definition slightly different from that of

recycling tasks of Li et al [5] is introduced. We define a recycling task in a processing

unit if it produces a state that can be consumed either by a task in its upstream processing

units or by other tasks in the same processing unit. The recycling tasks are included in the

set IR. In Figure 6, there are four tasks (I1-I4), two processing units (J1-J2) and three

states (S1-S3). While tasks I1 and I3 can be processed in unit J1, tasks I2 and I4 can be

processed in unit J2. Tasks I1 and I2 consume S1 and produce S2, whilst tasks I3 and I4

consume S2 and produce S1 and S3. Based on this new definition, task I1 is considered

as a recycling task because it produces S2 that can be used by task I3 as a raw material in

the same unit (i.e., J1). Similarly, tasks I2-I4 are also recycling tasks. Consequently, all

tasks in the example depicted in Figure 6 are considered as recycling tasks.

Fig. 6 Illustration of recycling tasks where all tasks are recycling tasks

5 Mathematical formulation

5.1 Time representation

As discussed before, the advantages of the unit-specific event-based modelling approach

have been well established in the literature. This modelling approach is used to develop

our new models, which are presented below.

70

5.2 Model M1

In this model, the timing variables are defined based on units. Therefore, this proposed

model is called the unit-specific event-based model.

5.2.1 Allocation constraints

To assign tasks to units, we define binary variables 𝑤𝑖,𝑗,𝑛,𝑛′ to denote if a task i is

processed in a unit j from event point n to event point n. We allow a task in a unit to span

over n event points to make the model general where n is a parameter that could be

used to control the number of event points that a task can span across. At most one task

is allowed to take place in a unit during a time as specified by constraint (1). If tasks are

allowed to span over more than one events (Δn > 0), constraint (1) allows at most one

task to be active from event point n to event point n.

∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″ ≤ 1

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

 j, n (1)

5.2.2 Capacity constraints

We define variables 𝑏𝑖,𝑗,𝑛,𝑛′ to denote the amount of materials (i.e., batch size) processed

by a task i in a unit j from event point n to event point n. If a unit j processes a task i

from event point n to event point n, then the material processed in this unit should be

constrained by the minimum (𝐵𝑖,𝑗
𝑚𝑖𝑛) and maximum (𝐵𝑖,𝑗

𝑚𝑎𝑥) capacity limits.

𝐵𝑖,𝑗
𝑚𝑖𝑛𝑤𝑖,𝑗,𝑛,𝑛′ ≤ 𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝐵𝑖,𝑗

𝑚𝑎𝑥𝑤𝑖,𝑗,𝑛,𝑛′

 j, i Ij, n n n+n (2)

5.2.3 Material balance

We define 𝑆𝑇𝑠,𝑛 to denote the amount of material s at event point n, which is used to

monitor inventory of the materials in storage and ensure no storage capacity violation.

Since we allow non-recycling tasks to take place at the same event points as the related

consumption tasks, these non-recycling tasks produce materials at event point n.

However, recycling tasks have to produce materials at event point (n-1). With this, the

amount of material in a storage at an event point n should be equal to the amount of

materials at the previous event point (n−1) plus the material produced from non-recycling

71

tasks at event point n and recycling tasks at event point (n−1) minus the material

consumed by consumption tasks at event point n, as indicated in constraints (3) and (4).

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝑃),𝑖∉𝑰𝑅𝑗

+

+∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝐶)𝑗

 s, n = 1 (3)

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃),𝑖∉𝐈R𝑗

+

+∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃∩𝐈𝑅)𝑗

+ ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝐶)𝑗

 s, n > 1 (4)

5.2.4 Processing duration constraints

Once a batch is processed on a unit, then it must be processed for some duration. A unit

is also allowed to be idle after processing. We define 𝑇𝑗,𝑛
s and 𝑇𝑗,𝑛

f to denote the start and

end times of a processing unit j at event point n. The end time of a unit j at event n must

be greater than the total processing time, consisting of a fixed term and a variable term

depending on the batch size, as indicated in the constraint (5).

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖𝑗 ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′ + 𝛽𝑖𝑗 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝚰𝑗

 j, i Ij, n n n+n (5)

Note that we do not force the finish time to be equal to the start time plus the total

processing time to allow materials produced temporally stored in unit or a unit to be idle

after processing, which may lead to a smaller number of event points that are required to

generate the optimum solution as claimed by Li and Floudas [17].

72

5.2.5 Sequencing constraints

Same or different tasks in the same unit

An event point n on a processing unit j must always start after its previous event point on

the same unit finishes.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f

 j, n < N (6)

Different tasks in different units

We need to sequence consuming and production tasks related to the same states where

the consuming and production tasks are different tasks in different units. Although a

consuming task is allowed to take place at the same event points with its related

production tasks which are non-recycling tasks, this consuming task must always start

after its related production tasks finish in real time. We introduce a new continuous

variable 𝑇𝑠,𝑛, which denotes the time that state s is available to be consumed at event point

n. Then we have:

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1

 s SIN, n (7)

The finish time of unit j, which is related with the production of state s should be before

the time that state s is available.

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)

)

 s SIN, j, , 0
j

s i

i

I

, n (8)

The start time of unit j at event point n, which is related with the consumption of state s

should be after the time that the state is available if it was produced by a non-recycling

task i.

73

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛
s + 𝑀 ∙ (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)

)

 s SIN, j,
()

,

,

0
P R

j S

s i

j i i

I I I

, n (9)

If state s is produced by a recycling task i, the end time of unit j at event point n+1, which

is related with the consumption of state s should be after the time that the state is available

instead.

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛+1
s + 𝑀 ∙ (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)

)

 s SIN, j,
()

, 0
P R

j S

s i

j i

I I I

, n (10)

5.2.6 Objectives

We consider two different objectives. In the first objective, the productivity of a given

facility is maximized for a specified scheduling horizon.

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖,𝑗,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗𝑠

 (11)

The other objective is to minimize makespan (denoted as MS), which is considered as

following,

𝑀𝑆 ≥ 𝑇𝑗,𝑛
f

 ∀j, n = N (12)

In the minimization of makespan problem, it should be also ensured that the total demand

is satisfied.

𝑆𝑇𝑠,𝑛 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐼𝑆
𝑃∩𝐼𝑅)𝑗

≥ 𝐷𝑠

 ∀s∊Sp, n=N (13)

74

We complete our model M1 which comprises of eqs. (1) − (11) if maximization of

productivity is considered as objective and eqs. (1)-(10), (12), (13) if minimization of

makespan is considered.

5.3 Model M2

In this model, the timing variables are defined based on tasks. The same tasks that can be

processed in different units have to be divided into two different tasks. We call this model

task-specific event-based model. Production and consumption tasks related to the same

states are also allowed to take place at the same event points in this model.

5.3.1 Allocation constraints

Similar to the model M1, at most one task is allowed to take place at each event point.

∑ ∑ ∑ 𝑤𝑖,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1

 j, n (14)

5.3.2 Capacity constraints

The batch size of task i from event point n to event point n should be constrained by the

maximum and minimum capacities if the task is active. Otherwise, it should be equal to

zero. This constraint (15) is the same as that of Shaik and Floudas [25].

𝐵𝑖
min𝑤𝑖,𝑛,𝑛′ ≤ 𝑏𝑖,𝑛,𝑛′ ≤ 𝐵𝑖

max𝑤𝑖,𝑛,𝑛′

 j, iIj, n n n+n (15)

5.3.3 Material balance constraints

Similar to the model M1, we allow materials that are produced by non-recycling tasks to

be consumed by their related consumption tasks at the same event point. However, if the

materials are produced by recycling tasks, then they have to be consumed by their related

consumption tasks at the next event point.

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃,𝑖∉𝐈R

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 s, n = 1 (16)

75

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃,𝑖∉𝐈R

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 s, n > 1 (17)

5.3.4 Processing duration constraints

The finish time of a task i should always be greater than the start time of the same task. It

should be also greater than the start time of the task plus the total processing time if the

task is active.

𝑇𝑖,𝑛′
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛′ + 𝛽𝑖 ∙ 𝑏𝑖,𝑛,𝑛′

 iIj, n n n+n (18)

5.3.5 Sequencing constraints

Same tasks in the same units

A task i taking place at event point n+1 should always start after it finishes at event point

n. This constraint (19) is the same as those of Shaik and Floudas [25].

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖,𝑛

f

 iIj, n (19)

Different tasks in the same units

A task i taking place at event point (n+1) should always start after all other tasks that can

be processed in the same unit finish at event point n.

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f

 j, iIj, iIj, i i, n < N (20)

76

Different tasks in different units

Similar to the model M1, two different sets of constraints are introduced based on whether

the production task is a recycling or a non-recycling task.

𝑇𝑖,𝑛
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

)

 𝑗 𝑗, 𝑖 (𝐈𝑆
𝐶 ∩ 𝐈𝑗), 𝑖(𝐈𝑆

𝑃 ∩ 𝐈𝑗), 𝑖𝐈𝑅 , 𝑛 (21)

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

)

 𝑗 𝑗, 𝑖 (𝐈𝑆
𝐶 ∩ 𝐈𝑗), 𝑖(𝐈𝑆

𝑃 ∩ 𝐈𝑗 ∩ 𝐈𝑅), 𝑛 < 𝑁 (22)

5.3.6 Tightening constraint

The duration of all tasks performed in a unit j must not exceed the scheduling horizon.

∑∑ ∑ (𝛼𝑖 ⋅ 𝑤𝑖,𝑛,𝑛′ + 𝛽𝑖 ⋅ 𝑏𝑖,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≤ 𝐻

 𝑗 (23)

5.3.7 Objectives

Similar to the model M1, two objectives were also considered in this model M2. In the

first objective, the productivity of a given facility is maximized for a specified scheduling

horizon.

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ 𝜌𝑖,𝑠𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑆
𝑃𝑠

 (24)

The second objective is to minimize makespan.

𝑀𝑆 ≥ 𝑇𝑖,𝑛
f

 ∀i, n =N (25)

Finally, in the case of minimization of makespan, the total demand should be satisfied.

77

𝑆𝑇𝑠,𝑛 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−𝛥𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

≥ 𝐷𝑠

 ∀s ∊ Sp, n = N (26)

We complete our model M2 which comprises eq. (14)-(24) if the maximization of

productivity is considered as objective and eqs. (14)-(23), (25), (26) if the minimization

of makespan is considered as objective.

6. Computational studies

We solve twelve examples to illustrate the capability of the proposed models M1 and M2.

The data for all examples are given in Tables 3-14. The STN representation of these

examples are illustrated in Figures 1 and 7-16. Note that the STN representation of

Example 2 is illustrated in Figure 1. Among these twelve examples, Examples 1-3 and 8-

12 are well-established examples from the literature [1, 17, 25]. These twelve examples

have varying tasks, units, recipe structures, processing times, and scheduling horizons.

All examples are solved to zero optimality gap using CPLEX 12/GAMS 24.6.1. on a

desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows

7. The maximum computational time is set as one hour for all examples.

Fig. 7 STN representation of Example 1

Table 3 Data for Example 1

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.333 0.01333 0 100

2 2 1.333 0.01333 0 150

3 3 1.000 0.00500 0 200

4 4 0.667 0.00445 0 150

5 5 0.667 0.00445 0 150

Table 4 Data for Example 2

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 0.667 0.00667 0 100

2 2 1.334 0.02664 0 50

3 3 1.334 0.01665 0 80

4 2 1.334 0.02664 0 50

5 3 1.334 0.01665 0 80

6 2 0.667 0.01332 0 50

7 3 0.667 0.008325 0 80

8 4 1.334 0.00666 0 200

78

Fig. 8 STN representation of Example 3

Table 5 Data for Example 3

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 0.667 0.00667 0 100

2 1 1.000 0.01000 0 100

3 2 1.333 0.01333 0 100

4 3 1.333 0.00889 0 150

5 2 0.667 0.00667 0 100

6 3 0.667 0.00445 0 150

7 2 1.333 0.01330 0 100

8 3 1.333 0.00889 0 150

9 4 2.000 0.00667 0 300

10 5 1.333 0.00667 20 200

11 6 1.333 0.00667 20 200

Fig. 9 STN representation of Example 4

Table 6 Data for Example 4

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.333 0.01333 0 100

2 2 1.333 0.01333 0 150

3 3 1.000 0.00500 0 200

4 4 0.667 0.00445 0 150

5 5 0.667 0.00445 0 150

6 6 1.000 0.00500 0 200

Fig. 10 STN representation of Example 5

79

Table 7 Data for Example 5

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.333 0.01333 0 100

2 2 1.333 0.01333 0 150

3 3 1.000 0.00500 0 200

4 4 0.667 0.00445 0 150

5 5 0.667 0.00445 0 150

6 6 1.000 0.00500 0 200

7 7 1.333 0.01333 0 100

8 8 1.333 0.01333 0 150

Fig. 11 STN representation of Example 6

Table 8 Data for Example 6

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1-3 1 1.333 0.01333 0 100

4-6 2 1.333 0.01333 0 150

7-9 3 1.000 0.00500 0 200

10-12 4 0.667 0.00445 0 150

13-15 5 0.667 0.00445 0 150

16-18 6 1.000 0.00500 0 200

19-21 7 1.333 0.01333 0 100

22-24 8 1.333 0.01333 0 150

Fig. 12 STN representation of Example 7

80

Table 9 Data for Example 7

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 6.000 0 0 200

2 2 5.000 0 0 100

3 3 9.000 0 0 100

4 4 2.000 0 0 50

5 5 3.000 0 0 50

6 6 4.000 0 0 50

7 7 2.000 0 0 100

Fig. 13 STN representation of Example 8

Table 10 Data for Example 8

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.000 0 0 10

2 2 3.000 0 0 4

3 3 1.000 0 0 2

4 4 2.000 0 0 10

Fig. 14 STN representation of Example 9

Table 11 Data for Example 9

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.500 0 0 150

2 2 4.500 0 0 60

3 3 1.500 0 0 30

4 4 1.500 0 0 30

5 5 3.000 0 0 150

81

Fig. 15 STN representation of Example 10

Table 12 Data for Example 10

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 17.3333 0.866 0 20

2 2 2.667 0.133 0 20

3 3 2.667 0.133 0 20

4 4 4.000 0.200 0 20

5 5 5.333 0.266 0 20

6 6 5.333 0.266 0 20

Fig. 16 STN representation of Examples 11 and 12

Table 13 Data for Example 11

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.666 0.03335 0 40

2 2 2.333 0.08335 0 20

3 3 0.667 0.06600 0 5

4 4 2.667 0.008325 0 40

Table 14 Data for Example 12

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.666 0.03335 0 40

2 2 2.333 0.08335 0 20

3 3 0.333 0.06800 0 2.5

4 4 2.667 0.008325 0 40

The computational results from M1 and M2 are presented in Tables 15-20. While Tables

15-19 present the results from M1 and M2 with maximization of productivity as the

objective, Table 20 presents the results from both models with minimization of makespan

as the objective. From Tables 15-20, it can be observed that both M1 and M2 models are

82

able to generate optimum solutions using less number of event points, which leads to

smaller model sizes and less computational time. For instance, both M1 and M2 models

require two event points less than the model of Shaik and Floudas [25] to generate the

optimal solutions in all instances in Example 1 (see Table 15). More specifically, in

Example 1d, the model of Shaik and Floudas [25] require 9 event points, whereas both

models M1 and M2 require 7 event points, resulting in a reduction in binary variables by

20% (45 vs. 35). The optimal schedule for Example 1d using the model M1 is illustrated

in Figure 17. From Figure 17, it can be observed that the related production and

consumption tasks take place at the same event points because all production tasks in this

example are treated as non-recycling tasks. For instance, task I1 processed in unit J1 is a

non-recycling task, which takes place at event point N1. Its related consumption task is

task I3 processed in unit J3 since this task I3 consumes state S2 produced from task I1,

which also takes place at the same event point N1.

 Similarly, from Table 18, both mathematical models require 7 event points to

generate the optimal solution for Example 4, while the model of Shaik and Floudas [25]

requires 10 event points. This leads to 30% reduction in the number of binary variables

(60 vs. 42) using the proposed mathematical models. From the optimal schedule for

Example 4 using the model M1, which is depicted in Figure 18, it can be again confirmed

that the reduction in the total event points required is due to the fact that all related

production and consumption tasks are allowed to take place at the same event points.

More specifically, from Figure 18, it seems that task I4 processed in unit J4, which is a

non-recycling, task takes place at event point N3, while its related consumption task is

task I6 processed in unit J6 which also takes place at the same event point N3. Briefly, it

can be concluded that the proposed models M1 and M2 can be applied to any batch

processes even those with recycling loops such as the batch processes in Figure 1 and

Figure 8.

83

Table 15 Computational results for Example 1 using maximization of productivity as

objective

Example Model
Event

points

CPU

time

(s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.
Constr.

1a SF 4 0.078 2000.00 1840.18 20 78 109

(H=8h) M2 2 0.125 2000.00 1840.18 10 40 57
 M1 2 0.062 2000.00 1840.18 10 47 58

1b SF 5 0.094 3000.00 2628.19 25 97 137

(H=10h) M2 3 0.109 3000.00 2628.19 15 59 85

 M1 3 0.047 3000.00 2628.19 15 68 90

1c SF 6 0.109 4000.00 3463.62 30 116 165

(H=12h) M2 4 0.124 4000.00 3463.62 20 78 113

 M1 4 0.078 4000.00 3463.62 20 89 122

1d SF 9 1.29 6601.65 5038.05 45 173 249

(H=16h) M2 7 1.54 6601.65 5038.05 35 135 197

 M1 7 1.37 6601.65 5038.05 35 152 218
Note Δn = 0 for all cases

Table 16 Computational results for Example 2 using maximization of productivity as

objective

Example Model
Event

points

CPU

time

(s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.
Constr.

2a SF 4 (Δn=0) 0.078 1730.87 1498.57 32 136 211

(H=8h) M2 4 (Δn=0) 0.141 1730.87 1498.57 32 136 213

 M1 4 (Δn=0) 0.062 1730.87 1498.57 32 126 180

2b SF 6 (Δn=0) 0.889 2730.66 1943.17 48 202 331

(H=10h) M2 6 (Δn=0) 0.889 2730.66 1943.17 48 202 331

 M1 6 (Δn=0) 0.827 2730.66 1943.17 48 184 276

 SF 6 (Δn=1) 5.41 2730.66 1962.69 88 242 737

 M2 6 (Δn=1) 5.10 2730.66 1962.69 88 242 739

 M1 6 (Δn=1) 2.78 2730.66 1962.69 88 224 316

2c SF 7 (Δn=0) 2.39 3301.03 2658.52 56 235 388

(H=12h) M2 7 (Δn=0) 2.78 3301.03 2658.52 56 235 390

 M1 7 (Δn=0) 2.86 3301.03 2658.52 56 213 324

2d SF 8 (Δn=0) 5.97 4291.68 3738.38 64 268 447

(H=16h) M2 8 (Δn=0) 6.30 4291.68 3738.38 64 268 449

 M1 8 (Δn=0) 3.94 4291.68 3738.38 64 242 372

84

Table 17 Computational results for Example 3 using maximization of productivity as

objective

Example Model
Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.
Constr.

3a SF 5 (Δn=0) 0.218 2100.00 1583.44 55 235 390

(H=8h) M2 5 (Δn=0) 0.343 2100.00 1583.44 55 235 390

 M1 5 (Δn=0) 0.358 2100.00 1583.44 55 229 346

3b SF 7 (Δn=0) 6.24 3369.69 2305.55 77 327 560

(H=10h) M2 7 (Δn=0) 6.42 3369.69 2305.55 77 327 560

 M1 7 (Δn=0) 10.23 3369.69 2293.46 77 315 494

 SF 8 (Δn=1) 3159 3618.64 2358.20 165 450 1433

 M2 8 (Δn=1) 3141 3618.64 2358.20 165 450 1433

 M1 8 (Δn=1) 892 3618.64 2358.20 165 435 659

3c SF 7 (Δn=0) 0.437 3465.63 3041.27 77 327 560

(H=12h) M2 7 (Δn=0) 0.406 3465.63 3041.27 77 327 560

 M1 7 (Δn=0) 0.483 3465.63 3041.27 77 315 494

3d SF 10 (Δn=0) 7.80 5225.86 4262.80 110 465 815

(H=16h) M2 10 (Δn=0) 6.99 5225.86 4262.80 110 465 715

 M1 10 (Δn=0) 8.81 5225.86 4262.80 110 444 716

From Tables 16-17, we can observe that the proposed formulations M1 and M2 require

the same number of event points with the model of Shaik and Floudas [25] for Examples

2-3. For these examples, M1 and M2 do not reduce the computational time too much

because of the same number of event points required. It should be noted though that when

tasks have to span over multiple event points, then model M1 can significantly reduce the

computational time. This main reason may come from the constraint (5) which is tighter

than those in Shaik and Floudas [25] when a task has to span over multiple event points.

For instance, M1 requires 49% less computational time than the model of Shaik and

Floudas [25] (5.41 s vs 2.78 s) to solve Example 2b and 72% less computational time

(3159 s vs 892 s) for Example 3b. On the other hand, even though M2 require slightly

less computational time than the model of Shaik and Floudas [25] for both Example 2b

(5.41 s vs 5.10 s) and 3b (3159 s vs 3141 s), it requires 46% more computational time

than the model M1 (2.78 s vs 5.10 s) to solve Example 2b and 72% more computational

time (892 s vs 3141 s) to solve Example 3b. Therefore, it can be concluded that the

proposed model M1 is the most efficient.

85

Table 18 Computational results for Examples 4-7 using maximization of productivity as

objective

Example Model
Event

points

CPU

time

(s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.
Constr.

4 SF 10 24.18 6601.65 4305.46 60 232 345

(H=16 h) M2 7 27.63 6601.65 4305.46 42 163 246

 M1 7 35.88 6601.65 4305.46 42 188 279

5a SF 8 0.141 1500.00 1414.18 64 250 369

(H=16 h) M2 3 0.156 1500.00 1414.18 24 95 142

 M1 3 0.156 1500.00 1414.18 24 116 159

5b SF 14 0.343 4500.00 4414.80 112 436 651

(H=32 h) M2 9 0.250 4500.00 4414.80 72 281 424

 M1 9 0.296 4500.00 4414.80 72 332 501

6a SF 57 1.61 25000.00 24927.50 570 2225 3354

(H=144 h) M2 50 6.13 25000.00 24927.50 500 1952 2951

 M1 50 1.90 25000.00 24927.50 500 2310 3634

6b SF 111 13.84 52000.00 51933.10 1110 4331 6540

(H=288 h) M2 104 25.72 52000.00 51933.10 1040 4058 6137

 M1 104 12.14 52000.00 51933.10 1040 4794 7576

6c SF 219 40.82 106000.00 105944.00 2190 8543 12912

(H=576 h) M2 212 8.30 106000.00 105944.00 2120 8270 12509

 M1 212 27.97 106000.00 105944.00 2120 9762 15460

7 SF 49 33.81 21000.00 20935.30 1176 4853 8540

(H=128 h) M2 42 43.54 21000.00 20935.30 1008 4160 7329

 M1 42 33.59 21000.00 20935.30 1008 3724 5768
Note Δn = 0 for all cases

Table 19 Computational results for Examples 8-12 using maximization of productivity

as objective

Example Model
Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.
Constr.

8 SF 5 0.109 14.00 10.00 20 82 117

(H=6h) M2 3 0.078 14.00 10.00 12 40 73

 M1 3 0.062 14.00 10.00 12 46 79

9 SF 5 0.125 300.00 210.00 25 114 160

(H=9h) M2 3 0.109 300.00 210.00 15 60 100

 M1 3 0.062 300.00 210.00 15 80 105

10 SF 5 0.109 80.00 58.99 30 123 175

(H=76h) M2 2 0.125 80.00 58.99 12 51 73

 M1 2 0.046 80.00 58.99 12 61 76

11 SF 6 0.109 400.00 400.00 24 110 153

(H=10h) M2 4 0.109 400.00 400.00 16 74 105

 M1 4 0.093 400.00 400.00 16 95 129

12 SF 10 0.203 400.00 400.00 40 182 257

(H=5h) M2 8 0.093 400.00 400.00 32 146 209

 M1 8 0.093 400.00 400.00 32 183 265
Note Δn = 0 for all cases

86

However, even though the proposed models, especially model M1, are more efficient for

most of the examples, it seems that in some special cases they require a bit larger CPU

time. For instance, in Example 4 depicted in Table 18 the model of Shaik and Floudas

[25] is able to generate the optimum solution in 24.18 s, while models M1 and M2 require

35.88 s and 27.63 s respectively. Nevertheless, the difference is not large, which is in the

same magnitude. The main possible reason is that the proposed models M1 and M2

require more CPU time to prove optimality for this example due to different nodes

investigated using the branch and bound algorithm. It should also be noted that in Tables

15-20 only the computational time required to generate the optimal solution using the

optimum number of event points and Δn is reported. In practice, an iterative procedure is

often used to find the optimal number of event points, Δn and the optimal solution. In this

iterative procedure, the problem is solved starting from the minimum number of event

points. The number of event points is increased by one until there is no change in the

obtained solution. In the iterative procedure, it should be also examined whether allowing

one a task to span for more than one event point can lead to the optimal solution. We use

the iterative procedure to solve Example 4 with the model of Shaik and Floudas [25] and

the proposed model M1. The computational results are given in Table 21. From Table 21

it seems that the model M1 requires less total computational time to locate the optimal

solution using the iterative procedure. More specifically for model M1 1281 s are required

to prove that the optimal solution is generated by using 7 event points while for Shaik and

Floudas [25] significantly more time (2771 s) is required to prove that the optimal solution

is generated by using 10 event points.

Table 20 Computational results for Examples 1-3 using minimization of makespan as

objective

Example Model
Event

points

CPU

time

(s)

RMILP

(h)

MILP

(h)

Disc.

Var.

Cont.

Var.
Constr.

1a (H=50 h) SF 14 11.45 24.24 27.88 70 268 394

𝐷𝑠4 = 2000 M2 12 5.30 25.36 27.88 60 230 342

 M1 12 6.96 24.24 27.88 60 254 383

1b (H=100

h)
SF 23 7.50 48.47 52.07 115 439 646

𝐷𝑠4 = 4000 M2 21 5.70 50.06 52.07 105 401 594

 M1 21 4.81 48.47 52.07 105 443 671

2a(H=50 h) SF 9 96.00 10.78 19.34 72 301 515

𝐷𝑠8 = 200 M2 9 28.78 10.78 19.34 72 301 515

𝐷𝑠9 = 200 M1 9 46.58 18.68 19.34 72 265 425

87

2b(H=100

h)
SF 19 3600a 45.57 46.31 152 631 1105

𝐷𝑠8 = 500 M2 19 3600b 45.57 46.31 152 631 1107

𝐷𝑠9 = 400 M1 19 3600c 45.57 46.31 152 555 905

3a (H=50 h) SF 7 0.187 11.07 13.37 77 327 572

𝐷𝑠12 = 100 M2 7 0.250 11.07 13.37 77 327 572

𝐷𝑠13 = 200 M1 7 0.374 11.25 13.37 77 306 501

3b (H=50 h) SF 10 0.515 12.50 17.03 110 465 827

𝐷𝑠12 = 250 M2 10 0.374 12.76 17.03 110 465 827

𝐷𝑠13 = 250 M1 10 0.359 14.27 17.03 110 435 723
a

Relative gap 1.10%. b
Relative gap 1.43%. c

Relative gap 1.58%. Note Δn = 0 for all cases

Fig. 17 Optimal schedule of Example 1d using the model M1, with maximization of

productivity as the objective

Fig. 18 Optimal schedule for Example 4 using the model M1 with maximization of

productivity as the objective

88

Table 21 Computational results for Example 4 using the iterative procedure

(maximization of productivity)

 CPU time (s)

 SF M1

Event Point (Δn=0) (Δn=1) (Δn=0) (Δn=1)

n=1 - - 0.093 0.078

n=2 - - 0.062 0.078

n=3 - - 0.078 0.031

n=4 0.031 0.062 0.078 0.187

n=5 0.062 0.094 0.218 0.405

n=6 0.078 0.078 1.36 9.70

n=7 0.046 0.188 35.88 700

n=8 0.250 0.421 532.5 -

n=9 1.20 19.6 - -

n=10 24.18 2027 - -

n=11 698 - - -

Total 2771 1281

7 Conclusions

In this paper, we proposed two novel mathematical formulations M1 and M2 using the

unit-specific event-based modelling approach. While timing variables in M1 were

defined based on units, they were defined based on tasks in M2. In both models,

production and consuming tasks related to the same states were allowed to take place at

the same event points. To avoid suboptimality in some cases, we proposed a new

definition of recycling and non-recycling tasks. Only the non-recycling production tasks

and related consuming tasks are allowed to take place at the same event points. The

computational results demonstrate that the proposed models M1 and M2 generated

optimal solutions for all examples and reduced the number of event points required,

leading to smaller model sizes. Both models are applicable to any batch processes even

those with recycling loops. Furthermore, the proposed model M1 is the most efficient

since it requires the least possible computational time which can reach up to one

magnitude in most cases. In the future, we will extend the proposed models M1 and M2

to solve other more complex intermediate storage policies such as FIS and NIS.

Acknowledgements

Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate

award by The University of Manchester. Liping Zhang appreciates financial support from

the National Natural Science Foundation of China (No. 51875420).

89

References

1. Kondili E, Pantelides C C, Sargent R W. H. A general algorithm for short-term scheduling of batch operations-I

MILP formulation. Computers & Chemical Engineering, 1993, 17(2): 211-227

2. Pantelides C. Unified frameworks for optimal process planning and scheduling. Proc. Second Conf. on Foundations

of Computer Aided Operations, 1994, 253-274

3. Floudas C A, Lin X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a

review. Computers and Chemical engineering, 2004, 28(11): 2109-2129

4. Méndez C A, Cerdá J, Grossmann I E, Harjukoski I, Fahl M. State-of-the-art review of optimization methods for

short-term scheduling of batch processes. Computers and Chemical Engineering, 2006, 30(6-7): 913-946

5. Li J, Susarla N, Karimi I A, Shaik M A, Floudas C A. An analisis of some unit-specific event-based models for the

short-term scheduling of noncontinuous processes. Industrial and Engineering Chemistry research, 2010, 49(2): 633-647

6. Maravelias C T. General framework and modeling approach classification for chemical production scheduling.

AIChE journal, 2012, 58(6): 1812-1828

7. Harjunkoski I, Maravelias C, Bongers P, Castro P, Engell S, Grossmann I, Hooker J, Méndez C, Sand G, Wassick

J. Scope for industrial application of production scheduling models and solution methods. Computers and Chemical

Engineering, 2014, 62(5): 161-193

8. Velez S, Maravelias C T. Multiple and nonuniform time grids in discrete-time MIP models for chemical production

scheduling. Computers and Chemical Engineering, 2013, 53(11): 70-85

9. Lee H, Maravelias C T. Discrete-time mixed integer programming models for short-term scheduling in

multipurpose environments. Computers and Chemical Engineering, 2017, 107: 171-183

10. Pinto J M, Grossmann I E. A continuous time mixed integer linear programming model for short-term scheduling

of multistage batch plants. Industrial and Engineering Chemistry research, 1995, 34(9): 3037-3051

11. Sundaramoorthy A, Karimi I A. A simpler better slot-based continuous-time formulation for short-term scheduling

in multipurpose batch plants. Chemical engineering science, 2005, 60(10): 2679-2702

12. Susarla N, Li J, Karimi I. A Novel Approach to Scheduling Multipurpose Batch Plants Using Unit-Slots. AlChe

Journal, 2010, 56(7): 1859-1879

13. Zhang X, Sargent R W H. The optimal operation of mixed production facilities-A general formulation and some

approaches for the solution. Computers and Chemical Engineering, 1996, 20(6-7): 897-904

14. Castro P, Barbosa-Póvoa A P F D, Matos H. An improved RTN continuous-time formulation for the short-term

scheduling of multipurpose batch plants. Industrial and Engineering Chemistry research, 2001, 40(9): 2059-2068

15. Maravelias C T, Grossmann I E. New General Continuous-Time State-Task Network Formulation for Short-Term

Scheduling of Multipurpose Batch Plants. Industrial Engineering and Chemistry research, 2003, 42(13): .3056-3074

16. Ierapetritou M G, Floudas C A. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose

batch processes. Industrial & Engineering Chemistry, 1998, 37(11): 4341-4359

17. Li J, Floudas C. Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-

specific event-based continuous-time approaches. Industrial & Engineering Chemistry Research, 2010, 49(16): 7446-7469.

18. Tang Q H, Li J, Floudas C A, Deng M X, Yan Y B, Xi Z H, Chen P H, Kong J Y. Optimization framework for

process scheduling of operation-dependent automobile assembly lines. Optimization Letters, 2012,6(4): 797-824

https://link.springer.com/journal/11590

90

19. Li J, Xiao X, Floudas C A. Integrated gasoline blending and order delivery operations: part I. short-term scheduling

and global optimization for single and multi-period operations. AIChE journal, 2016, 62(6): 2043-2070

20. Méndez C A, Cerdá J. Optimal scheduling of a resource-constrained multiproduct batch plant supplying

intermediates to nearby end-product facilities. 2000, 24(2-7): 369-376

21. Hui C, Gupta A, van der Meulen H A J. A novel MILP formulation for short-term scheduling of multi-stage multi-

product batch plants with sequence-dependent constraints. Computers and Chemical Engineering, 2000, 24(12): 2705 – 271

22. Méndez C A, Cerdá J. An MILP continuous-time framework for short-term scheduling of multipurpose batch

processes under different operation strategies. Optimization and Engineering, 2003, 4(1-2): 7-22

23. Li J, Karimi I A. Scheduling gasoline blending operations from recipe determination to shipping using unit slots.

Industrial & Engineering Chemistry Research, 2011, 50(15): 9156-9174

24. Shaik M. A, Janak S L, Floudas C A. Continuous-time models for short-term scheduling of multipurpose batch

plants: a comparative study. Industrial & Engineering Chemistry Research, 2006, 45(18): 6190-6209

25. Shaik M, Floudas C. Novel Unified Modeling Approach for Short-Term Scheduling. Industrial & Engineering

Chemistry Research, 2009, 48(6): 2947-2964

26. Shaik M, Vooradi R. Short-term scheduling of batch plants: Reformulation for handling material transfer at the

same event, Industrial & Engineering Chemistry 2017, 56(39): 11175-11185

91

Nomenclature

Task-specific event-based model

Indices

𝑖, 𝑖′: tasks

𝑗, 𝑗′: units

𝑛, 𝑛′, 𝑛′′: event points

𝑠 ∶ states

Sets

𝐼 ∶ tasks

𝐈𝑗 ∶ tasks that can be performed in unit 𝑗

𝐈𝑠
𝑐: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

𝐈𝑅 ∶ tasks considered as recycling tasks

𝐽 ∶ units

𝑁 ∶ event points

𝑆 ∶ states

𝐒𝐹𝑃 ∶ states that are final products

𝐒𝐼𝑁 ∶ states that are intermediate products

𝐒𝑅 ∶ states that are raw materials

Parameters

𝐵𝑖
𝑚𝑎𝑥: maximum batch size that can be processed in task 𝑖

𝐵𝑖
𝑚𝑖𝑛 ∶ minimum batch size that can be processed in task 𝑖

𝐷𝑠: demand of state s

𝐻 ∶ scheduling horizon

92

𝑝𝑠 ∶ price of state 𝑠

𝛼𝑖 ∶ coefficient of constant term of processing time of task 𝑖

𝛽𝑖 ∶ coefficient of variable term of processing time of task 𝑖

𝛥𝑛 ∶ maximum number of event points that task 𝑖 is allowed to be active

𝜌𝑖,𝑠 ∶ portion of state 𝑠 consumed/produced by task 𝑖

Binary Variables

𝑤𝑖,𝑛,𝑛′ ∶ binary variable which takes the value 1 if task 𝑖 starts at time event point 𝑛 and

finishes at time event point 𝑛′ ≥ 𝑛.

Continuous Variables

𝑏𝑖,𝑛,𝑛′ ∶ batch size of task 𝑖 that is active from time event point 𝑛 to time event point 𝑛′ ≥

𝑛

𝑆𝑇0𝑠 ∶ initial amount of state 𝑠 (𝑠 ∊ 𝐒𝑅)

𝑆𝑇𝑠,𝑛 ∶ excess amount of state 𝑠 that needs to be stored at time event point 𝑛

𝑇𝑖,𝑛
f ∶ finish time of task 𝑖 at time event point 𝑛

𝑇𝑖,𝑛
s ∶ start time of task 𝑖 at time event point 𝑛

Unit-specific event-based model

Indices

𝑖, 𝑖′: tasks

𝑗, 𝑗′: units

𝑛, 𝑛′, 𝑛′′: event points

𝑠 ∶ states

Sets

𝐼 ∶ tasks

𝐈𝑗 ∶ tasks that can be performed in unit 𝑗

93

𝐈𝑠
𝑐: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

𝐈𝑅 ∶ tasks considered as recycling tasks

𝐽 ∶ units

𝑁 ∶ event points

𝑆 ∶ states

𝐒𝐹𝑃 ∶ states that are final products

𝐒𝐼𝑁 ∶ states that are intermediate products

𝐒𝑅 ∶ states that are raw materials

Parameters

𝐵𝑖,𝑗
𝑚𝑎𝑥: maximum batch size of task 𝑖 processed in unit j

𝐵𝑖
𝑚𝑖𝑛 ∶ minimum batch size of task 𝑖 processed in unit j

𝐷𝑠: demand of state s

𝐻 ∶ scheduling horizon

𝑝𝑠 ∶ price of state 𝑠

𝛼𝑖,𝑗 ∶ coefficient of constant term of processing time of task 𝑖 in unit j

𝛽𝑖,𝑗 ∶ coefficient of variable term of processing time of task 𝑖 in unit j

𝛥𝑛 ∶ maximum number of event points that task 𝑖 is allowed to be active

𝜌𝑖,𝑗,𝑠 ∶ portion of state 𝑠 consumed/produced by task 𝑖 processed in unit j

Binary variables

𝑤𝑖,𝑗,𝑛,𝑛′: binary variable which takes the value 1 if task 𝑖 is processed in unit 𝑗 from time

event point 𝑛 to time event point 𝑛′ ≥ 𝑛

94

Continuous variables

𝑏𝑖,𝑗,𝑛,𝑛′: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event

point 𝑛 to time event point 𝑛′ ≥ 𝑛

𝑆𝑇𝑠,𝑛: amount of state 𝑠 that has to be stored at time event point 𝑛

𝑇𝑗,𝑛
s : start time of unit 𝑗 at time event point 𝑛

𝑇𝑗,𝑛
f : end time of unit 𝑗 at time event point 𝑛

𝑇𝑖,𝑗,𝑛
s : start time of task 𝑖 in unit 𝑗 at time event point 𝑛

𝑇𝑖,𝑗,𝑛
f : end time of task 𝑖 in unit 𝑗 at time event point 𝑛

95

Chapter 4: Generic mathematical formulations for

scheduling of multipurpose batch plants

4.1 Introduction

In Chapter 3, it is presented that allowing related production and consumption tasks can

reduce the number of event points and, as a result, it can reduce the model size and the

computational time required to generate the optimal solution. However, there are more

cases where existing mathematical models lead to more time slots/event points or even to

a suboptimum solution. An issue, for instance, is that a consumption task can only start

after all related production tasks finish within the same event point (or the previous event

point if those production and consumption tasks are not allowed to the place at the same

event point). Such constraint still holds, even if the consumption task consumes materials

from the storage tank or a related production task that finishes earlier. In both cases, a

mathematical model requires additional event points to generate an optimal solution.

Existing mathematical models also require additional event points to generate the

optimal solution for problems with limited storage policies. By carefully examining the

results generated using existing formulations for examples with both unlimited and

limited storage policies, it seems that the latter requires more event points, even if the

units process the same number of batches in both cases. The main issue that leads in such

an increase is the fact that the start time of a consumption task at event point (n + 1) (or

at event point n if related processes can take place at the same event point) must always

be equal to the finish time of all related production tasks at event point n if the

consumption task consumes a state with a limited storage policy. Such constraint is

introduced in formulations to ensure that there is no storage violation in the generated

schedule. However, if there is enough storage available or the processing units can store

the producing materials, then related production and consumption tasks should not align.

Another issue is that most existing formulations for limited storage capacity only allow

materials to remain in a producing processing unit for the current time slot/event point.

For the next time slot/event point, a storage tank or another processing unit should store

or process those materials. However, not allowing a task to store materials at the next

96

event point can either increase the number of event points or even to lead to a suboptimum

solution.

In the literature, a few works are dealing with those issues (Seid and Majozi 2012;

Vooradi and Shaik 2013). Such models even though they can reduce the number of event

points required, they fail to handle all these cases simultaneously. Furthermore, in some

cases, those models can generate schedules with storage violations (Seid and Majozi

2012) or suboptimum solutions (Vooradi and Shaik 2013). In this chapter, two generic

formulations for scheduling of multipurpose batch processes are developed. While the

first model allows relating production and consumption tasks to take place at the same

event point, the second model does not. Both models conditionally sequence and align

related production and consumption tasks if there is an indirect or direct material transfer

between units that process those tasks. Additionally, processing units are allowed to store

materials for multiple event points by avoiding schedules with a real-time violation. By

using such an approach, the aim is to generate the optimum solution in all cases by using

the least number of event points.

97

4.2 Research contribution 2

Rakovitis, N., Pan Y, Zhang, N., Li, J. Kopanos, G. Generic mathematical formulations

for scheduling of multipurpose batch plants, AIChE journal, submitted

98

Blank Page

 99

Generic mathematical formulations for scheduling of multipurpose

batch plants

Nikolaos Rakovitis,1 Yueting Pan,1 Nan Zhang,1 Jie Li,1,* and Giorgos Kopanos2

1Centre for Process Integration, Department of Chemical Engineering and Analytical

Science, The University of Manchester, Manchester, M13 9PL, United Kingdom

2Flexciton Limited, London, 145 City Rd, Hoxton, London EC1V 1AZ

Abstract

In this work, we develop two generic mixed-integer linear programming formulations for

scheduling of multipurpose batch plants using the unit-specific event-based modelling

approach. While related non-recycling production and consumption tasks are allowed to

take place at the same event points but in different actual time in the first model, they are

not allowed in the second model. We also introduce the concept of indirect and direct

material transfer, which conditionally aligns the operational sequence of related

production and consumption tasks. In these models, processing units can hold materials

previously produced over multiple event points. The computational results demonstrate

that the proposed models do not require a task to span over different event points and, as

a result, they can generate the same or better solutions with up to one order of magnitude

less computational time compared to the existing models.

Keywords: Scheduling, Multipurpose batch processes, mixed-integer linear

programming, unit-specific event-based approach

* To whom correspondence should be addressed. Email: jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 100

1 Introduction

Multipurpose batch plants widely exist in the chemical industry for the production of a

large number of low-volume, high-value products. To achieve higher utilization of

resources, lower inventory costs and better responsiveness to a fluctuating manufacturing

environment, optimal scheduling of the multipurpose facilities is desirable and has

attracted much interest of both academia and industry in the past decades. Many

mathematical formulations attempt to solve this problem by either using the State Task

Network (STN) representation1 or the Resource Task Network (RTN) representation2.

These models are classified based on the time representation of the scheduling horizon

into discrete-time and continuous-time representations. The discrete-time representation

divides the scheduling horizon into time intervals with fixed and known length. The time

intervals can either be uniform or non-uniform3 within the scheduling horizon, and a task

or activity can only start and finish at these time intervals. The continuous-time

representation uses time points, slots, or event points to divide the scheduling horizon

with a variable and unknown length. It can be further classified into global event-based4-

6, slot-based including process-slot based7-8 and unit-slot based8-9, unit-specific event-

based10-17 and sequence-based18-20 time representations. These mathematical models are

also classified into single- and multiple- time grid mathematical models21. For more

details about these time representations, the reader can refer to22-24, which provide

excellent reviews for scheduling in chemical industries.

All existing time-grid mathematical models divide the scheduling horizon using

time points/slots/event points on which a task or activity can both start and finish.

Therefore, the number of time points/slots/event points required directly affects the

efficiency of the existing mathematical models. More specifically, an additional time

point/slot/event point can lead to an exponential increase in the number of binary

variables, continuous variables and constraints, which can potentially increase the

computational time required to generate the optimal solution by even one order of

magnitude. Some task must be allowed to span over multiple time points/slots/event

points to provide the optimal solution, which further increases the computational burden.

The capabilities of the unit-specific event-based formulations are well established in the

literature11-12, 17. However, they still require excessive computational time for industrial-

scale problems due to the introduction of additional event points to generate the optimal

solution. The main possible reason is that most existing unit-specific event-based

 101

formulations unconditionally impose that a consumption task starts after its related

production tasks (with the same states) even if the consumption task does not consume

materials from the related production tasks Additionally, in some cases, this task should

start immediately after its related production tasks finish, even if there is enough storage

available.

Two works14-15 in the literature have attempted to relax such unconditional

sequencing and alignment. Seid and Majozi14 investigated whether consumption tasks

consume materials from storage tanks and whether producing materials can be stored in

the storage tanks. For the former case, if there are not enough materials in the storage

tanks for all consumption tasks, then the unconditional sequencing of all related

production and consumption tasks are imposed. In the latter case, if a production task

produces materials that the storage tanks cannot store then all related production and

consumption tasks should be unconditionally aligned. However, the problem of

unconditional sequencing of related production and consumption tasks even if the

consumption task does not consume any materials from the production task was not

addressed. They also did not consider to conditionally align a production task with a

related consumption task, if in storage tanks can store the producing materials. Another

issue of their formulation is that it can generate schedules with a real-time violation, as

demonstrated by Vooradi and Shaik15. To address all those issues, Vooradi and Shaik15

explicitly examined if a consumption task consumes materials from a specifically related

production task or if there is enough storage for materials produced by a specific

production task. They sequenced a production task with a related consumption task only

if the consumption task consumes materials from the production task, while they aligned

a production task with a related consumption task only if storage tanks cannot store the

materials from a specific production task. With this approach, they have managed to

further reduce the number of event points in comparison to the model of Seid and

Majozi14, while they avoided generating a solution with a real-time violation. However,

Vooradi and Shaik15 used an increased number of binary variable sets to denote whether

tasks have to be sequenced or aligned during an event point in their model, leading to

computational inefficiency. Most of the existing models fail to generate the optimal

solution in some cases, especially when the materials have to be temporarily stored in

processing units, as illustrated later.

 102

In this work, we develop two generic mixed-integer linear programming

formulations for scheduling of multipurpose batch plants using the unit-specific event-

based modelling approach. While we follow the methodology of Rakovitis et al.17 where

all related non-recycling production and consumption tasks can take place at the same

event points but in different real times in the first model, we do not allow all related non-

recycling production and consumption tasks to take place at the same event points in the

second model. We also introduce the concept of indirect and direct material transfer,

which allows us to conditionally and unconditionally align the operational sequences of

related production and consumption tasks. More specifically, we sequence production

and consumption tasks related to the same state if there is an indirect material transfer

between the units that are processing these tasks, while we align them if there is a direct

material transfer between these units. Additionally, we allow the processing units to hold

materials previously produced from these units over multiple event points.

Nonsimultaneous material transfer8 can also take place in both models. We solve several

well-established examples in the literature to illustrate the capability of the proposed

formulations. The computational results demonstrate that both models require a smaller

number of binary variables in most cases, especially in the cases where a processing unit

can process multiple tasks, compared to the existing mathematical formulation15. It is

interesting to note that the proposed models do not need to allow a task to span over

several event points to generate the optimal solution. As a result, the computational time

is significantly reduced by one order of magnitude in most cases. More importantly, the

proposed models can generate better solutions than the existing models such as Vooradi

and Shaik15 and Mostafaei and Harjunkoski21. The first model, which allows related non-

recycling production and consumption tasks to take place at the same event points is

slightly more efficient than the second one. Finally, we use the proposed model to solve

a large-scale industrial batch plant scheduling problem from Janak et al.25 using the

rolling-horizon decomposition algorithm. The results demonstrate that the proposed

model can improve productivity by 26.7% in significantly less computational time

compared to that of Janak et al.25.

2 Problem statement

Figure 1 illustrates a general STN representation of a multipurpose batch plant. There are

I (i = 1, 2, 3, …, I) tasks that are processed in total J (j = 1, 2, …, J) processing units. In

a batch plant, a task means heating, reaction, separation, and so on. Each unit can process

 103

Ij available tasks. A processing unit can process multiple tasks. However, at most one

task can be processed in a unit at a time. Raw materials, intermediate products, and final

products are denoted as states in the STN representation. There are S (s = 1, 2, 3, …, S)

states in total. The raw materials are denoted as SR, intermediate materials are denoted as

SIN and final products are denoted as SP. A state is consumed or produced by Is tasks

including 𝐈𝑠
𝐶 consumption tasks and 𝐈𝑠

𝑃 production tasks. The proportion of a state 𝑠 that

a task i in a unit j consumes or produces is known which is denoted by a parameter 𝜌𝑠𝑖𝑗.

While this proportion parameter is positive if the state is produced, it is negative if the

state is consumed. A task i on unit j processes a batch size (𝑏𝑖𝑗) of material state. The

processing time is assumed to be a linear function of the batch size, which is calculated

by 𝛼𝑖𝑗 + 𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗.

Once a batch is produced in a processing unit, it may be transferred immediately or remain

in the processing unit for some limited or unlimited time. This transfer can be into a

dedicated storage tank, split into different small batches or mixed with other batches for

downstream processing. In other words, batch splitting and mixing are allowed. There are

several different storage policies including unlimited intermediate storage (UIS) policy

and finite intermediate storage (FIS) policy. With this, the entire scheduling problem can

be stated as follows,

Given:

a) J units, suitable Ij tasks, minimum (𝑏𝑖𝑗
𝑚𝑖𝑛) and maximum (𝑏𝑖𝑗

𝑚𝑎𝑥) capacities and

constant processing time coefficients;

b) S states, suitable Is tasks including production tasks and consumption tasks,

detailed processing paths and recipes, their initial inventories, and minimum and

maximum capacities.

c) The production recipe (i.e., the coefficients of processing time for each task, and

the consuming or producing proportions of each batch).

The product prices;

d) The scheduling horizon for maximization of productivity problems or the product

demand for minimization of makespan problems.

 104

Determine:

a) Optimal production schedule including allocation, sequence, timings of tasks in a

unit;

b) The amount of material being processed in each unit at each time;

c) Inventory profiles of all material states through the scheduling horizon.

Operating rules:

a) At most one task can be processed in a unit at a time;

b) Batch mixing and splitting is allowed.

Assumptions:

a) All parameters are deterministic with no batch/unit failures or operational

interruptions;

b) The processing time of a task in a processing unit depends on the batch size;

c) Unlimited feed materials are available;

d) Unlimited storage policy for raw materials and final products;

e) Unlimited or Finite storage policy for intermediate products;

f) Unlimited resources are available;

g) Unlimited wait policy for intermediate states.

h) Negligible transfer times between units (i.e., processing units and storage units).

i) Setup or changeover times are lumped into batch processing times.

j) All processing units can hold a batch temporarily before its start and after its end.

k) Each material state has its dedicated storage unit.

We consider two objectives. The first objective is to maximize productivity in the given

scheduling horizon. The second objective is to minimize the total time required to fulfil

the product demand, which is known as minimization of makespan.

 105

Figure 1 STN representation of a multipurpose batch plant

3 Motivating Example 1

Let consider a motivating example, the data of which is given in Table 1. Figure 2

illustrates the STN of this example. There are two processing units (J1-J2), two tasks (I1-

I2) and three states (S1-S3). I1 is processed on unit J1, and I2 is processed on unit J2.

There is no initial amount for the intermediate state S2. The maximum storage capacity

of state S2 is 10 mu.

Table 1 Data for the Motivating Example

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 3.00 0.02 0 100

2 2 1.00 0.01 0 50

Figure 2 STN representation of the Motivating Example

We use the mathematical models of Li and Floudas12, Vooradi and Shaik15 and Mostafaei

and Harjunkoski21 to solve this motivating example. Table 2 provides the computational

results. The optimal schedule with a maximum productivity of 300 cu obtained from the

existing models12, 15, 21 is illustrated in Figure 3. In this schedule, 60 cu of S2 is produced

by task I1 in the unit J1 at 5 hr. Then, 50 cu of S2 is consumed immediately after

production. Storage tanks store 10 cu of S2 , which does not violate the storage capacity,

 106

while another 10 cu of S2 are consumed at 7 hr. Finally, product S3 with a total price of

300 cu is produced. From the schedule, it seems that the intermediate S2 is immediately

transferred to the storage tank and consumption unit after it is produced. However, we

can generate another solution with a maximum productivity of 500 cu through trial and

errors, as illustrated in Figure 4, which means that all these existing models generate a

suboptimal solution for this example. Through a detailed analysis of the schedules in

Figures 3 and 4, the possible reason is that the latter solution allows material S2 produced

in the unit J1 to be stored in this unit. Only 50 cu is transferred into unit J2 for further

processing after production. Even though the model of Vooradi and Shaik15 allows a

production task to store materials, this can only take place at event point N1. For N2, the

materials have to be either consumed by a consumption task or stored in the storage task.

However, since there is no storage available, J1 cannot process the same amount of state

S2. Instead, it can only produce 60 cu. Therefore, the model of Vooradi and Shaik15 also

fail to generate an optimum solution. This example motivates us to develop a new generic

mathematical formulation with consideration of these additional features that can result

in a significant increase in the productivity of the batch plant.

Figure 3 Optimal schedule for the Motivating Example 1 with maximum productivity of

300 cu

 107

Table 2 Computational results for Motivating Example 1 from the models of Li and

Floudas12, Vooradi and Shaik15 and Mostafaei and Harjunkoski21

Example Model

Number

of event

points

CPU

time

(s)

RMILP
MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

M. E. LF2010 3 0.11 500.00 300.00 6 29 41

(H = 8 h) VS2013 3 0.09 500.00 300.00 14 33 72

 MH2019 4 (ΔR=1) 0.08 500.00 300.00 6 34 78

LF2010: Li and Floudas12 model. VS2013: Vooradi and Shaik15 model. MH2019:

Mostafaei and Harjunkoski21

Figure 4 A feasible schedule for the Motivating Example 1 with maximum productivity

of 500 cu

4 Generic mathematical formulation

It is of great importance to represent time horizon for scheduling problems before

developing a mathematical formulation. Although there are several existing time

representations for scheduling problems including discrete-time, slot-based, global event-

based, unit-specific event-based, and sequence-based time representations as discussed,

the well-established unit-specific event-based time representation is adopted in this work.

The reason is that it often leads to smaller model size and less computational effort in

comparison to other time representations. The reader can refer for more details about this

time representation to the work of Ierapetritou and Floudas10.

 108

Figure 5 The unit-specific event-based representation where related production and

consumptions tasks are allowed to take place at the same event points

4.1 Model M1

In this model M1, we allow production and consumption tasks related to the same state

to take place at the same event points, which is similar to those of Rakovitis et al.17. We

also use the definition of recycling tasks presented on Rakovitis et al.,17 and we only allow

non-recycling production and consumption tasks related to the same state to take place at

the same event point. Furthermore, the timing variables are defined based on units, not

tasks. The unit-specific event-based time representation for model M1 is illustrated in

Figure 5. In Figure 5, task I1 produces S1, which is consumed by task I2. I1 and I2 take

place at the same event point N1 but in different actual time.

4.1.1 Allocation constraints

We introduce four-index binary variables 𝑤𝑖𝑗𝑛𝑛 to denote the allocation of tasks to units

below,

1 if a task is processed in a unit from an event point to

0 otherwise
ijnn

i j n n
w

=

where n n n + n. The parameter n is used to denote the maximum number of event

points that a task is allowed to span over.

 109

Based on the operating policy, at most, one task is allowed to be processed in a processing

unit at a time.

∑ ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1

 j, n (1)

4.1.2 Capacity constraints

The materials processed in a unit j should not exceed its minimum (𝐵𝑖𝑗
𝑚𝑖𝑛) and maximum

(𝐵𝑖𝑗
𝑚𝑎𝑥) capacities.

𝐵𝑖𝑗
min ⋅ 𝑤𝑖𝑗𝑛𝑛′ ≤ 𝑏𝑖𝑗𝑛𝑛′ ≤ 𝐵𝑖𝑗

max ⋅ 𝑤𝑖𝑗𝑛𝑛′

 j, i Ij, n ≤ n ≤ n+n (2)

4.1.3 Material balance constraints

The amount of a state 𝑠 that has to be stored at event point 𝑛 (𝑆𝑇𝑠𝑛) should be equal to

the amount of the state that has been stored at event point (𝑛 − 1), plus the amount of the

state produced by recycling tasks at event point (𝑛 − 1) and by non-recycling tasks at

event point 𝑛, minus the amount of the state consumed at event point 𝑛. At the first event

point, the amount of a state 𝑠 that has to be stored should be equal to the initial amount

of the state (𝑆𝑇0𝑠) plus the amount of the state produced by non-recycling tasks, minus

the amount of state 𝑠 consumed at event point 𝑛.

𝑆𝑇𝑠𝑛 = 𝑆𝑇𝑠(𝑛 − 1) + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝐈𝑠
𝑃\𝐈R

+

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 s, n > 1 (3)

𝑆𝑇𝑠𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝐈𝑠
𝑃\𝐈R

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 s, n = 1 (4)

where I𝑠
𝑃\I𝑅 means all production tasks except recycling tasks.

 110

4.1.4 Duration constraints

The finish time of a unit j at event point n must be after its start time plus the processing

time of the task 𝑖 that the unit starts processing at event point n.

𝑇𝑗𝑛
f ≥ 𝑇𝑗𝑛

s + ∑ ∑ (𝛼𝑖𝑗 ∙ 𝑤𝑖𝑗𝑛𝑛′ + 𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗𝑛𝑛′)

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 j, n (5)

4.1.5 Material transfer

Material transfer in the batch process is more flexible and complex compared to that in

the continuous process. There are several scenarios of material transfer. Figure 6

illustrates all those different scenarios of material transfer. First, materials can be

transferred to storage or downstream processing units immediately after production (e.g.

material transfer MT1 in Figure 6). Second, materials can be held in the production units

after production and then transferred to storage or downstream processing units (e.g.

material transfer MT2 in Figure 6). If the storage capacity is large enough, then the

material can be first transferred to storage and then transferred to the downstream

processing units (e.g. material transfer MT3 in Figure 6). If the storage capacity is not

large enough, then some material has to be transferred directly to the downstream

processing units (e.g. material transfer MT4 in Figure 6). Besides, materials produced

from several production units can be transferred at the same time to storage or

downstream processing units, which is called simultaneous material transfer.

Alternatively, material produced from several production units can be transferred to

storage or downstream processing units at different times, which is called

nonsimultaneous material transfer. We generally classify the material transfer as indirect

and direct material transfer. If all material is transferred to storage tank first and then to

downstream processing units, then it is indirect material transfer. Otherwise, it is direct

material transfer.

 111

Figure 6 Different scenarios of material transfer

Indirect material transfer

In this scenario, the storage capacity is usually large enough. As a result, materials

produced can always be transferred to the storage tank first and then to the downstream

processing units from the storage. Such transfer is an indirect material transfer from the

production units to the downstream consumption units. To model this indirect material

transfer, we define an additional binary variable 𝑧𝐼𝑗𝑗′𝑛 as follows,

1 if material transfer happens between units and at event point

0 otherwise
jj n

j j n
zI

=
 j j, n

We also define continuous variables bTiijijn to denote the amount of material

transferred from a production task i in unit j to a consumption task i in unit j at event

point n. Note that the material is first transferred from the production task i to the storage

tank and then it is transferred to a consumption task i. Therefore, it is an indirect material

transfer from the production task i to the consumption task i. The total amount of

materials through indirect transfer from a production task i should not exceed the amount

produced.

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 sSIN, jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (6)

 112

𝜌𝑠𝑖𝑗 ∙ ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−∆𝑛≤𝑛′≤𝑛−1

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 sSIN, jJs, i (Ij 𝐈𝑠
𝑃 IR), n > 1 (7)

While constraint (6) is used for non-recycling tasks, constraint (7) is proposed for

recycling tasks only.

Similarly, the amount of materials through indirect transfer to a consumption task

i at a time should not exceed the amount of materials consumed by this consumption task

at event point n.

−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑠

 sSIN, jJs, i (Ij 𝐈𝑠
𝐶), n (8)

The total amount of materials consumed at event point 𝑛 should not exceed the material

stored at the previous event point (𝑛 − 1) plus the amount of materials through indirect

transfer.

∑ ∑ (−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

)

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠

≤ 𝑆𝑇𝑠(𝑛−1) +

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

 s SIN, n (9)

When there is no indirect material transfer between two processing units, the amount

through this indirect transfer should be zero.

∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)

≤ min[𝐵𝑗
max, 𝐵𝑗′

max] ⋅ 𝑧𝐼𝑗𝑗′𝑛

 s SIN, j ≠ j, jJs, jJs, n (10)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

 113

Direct material transfer

For states with FIS policy, if there is no storage available, then these states cannot be

transferred to a storage tank. Instead, they must be transferred directly from the

production task i to a consumption task i. For such a direct material transfer, we introduce

an additional binary variable 𝑧𝐷𝑗𝑗′𝑛 as follows,

1 if there is a direct material transfer between units and at event point

0 otherwise
jj n

j j n
zD

=

 j j, n

Similar to indirect material transfer, we also define continuous variables 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛 to

denote the amount of material directly transferred from a production task i in unit j to a

consumption task i in unit j at event point n. The amount of materials directly transferred

from between processing a production task i in unit j and a consumption task iʹ in unit jʹ

must not exceed the amount of state produced from production task i. Constraints (11)

and (12) are used for non-recycling tasks and recycling tasks, respectively.

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑏𝑠𝑖𝑗𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (11)

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)𝑛−1−Δ𝑛≤𝑛′≤𝑛−1 + 𝑏𝑠𝑖𝑗(𝑛−1) ≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃 IR), n > 1 (12)

The amount of materials through direct transfer to a consumption task i at a time should

not exceed the amount of materials consumed by this consumption task at event point n.

−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)𝑗∈𝐉𝑠

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝐶), n (13)

A direct material transfer between a production task i in unit j and a consumption task iʹ

in unit jʹ takes place only if the amount of state 𝑠 produced at event point n for recycling

tasks or at event point (𝑛 − 1) for non-recycling tasks, plus the amount of state 𝑠 stored

 114

at event point (𝑛 − 1) exceeds the maximum storage capacity, plus the amount of

materials stored in processing units. In this case, there are no storage tanks or processing

units to temporary store the materials produced.

∑ ∑ (𝜌𝑠𝑖𝑗 ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)\𝐈R𝑗∈𝐉𝑠

+ 𝑆𝑇𝑠(𝑛−1) ≤ 𝑆𝑇𝑠
max +

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)\𝐈𝑅𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

+ ∑ ∑ 𝑏𝑠𝑖𝑗(𝑛+1)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)\𝐈𝑅𝑗∈𝐉𝑠

 s (SIN SFIS), n (14)

∑ ∑ (𝜌𝑠𝑖𝑗 ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃∩𝐈R)𝑗∈𝐉𝑠

+ 𝑆𝑇𝑠(𝑛−1) ≤ 𝑆𝑇𝑠
max +

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃∩𝐈𝑅)𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

+ ∑ ∑ 𝑏𝑠𝑖𝑗𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃∩𝐈𝑅)𝑗∈𝐉𝑠

 s (SIN SFIS), n > 1 (15)

where variable 𝑏𝑠𝑖,𝑗,𝑛 denotes the amount of materials stored in a unit 𝑗 at event point 𝑛,

previously produced by task 𝑖 in this unit, which will be explained later.

When there is no direct material transfer between two related processing units, the

amount through this direct transfer should be zero, similar to the indirect material transfer.

∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)

≤ min[𝐵𝑗
max, 𝐵𝑗′

max] ⋅ 𝑧𝐷𝑗𝑗′𝑛

 s (SIN SFIS), j ≠ j, jJs, jJs, n (16)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

4.1.6 Sequencing constraints

Different tasks in the same unit

The start time of a unit j at event point (n + 1) must always be after its end time at the

previous event point n.

 115

𝑇𝑗(𝑛+1)
f ≥ 𝑇𝑗𝑛

s

 j, n < N (17)

Different task in different unit

To make sure that correct operational sequences between production and consumption

tasks in different processing units, we define continuous variables 𝑇𝑠𝑗𝑛 to denote the time

when a state 𝑠 produced by a unit 𝑗 is available to be transferred (i.e., consumed or stored)

at event point 𝑛. Then we require that the time when a state 𝑠 produced by a unit 𝑗 is

available to be consumed at event point (𝑛 + 1) is always after the time when the state is

available at the previous event point 𝑛.

𝑇𝑠𝑗(𝑛+1) ≥ 𝑇𝑠𝑗𝑛

 s SIN, j Js, n < N (18)

When a state 𝑠 produced by a unit 𝑗 is available at event point 𝑛, the production of this

state in the same unit 𝑗 must be completed at this event point 𝑛. In other words,

𝑇𝑠𝑗𝑛 ≥ 𝑇𝑗𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

)

 s SIN, jJs,
()

0
P

j s

sij

i

I I

, n (19)

If a unit jʹ processes a task iʹ, which consumes state 𝑠 at event point n and also receives

materials from unit j, then this unit should start after the time that state 𝑠, which was

produced by unit j from a non-recycling task at event point n, is available.

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′𝑛
s + 𝑀(1 − 𝑧𝐼𝑗𝑗′𝑛)

 s SIN, j, jJs, j ≠ j,
()\

0

P R

j s

sij

i I I I

,
()

0
C

j s

si j

i

I I

, n (20)

Similarly, if a unit jʹ process a task iʹ at event point (n + 1) and also receives materials

from task j then the start time of this unit should be after the time that state 𝑠, which was

produced by a unit j from a recycling task at event point n, is available.

 116

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+1)
s + 𝑀(1 − 𝑧𝐼𝑗𝑗′𝑛)

 s SIN, j, jJs, j ≠ j,
()

0

P R

j s

sij

i I I I

,
()

0
C

j s

si j

i

I I

, n < N (21)

If the materials produced by a non-recycling task in a processing unit at event point n are

not transferred to a consumption task in a processing unit at the same event point n, then

all material should be stored in its dedicated storage tank, before another production task

is processed in the unit. The start time of this consumption task at event point (𝑛 + 1)

should always exceed the time that the state is available at event point n.

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+1)
s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

)

 s SIN, j, jJs, j ≠ j,
()\

0

P R

j s

sij

i I I I

,
()

0
C

j s

si j

i

I I

, n < N (22)

In other words, a unit that processes a consumption task at event point (n + 1) are

unconditionally sequenced with the units that process a related non-recycling production

task at event point n. The units that are processing a consumption task at event point (n +

2) are unconditionally sequenced with units that process a related recycling production

task at event point n.

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+2)
s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′𝑗′(𝑛+2)𝑛′

𝑛+2≤𝑛′≤𝑛+2+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

)

 s SIN, j, jJs, j ≠ j,
()

0

P R

j s

sij

i I I I

,
()

0
C

j s

si j

i

I I

, n < N−1 (23)

If there is a direct material transfer at event point n from a unit j that processes a non-

recycling production task i, to a unit jʹ that processes a related consumption task iʹ, then

the finish time of the unit jʹ at the previous event point (n – 1) must be before the finish

time of the unit j.

𝑇𝑗′(𝑛−1)
f ≤ 𝑇𝑗𝑛

f + 𝑀(1 − 𝑧𝐷𝑗𝑗′𝑛)

 s (SIN SFIS), j, jJs, j ≠ j,
()\

0

P R

j s

sij

i I I I

,
()

0

C

j s

si j

i I I

, n > 1 (24)

 117

If there is a material direct transfer at event point n from unit j, that process a recycling

production task i, to unit jʹ, that process a related consumption task iʹ, then the finish time

of unit jʹ at event point n must be before the finish time of unit j.

𝑇𝑗′𝑛
f ≤ 𝑇𝑗𝑛

f + 𝑀(1 − 𝑧𝐷𝑗𝑗′(𝑛+1))

 s (SIN SFIS), j, jJs, j ≠ j,
()

0

P R

j s

sij

i I I I

,
()

0

C

j s

si j

i I I

, n < N (25)

Finally, to avoid real time violations, between production and consumption tasks

occurring at the same event for recycling tasks or at the previous event for non-recycling

tasks the following constraints are introduced.

𝑇𝑗𝑛
f ≥ 𝑇𝑗′(𝑛−1)

s − 𝑀(1 − ∑ 𝑤𝑖𝑗𝑛′𝑛𝑛−∆𝑛≤𝑛′≤𝑛)

 s (SIN SFIS), j, jJs, j ≠ j,
()\

0

P R

j s

sij

i I I I

,
()

0

C

j s

si j

i I I

, n > 1 (26)

𝑇𝑗𝑛
f ≥ 𝑇𝑗′𝑛

s − 𝑀(1 − ∑ 𝑤𝑖𝑗𝑛′𝑛𝑛−∆𝑛≤𝑛′≤𝑛)

 s (SIN SFIS), j, jJs, j ≠ j,
()

0

P R

j s

sij

i I I I

,
()

0

C

j s

si j

i I I

, n (27)

4.1.7 Allowing processing units to store materials

In this work, we allow processing units to store materials for multiple event points.

Generally, most existing mathematical models even though they allow processing units

to store materials, they only allow these materials to be stored at the event point that they

were produced. At the next event point, these materials should be either consumed by

another task or transferred to the storage tanks. To avoid this case, we introduce an

additional binary variable 𝑦𝑠𝑖,𝑗,𝑛 as follows,

1 if unit stores materials at event point , previously produced by task

0 otherwise

=

ijn

j n i
ys

We also introduce a new continuous variable 𝑏𝑠𝑖,𝑗,𝑛 which denotes the amount of

materials stored in a unit 𝑗 at event point 𝑛, previously produced by task 𝑖 in this unit. The

amount of materials stored in a unit 𝑗 cannot exceed its maximum capacity.

𝑏𝑠𝑖𝑗𝑛 ≤ 𝐵𝑖𝑗
max ⋅ 𝑦𝑠𝑖𝑗𝑛

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃), n (28)

 118

Additionally, the amount of materials stored in a unit j at event point n cannot exceed the

amount produced or stored at the previous event point (n−1).

