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Abstract 

Chemical production scheduling is responsible for providing the allocation, sequencing 

and timings of operations into units to produce several valuable products. As a result, 

optimal scheduling is crucial for the vitality and prosperity of the chemical industry as it 

directly affects its productivity and its operational costs. Although many mathematical 

models have been developed in the past three decades, most models either lead to large 

model sizes and intractable computational time or generate suboptimal solutions in some 

cases. Additionally, mathematical models for scheduling of multipurpose batch plants do 

not allow related production and consumption tasks in different units to start or/and end 

at the same time points, which is different from the models for scheduling of semi-

continuous/continuous and multistage multiproduct batch plants. Therefore, there is no 

generic and efficient framework for chemical production scheduling problems.  

In this Thesis, a generic and efficient modelling framework is proposed using the unit-

specific event-based time representation. The main features of this framework include (a) 

defining all timing variables based on units instead of tasks, (b) allowing related non-

recycling production and consumption tasks to take place at the same event-point where 

a new definition for recycling tasks is presented, (c) sequencing different units processing 

related production and consumption tasks only if there is an indirect material transfer (i.e. 

there are not enough materials in the storage for consuming tasks), (d) aligning different 

units processing related tasks only if there is a direct material transfer (i.e. there is not 

enough storage for producing materials), (e) allowing processing units to hold materials 

for multiple event points. It is demonstrated that the proposed framework outperforms 

existing approaches in both solution quality and computational expenses. For large-scale 

problems, which require significantly high computational time, an enhanced rolling-

horizon decomposition approach is developed in which a grouping strategy using the 

mixed-integer programming is proposed to divide the entire problem into subproblems. 

It is shown that the enhanced decomposition approach can generate optimal or near-

optimal solutions in significantly less computational time.  Finally, a hybrid solution 

approach through a combination of gene expression programming with the mathematical 

programming approach is explored to solve large-scale energy-efficient flexible job-shop 

scheduling problems. The results demonstrate that the hybrid approach can significantly 

improve the solution quality. 
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Chapter 1: Introduction 

It is undeniable that the industrial revolution has drastically affected the everyday life of 

most people around the globe during the past two centuries. Processing facilities construct 

most of the tools and products that an average household uses every day. Furthermore, 

the process industry has significantly advanced the health industry, transportation and 

communications, which further improved the everyday life of numerous people. Only the 

chemical industry is responsible for producing more than 70,000 different products in the 

USA (SelectUSA, 2020). As a result, the process industry significantly affects the global 

economy. More specifically, only in the UK, the process industry has contributed £200 

billion in 2016, which is approximately 15% of the total UK economic output (office for 

national statistics, 2016) However, the highly competitive market makes challenging for 

an individual process facility to withstand. Therefore, a facility needs to produce one or 

more valuable products at the minimum possible cost. Apart from surviving to such a 

competitive market, there is also one more factor that leads facilities in the same direction; 

their environmental footprint. By optimizing their processes, facilities can minimize the 

use of raw material resources as well as to reduce their energy needs which leads to less 

fuel consumption and as a result fewer gas emission without affecting their productivity. 

Furthermore, facilities receive several orders every day and therefore, they require the 

proper managerial tools that not only help them to optimize their process but also to 

provide a quick solution to manage to meet their due dates. 

1.1 Classification of process industry 

In general, there are different types of processes that a facility can process to produce a 

product. Therefore, the process industry can be classified into two main categories; batch 

and continuous process industry. A facility can perform batch processes, continuous 

processes or both, based on the type and the quality of the product that the facility 

produces.  

1.1.1 Batch process industry 

Facilities that perform batch processes produce one or more products by processing 

several raw materials. More specifically, the raw materials enter a batch vessel at the 

beginning of the process, which converts them into final products after a specified time. 

At the end of the processing time, the final products exit the batch vessel. It is suitable for 
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processing facilities to use batch processes if they require to produce multiple products 

with different specifications in small quantities. Furthermore, it is preferable to use a 

batch process in cases where there is a high risk of contamination. Batch process industry 

can be further classified into the multipurpose, multistage and multitasking batch process 

industry.  

1.1.1.1 Multipurpose batch process industry 

In the multipurpose batch process industry, a batch can split into one or more parts. In 

this case, two different processing units can process each fraction. Additionally, mixing 

two or more streams is also possible in such a facility. Therefore, a multipurpose batch 

process facility can produce a final product by mixing several raw materials. Such 

facilities also use several recycling streams mainly to increase product yields. Commonly 

a multipurpose batch process facility produces more than one final products and each 

product follows a different processing path. In other words, the number and the type of 

processes that each raw material follows to produce a final product may differ. Finally, a 

processing unit can process multiple tasks from different stages. For instance, a reactor 

may be suitable for two reactions within the same facility.  

Figure 1 depicts all different features of a multipurpose batch process facility. For 

instance, raw materials 1 and 2 can mix into the same batch B1. Furthermore, the 

intermediate product of batch B2 (material 4) can split into two different parts (batches 

B3 and B4). Figure 1 also depicts a case of a recycling stream. In this case, batch B3 

produces intermediate product 3 together with final product 5, which is separated and 

mixed with the rest intermediate product 3 (Batch B2). 

 

Figure 1 A multipurpose batch process facility  
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A specific case of a multipurpose batch process industry is the job-shop industry. 

In the job-shop facility, only one out of the several available processing units (machines) 

can process a specific operation in a job-shop facility. There are also cases, though where 

two or more processing units that are suitable for the same operation/task within a facility. 

Such facilities are commonly known as flexible job-shop facilities. Both job-shop and 

flexible job-shop facilities can process multiple jobs, which consist of one or more 

operations. The main difference between common multipurpose and job-shop/flexible 

job-shop facilities is that the batch size is not involved in this problem. More specifically, 

in such facilities, a processing unit receives one or more parts of an object/tool and 

performs several modifications to an object or assembly the different parts.  

1.1.1.2 Multistage batch process industry 

In multi-stage batch processes industry, processing units process several batches, which 

consist of one or more raw materials, mixed before the start of the whole process, in 

several predefined stages. The processing stages (processing path) are the same for all 

batches, while no splitting or mixing is allowed during the whole process. Furthermore, 

a multi-stage batch process facility does not contain any recycling stream. In each stage, 

one or more processing units are available to process each batch. However, each 

processing unit can only process operations of this stage, while it can only process one 

operation at a time, similar to multipurpose batch processes. A specific case of multi-

stage batch processes is the single-stage batch process, where there is only one stage in 

the processing path.  Figure 2 depicts a general single and multi-stage batch process 

facility. 

 

Figure 2 A general single-stage and multi-stage representation 
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The food industry is an example of a multi-stage batch process industry. In the 

food industry, it is crucial to avoid contamination between batches. Therefore, there is no 

split or mix between food product batches. In this case, if there is any contamination, then 

it only affects a small number of products (i.e. food processed in the same processing 

units right before or after the contaminated product). Furthermore, in the case of a faulty 

product, the facility can identify all affected products and remove them from the market, 

before consumed by the final customer. 

1.1.1.3 Multitasking batch process industry 

As already discussed, in both multipurpose and multi-stage batch processes, a processing 

unit can only process one task at a time. For instance, a reactor can only process one 

reaction, while a separator can only perform one separation at a time. However, there are 

several cases where a processing unit contains multiple departments or slots, and it can 

process more than two tasks simultaneously. These are commonly known as multitasking 

batch processes. A multitasking batch process facility can also perform both multi-stage 

and multipurpose batch processes.  

The scientific service industry is an example of a multitasking batch process 

industry. Such facilities examine several samples from different customers for physical 

and chemical properties, using multiple processing units. Each unit can process a large 

number of those samples in their departments/slots. Furthermore, each department can 

examine a property independently. As a result, a processing unit can process multiple 

tasks simultaneously. 

1.1.2 Continuous process industry 

Continuous process industry processes one or more materials without interruption. In this 

case, raw materials continuously enter a processing unit, while final products exit 

uninterrupted. The use of continuous processes is desirable when the facility requires to 

produce a large quantity of a specific product with the same specification. Using a batch 

process is not suitable for generating such large amounts of a product, since the quality 

may slightly differ from batch to batch. Additionally, a significantly large number of 

batch vessels, which lead to high capital cost are required to fulfil the market demands. 

Continuous processes can avoid those issues. However, their main drawback is that 

unscheduled interruption of a processing unit can significantly affect the performance of 
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the facility. Therefore, it is more crucial to perform proper maintenance occasionally to 

avoid such an unscheduled interruption than facilities that perform batch processes. 

The refinery is an example of a continuous process facility. A refinery facility 

processes large quantities of raw materials (crude oil) to produce enough products (fuel) 

to fulfil the market demands. Additionally, there are strict specifications in the quality of 

products, since it is essential to ensure optimal performance by simultaneously fulfilling 

the environmental specifications. Therefore, only continuous processes are suitable for a 

refinery. 

1.2 Supply chain management 

The number and the type of processes between facilities may significantly differ, even if 

they produce similar final products. However, despite such differences, there are three 

managerial levels at which every process industry needs to manage its operations. In the 

first level, a processing facility should decide the number of different products is going 

to produce. Multiple factors affect such a decision, including the predicted market 

demands and the available technology for producing such products. Furthermore, the 

facility must ensure that it follows the health and safety procedures to process the final 

products. In this level, it also examines the effect of possible extensions or upgrades in 

the profitability. For instance, if the market demand for a given product is high, then the 

use of additional processing units will lead to larger productivity and profitability for the 

facility. Likewise, a facility requires new types of processing units, if it decides to produce 

new products. Such a facility should also examine if it contains a suitable amount of 

storage tanks to store all products, which should operate within the safety limits. During 

a process, a facility should also stock several intermediate products except for raw 

materials and final products. Therefore, it should examine if the available storage tanks 

can temporarily store such intermediate products. Finally, the existing or potential new 

equipment should operate in the conditions required to produce intermediate or final 

products. Such first-level operational decisions are commonly known as long-term 

planning or strategic planning. Usually, strategic planning decisions consider periods 

which can vary for one to multiple years, since changes the strategic planning require 

high investments. 

 In the next step, a processing facility needs to determine which products and in 

which quantity is going to produce for a shorter period than the strategic planning period. 
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Different factors can affect these decisions, including the availability and the price of raw 

materials, as well as the actual market needs. The available raw materials and final 

products (produced in a previous period) can also affect such decisions. Those decisions 

usually change more frequently than strategic planning decisions since most of these 

factors fluctuate significantly during short periods. Such planning decisions are 

commonly known as medium-term planning or tactical planning, the period of which 

usually varies from multiple weeks to several months. In tactical planning, the processing 

facility only decides for the type and amount of products among the products specified in 

the strategic planning that will produce in this period. The structure remains the same, 

even if a structural change can potentially lead to increased profitability. Similarly, the 

processing facility can only produce a specific amount of products based on its storage 

availability, even in cases of high demand for a product. In such a case, the strategic 

planning of the next period should consider the extension of the facility with additional 

processing units or storage tanks. 

1.2.1 Scheduling decisions in the process industry 

The third and last managerial level is commonly known as short-term planning or 

scheduling. Facilities usually take scheduling decisions for shorter periods, which can 

vary from multiple hours to one week. Despite the short period of the scheduling 

decisions, this level is crucial in supply chain management. In this stage, the processing 

facility decides the processes that are going to take place within the scheduling horizon, 

which significantly affects the efficiency of the facility. Scheduling decisions includes 

the allocation, the sequence and the timing of operation into units. More specifically, 

scheduling decides the processing unit, as well as the start and end processing times for 

all operations. Such a decision can significantly vary based on the objective of the facility; 

maximizing the productivity, minimizing the makespan, or minimizing the cost are some 

of the goals of a typical facility. Additionally, the facility needs to decide if maintenance 

should take place in one or more processing units. In such a case, it should examine what 

is the best schedule, that both fulfils the objectives of the facility and successfully perform 

the maintenance. 

 It is crucial for the smooth operation of each facility, to have the best schedule, 

that not only fulfils the customer demands but also ensures that it also produces all 

products in the minimum possible cost. The importance of such managerial level can 

exceed the ones of the strategic and tactical planning since the scheduling decisions are 
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responsible for putting the plan into action. Taking bad scheduling decisions can 

significantly affect the facility's vitality by leading to increased costs or losing customer 

trust. Additionally, a facility needs to be able to generate a schedule in a short time. As 

already discussed, a facility should take a scheduling decision for the next few hours. 

Therefore, facilities should use a method that provides a schedule within a few seconds 

to up to several minutes. In a case of an unplanned change (i.e. breakdown of a processing 

unit, increase in product demand, additional customers and orders) the facility needs to 

develop a new schedule that affects the functionality of the process as less as possible. 

Even though several approaches can generate the best solution on a given problem, they 

usually require high computational even for small-scale examples. Many other methods 

can provide a solution to the scheduling problem in significantly less time. However, they 

generate far for optimum solutions. It is, therefore, a challenging task up to this day for 

facilities to find a methodology that can provide optimum or near-optimum schedules in 

a reasonable time. 

 In Figure 3, a general diagram of planning decisions that a processing facility 

should take is presented. 

 

Figure 3 Supply chain planning matrix (Sung and Maravelias 2007; Stadler et al. 2015) 

1.3 Motivation and Objectives 

Even though the optimization of strategic and tactical planning has been well established 

since the 1950s, scheduling decisions have not gathered enough attention. The main 

burden of developing an efficient methodology for optimal scheduling was the 
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significantly smaller computational power during the past few decades as well as the fact 

that the most scheduling problems are NP-hard problems (Garey et al. 1976; Bruker et al. 

1998). As a result, the first approaches use heuristic or spreadsheet approaches for 

scheduling decisions. In most facilities in process industries, such methods are used even 

up to this day. Since heuristic or spreadsheet approaches are only limited to generate a 

feasible solution, which in some cases is far from optimum, there is still much room from 

improvement. 

 Development of mathematical models for scheduling of process scheduling has 

gathered some attention during the past three decades. In most cases, those models can 

solve the scheduling problem of a specific facility (i.e. refineries, steelmaking) or a type 

of process (i.e. batch process or semi-continuous/continuous process). However, each 

facility has notable differences and, as a result, it is not possible to use an approach 

dedicated to a specific type of industry to solve a different scheduling problem. More 

importantly, there is not a general mathematical modelling framework which can develop 

the optimal scheduling decisions for all different types of processes. Such limitation is 

crucial for the existing approaches since a facility may include more than one type of 

operations. 

 Another limitation of most existing mathematical models for developing scheduling 

decisions is the lack of efficiency and robustness. Even though there are mathematical 

models for most types of industries, they usually require high computational time to 

generate optimal solutions. Additionally, such approaches fail to incorporate all facility’s 

features in some cases, which limits the capability of those approaches. Such limitations 

are the main reason that industries prefer using heuristic or spreadsheet approaches over 

mathematical modelling approaches for their scheduling decisions. In this case, even 

though they are only able to generate a feasible solution, they can provide such a solution 

in significantly less computational time. It is, therefore, essential to develop efficient and 

robust mathematical models to tackle such high computational burdens and inefficiency. 

Such mathematical model should include all features of the process industry in the 

mathematical framework and incorporate strategies that significantly reduce the 

computational time, by reducing the resulting model size and tightening the MILP 

relaxation of the problem. 
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 Although existing mathematical approaches usually require high computational 

time to generate the optimal solution for small-scale examples, there are also large-scale 

scheduling problems, where it is impossible, even for a very efficient mathematical 

model, to generate the optimal solution in acceptable computational time. For such hard-

to-solve scheduling problems, different decomposition approaches have been developed. 

Most of such algorithms use the strategy of dividing the scheduling horizon into smaller 

sub-horizons, solving one subproblem at a time and fixing the resulted scheduling 

decisions before solving the next subproblem. Such approaches are commonly known as 

rolling horizon decomposition approaches. The division into smaller subproblems is 

usually performed based on the due dates of each product. More specifically, orders with 

earlier due dates are assigned to before those orders with later due dates. However, the 

rolling horizon decomposition approach may fail to successfully divide the scheduling 

problem if there are many orders with the same due date. Currently, there is not an 

efficient rolling horizon decomposition approach to handle such cases.  

 With significant advances in machine learning evolutionary techniques presented, 

the use of such techniques combined with mathematical modelling can improve the 

efficiency of developing scheduling decisions. For instance, an evolutionary approach 

(i.e. gene expression programming) can generate effective rules based on existing 

information on scheduling decisions for previous scheduling horizons and their effect in 

the final solution. These rules can efficiently decide the allocation and sequencing of tasks 

into units. Then, a mathematical model can generate the best timing and batching of each 

process for the given task allocation and sequencing. This linear programming (LP) 

problem require acceptable computational time. As a result, such an efficient hybrid 

algorithm can significantly decrease the computational time. Despite the potential of such 

hybrid algorithms, it still seems that there is not such an approach developed for process 

scheduling.  

 Based on those limitations of the existing mathematical models, the objective of 

this thesis is: 

1) To develop a new generic, robust and efficient framework for the process industry, 

which lead to smaller model sizes and require less computational time to generate the 

optimal solution, by introducing several features in the proposed framework, including; 
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 a) Allowing related production and consumption tasks to take place at the same event 

point;   

 b) Sequence processing units that process  production and consumption tasks related 

to the same state only if there is an indirect material transfer between those units. 

Such indirect material transfer should take place if a consumption task consumes 

more materials than the materials stored in the storage tanks; 

 c) Align processing units that process production and consumption tasks related to 

the same state only if there is a direct material transfer between those units. Such 

direct material transfer should take place if storage capacity is not enough to store all 

the producing materials. Therefore, they should immediately transfer to another unit; 

 d) Allow processing units to store the materials that they produced for multiple event 

points; 

2) To enhance the rolling-horizon decompositions algorithms, by using mixed-integer 

programming to group different products/orders that have the same due dates;  

3) To explore a combination of gene expression programming and the mathematical 

programming approach for energy-efficient scheduling of flexible job-shop scheduling 

problems. 

1.4 Research Contributions and Thesis Structure 

The thesis format is “journal format” containing several published or submitted academic 

papers in peer-reviewed scientific journals. Chapter 1 presents a brief introduction of the 

thesis, while Chapter 2 presents a detailed literature review for existing approaches for 

scheduling of process industry. The rest of the chapters contains the research 

contributions as follows. 

1.4.1 Chapter 3 - Research contribution 1 

Chapter 3 contains a new approach for scheduling of multipurpose batch processes is 

presented. In this approach, a new, slightly different definition of recycling and non-

recycling tasks, is proposed. Additionally, non-recycling production and consumption 

tasks can take place at the same event point. Two mathematical models are developed, 

based on unit-specific event-based time representation. While the first model uses task-

based timing variables, the second model uses unit-based timing variables. By solving 
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several well-established examples, it seems that the proposed approach can reduce the 

number of event points, and it leads to smaller model sizes which improve the efficiency 

of the model. 

This research contribution is published in Frontiers of Chemical Science and Engineering. 

Rakovitis, N., Zhang, N., Li, J. Zhang, L. A new approach for scheduling of multipurpose 

batch processes with unlimited intermediate storage policy. Front. Chem. Sci. Eng. 13, 

784–802 (2019) doi: doi.org/10.1007/s11705-019-1858-4 

Author’s contribution 

Nikolaos Rakovitis developed the two mathematical models, examined the models by 

conducting all the computational studied and wrote the presented manuscript. 

Nan Zhang reviewed and edited the manuscript. 

Jie Li contemplated and supervised the work, reviewed and edited the manuscript. 

Liping Zhang reviewed and edited the manuscript. 

1.4.2 Chapter 4 - Research contribution 2 

In Chapter 4, a generic framework is developed and implemented in the scheduling 

problem of multipurpose batch processes. The features of the approach presented in 

research contribution 1, was included together with the new features of indirect and direct 

material transfer. Additionally, in the proposed formulation, processing units can store 

materials for multiple event points. The solutions generated by solving several benchmark 

examples demonstrate that the proposed model can generate the optimal solution in all 

cases and it leads to the smallest model sizes and, as a result, it is more efficient. 

This research contribution is submitted for publication to AIChE journal. 

Rakovitis, N., Pan Y, Zhang, N., Li, J. Kopanos, G.  Generic mathematical formulations 

for scheduling of multipurpose batch plants, AIChE journal, submitted 

Author’s contribution 

Nikolaos Rakovitis developed the generic mathematical model, performed the 

computational studies and wrote the presented manuscript. 

Yueting Pan prepared several GAMS codes for the examples solved  
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Nan Zhang reviewed and edited the manuscript. 

Jie Li contemplated and supervised the work, reviewed and edited the manuscript. 

Giorgos Kopanos reviewed and edited the manuscript. 

1.4.3 Chapter 5 - Research contribution 3 

In Chapter 5, the proposed framework is implemented in the continuous process industry. 

The results demonstrate that the proposed formulation requires significantly less 

computational time than a recent existing formulation for scheduling of continuous 

processes. 

Rakovitis, N., Hasnuddin, W. M. A. W., Zhang, N., Li, J. A Generic Approach for 

Scheduling of Semi-continuous and Continuous Processes, to be submitted to Chemical 

Engineering Science 

Nikolaos Rakovitis developed the generic mathematical model, performed the 

computational studies and wrote the presented manuscript. 

Wan Mohd Azril bin Wan Hasnuddin used the developed mathematical models to 

solve a number of benchmark examples. 

Nan Zhang reviewed and edited the manuscript. 

Jie Li contemplated and supervised the work, reviewed and edited the manuscript. 

1.4.4 Chapter 6 - Research contribution 4 

In Chapter 6, the proposed framework is used for scheduling of multitasking batch 

processes. Except from the proposed framework, another mathematical model is 

developed, which is based on unit-specific event-based time representation with task-

based timing variables. The proposed framework leads to significantly less computational 

time than all mathematical models and it can generate significantly better solutions than 

the non-uniform discrete-time model of Lagzi et al. 2017b. 

This research contribution is published in Computers and Chemical Engineering 

Rakovitis, N., Zhang, N., Li, J. A novel unit-specific event-based formulation for short-

term scheduling of multitasking processes in scientific service facilities, Computers and 

Chemical Engineering, 133(2), (2020) doi: 

doi.org/10.1016/j.compchemeng.2019.106626 

https://doi.org/10.1016/j.compchemeng.2019.106626
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Author’s contribution 

Nikolaos Rakovitis developed the two mathematical models, conducted all the 

computational studied and wrote the presented manuscript. 

Nan Zhang reviewed and edited the manuscript. 

Jie Li contemplated and supervised the work, reviewed and edited the manuscript. 

1.4.5 Chapter 7 - Research contribution 5 

Chapter 7 presents three novel mathematical models for scheduling of energy-efficient 

flexible job shops. The first model implements the framework developed in the previous 

chapters to solve this model, while the second and third model uses the local sequence-

based representation. An enhanced rolling horizon decomposition approach is also 

presented, where a grouping strategy using the mixed-integer programming divides the 

entire problem into different subproblems. Such decomposition approach can 

successfully decompose a large-scale problem, where all products/orders have the same 

due date. Furthermore, the combination of those mathematical models with existing 

evolutionary approaches has been examined. The results demonstrate that the models are 

more efficient and robust than all existing mathematical models. Furthermore, combining 

the models with the proposed rolling horizon decomposition approach leads to 

significantly better solutions and less computational time. Several comparative studies 

have shown that the proposed algorithm can generate better solutions than the best-

reported approach for this scheduling problem. 

Rakovitis, N., Zhang, N., Li, J. Zhang, L.  Novel Approaches for Energy-Efficient 

Scheduling of Flexible Job-Shop Problems, to be submitted to European Journal of 

Operational Research 

Author’s contribution 

Nikolaos Rakovitis developed the mathematical models, the enhanced rolling horizon 

decomposition approach and the hybrid mathematical programming and evolutionary 

approach algorithm, conducted the computational studies for the mentioned approaches 

and wrote the presented manuscript. 

Nan Zhang reviewed and edited the manuscript. 

Jie Li contemplated and supervised the work, reviewed and edited the manuscript. 
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Chapter 2: Background & Literature review 

Scheduling problems in the process industry has gathered significant attention during the 

past three decades. Multiple research groups proposed different approaches, especially 

mathematical models, to generate optimal or near-optimal schedules for both batch and 

continuous processes. In this chapter, a brief background on different programming 

optimization approaches, as well as the process and time representations, will be 

presented. Additionally, the formulations proposed for scheduling of single-stage, multi-

stage, multipurpose, flexible job-shop and multi-tasking batch processes, as well as 

continuous processes, will be presented and discussed.  

2.1 Introduction in optimization 

In a processing facility, several actions, as well as physical and chemical phenomena, take 

place. For instance, raw materials occasionally enter and exit a processing unit during the 

scheduling horizon. Additionally, the facility should distribute the final products in the 

market. Furthermore, multiple processes such as reactions, heating of materials and 

separations take place to produce such products. Mathematical relations such as 

equalities, inequalities and logical conditions can describe such activities and phenomena. 

The combination of all these relations creates a mathematical model (Floudas 1995) 

which describes the processing facility. 

Several factors can affect the performance of the facility. Each facility aims to 

choose those factors that lead to the best performance. An objective function 

mathematically describes the performance of the facility. The objective usually differs in 

each facility, since what is the best performance is subjective. For instance, it can be 

desirable to either minimize the likelihood of undesirable events such as breakdowns or 

to maximize the productivity of the facility. Even though both cases aim to maximize the 

profitability of the facility, they may lead to different solutions and different process 

performance. The objective function together with the mathematical model consisting of 

all constraints is an optimization problem (Edgar and Himmelblau, 1989). A general 

optimization problem can have the following structure. 
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 max 
𝑥

     𝑓(𝑥) 

    𝑠. 𝑡.         𝑔𝑖(𝑥) = 0,      𝑖 = 1,2, … , 𝑛 

                    ℎ𝑗(𝑥) ≤ 0,      𝑗 = 1,2, … ,𝑚 

                                          𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 

Where 𝑥 is the vector of continuous variables, 𝑔𝑖(𝑥) is a set of equality constraints, ℎ𝑗(𝑥) 

is a set of inequality constraints and 𝑓(𝑥) is the objective function. 

Optimization problems are classified based on the type of variables and constraints 

that the mathematical model contains (Figure 4). In the simplest case, the mathematical 

model includes linear constraints and continuous variables. This optimization problem is 

a linear programming (LP) problem. If the model also contains integer variables, then the 

mathematical model is a mixed-integer linear programming (MILP) problem. Such 

variables are necessary if the scheduling problem considers logical conditions. For 

instance, assigning the process of a task to a processing unit requires several binary 

decision variables. Examining if a processing unit is active during a specific time is also 

imposed by using several binary variables. It is also possible to deal with restricted cases, 

where, it is not possible to have a decimal number (i.e. the number of samples processed 

in a processing unit). These types of variables should only take integer variables. If all 

the variables are integer though, the optimization problem is named integer programming 

(IP) problem. Furthermore, if the optimization problem contains non-linear terms (e.g. to 

explain complicated phenomena), it is called non-linear programming (NLP) problem if 

there are only continuous variables. Finally, if there are both continuous and discrete 

variables, it is called mix-integer non-linear programming (MINLP) problem (Edgar and 

Himmelblau, 1989; Floudas, 1995).    

A process industry needs to make multiple decisions in all planning periods, such 

as choosing the producing products, the processing units, as well as the detailed 

sequencing and allocation of tasks into units. Such decisions can only be described in a 

mathematical model by introducing several binary variables. As a result, most of the 

planning and scheduling problems are MILP problems. Next, more details for the MILP 

problems will be presented. Additionally, the branch and bound method will be presented, 

which is the most common method to find the optimal solution of a MILP problem. 
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Figure 4 Classification of mathematical models 

2.1.1 MILP & relaxed MILP optimization problem 

As discussed, a MILP optimization problem contains multiple linear constraints and 

several continuous and binary/integer variables. A general MILP problem has the 

following structure. 

                                     max 
𝑥,𝑦

      𝑓(𝑥, 𝑦) 

    𝑠. 𝑡.         𝑔𝑖(𝑥, 𝑦) = 0,      𝑖 = 1,2, … , 𝑛 

                    ℎ𝑗(𝑥, 𝑦) ≤ 0,      𝑗 = 1,2, … ,𝑚 

                                               𝑥 ∈ 𝑋 ⊆ 𝑅𝑛 

                                                   𝑦 ∈ 𝑌 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

Where 𝑥 is the vector of continuous variables, y is the vector of the integer variables 

𝑔𝑖(𝑥, 𝑦) is a set of equality constraints, ℎ𝑗(𝑥, 𝑦) is a set of inequality constraints and 

𝑓(𝑥, 𝑦) is the objective function. 

Another optimization problem that is also solved is the relaxed mixed-integer linear 

programming (rMILP) problem. The rMILP problem contains the same objective 

function and constraints with the MILP problem. The main difference with the MILP 

problem is that the integer variables are denoted as continuous variables instead. In other 

words, all binary variables of the MILP problem can take values within the interval [0,1] 

in the rMILP problem. Therefore, the rMILP problem is an LP problem which is usually 

easy to solve. The solution to this problem provides an upper/lower bound to the MILP 
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problem. More specifically, in maximization problems, the solution of the rMILP 

problem is the upper bound for the MILP problem. 

An important factor that affects the efficiency of a mathematical model is the 

difference between the solution of the MILP and the rMILP problem. A mathematical 

model is tight if there is a small gap between those solutions. In this case, the rMILP 

solution usually contains multiple relaxed variables with an integer solution, even though 

those variables are continuous. It is desirable that the rMILP solution only contains 

relaxed variables with integer solution. In such a case, the rMILP solution is also a 

solution to the MILP problem. If the gap between the MILP and the rMILP solution is 

large, then the problem may require excessive computational time even to generate a 

feasible solution. A set of tightening constraints can tight the relaxation of the problem. 

Those constraints, which may or may not have a physical meaning, they force relaxed 

variables to have integer or close to integer values in the rMILP solution. 

2.1.2 Branch and bound algorithm  

Usually, MILP problems are hard to solve. One method to find the optimal solution in 

small examples is to investigate the best solution by examining all possible permutations 

of the integer variables. For instance, in a batch scheduling problem with two batch 

processes and two processing units, there are four possible permutations in total. In such 

an example, it is easy to examine all four permutations to find the best solution. However, 

the possible permutations exponentially increase as the example size increases. As a 

result, it is computationally expensive to examine all of them in a common problem. 

Branch and bound is an algorithm that can solve MILP problems, mainly because it can 

prove that a solution is the best solution without examining all permutations. 

The branch and bound algorithm finds the best solution to a MILP problem as 

follows. In the first step, the algorithm relaxes all integer variables. Therefore, the 

resulting rMILP problem is solved first. The solution of the rMILP problem is the upper 

bound (or lower bound in minimization problems) of the MILP problem. In other words, 

it is not possible to find an integer solution with a better objective value. The rMILP result 

is the root node of the branch and bound algorithm. In the root node, there are three 

different cases. In the first case, the root node is infeasible, and as a result, it is not 

necessary to examine any permutation since the MILP problem will also be infeasible. In 

the second case, all relaxed variables have integer values. In that case, it is also 
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unnecessary to examine any permutation since the rMILP solution is also a solution of 

the MILP problem. Since  rMILP provides the upper bound of the problem, there is not 

an integer solution with a better objective. Finally, in the last case, some or all relaxed 

variables have non-integer values. In such a case, several permutations, to find the best 

solution, should be examined. 

The branch and bound algorithm does not examine the permutations randomly. 

Instead, it introduces additional constraints in the relaxed model, and it evaluates the 

solution before proceeding to the examination of a branch. Similar to the root node, the 

algorithm does not examine any additional permutations of the branch if the node is 

infeasible or if all relaxed values have integer values. However, there is one more case 

that the algorithm stops examining a branch; if the solution of a node has an objective 

value less than the best integer solution found so far. In this case, there is not a better 

solution in this branch. The whole procedure continues until all the branches are examined 

or pruned, or until the difference between the best integer solution and the upper bound 

is less than the specified accuracy. 

After the branch and bound algorithm examines a node, the algorithm continues as 

follows. Let’s assume that the solution of a node contains relaxed variables with decimal 

values. In this case, the algorithm chooses one of those variables, usually the one that is 

further from the closest integer. For instance, if two relaxed variables have the values x1 

= 2.3 and x2 = 4.4 respectively, then the algorithm chooses variable x2. In the next step, 

the algorithm generates two new nodes by adding a constraint. In the first node, the chosen 

variable can take values less or equal to the greatest integer value that is smaller than the 

value of the variable, while in the second node, it takes values greater or equal to the 

smallest integer values that are greater than the value of the variable. For instance, if the 

same example is considered, where x2 is chosen, the algorithm adds the constraint x2 ≤ 4 

to create the first node and the constraint x2 ≥ 5, to create the second node. For both nodes, 

optimization takes place to find the best solution by using the new set of constraints. 

In Figure 5, a simple tree, where all the possible cases are depicted. In each node, 

the objective value is depicted. For instance, the root node has an objective value of 15, 

while the best integer solution has a value of 10. Additionally, in each arrow, the 

constraint included is depicted. 
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Figure 5 Branch and bound tree 

2.2 Process representations 

Process representation is essential to develop efficient mathematical models for the 

process industry. Such representation should contain information for the available units, 

the tasks that they are processing as well as the materials produced and consumed in each 

process. Additional details for connection between processes, processing paths, 

conversion rates and resources are also necessary. The most common-used 

representations developed are the State Task Network (STN), the Resource Task Network 

(RTN), the State Sequence Network (SSN) and the Disjunctive graphs. This chapter 

presents a brief introduction to those process representations. 

2.2.1 State Task Network representation 

Kondili et al. (1993) was the first to introduce the state task network (STN) 

representation. In STN representation, tasks denote all processes/operations in a facility 

while states denote the consuming/producing materials. Simple shapes such as rectangles 

and circles represent tasks and states of a facility, respectively Simple shapes such as 

rectangles and circles represent tasks and states of a facility, respectively. For instance, if 
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the arrow points out the task, then it consumes the related state. Similarly, if the arrow 

points out the state, then the related task produces this state. 

Figure 6 depicts the STN representation of an illustrative example. In this example, 

three states represent one raw material, one intermediate product and one final product. 

Additionally, two tasks represent the two processes the processing facility uses to produce 

the final product.  

  

Figure 6 STN representation 

2.2.2 Resource Task Network representation 

The STN representation even though it is useful to represent a facility, it does not contain 

any resources. As a result, the STN representation cannot provide all the necessary 

information in examples with resource constraints. Pantelides (1994) tackled this issue, 

with the Resource Task Network (RTN) representation. In RTN representation, circles 

except for states, they also represent resources. If a task requires one of those resources, 

then a dotted arrow depicts this relation. 

Figure 7 presents an example of an RTN representation. In this example, there are 

two resources available. The first task requires both resources, while the second task only 

requires the second resource. 

 

Figure 7 RTN representation  

2.2.3 State Sequence Network representation 

Majozi and Zhu (2001) proposed the State Sequence Network (SSN) representation. This 

representation only represents the states by using rectangles. In contrast to STN and RTN 

representation, an arrow represents the relation between two states. The direction of the 
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arrow denotes the processing path. For instance, if the arrow points out a state, then a 

process produces this state by consuming the related state. In this way, the SSN 

representation does not immediately represent the processes. Instead, it assumes that a 

processing unit performs the conversion of one state to another one. Finally, a node 

denotes the mixing of two states or the splitting of a batch. 

Figures 8 and 9 present the SSN representation of two examples. The first example 

in Figure 8 is the same as the example presented in Figures 6 and 7. Figure 9 depicts the 

second example with five states in total; one raw material, two intermediate products and 

two final products. In node 1, the raw material splits since two processing units consume 

the same state. Each processing unit produces a different intermediate state. In node 2, 

intermediate product 1 splits into two parts. A process consumes the first part to produce 

final product 2. Finally, in node 3, another unit consumes a mixture of intermediate 

products 1 and 2 to produce final product 2. 

 

Figure 8 SSN representation a 

 

Figure 9 SSN representation b 

2.2.4 Disjunctive graphs 

Roy and Sussmann (1964) developed disjunctive graphs to represent a job-shop facility. 

In a disjunctive graph, a node represents an operation/task. Each node usually contains 

two numbers to denote the job and the operation. Furthermore, two dummy nodes 

represent the start and the end of all jobs. All operations can only start after the dummy 

start node and before the dummy end node. Solid arks depict the relation between two 

consecutive operations in a job, the direction of which denotes the sequence. In a job-

shop facility, each processing unit can process different operations/tasks. If a processing 

unit can process two or more operations/tasks, then disjunctive arks connect all these 
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operations. Each type of ark (dotted, dashed) or colour denotes a different processing unit. 

Finally, a disjunctive graph may also depict the earlier start time that an operation can 

start based on the processing time.  

The disjunctive graphs can successfully represent both classical and flexible job-

shop scheduling problems. Figure 10 depicts an example of a disjunctive graph with three 

jobs and three operations/tasks in each job. Nodes 0 and 1 are the dummy start and the 

dummy end node, respectively. This figure also depicts the relation between processing 

units and operations. For instance, unit 1 can process operations (1,1), (2,1) and (2,2) 

while unit 2 can process operations (1,2), (3,1) and (3,3). Finally, unit 3 processes 

operations (1,3), (3,2) and (2,3). 

 

Figure 10 disjunctive graph  

2.3 Time representations 

Before developing a mathematical model, it is necessary to decide the time representation 

of the developed formulation. Different time representations lead to different model sizes 

and relaxations, and as a result, they significantly affect the efficiency of the model. There 

are two different types of time representations; discrete-time and continuous-time. 

2.3.1 Discrete time representation 

One of the first attempts to develop mathematical models for scheduling of process 

facilities were based on the discrete-time representation (Bowman 1959). Such approach 

divides the scheduling horizon into several time intervals. Each time interval has a fixed 

and known length before the optimization problem, while the start and the end of a 

process or activity can only take place at the bounds of a time interval. Mathematical 

models based on discrete-time representation can either be uniform or non-uniform. In 
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the former models, the time intervals for all processing units have the same length during 

the whole scheduling horizon. On the other hand, in non-uniform discrete-time models, 

the duration of the time intervals can differ from unit to unit. Furthermore, for a given 

processing unit, the length of the time intervals can also be different during the scheduling 

horizon. However, in both models, the duration of each time interval cannot change 

during optimization. 

 

Figure 11 Division of scheduling horizon in discrete time formulations. The start and end 

time of a task/operation/process must be exactly at the time interval 

Discrete-time representation models are easy to implement, and they lead to 

simple formulations with tight relaxations, especially if the objective is the maximization 

of productivity. However, since the length of each time interval remains fixed, 

significantly many time intervals are required in most cases. More specifically, their 

duration should be equal to the greatest common factor of the processing time of all tasks 

in all available units in uniform discrete-time models. Since the processing time can 

significantly differ, usually a large number of time intervals are required to generate the 

optimal solution. As a result, discrete-time models lead to large model sizes, even for 

small examples. The use of time intervals with different length can significantly reduce 

the model size of the problem. However, since a task can only start or finish at the bounds 

time intervals, rounding the processing time to the closest multiple of the length is 

required. In this case, it is possible to overestimate or underestimate the productivity of a 

given processing unit.  

Non-uniform discrete-time models can also lead to smaller model sizes. However, 

since the length of time intervals between processing units can differ, the time intervals 

between two units processing related tasks may not match. In this case, the consumption 

task starts in the next available time interval. As a result, using such models may lead to 

suboptimum solutions, where one or more units remain idle for specific periods. 
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2.3.2 Continuous-time representations 

In contrast to discrete-time representations, in continuous time representations, the 

scheduling horizon is not divided into time intervals of equal length. Instead, the division 

of the scheduling horizon takes place during the optimization. Based on how the division 

takes place, continuous-time representations are classified into slot-based, global event-

based and unit-specific event-based representations. 

2.3.2.1 Global event-based representation 

The global event-based representation uses multiple event points to divide the scheduling 

horizon. In contrast to the discrete-time formulations, the position of each event point is 

unknown. The optimization problem determines the location of each event point. As a 

result, the length between consecutive event points can differ. Global event-based 

representation requires fewer event points than discrete-time, which leads to significantly 

smaller model sizes. However, models based on this representation usually have worse 

relaxations since they contain several constraints with big-M terms. Another disadvantage 

is that the start time for all processing units is the same for a given event point. In other 

words, global event-based representation divides the scheduling horizon uniformly for all 

event points (Reklaitis and Mockus 1995).  

The optimal number of event points are unknown in advance. Instead, an iterative 

procedure determines the best number of event points. More specifically, the model first 

uses the minimum number of event points to solve the problem. In the next step, it uses 

an additional event point to solve the same problem. If there is an improvement in the 

solution, then the problem is further solved with more number of event points. The 

procedure continues until there is no improvement in the solution.  

 

 Figure 11 Global event-based representation 
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2.3.2.2 Unit-specific event-based representation 

Similar to the global event-based, the unit-specific event-based representation divides the 

scheduling horizon using several event points (Ierapetritou and Floudas 1998a). However, 

in the unit-specific event-based approach, the event points split the scheduling horizon 

differently for each processing unit. As a result, the start time during a specific event point 

can differ between two units. This representation leads to less number of event points and 

as a result, to smaller model sizes than global event-based representation. However, it 

also leads to worse relaxations in some cases since they introduce constraints with big-M 

terms. Additionally, the iteration procedure is also required to generate the optimal 

number of event points in unit-specific event-based representation. 

 

Figure 12 Unit-specific event-based representation 

In the literature, there are two different types of unit-specific event-based 

mathematical models. The main difference in these models lays in the modelled timing 

variables. The first type of models, which is the most common ones, use timing variables 

based on tasks. More specifically, the event points divide the scheduling horizon 

differently for each task. In a mathematical model based on a unit-specific event-based 

representation using task-based timing variables, the start or/and the finish time of a task 

during an event point is defined as a variable. On the other hand, in the rest of unit-specific 

event-based mathematical models, the start or/and the finish time of a processing unit 

during an event point is defined as a variable. In other words, the event points divide the 

scheduling horizon based on units. Using task-based timing variables usually leads to 

worse relaxation and as a result, such models require tightening constraints to achieve the 

same rMILP solution with models using unit-based models. 
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2.3.2.3 Slot-based representation  

Slot-based representations divide the scheduling horizon using several time slots (Pinto 

and Grossmann, 1994). Similar to other continuous-time representations, the optimization 

problem specifies the length of each time slot. In contrast to global and unit-specific 

event-based representation, the end time of a time slot should coincide with the start time 

of the next time slot. There are two different types of models using slot-based 

representation; process slot-based and unit-slot models. In process slot-based models, the 

time slots are common to all processing units, similar to the global event-based 

formulations. In unit-slot models, the time and length of time slots, as well as the start 

and end times, can differ in each processing unit, which is the same as unit-specific event-

based representation. The iteration procedure determines the optimal number of time slots 

for both types of models. The main difference is that slot-based representation models 

introduce the duration of each slot as continuous variables. On the contrary, in global 

event-based and unit-specific event-based, the position of each event point is defined 

instead. 