𝑏𝑠𝑖𝑗𝑛 ≤ ∑ (𝜌𝑠𝑖𝑗 ⋅ 𝑏𝑖𝑗𝑛′(𝑛−1))

𝑛−1−Δ𝑛≤𝑛′≤𝑛

+ 𝑏𝑠𝑖𝑗(𝑛−1)

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃), n > 1 (29)

Materials stored in a processing unit can only be directly transferred to another unit that

process a consumption task. Constraint (30) is used if materials are produced by non-

recycling tasks, while constraint (31) is used if materials are produced by recycling tasks.

𝑏𝑠𝑖𝑗𝑛 ≥ 𝑏𝑠𝑖𝑗(𝑛−1) − ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n > 1 (30)

𝑏𝑠𝑖𝑗𝑛 ≥ 𝑏𝑠𝑖𝑗(𝑛−1) − ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′(𝑛+1)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃 IR), 1 < n < N (31)

Finally, if a unit 𝑗 holds some material at event point 𝑛, then it cannot process any task at

this event point 𝑛.

∑𝑦𝑠𝑖𝑗𝑛

𝑖∈𝐈𝑗

≤ 1 − ∑ ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

 s (SIN SFIS), jJs, n (32)

4.1.8 Additional constraints

Several additional constraints are introduced to improve the performance of the proposed

model. Constraints (33)-(36) relate 𝑤𝑖𝑗𝑛𝑛′with 𝑧𝐼𝑗𝑗′𝑛. More specifically, if a unit jʹ

process a consumption task iʹ, and there is indirect material transfer between units j and

jʹ then unit j must process the related production task i according to (33). Similarly, if a

unit j processes a production task i, and there is an indirect material transfer between units

j and jʹ then unit jʹ must process the related consumption task iʹ according to (34). While

(33) and (34) are used for non-recycling production tasks, constraints (35) and (36) are

for recycling production tasks.

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1

 s (SIN SUIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, i (Ij 𝐈𝑠

𝐶), n (33)

 119

∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1

 s (SIN SUIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, i (Ij 𝐈𝑠

𝐶), n (34)

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1

 s (SIN SUIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (35)

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1

 s (SIN SUIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (36)

If an intermediate state 𝑠 has a FIS policy, then a unit j that transfers materials at unit jʹ,

then unit j can either process a production task or store materials at event point n.

Constraints (37) and (38) handle cases with non-recycling production tasks, while (39)

and (40) handle cases with recycling tasks.

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, i (Ij 𝐈𝑠

𝐶), n (37)

∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐼𝑗𝑗′𝑛 − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, i (Ij 𝐈𝑠

𝐶), n (38)

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (39)

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐼𝑗𝑗′(𝑛+1) − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (40)

In the same manner we relate 𝑤𝑖𝑗𝑛𝑛′ and 𝑦𝑠𝑖𝑗𝑛 with 𝑧𝐷𝑗𝑗′𝑛.

 120

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐷𝑗𝑗′𝑛 − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, i (Ij 𝐈𝑠

𝐶), n (41)

∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐷𝑗𝑗′𝑛 − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃)\IR, jJs, i (Ij 𝐈𝑠

𝐶), n (42)

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐷𝑗𝑗′(𝑛+1) − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (43)

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐷𝑗𝑗′(𝑛+1) − 1

 s (SIN SFIS), j, jJs, j ≠ j, i (Ij 𝐈𝑠
𝑃 IR), i (Ij 𝐈𝑠

𝐶), n < N (44)

Objective functions

As already discussed, two objectives have been considered. While constraint (45) is the

objective for maximization of productivity, constraint (46) handles the case of

minimization of makespan.

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖𝑗𝑠 ⋅ 𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗∈𝐉𝑠𝑠

 (45)

𝑀𝑆 ≥ 𝑇𝑗𝑛
f

 ∀j, n = N (46)

In the minimization of makespan problem, the total demand should be satisfied.

𝑆𝑇𝑠,𝑛″ + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

≥ 𝐷𝑠

 ∀s ∊ Sp, n = N (47)

Finally, (48) and (49) denote all the continuous and binary variables of the model,

respectively

bijnnʹ, bsijn, bTiijiʹjʹn, bTdijiʹjʹn, MS, STsn, 𝑇𝑠𝑗𝑛, 𝑇𝑗𝑛
s , 𝑇𝑗𝑛

f ≥ 0 (48)

 121

wijnnʹ, ysijn, zDjjʹn, zIjjʹn {0, 1} (49)

We complete the mathematical model M1, which consists of constraints (1)-(45) and (48-

49) for maximization of productivity, and (1)-(44) and (46)-(49) for minimization of

makespan. We consider two different variations of this model.

4.2 Model M2

In the mathematical model M2, we also use the unit-specific event-based approach with

timing variables based on units. The main difference from the mathematical model M1 is

that related production and consumption tasks are not allowed to take place at the same

event point. Therefore, we use the following material balance constraints instead.

𝑆𝑇𝑠𝑛 = 𝑆𝑇𝑠(𝑛 − 1) + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 s, n > 1 (50)

𝑆𝑇𝑠𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 s, n = 1 (51)

The mathematical model M2 consists of constraints (1)-(2), (5)-(7), (8)-(13), (15), (17),

(19)-(20), (22)-(23), (25), (27)-(29), (31)-(32), (35)-(36), (39)-(40), (43)-(45), (48)-(49)

and (50)-(51) for maximization of productivity and (1)-(2), (5)-(7), (8)-(13), (15), (17),

(19)-(20), (22)-(23), (25), (27)-(29), (31)-(32), (35)-(36), (39)-(40), (43)-(44) and (46)-

(47), (48)-(49), (50)-(51) for minimization of makespan.

5 Computational studies

To examine the performance of the proposed mathematical models M1 and M2, we

revisit the motivating example 1 and solve additional three motivating examples. The

maximum computational time is one hour for all examples. The optimality gap is set to

zero. All examples are solved using CPLEX 12/GAMS 24.6.1. on a desktop computer

with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 7.

 122

Revisit of Motivating Example 1

We use the proposed models M1 and M2 to solve the motivating example 1. The optimal

solution of 500.00 cu is generated in less than 0.1 CPU s for both models. The model

statistics are provided in Table 3. It involves 12 binary variables, 28 continuous variables,

and 60 constraints for model M1 and 17 binary variables, 39 continuous variables, and

86 constraints for model M2. The optimal schedule is the same as that illustrated in Figure

4. As discussed before, intermediate state S2 is held in unit J2 after production because

of small storage capacity.

Table 3 Computational results for motivating examples 1-3

Motivating

Example
Model

Number of

event

points

CPU

time

(s)

RMILP MILP (h)
Bin.

Var.

Cont.

Var.
Constr.

1 LF2010a 3 0.11 500.00 300.00 6 29 41

(H = 8 h) VS2013b 3 0.09 500.00 300.00 14 33 72

 MH2019c 4 (ΔR=1) 0.08 500.00 300.00 6 34 78

 M1 2 0.02 500.00 500.00 12 28 60

 M2 3 0.03 500.00 500.00 17 39 86

2 LF2010 7 5.4 3281.50 2385.32 56 235 518

(H=12 h) VS2013 7 29.5 3281.50 2392.46 256 403 1268

 MH2019 9 (ΔR=2) 30.8 3332.63 2385.32 120 361 962

 M1 7 39.2 3281.50 2433.16 218 463 1442

 M2 7 38.0 3281.50 2433.16 216 459 1430

3 LF2010 9 (Δn=1) 58.4 3879.34 887.68 187 507 1727

(H=12 h) VS2013 9 5.6 3879.34 989.03 541 723 2549

 MH2019 9 (ΔR=2) 0.2 887.68 887.68 165 506 1424

 M1 9 10.4 3879.34 1033.60 453 813 2935

 M2 9 10.5 3879.84 1033.60 453 813 2935

4 LF2010 9 - - Infeasible 99 419 1019

(H=12 h) VS2013 9 - - infeasible 541 723 2549

 MH2019 9 (ΔR=2) - - infeasible 165 510 1424

 M1 9 27.9 4297.11 2503.15 453 813 2935

 M2 9 27.3 4297.11 2503.15 453 813 2935
a Li and Floudas12 model. b Vooradi and Shaik15 model. c Mostafaei and Harjunkoski21

model

As illustrated in Table 3, it is possible to generate the optimum solution for the

motivating example using the proposed models M1 and M2 as both of them allow

production units to store materials over multiple event points. As already discussed, even

though the model of Vooradi and Shaik15 allows materials to be stored in the processing

unit during an event point n, these materials cannot be stored to the processing unit for

 123

the next event points. Similarly, Li and Floudas12 and Mostafaei and Harjunkoski21 do not

allow processing units to store materials for the successive event points. As a result, both

proposed models M1 and M2 can generate a significantly better solution.

Motivating Example 2

This example is very similar to Example 2c from Li et al.16 but a modified maximum

capacity of state S7 of 10 mu. The objective is to maximize productivity. Similarly to the

Motivating Example 1, we use the model of Li and Floudas12, Vooradi and Shaik15,

Mostafaei and Harjunkoski21 and the proposed model M1 and M2 to solve this motivating

example. Table 3 provides the computational results. From Table 3, it seems that both

proposed mathematical models M1 and M2 can generate a solution of 2433.16 mu, whilst

the model of Li and Floudas12, Vooradi and Shaik15 and Mostafaei and Harjunkoski21 are

only able to provide a suboptimum solution (2392.46 mu and 2385.32 mu respectively).

Such a difference is mainly because the proposed models M1 and M2 allow production

units to storage materials over multiple event points. The optimal schedule from model

M1 is illustrated in Figure 7. As seen from Figure 7, unit J2 produces 50 mu from 6.3h to

8.9h by processing task I2 at event point N4. Those materials can be stored in the

processing unit J2 and processed in the same unit at event point N7. However, this is not

possible with the model of Vooradi and Shaik,15 and as a result, less materials can be

produced during the same period as depicted in Figure 8 (2.80 mu by processing task I2

at event point N4 and 39.03 mu by processing task I2 at event point N6), which leads to

less productivity and as a result a suboptimum solution.

Figure 7 Optimal schedule for Motivating Example 2 using model M1

 124

Figure 8 Schedule for Motivating Example 2 using the model of Vooradi and Shaik15

Motivating Example 3

Motivating example 3 is quite similar to the Example 3c from Li et al.16. The maximum

capacity for states S5, S6 and S7 has changed to 10 mu. Additionally, the initial amount

of materials for states S6 and S7 is changed to 0 mu. Similar to Motivating Example 2,

we use the model of Li and Floudas12, Vooradi and Shaik15, Mostafaei and Harjunkoski21

and the proposed model M1 and M2 to solve this motivating example. The computational

results are provided in Table 3. From Table 3, both proposed models M1 and M2 can

generate a better solution than the models from the literature (1033.60 cu). Such

difference in the solution can be explained by examining the optimal schedule generated

by using model M1 (see Figure 9) and the model of Vooradi and Shaik15 (see Figure 10).

Since there is small storage capacity for states S6 and S7, unit J4 can process batches with

small sizes with the model of Vooradi and Shaik15. More specifically, I9 is processed in

unit J4 in event points N3, N5 and N7 with batch sizes of 20.00 mu, 38.40 mu and 53.73

mu respectively. On the other hand, model M1 can produce significantly higher amounts

of states S6 and S7, since those excessive amounts can be temporarily stored in the

processing units before transferred to another one. For instance, with model M1 unit J4

also processes three batches of I9 at event points N3, N6 and N8 with batch size 25.00

mu, 43.00 mu and 90.00 mu respectively.

 125

Figure 9 Optimal schedule for Motivating Example 3 using model M1

Figure 10 Optimal schedule for Motivating Example 3 using the model of Vooradi and

Shaik15

Motivating Example 4

This example is also quite similar to the Example 3c from Li et al.16. The maximum

capacity for state S7 is 10 mu. Additionally, in the first event point, 40 mu of S7 are stored

in unit J4 at the first event point. Since the models of Vooradi and Shaik15 and Mostafaei

and Harjunkoski21 do not allow materials to be stored for multiple event points, they fail

to generate a feasible solution. On the other hand, in the proposed models M1 and M2,

 126

allows materials to be stored in processing units for multiple event points and, as a result,

they can generate the optimum solution of 2503.15 mu in less than 30 s.

Benchmark Examples

To further examine the performance of the proposed mathematical models M1 and M2,

we solve in total nine examples from the literature1, 8, 16. The data, as well as the STN

representations for all those examples, are presented in the Supplementary Material.

The maximum computational time is one hour, and the optimality gap is zero. All cases

are solved using CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™

i5-2500 3.3 GHz and 8 GB RAM running Windows 7. It should also be noted that we

only compare our models with the model of Vooradi and Shaik15 (denoted as VS2013)

since they incorporate similar features. The model of Mostafaei and Harjunkoski21 is very

similar to the model of Shaik and Floudas,11 which requires more event points in some

examples, as demonstrated in the Motivating Example 1 and Vooradi and Shaik15.

Detailed comparison of our models with Shaik and Floudas11, Li and Floudas12, Susarla

et al.8, and Mostafaei and Harjunkoski21 will be presented in our next contribution.

The computational results for Examples 1-9 with UIS policy for maximization of

productivity, are presented in Tables 4 and 5. From Tables 4 and 5, it seems that both the

model of Vooradi and Shaik15 and the model M2 require the same number of event points

since both models do not allow related production and consumption tasks to take place at

the same event point. Nevertheless, it seems that model M2 requires fewer binary

variables in some cases. For instance, in Example 3d, the model of Vooradi and Shaik15

requires 263 binary variables, while M2 requires 245 binary variables. The reason is that

M2 only examines if there is a material transfer between processing units, whilst the

model of Vooradi and Shaik15 tests if there is a material transfer from a production task

to a related consumption task. In a multipurpose batch process facility, a processing unit

can process more than one tasks. Therefore, two processing units can process two or more

tasks which are related to the same state. In such a case, the M2 only requires one binary

decision variable, while the model of Vooradi and Shaik15 requires two or more binary

decision variables. As a result, M2 can lead to smaller model size and less computational

time. For instance, M2 requires 36% (15.1 s vs 23.6 s), 87.7% (146.4 s vs 1191 s) and

62.2% (41.7 s vs 110.3 s) less computational time for Examples 2d, 3b and 3d than the

model of Vooradi and Shaik,15 respectively. Additional constraints (33)-(44) can also

 127

improve the performance of the proposed models. For instance, even though both models

M2 and the model of Vooradi and Shaik15 lead to the same model size for Example 1d,

M2 requires 51.8% less computational time (10.5s vs 21.8 s).

Table 4 Computational results for Examples 1-3 with maximization of productivity

(UIS policy)

Example Model

Number

of event

points

CPU

time

(s)

RMILP
MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex1a VS2013 4 0.125 2000.00 1840.17 32 90 177

(H = 8 h) M1 2 0.031 2000.00 1840.17 18 54 105

 M2 4 0.031 2000.00 1840.17 32 102 198

Ex1b VS2013 5 0.125 3000.00 2628.19 41 113 226

(H = 10h) M1 3 0.046 3000.00 2628.19 27 80 163

 M2 5 0.047 3000.00 2628.19 41 128 256

Ex1c VS2013 6 0.250 4000.00 3463.62 50 136 275

(H = 12h) M1 4 0.062 4000.00 3463.62 36 106 221

 M2 6 0.109 4000.00 3463.62 50 154 314

Ex1d VS2013 9 21.8 6601.65 5038.05 77 205 422

(H = 16h) M1 7 12.9 6601.65 5038.05 63 184 395

 M2 9 10.5 6601.65 5038.05 77 232 488

Ex2a VS2013 4 0.125 1730.87 1498.57 62 178 384

(H = 8 h) M1 4 0.063 1730.87 1498.57 64 180 396

 M2 4 0.078 1730.87 1498.57 56 178 377

Ex2b VS2013 5 0.17 2436.69 1962.69 80 225 496

(H = 10h) M1 5 0.22 2436.69 1962.69 80 227 510

 M2 5 0.20 2436.69 1962.68 72 225 491

Ex2c VS2013 6 0.48 3076.62 2658.52 98 272 608

(H = 12h) M1 6 0.42 3076.62 2658.52 96 274 624

 M2 6 0.42 3076.62 2658.52 88 272 605

Ex2d VS2013 8 23.6 4291.67 3738.38 134 366 832

(H = 16h) M1 8 15.6 4291.67 3738.38 128 368 852

 M2 8 15.1 4291.67 3738.38 120 366 833

Ex3a VS2013 5 1.92 2100.00 1583.44 123 311 741

(H = 8h) M1 5 0.90 2100.00 1583.44 130 316 793

 M2 5 0.86 2100.00 1583.44 115 316 776

Ex3b VS2013 7 1191 3369.69 2358.20 179 441 1077

(H = 10h) M1 7 146.4 3369.69 2358.20 182 448 1155

 M2 7 157.0 3369.69 2358.20 167 448 1138

Ex3c VS2013 7 1.31 3465.63 3041.27 179 441 1077

(H = 12h) M1 7 1.22 3465.63 3041.27 182 448 1155

 M2 7 1.14 3465.63 3041.27 167 448 1138

Ex3d VS2013 10 110.3 5225.86 4262.80 263 636 1581

(H = 16h) M1 10 42.8 5225.86 4262.80 260 646 1698

 M2 10 41.7 5225.86 4262.80 245 646 1681

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

 128

Table 5 Computational results for Examples 4-9 with maximization of productivity

(UIS policy)

Example Model

Numb

er of

event

points

CPU

time

(s)

RMILP
MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex4 VS2013 6 0.124 7.5000 5.3225 65 157 358

(H=15 h) M1 4 0.078 7.5000 5.3225 48 127 298

 M2 6 0.078 7.5000 5.3225 65 187 434

Ex5 VS2013 5 0.109 14.00 10.00 36 98 201

(H=6 h) M1 3 0.032 14.00 10.00 24 71 152

 M2 5 0.031 14.00 10.00 36 113 237

Ex6 VS2013 5 0.141 300.00 210.00 49 138 283

(H=9 h) M1 3 0.047 300.00 210.00 33 100 211

 M2 5 0.031 300.00 210.00 49 158 327

Ex7 VS2013 5 0.125 80.00 58.99 54 147 301

(H=76 h) M1 2 0.031 80.00 58.99 24 71 145

 M2 5 0.046 80.00 58.99 54 167 351

Ex8 VS2013 6 0.093 400.00 400.00 44 130 289

(H=10 h) M1 4 0.032 400.00 400.00 32 106 237

 M2 6 0.047 400.00 400.00 44 154 337

Ex9 VS2013 10 0.109 400.00 400.00 76 218 497

(H=10 h) M1 8 0.062 400.00 400.00 64 210 485

 M2 10 0.032 400.00 400.00 76 258 585

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

Mathematical model M1 requires a smaller number of event points in most cases

since related production and consumption tasks are allowed to take place at the same

event point. For instance, the model M1 requires two event points less than the models

M2 and the model of Vooradi and Shaik15for Examples 1a-d, 8 and 9. As a result, model

M1 leads to the smallest model size with less number of binary variables, continuous

variables and constraints, which makes it more efficient than the mathematical model

Vooradi and Shaik15. Nevertheless, it seems that both mathematical models M1 and M2

require similar computational time to generate the optimal solution, mainly because they

both models can solve all examples in less than three minutes. From Tables 4 and 5, it

can be concluded that the models M1 and M2 reduced the computational time by one

order of magnitude for most examples in comparison to VS2013.

 129

Table 6 Computational results for Examples 1-3 with maximization of productivity (FIS

policy)

Example Model

Numb

er of

event

points

CPU

time

(s)

RMILP
MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex1a VS2013 4 0.094 2000.00 1840.17 64 102 273

(H = 8 h) M1 2 0.031 2000.00 1840.17 38 72 175

 M2 4 0.047 2000.00 1840.17 74 126 358

Ex1b VS2013 5 0.234 3000.00 2628.19 81 129 352

(H = 10h) M1 3 0.046 3000.00 2628.19 58 107 279

 M2 5 0.062 3000.00 2628.19 94 159 462

Ex1c VS2013 6 0.23 4000.00 3463.62 98 156 431

(H = 12h) M1 4 0.17 4000.00 3463.62 78 142 383

 M2 6 0.25 4000.00 3463.62 114 192 566

Ex1d VS2013 9 45.3 6601.65 5038.05 149 240 668

(H = 16h) M1 7 40.3 6601.65 5038.05 138 247 695

 M2 9 43.5 6601.65 5038.05 174 291 878

Ex2a VS2013 4 0.125 1730.87 1498.57 142 220 665

(H = 8 h) M1 4 0.078 1730.87 1498.57 122 256 774

 M2 4 0.078 1730.87 1498.57 120 252 755

Ex2b VS2013 5 0.45 2436.69 1962.69 180 281 866

(H = 10h) M1 5 0.30 2436.69 1962.69 154 325 999

 M2 5 0.20 2436.69 1962.69 152 321 980

Ex2c VS2013 6 0.66 3076.62 2658.52 218 342 1067

(H = 12h) M1 6 0.50 3076.62 2658.52 186 394 1224

 M2 6 0.47 3076.62 2658.52 184 390 1205

Ex2d VS2013 8 34.6 4291.67 3738.38 294 464 1469

(H = 16h) M1 8 22.2 4291.67 3738.38 250 532 1674

 M2 8 23.7 4291.67 3738.38 248 528 1655

Ex3a VS2013 5 3.32 2100.00 1583.44 293 387 1321

(H = 8h) M1 5 1.80 2100.00 1583.44 245 437 1542

 M2 5 1.92 2100.00 1583.44 245 437 1531

Ex3b VS2013 7 976.3 3369.69 2358.20 417 555 1935

(H = 10h) M1 7 383.8 3369.69 2358.20 349 625 2233

 M2 7 364.9 3369.69 2358.20 349 625 2233

Ex3c VS2013 7 2.90 3465.63 3041.27 417 555 1935

(H = 12h) M1 7 1.47 3465.63 3041.27 349 625 2244

 M2 7 1.42 3465.63 3041.27 349 625 2233

Ex3d VS2013 10 155.6 5225.86 4262.80 603 807 2856

(H = 16h) M1 10 85.5 5225.86 4262.80 505 907 3297

 M2 10 82.2 5225.86 4262.80 505 907 3286

Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.

Tables 6 and 7 present the computational results for Examples 1-10 with FIS policy

for maximization of productivity. Both mathematical models M2 and the model of

Vooradi and Shaik15 require the same number of event points for all examples to generate

 130

the optimal solution. As we introduce additional binary variables to allow processing

units to store materials for multiple event points, model M2 leads to a big larger model

size for Examples 1a-1d, 4, 5, and 7 where the model of Vooradi and Shaik15 does not

need to allow tasks to span over multiple event points (i.e., Δn = 0) to generate the optimal

solution. However, model M2 requires similar computational time as the model of

Vooradi and Shaik15 for these examples. On the other hand, model M2 requires 15.5%-

16.5% fewer binary variables for Examples 2a-2d, 3a-3d due to fact that the proposed

model only uses binary variables to examine whether there is a material transfer between

two units. More importantly, both models M2 and M1 do not require to allow tasks to

span over multiple event points in any case due to allowing processing units to store

materials over multiple event points. Therefore, both proposed models lead to

significantly smaller model size with less binary and continuous variables and constraints

in Examples 6, 8 and 9. For instance, both models M2 and M1 require 61.9% (128 vs

336) and 53.5% (156 vs 336) fewer binary variables than the model of Vooradi and

Shaik15 to generate the optimal solution for Example 9 respectively. Such reduction in the

model size leads to one magnitude less computational time required for both proposed

models M1 and M2 in comparison to the model of Vooradi and Shaik15.

Table 7 Computational results for Examples 4-10. Maximization of productivity (FIS)

Example Model

Number of

event

points

CPU

time

(s)

RMILP
MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex4 VS2013 6 (Δn=0) 0.312 7.5000 5.3225 149 341 618

(H=15 h) M1 4 (Δn=0) 0.218 7.5000 5.3225 105 168 560

 M2 6 (Δn=0) 0.172 7.5000 5.3225 157 246 845

Ex5 VS2013 5 (Δn=0) 0.141 14.00 10.00 76 114 327

(H=6 h) M1 3 (Δn=0) 0.062 14.00 10.00 52 92 265

 M2 5 (Δn=0) 0.047 14.00 10.00 84 144 438

Ex6 VS2013 5 (Δn=1) 0.265 300.00 210.00 144 182 547

(H=9 h) M1 3 (Δn=0) 0.078 300.00 210.00 78 130 380

 M2 5 (Δn=0) 0.078 300.00 210.00 128 202 636

Ex7 VS2013 5 (Δn=0) 0.125 80.00 58.99 114 171 490

(H=76 h) M1 2 (Δn=0) 0.047 80.00 58.99 50 91 243

 M2 5 (Δn=0) 0.062 80.00 58.99 122 211 638

Ex8 VS2013 6 (Δn=3) 0.343 400.00 400.00 152 198 665

(H=10 h) M1 4 (Δn=0) 0.047 400.00 400.00 64 134 409

 M2 6 (Δn=0) 0.062 400.00 400.00 92 192 597

Ex9 VS2013 10 (Δn=7) 2.10 400.00 400.00 336 422 1453

(H=10 h) M1 8 (Δn=0) 0.23 400.00 400.00 128 266 849

 M2 10 (Δn=0) 0.11 400.00 400.00 156 324 1037

VS2013: Vooradi and Shaik15 model.

 131

Table 8 Computational results for Examples 1-3 with minimization of makespan (UIS

policy)

Example Model

Num

ber of

event

points

CPU

time (s)
RMILP

MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex1a VS2013 14 >3600a 24.24 27.88 122 320 672

(DS4=2000 cu) M1 12 412 24.24 27.88 108 314 690

 M2 14 639 24.24 27.88 122 362 783

Ex1b VS2013 23 >3600b 48.47 52.07 203 527 1113

(DS4=4000 cu) M1 21 1004 48.47 52.07 189 548 1212

 M2 23 1978 48.47 52.07 203 596 1305

Ex2a VS2013 9 173.4 10.78 19.34 152 413 953

(DS8=200 cu) M1 9 99.6 18.68 19.34 138 415 963

(DS9=200 cu) M2 9 106.1 18.68 19.34 136 413 952

Ex2b VS2013 20 >3600c 26.12 46.11 350 930 2185

(DS8=500 cu) M1 20 >3600d 45.57 46.11 312 930 2206

(DS9=400 cu) M2 20 >3600e 45.57 46.11 314 932 2217

Ex3a VS2013 7 0.578 10.00 13.37 179 441 1089

(DS12=100 cu) M1 7 0.546 11.25 13.37 167 448 1145

(DS13=200 cu) M2 7 0.702 11.25 13.37 167 448 1145

Ex3b VS2013 10 0.889 12.50 17.02 263 636 1593

(DS12=250 cu) M1 10 0.873 14.27 17.02 245 646 1688

(DS13=250 cu) M2 10 0.874 14.27 17.02 245 646 1688

Note that Δn = 0 in all cases. a Relative Gap 0.19%. b Relative Gap 0.01%. c Relative Gap

17.3%. d Relative Gap 1.17% e Relative Gap 1.17%. VS2013: Vooradi and Shaik15 model.

The computational results for examples using minimization of makespan as

objective are presented in Tables 8 and 9. While Table 8 depicts the results with UIS

policy, Table 9 gives the results with FIS policy. From Table 8, it seems that mathematical

models M1 and M2 both lead to tighter MILP relaxation and smaller model sizes. For

instance, the MILP relaxation from both M1 and M2 are 18.68 h for Example 2a, which

is improved by 73.2% compared to 10.78 from the model of Vooradi and Shaik15. The

number of binary variables is reduced from 152 to 138 by 9%. As a result, they can

successfully solve all examples except Example 2b to global optimality within one hour.

On the other hand, the model of Vooradi and Shaik15 can only solve for Examples 2a, 3a

and 3b to optimality, whilst both models M1 and M2 require similar or less computational

time to solve Examples 2a, 3a and 3b to optimality. The maximum reduction in the

computational time can reach 43% for Example 2a (174 vs. 99 and 174 vs. 106). By

comparing models M1 and M2 in Table 8, it seems that allowing related production and

consumption tasks at the same event point can also lead to less computational times. For

 132

instance, model M1 requires 34.8% for Example 1a (412 s vs 639 s) and 49.2% (1004 s

vs 1978 s) less computational time for Example 1b compared to model M2.

Table 9 Computational results for Examples 1-3 with minimization of makespan (FIS

policy)

Example Model

Number

of event

points

CPU

time (s)
RMILP

MILP

(h)

Bin.

Var.

Cont.

Var.
Constr.

Ex1a VS2013 14 >3600a 24.24 27.88 234 372 1068

(DS4=2000 cu) M1 12 >3600b 24.24 27.88 214 398 1196

 M2 14 >3600c 24.24 27.88 242 456 1371

Ex1b VS2013 23 >3600d 48.47 52.23 387 615 1779

(DS4=4000 cu) M1 21 >3600e 48.47 52.07 376 695 2114

 M2 23 >3600f 48.47 52.07 404 753 2289

Ex2a VS2013 9 241.7 10.78 19.34 332 525 1679

(DS8=200 cu) M1 9 125.3 18.68 19.34 276 601 1889

(DS9=200 cu) M2 9 142.7 18.68 19.34 272 597 1875

Ex2b VS2013 21 >3600g 26.40 47.68 788 1257 4091

(DS8=500 cu) M1 21 >3600h 45.57 47.68 660 1429 4589

(DS9=400 cu) M2 21 >3600i 45.57 47.68 656 1425 4575

Ex3a VS2013 7 0.780 10.00 13.37 417 555 1947

(DS12=100 cu) M1 7 1.841 11.25 13.37 320 625 2209

(DS13=200 cu) M2 7 1.311 11.25 13.37 320 625 2209

Ex3b VS2013 10 1.545 12.50 17.02 603 807 2868

(DS12=250 cu) M1 10 1.092 14.27 17.02 470 907 3256

(DS13=250 cu) M2 10 1.513 14.27 17.02 470 907 3256

Note Δn = 0 in all cases. a Relative Gap 1.75%. b Relative Gap 1.40%. c Relative Gap

1.67%. d Relative Gap 0.39%. e Relative Gap 0.15%. f Relative Gap 0.08%. g Relative

Gap 19.4%. h Relative Gap 0.64%. i Relative Gap 1.07%. VS2013: Vooradi and Shaik15

model.

From Table 9, we can observe that models M1 and M2 lead to tighter MILP

relaxation and smaller model size. For instance, the MILP relaxation from both M1 and

M2 are 45.57 h for Example 2b, which is improved by 73% compared to 26.40 from the

model of Vooradi and Shaik15. The number of binary variables is reduced by 16.2% (788

vs. 660). As a result, the models M1 and M2 can solve Examples 2a, 3a and 3b to

optimality within 1 hour and solve Examples 1a, 1b, and 2b with smaller optimality gap

within 1 hour compared to the model of Vooradi and Shaik15. It should also be noted that

models M1 and M2 find a better solution of 52.07 within 1 hour compared to the model

of Vooradi and Shaik15 (52.07 vs. 52.23), which has not been found in the literature. By

comparing models M1 and M2 in Table 9, it seems that allowing related production and

consumption tasks at the same event point can also lead to less computational times. For

instance, model M1 requires 12.5% (125 s vs 143 s) less computational time for Example

 133

2a. In brief, we can conclude that the mathematical model M1 is the most efficient for

makespan minimization.

Large-scale example

We also solve a large-scale industrial batch plant example from Janak et al.25 to further

illustrate the capabilities of models M1 as model M1 performs slightly better than M2

based on the above computational results. Figure 11 depicts the STN representation of

this batch plant. The facility produces 87 different products by processing 17 raw

materials in 8 different processing paths, and there is a total of 6 different types of

processing tasks. Twenty processing units are available to process these tasks, and each

processing unit can only process one group of them. The batch plant has to fulfil 402

orders within 19 days. The work Janak et al.25 contains more information for this example.

We first use the proposed model M1 to solve this problem directly. It fails to generate a

feasible schedule within 12 hours due to intractable problem size. We then employ the

rolling horizon decomposition approach of Janak et al.25 with the proposed model M1 as

the short-term scheduling model to solve this problem, denoted as RH-M1. We provide

the level-1 model and the modified short-term scheduling model M1 in the

Supplementary Material. Each subproblem is solved to zero optimality gap using

CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ i5-2500 3.3 GHz

and 8 GB RAM running Windows 7. The maximum computational time is 3 hours for

each level, while the integer solution limit is forty.

Table 10 provides the computational results . From Table 10, RH-M1 can generate a

better solution with the productivity of 6880.2 mu, which is increased by 26.7% in

comparison to the 5427.8 mu from the model of Janak et al.25. More interestingly, RH-

M1 requires 11.5 h to generate such an improved solution, which is approximately half

of the CPU time of the model of Janak et al.25 (22.4 h). Since both cases use the same

rolling horizon decomposition approach, such improvement solely derives from the

improved efficiency of the short-term model.

 134

Figure 11 STN representation of large-scale industrial plant example

Table 10 Computational results for the industrial plant example

Model
Total production

(mu)

Total CPU time

(h)

RH-JF 5427.8 22.4

RH-M1 6880.2 11.5

Table 11 Computational results for each subproblem for industrial plant example

Sub-

problem
Model Days

Production

(mu)

CPU

time (s)

Bin.

Var.

Cont.

Var.
Constr.

1 JF 0-2 857.7 3315 4880 35384 187833

 M1 0-2 853.5 1972 15465 60213 127010

2 JF 3-4 758.5 7202 3834 27053 135916

 M1 3-4 790.1 10200 11021 42382 94200

3 JF 5-6 697.0 9878 5406 30545 248663

 M1-J 5-6 777.3 3899 15388 48876 160812

4 JF 7-8 788.8 10329 5526 30729 276612

 M1-J 7-8 994.9 1355 15781 48915 172265

5 JF 9-10 634.7 6945 5406 30465 271764

 M1-J 9-10 853.5 706 15855 49310 172930

6 JF 11-12 517.9 10800 6222 32280 354410

 M1-J 11-12 779.0 10800 17323 53395 198433

7 JF 13-14 532.3 10800 6252 32318 359365

 M1-J 13-14 1114.6 1541 17228 53642 199952

8 JF 15-16 315.7 10800 6156 32085 354649

 M1-J 15-18 717.3 10800 28614 90455 350605

9 JF 17-18 335.3 10800 5976 31664 344065

 135

 The computational results for each subproblem from RH-M1 and RH-JF are

depicted in Table 11. While RH-JF divides the entire scheduling problem into nine

subproblems, RH-M1 divides into eight subproblems. RH-M1 can solve all subproblems

except the subproblems 6 and 8 to optimality within 3 hours. However, RH-JF reaches

the maximum time of 3 hours for four subproblems out of nine. RH-M1 leads to higher

productivity in comparison to RH-JF for all subproblems except the subproblem 1. The

difference in productivity for the subproblem 1 between RH-M1 and RH-JF is 0.5%

only. Since processing units overproduce some materials in RH-M1, which do not fulfil

any order at the current scheduling horizon, they can be stored and used for order delivery

directly at a later sub-problem without the need of using the facility to produce. As a

result, processing units require to process fewer tasks in the successive sub-problems.

Therefore, RH-M1 can successfully generate the schedule of subproblem 8, which

contains days 15-18 without the need of further dividing into smaller sub-problems. On

the other hand, RH-JF needs to produce significantly more materials to fulfil the demand

within days 15-18. Therefore, RH-JF divides this sub-horizon into sub-problem 8 with

days 15-16, and sub-problem 9 with days 17-18 to successfully develop a schedule for

this period.

Figure 12 Optimal schedule for the large-scale industrial plant example using RH-M1

 136

Table 12 Utilisation efficiency of processing units from RH-M1 and RH-JF

 RH-M1 RH-JF
Time

used

Time

 left

%

utilised

 Time

used

Time

 left

%

utilised

U1 173.8 282.2 40.2 187.6 268.4 41.1

U2 61.8 394.2 14.3 92.4 363.6 20.3

U3 61.6 394.4 14.3 118.0 338.0 25.9

U4 208.0 248.0 48.1 200.0 256.0 43.9

U5 123.0 333.0 28.5 49.6 406.4 10.9

U6 123.0 333.0 28.5 296.2 159.8 65.0

U7 233.8 222.2 54.1 174.1 281.9 38.2

U8 200.0 256.0 46.3 233.0 223.0 51.1

U9 340.0 116.0 78.7 311.4 144.6 68.3

U10 242.0 214.0 56.0 170.4 285.6 37.4

U11 158.9 297.1 36.8 90.0 366.0 19.7

U12 213.6 242.4 49.4 129.2 326.8 28.3

U13 224.6 231.4 52.0 185.5 270.5 40.7

U14 200.0 256.0 46.3 162.0 294.0 35.5

U15 220.0 236.0 50.9 129.7 326.3 28.4

U16 194.0 262.0 44.9 451.9 4.1 99.1

U17 - - - 12.0 444.0 2.6

The feasible schedule from RH-M1 is illustrated in Figure 12. Table 12 depicts the

utilization efficiency for all processing units for both models. RH-M1 utilizes most of the

processing unit for larger periods in order to produce a larger amount of materials and

fulfill more orders than RH-JF. Additionally, RH-M1 utilizes one processing unit less

during the whole scheduling horizon. In other words, RH-M1 utilizes the processing units

more efficiently.

6 Conclusions

In this work, we presented two generic unit-specific event-based models for scheduling

of multipurpose batch processes using the unit-specific event-based modelling approach.

While we followed the methodology of Rakovitis et al.17 to allow all related production

and consumption tasks to take place at the same event points but in different real times in

the first model, we did not in the second model. We introduced the concept of indirect

and direct material transfer, which allows us to conditionally align the operational

sequence of related production and consumption tasks. The processing units were allowed

to hold materials they previously produced over multiple event points. Both models also

consider the nonsimultaneous material transfer8. The computational results demonstrated

that both models require a smaller number of binary variables in most cases, especially

 137

in the cases where a processing unit can process multiple tasks, compared to the existing

mathematical formulation15. The proposed models did not need to allow a task to span

over multiple event points to generate the optimal solution, which resulted in a significant

reduction in the computational time by up to one order of magnitude in most cases. More

importantly, the proposed models were able to generate better solutions than Vooradi and

Shaik15 and Mostafaei and Harjunkoski21. Additionally, the first model allowing related

production and consumption tasks to take place at the same event points was slightly more

efficient than the second one. Finally, we used the proposed model to solve a large-scale

industrial batch plant scheduling problem from Janak et al.25 using the rolling-horizon

decomposition algorithm. The results demonstrated that the proposed model can

improves productivity by 26.7% in significantly less computational time compared to that

from Janak et al.25. The future work will extend the proposed models to consider other

intermediate storage policy and unit wait policy. A Detailed comparison with all existing

models in the literature, especially the model of Mostafaei and Harjunkoski,21 will also

be conducted.

Acknowledgments

Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate

award by The University of Manchester.

 138

Literature Cited

1. Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term

scheduling of batch operations-I MILP formulation. Comput Chem Eng. 1993;17(2):211-

227. https://doi.org/10.1016/0098-1354(93)80015-F.

2. Pantelides C. Unified frameworks for optimal process planning and scheduling.

Proceedings of the Second Conference on Foundations of Computer Aided Operations.

1994:253-274.

3. Lee H. Maravelias CT. Discrete-time mixed integer programming models for short-

term scheduling in multipurpose environments. Comput Chem Eng. 2017;107:171-183.

https://doi.org/10.1016/j.compchemeng.2017.06.013.

4. Zhang X. Sargent RWH. 1996. The optimal operation of mixed production facilities-

A general formulation and some approaches for the solution. Comput Chem Eng.

1996;20(6-7):897-904. https://doi.org/10.1016/0098-1354(95)00186-7.

5. Castro P. Barbosa-Póvoa APFD. Matos H. An improved RTN continuous-time

formulation for the short-term scheduling of multipurpose batch plants. Ind Eng Chem

Res. 2001;40(9):2059-2068. https://doi.org/10.1021/ie000683r.

6. Maravelias CT. Grossmann IE. New General Continuous-Time State-Task Network

Formulation for Short-Term Scheduling of Multipurpose Batch Plants. Ind Eng Chem

Res. 2003;42(13):3056-3074. https://doi.org/10.1021/ie020923y.

7. Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time

formulation for short-term scheduling in multipurpose batch plants. Chem Eng Sci.

2005;60(10):2679-2702. https://doi.org/10.1016/j.ces.2004.12.023.

8. Susarla N, Li J, Karimi I. A. Novel approach to scheduling multipurpose batch plants

using unit-slots. AIChE J. 2010;56(7):1859-1879. https://doi.org/10.1002/aic.12120.

9. Li J. Karimi IA. Scheduling gasoline blending operations from recipe determination to

shipping using unit slots. Ind Eng Chem Res. 2011;50(15):9156-9174.

https://doi.org/10.1021/acs.iecr.6b01930.

10. Ierapetritou MG. Floudas CA. Effective continuous-time formulation for short-term

scheduling. 1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-

4359. https://doi.org/10.1021/ie970927g.

11. Shaik MA. Floudas CA. Novel Unified Modeling Approach for Short-Term

Scheduling. Ind Eng Chem Res. 2009;48(6):2947-2964.

https://doi.org/10.1021/ie8010726.

12. Li J. Floudas CA. Optimal Event Point Determination for Short-Term Scheduling of

https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1016/0098-1354(95)00186-7
https://doi.org/10.1021/ie000683r
https://doi.org/10.1021/ie020923y
https://doi.org/10.1016/j.ces.2004.12.023
https://doi.org/10.1021/acs.iecr.6b01930
https://doi.org/10.1016/j.compchemeng.2007.05.007

 139

Multipurpose Batch Plants via Unit-Specific Event-Based Continuous-Time Approaches,

Ind Eng Chem Res. 2010;49(16):7446-7469. https://doi.org/10.1021/ie901842k.

13. Tang QH. Li J. Floudas CA. et al. Optimization framework for process scheduling of

operation-dependent automobile assembly lines. Optim Lett. 2012;6(4):797-824.

https://doi.org/10.1007/s11590-011-0303-5.

14. Seid R. Majozi T. A robust mathematical formulation for multipurpose batch plants.

Chem Eng Sci. 2012;68(1):36-53. https://doi.org/10.1016/j.ces.2011.08.050.

15. Vooradi R. Shaik MA. Rigorous unit-specific event-based model for short term

scheduling of batch plants using conditional sequencing and unit-wait times. Ind Eng

Chem Res. 2013;52(36):12950-12792. https://doi.org/ 10.1021/ie303294k.

16. Li J. Xiao X. Floudas CA. Integrated gasoline blending and order delivery operations:

Part I. short-term scheduling and global optimization for single and multi-period

operations, AIChE J. 2016;62(6):2043-2070. https://doi.org/10.1002/aic.15168.

17. Rakovitis N. Zhang N. Li J. Zhang L. A new approach for scheduling of multipurpose

batch processes with unlimited intermediate storage policy. Front Chem Sci Eng.

2019;13:784-802. https://doi.org/10.1007/s11705-019-1858-4.

18. Méndez CA. Cerdá J. Optimal scheduling of a resource-constrained multiproduct

batch plant supplying intermediates to nearby end-product facilities. Comput Chem Eng.

2000;24(2-7):369-376. https://doi.org/10.1016/S0098-1354(00)00482-8.

19. Hui C. Gupta A. van der Meulen HAJ. A novel MILP formulation for short-term

scheduling of multi-stage multi-product batch plants with sequence-dependent

constraints. Comput Chem Eng. 2000;24(12):2705 – 2717.

https://doi.org/10.1016/S0098-1354(00)00623-2.

20. Méndez CA. Cerdá J. An MILP continuous-time framework for short-term scheduling

of multipurpose batch processes under different operation strategies. Optim Eng.

2003;4(1-2):7-22. https://doi.org/10.1023/A:1021856229236.

21. Mostafaei H, Harjunkoski I. Continuous-time scheduling formulation for

multipurpose batch plants. AIChE J. 2020;66:e16804. https://doi.org/10.1002/aic.16804.

22. Floudas CA. Lin X. Continuous-time versus discrete-time approaches for scheduling

of chemical processes: a review. Comput Chem Eng. 2004;28(11):2109-2129.

https://doi.org/10.1016/j.compchemeng.2004.05.002.

23. Méndez CA. Cerdá, J. Grossmann IE. Harjukoski I. Fahl M. State-of-the-art review

of optimization methods for short-term scheduling of batch processes. Comput Chem

Eng. 2006;30(6-7):913-946. https://doi.org/10.1016/j.compchemeng.2006.02.008.

24. Harjunkoski I. Maravelias CT. Bongers P. et al. Scope for industrial application of

https://doi.org/10.1016/j.ces.2011.08.050
https://doi.org/10.1002/aic.15168
https://doi.org/10.1007/s11705-019-1858-4
https://doi.org/10.1016/S0098-1354(00)00482-8
https://doi.org/10.1016/S0098-1354(00)00623-2
https://doi.org/10.1016/j.compchemeng.2004.05.002
https://doi.org/10.1016/j.compchemeng.2006.02.008

 140

production scheduling models and solution methods. Comput Chem Eng.

2014;62(5):161-193. https://doi.org/10.1016/j.compchemeng.2013.12.001.

25. Janak SL. Floudas CA. Kallrath J. Vormbrock N. Production scheduling of a large-

scale industrial batch plant. I. Short-term and Medium-term scheduling. Ind Eng Chem

Res. 2006;45(25):8234-8252. https://doi.org/10.1021/ie0600588.

https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1021/ie0600588

 141

Nomenclature

Indices

i, iʹ: tasks

j, jʹ: units

n, nʹ, nʹʹ: event points

s: states

Sets

I: tasks

Ij: tasks that can be performed in unit j

Is: tasks that produce/consume state s

𝐈𝑠
𝑐: tasks that consume state s

𝐈𝑠
𝑃: tasks that produce state s

IR: tasks considered as recycling tasks

J: units

Ji: units that can process task i

Js: units that produce/consume state s

N: event points

S: states

SFIS: states with unlimited intermediate storage policy

SP: states that are final products

SIN: states that are intermediate products

SR: states that are raw materials

SUIS: states with unlimited intermediate storage policy

Parameters

 142

𝐵𝑖𝑗
𝑚𝑎𝑥: maximum batch size of task i processed in unit j

𝐵𝑖𝑗
𝑚𝑖𝑛 ∶ minimum batch size of task i processed in unit j

Ds: demand of state s

H: scheduling horizon

M: big-M value

Ps: price of state s

ST0s: initial amount of state s

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy)

αij: coefficient of constant term of processing time of task i in unit j

βij: coefficient of variable term of processing time of task i in unit j

Δn: maximum number of event points that task i is allowed to be active

ρsij: portion of state 𝑠 consumed/produced by task i processed in unit j

Binary variables

wijnnʹ: binary variable which takes the value 1 if task i is processed in unit j from event

point n to nʹ ≥ n

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in

unit j at event point n, which were previously produced by task i processed in unit j at

event point nʹ < n

zIjjʹn: binary variable which takes the value 1 if there is indirect material transfer between

unit j and jʹ

zDjjʹn: binary variable which takes the value 1 if there is indirect material transfer between

unit j and jʹ

Continuous variables

bijnnʹ: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event

point 𝑛 to time event point nʹ ≥ n

 143

bsijn: amount of materials stored in unit j at event point n, which were previously produced

by task i processed in unit j at event point nʹ < n

bTiijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

bTdijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

STsn: amount of state 𝑠 that has to be stored at time event point 𝑛

Tsjn: time that state s produced in unit j is available to be consumed at event point n

𝑇𝑗𝑛
s : start time of unit 𝑗 at time event point 𝑛

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛

 144

Blank page

 145

Chapter 5: Scheduling of continuous processes

5.1 Introduction

The framework developed and implemented in Chapter 4 is only implemented for

scheduling of batch processes. The continuous processes have significant differences

from batch processes, and as a result, it is not possible to directly implement mathematical

models for scheduling of batch processes for this problem. More specifically, in

continuous processes, the processing time is not predefined as in batch processes. Instead,

the processing time of each task processed in a unit is a variable that needs to be

optimized. The only limitation, in this case, is that if a unit starts processing a task, then

it should process it for a minimum or both minimum and maximum time. Furthermore, a

processing unit must continuously receive raw materials, and it extracts final products

without interruption in contrast to the batch process where this occurs only at the

beginning and the end of the processing, respectively.

In this chapter, the proposed framework is implemented for scheduling of

continuous processes. Since continuous processes are different from batch processes,

several constraints are slightly modified to handle such type of industry. The

mathematical model is extended to handle several cases, including no intermediate

storage policy, flexible or swing storage, storage bypass and planned maintenance.

Multiple well-established examples are used to investigate the performance of the

proposed model.

 146

Blank Page

 147

5.2 Research contribution 3

Rakovitis, N., Hasnuddin, W. M. A. W., Zhang, N., Li, J. A Generic Approach for

Scheduling of Semi-continuous and Continuous Processes, to be submitted to Chemical

Engineering Science

 148

Blank Page

 149

A Generic Approach for Scheduling of Semi-continuous and

Continuous Processes

Nikolaos Rakovitis, Wan Mohd Azril bin Wan Hasnuddin, Nan Zhang and Jie Li†

Centre for Process Integration, School of Chemical Engineering and Analytical Science,

The University of Manchester, Manchester, M13 9PL, United Kingdom

Abstract

In this work, we extend our proposed modelling approach for batch processes (Rakovitis

et al., 2020) to develop a generic and efficient mathematical formulation for the

scheduling of semi-continuous and continuous processes. In this approach, we

conditionally sequence or synchronize related production and consumption tasks by using

the concept of indirect and direct material transfer. The model also considers different

intermediate storage policies, flexible intermediate storage and planned maintenance. We

also extend the model to consider the case of not allowing storage bypass where we

consider two different scenarios; in the first scenario, a storage tank can receive and

deliver materials at the same time, while in the second scenario it cannot. The results

demonstrate that the proposed mathematical model requires a smaller number of event

points than the model of Omar and Shaik (2019). Additionally, it requires significantly

less computational time which can reach up to two magnitudes less computational time.

† To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 150

1 Introduction

The increasing demand for specific products with the same specifications lead process

industry to use semi-continuous or continuous processes. In those processes, one or more

raw materials are processed uninterrupted within a period to produce large quantities of

a specific product with the same quality. Oil refinery, chemical and steel industry are

some examples of continuous process industry. Due to the highly competitive market,

such process industries must reduce their operational costs and increase their profit. The

more and more strict environmental regulations also lead facilities to examine different

alternatives to eliminate their footprint by reducing their raw material and fuel

consumption. Scheduling is one of the main managerial tools that can help industries to

reduce their costs and fuel consumption.

 Process industries developed and implemented several approaches to improve their

scheduling decisions, including heuristic rules, spreadsheet-based methods and

mathematical programming approach. Even though the first two approaches can generate

schedules fast, the quality of the solution depends on the operator’s experience.

Therefore, they are only capable of generating a feasible solution, which can be

significantly far from optimum. On the other hand, mathematical modelling, especially

mixed-integer linear programming (MILP), can generate optimal solutions for a given set

of operations. As a result, several mathematical models have been developed for this

scheduling problem using different time representations including discrete-time

(Zhang et al. 2016) and continuous-time approaches, such as sequence-based

(Kopanos et al. 2011), slot-based (Schiling and Pantelides 1996; Karimi and McDonald

1997; Lee et al. 2001), global-event based (Mockus and Reklaitis 1999; Castro et al. 2004)

and unit-specific event-based (Ierapetritou and Floudas 1998; Gianelos and Georgiadis

2002; Shaik and Floudas 2007; Shaik et al. 2009; Tang et al. 2012; Li et al. 2012; Omar

and Shaik 2018). Floudas and Lin (2004), and Harjunkoski et al. (2014) provide an

excellent review of different timing approaches used in the process industry.

 The capabilities of the unit-specific event-based time representations are well

established in the literature (Li et al., 2010; Rakovitis et al., 2019; Rakovitis et al. 2020).

However, some unit-specific event-based mathematical models for scheduling of

continuous processes (Ierapetritou and Floudas, 1998; Shaik and Floudas, 2007) can

generate schedules with real-time violations (Li et al., 2010). These models can also fail

to generate a feasible solution in some cases, even if there is one (Li et al. 2010). Shaik

and Floudas (2007) developed a mathematical model using unit-specific event-based time

 151

representation. In contrast to Ierapetritou and Floudas (1998) model, they considered

different intermediate storage policies. However, they unconditionally sequenced and

synchronized related production and consumption tasks, which leads to an increase in the

number of event points required (Omar and Shaik 2018; Rakovitis et al. 2019). Recently,

Omar and Shaik (2018) developed a unit-specific event-based mathematical model for

scheduling of continuous processes with simultaneously considering planned

maintenance under unlimited intermediate storage (UIS) policy. They conditionally

aligned related production and consumption tasks in different units only when a

consumption task received materials from the related production task. Omar and Shaik

(2019) extended the mathematical model of Omar and Shaik (2018) for different

intermediate storage policies, such as finite intermediate storage (FIS) and no

intermediate storage (NIS). They also conditionally aligned related production and

consumption tasks only if the total amount to be stored exceeds the maximum storage

capacity. Even though the model of Omar and Shaik (2019) handles the real-time

violation issue of the previous model of Shaik and Floudas (2007), it leads to significantly

large model sizes and hence it requires excessive computational time even for small

examples. Although the proposed model requires a smaller number of event point than

the model of Shaik and Floudas (2007) in problems with planned maintenance, they

introduce a large number of binary variables which leads to large model-sizes.

 In this work, we extend our proposed modelling framework (Rakovitis et al., 2020)

to develop a generic and efficient mathematical formulation for the scheduling of semi-

continuous and continuous processes. In the formulation, non-recycling tasks are allowed

to take place at the same event points. The concept of indirect and direct material transfer

(Rakovitis et al., 2020) is employed to conditionally sequence or synchronize related

production and consumption tasks in different units. We consider several storage policies,

including unlimited, finite, and no intermediate storage policies. Some storage tanks are

allowed to hold multiple materials during the scheduling horizon. Materials produced are

allowed to directly enter the downstream consumption units, which is called storage

bypass policy. The case of not allowing storage bypass is also considered, with two

distinct scenarios; while in the first scenario a storage tank can receive and deliver

materials at the same time, while in the second scenario it cannot. The model can also

handle cases with planned maintenance. The capability of the proposed model is

illustrated by solving several well-established examples in the literature (Shaik and

Floudas 2007; Li et al. 2010; Omar and Shaik 2018; Omar and Shaik 2019). The

 152

computational results demonstrate that the proposed model can generate the optimal

solution for all examples using a smaller number of event points than the model of Omar

and Shaik (2019). It is also more general and efficient than the model of Omar and Shaik

(2019) since it can handle cases of flexible intermediate storage and it requires

significantly less computational time which can reach in up to two orders of magnitude

less computational time.

2 Problem description

Figure 1 illustrates a typical semi-continuous or continuous process facility. This facility

contains 𝐽 (𝑗 = 1, 2, 3, … . , 𝐽) processing units which convert several feeds into multiple

valuable products. Besides feeds and final products, the processing units also produce

some intermediates. We use a set 𝑆 (𝑠 = 1, 2, 3, … , 𝑆) to denote all material states in the

facility including feeds (denoted in set 𝐒𝑅), intermediates (included in set 𝐒𝐼𝑁), and

products (included in set 𝐒𝑃). There are 𝐼 (𝑖 = 1, 2, 3, … , 𝐼) tasks in total, which contains

processing tasks and storage tasks. We use 𝐈𝑝 to denote processing tasks and 𝐈𝑠𝑡 to denote

storage tasks. Each processing unit 𝑗 can process 𝐈𝑗 tasks. A task consumes raw materials

with different proportions to produce multiple states with different yields. A parameter

𝜌𝑖,𝑠 is used to denote the proportion of state 𝑠 produced or consumed by a task i. While

positive values of 𝜌𝑖,𝑠 denote production of state 𝑠 during the processing of task 𝑖,

negative values of 𝜌𝑖,𝑠 indicate consumption of state 𝑠 by task 𝑖. A processing unit can

process multiple tasks. When transforming a task to another in a processing unit

consecutively, some changeover time is required. The changeover time can be either

sequence-dependent or unit-dependent only. We use 𝜏𝑗 to denote unit-dependent

changeover time and 𝜏𝑖,𝑖′,𝑗 to denote sequence-dependent changeover time.

 After production, an intermediate state may be transferred directly to the

downstream processing units, which is called storage bypass. It may be also transferred

to storage. There are several storage policies, including unlimited intermediate storage

(UIS), finite intermediate storage (FIS) and no intermediate storage (NIS) policies. Two

types of storage tanks are often used in practice, which includes dedicate and flexible

(swing) storage tanks. While the dedicate storage tank can only hold one dedicated

intermediate state at any time, the flexible (or swing) storage tank can hold multiple

intermediate states during the scheduling horizon. However, at most one intermediate

state can be held in such a storage tank at a time. The products may be used to satisfy

 153

orders. There are totally 𝑂 (𝑜 = 1, 2, 3, . . . , 𝑂) orders. We assume each order involves

only one product as one order with multiple products can be divided into multiple orders

without loss of generality. Each order has release time (𝑟𝑜) and due date (𝑑𝑜). The amount

of an order is denoted as 𝑇𝑜. With these, the entire scheduling problem can be stated as

follows,

 Given:

1) O orders, their products, release times and due dates;

2) J units, suitable tasks, minimum and maximum capacities, processing rates and

planned maintenance period;

3) S states, the portion of states produced or consumed from a task;

4) Storage policy and capacity for each state;

5) Product prices;

6) Scheduling horizon.

Determine:

1) Optimal production schedule involving task allocations, start and end timings,

and sequences;

2) Inventory profiles.

Operating rules:

1) At most one task can be processed in a processing unit at any time;

2) At most one intermediate state can be stored in a flexible (swing) storage tank at

a time

Assumptions:

1) All parameters are deterministic;

2) Unlimited feed materials are available;

3) Unlimited storage policy for all raw materials and products;

4) Unlimited resources where required are available;

 The objective is to maximize productivity or minimize total operating cost.

3 Mathematical formulation

We extend the proposed unit-specific event-based modelling approach (Rakovitis et al.,

2019; Rakovitis et al., 2020) for this scheduling problem of semi-continuous and

continuous processes where timing variables are defined based on units (i.e., 𝑇𝑗,𝑛
s and 𝑇𝑗,𝑛

f)

and a production task is sequenced and/or synchronised with its related consumption tasks

if materials are transferred between these tasks.

 154

3.1 Allocation constraints

We define a binary variable 𝑤𝑖,𝑗,𝑛,𝑛′ to denote if a task 𝑖 is processed in a unit 𝑗 from event

point 𝑛 to 𝑛′ as follows,

 , , ,

1 if a task is processed in a unit from an event point to

0 otherwise
i j n n

i j n n
w

=

where 𝑛 ≤ 𝑛′ ≤ 𝑛 + ∆𝑛. The parameter ∆𝑛 is used to denote the maximum number of

event points that a task is allowed to cross over.

 Based on the operating policy, at most one task can be processed in a processing

unit 𝑗 at a time.

∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1

 j 𝐉𝑝, n (1)

3.2 Capacity constraints

The amount of materials processed in a processing unit 𝑗 at an event point 𝑛 (denoted as

𝑏𝑖,𝑗,𝑛) is limited by the minimum (𝑅𝑖𝑗
𝑚𝑖𝑛) and the maximum (𝑅𝑖𝑗

𝑚𝑎𝑥) processing rates

multiplying processing duration (𝐿𝑖,𝑗,𝑛).

𝑅𝑖,𝑗
min ⋅ 𝐿𝑖,𝑗,𝑛 ≤ 𝑏𝑖,𝑗,𝑛 ≤ 𝑅𝑖,𝑗

max ⋅ 𝐿𝑖,𝑗,𝑛

 j 𝐉𝑝, i 𝐈𝑗 , n (2a, b)

For processes with fixed processing rate (denoted as 𝑅𝑖,𝑗), the amount of materials

produced is proportional to the task duration

𝑏𝑖,𝑗,𝑛 = 𝑅𝑖,𝑗 ⋅ 𝐿𝑖,𝑗,𝑛

 j 𝐉𝑝, i 𝐈𝑗 , n (3)

3.3 Duration constraints

The finish time of a processing unit 𝑗 at event point 𝑛 must be after its start time plus the

task duration of task 𝑖 that the unit starts processing at event point 𝑛.

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + ∑𝐿𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

 j 𝐉𝑝, n (4)

If a task i is not processed in a unit 𝑗 during an event point 𝑛, then the task duration in the

unit during this event point n should be equal to zero.

 155

𝐿𝑖,𝑗,𝑛 ≤ 𝐻 ⋅ (∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

)

 j 𝐉𝑝, i 𝐈𝑗 , n (5)

3.4 Material balance constraints

The amount of a state 𝑠 stored at event point 𝑛 (denoted as 𝑆𝑇𝑠𝑛) should be equal to the

amount of the state stored at event point (𝑛 − 1), plus the amount of the state produced

at event point 𝑛, minus the amount of the state consumed at event point 𝑛. At the first

event point, the amount of a state 𝑠 stored should be equal to the initial amount of the

state (𝑆𝑇0𝑠) plus the amount of the state produced, minus the amount of state 𝑠 consumed

at event point 𝑛 = 1.

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝒋∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 s, n = 1 (6a)

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝒋∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 s, n > 1 (6b)

where set 𝐈𝑠
𝐶 denotes tasks that consume state 𝑠, while 𝐈𝑠

𝑃 denotes tasks that produce state

𝑠.

3.5 Material transfer

Material transfer in the semi-continuous or continuous process is simpler compared to

that in the batch processes of Rakovitis et al. (2020). A production unit starts to transfer

materials to storage or downstream processing units immediately when it starts producing

the related production task. Materials are continuously transferred from the production

unit until it finishes processing the related production task. We generally classify material

transfer as indirect and direct material transfer. If materials are allowed to be transferred

to downstream processing units directly, it is a direct material transfer, as illustrated in

Figure 1 (denoted as MT1). If materials are transferred to storage tank first and then to

downstream processing units, then it is an indirect material transfer (denoted as MT2 in

figure 1).

 156

Figure 1 Different scenarios of material transfer

Indirect material transfer

In the indirect material transfer, the storage capacity is large enough to hold all producing

materials. As a result, materials produced can always transferred to storage first and then

transferred to downstream processing units from storage. To model this indirect material

transfer, we define an additional binary variable 𝑧𝐼𝑗,𝑗′,𝑛 as follows,

 , ,

1 if material transfer happens between units and at event point

0 otherwise
j j n

j j n
zI

=

 j j, n

 We also define a continuous variable 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛 to denote the amount of materials

indirectly transferred from a production task i in unit j to a consumption task i in unit j

at event point n. The total amount of materials through indirect transfer from a production

task i should not exceed that produced from this task i.

𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝒋′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐼𝑁, j (𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (7)

 Similarly, the amount of materials through indirect transfer to a consumption task

i at a time should not exceed the amount of materials consumed by this consumption task

at event point n.

−𝜌𝑖′ ,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐼𝑁, j (𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (8)

 The total amount of materials consumed at event point 𝑛 should not exceed the

material stored at previous event point (𝑛 − 1) plus the amount of materials through

 157

indirect transfer.

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ 𝑆𝑇0𝑠 +

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐼𝑁, n = 1 (9a)

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ 𝑆𝑇𝑠,𝑛−1 +

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐼𝑁, n > 1 (9b)

 When there is no indirect material transfer between two processing units, the

amount through this indirect material transfer should be zero.

∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

≤ min { max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

(𝑅𝑖,𝑗
max ⋅ 𝐻), max

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

(𝑅𝑖′,𝑗′
max ⋅ 𝐻) , 𝑆𝑇𝑠

max} ⋅ 𝑧𝐼𝑗,𝑗′,𝑛

 s 𝐒𝐼𝑁, j ≠ j, j (𝐉𝑝 ∩ 𝐉𝑠), j (𝐉𝑝 ∩ 𝐉𝑠), n (10)

Direct material transfer

For states with FIS policy, if there is no storage available, then these states cannot be

transferred to a storage tank. Instead, they must be transferred directly from the

production task i to a consumption task i. To model such direct material transfer, we

introduce an additional binary variable 𝑧𝐷𝑗,𝑗′,𝑛 as follows,

1 if there is a direct material transfer between units and at event point

0 otherwise
jj n

j j n
zD

=

 j j, n

 Similar to indirect material transfer, we also define a continuous variable

 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛 to denote the amount of materials directly transferred from a production task

i in unit j to a consumption task i in unit j at event point n. The amount of materials

directly transferred between processing a production task i in unit j and a consumption

task iʹ in unit jʹ must not exceed the amount of state produced from production task i.

 158

𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑝)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (11)

 The amount of materials through direct transfer to a consumption task i at a time

should not exceed the amount of materials consumed by this consumption task at event

point n.

−𝜌𝑖,𝑠 ∙ 𝑏𝑖′,𝑗′,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑝)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (12)

 A direct material transfer between a production task i in unit j and a consumption

task iʹ in unit jʹ takes place only if the amount of state 𝑠 produced at event point n, plus

the amount of materials stored in storage tanks at event point (𝑛 − 1) exceeds the

maximum storage capacity. In this case, there are no storage tanks to temporary store the

materials produced. For the first event point, it should be examined whether the amount

of state 𝑠 produced at the first event point, plus the initial amount of materials stored in

storage tanks.

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ 𝑆𝑇0𝑠 ≥ 𝑆𝑇𝑠
max + ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n = 1 (13a)

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ 𝑆𝑇𝑠,𝑛−1 ≥ 𝑆𝑇𝑠
max + ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n > 1 (13b)

 When there is no direct material transfer between two related processing units, the

amount through this direct transfer should be zero, similar to the indirect material transfer.

∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)

≤ min { max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)
(𝑅𝑖,𝑗

max ⋅ 𝐻), max
𝑖′∈(𝐈𝑗′∩𝐈𝑠

𝐶)
(𝑅𝑖′,𝑗′

max ⋅ 𝐻) , 𝑆𝑇𝑠
max} ⋅ 𝑧𝐷𝑗,𝑗′ ,𝑛

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j ≠ j, j(𝐉𝑝 ∩ 𝐉𝑠), j(𝐉𝑝 ∩ 𝐉𝑠), n (14)

3.6 Sequencing constraints

Different tasks in the same unit

The start time of a unit j at event point (n + 1) must always be after its finish time at the

previous event point n.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f

 j 𝐉𝑝, n < N (15)

 159

If a task 𝑖 requires to span over multiple event points (i.e., from event point 𝑛′ to 𝑛′′),

then the start time of a unit 𝑗 at event point (𝑛 + 1) must be equal to its end time at the

previous event point 𝑛 if event point (𝑛 + 1) is between event points 𝑛′ and 𝑛′′.

𝑇𝑗,𝑛+1
s ≤ 𝑇𝑗,𝑛

f + 𝐻 (1 − ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛′′

𝑛+1≤𝑛′′≤𝑛′+∆𝑛𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

)

 j𝐉𝑝, n < N, n > 0 (16)

Different task in different unit

In order to make sure correct operational sequences between production and consumption

tasks in different processing units, we define two continuous variables 𝑇𝑠,𝑗,𝑛
s and 𝑇𝑠,𝑗,𝑛

f to

denote the start and finish time that a state 𝑠 produced by a unit 𝑗 is available to be

transferred (i.e., consumed or stored) at event point 𝑛. The start time that a state 𝑠

produced by a unit 𝑗 is available to be consumed at event point (𝑛 + 1) should always be

after the finish time that state is available at the previous event point 𝑛.

𝑇𝑠,𝑗,𝑛+1
s ≥ 𝑇𝑠,𝑗,𝑛

f

 s 𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), n < N (17a)

The finish time that a state 𝑠 produced by a unit 𝑗 is available to be consumed at event

point 𝑛 should always be after the start time a state 𝑠 produced by a unit 𝑗 is available to

be consumed at the same event point.

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑠,𝑗,𝑛

s

 s 𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), n < N (17b)

When a state 𝑠 produced by a unit 𝑗 is available at event point 𝑛, the start and finish of

production of this state in the same unit 𝑗 must be before the start and finish time that the

state is available at this event point 𝑛 respectively. In other words,

𝑇𝑠,𝑗,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃))

 s 𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (18a)

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

)

 s 𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (18b)

The start and finish time of a unit jʹ should be after the start and finish time of unit j at

 160

event point n, if there is an indirect material transfer between units j and jʹ.

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐼𝑗,𝑗′,𝑛)

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (19)

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐼𝑗,𝑗′,𝑛)

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (20)

If the materials produced in a processing unit at event point n is not transferred to a

consumption task in a processing unit at the same event point n, then all materials should

be stored in its dedicated storage tank, before another production task is processed in this

unit. In this case, the start and finish time of this consumption task at an event point (𝑛 +

1) should always exceed the time that the state starts and finishes being available at event

point n.

𝑇𝑠,𝑗,𝑛
s ≤ 𝑇𝑗′,𝑛+1

s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′,𝑗′,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

)

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n < N (21a)

𝑇𝑠,𝑗,𝑛
f ≤ 𝑇𝑗′,𝑛+1

f + 𝑀 (1 − ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛+1

𝑛+1−∆𝑛≤𝑛′≤𝑛+1𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

)

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n < N (21b)

If there is a direct material transfer at event point n from unit j to unit jʹ then the start and

finish time of unit jʹ should be after the start and finish time of unit j at this event point

similar to other scenario of indirect material transfer.

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (22)

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (23)

Since materials are transferred from a production unit to a downstream processing unit in

 161

direct material transfer, it should be ensured that both processes start and finish at the

same time.

𝑇𝑗′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (24)

𝑇𝑗′,𝑛
f ≤ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (25)

Finally, the following constraints are introduced to avoid real-time storage violations. In

the first set of constraints, it is ensured that the start time of unit j processing a producing

task i at event point (n + 1) must be after the time that state 𝑠 produced by this unit,

𝑇𝑠,𝑗,𝑛
f ≤ 𝑇𝑗,𝑛+1

s + 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n < N (26a)

Additionally, the finish time of unit 𝑗′ processing a consuming task i at event point n must

be before the time that state 𝑠 produced by unit j finishes being available at event point n.

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑗′,𝑛

f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (26b)

3.7 Demand constraints

The quantity of the products produced within the scheduling horizon should fulfill the

minimum and maximum market demands. Constraint (27) ensures that the total amount

of product state 𝑠 produced, should be within the demands of this state.

𝐷𝑠
min ≤ ∑∑ ∑ 𝜌𝑠,𝑖,𝑗 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗𝑛

≤ 𝐷𝑠
max

 s ∈ 𝐒𝑃 (27)

3.8 Tightening constraints

For a given unit, the duration of all tasks processed in this unit cannot exceed the

maximum available time.

 162

∑∑𝐿𝑖,𝑗,𝑛

𝑛𝑖∈𝐈𝑗

≤ 𝐻 − 𝜏𝑗
min

 j𝐉𝑝 (28)

Where

, ,
,

min

, , , ,
, ,

0 0 min 0

 0

min min 0

j

j j

j i i j
i i

j j j

i i j i i j
i i i i

 = =

=

I

I I

3.9 Variable bounds

All timing variables must not exceed the scheduling horizon. Furthermore, for states with

limited storage capacity the stored amount must not exceed the maximum storage

capacity.

𝑇𝑗,𝑛
s ≤ 𝐻 j, n (29)

𝑇𝑗,𝑛
f ≤ 𝐻 j, n (30)

𝑇𝑠,𝑗,𝑛
s ≤ 𝐻 j, n (31)

𝑇𝑠,𝑗,𝑛
f ≤ 𝐻 j, n (32)

𝑆𝑇𝑠,𝑛 ≤ 𝑆𝑇𝑠
max s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n (33)

3.10 Additional constraints

Several additional constraints are introduced to improve the performance of the proposed

model. Constraints (34)-(37) relate 𝑤𝑖,𝑗,𝑛,𝑛′with 𝑧𝐼𝑗,𝑗′,𝑛. More specifically, if a unit jʹ

process a consumption task iʹ, and there is an indirect material transfer between units j

and jʹ then unit j must process the related production task i according to (34). Similarly,

if a unit j processes a production task i, and there is an indirect material transfer between

units j and jʹ then unit jʹ must process the related consumption task iʹ according to (35).

𝑤𝑖,𝑗,𝑛,𝑛 ≥ 𝑤𝑖′,𝑗′,𝑛,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛 − 1

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (34)

𝑤𝑖′,𝑗′,𝑛,𝑛 ≥ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛 − 1

 s 𝐒𝐼𝑁, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (35)

Similarly, we relate 𝑤𝑖,𝑗,𝑛,𝑛′ with 𝑧𝐷𝑗,𝑗′,𝑛 for states with FIS policy.

𝑤𝑖,𝑗,𝑛,𝑛 ≥ 𝑤𝑖′,𝑗′,𝑛,𝑛 + 𝑧𝐷𝑗,𝑗′,𝑛 − 1

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (36)

 163

𝑤𝑖′,𝑗′,𝑛,𝑛 ≥ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝑧𝐷𝑗,𝑗′,𝑛 − 1

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (37)

3.11 Minimum run time and amount

A task 𝑖 must be processed for some minimum duration (𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) in a unit 𝑗 and/or must

process a minimum amount (𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛) once it takes place in some cases. To enforce such

minimum run time and amount, we impose the following two constraints.

∑ ∑ 𝐿𝑖,𝑗,𝑛″

𝑛≤𝑛″≤𝑛′𝑖∈𝐈𝑗

≥ ∑𝑅𝐿𝑖,𝑗
min ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

 j 𝐉𝑝, n ≤ n ≤ n+n, n > 0, max
𝑖∈𝐈𝑗

(𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) > 0 (38)

∑ ∑ 𝑏𝑖,𝑗,𝑛″

𝑛≤𝑛″≤𝑛′𝑖∈𝐈𝑗

≥ ∑𝑅𝑏𝑖,𝑗
min ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

 j 𝐉𝑝, n ≤ n ≤ n+n, n > 0, max
𝑖∈𝐈𝑗

(𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛) > 0 (39)

3.12 Changeover time

The changeover time can either be sequence-independent or sequence-dependent. In the

latter case, the changeover time depends on the sequence of tasks processed in a unit. We

define a parameter 𝜏𝑖′,𝑖,𝑗 to denote the sequence-dependent changeover time. In cases of

sequence-dependent changeover time, the start time of a unit j during event point n should

be after its finish time at event point n (n< n) plus the sequence-dependent time from

task i to task i, if it processes tasks i and i at event points n and n respectively. Note that

if another task i is processed between tasks i and i (i.e. at event point n where n < n

< n) then we should relax this constraint.

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑖′,𝑖,𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) −

−𝐻 (∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′<𝑛′′𝑖′′

)

 j 𝐉𝑝, (i, i) 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑛′ < 𝑛, 𝜏𝑖′,𝑖,𝑛 > 0 (40)

In the case of sequence-independent changeover time, the sequence of the tasks processed

in the unit does not affect the changeover time. We define a parameter 𝜏𝑗 to denote the

sequence-independent changeover time, which only depends on units. In such case, the

start time of a unit j processing a task i during event point n should be after its finish time

at event point n (n < n) plus its sequence-independent time. Note that the changeover

 164

time should be enforced, only if a different task i is processed at event point n. Similar

to sequence-dependent changeover time, if another task i is processed between tasks i

and i then this constraint should be relaxed.

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) −

−𝐻 (∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′<𝑛′′𝑖′′

)

 j 𝐉𝑝, (i, i) 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑛′ < 𝑛, 𝜏𝑗 > 0 (41)

3.13 Objective function

In this problem, we consider the maximization of profit as objective.

𝑧 = ∑(𝑝𝑠 ∙ 𝑆𝑇0𝑠)

𝑠∈𝐒𝑃

+ ∑ 𝑝𝑠 ∙ (∑ ∑ ∑𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛

𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑝∩𝐉𝑠)

)

𝑠∈𝐒𝑃

 (42)

If minimization of makespan is used as objective, then (43) is introduced.

𝑀𝑆 ≥ 𝑇𝑗,𝑛
f j, n = N (43)

Additionally, the time that state 𝑠 produced by unit j is processed at event point n should

not exceed makespan.

𝑇𝑠,𝑗,𝑛
f ≤ 𝑀𝑆 s ∊ 𝐒𝐼𝑁, j (𝐉𝑝 ∩ 𝐉𝑠), n = N (44)

The length of a task i processed in a unit j at event point n must not exceed the maximum

available time.

∑∑𝐿𝑖,𝑗,𝑛

𝑛𝑖∈𝐈𝑗

≤ 𝑀𝑆 − 𝜏𝑗
min

 j 𝐉𝑝 (45)

Finally, (46) and (47) denote all the continuous and binary variables of the model

respectively

𝑏𝑖,𝑗,𝑛, 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛, 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛, MS, 𝑆𝑇𝑠,𝑛, 𝑇𝑠,𝑗𝑛
s , 𝑇𝑠,𝑗,𝑛

f , 𝑇𝑗𝑛
s , 𝑇𝑗𝑛

f ≥ 0 (46)

𝑤𝑖,𝑗,𝑛,𝑛′, 𝑧𝐷𝑗,𝑗′,𝑛, 𝑧𝐼𝑗,𝑗′,𝑛 {0, 1} (47)

 We complete the mathematical model M, which consists of constraints (1)-(42) and

(46)-(47) for maximization of productivity, and (1)-(41) and (43)-(47) for minimization

of makespan.

 165

3.14 Extensions

3.14.1 Flexible or swing storage

All the above constraints of model M consider dedicated storage. In other words, the

storage can hold only one state at any time and during the entire scheduling horizon. In

practice, a storage unit may be used to store multiple materials in the scheduling horizon

but can hold at most one material at any time, which is called a flexible or swing storage

tank. We define two sets 𝐈𝑠𝑡 and 𝐉𝑠𝑡 to model flexible or swing storage tasks and tanks,

which are also included into I and J respectively. A binary variable 𝑢𝑖,𝑗,𝑛 is introduced to

denote if a storage task i (𝑖 ∈ 𝐈𝑠𝑡)is active in a storage tank 𝑗 (𝑗 ∈ 𝐉𝑠𝑡) at the end of an

event point n. At a time, only one storage task can be active in a flexible or swing storage

unit.

∑ 𝑢𝑖,𝑗,𝑛

𝑖∈(𝐈𝑠𝑡∩𝐈𝑗)

= 1

 𝑗𝐉𝒔𝒕, n (48)

To monitor the transition from one state 𝑠 to another state 𝑠′ in a flexible storage unit 𝑗

(𝑗𝐉𝒔𝒕), we define a 0-1 continuous variable 𝑢𝑒𝑗,𝑛 to denote such transition at the end of

event point 𝑛.

𝑢𝑒𝑗,𝑛 ≥ 𝑢𝑖,𝑗,𝑛 − 𝑢𝑖,𝑗,𝑛+1 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 < N (49)

𝑢𝑒𝑗,𝑛 ≥ 𝑢𝑖,𝑗,𝑛+1 − 𝑢𝑖,𝑗,𝑛 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 < N (50)

We also define a continuous variable 𝑏𝑠𝑖,𝑗,𝑛 to denote the amount of materials stored in

storage unit j (𝑗𝐉𝒔𝒕) by a task 𝑖 at an event point n. The total amount of materials stored

should not exceed the maximum capacity of the storage unit.

𝑏𝑠𝑖,𝑗,𝑛 ≤ 𝑉𝑗
max ⋅ 𝑢𝑖,𝑗,𝑛 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 (51)

If there is a state transition in a storage tank at event point n, then the amount of materials

stored at this event point should be zero.

∑ 𝑏𝑠𝑖,𝑗,𝑛

𝑖∈(𝐈𝑠𝑡∩𝐈𝑗)

≤ 𝑉𝑗
max ⋅ (1 − 𝑢𝑒𝑖,𝑗,𝑛)

 𝑗𝐉𝒔𝒕, 𝑛 < N (52)

Material balance in a storage unit can be ensured by modifying material balance

constraints (6a) and (6b),

0 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑝 + ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠

𝐶)𝑗∈𝐉𝑝 −

∑ ∑ 𝑏𝑠𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

 166

 s 𝐒𝐹𝐹𝐼𝑆, n = 1 (6a-FFIS)

0 = ∑ ∑ 𝑏𝑠𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑝

+ ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖𝑝,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑝

−

− ∑ ∑ 𝑏𝑠𝑗,𝑛
𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

 s 𝐒𝐹𝐹𝐼𝑆, n > 1 (6b-FFIS)

where 𝐒𝐹𝐹𝐼𝑆 denotes state with flexible finite intermediate storage policy. Additionally,

constraints (9) and (13) are slightly modified to consider flexible storage instead of

dedicated storage.

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ ∑ ∑ 𝑏𝑠0𝑖,𝑗

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+

+∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐹𝐹𝐼𝑆, n = 1 (9a-FFIS)

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ ∑ ∑ 𝑏𝑠𝑖,𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+

+∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s 𝐒𝐹𝐹𝐼𝑆, n > 1 (9b-FFIS)

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖 ∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ ∑ ∑ 𝑏𝑠0𝑖,𝑗

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

≤ ∑ ∑ (𝑉𝑗
𝑚𝑎𝑥 ∙ 𝑢𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), n = 1 (13a-FFIS)

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖 ∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ ∑ ∑ 𝑏𝑠𝑖,𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

≤ ∑ ∑ (𝑉𝑗
𝑚𝑎𝑥 ∙ 𝑢𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), n > 1 (13b-FFIS)

Finally, (53) and (54) denote the continuous and binary variables that additionally

defined.

𝑏𝑠𝑖,𝑗,𝑛, 𝑢𝑒𝑗,𝑛 ≥ 0 (53)

𝑢𝑖,𝑗,𝑛 {0, 1} (54)

 167

 We complete the mathematical model M with flexible intermediate storage, which

consists of constraints (1-5), (6a-FFIS), (6b-FFIS), (7-8), (9-FFIS), (10-12), (13-FFIS),

(14)-(42), (46-47), (48-52) and (53)-(54) for maximization of productivity, and (1-5), (6a-

FFIS), (6b-FFIS), (7-8), (9-FFIS), (10-12), (13-FFIS), (14-41), (43-47), (48-52) and (53)-

(54) for minimization of makespan.

3.14.2 Without storage bypassing

Model M considers storage bypassing. However, it can be also extended to address the

case where storage bypassing is not allowed. In this case, the material produced should

first enter a storage tank and then consumed by downstream processing units. There are

two scenarios when storage bypass is not allowed. In the first scenario, a storage tank can

receive and deliver materials simultaneously. In other words, the producing amount of

state 𝑠 is transferred to the storage tank first and then immediately consumed by the

downstream units. This scenario is similar to the case where the storage bypass is allowed.

In the second scenario, a storage tank cannot receive and deliver materials at the same

time. In other words, storage tasks should store materials after production. Then, it can

be consumed by the downstream processing units. In this scenario, there is no indirect

and direct material transfer between units. As a result, the variables 𝑧𝐼𝑗,𝑗′,𝑛 , 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛,

𝑧𝐷𝑗,𝑗′,𝑛 and 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛 and their related constraints (7-14) are omitted from the model.

 To sequence related production and consumption tasks in different processing units,

we define a binary variable 𝑧𝑧𝑗,𝑗′,𝑛 to denote if there is a material transfer from unit 𝑗 to

unit 𝑗′ during event point 𝑛. Since a storage is not allowed to receive and deliver materials

at the same time, a storage tank should transfer materials either from a production unit or

to a consumption unit during event point n.

𝑧𝑧𝑗,𝑗″,𝑛 + 𝑧𝑧𝑗″,𝑗′,𝑛 ≤ 1

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), (𝑗, 𝑗′) ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

,

,

()

0
C

j s

i s

i

I I

, n (55)

A material transfer between a production unit j and a storage tank j at event point n, can

take place if the production unit finishes processing task i at event point n.

 168

∑ 𝑧𝑧𝑗,𝑗″,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

≥ ∑ (∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′𝑛′<𝑛

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (56a)

Similarly, a material transfer between a storage tank j and a production unit j at event

point n, can take place if the consumption unit finishes processing task i at event point n.

∑ 𝑧𝑧𝑗′′,𝑗′,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

≥ ∑ (∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′𝑛′<𝑛

)

𝑖′∈(𝐈𝑗∩𝐈𝑠
𝐶)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
C

j s

i s

i

I I

, n (56b)

We also define 𝑏𝑧𝑗,𝑗′,𝑛 to denote the amount of material transferred from unit 𝑗 to unit 𝑗′

during event point 𝑛. In this case, the total amount of materials produced (or consumed)

should be transferred to (from) a storage tank.

∑ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

= ∑ 𝑏𝑧𝑗,𝑗″,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (57a)

∑ 𝑏𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗∩𝐈𝑠
𝐶)

= ∑ 𝑏𝑧𝑗″,𝑗′,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
C

j s

i s

i

I I

, n (57b)

The amount of material transferred between two units at event point 𝑛 must be zero if

there is not a material transfer between those units at this event point.

𝑏𝑧𝑗,𝑗″,𝑛 ≤ 𝑀 ⋅ 𝑧𝑧𝑗,𝑗″,𝑛

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (58a)

𝑏𝑧𝑗″,𝑗′,𝑛 ≤ 𝑀 ⋅ 𝑧𝑧𝑗″,𝑗′,𝑛

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

()

0
C

j s

i s

i

I I

, n (58b)

We also introduce a number of additional constraints to improve the performance of the

model, similar to the constraints included for indirect and direct material transfer.

 169

∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

≥ 𝑢𝑖″,𝑗″,𝑛 + 𝑧𝑧𝑗,𝑗″,𝑛 − 1

s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖 ∈ (𝐈𝑗 ∩ 𝐈𝑠
𝑃) , 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠), n (59a)

𝑢𝑖″,𝑗″,𝑛 ≥ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

+ 𝑧𝑧𝑗,𝑗″,𝑛 − 1

s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖 ∈ (𝐈𝑗 ∩ 𝐈𝑠
𝑃) , 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠), n (59b)

∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

≥ 𝑢𝑖″,𝑗″,𝑛 + 𝑧𝑧𝑗,𝑗″,𝑛 − 1

s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖′ ∈ (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (60a)

𝑢𝑖″,𝑗″,𝑛 ≥ ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

+ 𝑧𝑧𝑗,𝑗″,𝑛 − 1

s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖′ ∈ (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (60b)

To sequence related production and consumption tasks in different processing units, we

also need to define 𝑇𝑗,𝑛
s and 𝑇𝑗,𝑛

f to denote the start and end times of a storage tank 𝑗 at

event point n. In this case the finish time of a storage tank j should always be after the

start time of the unit at the same event point.

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s j(𝐉𝑠𝑡 ∩ 𝐉𝑠), n (61)

Similarly, the start time of a storage tank j at event point (n + 1) should be after the start

time of the unit at the previous event point n.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f j(𝐉𝑠𝑡 ∩ 𝐉𝑠), n (62)

Constraints (63)-(66) are introduced to ensure that the start and finish time of storage

tanks are before and after unit j processing a producing task i if there is material transfer

between those units.

𝑇𝑗′′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝑧𝑗,𝑗′′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠) , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (63)

𝑇𝑗′′,𝑛
f ≥ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝑧𝑗,𝑗′′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (64)

𝑇𝑗′′,𝑛
s ≤ 𝑇𝑗′,𝑛

s + 𝑀(1 − 𝑧𝑧𝑗′′,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (65)

 170

𝑇𝑗′′,𝑛
f ≥ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝑧𝑗′′,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

()

0
P

j s

i s

i

I I

, n (66)

Finally, (67) and (68) denote the continuous and binary variables that additionally

defined.

𝑏𝑧𝑖,𝑗,𝑛 ≥ 0 (67)

𝑧𝑧𝑗,𝑗′,𝑛 {0, 1} (68)

The mathematical model M with storage bypass transfer not allowed and with the case

that a storage is not allowed to receive and deliver materials at the same time, which

consists of constraints (1-6), (15)-(42), (46)-(47) and (55)-(68) for maximization of

productivity, and (1)-(6), (15)-(41),(43)-(47) and (55)-(68) for minimization of

makespan.

3.14.3 No intermediate storage

If there is a state 𝑠 with no intermediate storage policy, then the model M can be slightly

modified to extend for this case. As 𝑆𝑇𝑠,𝑛 = 0 in NIS policy, the mass balance constraints

(6a-b) can be simplified through removal of 𝑆𝑇𝑠,𝑛 as follows,

0 = ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 s 𝐒𝑁𝐼𝑆, n (6-NIS)

Since there is no available storage for state 𝑠, then the total amount of materials produced

must be directly transferred to downstream processing units. Therefore, there is no

indirect material transfer for states with NIS policy. In this case, constraints (7-10) can be

removed, while constraints (11-12) can be reformulated. More specifically, the amount

of materials produced (consumed) from a task i must be equal to the total amount of

materials directly transferred to (from) tasks consuming (producing) the same state.

𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛 = ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛
𝑖′∈(𝐈𝑗′∩𝐈𝑠

𝐶)
𝑗′∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (11-NIS)

−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛 = ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (12-NIS)

As 𝑆𝑇𝑠
𝑚𝑎𝑥 = 0, constraint (13a-13b) can be simplified as follows,

 171

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

= ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), n (13-NIS)

Constraint (13-NIS) is redundant as it is ensured by constraints (11-NIS). In addition to

the previous modifications, constraint (14) is changed to the following.

∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′ ,𝑛

𝑖′∈(𝐈
𝑗′
∩𝐈𝑠

𝐶
)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

≤ min{ max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

(𝑅𝑖,𝑗
max ⋅ 𝐻), max

𝑖′∈(𝐈
𝑗′
∩𝐈𝑠

𝐶
)

(𝑅𝑖′,𝑗′
max ⋅ 𝐻) , 𝑆𝑇𝑠

max} ⋅ 𝑧𝐷𝑗,𝑗′,𝑛

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j ≠ j, (j, j) (𝐉𝑝 ∩ 𝐉𝑠), n (14-NIS)

 As there is no intermediate storage, variables 𝑇𝑠,𝑗,𝑛
s and 𝑇𝑠,𝑗,𝑛

f with related constraints

are no longer used. As a result, constraints (17-21) and (26) are removed. Constraints (22-

25) are modified to the following constraints for the case of NIS.

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (22-NIS)

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (23-NIS)

𝑇𝑗′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (24-NIS)

𝑇𝑗′,𝑛
f ≤ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j) (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

()

0
P

j s

i s

i

I I

, ,

()

0
C

j s

i s

i

I I

, n (25-NIS)

 The mathematical model M with NIS, which consists of constraints (1-5), (6-

NIS), (11-NIS)-(14-NIS), (15-16), (22-NIS)-(25-NIS), (27-30), (36-42) and (46-47) for

maximization of productivity, and (1-5), (6-NIS), (11-NIS)-(14-NIS), (15-16), (22-NIS)-

(25-NIS), (27-30), (36-41), (43) and (45-47) for minimization of makespan.

3.14.4 Planned maintenance

Two parameters 𝑇𝑗
ms and 𝑇𝑗

mf, which denote the start and the finish time of maintenance

for processing unit j are introduced. If a processing unit is under maintenance, then no

task can start or end during this period. Maintenance can take place in three different

 172

periods; at the beginning of the scheduling horizon, at the end of the scheduling horizon

and in the middle the scheduling horizon. In the first case, the start and finish times of all

tasks processed in the unit with planned maintenance should start after the finish time of

the maintenance.

𝑇𝑗,𝑛
s ≥ 𝑇𝑗

mf 𝑗 ∈ 𝐉1
𝐦, 𝑛 (69)

𝑇𝑗,𝑛
f ≥ 𝑇𝑗

mf 𝑗 ∈ 𝐉1
𝐦, 𝑛 (70)

where 𝐉1
𝐦 denotes the units with planned maintenance at the beginning of the scheduling

horizon.

In the second case, the start and the end time of all tasks processed in the unit must be

before the start time of planned maintenance.

𝑇𝑗,𝑛
s ≤ 𝑇𝑗

ms 𝑗 ∈ 𝐉2
𝐦, 𝑛 (71)

𝑇𝑗,𝑛
f ≤ 𝑇𝑗

ms 𝑗 ∈ 𝐉2
𝐦, 𝑛 (72)

where 𝐉2
𝐦 denotes the units with planned maintenance at the end of the scheduling

horizon.

Finally, if maintenance takes place in the middle of the scheduling horizon, then the

problem is divided into two parts; in the part where the tasks are processed before planned

maintenance and in the part where the tasks are processed after planned maintenance. In

this case, it is necessary to define two different sets of event points one for the first part

(i.e. N1) and one at the second part (i.e N2). In both cases the start and the finish time of

all tasks processed in the unit under maintenance should not be within the maintenance

period.

𝑇𝑗,𝑛
s ≤ 𝑇𝑗

ms 𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍1 (73)

𝑇𝑗,𝑛
f ≤ 𝑇𝑗

ms 𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍1 (74)

𝑇𝑗,𝑛
s ≥ 𝑇𝑗

mf 𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍2 (75)

𝑇𝑗,𝑛
f ≥ 𝑇𝑗

mf 𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍2 (76)

where 𝐉3
𝐦 denotes the units with planned maintenance at the middle of the scheduling

horizon.

4. Computational studies

We solve three well-established examples from the literature (Shaik and Floudas 2007;

Li et al. 2010; Omar and Shaik 2019) to illustrate the capabilities of the proposed model.

Figures 2-4 depict the STN representations. Tables 1-11 contain the data for all Examples.

 173

In Examples 1a, 2a, and 3a-3d, all units can process tasks without any planning

maintenance during the whole scheduling horizon, whilst planning maintenance takes

place in Examples 1b-1d, 2b-2d and 3e-3g during the scheduling horizon. The

maintenance periods for all units are given in Table 12. To avoid generating solutions

where a task i is processed in a unit j from event point n to n (𝑤𝑖,𝑗,𝑛,𝑛′ = 1) but the

duration of the process is zero, we impose a minimum duration (𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) of 0.1 h for all

tasks. We also use the model of Omar and Shaik (2019) (denoted as OS) to solve all these

problems for comparison. All examples are solved to zero optimality gap using CPLEX

12/GAMS 24.8.5. on a desktop computer with Intel® Core™ i7-4702HQ 2.2 GHz and 8

GB RAM running Windows 10. The maximum computational time is 1 hour.

Table 1 Data of processing tasks for Examples 1a-1d

Task Unit 𝑅𝑖
𝑚𝑎𝑥 (ton/h) Task Unit 𝑅𝑖

𝑚𝑎𝑥 (ton/h)

I1 J1 20 I8 J7 10

I2 J1 20 I9 J5 10

I3 J2 20 I10 J7 4

I4 J3 20 I11 J5 6

I5 J4 20 I12 J6 6

I6 J5 6 I13 J7 5

I7 J6 5.5 - - -

Table 2 Data of states for Examples 1a-1d

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps State ST0s 𝑆𝑇𝑠

𝑚𝑎𝑥 𝐷𝑖
𝑚𝑖𝑛 𝐷𝑖

𝑚𝑎𝑥 ps

Example 1a, c

S1 ∞ ∞ - - 1 S8 0 200 - - 1

S2 ∞ ∞ - - 1 S9 0 200 - - 1

S3 ∞ ∞ - - 1 S10 0 ∞ - - 1

S4 ∞ ∞ - - 1 S11 0 ∞ - - 1

S5 0 60 - - 1 S12 0 ∞ - - 1

S6 0 200 - - 1 S13 0 ∞ - - 1

S7 0 200 - - 1 S14 0 ∞ - - 1

Example 1b

S1 ∞ ∞ - - 1 S8 0 200 - - 1

S2 ∞ ∞ - - 1 S9 0 200 - - 1

S3 ∞ ∞ - - 1 S10 0 ∞ - - 1

S4 ∞ ∞ - - 1 S11 0 ∞ 220 270 1

S5 0 60 - - 1 S12 0 ∞ 251 300 1

S6 0 200 - - 1 S13 0 ∞ 116 140 1

S7 0 200 - - 1 S14 0 ∞ 15 25 1

 174

Table 3 Changeover times for Examples 1a-1d

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙 (h) 𝜏𝑗

𝑚𝑖𝑛 (h)

I2 → I1 J1 4 0

I6 → I9 J5 3 0

I9 → I6 J5 6 0

I9 → I11 J5 6 0

I6 → I11 J5 6 0

I11 → I9 J5 3 0

I7 → I12 J6 6 0

I8 → I10 J7 6 0

I8 → I13 J7 6 0

I10 → I13 J7 6 0

I13 → I8 J7 2 0

I13 → I10 J7 2 0

Table 4 Data of processing tasks for Examples 2a-2d

Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥 (ton/h)

I1 J1 10

I2 J1 10

I3 J2 4

I4 J3 4

I5 J2 4

I6 J3 4

I7 J4 1

Figure 2 STN representation of Examples 1a-1d

 175

Table 5 Data for storage tanks for Examples 2a-2d

Tank Maximum storage 𝐒𝑢

U1 40 S2, S3

U2 40 S2

Table 6 Changeover times for Examples 2a-2d

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙 (h) 𝜏𝑗

𝑚𝑖𝑛 (h)

I2 → I1 J5 5 0

I5 → I3 J6 5 0

I6 → I4 J4 5 0

Figure 3 STN representation of Examples 2a-2d

Table 7 Data for states for examples 2a-2d

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps

Example 2a, c

S1 ∞ ∞ - - 1

S2 ∞ 40 - - 1

S3 ∞ 80 - - 1

S4 ∞ ∞ - ∞ 1

S5 0 ∞ - ∞ 1

S6 0 ∞ - ∞ 1

S7 0 ∞ - ∞ 1

S8 0 ∞ - ∞ 1

Example 2b

S1 ∞ ∞ - - 1

S2 ∞ 40 - - 1

S3 ∞ 80 - - 1

S4 ∞ ∞ 100 ∞ 1

S5 0 ∞ 100 ∞ 1

S6 0 ∞ 20 ∞ 1

S7 0 ∞ 20 ∞ 1

S8 0 ∞ 10 ∞ 1

 176

Table 8 Data of processing tasks for Example 3

Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥 (ton/h) Task Unit 𝑅𝑖,𝑗

𝑚𝑎𝑥 (ton/h) Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥(ton/h)

I1 J1 17.00 I10 J3 12.24 I19 J7 2.2410

I2 J1 17.00 I11 J2 12.24 I20 J5 5.8333

I3 J2 17.00 I12 J3 12.24 I21 J6 2.7083

I4 J3 17.00 I13 J4 5.5714 I22 J8 5.3571

I5 J2 17.00 I14 J5 5.5333 I23 J8 5.3571

I6 J3 17.00 I15 J6 2.7083 I24 J7 3.3333

I7 J2 12.24 I16 J5 5.8333 I25 J7 2.2410

I8 J3 12.24 I17 J6 2.7083 I26 J6 2.7083

I9 J2 12.24 I18 J4 5.5714 I27 J7 3.3333

Figure 4 STN representation of Example 3

 177

Table 9 Data of states for Example 3

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps State ST0s 𝑆𝑇𝑠

𝑚𝑎𝑥 𝐷𝑖
𝑚𝑖𝑛 𝐷𝑖

𝑚𝑎𝑥 ps

Example 3a

S1 ∞ ∞ - - 1 S14 0 ∞ 15 25 1

S2 ∞ ∞ - - 1 S15 0 ∞ 7 20 1

S3 ∞ ∞ - - 1 S16 0 ∞ 47 60 1

S4 0 180 - - 1 S17 0 ∞ 8.5 10 1

S5 0 180 - - 1 S18 0 ∞ 144 200 1

S6 0 180 - - 1 S19 0 ∞ 42.5 60 1

S7 0 180 - - 1 S20 0 ∞ 114.5 150 1

S8 0 180 - - 1 S21 0 ∞ 53 80 1

S9 0 180 - - 1 S22 0 ∞ 2.5 5 1

S10 0 180 - - 1 S23 0 ∞ 16.5 25 1

S11 0 ∞ 220 270 1 S24 0 ∞ 13.5 18 1

S12 0 ∞ 251 300 1 S25 0 ∞ 17.5 25 1

S13 0 ∞ 116 140 1

Example 3b

S1 ∞ ∞ - - 1 S14 0 ∞ 15 ∞ 1

S2 ∞ ∞ - - 1 S15 0 ∞ 7 ∞ 1

S3 ∞ ∞ - - 1 S16 0 ∞ 47 ∞ 1

S4 0 180 - - 1 S17 0 ∞ 8.5 ∞ 1

S5 0 180 - - 1 S18 0 ∞ 144 ∞ 1

S6 0 180 - - 1 S19 0 ∞ 42.5 ∞ 1

S7 0 180 - - 1 S20 0 ∞ 114.5 ∞ 1

S8 0 180 - - 1 S21 0 ∞ 53 ∞ 1

S9 0 180 - - 1 S22 0 ∞ 2.5 ∞ 1

S10 0 180 - - 1 S23 0 ∞ 16.5 ∞ 1

S11 0 ∞ 220 ∞ 1 S24 0 ∞ 13.5 ∞ 1

S12 0 ∞ 251 ∞ 1 S25 0 ∞ 17.5 ∞ 1

S13 0 ∞ 116 ∞ 1

Example 3c

S1 ∞ ∞ - - 1 S14 0 ∞ 15 25 1

S2 ∞ ∞ - - 1 S15 0 ∞ 7 20 1

S3 ∞ ∞ - - 1 S16 0 ∞ 47 60 1

S4 0 60 - - 1 S17 0 ∞ 8.5 10 1

S5 0 60 - - 1 S18 0 ∞ 144 200 1

S6 0 60 - - 1 S19 0 ∞ 42.5 60 1

S7 0 60 - - 1 S20 0 ∞ 114.5 150 1

S8 0 60 - - 1 S21 0 ∞ 53 80 1

S9 0 60 - - 1 S22 0 ∞ 2.5 5 1

S10 0 60 - - 1 S23 0 ∞ 16.5 25 1

S11 0 ∞ 220 270 1 S24 0 ∞ 13.5 18 1

S12 0 ∞ 251 300 1 S25 0 ∞ 17.5 25 1

S13 0 ∞ 116 140 1

 178

Example 3d

S1 ∞ ∞ - - 1 S14 0 ∞ 15 ∞ 1

S2 ∞ ∞ - - 1 S15 0 ∞ 7 ∞ 1

S3 ∞ ∞ - - 1 S16 0 ∞ 47 ∞ 1

S4 0 60 - - 1 S17 0 ∞ 8.5 ∞ 1

S5 0 60 - - 1 S18 0 ∞ 144 ∞ 1

S6 0 60 - - 1 S19 0 ∞ 42.5 ∞ 1

S7 0 60 - - 1 S20 0 ∞ 114.5 ∞ 1

S8 0 60 - - 1 S21 0 ∞ 53 ∞ 1

S9 0 60 - - 1 S22 0 ∞ 2.5 ∞ 1

S10 0 60 - - 1 S23 0 ∞ 16.5 ∞ 1

S11 0 ∞ 220 ∞ 1 S24 0 ∞ 13.5 ∞ 1

S12 0 ∞ 251 ∞ 1 S25 0 ∞ 17.5 ∞ 1

S13 0 ∞ 116 ∞ 1

Table 10 Data for storage tanks for Example 3

Tank Maximum storage 𝐒𝑢

U1 60 Example 3a, 3c S4-S10

 Example 3b, 3d S4, S7, S9

U2 60 Example 3a, 3c S4-S10

 Example 3b, 3d S5, S8

U3 60 Example 3a, 3c S4-S10

 Example 3b, 3d S6, S10

Table 11 Changeover times for Example 3

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙 (h) 𝜏𝑗

𝑚𝑖𝑛 (h)

(I14, I16) → I20 J5 1 1

(I15, I17) → (I21, I26) J6 4 4

I13 → I18 J4 1 1

(I24, I27) → (I25, I19) J7 2 2

Table 12 Maintenance periods for Examples 1-3

Example Unit Maintenance

Period

1b J5 9 h – 12 h

1c J5 9h – 12 h

1d J1 3 h – 6 h

 J5 9h – 12 h

2b J2 25 h – 30 h

2c J2 30 h – 35 h

2d J1 15 h – 20 h

 J2 30 h – 35 h

3e J5 110 h – 120 h

3f J5 110 h – 120 h

3g J1 60 h – 70 h

 J5 110 h – 120 h

 179

 The computational results with UIS for Examples 1-3 from both model M and the

model of Omar and Shaik (2019) are presented in Tables 13-14. While Table 13 depicts

the results without planned maintenance, Table 14 demonstrates the results with planned

maintenance. From those results, it seems that both mathematical models can generate

the optimal solution by using the same number of event points. However, the proposed

model M leads to slightly fewer binary variables. For instance, model M requires 38

binary variables to generate the optimal solution of 399 $ for Example 1a, which is 13.2%

less than the model of Omar and Shaik (2019) which requires 43. Despite that, model M

requires more continuous variables and constraints than the model of Omar and Shaik

(2019). For instance, model M requires 102 continuous variables and 162 constraints for

Example 2a, while the model of Omar and Shaik (2019) requires 42.1% and 24.1% less

continuous variables and constraints respectively (59 and 123 respectively). Since the

number of binary variables affects the efficiency of the models, the model M can generate

solutions in significantly less computational time for some examples. For instance, the

model of Omar and Shaik (2019) require 1315.2 s for Example 3f, which is two orders of

magnitude more than model M (67.7 s).

Table 13 Computational results for Examples 1 – 3 with no planned maintenance (UIS

policy)

Example Model
Event

Points

Bin.

Var.

Cont.

Var.

Con

str.

RMILP

($)

MILP

($)

Profit

($)

CPU

Time

(s)

1a OS 2 42 113 223 4985.83 3975.00 399.00 0.08

(H = 12 h) M 2 38 183 291 499.00 399.00 399.00 0.05

2a OS 2 24 59 123 2696.02 2488.00 250.00 0.09

(H = 30 h) M 2 20 102 162 270.00 250.00 250.00 0.05

3a OS 4 208 465 1243 13876.71 13856.00 1388.00 3.2

(H = 120 h) M 4 160 700 1311 1388.00 1388.00 1388.00 0.1

3b OS 4 208 465 1243 27235.68 27097.18 2712.82 501.5

(H = 120 h) M 4 160 700 1343 2724.22 2712.82 2712.82 95.8

OS: Omar and Shaik 2019.

 180

Table 14 Computational results for Examples 1 – 3 with planned maintenance (UIS

policy)

Example Model
Event

Points

Bin.

Var.

Cont.

var.
Constr. RMILP MILP Profit ($)

CPU

time

(s)

1b OS 3 63 69 355 5384.84 4662.27 467.72 0.4

(H = 12 h) M 3 57 271 465 519.27 467.72 467.72 0.3

1c OS 3 63 169 360 4905.45 3133.00 315.00 0.3

(H = 12 h) M 3 57 271 470 439.00 315.00 315.00 0.2

1d OS 2/1 63 169 360 4905.45 3130.00 315.00 0.2

(H = 12 h) M 2/1 57 271 470 427.10 315.00 315.00 0.3

2b OS 1 12 30 55 2695.20 2493.00 250.00 0.06

(H = 30 h) M 1 10 48 68 250.00 250.00 250.00 0.09

2c OS 2 24 59 123 3146.10 2738.00 275.00 0.1

(H = 35 h) M 2 20 102 162 295.00 275.00 275.00 0.09

2d OS 1/2 36 88 192 3146.10 2483.00 250.00 0.2

(H = 20 h) M 1/2 30 151 254 295.00 250.00 250.00 0.05

3e OS 1 54 119 211 27356.0 26768.8 2678.08 0.08

(H = 120 h) M 1 40 168 230 2678.08 2678.08 2678.08 0.08

3f OS 4 208 465 1243 27235.7 26513.8 2654.48 1315.2

(H = 120 h) M 4 160 700 1311 2665.89 2654.48 2654.48 67.7

3g OS 1/3 208 465 1243 27235.7 26513.9 2654.48 296.6

(H = 120 h) M 1/3 160 700 1311 2665.89 2654.48 2654.48 30.5

OS: Omar and Shaik 2019.

 Tables 15 and 16 depicts the computational results for Examples 1-3 with FIS. Note

that Examples 2a-2d, 3a-3g are examples with flexible storage. Since the model of Omar

and Shaik (2019) do not consider flexible storage, we only solve those examples by using

model M. For examples with dedicated storage (examples 1a-1d), it seems that model M

can generate the optimal solution by using fewer binary variables and more continuous

variables and constraints, similar to examples with UIS policy. Additionally, it seems that

the model of Omar and Shaik (2019) requires more event points in some cases, which

further increases the number of binary variables needed to generate the optimal solution.

For instance, the model of Omar and Shaik (2019) requires 4 event points to provide the

optimal solution for Example 1c, while model M requires 3 event points. As a result, the

model of Omar and Shaik (2019) requires 35.3% more binary variables than model M

(116 vs 75 binary variables). Overall, we can conclude that M is more generic and

efficient than the model of Omar and Shaik (2019).

 181

Table 15 Computational results for Examples 1 – 3 with no planned maintenance (FIS

policy)

Example Model
Event

Points

Bin.

Var.

Conti.

Var.
Constr. RMILP MILP

Profit

($)

CPU

time

(s)

1a OS 4 116 257 833 4985.83 3768.76 379.28 39.9

(H = 12 h) M 4 100 391 1111 499.00 379.28 379.28 28.8

2a

(H = 30 h) M 2 26 128 202 270.00 250.00 250.00 0.2

3a

(H = 120 h) M 4 216 882 948 1388.00 1388.00 1388.00 0.2

3b

(H = 120 h) M 4 216 882 1582 2724.22 2712.82 2712.82 132.6

3c

(H = 120 h) M 4 180 856 1474 1388.00 1388.00 1388.00 0.2

3d

(H = 120 h) M 4 180 856 1474 2724.22 2712.82 2712.82 58.6

Figures 5 and 6 depict the schedule of example 1c from models M and OS, respectively.

By carefully examining those generated schedules, it can be explained why OS requires

more event points than M in some cases. More specifically, from Figure 5, it seems that

task I1 is processed in unit J1 at event point N3. Materials that were produced by J1 at

event point N3 are transferred in units J3 and J4 which are processing consuming tasks

I7 and I8 respectively. The start time of task I8 at event point N3 is after the start time of

producing task I1. Since the model OS enforces the start time of related production and

consumption tasks to be equal, this schedule is infeasible. In this case, one additional

event point is required to avoid generating a suboptimal solution. From Figure 6, task I1

is processed in unit J1 in both event point N3 and N4. Materials that were produced by

J1 at event point N3 are transferred in unit J3 which is processing consuming task I7. For

the next event point materials are transferred from unit J1 to units J6 and J7. In this

schedule, the start time of all related production and consumption tasks is the same.

 182

Table 16 Computational results for Examples 1 – 3 with no planned maintenance (FIS

policy)

Example Model
Event

Points

Bin.

Var.

Cont.

var.
Constr. RMILP MILP Profit ($)

CPU

time

(s)

1b OS 3 87 193 593 5384.64 4656.27 467.72 0.5

(H = 12 h) M 3 75 295 795 519.27 467.72 467.72 0.3

1c OS 4 116 257 833 4905.85 3133.00 315.00 5.1

(H = 12 h) M 3 75 295 800 439.00 315.00 315.00 0.3

1d OS 2/2 116 257 833 4905.85 3128.00 315.00 3.5

(H = 12 h) M 2/1 75 295 800 427.10 315.00 315.00 0.3

2b

(H = 30 h) M 1 23 61 89 250.00 250.00 250.00 0.1

2c

(H = 35 h) M 2 26 128 202 295.00 275.00 275.00 0.03

2d

(H = 20 h) M 1/2 39 190 313 295.00 250.00 250.00 0.05

3e

(H = 120 h) M 1 54 232 299 2678.08 2678.08 2678.08 0.08

3f

(H = 120 h) M 4 216 948 1582 2665.89 2654.48 2654.48 55.7

3g

(H = 120 h) M 1/3 216 948 1582 2665.89 2654.48 2654.48 11.4

5. Conclusions

In this work, the proposed approach presented in our previous work (Rakovitis et al.

2019) was implemented to solve the scheduling of continuous processes problem. In this

model, we implement the concept of indirect and direct material transfer, to conditionally

sequence and synchronize related production and consumption tasks. We also consider

different operating rules, including storage bypass allowed or not allowed and flexible

intermediate storage policy. In the latter case, a storage tank can or cannot receive and

deliver materials simultaneously. We also extend our model to consider the case where

processing units undergo planned maintenance during the scheduling horizon. From the

generating results, it seems that the proposed model leads to smaller model sizes with less

number of event points and binary variables required in comparison to Omar and Shaik

(2019) model. Additionally, the model presented in this work is more efficient, since it

can generate optimal schedules in up to two magnitudes less computational time in

comparison to the model of Omar and Shaik (2019).

 183

Figure 5 Optimal schedule for example 1c using model M

Figure 6 Optimal schedule for example 1c using model OS

 184

References

Adiri I., Bruno J., Frostig E., Kan R. A.H.G. Single machine flow-time scheduling with a single

breakdown, Acta Infomatica, 1989, 26, 679-696

Castro P. M., Barbosa-Póvoa A. P., Matos H. A., Novais A. Q. Simple Continuous-Time Formulation

for Short-Term Scheduling of Batch and Continuous Processes, Industrial Engineering and

Chemistry Research, 2004;43(1);105-118

Dedopoulos I. T., Shah N. 1995. Optimal short-term scheduling of maintenance and production for

multipurpose plants, Industrial & Engineering Chemistry Research, 34(1), 192-201

Floudas, C. A., Lin, X., 2004. Continuous-time versus discrete-time approaches for scheduling of

chemical processes: a review. Computers and Chemical engineering. 28(11). 2109-2129.

https://doi.org/10.1016/j.compchemeng.2004.05.002.

Hadidi L. A., Al-Turki U. M., Rahim M. A. Joint job scheduling and preventive maintenance on a

single machine., Interna Journal operation research 2012, 13(2), 174-184

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., Hooker,

J., Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial application of production scheduling

models and solution methods. Computers and Chemical Engineering. 62(5). 161-193.

https://doi.org/10.1016/j.compchemeng.2013.12.001.

Hazaras M. J., Swartsz C. L. E., Marlin T. E. 2012, Flexible maintenance within a continuous-time

state-task network framework, Computers and Chemical engineering, 46, 167-177

Jain V. , Grossmann I. E. 1998. Cyclic scheduling of continuous parallel-process units with decaying

performance, AlChE journal, 44(7), 1623-1636

Karimi I. A., Mcdonald C. M. (1997). Planning and Scheduling of parallel semicontinuous processes

2. Short-term scheduling. Industrial and Engineering Chemistry Research, 36(7), pp.2701-2714

Kopanos G. M., Pulgjaner L., Maravelias C. T., Production planning and scheduling of paraller

continuous processes with product families, Industrial Engineering and Chemistry Research,

2011;50(3);1369-1378

Lee C., Lin C. 2001. Single-machine scheduling with maintenance and repair rate modifying

activities, European journal of operational research, 135(3), 493-513

https://doi.org/10.1016/j.compchemeng.2004.05.002
https://doi.org/10.1016/j.compchemeng.2013.12.001

 185

Lee K., Park H. I., Lee I. A Novel Nonuniform Discrete Time Formulation for Short-Term Scheduling

of Batch and Continuous Processes, Industrial and Engineering Chemistry research,

2001;40(22);4902-4911

Li J., Xiao X., Tang Q., Floudas C. A. Production Scheduling of a Large-Scale Steelmaking

Continuous Casting Process via Unit-Specific Event-Based Continuous-Time Models: Short-Term

and Medium-Term Scheduling, Industrial & Engineering Chemistry research, 2012;51(21);7300-

7319

Lu Z., Cui W., Han X. 2015. Integrated production and preventive maintenance scheduling for a

single machine with failure uncertainty. Computers and industrial engineering, 80, 236-244

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjukoski, I., Fahl, M., 2006. State-of-the-art review of

optimization methods for short-term scheduling of batch processes. Computers and Chemical

Engineering. 30(6-7). 913-946. https://doi.org/10.1016/j.compchemeng.2006.02.008.

Mockus L., Reklaitis G. V. Reklaitis, Continuous time representation approach to batch and

continuous process scheduling. 1. MINLP formulation, Industrial and Engineering Chemistry

research, 1999;38(1);197-203

Rakovitis N., Zhang N., Li J., Zhang L., A new approach for scheduling of multipurpose batch

processes with unlimited intermediate storage policy, Frontiers of chemical science and engineering,

2019, 13, 784-802 https://doi.org/10.1007/s11705-019-1858-4

Rakovitis N., Zhang N., Li J., Generic mathematical formulations for scheduling of multipurpose

batch plants, AIChE Journal, 2020, under review.

Schilling G., Pantelides C. C. A simple continuous-time process scheduling formulation and a novel

solution algorithm, Computers and Chemical Engineering, 1996;20(2);S1221-S1226

Shaik M. A., Floudas C. A., Kallrath J., Pitz H. Production scheduling of a large-scale industrial

continuous plant: Short-term and medium-term scheduling, Computers and Chemical Engineering

,2009;33(3);670-686

Su L. Tsai H. 2010 Flexible preventive maintenance planning for two parallel machines problem to

minimize makespan, Journal of Quality in maintenance engineering, 16(3) 288-302

Tang Q H, Li J, Floudas C A, Deng M X, Yan Y B, Xi Z H, Chen P H, Kong J Y. Optimization

framework for process scheduling of operation-dependent automobile assembly lines. Optimization

Letters, 2012, 6(4): 797-824

https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1007/s11705-019-1858-4

 186

Xu D., Cheng Z., Yin Y., Li, H. 2009. Makespan minimization for two parallel machines scheduling

with a periodic availability constraint, Computers and Operations research, 36(6), 1809-1812

Yand D., Hung C., Hsu C., Chern M., 2002 Minimizing the makespan in a single machine scheduling

problem with a flexible maintenance, Journal of the Chinese institute of industrial engineers, 19(1),

63-66

Yang S., Ma Y., Xu D., Yang J. 2011, Minimizing total completion time on a single machine with a

flexible maintenance activity, Computers and operations research, 38(4), 755-770

Yu A. J., Seif J. 2016. Minimizing tardiness and maintenance costs in flow shop scheduling by a

lower-boud-based GA. Computers and Industrial engineering, 97, 26-40

Zammori F., Braglia M., Castellano D. 2014. Harmony search algorithm for single-machine

scheduling problem with planned maintenance, Computers and industrial engineering, 76, 333-346

Zhang Q., Sundaramoorthy A., Grossmann I. E., Pinto J. M., 2016 A discrete-time scheduling model

for continuous power-intensive process networks with various power contracts, Computers and

chemical engineering, 84, 382-393

 187

Nomenclature

Indices

i, iʹ, iʹʹ : tasks

j, jʹ : processing units or storage tanks

n, nʹ, nʹʹ : event points

s, sʹ : states

Sets

I: tasks

𝐈𝑗: tasks that can be processed in unit j

𝐈𝑠
𝑝
: production tasks that process state s

𝐈𝑠
𝑐 : consumption tasks that process state s

J: processing units or storage tanks

𝐉𝑝: processing units

𝐉𝑠: units that produce/consume state s

𝐉𝑠𝑡: storage tanks

𝐉1
𝑚: processing units with planned maintenance at the end of time horizon

𝐉2
𝑚: processing units with planned maintenance at the beginning of time horizon

𝐉3
𝑚: processing units with planned maintenance at the middle of time horizon

N: total number of event points

N1: number of event points before the maintenance period

N2: number of event points after the maintenance period

S: states

𝐒𝐹𝐼𝑆: intermediate states with finite storage capacity

𝐒𝐹𝐹𝐼𝑆: intermediate states with flexible finite intermediate storage policy

𝐒𝑁𝐼𝑆: intermediate states with no storage capacity

𝐒𝑅: raw material states

 188

𝐒𝐼𝑁: intermediate states

𝐒𝑃: final product states

𝐒𝑗: states that can be stored in storage unit j

Parameters

𝐻: scheduling horizon (h)

𝑃𝑠: price of state 𝑠 ($/ton)

𝐷𝑠
𝑚𝑖𝑛: minimum demand for state 𝑠 (ton)

𝐷𝑠
𝑚𝑎𝑥: maximum demand for state 𝑠 (ton)

𝐿𝑖
𝑚𝑖𝑛: minimum duration of task i (h)

𝐿𝑖
𝑚𝑎𝑥: maximum duration of task i (h)

M: big-M value

𝑅𝑖,𝑗
𝑚𝑖𝑛: minimum processing rate of task i in unit j (ton/h)

𝑅𝑖,𝑗
𝑚𝑎𝑥: maximum processing rate of task i in unit j (ton/h)

𝑅𝑖,𝑗: processing rate of task i in unit j for the case of fixed processing rate (ton/h)

𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛: minimum processing amount of task i in unit j

𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛: minimum processing duration of task i in unit j

Δn: Maximum number of event points that a task 𝑖 is allowed to span over

𝜏𝑗
𝑚𝑖𝑛:

 minimum total clean-up time required in unit j (h)

𝜏𝑗: sequence independent clean-up time in unit j (h)

𝜏𝑖,𝑖′,𝑗: sequence dependent clean-up time between unit i and i in unit j (h)

𝑆𝑇𝑠
0: initial amount of intermediate state 𝑠 ∈ Sin in dedicated storage (ton)

𝑆𝑇𝑠
𝑚𝑎𝑥: maximum storage capacity of state 𝑠 (ton)

𝑉𝑠
𝑚𝑎𝑥: maximum storage capacity of processing unit j (ton)

𝜌𝑖,𝑠: proportion of state 𝑠 produced or consumed by task i

 189

Binary variables

𝑤𝑖,𝑗,𝑛,𝑛′: binary variable for assignment of task i in unit j at the beginning of event n

𝑢𝑖,𝑗,𝑛: binary variable to denote whether a task i is active in a storage tank j at event

point n

𝑧𝐷𝑗,𝑗′,𝑛: binary variable to denote whether direct material transfer takes place between

units j and jʹ at event point n

𝑧𝐼𝑗,𝑗′,𝑛: binary variable to denote whether indirect material transfer takes place between

units j and jʹ at event point n

𝑧𝑧𝑗,𝑗′,𝑛: binary variable to denote whether material transfer takes place between units j

and jʹ at event point n

Positive variables

𝑆𝑇𝑠,𝑛: storage inventory of state 𝑠 in dedicated storage at the end of event n (ton)

𝑏𝑖,𝑗,𝑛: amount of material processed by task i in unit j at event n (ton)

𝑏𝑠𝑖,𝑗,𝑛: amount of materials stored in storage tank j at event point n (ton)

𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛: amount of materials, which produced by task i processed in unit j, were

indirectly transferred to unit jʹ which consumes task iʹ at event point n

𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛: amount of materials, which produced by task i processed in unit j, were

indirectly transferred to unit jʹ which consumes task iʹ at event point n

𝑏𝑧𝑗,𝑗′,𝑛: amount of materials transferred from unit 𝑗 to unit 𝑗′ during event point 𝑛.

𝐿𝑖,𝑗,𝑛: Processing duration of task i in unit j at event point n

MS: makespan

𝑇𝑗,𝑛
s : start time of unit j at event n (h)

𝑇𝑗,𝑛
f : finish time of unit j at event n (h)

𝑇𝑠,𝑗,𝑛
s : time that state 𝑠 produced by unit j starts being available at event n (h)

𝑇𝑠,𝑗,𝑛
f : time that state 𝑠 produced by unit j finishes being available at event n (h)

𝑇𝑖,𝑛
𝑚𝑠: time at which maintenance start for task i at event n (h)

 190

𝑇𝑖,𝑛
𝑚𝑓

: time at which maintenance finishes for task i at event n (h)

𝑢𝑒𝑗,𝑛: 0-1 continuous variable to denote whether a transition from one state 𝑠 to another

state 𝑠′ in storage tank j takes place at event point n

 191

Chapter 6: Scheduling of multitasking multipurpose

batch processes

6.1 Introduction

In Chapter 4, an efficient framework for scheduling of multipurpose batch processes was

developed. This approach, even though it can significantly reduce the model size of the

problem, it still cannot directly solve all multipurpose batch process scheduling problems.

The main reason is that in the presented approach, a processing unit can only process one

task at a time. Such an assumption, even though it holds in some cases, there are some

types of process industry that contains units that can process multiple tasks

simultaneously. For instance, scientific service facilities examine several samples by

different customers for their chemical and physical properties. These samples, even

though they belong to another task (i.e. different samples from different customers), they

can be examined in the same processing unit, which contains multiple slots for sample

examination.

Despite the great interest for scheduling of single-tasking multipurpose batch

processes, scheduling of multitasking batch processes has not gathered the same attention.

Only recently several mathematical models considered this scheduling problem. Such

models use uniform (Patil et al. 2015), non-uniform (Lagzi et al. 2017b) discrete-time

representation and the slot-based representation (Lagzi et al. 2017a) to develop the

mathematical formulation. On the other hand, there is no model based on the unit-specific

event-based time representation for this problem. Since unit-specific event-based time

representation leads to the least possible number of event points, using such a formulation

can potentially lead to smaller model sizes and increase efficiency.

In this chapter, two efficient mathematical models for scheduling of multitasking,

multipurpose batch processes were developed based on unit-specific event-based

approach. While the first model uses timing variables based on tasks, the second model

uses timing variables based on units, similar to the proposed efficient framework of

Chapter 4. The capabilities of both formulations are examined by solving several

problems and comparing the solution quality and computational efficiency with those

formulations for multitasking multipurpose batch processes.

 192

Blank Page

 193

6.2 Research contribution 4

Rakovitis, N., Zhang, N., Li, J. A novel unit-specific event-based formulation for short-

term scheduling of multitasking processes in scientific service facilities, Computers and

Chemical Engineering, 133(2), (2020) doi:

doi.org/10.1016/j.compchemeng.2019.106626.

https://doi.org/10.1016/j.compchemeng.2019.106626

 194

Blank Page

 195

A Novel Unit-Specific Event-Based Formulation for Short-Term

Scheduling of Multitasking Processes in Scientific Service Facilities

Nikolaos Rakovitis, Nan Zhang, Jie Li3

Centre for Process Integration, School of Chemical Engineering and Analytical Science,

The University of Manchester, Manchester, M13 9PL, United Kingdom

Abstract

Scientific service facilities examine a number of samples from different customers for

several physical and chemical properties using processing units with large capacities. A

processing unit can process a great number of samples simultaneously. The process in

such scientific service facility can be treated as a multi-tasking multipurpose batch

process. Despite the great interest in developing models for scheduling of process

industry during the past three decades, scheduling of multi-tasking multipurpose batch

processes in a scientific service facility has not been considered adequately. In this work,

we develop three novel mathematical models using the well-established unit-specific

event-based modelling approach. The computational results demonstrate that the

proposed mathematical models are able to reduce the number of event points required,

which leads to a significant reduction in the model size and computational time. One of

the proposed models in which the timing variables are defined based on processing units

is the most efficient in most cases especially when minimization of makespan is used as

the objective, where at least one order of magnitude less computational time than all other

models is required to generate the optimum solution compared to other existing models.

Keywords: Scheduling, multi-tasking, batch process, mixed-integer linear programming,

unit-specific event-based approach

1 Introduction

Process industries always seek ways to maximize their productivity, minimize their

operating cost, and achieve efficient inventory management to survive in a highly

competitive market. Scheduling is one of the important managerial tools for such

industries to better utilize materials and machines and as a result to increase their profit.

3 To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 196

However, most of the existing industries use heuristic-based or spreadsheet-based

methods which are only limited to generate a feasible solution for simple processes.

Therefore, both academic and industrial research focuses on methods that are able to

generate optimal schedules in reasonable computational time. Mathematical

programming especially mixed-integer programming approach has gained much attention

since it can often generate optimal schedules not only for simple processes but also in

complicated ones.

 Batch processes are widely used in process industries such as chemicals,

pharmaceuticals, food industry, scientific service facilities and iron and steel industry

because of their flexibility to produce high valued products, especially if small production

of each product is required. Furthermore, they are ideal in cases of seasonal orders by

different customers. The batch process is usually classified into single or multi-stage

multiproduct batch process and multipurpose batch process (Kopanos and Puigjaner,

2019). In these processes, usually at most one task is allowed to be processed in a

processing unit at a time. Scheduling of these processes has received considerable

attention in the past three decades (Floudas and Lin, 2004; Méndez et al., 2006; Li et al.,

2010; Maravelias, 2012; Harjunkoski et al., 2014). Discrete- and continuous-time

modelling approaches have been proposed to develop a great number of mathematical

models based on state-task network (Kondili et al., 1993) and resource-task network

(Pantelides, 1994). The discrete-time modelling approach divides the scheduling horizon

into time intervals of known length where the start and end time of an activity must be

exactly at the time interval points. As a result, a great number of time intervals are often

required, which significantly increases the model size. The continuous-time modelling

approach can be further divided into process-slot (Sundaramoorthy and Karimi, 2005),

global event-based (Maravelias and Grossmann, 2003), unit-specific event-based

(Ierapetritou and Floudas, 1998; Shaik and Floudas, 2009; Li and Floudas, 2010; Tang et

al., 2012; Li et al., 2016), unit-slot (Sursarla et al., 2010; Li and Karimi, 2011) and

sequence-based (Méndez and Cerdá, 2000; Hui et al., 2000; Méndez and Cerdá, 2003)

modelling approaches. The continuous-time modelling approach divides the scheduling

horizon into time intervals of unknown length, leading to less time points, batches, slots

or event points required compared to the discrete-time modelling approach. The

advantages of the unit-specific event-based modelling approach have been well

established in the literature (Shaik et al, 2006; Shaik and Floudas, 2009; Li and Floudas,

2010), often requiring less number of event points. The details about these modelling

 197

approaches and mathematical models can be found in Floudas and Lin (2004), Méndez et

al. (2006) and Harjunkoski et al. (2014).

 In a scientific service facility, a number of samples from different customers are

examined for a number of chemical or/and physical properties. In order to examine such

properties, a scientific service facility uses a number of machines with each containing a

number of slots. Since these machines contain many slots, it is possible to have samples

from different customers that are processed at a time simultaneously in a machine. In

other words, multiple tasks can be processed in a machine at a time in such scientific

service facilities, which is different from the discussed single-tasking batch processes

with at most one task being processed in a unit at a time. Each customer requires a

different number of physical and chemical properties to be examined. Therefore, each

sample group is examined in different processing units. In other words, different samples

can follow different processing paths. The processes in scientific service facilities are

considered as multi-tasking multipurpose batch process (Lagzi et al., 2017a). A typical

scientific service facility receives around 3000-5000 samples from 40-60 different

customers every day (Lagzi et al., 2017a).

 Most mathematical models that have been developed for the batch process with at

most one task being processed in a processing unit at a time cannot be directly applied to

the multi-tasking multipurpose batch process in scientific service facilities. Few efforts

have focused on optimal scheduling of such multi-tasking batch process in scientific

service facilities. Patil et al. (2015) developed a discrete-time model for scheduling of

multi-tasking batch processes in scientific service facilities. Lagzi et al. (2017a) used

process-slot continuous-time modelling approach for the same scheduling problem. Lagzi

et al. (2017b) developed a discrete-time formulation using non-uniform time grid based

on the work of Velez and Maravelias (2013) and compared the performance with that of

the discrete-time (Patil et al., 2015) and process-slot continuous-time (Lagzi et al., 2017a)

formulations. By solving a number of examples, it was concluded that the discrete-time

formulations using uniform and non-uniform time grids requires less computational time

than process slot-based alternative, especially for large-scale problems. However, those

two discrete-time formulations are possible to lead to suboptimum solutions in some

cases, especially if a coarse discretization is used since a unit can only start examining a

property exactly at time interval points. The non-uniform discrete-time model of Lagzi et

al. (2017b) was extended to consider allocation of personnel to active machines (Santos

et al., 2018) and two conflicting objectives (Lee et al., 2019).

 198

 In this work, we use the unit-specific event-based modelling approach whose

advantages have been well established in the literature (Shaik and Floudas, 2009; Li and

Floudas, 2010) to develop efficient models for scheduling of multi-tasking batch

processes in a scientific service facility. In this unit-specific event-based modelling

approach, timing variables could be defined either based on tasks similar to the definition

of Shaik and Floudas (2009) or based on units (Ierapetritou and Floudas 1998). In order

to examine the capabilities of both timing variable representations, we develop three

different unit-specific event-based mathematical models. While in the first two models

we define a number of timing variables based on tasks in the process, in the third model

we introduce a number of timing variables based on processing units in the process. The

main difference between the first two models are the tightening constraints. The first two

models could be considered as an extension of the model of Shaik and Floudas (2009) for

allowing multiple tasks to take place in a unit simultaneously. The third model is

completely different from all existing models. A number of examples are solved to

illustrate the capability of the proposed three formulations and compared with the existing

mathematical models in the literature. The computational results demonstrate that the

proposed mathematical models are able to reduce the number of event points required,

which leads to a much smaller model size compared to the existing models in the literature

(Patil et al. 2015; Lagzi et al. 2017a; Lagzi et al. 2017b). The third model with the timing

variables defined based on processing units is the most superior since it generates the

optimum solution in significantly less computational time, especially when minimization

of makespan is used as the objective, where at least one order of magnitude less

computational time than all other models is required to generate the optimum solution

compared to other existing models.

2 Problem Statement

Figure 1 illustrates a general multi-tasking batch process in a scientific service facility.

The scientific service facility receives O (o = 1, 2, 3, ..., O) orders/sample groups from

different customers that are required to be examined for a total of P (p = 1, 2, 3, …, P)

properties using totally J (j = 1, 2, 3, …, J) machines (or processing units). Each

order/sample group contains a number of samples. We assume that all samples in an

order/sample group are examined for the same number of properties without loss of

generality. This is because if an order/sample group contains samples that are examined

for different properties, this order/sample group will be divided into different

 199

orders/sample groups. Each order/sample group has to be examined for a number of

properties based on the customer request. The property examination sequence for an

order/sample group is known a priori. However, each order/sample group could have

different property examination sequence and thus follow a different processing path. A

machine (or unit) can only examine one property. Each machine (or unit) is allowed to

examine a number of samples from different orders/sample groups at the same time

depending on its capacity. The examination time of a machine (or unit) j is known and

denoted as j It only depends on the property that is required to be examined, not the

batch size. If a machine (or unit) starts examining some samples, then a new sample can

be processed only after the completion of all current samples. In other words, a machine

(or unit) cannot be interrupted during the examination. The examination of an

order/sample group for a property in a machine (or unit) is considered as a task. The

examination of different properties for the same or different orders/sample groups is

treated as different tasks. The examination of different orders/sample groups on the same

machine is also treated as different tasks. There are in total I (i = 1, 2, …, I) tasks and

each machine can process Ij tasks.

Figure 1 A general multi-tasking batch process in a scientific service facility

 An order/sample group has three statuses depending on if its properties are

examined. While an order/sample group that is received without any properties examined

is called “raw material”, an order/sample group with some properties examined is called

“intermediate state”. An order/sample group that has been completely examined is called

“final product”. There are total S (s = 1, 2, 3, …, S) states. In Figure 1, states “S1, S2, ...,

SO–1, SO” denote “raw material states”, “SO+1, SO+2, …, S2O–1, S2, S2O+1,…, SPO”

 200

are “intermediate states” and “SPO+1, SPO+2, …, S-1, S” are “final products”. The “raw

material” is included in a set SR, the “intermediate state” is denoted as SIN, and the “final

product” is denoted as SF. Each task can “consume” or “produce” at most a state. Tasks

that produce a state s are denoted as 𝐈𝑠
𝑃 and tasks that consume a state s are denoted as 𝐈𝑠

𝐶 .

The portion of a state s that is used for task i is denoted as i,s. If a task i consumes a state

s, then i,s = –1. If a task i produces a state s, then i,s = 1.

 Each “intermediate state” has its own dedicated storage. There are several

intermediate storage policies for each intermediate state including unlimited intermediate

storage policy (UIS), finite intermediate storage policy (FIS) and no intermediate storage

policy (NIS). There are also several possible wait policies for an intermediate state in a

processing unit after processing including unlimited wait policy (UW), limited wait

policy (LW) and zero wait policy (ZW). In a scientific service facility, a sample is allowed

to stay in the processing time without any restriction after examination. Thus, UW policy

is applied. We also assume unlimited intermediate storage policy for samples. With all of

these, the scheduling problem can be stated as follows,

Given:

a) O orders/sample groups, the number of samples in each order/sample group,

properties and their examination sequence for each order/sample group;

b) J machines (or processing units), minimum and maximum capacities, suitable

properties and tasks, processing times;

c) The scheduling horizon H.

Determine:

a) Optimal processing schedule involving task allocations, start and end timings,

sequences and batch sizes;

b) Inventory profiles.

Operating rules:

a) More than one tasks are allowed to be processed in a processing unit

simultaneously;

b) Each machine (or unit) can examine only one property;

c) Batch splitting and mixing is allowed for each order/sample group.

Assuming:

a) All parameters are deterministic;

b) The processing time of a machine (or unit) j is fixed (denoted as j). It only

 201

depends on the property that is required to be examined, not the batch size;

c) Unlimited feed materials are available;

d) Unlimited storage policy for all states;

e) Unlimited resources where required are available;

f) Unlimited wait policy for intermediate states.

 The objective of the given problem is to maximize the number of samples

examined, during a specified scheduling horizon (maximization of productivity) or to

minimize the time required to examine all properties of a specific number of samples

(minimization of makespan).

3 Mathematical Formulation

As discussed before, the capabilities of the unit-specific event-based modelling approach

have been well established in the literature (Shaik and Floudas, 2009; Li and Floudas,

2010), which is used to develop three mathematical models for the given problem due to

different ways for the definition of timing variables. Next, we present these three models

in detail.

3.1 Models M1a and M1b

In the models M1a and M1b, the timing variables are defined based on tasks in the

process, which is similar to the definition of most existing unit-specific event-based

models (Shaik and Floudas, 2009; Li and Floudas, 2010). We also follow the approach of

Shaik and Floudas (2009) that uses a parameter 𝑛 to regulate the maximum allowable

number of event points that a task is allowed to span over. It should be noted that the

examination of the same order/sample group in different machines (or units) for the same

properties is treated as different tasks in order to define timing variables based on tasks.

Allocation constraints

We define three-index binary variables wi,n,n to denote if a task i is active from event point

n to event point n (n n), which is similar to those in the model of Shaik and Floudas

(2009). If a task is allowed to span over multiple event points, it should start or end at

only one event point. Constraint (1) guarantees that a task i have no more than one start

or end in different event points.

 202

∑ ∑ 𝑤𝑖,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛

≤ 1

 ∀j, i ∊ Ij, n, Δn > 0 (1)

Note that constraint (1) is valid for every task that can be processed in a unit j. Therefore,

it allows multiple tasks to take place in the same unit simultaneously. This constraint (1)

is different from those of Shaik and Floudas (2009).

 We define new 0-1 continuous variables yj,n,n to denote if a unit j is active from

event point n to n. Since multiple tasks are allowed to take place in the same unit

simultaneously, constraints (2) and (3) are introduced to establish the relationship

between wi,n,n and yj,n,n. More specifically, constraint (2) states that when a task 𝑖 is active

from event points n to n (i.e., wi,n,n = 1), a unit j that is able to process that task i must be

also active (yj,n,n = 1). Furthermore, if none of the tasks that can be processed in a unit j

is active, this unit j is forced to be inactive (yj,n,n = 0) as indicated in constraint (3).

𝑦𝑖,𝑛,𝑛′ ≥ 𝑤𝑖,𝑛,𝑛′ ∀j, i ∊ Ij, n, n ≤ n ≤ n+Δn (2)

𝑦𝑖,𝑛,𝑛′ ≤ ∑𝑤𝑖,𝑛,𝑛′

𝑖∈𝐈𝑗

 ∀j, n, n ≤ n ≤ n+Δn (3)

It should be noted that constraints (2) and (3) enforce yj,n,n can take value 0 or 1 and

therefore they are defined as 0-1 continuous variables.

Capacity constraints

As previously discussed, multiple sample groups can be examined in a processing unit

simultaneously. We define bi,n,n to denote the batch size of a sample group processed by

a task i. The summation of all samples that are examined in the same unit j should be

within its minimum unit capacity (𝐵𝑗
𝑚𝑖𝑛) and maximum unit capacity (𝐵𝑗

𝑚𝑎𝑥). Therefore,

constraint (4) is introduced to avoid a capacity violation.

𝐵𝑗
min ⋅ 𝑦𝑗,𝑛,𝑛′ ≤ ∑𝑏𝑖,𝑛,𝑛′

𝑖∈𝐈𝑗

≤ 𝐵𝑗
max ⋅ 𝑦𝑗,𝑛,𝑛′

 ∀j, n, n ≤ n ≤ n+Δn (4)

Material balance constraints

The amount of a material state s stored at the beginning of an event point n should be

equal to its storage amount at the beginning of the previous event point (n – 1) plus the

 203

amount of the state 𝑠 produced at event point (n – 1) (i.e., i,s > 0), minus the amount of

the state consumed at event point 𝑛 (i.e., i,s < 0).