 

Figure 13 Process slot-based representation 

 

Figure 14 Unit slot-based representation 
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2.3.3 Sequence-based representation 

Sequence-based representation, do not divide the scheduling horizon into time 

intervals/time slots/event points. Instead, they define the sequencing of operations into 

units (Ku and Karimi, 1988). There are two different types of sequence-based models; 

local sequence-based and global sequence-based representations. The former models 

define the sequencing between two successive operations, while the later models only 

examine whether an operation precedes another operation in a processing unit. Since such 

formulations determine the sequence of two tasks, time is not explicitly modelled. As a 

result, there are no event points or time slots that need to define a priori with an iteration 

procedure. One of their disadvantages, However, the number of batches have to be 

determined a priori. Additionally, they do suffer from the difficulty in monitoring 

resource levels. 

 

Figure 15 Local Sequence-based and Global-Sequence-based representations 

2.4 Scheduling of multipurpose batch processes 

Developing methodologies for scheduling of multipurpose batch processes is not a recent 

trend. Instead, it has gathered much attention since the 1990s. Kondili et al. (1993) were 

one of the first attempts to tackle this problem. To generate the schedule of a general 

multipurpose batch process, they proposed the STN representation based on which they 

developed a simple discrete-time formulation. The pioneering work of Kondili et 

al. (1993) inspired multiple researchers to formulate efficient mathematical models and 

the examples solved are used to examine and compare new mathematical models in the 

past three decades.  

Despite the novelty of the Kondili’s et al. (1993) work, it seems that the proposed 

model leads to significantly large model sizes which affect the performance of the model, 

even after reformulating some of the constraints to improve the relaxation of the problem 
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(Shah et al. 1993). Such inefficiency is due to the many time intervals required even for 

the small examples. This issue motivated the research community to develop 

mathematical models, using continuous-time representations to reduce the number of 

time intervals required and as a result, reduce the model size the improve the efficiency. 

Mockus and Reklaitis presented the first global event-based mathematical model 

(Reklaitis and Mockus 1995; Mockus and Reklaitis 1997). They simplified their MINLP 

model by using exact linearization. Ierapetritou and Floudas (1998a, b) introduced the 

unit-specific event-based time representation for the same problem. Both models based 

on continuous time-representations require significantly fewer slots/event points, and as 

a result, they lead to smaller model sizes. Between those models, the model of Ierpetritou 

and Floudas (1998a) is the most efficient since it requires the least number of event points. 

The models followed the one of Kondili et al. (1993), even though they managed 

to reduce the model size, they still require excessive computational time to generate the 

optimal solution. One of the reasons is that those models are MINLP models, which need 

linearis ation and as a result, it increases the complexity of the model (Reklaitis and 

Mockus 1995; Mockus and Reklaitis 1997). Furthermore, the model of Ierapetritou 

(1998a, b) generates schedules with the scheduling horizon violation (Castro et al. 2001). 

As a result, in later attempts, a new type of binary and continuous variables and 

constraints were examined to reduce the model size, as well as different time 

representations. Additional features were also added in many formulations to create a 

more general formulation. Zhang and Sargent (1996) developed a new global-event based 

mathematical model. Even though the constraints used contain non-linear terms which 

lead to an MINLP model linearisation can convert it into an MILP problem. Schilling and 

Pantelides (1996) presented an MINLP model for scheduling of multipurpose batch 

processes, which they converted to MILP by using Glover’s transformation (Glover 

1975). They also used global event-based time representation. Both models still require 

intractable time, even with the developed simplifications. Castro et al. (2001) managed 

to reduce the number of event points in global event-based representations, by allowing 

the length between two event points to be larger than the processing time of a task 

processed in the first event point. As a result, their model is significantly more efficient 

than the mathematical model of Schiling and Pantelides (1996), and it can generate a 

schedule with no scheduling horizon violation by using the same number of event points. 

Their model does not contain any non-linear term, and as a result, it leads to a MILP 
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problem. Castro et al. (2004) later improved the model of Castro et al. (2001) by 

introducing a different set of constraints that lead to tighter relaxation. Majozi and Zhu 

(2001) proposed the SSN representation. Based on the SSN representation, they presented 

two mathematical models, where they use different timing variables for each state. These 

models do not introduce binary variables for tasks, since in SSN only introduce states. 

However, it seems that the proposed model requires significantly larger model sizes with 

more continuous variables and constraints. Lee et al. (2001) used three sets of binary 

variables to denote whether a unit starts, continues or ends processing a task during an 

event point, which can reduce the number of binary variables. They implemented their 

approach in a unit-specific event-based model. Gianelos and Georgiadis (2002) reduced 

the number of event points required in unit-specific event-based formulations by 

introducing a different set of sequencing constraints than Ierapetritou and Floudas 

(1998a). Their proposed model does not lead to scheduling horizon violation, in contrast 

to the model of Ierapetritou and Floudas (1998a). Maravelias and Grossmann (2003) used 

the global event-based and the unit-specific event-based representation for tasks that 

produce or do not produce a state with zero-wait policy, respectively. Janak et al. (2004) 

modified and extended the model of Ierapetritou and Floudas (1998a) to include different 

storage policies. Sundaramoorthy and Karimi (2005) developed a slot-based 

mathematical model for scheduling of multipurpose batch processes. Shaik and Floudas 

(2008) implemented the RTN process representation in a unit-specific event-based 

mathematical model for the first time. Shaik and Floudas (2009) introduced a parameter 

to control the number of event points that a task can span, which leads to smaller model 

sizes than the model of Janak et al. (2004). They also extended this model to solve 

problems with limited resources. Vooradi and Shaik (2012) improved the mathematical 

model of Shaik and Floudas (2009), by introducing a single set of allocation constraints 

and removing the big-M terms from duration and different task in different unit 

sequencing constraints. Even though the improved model leads to smaller model sizes 

and tighter relaxation, it seems that in some cases, the model leads to more number of 

event points, which leads to significant increases in computational expenses. Lee and 

Maravelias (2017) attempted to improve the efficiency of discrete-based models by 

presenting two models using the STN and RTN representation, respectively. Finally, Lee 

and Maravelias (2018) developed a solution approach by combining discrete and 

continuous-time formulations to reduce the computational time required. Even though 



45 

 

they managed to reduce the computational time, their model can lead to a suboptimum 

solution, especially if the necessary parameters are not correctly tuned. 

Despite the multiple proposed models, extensions and improvements presented in 

the literature, it is still computationally expensive to solve the multipurpose batch process 

scheduling problem. One of the reasons that those mathematical models lead to high 

computational time is the unnecessary sequence and alignment of related production and 

consumption tasks, which was leading to large model sizes. Seid and Majozi (2012) 

managed to reduce the model size by conditionally sequence all related production and 

consumption tasks, based on the availability of the consuming state. They also aligned all 

those production and consumption tasks, based on the availability of storage. However, 

their model leads to schedules with real-time storage violations. Vooradi and Shaik 

(2013) also conditionally sequence and align related production tasks, based on whether 

the consumption task consumes materials from the production task, or whether the 

materials produced by the production task can be stored, respectively. Even though they 

avoided to generate schedules with a real-time violation, their formulation introduced a 

significantly large number of binary variables, which deteriorate the performance of the 

model in some cases.  

As discussed before, mathematical models based on continuous-time 

representations require an unknown number of time slots/event points. In this case, the 

iterative procedure finds the optimum amount of time slots or event points. This 

procedure first solves the problem using the minimum number of event points. The 

number of time slots/event points are increased by one until there is no improvement in 

the solution using two consecutive event points. However, using such a procedure to find 

the optimal solution may lead to intractable computational time. Li and Floudas (2010) 

developed a framework for optimal event point determination in unit-specific event-based 

mathematical models to decrease the time required to find the number of event points to 

generate the optimal solution.  

Recently, the use of metaheuristics to solve the multipurpose batch process 

problems gained attention. Research groups using metaheuristics aim to develop near-

optimum solutions in significantly less computation time than the existing mathematical 

models. He and Hui (2010) analyzed an example from Kondili et al. (1993). For this 

example, they defined the crucial factors that significantly affect the makespan, such as 
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units, tasks and products. Based on this analysis, they developed a genetic algorithm to 

assign the key-tasks in the key-units. By using the classical approaches of selection, 

mutation and crossover, they were able to generate a good schedule in small 

computational time. Woolway and Majozi (2018) developed a general framework for 

scheduling of multipurpose batch processes. Similar to He and Hui (2010), they proposed 

a genetic algorithm which uses the techniques for selection crossover and mutation. They 

also used a chromosome with two distinct parts, which determine the assignment of a unit 

to an event point and the length between two event points, respectively. Finally, Woolway 

and Majozi (2019) modified the approach of Woolway and Majozi (2018) to consider a 

discrete-time framework. They also tested the simulated annealing (SA) algorithm and 

the migrating bird optimization (MBO) algorithm. Even, though such approaches can 

significantly reduce the computational time, it still seems that they are unable to prove 

the optimality of the solution and it is still possible to generate a far from the optimum 

solution. 

2.5 Scheduling of single and multi-stage batch processes 

Scheduling of single- and multi-stage batch processes has also gathered considerable 

attention in the past three decades. In some of the early attempts, researchers developed 

models for the single-stage batch process with multiple parallel processing units, due to 

its simplicity. Cerdá et al. (1997) were the first to propose a mathematical model to solve 

the single-stage batch process problem. Their model uses immediate sequence-based time 

representation. Méndez and Cerdá (2000) included the problem of limited storage by 

introducing a separate stage. They also used the same time representation as with Cerdá et 

al. (1997). Both models of Cerdá et al. (1997) and Méndez and Cerdá (2000) predefine 

the number and the size of batches that are going to be processed. Méndez et al. (2000) 

dropped this assumption by considering the batching problem. More specifically, they 

propose a two-step approach, where the first step determines the optimum number and 

size of batches are determined. In the second step, a direct sequence-based model solves 

the scheduling problem, based on the first step. Lamba and Karimi (2002) solved the 

single-stage problem with limited resources. Finally, Castro and Grossmann (2006) 

examined the performance of different time representations, including discrete and 

continuous-time representations (global- and unit-specific event-based representations) 

in the single-stage problem. The authors concluded that the unit-specific event-based time 
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representation leads to significantly smaller model sizes than the rest of the time 

representations. 

Despite the progress in developing schedules for single-stage batch process 

examples, such approaches cannot directly solve process industry problems. Processing 

of a batch in more than one stages is familiar in the process industry. In this case, an 

efficient mathematical model should not only determine the best assignment and timing 

of tasks into products but also ensure that a process of a batch starts before the finish time 

of all other processes in all previous stages. Such case led researchers to extend their 

models to consider multi-stage models or to develop new ones. Pinto and Grossmann 

(1995) developed a mathematical model for scheduling of multi-stage batch processes, 

even before the first models for single-stage problems. The authors used unit-based and 

task-based timing variables, which they connect by using a set of time matching 

constraints. However, since the model requires significant computational time, they 

examined the preordering of the sequencing of tasks. Pinto and Grossmann (1996) 

proposed an improved model of Pinto and Grossmann (1995), which requires less 

continuous variables and constraints to generate the optimal solution. Even though they 

improved the efficiency of their model, they still lead to significant computational 

expenses. Hui and Gupta (2000) and Hui et al. (2000) used a different time 

representation. More specifically, they developed a direct sequence-based model for 

scheduling of multi-stage batch processes. To improve the efficiency of their approach, 

they also proposed a preordering heuristic, which assigns the sequencing of tasks based 

on their due dates. Méndez et al. (2001) also solved the problem of scheduling of multi-

stage batch processes with limited resources by developing an indirect sequence-based 

model. Harjunkoski and Grossmann (2002) developed two additional efficient 

decomposition strategies for multi-stage scheduling problems to improve computational 

efficiency. Méndez and Cerdá (2003) considered more than one clusters producing the 

same resources as well as unit-dependent resources. Gupta and Karimi (2003a) developed 

an improved direct sequence-based mathematical model for scheduling of multi-stage 

batch processes, which outperforms the models of Pinto and Grossmann (1995), Hui and 

Gupta (2000) and Hui et al. (2000), by examining multiple different unit assignment 

constraints. Gupta and Karimi (2003b) developed a two-step method for solving the 

batching and the scheduling problem, where the first step, determines the optimal number 

and size of batches, while the second stage sequences the operations into units. Castro 
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and Grossmann (2005) extended the studies presented in Castro and Grossmann (2006) 

for the multi-stage problem, while Liu and Karimi (2007) examined multiple variations 

of models based on slot-based representation for the multi-stage problem. 

Sundaramoorthy and Maravelias (2008) solved the batching and scheduling problem 

simultaneously by developing an indirect sequence-based mathematical model. 

Sundaramoorthy et al. (2009) considered the simultaneous batching and scheduling of 

multi-stage batch processes with limited resources by proposing a uniform discrete-time 

representation. Fumero et al. (2012) developed a slot-based mathematical model for 

multi-stage batch plants operating in campaign mode. They also presented a simplified 

model where they define the maximum number of slots postulated in each unit and used 

several preordering constraints. The same research group also proposed an optimization 

framework for multiple (multisite) multi-stage batch process facilities (Ackermann et al. 

2018) Finally, Novara et al. (2016), developed an efficient constraint programming model 

for multi-stage batch plants, by considering limited resources and campaign mode 

operation. 

2.6 Scheduling of multitasking batch processes 

In contrast to the scheduling of multipurpose and multi-stage batch processes, scheduling 

of multitasking batch process has not gathered adequate attention. Only a few models, 

developed in the past five years, consider this problem. Patil et al. (2015) were the first 

to propose a mathematical model for scheduling of multitasking batch processes. They 

developed a model based on uniform discrete-time representation, and they solved several 

examples from scientific service facilities. Lagzi et al. (2017a), solved the same problem 

by using a process-slot formulation to generate the optimal solution. Lagzi et al. (2017b) 

developed a non-uniform discrete-time model. They also performed comparative studies, 

where they concluded that the non-uniform discrete-time model is the most efficient. 

Santos et al. (2018) extended the non-uniform discrete-time model of Lagzi et al. (2017b) 

to consider personnel allocation for multitasking environments. Finally, Lee et al. (2019) 

investigated the multitasking problem of conflicting objectives for the same problem. 

Despite those attempts, it still seems that excessive computational time is required to 

generate a schedule for multitasking batch processes, which makes it intractable to use 

such models 
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2.7 Scheduling of job-shops 

The job-shop scheduling problem has gathered significant attention since the late 50s. 

Even though the first attempts to solve this problem used mathematical modelling 

programming approaches (Bowman 1959; Manne 1960; Greenberg 1966), the complexity 

of the problem and the small computational power of computing machines during this 

period made it impossible to solve this problem using such models. Instead, to solve this 

NP-hard problem, researchers developed various dispatching rules. During the next two 

decades, a great variety of such dispatching rules proposed and examined in existing job-

shop scheduling problems. Panwalkar and Iskander (1977) reviewed and analyzed all 

these dispatching rules.  

Dispatching rules, even though they can generate a sequence of jobs into units fast, 

they can only generate a feasible schedule. As a result, later attempts focused on using 

enumeration procedures as well as branch and bound methods. Balas (1969) developed 

an implicit enumeration technique for the first time. In this work, he randomly generated 

an initial solution (root node), while for the next solution, he examined whether reversing 

an arc can lead to a better solution. They were multiple works that followed the work of 

Balas (1969) to develop more efficient enumeration techniques. Schrage (1970) presented 

five different cases where he proved that the schedule does not improve, even if there is 

any change in the sequence. As a result, Schrage showed there is no need to examine all 

cases to prove optimality. Florian et al. (1971), used the disjunctive graph to generate the 

nodes of each branch of their approach. More specifically, the root node contains all the 

disjunctive arcs, while for the next nodes, they removed those arcs one by one until the 

schedule is feasible. Ashour and Hiremath (1973) also propose a branch and bound 

method. This method assigns all operations of a job to the available units in the root node, 

without considering any other jobs. In the next nodes, this approach refines the schedule, 

which violates the allocation constraints by modifying the timing and sequence of the 

conflicting operations that lead to the best solution. Fisher et al. (1983) presented two 

mathematical models with surrogate duality relaxation in the capacity and precedence 

constraints. Barker and McMahon (1985) developed a similar methodology with Balas 

(1969). The authors used different rearrangement techniques to improve the efficiency of 

their approach. Adams et al. (1988) used an approximation method to solve the job-shop 

scheduling problem.  
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Heuristic and metaheuristic methods were also applied to the job-shop scheduling 

problem, the use of which led to more efficient approaches to solve this problem. 

Applegate and Cook (1991) combined the branch and bound algorithm with a new 

heuristic method. They also introduced several branch cuts to obtain better bounds. 

Falkenauer and Bouffouix (1991) proposed a genetic algorithm to generate feasible 

solutions for the job-shop scheduling problem, while Laarhoven et al. (1992) solved 

multiple small examples by using a simulating annealing algorithm. For the same 

problem, Dell'Amico and Trubian (1993) presented a tabu search algorithm, while 

Colorni et al. (1994) developed an ant colony approach. Park et al. (2003) developed a 

hybrid genetic algorithm. Watanabe et al. (2005) also developed a genetic algorithm, 

which they combined with an approach that can find an area with a high probability of 

containing higher quality solutions. Finally, Sha and Hsu (2006) examined the particle 

swarm optimization algorithm for developing schedules for job-shop problems.  

The flexible job-shop scheduling problem has also gathered significant attention. 

Wagner (1959) proposed a mixed-integer mathematical model for this problem. However, 

similar to the job-shop scheduling problem, it was impossible to solve such mathematical 

models. Additionally, in the flexible job-shop scheduling problem except for the 

sequence, the assignment of tasks to units should also be determined, which increases the 

difficulty. As a result, the first approaches attempted to solve the assignment and 

sequencing problem independently. Brandimarte (1993) developed a two-level tabu 

search algorithm, where the first level determines the assignment of tasks into units. 

Based on this assignment, the second level examines the best sequencing of operations in 

all machines. Paulli (1995) also used a hierarchical algorithm to solve this problem. More 

specifically, the algorithm first develops a feasible schedule by using several dispatching 

rules, while in the next step, the approach reassigns the operations into units. Hussain and 

Joshi (1998) developed a genetic algorithm to define the assignment problem and an NLP 

mathematical model to find the best sequence. 

Later attempts focused on solving the assignment and sequencing problem 

simultaneously. Using genetic algorithms to determine both cases in the flexible job-shop 

scheduling problem gained significant attention during the past decades. To develop an 

efficient genetic algorithm approach, the research community examined multiple 

different aspects, including encoding, initialization of the population, decoding, selection, 

crossover and mutation. Mesghouni et al. (1997) was the first work to propose the parallel 
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job representation for the chromosome. They presented a simple genetic algorithm, where 

it randomly initializes the population. According to the selection methodology used, the 

fittest individuals have a polynomial increase from generation to generation. Lee et 

al. (1998) presented a similar genetic algorithm for solving the same problem. Chen et 

al. (1999) used two chromosomes to represent the assignment and the sequence of 

operations into machines, respectively. This algorithm also examines if the given 

chromosomes can generate a feasible solution, while an order-preserving crossover also 

ensures that the new chromosomes will not lead to an infeasible schedule. Kacem et 

al. (2002) used the parallel job representation for the chromosomes, similar to 

Mesghouni et al. (1997). The authors also proposed an assignment algorithm that 

investigates the assignments that will fail to generate the optimal solution (forbidden 

assignments) and the ones that will lead to the optimal solution (obligatory assignments). 

Jia et al. (2003) developed a genetic algorithm for scheduling of the distributed flexible 

job-shop problem. They proposed an appropriate encoding, which includes both the 

information for jobs and facilities. Ho and Tay (2004) used composite dispatching rules 

to initialize the population of their genetic algorithm approach. They also used a new 

chromosome representation which consists of two parts; the operation order part and the 

selection machine part. Tay and Wibowo (2004) combined the approaches of Chen et 

al. (1999) and Ho and Tay (2004). They also used two parts to denote the assignment and 

sequence of operations to machines. Chan et al. (2006) developed an improved genetic 

algorithm for the distributed flexible job-shop problem. Pezzella et al. (2008) examined 

three new chromosome selection methods in the genetic algorithm of Kacem et 

al. (2002). Gao et al. (2008) combined the genetic algorithm with a variable 

neighbourhood search algorithm to reduce the generations required for the genetic 

algorithm to terminate. Giovani and Pezella (2010) also developed an improved genetic 

algorithm for the distributed and flexible job-shop scheduling problem. Zhang et 

al. (2011) used a similar chromosome representation with Chen et al. (1999). They also 

developed two algorithms to generate the initial population. They also examined different 

existing crossover and mutation methods to create new chromosomes (Watanabe et 

al. 2005; Gao et al. 2008; Lee et al. 1998). Al-Hinai and ElMekkawy (2011) used an 

operation-based representation for the chromosomes. To improve the efficiency of their 

approach, they combined the genetic algorithm with a local search algorithm. According 

to their method, local search slightly modifies the solution generated by a chromosome 
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to examine if the new assignment leads to a better solution. The local search algorithm 

only analyzes chromosomes after several generations. 

Using different metaheuristics for effectively solving the job-shop scheduling 

problem was also examined in the past three decades. For instance, Hurink et al. (1994), 

Mastrolilli et al. (2000), Saidi-Mehrabad and Fattahi (2007), Fattahi et al. (2007) and 

Liouane et al. (2007) developed tabu search algorithms to solve this problem. Bagheri et 

al. (2010) and Roshainaei et al. (2013) used artificial immune algorithm and hybrid 

artificial immune algorithm and simulated annealing respectively to solve this scheduling 

problem. Apart from the tabu search algorithm, Liouane et al. (2007) also developed an 

ant colony algorithm, while Fattahi et al. (2007) proposed a simulating annealing 

approach. Gao et al. (2006) and Gao et al. (2008) combined a genetic algorithm with a 

local search methodology to improve the efficiency of the developed approach. Zhang et 

al. (2009) developed a hybrid tabu search and particle swarm optimization. Finally, 

Yazdani et al. (2010) proposed a variable neighbourhood search algorithm.  

Mathematical modelling also gained attention to solve the flexible job-shop 

problem in the past two decades. Choi and Choi (2002) developed a direct sequence-

based mathematical model for flexible job-shop scheduling problem. Fattahi et al. (2007) 

used both unit-based and task-based timing variables to model the problem, while they 

matched those variables for operation processed in the same processing unit. Özgüven et 

al. (2010) also developed a mathematical for the same problem. Roshainaei et al. (2013) 

presented an improved mathematical model also based on direct sequence-based time 

approach Finally, Karimi et al. (2017) developed a sequence-based mathematical model 

to solve this problem. 

2.7.1   Scheduling of energy-efficient job-shop and flexible job-shops 

Despite the interest into the job-shop and the flexible job-shop scheduling problem, it 

seems that most of these cases consider minimization of makespan, tardiness or cost as 

objective. On the contrary, limited approaches consider the examination of minimizing 

energy consumption. May et al. (2015) developed a genetic algorithm to solve the multi-

objective problem of both minimizing makespan and total energy consumption in a job-

shop. Dai et al. (2013) developed a hybrid genetic algorithm and simulating annealing 

approach to solve the same multi-objective problem for the flexible job-shop problem. 

Zhang et al. (2017) proposed two different methods to solve the flexible job-shop 



53 

 

scheduling model with minimization of energy consumption as an objective. In the first 

method, they developed an MINLP mathematical model which they later linearize to a 

MILP model. In the second method, they generated efficient dispatching rules by using 

genetic evolutionary programming approach. Wu and Sun (2018) solved the multi-

objective problem of minimizing total energy consumption and makespan in a flexible 

job-shop environment by using a non-dominated sorting genetic algorithm. In their work, 

they assumed that each processing unit process the available operations in multiple 

processing times, while the processing units must remain idle for a specified time after 

before they can switch off. Wang et al. (2018) separately solved the assignment and 

sequencing in a two-stage optimization method. A genetic algorithm performs the 

sequencing of operations into units, while a hybrid genetic and particle swarm 

optimization approach is responsible for sequencing operations. In this work, they 

assumed that a processing unit remains idle if it does not process any operations. Zhang et 

al. (2019) used the non-dominated sorting genetic algorithm to solve the simultaneous 

assignment and sequencing problem in the flexible job-shop scheduling problem with the 

multi-objective of minimization of makespan and energy consumption. Finally, Meng et 

al. (2019) developed six mathematical models based on Wanger’s modelling approach 

(Wanger 1959) for scheduling of flexible job-shop with minimization of makespan as 

objective. A comparative study between those models and the proposed models showed 

that the model of Zhang et al. (2017) is less efficient than the proposed models.  

2.8 Scheduling of continuous processes 

Developing methods for scheduling of continuous processes have also been considered. 

While in some cases, researchers developed mathematical models only for this problem, 

others incorporated both batch and continuous processes in their models. For instance, 

Schiling and Pantelides (1996) developed their slot-based model to handle both batch and 

continuous processes. Similarly, Lee et al. (2001) also considered continuous processes 

in their model. On the other hand, Karimi and McDonald (1997) developed a slot-based 

mathematical model solely for semi-continuous processes. The models proposed also use 

different time representations, similar to the models for batch process problems. In several 

cases, the researchers improved their existing mathematical models for scheduling of 

multipurpose batch processes. For instance, Zhang and Sargent (1998) extended their 

global event-based model of Zhang and Sargent (1996) to consider continuous processes. 

Ierapetritou and Floudas (1998b) used their unit-specific event-based formulation to 
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consider continuous and semi-continuous processes. Mockus and Reklaitis (1999 a, b) 

examined the same problem in their extended global event-based mathematical model 

(Mockus and Reklaitis 1997), which does not use direct linearization, and as a result, it 

avoids solving a series of large-scale MILPs. In their model, they also considered the case 

that the customer demands are not strictly satisfied in the given time, but at a later time 

(soft due date constraints). Méndez and Cerdá (2002) developed a sequence-based 

mathematical model for multipurpose facilities with continuous processes. Catro et 

al. (2004) improved the model Castro et al. (2001) by using a new set of timing 

constraints and considering zero-wait policies. In their updated model, they also included 

continuous processes. Shaik and Floudas (2007) developed an improved mathematical 

model of Ierapetritou and Floudas (1998b). This model, except for continuous processes, 

it also considers different storage requirements such as flexible, finite, unlimited and no-

intermediate storage policies. Li et al. (2010) developed a unit-specific event-based 

mathematical model for continuous gasoline blending operations. Finally, Li et al. (2012) 

developed a unit-specific event-based model for continuous steel casting. 

2.9 Rolling horizon decomposition 

Even though the process industry takes scheduling decisions for short periods (one day), 

in some cases, it also needs to develop a detailed schedule for several weeks. Furthermore, 

a processing facility may process a significantly high amount of products during the 

scheduling period. Such large-scale examples are hard to solve, and as a result, it is 

common to decompose them into smaller subproblems. Decomposing a problem can 

significantly affect the solution since a unit can only produce a product within a part of 

the whole scheduling period or to all processing units. 

Rolling horizon is a commonly used approach to decompose large-scale problems. 

This approach divides the scheduling horizon into smaller sub-horizons and determines 

the materials included in each sub-horizon. The availability of materials and units as well 

as the due dates significantly affects those decisions. After the rolling horizon 

successfully divides the problem into smaller sub-problems, a mathematical model 

determines the best schedule for each sub-problem. More specifically, the model 

determines and fixes the assignment, allocation and timings of tasks into units at the first 

sub-problem before solving the next sub-problem. The procedure continues for all sub-

problems.  
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By using the rolling horizon decomposition approach, it is possible to generate near-

optimum solutions in significantly less computational time than directly solving the large-

scale problem. Several research groups successfully implemented the rolling horizon 

decomposition in the scheduling of batch and continuous processes. Singer (2001) 

developed a rolling horizon decomposition approach for scheduling of job-shops. In their 

model, they divided the scheduling horizon in time windows, and they included each job 

in a time window using three heuristic rules, based on the total workload, the variation of 

processing times included in each time window and the overlapping factor. Lin et 

al. (2002) developed a rolling horizon decomposition method for scheduling of 

multipurpose batch processes. They divided the scheduling horizon into days and the 

mathematical model proposed defines how many days each subproblem includes. They 

also extended their algorithm to take into consideration tradeoffs between demand 

satisfaction, unit utilization and model complexity. Shaik et al. (2009) and Li et al. (2012) 

implemented Lin's algorithm in industrial cases for continuous processes with small 

improvements and modifications. Yan et al. (2013) also divided the scheduling horizon 

in time windows similar to Singer (2001) for the job-shop scheduling problem. An 

optimization model determines the operations included in each time window in their 

approach. Finally, Mohammadi and Poursabzi (2014) developed two heuristics for 

decomposing the job-shop scheduling problem. In their formulation, they divide the 

scheduling horizon into three parts, where they fix all binary variables in the first part, 

while they relax them in the third part. 

2.10 Summary 

As presented in this chapter, there are several process representations to efficient 

represent different types of processes and scheduling problems (i.e. problems with or 

without resource constraints). Additionally, the research community proposed multiple 

timing representations to improve the efficiency of the mathematical modelling approach. 

Even though numerous mathematical models have been presented in the literature during 

the past three decades, using such process and time representations, it still seems that the 

majority of those models fail to generate a feasible solution in reasonable computational 

time. Furthermore, there is not a general efficient framework that can directly solve all 

various types of process industry.  
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For large-scale or computationally expensive problems, there is a common approach to 

decompose them by implementing a rolling horizon decomposition algorithm. Various 

rolling horizon decomposition algorithms have been presented in the literature to 

effectively divide the problem into smaller subproblems, based on the due dates or on 

fixed time windows. However, it seems that there is not an efficient rolling horizon 

decomposition approach which can decompose problems that contain orders/products 

with the same due date for all of them. Additionally, up to this date, it seems that there is 

any hybrid gene-expression programming and mathematical programming approach to 

solve large-scale process scheduling problems. Combining those programming 

approaches could potentially lead to a significant reduction in the computational time 

required. Such improvement is possible by using effective dispatching rules, generated 

by gene-expression programming, to define the assignment and sequencing of operation 

into units and mathematical programming to determine the optimal batching and timing 

of operations for the given allocation and sequencing.  
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Chapter 3: A new approach for Scheduling of 

multipurpose batch processes 

 

3.1 Introduction 

Process industry commonly uses batch processes, especially from facilities that produce 

multiple high-value products. A processing facility prefers batch processes instead of 

continuous processes when its long-term planning is to develop several high-value 

materials with distinct differences in properties in small quantities. In most of these cases, 

a product requires a combination of different materials, and each product may follow a 

different processing path. Furthermore, facilities should increase their conversion rate of 

raw materials, and therefore they recycle the unreacted materials back to the upstream 

process. As already discussed, such facilities are known as multipurpose batch process 

facilities, the optimal scheduling of which is crucial to ensure the prosperity of the 

processing facility.  

During the past three decades, multiple mathematical models for scheduling of 

multipurpose batch processes have been presented based on discrete and continuous-time 

representations including slot-based, global event-based, unit-specific event-based and 

sequence-based time representations. More and more improved mathematical models 

attempt to develop an efficient approach to generate optimal solutions. Despite such 

attention on developing mathematical models for this type of problem, it still seems that 

the proposed models lead to large model sizes that significantly affect the efficiency of 

those models. As a result, process industry usually refrains from using such mathematical 

models. The main reason lays into the fact that all proposed models require an 

unnecessarily large number of time intervals/time slots/event points to generate the 

optimal solution, which affects the model size. Such increase in the model size can 

significantly affect the efficiency of the model even for small examples. 

Among existing formulations, models based on unit-specific event-based time 

representation require the least number of event points than the time intervals/time 

slots/event points of different time representations to generate the optimal solution. As 

discussed before, unit-specific event-based models divide the scheduling horizon 
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independently for each unit and, as a result, it is possible for the start time of two 

processing units during the same event point to differ. Therefore, models based on unit-

specific event-based time representations lead to smaller model sizes in most cases. 

However, similar to models based on different time representations, they do not allow 

related production and consumption tasks to take place at the same event point. More 

specifically, a task that consumes a state during event point n can only start after all 

related production tasks finish at event point (n - 1). In this case, the model requires two 

event points to generate the optimal solution, while both processing units only process 

one task. Allowing related production and consumption tasks to take place at the same 

event point can eliminate the excess event points required.   

In this chapter, the effect of allowing related production and consumption tasks to 

take place at the same event point is examined. First, it is investigated whether all those 

production and consumption tasks are allowed to take place at the same event point. Based 

on this analysis, a new definition of recycling tasks is developed. Two unit-specific event-

based mathematical models for scheduling of multipurpose batch processes are also 

developed, where related non-recycling production and consumption tasks are allowed to 

take place at the same event point. While in the first model uses timing variables based 

on tasks, similar to the most common unit-specific event-based models in the literature, 

the second model uses unit-based timing variables. The proposed model can reduce the 

model sizes and computational time. Therefore, using such an approach in a generic 

framework for process scheduling (Chapter 4) can be beneficial. 
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3.2 Research contribution 1 
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Abstract  

The increasing demand of goods, the high competitiveness in the global marketplace as 

well as the need to minimize the ecological footprint lead multipurpose batch process 

industries to seek ways to maximize their productivity with a simultaneous reduction of 

raw materials and utility consumption and efficient use of processing units. Optimal 

scheduling of their processes can lead facilities towards this direction. Although a great 

number of mathematical models have been developed for such scheduling, they may still 

lead to large model sizes and computational time. In this work, we develop two novel 

mathematical models using the unit-specific event-based modelling approach in which 

consumption and production tasks related to the same states are allowed to take place at 

the same event points. The computational results demonstrate that both proposed 

mathematical models reduce the number of event points required. The proposed unit-

specific event-based model is the most efficient since it both requires a smaller number 

of event points and significantly less computational time in most cases, especially for 

those examples which are computationally expensive from existing models. 

Keywords Scheduling, multipurpose batch processes, simultaneous transfer, mixed-

integer linear programming 

1 Introduction 

Nowadays, it is more important than ever for the multipurpose batch process industry to 

maximize their productivity by simultaneously minimize their costs, fuel and raw material 

consumption and ecological footprint to be able to survive in a highly competitive market. 

Developing optimal schedules is one of the main tools that multipurpose batch process 

industry can utilize to optimize their processes. Although heuristics-based and 
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spreadsheet-based methods are often used to generate schedules, they are restricted to 

simple batch processes and often produce suboptimal schedules. Mathematical 

programming especially mixed-integer programming approaches have been received 

much attention in the past three decades because they can be used for more complicated 

batch processes and often provide optimal schedules. Before developing mathematical 

models, it is crucial to well represent the multipurpose batch process. Two representations 

have been proposed including state-task network and resource-task network 

representations. The state-task network representation (STN) is proposed by Kondili et 

al. [1], in which all materials in the process are represented by states and processing 

operations in units are treated as tasks. While states are represented with circles (state 

nodes), tasks are depicted with rectangles (task nodes). The connections between states 

and task nodes are depicted with arrows. No resources such as processing units, storage 

tanks, utilities and manpower are demonstrated in the STN representation. Therefore, the 

resource-task network representation (RTN) is proposed by Pantelides [2], in which 

resources used by tasks are explicitly included.  

 Based on the STN and RTN representations, several modelling approaches have 

been proposed for optimal scheduling of multipurpose batch processes resulting in a great 

number of mathematical models in the last three decades [3-7]. These modelling 

approaches include discrete-time [1, 8, 9], and continuous-time modelling approaches. 

The continuous-time modelling approaches include slot-based [10]-[12], global event-

based [13-15], unit-specific event-based [16-19] and sequence-based modelling 

approaches [20-22]. The slot-based modelling approaches can be further classified into 

process-slot [11, 12] and unit-slot [12, 23] modelling approaches. 

 In the discrete-time modelling approach, the scheduling horizon is divided into time 

intervals of uniform or non-uniform lengths, where the start and end times of each interval 

are known, and batches, tasks, or activities are assigned to intervals. Mathematical models 

developed using this modelling approach are often simple, and they usually lead to tight 

mixed-integer linear programming (MILP) relaxation. A batch, task or activity should 

start or end exactly at the time interval points. The model sizes largely depend on the 

number of time intervals required. A great number of time intervals are often required to 

generate exact solutions, leading to computationally intractable model sizes even for 

small-scale problems since the length of each time interval is equal to the greatest 

common factor of the processing times of all units. To avoid an intractable number of 
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time intervals required, continuous-time modelling approaches have been proposed in 

which the scheduling horizon is divided into ordered slots or event points with non-

uniform unknown lengths. Batches, tasks, or activities are assigned to slots or event 

points. A batch, task or activity should start or end exactly at the slot points or event 

points. The model sizes also largely depend on the number of slots or event points 

required. The continuous-time modelling approaches require a significantly smaller 

number of time slots or event points. However, they often lead to worse MILP relaxation 

than the discrete-time modelling approach mainly since they have to introduce several 

big-M terms in sequencing constraints. In the process slot-based and global event-based 

continuous-time modelling approaches, time slots or event points are common or shared 

for all processing units in the process. In other words, batches, tasks or activities in all 

processing units must start or end at the same slots or event points. In the unit-specific 

event-based and unit-slot modelling approaches, each unit has independent or separate 

time slots or event points. The same time slots or event points for different units can start 

or end at different times. Therefore, the unit-specific event-based or unit-slot modelling 

approaches often require a smaller number of slots or event points compared to the 

process slot-based and global event-based modelling approaches, leading to smaller 

model size and less computational time in general. While the unit-specific event-based 

modelling approach divides the scheduling horizon using event points where the next 

event point is not necessarily immediately start after its previous event point end, the unit-

slot modelling approach divides the scheduling horizon based on slots where the next slot 

must immediately start after the end of its previous slot. In general, the unit-slot modelling 

approach is very similar to the unit-specific event-based modelling approach. Finally, the 

sequence-based modelling approach employs direct (immediate) or indirect (general) 

sequencing (precedence) of task-pairs on units to define a schedule. Time is not explicitly 

modelled in terms of slots or event points. Although it is not necessary for the sequence-

based modelling approach to postulate the numbers of slots or event points a priori, they 

must postulate the number of batches, tasks or activities a priori. They also do suffer from 

the difficulty in monitoring resource levels. 

 The capabilities of the unit-specific event-based modelling approach have been well 

established in the literature [17, 24-25] with a fewer number of event points and smaller 

model size, which often lead to smaller computational expenses. In most mathematical 

models developed using the unit-specific event-based modelling approach, the timing 
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variables are defined based on tasks, not on units. In other words, the independent or 

separate event points are used for tasks, not for units. Therefore, we call them as task-

specific event-based models in this work. Most of these task-specific event-based models 

still require a high number of event points to generate optimal schedules, leading to large 

model sizes and computational time. This is because most of these models do not allow 

consumption and production tasks related to the same states to take place at the same 

event points, unnecessarily increasing the number of event points required. Recently, 

Shaik and Vooradi [26] proposed a task-specific event-based model for scheduling of 

multipurpose batch processes, allowing production and consumption tasks related to the 

same states to take place at the same event points. However, their model is only applicable 

to the batch process without any recycling loop.  

 In this work, we develop two novel mathematical models using the unit-specific 

event-based modelling approach in which related consumption and production tasks are 

allowed to take place at the same event points. While we define timing variables based 

on units in one model (called unit-specific event-based model), the timing variables are 

defined based on tasks in the other model, (called task-specific event-based model). Both 

formulations are developed based on the STN representation. To make our models 

applicable for any batch processes, we introduce a definition of recycling tasks slightly 

different than the definition of recycling tasks of Li et al. [5]. We only allow non-recycling 

production and consumption tasks to take place at the same event points to avoid 

suboptimality. The computational results demonstrate that both proposed mathematical 

models are very general and can be applied for all batch processes even those with 

recycling loop and reduce the number of event points required. The proposed unit-specific 

event-based model is the most efficient since it both requires a smaller number of event 

points and significantly less computational time in most cases, especially for those 

examples which are computationally expensive from existing models. 

2 Problem description 

A general multipurpose batch process facility including J (j = 1, 2,…, J) processing units 

such as reactors, separators and heaters. The STN representation of a multipurpose batch 

process facility is presented in Figure 1. These units are used to produce P (p = 1, 2,…, 

P) final products using F (f = 1, 2,…, F) feeds. I (i = 1, 2,…, I) tasks will be processed in 

the processing units. Each processing unit can process Ij tasks. At each time, at most one 
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task can be processed in a processing unit. Besides final products, intermediate states are 

also produced. There are total S (s = 1, 2,…, S) states including feeds, intermediate states, 

and final products. The feeds are denoted as SR, the intermediate states are denoted as SIN, 

and the final products are included in the set of SFP. The proportion of each state s 

produced or consumed by a task i in a unit j is denoted by 𝜌𝑖,𝑗,𝑠. While positive values of 

𝜌𝑖,𝑗,𝑠  denote production of state s during the processing of task i in unit j, negative values 

of 𝜌𝑖,𝑗,𝑠 denote consumption of state s during the processing of task i in unit j. After 

production, each batch is allowed to be mixed with other batches or split into several 

batches for further processing. Some intermediate states are also allowed to be recycled 

back if necessary. Each intermediate state has its dedicated storage. If the storage capacity 

for an intermediate state is unlimited, then it is called unlimited intermediate storage 

(UIS) policy. If the storage capacity is limited or finite, then it is called finite intermediate 

storage (FIS) policy.  If there is no intermediate storage, then it is called no intermediate 

storage (NIS) policy. In this paper, we assume UIS for all states, including intermediate 

states, feeds and final products. After production in a processing unit, an intermediate 

state may or may not be allowed to remain in this processing unit. If an intermediate state 

has to be transferred immediately to storage or other processing units after production, it 

is called zero wait (ZW) policy. If an intermediate state is allowed to remain in a 

processing unit with unlimited time, then it is called unlimited wait (UW) policy. If an 

intermediate state is allowed to be held in a processing unit with a certain time, then it is 

called limited wait (LW) policy. In this paper, we also assume UW policy for all 

intermediate states. By introducing this, the scheduling problem can be stated as follows, 

 Given: 

1) STN representation of a multipurpose batch facility; 

2) J units, unit capacities, suitable tasks and their processing times; 

3) S states, the portion of states produced or consumed from a task in a processing 

unit; 

4) Product prices; 

5) Scheduling horizon.  

Determine: 

1) Optimal production schedule involving task allocations, start and end timings, 

sequences and batch sizes; 
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2) Inventory profiles. 

Operating rules: 

1) At most one task can be processed in a processing unit at any time; 

2) Batch mixing and splitting is allowed. 

Assumptions: 

1) All parameters are deterministic; 

2) The processing time of a task in a processing unit depends on a fixed processing 

time (denoted as 𝛼𝑖𝑗 plus a variable process time based on the batch sizes, which 

is denoted as (𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗); 

3) Unlimited feed materials are available; 

4) Unlimited storage policy for all states; 

5) Unlimited resources where required are available; 

6) Unlimited wait policy for intermediate states. 

 The objective is to maximize productivity or minimize makespan. The makespan is 

defined as the time required to produce a specified demand. 

 

Fig. 1 STN representation of a multipurpose batch process facility (Example 2) 

3 Motivating example 

Let consider an example whose STN representation is depicted in Figure 2. In this 

example, a raw material S1 is converted into a final product S3 through two tasks (i.e., I1 

and I2) in two processing units (J1 and J2). The scheduling horizon is 9 h. The objective 

is to maximize the productivity of product S3. All relevant data for this example are given 

in Table 1. We use the mathematical model of Shaik and Floudas [25] to solve this 

example. We obtain the optimal solution of 500.00 cu using 2 events. The optimal 
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schedule is illustrated in Figure 3. As seen from Figure 3, the task I1, processed in unit 

J1, produces 100 cu of S2 at event point N1, which is further processed at task I2 in unit 

J2 to produce final product S3 with 100 cu at event point N2. This is because the task I2 

in unit J2 is a consuming task of S2 and the task I1 in unit J1 is a production task for S2. 

Therefore, the task I2 must always start at event point N2 since the production task I1 

take place at event point N1 based on the model of Shaik and Floudas [25]. However, we 

can use one event point for the optimal schedule through analysis. Figure 4 illustrates the 

optimal schedule with only one event point. From Figure 4, it can be observed that the 

consuming task I2 takes place at the same event point as the production task I1, but not 

in real time. In real time, task I2 still takes place after I1 is completed. By doing this, we 

can reduce one event point required for generating the optimal solution. As discussed 

previously, the model size and computational performance largely depend on the number 

of event points required. This motivates us to develop new mathematical formulations for 

scheduling of multipurpose batch facilities by allowing consuming and production tasks 

related to the same states take place at the same event points to reduce the number of 

event points required. 

 

Fig. 2 STN representation of the motivating example 

 
Fig. 3 Optimal schedule for the motivating example using two event points from the 

model of Shaik and Floudas [25] 
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Table 1 Data for motivating example 

Unit Maximum capacity (mu) Minimum capacity (mu) 𝛼𝑖 (h) 𝛽𝑖 (h) 

J1 100 0 3 0.02 

J2 100 0 2 0.01 

 

 
Fig. 4 Optimal schedule for the motivating example using one event point 

4 Definition of recycling tasks 

Despite the fact that allowing all related production and consumption tasks take place at 

the same event points can potentially reduce the number of event points and increase 

computational efficiency, we could obtain suboptimal solutions in some cases by 

allowing all production and consumption tasks related to the same states to take place at 

the same event points. Consider the following example, which is depicted in Figure 5. If 

production and consumption tasks related to the same states are not allowed to take place 

at the same event points, the optimal productivity of 1656 cu is generated with four event 

points from the model of Shaik and Floudas [25]. However, if all production and 

consumption tasks related to the same states are allowed to take place at the same event 

points, then the suboptimum productivity of 1511 cu is generated. This occurs from tasks 

I3, I4 and I5. Note that tasks I4 and I5 produce two states S2 and S4 and task I3 consumes 

state S2 and produces state S3. If these tasks (i.e., tasks I3, I4, and I5) are allowed to take 

place at the same event points, it is not possible for these tasks to take place at the same 

time in real time, which leads to suboptimum solutions.  
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Fig. 5 STN representation of motivating example 2 

Table 2 Results for motivating example 2 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(cu) 

MILP 

(cu) 

Discrete 

Variables 

Continuous 

Variables 
Equations 

1 SF 4 0.094 1800.00 1656.16 20 78 115 

(H=8h) T-S 4 0.156 3300.83 1511.66 20 78 121 

SF: the model of Shaik and Floudas [25]. T-S: the revised model of Shaik and Floudas [25] allowing all production and 

consumption tasks related to the same states take place at the same event points. 

To avoid suboptimality in such cases, a new definition slightly different from that of 

recycling tasks of Li et al [5] is introduced. We define a recycling task in a processing 

unit if it produces a state that can be consumed either by a task in its upstream processing 

units or by other tasks in the same processing unit. The recycling tasks are included in the 

set IR. In Figure 6, there are four tasks (I1-I4), two processing units (J1-J2) and three 

states (S1-S3). While tasks I1 and I3 can be processed in unit J1, tasks I2 and I4 can be 

processed in unit J2. Tasks I1 and I2 consume S1 and produce S2, whilst tasks I3 and I4 

consume S2 and produce S1 and S3. Based on this new definition, task I1 is considered 

as a recycling task because it produces S2 that can be used by task I3 as a raw material in 

the same unit (i.e., J1). Similarly, tasks I2-I4 are also recycling tasks. Consequently, all 

tasks in the example depicted in Figure 6 are considered as recycling tasks. 

 
Fig. 6 Illustration of recycling tasks where all tasks are recycling tasks 

5 Mathematical formulation 

5.1 Time representation 

As discussed before, the advantages of the unit-specific event-based modelling approach 

have been well established in the literature. This modelling approach is used to develop 

our new models, which are presented below. 
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5.2 Model M1 

In this model, the timing variables are defined based on units. Therefore, this proposed 

model is called the unit-specific event-based model. 

5.2.1 Allocation constraints 

To assign tasks to units, we define binary variables 𝑤𝑖,𝑗,𝑛,𝑛′ to denote if a task i is 

processed in a unit j from event point n to event point n. We allow a task in a unit to span 

over n event points to make the model general where n is a parameter that could be 

used to control the number of event points that a task can span across. At most one task 

is allowed to take place in a unit during a time as specified by constraint (1). If tasks are 

allowed to span over more than one events (Δn > 0), constraint (1) allows at most one 

task to be active from event point n to event point n. 

∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″ ≤ 1

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

 

 j, n (1) 

5.2.2 Capacity constraints 

We define variables 𝑏𝑖,𝑗,𝑛,𝑛′ to denote the amount of materials (i.e., batch size) processed 

by a task i in a unit j from event point n to event point n.  If a unit j processes a task i 

from event point n to event point n, then the material processed in this unit should be 

constrained by the minimum (𝐵𝑖,𝑗
𝑚𝑖𝑛) and maximum (𝐵𝑖,𝑗

𝑚𝑎𝑥) capacity limits. 

𝐵𝑖,𝑗
𝑚𝑖𝑛𝑤𝑖,𝑗,𝑛,𝑛′ ≤ 𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝐵𝑖,𝑗

𝑚𝑎𝑥𝑤𝑖,𝑗,𝑛,𝑛′  

 j, i Ij, n  n  n+n  (2) 

5.2.3 Material balance 

We define 𝑆𝑇𝑠,𝑛 to denote the amount of material s at event point n, which is used to 

monitor inventory of the materials in storage and ensure no storage capacity violation. 

Since we allow non-recycling tasks to take place at the same event points as the related 

consumption tasks, these non-recycling tasks produce materials at event point n. 

However, recycling tasks have to produce materials at event point (n-1). With this, the 

amount of material in a storage at an event point n should be equal to the amount of 

materials at the previous event point (n−1) plus the material produced from non-recycling 
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tasks at event point n and recycling tasks at event point (n−1) minus the material 

consumed by consumption tasks at event point n, as indicated in constraints (3) and (4). 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝑃),𝑖∉𝑰𝑅𝑗

+ 

+∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝐶)𝑗

 

 s, n = 1 (3) 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃),𝑖∉𝐈R𝑗

+ 

+∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃∩𝐈𝑅)𝑗

+ ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝐶)𝑗

 

 s, n > 1 (4) 

5.2.4 Processing duration constraints 

Once a batch is processed on a unit, then it must be processed for some duration. A unit 

is also allowed to be idle after processing. We define 𝑇𝑗,𝑛
s  and 𝑇𝑗,𝑛

f  to denote the start and 

end times of a processing unit j at event point n. The end time of a unit j at event n must 

be greater than the total processing time, consisting of a fixed term and a variable term 

depending on the batch size, as indicated in the constraint (5). 

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖𝑗 ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′ + 𝛽𝑖𝑗 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝚰𝑗

 

 j, i  Ij, n  n  n+n (5) 

Note that we do not force the finish time to be equal to the start time plus the total 

processing time to allow materials produced temporally stored in unit or a unit to be idle 

after processing, which may lead to a smaller number of event points that are required to 

generate the optimum solution as claimed by Li and Floudas [17]. 
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5.2.5 Sequencing constraints 

Same or different tasks in the same unit 

An event point n on a processing unit j must always start after its previous event point on 

the same unit finishes. 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f  

 j, n < N (6) 

Different tasks in different units 

We need to sequence consuming and production tasks related to the same states where 

the consuming and production tasks are different tasks in different units. Although a 

consuming task is allowed to take place at the same event points with its related 

production tasks which are non-recycling tasks, this consuming task must always start 

after its related production tasks finish in real time. We introduce a new continuous 

variable 𝑇𝑠,𝑛, which denotes the time that state s is available to be consumed at event point 

n. Then we have: 

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1 

 s SIN, n (7) 

The finish time of unit j, which is related with the production of state s should be before 

the time that state s is available. 

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)

) 

 s SIN, j, , 0
j

s i

i





I

, n (8) 

The start time of unit j at event point n, which is related with the consumption of state s 

should be after the time that the state is available if it was produced by a non-recycling 

task i.  
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𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛
s + 𝑀 ∙ (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)

) 

 s SIN, j,
( )

,

,

0
P R

j S

s i

j i i






   

 
I I I

, n (9)  

If state s is produced by a recycling task i, the end time of unit j at event point n+1, which 

is related with the consumption of state s should be after the time that the state is available 

instead.  

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛+1
s + 𝑀 ∙ (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)

) 

 s SIN, j,
( )

, 0
P R

j S

s i

j i






   

 
I I I

, n (10)  

5.2.6 Objectives 

We consider two different objectives. In the first objective, the productivity of a given 

facility is maximized for a specified scheduling horizon. 

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖,𝑗,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗𝑠

 

  (11)  

The other objective is to minimize makespan (denoted as MS), which is considered as 

following, 

𝑀𝑆 ≥ 𝑇𝑗,𝑛
f  

 ∀j, n = N (12)  

In the minimization of makespan problem, it should be also ensured that the total demand 

is satisfied. 

𝑆𝑇𝑠,𝑛 + ∑ ∑ 𝜌𝑖,𝑗,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐼𝑆
𝑃∩𝐼𝑅)𝑗

≥ 𝐷𝑠 

 ∀s∊Sp, n=N (13)  
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We complete our model M1 which comprises of eqs. (1) − (11) if maximization of 

productivity is considered as objective and eqs. (1)-(10), (12), (13) if minimization of 

makespan is considered. 

5.3 Model M2 

In this model, the timing variables are defined based on tasks. The same tasks that can be 

processed in different units have to be divided into two different tasks. We call this model 

task-specific event-based model. Production and consumption tasks related to the same 

states are also allowed to take place at the same event points in this model. 

5.3.1 Allocation constraints 

Similar to the model M1, at most one task is allowed to take place at each event point.  

∑ ∑ ∑ 𝑤𝑖,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1 

 j, n (14)  

5.3.2 Capacity constraints 

The batch size of task i from event point n to event point n should be constrained by the 

maximum and minimum capacities if the task is active. Otherwise, it should be equal to 

zero. This constraint (15) is the same as that of Shaik and Floudas [25]. 

𝐵𝑖
min𝑤𝑖,𝑛,𝑛′ ≤ 𝑏𝑖,𝑛,𝑛′ ≤ 𝐵𝑖

max𝑤𝑖,𝑛,𝑛′ 

 j, iIj, n n  n+n (15)  

5.3.3 Material balance constraints 

Similar to the model M1, we allow materials that are produced by non-recycling tasks to 

be consumed by their related consumption tasks at the same event point. However, if the 

materials are produced by recycling tasks, then they have to be consumed by their related 

consumption tasks at the next event point. 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃,𝑖∉𝐈R

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 

 s, n = 1 (16)  
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𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃,𝑖∉𝐈R

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+ 

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 

 s, n > 1 (17)  

5.3.4 Processing duration constraints 

The finish time of a task i should always be greater than the start time of the same task. It 

should be also greater than the start time of the task plus the total processing time if the 

task is active. 

𝑇𝑖,𝑛′
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛′ + 𝛽𝑖 ∙ 𝑏𝑖,𝑛,𝑛′ 

  iIj, n  n  n+n (18)  

5.3.5 Sequencing constraints 

Same tasks in the same units 

A task i taking place at event point n+1 should always start after it finishes at event point 

n. This constraint (19) is the same as those of Shaik and Floudas [25]. 

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖,𝑛

f  

 iIj, n (19)  

Different tasks in the same units 

A task i taking place at event point (n+1) should always start after all other tasks that can 

be processed in the same unit finish at event point n. 

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f  

 j, iIj, iIj, i   i, n < N (20) 
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Different tasks in different units 

Similar to the model M1, two different sets of constraints are introduced based on whether 

the production task is a recycling or a non-recycling task. 

𝑇𝑖,𝑛
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

) 

  𝑗  𝑗, 𝑖 (𝐈𝑆
𝐶 ∩ 𝐈𝑗), 𝑖(𝐈𝑆

𝑃 ∩ 𝐈𝑗), 𝑖𝐈𝑅 , 𝑛 (21)  

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

) 

  𝑗  𝑗, 𝑖 (𝐈𝑆
𝐶 ∩ 𝐈𝑗), 𝑖(𝐈𝑆

𝑃 ∩ 𝐈𝑗 ∩ 𝐈𝑅), 𝑛 < 𝑁 (22)  

5.3.6 Tightening constraint 

The duration of all tasks performed in a unit j must not exceed the scheduling horizon. 

∑∑ ∑ (𝛼𝑖 ⋅ 𝑤𝑖,𝑛,𝑛′ + 𝛽𝑖 ⋅ 𝑏𝑖,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≤ 𝐻 

  𝑗  (23)  

5.3.7 Objectives 

Similar to the model M1, two objectives were also considered in this model M2. In the 

first objective, the productivity of a given facility is maximized for a specified scheduling 

horizon. 

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ 𝜌𝑖,𝑠𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑆
𝑃𝑠

 

  (24)  

The second objective is to minimize makespan. 

𝑀𝑆 ≥ 𝑇𝑖,𝑛
f  

 ∀i, n =N (25)  

Finally, in the case of minimization of makespan, the total demand should be satisfied. 
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𝑆𝑇𝑠,𝑛 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−𝛥𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

≥ 𝐷𝑠 

 ∀s ∊ Sp, n = N (26)  

We complete our model M2 which comprises eq. (14)-(24) if the maximization of 

productivity is considered as objective and eqs. (14)-(23), (25), (26) if the minimization 

of makespan is considered as objective. 

6. Computational studies 

We solve twelve examples to illustrate the capability of the proposed models M1 and M2. 

The data for all examples are given in Tables 3-14. The STN representation of these 

examples are illustrated in Figures 1 and 7-16. Note that the STN representation of 

Example 2 is illustrated in Figure 1. Among these twelve examples, Examples 1-3 and 8-

12 are well-established examples from the literature [1, 17, 25]. These twelve examples 

have varying tasks, units, recipe structures, processing times, and scheduling horizons. 

All examples are solved to zero optimality gap using CPLEX 12/GAMS 24.6.1. on a 

desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 

7. The maximum computational time is set as one hour for all examples. 

 

Fig. 7 STN representation of Example 1 

Table 3 Data for Example 1 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.333 0.01333 0 100 

2 2 1.333 0.01333 0 150 

3 3 1.000 0.00500 0 200 

4 4 0.667 0.00445 0 150 

5 5 0.667 0.00445 0 150 

Table 4 Data for Example 2 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 0.667 0.00667 0 100 

2 2 1.334 0.02664 0 50 

3 3 1.334 0.01665 0 80 

4 2 1.334 0.02664 0 50 

5 3 1.334 0.01665 0 80 

6 2 0.667 0.01332 0 50 

7 3 0.667 0.008325 0 80 

8 4 1.334 0.00666 0 200 
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Fig. 8 STN representation of Example 3 

Table 5 Data for Example 3 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 0.667 0.00667 0 100 

2 1 1.000 0.01000 0 100 

3 2 1.333 0.01333 0 100 

4 3 1.333 0.00889 0 150 

5 2 0.667 0.00667 0 100 

6 3 0.667 0.00445 0 150 

7 2 1.333 0.01330 0 100 

8 3 1.333 0.00889 0 150 

9 4 2.000 0.00667 0 300 

10 5 1.333 0.00667 20 200 

11 6 1.333 0.00667 20 200 

 

 

Fig. 9 STN representation of Example 4 

Table 6 Data for Example 4 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.333 0.01333 0 100 

2 2 1.333 0.01333 0 150 

3 3 1.000 0.00500 0 200 

4 4 0.667 0.00445 0 150 

5 5 0.667 0.00445 0 150 

6 6 1.000 0.00500 0 200 

 

 

Fig. 10 STN representation of Example 5 
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Table 7 Data for Example 5 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.333 0.01333 0 100 

2 2 1.333 0.01333 0 150 

3 3 1.000 0.00500 0 200 

4 4 0.667 0.00445 0 150 

5 5 0.667 0.00445 0 150 

6 6 1.000 0.00500 0 200 

7 7 1.333 0.01333 0 100 

8 8 1.333 0.01333 0 150 

 

Fig. 11 STN representation of Example 6 

Table 8 Data for Example 6 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1-3 1 1.333 0.01333 0 100 

4-6 2 1.333 0.01333 0 150 

7-9 3 1.000 0.00500 0 200 

10-12 4 0.667 0.00445 0 150 

13-15 5 0.667 0.00445 0 150 

16-18 6 1.000 0.00500 0 200 

19-21 7 1.333 0.01333 0 100 

22-24 8 1.333 0.01333 0 150 

 

Fig. 12 STN representation of Example 7 



80 

 

Table 9 Data for Example 7 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 6.000 0 0 200 

2 2 5.000 0 0 100 

3 3 9.000 0 0 100 

4 4 2.000 0 0 50 

5 5 3.000 0 0 50 

6 6 4.000 0 0 50 

7 7 2.000 0 0 100 

 

 

Fig. 13 STN representation of Example 8 

Table 10 Data for Example 8 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.000 0 0 10 

2 2 3.000 0 0 4 

3 3 1.000 0 0 2 

4 4 2.000 0 0 10 

 

Fig. 14 STN representation of Example 9 

Table 11 Data for Example 9 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.500 0 0 150 

2 2 4.500 0 0 60 

3 3 1.500 0 0 30 

4 4 1.500 0 0 30 

5 5 3.000 0 0 150 
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Fig. 15 STN representation of Example 10 

Table 12 Data for Example 10 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 17.3333 0.866 0 20 

2 2 2.667 0.133 0 20 

3 3 2.667 0.133 0 20 

4 4 4.000 0.200 0 20 

5 5 5.333 0.266 0 20 

6 6 5.333 0.266 0 20 

 

 

Fig. 16 STN representation of Examples 11 and 12 

Table 13 Data for Example 11 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.666 0.03335 0 40 

2 2 2.333 0.08335 0 20 

3 3 0.667 0.06600 0 5 

4 4 2.667 0.008325 0 40 

Table 14 Data for Example 12 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.666 0.03335 0 40 

2 2 2.333 0.08335 0 20 

3 3 0.333 0.06800 0 2.5 

4 4 2.667 0.008325 0 40 

 

The computational results from M1 and M2 are presented in Tables 15-20. While Tables 

15-19 present the results from M1 and M2 with maximization of productivity as the 

objective, Table 20 presents the results from both models with minimization of makespan 

as the objective. From Tables 15-20, it can be observed that both M1 and M2 models are 
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able to generate optimum solutions using less number of event points, which leads to 

smaller model sizes and less computational time. For instance, both M1 and M2 models 

require two event points less than the model of Shaik and Floudas [25] to generate the 

optimal solutions in all instances in Example 1 (see Table 15). More specifically, in 

Example 1d, the model of Shaik and Floudas [25] require 9 event points, whereas both 

models M1 and M2 require 7 event points, resulting in a reduction in binary variables by 

20% (45 vs. 35). The optimal schedule for Example 1d using the model M1 is illustrated 

in Figure 17. From Figure 17, it can be observed that the related production and 

consumption tasks take place at the same event points because all production tasks in this 

example are treated as non-recycling tasks. For instance, task I1 processed in unit J1 is a 

non-recycling task, which takes place at event point N1. Its related consumption task is 

task I3 processed in unit J3 since this task I3 consumes state S2 produced from task I1, 

which also takes place at the same event point N1.  

 Similarly, from Table 18, both mathematical models require 7 event points to 

generate the optimal solution for Example 4, while the model of Shaik and Floudas [25] 

requires 10 event points. This leads to 30% reduction in the number of binary variables 

(60 vs. 42) using the proposed mathematical models. From the optimal schedule for 

Example 4 using the model M1, which is depicted in Figure 18, it can be again confirmed 

that the reduction in the total event points required is due to the fact that all related 

production and consumption tasks are allowed to take place at the same event points. 

More specifically, from Figure 18, it seems that task I4 processed in unit J4, which is a 

non-recycling, task takes place at event point N3, while its related consumption task is 

task I6 processed in unit J6 which also takes place at the same event point N3. Briefly, it 

can be concluded that the proposed models M1 and M2 can be applied to any batch 

processes even those with recycling loops such as the batch processes in Figure 1 and 

Figure 8. 
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Table 15 Computational results for Example 1 using maximization of productivity as 

objective 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

1a SF 4 0.078 2000.00 1840.18 20 78 109 

(H=8h) M2 2 0.125 2000.00 1840.18 10 40 57 
 M1 2 0.062 2000.00 1840.18 10 47 58 

1b SF 5 0.094 3000.00 2628.19 25 97 137 

(H=10h) M2 3 0.109 3000.00 2628.19 15 59 85 

 M1 3 0.047 3000.00 2628.19 15 68 90 

1c SF 6 0.109 4000.00 3463.62 30 116 165 

(H=12h) M2 4 0.124 4000.00 3463.62 20 78 113 

 M1 4 0.078 4000.00 3463.62 20 89 122 

1d SF 9 1.29 6601.65 5038.05 45 173 249 

(H=16h) M2 7 1.54 6601.65 5038.05 35 135 197 

 M1 7 1.37 6601.65 5038.05 35 152 218 
Note Δn = 0 for all cases 

Table 16 Computational results for Example 2 using maximization of productivity as 

objective 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

2a SF 4 (Δn=0) 0.078 1730.87 1498.57 32 136 211 

(H=8h) M2 4 (Δn=0) 0.141 1730.87 1498.57 32 136 213 

 M1 4 (Δn=0) 0.062 1730.87 1498.57 32 126 180 

2b SF 6 (Δn=0) 0.889 2730.66 1943.17 48 202 331 

(H=10h) M2 6 (Δn=0) 0.889 2730.66 1943.17 48 202 331 

 M1 6 (Δn=0) 0.827 2730.66 1943.17 48 184 276 

 SF 6 (Δn=1) 5.41 2730.66 1962.69 88 242 737 

 M2 6 (Δn=1) 5.10 2730.66 1962.69 88 242 739 

 M1 6 (Δn=1) 2.78 2730.66 1962.69 88 224 316 

2c SF 7 (Δn=0) 2.39 3301.03 2658.52 56 235 388 

(H=12h) M2 7 (Δn=0) 2.78 3301.03 2658.52 56 235 390 

 M1 7 (Δn=0) 2.86 3301.03 2658.52 56 213 324 

2d SF 8 (Δn=0) 5.97 4291.68 3738.38 64 268 447 

(H=16h) M2 8 (Δn=0) 6.30 4291.68 3738.38 64 268 449 

 M1 8 (Δn=0) 3.94 4291.68 3738.38 64 242 372 
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Table 17 Computational results for Example 3 using maximization of productivity as 

objective 

Example Model 
Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

3a SF 5 (Δn=0) 0.218 2100.00 1583.44 55 235 390 

(H=8h) M2 5 (Δn=0) 0.343 2100.00 1583.44 55 235 390 

 M1 5 (Δn=0) 0.358 2100.00 1583.44 55 229 346 

3b SF 7 (Δn=0) 6.24 3369.69 2305.55 77 327 560 

(H=10h) M2 7 (Δn=0) 6.42 3369.69 2305.55 77 327 560 

 M1 7 (Δn=0) 10.23 3369.69 2293.46 77 315 494 

 SF 8 (Δn=1) 3159 3618.64 2358.20 165 450 1433 

 M2 8 (Δn=1) 3141 3618.64 2358.20 165 450 1433 

 M1 8 (Δn=1) 892 3618.64 2358.20 165 435 659 

3c SF 7 (Δn=0) 0.437 3465.63 3041.27 77 327 560 

(H=12h) M2 7 (Δn=0) 0.406 3465.63 3041.27 77 327 560 

 M1 7 (Δn=0) 0.483 3465.63 3041.27 77 315 494 

3d SF 10 (Δn=0) 7.80 5225.86 4262.80 110 465 815 

(H=16h) M2 10 (Δn=0) 6.99 5225.86 4262.80 110 465 715 

 M1 10 (Δn=0) 8.81 5225.86 4262.80 110 444 716 

From Tables 16-17, we can observe that the proposed formulations M1 and M2 require 

the same number of event points with the model of Shaik and Floudas [25] for Examples 

2-3. For these examples, M1 and M2 do not reduce the computational time too much 

because of the same number of event points required. It should be noted though that when 

tasks have to span over multiple event points, then model M1 can significantly reduce the 

computational time. This main reason may come from the constraint (5) which is tighter 

than those in Shaik and Floudas [25] when a task has to span over multiple event points. 

For instance, M1 requires 49% less computational time than the model of Shaik and 

Floudas [25] (5.41 s vs 2.78 s) to solve Example 2b and 72% less computational time 

(3159 s vs 892 s) for Example 3b. On the other hand, even though M2 require slightly 

less computational time than the model of Shaik and Floudas [25] for both Example 2b 

(5.41 s vs 5.10 s) and 3b (3159 s vs 3141 s), it requires 46% more computational time 

than the model M1 (2.78 s vs 5.10 s) to solve Example 2b and 72% more computational 

time (892 s vs 3141 s) to solve Example 3b. Therefore, it can be concluded that the 

proposed model M1 is the most efficient. 
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Table 18 Computational results for Examples 4-7 using maximization of productivity as 

objective 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

4 SF 10 24.18 6601.65 4305.46 60 232 345 

(H=16 h) M2 7 27.63 6601.65 4305.46 42 163 246 

 M1 7 35.88 6601.65 4305.46 42 188 279 

5a SF 8 0.141 1500.00 1414.18 64 250 369 

(H=16 h) M2 3 0.156 1500.00 1414.18 24 95 142 

 M1 3 0.156 1500.00 1414.18 24 116 159 

5b SF 14 0.343 4500.00 4414.80 112 436 651 

(H=32 h) M2 9 0.250 4500.00 4414.80 72 281 424 

 M1 9 0.296 4500.00 4414.80 72 332 501 

6a SF 57 1.61 25000.00 24927.50 570 2225 3354 

(H=144 h) M2 50 6.13 25000.00 24927.50 500 1952 2951 

 M1 50 1.90 25000.00 24927.50 500 2310 3634 

6b SF 111 13.84 52000.00 51933.10 1110 4331 6540 

(H=288 h) M2 104 25.72 52000.00 51933.10 1040 4058 6137 

 M1 104 12.14 52000.00 51933.10 1040 4794 7576 

6c SF 219 40.82 106000.00 105944.00 2190 8543 12912 

(H=576 h) M2 212 8.30 106000.00 105944.00 2120 8270 12509 

 M1 212 27.97 106000.00 105944.00 2120 9762 15460 

7 SF 49 33.81 21000.00 20935.30 1176 4853 8540 

(H=128 h) M2 42 43.54 21000.00 20935.30 1008 4160 7329 

 M1 42 33.59 21000.00 20935.30 1008 3724 5768 
Note Δn = 0 for all cases 

Table 19 Computational results for Examples 8-12 using maximization of productivity 

as objective 

Example Model 
Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

8 SF 5 0.109 14.00 10.00 20 82 117 

(H=6h) M2 3 0.078 14.00 10.00 12 40 73 

 M1 3 0.062 14.00 10.00 12 46 79 

9 SF 5 0.125 300.00 210.00 25 114 160 

(H=9h) M2 3 0.109 300.00 210.00 15 60 100 

 M1 3 0.062 300.00 210.00 15 80 105 

10 SF 5 0.109 80.00 58.99 30 123 175 

(H=76h) M2 2 0.125 80.00 58.99 12 51 73 

 M1 2 0.046 80.00 58.99 12 61 76 

11 SF 6 0.109 400.00 400.00 24 110 153 

(H=10h) M2 4 0.109 400.00 400.00 16 74 105 

 M1 4 0.093 400.00 400.00 16 95 129 

12 SF 10 0.203 400.00 400.00 40 182 257 

(H=5h) M2 8 0.093 400.00 400.00 32 146 209 

 M1 8 0.093 400.00 400.00 32 183 265 
Note Δn = 0 for all cases 
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However, even though the proposed models, especially model M1, are more efficient for 

most of the examples, it seems that in some special cases they require a bit larger CPU 

time. For instance, in Example 4 depicted in Table 18 the model of Shaik and Floudas 

[25] is able to generate the optimum solution in 24.18 s, while models M1 and M2 require 

35.88 s and 27.63 s respectively. Nevertheless, the difference is not large, which is in the 

same magnitude. The main possible reason is that the proposed models M1 and M2 

require more CPU time to prove optimality for this example due to different nodes 

investigated using the branch and bound algorithm. It should also be noted that in Tables 

15-20 only the computational time required to generate the optimal solution using the 

optimum number of event points and Δn is reported. In practice, an iterative procedure is 

often used to find the optimal number of event points, Δn and the optimal solution. In this 

iterative procedure, the problem is solved starting from the minimum number of event 

points. The number of event points is increased by one until there is no change in the 

obtained solution. In the iterative procedure, it should be also examined whether allowing 

one a task to span for more than one event point can lead to the optimal solution. We use 

the iterative procedure to solve Example 4 with the model of Shaik and Floudas [25] and 

the proposed model M1. The computational results are given in Table 21. From Table 21 

it seems that the model M1 requires less total computational time to locate the optimal 

solution using the iterative procedure. More specifically for model M1 1281 s are required 

to prove that the optimal solution is generated by using 7 event points while for Shaik and 

Floudas [25] significantly more time (2771 s) is required to prove that the optimal solution 

is generated by using 10 event points. 

Table 20 Computational results for Examples 1-3 using minimization of makespan as 

objective 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(h) 

MILP 

(h) 

Disc. 

Var. 

Cont. 

Var. 
Constr. 

1a (H=50 h) SF 14 11.45 24.24 27.88 70 268 394 

𝐷𝑠4 = 2000 M2 12 5.30 25.36 27.88 60 230 342 

 M1 12 6.96 24.24 27.88 60 254 383 

1b (H=100 

h) 
SF 23 7.50 48.47 52.07 115 439 646 

𝐷𝑠4 = 4000 M2 21 5.70 50.06 52.07 105 401 594 

 M1 21 4.81 48.47 52.07 105 443 671 

2a(H=50 h) SF 9 96.00 10.78 19.34 72 301 515 

𝐷𝑠8 = 200 M2 9 28.78 10.78 19.34 72 301 515 

𝐷𝑠9 = 200 M1 9 46.58 18.68 19.34 72 265 425 
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2b(H=100 

h) 
SF 19 3600a 45.57 46.31 152 631 1105 

𝐷𝑠8 = 500 M2 19 3600b 45.57 46.31 152 631 1107 

𝐷𝑠9 = 400 M1 19 3600c 45.57 46.31 152 555 905 

3a (H=50 h) SF 7 0.187 11.07 13.37 77 327 572 

𝐷𝑠12 = 100 M2 7 0.250 11.07 13.37 77 327 572 

𝐷𝑠13 = 200 M1 7 0.374 11.25 13.37 77 306 501 

3b (H=50 h) SF 10 0.515 12.50 17.03 110 465 827 

𝐷𝑠12 = 250 M2 10 0.374 12.76 17.03 110 465 827 

𝐷𝑠13 = 250 M1 10 0.359 14.27 17.03 110 435 723 
a 

Relative gap 1.10%. b 
Relative gap 1.43%. c 

Relative gap 1.58%. Note Δn = 0 for all cases 

 

 

Fig. 17 Optimal schedule of Example 1d using the model M1, with maximization of 

productivity as the objective 

 

Fig. 18 Optimal schedule for Example 4 using the model M1 with maximization of 

productivity as the objective 
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Table 21 Computational results for Example 4 using the iterative procedure 

(maximization of productivity) 

 CPU time (s) 

 SF  M1 

Event Point (Δn=0) (Δn=1)  (Δn=0) (Δn=1) 

n=1 - -  0.093 0.078 

n=2 - -  0.062 0.078 

n=3 - -  0.078 0.031 

n=4 0.031 0.062  0.078 0.187 

n=5 0.062 0.094  0.218 0.405 

n=6 0.078 0.078  1.36 9.70 

n=7 0.046 0.188  35.88 700 

n=8 0.250 0.421  532.5 - 

n=9 1.20 19.6  - - 

n=10 24.18 2027  - - 

n=11 698 -  - - 

Total 2771  1281 

7 Conclusions  

In this paper, we proposed two novel mathematical formulations M1 and M2 using the 

unit-specific event-based modelling approach. While timing variables in M1 were 

defined based on units, they were defined based on tasks in M2. In both models, 

production and consuming tasks related to the same states were allowed to take place at 

the same event points. To avoid suboptimality in some cases, we proposed a new 

definition of recycling and non-recycling tasks. Only the non-recycling production tasks 

and related consuming tasks are allowed to take place at the same event points. The 

computational results demonstrate that the proposed models M1 and M2 generated 

optimal solutions for all examples and reduced the number of event points required, 

leading to smaller model sizes. Both models are applicable to any batch processes even 

those with recycling loops. Furthermore, the proposed model M1 is the most efficient 

since it requires the least possible computational time which can reach up to one 

magnitude in most cases. In the future, we will extend the proposed models M1 and M2 

to solve other more complex intermediate storage policies such as FIS and NIS. 
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Nomenclature 

Task-specific event-based model 

Indices 

𝑖,  𝑖′: tasks 

𝑗, 𝑗′: units 

𝑛, 𝑛′, 𝑛′′: event points 

𝑠 ∶ states 

Sets 

𝐼 ∶ tasks 

𝐈𝑗 ∶ tasks that can be performed in unit 𝑗 

𝐈𝑠
𝑐: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

𝐈𝑅 ∶ tasks considered as recycling tasks 

𝐽 ∶ units 

𝑁 ∶ event points 

𝑆 ∶ states 

𝐒𝐹𝑃 ∶ states that are final products 

𝐒𝐼𝑁 ∶ states that are intermediate products 

𝐒𝑅 ∶ states that are raw materials 

Parameters 

𝐵𝑖
𝑚𝑎𝑥: maximum batch size that can be processed in task 𝑖 

𝐵𝑖
𝑚𝑖𝑛 ∶ minimum batch size that can be processed in task 𝑖  

𝐷𝑠: demand of state s 

𝐻 ∶ scheduling horizon 
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𝑝𝑠 ∶ price of state 𝑠 

𝛼𝑖 ∶ coefficient of constant term of processing time of task 𝑖 

𝛽𝑖 ∶ coefficient of variable term of processing time of task 𝑖 

𝛥𝑛 ∶ maximum number of event points that task 𝑖 is allowed to be active 

𝜌𝑖,𝑠 ∶ portion of state 𝑠 consumed/produced by task 𝑖 

Binary Variables 

𝑤𝑖,𝑛,𝑛′ ∶ binary variable which takes the value 1 if task 𝑖 starts at time event point 𝑛 and 

finishes at time event point 𝑛′ ≥ 𝑛. 

Continuous Variables 

𝑏𝑖,𝑛,𝑛′ ∶ batch size of task 𝑖 that is active from time event point 𝑛 to time event point 𝑛′ ≥

𝑛 

𝑆𝑇0𝑠 ∶ initial amount of state 𝑠 (𝑠 ∊ 𝐒𝑅) 

𝑆𝑇𝑠,𝑛 ∶ excess amount of state 𝑠 that needs to be stored at time event point 𝑛 

𝑇𝑖,𝑛
f ∶ finish time of task 𝑖 at time event point 𝑛 

𝑇𝑖,𝑛
s ∶ start time of task 𝑖 at time event point 𝑛 

Unit-specific event-based model 

Indices 

𝑖, 𝑖′: tasks 

𝑗, 𝑗′: units 

𝑛, 𝑛′, 𝑛′′: event points 

𝑠 ∶ states 

Sets 

𝐼 ∶ tasks 

𝐈𝑗 ∶ tasks that can be performed in unit 𝑗 
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𝐈𝑠
𝑐: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

𝐈𝑅 ∶ tasks considered as recycling tasks 

𝐽 ∶ units 

𝑁 ∶ event points 

𝑆 ∶ states 

𝐒𝐹𝑃 ∶ states that are final products 

𝐒𝐼𝑁 ∶ states that are intermediate products 

𝐒𝑅 ∶ states that are raw materials 

Parameters 

𝐵𝑖,𝑗
𝑚𝑎𝑥: maximum batch size of task 𝑖 processed in unit j 

𝐵𝑖
𝑚𝑖𝑛 ∶ minimum batch size of task 𝑖 processed in unit j 

𝐷𝑠: demand of state s 

𝐻 ∶ scheduling horizon 

𝑝𝑠 ∶ price of state 𝑠 

𝛼𝑖,𝑗 ∶ coefficient of constant term of processing time of task 𝑖 in unit j 

𝛽𝑖,𝑗 ∶ coefficient of variable term of processing time of task 𝑖 in unit j 

𝛥𝑛 ∶ maximum number of event points that task 𝑖 is allowed to be active 

𝜌𝑖,𝑗,𝑠 ∶ portion of state 𝑠 consumed/produced by task 𝑖 processed in unit j 

Binary variables 

𝑤𝑖,𝑗,𝑛,𝑛′: binary variable which takes the value 1 if task 𝑖 is processed in unit 𝑗 from time 

event point 𝑛 to time event point 𝑛′ ≥ 𝑛 
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Continuous variables 

𝑏𝑖,𝑗,𝑛,𝑛′: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event 

point 𝑛 to time event point 𝑛′ ≥ 𝑛 

𝑆𝑇𝑠,𝑛: amount of state 𝑠 that has to be stored at time event point 𝑛 

𝑇𝑗,𝑛
s :  start time of unit 𝑗 at time event point 𝑛 

𝑇𝑗,𝑛
f : end time of unit 𝑗 at time event point 𝑛 

𝑇𝑖,𝑗,𝑛
s :  start time of task 𝑖 in unit 𝑗 at time event point 𝑛 

𝑇𝑖,𝑗,𝑛
f : end time of task 𝑖 in unit 𝑗 at time event point 𝑛 
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Chapter 4: Generic mathematical formulations for 

scheduling of multipurpose batch plants 

 

4.1 Introduction 

In Chapter 3, it is presented that allowing related production and consumption tasks can 

reduce the number of event points and, as a result, it can reduce the model size and the 

computational time required to generate the optimal solution. However, there are more 

cases where existing mathematical models lead to more time slots/event points or even to 

a suboptimum solution. An issue, for instance, is that a consumption task can only start 

after all related production tasks finish within the same event point (or the previous event 

point if those production and consumption tasks are not allowed to the place at the same 

event point). Such constraint still holds, even if the consumption task consumes materials 

from the storage tank or a related production task that finishes earlier. In both cases, a 

mathematical model requires additional event points to generate an optimal solution.  

Existing mathematical models also require additional event points to generate the 

optimal solution for problems with limited storage policies. By carefully examining the 

results generated using existing formulations for examples with both unlimited and 

limited storage policies, it seems that the latter requires more event points, even if the 

units process the same number of batches in both cases. The main issue that leads in such 

an increase is the fact that the start time of a consumption task at event point (n + 1) (or 

at event point n if related processes can take place at the same event point) must always 

be equal to the finish time of all related production tasks at event point n if the 

consumption task consumes a state with a limited storage policy. Such constraint is 

introduced in formulations to ensure that there is no storage violation in the generated 

schedule. However, if there is enough storage available or the processing units can store 

the producing materials, then related production and consumption tasks should not align. 

Another issue is that most existing formulations for limited storage capacity only allow 

materials to remain in a producing processing unit for the current time slot/event point. 

For the next time slot/event point, a storage tank or another processing unit should store 

or process those materials. However, not allowing a task to store materials at the next 
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event point can either increase the number of event points or even to lead to a suboptimum 

solution. 