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈𝐈𝑆
𝑃

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 ∀s, n > 1 (5)

Notice that constraint (5) does not include the amount of a material state s stored at the

beginning of the first event point. The amount of a material state s stored at the beginning

of the first event point should be equal to the initial amount of state s minus the amount

of the state consumed by tasks that start to process state s at the beginning of the first

event point.

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 ∀s, n = 1 (6)

The material balance constraints are similar to those of Shaik and Floudas (2009).

Duration constraints

The processing duration of task i is computed using constraint (7) if it is not allowed to

span over multiple event points (Δn = 0).

𝑇𝑖,𝑛
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛 ∀i, n, Δn = 0 (7)

If a task i is allowed to span over multiple event points (i.e, Δn > 0), then constraints (8)

and (9) are applied.

𝑇𝑖,𝑛
f ≥ 𝑇𝑖,𝑛

s
 ∀i, n, Δn > 0 (8)

𝑇𝑖,𝑛′
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛′ ∀i, n, n ≤ n ≤ n+Δn, Δn > 0 (9)

Same task in the same unit

A task i at event point (n + 1) must always start after it completes at the previous event

point n as specified by constraint (10).

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖,𝑛

f
 ∀i, n < N (10)

If a task is allowed to span over multiple event points, then the start time of task i at event

point (n + 1) should be equal to the finish time of the same task at the previous event point

n if task i is active at event point n but it continues being active at the next event point, as

indicated in constraint (11).

 204

𝑇𝑖,𝑛+1
s ≤ 𝑇𝑖,𝑛

f + 𝑀 ∙ [1 − (∑ ∑ 𝑤𝑖,𝑛′,𝑛′′

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑛′′,𝑛′

𝑛′<𝑛,𝑛′′≤𝑛′≤𝑛′′+∆𝑛𝑛′′

)] +

+𝑀 ∙ ∑ 𝑤𝑖,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

 ∀i, n, Δn > 0 (11)

Different tasks in the same unit

A task i at an event point (n + 1) must always start after any other task i that can be

processed at the same unit as this task completes at event point n.

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f
 ∀j, i∊ Ij, i∊ Ij, i ≠ i, n < N (12)

Different tasks in different units

Constraint (13) is introduced to define the sequence between tasks in different units that

produce and consume the same state s. A consumption task i at event point (n + 1) must

start after a production task i related to the same state 𝑠 completes at event point n, if the

producing task finishes processing materials at event point n.

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

)

 ∀s ∊ SIN, j ≠ j, i ∊ (𝐈𝑗 ∩ 𝐈𝑠
𝐶), i ∊ (𝐈𝑗 ∩ 𝐈𝑠

𝑃) , i ≠ i, n < N (13)

Tightening constraints

Shaik and Floudas (2009) introduced a number of tightening constraints in order to tight

the relaxation of their MILP formulation. However, these constraints are proposed with

the assumption that at most one task is allowed to be processed in a unit at a time.

Therefore, these constraints cannot be used in this multi-tasking scheduling problem. In

this work, we present two different tightening constraints. In the computational results,

we will compare the performance of these two different tightening constraints. The first

one is the modification of the tightening constraints from Shaik and Floudas (2009) as

indicated in constraint (14).

∑ ∑ max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 𝐻

 ∀ j (14)

 In order to develop the second tightening constraints, we introduce new variables

 205

𝑇𝑗,𝑛
s and 𝑇𝑗,𝑛

f to denote the start and end time of a unit j at event point n. According to

constraint (15), the finish time of a unit j at an event point n must be after the start time

of this unit at the same event point plus the maximum processing time of the tasks that

are available to be processed in the unit. Furthermore, according to constraint (16), the

start time of unit j at event point (n + 1) must always be after the finish time at the previous

event point n.

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′ ∀ j, n, n ≤ n ≤ n+Δn (15)

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f ∀ j, n < N (16)

Variable bounds

All timing variables should take values less than the scheduling horizon, as indicated in

constraints (17)-(20).

𝑇𝑖,𝑛
s ≤ 𝐻 ∀ i, n (17)

𝑇𝑖,𝑛
f ≤ 𝐻 ∀ i, n (18)

𝑇𝑗,𝑛
s ≤ 𝐻 ∀ j, n (19)

𝑇𝑗,𝑛
f ≤ 𝐻 ∀ j, n (20)

The number of samples examined must always be less than the maximum capacity.

Therefore, constraint (21) defines the upper limit for these variables.

𝑏𝑖,𝑛,𝑛′ ≤ 𝐵𝑖
𝑚𝑎𝑥

 ∀ i, n, n ≤ n ≤ n+Δn (21)

Objective function

Two objective functions are considered: maximization of productivity and minimization

of makespan.

Maximization of productivity

Usually, it is better for a scientific service facility to complete the examination of all

samples received during the specified scheduling horizon. However, this may not be

achieved. Therefore, it is necessary to maximize the total number of samples that can be

examined within the scheduling horizon, as indicated in constraint (22).

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑛𝑖∈𝐈𝑆
𝑃𝑠

 (22)

where ps is a weighted value, which takes the value of 1 for “intermediate products” and

 206

5 for “final products”.

Minimization of makespan

Another objective is to minimize the time required to complete the examination of all

samples received from customers. We define a variable MS to denote that the minimum

time needed to examine all properties for all samples, which should exceed the finish time

of all tasks at the last event point in the process.

𝑇𝑖,𝑛
f ≤ 𝑀𝑆 ∀i, n = N (23a)

∑ ∑ max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 𝑀𝑆

 ∀j (23b)

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 ∀i, n = N (23c)

To achieve minimization of makespan, one additional constraint should be considered to

ensure that all samples are examined.

𝑆𝑇𝑠,𝑛 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃

≥ 𝐷𝑠

 ∀ s ∊ SP, n = N (24)

where Ds is the total amount of samples that have to be examined. Note that at the last

event point all samples have to be examined for all properties. Therefore, we only

consider “production states” in (24). Furthermore, the total number of samples received

from customers should be equal to the number of samples required to be examined at the

last event point.

 We complete the model M1a which comprises eqs. 1-14, 17-18 and 21-22 for

maximization of productivity and eqs. 1-13, 21, 23a, 23b and 24 for minimization of

makespan. This model M1a uses the first tightening constraints (i.e., constraints 14 and

23b). Another model M1b using the second tightening constraints (i.e., constraints 15-

16) are completed which comprises eqs. 1-13 and 15-22 for maximization of productivity

and eqs. 1-13, 15-16, 21, 23a, 23c and 24 for minimization of makespan. It should be

noted that although different tasks in the same unit may not start at the same time from

the schedule generated using the models M1a and M1b, it is easy to revise the schedule

to make sure that different tasks in the same unit start at the same time without any effect

on the objective function.

3.2 Model M2

In this model, the timing variables are defined based on units. Since multiple tasks are

 207

allowed to take place at the same units simultaneously, we want to know their active

status of each unit at a time. Thus, we define binary variables wj,n,n to denote if a unit j is

active from an event point n to another event point n (n > n).

Allocation constraints

Although a unit j is allowed to be active over multiple event points, it can start or end

only at one event point, as indicated in constraint (25).

∑ ∑ 𝑤𝑗,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛

≤ 1

 ∀j, n, Δn > 0 (25)

Note that constraint (25) is valid for each unit j without involving any task. Thus, it does

not restrict the number of tasks that are allowed to be processed in a unit j.

Capacity constraints

We define continuous variables bi,j,n,n to denote the batch size that is processed by a task

i in a unit j from event point n to event point n. Recall that multiple tasks are allowed to

be processed in a unit j simultaneously. The total batch size processed in a unit j should

be within the minimum (𝐵𝑗
𝑚𝑖𝑛) and maximum (𝐵𝑗

𝑚𝑎𝑥) capacities of this unit j at a time,

as indicated by constraint (26).

𝐵𝑗
min ⋅ 𝑤𝑗,𝑛,𝑛′ ≤ ∑𝑏𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

≤ 𝐵𝑗
max ⋅ 𝑤𝑗,𝑛,𝑛′

 ∀j, n, n ≤ n ≤ n+Δn (26)

Material balance constraints

The amount of a material state s stored at the beginning of event point n should be equal

to the amount of the state s stored at the beginning of event point (n – 1), plus the amount

of this state 𝑠 produced by tasks at the end of event point (n – 1) (i.e., i,s > 0), minus the

amount of state s consumed by tasks at the beginning of event point n (i.e., i,s < 0).

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

+

+∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛−Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)𝑗

 ∀s, n > 1 (27)

The amount of a material state 𝑠 stored at the beginning of the first event point should be

 208

equal to the initial amount of state 𝑠 minus the amount of the state consumed by tasks that

start to process state 𝑠 at the beginning of the first event point.

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)𝑗

 ∀s, n = 1 (28)

Duration constraints

The processing duration of a unit j is defined by constraint (29). The constraint assumes

constant processing time (j) for all tasks, which is unit dependent only. This is true for

property examination in a scientific service facility. Constraint (29) indicates that the end

time of a unit j at event point n must be greater than the start time of this unit j at event

point n plus the constant processing time if unit j is active from event point n to event

point n.

𝑇𝑗,𝑛′
f ≥ 𝑇𝑗,𝑛

s + 𝛼𝑗 ∙ 𝑤𝑗,𝑛,𝑛′ ∀j, n, n ≤ n ≤ n+Δn (29)

Sequencing constraints

To sequence different tasks in different units, we define continuous variable Ts,n to denote

the time that state s is available at event point n. The end time of tasks that produce a state

s from event point n to event point n must be before the time that state s is available at

event point n as denoted by constraint (30). We assume that “Raw material states” are

available at the beginning of the scheduling horizon, while “final product states” are not

“consumed” by any task. Therefore, they are not considered in constraint (30).

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ 𝑤𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

)

 ∀ s ∊ SIN , j, n,
, 0

j

i s

i

I

 (30)

Furthermore, the start time of tasks that consume state s from event point (n + 1) to event

point n, must be after the time that state s is available to be consumed at event point n as

specified by constraint (31).

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛+1
s + 𝑀 (1 − ∑ 𝑤𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛

)

 ∀ s ∊ SIN , j, n < N,
, 0

j

i s

i

I

 (31)

Similar to constraint (30), constraint (31) is also only valid for “intermediate material

 209

states”.

A unit j at event point (n + 1) must always start after any other process in unit j ends at

event point n. This is because the property examination for a new order/sample groups

should wait until the current examination completes.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f
 ∀ j, n < N (32)

The start time that state s is available to be consumed at event point n must always be

before the time that is available to be consumed at the next event point (n + 1), as denoted

by constraint (33).

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1 ∀ s ∊ SIN, n < N (33)

Variable bounds

𝑇𝑗,𝑛
s ≤ 𝐻 ∀ j, n (34)

𝑇𝑗,𝑛
f ≤ 𝐻 ∀ j, n (35)

𝑇𝑠,𝑛 ≤ 𝐻 ∀ s, n (36)

𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝐵𝑖
𝑚𝑎𝑥 ∀ j, iIj, n n n+n (37)

Objective function

Similar to the models M1a and M1b, two objective functions are considered for the model

M2 including maximization of profit and minimization of makespan.

Maximization of productivity

Given a specific scheduling horizon, objective function (38) is used to maximize the total

number of samples that can be examined at the end of the scheduling horizon.

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗𝑠

 (38)

Minimization of makespan

For minimization of makespan, the objective function (39a) is introduced.

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 ∀ j, n = N (39a)

𝑇𝑠,𝑛 ≤ 𝑀𝑆 ∀ j, n = N (39b)

Similar to models M1a and M1b, one more constraint should be considered to ensure that

all properties are examined in all samples in the case of minimization of makespan.

 210

𝑆𝑇𝑠,𝑛 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

≥ 𝐷𝑠

 ∀ s ∊ SP, n = N (40)

 We complete the model M2 which comprises eqs. 25-38 for maximization of

productivity and eqs. 25-33, 37, 39-40 for minimization of makespan.

4 Computational studies

We solve 32 examples to illustrate the capabilities of the proposed models. Example 1 is

the illustrative example from Lagzi et al. (2017a) in which two groups of samples are

examined for four properties in the facility having six machines. The necessary data are

given in Tables 1-2. Examples 2-20 are generated randomly following discrete uniform

distribution. Examples 2-6 have ten groups of samples with each containing from 50 to

80 samples. These sample groups have to be examined for 1 to 4 properties. Examples 7-

8 have five groups of samples with 1-4 properties to be examined. One sample has to be

examined for more than once for the same property since a property needs to be examined

in two or more different conditions such as varying temperature or pressure. This could

often happen in a scientific service facility, as illustrated in Lagzi et al. (2017a). Examples

9-19 involve 2-16 groups of samples with each containing from 50 to 80 samples having

3-8 properties to be examined. The necessary data for Examples 2-20 can be found in the

Supplementary Material. A scheduling horizon of 480 min (i.e., 8 hours) is considered

for Examples 2-19. Example 20 has 100 groups of samples with each containing 200 to

300 samples having a total 25049 samples to be examined. There are 25 properties that

are required to be examined with each group having 8-9 properties. The scheduling

horizon is 40 hours.

Table 1 Sample group data for Example 1

Sample group Processing pathway Number of samples

1 𝑃1 − 𝑃3 − 𝑃4 120

2 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 100

Table 2 Data on processing units and properties for Example 1

Property

Unit

Unit capacity (samples)

(Min – Max) 𝛼𝑖 (min)

1 1 0-140 50

2 2 0-70 30

 3 0-70 30

3 4 0-50 60

 5 0-50 60

4 6 0-120 195

 211

Table 3 Possible processing paths for Examples 20-32

No. of path Processing path

1 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃13 − 𝑃16 − 𝑃11

2 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃5 − 𝑃11

3 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃7 − 𝑃13 − 𝑃20 − 𝑃12

4 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃18 − 𝑃11

5 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃13 − 𝑃20 − 𝑃12
6 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃25 − 𝑃6 − 𝑃13 − 𝑃17 − 𝑃10
7 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃8 − 𝑃13 − 𝑃20 − 𝑃12

8 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃19 − 𝑃11

9 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃14 − 𝑃21 − 𝑃12

10 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃15 − 𝑃9 − 𝑃22

11 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃5 − 𝑃11

 Examples 21-32 have the same number of processing units and properties to those

of Lagzi et al. (2017b). The processing time, and maximum capacity of each processing

unit in Examples 21-32 are also exactly same as those of Lagzi et al. (2017b). Other data

are generated randomly following the discrete uniform distribution since they are not

provided in Lagzi et al. (2017b). While 5 sample groups are considered for Examples 21-

25, 10 sample groups are involved in Examples 26-30. Each sample group in Examples

21-30 contains from 50 to 80 samples. Example 31 considers 100 sample groups with

each group containing 200-300 samples. A total of 25245 samples have to be examined.

Example 32 contains 100 sample groups with 250-350 samples for each group. For

Example 32, a total of 30067 samples have to be examined. Two scheduling horizons

including H = 480 min and H = 1440 min are investigated for Examples 21-30, whilst a

scheduling horizon of 40 hours (H = 2400 min) was examined for Examples 31-32. All

sample groups are able to be processed using 11 predefined processing paths with each

having 1-10 machines as shown in Table 3 and Figure 2. It should be noted that Examples

20-32 represent large-scale actual scientific service facilities (Lagzi et al., 2017b). The

necessary data for Examples 21-32 can be found in the Supplementary Material. All

examples vary with the number of sample groups, properties, machines, and scheduling

horizon. All examples are solved in CPLEX 12/GAMS 24.6.1 on a desktop computer

with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 7. We set the

maximum CPU time for all examples as 1 hour.

 212

Figure 2 Possible processing routes for Examples 20-32

 We also compare the performance of the proposed three models M1a, M1b and M2

with those discrete-time models of Patil et al. (2015) and Lagzi et al. (2017b) and the

process-slot continuous-time model of Lagzi et al. (2017a). While the discrete-time

model of Patil et al. (2015) uses a uniform time grid for all units in which the scheduling

horizon is divided into time intervals of equal length, the model of Lagzi et al. (2017b)

uses non-uniform time grid in which the scheduling horizon is divided into time intervals

of varying length. The length of each time interval in Patil et al. (2015) is equal to the

greatest common factor of all tasks since all tasks have to start and end exactly at the time

points. In the model of Lagzi et al. (2017b) the maximum time interval length was set to

60 minutes. For units with processing time less than 60 minutes the length of each time

interval was equal to the processing time. On the other hand, for units with larger

processing times, the time interval is set to the maximum length (i.e., 60 minutes). It

should be mentioned that the models from Patil et al. (2015) and Lagzi et al. (2017a-b)

did not consider makespan minimization. These models are extended for minimization of

makespan in this paper which are presented in Appendices A and B.

Example 1

This example involves two groups of samples (group 1 and group 2). There are in total 4

properties (P1-P4) using in 6 units (J1-J6). The property examination sequences for two

groups of samples are P1-P3-P4 for group 1 and P1-P2-P3-P4 for group 2. Property 1 is

examined in unit J1. Property 2 is examined in units J2 and J3. Property 3 is examined in

 213

units J4 and J5. Property 4 is examined in unit J6. The examination of each property from

a sample group is denoted as a task. For instance, we use task I1 to denote the examination

of P1 for the sample group 1 in unit J1 and use task I2 to denote the examination of P1

for the sample group 2 in unit J1. There are in total 10 tasks (I1-I10). We use state S1 to

denote the initial status of the sample group 1. We use states S1-S9 to denote the status

of the two sample groups. The state-task network for this example is illustrated in Figure

3. The computational results are given in Table 4. From Table 4, it can be seen that all six

models solve Example 1 in very small CPU time (< 1 s) for both objective functions.

However, the proposed models M1a, M1b and M2 lead to smaller model size than the

existing models and hence they can be potentially superior, especially in the case of

minimization of makespan, where they also lead to a tighter MILP relaxation. The optimal

solutions are generated with Δn = 0 from the proposed models M1a, M1b and M2. The

optimal schedule generated using the mathematical model M2 with maximization of

productivity is depicted in Figure 4. From the optimal schedule (Figure 4) it can be

observed that two tasks are processed in the same unit simultaneously. For instance, unit

J1 examines the property P1 of 70 samples from the sample group 1 and 70 samples from

the sample group 2 simultaneously during 0 to 50 minutes.

Figure 3 State-task network representation for Example 1

 Another remarkable finding is that the discrete-time model of Patil et al. (2015)

leads to a much tighter MILP relaxation than all other models when the objective is to

maximize productivity. More specifically, it is interesting that the solution from the

relaxed MILP is exactly identical to the optimal solution. Even though the discrete-time

model of Patil et al. (2015) leads to large model size, it requires similar computational

time than the rest. On the contrary, for minimization of makespan the discrete-time

formulation of Patil et al. (2015) leads to a much worse relaxation than other models. By

comparing the uniform discrete-time model of Patil et al. (2015) with that non-uniform

 214

discrete-time model of Lagzi et al. (2017b), it can be concluded that the use of a non-

uniform discretization can lead to smaller model size. More specifically, if maximization

of productivity is used as objective, the model of Lagzi et al. (2017b) requires

approximately half discrete variables than the model of Patil et al. (2015) (715 vs 1394).

Therefore, Lagzi et al. (2017b) formulation can potentially be more efficient in terms of

computational time than the discrete-time model of Patil et al. (2015). However, since a

coarser discretization is used, it can lead to suboptimum solutions. For instance, if

minimization of makespan is used as objective, the model of Lagzi et al. (2017b) leads to

9.9% worse solution than other models (555 min vs 500 min).

Figure 4 Optimal schedule for Example 1 using the model M2 with maximization of

productivity

From Table 4 it can also be seen that all continuous-time formulations (i.e., Lagzi et al.

2017a, M1a, M1b and M2) require the same number of event points or slots for both

objective functions. Although the models M1a and M1b lead to the same MILP

relaxation, the model M1b has more continuous variables and constraints than M1a due

to the introduction of additional variables 𝑇𝑗,𝑛
s and 𝑇𝑗,𝑛

f with additional related constraints

(e.g., constraints 15 and 16). As a result, the model M1a leads to slightly smaller CPU

time than the model M1b.

 215

Table 4 Computational results for Example 1

Objective

Model

Event

points/slots/time

intervals

CPU

time

(s)

RMILP

MILP

Disc.

Var.

Cont.

Var.

Constr.

Max Patil et al.

(2015)

96 0.312 1140 1140 1394 1023 1835

productivity Lagzi et

al.

(2017b)

81 0.125 1140 1140 715 721 1193

(H = 480

min)

Lagzi et

al.

(2017a)

4 0.187 1440 1140 320 360 1426

 M1a 4 0.078 1440 1140 80 141 301

 M1b 4 0.093 1440 1140 80 189 337

 M2 4 0.109 1440 1140 64 100 225

Min Patil et al.

(2015)

150 0.968 160.8 500 2258 1351 4126

makespan Lagzi et

al.

(2017b)

43 0.218 68.42 555 419 379 833

 Lagzi et

al.

(2017a)

5 0.344 10.23 500 384 408 1694

 M1a 5 0.109 195.0 500 100 176 393

 M1b 5 0.141 195.0 500 100 236 441

 M2 5 0.093 357.5 500 80 126 300

Note Δn = 0 for this example

Other examples

The computational results for Examples 2-32 with the objective of maximization of

productivity are given in Tables 5-8, whilst the results for Examples 2-19, 21-23 and 27

with the objective of minimization of makespan are given in Tables 9-11. The column

“event points” in Tables 4-11 presents the number of event points required for M1a, M1b,

and M2, the number of slots required for the model of Lagzi et al. (2017a) and the number

of time intervals required for the models of Patil et al. (2015) and Lagzi et al. (2017b).

Maximization of productivity

Table 5 presents the computational results for Examples 2-8. From Table 5, it can be

concluded that the model M2 is the most superior since it requires less computational

time than the models of Patil et al. (2015), Lagzi et al. (2017a), M1a and M1b. The main

reason is that the model M2 leads to a much smaller model size especially less number

of discrete variables required. For example, it can generate the optimum solution for

 216

Example 2 by using 89.1% less constraints than the model of Lagzi et al. (2017a) (i.e.,

703 vs. 6424), 85.7% less constraints than the model of Patil et al. (2015) (i.e., 703 vs.

4907), 73.8% less constraints than the model M1a (i.e., 703 vs. 2682) and 74.2% less

constraints than the model M1b (i.e., 703 vs. 2730). Furthermore, the model M2 requires

82.1% less discrete variables than the model of Lagzi et al. (2017a) (i.e., 260 vs. 1456),

94.1% less discrete variables than the model of Patil et al. (2015) (i.e., 260 vs. 4412) and

43.5% less discrete variables than the models M1a and M1b (260 vs. 460). Even though

the model M2 also leads to a smaller model size than the model of Lagzi et al. (2017b),

(51.9% less discrete variables, 62.8% less continuous variables and 12.8% less

constraints), it requires more computational time. This is mainly because the model of

Lagzi et al. (2017b) leads to a much tighter MILP relaxation. However, in most cases, the

model of Lagzi et al. (2017b) is only limited to generate a suboptimum solution in contrast

to the proposed model M2 which generates the optimum solution for all these examples.

 The uniform discrete-time formulation of Patil et al. (2015) performs better than the

models M1a, M1b and the process-slot continuous-time model of Lagzi et al. (2017a).

This is mainly due to the fact that the solution from the relaxed MILP of Patil et al. (2015)

is exactly the same as the optimum solution for all these examples. However, the

exceptionally high model size makes the model inferior to the model M2. By comparing

the models M1a, M1b and M2 and the process-slot model of Lagzi et al. (2017a), it can

be concluded that proposed models M1a, M1b and M2 generate optimum solutions in

much less computational time, due to the fact that they are much tighter and hence lead

to smaller model size. More importantly, the process-slot model of Lagzi et al. (2017a)

requires more slots than the models M1a, M1b and M2 in some examples. This is because

all tasks in the process have to start or end at the same slot points. It can also be observed

that the model M2 requires more event points than models M1a and M1b for Example 5.

The main possible reason is due to the constraints (30)-(31), which impose all states that

can be processed in a unit j to be available after the unit finishes tasks or before the unit

begins to process tasks once the unit is active regardless which task is processed in a unit

j. Consequently, more event points than models M1a and M1b are required to generate

the optimal solution for this Example 5. It is interesting that even though the model M2

requires one more event point than these models, it still leads to a much smaller model

size. As a result, it generates the optimum solution in significantly less amount of CPU

time than M1a (0.328 s vs. 20.64 s) and M1b (0.328 s vs. 19.33 s).

 217

Table 5 Computational results for Examples 2-8 with maximization of productivity

Example

Model

Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Discr.

Var.

Cont.

Var.

Constr.

2 Patil et al. (2015) 96 0.312 3100 3100 4412 3937 4907

 Lagzi et al. (2017b) 18 0.078 2500 2500 541 698 806

 Lagzi et al. (2017a) 6 1755 4065 3100 1456 2044 6424

 M1a 5 4.54 3377 3100 460 696 2682

 M1b 5 4.21 3377 3100 460 756 2730

 M2 5 0.125 3377 3100 260 290 703

3 Patil et al. (2015) 96 0.826 3147 3147 5150 4417 5387

 Lagzi et al. (2017b) 18 0.046 2547 2547 602 698 806

 Lagzi et al. (2017a) 8 3600a 4822 3047 2196 2709 9402

 M1a 7 95.4 3424 3147 770 1135 5030

 M1b 7 87.9 3424 3147 770 1219 5102

 M2 7 0.218 3424 3147 427 623 1211

4 Patil et al. (2015) 96 0.998 3481 3481 4914 4321 5291

 Lagzi et al. (2017b) 18 0.062 2881 2881 569 766 874

 Lagzi et al. (2017a) 9 3600b 4881 3481 2320 2980 10045

 M1a 8 324.9 3758 3481 832 1241 5337

 M1b 8 299.1 3758 3481 832 1337 5421

 M2 8 0.312 3758 3481 464 702 1367

5 Patil et al. (2015) 96 0.531 3219 3219 4301 3841 4811

 Lagzi et al. (2017b) 18 0.062 2619 2619 501 681 789

 Lagzi et al. (2017a) 7 3600c 4679 3219 1632 2328 7245

 M1a 6 20.6 3496 3219 540 817 3074

 M1b 6 19.3 3496 3219 540 889 3134

 M2 7 0.328 3496 3219 357 545 1013

6 Patil et al. (2015) 96 1.98 2971 2971 4691 4225 5195

 Lagzi et al. (2017b) 18 0.140 2621 2621 520 749 857

 Lagzi et al. (2017a) 8 3600d 5156 2971 2016 2664 8782

 M1a 7 3600e 3498 2971 693 1058 4341

 M1b 7 3600f 3498 2971 693 1142 4413

 M2 7 0.546 3498 2971 385 597 1133

7 Patil et al. (2015) 96 0.296 1779 1779 3191 2401 3371

 Lagzi et al. (2017b) 18 0.094 1779 1779 377 426 534

 Lagzi et al. (2017a) 5 468.5 2149 1779 900 1008 3796

 M1a 5 3.12 2149 1779 310 466 1477

 M1b 5 2.91 2149 1779 310 526 1525

 M2 5 0.140 2149 1779 185 266 498

8 Patil et al. (2015) 96 0.265 2110 2110 2901 2401 3371

 Lagzi et al. (2017b) 18 0.031 1510 1510 340 426 534

 Lagzi et al. (2017a) 7 199.7 2470 2110 1104 1320 4754

 M1a 6 0.936 2210 2110 336 595 2015

 M1b 6 0.952 2210 2110 336 523 1613

 M2 6 0.250 2210 2110 204 323 588
aRelative gap 36.8%. bRelative gap 28.7%. cRelative gap 30.1%. dRelative gap 42.4%. eRelative

gap 7.27%. fRelative gap 7.27%. Note Δn = 0 for all examples.

 218

Table 6 Computational results for Examples 9-20 with maximization of productivity

Example Model Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.

Constr.

9 Patil et al. (2015) 480 1.46 2339 2339 10370 8641 20185

 Lagzi et al.

(2017b)

30 0.047 1986 1986 353 523 1214

 Lagzi et al.

(2017a)

5 0.078 2339 2339 576 774 2562

 M1a 5 0.094 2339 2339 180 301 731

 M1b 5 0.063 2339 2339 180 361 779

 M2 5 0.125 2339 2339 120 203 334

10 Patil et al. (2015) 480 0.749 1175 1175 8659 8161 12971

 Lagzi et al.

(2017b)

9 0.063 775 775 160 137 217

 Lagzi et al.

(2017a)

5 65.95 1783 1175 552 768 2480

 M1a 3 0.063 1175 1175 102 172 381

 M1b 3 0.016 1175 1175 102 208 405

 M2 3 0.110 1175 1175 69 112 166

11 Patil et al. (2015) 480 1.22 958 958 12847 10588 15371

 Lagzi et al.

(2017b)

10 0.015 858 858 243 199 281

 Lagzi et al.

(2017a)

4 897.7 1308 958 660 690 2740

 M1a 4 167.3 1284 958 216 329 944

 M1b 4 157.9 1284 958 216 377 980

 M2 4 0.094 1284 958 132 188 333

12 Patil et al. (2015) 480 0.733 868 868 3781 3841 6727

 Lagzi et al.

(2017b)

21 0.093 773 773 102 161 235

 Lagzi et al.

(2017a)

4 0.109 868 868 180 190 785

 M1a 4 0.062 868 868 48 93 180

 M1b 4 0.031 868 868 48 117 198

 M2 4 0.109 868 868 36 75 108

13 Patil et al. (2015) 480 0.561 797 797 3489 3361 6247

 Lagzi et al.

(2017b)

25 0.125 557 557 109 169 249

 Lagzi et al.

(2017a)

4 0.047 797 797 160 185 717

 M1a 4 0.078 797 797 40 81 152

 M1b 4 0.031 797 797 40 105 170

 M2 4 0.063 797 797 32 68 96

 219

14 Patil et al. (2015) 480 0.577 363 363 4828 3841 7208

 Lagzi et al.

(2017b)

10 0.062 283 283 86 73 131

 Lagzi et al.

(2017a)

7 1981 603 363 384 384 1667

 M1a 7 6.66 603 363 112 197 429

 M1b 7 6.26 603 363 112 253 477

 M2 7 0.328 603 363 84 149 251

15 Patil et al. (2015) 480 2.89 1279 1254 6264 6721 10569

 Lagzi et al.

(2017b)

25 0.046 666 666 212 337 455

 Lagzi et al.

(2017a)

8 162.0 1404 1254 540 585 2341

 M1a 7 5.01 1404 1254 154 281 624

 M1b 7 4.60 1404 1254 154 337 672

 M2 7 0.234 1404 1254 105 221 348

16 Patil et al. (2015) 480 1.17 1340 1340 7842 6241 10570

 Lagzi et al.

(2017b)

45 0.047 1040 1040 501 573 817

 Lagzi et al.

(2017a)

5 0.764 1340 1340 432 462 1858

 M1a 4 0.093 1340 1340 104 177 395

 M1b 4 0.031 1340 1340 104 217 425

 M2 5 0.218 1340 1340 90 156 254

17 Patil et al. (2015) 480 6.40 1275 1275 9260 10081 14891

 Lagzi et al.

(2017b)

27 0.109 1168 1168 303 547 699

 Lagzi et al.

(2017a)

18 3600a 2370 1275 1672 1881 7257

 M1a 18 3600b 1687 1275 612 1081 2706

 M1b 18 3600c 1687 1275 612 1261 2876

 M2 18 103.0 1687 1275 396 848 1426

18 Patil et al. (2015) 480 217.6 2330 2330 32445 38401 45135

 Lagzi et al.

(2017b)

27 0.063 1132 1132 1067 2081 2293

 Lagzi et al.

(2017a)

20 3600d 3259 1194 6300 7350 26491

 M1a 17 3600e 2744 2294 2312 3792 16722

 M1b 17 3600f 2744 2300 2312 4030 16946

 M2 17 3600g 2744 2330 1275 2687 4715

19 Patil et al. (2015) 480 478.1 3752 3692 48448 60001 67697

 Lagzi et al.

(2017b)

27 0.266 2340 2340 1253 3251 3447

 Lagzi et al.

(2017a)

16 3600h 6856 2604 7956 8959 32950

 M1a 22 3600i 4575 3357 4796 7723 43695

 M1b 22 3600j 4575 3376 4796 8075 44031

 M2 21 3600k 4563 3692 2457 5142 9153

 220

20 Patil et al. (2015) - - - - - - -

 Lagzi et al.

(2017b)

41 57.5 53100 53100 71574 109575 42361

 Lagzi et al.

(2017a)

- - - - - - -

 M1a - - - - - - -

 M1b - - - - - - -

 M2 15 3600l 196745 69664 44865 73536 186189
aRelative gap 46.2%. bRelative gap 24.4%. cRelative gap 42.4%. dRelative gap 15.4%. eRelative

gap 16.4%. fRelative gap 16.2%. gRelative gap 4.03%. hRelative gap 56.1%. iRelative gap 26.7%.

jRelative gap 26.2%. kRelative gap 18.6%. l Relative gap 63.7%. Note Δn = 0 for all examples.

 By examining the models M1a and M1b, both of them lead to the same MILP

relaxation for all these examples. The model M1a leads to smaller number of continuous

variables and constraints but the same number of discrete variables compared to the model

M1b. For instance, for Example 4 the model M1a require 1086 continuous variables and

4667 constraints to generate the optimal solution, while the model M1b require 1170 and

4739 respectively. However, the model M1a requires slightly more computational time

than the model M1b in some cases. For both models M1a and M1b the computational

time required is within the same order of magnitude. For instance, the model M1a needs

84.69 s to generate the optimum solution for Example 4, whereas the model M1b requires

80.11 s.

 Table 6 lists the computational results for Examples 9-20. As it is demonstrated, the

model M2 is the most superior among all six formulations for most examples (Examples

9-17). The optimal schedule for Example 17 is illustrated in Figure 5. From Figure 5, it

can be again confirmed that samples from different customers can be processed

simultaneously in the same unit. However, the model M2 generate the optimum solution,

but it fails to converge within 1 hour for more complex examples (e.g., Examples 18-19),

whereas the uniform discrete-time formulation of Patil et al. (2015) generates the

optimum solution for Examples 18-19 within 1 hour. Consequently, it seems that the

tighter relaxation of the discrete-time model of Patil et al. (2015) makes it more efficient

for more complex problems when productivity is maximized. The process-slot model of

Lagzi et al. (2017a) and the models M1a and M1b require more computational time to

generate the optimum solution than the discrete-time model of Patil et al. (2015) for most

examples even though they lead to smaller model size. Among all models, the one of

Lagzi et al. (2017a) seems to have the worse MILP relaxation and hence it performs worse

than the other models for most examples. The model of Lagzi et al. (2017b) requires

 221

significantly less computational time than all other models for all examples especially for

large and complex examples (Examples 18-20) with less than one second required to

generate a solution for Examples 18-19 and less than one minute for Example 20.

However, the solution quality is much worse compared to other models. Similar

observations can be made for the models M1a and M1b as those from previous Examples

2-8. For instance, the proposed model M2 is able to generate the solution of 69664 cu for

Example 20, while the model of Lagzi et al. (2017b) generates a significantly worse

solution of 53100 cu.

Table 7 Computational results of Examples 21-25 with maximization of productivity

Example Model Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Discr.

Var.

Cont.

Var.

Constr.

21a Patil et al. (2015) 480 7.27 666 666 71220 64375 65850

(H= Lagzi et al. (2017b) 49 0.078 666 666 2923 2305 3369

480min) Lagzi et al. (2017a) 3 0.202 846 666 3744 4920 16330

 M1a 3 0.047 846 666 966 1330 4325

 M1b 3 0.046 846 666 966 1768 4617

 M2 3 0.094 846 666 702 669 2284

21b Patil et al. (2015) 1440 13.4 666 666 264570 141745 197370

(H= Lagzi et al. (2017b) 145 0.109 666 666 9652 6913 10105

1440min) Lagzi et al. (2017a) 3 1.65 846 666 3744 4920 16330

 M1a 3 0.078 846 666 966 1330 4325

 M1b 3 0.062 846 666 966 1768 4617

 M2 3 0.110 846 666 702 669 2284

22a Patil et al. (2015) 480 1.54 682 682 63822 56862 58635

(H= Lagzi et al. (2017b) 49 0.062 682 682 2879 2305 3341

480min) Lagzi et al. (2017a) 3 0.218 862 682 3248 3964 13888

 M1a 3 0.140 862 682 876 1192 3862

 M1b 3 0.078 862 682 876 2337 5806

 M2 3 0.032 862 682 609 573 2039

22b Patil et al. (2015) 1440 9.24 682 682 229373 132271 175755

(H= Lagzi et al. (2017b) 145 0.109 682 682 9331 6913 10021

1440min) Lagzi et al. (2017a) 3 1.84 862 682 3248 3964 13888

 M1a 3 0.078 862 682 876 1192 3862

 M1b 3 0.063 862 682 876 1534 4090

 M2 3 0.094 862 682 609 573 2039

23a Patil et al. (2015) 480 1.98 662 662 59587 50034 55268

(H= Lagzi et al. (2017b) 49 0.032 662 662 2572 2305 13966

480min) Lagzi et al. (2017a) 3 0.187 842 662 2880 3508 12310

 M1a 3 0.140 842 662 780 1073 3365

 M1b 3 0.047 842 662 780 1375 3565

 M2 3 0.062 842 662 540 531 1828

 222

23b Patil et al. (2015) 1440 10.1 662 662 212718 115783 165668

(H= Lagzi et al. (2017b) 145 0.188 662 662 8357 6913 9853

1440min) Lagzi et al. (2017a) 3 2.68 842 662 2880 3508 12310

 M1a 3 0.078 842 662 780 1073 3365

 M1b 3 0.062 842 662 780 1375 3565

 M2 3 0.047 842 662 540 531 1828

24a Patil et al. (2015) 480 1.95 650 650 28860 93267 60559

(H= Lagzi et al. (2017b) 49 0.062 650 650 2882 2305 3373

480min) Lagzi et al. (2017a) 3 0.187 830 650 3296 4132 14194

 M1a 3 0.109 830 650 876 1201 3977

 M1b 3 0.031 830 650 876 1561 4217

 M2 3 0.047 830 650 618 591 2054

24b Patil et al. (2015) 1440 9.89 650 650 230662 135305 181519

(H= Lagzi et al. (2017b) 145 0.172 650 650 9355 6913 10117

1440min) Lagzi et al. (2017a) 3 2.64 830 650 3296 4132 14194

 M1a 3 0.062 830 650 876 1201 3977

 M1b 3 0.063 830 650 876 1561 4217

 M2 3 0.031 830 650 618 591 2054

25a Patil et al. (2015) 480 1.81 688 688 62470 59656 57191

(H= Lagzi et al. (2017b) 49 0.078 688 688 2837 2353 15288

480min) Lagzi et al. (2017a) 3 0.125 868 688 3280 3816 13852

 M1a 3 0.047 868 688 906 1216 4021

 M1b 3 0.046 868 688 906 1540 4237

 M2 3 0.062 868 688 615 560 2083

25b Patil et al. (2015) 1440 35.5 688 688 228641 137325 171431

(H= Lagzi et al. (2017b) 145 0.062 688 688 9291 6892 22318

1440min) Lagzi et al. (2017a) 3 15.5 868 688 3280 3816 13852

 M1a 3 0.078 868 688 906 1216 4021

 M1b 3 0.140 868 688 906 1540 4237

 M2 3 0.078 868 688 615 560 2083

Note Δn = 0 for all examples.

Table 8 Computational results for Examples 26-32 with maximization of productivity

Example Model Event

points

CPU

time (s)

RMILP

(cu)

MILP

(cu)

Disc.

Var.

Cont.

Var.

Constr.

26a Patil et al. (2015) 480 6.08 1280 1280 95756 118676 87448

(H= Lagzi et al. (2017b) 49 0.14 1280 1280 4145 4561 5701

480min) Lagzi et al. (2017a) 5 60.1 2288 1280 8424 12042 36275

 M1a 5 0.344 2173 1280 2830 3646 16649

 M1b 5 0.296 2173 1280 2830 4326 17193

 M2 5 0.156 2173 1280 1755 1496 7126

26b Patil et al. (2015) 1440 18.1 1280 1280 360876 281716 262168

(H= Lagzi et al. (2017b) 145 0.171 1280 1280 7669 13681 16198

1440min) Lagzi et al. (2017a) 5 3600a 2288 1280 8424 12042 36275

 M1a 5 10.5 2288 1280 2830 3646 16649

 M1b 5 9.24 2288 1280 2830 4326 17193

 M2 5 0.188 2288 1280 1755 1496 7126

 223

27a Patil et al. (2015) 480 8.83 1284 1284 111175 111435 90816

(H= Lagzi et al. (2017b) 49 0.141 1284 1284 5012 4513 5637

480min) Lagzi et al. (2017a) 5 96.6 2244 1284 8856 13392 38669

 M1a 5 0.483 2140 1284 2920 3776 18010

 M1b 5 0.421 2140 1284 2920 4546 18626

 M2 5 0.109 2140 1284 1845 1577 7388

27b Patil et al. (2015) 1440 18.7 1284 1284 421995 245095 272256

(H= Lagzi et al. (2017b) 145 0.172 1284 1284 16630 13537 16909

1440min) Lagzi et al. (2017a) 5 3600b 2244 1284 8856 13392 38669

 M1a 5 4.76 2244 1284 2920 3776 18010

 M1b 5 4.38 2244 1284 2920 4546 18626

 M2 5 0.188 2244 1284 1845 1577 7388

28a Patil et al. (2015) 480 2.53 1260 1260 103942 124920 86486

(H= Lagzi et al. (2017b) 49 0.140 1260 1260 4868 4561 5605

480min) Lagzi et al. (2017a) 5 158.3 2220 1260 9144 12084 38633

 M1a 5 0.421 2116 1260 3140 3951 19027

 M1b 5 0.358 2116 1260 3140 4621 19563

 M2 5 0.110 2116 1260 1905 1486 7768

28b Patil et al. (2015) 1440 12.2 1260 1260 404323 281299 259286

(H= Lagzi et al. (2017b) 145 0.234 1260 1260 16336 13681 16813

1440min) Lagzi et al. (2017a) 5 3600c 2220 1260 9144 12084 38633

 M1a 5 15.4 2220 1260 3140 3951 19027

 M1b 5 14.6 2220 1260 3140 4621 19563

 M2 5 0.156 2220 1260 1905 1486 7768

29a Patil et al. (2015) 480 7.97 1188 1188 97698 118659 86968

(H= Lagzi et al. (2017b) 49 0.078 1188 1188 4413 4513 5653

480min) Lagzi et al. (2017a) 5 670.0 2196 1188 8544 12072 36685

 M1a 5 0.374 2081 1188 2880 3691 16875

 M1b 5 0.265 2081 1188 2880 4371 17419

 M2 5 0.047 2081 1188 1780 1487 7223

29b Patil et al. (2015) 1440 18.0 1188 1188 376692 271665 260728

(H= Lagzi et al. (2017b) 145 0.172 1188 1188 14798 13537 16959

1440min) Lagzi et al. (2017a) 5 3600d 2196 1188 8544 12072 36685

 M1a 5 6.33 2196 1188 2880 3691 16875

 M1b 5 5.88 2196 1188 2880 4371 17419

 M2 5 0.156 2196 1188 1780 1487 7223

30a Patil et al. (2015) 480 4.76 1348 1348 110609 114886 94182

(H= Lagzi et al. (2017b) 49 0.078 1348 1348 5082 4561 5813

480min) Lagzi et al. (2017a) 5 737.0 2308 1348 8976 13836 39385

 M1a 5 0.452 2204 1348 2940 3816 17978

 M1b 5 0.359 2204 1348 2940 4616 18618

 M2 5 0.078 2204 1348 1870 1616 7465

30b Patil et al. (2015) 1440 20.2 1348 1348 411010 264725 282342

(H= Lagzi et al. (2017b) 145 0.250 1348 1348 16751 13681 17437

1440min) Lagzi et al. (2017a) 5 3600e 2308 1348 8976 13836 39385

 M1a 5 5.48 2308 1348 2940 3816 17978

 M1b 5 5.15 2308 1348 2940 4616 18618

 M2 5 0.078 2308 1348 1870 1616 7465

 224

31 Patil et al. (2015) - - - - - - -

(H= Lagzi et al. (2017b) 241 5.98 34805 35005 228859 228481 235461

2400min) Lagzi et al. (2017a) - - - - - - -

 M1a - - - - - - -

 M1b - - - - - - -

 M2 40 3600f 46516 36965 119360 78029 306653

32 Patil et al. (2015) - - - - - - -

(H= Lagzi et al. (2017b) 241 5.98 39827 39827 220892 228481 235461

2400min) Lagzi et al. (2017a) - - - - - - -

 M1a - - - - - - -

 M1b - - - - - - -

 M2 40 3600g 56727 49991 117360 78029 302753
aRelative gap 44.1%. bRelative gap 42.8%. cRelative gap 43.2% dRelative gap 45.9%. eRelative gap

41.6%. fRelative gap 25.4%. gRelative gap 8.1%. Note Δn = 0 for all examples.

Figure 5 Optimal schedule for Example 17 using the model M2 with maximization of

productivity

 Tables 7-8 present the computational results for Examples 21-32. From Tables 7-8,

it seems that the discrete-time model of Patil et al. (2015) as well as the models M1a,

M1b and M2 are more efficient compared to the process-slot model of Lagzi et al.

(2017a). For instance, in Example 27b, the formulation of Lagzi et al. (2017a) could

generate the optimal solution but could not converge after 1 hour, while all other

formulations are able to generate the optimal solution in less than 1 minute. The

developed model M2 is more superior compared to the discrete-time model of Patil et al.

(2015). For example, the model M2 requires 99.0% less computational time than the

discrete-time model of Patil et al. (2015) (0.188 s vs. 18.7 s) to generate the optimal

solution for Example 27b. The model of Lagzi et al. (2017b) is also able to generate the

 225

optimum solution for Examples 21-30. Furthermore, the tight relaxation of the Lagzi et

al. (2017b) model makes it as efficient as the mathematical models M1a, M1b and M2

for this set of examples. However, the model of Lagzi et al. (2017b) fails to generate the

optimal solution for large-scale examples. For instance, for Example 31 the model of

Lagzi et al. (2017b) generates a solution of 35005 cu, while the proposed model M2

generates a better solution of 36965 cu. Similarly, for Example 32 the proposed model

M2 is able to generate a significantly better solution of 49991 cu than the model of Lagzi

et al. (2017b) which generates a solution of 39827 cu. On the other hand, both

mathematical models M1a and M1b are more efficient than the discrete-time model of

Patil et al. (2015). More specifically, both M1a and M1b models require at least one

order of magnitude less computational time than the model of Patil et al. (2015) to

generate the optimal solution for all these examples. This is because both models lead to

significantly smaller model size. For instance, both models M1a and M1b require 98.6%

less discrete variables (966 vs 71220) to generate the optimal solution for Example 21a.

Minimization of makespan

Table 9 gives the computational results for Examples 2-8. From Table 9, it seems that the

process-slot model of Lagzi et al. (2017a) is not suitable for the problem of makespan

minimization since it is unable to generate the optimum solution within 1 hour for most

examples. The model of Lagzi et al. (2017b) is also not suitable since it fails to generate

the optimum solution for all these examples. The discrete-time formulation of Patil et al.

(2015) and the model M2 are able to generate the optimum solution within 1 hour.

Between these two models, the model M2 is more efficient since it generates the optimum

solution in at least two orders of magnitude less computational time. This is due to the

fact that the model M2 leads to both much smaller model size and a tighter MILP

relaxation. Similarly, the models M1a and M1b require less computational time than the

discrete-time formulation of Patil et al. (2015), due to their much smaller model size and

tighter MILP relaxation. However, in some cases such as Examples 3 and 6, the proposed

models fail to converge after 1 hour, while the discrete-time of Patil et al. (2015), requires

significantly less computational time to converge (93.5 s and 17.3 s respectively).

 226

Table 9 Computational results for Examples 2-8 with minimization of makespan

Example Model Event

points

CPU

time

(s)

RMILP

(min)

MILP

(min)

Disc.

Var.

Cont.

Var.

Constr.

2 Patil et al. (2015) 250 43.62 16.34 1005 12420 10251 21810

 Lagzi et al. (2017b) 43 0.327 198.29 1215 1523 1723 2187

 Lagzi et al. (2017a) 7 3600a 95.46 1005 1664 2336 7364

 M1a 6 2.70 224.25 1005 552 835 3358

 M1b 6 2.64 224.25 1005 552 907 3418

 M2 6 0.249 843.38 1055 312 474 1283

3 Patil et al. (2015) 250 93.5 23.90 1065 14544 11501 25636

 Lagzi et al. (2017b) 43 0.312 351.82 1275 1696 1933 2396

 Lagzi et al. (2017a) 8 3600b 99.50 1065 2196 2709 9411

 M1a 8 3600c 125.13 1065 880 1297 5894

 M1b 8 3600d 125.13 1065 880 1393 5978

 M2 8 0.187 934.38 1065 488 717 2068

4 Patil et al. (2015) 250 147.5 18.43 1055 13846 11251 24626

 Lagzi et al. (2017b) 43 0.421 229.15 1275 1605 1891 2355

 Lagzi et al. (2017a) 8 3600e 79.61 1055 2088 2682 9039

 M1a 7 84.7 143.54 1055 728 1086 4667

 M1b 7 80.1 143.54 1055 728 1170 4739

 M2 8 1.17 845.00 1055 464 702 1995

5 Patil et al. (2015) 250 49.2 18.34 1035 12155 10001 21216

 Lagzi et al. (2017b) 43 0.343 209.43 1215 1415 1682 2145

 Lagzi et al. (2017a) 6 9.35 67.28 1035 1428 2037 6337

 M1a 6 1.01 230.75 1035 540 817 3128

 M1b 6 1.04 230.75 1035 540 889 3188

 M2 6 0.218 864.50 1035 306 463 1247

6 Patil et al. (2015) 250 17.3 69.61 1230 13315 11001 23816

 Lagzi et al. (2017b) 45 0.280 327.38 1455 1552 1938 2421

 Lagzi et al. (2017a) 8 3600f 152.92 1230 2016 2664 8791

 M1a 8 3600g 144.63 1230 792 1209 5088

 M1b 8 3600h 144.63 1230 792 1305 5172

 M2 8 0.280 1018.88 1230 440 687 1923

7 Patil et al. (2015) 600 103.0 5.84 570 20287 15001 58986

 Lagzi et al. (2017b) 23 0.078 209.44 665 521 551 793

 Lagzi et al. (2017a) 6 3600i 56.35 570 1050 1176 4444

 M1a 6 197.5 106.38 570 372 559 1847

 M1b 6 194.4 106.38 570 372 631 1907

 M2 6 0.655 360.75 570 222 323 878

8 Patil et al. (2015) 650 69.02 25.68 635 20199 16251 59412

 Lagzi et al. (2017b) 25 0.109 471.00 785 525 601 863

 Lagzi et al. (2017a) 7 784.1 25.92 635 1104 1320 4758

 M1a 6 5.210 134.13 635 336 523 1645

 M1b 6 4.633 134.13 635 336 595 1705

 M2 7 0.686 481.00 635 238 380 986
aRelative gap 34.1%%. bRelative gap 25.9% cRelative gap 22.5%. dRelative gap 25.9%.
eRelative gap 45.6%. fRelative gap 32.9%. gRelative gap 10.8% hRelative gap 11.0%.
iRelative gap 1.62%. Note Δn = 0 for all examples.

 227

 Table 10 presents the computational results for Examples 9-19. From these

examples, it can be concluded that the model M2 is superior compared to the other five

models, even though it requires more number of event points compared to models M1a

and M1b in some cases. It can also be observed that the model M2 is able to generate

solutions for more complex examples, (Examples 18-19). More specifically, the model

M2 can generate the optimum solution for Example 18 within a minute (i.e., 28.5 s).

However, the models of Patil et al. (2015) and Lagzi et al. (2017a) are unable to generate

a feasible solution and the models M1a and M1b fail to generate the optimum solution

after 1 hour. The superiority of the model M2 lays to the fact that it not only leads to

smaller model size but also leads to tighter MILP relaxation for makespan minimization

problems. The optimal schedule for Example 17 using model M2 is illustrated in Fig. 4.

Similarly, it can be confirmed that the proposed model allows more than one tasks to take

place in a processing unit simultaneously (Fig. 4 and Table 12). From Table 10, it seems

that both the models M1a and M1b perform better than the models Patil et al. (2015),

Lagzi et al. (2017a) and Lagzi et al. (2017b). The main reason that the models M1a and

M1b are more efficient is that they both lead to smaller model size and tighter MILP

relaxation. For instance, in Example 15, the model M1a requires one order of magnitude

less computational time than the discrete-time formulation of Patil et al. (2015) (1.451 s

vs 13.74 s), two orders of magnitude less computational time than the process-slot model

of Lagzi et al. (2017a) (1.451 s vs 119.7 s) and one order of magnitude less computational

time than the model of Lagzi et al. (2017b) (1.451 s vs 13.7 s). However, both M1a and

M1b fail to generate optimum solutions in more complex problems (Examples 17-19).

By comparing the models M1a and M1b, both tightening constraints lead to the same

MILP relaxation, indicating that they are very similar. Furthermore, the model M1a leads

to slightly smaller model size. Despite that, for both models the computational time

required is within the same order of magnitude.

 228

Figure 6 Optimal schedule for Example 17 using model M2 with minimization of

makespan

Table 10 Computational results for Examples 9-19 with minimization of makespan

Example Model Event

points

CPU

time (s)

RMILP

(min)

MILP

(min)

Disc.

Var.

Cont.

Var.

Constr.

9 Patil et al. (2015) 200 4.57 3.97 176 3650 3601 13338

 Lagzi et al. (2017b) 60 0.203 52.19 212 918 1081 1685

 Lagzi et al. (2017a) 7 3600a 6.64 176 768 992 3394

 M1a 5 0.406 38.28 176 180 301 753

 M1b 5 0.421 38.28 176 180 361 801

 M2 6 0.265 132.96 176 144 246 560

10 Patil et al. (2015) 1300 317.2 34.89 1272 27519 22101 75296

 Lagzi et al. (2017b) 35 0.281 227.59 1519 773 596 1144

 Lagzi et al. (2017a) 7 23.2 432.31 1272 736 984 3284

 M1a 7 0.842 443.43 1272 238 400 990

 M1b 7 0.858 443.43 1272 238 484 1062

 M2 7 0.093 1146.24 1272 161 276 621

11 Patil et al. (2015) 1100 1984 5.01 1045 33334 24201 92636

 Lagzi et al. (2017b) 38 0.593 156.09 1342 1133 837 1396

 Lagzi et al. (2017a) 8 3600b 239.51 1056 1188 1170 4939

 M1a 8 2.50 225.76 1045 432 657 2071

 M1b 8 2.37 225.76 1045 432 753 2155

 M2 8 0.171 712.64 1045 264 392 1050

12 Patil et al. (2015) 500 1.79 2.49 465 3961 4001 11659

 Lagzi et al. (2017b) 24 0.047 99.70 551 116 185 315

 Lagzi et al. (2017a) 4 0.047 45.48 465 180 190 786

 M1a 4 0.078 123.70 465 48 93 187

 M1b 4 0.094 123.70 465 48 117 205

 M2 4 0.124 225.56 465 36 75 142

13 Patil et al. (2015) 300 0.484 3.91 289 2049 2101 6118

 Lagzi et al. (2017b) 21 0.015 109.99 299 91 142 244

 Lagzi et al. (2017a) 4 0.125 35.40 289 160 185 718

 M1a 4 0.093 68.08 289 40 81 158

 M1b 4 0.094 68.08 289 40 105 176

 M2 4 0.109 116.03 289 32 68 123

 229

14 Patil et al. (2015) 750 69.6 6.26 703 8068 6001 21212

 Lagzi et al. (2017b) 16 0.109 299.86 759 162 121 279

 Lagzi et al. (2017a) 9 300.2 193.48 703 480 620 2190

 M1a 9 5.37 195.94 703 144 253 566

 M1b 9 5.38 195.94 703 144 325 630

 M2 9 0.078 367.81 703 108 193 420

15 Patil et al. (2015) 600 13.7 4.02 555 8064 6401 26642

 Lagzi et al. (2017b) 101 0.374 91.97 625 939 1401 2138

 Lagzi et al. (2017a) 8 119.7 88.09 555 540 585 2343

 M1a 7 1.45 137.39 555 154 281 637

 M1b 7 1.48 137.39 555 154 337 685

 M2 7 0.203 307.50 555 105 221 469

16 Patil et al. (2015) 500 2.12 6.92 466 8202 6501 22707

 Lagzi et al. (2017b) 51 0.062 253.66 520 583 651 1101

 Lagzi et al. (2017a) 6 8.13 0.00 466 504 539 2175

 M1a 4 0.062 159.19 466 104 177 410

 M1b 4 0.234 159.19 466 104 217 440

 M2 5 0.140 327.32 466 90 156 341

17 Patil et al. (2015) 1200 1447 8.18 1185 25100 25201 73824

 Lagzi et al. (2017b) 70 0.094 305.17 1297 876 1450 2071

 Lagzi et al. (2017a) 19 3600c 108.11 1185 1760 1980 7644

 M1a 19 3600d 255.29 1185 646 1141 2880

 M1b 19 3600e 255.29 1185 646 1331 3060

 M2 19 151.4 919.06 1185 418 896 2051

18 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) 376 4.20 1228.30 1725 12692 30001 33492

 Lagzi et al. (2017a) - - - - - - -

 M1a 52 3600f 167.75 1820 7072 11597 52711

 M1b 52 3600g 167.75 1966 7072 12325 53425

 M2 52 28.5 1562.00 1696 3900 8357 21628

19 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) 365 27.28 3604.89 6095 22983 45502 50370

 Lagzi et al. (2017a) - - - - - - -

 M1a - - - - - - -

 M1b - - - - - - -

 M2 59 3600h 3573.47 3722 6903 14642 38785
aRelative gap 5.24%. bRelative gap 25.9%. cRelative gap 60.7%. dRelative gap 43.3%. eRelative

gap 39.4%. fRelative gap 89.4%. gRelative gap 89.6%. hRelative gap 1.98%. Note Δn = 0 for all

examples.

 Table 11 presents the computational results for Examples 21-23 and 27, which are

highly complex. The computational results for Examples 20, 24-26 and 28-32 are not

presented because none of the models could generate optimal solutions or even feasible

solutions for these six examples within the predefined CPU time (i.e., 1 hr). From Table

11, it seems that the model M2 is able to generate the best solution within 1 hour. The

 230

discrete-time models of Patil et al. (2015) and Lagzi et al. (2017b) are unable to generate

a feasible solution within 1 hour. Therefore, it can be concluded the model M2 is superior

compared to the other four models. The models M1a and M1b are only able to generate

feasible solutions for Examples 21-23. However, they both fail to converge after 1 hour.

Similar observations can be done regarding the model size of M1a and M1b.

Table 11 Computational results for Examples 21-23 and 27 with minimization of

makespan

Example Model Event

points

CPU

time (s)

RMILP

(min)

MILP

(min)

Disc.

Var.

Cont.

Var.

Constr.

21 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) - - - - - - -

 Lagzi et al. (2017a) 13 3600a 14.25 7431 13104 18340 59434

 M1a 13 3600b 169.00 5131 4186 5760 22360

 M1b 13 3600c 169.00 5131 4186 7658 24112

 M2 13 3600d 624.38 5131 3042 3039 13097

22 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) - - - - - - -

 Lagzi et al. (2017a) 87 3600e 15027.1 39846 71456 94248 320980

 M1a 87 3600f 16261.4 20930 25404 34540 138580

 M1b 87 3600g 16261.4 20930 25404 44458 148384

 M2 87 3600h 620.63 20880 17661 17793 82658

23 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) - - - - - - -

 Lagzi et al. (2017a) 14 3600i 56.5 6850 10800 14355 48340

 M1a 14 3600j 342.00 5131 3640 5013 18767

 M1b 14 3600k 342.00 5131 3640 6413 20067

 M2 14 3600l 620.63 5131 2520 2632 11472

27 Patil et al. (2015) - - - - - - -

 Lagzi et al. (2017b) - - - - - - -

 Lagzi et al. (2017a) - - - - - - -

 M1a - - - - - - -

 M1b - - - - - - -

 M2 18 3600m 1203.8 5121 6642 5893 31678
aRelative gap 99.7%. bRelative gap 91.2%. cRelative gap 78.9%. drelative gap 59.5%. eRelative

gap 58.9%. fRelative gap 12.9%. gRelative gap 5.27%. hRelative gap 21.9%. iRelative gap 49.4%.
jRelative gap 22.5%. kRelative gap 49.4%. lRelative gap 21.8%. mRelative gap 57.0%. Note Δn

= 0 for all examples.

5 Conclusions

In this paper, we developed three novel MILP mathematical formulations using the well-

established unit-specific event-based modelling approach for scheduling of multi-tasking

multipurpose batch processes in a scientific service facility. Multiple tasks were allowed

 231

to be processed simultaneously in the same units. While the timing variables were defined

based on tasks of the process in the first two models (M1a and M1b), they were

introduced based on processing units of the process in the third model (M2). Two

different tightening constraints were proposed in the models M1a and M1b to improve

their MILP relaxation. The computational results demonstrate that the model M2 is the

most efficient for most examples since it generates the optimum solution in significantly

less amount of computational time than all other models. The proposed tightening

constraints for the models M1a and M1b resulted in the same MILP relaxation for all

examples. Although the model M1a has less number of constraints and continuous

variables than the model M1b, it seems that their performance is almost the same. The

future work is to employ rolling-horizon decomposition approach to solve all examples

especially those large-scale complex problems that the best model M2 fail to solve. Even

though this work is focused on scientific service facilities, it can be also implemented in

any multipurpose batch process industry which allows multiple tasks to take place

simultaneously in a processing unit.

Table 12 Optimal results for Example 17 with minimization of makespan

Unit Order/Sample group Samples Start time (min) End time (min)

J1 O1 14 38 57

 14 57 76

 14 76 95

 14 95 114

 4 285 304

 O2 11 19 38

 4 171 190

 14 209 228

 14 228 247

 14 247 266

 14 266 285

 O4 14 0 19

 3 19 38

 14 114 133

 14 133 152

 14 152 171

 7 171 190

 14 190 209

 232

J2 O2 11 38 78

 60 285 325

 O3 77 95 135

 O4 17 38 78

 O4 28 152 192

 31 209 249

 4 285 325

J3 O1 56 135 198

 4 327 390

 O2 11 135 198

 60 327 390

 O3 77 135 198

J4 O1 56 198 220

 4 390 412

 O2 11 198 220

 60 390 412

 O3 77 198 220

 O4 17 78 100

 28 324 346

 31 346 368

 4 368 390

J5 O1 56 317 534

 4 968 1185

 O2 2 317 534

 9 751 968

 60 968 1185

 O3 9 317 534

 68 534 751

 O4 17 100 317

 59 751 968

 4 968 1185

Acknowledgements

Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate

award by The University of Manchester.

 233

Nomenclature

Sets

𝐼: tasks

𝐈𝑗: units that can process task 𝑖

𝐈𝑠
𝐶: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

𝐽: units

𝑁: event points

𝑃: processes

𝐏𝐽: units that are able to process process 𝑝

𝑆: states

𝐒𝑅: raw material states

𝐒𝐼𝑁: intermediate states

𝐒𝑃: product states

Indicies

i: tasks

j: units

s: states

n: event points

Parameters

𝛼𝑖: processing time of task 𝑖

𝛼𝑗: processing time of unit j

𝐵𝑖
𝑚𝑎𝑥: maximum amount of materials that can be processed at task 𝑖

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗

𝐷𝑠: total amount of samples that have to be examined

𝐻: scheduling horizon

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖

𝑆𝑇0𝑠: initial amount of available state 𝑠

 234

𝐵𝑖
𝑚𝑎𝑥: maximum amount of materials that can be processed at task 𝑖

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗

𝐷𝑠: total amount of samples that have to be examined

𝐻: scheduling horizon

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖

𝑆𝑇0𝑠: initial amount of available state 𝑠

Δ𝑛: maximum number of event points that a task 𝑖 is allowed to span

𝑀: a large positive number

Binary variables

𝑤𝑖,𝑛,𝑛′: 1 if task 𝑖 is active from event point 𝑛 to event point 𝑛′

𝑤𝑗,𝑛,𝑛′: 1 if unit 𝑗 is active from event point 𝑛 to event point 𝑛′

Integer variables

𝑏𝑖,𝑛,𝑛′: amount of materials that are processed in task 𝑖 from event point 𝑛 to event point

𝑛′

𝑏𝑖,𝑗,𝑛,𝑛′: amount of materials that are processed in task 𝑖 which takes place at unit 𝑗 from

event point 𝑛 to event point 𝑛′

Continuous variables

𝑀𝑆: makespan

𝑆𝑇𝑠,𝑛: amount of state 𝑠 that has to be stored at event point 𝑛

𝑇𝑖,𝑛
s : start time of task 𝑖 at event point 𝑛

𝑇𝑖,𝑛
f : end time of task 𝑖 at event point 𝑛

𝑇𝑗,𝑛
𝑠 : start time of unit 𝑗 at event point 𝑛

𝑇𝑗,𝑛
f : end time of unit 𝑗 at event point 𝑛

𝑦𝑗,𝑛,𝑛′: 1 if unit 𝑗 is active from event point 𝑛 to event point 𝑛′

𝑧: total profit

 235

Appendix A Discrete-time mathematical model proposed by

Patil et al. (2015)

Sets

𝐼: tasks

𝐈𝑝: tasks that belong in process p

𝐈𝑠
𝐶: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

𝐽: units

𝑃: processes

𝐏𝐽: units that are able to process process 𝑝

𝑆: states

𝑇: time slots

Parameters

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗

𝑅𝑝: number of resources available for property 𝑝

𝑆𝑇0𝑠: initial amount of available state 𝑠

𝑇𝑟𝑝: Duration of examination of property 𝑝

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖 at time slot 𝑡

Binary variables

𝑦𝑗,𝑡: binary variable which take the value 1 if unit 𝑗 is active at time slot 𝑡

Integer variables

𝑏𝑖,𝑝,𝑡: amount of materials that are processed in task 𝑖 which belongs to process 𝑝 at time

slot 𝑡

Continuous variables

𝑆𝑇𝑠,𝑡: amount of state 𝑠 that has to be stored at time slot 𝑡

 236

𝑆𝑇𝑠,𝑡 = 𝑆𝑇𝑠,𝑡−1 + ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡−𝑇𝑟𝑝

𝑝𝑖∈𝐈𝑆
𝑃

+ ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡

𝑝𝑖∈𝐈𝑆
𝐶

 ∀s, t > 2 (A1)

𝑆𝑇𝑠,𝑡 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡

𝑝𝑖∈𝐈𝑆
𝐶

 ∀s, t = 2 (A2)

𝑦𝑗,𝑡𝐵𝑗
min ≤ ∑ 𝑏𝑖,𝑝,𝑡

𝑖∈𝐈𝑝

≤ 𝑦𝑗,𝑡𝐵𝑗
max

 ∀p, j∊ Pj, t (A3)

∑ ∑ 𝑦𝑗,𝑡′

𝑡−𝑇𝑟𝑝+1≤𝑡′≤𝑡𝑗∈𝐏𝑗

≤ 𝑅𝑝

 ∀p, t (A4)

Maximization of productivity

𝑧 = ∑𝑝𝑠

𝑠

∑ ∑∑𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑝,𝑡

𝑡𝑝𝑖∈𝑰𝑠
𝑃

 (A5)

Minimization of makespan

((𝑡 − 1) + 𝑇𝑟𝑝) ⋅ 𝑦𝑗,𝑡 ≤ 𝑀𝑆 ∀p, jPj, t (A6)

𝑆𝑇𝑠,𝑡 + 𝑏𝑖,𝑝,𝑡 ≥ 𝐷𝑠 ∀s, i, p, t = T (A7)

While the model of Patil et al. (2015) for maximization of productivity includes

constraints A1-A5, the model of Patil et al. (2015) for makespan minimization consists

of A1-A4 and A6-A7.