In the literature, a few works are dealing with those issues (Seid and Majozi 2012; 

Vooradi and Shaik 2013). Such models even though they can reduce the number of event 

points required, they fail to handle all these cases simultaneously. Furthermore, in some 

cases, those models can generate schedules with storage violations (Seid and Majozi 

2012) or suboptimum solutions (Vooradi and Shaik 2013). In this chapter, two generic 

formulations for scheduling of multipurpose batch processes are developed. While the 

first model allows relating production and consumption tasks to take place at the same 

event point, the second model does not. Both models conditionally sequence and align 

related production and consumption tasks if there is an indirect or direct material transfer 

between units that process those tasks. Additionally, processing units are allowed to store 

materials for multiple event points by avoiding schedules with a real-time violation. By 

using such an approach, the aim is to generate the optimum solution in all cases by using 

the least number of event points.  
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4.2 Research contribution 2 
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Abstract 

In this work, we develop two generic mixed-integer linear programming formulations for 

scheduling of multipurpose batch plants using the unit-specific event-based modelling 

approach. While related non-recycling production and consumption tasks are allowed to 

take place at the same event points but in different actual time in the first model, they are 

not allowed in the second model. We also introduce the concept of indirect and direct 

material transfer, which conditionally aligns the operational sequence of related 

production and consumption tasks. In these models, processing units can hold materials 

previously produced over multiple event points. The computational results demonstrate 

that the proposed models do not require a task to span over different event points and, as 

a result, they can generate the same or better solutions with up to one order of magnitude 

less computational time compared to the existing models. 

 

Keywords: Scheduling, Multipurpose batch processes, mixed-integer linear 
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1 Introduction 

Multipurpose batch plants widely exist in the chemical industry for the production of a 

large number of low-volume, high-value products. To achieve higher utilization of 

resources, lower inventory costs and better responsiveness to a fluctuating manufacturing 

environment, optimal scheduling of the multipurpose facilities is desirable and has 

attracted much interest of both academia and industry in the past decades. Many 

mathematical formulations attempt to solve this problem by either using the State Task 

Network (STN) representation1 or the Resource Task Network (RTN) representation2. 

These models are classified based on the time representation of the scheduling horizon 

into discrete-time and continuous-time representations. The discrete-time representation 

divides the scheduling horizon into time intervals with fixed and known length. The time 

intervals can either be uniform or non-uniform3 within the scheduling horizon, and a task 

or activity can only start and finish at these time intervals. The continuous-time 

representation uses time points, slots, or event points to divide the scheduling horizon 

with a variable and unknown length. It can be further classified into global event-based4-

6, slot-based including process-slot based7-8 and unit-slot based8-9, unit-specific event-

based10-17 and sequence-based18-20 time representations. These mathematical models are 

also classified into single- and multiple- time grid mathematical models21. For more 

details about these time representations, the reader can refer to22-24, which provide 

excellent reviews for scheduling in chemical industries. 

All existing time-grid mathematical models divide the scheduling horizon using 

time points/slots/event points on which a task or activity can both start and finish. 

Therefore, the number of time points/slots/event points required directly affects the 

efficiency of the existing mathematical models. More specifically, an additional time 

point/slot/event point can lead to an exponential increase in the number of binary 

variables, continuous variables and constraints, which can potentially increase the 

computational time required to generate the optimal solution by even one order of 

magnitude.  Some task must be allowed to span over multiple time points/slots/event 

points to provide the optimal solution, which further increases the computational burden. 

The capabilities of the unit-specific event-based formulations are well established in the 

literature11-12, 17. However, they still require excessive computational time for industrial-

scale problems due to the introduction of additional event points to generate the optimal 

solution. The main possible reason is that most existing unit-specific event-based 
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formulations unconditionally impose that a consumption task starts after its related 

production tasks (with the same states) even if the consumption task does not consume 

materials from the related production tasks Additionally, in some cases, this task should 

start immediately after its related production tasks finish, even if there is enough storage 

available.  

Two works14-15 in the literature have attempted to relax such unconditional 

sequencing and alignment. Seid and Majozi14 investigated whether consumption tasks 

consume materials from storage tanks and whether producing materials can be stored in 

the storage tanks. For the former case, if there are not enough materials in the storage 

tanks for all consumption tasks, then the unconditional sequencing of all related 

production and consumption tasks are imposed. In the latter case, if a production task 

produces materials that the storage tanks cannot store then all related production and 

consumption tasks should be unconditionally aligned. However, the problem of 

unconditional sequencing of related production and consumption tasks even if the 

consumption task does not consume any materials from the production task was not 

addressed. They also did not consider to conditionally align a production task with a 

related consumption task, if in storage tanks can store the producing materials.  Another 

issue of their formulation is that it can generate schedules with a real-time violation, as 

demonstrated by Vooradi and Shaik15. To address all those issues, Vooradi and Shaik15 

explicitly examined if a consumption task consumes materials from a specifically related 

production task or if there is enough storage for materials produced by a specific 

production task. They sequenced a production task with a related consumption task only 

if the consumption task consumes materials from the production task, while they aligned 

a production task with a related consumption task only if storage tanks cannot store the 

materials from a specific production task. With this approach, they have managed to 

further reduce the number of event points in comparison to the model of Seid and 

Majozi14, while they avoided generating a solution with a real-time violation. However, 

Vooradi and Shaik15 used an increased number of binary variable sets to denote whether 

tasks have to be sequenced or aligned during an event point in their model, leading to 

computational inefficiency. Most of the existing models fail to generate the optimal 

solution in some cases, especially when the materials have to be temporarily stored in 

processing units, as illustrated later. 
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In this work, we develop two generic mixed-integer linear programming 

formulations for scheduling of multipurpose batch plants using the unit-specific event-

based modelling approach. While we follow the methodology of Rakovitis et al.17 where 

all related non-recycling production and consumption tasks can take place at the same 

event points but in different real times in the first model, we do not allow all related non-

recycling production and consumption tasks to take place at the same event points in the 

second model. We also introduce the concept of indirect and direct material transfer, 

which allows us to conditionally and unconditionally align the operational sequences of 

related production and consumption tasks. More specifically, we sequence production 

and consumption tasks related to the same state if there is an indirect material transfer 

between the units that are processing these tasks, while we align them if there is a direct 

material transfer between these units. Additionally, we allow the processing units to hold 

materials previously produced from these units over multiple event points. 

Nonsimultaneous material transfer8 can also take place  in both models. We solve several 

well-established examples in the literature to illustrate the capability of the proposed 

formulations. The computational results demonstrate that both models require a smaller 

number of binary variables in most cases, especially in the cases where a processing unit 

can process multiple tasks, compared to the existing mathematical formulation15. It is 

interesting to note that the proposed models do not need to allow a task to span over 

several event points to generate the optimal solution. As a result, the computational time 

is significantly reduced by one order of magnitude in most cases. More importantly, the 

proposed models can generate better solutions than the existing models such as Vooradi 

and Shaik15 and Mostafaei and Harjunkoski21. The first model, which allows related non-

recycling production and consumption tasks to take place at the same event points is 

slightly more efficient than the second one. Finally, we use the proposed model to solve 

a large-scale industrial batch plant scheduling problem from Janak et al.25 using the 

rolling-horizon decomposition algorithm. The results demonstrate that the proposed 

model can improve productivity by 26.7% in significantly less computational time 

compared to that of Janak et al.25. 

2 Problem statement 

Figure 1 illustrates a general STN representation of a multipurpose batch plant. There are 

I (i = 1, 2, 3, …, I) tasks that are processed in total J (j = 1, 2, …, J) processing units. In 

a batch plant, a task means heating, reaction, separation, and so on. Each unit can process 
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Ij available tasks. A processing unit can process multiple tasks. However, at most one 

task can be processed in a unit at a time. Raw materials, intermediate products, and final 

products are denoted as states in the STN representation. There are S (s = 1, 2, 3, …, S) 

states in total. The raw materials are denoted as SR, intermediate materials are denoted as 

SIN and final products are denoted as SP. A state is consumed or produced by Is tasks 

including 𝐈𝑠
𝐶  consumption tasks and 𝐈𝑠

𝑃 production tasks. The proportion of a state 𝑠 that 

a task i in a unit j consumes or produces is known which is denoted by a parameter 𝜌𝑠𝑖𝑗. 

While this proportion parameter is positive if the state is produced, it is negative if the 

state is consumed. A task i on unit j processes a batch size (𝑏𝑖𝑗) of material state. The 

processing time is assumed to be a linear function of the batch size, which is calculated 

by 𝛼𝑖𝑗 + 𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗. 

Once a batch is produced in a processing unit, it may be transferred immediately or remain 

in the processing unit for some limited or unlimited time. This transfer can be into a 

dedicated storage tank, split into different small batches or mixed with other batches for 

downstream processing. In other words, batch splitting and mixing are allowed. There are 

several different storage policies including unlimited intermediate storage (UIS) policy 

and finite intermediate storage (FIS) policy. With this, the entire scheduling problem can 

be stated as follows, 

Given: 

a) J units, suitable Ij tasks, minimum (𝑏𝑖𝑗
𝑚𝑖𝑛) and maximum (𝑏𝑖𝑗

𝑚𝑎𝑥) capacities and 

constant processing time coefficients;  

b) S states, suitable Is tasks including production tasks and consumption tasks, 

detailed processing paths and recipes, their initial inventories, and minimum and 

maximum capacities. 

c) The production recipe (i.e., the coefficients of processing time for each task, and 

the consuming or producing proportions of each batch). 

The product prices;  

d) The scheduling horizon for maximization of productivity problems or the product 

demand for minimization of makespan problems. 

 



 104 

Determine: 

a) Optimal production schedule including allocation, sequence, timings of tasks in a 

unit; 

b) The amount of material being processed in each unit at each time; 

c) Inventory profiles of all material states through the scheduling horizon. 

Operating rules: 

a) At most one task can be processed in a unit at a time; 

b) Batch mixing and splitting is allowed. 

Assumptions: 

a) All parameters are deterministic with no batch/unit failures or operational 

interruptions; 

b) The processing time of a task in a processing unit depends on the batch size; 

c) Unlimited feed materials are available; 

d) Unlimited storage policy for raw materials and final products; 

e) Unlimited or Finite storage policy for intermediate products; 

f) Unlimited resources are available; 

g) Unlimited wait policy for intermediate states. 

h) Negligible transfer times between units (i.e., processing units and storage units). 

i) Setup or changeover times are lumped into batch processing times. 

j) All processing units can hold a batch temporarily before its start and after its end. 

k) Each material state has its dedicated storage unit. 

We consider two objectives. The first objective is to maximize productivity in the given 

scheduling horizon. The second objective is to minimize the total time required to fulfil 

the product demand, which is known as minimization of makespan. 
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Figure 1 STN representation of a multipurpose batch plant 

3 Motivating Example 1 

Let consider a motivating example, the data of which is given in Table 1. Figure 2 

illustrates the STN of this example. There are two processing units (J1-J2), two tasks (I1-

I2) and three states (S1-S3). I1 is processed on unit J1, and I2 is processed on unit J2. 

There is no initial amount for the intermediate state S2. The maximum storage capacity 

of state S2 is 10 mu.  

Table 1 Data for the Motivating Example 

Task Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 3.00 0.02 0 100 

2 2 1.00 0.01 0 50 

 

 

Figure 2 STN representation of the Motivating Example 

We use the mathematical models of Li and Floudas12, Vooradi and Shaik15 and Mostafaei 

and Harjunkoski21 to solve this motivating example. Table 2 provides the computational 

results. The optimal schedule with a maximum productivity of 300 cu obtained from the 

existing models12, 15, 21 is illustrated in Figure 3. In this schedule, 60 cu of S2 is produced 

by task I1 in the unit J1 at 5 hr. Then, 50 cu of S2 is consumed immediately after 

production. Storage tanks store 10 cu of S2 , which does not violate the storage capacity, 
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while another 10 cu of S2 are consumed at 7 hr. Finally, product S3 with a total price of 

300 cu is produced. From the schedule, it seems that the intermediate S2 is immediately 

transferred to the storage tank and consumption unit after it is produced. However, we 

can generate another solution with a maximum productivity of 500 cu through trial and 

errors, as illustrated in Figure 4, which means that all these existing models generate a 

suboptimal solution for this example. Through a detailed analysis of the schedules in 

Figures 3 and 4, the possible reason is that the latter solution allows material S2 produced 

in the unit J1 to be stored in this unit. Only 50 cu is transferred into unit J2 for further 

processing after production. Even though the model of Vooradi and Shaik15 allows a 

production task to store materials, this can only take place at event point N1. For N2, the 

materials have to be either consumed by a consumption task or stored in the storage task. 

However, since there is no storage available, J1 cannot process the same amount of state 

S2. Instead, it can only produce 60 cu. Therefore, the model of Vooradi and Shaik15 also 

fail to generate an optimum solution. This example motivates us to develop a new generic 

mathematical formulation with consideration of these additional features that can result 

in a significant increase in the productivity of the batch plant. 

 

Figure 3 Optimal schedule for the Motivating Example 1 with maximum productivity of 

300 cu  

 

 



 107 

Table 2 Computational results for Motivating Example 1 from the models of Li and 

Floudas12, Vooradi and Shaik15 and Mostafaei and Harjunkoski21 

Example Model 

Number 

of event 

points 

CPU 

time 

(s) 

RMILP 
MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

M. E. LF2010 3 0.11 500.00 300.00 6 29 41 

(H = 8 h) VS2013 3 0.09 500.00 300.00 14 33 72 

 MH2019 4 (ΔR=1) 0.08 500.00 300.00 6 34 78 

LF2010: Li and Floudas12 model. VS2013: Vooradi and Shaik15 model. MH2019: 

Mostafaei and Harjunkoski21 

 

 

Figure 4 A feasible schedule for the Motivating Example 1 with maximum productivity 

of 500 cu 

4 Generic mathematical formulation 

It is of great importance to represent time horizon for scheduling problems before 

developing a mathematical formulation. Although there are several existing time 

representations for scheduling problems including discrete-time, slot-based, global event-

based, unit-specific event-based, and sequence-based time representations as discussed, 

the well-established unit-specific event-based time representation is adopted in this work. 

The reason is that it often leads to smaller model size and less computational effort in 

comparison to other time representations. The reader can refer for more details about this 

time representation to the work of Ierapetritou and Floudas10. 
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Figure 5 The unit-specific event-based representation where related production and 

consumptions tasks are allowed to take place at the same event points 

4.1 Model M1 

In this model M1, we allow production and consumption tasks related to the same state 

to take place at the same event points, which is similar to those of Rakovitis et al.17. We 

also use the definition of recycling tasks presented on Rakovitis et al.,17 and we only allow 

non-recycling production and consumption tasks related to the same state to take place at 

the same event point. Furthermore, the timing variables are defined based on units, not 

tasks. The unit-specific event-based time representation for model M1 is illustrated in 

Figure 5. In Figure 5, task I1 produces S1, which is consumed by task I2. I1 and I2 take 

place at the same event point N1 but in different actual time. 

4.1.1 Allocation constraints 

We introduce four-index binary variables 𝑤𝑖𝑗𝑛𝑛 to denote the allocation of tasks to units 

below, 

 

1 if a task  is processed in a unit  from an event point  to 

0 otherwise
ijnn

i j n n
w 


= 
  

where n  n  n + n. The parameter n is used to denote the maximum number of event 

points that a task is allowed to span over.  
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Based on the operating policy, at most, one task is allowed to be processed in a processing 

unit at a time. 

∑ ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1 

 j, n (1) 

4.1.2 Capacity constraints 

The materials processed in a unit j should not exceed its minimum (𝐵𝑖𝑗
𝑚𝑖𝑛) and maximum 

(𝐵𝑖𝑗
𝑚𝑎𝑥) capacities. 

𝐵𝑖𝑗
min ⋅ 𝑤𝑖𝑗𝑛𝑛′ ≤ 𝑏𝑖𝑗𝑛𝑛′ ≤ 𝐵𝑖𝑗

max ⋅ 𝑤𝑖𝑗𝑛𝑛′ 

 j, i  Ij, n ≤ n ≤ n+n (2) 

4.1.3 Material balance constraints 

The amount of a state 𝑠 that has to be stored at event point 𝑛 (𝑆𝑇𝑠𝑛) should be equal to 

the amount of the state that has been stored at event point (𝑛 − 1), plus the amount of the 

state produced by recycling tasks at event point (𝑛 − 1) and by non-recycling tasks at 

event point 𝑛, minus the amount of the state consumed at event point 𝑛. At the first event 

point, the amount of a state 𝑠 that has to be stored should be equal to the initial amount 

of the state (𝑆𝑇0𝑠) plus the amount of the state produced by non-recycling tasks, minus 

the amount of state 𝑠 consumed at event point 𝑛. 

𝑆𝑇𝑠𝑛 = 𝑆𝑇𝑠(𝑛 − 1) + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝐈𝑠
𝑃\𝐈R

+ 

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 

 s, n > 1 (3) 

𝑆𝑇𝑠𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝐈𝑠
𝑃\𝐈R

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 

 s, n = 1 (4) 

where I𝑠
𝑃\I𝑅 means all production tasks except recycling tasks. 



 110 

4.1.4 Duration constraints 

The finish time of a unit j at event point n must be after its start time plus the processing 

time of the task 𝑖 that the unit starts processing at event point n.  

𝑇𝑗𝑛
f ≥ 𝑇𝑗𝑛

s + ∑ ∑ (𝛼𝑖𝑗 ∙ 𝑤𝑖𝑗𝑛𝑛′ + 𝛽𝑖𝑗 ∙ 𝑏𝑖𝑗𝑛𝑛′)

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 

 j, n (5) 

4.1.5 Material transfer 

Material transfer in the batch process is more flexible and complex compared to that in 

the continuous process. There are several scenarios of material transfer. Figure 6 

illustrates all those different  scenarios of material transfer. First, materials can be 

transferred to storage or downstream processing units immediately after production (e.g. 

material transfer MT1 in Figure 6). Second, materials can be held in the production units 

after production and then transferred to storage or downstream processing units (e.g. 

material transfer MT2 in Figure 6). If the storage capacity is large enough, then the 

material can be first transferred to storage and then transferred to the downstream 

processing units (e.g. material transfer MT3 in Figure 6). If the storage capacity is not 

large enough, then some material has to be transferred directly to the downstream 

processing units (e.g. material transfer MT4 in Figure 6). Besides, materials produced 

from several production units can be transferred at the same time to storage or 

downstream processing units, which is called simultaneous material transfer. 

Alternatively, material produced from several production units can be transferred to 

storage or downstream processing units at different times, which is called 

nonsimultaneous material transfer. We generally classify the material transfer as indirect 

and direct material transfer. If all material is transferred to storage tank first and then to 

downstream processing units, then it is indirect material transfer. Otherwise, it is direct 

material transfer. 
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Figure 6 Different scenarios of material transfer 

Indirect material transfer 

In this scenario, the storage capacity is usually large enough. As a result, materials 

produced can always be transferred to the storage tank first and then to the downstream 

processing units from the storage. Such transfer is an indirect material transfer from the 

production units to the downstream consumption units. To model this indirect material 

transfer, we define an additional binary variable 𝑧𝐼𝑗𝑗′𝑛 as follows, 

 

1 if material transfer happens between units  and  at event point 

0 otherwise
jj n

j j n
zI 


= 
   j  j, n 

We also define continuous variables bTiijijn to denote the amount of material 

transferred from a production task i in unit j to a consumption task i in unit j at event 

point n. Note that the material is first transferred from the production task i to the storage 

tank and then it is transferred to a consumption task i. Therefore, it is an indirect material 

transfer from the production task i to the consumption task i. The total amount of 

materials through indirect transfer from a production task i should not exceed the amount 

produced. 

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 

 sSIN, jJs, i  (Ij 𝐈𝑠
𝑃)\IR, n (6) 
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𝜌𝑠𝑖𝑗 ∙ ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−∆𝑛≤𝑛′≤𝑛−1

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 

 sSIN, jJs, i  (Ij 𝐈𝑠
𝑃 IR), n > 1 (7) 

While constraint (6) is used for non-recycling tasks, constraint (7) is proposed for 

recycling tasks only. 

Similarly, the amount of materials through indirect transfer to a consumption task 

i at a time should not exceed the amount of materials consumed by this consumption task 

at event point n. 

−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑠

 

 sSIN, jJs, i  (Ij 𝐈𝑠
𝐶), n (8) 

The total amount of materials consumed at event point 𝑛 should not exceed the material 

stored at the previous event point (𝑛 − 1) plus the amount of materials through indirect 

transfer. 

∑ ∑ (−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

)

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠

≤ 𝑆𝑇𝑠(𝑛−1) + 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

 

 s SIN, n (9) 

When there is no indirect material transfer between two processing units, the amount 

through this indirect transfer should be zero. 

∑ ∑ 𝑏𝑇𝑖𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)

≤ min[𝐵𝑗
max, 𝐵𝑗′

max] ⋅ 𝑧𝐼𝑗𝑗′𝑛 

   s  SIN, j ≠ j, jJs, jJs, n (10) 

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥]. 
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Direct material transfer 

For states with FIS policy, if there is no storage available, then these states cannot be 

transferred to a storage tank. Instead, they must be transferred directly from the 

production task i to a consumption task i. For such a direct material transfer, we introduce 

an additional binary variable 𝑧𝐷𝑗𝑗′𝑛 as follows, 

1 if there is a direct material transfer between units  and  at event point 

0 otherwise
jj n

j j n
zD 


= 
   

   j  j, n 

Similar to indirect material transfer, we also define continuous variables  𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛 to 

denote the amount of material directly transferred from a production task i in unit j to a 

consumption task i in unit j at event point n. The amount of materials directly transferred 

from between processing a production task i in unit j and a consumption task iʹ in unit jʹ 

must not exceed the amount of state produced from production task i. Constraints (11) 

and (12) are used for non-recycling tasks and recycling tasks, respectively. 

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑏𝑠𝑖𝑗𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠

 

 s  (SIN  SFIS), jJs, i (Ij 𝐈𝑠
𝑃)\IR, n (11) 

𝜌𝑠𝑖𝑗 ⋅ ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)𝑛−1−Δ𝑛≤𝑛′≤𝑛−1 + 𝑏𝑠𝑖𝑗(𝑛−1) ≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛𝑖′∈(𝐈𝑠
𝐶∩𝐈𝑗′)

𝑗′∈𝐉𝑠   

 s  (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃 IR), n > 1 (12) 

The amount of materials through direct transfer to a consumption task i at a time should 

not exceed the amount of materials consumed by this consumption task at event point n. 

−𝜌𝑠𝑖′𝑗′ ⋅ ∑ 𝑏𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖∈(𝐈𝑠
𝑃∩𝐈𝑗)𝑗∈𝐉𝑠

 

 s  (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝐶), n (13) 

A direct material transfer between a production task i in unit j and a consumption task iʹ 

in unit jʹ takes place only if the amount of state 𝑠 produced at event point n for recycling 

tasks or at event point (𝑛 − 1) for non-recycling tasks, plus the amount of state 𝑠 stored 



 114 

at event point (𝑛 − 1) exceeds the maximum storage capacity, plus the amount of 

materials stored in processing units. In this case, there are no storage tanks or processing 

units to temporary store the materials produced. 

∑ ∑ (𝜌𝑠𝑖𝑗 ∑ 𝑏𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)\𝐈R𝑗∈𝐉𝑠

+ 𝑆𝑇𝑠(𝑛−1) ≤ 𝑆𝑇𝑠
max + 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)\𝐈𝑅𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

+ ∑ ∑ 𝑏𝑠𝑖𝑗(𝑛+1)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)\𝐈𝑅𝑗∈𝐉𝑠

 

 s  (SIN  SFIS), n (14) 

∑ ∑ (𝜌𝑠𝑖𝑗 ∑ 𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃∩𝐈R)𝑗∈𝐉𝑠

+ 𝑆𝑇𝑠(𝑛−1) ≤ 𝑆𝑇𝑠
max + 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃∩𝐈𝑅)𝑗′∈𝐉𝑠𝑗∈𝐉𝑠

+ ∑ ∑ 𝑏𝑠𝑖𝑗𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃∩𝐈𝑅)𝑗∈𝐉𝑠

 

 s  (SIN  SFIS), n > 1 (15) 

where variable 𝑏𝑠𝑖,𝑗,𝑛 denotes the amount of materials stored in a unit 𝑗 at event point 𝑛, 

previously produced by task 𝑖 in this unit, which will be explained later. 

When there is no direct material transfer between two related processing units, the 

amount through this direct transfer should be zero, similar to the indirect material transfer. 

∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)

≤ min[𝐵𝑗
max, 𝐵𝑗′

max] ⋅ 𝑧𝐷𝑗𝑗′𝑛 

 s  (SIN  SFIS), j ≠ j, jJs, jJs, n (16) 

where 𝐵𝑗
𝑚𝑎𝑥 = max

𝑖∈(𝐈𝑗𝐈𝑠
𝑃)

[𝐵𝑖𝑗
𝑚𝑎𝑥] and 𝐵𝑗

𝑚𝑎𝑥 = max
𝑖∈(𝐈𝑗𝐈𝑠

𝐶)
[𝐵𝑖𝑗

𝑚𝑎𝑥]. 

4.1.6 Sequencing constraints 

Different tasks in the same unit 

The start time of a unit j at event point (n + 1) must always be after its end time at the 

previous event point n. 
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𝑇𝑗(𝑛+1)
f ≥ 𝑇𝑗𝑛

s  

 j, n < N (17) 

Different task in different unit 

To make sure that correct operational sequences between production and consumption 

tasks in different processing units, we define continuous variables 𝑇𝑠𝑗𝑛 to denote the time 

when a state 𝑠 produced by a unit 𝑗 is available to be transferred (i.e., consumed or stored) 

at event point 𝑛. Then we require that the time when a state 𝑠 produced by a unit 𝑗 is 

available to be consumed at event point (𝑛 + 1) is always after the time when the state is 

available at the previous event point 𝑛. 

𝑇𝑠𝑗(𝑛+1) ≥ 𝑇𝑠𝑗𝑛 

 s  SIN, j Js, n < N (18)  

When a state 𝑠 produced by a unit 𝑗 is available at event point 𝑛, the production of this 

state in the same unit 𝑗 must be completed at this event point 𝑛. In other words,  

𝑇𝑠𝑗𝑛 ≥ 𝑇𝑗𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

) 

 s  SIN, jJs, 
( )

0
P

j s

sij

i


 


I I

, n (19) 

If a unit jʹ processes a task iʹ, which consumes state 𝑠 at event point n and also receives 

materials from unit j, then this unit should start after the time that state 𝑠, which was 

produced by unit j from a non-recycling task at event point n, is available. 

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′𝑛
s + 𝑀(1 − 𝑧𝐼𝑗𝑗′𝑛)  

 s SIN, j, jJs, j ≠ j,
( )\

0
 


P R

j s

sij

i I I I

, 
( )

0
C

j s

si j

i




 

 


I I

, n (20) 

Similarly, if a unit jʹ process a task iʹ at event point (n + 1) and also receives materials 

from task j then the start time of this unit should be after the time that state 𝑠, which was 

produced by a unit j from a recycling task at event point n, is available. 
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𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+1)
s + 𝑀(1 − 𝑧𝐼𝑗𝑗′𝑛) 

 s SIN, j, jJs,  j ≠ j, 
( )

0
  


P R

j s

sij

i I I I

, 
( )

0
C

j s

si j

i




 

 


I I

, n < N (21) 

If the materials produced by a non-recycling task in a processing unit at event point n are 

not transferred to a consumption task in a processing unit at the same event point n, then 

all material should be stored in its dedicated storage tank, before another production task 

is processed in the unit. The start time of this consumption task at event point (𝑛 + 1) 

should always exceed the time that the state is available at event point n. 

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+1)
s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

) 

 s  SIN, j, jJs,  j ≠ j, 
( )\

0
 


P R

j s

sij

i I I I

, 
( )

0
C

j s

si j

i




 

 


I I

, n < N (22) 

In other words, a unit that processes a consumption task at event point (n + 1) are 

unconditionally sequenced with the units that process a related non-recycling production 

task at event point n. The units that are processing a consumption task at event point (n + 

2) are unconditionally sequenced with units that process a related recycling production 

task at event point n. 

𝑇𝑠𝑗𝑛 ≤ 𝑇𝑗′(𝑛+2)
s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′𝑗′(𝑛+2)𝑛′

𝑛+2≤𝑛′≤𝑛+2+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

) 

 s  SIN, j, jJs,  j ≠ j, 
( )

0
  


P R

j s

sij

i I I I

, 
( )

0
C

j s

si j

i




 

 


I I

, n < N−1 (23) 

If there is a direct material transfer at event point n from a unit j that processes a non-

recycling production task i, to a unit jʹ that processes a related consumption task iʹ, then 

the finish time of the unit jʹ at the previous event point (n – 1) must be before the finish 

time of the unit j. 

𝑇𝑗′(𝑛−1)
f ≤ 𝑇𝑗𝑛

f + 𝑀(1 − 𝑧𝐷𝑗𝑗′𝑛)  

 s (SIN  SFIS), j, jJs,  j ≠ j, 
( )\

0
 


P R

j s

sij

i I I I

, 
( )

0


 

 


C

j s

si j

i I I

, n > 1 (24) 
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If there is a material direct transfer at event point n from unit j, that process a recycling 

production task i, to unit jʹ, that process a related consumption task iʹ, then the finish time 

of unit jʹ at event point n must be before the finish time of unit j. 

𝑇𝑗′𝑛
f ≤ 𝑇𝑗𝑛

f + 𝑀(1 − 𝑧𝐷𝑗𝑗′(𝑛+1)) 

 s (SIN  SFIS), j, jJs,  j ≠ j, 
( )

0
  


P R

j s

sij

i I I I

,
( )

0


 

 


C

j s

si j

i I I

, n < N (25) 

Finally, to avoid real time violations, between production and consumption tasks 

occurring at the same event for recycling tasks or at the previous event for non-recycling 

tasks the following constraints are introduced. 

𝑇𝑗𝑛
f ≥ 𝑇𝑗′(𝑛−1)

s − 𝑀(1 − ∑ 𝑤𝑖𝑗𝑛′𝑛𝑛−∆𝑛≤𝑛′≤𝑛 )  

 s (SIN  SFIS), j, jJs,  j ≠ j, 
( )\

0
 


P R

j s

sij

i I I I

, 
( )

0


 

 


C

j s

si j

i I I

, n > 1 (26) 

𝑇𝑗𝑛
f ≥ 𝑇𝑗′𝑛

s − 𝑀(1 − ∑ 𝑤𝑖𝑗𝑛′𝑛𝑛−∆𝑛≤𝑛′≤𝑛 )  

 s (SIN  SFIS), j, jJs,  j ≠ j, 
( )

0
  


P R

j s

sij

i I I I

, 
( )

0


 

 


C

j s

si j

i I I

, n (27) 

4.1.7 Allowing processing units to store materials 

In this work, we allow processing units to store materials for multiple event points. 

Generally, most existing mathematical models even though they allow processing units 

to store materials, they only allow these materials to be stored at the event point that they 

were produced. At the next event point, these materials should be either consumed by 

another task or transferred to the storage tanks. To avoid this case, we introduce an 

additional binary variable 𝑦𝑠𝑖,𝑗,𝑛 as follows, 

1 if unit  stores materials at event point , previously produced by task 

0 otherwise


= 


ijn

j n i
ys

  

We also introduce a new continuous variable 𝑏𝑠𝑖,𝑗,𝑛 which denotes the amount of 

materials stored in a unit 𝑗 at event point 𝑛, previously produced by task 𝑖 in this unit. The 

amount of materials stored in a unit 𝑗 cannot exceed its maximum capacity. 

𝑏𝑠𝑖𝑗𝑛 ≤ 𝐵𝑖𝑗
max ⋅ 𝑦𝑠𝑖𝑗𝑛 

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃), n (28) 
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Additionally, the amount of materials stored in a unit j at event point n cannot exceed the 

amount produced or stored at the previous event point (n−1). 

𝑏𝑠𝑖𝑗𝑛 ≤ ∑ (𝜌𝑠𝑖𝑗 ⋅ 𝑏𝑖𝑗𝑛′(𝑛−1))

𝑛−1−Δ𝑛≤𝑛′≤𝑛

+ 𝑏𝑠𝑖𝑗(𝑛−1) 

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃), n > 1 (29) 

Materials stored in a processing unit can only be directly transferred to another unit that 

process a consumption task. Constraint (30) is used if materials are produced by non-

recycling tasks, while constraint (31) is used if materials are produced by recycling tasks. 

𝑏𝑠𝑖𝑗𝑛 ≥ 𝑏𝑠𝑖𝑗(𝑛−1) − ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃 )\IR, n > 1 (30) 

𝑏𝑠𝑖𝑗𝑛 ≥ 𝑏𝑠𝑖𝑗(𝑛−1) − ∑ ∑ 𝑏𝑇𝑑𝑖𝑗𝑖′𝑗′(𝑛+1)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈𝐉𝑠

 

 s (SIN  SFIS), jJs, i  (Ij 𝐈𝑠
𝑃 IR), 1 < n < N (31) 

Finally, if a unit 𝑗 holds some material at event point 𝑛, then it cannot process any task at 

this event point 𝑛. 

∑𝑦𝑠𝑖𝑗𝑛

𝑖∈𝐈𝑗

≤ 1 − ∑ ∑ ∑ 𝑤𝑖𝑗𝑛′𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

 

 s (SIN  SFIS), jJs, n (32) 

4.1.8 Additional constraints 

Several additional constraints are introduced to improve the performance of the proposed 

model. Constraints (33)-(36) relate 𝑤𝑖𝑗𝑛𝑛′with 𝑧𝐼𝑗𝑗′𝑛. More specifically, if a unit jʹ 

process a consumption task iʹ, and there is indirect material transfer between units j and 

jʹ then unit j must process the related production task i according to (33). Similarly, if a 

unit j processes a production task i, and there is an indirect material transfer between units 

j and jʹ then unit jʹ must process the related consumption task iʹ according to (34). While 

(33) and (34) are used for non-recycling production tasks, constraints (35) and (36) are 

for recycling production tasks. 

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1 

 s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (33) 
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∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1 

 s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (34) 

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

≥ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1 

  s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (35) 

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1 

  s (SIN  SUIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (36) 

If an intermediate state 𝑠 has a FIS policy, then a unit j that transfers materials at unit jʹ, 

then unit j can either process a production task or store materials at event point n. 

Constraints (37) and (38) handle cases with non-recycling production tasks, while (39) 

and (40) handle cases with recycling tasks. 

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐼𝑗𝑗′𝑛 − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (37) 

∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐼𝑗𝑗′𝑛 − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (38) 

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐼𝑗𝑗′(𝑛+1) − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (39) 

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐼𝑗𝑗′(𝑛+1) − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (40) 

In the same manner we relate 𝑤𝑖𝑗𝑛𝑛′ and 𝑦𝑠𝑖𝑗𝑛 with 𝑧𝐷𝑗𝑗′𝑛. 
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∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

+ 𝑧𝐷𝑗𝑗′𝑛 − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, i  (Ij 𝐈𝑠

𝐶), n (41) 

∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐷𝑗𝑗′𝑛 − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃)\IR, jJs, i  (Ij 𝐈𝑠

𝐶), n (42) 

∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 ≥ ∑ 𝑤𝑖′𝑗′𝑛𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

+ 𝑧𝐷𝑗𝑗′(𝑛+1) − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (43) 

∑ 𝑤𝑖′𝑗′(𝑛+1)𝑛′

𝑛+1≤𝑛′≤𝑛+1+Δ𝑛

≥ ∑ 𝑤𝑖𝑗𝑛′𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛

+ 𝑦𝑠𝑖𝑗𝑛 + 𝑧𝐷𝑗𝑗′(𝑛+1) − 1 

 s (SIN  SFIS), j, jJs, j ≠ j, i  (Ij 𝐈𝑠
𝑃 IR), i  (Ij 𝐈𝑠

𝐶), n < N (44) 

Objective functions 

As already discussed, two objectives have been considered. While constraint (45) is the 

objective for maximization of productivity, constraint (46) handles the case of 

minimization of makespan. 

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖𝑗𝑠 ⋅ 𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗∈𝐉𝑠𝑠

 

  (45)  

𝑀𝑆 ≥ 𝑇𝑗𝑛
f  

 ∀j, n = N (46)  

In the minimization of makespan problem, the total demand should be satisfied. 

𝑆𝑇𝑠,𝑛″ + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

≥ 𝐷𝑠 

 ∀s ∊ Sp, n = N (47) 

Finally, (48) and (49) denote all the continuous and binary variables of the model, 

respectively 

bijnnʹ, bsijn, bTiijiʹjʹn, bTdijiʹjʹn, MS, STsn, 𝑇𝑠𝑗𝑛, 𝑇𝑗𝑛
s , 𝑇𝑗𝑛

f ≥ 0  (48) 
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wijnnʹ, ysijn, zDjjʹn, zIjjʹn {0, 1}  (49) 

We complete the mathematical model M1, which consists of constraints (1)-(45) and (48-

49) for maximization of productivity, and (1)-(44) and (46)-(49) for minimization of 

makespan. We consider two different variations of this model. 

4.2 Model M2 

In the mathematical model M2, we also use the unit-specific event-based approach with 

timing variables based on units. The main difference from the mathematical model M1 is 

that related production and consumption tasks are not allowed to take place at the same 

event point. Therefore, we use the following material balance constraints instead. 

𝑆𝑇𝑠𝑛 = 𝑆𝑇𝑠(𝑛 − 1) + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛′(𝑛−1)

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈(𝐈𝑆
𝑃∩𝐈𝑅)

+ 

+ ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 

 s, n > 1 (50) 

𝑆𝑇𝑠𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ ∑ 𝜌𝑠𝑖𝑗𝑏𝑖𝑗𝑛𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑗∈(𝐉𝑠∩𝐉𝑖)𝑖∈𝑰𝑠
𝐶

 

 s, n = 1 (51) 

The mathematical model M2 consists of constraints (1)-(2), (5)-(7), (8)-(13), (15), (17), 

(19)-(20), (22)-(23), (25), (27)-(29), (31)-(32), (35)-(36), (39)-(40), (43)-(45), (48)-(49) 

and (50)-(51) for maximization of productivity and (1)-(2), (5)-(7), (8)-(13), (15), (17), 

(19)-(20), (22)-(23), (25), (27)-(29), (31)-(32), (35)-(36), (39)-(40), (43)-(44) and (46)-

(47), (48)-(49), (50)-(51) for minimization of makespan. 

5 Computational studies 

To examine the performance of the proposed mathematical models M1 and M2, we 

revisit the motivating example 1 and solve additional three motivating examples. The 

maximum computational time is one hour for all examples. The optimality gap is set to 

zero. All examples are solved using CPLEX 12/GAMS 24.6.1. on a desktop computer 

with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 7. 
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Revisit of Motivating Example 1 

We use the proposed models M1 and M2 to solve the motivating example 1. The optimal 

solution of 500.00 cu is generated in less than 0.1 CPU s for both models. The model 

statistics are provided in Table 3. It involves 12 binary variables, 28 continuous variables, 

and 60 constraints for model M1 and 17 binary variables, 39 continuous variables, and 

86 constraints for model M2. The optimal schedule is the same as that illustrated in Figure 

4. As discussed before, intermediate state S2 is held in unit J2 after production because 

of small storage capacity. 

Table 3 Computational results for motivating examples 1-3 

Motivating

Example 
Model 

Number of 

event 

points 

CPU 

time 

(s) 

RMILP MILP (h) 
Bin. 

Var. 

Cont. 

Var. 
Constr. 

1 LF2010a 3 0.11 500.00 300.00 6 29 41 

(H = 8 h) VS2013b 3 0.09 500.00 300.00 14 33 72 

 MH2019c 4 (ΔR=1) 0.08 500.00 300.00 6 34 78 

 M1 2 0.02 500.00 500.00 12 28 60 

 M2 3 0.03 500.00 500.00 17 39 86 

2 LF2010 7 5.4 3281.50 2385.32 56 235 518 

(H=12 h) VS2013 7 29.5 3281.50 2392.46 256 403 1268 

 MH2019 9 (ΔR=2) 30.8 3332.63 2385.32 120 361 962 

 M1 7 39.2 3281.50 2433.16 218 463 1442 

 M2 7 38.0 3281.50 2433.16 216 459 1430 

3 LF2010 9 (Δn=1) 58.4 3879.34 887.68 187 507 1727 

(H=12 h) VS2013 9 5.6 3879.34 989.03 541 723 2549 

 MH2019 9 (ΔR=2) 0.2 887.68 887.68 165 506 1424 

 M1 9 10.4 3879.34 1033.60 453 813 2935 

 M2 9 10.5 3879.84 1033.60 453 813 2935 

4 LF2010 9 - - Infeasible 99 419 1019 

(H=12 h) VS2013 9 - - infeasible 541 723 2549 

 MH2019 9 (ΔR=2) - - infeasible 165 510 1424 

 M1 9 27.9 4297.11 2503.15 453 813 2935 

 M2 9 27.3 4297.11 2503.15 453 813 2935 
a Li and Floudas12 model. b Vooradi and Shaik15 model. c Mostafaei and Harjunkoski21 

model 

As illustrated in Table 3, it is possible to generate the optimum solution for the 

motivating example using the proposed models M1 and M2 as both of them allow 

production units to store materials over multiple event points. As already discussed, even 

though the model of Vooradi and Shaik15 allows materials to be stored in the processing 

unit during an event point n, these materials cannot be stored to the processing unit for 
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the next event points. Similarly, Li and Floudas12 and Mostafaei and Harjunkoski21 do not 

allow processing units to store materials for the successive event points. As a result, both 

proposed models M1 and M2 can generate a significantly better solution. 

Motivating Example 2 

This example is very similar to Example 2c from Li et al.16 but a modified maximum 

capacity of state S7 of 10 mu. The objective is to maximize productivity. Similarly to the 

Motivating Example 1, we use the model of Li and Floudas12, Vooradi and Shaik15, 

Mostafaei and Harjunkoski21 and the proposed model M1 and M2 to solve this motivating 

example. Table 3 provides the computational results. From Table 3, it seems that both 

proposed mathematical models M1 and M2 can generate a solution of 2433.16 mu, whilst 

the model of Li and Floudas12, Vooradi and Shaik15 and Mostafaei and Harjunkoski21 are 

only able to provide a suboptimum solution (2392.46 mu and 2385.32 mu respectively). 