 237

Appendix B Continuous-time mathematical model proposed by

Lagzi et al. (2017a)

Sets

𝐼: tasks

𝐈𝑗: units that can process task 𝑖

𝐈𝑠
𝐶: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

𝐽: units

𝑁: event points

𝑃 processes

𝐏𝐽: units that are able to process process 𝑝

𝑆: states

Parameters

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗

𝐻: scheduling horizon

𝑇𝐴𝑖: earliest available time that task 𝑖 is available

𝑇𝑀𝑗: earliest available time that unit 𝑗 is available

𝛼𝑖: initial amount of materials in task 𝑖

𝜏𝑗: processing time of unit 𝑗

Binary variables

𝑌𝑖,𝑗,𝑛: binary variable which take the value one if task 𝑖 is assigned to unit 𝑗 to start being

processed at event point 𝑛

Integer variables

𝐵𝑖,𝑗,𝑛: amount of materials from task 𝑖 that begins processing in unit 𝑗 at time point 𝑛

𝐵𝐸𝑖,𝑗,𝑛: amount of materials from task 𝑖 that completes its processing at unit 𝑗 at event

point 𝑛

𝐵𝑅𝑖,𝑗,𝑛: amount of materials from task 𝑖 that continues its processing at unit 𝑗 at time point

𝑛

 238

Continuous variables

𝑆𝐿𝑛: length of time slot 𝑛

𝑇𝑛: location of event point 𝑛

𝑇𝑅𝑖,𝑗,𝑛: amount of time remaining to complete processing materials from task 𝑖 that

continue to be processed at unit 𝑗 at event point 𝑛

𝑤𝑖,𝑘,𝑛: amount of materials from task 𝑖 that have visited process 𝑝𝑘−1
𝑖 and are waiting to

visit process 𝑝𝑘
𝑖 at event point 𝑛

𝑌𝐸𝑖,𝑗,𝑛: 0-1 continuous variable which take the value one if a subset of materials from

task 𝑖 completed their processing at unit 𝑗 at event point 𝑛

𝑌𝑅𝑖,𝑗,𝑛: 0-1 continuous variable which take the value one if a subset of materials from

task 𝑖 continues to be processed at unit 𝑗 at event point 𝑛

𝑍𝑗,𝑛: 0-1 continuous variable which take the value one if unit 𝑗 starts processing materials

at event point 𝑛

∑ 𝑆𝐿𝑛

𝑛>1

= 𝐻

 (B1)

𝑇𝑛 − 𝑇𝑛−1 = 𝑆𝐿𝑛 ∀ n > 1 (B2)

𝑇𝑛 ≥ (max𝑇𝐴𝑖𝑇𝑀𝑗 ⋅ 𝑌𝑖,𝑗,𝑛) ∀j, i ∊ Ij, n (B3)

𝑧𝑗,𝑛 ≥ 𝑌𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B4)

𝑧𝑗,𝑛 ≤ ∑𝑌𝑖,𝑗,𝑛

𝑖∈𝐼𝑗

 ∀j, n (B5)

𝑌𝑅𝑖,𝑗,𝑛 = 𝑌𝑅𝑖,𝑗,𝑛−1 + 𝑌𝑖,𝑗,𝑛 − 𝑌𝐸𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n > 1 (B6)

𝑧𝑗,𝑛 ≥ 𝑌𝐸𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B7)

𝑧𝑗,𝑛 ≤ 1 − 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B8)

1 − ∑𝑌𝑅𝑖,𝑗,𝑛

𝑖∈𝐼𝑗

≤ 𝑧𝑗,𝑛

 ∀j, n (B9)

𝑌𝑖,𝑗,𝑛 ≤ 1 − 𝑌𝐼0,𝑗,𝑛 ∀j, i ∊ Ij, i ≠ I0, n (B10)

𝑌𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝑖,𝑗,𝑛 ≤ 𝑌𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B11)

𝑧𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ ∑𝐵𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ 𝑧𝑗,𝑛 ⋅ 𝐵𝑗
max

 239

 ∀j, n (B12)

𝑌𝑅𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝑅𝑖,𝑗,𝑛 ≤ 𝑌𝑅𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B13)

(1 − 𝑧𝑗,𝑛) ⋅ 𝐵𝑗
min ≤ ∑𝐵𝑅𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ (1 − 𝑧𝑗,𝑛) ⋅ 𝐵𝑗
max

 ∀j, n (B14)

𝑌𝐸𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝐸𝑖,𝑗,𝑛 ≤ 𝑌𝐸𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B15)

𝑧𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ ∑𝐵𝐸𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ 𝑧𝑗,𝑛 ⋅ 𝐵𝑗
max

 ∀j, n , j n (B16)

∑ ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖𝑛

≤ 𝛼𝑖

 ∀ i, p, k = 1 (B17)

𝐵𝑅𝑖,𝑗,𝑛 + 𝐵𝐸𝑖,𝑗,𝑛 = 𝐵𝑅𝑖,𝑗,𝑛−1 + 𝐵𝑖,𝑗,𝑛−1 ∀j, i ∊ Ij, n (B18)

𝑊𝑖,𝑘,𝑛 = 𝛼𝑖 + ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘−1
𝑖

− ∑ 𝐵𝐸𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖

 ∀ i, k, n = 1 (B19)

𝑊𝑖,𝑘,𝑛 = 𝑊𝑖,𝑘,𝑛−1 + ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘−1
𝑖

− ∑ 𝐵𝐸𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖

 ∀ i, k, n > 1 (B20)

𝑇𝑅𝑖,𝑗,𝑛 ≤ 𝜏𝑗 ⋅ 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B21)

𝑇𝑅𝑖,𝑗,𝑛+1 ≥ 𝑇𝑅𝑖,𝑗,𝑛 + 𝜏𝑗 ⋅ 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n < N (B22)

Maximization of productivity

𝑧 = ∑𝑝𝑠

𝑠

∑ ∑ ∑𝜌𝑖,𝑠 ⋅ 𝐵𝐸𝑖,𝑗,𝑛

𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝑃)𝑗

 (B23)

Minimization of makespan

𝑇𝑛 ≤ 𝑀𝑆 ∀ n = N (B24)

∑ ∑ ∑𝜌𝑖,𝑠 ⋅ 𝐵𝐸𝑖,𝑗,𝑛

𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

≥ 𝐷𝑠

 ∀ s ∊ SP (B25)

While the model of Lagzi et al. (2017a) for maximization of productivity includes

constraints B1-B23, the model of Lagzi et al. (2017a) for makespan minimization consists

 240

of B1-B22 and B24-B25.

 241

References

Floudas, C. A., Lin, X., 2004. Continuous-time versus discrete-time approaches for

scheduling of chemical processes: a review. Computers and Chemical engineering.

28(11). 2109-2129. https://doi.org/10.1016/j.compchemeng.2004.05.002.

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I.

E., Hooker, J., Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial application

of production scheduling models and solution methods. Computers and Chemical

Engineering. 62(5). 161-193. https://doi.org/10.1016/j.compchemeng.2013.12.001.

Hui, C., Gupta, A., van der Meulen, H. A. J. 2000. A novel MILP formulation for short-

term scheduling of multi-stage multi-product batch plants with sequence-dependent

constraints. Computers & Chemical Engineering, 24(12). 2705 – 2717

https://doi.org/10.1016/S0098-1354(00)00623-2

Ierapetritou, M. G., Floudas, C., 1998. A. Effective continuous-time formulation for

short-term scheduling. 1. Multipurpose batch processes. Industrial & Engineering

Chemistry. 37(11). 4341-4359. https://doi.org/10.1021/ie970927g.

Kondili, E., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-

term scheduling of batch operations-I MILP formulation. Computers & Chemical

Engineering. 17(2). 211-227. https://doi.org/10.1016/0098-1354(93)80015-F.

Kopanos, G., Puigjaner, L., 2019. Solving Large-Scale Production Scheduling and

Planning in the Process industries, Springer, https://doi.org/10.1007/978-3-030-01183-3

Lagzi, S., Fukasawa, R., Ricardez-Sandoval, L., 2017a. A multitasking continuous time

formulation for short-term scheduling of operations in multipurpose plants. Computers &

Chemical Engineering. 97. 135-146.

https://doi.org/10.1016/j.compchemeng.2016.11.012.

Lagzi, S., Lee, D. Y., Fukasawa, R., Ricardez-Sandoval, L., 2017b. A computational

study of continuous and discrete time formulations for a class of short-term scheduling

problems for multipurpose plants. Industrial and Engineering Chemistry Research.

56(31). 8940-8953. https://doi.org/ 10.1021/acs.iecr.7b01718.

Lee, S. Y., Fukasawa, R., Ricardez-Sandoval, L., 2019. Bi-objective short-term

scheduling in a rolling horizon framework: a priori approaches with alternative

operational objectives. Computers and Operations research. 111.141-154

https://doi.org/10.1016/j.cor.2019.06.006

Li J., Karimi I. A., 2011. Scheduling gasoline blending operations from recipe

https://doi.org/10.1016/j.compchemeng.2004.05.002
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1016/S0098-1354(00)00623-2
https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1016/j.compchemeng.2016.11.012
https://doi.org/10.1016/j.cor.2019.06.006

 242

determination to shipping using unit slots. Industrial & Engineering Chemistry Research,

50(15). 9156-9174 https://doi.org/10.1021/ie102321b

Li J., Xiao X., Floudas C. A., 2016. Integrated gasoline blending and order delivery

operations: part I. short-term scheduling and global optimization for single and multi-

period operations. AIChE Journal, 62(6). 2043-2070 https://doi.org/10.1002/aic.15168

Li, J., Floudas, C.A., 2010. Optimal Event Point Determination for Short-Term

Scheduling of Multipurpose Batch Plants via Unit-Specific Event-Based Continuous-

Time Approaches, Industrial & Engineering Chemistry Reshearch. 49(16). 7446-7469.

https://doi.org/10.1021/ie901842k.

Li, J., Sursarla, N., Karimi, I. A., Shaik, M. A., Floudas, C. A., 2010. An Analysis of

Some Unit-Specific Event-Based Models for the Short-Term Scheduling of

Noncontinuous Processes. Industrial and Engineering Chemistry Research. 49(2). 633-

647. https://doi.org/ 10.1021/ie801879n.

Maravelias C. T., Grossmann I. E., 2003. New general continuous-time state-task network

formulation for short-term scheduling of multipurpose batch plants. Industrial &

Engineering Chemistry Research, 42(13). 3056-3074 https://doi.org/10.1021/ie020923y

Maravelias, C. T., 2012. General framework and modeling approach classification for

chemical production scheduling. AIChE journal. 58(6). 1812-1828.

https://doi.org/10.1002/aic.13801.

Méndez C. A., Cerdá J. 2000. Optimal scheduling of a resource-constrained multiproduct

batch plant supplying intermediates to nearby end-product facilities. Computers &

Chemical Engineering, 24(2-7). 369-376 https://doi.org/10.1016/S0098-1354(00)00482-

8

Méndez C. A., Cerdá J. 2003. An MILP continuous-time framework for short-term

scheduling of multipurpose batch processes under different operation strategies.

Optimization and Engineering, 4(1-2). 7-22 https://doi.org/10.1023/A:1021856229236

Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjukoski, I., Fahl, M., 2006. State-of-the-

art review of optimization methods for short-term scheduling of batch processes.

Computers and Chemical Engineering.30(6-7). 913-

946.https://doi.org/10.1016/j.compchemeng.2006.02.008.

Pantelides C. Unified frameworks for optimal process planning and scheduling.

Proceedings of the Second Conference on Foundations of Computer Aided Operations,

1994, 253-274

https://doi.org/10.1021/ie102321b
https://doi.org/10.1002/aic.15168
https://doi.org/10.1021/ie901842k
https://doi.org/10.1002/aic.13801
https://doi.org/10.1016/S0098-1354(00)00482-8
https://doi.org/10.1016/S0098-1354(00)00482-8
https://doi.org/10.1023/A:1021856229236
https://doi.org/10.1016/j.compchemeng.2006.02.008

 243

Patil, B. P., Fukasawa, R., Ricardez-Sandoval, L. A., 2015. Scheduling of operations in a

large-scale Scientific services facility via multicommodity flow and an optimization-

based algorithm. Industrial and Engineering Chemistry Research. 54(5). 1628-1639.

https://doi.org/10.1021/ie503660f.

Santos F. Fukasawa, R., Ricardez-Sandoval, L., 2018. An integrated personnel allocation

and machine scheduling problem for industrial size multipurpose plants. IFAC-

PapersOnLine. 51(18). 156-161 https://doi.org/10.1016/j.ifacol.2018.09.292

Shaik M. A., Janak S. L., Floudas C. A., 2006. Continuous-time models for short-term

scheduling of multipurpose batch plants: a comparative study. Industrial & Engineering

Chemistry Research, 45(18). 6190-6209 https://doi.org/10.1021/ie0601403

Shaik, M. A., Floudas, C. A., 2008. Unit-specific event-based continuous-time approach

for short-term scheduling of batch plants using RTN framework. Computers & Chemical

Engineering. 32(1-2). 260-274. https://doi.org/10.1016/j.compchemeng.2007.05.007.

Shaik, M. A., Floudas, C. A., 2009. Novel Unified Modeling Approach for Short-Term

Scheduling. Industrial & Engineering Chemistry Research. 48(6). 2947-2964.

https://doi.org/10.1021/ie8010726.

Sundaramoorthy, A., Karimi, I. A., 2005. A simpler better slot-based continuous-time

formulation for short-term scheduling in multipurpose batch plants. Chemical

engineering science. 60(10). 2679-2702. https://doi.org/10.1016/j.ces.2004.12.023.

Sursarla N., Li J., Karimi I., 2010. A novel approach to scheduling multipurpose batch

plants using unit-slots. AIChE Journal, 56(7). 1859-1879

https://doi.org/10.1002/aic.12120

Tang Q. H., Li. J., Floudas C. A., Deng M. X., Yan Y. B., Xi Z. H., Chen. P. H., Kong J.

Y., 2012. Optimization framework for process scheduling of operation-dependent

automobile assembly lines. Optimization Letters, 6(4). 797-824

https://doi.org/10.1007/s11590-011-0303-5

Velez S., Maravelias C. T., 2013. Multiple and nonuniform time grids in discrete-time

MIP models for chemical production scheduling. Computers and chemical engineering,

53(11). 70-85 https://doi.org/10.1016/j.compchemeng.2013.01.014

https://doi.org/10.1021/ie503660f
https://doi.org/10.1016/j.ifacol.2018.09.292
https://doi.org/10.1021/ie0601403
https://doi.org/10.1016/j.compchemeng.2007.05.007
https://doi.org/10.1016/j.compchemeng.2007.05.007
https://doi.org/10.1016/j.ces.2004.12.023
https://doi.org/10.1002/aic.12120
https://doi.org/10.1007/s11590-011-0303-5
https://doi.org/10.1016/j.compchemeng.2013.01.014

 244

Blank Page

 245

6.3 Rolling horizon decomposition approach for large-scale multi-

tasking multipurpose batch process scheduling problems

6.3.1 Introduction

In Chapter 6.2 we presented three unit-specific event-based mathematical models for

scheduling of multi-tasking, multipurpose batch processes. While the first two models

use timing variables based on tasks, the timing variables of the third model is based on

units. The latter model is the most efficient to solve the multi-tasking multipurpose batch

problem, since it leads to significantly smaller model sizes, which leads to smaller

computational times. For minimization of makespan, the model also leads to tigher

relaxation and as a result, it is even able to generate optimum solutions for examples that

existing model even fail to generate a feasible solution.

Despite the high efficiency of the unit-specific event-based mathematical model

using timing variables based on units, it seems that even this model cannot handle large-

scale and complex problems. For instance, for some examples, with minimization of

makespan as objective, any of the examined mathematical models were able to generate

a feasible solution after one hour. The main reason behind this issue is that significantly

high number of orders with many properties have to be examined. This leads to

exceptionally large model sizes, which makes it impossible for a short-term model to

solve it directly.

As discussed before, a number of rolling horizon decomposition approaches were

developed for the job-shop scheduling problem and the multipurpose batch problem

(Singer 2001; Lin et al. 2002; Janak et al. 2004; Shaik et al. 2009; Li et al. 2012; Yan et

al. 2013; Mohammadi and Poursabzi 2014). On the other hand, a rolling horizon

decomposition approach was not implemented in the multi-tasking problem before.

Additionally, there is no decomposition approach that can effectively solve problems with

the same due dates for a large number of due dates or problems with no or the same due

dates.

To tackle this problem, we enhance the rolling horizon decomposition approach

developed for multipurpose batch processes (Lin et al. 2002; Janak et al. 2004; Shaik et

al. 2009; Li et al. 2012). In this decomposition approach the properties examined are

divided into a number of groups using mixed-integer programming. Each group is a

subproblem and the allocation and sequencing of samples included in the same group is

 246

considered simultaneously. To effectively divide a large-scale problem, the number of

groups generated are minimized, while minimizing the difference in the number of orders

included in each group. Additionally, the number of properties to be included in the model

are controlled, to generate subproblems that the short-term mathematical model is able to

generate the optimum solution in small computational time. The results demonstrate that

the proposed enhanced rolling horizon decomposition model can successfully decompose

and solve problem, which all mathematical models fail even to generate a feasible

solution.

6.3.2 Enchased Rolling horizon decomposition approach

As already discussed, there are multiple properties that have to be examined for each

order/sample group. The scientific service facility cannot randomly examine those

properties. Instead, the property examination sequence is predefined. To effectively

divide the scheduling horizon, we introduce a new set K (k = 1, 2, …, K) which denotes

the kth property that has to be examined of each order. For instance, k = 3 denotes the third

property that has to be examined for a given order.

To enhance the rolling horizon decomposition approach, we first introduce a binary

variable Yg to denote the active groups/subproblems for the given problem. To monitor

the properties of each order examined in each subproblem, we introduce a binary variable

𝑌𝑜,𝑘,𝑔
𝑜 . According to constraint (1), we can examine the kth property of a given order

during a group/subproblem only if the group/subproblem is active.

𝑌𝑜,𝑘,𝑔
o ≤ 𝑌𝑔 ∀𝑜, 𝑘 ∈ 𝑂𝑘, 𝑔 (1)

Additionally, if a group g is active, then it should include at least one property during this

subproblem.

∑ 𝑌𝑜,𝑘,𝑔
o

𝑜,𝑘∈𝑂𝑘

≥ 𝑌𝑔

 ∀ 𝑔 (2)

During the scheduling horizon all properties of all orders should be examined once.

∑𝑌𝑜,𝑘,𝑔
𝑜

𝑔

= 1

 ∀𝑜, 𝑘 ∈ 𝑂𝑘 (3)

 247

The examination of the kth property of a given order o can take place in a group g, only if

(k – 1) property of the same order is already examined in a previous group g < g, or it is

included in the current group g.

𝑌𝑜,𝑘′,𝑔
𝑜 ≤ 𝑌𝑜,𝑘,𝑔

𝑜 + ∑ 𝑌𝑜,𝑘,𝑔′
𝑜

𝑔′<𝑔

 ∀𝑜, 𝑘, 𝑘′ ∈ 𝑂𝑘, 𝑘
′ = 𝑘 + 1 (4)

A group g + 1 cannot be selected if the previous group g is not selected.

𝑌𝑔+1 ≤ 𝑌𝑔 ∀ 𝑔 (5)

To monitor the number of properties of each order o that a group g contains, we introduce

a continuous variable TNOo,g.

𝑇𝑁𝑂𝑜,𝑔 = ∑ 𝑌𝑜,𝑘,𝑔
𝑜

𝑘∈𝑂𝑘

 ∀ 𝑜, 𝑔 (6)

Constraint (7a) sequences the number of properties of each order included in each group

in decreasing order.

𝑇𝑁𝑂𝑜,𝑔+1 ≤ 𝑇𝑁𝑂𝑜,𝑔 ∀ 𝑜, 𝑔 < 𝐺 (7a)

Constraint (7a) limits the minimum number of properties that can be included in a group

g. For instance, in each group, at least one property from each order should be included.

Otherwise, if no properties from a given order o are included at group g, then no properties

from this order can be included in the next groups g > g. As a result, the minimum number

of orders that can be included in each group (with the exception of the last group) is |O|.

For very large examples, this however can still lead to subproblems with large model

sizes, which requires excessive computational time. To avoid this case, we relax

constraint (7a) by introducing a parameter Mmax.

𝑇𝑁𝑂𝑜,𝑔+1 ≤ 𝑇𝑁𝑂𝑜,𝑔 + 𝑀max ∀ 𝑜, 𝑔 < 𝐺 (7b)

Additionally, the total number of properties included in a group g is monitored by using

the continuous variable TNOPg.

 248

𝑇𝑁𝑂𝑃𝑔 = ∑ 𝑌𝑜,𝑘,𝑔
𝑜

𝑜,𝑘∈𝑂𝑘

 ∀ 𝑔 (8)

To avoid generating subproblems with many properties to be examined, that require

excessive computational time to generate the optimum solution, we introduce a parameter

Lmax, which denotes the maximum number of properties that can be included in a group

g.

𝑇𝑁𝑂𝑃𝑔 ≤ 𝐿max ∀ 𝑔 (9)

Finally, we use two penalties PEN1 and PEN2 in order to minimize the difference in the

total number of properties included in each group g.

𝑃𝐸𝑁1 ≥ 𝑇𝑁𝑂𝑜,𝑔 ∀ 𝑜, 𝑔 (10)

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝑂𝑜,𝑔 + |𝐺| ⋅ (1 − 𝑌𝑔) ∀ 𝑘, 𝑔 (11)

The objective of this model is to minimize the number of groups selected. In this way we

minimize the number of subproblems that the main problem is divided.

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2)

 (12)

Where w1 and w2 are the importance weight parameters.

For each subproblem, the number of event points (ENg) used are equal to the maximum

number of samples that a unit is able to process plus the number of different properties

included in the given group g.

𝐸𝑁𝑔 = max
𝑝

(

⌈
⌈
⌈
⌈

∑

(

 ∑ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑜𝑘∈𝐾𝑝,𝐾𝑜

∑ 𝐵𝑗
max

𝑗∈𝐽𝑝)

𝑜∈𝑃𝑜

⌉
⌉
⌉
⌉

)

+ |𝑃𝑔| − 1

 ∀𝑔 (13)

6.3.3 Computational results

We implement the proposed enhanced rolling horizon decomposition approach to solve

 249

Examples 20-31 from Rakovitis et al. (2020) with minimization of makespan as objective.

Examples 21-25 contain 5 orders, while examples 26-30 contain 10 orders. On the other

hand, Examples 20 and 31 large-scale examples, with 100 orders and 200-300 samples

each. Additionally, 25 properties can be examined in the facility in 84 processing units

for all Examples. The relevant data for all these examples are presented in Rakovitis et

al. (2020). Table 1 depicts the parameters Lmax and Mmax used to solve this problem. All

examples are solved to 1% of optimality gap using CPLEX 12/GAMS 24.6.1. on a

desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows

7. The maximum computational time is one hour for all examples.

Table 1 Additional data for Examples 20-31

Example Lmax Mmax Example Lmax Mmax

20 100 0 26 10 0

21 5 0 27 10 0

22 5 0 28 10 0

23 5 0 29 10 0

24 5 0 30 10 0

25 5 0 31 50 1

Table 2 presents the results generated for all examined examples. The results

demonstrate that the proposed approach is able to generate a schedule for all examples,

even for those examples that the short-term model of Rakovitis et al. (2020) is not able

to generate a feasible solution after one hour. For example, by only using the short-term

model of Rakovitis et al. (2020) we can only generate a solution for Examples 21-23 and

27. On the contrary, the rolling horizon decomposition approach can generate a solution

for all Examples 20-31. This approach can even generate solutions for very large and

complex examples (Example 31). However, for this example excessive computational

time is required even with rolling horizon decomposition approach. Another conclusion

is that the proposed approach is able to generate slightly worse solutions than by only

using the short-term model. For instance, in Example 21 only using the short-term model,

leads to a solution with a makespan of 5131 min (Rakovitis et al. 2020), after one hour of

computational time. On the other hand, the proposed rolling horizon decomposition

approach requires less than one second (0.7 s) to generate an approximately 9% worse

solution (5621 min). As a result, the benefits of significantly reducing the computational

time overpass the fact that a slightly worse solution is generated.

 250

Table 2 Summary of computational results for large-scale examples

Example Makespan

(min)

Total CPU

time (s)

Example Makespan

(min)

Total CPU

time (s)

20 36199 63.9 26 35075 44.3

21 5621 0.7 27 7156 1.0

22 22295 1.2 28 18860 10.9

23 5815 0.8 29 33775 12.0

24 19295 1.2 30 23235 2.3

25 20795 1.1 31 642652 15079.1

Table 3 depicts more details for each subproblem solved for example 20. In

Example 20, 100 orders have to be examined for 8 to 9 different properties. We set the

maximum number of properties (tasks) to be examined (Lmax) is 100. Therefore, in each

subproblem at most 100 properties can be examined. This is the case for the first eight

subproblems, while for the last subproblem, only 50 properties are examined. Note that

different orders can be examined for the same property within a specific subproblem.

However, the examination of a property for different orders is considered as a different

task.

Table 3 Computational results for each subproblem for Example 20

Sub-

problem

Properties

(tasks)

Examined

Makespan

(min)

CPU

time

(s)

Integer

variables

Continuous

variables

Constraints

1 100 2660 0.19 3976 6553 11728

2 100 4910 1.3 3456 5116 12868

3 100 6326 2.0 3408 6819 14724

4 100 10674 0.84 3388 3981 11464

5 100 16969 0.50 4053 3985 12889

6 100 19843 1.1 2328 3421 8564

7 100 22699 6.7 6842 6288 21246

8 100 27424 51.0 6058 7409 20890

9 50 36199 0.27 2752 5896 11486

From Table 3, it seems that the rolling horizon decomposition approach can

successfully decompose the problem that the short-term model can easily solve. For

instance, the short-term model requires less than one minute to generate the optimal

solution for a given subproblem. For most subproblems, less than one second is required

to generate the optimal solution (subproblems 1, 4, 5, 9). Additionally, it seems that all

examples lead to similar model sizes for all subproblems. As a result, the rolling horizon

decomposition approach proposed can efficiently divide the problem in smaller

subproblem that the short-term model can efficiently solve.

 251

6.3.4 Conclusions

Even though the proposed short-term model for scheduling of multi-tasking multipurpose

batch processes can be very efficient, it seems that in some cases it may fail to generate

the optimal solution or even to fail to generate a feasible solution in small computational

time. In this work, we enhance the rolling horizon decomposition approach that is able to

decompose problems without due dates. From the results generated, it seems that the

proposed approach can efficiently decompose the problem, in smaller subproblems. As a

result, implementing this approach to a number of multitasking multipurpose batch

process scheduling problems, can significantly reduce the computational time required to

generate a slightly worse solution. Additionally, the proposed approach can generate a

solution for all examples, in contrast to the case that only the short-term model is used.

 252

Blank Page

 253

Chapter 7: Energy-efficient scheduling of flexible

job-shops

7.1 Introduction

The flexible job-shop scheduling problem has been well examined in the past decades

with multiple metaheuristics and mathematical modelling methodologies proposed to

solve this problem. However, the majority of the formulations only take into

consideration the economic performance without considering energy consumption. Such

approaches, even though they generate schedules where the processing units process all

jobs at the earliest possible time, they often lead to significantly high energy demands.

Therefore, it is crucial to consider energy consumption in the scheduling problem. Only

a few approaches considered energy-efficient scheduling of flexible job-shops. Such

methodologies, either fail to generate the optimal solution even for small examples, since

they do not consider switching off and on the processing units, or they lead to large model

sizes and excessive computational time required to generate a solution.

In this chapter, the proposed framework presented in the previous research

contributions is implemented to solve the flexible job-shop scheduling problem by

considering energy consumption. Switching off and on of processing units is also

considered. Additionally, two mathematical models using sequence-based representation

is proposed to compare its performance with the proposed unit-specific event-based

framework. Several examples were solved to examine the capabilities of the models as

well as the proposed formulations. For large-scale problems, that require excessive

computational time, an enhanced rolling horizon decomposition approach, by developing

mixed-integer mathematical programming to group operations is proposed. Finally, the

capabilities of hybrid algorithms were examined by combining the mathematical

programming with the genetic evolutionary programming (GEP) approach. More

specifically, GEP is used to generate the allocation and sequence of operations into units

and mathematical programming to develop the optimal timings of those operations into

units.

 254

Blank Page

255

7.2 Research contribution 5

Rakovitis, N., Zhang, N., Li, J. Zhang, L. Novel Approaches for Energy-Efficient Scheduling of

Flexible Job-Shop Problems, to be submitted to European Journal of Operational Research

256

Blank Page

257

Novel Approaches for Energy-Efficient Scheduling of Flexible Job-

Shop Problems

Nikolaos Rakovitis1, Dan Li1, Matthew Mclaughlan1, Nan Zhang1, Jie Li1,§ and Liping

Zhang2

1Centre for Process Integration, Department of Chemical Engineering and Analytical

Science, The University of Manchester, Manchester, M13 9PL, United Kingdom

2Department of Industrial Engineering, School of Machinery and Automation, Wuhan

University of Science and Technology, Wuhan, Hubei, 430081 P. R China

Abstract

In this work, we develop three mathematical models for scheduling of energy-efficient

flexible job shops, based on unit-specific event-based and local sequence-based approach.

The computational results demonstrate that the proposed model based on the unit-specific

event-based representation is superior to the existing models with the same or better

solutions in less computational time. Furthermore, it can generate feasible solutions for

some large-scale examples that the previous models fail to solve. To solve larger-scale

problems, we enhance the existing rolling-horizon decomposition approach in which a

grouping strategy using mixed-integer programming divides the entire horizon into

different subproblems. This enhanced rolling-horizon decomposition approach can

generate good solutions for those large-scale examples that cannot be directly solved

using the mathematical models in significantly less computational time. It can also

achieve up to 43.1% less energy consumption for most examples in comparison to the

existing efficient gene-expression programming-based algorithm. Finally, we combine

the approaches of mathematical modelling and GEP. Such approach leads to up to 20%

less energy consumption than the solutions generated by only implementing GEP.

Keywords: Scheduling, mixed-integer programming, flexible job-shops, energy-

efficient, unit-specific event-based approach, sequence-based approach

§ To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

258

1. Introduction

The process industries such as chemical industry, car industry and iron and steel industry

usually receive multiple orders from different customers daily. Each facility process

several jobs in the available processing units/machines to fulfil the customers’ demands,.

Each of these jobs contains multiple operations, where several units are processing . The

main objective of such a facility is to determine the best sequence of operations on the

processing units to eliminate their operational cost and satisfy their customer demands

simultaneously. Furthermore, facilities aim to reduce their energy consumption, which

also contributes to their expenses, as well as their environmental footprint. Such a

scheduling problem is commonly known as job-shop scheduling problem (JSSP)

(Bowman 1959). In JSSP, a processing unit can process at most one operation at each

time. However, it can process multiple of those operations during the scheduling horizon.

With highly increasing customer demands, facilities often install several processing units

that can process the same type of operations instead of one processing unit. Scheduling

of such facilities is commonly known as flexible job-shop scheduling problem (FJSSP)

(Wagner 1959). FJSSP is a more general case of the classical job-shop scheduling

problem.

 The flexible job-shop scheduling problem has gathered considerable attention

during the past decades. The first attempts (Brandimarte 1993; Paulli 1995) were solving

the problem by using the two-stage hierarchical method. While Brandimarte (1993)

generated schedules based on Tabu search, Paulli (1995) used several dispatching rules

to solve the same problem. The first stage defines the assignment of operations into

machines, while the second stage then determines the best sequence of those operations

in each processing unit. Using such an approach can significantly reduce the

computational time. However, it is only limited to generate a feasible solution. Integrated

methods were later proposed, to improve solution quality. These integrated methods solve

both the assignment and sequence of operations into simultaneously. Different research

groups developed several metaheuristic approaches including tabu search (Hurink et al.

1994; Mastrolilli et al. 2000; Saidi-Mehrabad and Fattahi 2007; Fattahi et al. 2007;

Liouane et al. 2007), genetic algorithm (Chen et al. 1999; Pezzella et al. 2008; Zhang et

al. 2011; Al-Hinai and ElMekkawy 2011), artificial immune algorithm (Bagheri et al.

2010; Roshainaei et al. 2013), imperialist competitive algorithm (Karimi et al. 2017), ant

colony optimization (Liouane et al. 2007), simulated annealing (Fattahi et al. 2007),

259

variable neighbourhood search (Yazdani et al. 2010) and hybrid methods such as particle

swarm optimization and tabu search (Zhang et al. 2009), genetic algorithm and local

search (Gao et al. 2006; Gao et al. 2008). Even though these metaheuristics can efficiently

generate good feasible schedules for the FJSSP, they cannot guaranty the solution

optimality. Additionally, they also require excessive computational time to solve

industrial-scale problems. Such issue led to the development of mathematical

programming approaches for this scheduling problem (Choi and Choi 2002; Gao et al.

2006; Fattahi et al. 2007; Özgüven et al. 2010; Roshainaei et al. 2013; Karimi et al. 2017).

Chaudhy and Khan (2016) and Xie et al. (2019) includes more information for different

approaches for solving the FJSSP.

 Most of the discussed works considered the economic performance of the FJSSP

only without incorporating energy consumptions during scheduling. As reported, the

existing real-life industries suffer from high energy consumption. The processing units

can consume up to 65% of the total energy consumption during the period that they

remain idle (Gutowski et al. 2005; Devoldere et al. 2007; Nguyen et al. 2019). A

processing unit consumes this amount of energy even if it does not process any

operations/tasks to maintain its functionality. Since most of the existing approaches only

consider makespan minimization, they generate schedules where one or more processing

units can remain idle for long periods during the scheduling horizon, resulting in

significantly high energy consumption. Furthermore, most of the existing formulations

do not consider switching off-on strategy, which can save energy if a processing unit does

not process an operation for long periods. The switching off-on strategy can potentially

lead to significant energy savings of at least 13% (Mouzon et al. 2007).

 Only a few approaches considered the case of developing energy-efficient

schedules for the flexible job-shop problem. Zhang et al. (2017) developed an efficient

algorithm to create good dispatching rules that can generate schedules using gene

expression programming (GEP). GEP is an evolutionary algorithm which is used to

develop an efficient model. Similarly, to other evolutionary approaches, a population of

random chromosomes is used, which are evolved through the mutation and selection

procedure. Each chromosome can be converted to a formula, model or, in this case, into

an efficient dispatching rule. This approach can generate several dispatching rules by

using a set of examples as “training sets”. For more information on GEP, the reader can

be refer to Zhang et al. (2017). Even though the GEP-based algorithm of Zhang et al.

(2017) can generate good schedules, even for large-scale problems, it cannot guarantee

260

the solution optimality. As we demonstrate later, the solution obtained from the GEP-

based approach is a bit far from the optimal solution. Zhang et al. (2017) also developed

a mixed-integer linear programming (MILP) model, which can solve small-scale

problems to optimality. However, the model requires huge computational time or fails to

generate schedules for large-scale examples. Wang et al. (2018) developed a two-stage

optimization method for energy-efficient scheduling of flexible job shops. In the first

stage, the assignment of operations into processing units is determined using a modified

genetic algorithm while in the second stage a hybrid genetic algorithm-particle swarm

optimization approach is used to generate the optimal sequence of operations on each

processing unit. Although the proposed meta-heuristic approach can generate feasible

schedules for large-scale examples, it often fails to provide the optimal energy-efficient

schedule as the assignment and sequencing problems are not solved simultaneously. It

also did not consider the machine switching off-on strategy, which could further reduce

energy consumption. Meng et al. (2019) developed six mathematical formulations using

the modelling approach of Wanger (1959) for a such scheduling problem. By comparing

those models with the mathematical model of Zhang et al. (2017), they concluded that

most of their models are more efficient than that of Zhang et al. (2017) due to smaller

model size and less computational time required. However, these models still require

excessive computational time or fail to find feasible solutions for large-scale problems.

Finally, several works have considered the multi-objective optimisation problem of both

minimizing makespan and total energy consumption for both JSSP (May et al. 2015) and

FJSSP (Dai et al. 2013; Lei et al. 2016; Mokhtari and Hasani 2017; Zhang et al. 2018;

Wu and Sun 2018), which will be our future work to extend our approach for the multi-

objective optimisation problem.

 In this work, we first develop three novel mathematical formulations for the energy-

efficient scheduling of flexible job-shop problem using the improved unit-specific event-

based (Rakovitis et al. 2019) and the local sequence-based (Méndez and Cerdá, 2000)

time representation. For the local sequence-model, we examine two different sets of

binary variables to define the sequencing between operations. The proposed formulations

lead to a tighter MILP relaxation and smaller model size compared to the existing models

of Zhang et al. (2017) and Meng et al. (2019). As a result, they can generate the same or

better feasible solutions than the models of Zhang et al. (2017) and Meng et al. (2019).

Furthermore, they can generate solutions for examples that the existing mathematical

models of Zhang et al. (2017) and Meng et al. (2019) fail after a specified computational

261

time (e.g., 1 hour). The model based on unit-specific event-based time representation is

the most efficient and robust since it can generate better solutions than all models.

Additionally, it can develop solutions for most examples. To solve large-scale and

computationally expensive problems, we enhance the rolling horizon decomposition

approach (Lin et al., 2002; Janak et al., 2006; Li et al., 2012) in which a grouping strategy

using the mixed-integer programming further divides the optimization problem with the

same due date into sub-problems. The computational results demonstrate the proposed

decomposition approach can generate optimal schedules for small-scale examples, while

for large-scale ones, it can generate improved schedules than eGEP with up to 27.6%

additional energy savings. It can also improve the solution quality with up to 28.5%

energy savings for the examples with more than ten jobs in significantly less

computational time in comparison to the short-term model. Finally, we develop a hybrid

algorithm through a simple combination of the mathematical programming approach with

the GEP-based approach. In the hybrid algorithm, we use the GEP-based algorithm of

Zhang et al. (2017) to generate the allocation of operations to the processing units and

their sequence on these processing units. Then, the two sequence-based models are used

to determine the optimal timings of operations on the processing units. The computational

results demonstrate that this hybrid approach can generate improved solutions with up to

20% energy savings in comparison to the GEP-based method. By comparing the results

between the enhanced rolling horizon decomposition and the hybrid approach, it seems

that, even though the hybrid approach can lead to higher energy savings, there are many

cases where the enhanced rolling horizon decomposition approach can generate a

schedule with less energy consumption.

2. Problem description

Figure 1 illustrates a typical flexible job-shop facility. There are 𝐾 (𝑘 = 1, 2, 3, … , 𝐾)

jobs to be processed with up to 𝐿 (𝑙 = 1, 2, 3, … , 𝐿) operations in each job and 𝐽 (𝑗 =

1, 2, 3, … , 𝐽) processing units/machines. Each job 𝑘 contains 𝐋𝑘 operations. Each

operation 𝑙 can be processed in 𝐉𝑙 units. At a time, at most one operation can be processed

in a processing unit. Each operation is processed exactly once during the entire scheduling

horizon. The processing sequence of operations in a job 𝑖 is known a prior. An operation

in a job 𝑖 can only start if all precedent operations in this job have already been processed.

The disjunctive graph is a method used to represent job-shop and flexible job-shop

facilities (Roy and Sussmann 1964).

262

Figure 1 A typical flexible job-shop facility using the disjunctive graph representation

 At a time, a processing unit 𝑗 can either process operations or be idle. When it

processes an operation 𝑙 that belongs to a job 𝑘, it should process for some duration

denoted as 𝛼𝑘,𝑙,𝑗. Energy consumed during processing includes direct and indirect energy.

While direct energy is the energy consumed by processing units to process operations,

indirect energy is consumed within the facility for processing an operation. Indirect

energy is not directly related to the processing of an operation. For instance, the facility

should be properly lighted so that personnel can operate processing units. The cutting

power that a unit 𝑗 directly requires to process an operation 𝑙 in a job 𝑘 is denoted as

𝑃𝐶𝑘,𝑙,𝑗. After a processing unit finishes an operation, it can remain on until the next

processing, or it can be switched off and on right before the next processing. While the

former is called standby mode, the latter is called switch off/on mode. During standby, a

processing unit requires energy to maintain its functionality. Such energy is called

standby energy. Standby energy consumption is related to the time (𝑆𝑇𝑗) that the unit

remains idle. The unit unload power for standby is constant, and it is denoted as 𝑃𝑈𝑗.

Energy consumed during switch off and on mode is assumed to be a constant for each

machine/processing unit, which is denoted as 𝐸𝑂𝑗. The time that the processing unit

remains idle is denoted as 𝑆𝑇𝑗. The standby energy should not be higher than the switch

off-on energy between two operations. Figure 2 illustrates the energy consumption profile

for a processing unit.

263

Figure 2 The energy consumption profile for a machine/processing unit

With these, the energy-efficient scheduling of flexible job-shop problem can be stated as

follows,

Given:

a) 𝐾 jobs to be processed, and corresponding 𝐋𝑘 operations;

b) 𝐽 processing units, suitable operations that can be processed, processing times;

c) Unit cutting power (𝑃𝐶𝑘,𝑙,𝑗), indirect energy consumption coefficient (𝛽), unit

unload power in standby (𝑃𝑈𝑗) and the switch off-on energy consumption (𝐸𝑂𝑗);

d) Scheduling horizon.

Determine:

a) Optimal processing schedule including the allocation of operations to units, their

sequences, and timings on each unit;

b) Optimal operating mode for a unit;

c) Optimal energy consumption profile.

Operating rules:

a) At most one operation can be processed in a unit at a time.

b) An operation must be processed exactly once during the scheduling horizon.

c) An operation in a job can start only after all precedent operations in the same job

have finished.

Assumptions

a) All parameters are deterministic;

b) Unlimited unit wait policy;

c) Unlimited resources are available;

264

d) All jobs must be completed in the scheduling horizon.

e) All processing units are switched off at the beginning of the scheduling horizon.

They are switched on right before the time that the first operation has to be

processed in this unit;

f) All processing units are switched off after the finish processing the last operation.

 The objective is to minimize total energy consumption, which consists of direct,

indirect, standby and switch off-on energy consumptions.

3. Mathematical formulations

We develop four mathematical formulations using the unit-specific event-based

modelling approach and the sequence-based modelling approach. While the first model

is based on unit-specific event-based representation, the next two models use the local

sequence-based approach.

3.1. Unit-specific event-based formulation (M1)

The improved unit-specific event-based modelling approach (Rakovitis et al. 2019) is

used to develop the model M1 since its advantages have been well established in the

literature. In this modelling approach, the scheduling horizon is divided based on

processing units (Rakovitis et al. 2019; Rakovitis et al. 2020). The start and end times of

the same event point on different units can differ. Furthermore, A parameter Δn is used

to denote the maximum number of event points that a task is allowed to span over. The

state-task network representation (Kondili et al. 1993) is used to represent the process, as

illustrated in Figure 3, which is the STN representation of Figure 1. In this representation,

an operation is denoted as a task, and it is represented with a rectangle. A circle represents

an operation that can “produce” or “consume” a state. Then the processing sequence of

two operations in a job is established with the state. It is assumed that the first operation

or task in each job consumes a “feed” state denoted as 𝐒𝐹, while the last task of each job

produces a “product” state, denoted as 𝐒𝑃. Other operations or tasks in a job “produce”

or “consume” intermediate states, denoted as 𝐒𝐼𝑁. A parameter 𝜌𝑖,𝑠 is used to indicate

whether a state is consumed (i.e., 𝜌𝑖,𝑠 = −1) or produced (i.e., 𝜌𝑖,𝑠 = 1) by a task 𝑖. Set

𝐈𝑗 is defined to denote tasks that can be processed in a processing unit 𝑗, while set 𝐉𝑖

denotes units that can process a task 𝑖.

265

Figure 3 STN representation of a typical flexible job-shop facility

3.1.1. Allocation constraints

We introduce a binary variable 𝑤𝑖,𝑗,𝑛,𝑛 to denote if a task 𝑖 is processed in a unit 𝑗 from

event point 𝑛 to event point 𝑛 as given below,

, , ,

if a task is processed in a unit from event point to event point 1

0 otherwise
i j n n

i j n n
w

=

At a time, a processing unit can process at most one task.

∑ ∑ ∑ 𝑤
𝑖,𝑗,𝑛′,𝑛′′

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1

 j, n (1)

All tasks must be processed once during the scheduling horizon.

∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑗∈𝐉𝑖

= 1

 i (2)

If two tasks 𝑖 and 𝑖 belonging to the same job are related to the same state (i.e. task i

produces a state which is consumed by task 𝑖), then the task 𝑖 can only start being

processed at event point 𝑛 if its related production task 𝑖 ends being processed at the same

event point 𝑛 or a previous event point 𝑛.

∑ ∑ ∑ 𝑤𝑖,𝑗,n′′,𝑛′

𝑛′−Δ𝑛≤𝑛′′≤𝑛′𝑛′≤𝑛𝑗∈𝐉𝑖

≥ ∑ 𝑤𝑖′,𝑗′,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

 s 𝐒IN, i∈ 𝐈𝑆
P, j, i∈ (𝐈𝑗 ∩ 𝐈𝑆

C), n (3)

The number of tasks processed in a processing unit 𝑗 should be within the minimum

(𝑁𝑗
𝑚𝑖𝑛) and maximum (𝑁𝑗

𝑚𝑎𝑥) limits.

∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≥ 𝑁𝑗
min

 j (4)

266

∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≤ 𝑁𝑗
max

 j (5)

The minimum and maximum number of tasks that can be processed in a unit 𝑗 can be

easily calculated if the available processing units for each task are known. More

specifically, the minimum number of tasks processed is equal to the number of tasks that

are only available to be processed exclusively in this unit (𝐈𝑗
𝑒), while the maximum

number of tasks processed is equal to all tasks that are suitable to be processed in the unit.

 𝑁𝑗
min = |𝐈𝑗

𝑒| j (6)

𝑁𝑗
max = |𝐈𝑗| j (7)

3.1.2. Standby energy calculation

We introduce a binary variable 𝑥𝑗,𝑛 to denote if a unit 𝑗 remains in the standby mode at

event point 𝑛 below,

 ,

if unit remains in the standby mod

w

e at the begining of event p

s

 1

0 other i e

oint
j nx

j n
=

We also define a positive continuous variable 𝐸𝑆𝑗,𝑛 to denote the standby energy

consumption of a unit 𝑗 calculated at the beginning of event point 𝑛. Constraints (9) and

(10) enforce the standby energy consumption of a unit 𝑗 at event point 𝑛 to be equal to

the idle time multiplying the unit unload power of the unit, if the unit remains in standby

mode. Otherwise, constraint (8) enforces the standby energy consumption to be equal to

zero.

𝐸𝑆𝑗,𝑛 ≤ 𝐸𝑂𝑗 ∙ 𝑥𝑗,𝑛 j, n (8)

𝐸𝑆𝑗,𝑛 ≤ (𝑇𝑗,𝑛
s − 𝑇𝑗,𝑛−1

f) ∙ 𝑃𝑈𝑗 j, n > 1 (9)

𝐸𝑆𝑗,𝑛 ≥ (𝑇𝑗,𝑛
s − 𝑇𝑗,𝑛−1

f) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ 𝑃𝑈𝑗 ∙ (1 − 𝑥𝑗,𝑛) j, n > 1 (10)

3.1.3. Duration constraints

Once a task is processed on a unit 𝑗, it must be processed for some duration (𝛼𝑖,𝑗).

Therefore, the end time of a unit 𝑗 at event point 𝑛 must be equal to the start time plus the

processing time of the task processed on this unit 𝑗. If a unit 𝑗 does not process any task,

then the finish time of this unit 𝑗 should be equal to the start time at event point 𝑛.

267

𝑇𝑗,𝑛
f = 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 j, n (11)

Note that the end time of a unit 𝑗 at event point 𝑛 is enforced to be exactly equal to the

start time plus the total processing time to correctly monitor the standby energy

consumption.

3.1.4. Sequencing constraints

A processing unit 𝑗 at an event point (𝑛 + 1) must always start after the finish time of

this unit at the previous event point 𝑛.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f j, n < N (12)

Different tasks in different units

We need to sequence tasks that are related to the same state but processed in different

units. More specifically, a consumption task 𝑖 must start after the finish time of its related

production task 𝑖 at event point 𝑛. We define a continuous variable 𝑇𝑠,𝑛 to denote the time

that a state 𝑠 is available to be consumed at event point 𝑛. In this case, the finish time of

a unit j, processing a task which “produces” state 𝑠 should be before 𝑇𝑠,𝑛.

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

)

 ,, , 0,
j

IN

s i

i

s j n

I

S (13)

Furthermore, the start time of unit 𝑗 at event point 𝑛, processing a task which “consumes”

state 𝑠 should be after the time that state 𝑠 is available at the same event point 𝑛.

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛
s − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)

)

()
,, , 0,

P
j S

IN

s i

j i

s j n

I I

S (14)

Finally, the time that a state 𝑠 is available at event point 𝑛 must be before the time that

the same state is available at the next event point (𝑛 + 1).

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1 s SIN, n < N (15)

3.1.5. Makespan calculation

It is necessary to calculate makespan to calculate the total energy consumed in a facility.

268

We define a variable 𝑀𝑆 to denote makespan. Makespan is the earliest time that all tasks

have already been processed.

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 j, n = N (16)

The time that state 𝑠 is available at event point 𝑛 cannot exceed makespan.

𝑇𝑠,𝑛 ≤ 𝑀𝑆 s SIN, n (17)

3.1.6. Additional constraints

If a job k has a non-zero release time (𝑟𝑘), then all tasks belonging to this job have a non-

zero release time (denoted as 𝑟𝑖). The start time of a unit j processing a task i that belongs

to this job should be after the release time.

𝑇𝑗,𝑛
s ≥ ∑ ∑ 𝑟𝑖 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 j, n, ri > 0 (18)

Similarly, if a job k has a due date (𝑑𝑘), then all tasks belonging to this job has a non-zero

due date (denoted as 𝑑𝑖). The completion time of a unit j processing a task i that belongs

in this job should be before the due date.

𝑇𝑗,𝑛
f ≤ ∑ ∑ 𝑑𝑖 ∙ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

+ 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

)

 j, n, di > 0 (19)

Additionally, constraints (20) and (21) are introduced to avoid violation of forbidden

sequencing paths and assignments.

∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

+ ∑ ∑ 𝑤𝑖′,𝑗′,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 1

 k, (j, jʹ) FP, i (Ij ∩ Ik), i(𝐈𝑗′ ∩ 𝐈𝑘), i ≠ i (20)

∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

= 0

 j, i FIj (21)

Finally, (22) and (23) denote all the continuous and binary variables of model M

respectively.

 𝐸𝑆𝑗,𝑛, 𝑀𝑆, 𝑇𝑠,𝑛, 𝑇𝑗,𝑛
s , 𝑇𝑗,𝑛

f ≥ 0 (22)

𝑤𝑖,𝑗,𝑛,𝑛′, 𝑥𝑗,𝑛 {0, 1} (23)

269

3.1.7. Objective function

The objective is to minimize total energy consumption (denoted as TEC), which is

classified in four different types of energy consumption. In constraint (24), the first term

calculates direct energy consumption, which is equal to the processing time multiplying

the unit cutting power, the second term calculates the indirect energy consumption, which

is proportional to the makespan, while the third term calculates the standby energy

consumption and the switch off and on energy consumption.

𝑇𝐸𝐶 = ∑∑∑ ∑ (𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝛼𝑖,𝑗 ⋅ 𝑃𝐶𝑖,𝑗)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗𝑗

+ 𝛽 ⋅ 𝑀𝑆 +

+∑ ∑[𝐸𝑆𝑗,𝑛 + 𝐸𝑂𝑗 ⋅ (1 − 𝑥𝑗,𝑛)]

𝑛>1𝑗

 (24)

We complete our mathematical model M1, which consists of constraints 1-23 with the

objective function in 24. The model M1 is a MILP formulation.

3.1.8. Extensions

The model M1 is not difficult to extend for the case with varying processing times. If the

variable processing time is assumed to be linearly dependent on the processing batch size

(𝑏𝑖,𝑗,𝑛,𝑛), which is denoted as 𝛼𝑖,𝑗,𝑛,𝑛 + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛, then constraint 11 can change by

replacing the term 𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛 with 𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛. The following

constraints can be added for the batch size.

𝑇𝑗,𝑛
f = 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′ + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑗

 j, n (11a)

𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝐵𝑖,𝑗
min ≤ 𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝐵𝑖,𝑗

max j, i Ij, n ≤ n ≤ n + Δn (11b)

 As already discussed, it is assumed that all processing units switch off before they

process the first operation and after they finish processing the last operation. However, it

can be more energy efficient for a unit to remain idle between two scheduling horizons.

Therefore, we can easily to omit such assumption by calculating the time that the last

operation of unit j in scheduling horizon H finishes in comparison to the next scheduling

horizon (H + 1). We use a parameter 𝑇𝑗
0 to denote the time that a unit remaining idle

before the next scheduling horizon starts |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡|. After the scheduling problem

with a scheduling horizon H is solved, then we can calculate the value of 𝑇𝑗
0 as follows,

270

𝑇𝑗
0 = 𝑇𝑗,𝑛

f − |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡|

 j, n, , , , , , ,1 0

 + +

= =
j j

i j n n i j n n

j i n n n n j i n n n n n n

w w
I I

 (25)

Note that 𝑇𝑗
0 < 0, since it is calculated based on the next scheduling horizon (H + 1). In

this case the standby energy consumption for the first event point is calculated as follows

𝐸𝑆𝑗,𝑛 ≤ (𝑇𝑗,𝑛
s − 𝑇𝑗

0) ∙ 𝑃𝑈𝑗 j, n = 1 (26)

𝐸𝑆𝑗,𝑛 ≥ (𝑇𝑗,𝑛
s − 𝑇𝑗

0) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ 𝑃𝑈𝑗 ∙ (1 − 𝑥𝑗,𝑛) j, n = 1 (27)

Finally, the objective function is modified to consider the standby and switch off-on

energy consumption at the first event point.

𝑇𝐸𝐶 = ∑∑∑ ∑ (𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝛼𝑖,𝑗 ⋅ 𝑃𝐶𝑖,𝑗)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗𝑗

+ 𝛽 ⋅ 𝑀𝑆 +

+∑ ∑[𝐸𝑆𝑗,𝑛 + 𝐸𝑂𝑗 ⋅ (1 − 𝑥𝑗,𝑛)]

𝑛𝑗

 (24a)

Finally, if there is a changeover time from a task to another in a unit j, then it can be

ensured using the following constraints.

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f + 𝜏𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′′

𝑛+1≤𝑛′′≤𝑛+1+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛

𝑛−∆𝑛≤𝑛′′≤𝑛

)

 𝑗, 𝑖, 𝑖ʹ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖ʹ, n < N, 𝜏𝑗 > 0 (28a)

where a parameter 𝜏𝑗 denotes the sequence-independent changeover time, which only

depends on units.

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑖′,𝑖,𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) −

−𝐻 (1 − ∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′≤𝑛′′≤𝑛𝑖′′

)

 𝑗, 𝑖, 𝑖ʹ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖ʹ, 𝑛′ < 𝑛, 𝜏𝑖′,𝑖,𝑛 > 0 (28b)

where a parameter 𝜏𝑖′,𝑖,𝑗 denotes the sequence-dependent changeover time.

3.2. Local sequence-based formulation (M2a)

In this model, we use the local sequence-based modelling approach where the immediate

precedence of two operations processed on a unit is examined. Therefore, we do not use

271

any time interval, slot or event point to divide the scheduling horizon. To denote if an

operation 𝑙 belonging to a job 𝑘 is processed immediately before another operation 𝑙 in

a job 𝑘 on a unit 𝑗, we introduce a binary variable 𝑥𝑘,𝑙,𝑘,𝑙,𝑗 as follows,

, , , ,

if an operation in a jo

0

b immidiately precedes operation in

w

b1

other

 jo in a unit

i

se
k l k l jx

l k l k j

=

Note that one operation can have at most one immediate predecessor as we use the local

sequence-based modelling approach.

3.2.1. Allocation constraints

We define two 0-1 continuous variables 𝑤𝑘,𝑙,𝑗 and 𝑋𝐹𝑘,𝑙,𝑗 as follows,

, ,

if an operation that belongs to job is processed in a unit 1

0 otherwise
k l j

k j
w

=

, ,

if an operation in a job is the first operation that is processed in a unit1

0 otherwise
k l j

l k j
XF

=

If an operation 𝑙 is processed in a processing unit 𝑗, then it should be either be processed

first or be immediately preceded by another operation 𝑙.

∑ ∑ 𝑥𝑘′,𝑙′,𝑘,𝑙,𝑗

𝑙′∈𝐋𝐊𝐉𝑘′,𝑗

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

+ 𝑋𝐹𝑘,𝑙,𝑗 = 𝑤𝑘,𝑙,𝑗

 k, j, l LKJk,j (29)

where LKJk,j denotes the operations that a unit 𝑗 is able to process.

If an operation 𝑙 is not processed in a unit 𝑗, then it should not immediately precede any

other operation processed in this unit 𝑗.

∑ ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑙′∈𝑳𝑲𝑱𝑘′,𝑗

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

≤ 𝑤𝑘,𝑙,𝑗

 k, j, l LKJk,j (30)

At most one operation can be processed first in a unit j during the scheduling horizon.

∑ ∑ 𝑋𝐹𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘

≤ 1

 j (31)

Constraint (32) is introduced to ensure that all operations are processed exactly once in

the scheduling horizon.

272

∑ 𝑤𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

= 1

 k, l Lk (32)

 The number of operations that can be processed in a processing unit 𝑗 should be

within the minimum (𝑁𝑗
𝑚𝑖𝑛) and maximum (𝑁𝑗

𝑚𝑎𝑥) limits, which are similar to model

M1.

∑ ∑ 𝑤𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑙,𝑗𝑘

≥ 𝑁𝑗
min

 j (33)

∑ ∑ 𝑤𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑙,𝑗𝑘

≤ 𝑁𝑗
max

 j (34)

 To monitor standby and off-on mode of a processing unit during the periods that it

does not process any operation, we introduce a binary variable 𝑧𝑘,𝑙,𝑗 and a 0-1 continuous

variable 𝑦𝑘,𝑙,𝑗 defined below,

, ,

if a unit remains standby after it processes an operation that belongs to j1

0 ot

ob

herwise
k l jy

j l k
=

, ,

if a unit is switched off after it processes an operation that belongs to j1

0 ot

ob

herwise
k l jz

j l k
=

If a unit 𝑗 is idle, it can be switched off or remain standby only after it completes

processing an operation 𝑙 that belongs to a job 𝑘. Both 𝑦𝑘,𝑙,𝑗 and 𝑤𝑘,𝑙,𝑗 should be zero if

this unit 𝑗 does not process an operation 𝑙 of a job 𝑘. To ensure this, we impose the

following constraints.

𝑦𝑘,𝑙,𝑗 + 𝑧𝑘,𝑙,𝑗 = 𝑤𝑘,𝑙,𝑗 k, j, l LKJk,j (35)

3.2.2. Sequencing constraints

Operations in the same job

To model the timing of an operation that is processed in a unit, we define a positive

continuous variable 𝑇𝑘,𝑙, to denote the start time of an operation 𝑙 in a job 𝑘 that is

processed in a unit. Note that it is not necessary to define this timing variable based on a

specific unit 𝑗, as an operation 𝑙 that in a job 𝑘 can only be processed once during the

scheduling horizon. An operation 𝑙 that belongs to a job 𝑘 should start after the previous

operation 𝑙 (𝑙 = 𝑙 − 1) in the same job finishes.

273

𝑇𝑘,𝑙 ≥ 𝑇𝑘,𝑙′ + ∑ (𝛼𝑘,𝑙′,𝑗 ⋅ 𝑤𝑘,𝑙′,𝑗)

𝑗∈𝐉𝑘,𝑙′

 k, l Lk, l Lk, l = l -1 (36)

Operations in different jobs processed in the same unit

We define a continuous variable 𝑆𝑇𝑘,𝑙,𝑗 to denote the time of a unit 𝑗 on standby mode

after it completes processing an operation 𝑙 in a job 𝑘, respectively. An operation 𝑙 in a

job 𝑘 in a unit should start after its direct predecessor 𝑙 finishes plus the idle time, as

indicated in constraints (37)-(38). Note that if the unit 𝑗 is in switch off-on mode, then

constraint (38) should be relaxed due to a longer idle time required compared to that in

the standby mode.

𝑇𝑘′,𝑙′ ≥ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

− 𝐻 (1 − ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑗∈(𝐉𝑘,𝑙∩𝐉𝑘′,𝑙′)

)

 k, k, k k, l Lk, l Lk (37)

𝑇𝑘′,𝑙′ ≤ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

+ 𝐻 (1 − ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑗∈(𝐉𝑘,𝑙∩𝐉𝑘′,𝑙′)

) +

+𝐻 ⋅ ∑ 𝑧𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 k, k, k k, l Lk, l Lk (38)

3.2.3. Standby energy calculation

We define a continuous variable 𝐸𝑆𝑘,𝑙 to denote the standby energy consumption of a unit

after operation 𝑙 finishes being processed. It is equal to the time of this unit 𝑗 on standby

mode after it processes operation 𝑙 multiplies the unload power rate (𝑃𝑈𝑗).

𝐸𝑆𝑘,𝑙 = ∑ (𝑆𝑇𝑘,𝑙,𝑗 ⋅ 𝑃𝑈𝑗)

𝑗∈𝐉𝑘,𝑙

 k, l Lk (39)

In any case, the standby energy consumption should be less than the energy consumed by

a unit 𝑗 in the switch off-on mode (𝐸𝑂𝑗). Therefore, we set an upper limit for the time of

a unit on standby mode.

274

𝑆𝑇𝑘,𝑙,𝑗 ≤ 𝑚𝑖𝑛 (𝐻,
𝐸𝑂𝑗

𝑃𝑈𝑗
) ⋅ 𝑦𝑘,𝑙,𝑗

 k, j, l LKJk,j (40)

3.2.4. Makespan calculation

As already discussed, makespan is the earliest time that all tasks have been processed.

𝑇𝑘,𝑙 + ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

≤ 𝑀𝑆

 k, l Lk (41)

3.2.5. Tightening constraints

The processing time of all operations processed in a unit j plus the idle time should be

less than the makespan.

∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑙∈𝐊𝐋𝐉𝑘,𝑙,𝑗𝑘

≤ 𝑀𝑆

 j (42)

3.2.6 Additional constraints

Similar to model M1, the release time and the due dates of each job should be respected.

𝑇𝑘,𝑙 ≥ 𝑟𝑘 k, l (Lk∩ LRk) (43)

𝑇𝑘,𝑙 + ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

≤ 𝑑𝑘

 k, l (Lk∩ LDk) (44)

where LRk is the jobs with non-zero release time and LDk is the jobs that have a due date.

Additionally, constraints (43) and (44) are introduced to avoid violation of forbidden

sequencing paths and assignments.

𝑤𝑘,𝑙,𝑗 + 𝑤𝑘,𝑙′,𝑗′ ≤ 1 k, l, l Lk, (j, j) FP (45)

𝑤𝑘,𝑙,𝑗 = 0 k, l Lk, l JPk,j (46)

where FP is the set including the forbidden sequencing paths, JPk,j is the set including the

forbidden assignment.

3.2.7. Objective function

The objective is to minimize the total energy consumption, which is similar to model M1.

275

𝑧 = ∑∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 ⋅ 𝑃𝐶𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ 𝛽 ⋅ 𝑀𝑆 + ∑ ∑ 𝐸𝑆𝑘,𝑙

𝑙∈𝐋𝑘𝑘

+

+∑∑ ∑ (𝐸𝑂𝑗 ⋅ 𝑧𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

 (47)

Bounds on variables

The start time of an operation 𝑙 in a job 𝑘 should be always after the minimum time

required for all previous operations in the same job to be processed.

𝑇𝑘,𝑙 ≥ ∑ {min
𝑗

(𝛼𝑘,𝑙′,𝑗)}

𝑙′<𝑙
𝑙′∈𝐋𝑘

 k, l Lk (48)

Finally, (47) and (48) denote all the continuous and binary variables of the model

respectively.

𝐸𝑆𝑘,𝑙, 𝑆𝑇𝑘,𝑙,𝑗, 𝑇𝑘,𝑙 >= 0 (49)

0 =< 𝑤𝑘,𝑙,𝑗, 𝑋𝐹𝑘,𝑙,𝑗, 𝑦𝑘,𝑙,𝑗 <= 1 (50)

𝑧𝑘,𝑙,𝑗, 𝑥𝑘,𝑙,𝑘,𝑙,𝑗{0, 1}

We complete the local sequence-based formulation denoted as M2a, which comprises

constraints 29-46, 48-50 with the objective function in constraint 47.

3.2.8 Extension

Similar to model M1, model M2a can also be extended for the case with the varying

processing time. If the variable processing time is assumed to be linearly dependent on

the processing batch size (𝐵𝑘,𝑙,𝑗), which is denoted as 𝛼𝑘,𝑙,𝑗 + 𝛽𝑘,𝑙,𝑗 ∙ 𝐵𝑘,𝑙,𝑗, then

constraints 34-36, 42 and 46 can change by replacing the term 𝛼𝑘,𝑙,𝑗 ∙ 𝑤𝑘,𝑙,𝑗 with 𝛼𝑘,𝑙,𝑗 ∙

𝑤𝑘,𝑙,𝑗 + 𝛽𝑘,𝑙,𝑗 ∙ 𝐵𝑘,𝑙,𝑗. The following constraints can be added for the batch size.

𝑤𝑘,𝑙,𝑗 ⋅ 𝐵𝑘,𝑙,𝑗
min ≤ 𝐵𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗 ⋅ 𝐵𝑘,𝑙,𝑗

max k, j, l LKJk,j (51a,b)

Similar to model M1, we can omit assumptions e) and f) by introducing two additional

variables 𝑦𝑗
0 and 𝑧𝑗

0 to denote whether the unit is standby or switched off respectively at

the beginning of the scheduling horizon. If the unit is in standby mode at the beginning

of the scheduling horizon, then the initial standby energy consumption (𝐸𝑆𝑗
0) is

calculated as follows.

276

𝐸𝑆𝑗
0 ≤ (𝑇𝑘,𝑙 − 𝑇𝑗

f0) ∙ 𝑃𝑈𝑗 k, l Lk, j (52)

𝐸𝑆𝑗
0 ≥ (𝑇𝑘,𝑙 − 𝑇𝑗

f0) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ (2 − 𝑋𝐹𝑘,𝑙,𝑗 − 𝑦𝑗
0) k, l Lk, j (53)

Where 𝑇𝑗
𝑓0 the time that the last operation of unit j in scheduling horizon H finishes in

comparison to the next scheduling horizon starts |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡| and it is calculated as

follows.

𝑇𝑗
𝑓0 = 𝑇𝑘,𝑙 + 𝛼𝑘,𝑙,𝑗 − |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡|

 j, k, l Lk, , , , , , ,0 1
k

k l k l j k l j

k l

x w

= =
L

 (54)

In this case the objective function is modified as follows.

𝑧 = ∑∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 ⋅ 𝑃𝐶𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ 𝛽 ⋅ 𝑀𝑆 + ∑ ∑ 𝐸𝑆𝑘,𝑙

𝑙∈𝐋𝑘𝑘

+

+∑ ∑ ∑ (𝐸𝑂𝑗 ⋅ 𝑧𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ ∑(𝐸𝑆𝑗
0 + 𝐸𝑂𝑗 ⋅ 𝑧𝑗

0)

𝑗

 (55)

3.3 Local sequence-based formulation (M2b)

In model M2b we also examine the immediate precedence of two operations. The main

difference with model M2a is that M2b does not examine in which unit the two operations

are processed. Therefore, we introduce a binary variable 𝑥𝑘,𝑙,𝑘,𝑙to denote if an operation

𝑙 belonging to a job 𝑘 is processed immediately before another operation 𝑙 in a job 𝑘 as

follows,

, , ,

if an operation in

0

a job immidiately precedes operat

w

1

othe

r

ise

ion in job
k l k lx

l k l k

=

Since in this local sequence-based model the defined binary variable does not examine

the unit that the two operations are processed, constraints (56) and (57) are introduced to

ensure that if an operation l immediately precedes another operation 𝑙 then both

operations are processed in the same unit.

𝑤𝑘′,𝑙′,𝑗 ≥ 𝑤𝑘,𝑙,𝑗 + 𝑥𝑘′,𝑙′,𝑘,𝑙 + 𝑥𝑘,𝑙,𝑘′,𝑙′ − 1 k, k, j, l LKJk,j , l LKJk,j, l < l (56)

𝑤𝑘,𝑙,𝑗 ≥ 𝑤𝑘′,𝑙′,𝑗 + 𝑥𝑘′,𝑙′,𝑘,𝑙 + 𝑥𝑘,𝑙,𝑘′,𝑙′ − 1 k, k, j, l LKJk,j , l LKJk,j, l < l (57)

Similar to model M2a, if an operation 𝑙 is processed in a processing unit, then it should

be either be processed first or be immediately preceded by another operation 𝑙.

277

∑ ∑ 𝑥𝑘′,𝑙′,𝑘,𝑙

𝑙′∈𝐋𝑘′

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

+ ∑ 𝑋𝐹𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

= ∑ 𝑤𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 k, l Lk, (58)

Additionally, an operation l of job k can be processed first in unit j (𝑋𝐹𝑘,𝑙,𝑗 = 1) only if

the operation is processed in this unit (𝑤𝑘,𝑙,𝑗 = 1)

𝑋𝐹𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗

 k, j, l LKJk,j (59)

For different operations in different units, an operation 𝑙 belonging to a job 𝑘 should start

after its predecessor 𝑙 finishes plus the idle time.

𝑇𝑘′,𝑙′ ≥ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

− 𝐻(1 − 𝑥𝑘,𝑙,𝑘′,𝑙′)

 k, k, k k, l Lk, l Lk (60)

𝑇𝑘′,𝑙′ ≤ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

+ 𝐻(1 − 𝑥𝑘,𝑙,𝑘′,𝑙′) + 𝐻 ⋅ ∑ 𝑧𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 k, k, k k, l Lk, l Lk (61)

Mathematical model M2b consists of constraints 31-36, 39-46 and 55-61, with the 47 to

be the objective.

4. Enhanced Rolling horizon decomposition approach

The rolling horizon decomposition approach proposed by Lin et al. (2002); Janak et al.

(2004); Li et al. (2012) is often used to solve industrial-scale scheduling problems that

are difficult to solve directly using the mathematical programming models. The key idea

of the decomposition approach is to divide the entire scheduling problem into small-scale

subproblems based on job or order due dates. Each subproblem is then solved using the

mathematical programming model. However, it cannot directly solve this flexible job-

shop scheduling problem due to the same due dates of all jobs. In this work, we develop

a grouping strategy to enhance the rolling horizon decomposition algorithm (Lin et al.

2002; Janak et al. 2004; Li et al. 2012) using a mixed-integer linear programming model

below in which assigns operations/tasks to several groups.

4.1. Mathematical formulation for grouping

We introduce two binary variables 𝑌𝑔 which is equal to 1 if a group g is selected and 𝑌𝑖,𝑔

which is equal to 1 if a task 𝑖 is assigned to the group 𝑔 respectively. A task 𝑖 can be

278

included to a group 𝑔 only if the group 𝑔 is selected.

𝑌𝑖,𝑔 ≤ 𝑌𝑔 i, g (62)

A task should be assigned to exactly one group.

∑𝑌𝑖,𝑔

𝑔

= 1

 i (63)

Furthermore, a task 𝑖 belonging to a job 𝑘 can be included in a group 𝑔 only if the

preceding task is included in same group g or in a previous group g < g.

𝑌𝑖′,𝑔 ≤ 𝑌𝑖,𝑔 + ∑ 𝑌𝑖,𝑔′

𝑔′<𝑔

 i, i Ik, i = i + 1 (64)

If a group 𝑔 is selected, then it should contain at least one operation/task. Constraint (65)

is introduced to ensure such condition.

∑𝑌𝑖,𝑔

𝑖

≥ 𝑌𝑔

 g (65)

If a group 𝑔 is not selected, then the next group (𝑔 + 1) cannot be selected either.

𝑌𝑔+1 ≤ 𝑌𝑔 g < G (66)

We introduce a continuous variable 𝑇𝑁𝐼𝑘,𝑔 to denote the number of tasks in a job 𝑘 that

are included in a group 𝑔.

𝑇𝑁𝐼𝑘,𝑔 = ∑ 𝑌𝑖,𝑔

𝑖∈𝐈𝑘

 k, g (67)

The number of tasks from job k that are included in a group (𝑔 + 1) should be less than

the tasks from the same job included in the previous group 𝑔. In this case, we sequence

the number of tasks of each job included in each group in a decreasing order.

𝑇𝑁𝐼𝑘,𝑔+1 ≤ 𝑇𝑁𝐼𝑘,𝑔 k, g < G (68)

The total number of tasks included in a group g is monitored by using a continuous

variable TNLg.

𝑇𝑁𝐿𝑔 = ∑𝑌𝑖,𝑔

𝑖

 g (69)

In order to avoid subproblems with many tasks that require excessive computational time

279

to generate the optimum solution, we introduce a parameter 𝐿𝑚𝑎𝑥 to denote the maximum

number of tasks is allowed in a group 𝑔. The number of tasks included in each group must

not exceed 𝐿𝑚𝑎𝑥.

𝑇𝑁𝐿𝑔 ≤ 𝐿max g (70)

Alternatively, we can also limit the model complexity in each group 𝑔 through using the

constraints (72)-(73). In constraint (72), the number of binary variables can be calculated

if the number of tasks (|𝐈𝑔|) and units (|𝐉|) included in the subproblem as well as the

number of event points (𝐸𝑁𝑔) are known.

𝐵𝑔
v = (|𝐈𝑔| ∙ |𝐉| ∙ 𝐈𝑗 + |𝐉|) ∙ 𝐸𝑁𝑔 g (71)

A parameter 𝐵v,max is introduced to denote the maximum number of binary variables

allowed in each group.

𝐵𝑔
v ≤ 𝐵v,max g (72)

where 𝐵𝑔
v denotes total number of binary variables in each group.

Finally, we use two penalties 𝑃𝐸𝑁1 and 𝑃𝐸𝑁2 in order to minimize the difference in the

total number of tasks included in each group g. By introducing such penalties, all groups

are enforced to contain the same number of tasks of each job.

𝑃𝐸𝑁1 ≥ 𝑇𝑁𝐼𝑘,𝑔 k, g (73)

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝐼𝑘,𝑔 + |𝐺| ⋅ (1 − 𝑌𝑔) k, g (74)

The objective of this model is to minimize the number of groups selected. In this way, we

minimize the number of subproblems that the main problem is divided.

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2)

 (75)

where 𝑤1 and 𝑤2 are the two importance weight parameters.

For each subproblem, the number of event points required is equal to the maximum

number of tasks that a unit 𝑗 is able to process.

𝐸𝑁𝑔 = max
𝑗

(∑𝑌𝑖,𝑔

𝑖∈𝐈𝑗

)

 (76)

 Figure 4 illustrates the improved rolling-horizon decomposition algorithm. In the

beginning, the level-1 decomposition model from Lin et al. (2002), Janak et al. (2004)

280

and Li et al. (2012) determine the sub-horizons and tasks/operations in each sub-horizon

based on the due dates of orders. In the next step, the proposed model for grouping in this

work further decomposes the sub-horizon problem through the assignment of the

operations/tasks in the sub-horizon into multiple groups. Note that for sub-horizon

problems with small model complexity, the model for grouping includes all

tasks/operations into one group. Operations/tasks that belong to a group are scheduled in

the available processing units simultaneously using the short-term scheduling model.

After the generation of the optimal schedule for a given group, this schedule is fixed and

the time that the processing units are available to process new operations/tasks is

calculated for the operations/tasks in the next group. The procedure continues until the

approach assigns all operations/tasks in all groups to available processing units. Integer

cuts are also introduced to the level-1 model or the proposed grouping model to generate

a new combination of integer solutions if the current integration solution is not

satisfactory after solving a grouping problem or a sub-horizon problem. Note that the

energy consumption is calculated at the start time of the first event point in the current

group or subhorizon, which depends on the finish time of each processing unit in the

previous subproblems.

Figure 4 The enhanced rolling horizon decomposition algorithm

281

5. Hybrid algorithm

The GEP-based algorithm of Zhang et al. (2017) can generate several dispatching rules

that can efficiently develop good feasible solutions even for large-scale examples, as

demonstrated in Zhang et al. (2017). However, the solution obtained for this energy-

efficient scheduling of job-shop problems is often a bit far from the optimal solution. The

main reason may lay to the methodology of how the dispatching rules generate the

schedule. More specifically, a dispatching rule only decides which is the next

operation/task that will take place and in which processing unit is going to be processed

(sequencing and allocation). If the operation/task and the processing unit is chosen, then

the operation/task is assigned to start at the earliest time possible. Although such an

approach can lead to the smallest possible makespan, it often leads to schedules with high

standby energy consumption and switch off-on energy consumption. To further

demonstrate this issue, let consider an example with ten units and ten jobs , and generate

a schedule using the dispatching rule 8 from the GEP-based algorithm of Zhang et al.

(2017), as illustrated in Figure 5. From Figure 5, it seems that most processing units

remain idle for multiple times during the scheduling horizon. For instance, unit J10 does

not process any task in five periods (398 min – 420 min, 503 min – 517 min, 604 min –

781 min, 829 min – 952 min, and 974 min –1031 min). While the unit remains in the

standby mode in the first two periods, the unit switches off in the remaining periods. The

total standby and switch off-on energy consumption for unit J10 is 91.8 kW.

Figure 5 A schedule for the example with 10 units and 10 jobs using Rule 8 from Zhang

et al. (2017)

282

 To make the best trade-off between indirect energy consumption, standby energy

consumption, and switch off-on energy consumption, we develop a hybrid algorithm

through the combination of the eGEP and the mixed-integer linear programming

approach. We first use the eGEP algorithm to generate efficient dispatching rules. These

dispatching rules determine the allocation of operations/tasks and their sequence on a

unit. After this step, the proposed local sequence-based models (i.e., M2a) determine the

best operation/task timings and the best trade-off between indirect energy consumption

and switching off-on energy consumption. Figure 6 illustrates the hybrid algorithm.

Figure 6 The proposed hybrid algorithm

6. Computational studies

We solve 58 examples from Zhang et al. (2017) to illustrate the capability of the proposed

models M1, M2a and M2b. Examples 1-20 are small-size examples having from 2 to 3

jobs, and a total of 2 or 3 processing units. Each of those jobs includes from 2 to 3

operations. Examples 21-58 are large-size problems, where each job contains from 5 to

15 operations that can be processed on 5-15 processing units available. We also use the

model of Zhang et al. (2017) and the best model (i.e., model 2) from Meng et al. (2019)

to solve all examples for a fair comparison. We also solve the same examples by using

the rolling horizon decomposition approaches RH-M1 and RH-M2 and the hybrid

algorithm eGEP-M2. For the hybrid algorithm, we use the five most effective dispatching

rules from Zhang et al. (2017). Table 1 depicts those dispatching rules. All examples are

283

solved using CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ i5-

2500 3.3 GHz and 8 GB RAM running Windows 7. The maximum computational time is

set as one hour for all examples.

Table 1. Effective dispatching rules (Zhang et al. 2017)

ID Dispatching rule

1
𝑃𝐶 −

𝑁𝑅

𝐼𝑇 ∙ 𝛼

5 𝑃𝐶 + 𝐼𝑇 +
𝛼

𝑁𝑅

7 𝛼 + 𝐼𝑇 ∙ 𝛼

𝑁𝑅
+ 𝑃𝐶 + 𝛼

8 2𝑃𝑈 ∙ 𝐼𝑇 +
𝛼

√𝐼𝑇 + 𝑁𝑅
+ 𝑃𝐶

9 2√𝑁𝑅 + 𝑃𝐶 + 2𝑃𝑈

2𝑁𝑅 ∙ √𝑁𝑅
− 2𝑁𝑅 + 𝑃𝐶

PC: cutting power. PU: unloaded power. 𝛼: processing time. IT: idle time.

6.1. Small-size problems: Examples 1-20

Tables 2-3 present the computational results for Examples 1-20. From Tables 2-3, it

seems that the model of Zhang et al. (2017) leads to significantly larger model sizes than

the proposed models M1, M2a and M2b as well as the model of Meng et al. (2019). For

instance, the model of Zhang et al. (2017) has 218 constraints for Example 1, which is

69% more than the model of Meng et al. (2019) and models M1 and M2b (218 vs 68)

and 74% more than model M2a (218 vs 57). It also requires 30 binary variables, which

is 30% (30 vs 21), 37% (30 vs 19), 56.7% (30 vs 13) and 56.7% (30 vs 13) more than the

number of binary variables from the models of Meng et al. (2019), M1, M2a and M2b,

respectively. Furthermore, the model of Zhang et al. (2017) leads to much worse MILP

relaxation than the other models for all examples. As a result, this model requires at least

one order of magnitude more computational time, even for examples with three jobs, three

operations and three processing units (Examples 16-20). For instance, the model of Zhang

et al. (2017) requires 2.8 s to generate the optimum solution for Example 20, while the

model of Meng et al. (2019) and models M1, M2a and M2b require 0.3 s, 0.05 s, 0.02 s,

0.05 s, respectively. In brief, the model of Zhang et al. (2017) is the least efficient among

all the models.

284

Table 2. Computational results for Examples 1-10 from different models

Example Model
Event

points

CPU

time

(s)

RMILP

(kW)

TEC

 (kW)

Bin.

Var.

Cont.

Var.
Constr.

Ex1 ZTWW 3 0.19 7.33 63.03 30 45 218

 MZSR 3a 0.06 63.03 63.03 21 23 68

 M1 3 0.02 63.03 63.03 19 28 68

 M2a - 0.02 63.03 63.03 13 30 57

 M2b - 0.02 63.03 63.03 13 30 68

Ex2 ZTWW 2 0.09 13.98 122.44 20 31 128

 MZSR 3a 0.06 122.44 122.44 28 26 85

 M1 2 0.03 120.44 122.44 14 20 51

 M2a - 0.02 122.44 122.44 18 34 65

 M2b - 0.02 122.44 122.44 16 34 79

Ex3 ZTWW 4 0.44 7.71 75.74 40 59 324

 MZSR 4a 0.08 72.74 75.74 37 29 106

 M1 4 0.02 75.74 75.74 34 28 52

 M2a - 0.02 75.74 75.74 25 38 72

 M2b - 0.02 75.74 75.74 19 38 91

Ex4 ZTWW 2 0.05 13.22 146.63 20 31 128

 MZSR 3a 0.05 143.63 146.63 28 26 85

 M1 2 0.11 142.63 146.63 14 20 51

 M2a - 0.02 143.63 146.63 18 34 65

 M2b - 0.03 143.63 146.63 16 34 79

Ex5 ZTWW 3 0.20 7.90 78.40 30 45 218

 MZSR 4a 0.03 75.40 78.40 37 29 106

 M1 3 0.02 78.40 78.40 25 28 79

 M2a - 0.02 78.40 78.40 25 36 72

 M2b - 0.02 78.40 78.40 19 36 91

Ex6 ZTWW 3 0.19 24.58 220.74 63 84 596

 MZSR 4a 0.05 214.74 220.74 37 35 114

 M1 3 0.02 220.74 220.74 30 44 123

 M2a - 0.03 220.74 220.74 24 46 94

 M2b - 0.03 220.74 220.74 24 46 114

Ex7 ZTWW 3 0.20 10.95 97.54 63 84 596

 MZSR 4a 0.14 95.51 97.54 37 35 114

 M1 3 0.03 96.51 97.54 30 44 124

 M2a - 0.02 96.51 97.54 24 46 95

 M2b - 0.02 96.51 97.54 24 46 115

Ex8 ZTWW 2 0.08 9.99 146.81 42 57 323

 MZSR 5a 0.14 145.81 146.81 62 44 173

 M1 2 0.02 137.81 146.81 25 31 91

 M2a - 0.03 145.81 146.81 43 58 129

 M2b - 0.03 145.81 146.81 39 58 162

Ex9 ZTWW 3 0.22 16.86 230.66 63 84 596

 MZSR 3a 0.03 222.06 230.66 28 32 93

 M1 3 0.03 219.06 230.66 27 44 118

 M2a - 0.03 222.06 230.66 17 42 79

 M2b - 0.02 222.06 230.66 17 42 94

285

Ex10 ZTWW 3 0.19 11.20 161.06 63 84 596

 MZSR 4a 0.14 159.23 161.06 44 38 131

 M1 3 0.03 158.06 161.06 30 44 121

 M2a - 0.03 159.06 161.06 24 46 95

 M2b - 0.03 159.06 161.06 24 46 115

ZTWW is the model of Zhang et al. (2017 model), MZSR is the model of Meng et al.

(2019) model. aMaximum number of positions of all units.

Table 3. Computational results for Examples 11-20 from different models

Example Model
Event

points

CPU

time

(s)

RMILP

(kW)

TEC

(kW)

Bin.

Var.

Cont.

Var.
Constr.

Ex11 ZTWW 3 0.20 20.00 166.23 42 57 292

 MZSR 4a 0.05 159.23 166.23 46 36 133

 M1 3 0.02 166.23 166.23 28 31 76

 M2a - 0.03 166.23 166.23 32 46 103

 M2b - 0.02 166.23 166.23 30 46 131

Ex12 ZTWW 3 0.27 17.00 176.75 42 57 292

 MZSR 6a 0.06 174.75 176.75 70 42 187

 M1 3 0.02 176.75 176.75 34 31 84

 M2a - 0.03 176.75 176.75 52 54 126

 M2b - 0.03 176.75 176.75 40 54 170

Ex13 ZTWW 5 1.03 13.44 121.30 70 93 608

 MZSR 5a 0.06 115.30 121.30 48 36 137

 M1 5 0.02 121.30 121.30 48 49 132

 M2a - 0.02 121.30 121.30 34 46 107

 M2b - 0.02 121.30 121.30 32 46 137

Ex14 ZTWW 4 0.15 16.97 156.86 56 75 438

 MZSR 4a 0.08 154.86 156.86 30 30 95

 M1 4 0.02 156.86 156.86 30 40 91

 M2a - 0.03 156.86 156.86 20 38 79

 M2b - 0.03 156.86 156.86 20 38 99

Ex15 ZTWW 3 0.20 18.00 163.20 42 57 292

 MZSR 4a 0.09 160.20 163.20 46 36 133

 M1 3 0.03 163.20 163.20 28 31 70

 M2a - 0.03 163.20 163.20 32 46 103

 M2b - 0.02 163.20 163.20 30 46 131

Ex16 ZTWW 5 2.9 19.79 219.46 150 183 1946

 MZSR 7a 0.19 212.97 219.46 90 56 244

 M1 5 0.11 218.97 219.46 77 80 274

 M2a - 0.09 218.97 219.46 67 72 195

 M2b - 0.03 218.97 219.46 65 72 254

Ex17 ZTWW 4 1.5 26.72 306.68 120 147 1340

 MZSR 4a 0.06 294.68 306.68 51 47 157

 M1 4 0.05 302.68 306.68 49 65 186

 M2a - 0.03 302.68 306.68 34 60 128

 M2b - 0.03 302.68 306.68 34 60 160

286

Ex18 ZTWW 4 1.5 14.74 210.60 120 147 1340

 MZSR 6a 0.17 207.60 210.60 84 66 232

 M1 4 0.05 203.60 210.60 61 65 206

 M2a - 0.05 207.60 210.60 61 72 184

 M2b - 0.05 207.60 210.60 59 72 237

Ex19 ZTWW 4 2.5 17.58 269.52 120 147 1340

 MZSR 6a 0.14 264.52 269.52 104 62 278

 M1 4 0.02 269.52 269.52 69 65 217

 M2a - 0.06 269.52 269.52 77 80 199

 M2b - 0.03 269.52 269.52 65 80 264

Ex20 ZTWW 6 2.8 25.70 274.94 180 219 2660

 MZSR 6a 0.30 260.94 274.94 84 56 232

 M1 6 0.05 274.94 274.94 93 95 315

 M2a - 0.02 274.94 274.94 61 72 183

 M2b - 0.05 274.94 274.94 59 72 236

ZTWW is the model of Zhang et al. (2017 model), MZSR is the model of Meng et

al. (2019) model. a Maximum number of positions of all units.

We also compare the performance of the models M1, M2a and M2b with the model of

Meng et al. (2019). From Tables 2-3, all these models can efficiently solve all small

examples in less than one second. Model M1 requires a smaller number of binary

variables than the model of Meng et al. (2019) for Examples 1-20. For instance, the model

of Meng et al. (2019) requires 90 binary variables to generate the optimal solution for

Example 16, while model M1 requires 77 only. Only for Example 20, the model M1

requires more number of binary variables than the model of Meng et al. (2019) (93 vs

84). Models M2a and M2b lead to fewer binary variables than the model of Meng et al.

(2019). Between M1 and models M2a and M2b there is not a clear trend on which model

requires fewer binary variables to generate the optimal solution. For instance, in Example

15 model M1 requires fewer binary variables than M2a (28 vs 40) and M2b (28 vs 30),

whilst in Example 17 it requires more binary variables than M2a and M2b (49 vs 34).

For continuous variables and constraints, there is not a clear trend on which model

requires the least either. As a result, it is not clear which of these three models is the most

efficient by solving such small-scale examples. Despite that, all proposed models lead to

slightly smaller model sizes for most cases, which can make them potentially more

efficient than the model of Meng et al. (2019). The optimal schedule for Example 1

generated by model M1 is depicted in Figure 7. From this schedule, we can observe that

unit J1 switches off after task I1 finishes (4 h) and switched, on right before the time that

task I3 starts (12 h). The switch off-on energy consumption, in this case, is 3.6 kW. If the

unit J1 remains standby from 4 h to 12 h, then the standby energy consumption would be

287

11.1 kW. Therefore, considering switching off and on unit J1 during the period that it

does not process any tasks, it leads to 68% energy savings. This example illustrates the

benefit of switching off-on units that does not process any operation/task for long periods.

Figure 7 Optimal schedule for Example 1 from the model M1

6.2. Large-size problems: Examples 21-51

The computational results for Examples 21-51 are presented in Tables 4-5. From Tables

4-5, it is clear that the model of Zhang et al. (2017) is the least efficient as it can only

generate a feasible solution for Example 21 after one hour. The main reason is that this

model both leads to significantly larger model sizes and worse MILP relaxation compared

to the other models. Similarly, the model of Meng et al. (2019) can only generate a

feasible solution for Examples 21 and 24-28 after one hour. On the other hand, the

proposed model M1 and M2a and M2b can provide solutions for significantly more

examples. More specifically, model M2a can generate a feasible solution in 19 out of the

38 examined examples (i.e., Examples 21-28, 30-34, 36, 38-43), while model M2b

generates a solution for 16 out of 38 examined examples (i.e., Examples 21, 22, 24-

33,39,41-43). Model M1 can successfully solve 31 out of 38 tested examples (Examples

21-51). Therefore, the proposed model M1 is the most general and efficient model among

all examined models.

By comparing the performance of models M1 and the models M2a and M2b, it still seems

that it is not clear which of the proposed models requires the least number of binary

variables. For instance, model M1 requires more binary variables than M2a and M2b for

Example 21 (426 vs 298 and 426 vs 296 respectively), but less binary variables for

Example 25 (645 vs 734 and 645 vs 724 respectively). On the other hand, models M2a

require a significantly smaller number of continuous variables and constraints. For

288

instance, model M2a requires 59% and 30% less continuous variables and constraints for

the same example than model M1 (496 vs 1207 continuous variables and 3374 vs 4796

constraints) for Example 31. Model M2b requires the same number of variables than M2a

but a significantly larger number of constraints, and as a result, is less robust. Among the

three models, M1 can solve more examples than model M2. For instance, model M1 can

generate schedules for Examples 35, 37 and 44-51, while models M2a and M2b fail to

provide a feasible solution. Therefore, it is concluded that M1 is more robust than models

M2a and M2b. It should be noted, though, that models M2a and M2b can generate better

solutions than model M1 in some cases. For instance, model M2a can provide the

significantly better solution of 3409.61 kW for Example 22 in comparison to the result of

3674.04 kW generated from model M1. Even though the proposed models M1, M2a and

M2b are more efficient than the existing models, it seems that they still fail to generate

the optimal solution within one hour for all examples. Additionally, for some cases, where

more than ten jobs and fifteen operations have to be processed (Examples 52-58), none

of the proposed models can generate a feasible solution after one hour. For other examples

(Examples 44-51) the result from model M1 seems to be far from the optimum, since the

relative gap after one hour is up to 40 % as depicted in Table 5.

Table 4. Computational results for Examples 21-30 from different models

Ex Model
Event

points

CPU

time (s)

RMILP

(kW)

TEC

(kW)

Bin.

Var.

Cont.

Var.
Constr.

Gap

(%)

Ex21 ZTWW 6 3600 40.00 252.93 1332 1407 43244 84.2

 7 3600 39.76 189.90 1554 1641 58010 78.9

 MZSR 8a 3600 129.50 210.96 376 194 981 36.4

 M1 9 3600 123.65 182.49 426 440 1567 32.1

 M2a - 3600 129.50 182.49 298 242 809 27.5

 M2b - 3600 129.50 191.81 296 242 1095 28.2

Ex22 M1 14 3600 2729.60 3674.04 1712 1692 6499 25.6

 M2a - 3600 2775.24 3409.61 1287 654 3137 18.6

 M2b - 3600 2775.24 3743.42 1285 654 4398 25.9

Ex23 M1 23 3600 3115.90 3497.00 2709 2192 8841 10.6

 M2a - 3600 3115.90 3719.05 2573 654 5649 16.9

Ex24 M1 11 1526 1776.14 1776.14 710 612 2405 0.0

 M2a - 3600 1776.14 1792.95 937 342 1731 0.9

 M2b - 3600 1776.14 1897.10 720 342 2433 6.4

Ex25 MZSR 15a 3600 1455.95 1715.22 853 277 2032 22.6

 M1 10 3600 1558.32 1789.95 645 557 2191 5.1

 M2a - 3600 1710.62 1840.23 734 342 1739 7.0

 M2b - 3600 1710.62 1846.45 724 342 2453 7.4

Ex26 MZSR 14a 3600 1304.53 1876.93 849 277 2024 22.4

289

 M1 11 3600 1710.62 1783.95 710 612 2405 3.0

 M2a - 3600 1470.48 1624.92 699 338 1675 9.5

 M2b - 3600 1470.48 1671.46 693 338 2356 12.0

Ex27 MZSR 13a 3600 1423.21 1789.42 814 274 1951 20.5

 M1 10 3600 1579.21 1684.29 635 557 2201 5.6

 M2a - 3600 1579.21 1719.91 701 338 1671 8.2

 M2b - 3600 1579.21 1687.79 691 338 2354 6.4

Ex28 MZSR 14a 3600 1336.72 1595.13 845 277 2016 16.2

 M1 11 3600 1460.73 1465.37 710 612 2427 0.2

 M2a - 3600 1460.13 1528.72 730 342 1739 4.4

 M2b - 3600 1460.13 1493.72 724 342 2449 2.2

Ex29 M1 17 336.1 2582.66 2583.71 1542 1282 5125 0.0

 M2b - 3600 2582.66 2748.69 1476 496 4834 6.0

Ex30 M1 18 3600 2350.70 2388.63 1633 1357 5350 1.3

 M2a - 3600 2350.70 2576.18 1492 496 3378 8.7

 M2b - 3600 2350.70 2548.29 1480 496 4848 7.8
a Maximum number of positions of all units.

Table 5. Computational results for Examples 31-58 from different models

Example Model
Event

points

CPU

time

(s)

RMILP

(kW)

TEC

 (kW)

Bin.

Var.

Cont.

Var.
Constr.

GAP

(%)

Ex31 M1 16 3322 2456.82 2486.18 1451 1207 4796 0.0

 M2a - 3600 2456.82 2814.41 1494 496 3374 12.7

 M2b - 3600 2456.82 2826.72 1478 496 4846 13.1

Ex32 M1 20 3600 2606.72 2637.50 1815 1507 6016 0.3

 M2a - 3600 2606.72 2807.47 1490 496 3366 7.1

 M2b - 3600 2606.72 2893.30 1474 496 4834 9.9

Ex33 M1 18 3600 2518.27 2523.77 1651 1357 5476 <0.1

 M2a - 3600 2518.12 2707.47 1537 500 3470 7.0

 M2b - 3600 2518.12 3026.89 1525 500 4983 16.8

Ex34 M1 21 3600 3297.15 3420.67 2473 2002 8144 3.2

 M2a - 3600 3297.15 4078.88 2567 654 5653 19.1

Ex35 M1 21 3600 3002.11 3035.98 2494 2002 8207 0.4

Ex36 M1 21 3600 3178.89 3196.92 2494 2002 8081 < 0.1

 M2a - 3600 3610.51 3674.82 2624 658 5749 14.0

Ex37 M1 21 3600 3393.39 3477.73 2473 2002 8060 2.2

Ex38 M1 23 3600 3378.11 3459.03 2709 2192 8910 2.3

 M2a - 3600 3378.11 3842.27 2567 654 5637 12.1

Ex39 M1 13 3600 2784.29 4041.88 1589 1572 5951 31.0

 M2a - 3600 2880.97 3833.61 1266 654 3133 24.8

 M2b - 3600 2880.97 3727.81 1260 650 4327 22.7

Ex40 M1 12 3600 2512.49 3648.90 1466 1452 5585 31.1

 M2a - 3600 2590.43 3603.47 1285 654 3129 24.0

Ex41 M1 12 3600 2717.94 3589.61 1466 1452 5525 24.3

 M2a - 3600 2757.94 3574.34 1289 654 3145 22.9

 M2b - 3600 2757.94 3630.29 1289 654 4408 24.0

290

Ex42 M1 11 3600 2857.78 3703.47 1343 1332 5084 22.8

 M2a - 3600 2857.78 3668.62 1285 654 3137 22.1

 M2b - 3600 2857.78 3698.93 1285 654 4396 22.7

Ex43 M1 14 3600 2914.72 3782.58 1712 1692 6499 22.9

 M2a - 3600 3004.51 3881.38 1285 654 3125 22.6

 M2b - 3600 3004.51 3720.48 1279 654 4384 19.2

Ex44 M1 18 3600 4251.69 5374.11 3284 2982 12067 20.8

Ex45 M1 18 3600 3831.82 5195.68 3284 2982 12013 26.1

Ex46 M1 17 3600 4246.91 5501.46 3067 2817 11354 22.8

Ex47 M1 15 3600 4078.29 5916.36 2750 2487 10021 31.0

Ex48 M1 17 3600 3885.07 6704.23 2934 2652 11439 42.1

Ex49 M1 21 3600 5459.23 9654.12 4967 4422 17872 43.3

Ex50 M1 20 3600 5719.35 9953.75 4730 4212 17041 42.4

Ex51 M1 21 3600 5598.36 9603.38 4946 4422 17809 41.5

 Figure 8 depicts the best schedule for Example 24 from model M1. From this

schedule, no unit that remains idle during the scheduling horizon. Therefore, there is no

standby energy or switch off-on energy consumed.

Figure 8 Best schedule obtained for Example 24 using model M1

 We also compare the results for Examples 21-58 from model M1 and the eGEP

algorithm of Zhang et al. (2017). These comparative results are provided in Table 6. From

Table 6, it seems that model M1 can generate better solutions for examples with up to ten

jobs and fifteen operations (Examples 21-46) than the eGEP algorithm by up to 26.9%.

For instance, model M1 can generate a schedule with TEC of 2523.77 kW for Example

33, which is approximately 20% less than the TEC of the solution provided using the

eGEP algorithm (3036.47 kW). However, the eGEP algorithm can generate a better

291

solution for examples with more than ten operations and ten jobs (Examples 47-58). For

instance, the eGEP can generate a schedule with TEC of 7351.24 kW for Example 49,

which contains ten jobs and twenty operations, while model M1 provides a solution with

23.9 % more TEC (9654.12 kW). More interestingly, those dispatching rules, created

using eGEP are even able to generate solutions for Examples 52-58, in contrast to model

M1 where it fails to develop a feasible solution for those examples within one hour.

 Table 6 Comparative results for Examples 21-58 from model M1 and eGEP

eGEP M1 Diff eGEP M1 Diff

Ex. TEC (kW) TEC (kW) (%) Ex. TEC (kW) TEC (kW) (%)

Ex21 296.71 182.49 -38.5 Ex40 4082.95 3648.90 -10.6

Ex22 4047.03 3674.04 -9.2 Ex41 4059.53 3589.61 -11.6

Ex23 3924.75 3497.00 -10.9 Ex42 3937.63 3703.47 -5.9

Ex24 1914.55 1776.14 -7.2 Ex43 4311.92 3782.58 -12.3

Ex25 1975.75 1789.95 -9.4 Ex44 5708.72 5374.11 -5.9

Ex26 1964.55 1783.95 -9.2 Ex45 5756.06 5195.68 -9.7

Ex27 1939.76 1684.29 -13.2 Ex46 5987.00 5501.46 -8.1

Ex28 1859.41 1465.37 -21.2 Ex47 5763.51 5916.36 2.7

Ex29 2891.37 2583.71 -10.6 Ex48 6640.15 6704.23 1.0

Ex30 2761.52 2388.63 -13.5 Ex49 7351.24 9654.12 31.3

Ex31 2765.72 2486.18 -10.1 Ex50 7859.20 9953.75 26.7

Ex32 3046.21 2637.50 -13.4 Ex51 7173.32 9603.38 33.9

Ex33 3036.47 2523.77 -16.9 Ex52 7285.72 - -

Ex34 3947.29 3365.35 -14.7 Ex53 7284.41 - -

Ex35 3700.86 3035.98 -18.0 Ex54 10036.36 - -

Ex36 3682.76 3196.92 -13.2 Ex55 10667.02 - -

Ex37 3796.85 3477.73 -8.4 Ex56 10183.47 - -

Ex38 3740.39 3459.03 -7.5 Ex57 9865.68 - -

Ex39 4480.15 4041.88 -9.8 Ex58 10751.25 - -

6.3. Computational results from the enhanced rolling horizon decomposition

algorithm

We use the enhanced rolling horizon decomposition algorithm to solve all Examples 1-

58. The important weight parameters are set to w1 = 0.8 and w2 = 0.2. The maximum

number of tasks, allowed to be included for each group is ten for Examples 1-20 and thirty

for Examples 21-58. The computational limit for solving each group subproblem is 100

s in the rolling-horizon decomposition algorithms RH-M1, RH-M2. Tables 8-10 presents

the computational results from the enhanced rolling horizon decomposition algorithms

RH-M1 and RH-M2 for Examples 1-58.

 The comparative results of model M1, Μ2, RH-M1, RH-M2 and eGEP

dispatching rule 1 are also presented in Tables 7-8. From Table 7, it seems that both RH-

292

M1 and RH-M2 generates the same optimal solutions as models M1 and M2 for

Examples 1-20 due to only one group required in the improved rolling horizon

decomposition, which is equivalent to directly solving models M1 and M2. From Table

8, it is observed that RH-M1 and RH-M2 obtain worse solutions for most examples in

Examples 21-44 compared to model M1 within 1 h. These worse solutions is mainly due

to no or very less units remaining idle during the scheduling horizon in the best schedule

from model M1 compared to that from RH-M1, as depicted in Figures 8 and 9. However,

the computational time from RH-M1 and RH-M2 is significantly reduced by 88.5%-

99.9%. More importantly, both rolling horizon decomposition algorithms generate better

solutions for Examples 45-51 by up to 31.1% in less computational time compared to

model M1. Additionally, both decompositions approaches provide good feasible

solutions for Examples 52-58, whilst model M1 fails to solve them.

 Table 7. Computational results for Examples 1-20 from model M1, M2a, RH-M1

and eGEP dispatching rule 1

 eGEP M1/M2a RH-M1 RH-M2 Diff (%)

 Ex

TEC

(kW)

 TEC

 (kW)

 TEC

(kW)

Time

(s)

 TEC

(kw)

Time

(s)

 RH-M1

vs. M1

RH-M1

vs eGEP

RH-M2

vs. M1

RH-M2

vs. eGEP

Ex1 63.03 63.03 63.03 0.03 63.03 0.11 0.0 0.0 0.0 0.0

Ex2 138.16 122.44 122.44 0.03 122.44 0.14 0.0 -11.4 0.0 -11.4

Ex3 120.76 75.74 75.74 0.03 75.74 0.09 0.0 -37.3 0.0 -37.3

Ex4 161.73 146.63 146.63 0.03 146.63 0.20 0.0 -9.3 0.0 -9.3

Ex5 101.01 78.40 78.40 0.03 78.40 0.20 0.0 -22.4 0.0 -22.4

Ex6 279.84 220.74 220.74 0.02 220.74 0.17 0.0 -21.1 0.0 -21.1

Ex7 107.69 97.54 97.54 0.05 97.54 0.20 0.0 -9.4 0.0 -9.4

Ex8 205.32 146.81 146.81 0.08 146.81 0.14 0.0 -28.5 0.0 -28.5

Ex9 233.66 230.66 230.66 0.03 230.66 0.09 0.0 -1.3 0.0 -1.3

Ex10 191.68 161.06 161.06 0.05 161.06 0.13 0.0 -16.0 0.0 -16.0

Ex11 166.23 166.23 166.23 0.03 166.23 0.20 0.0 0.0 0.0 0.0

Ex12 176.75 176.75 176.75 0.03 176.75 0.19 0.0 0.0 0.0 0.0

Ex13 121.3 121.30 121.30 0.02 121.30 0.20 0.0 0.0 0.0 0.0

Ex14 156.86 156.86 156.86 0.03 156.86 0.11 0.0 0.0 0.0 0.0

Ex15 191.83 163.20 163.20 0.02 163.20 0.14 0.0 -14.9 0.0 -14.9

Ex16 297.59 219.46 219.46 2.30 219.46 0.16 0.0 -26.3 0.0 -26.3

Ex17 329.48 306.68 306.68 0.06 306.68 0.27 0.0 -6.9 0.0 -6.9

Ex18 284.72 210.60 210.60 0.30 210.60 0.22 0.0 -26.0 0.0 -26.0

Ex19 283.83 269.52 269.52 0.03 269.52 0.17 0.0 -5.0 0.0 -5.0

Ex20 335.58 274.94 274.94 0.05 274.94 0.23 0.0 -18.1 0.0 -18.1

 We set the maximum computational time of 5 and 10 minutes for solving Examples

21-40 and 41-58 using model M1 respectively, which are similar to that required by RH-

293

M1, the best solutions obtained from model M1 are reported in the column denoted as

M1* in Table 8. Decomposition algorithms can generate better solutions than model M1*

for most examples in Examples 21-58. The energy consumption is reduced by up to

41.4%.

 From Table 7, it seems that RH-M1 and RH-M2 cam generate the same or better

solutions than eGEP for Examples 1-20. The reduction in energy consumption can reach

up to 37.3%. Furthermore, both RH-M1 and RH-M2 can generate better solutions than

eGEP for most Examples 21-58 (36 out of 38 examples for RH-M1, and 37 out of 38

examples for RH-M2). The improvement can be up to 35.3%. The comparative results

of RH-M1, RH-M2 and other eGEP dispatching rules are presented in Tables S1-S8 in

Supplementary material. RH-M1 and RH-M2 can generate the same or better solutions

for Examples 1-20 than eGEP dispatching rules 5, 7, 8 and by up to 21.1%, 21.3%, 31.6%

and 37.0%, respectively. Furthermore, RH-M1 and RH-M2 can generate better solutions

than eGEP dispatching rule 5 by up to 27.9% and 27.6% for Examples 21-22 and 24-58,

dispatching rule 7 by up to 43.1% and 42.9% for Examples 21-37 and 39-58, dispatching

rule 8 by up to 28.2% and 27.2% for Examples 21-22, 24-37 and 39-58, and dispatching

rule 9 by up to 32.9% and 32.6% for Examples 21-37 and 39-58.

Figure 9 Best schedule for Example 24 using RH-M1

 The schedule for Example 24 from RH-M1 is depicted in Figure 9. From Figure 9,

it seems that all operations are assigned to three small groups, as provided in Table 10.

Comparing the schedule generated by RH-M1 with those by M1 (see Figure 8), we notice

that the proposed methodology units J1, J3 and J4 remain idle once during the scheduling

294

horizon. On the contrary, no unit remains idle during the scheduling horizon in Figure 8.

As a result, a slightly worse solution is generated from RH-M1 (1847.84 kW vs. 1776.14

kW).

Table 8. Computational results for Examples 21-58 from model M1, M1*, RH-M1and

eGEP dispatching rule 1

 eGEP M1 M1* RH-M1 Diff (%)

Ex
TEC

(kW)

TEC

(kW)

TEC

(kW)

TEC

(kW)

Time

(s)

RH-M1

vs.

M1

RH-M1

vs.

eGEP

RH-M1

vs.

M1*

Ex21 296.71 182.49 191.81 214.78 44.2 17.7 -35.3 12.0

Ex22 4047.03 3674.04 4563.69 4091.73 157.9 11.4 -13.3 -16.5

Ex23 3924.75 3497.00 4317.50 4192.16 1.0 19.9 6.8 -2.9

Ex24 1914.55 1776.14 1877.71 1847.84 100.1 4.0 -17.7 -1.3

Ex25 1975.75 1789.95 1953.76 1928.84 100.1 7.8 -17.2 -2.5

Ex26 1964.55 1783.95 1900.86 1712.62 101.2 -4.0 -22.5 -15.7

Ex27 1939.76 1684.29 1696.54 1914.79 16.7 13.7 -13.5 3.2

Ex28 1859.41 1465.37 1473.37 1644.57 1.4 12.2 -16.2 5.7

Ex29 2891.37 2583.71 2680.31 2851.87 0.1 10.4 -6.5 0.8

Ex30 2761.52 2388.63 2607.22 2820.98 0.2 18.1 -12.1 -0.6

Ex31 2765.72 2486.18 2544.93 2830.43 0.3 13.8 -14.9 7.4

Ex32 3046.21 2637.50 2684.47 2821.51 0.2 7.0 -9.2 4.9

Ex33 3036.47 2523.77 2974.33 2910.03 0.4 15.3 -17.8 -7.7

Ex34 3947.29 3365.35 4451.29 3632.30 0.6 7.9 -19.1 -18.4

Ex35 3700.86 3035.98 3414.20 3406.47 1.3 12.2 -13.8 -0.2

Ex36 3682.76 3196.92 3837.11 3272.25 0.2 2.4 -16.7 -14.7

Ex37 3796.85 3477.73 4295.25 3636.68 0.8 4.6 -12.8 -15.3

Ex38 3740.39 3459.03 3845.46 3987.97 0.9 15.3 3.5 3.7

Ex39 4480.15 4041.88 4928.97 4278.56 217.4 5.9 -18.8 -20.3

Ex40 4082.95 3648.90 4591.14 3608.97 129.8 -1.1 -26.4 -23.4

Ex41 4059.53 3589.61 3670.20 4023.78 202.2 12.1 -16.3 2.7

Ex42 3937.63 3703.47 4096.44 4039.19 330.4 9.1 -12.2 -7.0

Ex43 4311.92 3782.58 4257.14 4339.28 302.3 14.7 -19.6 -8.8

Ex44 5708.72 5374.11 9223.46 5984.42 0.8 11.4 -5.3 -41.4

Ex45 5756.06 5195.68 6311.21 5466.79 1.5 5.2 -15.0 -22.5

Ex46 5987.00 5501.46 - 5858.67 1.7 6.5 -13.3 -

Ex47 5763.51 5916.36 - 5578.43 0.6 -5.7 -12.8 -

Ex48 6640.15 6704.23 7404.23 6178.14 1.0 -7.8 -23.1 -31.0

Ex49 7351.24 9654.12 - 6946.16 1.6 -28.0 -5.5 12.0

Ex50 7859.20 9953.75 - 7434.35 1.3 -25.3 -5.4 -16.5

Ex51 7173.32 9603.38 - 6866.13 1.2 -28.5 -4.3 -2.9

Ex52 7285.72 - - 7257.84 1.0 - -0.4 -

Ex53 7284.41 - - 7200.05 1.1 - -1.2 -

Ex54 10036.36 - - 8698.35 3.5 - -13.3 -

Ex55 10667.02 - - 9580.33 4.9 - -10.2 -

Ex56 10183.47 - - 8834.19 3.2 - -13.2 -

Ex57 9865.68 - - 8958.33 4.5 - -9.2 -

Ex58 10751.25 - - 9775.46 4.8 - -9.1 -

295

Table 9. Computational results for Examples 21-58 from model M1, M1*, RH-M2 and

eGEP dispatching rule 1

 eGEP M1 M1* RH-M2 Diff (%)

Ex
TEC

(kW)

TEC

(kW)

TEC

(kW)

TEC

(kW)

Time

(s)

RH-M2

vs.

M1

RH-M2

vs.

eGEP

RH-M2

vs.

M1*

Ex21 296.71 182.49 191.81 215.87 2.6 18.3 -27.2 12.5

Ex22 4047.03 3674.04 4563.69 3679.99 112.8 0.2 -9.1 -19.4

Ex23 3924.75 3497.00 4317.50 3808.34 288.1 8.9 -3.0 -11.8

Ex24 1914.55 1776.14 1877.71 1907.12 5.7 7.4 -0.4 1.6

Ex25 1975.75 1789.95 1953.76 1941.73 163.3 8.5 -1.7 -0.6

Ex26 1964.55 1783.95 1900.86 1633.59 170.6 -8.4 -16.8 -14.1

Ex27 1939.76 1684.29 1696.54 1763.91 138.5 4.7 -9.1 4.0

Ex28 1859.41 1465.37 1473.37 1598 134.5 9.1 -14.1 8.5

Ex29 2891.37 2583.71 2680.31 2718.8 108.9 5.2 -6.0 1.4

Ex30 2761.52 2388.63 2607.22 2521.31 200.8 5.6 -8.7 -3.3

Ex31 2765.72 2486.18 2544.93 2645.48 101.1 6.4 -4.3 4.0

Ex32 3046.21 2637.50 2684.47 2685.13 51.2 1.8 -11.9 0.0

Ex33 3036.47 2523.77 2974.33 2657.98 106.4 5.3 -12.5 -10.6

Ex34 3947.29 3365.35 4451.29 3565.38 211.9 5.9 -9.7 -19.9

Ex35 3700.86 3035.98 3414.20 3523.2 262.4 16.0 -4.8 3.2

Ex36 3682.76 3196.92 3837.11 3417.27 205.2 6.9 -7.2 -10.9

Ex37 3796.85 3477.73 4295.25 3716.38 189.2 6.9 -2.1 -13.5

Ex38 3740.39 3459.03 3845.46 3787.02 204.0 9.5 1.2 -1.5

Ex39 4480.15 4041.88 4928.97 3884.04 17.2 -3.9 -13.3 -21.2

Ex40 4082.95 3648.90 4591.14 3562.7 10.2 -2.4 -12.7 -22.4

Ex41 4059.53 3589.61 3670.20 3754.31 0.9 4.6 -7.5 2.3

Ex42 3937.63 3703.47 4096.44 3717.92 3.7 0.4 -5.6 -9.2

Ex43 4311.92 3782.58 4257.14 3978.46 7.2 5.2 -7.7 -6.5

Ex44 5708.72 5374.11 9223.46 5475.11 210.4 1.9 -4.1 -40.6

Ex45 5756.06 5195.68 6311.21 4941.6 216.6 -4.9 -14.1 -21.7

Ex46 5987.00 5501.46 - 5185.61 55.5 -5.7 -13.4 -

Ex47 5763.51 5916.36 - 5257.31 253.9 -11.1 -8.8

Ex48 6640.15 6704.23 7404.23 5527.5 233.6 -17.6 -16.8 -25.3

Ex49 7351.24 9654.12 - 6951.96 4.4 -28.0 -5.4 -28.0

Ex50 7859.20 9953.75 - 7560.55 105.5 -24.0 -3.8 -24.0

Ex51 7173.32 9603.38 - 6620.26 0.9 -31.1 -7.7 -31.1

Ex52 7285.72 - - 7060.59 106.4 - -3.1 -

Ex53 7284.41 - - 6938.57 2.3 - -4.7 -

Ex54 10036.36 - - 9167.93 374.8 - -8.7 -

Ex55 10667.02 - - 9708.14 509.6 - -9.0 -

Ex56 10183.47 - - 8861.43 394.8 - -13.0 -

Ex57 9865.68 - - 9610.23 551.4 - -2.6 -

Ex58 10751.25 - - 10003.95 494.7 - -7.0 -

296

Table 10. Tasks belonging to each job included in each group

Group Tasks

G1 K1: I1-I2, K2: I6-I7, K3: I11-I12, K4: I16-I17, K5: I21-I22, K6:

I26-I27, K7: I31-I32, K8: I36-I37, K9: I41-I42, K10: I46-I47

G2 K1: I3-I4, K2: I8-I9, K3: I13-I14, K4: I18-I19, K5: I23-I24, K6:

I28-I29, K7: I33-I34, K8: I38-I39, K9: I43-I44, K10: I48-I49

G3 K1: I5, K2: I10, K3: I15, K4: I20, K5: I25, K6: I30, K7: I35, K8:

I40, K9: I45, K10: I50

We also compare the results of RH-M2 with those of RH-M1 in Table 11. From the

reported results, it seems that in many cases, RH-M2 can generate a better solution than

RH-M1. For instance, model RH-M2 can provide better solutions, which lead from 1.3

to 10.6 % less energy consumption for examples with ten jobs and fifteen operations

(Examples 41-48 and 51-53). On the other hand, RH-M1 is more efficient for cases with

thirty jobs (i.e., Examples 54-58), as it can generate solutions with up to 7.3% less energy

consumption.

Table 11. Comparative results of RH-M1 and RH-M2

Ex. RH-M1 RH-M2
Diff

(%)

Ex.
RH-M1 RH-M2

Diff

(%)

 TEC

(kW)

 TEC

(kW)

 TEC

(kW)

 TEC

(kW)

Ex21 214.78 215.87 0.5 Ex40 3608.97 3562.7 -1.3

Ex22 4091.73 3679.99 -10.1 Ex41 4023.78 3754.31 -6.7

Ex23 4192.16 3808.34 -9.2 Ex42 4039.19 3717.92 -8.0

Ex24 1847.84 1907.12 3.2 Ex43 4339.28 3978.46 -8.3

Ex25 1928.84 1941.73 0.7 Ex44 5984.42 5475.11 -8.5

Ex26 1712.62 1633.59 -4.6 Ex45 5466.79 4941.6 -9.6

Ex27 1914.79 1763.91 -7.9 Ex46 5858.67 5185.61 -11.5

Ex28 1644.57 1598 -2.8 Ex47 5578.43 5257.31 -5.8

Ex29 2851.87 2718.8 -4.7 Ex48 6178.14 5527.5 -10.5

Ex30 2820.98 2521.31 -10.6 Ex49 6946.16 6951.96 0.1

Ex31 2830.43 2645.48 -6.5 Ex50 7434.35 7560.55 1.7

Ex32 2821.51 2685.13 -4.8 Ex51 6866.13 6620.26 -3.6

Ex33 2910.03 2657.98 -8.7 Ex52 7257.84 7060.59 -2.7

Ex34 3632.30 3565.38 -1.8 Ex53 7200.05 6938.57 -3.6

Ex35 3406.47 3523.2 3.4 Ex54 8698.35 9167.93 5.4

Ex36 3272.25 3417.27 4.4 Ex55 9580.33 9708.14 1.3

Ex37 3636.68 3716.38 2.2 Ex56 8834.19 8861.43 0.3

Ex38 3987.97 3787.02 -5.0 Ex57 8958.33 9610.23 7.3

Ex39 4278.56 3884.04 -9.2 Ex58 9775.46 10003.95 2.3

297

6.4. Computational results from the hybrid algorithm

The proposed hybrid algorithm eGEP-M2 is also used to solve Examples 21-58. The

computational results are provided in Tables 12-16, where several GEP-based dispatching

rules from Zhang et al. (2017) are applied. From Tables 12-16, it seems that a

significantly better solution by up to 20% less TEC from eGEP-M2 is identified

compared to that from eGEP. For instance, eGEP-M2 with the dispatching rule 1

generates a schedule with TEC of 5792.41 kW for Example 48, which is 19.7% less

energy consumption than that from eGEP using the dispatching rule 1. Furthermore, it

seems that less than one minute is required to generate the optimal solution for most

examples from eGEP-M2. For instance, eGEP-M2 generates a schedule with TEC of

5792.41 kW for Example 48 in 31 s. Even for most large examples (i.e. Example 53-58),

small computational time (i.e., within 5 minutes) is required to generate the best solution.

 Figure 10 illustrates the schedule for Example 22 generated from the hybrid

algorithm GEP-M2 with dispatching rule 8. The schedule for this example from eGEP

is depicted in Figure 5. Comparing those schedules in Figure 10 and Figure 5, we can see

that units remain idle for fewer periods during the scheduling horizon in Figure 10.

Additionally, for those periods, the units are switched off, since it is more energy-

efficient. For instance, unit J10 is switched off at 590 min and switched on at 961 min.

The switch off-on energy consumption during this period for this unit J10 is 19.8kW. As

already discussed, eGEP leads to a combined standby and switch off-on energy

consumption of 91.8kW for the same unit. As a result, GEP-M2 generates a schedule

with 78.4% less energy consumption for unit J10.

Figure 10 Best schedule for Example 22 using eGEP-M2 with the dispatching rule 8

298

Table 12. Comparison results for Examples 21-58 using eGEP dispatching rule 1 and

the hybrid algorithm eGEP-M2

 eGEP eGEP-M2

Ex

TEC

 (kW)

 TEC

 (kW)

CPU

Time (s)

Diff

(%)

Ex21 331.78 273.44 0.031

Ex22 4398.33 3973.63 1.0 -9.7

Ex23 3924.75 3808.29 0.047 -3.0

Ex24 2251.54 2150.22 0.031 -4.5

Ex25 2299.34 2139.78 0.032 -6.9

Ex26 2067.84 1814.60 0.047 -12.2

Ex27 2023.54 1873.24 0.046 -7.4

Ex28 1859.41 1784.59 0.047 -4.0

Ex29 2891.37 2772.52 0.031 -4.1

Ex30 2947.75 2746.31 0.031 -6.8

Ex31 3211.28 2971.75 0.047 -7.5

Ex32 3101.72 2901.06 0.046 -6.5

Ex33 3340.19 2829.80 0.062 -15.3

Ex34 4490.27 3779.94 0.046 -15.8

Ex35 3954.04 3493.97 0.109 -11.6

Ex36 3926.56 3412.03 0.063 -13.1

Ex37 4170.90 3873.96 0.078 -7.1

Ex38 3851.87 3711.79 0.047 -3.6

Ex39 4837.29 4253.91 0.69 -12.1

Ex40 4779.03 3950.16 1.0 -17.3

Ex41 4500.77 3838.06 1.4 -14.7

Ex42 4337.40 3867.97 0.89 -10.8

Ex43 4825.34 4329.41 0.98 -10.3

Ex44 5951.20 5372.26 1.7 -9.7

Ex45 6257.80 5348.49 1.7 -14.5

Ex46 6325.06 5569.00 2.0 -12.0

Ex47 5988.91 5376.65 2.9 -10.2

Ex48 7211.06 5792.41 31.0 -19.7

Ex49 7686.70 6777.31 32.6 -11.8

Ex50 8169.05 7153.02 153 -12.4

Ex51 7201.22 6687.08 3.6 -7.1

Ex52 7683.01 6637.30 142 -13.6

Ex53 7284.41 6711.15 0.94 -7.9

Ex54 10307.09 8975.42 157 -12.9

Ex55 11054.20 9815.61 219 -11.2

Ex56 10736.46 9246.65 95.6 -13.9

Ex57 10427.51 9161.15 761 -12.1

Ex58 11196.15 9813.16 3600a -12.4
a Relative gap 0.07%

299

Table 13. Comparative results for Examples 21-58 using the eGEP dispatching rule 5

and the hybrid algorithm eGEP-M2

eGEP eGEP-M2

Ex

TEC

(kW)

 TEC

(kW)

CPU

Time (s)

Diff

(%)

Ex21 297.98 275.55 0.062 -7.5

Ex22 4047.03 3649.89 0.81 -9.8

Ex23 4088.49 3548.94 0.078 -13.2

Ex24 2070.50 2029.38 0.032 -2.0

Ex25 1975.75 1943.83 0.031 -1.6

Ex26 1964.55 1751.54 0.031 -10.8

Ex27 1939.76 1836.00 0.047 -5.3

Ex28 2006.52 1865.30 0.078 -7.0

Ex29 3060.93 2886.49 0.046 -5.7

Ex30 2835.82 2617.58 0.063 -7.7

Ex31 2807.84 2754.71 0.047 -1.9

Ex32 3046.21 2890.21 0.062 -5.1

Ex33 3271.49 2758.93 0.047 -15.7

Ex34 4064.60 3671.31 0.063 -9.7

Ex35 3700.86 3468.03 0.20 -6.3

Ex36 3682.76 3427.29 0.078 -6.9

Ex37 3983.02 3672.87 0.109 -7.8

Ex38 4018.18 3767.52 0.047 -6.2

Ex39 4982.54 4260.96 0.84 -14.5

Ex40 4300.04 3715.50 2.4 -13.6

Ex41 4059.53 3728.99 0.36 -8.1

Ex42 3937.63 3706.31 1.1 -5.9

Ex43 4396.11 3897.01 1.3 -11.4

Ex44 5708.72 5325.92 1.9 -6.7

Ex45 5876.62 5169.44 5.3 -12.0

Ex46 6322.86 5578.53 26.2 -11.8

Ex47 5763.51 5278.09 8.8 -8.4

Ex48 6640.15 5671.46 2.7 -14.6

Ex49 7550.94 6793.95 35.8 -10.0

Ex50 7859.20 7127.99 13.3 -9.3

Ex51 7201.43 6662.99 4.1 -7.5

Ex52 7287.90 6552.15 30.6 -10.1

Ex53 7332.79 6731.61 8.2 -8.2

Ex54 10108.14 9098.46 1106 -10.0

Ex55 10939.20 9726.36 159 -11.1

Ex56 10339.46 9112.79 145 -11.9

Ex57 10081.65 9142.43 3600a -9.3

Ex58 10751.25 9459.67 586 -12.0
a Relative gap 0.80%

300

Table 14. Comparative results for Examples 21-58 using the eGEP dispatching rule 7

and the hybrid algorithm eGEP-M2

eGEP eGEP-M2

Ex

TEC

(kW)

 TEC

(kW)

CPU

Time (s)

Diff

(%)

Ex21 377.73 310.24 0.031 -17.9

Ex22 4342.12 4014.32 0.52 -7.5

Ex23 4402.20 3756.34 0.22 -14.7

Ex24 2172.22 2095.10 0.062 -3.6

Ex25 2033.00 1947.04 0.031 -4.2

Ex26 2021.92 1873.05 0.031 -7.4

Ex27 2059.48 1959.69 0.031 -4.8

Ex28 1976.26 1849.54 0.078 -6.4

Ex29 3044.67 2853.12 0.031 -6.3

Ex30 2826.03 2676.27 0.093 -5.3

Ex31 2765.72 2679.49 0.078 -3.1

Ex32 3136.43 2964.49 0.047 -5.5

Ex33 3036.47 2756.63 0.063 -9.2

Ex34 3947.29 3691.09 0.062 -6.5

Ex35 3731.46 3499.69 0.48 -6.2

Ex36 4061.80 3676.62 0.36 -9.5

Ex37 4463.81 3926.23 0.078 -12.0

Ex38 3740.39 3600.77 0.078 -3.7

Ex39 4480.15 4018.49 0.34 -10.3

Ex40 4482.24 3914.30 1.4 -12.7

Ex41 4160.37 3678.10 0.44 709.5

Ex42 4330.02 3815.93 1.2 -11.9

Ex43 4437.60 3974.99 1.4 -10.4

Ex44 5976.21 5560.87 2.6 -6.9

Ex45 5756.06 5079.62 12.8 -11.8

Ex46 5987.00 5383.50 13.1 -10.1

Ex47 6180.85 5394.63 3.6 -12.7

Ex48 7138.21 5899.35 64.3 -17.4

Ex49 7504.90 6784.20 3.3 -9.6

Ex50 8192.58 7206.61 3.9 -12.0

Ex51 7528.43 6698.02 3.5 -11.0

Ex52 7388.66 6647.78 37.7 -10.0

Ex53 7950.47 7080.96 34.1 -10.9

Ex54 10036.36 9062.42 100 -9.7

Ex55 10703.56 9799.30 1279 -8.4

Ex56 10194.85 9146.91 766 -10.3

Ex57 9884.19 9131.27 3600a -7.6

Ex58 11269.35 9780.38 32.1 -13.2
a Relative gap 0.04%

301

Table 15. Comparative results for Examples 21-58 using the eGEP dispatching rule 8

and the hybrid algorithm eGEP-M2

eGEP eGEP-M2

Ex

TEC

(kW)

 TEC

 (kW)

CPU

Time (s)

Diff

(%)

Ex21 296.71 255.75 0.124 -13.8

Ex22 4289.90 3786.76 0.717 -11.7

Ex23 4101.52 3627.59 0.125 -11.5

Ex24 2017.38 1996.38 0.094 -1.0

Ex25 2061.22 1994.99 0.047 -3.2

Ex26 2077.87 1871.63 0.218 -9.9

Ex27 1940.73 1836.00 0.219 -5.4

Ex28 2015.52 1842.34 0.156 -8.6

Ex29 2921.23 2851.49 0.109 -2.4

Ex30 2761.52 2668.89 0.218 -3.4

Ex31 2866.40 2716.39 0.093 -5.2

Ex32 3122.96 2911.21 0.094 -6.8

Ex33 3164.21 2830.84 0.078 -10.5

Ex34 3954.61 3581.06 0.296 -9.4

Ex35 3751.06 3496.18 1.435 -6.8

Ex36 3698.97 3456.04 0.266 -6.6

Ex37 3796.85 3687.75 0.187 -2.9

Ex38 3876.12 3632.99 0.234 -6.3

Ex39 4698.71 4073.37 0.624 -13.3

Ex40 4328.51 3851.69 2.184 -11.0

Ex41 4219.24 3764.29 1.123 -10.8

Ex42 4264.51 3820.54 1.388 -10.4

Ex43 4311.92 3905.98 0.999 -9.4

Ex44 5972.97 5362.92 2.153 -10.2

Ex45 6157.10 5136.97 15.6 -16.5

Ex46 6307.20 5554.23 4.462 -11.9

Ex47 5981.64 5275.81 1.482 -11.8

Ex48 7113.48 5832.81 3.946 -18.0

Ex49 7351.24 6807.56 5.865 -7.4

Ex50 8244.86 7111.49 43.0 -13.7

Ex51 7396.69 6720.92 3.432 -9.1

Ex52 7285.72 6536.35 111 -10.3

Ex53 7999.57 7147.95 25.9 -10.6

Ex54 10344.35 9515.27 779 -8.0

Ex55 10680.83 9763.51 576 -8.5

Ex56 10183.47 9056.31 1584 -11.1

Ex57 9865.68 9080.37 3600a -8.0

Ex58 10832.23 9556.34 134 -11.8
a Relative gap 0.05%

302

Table 16. Comparative results for Examples 21-58 using the eGEP dispatching rule 9

and the hybrid algorithm eGEP-M2

eGEP eGEP-M2

Ex

TEC

 (kW)

 TEC

 (kW)

CPU

Time (s)

Diff

(%)

Ex21 320.25 286.63 0.047 -10.5

Ex22 4465.27 3860.23 1.2 -13.5

Ex23 4355.59 3763.03 0.047 -13.6

Ex24 1914.55 1881.38 0.062 -1.7

Ex25 2195.64 2101.69 0.046 -4.3

Ex26 2294.79 1931.57 0.031 -15.8

Ex27 2121.88 1925.57 0.062 -9.3

Ex28 1864.79 1685.43 0.031 -9.6

Ex29 3314.21 2909.79 0.047 -12.2

Ex30 2917.68 2700.44 0.047 -7.4

Ex31 3034.12 2828.43 0.047 -6.8

Ex32 3220.20 2964.46 0.047 -7.9

Ex33 3338.57 2888.41 0.063 -13.5

Ex34 4584.44 3668.83 0.063 -20.0

Ex35 4070.23 3485.15 0.171 -14.4

Ex36 3979.86 3333.06 0.047 -16.3

Ex37 4144.10 3780.81 0.078 -8.8

Ex38 3841.63 3625.34 0.062 -5.6

Ex39 4823.96 4183.65 1.4 -13.3

Ex40 4082.95 3516.39 1.5 -13.9

Ex41 4117.93 3639.54 0.67 -11.6

Ex42 4084.68 3853.95 0.64 -5.6

Ex43 4491.61 3979.13 9.2 -11.4

Ex44 6116.02 5408.99 25.4 -11.6

Ex45 5923.10 5061.75 2.4 -14.5

Ex46 6095.66 5428.28 190 -10.9

Ex47 6051.80 5191.31 19.3 -14.2

Ex48 6672.93 5522.70 30.1 -17.2

Ex49 7727.28 6637.33 133 -14.1

Ex50 8163.12 7011.05 26.5 -14.1

Ex51 7173.32 6447.07 14.5 -10.1

Ex52 7650.43 6489.99 53.7 -15.2

Ex53 7589.11 6554.44 15.1 -13.6

Ex54 10070.27 8938.16 417 -11.2

Ex55 10667.02 9436.44 222 -11.5

Ex56 10683.11 8802.82 945 -17.6

Ex57 9939.02 8785.05 142 -11.6

Ex58 10963.14 9530.19 134 -13.1

 Tables 17-21 demonstrate the comparative results among eGEP and eGEP-M2, as

well as RH-M1 and RH-M2. From Tables 17-21, it seems that eGEP-M2 and RH-M1

are the most efficient since they can generate the best solution for most cases among these

303

approaches. For instance, if we use dispatching rule 1, eGEP-M2 and RH-M1 provide

the best schedule for 26 out of the 38 large-size examples. From those 26 examples,

eGEP-M2 can generate the best solution for 10 of them, while RH-M1 leads to a better

solution than all approaches for the rest examples. RH-M2 generates the best schedule

for 12 cases, while eGEP do not provide the best solution for any of the examples.

However, the superiority of each approach highly depends on the dispatching rule used.

For instance, eGEP-M2 using dispatching rule 9 can generate better solutions for 22

examples out of the 38 large-size examples. On the contrary, RH-M2 can generate the

best solutions only for 11 examples.

Table 17. Comparative results for Examples 21-58 using the eGEP dispatching rule 1,

eGEP-M2, RH-M1 and RH-M2

Example eGEP eGEP-M2 RH-M1 RH-M2

Ex21 331.78 273.44 214.78 215.87

Ex22 4398.33 3973.63 4091.73 3682.85

Ex23 3924.75 3808.29 4192.16 3808.34

Ex24 2251.54 2150.22 1847.84 1862.22

Ex25 2299.34 2139.78 1928.84 1981.00

Ex26 2067.84 1814.60 1712.62 1807.29

Ex27 2023.54 1873.24 1914.79 1928.91

Ex28 1859.41 1784.59 1644.57 1648.33

Ex29 2891.37 2772.52 2851.87 2771.20

Ex30 2947.75 2746.31 2820.98 2822.26

Ex31 3211.28 2971.75 2830.43 2787.95

Ex32 3101.72 2901.06 2821.51 2878.99

Ex33 3340.19 2829.80 2910.03 2831.50

Ex34 4490.27 3779.94 3632.30 3565.38

Ex35 3954.04 3493.97 3406.47 3523.20

Ex36 3926.56 3412.03 3272.25 3417.27

Ex37 4170.90 3873.96 3636.68 3716.38

Ex38 3851.87 3711.79 3987.97 3787.02

Ex39 4837.29 4253.91 4278.56 4307.73

Ex40 4779.03 3950.16 3608.97 3782.58

Ex41 4500.77 3838.06 4023.78 3754.30

Ex42 4337.40 3867.97 4039.19 3893.04

Ex43 4825.34 4329.41 4339.28 4047.04

Ex44 5951.20 5372.26 5984.42 5630.35

Ex45 6257.80 5348.49 5466.79 5122.95

Ex46 6325.06 5569.00 5858.67 5638.42

Ex47 5988.91 5376.65 5578.43 5263.17

Ex48 7211.06 5792.41 6178.14 5935.52

Ex49 7686.70 6777.31 6946.16 6951.96

Ex50 8169.05 7153.02 7434.35 7560.55

Ex51 7201.22 6687.08 6866.13 6620.26

Ex52 7683.01 6637.30 7257.84 7060.59

304

Ex53 7284.41 6711.15 7200.05 6938.57

Ex54 10307.09 8975.42 8698.35 9167.93

Ex55 11054.20 9815.61 9580.33 9708.14

Ex56 10736.46 9246.65 8834.19 8861.43

Ex57 10427.51 9161.15 8958.33 9610.23

Ex58 11196.15 9813.16 9775.46 10004.00

Table 18. Comparative results for Examples 21-58 using the eGEP dispatching rule 5,

eGEP-M2, RH-M1 and RH-M2

Example eGEP eGEP-M2 RH-M1 RH-M2

Ex21 297.98 275.55 214.78 215.87

Ex22 4047.03 3649.89 4091.73 3682.85

Ex23 4088.49 3548.94 4192.16 3808.34

Ex24 2070.50 2029.38 1847.84 1862.22

Ex25 1975.75 1943.83 1928.84 1981.00

Ex26 1964.55 1751.54 1712.62 1807.29

Ex27 1939.76 1836.00 1914.79 1928.91

Ex28 2006.52 1865.30 1644.57 1648.33

Ex29 3060.93 2886.49 2851.87 2771.20

Ex30 2835.82 2617.58 2820.98 2822.26

Ex31 2807.84 2754.71 2830.43 2787.95

Ex32 3046.21 2890.21 2821.51 2878.99

Ex33 3271.49 2758.93 2910.03 2831.50

Ex34 4064.60 3671.31 3632.30 3565.38

Ex35 3700.86 3468.03 3406.47 3523.20

Ex36 3682.76 3427.29 3272.25 3417.27

Ex37 3983.02 3672.87 3636.68 3716.38

Ex38 4018.18 3767.52 3987.97 3787.02

Ex39 4982.54 4260.96 4278.56 4307.73

Ex40 4300.04 3715.50 3608.97 3782.58

Ex41 4059.53 3728.99 4023.78 3754.30

Ex42 3937.63 3706.31 4039.19 3893.04

Ex43 4396.11 3897.01 4339.28 4047.04

Ex44 5708.72 5325.92 5984.42 5630.35

Ex45 5876.62 5169.44 5466.79 5122.95

Ex46 6322.86 5578.53 5858.67 5638.42

Ex47 5763.51 5278.09 5578.43 5263.17

Ex48 6640.15 5671.46 6178.14 5935.52

Ex49 7550.94 6793.95 6946.16 6951.96

Ex50 7859.20 7127.99 7434.35 7560.55

Ex51 7201.43 6662.99 6866.13 6620.26

Ex52 7287.90 6552.15 7257.84 7060.59

Ex53 7332.79 6731.61 7200.05 6938.57

Ex54 10108.14 9098.46 8698.35 9167.93

Ex55 10939.20 9726.36 9580.33 9708.14

Ex56 10339.46 9112.79 8834.19 8861.43

Ex57 10081.65 9142.43 8958.33 9610.23

Ex58 10751.25 9459.67 9775.46 10004.00

305

Table 19. Comparative results for Examples 21-58 using the eGEP dispatching rule 7,

eGEP-M2, RH-M1 and RH-M2

Example eGEP eGEP-M2 RH-M1 RH-M2

Ex21 377.73 310.24 214.78 215.87

Ex22 4342.12 4014.32 4091.73 3682.85

Ex23 4402.20 3756.34 4192.16 3808.34

Ex24 2172.22 2095.10 1847.84 1862.22

Ex25 2033.00 1947.04 1928.84 1981.00

Ex26 2021.92 1873.05 1712.62 1807.29

Ex27 2059.48 1959.69 1914.79 1928.91

Ex28 1976.26 1849.54 1644.57 1648.33

Ex29 3044.67 2853.12 2851.87 2771.20

Ex30 2826.03 2676.27 2820.98 2822.26

Ex31 2765.72 2679.49 2830.43 2787.95

Ex32 3136.43 2964.49 2821.51 2878.99

Ex33 3036.47 2756.63 2910.03 2831.50

Ex34 3947.29 3691.09 3632.30 3565.38

Ex35 3731.46 3499.69 3406.47 3523.20

Ex36 4061.80 3676.62 3272.25 3417.27

Ex37 4463.81 3926.23 3636.68 3716.38

Ex38 3740.39 3600.77 3987.97 3787.02

Ex39 4480.15 4018.49 4278.56 4307.73

Ex40 4482.24 3914.30 3608.97 3782.58

Ex41 4160.37 3678.10 4023.78 3754.30

Ex42 4330.02 3815.93 4039.19 3893.04

Ex43 4437.60 3974.99 4339.28 4047.04

Ex44 5976.21 5560.87 5984.42 5630.35

Ex45 5756.06 5079.62 5466.79 5122.95

Ex46 5987.00 5383.50 5858.67 5638.42

Ex47 6180.85 5394.63 5578.43 5263.17

Ex48 7138.21 5899.35 6178.14 5935.52

Ex49 7504.90 6784.20 6946.16 6951.96

Ex50 8192.58 7206.61 7434.35 7560.55

Ex51 7528.43 6698.02 6866.13 6620.26

Ex52 7388.66 6647.78 7257.84 7060.59

Ex53 7950.47 7080.96 7200.05 6938.57

Ex54 10036.36 9062.42 8698.35 9167.93

Ex55 10703.56 9799.30 9580.33 9708.14

Ex56 10194.85 9146.91 8834.19 8861.43

Ex57 9884.19 9131.27 8958.33 9610.23

Ex58 11269.35 9780.38 9775.46 10004.00

306

Table 20. Comparative results for Examples 21-58 using the eGEP dispatching rule 8,

eGEP-M2, RH-M1 and RH-M2

Example eGEP eGEP-M2 RH-M1 RH-M2

Ex21 296.71 255.75 214.78 215.87

Ex22 4289.90 3786.76 4091.73 3682.85

Ex23 4101.52 3627.59 4192.16 3808.34

Ex24 2017.38 1996.38 1847.84 1862.22

Ex25 2061.22 1994.99 1928.84 1981.00

Ex26 2077.87 1871.63 1712.62 1807.29

Ex27 1940.73 1836.00 1914.79 1928.91

Ex28 2015.52 1842.34 1644.57 1648.33

Ex29 2921.23 2851.49 2851.87 2771.20

Ex30 2761.52 2668.89 2820.98 2822.26

Ex31 2866.40 2716.39 2830.43 2787.95

Ex32 3122.96 2911.21 2821.51 2878.99

Ex33 3164.21 2830.84 2910.03 2831.50

Ex34 3954.61 3581.06 3632.30 3565.38

Ex35 3751.06 3496.18 3406.47 3523.20

Ex36 3698.97 3456.04 3272.25 3417.27

Ex37 3796.85 3687.75 3636.68 3716.38

Ex38 3876.12 3632.99 3987.97 3787.02

Ex39 4698.71 4073.37 4278.56 4307.73

Ex40 4328.51 3851.69 3608.97 3782.58

Ex41 4219.24 3764.29 4023.78 3754.30

Ex42 4264.51 3820.54 4039.19 3893.04

Ex43 4311.92 3905.98 4339.28 4047.04

Ex44 5972.97 5362.92 5984.42 5630.35

Ex45 6157.10 5136.97 5466.79 5122.95

Ex46 6307.20 5554.23 5858.67 5638.42

Ex47 5981.64 5275.81 5578.43 5263.17

Ex48 7113.48 5832.81 6178.14 5935.52

Ex49 7351.24 6807.56 6946.16 6951.96

Ex50 8244.86 7111.49 7434.35 7560.55

Ex51 7396.69 6720.92 6866.13 6620.26

Ex52 7285.72 6536.35 7257.84 7060.59

Ex53 7999.57 7147.95 7200.05 6938.57

Ex54 10344.35 9515.27 8698.35 9167.93

Ex55 10680.83 9763.51 9580.33 9708.14

Ex56 10183.47 9056.31 8834.19 8861.43

Ex57 9865.68 9080.37 8958.33 9610.23

Ex58 10832.23 9556.34 9775.46 10004.00

307

Table 21. Comparative results for Examples 21-58 using the eGEP dispatching rule 9,

eGEP-M2, RH-M1 and RH-M2

Example eGEP eGEP-M2 RH-M1 RH-M2

Ex21 320.25 286.63 214.78 215.87

Ex22 4465.27 3860.23 4091.73 3682.85

Ex23 4355.59 3763.03 4192.16 3808.34

Ex24 1914.55 1881.38 1847.84 1862.22

Ex25 2195.64 2101.69 1928.84 1981.00

Ex26 2294.79 1931.57 1712.62 1807.29

Ex27 2121.88 1925.57 1914.79 1928.91

Ex28 1864.79 1685.43 1644.57 1648.33

Ex29 3314.21 2909.79 2851.87 2771.2

Ex30 2917.68 2700.44 2820.98 2822.26

Ex31 3034.12 2828.43 2830.43 2787.95

Ex32 3220.20 2964.46 2821.51 2878.99

Ex33 3338.57 2888.41 2910.03 2831.5

Ex34 4584.44 3668.83 3632.3 3565.38

Ex35 4070.23 3485.15 3406.47 3523.2

Ex36 3979.86 3333.06 3272.25 3417.27

Ex37 4144.10 3780.81 3636.68 3716.38

Ex38 3841.63 3625.34 3987.97 3787.02

Ex39 4823.96 4183.65 4278.56 4307.73

Ex40 4082.95 3516.39 3608.97 3782.58

Ex41 4117.93 3639.54 4023.78 3754.3

Ex42 4084.68 3853.95 4039.19 3893.04

Ex43 4491.61 3979.13 4339.28 4047.04

Ex44 6116.02 5408.99 5984.42 5630.35

Ex45 5923.10 5061.75 5466.79 5122.95

Ex46 6095.66 5428.28 5858.67 5638.42

Ex47 6051.80 5191.31 5578.43 5263.17

Ex48 6672.93 5522.70 6178.14 5935.52

Ex49 7727.28 6637.33 6946.16 6951.96

Ex50 8163.12 7011.05 7434.35 7560.55

Ex51 7173.32 6447.07 6866.13 6620.26

Ex52 7650.43 6489.99 7257.84 7060.59

Ex53 7589.11 6554.44 7200.05 6938.57

Ex54 10070.27 8938.16 8698.35 9167.93

Ex55 10667.02 9436.44 9580.33 9708.14

Ex56 10683.11 8802.82 8834.19 8861.43

Ex57 9939.02 8785.05 8958.33 9610.23

Ex58 10963.14 9530.19 9775.46 10004.00

7. Conclusions

In this work, we developed efficient approaches to generate energy-efficient schedules

for flexible job-shops. Two MILP models based on unit-specific event-based and

308

sequence-based representations have been presented. The proposed models are

significantly more efficient than the existing mathematical models since they can generate

solutions even for large-size examples. Between the proposed models, the unit-specific

event-based model is more efficient since it can provide schedules for more examples

than the sequence-based model. However, this model may fail to generate a feasible

solution after one hour for cases with more than 20 jobs. By enhancing the rolling horizon

decomposition approach, where the operations are divided into different groups using

mixed-integer programming, both models can generate schedules for all examples, and

they can generate up to 27.6% better solution than the best-reported solution generated

with GEP. The proposed decomposition algorithm with the sequence-based model as

short-term model scheduling model is more efficient since it can generate schedules with

a better solution for examples with up to 30 jobs. Furthermore, we examined the

combinations of mixed-integer programming approach and genetic evolutionary

programming approach. By combining these approaches significantly better solutions

with up to 20% less energy consumption, in comparison to the dispatching rules generated

by using GEP can be generated.