Such a difference is mainly because the proposed models M1 and M2 allow production 

units to storage materials over multiple event points. The optimal schedule from model 

M1 is illustrated in Figure 7. As seen from Figure 7, unit J2 produces 50 mu from 6.3h to 

8.9h by processing task I2 at event point N4. Those materials can be stored in the 

processing unit J2 and processed in the same unit at event point N7. However, this is not 

possible with the model of Vooradi and Shaik,15 and as a result, less materials can be 

produced during the same period as depicted in Figure 8 (2.80 mu by processing task I2 

at event point N4 and 39.03 mu by processing task I2 at event point N6), which leads to 

less productivity and as a result a suboptimum solution. 

 

Figure 7 Optimal schedule for Motivating Example 2 using model M1 
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Figure 8 Schedule for Motivating Example 2 using the model of Vooradi and Shaik15 

Motivating Example 3 

Motivating example 3 is quite similar to the Example 3c from Li et al.16. The maximum 

capacity for states S5, S6 and S7 has changed to 10 mu. Additionally, the initial amount 

of materials for states S6 and S7 is changed to 0 mu. Similar to Motivating Example 2, 

we use the model of Li and Floudas12, Vooradi and Shaik15, Mostafaei and Harjunkoski21 

and the proposed model M1 and M2 to solve this motivating example. The computational 

results are provided in Table 3. From Table 3, both proposed models M1 and M2 can 

generate a better solution than the models from the literature (1033.60 cu). Such 

difference in the solution can be explained by examining the optimal schedule generated 

by using model M1 (see Figure 9) and the model of Vooradi and Shaik15 (see Figure 10). 

Since there is small storage capacity for states S6 and S7, unit J4 can process batches with 

small sizes with the model of Vooradi and Shaik15. More specifically, I9 is processed in 

unit J4 in event points N3, N5 and N7 with batch sizes of 20.00 mu, 38.40 mu and 53.73 

mu respectively.  On the other hand, model M1 can produce significantly higher amounts 

of states S6 and S7, since those excessive amounts can be temporarily stored in the 

processing units before transferred to another one. For instance, with model M1 unit J4 

also processes three batches of I9 at event points N3, N6 and N8 with batch size 25.00 

mu, 43.00 mu and 90.00 mu respectively.  
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Figure 9 Optimal schedule for Motivating Example 3 using model M1 

 

Figure 10 Optimal schedule for Motivating Example 3 using the model of Vooradi and 

Shaik15 

Motivating Example 4 

This example is also quite similar to the Example 3c from Li et al.16. The maximum 

capacity for state S7 is 10 mu. Additionally, in the first event point, 40 mu of S7 are stored 

in unit J4 at the first event point. Since the models of Vooradi and Shaik15 and Mostafaei 

and Harjunkoski21 do not allow materials to be stored for multiple event points, they fail 

to generate a feasible solution. On the other hand, in the proposed models M1 and M2, 
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allows materials to be stored in processing units for multiple event points and, as a result, 

they can generate the optimum solution of 2503.15 mu in less than 30 s.  

Benchmark Examples 

To further examine the performance of the proposed mathematical models M1 and M2, 

we solve in total nine examples from the literature1, 8, 16. The data, as well as the STN 

representations for all those examples, are presented in the Supplementary Material. 

The maximum computational time is one hour, and the optimality gap is zero. All cases 

are solved using CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ 

i5-2500 3.3 GHz and 8 GB RAM running Windows 7. It should also be noted that we 

only compare our models with the model of Vooradi and Shaik15 (denoted as VS2013) 

since they incorporate similar features. The model of Mostafaei and Harjunkoski21 is very 

similar to the model of Shaik and Floudas,11 which requires more event points in some 

examples, as demonstrated in the Motivating Example 1 and Vooradi and Shaik15. 

Detailed comparison of our models with Shaik and Floudas11, Li and Floudas12, Susarla 

et al.8, and Mostafaei and Harjunkoski21 will be presented in our next contribution. 

The computational results for Examples 1-9 with UIS policy for maximization of 

productivity, are presented in Tables 4 and 5. From Tables 4 and 5, it seems that both the 

model of Vooradi and Shaik15 and the model M2 require the same number of event points 

since both models do not allow related production and consumption tasks to take place at 

the same event point. Nevertheless, it seems that model M2 requires fewer binary 

variables in some cases. For instance, in Example 3d, the model of Vooradi and Shaik15 

requires 263 binary variables, while M2 requires 245 binary variables. The reason is that 

M2 only examines if there is a material transfer between processing units, whilst the 

model of Vooradi and Shaik15 tests if there is a material transfer from a production task 

to a related consumption task. In a multipurpose batch process facility, a processing unit 

can process more than one tasks. Therefore, two processing units can process two or more 

tasks which are related to the same state. In such a case, the M2 only requires one binary 

decision variable, while the model of Vooradi and Shaik15 requires two or more binary 

decision variables. As a result, M2 can lead to smaller model size and less computational 

time. For instance, M2 requires 36% (15.1 s vs 23.6 s), 87.7% (146.4 s vs 1191 s) and 

62.2% (41.7 s vs 110.3 s)  less computational time for Examples 2d, 3b and 3d than the 

model of Vooradi and Shaik,15 respectively. Additional constraints (33)-(44) can also 
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improve the performance of the proposed models. For instance, even though both models 

M2 and the model of Vooradi and Shaik15 lead to the same model size for Example 1d, 

M2 requires 51.8% less computational time (10.5s vs 21.8 s). 

Table 4 Computational results for Examples 1-3 with maximization of productivity 

(UIS policy) 

Example Model 

Number 

of event 

points 

CPU 

time 

(s) 

RMILP 
MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex1a VS2013 4 0.125 2000.00 1840.17 32 90 177 

(H = 8 h) M1 2 0.031 2000.00 1840.17 18 54 105 

 M2 4 0.031 2000.00 1840.17 32 102 198 

Ex1b VS2013 5 0.125 3000.00 2628.19 41 113 226 

(H = 10h) M1 3 0.046 3000.00 2628.19 27 80 163 

 M2 5 0.047 3000.00 2628.19 41 128 256 

Ex1c VS2013 6 0.250 4000.00 3463.62 50 136 275 

(H = 12h) M1 4 0.062 4000.00 3463.62 36 106 221 

 M2 6 0.109 4000.00 3463.62 50 154 314 

Ex1d VS2013 9 21.8 6601.65 5038.05 77 205 422 

(H = 16h) M1 7 12.9 6601.65 5038.05 63 184 395 

 M2 9 10.5 6601.65 5038.05 77 232 488 

Ex2a VS2013 4 0.125 1730.87 1498.57 62 178 384 

(H = 8 h) M1 4 0.063 1730.87 1498.57 64 180 396 

 M2 4 0.078 1730.87 1498.57 56 178 377 

Ex2b VS2013 5 0.17 2436.69 1962.69 80 225 496 

(H = 10h) M1 5 0.22 2436.69 1962.69 80 227 510 

 M2 5 0.20 2436.69 1962.68 72 225 491 

Ex2c VS2013 6 0.48 3076.62 2658.52 98 272 608 

(H = 12h) M1 6 0.42 3076.62 2658.52 96 274 624 

 M2 6 0.42 3076.62 2658.52 88 272 605 

Ex2d VS2013 8 23.6 4291.67 3738.38 134 366 832 

(H = 16h) M1 8 15.6 4291.67 3738.38 128 368 852 

 M2 8 15.1 4291.67 3738.38 120 366 833 

Ex3a VS2013 5 1.92 2100.00 1583.44 123 311 741 

(H = 8h) M1 5 0.90 2100.00 1583.44 130 316 793 

 M2 5 0.86 2100.00 1583.44 115 316 776 

Ex3b VS2013 7 1191 3369.69 2358.20 179 441 1077 

(H = 10h) M1 7 146.4 3369.69 2358.20 182 448 1155 

 M2 7 157.0 3369.69 2358.20 167 448 1138 

Ex3c VS2013 7 1.31 3465.63 3041.27 179 441 1077 

(H = 12h) M1 7 1.22 3465.63 3041.27 182 448 1155 

 M2 7 1.14 3465.63 3041.27 167 448 1138 

Ex3d VS2013 10 110.3 5225.86 4262.80 263 636 1581 

(H = 16h) M1 10 42.8 5225.86 4262.80 260 646 1698 

 M2 10 41.7 5225.86 4262.80 245 646 1681 

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.  
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Table 5 Computational results for Examples 4-9 with maximization of productivity 

(UIS policy) 

Example Model 

Numb

er of 

event 

points 

CPU 

time 

(s) 

RMILP 
MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex4 VS2013 6 0.124 7.5000 5.3225 65 157 358 

(H=15 h) M1 4 0.078 7.5000 5.3225 48 127 298 

 M2 6 0.078 7.5000 5.3225 65 187 434 

Ex5 VS2013 5 0.109 14.00 10.00 36 98 201 

(H=6 h) M1 3 0.032 14.00 10.00 24 71 152 

 M2 5 0.031 14.00 10.00 36 113 237 

Ex6 VS2013 5 0.141 300.00 210.00 49 138 283 

(H=9 h) M1 3 0.047 300.00 210.00 33 100 211 

 M2 5 0.031 300.00 210.00 49 158 327 

Ex7 VS2013 5 0.125 80.00 58.99 54 147 301 

(H=76 h) M1 2 0.031 80.00 58.99 24 71 145 

 M2 5 0.046 80.00 58.99 54 167 351 

Ex8 VS2013 6 0.093 400.00 400.00 44 130 289 

(H=10 h) M1 4 0.032 400.00 400.00 32 106 237 

 M2 6 0.047 400.00 400.00 44 154 337 

Ex9 VS2013 10 0.109 400.00 400.00 76 218 497 

(H=10 h) M1 8 0.062 400.00 400.00 64 210 485 

 M2 10 0.032 400.00 400.00 76 258 585 

Note. Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.  

Mathematical model M1 requires a smaller number of event points in most cases 

since related production and consumption tasks are allowed to take place at the same 

event point. For instance, the model M1 requires two event points less than the models 

M2 and the model of Vooradi and Shaik15for Examples 1a-d, 8 and 9. As a result, model 

M1 leads to the smallest model size with less number of binary variables, continuous 

variables and constraints, which makes it more efficient than the mathematical model 

Vooradi and Shaik15. Nevertheless, it seems that both mathematical models M1 and M2 

require similar computational time to generate the optimal solution, mainly because they 

both models can solve all examples in less than three minutes. From Tables 4 and 5, it 

can be concluded that the models M1 and M2 reduced the computational time by one 

order of magnitude for most examples in comparison to VS2013. 
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Table 6 Computational results for Examples 1-3 with maximization of productivity (FIS 

policy) 

Example Model 

Numb

er of 

event 

points 

CPU 

time 

(s) 

RMILP 
MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex1a VS2013 4 0.094 2000.00 1840.17 64 102 273 

(H = 8 h) M1 2 0.031 2000.00 1840.17 38 72 175 

 M2 4 0.047 2000.00 1840.17 74 126 358 

Ex1b VS2013 5 0.234 3000.00 2628.19 81 129 352 

(H = 10h) M1 3 0.046 3000.00 2628.19 58 107 279 

 M2 5 0.062 3000.00 2628.19 94 159 462 

Ex1c VS2013 6 0.23 4000.00 3463.62 98 156 431 

(H = 12h) M1 4 0.17 4000.00 3463.62 78 142 383 

 M2 6 0.25 4000.00 3463.62 114 192 566 

Ex1d VS2013 9 45.3 6601.65 5038.05 149 240 668 

(H = 16h) M1 7 40.3 6601.65 5038.05 138 247 695 

 M2 9 43.5 6601.65 5038.05 174 291 878 

Ex2a VS2013 4 0.125 1730.87 1498.57 142 220 665 

(H = 8 h) M1 4 0.078 1730.87 1498.57 122 256 774 

 M2 4 0.078 1730.87 1498.57 120 252 755 

Ex2b VS2013 5 0.45 2436.69 1962.69 180 281 866 

(H = 10h) M1 5 0.30 2436.69 1962.69 154 325 999 

 M2 5 0.20 2436.69 1962.69 152 321 980 

Ex2c VS2013 6 0.66 3076.62 2658.52 218 342 1067 

(H = 12h) M1 6 0.50 3076.62 2658.52 186 394 1224 

 M2 6 0.47 3076.62 2658.52 184 390 1205 

Ex2d VS2013 8 34.6 4291.67 3738.38 294 464 1469 

(H = 16h) M1 8 22.2 4291.67 3738.38 250 532 1674 

 M2 8 23.7 4291.67 3738.38 248 528 1655 

Ex3a VS2013 5 3.32 2100.00 1583.44 293 387 1321 

(H = 8h) M1 5 1.80 2100.00 1583.44 245 437 1542 

 M2 5 1.92 2100.00 1583.44 245 437 1531 

Ex3b VS2013 7 976.3 3369.69 2358.20 417 555 1935 

(H = 10h) M1 7 383.8 3369.69 2358.20 349 625 2233 

 M2 7 364.9 3369.69 2358.20 349 625 2233 

Ex3c VS2013 7 2.90 3465.63 3041.27 417 555 1935 

(H = 12h) M1 7 1.47 3465.63 3041.27 349 625 2244 

 M2 7 1.42 3465.63 3041.27 349 625 2233 

Ex3d VS2013 10 155.6 5225.86 4262.80 603 807 2856 

(H = 16h) M1 10 85.5 5225.86 4262.80 505 907 3297 

 M2 10 82.2 5225.86 4262.80 505 907 3286 

Δn = 0 for all examples. VS2013: Vooradi and Shaik15 model.  

Tables 6 and 7 present the computational results for Examples 1-10 with FIS policy 

for maximization of productivity. Both mathematical models M2 and the model of 

Vooradi and Shaik15 require the same number of event points for all examples to generate 
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the optimal solution. As we introduce additional binary variables to allow processing 

units to store materials for multiple event points, model M2 leads to a big larger model 

size for Examples 1a-1d, 4, 5, and 7 where the model of Vooradi and Shaik15 does not 

need to allow tasks to span over multiple event points (i.e., Δn = 0) to generate the optimal 

solution. However, model M2 requires similar computational time as the model of 

Vooradi and Shaik15 for these examples. On the other hand, model M2 requires 15.5%-

16.5% fewer binary variables for Examples 2a-2d, 3a-3d due to fact that the proposed 

model only uses binary variables to examine whether there is a material transfer between 

two units. More importantly, both models M2 and M1 do not require to allow tasks to 

span over multiple event points in any case due to allowing processing units to store 

materials over multiple event points. Therefore, both proposed models lead to 

significantly smaller model size with less binary and continuous variables and constraints 

in Examples 6, 8 and 9. For instance, both models M2 and M1 require 61.9% (128 vs 

336) and 53.5% (156 vs 336) fewer binary variables than the model of Vooradi and 

Shaik15 to generate the optimal solution for Example 9 respectively. Such reduction in the 

model size leads to one magnitude less computational time required for both proposed 

models M1 and M2 in comparison to the model of Vooradi and Shaik15. 

Table 7 Computational results for Examples 4-10. Maximization of productivity (FIS) 

Example Model 

Number of 

event 

points 

CPU 

time 

(s) 

RMILP 
MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex4 VS2013 6 (Δn=0) 0.312 7.5000 5.3225 149 341 618 

(H=15 h) M1 4 (Δn=0) 0.218 7.5000 5.3225 105 168 560 

 M2 6 (Δn=0) 0.172 7.5000 5.3225 157 246 845 

Ex5 VS2013 5 (Δn=0) 0.141 14.00 10.00 76 114 327 

(H=6 h) M1 3 (Δn=0) 0.062 14.00 10.00 52 92 265 

 M2 5 (Δn=0) 0.047 14.00 10.00 84 144 438 

Ex6 VS2013 5 (Δn=1) 0.265 300.00 210.00 144 182 547 

(H=9 h) M1 3 (Δn=0) 0.078 300.00 210.00 78 130 380 

 M2 5 (Δn=0) 0.078 300.00 210.00 128 202 636 

Ex7 VS2013 5 (Δn=0) 0.125 80.00 58.99 114 171 490 

(H=76 h) M1 2 (Δn=0) 0.047 80.00 58.99 50 91 243 

 M2 5 (Δn=0) 0.062 80.00 58.99 122 211 638 

Ex8 VS2013 6 (Δn=3) 0.343 400.00 400.00 152 198 665 

(H=10 h) M1 4 (Δn=0) 0.047 400.00 400.00 64 134 409 

 M2 6 (Δn=0) 0.062 400.00 400.00 92 192 597 

Ex9 VS2013 10 (Δn=7) 2.10 400.00 400.00 336 422 1453 

(H=10 h) M1 8 (Δn=0) 0.23 400.00 400.00 128 266 849 

 M2 10 (Δn=0) 0.11 400.00 400.00 156 324 1037 

VS2013: Vooradi and Shaik15 model.  



 131 

Table 8 Computational results for Examples 1-3 with minimization of makespan (UIS 

policy) 

Example Model 

Num

ber of 

event 

points 

CPU 

time (s) 
RMILP 

MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex1a VS2013 14 >3600a 24.24 27.88 122 320 672 

(DS4=2000 cu) M1 12 412 24.24 27.88 108 314 690 

 M2 14 639 24.24 27.88 122 362 783 

Ex1b VS2013 23 >3600b 48.47 52.07 203 527 1113 

(DS4=4000 cu) M1 21 1004 48.47 52.07 189 548 1212 

 M2 23 1978 48.47 52.07 203 596 1305 

Ex2a VS2013 9 173.4 10.78 19.34 152 413 953 

(DS8=200 cu) M1 9 99.6 18.68 19.34 138 415 963 

(DS9=200 cu) M2 9 106.1 18.68 19.34 136 413 952 

Ex2b VS2013 20 >3600c 26.12 46.11 350 930 2185 

(DS8=500 cu) M1 20 >3600d 45.57 46.11 312 930 2206 

(DS9=400 cu) M2 20 >3600e 45.57 46.11 314 932 2217 

Ex3a VS2013 7 0.578 10.00 13.37 179 441 1089 

(DS12=100 cu) M1 7 0.546 11.25 13.37 167 448 1145 

(DS13=200 cu) M2 7 0.702 11.25 13.37 167 448 1145 

Ex3b VS2013 10 0.889 12.50 17.02 263 636 1593 

(DS12=250 cu) M1 10 0.873 14.27 17.02 245 646 1688 

(DS13=250 cu) M2 10 0.874 14.27 17.02 245 646 1688 

Note that Δn = 0 in all cases. a Relative Gap 0.19%. b Relative Gap 0.01%. c Relative Gap 

17.3%. d Relative Gap 1.17% e Relative Gap 1.17%. VS2013: Vooradi and Shaik15 model.  

The computational results for examples using minimization of makespan as 

objective are presented in Tables 8 and 9. While Table 8 depicts the results with UIS 

policy, Table 9 gives the results with FIS policy. From Table 8, it seems that mathematical 

models M1 and M2 both lead to tighter MILP relaxation and smaller model sizes. For 

instance, the MILP relaxation from both M1 and M2 are 18.68 h for Example 2a, which 

is improved by 73.2% compared to 10.78 from the model of Vooradi and Shaik15. The 

number of binary variables is reduced from 152 to 138 by 9%. As a result, they can 

successfully solve all examples except Example 2b to global optimality within one hour. 

On the other hand, the model of Vooradi and Shaik15 can only solve for Examples 2a, 3a 

and 3b to optimality, whilst both models M1 and M2 require similar or less computational 

time to solve Examples 2a, 3a and 3b to optimality. The maximum reduction in the 

computational time can reach 43% for Example 2a (174 vs. 99 and 174 vs. 106). By 

comparing models M1 and M2 in Table 8, it seems that allowing related production and 

consumption tasks at the same event point can also lead to less computational times. For 
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instance, model M1 requires 34.8% for Example 1a (412 s vs 639 s) and 49.2% (1004 s 

vs 1978 s) less computational time for Example 1b compared to model M2. 

Table 9 Computational results for Examples 1-3 with minimization of makespan (FIS 

policy) 

Example Model 

Number 

of event 

points 

CPU 

time (s) 
RMILP 

MILP 

(h) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex1a VS2013 14 >3600a 24.24 27.88 234 372 1068 

(DS4=2000 cu) M1 12 >3600b 24.24 27.88 214 398 1196 

 M2 14 >3600c 24.24 27.88 242 456 1371 

Ex1b VS2013 23 >3600d 48.47 52.23 387 615 1779 

(DS4=4000 cu) M1 21 >3600e 48.47 52.07 376 695 2114 

 M2 23 >3600f 48.47 52.07 404 753 2289 

Ex2a VS2013 9 241.7 10.78 19.34 332 525 1679 

(DS8=200 cu) M1 9 125.3 18.68 19.34 276 601 1889 

(DS9=200 cu) M2 9 142.7 18.68 19.34 272 597 1875 

Ex2b VS2013 21 >3600g 26.40 47.68 788 1257 4091 

(DS8=500 cu) M1 21 >3600h 45.57 47.68 660 1429 4589 

(DS9=400 cu) M2 21 >3600i 45.57 47.68 656 1425 4575 

Ex3a VS2013 7 0.780 10.00 13.37 417 555 1947 

(DS12=100 cu) M1 7 1.841 11.25 13.37 320 625 2209 

(DS13=200 cu) M2 7 1.311 11.25 13.37 320 625 2209 

Ex3b VS2013 10 1.545 12.50 17.02 603 807 2868 

(DS12=250 cu) M1 10 1.092 14.27 17.02 470 907 3256 

(DS13=250 cu) M2 10 1.513 14.27 17.02 470 907 3256 

Note Δn = 0 in all cases. a Relative Gap 1.75%. b Relative Gap 1.40%. c Relative Gap 

1.67%. d Relative Gap 0.39%. e Relative Gap 0.15%.  f Relative Gap 0.08%.  g Relative 

Gap 19.4%. h Relative Gap 0.64%. i Relative Gap 1.07%. VS2013: Vooradi and Shaik15 

model. 

From Table 9, we can observe that models M1 and M2 lead to tighter MILP 

relaxation and smaller model size. For instance, the MILP relaxation from both M1 and 

M2 are 45.57 h for Example 2b, which is improved by 73% compared to 26.40 from the 

model of Vooradi and Shaik15. The number of binary variables is reduced by 16.2% (788 

vs. 660). As a result, the models M1 and M2 can solve Examples 2a, 3a and 3b to 

optimality within 1 hour and solve Examples 1a, 1b, and 2b with smaller optimality gap 

within 1 hour compared to the model of Vooradi and Shaik15. It should also be noted that 

models M1 and M2 find a better solution of 52.07 within 1 hour compared to the model 

of Vooradi and Shaik15 (52.07 vs. 52.23), which has not been found in the literature. By 

comparing models M1 and M2 in Table 9, it seems that allowing related production and 

consumption tasks at the same event point can also lead to less computational times. For 

instance, model M1 requires 12.5% (125 s vs 143 s) less computational time for Example 
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2a. In brief, we can conclude that the mathematical model M1 is the most efficient for 

makespan minimization. 

Large-scale example 

We also solve a large-scale industrial batch plant example from Janak et al.25 to further 

illustrate the capabilities of models M1 as model M1 performs slightly better than M2 

based on the above computational results. Figure 11 depicts the STN representation of 

this batch plant. The facility produces 87 different products by processing 17 raw 

materials in 8 different processing paths, and there is a total of 6 different types of 

processing tasks. Twenty processing units are available to process these tasks, and each 

processing unit can only process one group of them. The batch plant has to fulfil 402 

orders within 19 days. The work Janak et al.25 contains more information for this example. 

We first use the proposed model M1 to solve this problem directly. It fails to generate a 

feasible schedule within 12 hours due to intractable problem size. We then employ the 

rolling horizon decomposition approach of Janak et al.25 with the proposed model M1 as 

the short-term scheduling model to solve this problem, denoted as RH-M1. We provide 

the level-1 model and the modified short-term scheduling model M1 in the 

Supplementary Material. Each subproblem is solved to zero optimality gap using 

CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ i5-2500 3.3 GHz 

and 8 GB RAM running Windows 7. The maximum computational time is 3 hours for 

each level, while the integer solution limit is forty. 

Table 10 provides the computational results . From Table 10, RH-M1 can generate a 

better solution with the productivity of 6880.2 mu, which is increased by 26.7% in 

comparison to the 5427.8 mu from the model of Janak et al.25. More interestingly, RH-

M1 requires 11.5 h to generate such an improved solution, which is approximately half 

of the CPU time of the model of Janak et al.25 (22.4 h). Since both cases use the same 

rolling horizon decomposition approach, such improvement solely derives from the 

improved efficiency of the short-term model. 
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Figure 11 STN representation of large-scale industrial plant example 

Table 10 Computational results for the industrial plant example 

Model 
Total production 

(mu) 

Total CPU time 

(h) 

RH-JF 5427.8 22.4 

RH-M1 6880.2 11.5 

 

Table 11 Computational results for each subproblem for industrial plant example 

Sub-

problem 
Model Days 

Production 

(mu) 

CPU 

time (s) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

1 JF 0-2 857.7 3315 4880 35384 187833 

 M1 0-2 853.5 1972 15465 60213 127010 

2 JF 3-4 758.5 7202 3834 27053 135916 

 M1 3-4 790.1 10200 11021 42382 94200 

3 JF 5-6 697.0 9878 5406 30545 248663 

 M1-J 5-6 777.3 3899 15388 48876 160812 

4 JF 7-8 788.8 10329 5526 30729 276612 

 M1-J 7-8 994.9 1355 15781 48915 172265 

5 JF 9-10 634.7 6945 5406 30465 271764 

 M1-J 9-10 853.5 706 15855 49310 172930 

6 JF 11-12 517.9 10800 6222 32280 354410 

 M1-J 11-12 779.0 10800 17323 53395 198433 

7 JF 13-14 532.3 10800 6252 32318 359365 

 M1-J 13-14 1114.6 1541 17228 53642 199952 

8 JF 15-16 315.7 10800 6156 32085 354649 

 M1-J 15-18 717.3 10800 28614 90455 350605 

9 JF 17-18 335.3 10800 5976 31664 344065 
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 The computational results for each subproblem from RH-M1 and RH-JF are 

depicted in Table 11. While RH-JF divides the entire scheduling problem into nine 

subproblems, RH-M1 divides into eight subproblems. RH-M1 can solve all subproblems 

except the subproblems 6 and 8 to optimality within 3 hours. However, RH-JF reaches 

the maximum time of 3 hours for four subproblems out of nine. RH-M1 leads to higher 

productivity in comparison to RH-JF for all subproblems except the subproblem 1. The 

difference in productivity for the subproblem 1 between RH-M1 and RH-JF is 0.5% 

only. Since processing units overproduce some materials in RH-M1, which do not fulfil 

any order at the current scheduling horizon, they can be stored and used for order delivery 

directly at a later sub-problem without the need of using the facility to produce. As a 

result, processing units require to process fewer tasks in the successive sub-problems. 

Therefore, RH-M1 can successfully generate the schedule of subproblem 8, which 

contains days 15-18 without the need of further dividing into smaller sub-problems. On 

the other hand, RH-JF needs to produce significantly more materials to fulfil the demand 

within days 15-18. Therefore, RH-JF divides this sub-horizon into sub-problem 8 with 

days 15-16, and sub-problem 9 with days 17-18 to successfully develop a schedule for 

this period. 

 

Figure 12 Optimal schedule for the large-scale industrial plant example using RH-M1 
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Table 12 Utilisation efficiency of processing units from RH-M1 and RH-JF 

 RH-M1  RH-JF  
Time 

used 

Time 

 left 

% 

utilised 

 Time 

used 

Time 

 left 

%  

utilised 

U1 173.8 282.2 40.2  187.6 268.4 41.1 

U2 61.8 394.2 14.3  92.4 363.6 20.3 

U3 61.6 394.4 14.3  118.0 338.0 25.9 

U4 208.0 248.0 48.1  200.0 256.0 43.9 

U5 123.0 333.0 28.5  49.6 406.4 10.9 

U6 123.0 333.0 28.5  296.2 159.8 65.0 

U7 233.8 222.2 54.1  174.1 281.9 38.2 

U8 200.0 256.0 46.3  233.0 223.0 51.1 

U9 340.0 116.0 78.7  311.4 144.6 68.3 

U10 242.0 214.0 56.0  170.4 285.6 37.4 

U11 158.9 297.1 36.8  90.0 366.0 19.7 

U12 213.6 242.4 49.4  129.2 326.8 28.3 

U13 224.6 231.4 52.0  185.5 270.5 40.7 

U14 200.0 256.0 46.3  162.0 294.0 35.5 

U15 220.0 236.0 50.9  129.7 326.3 28.4 

U16 194.0 262.0 44.9  451.9 4.1 99.1 

U17 - - -  12.0 444.0 2.6 

The feasible schedule from RH-M1 is illustrated in Figure 12. Table 12 depicts the 

utilization efficiency for all processing units for both models. RH-M1 utilizes most of the 

processing unit for larger periods in order to produce a larger amount of materials and 

fulfill more orders than RH-JF. Additionally, RH-M1 utilizes one processing unit less 

during the whole scheduling horizon. In other words, RH-M1 utilizes the processing units 

more efficiently.  

6 Conclusions 

In this work, we presented two generic unit-specific event-based models for scheduling 

of multipurpose batch processes using the unit-specific event-based modelling approach. 

While we followed the methodology of Rakovitis et al.17 to allow all related production 

and consumption tasks to take place at the same event points but in different real times in 

the first model, we did not in the second model. We introduced the concept of indirect 

and direct material transfer, which allows us to conditionally align the operational 

sequence of related production and consumption tasks. The processing units were allowed 

to hold materials they previously produced over multiple event points.  Both models also 

consider the nonsimultaneous material transfer8. The computational results demonstrated 

that both models require a smaller number of binary variables in most cases, especially 
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in the cases where a processing unit can process multiple tasks, compared to the existing 

mathematical formulation15.  The proposed models did not need to allow a task to span 

over multiple event points to generate the optimal solution, which resulted in a significant 

reduction in the computational time by up to one order of magnitude in most cases. More 

importantly, the proposed models were able to generate better solutions than Vooradi and 

Shaik15 and Mostafaei and Harjunkoski21. Additionally, the first model allowing related 

production and consumption tasks to take place at the same event points was slightly more 

efficient than the second one. Finally, we used the proposed model to solve a large-scale 

industrial batch plant scheduling problem from Janak et al.25 using the rolling-horizon 

decomposition algorithm. The results demonstrated that the proposed model can 

improves productivity by 26.7% in significantly less computational time compared to that 

from Janak et al.25. The future work will extend the proposed models to consider other 

intermediate storage policy and unit wait policy. A Detailed comparison with all existing 

models in the literature, especially the model of Mostafaei and Harjunkoski,21 will also 

be conducted.  
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Nomenclature 

Indices 

i, iʹ: tasks 

j, jʹ: units 

n, nʹ, nʹʹ: event points 

s: states 

Sets 

I: tasks 

Ij: tasks that can be performed in unit j 

Is: tasks that produce/consume state s 

𝐈𝑠
𝑐: tasks that consume state s 

𝐈𝑠
𝑃: tasks that produce state s 

IR: tasks considered as recycling tasks 

J: units 

Ji: units that can process task i 

Js: units that produce/consume state s 

N: event points 

S: states 

SFIS: states with unlimited intermediate storage policy 

SP: states that are final products 

SIN: states that are intermediate products 

SR:  states that are raw materials 

SUIS: states with unlimited intermediate storage policy 

Parameters 
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𝐵𝑖𝑗
𝑚𝑎𝑥: maximum batch size of task i processed in unit j 

𝐵𝑖𝑗
𝑚𝑖𝑛 ∶ minimum batch size of task i processed in unit j 

Ds: demand of state s 

H: scheduling horizon 

M: big-M value 

Ps: price of state s 

ST0s: initial amount of state s 

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy) 

αij: coefficient of constant term of processing time of task i in unit j 

βij: coefficient of variable term of processing time of task i in unit j 

Δn: maximum number of event points that task i is allowed to be active 

ρsij: portion of state 𝑠 consumed/produced by task i processed in unit j 

Binary variables 

wijnnʹ: binary variable which takes the value 1 if task i is processed in unit j from event 

point n to nʹ ≥ n 

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in 

unit j at event point n, which were previously produced by task i processed in unit j at 

event point nʹ < n 

zIjjʹn: binary variable which takes the value 1 if there is indirect material transfer between 

unit j and jʹ 

zDjjʹn: binary variable which takes the value 1 if there is indirect material transfer between 

unit j and jʹ 

Continuous variables 

bijnnʹ: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event 

point 𝑛 to time event point nʹ ≥ n 
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bsijn: amount of materials stored in unit j at event point n, which were previously produced 

by task i processed in unit j at event point nʹ < n 

bTiijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

bTdijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

STsn: amount of state 𝑠 that has to be stored at time event point 𝑛 

Tsjn: time that state s produced in unit j is available to be consumed at event point n 

𝑇𝑗𝑛
s :  start time of unit 𝑗 at time event point 𝑛 

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛 
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Chapter 5: Scheduling of continuous processes 

5.1 Introduction 

The framework developed and implemented in Chapter 4 is only implemented for 

scheduling of batch processes. The continuous processes have significant differences 

from batch processes, and as a result, it is not possible to directly implement mathematical 

models for scheduling of batch processes for this problem. More specifically, in 

continuous processes, the processing time is not predefined as in batch processes. Instead, 

the processing time of each task processed in a unit is a variable that needs to be 

optimized. The only limitation, in this case, is that if a unit starts processing a task, then 

it should process it for a minimum or both minimum and maximum time. Furthermore, a 

processing unit must continuously receive raw materials, and it extracts final products 

without interruption in contrast to the batch process where this occurs only at the 

beginning and the end of the processing, respectively. 

In this chapter, the proposed framework is implemented for scheduling of 

continuous processes. Since continuous processes are different from batch processes, 

several constraints are slightly modified to handle such type of industry. The 

mathematical model is extended to handle several cases, including no intermediate 

storage policy, flexible or swing storage, storage bypass and planned maintenance. 

Multiple well-established examples are used to investigate the performance of the 

proposed model. 
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5.2 Research contribution 3 
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A Generic Approach for Scheduling of Semi-continuous and 

Continuous Processes  

Nikolaos Rakovitis, Wan Mohd Azril bin Wan Hasnuddin, Nan Zhang and Jie Li† 

Centre for Process Integration, School of Chemical Engineering and Analytical Science, 

The University of Manchester, Manchester, M13 9PL, United Kingdom 

 

Abstract 

In this work, we extend our proposed modelling approach for batch processes (Rakovitis 

et al., 2020) to develop a generic and efficient mathematical formulation for the 

scheduling of semi-continuous and continuous processes. In this approach, we 

conditionally sequence or synchronize related production and consumption tasks by using 

the concept of indirect and direct material transfer. The model also considers different 

intermediate storage policies, flexible intermediate storage and planned maintenance. We 

also extend the model to consider the case of not allowing storage bypass where we 

consider two different scenarios; in the first scenario, a storage tank can receive and 

deliver materials at the same time, while in the second scenario it cannot.  The results 

demonstrate that the proposed mathematical model requires a smaller number of event 

points than the model of Omar and Shaik (2019). Additionally, it requires significantly 

less computational time which can reach up to two magnitudes less computational time. 

 
† To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622 
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1 Introduction 

The increasing demand for specific products with the same specifications lead process 

industry to use semi-continuous or continuous processes. In those processes, one or more 

raw materials are processed uninterrupted within a period to produce large quantities of 

a specific product with the same quality. Oil refinery, chemical and steel industry are 

some examples of continuous process industry. Due to the highly competitive market, 

such process industries must reduce their operational costs and increase their profit. The 

more and more strict environmental regulations also lead facilities to examine different 

alternatives to eliminate their footprint by reducing their raw material and fuel 

consumption. Scheduling is one of the main managerial tools that can help industries to 

reduce their costs and fuel consumption. 

 Process industries developed and implemented several approaches to improve their 

scheduling decisions, including heuristic rules, spreadsheet-based methods and 

mathematical programming approach. Even though the first two approaches can generate 

schedules fast, the quality of the solution depends on the operator’s experience. 

Therefore, they are only capable of generating a feasible solution, which can be 

significantly far from optimum. On the other hand, mathematical modelling, especially 

mixed-integer linear programming (MILP), can generate optimal solutions for a given set 

of operations. As a result, several mathematical models have been developed for this 

scheduling problem using different time representations including discrete-time 

(Zhang et al. 2016) and continuous-time approaches, such as sequence-based 

(Kopanos et al. 2011), slot-based (Schiling and Pantelides 1996; Karimi and McDonald 

1997; Lee et al. 2001), global-event based (Mockus and Reklaitis 1999; Castro et al. 2004) 

and unit-specific event-based (Ierapetritou and Floudas 1998; Gianelos and Georgiadis 

2002; Shaik and Floudas 2007; Shaik et al. 2009; Tang et al. 2012; Li et al. 2012; Omar 

and Shaik 2018). Floudas and Lin (2004), and Harjunkoski et al. (2014) provide an 

excellent review of different timing approaches used in the process industry. 

 The capabilities of the unit-specific event-based time representations are well 

established in the literature (Li et al., 2010; Rakovitis et al., 2019; Rakovitis et al. 2020). 

However, some unit-specific event-based mathematical models for scheduling of 

continuous processes (Ierapetritou and Floudas, 1998; Shaik and Floudas, 2007) can 

generate schedules with real-time violations (Li et al., 2010).  These models can also fail 

to generate a feasible solution in some cases, even if there is one (Li et al. 2010). Shaik 

and Floudas (2007) developed a mathematical model using unit-specific event-based time 
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representation. In contrast to Ierapetritou and Floudas (1998) model, they considered 

different intermediate storage policies. However, they unconditionally sequenced and 

synchronized related production and consumption tasks, which leads to an increase in the 

number of event points required (Omar and Shaik 2018; Rakovitis et al. 2019).  Recently, 

Omar and Shaik (2018) developed a unit-specific event-based mathematical model for 

scheduling of continuous processes with simultaneously considering planned 

maintenance under unlimited intermediate storage (UIS) policy. They conditionally 

aligned related production and consumption tasks in different units only when a 

consumption task received materials from the related production task. Omar and Shaik 

(2019) extended the mathematical model of Omar and Shaik (2018) for different 

intermediate storage policies, such as finite intermediate storage (FIS) and no 

intermediate storage (NIS). They also conditionally aligned related production and 

consumption tasks only if the total amount to be stored exceeds the maximum storage 

capacity. Even though the model of Omar and Shaik (2019) handles the real-time 

violation issue of the previous model of Shaik and Floudas (2007), it leads to significantly 

large model sizes and hence it requires excessive computational time even for small 

examples. Although the proposed model requires a smaller number of event point than 

the model of Shaik and Floudas (2007) in problems with planned maintenance, they 

introduce a large number of binary variables which leads to large model-sizes. 

 In this work, we extend our proposed modelling framework (Rakovitis et al., 2020) 

to develop a generic and efficient mathematical formulation for the scheduling of semi-

continuous and continuous processes. In the formulation, non-recycling tasks are allowed 

to take place at the same event points. The concept of indirect and direct material transfer 

(Rakovitis et al., 2020) is employed to conditionally sequence or synchronize related 

production and consumption tasks in different units. We consider several storage policies, 

including unlimited, finite, and no intermediate storage policies. Some storage tanks are 

allowed to hold multiple materials during the scheduling horizon. Materials produced are 

allowed to directly enter the downstream consumption units, which is called storage 

bypass policy. The case of not allowing storage bypass is also considered, with two 

distinct scenarios; while in the first scenario a storage tank can receive and deliver 

materials at the same time, while in the second scenario it cannot. The model can also 

handle cases with planned maintenance. The capability of the proposed model is 

illustrated by solving several well-established examples in the literature (Shaik and 

Floudas 2007; Li et al. 2010; Omar and Shaik 2018; Omar and Shaik 2019). The 
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computational results demonstrate that the proposed model can generate the optimal 

solution for all examples using a smaller number of event points than the model of Omar 

and Shaik (2019). It is also more general and efficient than the model of Omar and Shaik 

(2019) since it can handle cases of flexible intermediate storage and it requires 

significantly less computational time which can reach in up to two orders of magnitude 

less computational time. 

2 Problem description 

Figure 1 illustrates a typical semi-continuous or continuous process facility. This facility 

contains 𝐽 (𝑗 = 1, 2, 3, … . , 𝐽) processing units which convert several feeds into multiple 

valuable products. Besides feeds and final products, the processing units also produce 

some intermediates. We use a set 𝑆 (𝑠 = 1, 2, 3, … , 𝑆) to denote all material states in the 

facility including feeds (denoted in set 𝐒𝑅), intermediates (included in set 𝐒𝐼𝑁), and 

products (included in set 𝐒𝑃). There are 𝐼 (𝑖 = 1, 2, 3, … , 𝐼) tasks in total, which contains 

processing tasks and storage tasks. We use 𝐈𝑝 to denote processing tasks and 𝐈𝑠𝑡 to denote 

storage tasks. Each processing unit 𝑗 can process 𝐈𝑗  tasks. A task consumes raw materials 

with different proportions to produce multiple states with different yields. A parameter 

𝜌𝑖,𝑠 is used to denote the proportion of state 𝑠 produced or consumed by a task i. While 

positive values of 𝜌𝑖,𝑠  denote production of state 𝑠 during the processing of task 𝑖, 

negative values of 𝜌𝑖,𝑠 indicate consumption of state 𝑠 by task 𝑖. A processing unit can 

process multiple tasks. When transforming a task to another in a processing unit 

consecutively, some changeover time is required. The changeover time can be either 

sequence-dependent or unit-dependent only. We use 𝜏𝑗 to denote unit-dependent 

changeover time and 𝜏𝑖,𝑖′,𝑗 to denote sequence-dependent changeover time. 

 After production, an intermediate state may be transferred directly to the 

downstream processing units, which is called storage bypass. It may be also transferred 

to storage. There are several storage policies, including unlimited intermediate storage 

(UIS), finite intermediate storage (FIS) and no intermediate storage (NIS) policies. Two 

types of storage tanks are often used in practice, which includes dedicate and flexible 

(swing) storage tanks. While the dedicate storage tank can only hold one dedicated 

intermediate state at any time, the flexible (or swing) storage tank can hold multiple 

intermediate states during the scheduling horizon. However, at most one intermediate 

state can be held in such a storage tank at a time. The products may be used to satisfy 
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orders. There are totally 𝑂 (𝑜 = 1, 2, 3, . . . , 𝑂) orders. We assume each order involves 

only one product as one order with multiple products can be divided into multiple orders 

without loss of generality. Each order has release time (𝑟𝑜) and due date (𝑑𝑜). The amount 

of an order is denoted as 𝑇𝑜. With these, the entire scheduling problem can be stated as 

follows, 

 Given: 

1) O orders, their products, release times and due dates; 

2) J units, suitable tasks, minimum and maximum capacities, processing rates and 

planned maintenance period; 

3) S states, the portion of states produced or consumed from a task; 

4) Storage policy and capacity for each state; 

5) Product prices; 

6) Scheduling horizon. 

Determine: 

1) Optimal production schedule involving task allocations, start and end timings, 

and sequences; 

2) Inventory profiles. 

Operating rules: 

1) At most one task can be processed in a processing unit at any time; 

2) At most one intermediate state can be stored in a flexible (swing) storage tank at 

a time 

Assumptions: 

1) All parameters are deterministic; 

2) Unlimited feed materials are available; 

3) Unlimited storage policy for all raw materials and products; 

4) Unlimited resources where required are available; 

 The objective is to maximize productivity or minimize total operating cost. 

3 Mathematical formulation 

We extend the proposed unit-specific event-based modelling approach (Rakovitis et al., 

2019; Rakovitis et al., 2020) for this scheduling problem of semi-continuous and 

continuous processes where timing variables are defined based on units (i.e., 𝑇𝑗,𝑛
s  and 𝑇𝑗,𝑛

f ) 

and a production task is sequenced and/or synchronised with its related consumption tasks 

if materials are transferred between these tasks. 
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3.1 Allocation constraints 

We define a binary variable 𝑤𝑖,𝑗,𝑛,𝑛′ to denote if a task 𝑖 is processed in a unit 𝑗 from event 

point 𝑛 to 𝑛′ as follows, 

 , , ,

1 if a task  is processed in a unit  from an event point  to 

0 otherwise
i j n n

i j n n
w 


= 


 

where 𝑛 ≤ 𝑛′ ≤ 𝑛 + ∆𝑛. The parameter ∆𝑛 is used to denote the maximum number of 

event points that a task is allowed to cross over.  

 Based on the operating policy, at most one task can be processed in a processing 

unit 𝑗 at a time. 

∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1 

 j  𝐉𝑝, n (1) 

3.2 Capacity constraints 

The amount of materials processed in a processing unit 𝑗 at an event point 𝑛 (denoted as 

𝑏𝑖,𝑗,𝑛) is limited by the minimum (𝑅𝑖𝑗
𝑚𝑖𝑛) and the maximum (𝑅𝑖𝑗

𝑚𝑎𝑥) processing rates 

multiplying processing duration (𝐿𝑖,𝑗,𝑛). 

𝑅𝑖,𝑗
min ⋅ 𝐿𝑖,𝑗,𝑛 ≤ 𝑏𝑖,𝑗,𝑛 ≤ 𝑅𝑖,𝑗

max ⋅ 𝐿𝑖,𝑗,𝑛 

 j  𝐉𝑝, i  𝐈𝑗 , n (2a, b) 

For processes with fixed processing rate (denoted as 𝑅𝑖,𝑗), the amount of materials 

produced is proportional to the task duration 

𝑏𝑖,𝑗,𝑛 = 𝑅𝑖,𝑗 ⋅ 𝐿𝑖,𝑗,𝑛 

 j  𝐉𝑝, i  𝐈𝑗 , n (3) 

 

3.3 Duration constraints 

The finish time of a processing unit 𝑗 at event point 𝑛 must be after its start time plus the 

task duration of task 𝑖 that the unit starts processing at event point 𝑛.  

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + ∑𝐿𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

 

 j  𝐉𝑝, n (4) 

If a task i is not processed in a unit 𝑗 during an event point 𝑛, then the task duration in the 

unit during this event point n should be equal to zero. 
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𝐿𝑖,𝑗,𝑛 ≤ 𝐻 ⋅ (∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

) 

 j  𝐉𝑝, i  𝐈𝑗 , n (5) 

3.4 Material balance constraints 

The amount of a state 𝑠 stored at event point 𝑛 (denoted as 𝑆𝑇𝑠𝑛) should be equal to the 

amount of the state stored at event point (𝑛 − 1), plus the amount of the state produced 

at event point 𝑛, minus the amount of the state consumed at event point 𝑛. At the first 

event point, the amount of a state 𝑠 stored should be equal to the initial amount of the 

state (𝑆𝑇0𝑠) plus the amount of the state produced, minus the amount of state 𝑠 consumed 

at event point 𝑛 = 1. 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝒋∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 

 s, n = 1 (6a) 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝒋∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 

  s, n > 1 (6b) 

where set 𝐈𝑠
𝐶  denotes tasks that consume state 𝑠, while 𝐈𝑠

𝑃 denotes tasks that produce state 

𝑠. 

3.5 Material transfer 

Material transfer in the semi-continuous or continuous process is simpler compared to 

that in the batch processes of Rakovitis et al. (2020). A production unit starts to transfer 

materials to storage or downstream processing units immediately when it starts producing 

the related production task. Materials are continuously transferred from the production 

unit until it finishes processing the related production task. We generally classify material 

transfer as indirect and direct material transfer. If materials are allowed to be transferred 

to downstream processing units directly, it is a direct material transfer, as illustrated in 

Figure 1 (denoted as MT1). If materials are transferred to storage tank first and then to 

downstream processing units, then it is an indirect material transfer (denoted as MT2 in 

figure 1). 
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Figure 1 Different scenarios of material transfer 

Indirect material transfer 

In the indirect material transfer, the storage capacity is large enough to hold all producing 

materials. As a result, materials produced can always transferred to storage first and then 

transferred to downstream processing units from storage. To model this indirect material 

transfer, we define an additional binary variable 𝑧𝐼𝑗,𝑗′,𝑛 as follows, 

 , ,

1 if material transfer happens between units  and  at event point 

0 otherwise
j j n

j j n
zI 


= 


   j  j, n 

 We also define a continuous variable 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛 to denote the amount of materials 

indirectly transferred from a production task i in unit j to a consumption task i in unit j 

at event point n. The total amount of materials through indirect transfer from a production 

task i should not exceed that produced from this task i. 

𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝒋′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

 

 s  𝐒𝐼𝑁, j  (𝐉𝑝 ∩ 𝐉𝑠), i  (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (7) 

 Similarly, the amount of materials through indirect transfer to a consumption task 

i at a time should not exceed the amount of materials consumed by this consumption task 

at event point n. 

−𝜌𝑖′ ,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  𝐒𝐼𝑁, j  (𝐉𝑝 ∩ 𝐉𝑠), i  (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (8) 

 The total amount of materials consumed at event point 𝑛 should not exceed the 

material stored at previous event point (𝑛 − 1) plus the amount of materials through 
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indirect transfer. 

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ 𝑆𝑇0𝑠 + 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

  s  𝐒𝐼𝑁, n = 1 (9a) 

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ 𝑆𝑇𝑠,𝑛−1 + 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

  s  𝐒𝐼𝑁, n > 1 (9b) 

 When there is no indirect material transfer between two processing units, the 

amount through this indirect material transfer should be zero.  

∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

≤ min { max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

(𝑅𝑖,𝑗
max ⋅ 𝐻), max

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

(𝑅𝑖′,𝑗′
max ⋅ 𝐻) , 𝑆𝑇𝑠

max} ⋅ 𝑧𝐼𝑗,𝑗′,𝑛 

 s  𝐒𝐼𝑁, j ≠ j, j  (𝐉𝑝 ∩ 𝐉𝑠), j  (𝐉𝑝 ∩ 𝐉𝑠), n (10) 

Direct material transfer 

For states with FIS policy, if there is no storage available, then these states cannot be 

transferred to a storage tank. Instead, they must be transferred directly from the 

production task i to a consumption task i. To model such direct material transfer, we 

introduce an additional binary variable 𝑧𝐷𝑗,𝑗′,𝑛 as follows, 

1 if there is a direct material transfer between units  and  at event point 

0 otherwise
jj n

j j n
zD 


= 


   j  j, n 

 Similar to indirect material transfer, we also define a continuous variable 

 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛 to denote the amount of materials directly transferred from a production task 

i in unit j to a consumption task i in unit j at event point n. The amount of materials 

directly transferred between processing a production task i in unit j and a consumption 

task iʹ in unit jʹ must not exceed the amount of state produced from production task i. 
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𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑝)

 

  s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (11) 

 The amount of materials through direct transfer to a consumption task i at a time 

should not exceed the amount of materials consumed by this consumption task at event 

point n. 

−𝜌𝑖,𝑠 ∙ 𝑏𝑖′,𝑗′,𝑛 ≥ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑝)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i  (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (12) 

 A direct material transfer between a production task i in unit j and a consumption 

task iʹ in unit jʹ takes place only if the amount of state 𝑠 produced at event point n, plus 

the amount of materials stored in storage tanks at event point (𝑛 − 1) exceeds the 

maximum storage capacity. In this case, there are no storage tanks to temporary store the 

materials produced. For the first event point, it should be examined whether the amount 

of state 𝑠 produced at the first event point, plus the initial amount of materials stored in 

storage tanks. 

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ 𝑆𝑇0𝑠 ≥ 𝑆𝑇𝑠
max + ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n = 1 (13a) 

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ 𝑆𝑇𝑠,𝑛−1 ≥ 𝑆𝑇𝑠
max + ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n > 1 (13b) 

 When there is no direct material transfer between two related processing units, the 

amount through this direct transfer should be zero, similar to the indirect material transfer. 

∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)

≤ min { max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)
(𝑅𝑖,𝑗

max ⋅ 𝐻), max
𝑖′∈(𝐈𝑗′∩𝐈𝑠

𝐶)
(𝑅𝑖′,𝑗′

max ⋅ 𝐻) , 𝑆𝑇𝑠
max} ⋅ 𝑧𝐷𝑗,𝑗′ ,𝑛 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j ≠ j, j(𝐉𝑝 ∩ 𝐉𝑠), j(𝐉𝑝 ∩ 𝐉𝑠), n (14) 

3.6 Sequencing constraints 

Different tasks in the same unit 

The start time of a unit j at event point (n + 1) must always be after its finish time at the 

previous event point n. 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f  

 j 𝐉𝑝, n < N (15) 
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If a task 𝑖 requires to span over multiple event points (i.e., from event point 𝑛′ to 𝑛′′), 

then the start time of a unit 𝑗 at event point (𝑛 + 1) must be equal to its end time at the 

previous event point 𝑛 if event point (𝑛 + 1) is between event points 𝑛′ and 𝑛′′. 

𝑇𝑗,𝑛+1
s ≤ 𝑇𝑗,𝑛

f + 𝐻 (1 − ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛′′

𝑛+1≤𝑛′′≤𝑛′+∆𝑛𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

) 

 j𝐉𝑝, n < N, n > 0 (16) 

Different task in different unit 

In order to make sure correct operational sequences between production and consumption 

tasks in different processing units, we define two continuous variables 𝑇𝑠,𝑗,𝑛
s  and 𝑇𝑠,𝑗,𝑛

f  to 

denote the start and finish time that a state 𝑠 produced by a unit 𝑗 is available to be 

transferred (i.e., consumed or stored) at event point 𝑛. The start time that a state 𝑠 

produced by a unit 𝑗 is available to be consumed at event point (𝑛 + 1) should always be 

after the finish time that state is available at the previous event point 𝑛. 

𝑇𝑠,𝑗,𝑛+1
s ≥ 𝑇𝑠,𝑗,𝑛

f  

 s  𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), n < N (17a) 

The finish time that a state 𝑠 produced by a unit 𝑗 is available to be consumed at event 

point 𝑛 should always be after the start time a state 𝑠 produced by a unit 𝑗 is available to 

be consumed at the same event point. 

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑠,𝑗,𝑛

s  

 s  𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), n < N (17b)  

When a state 𝑠 produced by a unit 𝑗 is available at event point 𝑛, the start and finish of 

production of this state in the same unit 𝑗 must be before the start and finish time that the 

state is available at this event point 𝑛 respectively. In other words,  

𝑇𝑠,𝑗,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃) )  

 s  𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (18a) 

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

) 

 s  𝐒𝐼𝑁, j(𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (18b) 

The start and finish time of a unit jʹ should be after the start and finish time of unit j at 
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event point n, if there is an indirect material transfer between units j and jʹ. 

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐼𝑗,𝑗′,𝑛) 

 s  𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (19) 

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐼𝑗,𝑗′,𝑛) 

 s  𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (20) 

If the materials produced in a processing unit at event point n is not transferred to a 

consumption task in a processing unit at the same event point n, then all materials should 

be stored in its dedicated storage tank, before another production task is processed in this 

unit. In this case, the start and finish time of this consumption task at an event point (𝑛 +

1) should always exceed the time that the state starts and finishes being available at event 

point n. 

𝑇𝑠,𝑗,𝑛
s ≤ 𝑇𝑗′,𝑛+1

s + 𝑀 (1 − ∑ ∑ 𝑤𝑖′,𝑗′,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

) 

 s  𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠),  j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n < N (21a) 

𝑇𝑠,𝑗,𝑛
f ≤ 𝑇𝑗′,𝑛+1

f + 𝑀 (1 − ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛+1

𝑛+1−∆𝑛≤𝑛′≤𝑛+1𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

) 

 s  𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠),  j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n < N (21b) 

If there is a direct material transfer at event point n from unit j to unit jʹ then the start and 

finish time of unit jʹ should be after the start and finish time of unit j at this event point 

similar to other scenario of indirect material transfer.  

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (22) 

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n  (23) 

Since materials are transferred from a production unit to a downstream processing unit in 
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direct material transfer, it should be ensured that both processes start and finish at the 

same time. 

𝑇𝑗′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (24) 

𝑇𝑗′,𝑛
f ≤ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n  (25) 

Finally, the following constraints are introduced to avoid real-time storage violations. In 

the first set of constraints, it is ensured that the start time of unit j processing a producing 

task i at event point (n + 1) must be after the time that state 𝑠 produced by this unit, 

𝑇𝑠,𝑗,𝑛
f ≤ 𝑇𝑗,𝑛+1

s + 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

) 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n < N (26a)  

Additionally, the finish time of unit 𝑗′ processing a consuming task i at event point n must 

be before the time that state 𝑠 produced by unit j finishes being available at event point n. 

𝑇𝑠,𝑗,𝑛
f ≥ 𝑇𝑗′,𝑛

f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)

) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠),  j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (26b) 

3.7 Demand constraints 

The quantity of the products produced within the scheduling horizon should fulfill the 

minimum and maximum market demands. Constraint (27) ensures that the total amount 

of product state 𝑠 produced, should be within the demands of this state. 

𝐷𝑠
min ≤ ∑∑ ∑ 𝜌𝑠,𝑖,𝑗 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗𝑛

≤ 𝐷𝑠
max 

 s ∈ 𝐒𝑃  (27) 

3.8 Tightening constraints 

For a given unit, the duration of all tasks processed in this unit cannot exceed the 

maximum available time. 
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∑∑𝐿𝑖,𝑗,𝑛

𝑛𝑖∈𝐈𝑗

≤ 𝐻 − 𝜏𝑗
min 

 j𝐉𝑝 (28) 

Where 

, ,
,

min

, , , ,
, ,

0                      0 min 0

                     0

min            min 0

j

j j

j i i j
i i

j j j

i i j i i j
i i i i

 

  

 




 
  

 =  =



= 




I

I I

  

3.9 Variable bounds 

All timing variables must not exceed the scheduling horizon. Furthermore, for states with 

limited storage capacity the stored amount must not exceed the maximum storage 

capacity.   

𝑇𝑗,𝑛
s ≤ 𝐻  j, n  (29) 

𝑇𝑗,𝑛
f ≤ 𝐻 j, n (30) 

𝑇𝑠,𝑗,𝑛
s ≤ 𝐻   j, n  (31) 

𝑇𝑠,𝑗,𝑛
f ≤ 𝐻 j, n (32) 

𝑆𝑇𝑠,𝑛 ≤ 𝑆𝑇𝑠
max   s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), n (33) 

3.10 Additional constraints 

Several additional constraints are introduced to improve the performance of the proposed 

model. Constraints (34)-(37) relate 𝑤𝑖,𝑗,𝑛,𝑛′with 𝑧𝐼𝑗,𝑗′,𝑛. More specifically, if a unit jʹ 

process a consumption task iʹ, and there is an indirect material transfer between units j 

and jʹ then unit j must process the related production task i according to (34). Similarly, 

if a unit j processes a production task i, and there is an indirect material transfer between 

units j and jʹ then unit jʹ must process the related consumption task iʹ according to (35).  

𝑤𝑖,𝑗,𝑛,𝑛 ≥ 𝑤𝑖′,𝑗′,𝑛,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛 − 1 

 s 𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i  (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i  (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (34) 

𝑤𝑖′,𝑗′,𝑛,𝑛 ≥ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝑧𝐼𝑗,𝑗′,𝑛 − 1 

 s 𝐒𝐼𝑁, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i  (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i  (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (35) 

Similarly, we relate 𝑤𝑖,𝑗,𝑛,𝑛′ with 𝑧𝐷𝑗,𝑗′,𝑛 for states with FIS policy. 

𝑤𝑖,𝑗,𝑛,𝑛 ≥ 𝑤𝑖′,𝑗′,𝑛,𝑛 + 𝑧𝐷𝑗,𝑗′,𝑛 − 1 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i  (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i  (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (36) 
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𝑤𝑖′,𝑗′,𝑛,𝑛 ≥ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝑧𝐷𝑗,𝑗′,𝑛 − 1 

 s (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, i  (𝐈𝑗 ∩ 𝐈𝑠
𝑃), i  (𝐈𝑗′ ∩ 𝐈𝑠

𝐶), n (37) 

3.11 Minimum run time and amount 

A task 𝑖 must be processed for some minimum duration (𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) in a unit 𝑗 and/or must 

process a minimum amount (𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛) once it takes place in some cases. To enforce such 

minimum run time and amount, we impose the following two constraints. 

∑ ∑ 𝐿𝑖,𝑗,𝑛″

𝑛≤𝑛″≤𝑛′𝑖∈𝐈𝑗

≥ ∑𝑅𝐿𝑖,𝑗
min ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

 

 j  𝐉𝑝, n ≤ n ≤ n+n, n > 0, max
𝑖∈𝐈𝑗

(𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) > 0 (38) 

∑ ∑ 𝑏𝑖,𝑗,𝑛″

𝑛≤𝑛″≤𝑛′𝑖∈𝐈𝑗

≥ ∑𝑅𝑏𝑖,𝑗
min ⋅ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

 

 j  𝐉𝑝, n ≤ n ≤ n+n, n > 0, max
𝑖∈𝐈𝑗

(𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛) > 0 (39) 

3.12 Changeover time 

The changeover time can either be sequence-independent or sequence-dependent. In the 

latter case, the changeover time depends on the sequence of tasks processed in a unit. We 

define a parameter 𝜏𝑖′,𝑖,𝑗 to denote the sequence-dependent changeover time. In cases of 

sequence-dependent changeover time, the start time of a unit j during event point n should 

be after its finish time at event point n (n< n) plus the sequence-dependent time from 

task i to task i, if it processes tasks i and i at event points n and n respectively. Note that 

if another task i is processed between tasks i and i (i.e. at event point n where n < n 

< n) then we should relax this constraint. 

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑖′,𝑖,𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) − 

−𝐻 (∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′<𝑛′′𝑖′′

) 

 j  𝐉𝑝, (i, i)  𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑛′ <  𝑛, 𝜏𝑖′,𝑖,𝑛 > 0 (40) 

In the case of sequence-independent changeover time, the sequence of the tasks processed 

in the unit does not affect the changeover time.  We define a parameter 𝜏𝑗 to denote the 

sequence-independent changeover time, which only depends on units. In such case, the 

start time of a unit j processing a task i during event point n should be after its finish time 

at event point n (n < n) plus its sequence-independent time. Note that the changeover 
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time should be enforced, only if a different task i is processed at event point n. Similar 

to sequence-dependent changeover time, if another task i is processed between tasks i 

and i then this constraint should be relaxed. 

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) − 

−𝐻 (∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′<𝑛′′𝑖′′

) 

 j  𝐉𝑝, (i, i)  𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑛′ <  𝑛, 𝜏𝑗 > 0 (41) 

3.13 Objective function 

In this problem, we consider the maximization of profit as objective. 

𝑧 = ∑(𝑝𝑠 ∙ 𝑆𝑇0𝑠)

𝑠∈𝐒𝑃

+ ∑ 𝑝𝑠 ∙ ( ∑ ∑ ∑𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛

𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑝∩𝐉𝑠)

)

𝑠∈𝐒𝑃

 

  (42) 

If minimization of makespan is used as objective, then (43) is introduced. 

𝑀𝑆 ≥ 𝑇𝑗,𝑛
f  j, n = N (43) 

Additionally, the time that state 𝑠 produced by unit j is processed at event point n should 

not exceed makespan. 

𝑇𝑠,𝑗,𝑛
f ≤ 𝑀𝑆 s ∊ 𝐒𝐼𝑁, j  (𝐉𝑝 ∩ 𝐉𝑠), n = N (44) 

The length of a task i processed in a unit j at event point n must not exceed the maximum 

available time. 

∑∑𝐿𝑖,𝑗,𝑛

𝑛𝑖∈𝐈𝑗

≤ 𝑀𝑆 − 𝜏𝑗
min 

 j  𝐉𝑝 (45) 

Finally, (46) and (47) denote all the continuous and binary variables of the model 

respectively 

𝑏𝑖,𝑗,𝑛, 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛, 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛, MS, 𝑆𝑇𝑠,𝑛, 𝑇𝑠,𝑗𝑛
s , 𝑇𝑠,𝑗,𝑛

f , 𝑇𝑗𝑛
s , 𝑇𝑗𝑛

f ≥ 0 (46) 

𝑤𝑖,𝑗,𝑛,𝑛′, 𝑧𝐷𝑗,𝑗′,𝑛, 𝑧𝐼𝑗,𝑗′,𝑛 {0, 1}  (47) 

 We complete the mathematical model M, which consists of constraints (1)-(42) and 

(46)-(47) for maximization of productivity, and (1)-(41) and (43)-(47) for minimization 

of makespan.  
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3.14 Extensions 

3.14.1 Flexible or swing storage 

All the above constraints of model M consider dedicated storage. In other words, the 

storage can hold only one state at any time and during the entire scheduling horizon. In 

practice, a storage unit may be used to store multiple materials in the scheduling horizon 

but can hold at most one material at any time, which is called a flexible or swing storage 

tank. We define two sets 𝐈𝑠𝑡 and 𝐉𝑠𝑡 to model flexible or swing storage tasks and tanks, 

which are also included into I and J respectively. A binary variable 𝑢𝑖,𝑗,𝑛 is introduced to 

denote if a storage task i (𝑖 ∈ 𝐈𝑠𝑡)is active in a storage tank 𝑗 (𝑗 ∈ 𝐉𝑠𝑡) at the end of an 

event point n. At a time, only one storage task can be active in a flexible or swing storage 

unit. 

∑ 𝑢𝑖,𝑗,𝑛

𝑖∈(𝐈𝑠𝑡∩𝐈𝑗)

= 1 

 𝑗𝐉𝒔𝒕, n (48) 

To monitor the transition from one state 𝑠 to another state 𝑠′ in a flexible storage unit 𝑗 

(𝑗𝐉𝒔𝒕), we define a 0-1 continuous variable 𝑢𝑒𝑗,𝑛 to denote such transition at the end of 

event point 𝑛.  

𝑢𝑒𝑗,𝑛 ≥ 𝑢𝑖,𝑗,𝑛 − 𝑢𝑖,𝑗,𝑛+1 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 < N (49) 

𝑢𝑒𝑗,𝑛 ≥ 𝑢𝑖,𝑗,𝑛+1 − 𝑢𝑖,𝑗,𝑛 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 < N (50) 

We also define a continuous variable 𝑏𝑠𝑖,𝑗,𝑛 to denote the amount of materials stored in 

storage unit j (𝑗𝐉𝒔𝒕) by a task 𝑖 at an event point n. The total amount of materials stored 

should not exceed the maximum capacity of the storage unit. 

𝑏𝑠𝑖,𝑗,𝑛 ≤ 𝑉𝑗
max ⋅ 𝑢𝑖,𝑗,𝑛 𝑗𝐉𝒔𝒕, 𝑖 ∈ (𝐈𝒔𝒕 ∩ 𝐈𝑗), 𝑛 (51) 

If there is a state transition in a storage tank at event point n, then the amount of materials 

stored at this event point should be zero. 

∑ 𝑏𝑠𝑖,𝑗,𝑛

𝑖∈(𝐈𝑠𝑡∩𝐈𝑗)

≤ 𝑉𝑗
max ⋅ (1 − 𝑢𝑒𝑖,𝑗,𝑛) 

 𝑗𝐉𝒔𝒕, 𝑛 < N (52) 

Material balance in a storage unit can be ensured by modifying material balance 

constraints (6a) and (6b),  

0 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑝 + ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠

𝐶)𝑗∈𝐉𝑝 −

∑ ∑ 𝑏𝑠𝑗,𝑛𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡   



 166 

 s 𝐒𝐹𝐹𝐼𝑆, n = 1 (6a-FFIS) 

0 = ∑ ∑ 𝑏𝑠𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑝

+ ∑ ∑ 𝜌𝑖,𝑠 ∙ 𝑏𝑖𝑝,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑝

− 

− ∑ ∑ 𝑏𝑠𝑗,𝑛
𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

 

  s 𝐒𝐹𝐹𝐼𝑆, n > 1 (6b-FFIS) 

where 𝐒𝐹𝐹𝐼𝑆 denotes state with flexible finite intermediate storage policy. Additionally, 

constraints (9) and (13) are slightly modified to consider flexible storage instead of 

dedicated storage. 

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ ∑ ∑ 𝑏𝑠0𝑖,𝑗

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ 

+∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)   

 s  𝐒𝐹𝐹𝐼𝑆, n = 1 (9a-FFIS) 

∑ ∑ (−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛)

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑗′∈(𝐉𝑠∩𝐉𝑃)

≤ ∑ ∑ 𝑏𝑠𝑖,𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

+ 

+∑ ∑ ∑ ∑ 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)   

 s  𝐒𝐹𝐹𝐼𝑆, n > 1 (9b-FFIS) 

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖 ∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ ∑ ∑ 𝑏𝑠0𝑖,𝑗

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

≤ ∑ ∑ (𝑉𝑗
𝑚𝑎𝑥 ∙ 𝑢𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), n = 1 (13a-FFIS) 

∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖 ∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

+ ∑ ∑ 𝑏𝑠𝑖,𝑗,𝑛−1

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

≤ ∑ ∑ (𝑉𝑗
𝑚𝑎𝑥 ∙ 𝑢𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠)𝑗∈𝐉𝑠𝑡

 

+ ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′ ∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), n > 1 (13b-FFIS) 

Finally, (53) and (54) denote the continuous and binary variables that additionally 

defined. 

𝑏𝑠𝑖,𝑗,𝑛, 𝑢𝑒𝑗,𝑛 ≥ 0  (53) 

𝑢𝑖,𝑗,𝑛 {0, 1}  (54) 
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 We complete the mathematical model M with flexible intermediate storage, which 

consists of constraints (1-5), (6a-FFIS), (6b-FFIS), (7-8), (9-FFIS), (10-12), (13-FFIS), 

(14)-(42), (46-47), (48-52) and (53)-(54) for maximization of productivity, and (1-5), (6a-

FFIS), (6b-FFIS), (7-8), (9-FFIS), (10-12), (13-FFIS), (14-41), (43-47), (48-52) and (53)-

(54) for minimization of makespan.  

3.14.2 Without storage bypassing 

Model M considers storage bypassing. However, it can be also extended to address the 

case where storage bypassing is not allowed. In this case, the material produced should 

first enter a storage tank and then consumed by downstream processing units. There are 

two scenarios when storage bypass is not allowed. In the first scenario, a storage tank can 

receive and deliver materials simultaneously. In other words, the producing amount of 

state 𝑠 is transferred to the storage tank first and then immediately consumed by the 

downstream units. This scenario is similar to the case where the storage bypass is allowed. 

In the second scenario, a storage tank cannot receive and deliver materials at the same 

time. In other words, storage tasks should store materials after production. Then, it can 

be consumed by the downstream processing units. In this scenario, there is no indirect 

and direct material transfer between units. As a result, the variables 𝑧𝐼𝑗,𝑗′,𝑛 , 𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛, 

𝑧𝐷𝑗,𝑗′,𝑛 and 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛 and their related constraints (7-14) are omitted from the model. 

 To sequence related production and consumption tasks in different processing units, 

we define a binary variable 𝑧𝑧𝑗,𝑗′,𝑛 to denote if there is a material transfer from unit 𝑗 to 

unit 𝑗′ during event point 𝑛. Since a storage is not allowed to receive and deliver materials 

at the same time, a storage tank should transfer materials either from a production unit or 

to a consumption unit during event point n. 

𝑧𝑧𝑗,𝑗″,𝑛 + 𝑧𝑧𝑗″,𝑗′,𝑛 ≤ 1  

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), (𝑗, 𝑗′) ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, 

,

( )

0
C

j s

i s

i






 


I I

, n  (55) 

A material transfer between a production unit j and a storage tank j at event point n, can 

take place if the production unit finishes processing task i at event point n. 
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∑ 𝑧𝑧𝑗,𝑗″,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

≥ ∑ (∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′𝑛′<𝑛

)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

 

  s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (56a) 

Similarly, a material transfer between a storage tank j and a production unit j at event 

point n, can take place if the consumption unit finishes processing task i at event point n. 

∑ 𝑧𝑧𝑗′′,𝑗′,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

≥ ∑ ( ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′𝑛′<𝑛

)

𝑖′∈(𝐈𝑗∩𝐈𝑠
𝐶)

 

  s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
C

j s

i s

i






 


I I

, n (56b) 

We also define 𝑏𝑧𝑗,𝑗′,𝑛 to denote the amount of material transferred from unit 𝑗 to unit 𝑗′ 

during event point 𝑛. In this case, the total amount of materials produced (or consumed) 

should be transferred to (from) a storage tank. 

∑ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

= ∑ 𝑏𝑧𝑗,𝑗″,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (57a) 

∑ 𝑏𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗∩𝐈𝑠
𝐶)

= ∑ 𝑏𝑧𝑗″,𝑗′,𝑛

𝑗″∈(𝐉𝑠𝑡∩𝐉𝑠)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
C

j s

i s

i






 


I I

, n (57b) 

The amount of material transferred between two units at event point 𝑛 must be zero if 

there is not a material transfer between those units at this event point. 

𝑏𝑧𝑗,𝑗″,𝑛 ≤ 𝑀 ⋅ 𝑧𝑧𝑗,𝑗″,𝑛  

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (58a) 

𝑏𝑧𝑗″,𝑗′,𝑛 ≤ 𝑀 ⋅ 𝑧𝑧𝑗″,𝑗′,𝑛 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), ,

( )

0
C

j s

i s

i






 


I I

, n (58b) 

We also introduce a number of additional constraints to improve the performance of the 

model, similar to the constraints included for indirect and direct material transfer. 
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∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

≥ 𝑢𝑖″,𝑗″,𝑛 + 𝑧𝑧𝑗,𝑗″,𝑛 − 1 

s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖 ∈ (𝐈𝑗 ∩ 𝐈𝑠
𝑃) , 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠 ), n (59a) 

𝑢𝑖″,𝑗″,𝑛 ≥ ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑗,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

+ 𝑧𝑧𝑗,𝑗″,𝑛 − 1 

s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝑗 ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖 ∈ (𝐈𝑗 ∩ 𝐈𝑠
𝑃) , 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠 ), n (59b) 

∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

≥ 𝑢𝑖″,𝑗″,𝑛 + 𝑧𝑧𝑗,𝑗″,𝑛 − 1 

s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠 ), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖′ ∈ (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (60a) 

𝑢𝑖″,𝑗″,𝑛 ≥ ∑ ∑ 𝑤𝑖′,𝑗′,𝑛′,𝑛″

𝑛′≤𝑛″≤𝑛′+Δ𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖′,𝑗′,𝑛″,𝑛′

𝑛′−Δ𝑛≤𝑛″≤𝑛′𝑛′<𝑛

+ 𝑧𝑧𝑗,𝑗″,𝑛 − 1 

s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), 𝒋′′(𝐉𝑠𝑡 ∩ 𝐉𝑠), 𝑖′′ ∈ (𝐈𝑗′′ ∩ 𝐈𝑠 ), 𝑗′ ∈ (𝐉𝑝 ∩ 𝐉𝑠), 𝑖′ ∈ (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (60b) 

To sequence related production and consumption tasks in different processing units, we 

also need to define 𝑇𝑗,𝑛
s  and 𝑇𝑗,𝑛

f  to denote the start and end times of a storage tank 𝑗 at 

event point n. In this case the finish time of a storage tank j should always be after the 

start time of the unit at the same event point.  

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s   j(𝐉𝑠𝑡 ∩ 𝐉𝑠), n (61) 

Similarly, the start time of a storage tank j at event point (n + 1) should be after the start 

time of the unit at the previous event point n.  

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f   j(𝐉𝑠𝑡 ∩ 𝐉𝑠), n (62) 

Constraints (63)-(66) are introduced to ensure that the start and finish time of storage 

tanks are before and after unit j processing a producing task i if there is material transfer 

between those units. 

𝑇𝑗′′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝑧𝑗,𝑗′′,𝑛) 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠) , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (63) 

𝑇𝑗′′,𝑛
f ≥ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝑧𝑗,𝑗′′,𝑛) 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆),  j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (64) 

𝑇𝑗′′,𝑛
s ≤ 𝑇𝑗′,𝑛

s + 𝑀(1 − 𝑧𝑧𝑗′′,𝑗′,𝑛) 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (65) 
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𝑇𝑗′′,𝑛
f ≥ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝑧𝑗′′,𝑗′,𝑛)  

 s  (𝐒𝐼𝑁 ∩ 𝐒𝐹𝐹𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), , j(𝐉𝑠𝑡 ∩ 𝐉𝑠), ,

( )

0
P

j s

i s

i


 


I I

, n (66) 

Finally, (67) and (68) denote the continuous and binary variables that additionally 

defined. 

𝑏𝑧𝑖,𝑗,𝑛 ≥ 0  (67) 

𝑧𝑧𝑗,𝑗′,𝑛 {0, 1}  (68) 

The mathematical model M with storage bypass transfer not allowed and with the case 

that a storage is not allowed to receive and deliver materials at the same time, which 

consists of constraints (1-6), (15)-(42), (46)-(47) and (55)-(68) for maximization of 

productivity, and (1)-(6), (15)-(41),(43)-(47) and (55)-(68)  for minimization of 

makespan. 

3.14.3 No intermediate storage 

If there is a state 𝑠 with no intermediate storage policy, then the model M can be slightly 

modified to extend for this case. As 𝑆𝑇𝑠,𝑛 = 0 in NIS policy, the mass balance constraints 

(6a-b) can be simplified through removal of 𝑆𝑇𝑠,𝑛 as follows, 

0 = ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈𝐉𝑃

+ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)𝑗∈𝐉𝑃

 

 s  𝐒𝑁𝐼𝑆, n (6-NIS) 

Since there is no available storage for state 𝑠, then the total amount of materials produced 

must be directly transferred to downstream processing units. Therefore, there is no 

indirect material transfer for states with NIS policy. In this case, constraints (7-10) can be 

removed, while constraints (11-12) can be reformulated. More specifically, the amount 

of materials produced (consumed) from a task i must be equal to the total amount of 

materials directly transferred to (from) tasks consuming (producing) the same state. 

𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛 = ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛
𝑖′∈(𝐈𝑗′∩𝐈𝑠

𝐶)
𝑗′∈(𝐉𝑠∩𝐉𝑃)   

 s  (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i (𝐈𝑗 ∩ 𝐈𝑠
𝑃), n (11-NIS) 

−𝜌𝑖′,𝑠 ⋅ 𝑏𝑖′,𝑗′,𝑛 = ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j(𝐉𝑝 ∩ 𝐉𝑠), i  (𝐈𝑗′ ∩ 𝐈𝑠
𝐶), n (12-NIS) 

As 𝑆𝑇𝑠
𝑚𝑎𝑥 = 0, constraint (13a-13b) can be simplified as follows, 
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∑ ∑ (𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛)

𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

= ∑ ∑ ∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛

𝑖′∈(𝐈𝑗′∩𝐈𝑠
𝐶)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃)𝑗′∈(𝐉𝑠∩𝐉𝑃)𝑗∈(𝐉𝑠∩𝐉𝑃)

 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), n (13-NIS) 

Constraint (13-NIS) is redundant as it is ensured by constraints (11-NIS). In addition to 

the previous modifications, constraint (14) is changed to the following. 

∑ ∑ 𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′ ,𝑛

𝑖′∈(𝐈
𝑗′
∩𝐈𝑠

𝐶
)𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

≤ min{ max
𝑖∈(𝐈𝑗∩𝐈𝑠

𝑃
)

(𝑅𝑖,𝑗
max ⋅ 𝐻), max

𝑖′∈(𝐈
𝑗′
∩𝐈𝑠

𝐶
)

(𝑅𝑖′,𝑗′
max ⋅ 𝐻) , 𝑆𝑇𝑠

max} ⋅ 𝑧𝐷𝑗,𝑗′,𝑛 

 s  (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), j ≠ j, (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), n (14-NIS) 

 As there is no intermediate storage, variables 𝑇𝑠,𝑗,𝑛
s  and 𝑇𝑠,𝑗,𝑛

f  with related constraints 

are no longer used. As a result, constraints (17-21) and (26) are removed. Constraints (22-

25) are modified to the following constraints for the case of NIS. 

𝑇𝑗′,𝑛
s ≥ 𝑇𝑗,𝑛

s − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (22-NIS) 

𝑇𝑗′,𝑛
f ≥ 𝑇𝑗,𝑛

f − 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛) 

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n  (23-NIS) 

𝑇𝑗′,𝑛
s ≤ 𝑇𝑗,𝑛

s + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)  

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n (24-NIS) 

𝑇𝑗′,𝑛
f ≤ 𝑇𝑗,𝑛

f + 𝑀(1 − 𝑧𝐷𝑗,𝑗′,𝑛)  

 s (𝐒𝐼𝑁 ∩ 𝐒𝑁𝐼𝑆), (j, j)  (𝐉𝑝 ∩ 𝐉𝑠), j ≠ j, ,

( )

0
P

j s

i s

i


 


I I

, ,

( )

0
C

j s

i s

i






 


I I

, n  (25-NIS) 

 The mathematical model M with NIS, which consists of constraints (1-5), (6-

NIS), (11-NIS)-(14-NIS), (15-16), (22-NIS)-(25-NIS), (27-30), (36-42) and (46-47) for 

maximization of productivity, and (1-5), (6-NIS), (11-NIS)-(14-NIS), (15-16), (22-NIS)-

(25-NIS), (27-30), (36-41), (43) and (45-47) for minimization of makespan. 

3.14.4 Planned maintenance 

Two parameters 𝑇𝑗
ms and 𝑇𝑗

mf, which denote the start and the finish time of maintenance 

for processing unit j are introduced. If a processing unit is under maintenance, then no 

task can start or end during this period. Maintenance can take place in three different 
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periods; at the beginning of the scheduling horizon, at the end of the scheduling horizon 

and in the middle the scheduling horizon. In the first case, the start and finish times of all 

tasks processed in the unit with planned maintenance should start after the finish time of 

the maintenance. 

𝑇𝑗,𝑛
s ≥ 𝑇𝑗

mf  𝑗 ∈ 𝐉1
𝐦, 𝑛  (69) 

𝑇𝑗,𝑛
f ≥ 𝑇𝑗

mf  𝑗 ∈ 𝐉1
𝐦, 𝑛  (70) 

where 𝐉1
𝐦 denotes the units with planned maintenance at the beginning of the scheduling 

horizon. 

In the second case, the start and the end time of all tasks processed in the unit must be 

before the start time of planned maintenance. 

𝑇𝑗,𝑛
s ≤ 𝑇𝑗

ms  𝑗 ∈ 𝐉2
𝐦, 𝑛  (71) 

𝑇𝑗,𝑛
f ≤ 𝑇𝑗

ms  𝑗 ∈ 𝐉2
𝐦, 𝑛  (72) 

where 𝐉2
𝐦 denotes the units with planned maintenance at the end of the scheduling 

horizon. 

Finally, if maintenance takes place in the middle of the scheduling horizon, then the 

problem is divided into two parts; in the part where the tasks are processed before planned 

maintenance and in the part where the tasks are processed after planned maintenance. In 

this case, it is necessary to define two different sets of event points one for the first part 

(i.e. N1) and one at the second part (i.e N2). In both cases the start and the finish time of 

all tasks processed in the unit under maintenance should not be within the maintenance 

period. 

𝑇𝑗,𝑛
s ≤ 𝑇𝑗

ms  𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍1  (73) 

𝑇𝑗,𝑛
f ≤ 𝑇𝑗

ms  𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍1  (74) 

𝑇𝑗,𝑛
s ≥ 𝑇𝑗

mf  𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍2  (75) 

𝑇𝑗,𝑛
f ≥ 𝑇𝑗

mf  𝑗 ∈ 𝐉3
𝐦, 𝑛 ∈ 𝐍2  (76) 

where 𝐉3
𝐦 denotes the units with planned maintenance at the middle of the scheduling 

horizon. 

4. Computational studies 

We solve three well-established examples from the literature (Shaik and Floudas 2007; 

Li et al. 2010; Omar and Shaik 2019) to illustrate the capabilities of the proposed model. 

Figures 2-4 depict the STN representations. Tables 1-11 contain the data for all Examples. 
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In Examples 1a, 2a, and 3a-3d, all units can process tasks without any planning 

maintenance during the whole scheduling horizon, whilst planning maintenance takes 

place in Examples 1b-1d, 2b-2d and 3e-3g during the scheduling horizon. The 

maintenance periods for all units are given in Table 12. To avoid generating solutions 

where a task i is processed in a unit j from event point n to n (𝑤𝑖,𝑗,𝑛,𝑛′ = 1) but the 

duration of the process is zero, we impose a minimum duration (𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛) of 0.1 h for all 

tasks. We also use the model of Omar and Shaik (2019) (denoted as OS) to solve all these 

problems for comparison. All examples are solved to zero optimality gap using CPLEX 

12/GAMS 24.8.5. on a desktop computer with Intel® Core™ i7-4702HQ 2.2 GHz and 8 

GB RAM running Windows 10. The maximum computational time is 1 hour. 