Acknowledgements

Nikolaos Rakovitis would like to acknowledge financial support from the postgraduate

award by The University of Manchester.

309

References

Al-Hinai Nasr, ElMekkawy, An efficient hybridized genetic algorithm architecture for

the flexible job shop scheduling problem, Flexible services and manufacturing journal,

2011, 23(1), 64-85 https://doi.org/10.1007/s10696-010-9067-y

Bagheri A., Zandieh M., Mahdavi I., Yazdani M., An artificial immune algorithm for the

flexible job-shop scheduling problem, Future generation computer systems, 2010, 26(4),

533-541 https://doi.org/10.1016/j.future.2009.10.004

Bowman, E. H., 1959. The schedule-sequence problem, Operations research, 7(5), 621-

624.

Brandimarte Paolo, Routing and scheduling problem in a flexible job shop by tabu search,

Annals of operations research, 1993, 41(3), 157-183 https://doi.org/10.1007/BF02023073

Chaudhry Imran Ali, Khan Abid Ali, 2016, A research survey: review of flexible job shop

scheduling techinques, International transactions in operational research, 23(3), 551-591

https://doi.org/10.1111/itor.12199

Chen Haoxun, Ihlow Jiirgen, Lehmann Carsten, A genetic algorithm for flexible job-shop

scheduling, Proceedings of the 1999 IEEE international conference on robotics &

automation, 1999, 2, 1120-1125 https://doi.org/10.1109/ROBOT.1999.772512

Choi In-Chan, Choi Dae-Sik, A local search algorithm for jobshop scheduling problems

with alternative operations and sequence-dependent setups, Computers & industrial

engineering, 2002, 42(1), 43-58 https://doi.org/10.1016/S0360-8352(02)00002-5

Dai Min, Tang Dunbing, Giret Adriana, Salido Miguel, Li W., Energy-efficient

scheduling for a flexible flow shop using improved genetic-simulated annealing

algorithm, Robotics and computer-integrated manufacturing, 2013, 29(5), 418-429

https://doi.org/10.1016/j.rcim.2013.04.001

Fattahi Parviz, Saidi Mehrabad Mohammad, Jolai Fariborz, Mathematical modelling and

heuristic approaches to flexible job shop scheduling problems, Journal of Intelligent

manufacturing, 2007, 18(3), 331-342 https://doi.org/10.1007/s10845-007-0026-8

Gao Jie, Gen Mitsuo, Sun Linyan, Scheduling jobs and maintenances in flexible job shop

with a hybrid genetic algorithm, Journal of intelligent manufacturing, 2006, 17(4), 493-

507 https://doi.org/10.1007/s10845-005-0021-x

Gao Jie, Sun Linyan, Gen Mitsuo, A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems, Computers & operations research,

https://doi.org/10.1016/j.future.2009.10.004
https://doi.org/10.1109/ROBOT.1999.772512
https://doi.org/10.1016/S0360-8352(02)00002-5
https://doi.org/10.1016/j.rcim.2013.04.001

310

2008, 35(9), 2892-2907 https://doi.org/10.1016/j.cor.2007.01.001

Hurink Johann, Jurish Bernd, Thole Monika, Tabu search for the job-shop scheduling

problem with multipurpose machines, Operations-research-spectrum, 1994, 15(4), 205-

215 https://doi.org/10.1007/BF01719451

Janak Stacy, Floudas Christodoulos, Kallrath Josef, Vormbrock Norbert, Production

scheduling of a large-scale industrial batch plant. I. short-term and medium-term

scheduling, Industrial and Engineering Chemistry Research, 2006, 45(25), 8234-8252

https://doi.org/10.1021/ie0600588

Kacem Imed, Hammadi Slim, Borne Pierre, Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems, IEEE transactions

on systems, 2002, 32(1), 1-13 https://doi.org/10.1109/TSMCC.2002.1009117

Karimi Sajad, Ardalan Zaniar, Naderi B., Mohammadi M., Scheduling flexible job-shops

with transportation times: Mathematical models and a hybrid imperialist competitive

algorithm, Applied mathematical modelling, 2017, 41, 667-682

https://doi.org/10.1016/j.apm.2016.09.022

Kondili, E., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-

term scheduling of batch operations-I MILP formulation. Computers & Chemical

Engineering. 17(2). 211-227. https://doi.org/10.1016/0098-1354(93)80015-F.

Lei Deming, Zheng Youlian, Guo Xiuping, 2017, A shuffled frogleaping algorithm for

flexible job shop scheduling with the consideration of energy consumption, International

Journal of Production Research, 55:11, 3126-3140,

https://doi.org/10.1080/00207543.2016.1262082

Li, J., Sursarla, N., Karimi, I. A., Shaik, M. A., Floudas, C. A., 2010. An Analysis of

Some Unit-Specific Event-Based Models for the Short-Term Scheduling of

Noncontinuous Processes. Industrial and Engineering Chemistry Research. 49(2). 633-

647. https://doi.org/ 10.1021/ie801879n.

Li Jie, Xiao Xin, Tang Qiuhua, Floudas Christodoulos, Production scheduling of a large-

scale steelmaking continuous casting process via unit-specific event-based continuous-

time models: short-term and medium-term scheduling, Industrial and Engineering

Chemistry Research. 2012, 51(21), 7300-7319 https://doi.org/10.1021/ie2015944

Lin Xiaoxia, Floudas Christodoulos, Modi Sweta, Juhasz Nikola, Continuous-time

optimization approach for medium-range production scheduling of a multiproduct batch

plant, Industrial & engineering chemistry research, 2002, 41(16), 3884-3906,

https://doi.org/10.1021/ie011002a

https://doi.org/10.1016/j.cor.2007.01.001
https://doi.org/10.1021/ie0600588
https://doi.org/10.1109/TSMCC.2002.1009117
https://doi.org/10.1016/j.apm.2016.09.022
https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1021/ie2015944
https://doi.org/10.1021/ie011002a

311

Liouane Noureddine, Saad Ihsen, Hammadi Slim, Borne Pierre, Ant systems and local

search optimization for flexible job shop scheduling production, International journal of

computers, communications & control, 2007, 2(2), 174-184

https://doi.org/10.15837/ijccc.2007.2.2350

Mastrolilli Monaldo, Gambardella Luca Maria, Effective neighborhood functions for the

flexible job shop problem, Journal of scheduling, 2000, 3, 3-20

https://doi.org/10.1002/(SICI)1099-1425(200001/02)3:1<3::AID-JOS32>3.0.CO;2-Y

May Gökan, Stahl Bojan, Taishu Marco, Prabhu Vittal, Multi-objective genetic algorithm

for energy-efficient job shop scheduling, International journal of production research,

2015, 53(23), 7071-7089 https://doi.org/10.1080/00207543.2015.1005248

Méndez C.A., Cerdá J., Optimal scheduling of a resource-constrained multiproduct batch

plant supplying intermediates to nearby end-product facilities. Computers and Chemical

Engineering, 2000, 24(2-7), 369-376 https://doi.org/10.1016/S0098-1354(00)00482-8

Meng Leilei, Zhang Chaoyong, Shao Xinyu, Ren Yaping, MILP models for energy-aware

flexible job-shop scheduling problem, Journal of cleaner production, 2019, 210, 710-723

https://doi.org/10.1016/j.jclepro.2018.11.021

Mokhtari Hadi, Hasani Aliakbar, 2017, An energy-efficient multi-objective optimization

for flexible job-shop problem, Computers and chemical engineering, 104, 339-352

https://doi.org/10.1016/j.compchemeng.2017.05.004

Mouzon Gilles, Yildirim Mehmet, Twomey Janet, Operational methods for minimization

of energy consumption of manufacturing equipment, International journal of production

research, 2007, 45, 4247-4271 https://doi.org/10.1080/00207540701450013

Özgüven Cemal, Özbakir Lale, Yavuz Yasemin, Mathematical models for job-shop

scheduling problems with routing and process plan flexibility, Applied mathematical

modelling, 2010, 34(6), 1539-1548 https://doi.org/10.1016/j.apm.2009.09.002

Paulli 1995, A hierarchical approach for the FMS scheduling problem, European journal

of operational research, 1995, 86(1), 32-42 https://doi.org/10.1016/0377-2217(95)00059-

Y

Pezzella F., Morganti G., Ciaschetti G., A genetic algorithm for the flexible job-shop

scheduling problem, Computers & operations research, 2008, 35(10), 3202-3212

https://doi.org/10.1016/j.cor.2007.02.014

Rakovitis N., Zhang N., Li J., Zhang L., A new approach for scheduling of multipurpose

batch processes with unlimited intermediate storage policy, Frontiers of chemical science

and engineering, 2019, 13, 784-802 https://doi.org/10.1007/s11705-019-1858-4

https://doi.org/10.15837/ijccc.2007.2.2350
https://doi.org/10.1002/(SICI)1099-1425(200001/02)3:1%3C3::AID-JOS32%3E3.0.CO;2-Y
https://doi.org/10.1080/00207543.2015.1005248
https://doi.org/10.1016/S0098-1354(00)00482-8
https://doi.org/10.1016/j.jclepro.2018.11.021
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1080/00207540701450013
https://doi.org/10.1016/j.apm.2009.09.002
https://doi.org/10.1016/0377-2217(95)00059-Y
https://doi.org/10.1016/0377-2217(95)00059-Y
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1007/s11705-019-1858-4

312

Rakovitis N., Zhang N., Li J., A novel unit-specific event-based formulation for short-

term scheduling of multitasking processes in scientific service facilities, 2020, 133,

106626 https://doi.org/10.1016/j.compchemeng.2019.106626

Roshanaei V., Azab Ahmed, ElMaraghy H., Mathematical modelling and a meta-

heuristic for flexible job shop scheduling, International journal of production research,

2013, 51(20), 6247-6274 https://doi.org/10.1080/00207543.2013.827806

Roy, S., Sussman, B., 1964. Les problémes d’ordonnancement avec constraintes

disjonctives, SEMA, 9

Saidi-Mehrabad Mohammad, Fattahi Parviz, Flexible job shop scheduling with tabu

search algorithms, The international journal of advanced manufacturing technology,

2007, 32(5-6), 563-570 https://doi.org/10.1007/s00170-005-0375-4

Shaik, M. A., Floudas, C. A., 2009. Novel Unified Modeling Approach for Short-Term

Scheduling. Industrial & Engineering Chemistry Research. 48(6). 2947-2964.

https://doi.org/10.1021/ie8010726.

Shaik Munawar, Floudas Christodoulos, Kallrath Josef, Pitz Hans-Joachim, Production

scheduling of a large-scale industrial continuous plant: short-term and medium-term

scheduling, Computers and chemical engineering, 2009, 31(3), 670-686

https://doi.org/10.1016/j.compchemeng.2008.08.013

Wagner Harvey, An integer linear-programming model for machine scheduling, Naval

research logistics quarterly, 1959, 6(2), 131-140 https://doi.org/10.1002/nav.3800060205

Wang Han, Jiang Zhigang, Wang Yan, Zhang Hua, Wang Yanhong, A two-stage

optimization method for energy-efficient flexible job-shop scheduling based on energy

dynamic characterization, Journal of cleaner production, 2018, 188(1), 575-588

https://doi.org/10.1016/j.jclepro.2018.03.254

Xie Jin, Gao Liang, Peng Kunkun, Li Xinyu, Li Haoran, 2019, Review on flexible job

shop scheduling, IET Collaborative Intelligent Manufacturing, 1(3), 67-77

http://dx.doi.org/10.1049/iet-cim.2018.0009

Yazdani M., Amiri M., Zandieh M., Flexible job-shop scheduling with parallel variable

neighborhood search algorithm, Expert systems with applications, 2010, 37(1), 678-687

https://doi.org/10.1016/j.eswa.2009.06.007

Zhang Guohui, Gao Liang, Shi Yang, An effective genetic algorithm for the flexible job-

shop scheduling problem, Expert systems with apprications, 2011, 38(4), 3563-3573

https://doi.org/10.1016/j.eswa.2010.08.145

Zhang Liping, Tang Qiuhua, Wu Zhengjia, Wang Fang, Mathematical modeling and

https://doi.org/10.1016/j.compchemeng.2019.106626
https://doi.org/10.1080/00207543.2013.827806
https://doi.org/10.1016/j.compchemeng.2007.05.007
https://doi.org/10.1016/j.compchemeng.2008.08.013
https://doi.org/10.1002/nav.3800060205
https://doi.org/10.1016/j.jclepro.2018.03.254
http://dx.doi.org/10.1049/iet-cim.2018.0009
https://doi.org/10.1016/j.eswa.2009.06.007
https://doi.org/10.1016/j.eswa.2010.08.145

313

evolutionary generation of rule sets for energy-efficient flexible job shops, Energy, 2017,

138, 210-227 https://doi.org/10.1016/j.energy.2017.07.005

Zhang Zhongwei, Wu Lihui, Peng Tao, Jia Shun, An improved scheduling approach for

minimizing total energy consumption and makespan in a flexible job shop environment,

Sustainability, 2018, 11(1), 1-21

https://doi.org/10.1016/j.energy.2017.07.005

314

Nomenclature

Sets

G: groups

I: tasks

Ij: units that can process task 𝑖

Ik: tasks that belong to job k

𝐈𝑗
𝑒: tasks that can be exclusively processed in unit j

𝐈𝑠
𝐶: tasks that consume state 𝑠

𝐈𝑠
𝑃: tasks that produce state 𝑠

J: processing units/machines

Ji: units that can process task i

Jk,l: units that can process operation l which belongs to job k

JPk,j: jobs that is forbidden to be assigned in unit j

K: jobs

KIk: tasks that belong to job k

KLJk,l,j: operations that can be processed in unit j

KLKLk,l,k,l: operations that can succeed operation l which belogs to job k

L: operations

Lk: operations that belong to job k

LDk: jobs with due dates

LRk: jobs with a non-zero release date

N: event points

S: states

SR: raw material states

SIN: intermediate states

SP: product states

Indicies

g, g: groups

i, i: tasks

j, j: units

k, k: jobs

l, l: operations

315

s: states

n, n, n: event points

Parameters

dk: due date for job k

EOj: switch off-on energy consumption of unit j

ENg: number of event points for group g

𝐸𝑆𝑗
0: initial standby energy consumption of unit j

H: scheduling horizon

Lmax: maximum number of tasks that can be included in a group g

M: large positive number

𝑁𝑗
min: minimum number of tasks/operations that can be processed in unit j

𝑁𝑗
max: maximum number of tasks/operations that can be processed in unit j

PCi,j: cutting power of task i in unit j

PEN1, PEN2: penalty coefficients

PUj: unload power of unit j

rk: release time for job k

w1, w2: importance weight parameters

αi,j: processing time of task i in unit j

αk,l,j: processing time of operation l that belong in job k in unit j

β: coefficient of indirect energy consumption

Δn: maximum number of event points that a task 𝑖 is allowed to span

ρi,s: indicator of whether state 𝑠 is consumed (ρi,s = -1) or produced (ρi,s = 1) by task 𝑖.

Binary variables

wi,j,n,n: 1 if task i is processed in unit j from event point n to event point n

xj,n: 1 if unit j is in standby mode at event point n

xk,l,k,l,j: 1 if operation l of job k precedes operation l of job k in unit j

zk,l,j: 1 if unit j is switched off after processing operation l of job k

𝑧𝑗
0: parameter to denote if unit j is switched-off at the beginning of the scheduling horizon

Yg: 1 if group g is selected

𝑌𝑖,𝑔
i : 1 if a task i is included to group g

𝑌𝑘,𝑙,𝑔
i : 1 if an operation l belonging to a job k is included to group g

316

Continuous variables

CTk,l,j: time that unit j remains idle after finishing processing operation l of job k

ESj,n: standby energy consumption of unit j at event point n

ESk,l: standby energy consumption of the unit after processing operation l of job k

MS: makespan

Obj: Objective value (rolling horizon decomposition approach)

TEC: total energy consumption

𝑇𝑗,𝑛
s : start time of unit j at event point n

𝑇𝑗,𝑛
f : end time of unit j at event point n

Tk,l: start time of operation l that belongs to job k

Ts,n: time that state s is available to be consumed at event point n

TNIk,g: number of tasks from each job k that are included in a group g

TNLg: total number of tasks included in a group g

wk,l,j: 0-1 continuous variable, 1 if operation l of job k is processed in unit j

XFk,l,j: 0-1 continuous variable, 1 if operation l of job k is the first being processed in unit

j

yk,l,j: 0-1 continuous variable, 1 if unit remains in standby mode after processing operation

l of job k

𝑦𝑗
0: parameter to denote if unit j is idle at the beginning of the scheduling horizon

317

Appendix A Proof that wi,l,j, XFi,l,j can only take 0 and 1 values

Let’s consider two tasks l and l of job k and k respectively. Both tasks l and l are able

to be processed in the same unit j. We can distinct 2 different cases

Case 1: Task l precedes task l in processing unit j

In this case xk,l,k,l,j = 1. As a result we have that from (20).

(20) ⇒ 1 ≤ 𝑤𝑘,𝑙,𝑗

Since wk,l,j cannot take values greater than 1, it is concluded that it can only take the value

1. Similarly, from (19) it is concluded that XFk,l,j can only be zero.

Case 2: Task l does not precede task l

In this case xk,l,k,l,j = 0. Therefore, according to (19) we have that wk,l,j = XFk,l,j. As a result

wk,l,j and XFk,l,j can take any value between 0 and 1 as far as they are equal. If we assume

that 0 < wk,l,j < 1 then according to (22) there should be at least one more variable of the

same set that 0 < wk,l,j < 1. However, according to (20).

(20) ⇒ 𝑥𝑘,𝑙,𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗

 And as a result xk,l,k,l,j = 0 since xk,l,k,l,j is defined as binary variable. This means that no

other task can succeed operation l. Based on the results presented on Case 1, any other

operation cannot precede operation l in any unit j or j (xk,l,k,l,j = 1 or xk,l,k,l,j = 1) since in

such case it should be wk,l,j = 1.

In conclusion, for Case 2 if wk,l,j and XFk,l,j take any value other than 0 and 1, it means

that at least two processing units (unit j plus one or more units j where 0 < wk,l,j < 1) can

only process this operation. Such assignment in most cases will be infeasible, since in

most cases there are operations that can be processed in these unit j or j, or to significantly

worse solutions that the optimal solution.

318

Appendix B Rolling horizon decomposition approach for

sequence-based model

We use the same rolling horizon decomposition approach for the sequence-based model.

Since this model is using the definition operations instead of tasks, we slightly modify

the decomposition model. More specifically, we introduce a binary variable 𝑌𝑘,𝑙,𝑔
i , which

is equal to 1 if an operation l belonging to a job k is included in group g. The

decomposition model for the sequence-based model is modified as follows.

𝑌𝑘,𝑙,𝑔
l ≤ 𝑌𝑔 ∀𝑘, 𝑙 ∈ 𝐊𝐋𝑘,𝑙, 𝑔 (B.1)

∑𝑌𝑘,𝑙,𝑔
l

𝑔

= 1

 ∀𝑘, 𝑙 ∈ 𝐊𝐋𝑘,𝑙 (B.2)

𝑌𝑘,𝑙′,𝑔
l ≤ 𝑌𝑘,𝑙,𝑔

l + ∑ 𝑌𝑘,𝑙,𝑔′
l

𝑔′<𝑔

 ∀𝑙′ = 𝑙 − 1, 𝐊𝐋𝒌,𝑙, 𝐊𝐋𝑘,𝑙′ (B.3)

∑ ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙𝑘

≥ 𝑌𝑔

 ∀ 𝑔 (B.4)

𝑌𝑔+1 ≤ 𝑌𝑔 ∀ 𝑔 (B.5)

𝑇𝑁𝐼𝑘,𝑔 = ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙

 ∀ 𝑘, 𝑔 (B.6)

𝑇𝑁𝐼𝑘,𝑔+1 = 𝑇𝑁𝐼𝑘,𝑔 ∀ 𝑘, 𝑔 (B.7)

𝑇𝑁𝐿𝑘 = ∑ ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙𝑘

 ∀ 𝑔 (B.8)

𝑇𝑁𝐿𝑔 ≤ 𝐿max ∀ 𝑔 (B.9)

319

𝑃𝐸𝑁1 ≥ 𝑇𝑁𝐼𝑘,𝑔 ∀ 𝑘, 𝑔 (B.10)

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝐼𝑘,𝑔 + |𝐺| ∙ (1 − 𝑌𝑔) ∀ 𝑘, 𝑔 (B.11)

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2)

 (B.12)

320

Chapter 8: Conclusions and Future Work

8.1 Conclusions

Even though many mathematical models for scheduling of process industry were

proposed in the past three decades, it still seems that they are not efficient, since they

require excessive computational time to generate the optimal solution. In some cases, they

even fail to provide an optimal solution. In this Thesis, multiple different features were

examined to improve model efficiency. For instance, in research contribution 1, the

feature of allowing related tasks to take place at the same event point was examined. Such

a feature was implemented into two new mathematical models for scheduling of

multipurpose batch processes. A new definition for recycling tasks was also presented, to

avoid generating suboptimal solutions. In both proposed models all related non-recycling

production and consumption tasks can take place at the same event point. While the first

model was based on task-based timing variables, the second model uses timing variables

based on units. The computational results demonstrated that both models can generate the

optimal solution for all examples, and they both reduce the number of event points

required. As a result, they led to smaller model sizes in comparison to existing

formulations, where related production and consumption tasks are not allowed to take

place at the same event point (Shaik and Floudas 2009). The model with unit-based timing

variables was the most efficient since it required the least possible computational time

which can reach up to one magnitude in most cases.

The feature of allowing related tasks at the same event point was also implemented

to a generic and efficient framework for process scheduling in research contribution 2. In

summary, except for this feature, this framework also included the following features:

• Related production and consumption tasks are sequenced, only if there is an indirect

transfer between the units processing those tasks

• Related production and consumption tasks are aligned, only if there is a direct transfer

between the units processing those tasks

• A unit can store materials that produced for more than one event points.

The proposed framework was first implemented in the multipurpose batch process

problem. By solving several motivating and benchmark results, it was shown that the

321

proposed framework can always generate the optimal solution, even for those examples

that existing formulations can only generate a suboptimum solution. Additionally, the

formulation required a smaller number of binary variables in most cases compared to the

existing mathematical formulation, especially when a processing unit can process

multiple tasks. Furthermore, it did not need to allow a task to span over multiple event

points to generate the optimal solution, which significantly reduced the model size. As a

result, the computational time was significantly reduced by one order of magnitude in

most cases.

In research contributions 3, 4 and 5, the approach presented in research approach 2,

is implemented in the continuous, multitasking and flexible job-shop processes,

respectively. The results demonstrated that the proposed framework can be successfully

implemented for all those different processes. In all cases, same or better solutions than

existing formulations were generated. For some examples, the proposed framework was

even able to provide solutions, that existing formulations fail to generate after a specified

time (i.e. one hour). As a result, it was concluded that the proposed framework is both

generic and efficient since it can solve different types of scheduling problems in

significantly less computational time.

For large-scale scheduling problems, where it is impossible to generate a good

solution in small computational time, the rolling horizon decomposition approach was

enhanced. Such a formulation can decompose the problem even if all orders/operations

have the same due dates. The proposed decomposition approach grouped different

orders/operations by using mixed-integer programming. To successfully decompose a

large-scale problem, the complexity of each subproblem was previously determined. Such

decomposition approach was successfully implemented in multitasking and flexible job-

shop problems in Chapter 4 and research contribution 5, where up to 99.9% less

computational time is required to generate near optimum solutions. The proposed

decomposition approach can even generate good schedules for examples, where all

mathematical models fail to solve.

Finally, in the last part of this thesis, a hybrid evolutionary programming and

mathematical programming approach were developed for the flexible job-shop

scheduling problem. In the first stage of this approach, the dispatching rules generated by

GEP were used to provide the allocation and sequencing of tasks into units. In the second

322

stage, the mathematical model is used to generate the optimum timing of operations into

units for the given allocation and sequencing. Such a hybrid approach was able to generate

schedules with up to 20% less energy consumption than the efficient dispatching rules

generated by using eGEP. Additionally, the mathematical model only requires up to 15

minutes for most of the examples, which is acceptable for large-scale problems.

8.2 Future work

As discussed, a generic and efficient mathematical framework for scheduling of process

industry was presented. Even though the proposed framework can solve different types

of process scheduling problems and outperforms existing formulations, some limitations

need to be handled in the future.

• The proposed framework was considered for unlimited and finite intermediate

storage policy. Even though it can also solve examples with no intermediate

storage policy (NIS), the performance of the formulation can be further improved

by including several additional constraints only for states with this policy. For

instance, if a unit processes a task that produces a state with NIS policy, then this

unit can only directly transfer materials to another unit. In this case, the model

size can be further decreased, by reducing the number of binary variables required

to generate the optimal solution. This approach could improve the performance of

the model.

• For unit wait policies, the proposed framework only considers cases with

unlimited unit wait. As a result, the current formulation cannot solve examples,

where several unstable intermediate products are produced within the facility.

Such case can be easily handled, by using several duration constraints, where the

duration of each task is limited, for states with limited unit wait policy, or it is

equal to the processing time, for states with no unit wait policy. Even though such

unit wait policies have already been considered in unit-specific event-based

formulations with timing variables based on tasks, there is no unit-specific model

with unit-based timing variables that consider such policies.

• In the proposed framework, all resources such as raw materials, utilities and

manpower are unlimited. Even though the facilities are supplied with up to three

months of supplies, the market may lack a specific raw material, or there may be

a significant increase in the price of this material. In such cases, the facility should

323

carefully consider the final products that will schedule to produce based on the

availability. Additionally, in most cases, a processing facility produces the

necessary utilities (i.e. steam). As a result, the processing facility may not be

available to produce all the required utilities based on the resulted schedule, which

can lead them to buy such utilities in a significantly higher cost. Even if such

utilizes can be produced in large amounts, it is desirable to only produce the

amount required to reduce the costs. To tackle this limitation, several resource

constraints, should be imposed, where they limit the number of tasks that can be

simultaneously produced based on the available resources.

As also presented in this PhD thesis, hybrid GEP and mathematical modelling

approaches can generate significantly better solutions than GEP approach in acceptable

computational time. More specifically, the hybrid algorithm can provide better solutions

than by just using the efficient dispatching rules developed by eGEP. However, such an

approach is only implemented in the flexible job-shop scheduling problem. Therefore, for

future work, the use of such hybrid methods in different types of the process industry,

including multipurpose and continuous processes should be considered. Similar to the

flexible job-shop scheduling problem, the eGEP can develop several rules that can

generate allocation and sequencing decisions for multipurpose batch processes and

continuous processes. The proposed framework can then develop optimal timing and

batching decisions. By using such a hybrid approach, optimum or near optimum solutions

for small-scale problems and good solutions in significantly less computational time than

mathematical modelling approaches for large-scale problems can be generated. As a

result, the proposed hybrid approach will be able to generate good solutions without

decomposing the problem in smaller subproblems.

324

References

Al-Hinai, N., ElMekkawy, T. Y., 2011. An efficient hybridized genetic algorithm

architecture for the flexible job shop scheduling problem. Flexible services and

manufacturing journal. 23. 64-85.

Ackermann, S., Fumero, Y., Montagra, J. M. 2018. Optimisation framework for the

simultaneous batching and scheduling of multisite production environments. Industrial

and Engineering Chemistry Research. 57(48). 16395-16406.

Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M., 2010. An artificial immune

algorithm for the flexible job-shop scheduling problem. Future generation computer

systems. 26(4). 533-541.

Balas, E., 1969. Machine sequencing via disjunctive graphs: an implicit enumeration

algorithm. Operations research. 17(6). 927-1092.

Bowman, E. H., 1959. The schedule-sequence problem. Operations research. 7(5). 621-

624.

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu search.

Annals of operations research. 41. 157-183.

Castro, P. M., Barbosa-Póvoa, A. P. F. D., Matos, H., 2001. An improved RTN

continuous-time formulation for the short-term scheduling of multipurpose batch plants.

Industrial and Engineering Chemistry research. 40(9). 2059-2068.

Castro, P. M., Barbosa-Póvoa, A. P., Matos H. A., Novais, A. Q. 2004. Simple

Continuous-Time Formulation for Short-Term Scheduling of Batch and Continuous

Processes. Industrial Engineering and Chemistry Research. 43(1). 105-118.

Castro, P. M., Grossmann I. E., 2005. New continuous-time MILP model for the short-

term scheduling of multistage batch plants. Industrial Engineering and Chemistry

Research. 44(24). 9175-9190.

Castro, P. M., Grossmann I. E., 2006. An efficient MILP model for the short-term

scheduling of single stage batch plants. Computers and chemical engineering. 30(6-7).

1003-1018.

325

Cerdá, J., Henning, G. P., Grossmann, I. E., 1997. A mixed-integer linear programming

model for short-term scheduling of single-stage multiproduct batch plants with parallel

lines. Industrial and engineering chemistry research. 36(5). 1695-1707.

Chan, F. T. S., Chung, S. H., Chan, P. L. Y., 2006. Application of genetic algorithms with

dominant genes in a distributed scheduling problem in flexible manufacturing systems.

International journal of production research. 44(3). 523-543.

Chen, H., Ihlow, J., Lehmann, C., 1999. A genetic algorithm for flexible job-shop

scheduling. Computers and operations research. 35(10). 3202-3212.

Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M., 1994. Ant system for job-shop

scheduling. Statistics and computer science. 1-15.

Dai, M., Tang, D., Giret, A., Salido, M. A., Li W. D., 2013. Energy-efficient scheduling

for a flexible flow shop using an improved genetic-simulated annealing algorithm.

Robotics and computer-integrated manufacturing. 29(5). 418-429.

Edgar, T. and Himmelblau, D., 1989. Optimization of chemical processes. 1st ed.

Singapore:McGraw-Hill

Falkenauer, E., Bouffouix, S., 1991. A genetic algorithm for job shop. Proceedings of

1991 IEEE International Conference on Robotics and Automation. Sacramento, CA,

USA. 1. 824-829

Fattahi, P., Saidi Mehrabad, M., Jolai, F., 2007. Mathematical modelling and heuristic

approaches to flexible job shop scheduling problems. Journal of intelligent

manufacturing. 18. 331-342.

Fisher, M. L., Lageweg, B. J., Lenstra, J. K., Rinnoy Kan, A. H. G., 1983. Surrogate

duality relaxation for job-shop scheduling. Discrete applied mathematics. 5. 65-75.

Florian, M., Trepant P., McMahon G., 1971. An implicit enumeration algorithm for the

machine sequencing problem. management science, 17(12). B782-B792

Floudas, C. A., 1995. Nonlinear and mixed-integer optimization. 1st ed. New

York:Oxford University press

326

Fumero, Y., Corsano, G., Montagna, J. M. 2012 Scheduling of multistage multiproduct

batch plants operating in campaign-mode. Industrial and Engineering Chemistry

Research. 51(10). 3988-4001.

Gao, J., Gen, M., Sun, L., 2006. Scheduling jobs and maintenances in flexible job shop

with hybrid genetic algorithm. Journal of intelligent manufacturing. 17. 493-507.

Gao, J., Sun, L., Gen, M., 2008. A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems. Computers and operations research.

35(9). 2892-2907.

Garey, M. R., Johnson D. S., Sethi R., 1976. The complexity of flowshop and jobshop

scheduling. Mathematics of operation research. 1976. 1(2). 117-129.

Giannelos, N. F., Georgiadis, M. C., 2002. A Simple New Continuous-Time Formulation

for Short-Term Scheduling of Multipurpose Batch Processes. Industrial and Engineering

Chemistry Research. 41(9). 2178-2184.

Glover, F., 1975. Improved linear integer programming formulations of non-linear integer

problems. Management science. 22(4). 455-460.

Greenberg, H. H., 1966. A branch-bound solution to the general scheduling problem.

Operations research. 16(2). 353-361.

Gupta, S., Karimi, I. A., 2003a. An improved MILP formulation for scheduling

multiproduct multistage batch plants. Industrial and Engineering Chemistry Research.

42(11). 2365-2380

Gupta, S., Karimi, I. A., 2003b. Scheduling a two-stage multiproduct process with limited

product shelf life in intermediate storage. Industrial and Engineering Chemistry Research.

42(3). 490-508

Harjunkoski, I., Grossmann, I. E., 2002. Decomposition techniques for multistage

scheduling problems using mixed-integer and constraint programming methods.

Computers and chemical engineering. 26(11). 1533-1552.

He, Y., Hui, C., 2010. A binary coding genetic algorithm for multi-purpose process

scheduling: A case study. Chemical engineering science. 65. 4816-4828.

327

Ho, N. B., Tay, J. C., 2004. GENACE: An efficient cultural algorithm for solving the

flexible job-shop problem. Proceedings of the 2004 Congress on Evolutionary

Computation. Portland, OR, USA. 2. 1759-1766.

Hui, C., Gupta, A., 2000. A novel MILP formulation for short-term scheduling of

multistage multi-product batch plants. Computers and chemical engineering. 24(12).

1611-1617.

Hui, C., Gupta, A., van der Meulen, H. A. J., 2000. A novel MILP formulation for short-

term scheduling of multi-stage multi-product batch plants with sequence-dependent

constraints. Computers and chemical engineering. 24(12). 2705-2717.

Hurink, J., Jurisch, B., Thole, M., 1994. Tabu search for the job-shop scheduling problem

with multi-purpose machines. OR Spektrum. 15. 205-215.

Hussain, M. F., Joshi, S. B., 1998. A genetic algorithm for job shop scheduling problems

with alternative routing. Proceedings of 1998 IEEE International Conference on Systems.

Man, and Cybernetics, San Diego, CA, USA, 3, 2225-2230.

Ierapetritou, M. G., Floudas, C. A., 1998a. Effective continuous-time formulation for

short-term scheduling. 1. Multipurpose batch processes. Industrial & Engineering

Chemistry. 37(11). 4341-4359.

Ierapetritou, M. G., Floudas, C. A., 1998b. Effective Continuous-Time Formulation for

Short-Term Scheduling 2. Continuous and Semicontinuous Processes. Industrial &

Engineering Chemistry. 37(11). 4360-4374.

Janak, S. L., Lin, X., Floudas, C. A., 2004. Enhanced continuous-time unit-specific event-

based formulation for short-term scheduling of multipurpose batch processes Resource

constraints and mixed storage policies. Industrial and engineering Chemistry research.

43(10). 2516-2533.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., Zhang, Y. F., 2003. A modified genetic algorithm

for distributed scheduling problem. Journal of Intelligent Manufacturing. 14. 351-362.

Kacem, I., Hammadi, S., 2002. Approach by localization and multiobjective evolutionary

optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems,

Man, and Cybernetics. 32(1). 1-13.

328

Karimi, I. A., McDonald, C. M., 1997. Planning and scheduling of parallel

semicontinuous processes 2. Short term scheduling. Industrial and engineering chemistry

research. 36(7). 2701-2714.

Karimi, S., Ardalan, Z., Naderi, B., Mohammadi, M., 2017. Scheduling flexible job-shops

with transportation times: mathematical models and a hybrid imperialist competitive

algorithm. Applied mathematical modelling, 41, 667-682.

Kondili, E., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-

term scheduling of batch operations-I MILP formulation. Computers & Chemical

Engineering. 17(2). 211-227.

Ku, H., Karimi, L. A., 1988. Scheduling in serial multiproduct batch processes with finite

interstage storage: A mixed integer linear pro-gramming formulation. Industrial and

Engineering Chemistry Research. 27. 1840–1848.

Lagzi, S., Fukasawa, R., Ricardez-Sandoval, L., 2017a. A multitasking continuous time

formulation for short-term scheduling of operations in multipurpose plants. Computers &

Chemical Engineering. 97. 135-146.

Lagzi, S., Lee, D. Y., Fukasawa, R., Ricardez-Sandoval, L., 2017b. A computational

study of continuous and discrete time formulations for a class of short-term scheduling

problems for multipurpose plants. Industrial and Engineering Chemistry Research.

56(31). 8940-8953.

Lamba, N., Karimi, I. A., 2002. Scheduling parallel production lines with resource

constraints. 1. Model formulation. Industrial and Engineering Chemistry research. 41(4).

779-789.

Lee, H., Maravelias, C. T., 2017. Discrete-time mixed-integer programming models for

short-term scheduling in multipurpose environments. Computers and Chemical

Engineering. 107. 171-183.

Lee, H., Maravelias, C. T., 2018. Combining the advantages of discrete- and continuous-

time scheduling models: Part 1. Framework and mathematical formulations. Computers

and Chemical Engineering. 116. 176-190.

329

Lee, K., Park, H. I., Lee, I., 2001. A Novel Nonuniform Discrete Time Formulation for

Short-Term Scheduling of Batch and Continuous Processes. Industrial and Engineering

Chemistry research. 40(22). 4902-4911.

Lee, S. Y., Fukasawa, R., Ricardez-Sandoval, L., 2019. Bi-objective short-term

scheduling in a rolling horizon framework: a priori approaches with alternative

operational objectives. Computers and Operations research. 111.141-154.

Li, J., Floudas, C.A., 2010. Optimal Event Point Determination for Short-Term

Scheduling of Multipurpose Batch Plants via Unit-Specific Event-Based Continuous-

Time Approaches. Industrial & Engineering Chemistry Reshearch. 49(16). 7446-7469.

Li, J., Karimi, I. A., Srinivasan, R., 2010. Recipe determination and scheduling of

gasoline blending operations. AIChE journal. 56(2). 441-465.

Li, J., Xiao, X., Tang, Q., Floudas C. A., 2012. Production scheduling of a large-scale

steelmaking continuous casting process via unit-specific event-based continuous-time

models: short-term and medium-term scheduling. Industrial and engineering chemistry

research. 51(21). 7300-7319.

Lin, X., Floudas C. A., Modi, S., Juhasz, M., 2002. Continuous-time optimization

approach for medium-range production scheduling of a multiproduct batch plant.

Industrial and engineering chemistry research. 41(16). 3884-3906.

Liouane, N., Saad, I., Hammadi, S., Borne, P., 2007. Ant systems & local search

optimization for flexible job shop scheduling production. International journal of

computers. communications and control. 2. 174-184.

Liu, Y., Karimi, I. A., 2007. Scheduling multistage, multiproduct batch plants with

nonidentical parallel units and unlimited intermediate storage. Chemical engineering

science. 62(6). 1549-1566.

Majozi, T., Zhu, X. X., 2001. A Novel Continuous-Time MILP Formulation for

Multipurpose batch plants. 1. Short-term scheduling. Industrial and Engineering

Chemistry. 40(25). 5935-5949.

Manne, A. S., 1960. On the job-shop scheduling problem. Operations research. 8(2). 219-

223.

330

Maravelias, C. T., Grossmann, I. E., 2003. New General Continuous-Time State-Task

Network Formulation for Short-Term Scheduling of Multipurpose Batch Plants.

Industrial Engineering and Chemistry research. 42(13). 3056-3074.

Mastrolilli, M., Gambardella, L. M., 2000. Effective neighborhood functions for the

flexible job shop problem. Journal of scheduling. 3(1). 3-20.

May, G., Stahl, B., Taisch, M., Prabhu, V., 2015. Multi-objective genetic algorithm for

energy-efficient job shop scheduling. International journal of production research. 53(23).

7071-7089.

Méndez, C. A., Cerdá J., 2000. Optimal scheduling of resource-constrained multiproduct

batch plant supplying intermediates to nearby end-product facilities. Computers and

chemical engineering. 24(2-7), 369-376.

Méndez, C. A., Cerdá J., 2002. An efficient MILP continuous-time formulation for short-

term scheduling of multiproduct continuous facilities. Computers and chemical

engineering. 26(4-5). 687-695.

Méndez, C. A., Cerdá J., 2003. Short-term scheduling of multistage batch processes

subject to limited finite resources. Computer aided chemical engineering. 15. 984-989.

Méndez, C. A., Henning G. P., Cerdá J., 2000. Optimal scheduling of batch plants

satisfying multiple product orders with different due-dates. Computers and chemical

engineering. 24(9-10). 2223-2245.

Méndez, C. A., Henning G. P., Cerdá J., 2001. An MILP continuous-time approach to

short-term scheduling of resource-constrained multistage flowshop batch facilities.

Computers and chemical engineering. 25(4-6). 701-711.

Meng, L., Zhnag, C., Shao, X., Ren, Y., 2019. MILP models for energy-aware flexible

job shop scheduling problem. Journal of cleaner production. 210. 710-723.

Mesghouni, K., Hammadi, S., Borne, P., 1997. Evolution programs for job-shop

scheduling, 1997 IEEE International Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation. Orlando, FL, USA. 1. 720-725.

Mockus, L., Reklaitis, G. V., 1997. Mathematical programming formulation for

scheduling of batch operations based on nonuniform time discretization. Computers and

Chemical Engineering. 21(10). 1147-1156.

331

Mockus, L., Reklaitis, G. V., 1999a. Continuous time representation approach to batch

and continuous process scheduling. 1. MINLP formulation. Industrial and engineering

chemistry research. 38(1). 197-203.

Mockus, L., Reklaitis, G. V., 1999b. Continuous time representation approach to batch

and continuous process scheduling. 2. Computational issues. Industrial and engineering

chemistry research. 38(1). 204-210.

Mohammadi, M., Poursabzi, O., 2014. A rolling horizon-based heuristic to solve a multi-

level general lot sizing and scheduling problem with multiple machines (MLGLSP_MM)

in job shop manufacturing system. Uncertain supply chain management. 2. 167-178.

Novara, F. M., Novas, J. M., Henning. G. P. 2016. A novel constraint programming model

for large-scale scheduling problems in multiproduct multistage batch plants: Limited

resources and campaign-based operation. Computers and Chemical Engineering. 93. 101-

117.

Office for National Statistics. 2016. GDP(O) low level aggregates. Available at:

https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/gdpolowlevelaggr

egates (Accessed: 4 August 2020)

Özgüven, C., Özbakır, L., Yavuz, Y., 2010. Mathematical models for job-shop scheduling

problems with routing and process plan flexibility. Applied mathematical modelling.

34(6). 1539-1548.

Pantelides, C., 1994. Unified frameworks for optimal process planning and scheduling.

Proceedings of the Second Conference on Foundations of Computer Aided Operations.

253–274.

Panwalkar, S. S., Iskander, W., 1977. A survey of scheduling rules. Operations research.

25(1). 45-61.

Park, B. J., Choi, H. R., Kim, H. S., 2003. A hybrid genetic algorithm for the job shop

scheduling problems. Computers and industrial engineering. 45. 597-613.

Patil, B. P., Fukasawa, R., Ricardez-Sandoval, L. A., 2015. Scheduling of operations in a

large-scale Scientific services facility via multicommodity flow and an optimization-

based algorithm. Industrial and Engineering Chemistry Research. 54(5). 1628-1639.

https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/gdpolowlevelaggregates
https://www.ons.gov.uk/economy/grossdomesticproductgdp/datasets/gdpolowlevelaggregates

332

Pauli, J., 1995. A hierarchical approach for the FMS scheduling problem. European

journal of operational research. 86(1). 32-42.

Pezzella, F., Morganti, G., Ciaschetti, G., 2008. A genetic algorithm for the flexible job-

shop scheduling problem. Computers and operations research. 35(10). 3202-3212.

Pinto, J. M., Grossmann, I. E. 1994. Optimal cyclic scheduling of multistage continuous

multiproduct plants. Computers and Chemical Engineering. 18. 797–816.

Pinto, J. M., Grossmann, I. E., 1995. A continuous time mixed integer linear

programming model for short-term scheduling of multistage batch plants. Industrial and

Engineering Chemistry research. 34(9). 3037-3051.

Reklaitis, G. V., Mockus, L., 1995. Mathematical programming formulation for

scheduling of batch operations based on nonuniform time discretization. Acta Chimica

Slovenica. 42. 81-86.

Roy, S., Sussman, B., 1964. Les problémes d’ordonnancement avec constraintes

disjonctives. SEMA. 9

Saidi-Mehrabad, M., Fattahi, P., 2006. Flexible job shop scheduling with tabu search

algorithms. The international journal of advanced manufacturing technology, 32, 563-

570.

Santos F. Fukasawa, R., Ricardez-Sandoval, L., 2018. An integrated personnel allocation

and machine scheduling problem for industrial size multipurpose plants. IFAC-

PapersOnLine. 51(18). 156-161.

Schilling, G., Pantelides, C. C., 1996. A simple continuous-time process scheduling

formulation and a novel solution algorithm. Computers and Chemical Engineering. 20(2).

S1221-S1226.

Schrage, L., 1969. Solving resource-constrained network problems by implicit

enumeration – nonpreemptive case. Operations research. 18(2). 263-278.

Seid, R., Majozi, T., 2012. A robust mathematical formulation for multipurpose batch

plants. Chemical Engineering Science. 68(1). 36-53.

333

SelectUSA. 2020. Chemical Spotlight. The Chemical Industry in the United States.

Available at: https://www.selectusa.gov/chemical-industry-united-states (Accessed: 4

August 2020)

Sha, D. Y., Hsu, C. Y., 2006. A hybrid particle swarm optimization for job shop

scheduling problem. Computers and industrial engineering. 51(4). 791-808.

Shah, N., Pantelides, C. C., Sargent, R. W. H., 1993. A general algorithm for short-term

scheduling of batch operations-II. Computational issues. Computers & Chemical

Engineering. 17(2). 229-244.

Shaik, M. A., Floudas, C. A., 2007. Improved unit-specific event-based continuous-time

model for short-term scheduling of continuous processes: Rigorous treatment of storage

requirements. Industrial & Engineering Chemistry Research. 46(6). 1764-1779.

Shaik, M. A., Floudas, C. A., 2008. Unit-specific event-based continuous-time approach

for short-term scheduling of batch plants using RTN framework. Computers and

Chemical Engineering. 32(1-2). 260-274.

Shaik, M. A., Floudas, C. A., 2009. Novel Unified Modeling Approach for Short-Term

Scheduling. Industrial and Engineering Chemistry Research. 48(6). 2947-2964.

Shaik, M. A., Floudas, C. A., Kallarth, J., Pitz, H. J., 2009. Production scheduling of a

large-scale industrial continuous plant: Short-term and medium-term scheduling.

Computers and chemical engineering. 33(3). 670-686.

Singer, M., 2001. Decomposition methods for large job-shops. Computers and operations

research. 28(3). 193-207.

Stadler, H., Kigler, C, Meyr H., 2015. Supply chain management and advanced planning.

3rd edition. Berlin: Springer

Sundaramoorthy, A., Karimi, I. A., 2005. A simpler better slot-based continuous-time

formulation for short-term scheduling in multipurpose batch plants. Chemical

engineering science. 60(10). 2679-2702.

Sundaramoorthy, A., Maravelias C. T., 2008. Simultaneous batching and scheduling in

multistage multiproduct processes. Industrial and engineering chemistry research. 47(5).

1546-1555.

https://www.selectusa.gov/chemical-industry-united-states

334

Sundaramoorthy, A., Maravelias C. T., Prasad, P., 2009. Scheduling of multistage batch

processes under utility constraints. Industrial and engineering chemistry research. 48(13).

6050-6058.

Sung, C., Maravelias, C. T., 2007. An attainable region approach for production planning

and multiproduct processes. AIChE journal. 53(5). 1298-1315.

Tay, J. C., Wibowo, D., 2004. An effective chromosome representation for evolving

flexible job shop schedules. Lecture notes in computer science. 3103. 210-221.

Vooradi, R., Shaik, M. A., 2012. Improved three-index unit-specific event-based model

for short-term scheduling of batch plants. Computers and Chemical Engineering. 43(10).

148-172.

Vooradi, R., Shaik, M. A., 2013. Rigorous unit-specific event based model for short term

scheduling of batch plants using conditional sequencing and unit-wait times. Industrial

and Engineering research. 52(36) .12950-12792.

Wagner, H. M., 1959. An integer linear-programming model for machine scheduling.

Naval research logistics quarterly. 6(2). 131-140.

Wang, H., Jiang, Z., Wang, Y., Zhang, H., Wang, Y., 2018. A two-stage optimization

method for energy-saving flexible job-shop scheduling based on energy dynamic

characterization. Journal of cleaner production. 188. 575-588.

Watanabe, M., Ida, K., Gen, M., 2005. A genetic algorithm with modified crossover

operator and search area adaptation for the job-shop scheduling problem. Computers and

industrial engineering. 48(4). 743-752.

Woolway M., Majozi T., 2018. A novel metaheuristic framework for the scheduling of

multipurpose batch plants. Chemical engineering science. 192. 678-687.

Woolway, M., Majozi T., 2019. On the application of a metaheuristic suite with parallel

implementations for the scheduling of multipurpose batch plants. Computers and

Chemical engineering. 126. 371-390.

Wu, X., Sun, Y., 2018. A green scheduling algorithm for flexible job shop with energy-

saving measures. Journal of cleaner production. 172. 3249-3264.

335

Yan, Z., Anke, X., Xiaohui, Z., Baofeng, G., 2013. A rolling horizon procedure with

optimal operation assignment. Proceedings of the 23nd Chinese control conference.

Xi’an, China. 2580-2584.

Yazdani, M., Amiri, M., Zandieh, M., 2010. Flexible job-shop scheduling with parallel

variable neighborhood search algorithm. Expert systems with applications. 37(1). 678-

687.

Zhang, G., Gao, L., Shi, Y., 2011. An effective genetic algorithm for the flexible job-shop

scheduling problem. Expert systems with applications. 38(4). 3563-3573.

Zhang, L., Tang, Q., Wu, Z., Wang, F., 2017. Mathematical modelling and evolutionary

generation of rule sets for energy-efficient flexible job shops. Energy. 138, 210-227.

Zhang, X., Sargent, R. W. H., 1996. The optimal operation of mixed production facilities-

A general formulation and some approaches for the solution. Computers and Chemical

Engineering. 20(6-7). 897-904.

Zhang, X., Sargent, R. W. H., 1996. The optimal operation of mixed production facilities

– a general formulation and some approaches for the solution. Computers and chemical

engineering. 20(6-7). 897-904.

Zhang, Z., Wu, L., Peng, T., Jia, S., 2019. An improved scheduling approach for

minimizing total energy consumption and makespan in a flexible job shop environment.

Sustainability. 11(1). 179.

 336

Publications and presentations

Journal Publications

Nikolaos Rakovitis, Nan Zhang, Jie Li, Liping Zhang, A new approach for scheduling of

multipurpose batch processes with unlimited intermediate storage policy, Frontiers of

Chemical Engineering, 2019, 13, 784-802

Nikolaos Rakovitis, Nan Zhang, Jie Li, A novel unit-specific event-based formulation for

short-term scheduling of multitasking processes in scientific service facilities, Computers

and Chemical engineering, 2020, 133, 106626

Nikolaos Rakovitis, Yueting Pan, Nan Zhang, Jie Li, Giorgos Kopanos, Generic

mathematical formulations for scheduling of multipurpose batch plants, AIChE Journal,

2020, under review

Nikolaos Rakovitis, Nan Zhang, Jie Li, Liping Zhang, Novel Approaches for Energy-

Efficient Scheduling of Flexible Job-Shop Problems. to be submitted in energy

Nikolaos Rakovitis, N., Wan Mohd Azril bin Wan Hasnuddin, Nan Zhang, Jie Li, A

Generic Approach for Scheduling of Semi-continuous and Continuous Processes. to be

submitted to European journal of operational research

Conference publications

Nikolaos Rakovitis, Jie Li, Nan Zhang, New approaches for scheduling of multitasking

multipurpose batch processes in scientific service facilities, Computer Aided Chemical

Engineering, 2018, 43, 1033-1038

Nikolaos Rakovitis, Jie Li, Nan Zhang, A novel modelling approach to scheduling of

multipurpose batch processes, Computer Aided Chemical Engineering, 2018, 44, 1333-

1338

Nikolaos Rakovitis, Jie Li and Nan Zhang, A new approach for scheduling of

multipurpose batch processes with unlimited intermediate storage policy, 2018 5th

International Conference on Control, Decision and Information Technologies (CoDIT),

Thessaloniki, 2018, pp. 779-784, doi: 10.1109/CoDIT.2018.8394914.

 337

Nikolaos Rakovitis, Jie Li, Nan Zhang, An improved approach to scheduling

multipurpose batch processes with conditional sequencing, Computer Aided Chemical

Engineering, 2019, 46, 1387-1392

Nikolaos Rakovitis, Dan Li, Nan Zhang, Jie Li, Liping Zhang, Xin Xiao, Novel

Approaches for Energy-Efficient Flexible Job-Shop Scheduling Problems, Chemical

engineering transactions, in press.

Conference presentations

Nikolaos Rakovitis, Jie Li, Nan Zhang, A new approach for scheduling of operations in

scientific services facilities via multi-commodity flow, Presented at AIChE Annual

Meeting, 29 October–3 November 2017, Minneapolis, Minnesota

Nikolaos Rakovitis, Jie Li, Nan Zhang, A Novel Mathematical Model for Short-Term and

Medium-Term Scheduling of Multipurpose Batch Plants, Presented at AIChE Annual

Meeting, 28 October–2 November 2018, Pittsburgh, Pennsylvania

Nikolaos Rakovitis, Jie Li, Nan Zhang, Liping Zhang, Novel Approach to Scheduling of

Energy-Efficient Flexible Job Shops Presented at AIChE Annual Meeting, 10–15

November 2019, Orlando, Florida

Nikolaos Rakovitis, Jie Li, Nan Zhang, A novel approach for scheduling of operations in

scientific services facility, Presented at ChemEngDayUK 2017 conference, 27-28 March

2017, Birmingham, United Kingdom

Nikolaos Rakovitis, Jie Li, Nan Zhang, A novel approach for optimal scheduling of

multipurpose batch processes, Presented at ChemEngDayUK 2018 conference, 27-28

March 2018, Leeds, United Kingdom

 338

Supplementary materials for

Advances on mathematical modelling and optimization

framework for process scheduling

List of Supplementary materials

Supplementary material 1: supplementary material for research contribution 2

Supplementary material 2: supplementary material for research contribution 4

Supplementary material 3: supplementary materials A, B for research contribution 5

 339

Blank Page

 340

Supplementary material 1: supplementary material for research

contribution 2

Rakovitis, N., Pan Y, Zhang, N., Li, J. Kopanos, G. Generic mathematical formulations

for scheduling of multipurpose batch plants, AIChE journal, submitted

 341

Blank Page

 342

Supplementary Material for

Generic mathematical formulations for scheduling of multipurpose batch plants

Nikolaos Rakovitis,1 Yueting Pan,1 Nan Zhang,1 Jie Li,1,** and Giorgos Kopanos2

1Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The

University of Manchester, Manchester, M13 9PL, United Kingdom
2Flexciton Limited, London, 145 City Rd, Hoxton, London EC1V 1AZ

List of Tables

Table S1 Data for processing units for Example 1

Table S2 Initial amount and maximum capacities (FIS) for Example 1

Table S3 Data for processing units for Example 2

Table S4 Initial amount and maximum capacities (FIS) for Example 2

Table S5 Data for processing units for example 3

Table S6 Initial amount and maximum capacities (FIS) for Example 3

Table S7 Data for processing units for Example 4

Table S8 Initial amount and maximum capacities (FIS) for Example 4

Table S9 Data for processing units for Example 5

Table S10 Initial amount and maximum capacities (FIS) for Example 5

Table S11 Data for processing units for Example 6

Table S12 Initial amount and maximum capacities (FIS) for Example 6

Table S13 Data for processing units for Example 7

Table S14 Initial amount and Maximum capacities (FIS) for Example 7

Table S15 Data for processing units for Example 8

Table S16 Initial amount and Maximum capacities (FIS) for Example 8

Table S17 Data for processing units for Example 9

Table S18 Initial amount and maximum capacities (FIS) for Example 9

** To whom correspondence should be addressed. Email: jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 343

List of Figures

Figure S1 STN representation of Example 1

Figure S2 STN representation of Example 2

Figure S3 STN representation of Example 3

Figure S4 STN representation of Example 4

Figure S5 STN representation of Example 5

Figure S6 STN representation of Example 6

Figure S7 STN representation of Examples 7

Figure S8 STN representation of Examples 8, 9

List of Appendices

Appendix A. Nomenclature

Appendix B. Modified short-term model and Rolling horizon decomposition approach of Janak et al.

(2006)

B1. Rolling-horizon Level 1 Formulation

B2. Rolling horizon Level 2 Formulation

B3. Modified short-term model of Janak et al. (2006)

 344

Figure S1 STN representation of Example 1

Table S1 Data for processing units for Example 1

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

I1 J1 1.333 0.01333 0 100

I2 J2 1.333 0.01333 0 150

I3 J3 1.000 0.00500 0 200

I4 J4 0.667 0.00445 0 150

I5 J5 0.667 0.00445 0 150

Table S2 Initial amount and maximum capacities (FIS) for Example 1

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 200

S3 0 300

S4 0 ∞

Figure S2 STN representation of Example 2

 345

Table S3 Data for processing units for Example 2

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

I1 J1 0.667 0.00667 0 100

I2 J2 1.334 0.02664 0 50

I3 J3 1.334 0.01665 0 80

I4 J2 1.334 0.02664 0 50

I5 J3 1.334 0.01665 0 80

I6 J2 0.667 0.01332 0 50

I7 J3 0.667 0.008325 0 80

I8 J4 1.334 0.00666 0 200

Table S4 Initial amount and maximum capacities (FIS) for Example 2

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 ∞ ∞

S3 ∞ ∞

S4 0 100

S5 0 200

S6 0 150

S7 0 200

S8 0 ∞

S9 0 ∞

Figure S3 STN representation of Example 3

 346

Table S5 Data for processing units for Example 3

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

I1 I1 0.667 0.00667 0 100

I2 I1 1.000 0.01000 0 100

I3 I2 1.333 0.01333 0 100

I4 I3 1.333 0.00889 0 150

I5 I2 0.667 0.00667 0 100

I6 I3 0.667 0.00445 0 150

I7 I2 1.333 0.01330 0 100

I8 I3 1.333 0.00889 0 150

I9 I4 2.000 0.00667 0 300

I10 I5 1.333 0.00667 20 200

I11 I6 1.333 0.00667 20 200

Table S6 Initial amount and maximum capacities (FIS) for Example 3

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 ∞ ∞

S3 0 100

S4 0 100

S5 0 300

S6 50 150

S7 50 150

S8 ∞ ∞

S9 0 150

S10 0 150

S11 ∞ ∞

S12 0 ∞

S13 0 ∞

 347

Figure S4 STN representation of Example 4

Table S7 Data for processing units for Example 4

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

I1 J1 0.9500 0.010000 0 6

I2 J2 2.9400 0.020000 0 3

I3 J3 2.4800 0.010000 0 2

I4 J4 4.4666 0.006680 0 6

I5 J5 1.9663 0.013348 0 8

Table S8 Initial amount and maximum capacities (FIS) for Example 4

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 3

S3 0 4

S4 0 8

S5 ∞ ∞

 348

Figure S5 STN representation of Example 5

Table S9 Data for processing units for Example 5

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.000 0 0 10

2 2 3.000 0 0 4

3 3 1.000 0 0 2

4 4 2.000 0 0 10

Table S10 Initial amount and maximum capacities (FIS) for Example 5

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 6

S3 0 4

S4 ∞ ∞

 349

Figure S6 STN representation of Example 6

Table S11 Data for processing units for Example 6

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.500 0 0 150

2 2 4.500 0 0 60

3 3 1.500 0 0 30

4 4 1.500 0 0 30

5 5 3.000 0 0 150

Table S12 Initial amount and maximum capacities (FIS) for Example 6

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 ∞ ∞

S3 ∞ ∞

S4 0 60

S5 0 60

S6 ∞ ∞

S7 ∞ ∞

0.3

0.3

0.4

0.5

0.5

 350

Figure S7 STN representation of Example 7

Table S13 Data for processing units for Example 7

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 17.3333 0.866 0 20

2 2 2.667 0.133 0 20

3 3 2.667 0.133 0 20

4 4 4.000 0.200 0 20

5 5 5.333 0.266 0 20

6 6 5.333 0.266 0 20

Table S14 Initial amount and Maximum capacities (FIS) for Example 7

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 100

S3 ∞ ∞

S4 0 100

S5 0 100

S6 ∞ ∞

 351

Figure S8 STN representation of Example 8, 9

Table S15 Data for processing units for Example 8

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.666 0.03335 0 40

2 2 2.333 0.08335 0 20

3 3 0.333 0.06800 0 2.5

4 4 2.667 0.008325 0 40

Table S16 Initial amount and Maximum capacities (FIS) for Example 8

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 10

S3 0 17.5

S4 0 10

S5 0 18

S6 ∞ ∞

 352

Table S17 Data for processing units for Example 9

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥

1 1 1.666 0.03335 0 40

2 2 2.333 0.08335 0 20

3 3 0.333 0.06800 0 2.5

4 4 2.667 0.008325 0 40

Table S18 Initial amount and maximum capacities (FIS) for Example 9

State 𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥

S1 ∞ ∞

S2 0 10

S3 0 17.5

S4 0 10

S5 0 18

S6 ∞ ∞

353

Appendix A. Nomenclature

Indices

i, iʹ: tasks

j, jʹ: units

n, nʹ, nʹʹ: event points

s: states

Sets

I: tasks

Ij: tasks that can be performed in unit j

Is: tasks that produce/consume state s

𝐈𝑠
𝑐: tasks that consume state s

𝐈𝑠
𝑃: tasks that produce state s

IR: tasks considered as recycling tasks

J: units

Ji: units that can process task i

Js: units that produce/consume state s

N: event points

S: states

SFIS: states with unlimited intermediate storage policy

SP: states that are final products

SIN: states that are intermediate products

SR: states that are raw materials

SUIS: states with unlimited intermediate storage policy

Parameters

𝐵𝑖𝑗
𝑚𝑎𝑥: maximum batch size of task i processed in unit j

𝐵𝑖𝑗
𝑚𝑖𝑛 ∶ minimum batch size of task i processed in unit j

Ds: demand of state s

H: scheduling horizon

M: big-M value

Ps: price of state s

ST0s: initial amount of state s

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy)

αij: coefficient of constant term of processing time of task i in unit j

354

βij: coefficient of variable term of processing time of task i in unit j

Δn: maximum number of event points that task i is allowed to be active

ρsij: portion of state 𝑠 consumed/produced by task i processed in unit j

Binary variables

wijnnʹ: binary variable which takes the value 1 if task i is processed in unit j from event

point n to nʹ ≥ n

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in

unit j at event point n, which were previously produced by task i processed in unit j at

event point nʹ < n

zIjjʹn: binary variable which takes the value 1 if there is indirect material transfer between

unit j and jʹ

zDjjʹn: binary variable which takes the value 1 if there is indirect material transfer between

unit j and jʹ

Continuous variables

bijnnʹ: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event

point 𝑛 to time event point nʹ ≥ n

bsijn: amount of materials stored in unit j at event point n, which were previously produced

by task i processed in unit j at event point nʹ < n

bTiijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

bTdijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

STsn: amount of state 𝑠 that has to be stored at time event point 𝑛

Tsjn: time that state s produced in unit j is available to be consumed at event point n

𝑇𝑗𝑛
s : start time of unit 𝑗 at time event point 𝑛

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛

355

Appendix B. Modified short-term model and Rolling horizon decomposition

approach of Janak et al. (2006)

B1. Rolling-horizon Level 1 Formulation

Indices

d: days

s, s: states

Sets

D: days

I: tasks

Is: tasks that produce/consume state s

J: units

Ji: units that process task i

SF: final products (materials produced by a task type 6)

SIN: intermediate products

SPIN: states which are either final or intermediate products

Parameters

asd: amount of ahead time required to fulfil demand of state s which is due of day d

Df: last day of the previous sub-horizon. Zero for the first sub-horizon

fillss: parameter to relate final product s with an intermediate product s before being

processes in a type 6 task

lasts: parameter to indicate whether state s was still being produced (the relevant task is

still being processed by a unit) at the end of the previous sub-horizon

LI1, LI2: weights for the objective function of the level 1 decomposition formulation

nepd: number of event point used for each day

prawss: parameter to relate final product s with raw material or intermediate product s

rsd: demand for product s due on day d

ubin: maximum number of binary variables in each sub-problem

uprd: upper amount of production in the current sub-horizon

wts: weight of product s in the objective function

Ysd: amount of state s that has to be processed in a type 5 task within the period [d,d+3]

Binary Variables

dayd: 1 if day d is included in the current horizon

prs: 1 if state s is included in the current horizon

356

Continuous variables

slbin: slack variable to allow extra days to be included in the current sub-horizon

prdaysd: bilinear term 𝑝𝑟𝑠 ∙ 𝑑𝑎𝑦𝑑

slackbin: Slack variable to allow extra days to be added in the current horizon

z: Objective value

Constraints

(1)+d dday day d, d > Df , d < |D| (B.1)

s dpr day d, d > Df , d < |D|, s Df, rsd >

0 (B.2)

,()−
s ds d apr day d, d > Df , d < |D|, s SF, asd > 0, d > asd

 (B.3)

,
f f f

, , , ,

()

, 0 , , 0 , 0

−

 + + s d

s d s d s d s d

s d d a d

d D r d D a r d D Y

pr day day day s Sf, lasts = 0

 (B.4)

s spr pr s SF, s SIN, praws,s > 0

 (B.5)

, ,, 0 , 0f p
s s s s

s s s

s S fill s S praw

pr pr pr

 + ∀ s∊SIN lasts > 0 (B.6)

s spr last ∀s ∊ SPIN (B.7)

f f s i

s d

d D s S i I j J

nepd pr day ubin slbin

 +

 (B.8)

f F

s i

s d sd

i jd D s

pr day r uprd
I JS

 (B.9)

1 + +sd s dprday pr day ∀s, d (B.10)

sd sprday pr ∀s, d (B.11)

sd dprday day ∀s, d (B.12)

 +

f f
s i

sd

i jd D s

nepd prday upper slackbin
I JS

 (B.13)

f F

s i

sd sd

i jd D s

prday r uprd
I JS

 (B.14)

1 2

= + +
f PIN

d s s

d D s

z day LI wt pprod LI slackbin
S

 (B.15)

357

B2. Rolling horizon Level 2 Formulation

Indices

i: tasks

s: states

Sets

Ij: tasks that can be processed in unit j

IT1: set which includes the type 1 tasks

JT1: units that process type 1 tasks

Scat1: final product type 1

Scat2: final product type 2

Si: states that were produced/consumed by task i

SPIN: states which are either final or intermediate products

Parameters

𝐵𝑖𝑗
max: maximum capacity of task i in unit j

Dems: demand of state s

lasts: parameter to indicate whether state s was still being produced (the relevant task is

still being processed by a unit) at the end of the previous sub-horizon

lower: lower bound on the utilization level of units processing type 1 tasks

packss: parameter that relates final products of type 1 with final products of type 2

𝑝𝑡𝑖
min: minimum processing time of task i in all available processing units

sls: parameter to indicate whether state s is included in the current horizon because it has

demands in the horizon or needs to be processed ahead of time to fulfill demands at a

later horizon

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy)

Binary variables

reacti: 1 if type 1 task i is included in the scheduling model

Continuous variables

z: objective value

Constraints

i sreact sl ∀ i∊IT1, s∊SPIN, Si (B.16)

i sreact last ∀ i∊IT1, s∊SPIN, Si (B.17)

358

()() () ()()1 2 1 1 2 1

min max max

max

1 0 0 0 0
0 0 0 0 0

 + = + = + = + = + =

 + +

T cat cat cat cat cat

i i i i i

i s s s s s s s s s s

s s s s s s s

i

i i s s s

i ij s s s S s s

j sl last sl last sl last sl last sl last
D pack D D pack

react pt Dem st st
BI S S S S S S S S S

J

J

1 Tlower H J (B.18)

1

=
T

i

i

z react
I

 (B.19)

359

B3. Modified short-term model of Janak et al. (2006)

Indices

i, iʹ: tasks

j, jʹ: units

n: event points

Sets

D: days

Din: days that included in the current horizon

I: tasks

Ij: tasks that can be performed in unit j

𝐈𝑠
𝐶 : tasks that consume state s

Iin: tasks included in the current horizon

Ik: tasks related with order k

𝐈𝑠
𝑃: tasks that produce state s

IR: tasks considered as recycling tasks

IT6b: type 6 tasks that produce category 1 products

J: units

Ji: units that can process task i

Js: units that produce/consume state s

JT4: units that process task types 4a and 4b

JT6: units that process task type 6

K:orders

Kin: orders included in the current horizon

Ki: orders related with task i

Ks: orders that are related with state s

N: event points

S: states

Scat1: category 1 final products

SFIS: states with finite intermediate storage policy

SIN: states included in the current horizon

Sst: states with no intermediate storage policy

Sunl: states with unlimited intermediate storage policy

Parameters

360

𝐵𝑠
𝑚𝑎𝑥: maximum available batch that process state s

𝐵𝑠
𝑚𝑖𝑛: minimum available batch that process state s

𝐵𝑖𝑗
𝑚𝑎𝑥: maximum capacity of task i in unit j

𝐵𝑖𝑗
𝑚𝑖𝑛: minimum capacity of task i in unit j

Dems: demand of state s

𝐷𝑒𝑚𝑠
𝑟𝑎𝑤: demand of raw material state s

duekksd: due date of order k for state s on day d

H: scheduling horizon

M: big-M value

mtasks: minimum number of tasks that are allowed to be active in the units processing

type 1 tasks

Nmax: event points within the current scheduling horizon

priors: priority of state s

𝑝𝑟𝑖𝑜𝑟𝑠
𝑟𝑎𝑤: priority of state s

rkksd: amount of order k for state s on day d

sls: indicator that state s is included in the current horizon because there is demand in this

horizon or in the ahead of time

𝑆𝑇𝑠
max: maximum storage capacity for state s

𝑆𝑇𝑠
min: minimum amount of state s that should be stored at any point

ST0s: initial amount of state s at the beginning of the current scheduling horizon

α, β, γ, δ, φ, ξ, λ, η, w, w4: weights for objective function

αij : coefficient of constant term of processing time of task i in unit j

βij : coefficient of variable term of processing time of task i in unit j

ρsij : portion of state 𝑠 consumed/produced by task i processed in unit j

Binary Variables

wvijn: 1 if task i is processed in unit j at event point n

yikn: binary variable which assigns the delivery of order k through task i

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in

unit j at event point n, which were previously produced by task i processed in unit j at

event point nʹ < n

zIjjʹn : binary variable which takes the value 1 if there is indirect material transfer between

unit j and jʹ

zDj,jʹ,n : binary variable which takes the value 1 if there is indirect material transfer

361

between unit j and jʹ

Continuous variables

bijn: amount of materials processed in unit j processing task i at event point n

bsijn : amount of materials stored in unit j at event point n, which were previously

produced by task i processed in unit j at event point nʹ < n

bTiijiʹjʹn : amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

bTdijiʹjʹn : amount of materials, which produced by task i processed in unit j, were indirectly

transferred to unit jʹ which consumes task iʹ at event point n

Dsn: amount of state s delivered at event point n

𝐷𝑠𝑛
f : amount of state s delivered after the last event point

kDksn: amount of state s delivered at event point n in order k

𝑘𝐷𝑘𝑠𝑛
f : amount of state s delivered after the last event point in order k

sla1ksd: amount of state s due on day d of order k that is not delivered

sla2ksd: amount of state s due on day d of order k that is overdelivered

slcapsn: amount of state s that cannot be stored in storage tanks

slls: amount of state s due in the current horizon but not made

𝑠𝑙𝑙𝑠
𝑟𝑎𝑤: amount of raw material state s due in the current horizon but not made

slt1ksd: amount of time state s is due on day d for order k is late

slt2ksd: amount of time state s is due on day d for order k is early

𝑠𝑙𝑠𝑛
cap

: Amount of materials of state s required to fulfil the minimum amount requirement

at event point n

𝑠𝑙𝑘
𝑜𝑟𝑑𝑒𝑟: 0-1 continuous variable that indicates whether order k is fulfilled

STsn: amount of state s stored during event point n

ST0s: amount of state s at the end of the current scheduling horizon

Tsjn : time that state s produced in unit j is available to be consumed at event point n

𝑇𝑗𝑛
s : start time of unit 𝑗 at time event point 𝑛

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛

𝑡𝑡𝑗𝑛
s : start time of unit 𝑗 processing an active task i at time event point 𝑛

term1-term9: objective terms

z: objective values

Constraints

Allocation constraints

362

1

j

ijn

i

wv
I

 ∀ j, n ≤ Nmax (B.20)

Capacity constraints

min max ij ijn ijn ij ijnB wv b B wv ∀ j, i Ij, n ≤ Nmax (B.21)

Storage constraints

maxsn sST ST ∀ s∊SFIS , n (B.22)

min + cap

sn s snST ST sl ∀ s∊SFIS , n (B.23)

Material balance constraints

R R

1 (1)

() () ()\ ()

 − −

= + + + −
P P C

s i s i s is s s

sn sn sij ijn sij ij n sij ijn sn

j j ji i i

ST ST b b b D
J J J J J JI I I I I

 ∀s, n > 1 (B.24)

R () ()\

0

= + + −
P C

s i s is s

sn s sij ijn sij ijn sn

j ji i

ST ST b b D
J J J JI I I

 ∀s, n = 1 (B.25)

Duration constraints

()f s

 + +
j

jn jn ij ijn ij ijn

i

T T wv b
I

 ∀j, n ≤ Nmax (B.26)

f =jnT H ∀s(Sin ∩ Sst)\Sunl, jJT4,
()

0

P

j s

sij

i I I

 n = Nmax (B.27)

f

()

1

 − −

P

j s

sjn jn ijn

i

T T M wv
I I

 ∀s Sin, jJs,
()

0

P

j s

sij

i I I

, n (B.28)

s

()

2

 + − −

C

j s

sjn j n i j n jj n

i

T T M wv zI
I I

 ∀s Sin, jJs,
()\

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n (B.28)

s

(1) (1)

()

2

 + +

 + − −

C

j s

sjn j n i j n jj n

i

T T M wv zI
I I

 ∀s SIN, jJs,
()

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n < Nmax (B.29)

(1)

() () ()

 −

− +
C P C

s s ss j j s j s

si j i j n s n iji j n

j j ji i i

b ST bTi
J J JI I I I I I

 ∀s SIN, n (B.30)

()

C

s j s

sij ijn iji j n

j i

b bTi
J I I

 ∀sSIN, jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (B.31)

363

(1)

()

 −

C

s j s

sij ij n iji j n

j i

b bTi
J I I

 ∀sSIN, jJs, i (Ij 𝐈𝑠
𝑃 IR), n > 1 (B.32)

()

 +

−
P

j s

si j i j nn iji j n

n n n n j i

b bTi
I I

 ∀sSIN, jJs, i (Ij 𝐈𝑠
𝐶), n (B.33)

max max

() ()

min ,

P C

j s j s

iji j n j j jj n

i i

bTi B B zI
I I I I

 ∀s SIN, j ≠ j, jJs, jJs, n (B.34)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

f

()

1

 − −

P

j s

sjn jn ijn

i

T T M wv
I I

 ∀s SIN, jJs,
()

0

P

j s

sij

i I I

, n (B.35)

()s 1 + −sjn j n jj nT T M zI

 ∀s SIN, jJs,
()\

0

P

j s R

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n (B.36)

()s

(1) 1 + + −sjn j n jj nT T M zI

 ∀s SIN, jJs,
()

0

P

j s R

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n < N (B.37)

s

(1) (1)

()

1

 + +

 + −

C

j s

sjn j n i j n

i

T T M wv
I I

 ∀s SIN, jJs,
()\

0

P

j s R

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n < N (B.38)

s

(2) (2)

()

1

 + +

 + −

C

j s

sjn j n i j n

i

T T M wv
I I

 ∀s SIN, jJs,
()

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n < N−1 (B.39)

𝑇𝑠𝑗(𝑛+1) ≥ 𝑇𝑠𝑗𝑛 ∀s SIN, j Js, n < N (B.40)

()(1) (1)

1

 − −
− −

 +ijn sij ijn n ij n

n n n n

bs b bs

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃), n > 1 (B.41)

(1)

()

 −

 −
C

s j s

ijn ij n iji j n

j i

bs bs bTd
J I I

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n > 1 (B.42)

(1) (1)

()

 − +

 −
C

s j s

ijn ij n iji j n

j i

bs bs bTd
J I I

364

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃 IR), 1 < n < N (B.43)

max ijn ij ijnbs B ys ∀j, i Ij, n (B.44)

1

 −
j j

ijn ijn

i i

ys w
I I

 ∀j, n (B.45)

()
() ()() ()R

max

(1) (1)

\ , \

 − +

 + + +
P P C P R

s s s sj s j s j s j s

sij ijn s n s iji j n ij n

j j j ji i i i

b ST ST bTd bs
J J J JI I I I I I I I I I

 ∀s (SIN SFIS), n (B.46)

()
() ()() ()R

max

(1) (1)

 − −

 + + +
P P C P R

s s s sj s j s j s j s

sij ij n s n s iji j n ijn

j j j ji i i i

b ST ST bTd bs
J J J JI I I I I I I I I I

 ∀s (SIN SFIS), n > 1 (B.47)

max max

() ()

min ,

P C

j s j s

iji j n j j jj n

i i

bTd B B zD
I I I I

 ∀s (SIN SFIS), j ≠ j, jJs, jJs, n (B.48)

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥].

()

 −

 +
C

s j s

sij ijn n ijn iji j n

n n n n j i

b bs bTd
J I I

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (B.49)

(1) (1)

1 1 ()

 − −
 − − −

 +
C

s j s

sij ijn n ij n iji j n

n n n n j i

b bs bTd
J I I

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝑃 IR), n > 1 (B.50)

()

 +

−
P

j s

si j i j nn iji j n

n n n n j i

b bTd
I I

 ∀s (SIN SFIS), jJs, i (Ij 𝐈𝑠
𝐶), n (B.51)

()f f

(1) 1 − + −j n jn jj nT T M zD

 ∀s (SIN SFIS), jJs,
()\

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n > 1 (B.52)

()f f

(1)1 + + −j n jn jj nT T M zD

 ∀s (SIN SFIS), jJs,
()

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n < N (B.53)

()f s

(1) 1 − − −jn j n ijnT T M wv

 ∀s (SIN SFIS), jJs,
()\

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n > 1 (B.54)

365

()f s 1 − −jn j n ijnT T M wv

 ∀s (SIN SFIS), jJs,
()

0

P R

j s

sij

i I I I

, j ≠ j, jJs,
()

0

C

j s

si j

i I I

, n (B.55)

6 max, ,

1

+
in T b

k

order

ikn k

i n N

y sl
I I I

 ∀ k∊ Kin (B.56)

()6 max 1
min

, ,

in T b in cat
k s

ksd

d
ikn

i n N ss sl

rk

y
BI I I S S

 ∀ k∊ Kin (B.57)

() ()T6

in

ii i

j ikn ijn

jk j

y wv
JK K J J

I ∀ i∊ (Iin ∩IT6b) , n≤Nmax (B.58)

() ()T6

in

i i

ikn ijn

k j

y wv
K K J J

 ∀ i∊ (Iin ∩IT6b) , n≤Nmax (B.59)

()

=
in

s

sn ksn

k

D kD
K K

 ∀ s∊ (Sin∩Scat1), n≤Nmax (B.60)

()

f f

=
in

s

sn ksn

k

D kD
K K

 ∀ s∊ (Sin∩Scat1), n≤Nmax (B.61)

()f

(1) (1)1− −

+ = − −
i

ksn ksn ij n ik n

j

kD kD b M y
J

 ∀ k∊ (Kin∩Ks), i∊(Ik∩IT6b), 1 <n ≤ Nmax (B.62)

()
max

f 1

+ + ksn ksn ksd ksd

n N

kD kD sla rk

 ∀ s∊ (Sin∩Scat1), k∊ (Kin∩Ks), d∊Din, rkksd > 0 (B.63)

()
max

f 2

+ + + ksn ksn s ksd ksd

n N

kD kD STf sla rk

 ∀ s∊ (Sin∩Scat1), k∊ (Kin∩Ks), d∊Din, rkksd > 0 (B.64)

()f 1 2− + − −jn ksd ksd ijn iknt slt duek H wv y

 ∀ s∊ (Sin∩Scat1), k∊ (Kin∩Ks), i∊(Ik∩IT6b), j∊Ji, d∊Din, rkksd > 0 (B.65)

() ()f 2 24 2+ − + − −jn ksd ksd ijn iknt slt duek H wv y

 ∀ s∊ (Sin∩Scat1), k∊ (Kin∩Ks), i∊(Ik∩IT6b), j∊Ji, d∊Din, rkk,s,d > 0 (B.66)

max

f

+ + sn sn s s

n N

D D sll Dem ∀ s∊ (Sin∩Scat1) (B.67)

+ s s stot sll Dem ∀ s∊ (Sin∩Scat2) (B.68)

() max

+
in p

is

raw raw

ijn s s

j n Ni

b sll Dem
JI I

366

 ∀ s∊ (Sin∩Srw), s∊ (Sin∩Sf), praws,s > 0, Dems > 0, 𝐷𝑒𝑚𝑠
raw > 0 (B.69)

s sjn jntt t ∀ j, n≤Nmax (B.70)

s s 1

 − −

j

jn jn ijn

i

tt t H wv
I

 ∀ j, n≤Nmax (B.71)

s 1

 −

j

jn ijn

i

tt H wv
I

 ∀ j, n≤Nmax (B.72)

1 5 max

, ,

\

T T

j

i j n

ij n N

wv mtasks
IJ J

 (B.73)

Objective function

l

l

z term= (B.74)

1

=
f

s s

s

term prior sll
S

 (B.75)

2 k

k

term slorder= (B.76)

1

3 1 2

= +
in cat in

ksd ksd

k s d

term sla w sla
K S D

 (B.77)

()
1 max

4 4 1 2

= +
in cat in

ksdn ksdn

k s d n N

term w slt slt
K S D

 (B.78)

5

=
rw

raw raw

s s

s

term prior sll
S

 (B.79)

max

6

=
cpm

sn

s S n N

term slcap (B.80)

max

s

7

= jn

j n N

term tt (B.81)

max max

8

= +
i

ijn ikn

i j k in N n N

term n wv y
J

 (B.82)

max

f

9

= jn

j n N

term t (B.83)

367

Blank Page

368

Supplementary material 2: supplementary material for research

contribution 4

Rakovitis, N., Zhang, N., Li, J. A novel unit-specific event-based formulation for short-

term scheduling of multitasking processes in scientific service facilities, Computers and

Chemical Engineering, 133(2), (2020) doi:

doi.org/10.1016/j.compchemeng.2019.106626.

https://doi.org/10.1016/j.compchemeng.2019.106626

369

Blank Page

370

Supplementary Material for

A novel Unit-Specific Event-Based Formulation for Short-Term Scheduling of

Multitasking Processes in Scientific Service Facilities

Nikolaos Rakovitis, Nan Zhang, Jie Li6

Centre for Process Integration, School of Chemical Engineering and Analytical Science,

The University of Manchester, Manchester, M13 9PL, United Kingdom

List of Tables

Table S1 Sample group data for Examples 2-5

Table S2 Sample group data for Example 6

Table S3 Sample group data for Examples 7-10

Table S4 Sample group data for examples 11-16

Table S5 Sample group data for Example 17

Table S6 Sample group data for Example 18

Table S7 Sample group data for Example 19

Table S8 Sample group data for Example 20

Table S9 Processing unit data for Examples 21-29

Table S10 Processing unit data for Example 30

Table S11 Processing unit data for Example 31

Table S12 Processing unit data for Example 32

Table S13 Processing unit data for Examples 1-13, 16-17

Table S14 Processing unit data for Examples 14-15, 18-19

Table S15 Process data for Example 20

Table S16 Process data for Examples 21-31

6 To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

371

Table S1 Sample group data for Examples 2-5

Sample

group

Samples Processing path Sample

group

Samples Processing path

Example 2 Example 3

1 73 𝑃2 − 𝑃4 1 57 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

2 67 𝑃1 − 𝑃2 − 𝑃4 2 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

3 57 𝑃1 − 𝑃2 − 𝑃4 3 54 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

4 68 𝑃1 − 𝑃2 − 𝑃4 4 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

5 72 𝑃2 − 𝑃3 − 𝑃4 5 58 𝑃1 − 𝑃2 − 𝑃3

6 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 6 77 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

7 52 𝑃1 − 𝑃2 − 𝑃3 7 70 𝑃2 − 𝑃3 − 𝑃4

8 63 𝑃1 − 𝑃2 − 𝑃3 8 73 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

9 52 𝑃1 − 𝑃2 − 𝑃4 9 59 𝑃2−𝑃3 − 𝑃4

10 79 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 10 55 𝑃1 − 𝑃2 − 𝑃4

Example 4 Example 5

1 64 𝑃1 − 𝑃2−𝑃3 1 53 𝑃2 − 𝑃3 − 𝑃4

2 64 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 2 79 𝑃1 − 𝑃3 − 𝑃4

3 68 𝑃1 − 𝑃2 − 𝑃4 3 72 𝑃1 − 𝑃2 − 𝑃4

4 55 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 4 52 𝑃3 − 𝑃4

5 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 5 66 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

6 69 𝑃1 − 𝑃3 − 𝑃4 6 74 𝑃1 − 𝑃2 − 𝑃4

7 65 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 7 72 𝑃1 − 𝑃2 − 𝑃3

8 69 𝑃1 − 𝑃2 − 𝑃3 8 77 𝑃2 − 𝑃3 − 𝑃4

9 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 9 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

10 73 𝑃1 − 𝑃2 − 𝑃4 10 63 𝑃1 − 𝑃2

372

Table S2 Sample group data for Example 6

Sample

group

Samples Processing path

1 61 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

2 80 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

3 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

4 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

5 70 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

6 72 𝑃1 − 𝑃2

7 67 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

8 70 𝑃3 − 𝑃4

9 76 𝑃1 − 𝑃3 − 𝑃4

10 76 𝑃1 − 𝑃3 − 𝑃4

373

Table S3 Sample group data for Examples 7-10

Sample

group

Samples Processing path Sample

group

Samples Processing path

Example 7 Example 8

1 64 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 1 68 𝑃1 − 𝑃2 − 𝑃1 − 𝑃4

2 61 𝑃1 − 𝑃2 − 𝑃3 2 52 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

3 69 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 3 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

4 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 4 73 𝑃1 − 𝑃2 − 𝑃4

5 50 𝑃1 − 𝑃2 − 𝑃3 − 𝑃2 − 𝑃4 5 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃1 − 𝑃4

Example 9 Example 10

1 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 1 57 𝑃1

2 74 𝑃1 − 𝑃4 2 77 𝑃3 − 𝑃4

3 78 𝑃3 − 𝑃4 3 76 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

4 71 𝑃1 − 𝑃4 4 58 𝑃1 − 𝑃2 − 𝑃4

5 71 𝑃1 − 𝑃2 − 𝑃3 5 77 𝑃2 − 𝑃4

374

Table S4 Sample group data for Examples 11-16

Sample

group Samples Processing path

Sample

group Samples Processing path

Example 11 Example 12

1 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 1 56 𝑃1 − 𝑃2 − 𝑃3

2 68 𝑃2 − 𝑃3 2 68 𝑃1 − 𝑃2 − 𝑃3

3 71 𝑃1 − 𝑃2−𝑃3 − 𝑃4

4 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4

5 75 𝑃1 − 𝑃2 − 𝑃3

Example 13 Example 14

1 50 𝑃1 − 𝑃2 1 50 𝑃1 − 𝑃2 − 𝑃3

2 71 𝑃1 − 𝑃2 − 𝑃3 2 57 𝑃1 − 𝑃2 − 𝑃3

Example 15 Example 16

1 68 𝑃1 − 𝑃2 − 𝑃3 1 59 𝑃1 − 𝑃2

2 60 𝑃1 − 𝑃3 − 𝑃4 2 51 𝑃1 − 𝑃2

3 55 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 3 73 𝑃2 − 𝑃3 − 𝑃4

375

Table S5 Sample group data for Example 17

Sample

groups Samples Processing path

1 60 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5

2 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5

3 77 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5

4 80 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5

376

Table S6 Sample group data for Example 18

Sample

groups Samples Processing path

1 76 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6

2 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6

3 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃5 − 𝑃6 − 𝑃7

4 67 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7

5 63 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6

6 72 𝑃1 − 𝑃2−𝑃3 − 𝑃5 − 𝑃6 − 𝑃7

7 73 𝑃3 − 𝑃4 − 𝑃6 − 𝑃7

8 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃7

9 65 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7

10 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6

11 73 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7

12 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃6

377

Table S7 Sample group data for Example 19

Sample

groups Samples Processing path

1 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃8

2 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

3 50 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃6 − 𝑃7 − 𝑃8

4 74 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

5 72 𝑃1 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

6 55 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃8

7 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

8 76 𝑃𝑟1 − 𝑃𝑟2 − 𝑃𝑟3 − 𝑃𝑟4 − 𝑃𝑟5 − 𝑃𝑟6 − 𝑃𝑟8

9 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

10 76 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

11 74 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

12 72 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

13 64 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

14 62 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃8

15 72 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

16 58 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8

378

Table S8 Processing unit data for Example 20

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

1 295 8 35 279 1 68 295 9

2 271 5 36 276 5 69 248 7

3 220 1 37 224 7 70 284 7

4 286 7 38 275 6 71 298 3

5 210 4 39 278 1 72 267 6

6 212 3 40 241 4 73 283 3

7 200 2 41 211 6 74 228 10

8 236 11 42 253 9 75 251 4

9 234 11 43 261 6 76 237 4

10 292 2 44 280 3 77 265 2

11 250 8 45 272 8 78 220 9

12 225 7 46 252 8 79 247 9

13 297 11 47 228 4 80 239 4

14 220 10 48 222 10 81 298 10

15 263 8 49 276 4 82 200 1

16 235 9 50 239 11 83 248 3

17 288 5 51 287 3 84 217 7

18 204 8 52 221 7 85 214 8

19 268 2 53 288 8 86 272 4

20 292 4 54 241 9 87 208 4

21 222 10 55 204 10 88 238 11

22 250 5 56 266 8 89 285 7

23 206 3 57 276 3 90 245 7

24 223 7 58 252 9 91 229 8

25 262 9 59 242 7 92 225 9

26 287 10 60 221 2 93 270 1

27 244 4 61 262 6 94 267 6

28 252 7 62 205 10 95 281 6

29 255 3 63 254 5 96 254 3

30 284 5 64 203 10 97 206 9

31 239 5 65 296 8 98 209 2

32 280 10 66 232 11 99 253 11

33 257 5 67 254 7 100 271 7

34 267 4

379

Table S9 Processing unit data for Examples 21-29

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

Example 21 Example 22 Example 23

1 66 8 1 54 3 1 57 6

2 78 1 2 62 1 2 72 1

3 66 9 3 79 10 3 77 9

4 73 5 4 76 4 4 74 2

5 50 4 5 70 5 5 51 2

Example 24 Example 25 Example 26

1 65 10 1 71 10 1 75 5

2 58 8 2 50 1 2 68 2

3 77 1 3 75 5 3 67 7

4 69 9 4 78 5 4 59 7

5 56 11 5 70 8 5 72 4

 6 55 5

 7 52 10

 8 66 7

 9 76 10

 10 50 9

Example 27 Example 28 Example 29

1 79 2 1 65 11 1 77 3

2 53 4 2 71 4 2 58 7

3 54 2 3 71 3 3 56 4

4 72 8 4 50 8 4 51 8

5 68 1 5 70 3 5 70 10

6 61 4 6 62 4 6 51 10

7 58 9 7 61 10 7 61 2

8 56 3 8 52 3 8 54 7

9 70 2 9 78 5 9 56 4

10 71 1 10 50 8 10 60 5

380

Table S10 Processing unit data for Example 30

Sample

group Samples

Processing

path

1 68 8

2 68 1

3 78 10

4 69 9

5 56 2

6 80 3

7 72 9

8 65 4

9 60 11

10 58 2

381

Table S11 Processing unit data for Example 31

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

1 219 4 35 274 11 68 245 5

2 299 6 36 224 10 69 225 4

3 215 10 37 207 1 70 275 4

4 230 7 38 296 6 71 289 2

5 295 2 39 289 8 72 241 7

6 220 2 40 211 2 73 238 2

7 292 9 41 218 3 74 223 11

8 250 10 42 225 8 75 207 4

9 276 5 43 230 3 76 202 9

10 288 7 44 216 7 77 235 6

11 261 10 45 232 7 78 232 1

12 290 9 46 256 10 79 295 9

13 281 10 47 207 6 80 265 8

14 218 9 48 270 9 81 298 1

15 260 1 49 236 10 82 298 1

16 258 5 50 261 2 83 229 6

17 291 4 51 200 3 84 236 9

18 206 8 52 268 8 85 249 1

19 278 5 53 275 10 86 238 4

20 211 7 54 255 10 87 293 4

21 298 7 55 275 5 88 220 9

22 296 6 56 264 8 89 292 11

23 288 6 57 250 11 90 206 3

24 212 5 58 267 5 91 259 2

25 214 7 59 223 5 92 279 8

26 251 3 60 298 4 93 269 8

27 276 8 61 223 5 94 279 8

28 219 2 62 283 9 95 247 2

29 216 9 63 292 10 96 237 8

30 222 5 64 289 4 97 248 8

31 263 2 65 266 5 98 298 11

32 243 5 66 223 10 99 243 8

33 282 7 67 276 4 100 206 5

34 252 2

382

Table S12 Processing unit data for Example 32

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

Sample

group Samples

Processing

path

1 283 5 35 292 7 68 330 11

2 317 6 36 321 11 69 298 2

3 330 5 37 282 6 70 295 2

4 309 9 38 279 6 71 256 8

5 314 9 39 321 8 72 277 1

6 340 3 40 255 6 73 269 3

7 337 6 41 256 4 74 316 9

8 307 3 42 260 6 75 323 5

9 298 6 43 317 5 76 261 10

10 268 1 44 308 7 77 250 4

11 327 10 45 288 7 78 333 7

12 328 5 46 300 5 79 290 5

13 294 7 47 256 11 80 316 2

14 292 8 48 294 6 81 333 1

15 278 10 49 273 8 82 256 7

16 322 10 50 325 3 83 280 6

17 343 1 51 268 2 84 345 3

18 254 4 52 288 11 85 310 4

19 333 8 53 306 2 86 335 8

20 332 2 54 305 9 87 341 9

21 276 2 55 274 5 88 272 4

22 341 7 56 257 4 89 260 9

23 323 9 57 338 4 90 342 8

24 276 10 58 334 8 91 325 2

25 303 8 59 266 6 92 320 11

26 266 4 60 329 5 93 299 5

27 316 1 61 265 6 94 287 3

28 329 10 62 329 7 95 265 7

29 280 5 63 335 4 96 287 8

30 288 4 64 338 5 97 322 6

31 325 3 65 297 11 98 330 5

32 276 2 66 319 2 99 314 11

33 289 4 67 277 8 100 264 10

34 320 6

383

Table S13 Processing unit data for Examples 1-13 and 16-17

Property Unit

Capacity

(cu)

Processing

time (min) Process Unit

Capacity

(cu)

Processing

time (min)

Examples 1-6, 16, 17 Example 7

1 1 140 50 1 1 187 24

2 2 70 30 2 2 106 59

 3 70 30 3 3 105 191

3 4 50 60

 5 50 60

4 6 120 195

Example 8 Example 9

1 1 73 70 1 1 50 160

2

3

2 61 20 2

2 50 78

3 193 179 3 50 78

 3

4 50 165

 5 50 165

 4 6 50 199

Example 10 Example 11

1 1 50 136 1 1 96 26

2 2 50 147 2 2 168 150

 3 50 147 3 138 39

3 4 50 82 3 4 171 143

 5 50 82 5 185 17

4 6 50 55 4 6 114 53

Example 12 Example 13

1 1 16 55 1 1 60 26

2 2 34 99 2 2 49 99

 3 34 99 3 3 44 20

3 4 150 219 4 4 122 205

384

Table S14 Processing unit data for Examples 14-15 and 18-19

Property Unit

Capacity

(cu)

Processing

time (min) Property Unit

Capacity

(cu)

Processing

time (min)

Example 14 Example 18

1 1 200 30 1 1 14 19

2 2 165 11 2 2 122 40

 3 165 11 3 3 180 63

3 4 179 15 4 4 182 22

4 5 123 220 5 5 68 217

Example 15 Example 19

1 1 15 33 1 1 15 22

2 2 182 12 2 2 132 48

3 3 104 56 3 3 164 61

4 4 102 19 4 4 19 69

5 5 106 75 5 5 41 69

6 6 176 25 6 6 176 43

7 7 196 204 7 7 113 22

 8 8 88 215

385

Table S15 Process data for Example 20

Property

Total capacity

(cu) No. of units

Processing time

(min)

1 950 2 190

2 1000 3 250

3 1135 2 118

4 803 4 589

5 354 2 222

6 1873 2 958

7 1504 2 382

8 696 1 1259

9 1140 1 188

10 1965 1 268

11 1054 3 1021

12 282 2 675

13 652 4 1020

14 95 4 297

15 1405 1 952

16 819 1 637

17 569 1 401

18 1386 10 1372

19 1622 10 1219

20 373 8 1111

21 534 8 1332

22 694 1 670

23 760 4 1096

24 2025 6 1552

25 1039 1 537

386

Table S16 Process data for Examples 21-31

Property

Total capacity

(cu) No. of units

Processing time

(min)

1 500 2 15

2 60 3 60

3 2250 2 1440

4 50 4 375

5 420 2 40

6 216 2 300

7 21 2 150

8 48 1 615

9 7 1 1440

10 150 1 240

11 480 3 180

12 440 2 240

13 216 4 120

14 440 4 220

15 1 1 10

16 180 1 390

17 240 1 1440

18 720 10 735

19 480 10 471

20 112 8 1256

21 135 8 1141

22 22 1 60

23 440 4 1620

24 10 6 10

25 10 1 10

387

Blank Page

388

Supplementary material 3: supplementary materials for research

contribution 5

Rakovitis, N., Zhang, N., Li, J. Zhang, L. Novel Approaches for Energy-Efficient

Scheduling of Flexible Job-Shop Problems, to be submitted to European Journal of

Operational Research

389

Blank Page

 390

Supplementary Material for

Novel Approach to Energy-Efficient Scheduling of Flexible Job-Shop Problems

Nikolaos Rakovitis1, Nan Zhang1, Jie Li1,7 and Liping Zhang2

1Centre for Process Integration, Department of Chemical Engineering and Analytical

Science, The University of Manchester, Manchester, M13 9PL, United Kingdom

2Department of Industrial Engineering, School of Machinery and Automation, Wuhan

University of Science and Technology, Wuhan, Hubei, 430081 P. R China

List of Tables

Table S1 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 5

Table S2 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 5

Table S3 Computational results for Examples 21-58 from M1, RH-M2 and eGEP

dispatching rule 5

Table S4 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 7

Table S5 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 7

Table S6 Computational results for Examples 21-58 from M1, RH-M2 and eGEP

dispatching rule 7

Table S7 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 8

Table S8 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 8

Table S9 Computational results for Examples 21-58 from M1, RH-M2 and eGEP

dispatching rule 8

Table S10 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 9

Table S11 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 9

7 To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622

 391

Table S12 Computational results for Examples 21-58 from M1, RH-M2 and eGEP

dispatching rule 9

 392

Table S1 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 5

 eGEP M1/M2a RH-M1 RH-M2 Diff (%)

 Ex

TEC

(kW)

 TEC

 (kW)

 TEC

(kW)

Time

(s)

 TEC

(kw)

Time

(s)

 RH-M1

vs. M1

RH-M1

vs eGEP

RH-M2

vs. M1

RH-M2

vs. eGEP

Ex1 65.03 63.03 63.03 0.03 63.03 0.11 0.0 -3.1 0.0 -3.1

Ex2 126.04 122.44 122.44 0.03 122.44 0.14 0.0 -2.9 0.0 -2.9

Ex3 75.74 75.74 75.74 0.03 75.74 0.09 0.0 0.0 0.0 0.0

Ex4 161.73 146.63 146.63 0.03 146.63 0.20 0.0 -9.3 0.0 -9.3

Ex5 78.40 78.40 78.40 0.03 78.40 0.20 0.0 0.0 0.0 0.0

Ex6 279.84 220.74 220.74 0.02 220.74 0.17 0.0 -21.1 0.0 -21.1

Ex7 107.69 97.54 97.54 0.05 97.54 0.20 0.0 -9.4 0.0 -9.4

Ex8 184.44 146.81 146.81 0.08 146.81 0.14 0.0 -20.4 0.0 -20.4

Ex9 233.66 230.66 230.66 0.03 230.66 0.09 0.0 -1.3 0.0 -1.3

Ex10 191.68 161.06 161.06 0.05 161.06 0.13 0.0 -16.0 0.0 -16.0

Ex11 166.23 166.23 166.23 0.03 166.23 0.20 0.0 0.0 0.0 0.0

Ex12 176.75 176.75 176.75 0.03 176.75 0.19 0.0 0.0 0.0 0.0

Ex13 121.30 121.30 121.30 0.02 121.30 0.20 0.0 0.0 0.0 0.0

Ex14 167.46 156.86 156.86 0.03 156.86 0.11 0.0 -6.3 0.0 -6.3

Ex15 174.85 163.20 163.20 0.02 163.20 0.14 0.0 -6.7 0.0 -6.7

Ex16 245.44 219.46 219.46 2.30 219.46 0.16 0.0 -10.6 0.0 -10.6

Ex17 321.80 306.68 306.68 0.06 306.68 0.27 0.0 -4.7 0.0 -4.7

Ex18 216.86 210.60 210.60 0.30 210.60 0.22 0.0 -2.9 0.0 -2.9

Ex19 283.83 269.52 269.52 0.03 269.52 0.17 0.0 -5.0 0.0 -5.0

Ex20 327.30 274.94 274.94 0.05 274.94 0.23 0.0 -16.0 0.0 -16.0

 393

Table S2 Computational results for Examples 21-58 from model M1, RH-M1 and

eGEP dispatching rule 5

 eGEP M1 RH-M1 Diff (%)

Ex
TEC

 (kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M1

vs.

eGEP

Ex21 297.98 182.49 214.78 46.9 -38.8 -27.9

Ex22 4047.03 3674.04 3812.87 301.4 -9.2 -5.8

Ex23 4088.49 3497.00 4192.16 1.0 -14.5 2.5

Ex24 2070.50 1776.14 1852.97 7.1 -14.2 -10.5

Ex25 1975.75 1789.95 1904.05 102.3 -9.4 -3.6

Ex26 1964.55 1783.95 1602.78 100.3 -9.2 -18.4

Ex27 1939.76 1684.29 1750.05 100.8 -13.2 -9.8

Ex28 2006.52 1465.37 1557.80 101.0 -27.0 -22.4

Ex29 3060.93 2583.71 2703.05 6.2 -15.6 -11.7

Ex30 2835.82 2388.63 2591.91 6.7 -15.8 -8.6

Ex31 2807.84 2486.18 2732.67 1.9 -11.5 -2.7

Ex32 3046.21 2637.50 2814.93 100.3 -13.4 -7.6

Ex33 3271.49 2523.77 2744.54 43.9 -22.9 -16.1

Ex34 4064.60 3365.35 3632.30 0.7 -17.2 -10.6

Ex35 3700.86 3035.98 3406.47 1.3 -18.0 -8.0

Ex36 3682.76 3196.92 3272.25 0.2 -13.2 -11.1

Ex37 3983.02 3477.73 3636.68 0.8 -12.7 -8.7

Ex38 4018.18 3459.03 3987.98 0.9 -13.9 -0.8

Ex39 4982.54 4041.88 3930.09 113.7 -18.9 -21.1

Ex40 4300.04 3648.90 3517.77 223.8 -15.1 -18.2

Ex41 4059.53 3589.61 3767.92 400.1 -11.6 -7.2

Ex42 3937.63 3703.47 3809.58 400.1 -5.9 -3.3

Ex43 4396.11 3782.58 3880.84 312.8 -14.0 -11.7

Ex44 5708.72 5374.11 5405.87 414.7 -5.9 -5.3

Ex45 5876.62 5195.68 4890.87 308.1 -11.6 -16.8

Ex46 6322.86 5501.46 5190.55 404.1 -13.0 -17.9

Ex47 5763.51 5916.36 5027.49 400.7 2.7 -12.8

Ex48 6640.15 6704.23 5107.14 400.3 1.0 -23.1

Ex49 7550.94 9654.12 6946.16 1.6 27.9 -8.0

Ex50 7859.20 9953.75 7434.35 1.3 26.7 -5.4

Ex51 7201.43 9603.38 6866.13 1.2 33.4 -4.7

Ex52 7287.90 - 7257.84 1.0 - -0.4

Ex53 7332.79 - 7200.05 1.2 - -1.8

Ex54 10108.14 - 8698.35 3.5 - -13.9

Ex55 10939.20 - 9580.33 4.9 - -12.4

Ex56 10339.46 - 8834.19 3.2 - -14.6

Ex57 10081.65 - 8958.33 4.5 - -11.1

Ex58 10751.25 - 9775.46 4.8 - -9.1

 394

Table S3 Computational results for Examples 21-58 from model M1, RH-M2 and

eGEP dispatching rule 5

 eGEP M1 RH-M2 Diff (%)

Ex
TEC

 (kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M2

vs.

eGEP

Ex21 297.98 182.49 215.87 2.6 -38.8 -27.6

Ex22 4047.03 3674.04 3679.99 112.8 -9.2 -9.1

Ex23 4088.49 3497.00 3808.34 288.1 -14.5 -6.9

Ex24 2070.50 1776.14 1907.12 5.7 -14.2 -7.9

Ex25 1975.75 1789.95 1941.73 163.3 -9.4 -1.7

Ex26 1964.55 1783.95 1633.59 170.6 -9.2 -16.8

Ex27 1939.76 1684.29 1763.91 138.5 -13.2 -9.1

Ex28 2006.52 1465.37 1598 134.5 -27.0 -20.4

Ex29 3060.93 2583.71 2718.8 108.9 -15.6 -11.2

Ex30 2835.82 2388.63 2521.31 200.8 -15.8 -11.1

Ex31 2807.84 2486.18 2645.48 101.1 -11.5 -5.8

Ex32 3046.21 2637.50 2685.13 51.2 -13.4 -11.9

Ex33 3271.49 2523.77 2657.98 106.4 -22.9 -18.8

Ex34 4064.60 3365.35 3565.38 211.9 -17.2 -12.3

Ex35 3700.86 3035.98 3523.2 262.4 -18.0 -4.8

Ex36 3682.76 3196.92 3417.27 205.2 -13.2 -7.2

Ex37 3983.02 3477.73 3716.38 189.2 -12.7 -6.7

Ex38 4018.18 3459.03 3787.02 204.0 -13.9 -5.8

Ex39 4982.54 4041.88 3884.04 17.2 -18.9 -22.0

Ex40 4300.04 3648.90 3562.7 10.2 -15.1 -17.1

Ex41 4059.53 3589.61 3754.31 0.9 -11.6 -7.5

Ex42 3937.63 3703.47 3717.92 3.7 -5.9 -5.6

Ex43 4396.11 3782.58 3978.46 7.2 -14.0 -9.5

Ex44 5708.72 5374.11 5475.11 210.4 -5.9 -4.1

Ex45 5876.62 5195.68 4941.6 216.6 -11.6 -15.9

Ex46 6322.86 5501.46 5185.61 55.5 -13.0 -18.0

Ex47 5763.51 5916.36 5257.31 253.9 2.7 -8.8

Ex48 6640.15 6704.23 5527.5 233.6 1.0 -16.8

Ex49 7550.94 9654.12 6951.96 4.4 27.9 -7.9

Ex50 7859.20 9953.75 7560.55 105.5 26.7 -3.8

Ex51 7201.43 9603.38 6620.26 0.9 33.4 -8.1

Ex52 7287.90 - 7060.59 106.4 - -3.1

Ex53 7332.79 - 6938.57 2.3 - -5.4

Ex54 10108.14 - 9167.93 374.8 - -9.3

Ex55 10939.20 - 9708.14 509.6 - -11.3

Ex56 10339.46 - 8861.43 394.8 - -14.3

Ex57 10081.65 - 9610.23 551.4 - -4.7

Ex58 10751.25 - 10003.95 494.7 - -7.0

 395

Table S4 Computational results for Examples 1-20 from model M1, RH-M1, RH-M2

and eGEP dispatching rule 7

 eGEP M1/M2a RH-M1 RH-M2 Diff (%)

 Ex

TEC

(kW)

 TEC

 (kW)

 TEC

(kW)

Time

(s)

 TEC

(kw)

Time

(s)

 RH-M1

vs. M1

RH-M1

vs eGEP

RH-M2

vs. M1

RH-M2

vs. eGEP

Ex1 67.03 63.03 63.03 0.03 63.03 0.11 0.0 -6.0 0.0 -6.0

Ex2 126.04 122.44 122.44 0.03 122.44 0.14 0.0 -2.9 0.0 -2.9

Ex3 75.74 75.74 75.74 0.03 75.74 0.09 0.0 0.0 0.0 0.0

Ex4 161.73 146.63 146.63 0.03 146.63 0.20 0.0 -9.3 0.0 -9.3

Ex5 78.4 78.40 78.40 0.03 78.40 0.20 0.0 0.0 0.0 0.0

Ex6 263.14 220.74 220.74 0.02 220.74 0.17 0.0 -16.1 0.0 -16.1

Ex7 98.57 97.54 97.54 0.05 97.54 0.20 0.0 -1.0 0.0 -1.0

Ex8 186.44 146.81 146.81 0.08 146.81 0.14 0.0 -21.3 0.0 -21.3

Ex9 233.66 230.66 230.66 0.03 230.66 0.09 0.0 -1.3 0.0 -1.3

Ex10 162.89 161.06 161.06 0.05 161.06 0.13 0.0 -1.1 0.0 -1.1

Ex11 166.23 166.23 166.23 0.03 166.23 0.20 0.0 0.0 0.0 0.0

Ex12 176.75 176.75 176.75 0.03 176.75 0.19 0.0 0.0 0.0 0.0

Ex13 121.3 121.30 121.30 0.02 121.30 0.20 0.0 0.0 0.0 0.0

Ex14 167.46 156.86 156.86 0.03 156.86 0.11 0.0 -6.3 0.0 -6.3

Ex15 171.8 163.20 163.20 0.02 163.20 0.14 0.0 -5.0 0.0 -5.0

Ex16 253.41 219.46 219.46 2.30 219.46 0.16 0.0 -13.4 0.0 -13.4

Ex17 321.8 306.68 306.68 0.06 306.68 0.27 0.0 -4.7 0.0 -4.7

Ex18 216.86 210.60 210.60 0.30 210.60 0.22 0.0 -2.9 0.0 -2.9

Ex19 269.52 269.52 269.52 0.03 269.52 0.17 0.0 0.0 0.0 0.0

Ex20 304.98 274.94 274.94 0.05 274.94 0.23 0.0 -9.8 0.0 -9.8

 396

Table S5 Computational results for Examples 21-58 from model M1, RH-M1 and

eGEP dispatching rule 7

 eGEP M1 RH-M1 Diff (%)

Ex
TEC

(kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

 eGEP

RH-M1

vs.

eGEP

Ex21 377.73 182.49 214.78 46.9 -51.7 -43.1

Ex22 4342.12 3674.04 3812.87 301.4 -15.4 -12.2

Ex23 4402.20 3497.00 4192.16 1.0 -20.6 -4.8

Ex24 2172.22 1776.14 1852.97 7.1 -18.2 -14.7

Ex25 2033.00 1789.95 1904.05 102.3 -12.0 -6.3

Ex26 2021.92 1783.95 1602.78 100.3 -11.8 -20.7

Ex27 2059.48 1684.29 1750.05 100.8 -18.2 -15.0

Ex28 1976.26 1465.37 1557.80 101.0 -25.9 -21.2

Ex29 3044.67 2583.71 2703.05 6.2 -15.1 -11.2

Ex30 2826.03 2388.63 2591.91 6.7 -15.5 -8.3

Ex31 2765.72 2486.18 2732.67 1.9 -10.1 -1.2

Ex32 3136.43 2637.50 2814.93 100.3 -15.9 -10.3

Ex33 3036.47 2523.77 2744.54 43.9 -16.9 -9.6

Ex34 3947.29 3365.35 3632.30 0.7 -14.7 -8.0

Ex35 3731.46 3035.98 3406.47 1.3 -18.6 -8.7

Ex36 4061.80 3196.92 3272.25 0.2 -21.3 -19.4

Ex37 4463.81 3477.73 3636.68 0.8 -22.1 -18.5

Ex38 3740.39 3459.03 3987.98 0.9 -7.5 6.6

Ex39 4480.15 4041.88 3930.09 113.7 -9.8 -12.3

Ex40 4482.24 3648.90 3517.77 223.8 -18.6 -21.5

Ex41 4160.37 3589.61 3767.92 400.1 -13.7 -9.4

Ex42 4330.02 3703.47 3809.58 400.1 -14.5 -12.0

Ex43 4437.60 3782.58 3880.84 312.8 -14.8 -12.5

Ex44 5976.21 5374.11 5405.87 414.7 -10.1 -9.5

Ex45 5756.06 5195.68 4890.87 308.1 -9.7 -15.0

Ex46 5987.00 5501.46 5190.55 404.1 -8.1 -13.3

Ex47 6180.85 5916.36 5027.49 400.7 -4.3 -18.7

Ex48 7138.21 6704.23 5107.14 400.3 -6.1 -28.5

Ex49 7504.90 9654.12 6946.16 1.6 28.6 -7.4

Ex50 8192.58 9953.75 7434.35 1.3 21.5 -9.3

Ex51 7528.43 9603.38 6866.13 1.2 27.6 -8.8

Ex52 7388.66 - 7257.84 1.0 - -1.8

Ex53 7950.47 - 7200.05 1.2 - -9.4

Ex54 10036.36 - 8698.35 3.5 - -13.3

Ex55 10703.56 - 9580.33 4.9 - -10.5

Ex56 10194.85 - 8834.19 3.2 - -13.3

Ex57 9884.19 - 8958.33 4.5 - -9.4

Ex58 11269.35 - 9775.46 4.8 - -13.3

 397

Table S6 Computational results for Examples 21-58 from model M1, RH-M2 and

eGEP dispatching rule 7

 eGEP M1 RH-M2 Diff (%)

Ex
TEC

 (kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M2

vs.

eGEP

Ex21 377.73 182.49 215.87 2.6 -51.7 -42.9

Ex22 4342.12 3674.04 3679.99 112.8 -15.4 -15.2

Ex23 4402.20 3497.00 3808.34 288.1 -20.6 -13.5

Ex24 2172.22 1776.14 1907.12 5.7 -18.2 -12.2

Ex25 2033.00 1789.95 1941.73 163.3 -12.0 -4.5

Ex26 2021.92 1783.95 1633.59 170.6 -11.8 -19.2

Ex27 2059.48 1684.29 1763.91 138.5 -18.2 -14.4

Ex28 1976.26 1465.37 1598 134.5 -25.9 -19.1

Ex29 3044.67 2583.71 2718.8 108.9 -15.1 -10.7

Ex30 2826.03 2388.63 2521.31 200.8 -15.5 -10.8

Ex31 2765.72 2486.18 2645.48 101.1 -10.1 -4.3

Ex32 3136.43 2637.50 2685.13 51.2 -15.9 -14.4

Ex33 3036.47 2523.77 2657.98 106.4 -16.9 -12.5

Ex34 3947.29 3365.35 3565.38 211.9 -14.7 -9.7

Ex35 3731.46 3035.98 3523.2 262.4 -18.6 -5.6

Ex36 4061.80 3196.92 3417.27 205.2 -21.3 -15.9

Ex37 4463.81 3477.73 3716.38 189.2 -22.1 -16.7

Ex38 3740.39 3459.03 3787.02 204.0 -7.5 1.2

Ex39 4480.15 4041.88 3884.04 17.2 -9.8 -13.3

Ex40 4482.24 3648.90 3562.7 10.2 -18.6 -20.5

Ex41 4160.37 3589.61 3754.31 0.9 -13.7 -9.8

Ex42 4330.02 3703.47 3717.92 3.7 -14.5 -14.1

Ex43 4437.60 3782.58 3978.46 7.2 -14.8 -10.3

Ex44 5976.21 5374.11 5475.11 210.4 -10.1 -8.4

Ex45 5756.06 5195.68 4941.6 216.6 -9.7 -14.1

Ex46 5987.00 5501.46 5185.61 55.5 -8.1 -13.4

Ex47 6180.85 5916.36 5257.31 253.9 -4.3 -14.9

Ex48 7138.21 6704.23 5527.5 233.6 -6.1 -22.6

Ex49 7504.90 9654.12 6951.96 4.4 28.6 -7.4

Ex50 8192.58 9953.75 7560.55 105.5 21.5 -7.7

Ex51 7528.43 9603.38 6620.26 0.9 27.6 -12.1

Ex52 7388.66 - 7060.59 106.4 - -4.4

Ex53 7950.47 - 6938.57 2.3 - -12.7

Ex54 10036.36 - 9167.93 374.8 - -8.7

Ex55 10703.56 - 9708.14 509.6 - -9.3

Ex56 10194.85 - 8861.43 394.8 - -13.1

Ex57 9884.19 - 9610.23 551.4 - -2.8

Ex58 11269.35 - 10003.95 494.7 - -11.2

 398

Table S7 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and

eGEP dispatching rule 8

 eGEP M1/M2a RH-M1 RH-M2 Diff (%)

 Ex

TEC

(kW)

 TEC

 (kW)

 TEC

(kW)

Time

(s)

 TEC

(kw)

Time

(s)

 RH-M1

vs. M1

RH-M1

vs eGEP

RH-M2

vs. M1

RH-M2

vs. eGEP

Ex1 65.03 63.03 63.03 0.03 63.03 0.11 0.0 -3.1 0.0 -3.1

Ex2 126.04 122.44 122.44 0.03 122.44 0.14 0.0 -2.9 0.0 -2.9

Ex3 78.38 75.74 75.74 0.03 75.74 0.09 0.0 -3.4 0.0 -3.4

Ex4 147.12 146.63 146.63 0.03 146.63 0.20 0.0 -0.3 0.0 -0.3

Ex5 114.62 78.40 78.40 0.03 78.40 0.20 0.0 -31.6 0.0 -31.6

Ex6 279.84 220.74 220.74 0.02 220.74 0.17 0.0 -21.1 0.0 -21.1

Ex7 107.69 97.54 97.54 0.05 97.54 0.20 0.0 -9.4 0.0 -9.4

Ex8 170.17 146.81 146.81 0.08 146.81 0.14 0.0 -13.7 0.0 -13.7

Ex9 230.66 230.66 230.66 0.03 230.66 0.09 0.0 0.0 0.0 0.0

Ex10 191.68 161.06 161.06 0.05 161.06 0.13 0.0 -16.0 0.0 -16.0

Ex11 166.23 166.23 166.23 0.03 166.23 0.20 0.0 0.0 0.0 0.0

Ex12 176.75 176.75 176.75 0.03 176.75 0.19 0.0 0.0 0.0 0.0

Ex13 121.3 121.30 121.30 0.02 121.30 0.20 0.0 0.0 0.0 0.0

Ex14 156.86 156.86 156.86 0.03 156.86 0.11 0.0 0.0 0.0 0.0

Ex15 174.85 163.20 163.20 0.02 163.20 0.14 0.0 -6.7 0.0 -6.7

Ex16 245.44 219.46 219.46 2.30 219.46 0.16 0.0 -10.6 0.0 -10.6

Ex17 315.08 306.68 306.68 0.06 306.68 0.27 0.0 -2.7 0.0 -2.7

Ex18 216.86 210.60 210.60 0.30 210.60 0.22 0.0 -2.9 0.0 -2.9

Ex19 283.83 269.52 269.52 0.03 269.52 0.17 0.0 -5.0 0.0 -5.0

Ex20 325.86 274.94 274.94 0.05 274.94 0.23 0.0 -15.6 0.0 -15.6

 399

Table S8 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 8

 eGEP M1 RH-M1 Diff (%)

Ex
TEC

(kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M1

vs.

eGEP

Ex21 296.71 182.49 214.78 46.9 -38.5 -27.6

Ex22 4289.90 3674.04 3812.87 301.4 -14.4 -11.1

Ex23 4101.52 3497.00 4192.16 1.0 -14.7 2.2

Ex24 2017.38 1776.14 1852.97 7.1 -12.0 -8.1

Ex25 2061.22 1789.95 1904.05 102.3 -13.2 -7.6

Ex26 2077.87 1783.95 1602.78 100.3 -14.1 -22.9

Ex27 1940.73 1684.29 1750.05 100.8 -13.2 -9.8

Ex28 2015.52 1465.37 1557.80 101.0 -27.3 -22.7

Ex29 2921.23 2583.71 2703.05 6.2 -11.6 -7.5

Ex30 2761.52 2388.63 2591.91 6.7 -13.5 -6.1

Ex31 2866.40 2486.18 2732.67 1.9 -13.3 -4.7

Ex32 3122.96 2637.50 2814.93 100.3 -15.5 -9.9

Ex33 3164.21 2523.77 2744.54 43.9 -20.2 -13.3

Ex34 3954.61 3365.35 3632.30 0.7 -14.9 -8.2

Ex35 3751.06 3035.98 3406.47 1.3 -19.1 -9.2

Ex36 3698.97 3196.92 3272.25 0.2 -13.6 -11.5

Ex37 3796.85 3477.73 3636.68 0.8 -8.4 -4.2

Ex38 3876.12 3459.03 3987.98 0.9 -10.8 2.9

Ex39 4698.71 4041.88 3930.09 113.7 -14.0 -16.4

Ex40 4328.51 3648.90 3517.77 223.8 -15.7 -18.7

Ex41 4219.24 3589.61 3767.92 400.1 -14.9 -10.7

Ex42 4264.51 3703.47 3809.58 400.1 -13.2 -10.7

Ex43 4311.92 3782.58 3880.84 312.8 -12.3 -10.0

Ex44 5972.97 5374.11 5405.87 414.7 -10.0 -9.5

Ex45 6157.10 5195.68 4890.87 308.1 -15.6 -20.6

Ex46 6307.20 5501.46 5190.55 404.1 -12.8 -17.7

Ex47 5981.64 5916.36 5027.49 400.7 -1.1 -16.0

Ex48 7113.48 6704.23 5107.14 400.3 -5.8 -28.2

Ex49 7351.24 9654.12 6946.16 1.6 31.3 -5.5

Ex50 8244.86 9953.75 7434.35 1.3 20.7 -9.8

Ex51 7396.69 9603.38 6866.13 1.2 29.8 -7.2

Ex52 7285.72 - 7257.84 1.0 - -0.4

Ex53 7999.57 - 7200.05 1.2 - -10.0

Ex54 10344.35 - 8698.35 3.5 - -15.9

Ex55 10680.83 - 9580.33 4.9 - -10.3

Ex56 10183.47 - 8834.19 3.2 - -13.2

Ex57 9865.68 - 8958.33 4.5 - -9.2

Ex58 10832.23 - 9775.46 4.8 - -9.8

 400

Table S9 Computational results for Examples 21-58 from model M1, RH-M2 and

eGEP dispatching rule 8

 eGEP M1 RH-M2 Diff (%)

Ex
TEC

 (kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M2

vs.

eGEP

Ex21 296.71 182.49 215.87 2.6 -38.5 -27.2

Ex22 4289.90 3674.04 3679.99 112.8 -14.4 -14.2

Ex23 4101.52 3497.00 3808.34 288.1 -14.7 -7.1

Ex24 2017.38 1776.14 1907.12 5.7 -12.0 -5.5

Ex25 2061.22 1789.95 1941.73 163.3 -13.2 -5.8

Ex26 2077.87 1783.95 1633.59 170.6 -14.1 -21.4

Ex27 1940.73 1684.29 1763.91 138.5 -13.2 -9.1

Ex28 2015.52 1465.37 1598 134.5 -27.3 -20.7

Ex29 2921.23 2583.71 2718.8 108.9 -11.6 -6.9

Ex30 2761.52 2388.63 2521.31 200.8 -13.5 -8.7

Ex31 2866.40 2486.18 2645.48 101.1 -13.3 -7.7

Ex32 3122.96 2637.50 2685.13 51.2 -15.5 -14.0

Ex33 3164.21 2523.77 2657.98 106.4 -20.2 -16.0

Ex34 3954.61 3365.35 3565.38 211.9 -14.9 -9.8

Ex35 3751.06 3035.98 3523.2 262.4 -19.1 -6.1

Ex36 3698.97 3196.92 3417.27 205.2 -13.6 -7.6

Ex37 3796.85 3477.73 3716.38 189.2 -8.4 -2.1

Ex38 3876.12 3459.03 3787.02 204.0 -10.8 -2.3

Ex39 4698.71 4041.88 3884.04 17.2 -14.0 -17.3

Ex40 4328.51 3648.90 3562.7 10.2 -15.7 -17.7

Ex41 4219.24 3589.61 3754.31 0.9 -14.9 -11.0

Ex42 4264.51 3703.47 3717.92 3.7 -13.2 -12.8

Ex43 4311.92 3782.58 3978.46 7.2 -12.3 -7.7

Ex44 5972.97 5374.11 5475.11 210.4 -10.0 -8.3

Ex45 6157.10 5195.68 4941.6 216.6 -15.6 -19.7

Ex46 6307.20 5501.46 5185.61 55.5 -12.8 -17.8

Ex47 5981.64 5916.36 5257.31 253.9 -1.1 -12.1

Ex48 7113.48 6704.23 5527.5 233.6 -5.8 -22.3

Ex49 7351.24 9654.12 6951.96 4.4 31.3 -5.4

Ex50 8244.86 9953.75 7560.55 105.5 20.7 -8.3

Ex51 7396.69 9603.38 6620.26 0.9 29.8 -10.5

Ex52 7285.72 - 7060.59 106.4 - -3.1

Ex53 7999.57 - 6938.57 2.3 - -13.3

Ex54 10344.35 - 9167.93 374.8 - -11.4

Ex55 10680.83 - 9708.14 509.6 - -9.1

Ex56 10183.47 - 8861.43 394.8 - -13.0

Ex57 9865.68 - 9610.23 551.4 - -2.6

Ex58 10832.23 - 10003.95 494.7 - -7.6

 401

Table S10 Computational results for Examples 1-20 from model M1, RH-M1, RH-M2

and eGEP dispatching rule 9

 eGEP M1/M2a RH-M1 RH-M2 Diff (%)

 Ex

TEC

(kW)

 TEC

 (kW)

 TEC

(kW)

Time

(s)

 TEC

(kw)

Time

(s)

 RH-M1

vs. M1

RH-M1

vs eGEP

RH-M2

vs. M1

RH-M2

vs. eGEP

Ex1 63.03 63.03 63.03 0.03 63.03 0.11 0.0 0.0 0.0 0.0

Ex2 162.28 122.44 122.44 0.03 122.44 0.14 0.0 -24.6 0.0 -24.6

Ex3 99.06 75.74 75.74 0.03 75.74 0.09 0.0 -23.5 0.0 -23.5

Ex4 147.12 146.63 146.63 0.03 146.63 0.20 0.0 -0.3 0.0 -0.3

Ex5 124.44 78.40 78.40 0.03 78.40 0.20 0.0 -37.0 0.0 -37.0

Ex6 279.84 220.74 220.74 0.02 220.74 0.17 0.0 -21.1 0.0 -21.1

Ex7 107.69 97.54 97.54 0.05 97.54 0.20 0.0 -9.4 0.0 -9.4

Ex8 225.78 146.81 146.81 0.08 146.81 0.14 0.0 -35.0 0.0 -35.0

Ex9 248.81 230.66 230.66 0.03 230.66 0.09 0.0 -7.3 0.0 -7.3

Ex10 172.56 161.06 161.06 0.05 161.06 0.13 0.0 -6.7 0.0 -6.7

Ex11 166.23 166.23 166.23 0.03 166.23 0.20 0.0 0.0 0.0 0.0

Ex12 182.69 176.75 176.75 0.03 176.75 0.19 0.0 -3.3 0.0 -3.3

Ex13 121.3 121.30 121.30 0.02 121.30 0.20 0.0 0.0 0.0 0.0

Ex14 156.86 156.86 156.86 0.03 156.86 0.11 0.0 0.0 0.0 0.0

Ex15 191.83 163.20 163.20 0.02 163.20 0.14 0.0 -14.9 0.0 -14.9

Ex16 240.83 219.46 219.46 2.30 219.46 0.16 0.0 -8.9 0.0 -8.9

Ex17 315.08 306.68 306.68 0.06 306.68 0.27 0.0 -2.7 0.0 -2.7

Ex18 251.86 210.60 210.60 0.30 210.60 0.22 0.0 -16.4 0.0 -16.4

Ex19 296.71 269.52 269.52 0.03 269.52 0.17 0.0 -9.2 0.0 -9.2

Ex20 393.83 274.94 274.94 0.05 274.94 0.23 0.0 -30.2 0.0 -30.2

 402

Table S11 Computational results for Examples 21-58 from M1, RH-M1 and eGEP

dispatching rule 9

 eGEP M1 RH-M1 Diff (%)

Ex
TEC

(kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

 vs.

eGEP

RH-M1

vs.

 eGEP

Ex21 320.25 182.49 214.78 46.9 -43.0 -32.9

Ex22 4465.27 3674.04 3812.87 301.4 -17.7 -14.6

Ex23 4355.59 3497.00 4192.16 1.0 -19.7 -3.8

Ex24 1914.55 1776.14 1852.97 7.1 -7.2 -3.2

Ex25 2195.64 1789.95 1904.05 102.3 -18.5 -13.3

Ex26 2294.79 1783.95 1602.78 100.3 -22.3 -30.2

Ex27 2121.88 1684.29 1750.05 100.8 -20.6 -17.5

Ex28 1864.79 1465.37 1557.80 101.0 -21.4 -16.5

Ex29 3314.21 2583.71 2703.05 6.2 -22.0 -18.4

Ex30 2917.68 2388.63 2591.91 6.7 -18.1 -11.2

Ex31 3034.12 2486.18 2732.67 1.9 -18.1 -9.9

Ex32 3220.20 2637.50 2814.93 100.3 -18.1 -12.6

Ex33 3338.57 2523.77 2744.54 43.9 -24.4 -17.8

Ex34 4584.44 3365.35 3632.30 0.7 -26.6 -20.8

Ex35 4070.23 3035.98 3406.47 1.3 -25.4 -16.3

Ex36 3979.86 3196.92 3272.25 0.2 -19.7 -17.8

Ex37 4144.10 3477.73 3636.68 0.8 -16.1 -12.2

Ex38 3841.63 3459.03 3987.98 0.9 -10.0 3.8

Ex39 4823.96 4041.88 3930.09 113.7 -16.2 -18.5

Ex40 4082.95 3648.90 3517.77 223.8 -10.6 -13.8

Ex41 4117.93 3589.61 3767.92 400.1 -12.8 -8.5

Ex42 4084.68 3703.47 3809.58 400.1 -9.3 -6.7

Ex43 4491.61 3782.58 3880.84 312.8 -15.8 -13.6

Ex44 6116.02 5374.11 5405.87 414.7 -12.1 -11.6

Ex45 5923.10 5195.68 4890.87 308.1 -12.3 -17.4

Ex46 6095.66 5501.46 5190.55 404.1 -9.7 -14.8

Ex47 6051.80 5916.36 5027.49 400.7 -2.2 -16.9

Ex48 6672.93 6704.23 5107.14 400.3 0.5 -23.5

Ex49 7727.28 9654.12 6946.16 1.6 24.9 -10.1

Ex50 8163.12 9953.75 7434.35 1.3 21.9 -8.9

Ex51 7173.32 9603.38 6866.13 1.2 33.9 -4.3

Ex52 7650.43 - 7257.84 1.0 - -5.1

Ex53 7589.11 - 7200.05 1.2 - -5.1

Ex54 10070.27 - 8698.35 3.5 - -13.6

Ex55 10667.02 - 9580.33 4.9 - -10.2

Ex56 10683.11 - 8834.19 3.2 - -17.3

Ex57 9939.02 - 8958.33 4.5 - -9.9

Ex58 10963.14 - 9775.46 4.8 - -10.8

 403

Table S12 Computational results for Examples 21-58 from model M1, RH-M2 and

eGEP dispatching rule 9

 eGEP M1 RH-M2 Diff (%)

Ex
TEC

 (kW)

TEC

(kW)

TEC

 (kW)

CPU

Time (s)

M1

vs.

eGEP

RH-M2

vs.

eGEP

Ex21 320.25 182.49 215.87 2.6 -43.0 -32.6

Ex22 4465.27 3674.04 3679.99 112.8 -17.7 -17.6

Ex23 4355.59 3497.00 3808.34 288.1 -19.7 -12.6

Ex24 1914.55 1776.14 1907.12 5.7 -7.2 -0.4

Ex25 2195.64 1789.95 1941.73 163.3 -18.5 -11.6

Ex26 2294.79 1783.95 1633.59 170.6 -22.3 -28.8

Ex27 2121.88 1684.29 1763.91 138.5 -20.6 -16.9

Ex28 1864.79 1465.37 1598.00 134.5 -21.4 -14.3

Ex29 3314.21 2583.71 2718.8 108.9 -22.0 -18.0

Ex30 2917.68 2388.63 2521.31 200.8 -18.1 -13.6

Ex31 3034.12 2486.18 2645.48 101.1 -18.1 -12.8

Ex32 3220.20 2637.50 2685.13 51.2 -18.1 -16.6

Ex33 3338.57 2523.77 2657.98 106.4 -24.4 -20.4

Ex34 4584.44 3365.35 3565.38 211.9 -26.6 -22.2

Ex35 4070.23 3035.98 3523.2 262.4 -25.4 -13.4

Ex36 3979.86 3196.92 3417.27 205.2 -19.7 -14.1

Ex37 4144.10 3477.73 3716.38 189.2 -16.1 -10.3

Ex38 3841.63 3459.03 3787.02 204.0 -10.0 -1.4

Ex39 4823.96 4041.88 3884.04 17.2 -16.2 -19.5

Ex40 4082.95 3648.90 3562.7 10.2 -10.6 -12.7

Ex41 4117.93 3589.61 3754.31 0.9 -12.8 -8.8

Ex42 4084.68 3703.47 3717.92 3.7 -9.3 -9.0

Ex43 4491.61 3782.58 3978.46 7.2 -15.8 -11.4

Ex44 6116.02 5374.11 5475.11 210.4 -12.1 -10.5

Ex45 5923.10 5195.68 4941.6 216.6 -12.3 -16.6

Ex46 6095.66 5501.46 5185.61 55.5 -9.7 -14.9

Ex47 6051.80 5916.36 5257.31 253.9 -2.2 -13.1

Ex48 6672.93 6704.23 5527.5 233.6 0.5 -17.2

Ex49 7727.28 9654.12 6951.96 4.4 24.9 -10.0

Ex50 8163.12 9953.75 7560.55 105.5 21.9 -7.4

Ex51 7173.32 9603.38 6620.26 0.9 33.9 -7.7

Ex52 7650.43 - 7060.59 106.4 - -7.7

Ex53 7589.11 - 6938.57 2.3 - -8.6

Ex54 10070.27 - 9167.93 374.8 - -9.0

Ex55 10667.02 - 9708.14 509.6 - -9.0

Ex56 10683.11 - 8861.43 394.8 - -17.1

Ex57 9939.02 - 9610.23 551.4 - -3.3

Ex58 10963.14 - 10003.95 494.7 - -8.7