 

Table 1 Data of processing tasks for Examples 1a-1d 

Task Unit 𝑅𝑖
𝑚𝑎𝑥 (ton/h)  Task Unit 𝑅𝑖

𝑚𝑎𝑥 (ton/h) 

I1 J1 20  I8 J7 10 

I2 J1 20  I9 J5 10 

I3 J2 20  I10 J7 4 

I4 J3 20  I11 J5 6 

I5 J4 20  I12 J6 6 

I6 J5 6  I13 J7 5 

I7 J6 5.5  - - - 

 

Table 2 Data of states for Examples 1a-1d 

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps  State ST0s 𝑆𝑇𝑠

𝑚𝑎𝑥 𝐷𝑖
𝑚𝑖𝑛 𝐷𝑖

𝑚𝑎𝑥 ps 

Example 1a, c            

S1 ∞ ∞ - - 1  S8 0 200 - - 1 

S2 ∞ ∞ - - 1  S9 0 200 - - 1 

S3 ∞ ∞ - - 1  S10 0 ∞ - - 1 

S4 ∞ ∞ - - 1  S11 0 ∞ - - 1 

S5 0 60 - - 1  S12 0 ∞ - - 1 

S6 0 200 - - 1  S13 0 ∞ - - 1 

S7 0 200 - - 1  S14 0 ∞ - - 1 

Example 1b             

S1 ∞ ∞ - - 1  S8 0 200 - - 1 

S2 ∞ ∞ - - 1  S9 0 200 - - 1 

S3 ∞ ∞ - - 1  S10 0 ∞ - - 1 

S4 ∞ ∞ - - 1  S11 0 ∞ 220 270 1 

S5 0 60 - - 1  S12 0 ∞ 251 300 1 

S6 0 200 - - 1  S13 0 ∞ 116 140 1 

S7 0 200 - - 1  S14 0 ∞ 15 25 1 
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Table 3 Changeover times for Examples 1a-1d 

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙  (h) 𝜏𝑗

𝑚𝑖𝑛 (h) 

I2 → I1 J1 4 0 

I6 → I9 J5 3 0 

I9 → I6 J5 6 0 

I9 → I11 J5 6 0 

I6 → I11 J5 6 0 

I11 → I9 J5 3 0 

I7 → I12 J6 6 0 

I8 → I10 J7 6 0 

I8 → I13 J7 6 0 

I10 → I13  J7 6 0 

I13 → I8 J7 2 0 

I13 → I10 J7 2 0 

 

Table 4 Data of processing tasks for Examples 2a-2d 

Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥 (ton/h) 

I1 J1 10 

I2 J1 10 

I3 J2 4 

I4 J3 4 

I5 J2 4 

I6 J3 4 

I7 J4 1 

 

 

Figure 2 STN representation of Examples 1a-1d 
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Table 5 Data for storage tanks for Examples 2a-2d 

Tank Maximum storage 𝐒𝑢 

U1 40 S2, S3 

U2 40 S2 

 

Table 6 Changeover times for Examples 2a-2d 

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙  (h) 𝜏𝑗

𝑚𝑖𝑛 (h) 

I2 → I1 J5 5 0 

I5 → I3 J6 5 0 

I6 → I4 J4 5 0 

 

 

Figure 3 STN representation of Examples 2a-2d 

Table 7 Data for states for examples 2a-2d 

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps 

Example 2a, c     

S1 ∞ ∞ - - 1 

S2 ∞ 40 - - 1 

S3 ∞ 80 - - 1 

S4 ∞ ∞ - ∞ 1 

S5 0 ∞ - ∞ 1 

S6 0 ∞ - ∞ 1 

S7 0 ∞ - ∞ 1 

S8 0 ∞ - ∞ 1 

Example 2b      

S1 ∞ ∞ - - 1 

S2 ∞ 40 - - 1 

S3 ∞ 80 - - 1 

S4 ∞ ∞ 100 ∞ 1 

S5 0 ∞ 100 ∞ 1 

S6 0 ∞ 20 ∞ 1 

S7 0 ∞ 20 ∞ 1 

S8 0 ∞ 10 ∞ 1 
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Table 8 Data of processing tasks for Example 3 

Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥 (ton/h)  Task Unit 𝑅𝑖,𝑗

𝑚𝑎𝑥 (ton/h)  Task Unit 𝑅𝑖,𝑗
𝑚𝑎𝑥(ton/h) 

I1 J1 17.00  I10 J3 12.24  I19 J7 2.2410 

I2 J1 17.00  I11 J2 12.24  I20 J5 5.8333 

I3 J2 17.00  I12 J3 12.24  I21 J6 2.7083 

I4 J3 17.00  I13 J4 5.5714  I22 J8 5.3571 

I5 J2 17.00  I14 J5 5.5333  I23 J8 5.3571 

I6 J3 17.00  I15 J6 2.7083  I24 J7 3.3333 

I7 J2 12.24  I16 J5 5.8333  I25 J7 2.2410 

I8 J3 12.24  I17 J6 2.7083  I26 J6 2.7083 

I9 J2 12.24  I18 J4 5.5714  I27 J7 3.3333 

 

Figure 4 STN representation of Example 3 
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Table 9 Data of states for Example 3 

State ST0s 𝑆𝑇𝑠
𝑚𝑎𝑥 𝐷𝑖

𝑚𝑖𝑛 𝐷𝑖
𝑚𝑎𝑥 ps  State ST0s 𝑆𝑇𝑠

𝑚𝑎𝑥 𝐷𝑖
𝑚𝑖𝑛 𝐷𝑖

𝑚𝑎𝑥 ps 

Example 3a             

S1 ∞ ∞ - - 1  S14 0 ∞ 15 25 1 

S2 ∞ ∞ - - 1  S15 0 ∞ 7 20 1 

S3 ∞ ∞ - - 1  S16 0 ∞ 47 60 1 

S4 0 180 - - 1  S17 0 ∞ 8.5 10 1 

S5 0 180 - - 1  S18 0 ∞ 144 200 1 

S6 0 180 - - 1  S19 0 ∞ 42.5 60 1 

S7 0 180 - - 1  S20 0 ∞ 114.5 150 1 

S8 0 180 - - 1  S21 0 ∞ 53 80 1 

S9 0 180 - - 1  S22 0 ∞ 2.5 5 1 

S10 0 180 - - 1  S23 0 ∞ 16.5 25 1 

S11 0 ∞ 220 270 1  S24 0 ∞ 13.5 18 1 

S12 0 ∞ 251 300 1  S25 0 ∞ 17.5 25 1 

S13 0 ∞ 116 140 1        

Example 3b             

S1 ∞ ∞ - - 1  S14 0 ∞ 15 ∞ 1 

S2 ∞ ∞ - - 1  S15 0 ∞ 7 ∞ 1 

S3 ∞ ∞ - - 1  S16 0 ∞ 47 ∞ 1 

S4 0 180 - - 1  S17 0 ∞ 8.5 ∞ 1 

S5 0 180 - - 1  S18 0 ∞ 144 ∞ 1 

S6 0 180 - - 1  S19 0 ∞ 42.5 ∞ 1 

S7 0 180 - - 1  S20 0 ∞ 114.5 ∞ 1 

S8 0 180 - - 1  S21 0 ∞ 53 ∞ 1 

S9 0 180 - - 1  S22 0 ∞ 2.5 ∞ 1 

S10 0 180 - - 1  S23 0 ∞ 16.5 ∞ 1 

S11 0 ∞ 220 ∞ 1  S24 0 ∞ 13.5 ∞ 1 

S12 0 ∞ 251 ∞ 1  S25 0 ∞ 17.5 ∞ 1 

S13 0 ∞ 116 ∞ 1        

Example 3c             

S1 ∞ ∞ - - 1  S14 0 ∞ 15 25 1 

S2 ∞ ∞ - - 1  S15 0 ∞ 7 20 1 

S3 ∞ ∞ - - 1  S16 0 ∞ 47 60 1 

S4 0 60 - - 1  S17 0 ∞ 8.5 10 1 

S5 0 60 - - 1  S18 0 ∞ 144 200 1 

S6 0 60 - - 1  S19 0 ∞ 42.5 60 1 

S7 0 60 - - 1  S20 0 ∞ 114.5 150 1 

S8 0 60 - - 1  S21 0 ∞ 53 80 1 

S9 0 60 - - 1  S22 0 ∞ 2.5 5 1 

S10 0 60 - - 1  S23 0 ∞ 16.5 25 1 

S11 0 ∞ 220 270 1  S24 0 ∞ 13.5 18 1 

S12 0 ∞ 251 300 1  S25 0 ∞ 17.5 25 1 

S13 0 ∞ 116 140 1        
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Example 3d             

S1 ∞ ∞ - - 1  S14 0 ∞ 15 ∞ 1 

S2 ∞ ∞ - - 1  S15 0 ∞ 7 ∞ 1 

S3 ∞ ∞ - - 1  S16 0 ∞ 47 ∞ 1 

S4 0 60 - - 1  S17 0 ∞ 8.5 ∞ 1 

S5 0 60 - - 1  S18 0 ∞ 144 ∞ 1 

S6 0 60 - - 1  S19 0 ∞ 42.5 ∞ 1 

S7 0 60 - - 1  S20 0 ∞ 114.5 ∞ 1 

S8 0 60 - - 1  S21 0 ∞ 53 ∞ 1 

S9 0 60 - - 1  S22 0 ∞ 2.5 ∞ 1 

S10 0 60 - - 1  S23 0 ∞ 16.5 ∞ 1 

S11 0 ∞ 220 ∞ 1  S24 0 ∞ 13.5 ∞ 1 

S12 0 ∞ 251 ∞ 1  S25 0 ∞ 17.5 ∞ 1 

S13 0 ∞ 116 ∞ 1        

 

Table 10 Data for storage tanks for Example 3 

Tank Maximum storage 𝐒𝑢 

U1 60 Example 3a, 3c S4-S10 

  Example 3b, 3d S4, S7, S9 

U2 60 Example 3a, 3c S4-S10 

  Example 3b, 3d S5, S8 

U3 60 Example 3a, 3c S4-S10 

  Example 3b, 3d S6, S10 

 

Table 11 Changeover times for Example 3 

Changeover tasks Unit 𝑡𝑖,𝑖ʹ
𝑐𝑙  (h) 𝜏𝑗

𝑚𝑖𝑛 (h) 

(I14, I16) → I20 J5 1 1 

(I15, I17) → (I21, I26) J6 4 4 

I13 → I18 J4 1 1 

(I24, I27) → (I25, I19) J7 2 2 

 

Table 12 Maintenance periods for Examples 1-3 

Example Unit Maintenance 

Period 

1b J5 9 h – 12 h 

1c J5 9h – 12 h 

1d J1 3 h – 6 h  

 J5 9h – 12 h 

2b J2 25 h – 30 h 

2c J2 30 h – 35 h 

2d J1 15 h – 20 h 

 J2 30 h – 35 h 

3e J5 110 h – 120 h 

3f J5 110 h – 120 h 

3g J1 60 h – 70 h 

 J5 110 h – 120 h 



 179 

 

 The computational results with UIS for Examples 1-3 from both model M and the 

model of Omar and Shaik (2019) are presented in Tables 13-14. While Table 13 depicts 

the results without planned maintenance, Table 14 demonstrates the results with planned 

maintenance. From those results, it seems that both mathematical models can generate 

the optimal solution by using the same number of event points. However, the proposed 

model M leads to slightly fewer binary variables. For instance, model M requires 38 

binary variables to generate the optimal solution of 399 $ for Example 1a, which is 13.2% 

less than the model of Omar and Shaik (2019) which requires 43. Despite that, model M 

requires more continuous variables and constraints than the model of Omar and Shaik 

(2019). For instance, model M requires 102 continuous variables and 162 constraints for 

Example 2a, while the model of Omar and Shaik (2019) requires 42.1% and 24.1% less 

continuous variables and constraints respectively (59 and 123 respectively). Since the 

number of binary variables affects the efficiency of the models, the model M can generate 

solutions in significantly less computational time for some examples. For instance, the 

model of Omar and Shaik (2019) require 1315.2 s for Example 3f, which is two orders of 

magnitude more than model M (67.7 s). 

Table 13 Computational results for Examples 1 – 3 with no planned maintenance (UIS 

policy) 

Example Model 
Event 

Points 

Bin. 

Var. 

Cont. 

Var. 

Con

str. 

RMILP 

($) 

MILP 

($) 

Profit 

($) 

CPU 

Time 

(s) 

1a OS 2 42 113 223 4985.83 3975.00 399.00 0.08 

(H = 12 h) M 2 38 183 291 499.00 399.00 399.00 0.05 

2a OS 2 24 59 123 2696.02 2488.00 250.00 0.09 

(H = 30 h) M 2 20 102 162 270.00 250.00 250.00 0.05 

3a OS 4 208 465 1243 13876.71 13856.00 1388.00 3.2 

(H = 120 h) M 4 160 700 1311 1388.00 1388.00 1388.00 0.1 

3b OS 4 208 465 1243 27235.68 27097.18 2712.82 501.5 

(H = 120 h) M 4 160 700 1343 2724.22 2712.82 2712.82 95.8 

OS: Omar and Shaik 2019. 
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Table 14 Computational results for Examples 1 – 3 with planned maintenance (UIS 

policy) 

Example Model 
Event 

Points 

Bin. 

Var. 

Cont. 

var. 
Constr. RMILP MILP Profit ($) 

CPU 

time 

(s) 

1b OS 3 63 69 355 5384.84 4662.27 467.72 0.4 

(H = 12 h) M 3 57 271 465 519.27 467.72 467.72 0.3 

1c OS 3 63 169 360 4905.45 3133.00 315.00 0.3 

(H = 12 h) M 3 57 271 470 439.00 315.00 315.00 0.2 

1d OS 2/1 63 169 360 4905.45 3130.00 315.00 0.2 

(H = 12 h) M 2/1 57 271 470 427.10 315.00 315.00 0.3 

2b OS 1 12 30 55 2695.20 2493.00 250.00 0.06 

(H = 30 h) M 1 10 48 68 250.00 250.00 250.00 0.09 

2c OS 2 24 59 123 3146.10 2738.00 275.00 0.1 

(H = 35 h) M 2 20 102 162 295.00 275.00 275.00 0.09 

2d OS 1/2 36 88 192 3146.10 2483.00 250.00 0.2 

(H = 20 h) M 1/2 30 151 254 295.00 250.00 250.00 0.05 

3e OS 1 54 119 211 27356.0 26768.8 2678.08 0.08 

(H = 120 h) M 1 40 168 230 2678.08 2678.08 2678.08 0.08 

3f OS 4 208 465 1243 27235.7 26513.8 2654.48 1315.2 

(H = 120 h) M 4 160 700 1311 2665.89 2654.48 2654.48 67.7 

3g OS 1/3 208 465 1243 27235.7 26513.9 2654.48 296.6 

(H = 120 h) M 1/3 160 700 1311 2665.89 2654.48 2654.48 30.5 

OS: Omar and Shaik 2019. 

 Tables 15 and 16 depicts the computational results for Examples 1-3 with FIS. Note 

that Examples 2a-2d, 3a-3g are examples with flexible storage. Since the model of Omar 

and Shaik (2019) do not consider flexible storage, we only solve those examples by using 

model M. For examples with dedicated storage (examples 1a-1d), it seems that model M 

can generate the optimal solution by using fewer binary variables and more continuous 

variables and constraints, similar to examples with UIS policy. Additionally, it seems that 

the model of Omar and Shaik (2019) requires more event points in some cases, which 

further increases the number of binary variables needed to generate the optimal solution. 

For instance, the model of Omar and Shaik (2019) requires 4 event points to provide the 

optimal solution for Example 1c, while model M requires 3 event points. As a result, the 

model of Omar and Shaik (2019) requires 35.3% more binary variables than model M 

(116 vs 75 binary variables). Overall, we can conclude that M is more generic and 

efficient than the model of Omar and Shaik (2019). 
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Table 15 Computational results for Examples 1 – 3 with no planned maintenance (FIS 

policy) 

Example Model 
Event 

Points 

Bin. 

Var. 

Conti. 

Var. 
Constr. RMILP MILP 

Profit 

($) 

CPU 

time 

(s) 

1a OS 4 116 257 833 4985.83 3768.76 379.28 39.9 

(H = 12 h) M 4 100 391 1111 499.00 379.28 379.28 28.8 

2a          

(H = 30 h) M 2 26 128 202 270.00 250.00 250.00 0.2 

3a          

(H = 120 h) M 4 216 882 948 1388.00 1388.00 1388.00 0.2 

3b          

(H = 120 h) M 4 216 882 1582 2724.22 2712.82 2712.82 132.6 

3c          

(H = 120 h) M 4 180 856 1474 1388.00 1388.00 1388.00 0.2 

3d          

(H = 120 h) M 4 180 856 1474 2724.22 2712.82 2712.82 58.6 

 

Figures 5 and 6 depict the schedule of example 1c from models M and OS, respectively. 

By carefully examining those generated schedules, it can be explained why OS requires 

more event points than M in some cases. More specifically, from Figure 5, it seems that 

task I1 is processed in unit J1 at event point N3. Materials that were produced by J1 at 

event point N3 are transferred in units J3 and J4 which are processing consuming tasks 

I7 and I8 respectively. The start time of task I8 at event point N3 is after the start time of 

producing task I1. Since the model OS enforces the start time of related production and 

consumption tasks to be equal, this schedule is infeasible. In this case, one additional 

event point is required to avoid generating a suboptimal solution. From Figure 6, task I1 

is processed in unit J1 in both event point N3 and N4. Materials that were produced by 

J1 at event point N3 are transferred in unit J3 which is processing consuming task I7. For 

the next event point materials are transferred from unit J1 to units J6 and J7. In this 

schedule, the start time of all related production and consumption tasks is the same. 
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Table 16 Computational results for Examples 1 – 3 with no planned maintenance (FIS 

policy) 

Example Model 
Event 

Points 

Bin. 

Var. 

Cont. 

var. 
Constr. RMILP MILP Profit ($) 

CPU 

time 

(s) 

1b OS 3 87 193 593 5384.64 4656.27 467.72 0.5 

(H = 12 h) M 3 75 295 795 519.27 467.72 467.72 0.3 

1c OS 4 116 257 833 4905.85 3133.00 315.00 5.1 

(H = 12 h) M 3 75 295 800 439.00 315.00 315.00 0.3 

1d OS 2/2 116 257 833 4905.85 3128.00 315.00 3.5 

(H = 12 h) M 2/1 75 295 800 427.10 315.00 315.00 0.3 

2b          

(H = 30 h) M 1 23 61 89 250.00 250.00 250.00 0.1 

2c          

(H = 35 h) M 2 26 128 202 295.00 275.00 275.00 0.03 

2d          

(H = 20 h) M 1/2 39 190 313 295.00 250.00 250.00 0.05 

3e          

(H = 120 h) M 1 54 232 299 2678.08 2678.08 2678.08 0.08 

3f          

(H = 120 h) M 4 216 948 1582 2665.89 2654.48 2654.48 55.7 

3g          

(H = 120 h) M 1/3 216 948 1582 2665.89 2654.48 2654.48 11.4 

 

5. Conclusions 

In this work, the proposed approach presented in our previous work (Rakovitis et al. 

2019) was implemented to solve the scheduling of continuous processes problem. In this 

model, we implement the concept of indirect and direct material transfer, to conditionally 

sequence and synchronize related production and consumption tasks. We also consider 

different operating rules, including storage bypass allowed or not allowed and flexible 

intermediate storage policy. In the latter case, a storage tank can or cannot receive and 

deliver materials simultaneously. We also extend our model to consider the case where 

processing units undergo planned maintenance during the scheduling horizon. From the 

generating results, it seems that the proposed model leads to smaller model sizes with less 

number of event points and binary variables required in comparison to Omar and Shaik 

(2019) model. Additionally, the model presented in this work is more efficient, since it 

can generate optimal schedules in up to two magnitudes less computational time in 

comparison to the model of Omar and Shaik (2019). 
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Figure 5 Optimal schedule for example 1c using model M 

 

Figure 6 Optimal schedule for example 1c using model OS 
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Nomenclature 

Indices 

i, iʹ, iʹʹ : tasks 

j, jʹ : processing units or storage tanks 

n, nʹ, nʹʹ : event points 

s, sʹ : states 

Sets 

I: tasks 

𝐈𝑗: tasks that can be processed in unit j 

𝐈𝑠
𝑝
: production tasks that process state s 

𝐈𝑠
𝑐  : consumption tasks that process state s 

J: processing units or storage tanks 

𝐉𝑝: processing units 

𝐉𝑠: units that produce/consume state s 

𝐉𝑠𝑡: storage tanks 

𝐉1
𝑚: processing units with planned maintenance at the end of time horizon 

𝐉2
𝑚: processing units with planned maintenance at the beginning of time horizon 

𝐉3
𝑚: processing units with planned maintenance at the middle of time horizon 

N: total number of event points 

N1: number of event points before the maintenance period 

N2: number of event points after the maintenance period 

S: states 

𝐒𝐹𝐼𝑆: intermediate states with finite storage capacity 

𝐒𝐹𝐹𝐼𝑆: intermediate states with flexible finite intermediate storage policy 

𝐒𝑁𝐼𝑆: intermediate states with no storage capacity 

𝐒𝑅: raw material states 
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𝐒𝐼𝑁: intermediate states 

𝐒𝑃: final product states 

𝐒𝑗: states that can be stored in storage unit j 

Parameters 

𝐻: scheduling horizon (h) 

𝑃𝑠: price of state 𝑠 ($/ton) 

𝐷𝑠
𝑚𝑖𝑛: minimum demand for state 𝑠 (ton) 

𝐷𝑠
𝑚𝑎𝑥: maximum demand for state 𝑠 (ton) 

𝐿𝑖
𝑚𝑖𝑛: minimum duration of task i (h) 

𝐿𝑖
𝑚𝑎𝑥: maximum duration of task i (h) 

M: big-M value 

𝑅𝑖,𝑗
𝑚𝑖𝑛: minimum processing rate of task i in unit j (ton/h) 

𝑅𝑖,𝑗
𝑚𝑎𝑥: maximum processing rate of task i in unit j (ton/h) 

𝑅𝑖,𝑗: processing rate of task i in unit j for the case of fixed processing rate (ton/h) 

𝑅𝑏𝑖,𝑗
𝑚𝑖𝑛: minimum processing amount of task i in unit j 

𝑅𝐿𝑖,𝑗
𝑚𝑖𝑛: minimum processing duration of task i in unit j 

Δn: Maximum number of event points that a task 𝑖 is allowed to span over 

𝜏𝑗
𝑚𝑖𝑛: 

 minimum total clean-up time required in unit j (h) 

𝜏𝑗: sequence independent clean-up time in unit j (h) 

𝜏𝑖,𝑖′,𝑗: sequence dependent clean-up time between unit i and i in unit j (h) 

𝑆𝑇𝑠
0: initial amount of intermediate state 𝑠 ∈ Sin in dedicated storage (ton) 

𝑆𝑇𝑠
𝑚𝑎𝑥: maximum storage capacity of state 𝑠 (ton) 

𝑉𝑠
𝑚𝑎𝑥: maximum storage capacity of processing unit j (ton) 

𝜌𝑖,𝑠: proportion of state 𝑠 produced or consumed by task i   
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Binary variables 

𝑤𝑖,𝑗,𝑛,𝑛′: binary variable for assignment of task i in unit j at the beginning of event n 

𝑢𝑖,𝑗,𝑛: binary variable to denote whether a task i is active in a storage tank j at event 

point n 

𝑧𝐷𝑗,𝑗′,𝑛: binary variable to denote whether direct material transfer takes place between 

units j and jʹ at event point n  

𝑧𝐼𝑗,𝑗′,𝑛: binary variable to denote whether indirect material transfer takes place between 

units j and jʹ at event point n  

𝑧𝑧𝑗,𝑗′,𝑛: binary variable to denote whether material transfer takes place between units j 

and jʹ at event point n 

Positive variables 

𝑆𝑇𝑠,𝑛: storage inventory of state 𝑠 in dedicated storage at the end of event n (ton) 

𝑏𝑖,𝑗,𝑛: amount of material processed by task i in unit j at event n (ton) 

𝑏𝑠𝑖,𝑗,𝑛: amount of materials stored in storage tank j at event point n (ton) 

𝑏𝑇𝑖𝑖,𝑗,𝑖′,𝑗′,𝑛: amount of materials, which produced by task i processed in unit j, were 

indirectly transferred to unit jʹ which consumes task iʹ at event point n 

𝑏𝑇𝑑𝑖,𝑗,𝑖′,𝑗′,𝑛: amount of materials, which produced by task i processed in unit j, were 

indirectly transferred to unit jʹ which consumes task iʹ at event point n 

𝑏𝑧𝑗,𝑗′,𝑛: amount of materials transferred from unit 𝑗 to unit 𝑗′ during event point 𝑛. 

𝐿𝑖,𝑗,𝑛: Processing duration of task i in unit j at event point n 

MS: makespan 

𝑇𝑗,𝑛
s : start time of unit j at event n (h) 

𝑇𝑗,𝑛
f : finish time of unit j at event n (h) 

𝑇𝑠,𝑗,𝑛
s : time that state 𝑠 produced by unit j starts being available at event n (h) 

𝑇𝑠,𝑗,𝑛
f : time that state 𝑠 produced by unit j finishes being available at event n (h) 

𝑇𝑖,𝑛
𝑚𝑠: time at which maintenance start for task i at event n (h) 
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𝑇𝑖,𝑛
𝑚𝑓

: time at which maintenance finishes for task i at event n (h) 

𝑢𝑒𝑗,𝑛: 0-1 continuous variable to denote whether a transition from one state 𝑠 to another 

state 𝑠′ in storage tank j takes place at event point n 
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Chapter 6: Scheduling of multitasking multipurpose 

batch processes 

 

6.1 Introduction 

In Chapter 4, an efficient framework for scheduling of multipurpose batch processes was 

developed. This approach, even though it can significantly reduce the model size of the 

problem, it still cannot directly solve all multipurpose batch process scheduling problems. 

The main reason is that in the presented approach, a processing unit can only process one 

task at a time. Such an assumption, even though it holds in some cases, there are some 

types of process industry that contains units that can process multiple tasks 

simultaneously. For instance, scientific service facilities examine several samples by 

different customers for their chemical and physical properties. These samples, even 

though they belong to another task (i.e. different samples from different customers), they 

can be examined in the same processing unit, which contains multiple slots for sample 

examination. 

Despite the great interest for scheduling of single-tasking multipurpose batch 

processes, scheduling of multitasking batch processes has not gathered the same attention. 

Only recently several mathematical models considered this scheduling problem. Such 

models use uniform (Patil et al. 2015), non-uniform (Lagzi et al. 2017b) discrete-time 

representation and the slot-based representation (Lagzi et al. 2017a) to develop the 

mathematical formulation. On the other hand, there is no model based on the unit-specific 

event-based time representation for this problem. Since unit-specific event-based time 

representation leads to the least possible number of event points, using such a formulation 

can potentially lead to smaller model sizes and increase efficiency. 

In this chapter, two efficient mathematical models for scheduling of multitasking, 

multipurpose batch processes were developed based on unit-specific event-based 

approach. While the first model uses timing variables based on tasks, the second model 

uses timing variables based on units, similar to the proposed efficient framework of 

Chapter 4. The capabilities of both formulations are examined by solving several 

problems and comparing the solution quality and computational efficiency with those 

formulations for multitasking multipurpose batch processes. 
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Scheduling of Multitasking Processes in Scientific Service Facilities 

 
Nikolaos Rakovitis, Nan Zhang, Jie Li3 

Centre for Process Integration, School of Chemical Engineering and Analytical Science,  

The University of Manchester, Manchester, M13 9PL, United Kingdom 

Abstract 

Scientific service facilities examine a number of samples from different customers for 

several physical and chemical properties using processing units with large capacities. A 

processing unit can process a great number of samples simultaneously. The process in 

such scientific service facility can be treated as a multi-tasking multipurpose batch 

process. Despite the great interest in developing models for scheduling of process 

industry during the past three decades, scheduling of multi-tasking multipurpose batch 

processes in a scientific service facility has not been considered adequately. In this work, 

we develop three novel mathematical models using the well-established unit-specific 

event-based modelling approach. The computational results demonstrate that the 

proposed mathematical models are able to reduce the number of event points required, 

which leads to a significant reduction in the model size and computational time. One of 

the proposed models in which the timing variables are defined based on processing units 

is the most efficient in most cases especially when minimization of makespan is used as 

the objective, where at least one order of magnitude less computational time than all other 

models is required to generate the optimum solution compared to other existing models. 

 

Keywords: Scheduling, multi-tasking, batch process, mixed-integer linear programming, 

unit-specific event-based approach 

 

1 Introduction 

Process industries always seek ways to maximize their productivity, minimize their 

operating cost, and achieve efficient inventory management to survive in a highly 

competitive market. Scheduling is one of the important managerial tools for such 

industries to better utilize materials and machines and as a result to increase their profit. 

 
3 To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622 
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However, most of the existing industries use heuristic-based or spreadsheet-based 

methods which are only limited to generate a feasible solution for simple processes. 

Therefore, both academic and industrial research focuses on methods that are able to 

generate optimal schedules in reasonable computational time. Mathematical 

programming especially mixed-integer programming approach has gained much attention 

since it can often generate optimal schedules not only for simple processes but also in 

complicated ones. 

 Batch processes are widely used in process industries such as chemicals, 

pharmaceuticals, food industry, scientific service facilities and iron and steel industry 

because of their flexibility to produce high valued products, especially if small production 

of each product is required. Furthermore, they are ideal in cases of seasonal orders by 

different customers. The batch process is usually classified into single or multi-stage 

multiproduct batch process and multipurpose batch process (Kopanos and Puigjaner, 

2019). In these processes, usually at most one task is allowed to be processed in a 

processing unit at a time. Scheduling of these processes has received considerable 

attention in the past three decades (Floudas and Lin, 2004; Méndez et al., 2006; Li et al., 

2010; Maravelias, 2012; Harjunkoski et al., 2014). Discrete- and continuous-time 

modelling approaches have been proposed to develop a great number of mathematical 

models based on state-task network (Kondili et al., 1993) and resource-task network 

(Pantelides, 1994). The discrete-time modelling approach divides the scheduling horizon 

into time intervals of known length where the start and end time of an activity must be 

exactly at the time interval points. As a result, a great number of time intervals are often 

required, which significantly increases the model size. The continuous-time modelling 

approach can be further divided into process-slot (Sundaramoorthy and Karimi, 2005), 

global event-based (Maravelias and Grossmann, 2003), unit-specific event-based 

(Ierapetritou and Floudas, 1998; Shaik and Floudas, 2009; Li and Floudas, 2010; Tang et 

al., 2012; Li et al., 2016), unit-slot (Sursarla et al., 2010; Li and Karimi, 2011) and 

sequence-based (Méndez and Cerdá, 2000; Hui et al., 2000; Méndez and Cerdá, 2003) 

modelling approaches. The continuous-time modelling approach divides the scheduling 

horizon into time intervals of unknown length, leading to less time points, batches, slots 

or event points required compared to the discrete-time modelling approach. The 

advantages of the unit-specific event-based modelling approach have been well 

established in the literature (Shaik et al, 2006; Shaik and Floudas, 2009; Li and Floudas, 

2010), often requiring less number of event points. The details about these modelling 
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approaches and mathematical models can be found in Floudas and Lin (2004), Méndez et 

al. (2006) and Harjunkoski et al. (2014). 

 In a scientific service facility, a number of samples from different customers are 

examined for a number of chemical or/and physical properties. In order to examine such 

properties, a scientific service facility uses a number of machines with each containing a 

number of slots. Since these machines contain many slots, it is possible to have samples 

from different customers that are processed at a time simultaneously in a machine. In 

other words, multiple tasks can be processed in a machine at a time in such scientific 

service facilities, which is different from the discussed single-tasking batch processes 

with at most one task being processed in a unit at a time. Each customer requires a 

different number of physical and chemical properties to be examined. Therefore, each 

sample group is examined in different processing units. In other words, different samples 

can follow different processing paths. The processes in scientific service facilities are 

considered as multi-tasking multipurpose batch process (Lagzi et al., 2017a). A typical 

scientific service facility receives around 3000-5000 samples from 40-60 different 

customers every day (Lagzi et al., 2017a). 

 Most mathematical models that have been developed for the batch process with at 

most one task being processed in a processing unit at a time cannot be directly applied to 

the multi-tasking multipurpose batch process in scientific service facilities. Few efforts 

have focused on optimal scheduling of such multi-tasking batch process in scientific 

service facilities. Patil et al. (2015) developed a discrete-time model for scheduling of 

multi-tasking batch processes in scientific service facilities. Lagzi et al. (2017a) used 

process-slot continuous-time modelling approach for the same scheduling problem. Lagzi 

et al. (2017b) developed a discrete-time formulation using non-uniform time grid based 

on the work of Velez and Maravelias (2013) and compared the performance with that of 

the discrete-time (Patil et al., 2015) and process-slot continuous-time (Lagzi et al., 2017a) 

formulations. By solving a number of examples, it was concluded that the discrete-time 

formulations using uniform and non-uniform time grids requires less computational time 

than process slot-based alternative, especially for large-scale problems. However, those 

two discrete-time formulations are possible to lead to suboptimum solutions in some 

cases, especially if a coarse discretization is used since a unit can only start examining a 

property exactly at time interval points. The non-uniform discrete-time model of Lagzi et 

al. (2017b) was extended to consider allocation of personnel to active machines (Santos 

et al., 2018) and two conflicting objectives (Lee et al., 2019). 
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 In this work, we use the unit-specific event-based modelling approach whose 

advantages have been well established in the literature (Shaik and Floudas, 2009; Li and 

Floudas, 2010) to develop efficient models for scheduling of multi-tasking batch 

processes in a scientific service facility. In this unit-specific event-based modelling 

approach, timing variables could be defined either based on tasks similar to the definition 

of Shaik and Floudas (2009) or based on units (Ierapetritou and Floudas 1998). In order 

to examine the capabilities of both timing variable representations, we develop three 

different unit-specific event-based mathematical models. While in the first two models 

we define a number of timing variables based on tasks in the process, in the third model 

we introduce a number of timing variables based on processing units in the process. The 

main difference between the first two models are the tightening constraints. The first two 

models could be considered as an extension of the model of Shaik and Floudas (2009) for 

allowing multiple tasks to take place in a unit simultaneously. The third model is 

completely different from all existing models. A number of examples are solved to 

illustrate the capability of the proposed three formulations and compared with the existing 

mathematical models in the literature. The computational results demonstrate that the 

proposed mathematical models are able to reduce the number of event points required, 

which leads to a much smaller model size compared to the existing models in the literature 

(Patil et al. 2015; Lagzi et al. 2017a; Lagzi et al. 2017b). The third model with the timing 

variables defined based on processing units is the most superior since it generates the 

optimum solution in significantly less computational time, especially when minimization 

of makespan is used as the objective, where at least one order of magnitude less 

computational time than all other models is required to generate the optimum solution 

compared to other existing models. 

2 Problem Statement 

Figure 1 illustrates a general multi-tasking batch process in a scientific service facility. 

The scientific service facility receives O (o = 1, 2, 3, ..., O) orders/sample groups from 

different customers that are required to be examined for a total of P (p = 1, 2, 3, …, P) 

properties using totally J (j = 1, 2, 3, …, J) machines (or processing units). Each 

order/sample group contains a number of samples. We assume that all samples in an 

order/sample group are examined for the same number of properties without loss of 

generality. This is because if an order/sample group contains samples that are examined 

for different properties, this order/sample group will be divided into different 
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orders/sample groups. Each order/sample group has to be examined for a number of 

properties based on the customer request. The property examination sequence for an 

order/sample group is known a priori. However, each order/sample group could have 

different property examination sequence and thus follow a different processing path. A 

machine (or unit) can only examine one property. Each machine (or unit) is allowed to 

examine a number of samples from different orders/sample groups at the same time 

depending on its capacity. The examination time of a machine (or unit) j is known and 

denoted as j It only depends on the property that is required to be examined, not the 

batch size. If a machine (or unit) starts examining some samples, then a new sample can 

be processed only after the completion of all current samples. In other words, a machine 

(or unit) cannot be interrupted during the examination. The examination of an 

order/sample group for a property in a machine (or unit) is considered as a task. The 

examination of different properties for the same or different orders/sample groups is 

treated as different tasks. The examination of different orders/sample groups on the same 

machine is also treated as different tasks. There are in total I (i = 1, 2, …, I) tasks and 

each machine can process Ij tasks. 

 

Figure 1 A general multi-tasking batch process in a scientific service facility 

 

 An order/sample group has three statuses depending on if its properties are 

examined. While an order/sample group that is received without any properties examined 

is called “raw material”, an order/sample group with some properties examined is called 

“intermediate state”. An order/sample group that has been completely examined is called 

“final product”. There are total S (s = 1, 2, 3, …, S) states. In Figure 1, states “S1, S2, ..., 

SO–1, SO” denote “raw material states”, “SO+1, SO+2, …, S2O–1, S2, S2O+1,…, SPO” 
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are “intermediate states” and “SPO+1, SPO+2, …, S-1, S” are “final products”. The “raw 

material” is included in a set SR, the “intermediate state” is denoted as SIN, and the “final 

product” is denoted as SF. Each task can “consume” or “produce” at most a state. Tasks 

that produce a state s are denoted as 𝐈𝑠
𝑃 and tasks that consume a state s are denoted as 𝐈𝑠

𝐶 . 

The portion of a state s that is used for task i is denoted as i,s. If a task i consumes a state 

s, then i,s = –1. If a task i produces a state s, then i,s = 1. 

 Each “intermediate state” has its own dedicated storage. There are several 

intermediate storage policies for each intermediate state including unlimited intermediate 

storage policy (UIS), finite intermediate storage policy (FIS) and no intermediate storage 

policy (NIS). There are also several possible wait policies for an intermediate state in a 

processing unit after processing including unlimited wait policy (UW), limited wait 

policy (LW) and zero wait policy (ZW). In a scientific service facility, a sample is allowed 

to stay in the processing time without any restriction after examination. Thus, UW policy 

is applied. We also assume unlimited intermediate storage policy for samples. With all of 

these, the scheduling problem can be stated as follows, 

Given: 

a) O orders/sample groups, the number of samples in each order/sample group, 

properties and their examination sequence for each order/sample group; 

b) J machines (or processing units), minimum and maximum capacities, suitable 

properties and tasks, processing times; 

c) The scheduling horizon H. 

Determine: 

a) Optimal processing schedule involving task allocations, start and end timings, 

sequences and batch sizes; 

b) Inventory profiles. 

Operating rules: 

a) More than one tasks are allowed to be processed in a processing unit 

simultaneously; 

b) Each machine (or unit) can examine only one property; 

c) Batch splitting and mixing is allowed for each order/sample group. 

Assuming: 

a) All parameters are deterministic; 

b) The processing time of a machine (or unit) j is fixed (denoted as j). It only 
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depends on the property that is required to be examined, not the batch size; 

c) Unlimited feed materials are available; 

d) Unlimited storage policy for all states; 

e) Unlimited resources where required are available; 

f) Unlimited wait policy for intermediate states. 

 The objective of the given problem is to maximize the number of samples 

examined, during a specified scheduling horizon (maximization of productivity) or to 

minimize the time required to examine all properties of a specific number of samples 

(minimization of makespan). 

3 Mathematical Formulation 

As discussed before, the capabilities of the unit-specific event-based modelling approach 

have been well established in the literature (Shaik and Floudas, 2009; Li and Floudas, 

2010), which is used to develop three mathematical models for the given problem due to 

different ways for the definition of timing variables. Next, we present these three models 

in detail. 

3.1 Models M1a and M1b 

In the models M1a and M1b, the timing variables are defined based on tasks in the 

process, which is similar to the definition of most existing unit-specific event-based 

models (Shaik and Floudas, 2009; Li and Floudas, 2010). We also follow the approach of 

Shaik and Floudas (2009) that uses a parameter 𝑛 to regulate the maximum allowable 

number of event points that a task is allowed to span over. It should be noted that the 

examination of the same order/sample group in different machines (or units) for the same 

properties is treated as different tasks in order to define timing variables based on tasks. 

Allocation constraints 

We define three-index binary variables wi,n,n to denote if a task i is active from event point 

n to event point n (n  n), which is similar to those in the model of Shaik and Floudas 

(2009). If a task is allowed to span over multiple event points, it should start or end at 

only one event point. Constraint (1) guarantees that a task i have no more than one start 

or end in different event points. 
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∑ ∑ 𝑤𝑖,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛

≤ 1 

 ∀j, i ∊ Ij, n, Δn > 0 (1) 

Note that constraint (1) is valid for every task that can be processed in a unit j. Therefore, 

it allows multiple tasks to take place in the same unit simultaneously. This constraint (1) 

is different from those of Shaik and Floudas (2009).  

 We define new 0-1 continuous variables yj,n,n to denote if a unit j is active from 

event point n to n. Since multiple tasks are allowed to take place in the same unit 

simultaneously, constraints (2) and (3) are introduced to establish the relationship 

between wi,n,n and yj,n,n. More specifically, constraint (2) states that when a task 𝑖 is active 

from event points n to n (i.e., wi,n,n = 1), a unit j that is able to process that task i must be 

also active (yj,n,n = 1). Furthermore, if none of the tasks that can be processed in a unit j 

is active, this unit j is forced to be inactive (yj,n,n = 0) as indicated in constraint (3). 

𝑦𝑖,𝑛,𝑛′ ≥ 𝑤𝑖,𝑛,𝑛′  ∀j, i ∊ Ij, n, n ≤ n ≤ n+Δn (2) 

𝑦𝑖,𝑛,𝑛′ ≤ ∑𝑤𝑖,𝑛,𝑛′

𝑖∈𝐈𝑗

 

 ∀j, n, n ≤ n ≤ n+Δn (3) 

It should be noted that constraints (2) and (3) enforce yj,n,n can take value 0 or 1 and 

therefore they are defined as 0-1 continuous variables. 

Capacity constraints 

As previously discussed, multiple sample groups can be examined in a processing unit 

simultaneously. We define bi,n,n to denote the batch size of a sample group processed by 

a task i. The summation of all samples that are examined in the same unit j should be 

within its minimum unit capacity (𝐵𝑗
𝑚𝑖𝑛) and maximum unit capacity (𝐵𝑗

𝑚𝑎𝑥). Therefore, 

constraint (4) is introduced to avoid a capacity violation.  

𝐵𝑗
min ⋅ 𝑦𝑗,𝑛,𝑛′ ≤ ∑𝑏𝑖,𝑛,𝑛′

𝑖∈𝐈𝑗

≤ 𝐵𝑗
max ⋅ 𝑦𝑗,𝑛,𝑛′ 

 ∀j, n, n ≤ n ≤ n+Δn (4) 

Material balance constraints 

The amount of a material state s stored at the beginning of an event point n should be 

equal to its storage amount at the beginning of the previous event point (n – 1) plus the 
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amount of the state 𝑠 produced at event point (n – 1) (i.e., i,s > 0), minus the amount of 

the state consumed at event point 𝑛 (i.e., i,s < 0). 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈𝐈𝑆
𝑃

+ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 

 ∀s, n > 1 (5) 

Notice that constraint (5) does not include the amount of a material state s stored at the 

beginning of the first event point. The amount of a material state s stored at the beginning 

of the first event point should be equal to the initial amount of state s minus the amount 

of the state consumed by tasks that start to process state s at the beginning of the first 

event point. 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑆
𝐶

 

 ∀s, n = 1 (6) 

The material balance constraints are similar to those of Shaik and Floudas (2009). 

Duration constraints 

The processing duration of task i is computed using constraint (7) if it is not allowed to 

span over multiple event points (Δn = 0). 

𝑇𝑖,𝑛
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛  ∀i, n, Δn = 0 (7) 

If a task i is allowed to span over multiple event points (i.e, Δn > 0), then constraints (8) 

and (9) are applied. 

𝑇𝑖,𝑛
f ≥ 𝑇𝑖,𝑛

s
 ∀i, n, Δn > 0 (8) 

𝑇𝑖,𝑛′
f ≥ 𝑇𝑖,𝑛

s + 𝛼𝑖 ∙ 𝑤𝑖,𝑛,𝑛′  ∀i, n, n ≤ n ≤ n+Δn, Δn > 0 (9) 

Same task in the same unit 

A task i at event point (n + 1) must always start after it completes at the previous event 

point n as specified by constraint (10). 

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖,𝑛

f
 ∀i, n < N (10) 

If a task is allowed to span over multiple event points, then the start time of task i at event 

point (n + 1) should be equal to the finish time of the same task at the previous event point 

n if task i is active at event point n but it continues being active at the next event point, as 

indicated in constraint (11). 
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𝑇𝑖,𝑛+1
s ≤ 𝑇𝑖,𝑛

f + 𝑀 ∙ [1 − (∑ ∑ 𝑤𝑖,𝑛′,𝑛′′

𝑛′≤𝑛′′≤𝑛′+∆𝑛𝑛′≤𝑛

− ∑ ∑ 𝑤𝑖,𝑛′′,𝑛′

𝑛′<𝑛,𝑛′′≤𝑛′≤𝑛′′+∆𝑛𝑛′′

)] + 

+𝑀 ∙ ∑ 𝑤𝑖,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

 

 ∀i, n, Δn > 0 (11) 

Different tasks in the same unit 

A task i at an event point (n + 1) must always start after any other task i that can be 

processed at the same unit as this task completes at event point n. 

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f
 ∀j, i∊ Ij, i∊ Ij, i ≠ i, n < N (12) 

 

Different tasks in different units 

Constraint (13) is introduced to define the sequence between tasks in different units that 

produce and consume the same state s. A consumption task i at event point (n + 1) must 

start after a production task i related to the same state 𝑠 completes at event point n, if the 

producing task finishes processing materials at event point n.  

𝑇𝑖,𝑛+1
s ≥ 𝑇𝑖′,𝑛

f − 𝑀 ∙ (1 − ∑ 𝑤𝑖′,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

) 

 ∀s ∊ SIN, j ≠ j, i ∊ (𝐈𝑗 ∩ 𝐈𝑠
𝐶), i ∊ (𝐈𝑗 ∩ 𝐈𝑠

𝑃) , i ≠ i, n < N (13) 

Tightening constraints 

Shaik and Floudas (2009) introduced a number of tightening constraints in order to tight 

the relaxation of their MILP formulation. However, these constraints are proposed with 

the assumption that at most one task is allowed to be processed in a unit at a time. 

Therefore, these constraints cannot be used in this multi-tasking scheduling problem. In 

this work, we present two different tightening constraints. In the computational results, 

we will compare the performance of these two different tightening constraints. The first 

one is the modification of the tightening constraints from Shaik and Floudas (2009) as 

indicated in constraint (14). 

∑ ∑ max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 𝐻 

 ∀ j (14) 

 In order to develop the second tightening constraints, we introduce new variables 
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𝑇𝑗,𝑛
s  and 𝑇𝑗,𝑛

f  to denote the start and end time of a unit j at event point n. According to 

constraint (15), the finish time of a unit j at an event point n must be after the start time 

of this unit at the same event point plus the maximum processing time of the tasks that 

are available to be processed in the unit. Furthermore, according to constraint (16), the 

start time of unit j at event point (n + 1) must always be after the finish time at the previous 

event point n. 

𝑇𝑗,𝑛
f ≥ 𝑇𝑗,𝑛

s + max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′  ∀ j, n, n ≤ n ≤ n+Δn (15) 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f  ∀ j, n < N (16) 

Variable bounds 

All timing variables should take values less than the scheduling horizon, as indicated in 

constraints (17)-(20).  

𝑇𝑖,𝑛
s ≤ 𝐻 ∀ i, n (17) 

𝑇𝑖,𝑛
f ≤ 𝐻 ∀ i, n (18) 

𝑇𝑗,𝑛
s ≤ 𝐻 ∀ j, n (19) 

𝑇𝑗,𝑛
f ≤ 𝐻 ∀ j, n (20) 

The number of samples examined must always be less than the maximum capacity. 

Therefore, constraint (21) defines the upper limit for these variables. 

𝑏𝑖,𝑛,𝑛′ ≤ 𝐵𝑖
𝑚𝑎𝑥

 ∀ i, n, n ≤ n ≤ n+Δn  (21)  

Objective function 

Two objective functions are considered: maximization of productivity and minimization 

of makespan. 

Maximization of productivity 

Usually, it is better for a scientific service facility to complete the examination of all 

samples received during the specified scheduling horizon. However, this may not be 

achieved. Therefore, it is necessary to maximize the total number of samples that can be 

examined within the scheduling horizon, as indicated in constraint (22). 

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑛𝑖∈𝐈𝑆
𝑃𝑠

 

 (22) 

where ps is a weighted value, which takes the value of 1 for “intermediate products” and 
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5 for “final products”.  

Minimization of makespan 

Another objective is to minimize the time required to complete the examination of all 

samples received from customers. We define a variable MS to denote that the minimum 

time needed to examine all properties for all samples, which should exceed the finish time 

of all tasks at the last event point in the process. 

𝑇𝑖,𝑛
f ≤ 𝑀𝑆 ∀i, n = N (23a) 

∑ ∑ max
𝑖∈𝐈𝑗

(𝛼𝑖) ∙ 𝑦𝑖,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 𝑀𝑆 

 ∀j (23b) 

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 ∀i, n = N (23c) 

To achieve minimization of makespan, one additional constraint should be considered to 

ensure that all samples are examined. 

𝑆𝑇𝑠,𝑛 + ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑆
𝑃

≥ 𝐷𝑠 

 ∀ s ∊ SP, n = N (24) 

where Ds is the total amount of samples that have to be examined. Note that at the last 

event point all samples have to be examined for all properties. Therefore, we only 

consider “production states” in (24). Furthermore, the total number of samples received 

from customers should be equal to the number of samples required to be examined at the 

last event point.  

 We complete the model M1a which comprises eqs. 1-14, 17-18 and 21-22 for 

maximization of productivity and eqs. 1-13, 21, 23a, 23b and 24 for minimization of 

makespan. This model M1a uses the first tightening constraints (i.e., constraints 14 and 

23b). Another model M1b using the second tightening constraints (i.e., constraints 15-

16) are completed which comprises eqs. 1-13 and 15-22 for maximization of productivity 

and eqs. 1-13, 15-16, 21, 23a, 23c and 24 for minimization of makespan. It should be 

noted that although different tasks in the same unit may not start at the same time from 

the schedule generated using the models M1a and M1b, it is easy to revise the schedule 

to make sure that different tasks in the same unit start at the same time without any effect 

on the objective function. 

3.2 Model M2 

In this model, the timing variables are defined based on units. Since multiple tasks are 
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allowed to take place at the same units simultaneously, we want to know their active 

status of each unit at a time. Thus, we define binary variables wj,n,n to denote if a unit j is 

active from an event point n to another event point n (n > n). 

Allocation constraints 

Although a unit j is allowed to be active over multiple event points, it can start or end 

only at one event point, as indicated in constraint (25). 

∑ ∑ 𝑤𝑗,𝑛′,𝑛″

𝑛≤𝑛″≤𝑛+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛

≤ 1 

 ∀j, n, Δn > 0 (25) 

Note that constraint (25) is valid for each unit j without involving any task. Thus, it does 

not restrict the number of tasks that are allowed to be processed in a unit j. 

Capacity constraints 

We define continuous variables bi,j,n,n to denote the batch size that is processed by a task 

i in a unit j from event point n to event point n. Recall that multiple tasks are allowed to 

be processed in a unit j simultaneously. The total batch size processed in a unit j should 

be within the minimum (𝐵𝑗
𝑚𝑖𝑛) and maximum (𝐵𝑗

𝑚𝑎𝑥) capacities of this unit j at a time, 

as indicated by constraint (26). 

𝐵𝑗
min ⋅ 𝑤𝑗,𝑛,𝑛′ ≤ ∑𝑏𝑖,𝑗,𝑛,𝑛′

𝑖∈𝐈𝑗

≤ 𝐵𝑗
max ⋅ 𝑤𝑗,𝑛,𝑛′ 

 ∀j, n, n ≤ n ≤ n+Δn (26) 

Material balance constraints 

The amount of a material state s stored at the beginning of event point n should be equal 

to the amount of the state s stored at the beginning of event point (n – 1), plus the amount 

of this state 𝑠 produced by tasks at the end of event point (n – 1) (i.e., i,s > 0), minus the 

amount of state s consumed by tasks at the beginning of event point n (i.e., i,s < 0). 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇𝑠,𝑛−1 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛−1

𝑛−1−Δ𝑛≤𝑛′≤𝑛−1𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

+ 

+∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛−Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)𝑗

 

 ∀s, n > 1 (27) 

The amount of a material state 𝑠 stored at the beginning of the first event point should be 
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equal to the initial amount of state 𝑠 minus the amount of the state consumed by tasks that 

start to process state 𝑠 at the beginning of the first event point. 

𝑆𝑇𝑠,𝑛 = 𝑆𝑇0𝑠 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝐶)𝑗

 

 ∀s, n = 1 (28) 

Duration constraints 

The processing duration of a unit j is defined by constraint (29). The constraint assumes 

constant processing time (j) for all tasks, which is unit dependent only. This is true for 

property examination in a scientific service facility. Constraint (29) indicates that the end 

time of a unit j at event point n must be greater than the start time of this unit j at event 

point n plus the constant processing time if unit j is active from event point n to event 

point n. 

𝑇𝑗,𝑛′
f ≥ 𝑇𝑗,𝑛

s + 𝛼𝑗 ∙ 𝑤𝑗,𝑛,𝑛′  ∀j, n, n ≤ n ≤ n+Δn (29) 

Sequencing constraints 

To sequence different tasks in different units, we define continuous variable Ts,n to denote 

the time that state s is available at event point n. The end time of tasks that produce a state 

s from event point n to event point n must be before the time that state s is available at 

event point n as denoted by constraint (30). We assume that “Raw material states” are 

available at the beginning of the scheduling horizon, while “final product states” are not 

“consumed” by any task. Therefore, they are not considered in constraint (30). 

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ 𝑤𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛

) 

 ∀ s ∊ SIN , j, n,
, 0

j

i s

i





I

 (30) 

Furthermore, the start time of tasks that consume state s from event point (n + 1) to event 

point n, must be after the time that state s is available to be consumed at event point n as 

specified by constraint (31).  

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛+1
s + 𝑀 (1 − ∑ 𝑤𝑗,𝑛+1,𝑛′

𝑛+1≤𝑛′≤𝑛+1+∆𝑛

) 

 ∀ s ∊ SIN , j, n  < N,
, 0

j

i s

i





I

 (31) 

Similar to constraint (30), constraint (31) is also only valid for “intermediate material 
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states”. 

A unit j at event point (n + 1) must always start after any other process in unit j ends at 

event point n. This is because the property examination for a new order/sample groups 

should wait until the current examination completes. 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f
 ∀ j, n  < N (32) 

The start time that state s is available to be consumed at event point n must always be 

before the time that is available to be consumed at the next event point (n + 1), as denoted 

by constraint (33). 

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1 ∀ s ∊ SIN, n < N (33) 

Variable bounds 

𝑇𝑗,𝑛
s ≤ 𝐻 ∀ j, n (34) 

𝑇𝑗,𝑛
f ≤ 𝐻 ∀ j, n (35) 

𝑇𝑠,𝑛 ≤ 𝐻 ∀ s, n (36) 

𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝐵𝑖
𝑚𝑎𝑥 ∀ j, iIj, n  n  n+n (37)  

Objective function 

Similar to the models M1a and M1b, two objective functions are considered for the model 

M2 including maximization of profit and minimization of makespan. 

Maximization of productivity 

Given a specific scheduling horizon, objective function (38) is used to maximize the total 

number of samples that can be examined at the end of the scheduling horizon. 

𝑧 = ∑𝑝𝑠 ∑ ∑ ∑ ∑ 𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗𝑠

 

 (38) 

Minimization of makespan 

For minimization of makespan, the objective function (39a) is introduced. 

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 ∀ j, n = N (39a) 

𝑇𝑠,𝑛 ≤ 𝑀𝑆 ∀ j, n = N (39b) 

Similar to models M1a and M1b, one more constraint should be considered to ensure that 

all properties are examined in all samples in the case of minimization of makespan. 
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𝑆𝑇𝑠,𝑛 + ∑ ∑ 𝜌𝑖,𝑠 ∑ 𝑏𝑖,𝑗,𝑛′,𝑛

𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

≥ 𝐷𝑠 

 ∀ s ∊ SP, n = N (40) 

 We complete the model M2 which comprises eqs. 25-38 for maximization of 

productivity and eqs. 25-33, 37, 39-40 for minimization of makespan. 

4 Computational studies 

We solve 32 examples to illustrate the capabilities of the proposed models. Example 1 is 

the illustrative example from Lagzi et al. (2017a) in which two groups of samples are 

examined for four properties in the facility having six machines. The necessary data are 

given in Tables 1-2. Examples 2-20 are generated randomly following discrete uniform 

distribution. Examples 2-6 have ten groups of samples with each containing from 50 to 

80 samples. These sample groups have to be examined for 1 to 4 properties. Examples 7-

8 have five groups of samples with 1-4 properties to be examined. One sample has to be 

examined for more than once for the same property since a property needs to be examined 

in two or more different conditions such as varying temperature or pressure. This could 

often happen in a scientific service facility, as illustrated in Lagzi et al. (2017a). Examples 

9-19 involve 2-16 groups of samples with each containing from 50 to 80 samples having 

3-8 properties to be examined. The necessary data for Examples 2-20 can be found in the 

Supplementary Material. A scheduling horizon of 480 min (i.e., 8 hours) is considered 

for Examples 2-19. Example 20 has 100 groups of samples with each containing 200 to 

300 samples having a total 25049 samples to be examined. There are 25 properties that 

are required to be examined with each group having 8-9 properties. The scheduling 

horizon is 40 hours. 

Table 1 Sample group data for Example 1 

Sample group Processing pathway Number of samples 

1 𝑃1 − 𝑃3 − 𝑃4 120 

2 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 100 

Table 2 Data on processing units and properties for Example 1 

Property 

 

Unit 

Unit capacity (samples) 

(Min – Max) 𝛼𝑖 (min) 

1  1 0-140 50 

2  2 0-70 30 

  3 0-70 30 

3  4 0-50 60 

  5 0-50 60 

4  6 0-120 195 
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Table 3 Possible processing paths for Examples 20-32 

No. of path Processing path 

1 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃13 − 𝑃16 − 𝑃11 

2 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃5 − 𝑃11 

3 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃7 − 𝑃13 − 𝑃20 − 𝑃12 

4 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃18 − 𝑃11 

5 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃6 − 𝑃13 − 𝑃20 − 𝑃12  
6 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃25 − 𝑃6 − 𝑃13 − 𝑃17 − 𝑃10  
7 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃8 − 𝑃13 − 𝑃20 − 𝑃12 

8 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃19 − 𝑃11 

9 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃14 − 𝑃21 − 𝑃12 

10 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃15 − 𝑃9 − 𝑃22 

11 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4−𝑃24 − 𝑃23 − 𝑃5 − 𝑃11 

 

 Examples 21-32 have the same number of processing units and properties to those 

of Lagzi et al. (2017b). The processing time, and maximum capacity of each processing 

unit in Examples 21-32 are also exactly same as those of Lagzi et al. (2017b). Other data 

are generated randomly following the discrete uniform distribution since they are not 

provided in Lagzi et al. (2017b). While 5 sample groups are considered for Examples 21-

25, 10 sample groups are involved in Examples 26-30. Each sample group in Examples 

21-30 contains from 50 to 80 samples. Example 31 considers 100 sample groups with 

each group containing 200-300 samples.  A total of 25245 samples have to be examined. 

Example 32 contains 100 sample groups with 250-350 samples for each group. For 

Example 32, a total of 30067 samples have to be examined. Two scheduling horizons 

including H = 480 min and H = 1440 min are investigated for Examples 21-30, whilst a 

scheduling horizon of 40 hours (H = 2400 min) was examined for Examples 31-32. All 

sample groups are able to be processed using 11 predefined processing paths with each 

having 1-10 machines as shown in Table 3 and Figure 2. It should be noted that Examples 

20-32 represent large-scale actual scientific service facilities (Lagzi et al., 2017b). The 

necessary data for Examples 21-32 can be found in the Supplementary Material. All 

examples vary with the number of sample groups, properties, machines, and scheduling 

horizon. All examples are solved in CPLEX 12/GAMS 24.6.1 on a desktop computer 

with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 7. We set the 

maximum CPU time for all examples as 1 hour. 
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Figure 2 Possible processing routes for Examples 20-32 

 

 We also compare the performance of the proposed three models M1a, M1b and M2 

with those discrete-time models of Patil et al. (2015) and Lagzi et al. (2017b) and the 

process-slot continuous-time model of Lagzi et al. (2017a). While the discrete-time 

model of Patil et al. (2015) uses a uniform time grid for all units in which the scheduling 

horizon is divided into time intervals of equal length, the model of Lagzi et al. (2017b) 

uses non-uniform time grid in which the scheduling horizon is divided into time intervals 

of varying length. The length of each time interval in Patil et al. (2015) is equal to the 

greatest common factor of all tasks since all tasks have to start and end exactly at the time 

points. In the model of Lagzi et al. (2017b) the maximum time interval length was set to 

60 minutes. For units with processing time less than 60 minutes the length of each time 

interval was equal to the processing time. On the other hand, for units with larger 

processing times, the time interval is set to the maximum length (i.e., 60 minutes). It 

should be mentioned that the models from Patil et al. (2015) and Lagzi et al. (2017a-b) 

did not consider makespan minimization. These models are extended for minimization of 

makespan in this paper which are presented in Appendices A and B. 

Example 1 

This example involves two groups of samples (group 1 and group 2). There are in total 4 

properties (P1-P4) using in 6 units (J1-J6). The property examination sequences for two 

groups of samples are P1-P3-P4 for group 1 and P1-P2-P3-P4 for group 2. Property 1 is 

examined in unit J1. Property 2 is examined in units J2 and J3. Property 3 is examined in 
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units J4 and J5. Property 4 is examined in unit J6. The examination of each property from 

a sample group is denoted as a task. For instance, we use task I1 to denote the examination 

of P1 for the sample group 1 in unit J1 and use task I2 to denote the examination of P1 

for the sample group 2 in unit J1. There are in total 10 tasks (I1-I10). We use state S1 to 

denote the initial status of the sample group 1. We use states S1-S9 to denote the status 

of the two sample groups. The state-task network for this example is illustrated in Figure 

3. The computational results are given in Table 4. From Table 4, it can be seen that all six 

models solve Example 1 in very small CPU time (< 1 s) for both objective functions. 

However, the proposed models M1a, M1b and M2 lead to smaller model size than the 

existing models and hence they can be potentially superior, especially in the case of 

minimization of makespan, where they also lead to a tighter MILP relaxation. The optimal 

solutions are generated with Δn = 0 from the proposed models M1a, M1b and M2. The 

optimal schedule generated using the mathematical model M2 with maximization of 

productivity is depicted in Figure 4. From the optimal schedule (Figure 4) it can be 

observed that two tasks are processed in the same unit simultaneously. For instance, unit 

J1 examines the property P1 of 70 samples from the sample group 1 and 70 samples from 

the sample group 2 simultaneously during 0 to 50 minutes. 

 

Figure 3 State-task network representation for Example 1 

 

 Another remarkable finding is that the discrete-time model of Patil et al. (2015) 

leads to a much tighter MILP relaxation than all other models when the objective is to 

maximize productivity. More specifically, it is interesting that the solution from the 

relaxed MILP is exactly identical to the optimal solution. Even though the discrete-time 

model of Patil et al. (2015) leads to large model size, it requires similar computational 

time than the rest. On the contrary, for minimization of makespan the discrete-time 

formulation of Patil et al. (2015) leads to a much worse relaxation than other models. By 

comparing the uniform discrete-time model of Patil et al. (2015) with that non-uniform 
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discrete-time model of Lagzi et al. (2017b), it can be concluded that the use of a non-

uniform discretization can lead to smaller model size. More specifically, if maximization 

of productivity is used as objective, the model of Lagzi et al. (2017b) requires 

approximately half discrete variables than the model of Patil et al. (2015) (715 vs 1394). 

Therefore, Lagzi et al. (2017b) formulation can potentially be more efficient in terms of 

computational time than the discrete-time model of Patil et al. (2015). However, since a 

coarser discretization is used, it can lead to suboptimum solutions. For instance, if 

minimization of makespan is used as objective, the model of Lagzi et al. (2017b) leads to 

9.9% worse solution than other models (555 min vs 500 min).  

 

Figure 4 Optimal schedule for Example 1 using the model M2 with maximization of 

productivity 

 

From Table 4 it can also be seen that all continuous-time formulations (i.e., Lagzi et al. 

2017a, M1a, M1b and M2) require the same number of event points or slots for both 

objective functions. Although the models M1a and M1b lead to the same MILP 

relaxation, the model M1b has more continuous variables and constraints than M1a due 

to the introduction of additional variables 𝑇𝑗,𝑛
s  and 𝑇𝑗,𝑛

f  with additional related constraints 

(e.g., constraints 15 and 16). As a result, the model M1a leads to slightly smaller CPU 

time than the model M1b. 
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Table 4 Computational results for Example 1 

 

Objective 

 

Model 

Event 

points/slots/time 

intervals 

CPU 

time 

(s) 

 

RMILP 

 

MILP 

Disc. 

Var. 

Cont. 

Var. 

 

Constr. 

Max  Patil et al. 

(2015) 

96 0.312 1140 1140 1394 1023 1835 

productivity Lagzi et 

al. 

(2017b) 

81 0.125 1140 1140 715 721 1193 

(H = 480 

min)  

Lagzi et 

al. 

(2017a) 

4 0.187 1440 1140 320 360 1426 

 M1a 4 0.078 1440 1140 80 141 301 

 M1b 4 0.093 1440 1140 80 189 337 

 M2 4 0.109 1440 1140 64 100 225 
         

Min Patil et al. 

(2015) 

150 0.968 160.8 500 2258 1351 4126 

makespan Lagzi et 

al. 

(2017b) 

43 0.218 68.42 555 419 379 833 

 Lagzi et 

al. 

(2017a) 

5 0.344 10.23 500 384 408 1694 

 M1a 5 0.109 195.0 500 100 176 393 

 M1b 5 0.141 195.0 500 100 236 441 

 M2 5 0.093 357.5 500 80 126 300 

Note Δn = 0 for this example 

 

Other examples 

The computational results for Examples 2-32 with the objective of maximization of 

productivity are given in Tables 5-8, whilst the results for Examples 2-19, 21-23 and 27 

with the objective of minimization of makespan are given in Tables 9-11. The column 

“event points” in Tables 4-11 presents the number of event points required for M1a, M1b, 

and M2, the number of slots required for the model of Lagzi et al. (2017a) and the number 

of time intervals required for the models of Patil et al. (2015) and Lagzi et al. (2017b). 

Maximization of productivity 

Table 5 presents the computational results for Examples 2-8. From Table 5, it can be 

concluded that the model M2 is the most superior since it requires less computational 

time than the models of Patil et al. (2015), Lagzi et al. (2017a), M1a and M1b. The main 

reason is that the model M2 leads to a much smaller model size especially less number 

of discrete variables required. For example, it can generate the optimum solution for 
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Example 2 by using 89.1% less constraints than the model of Lagzi et al. (2017a) (i.e., 

703 vs. 6424), 85.7% less constraints than the model of Patil et al. (2015) (i.e., 703 vs. 

4907), 73.8% less constraints than the model M1a (i.e., 703 vs. 2682) and 74.2% less 

constraints than the model M1b (i.e., 703 vs. 2730). Furthermore, the model M2 requires 

82.1% less discrete variables than the model of Lagzi et al. (2017a) (i.e., 260 vs. 1456), 

94.1% less discrete variables than the model of Patil et al. (2015) (i.e., 260 vs. 4412) and 

43.5% less discrete variables than the models M1a and M1b (260 vs. 460). Even though 

the model M2 also leads to a smaller model size than the model of Lagzi et al. (2017b), 

(51.9% less discrete variables, 62.8% less continuous variables and 12.8% less 

constraints), it requires more computational time. This is mainly because the model of 

Lagzi et al. (2017b) leads to a much tighter MILP relaxation. However, in most cases, the 

model of Lagzi et al. (2017b) is only limited to generate a suboptimum solution in contrast 

to the proposed model M2 which generates the optimum solution for all these examples. 

 The uniform discrete-time formulation of Patil et al. (2015) performs better than the 

models M1a, M1b and the process-slot continuous-time model of Lagzi et al. (2017a). 

This is mainly due to the fact that the solution from the relaxed MILP of Patil et al. (2015) 

is exactly the same as the optimum solution for all these examples. However, the 

exceptionally high model size makes the model inferior to the model M2. By comparing 

the models M1a, M1b and M2 and the process-slot model of Lagzi et al. (2017a), it can 

be concluded that proposed models M1a, M1b and M2 generate optimum solutions in 

much less computational time, due to the fact that they are much tighter and hence lead 

to smaller model size. More importantly, the process-slot model of Lagzi et al. (2017a) 

requires more slots than the models M1a, M1b and M2 in some examples. This is because 

all tasks in the process have to start or end at the same slot points. It can also be observed 

that the model M2 requires more event points than models M1a and M1b for Example 5. 

The main possible reason is due to the constraints (30)-(31), which impose all states that 

can be processed in a unit j to be available after the unit finishes tasks or before the unit 

begins to process tasks once the unit is active regardless which task is processed in a unit 

j. Consequently, more event points than models M1a and M1b are required to generate 

the optimal solution for this Example 5. It is interesting that even though the model M2 

requires one more event point than these models, it still leads to a much smaller model 

size. As a result, it generates the optimum solution in significantly less amount of CPU 

time than M1a (0.328 s vs. 20.64 s) and M1b (0.328 s vs. 19.33 s).  
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Table 5 Computational results for Examples 2-8 with maximization of productivity 

 

Example 

 

Model 

Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu)  

Discr. 

Var. 

Cont. 

Var. 

 

Constr. 

2 Patil et al. (2015) 96 0.312 3100 3100 4412 3937 4907 

 Lagzi et al. (2017b) 18 0.078 2500 2500 541 698 806 

 Lagzi et al. (2017a) 6 1755 4065 3100 1456 2044 6424 

 M1a 5 4.54 3377 3100 460 696 2682 

 M1b 5 4.21 3377 3100 460 756 2730 

 M2 5 0.125 3377 3100 260 290 703 

3 Patil et al. (2015) 96 0.826 3147 3147 5150 4417 5387 

 Lagzi et al. (2017b) 18 0.046 2547 2547 602 698 806 

 Lagzi et al. (2017a) 8 3600a 4822 3047 2196 2709 9402 

 M1a 7 95.4 3424 3147 770 1135 5030 

 M1b 7 87.9 3424 3147 770 1219 5102 

 M2 7 0.218 3424 3147 427 623 1211 

4 Patil et al. (2015) 96 0.998 3481 3481 4914 4321 5291 

 Lagzi et al. (2017b) 18 0.062 2881 2881 569 766 874 

 Lagzi et al. (2017a) 9 3600b 4881 3481 2320 2980 10045 

 M1a 8 324.9 3758 3481 832 1241 5337 

 M1b 8 299.1 3758 3481 832 1337 5421 

 M2 8 0.312 3758 3481 464 702 1367 

5 Patil et al. (2015) 96 0.531 3219 3219 4301 3841 4811 

 Lagzi et al. (2017b) 18 0.062 2619 2619 501 681 789 

 Lagzi et al. (2017a) 7 3600c 4679 3219 1632 2328 7245 

 M1a 6 20.6 3496 3219 540 817 3074 

 M1b 6 19.3 3496 3219 540 889 3134 

 M2 7 0.328 3496 3219 357 545 1013 

6 Patil et al. (2015) 96 1.98 2971 2971 4691 4225 5195 

 Lagzi et al. (2017b) 18 0.140 2621 2621 520 749 857 

 Lagzi et al. (2017a) 8 3600d 5156 2971 2016 2664 8782 

 M1a 7 3600e 3498 2971 693 1058 4341 

 M1b 7 3600f 3498 2971 693 1142 4413 

 M2 7 0.546 3498 2971 385 597 1133 

7 Patil et al. (2015) 96 0.296 1779 1779 3191 2401 3371 

 Lagzi et al. (2017b) 18 0.094 1779 1779 377 426 534 

 Lagzi et al. (2017a) 5 468.5 2149 1779 900 1008 3796 

 M1a 5 3.12 2149 1779 310 466 1477 

 M1b 5 2.91 2149 1779 310 526 1525 

 M2 5 0.140 2149 1779 185 266 498 

8 Patil et al. (2015) 96 0.265 2110 2110 2901 2401 3371 

 Lagzi et al. (2017b) 18 0.031 1510 1510 340 426 534 

 Lagzi et al. (2017a) 7 199.7 2470 2110 1104 1320 4754 

 M1a 6 0.936 2210 2110 336 595 2015 

 M1b 6 0.952 2210 2110 336 523 1613 

 M2 6 0.250 2210 2110 204 323 588 
aRelative gap 36.8%. bRelative gap 28.7%. cRelative gap 30.1%. dRelative gap 42.4%. eRelative 

gap 7.27%. fRelative gap 7.27%. Note Δn = 0 for all examples. 
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Table 6 Computational results for Examples 9-20 with maximization of productivity 

Example Model Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu)  

Disc. 

Var. 

Cont. 

Var. 

Constr. 

9 Patil et al. (2015) 480 1.46 2339 2339 10370 8641 20185 

 Lagzi et al. 

(2017b) 

30 0.047 1986 1986 353 523 1214 

 Lagzi et al. 

(2017a) 

5 0.078 2339 2339 576 774 2562 

 M1a 5 0.094 2339 2339 180 301 731 

 M1b 5 0.063 2339 2339 180 361 779 

 M2 5 0.125 2339 2339 120 203 334 

10 Patil et al. (2015) 480 0.749 1175 1175 8659 8161 12971 

 Lagzi et al. 

(2017b) 

9 0.063 775 775 160 137 217 

 Lagzi et al. 

(2017a) 

5 65.95 1783 1175 552 768 2480 

 M1a 3 0.063 1175 1175 102 172 381 

 M1b 3 0.016 1175 1175 102 208 405 

 M2 3 0.110 1175 1175 69 112 166 

11 Patil et al. (2015) 480 1.22 958 958 12847 10588 15371 

 Lagzi et al. 

(2017b) 

10 0.015 858 858 243 199 281 

 Lagzi et al. 

(2017a) 

4 897.7 1308 958 660 690 2740 

 M1a 4 167.3 1284 958 216 329 944 

 M1b 4 157.9 1284 958 216 377 980 

 M2 4 0.094 1284 958 132 188 333 

12 Patil et al. (2015) 480 0.733 868 868 3781 3841 6727 

 Lagzi et al. 

(2017b) 

21 0.093 773 773 102 161 235 

 Lagzi et al. 

(2017a) 

4 0.109 868 868 180 190 785 

 M1a 4 0.062 868 868 48 93 180 

 M1b 4 0.031 868 868 48 117 198 

 M2 4 0.109 868 868 36 75 108 

13 Patil et al. (2015) 480 0.561 797 797 3489 3361 6247 

 Lagzi et al. 

(2017b) 

25 0.125 557 557 109 169 249 

 Lagzi et al. 

(2017a) 

4 0.047 797 797 160 185 717 

 M1a 4 0.078 797 797 40 81 152 

 M1b 4 0.031 797 797 40 105 170 

 M2 4 0.063 797 797 32 68 96 
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14 Patil et al. (2015) 480 0.577 363 363 4828 3841 7208 

 Lagzi et al. 

(2017b) 

10 0.062 283 283 86 73 131 

 Lagzi et al. 

(2017a) 

7 1981 603 363 384 384 1667 

 M1a 7 6.66 603 363 112 197 429 

 M1b 7 6.26 603 363 112 253 477 

 M2 7 0.328 603 363 84 149 251 

15 Patil et al. (2015) 480 2.89 1279 1254 6264 6721 10569 

 Lagzi et al. 

(2017b) 

25 0.046 666 666 212 337 455 

 Lagzi et al. 

(2017a) 

8 162.0 1404 1254 540 585 2341 

 M1a 7 5.01 1404 1254 154 281 624 

 M1b 7 4.60 1404 1254 154 337 672 

 M2 7 0.234 1404 1254 105 221 348 

16 Patil et al. (2015) 480 1.17 1340 1340 7842 6241 10570 

 Lagzi et al. 

(2017b) 

45 0.047 1040 1040 501 573 817 

 Lagzi et al. 

(2017a) 

5 0.764 1340 1340 432 462 1858 

 M1a 4 0.093 1340 1340 104 177 395 

 M1b 4 0.031 1340 1340 104 217 425 

 M2 5 0.218 1340 1340 90 156 254 

17 Patil et al. (2015) 480 6.40 1275 1275 9260 10081 14891 

 Lagzi et al. 

(2017b) 

27 0.109 1168 1168 303 547 699 

 Lagzi et al. 

(2017a) 

18 3600a 2370 1275 1672 1881 7257 

 M1a 18 3600b 1687 1275 612 1081 2706 

 M1b 18 3600c 1687 1275 612 1261 2876 

 M2 18 103.0 1687 1275 396 848 1426 

18 Patil et al. (2015) 480 217.6 2330 2330 32445 38401 45135 

 Lagzi et al. 

(2017b) 

27 0.063 1132 1132 1067 2081 2293 

 Lagzi et al. 

(2017a) 

20 3600d 3259 1194 6300 7350 26491 

 M1a 17 3600e 2744 2294 2312 3792 16722 

 M1b 17 3600f 2744 2300 2312 4030 16946 

 M2 17 3600g 2744 2330 1275 2687 4715 

19 Patil et al. (2015) 480 478.1 3752 3692 48448 60001 67697 

 Lagzi et al. 

(2017b) 

27 0.266 2340 2340 1253 3251 3447 

 Lagzi et al. 

(2017a) 

16 3600h 6856 2604 7956 8959 32950 

 M1a 22 3600i 4575 3357 4796 7723 43695 

 M1b 22 3600j 4575 3376 4796 8075 44031 

 M2 21 3600k 4563 3692 2457 5142 9153 
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20 Patil et al. (2015) - - - - - - - 

 Lagzi et al. 

(2017b) 

41 57.5 53100 53100 71574 109575 42361 

 Lagzi et al. 

(2017a) 

- - - - - - - 

 M1a - - - - - - - 

 M1b - - - - - - - 

 M2 15 3600l 196745 69664 44865 73536 186189 
aRelative gap 46.2%. bRelative gap 24.4%. cRelative gap 42.4%. dRelative gap 15.4%.  eRelative 

gap 16.4%. fRelative gap 16.2%. gRelative gap 4.03%. hRelative gap 56.1%. iRelative gap 26.7%. 

jRelative gap 26.2%. kRelative gap 18.6%. l Relative gap 63.7%. Note Δn = 0 for all examples. 

 

 By examining the models M1a and M1b, both of them lead to the same MILP 

relaxation for all these examples. The model M1a leads to smaller number of continuous 

variables and constraints but the same number of discrete variables compared to the model 

M1b. For instance, for Example 4 the model M1a require 1086 continuous variables and 

4667 constraints to generate the optimal solution, while the model M1b require 1170 and 

4739 respectively. However, the model M1a requires slightly more computational time 

than the model M1b in some cases. For both models M1a and M1b the computational 

time required is within the same order of magnitude. For instance, the model M1a needs 

84.69 s to generate the optimum solution for Example 4, whereas the model M1b requires 

80.11 s. 

 Table 6 lists the computational results for Examples 9-20. As it is demonstrated, the 

model M2 is the most superior among all six formulations for most examples (Examples 

9-17). The optimal schedule for Example 17 is illustrated in Figure 5. From Figure 5, it 

can be again confirmed that samples from different customers can be processed 

simultaneously in the same unit. However, the model M2 generate the optimum solution, 

but it fails to converge within 1 hour for more complex examples (e.g., Examples 18-19), 

whereas the uniform discrete-time formulation of Patil et al. (2015) generates the 

optimum solution for Examples 18-19 within 1 hour.  Consequently, it seems that the 

tighter relaxation of the discrete-time model of Patil et al. (2015) makes it more efficient 

for more complex problems when productivity is maximized. The process-slot model of 

Lagzi et al. (2017a) and the models M1a and M1b require more computational time to 

generate the optimum solution than the discrete-time model of Patil et al. (2015) for most 

examples even though they lead to smaller model size. Among all models, the one of 

Lagzi et al. (2017a) seems to have the worse MILP relaxation and hence it performs worse 

than the other models for most examples. The model of Lagzi et al. (2017b) requires 
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significantly less computational time than all other models for all examples especially for 

large and complex examples (Examples 18-20) with less than one second required to 

generate a solution for Examples 18-19 and less than one minute for Example 20. 

However, the solution quality is much worse compared to other models. Similar 

observations can be made for the models M1a and M1b as those from previous Examples 

2-8. For instance, the proposed model M2 is able to generate the solution of 69664 cu for 

Example 20, while the model of Lagzi et al. (2017b) generates a significantly worse 

solution of 53100 cu. 

Table 7 Computational results of Examples 21-25 with maximization of productivity 

Example Model Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu) 

Discr. 

Var. 

Cont. 

Var. 

Constr. 

21a Patil et al. (2015) 480 7.27 666 666 71220 64375 65850 

(H= Lagzi et al. (2017b) 49 0.078 666 666 2923 2305 3369 

480min) Lagzi et al. (2017a) 3 0.202 846 666 3744 4920 16330 

 M1a 3 0.047 846 666 966 1330 4325 

 M1b 3 0.046 846 666 966 1768 4617 

 M2 3 0.094 846 666 702 669 2284 

21b Patil et al. (2015) 1440 13.4 666 666 264570 141745 197370 

(H= Lagzi et al. (2017b) 145 0.109 666 666 9652 6913 10105 

1440min) Lagzi et al. (2017a) 3 1.65 846 666 3744 4920 16330 

 M1a 3 0.078 846 666 966 1330 4325 

 M1b 3 0.062 846 666 966 1768 4617 

 M2 3 0.110 846 666 702 669 2284 

22a Patil et al. (2015) 480 1.54 682 682 63822 56862 58635 

(H= Lagzi et al. (2017b) 49 0.062 682 682 2879 2305 3341 

480min) Lagzi et al. (2017a) 3 0.218 862 682 3248 3964 13888 

 M1a 3 0.140 862 682 876 1192 3862 

 M1b 3 0.078 862 682 876 2337 5806 

 M2 3 0.032 862 682 609 573 2039 

22b Patil et al. (2015) 1440 9.24 682 682 229373 132271 175755 

(H= Lagzi et al. (2017b) 145 0.109 682 682 9331 6913 10021 

1440min) Lagzi et al. (2017a) 3 1.84 862 682 3248 3964 13888 

 M1a 3 0.078 862 682 876 1192 3862 

 M1b 3 0.063 862 682 876 1534 4090 

 M2 3 0.094 862 682 609 573 2039 

23a Patil et al. (2015) 480 1.98 662 662 59587 50034 55268 

(H= Lagzi et al. (2017b) 49 0.032 662 662 2572 2305 13966 

480min) Lagzi et al. (2017a) 3 0.187 842 662 2880 3508 12310 

 M1a 3 0.140 842 662 780 1073 3365 

 M1b 3 0.047 842 662 780 1375 3565 

 M2 3 0.062 842 662 540 531 1828 
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23b Patil et al. (2015) 1440 10.1 662 662 212718 115783 165668 

(H= Lagzi et al. (2017b) 145 0.188 662 662 8357 6913 9853 

1440min) Lagzi et al. (2017a) 3 2.68 842 662 2880 3508 12310 

 M1a 3 0.078 842 662 780 1073 3365 

 M1b 3 0.062 842 662 780 1375 3565 

 M2 3 0.047 842 662 540 531 1828 

24a Patil et al. (2015) 480 1.95 650 650 28860 93267 60559 

(H= Lagzi et al. (2017b) 49 0.062 650 650 2882 2305 3373 

480min) Lagzi et al. (2017a) 3 0.187 830 650 3296 4132 14194 

 M1a 3 0.109 830 650 876 1201 3977 

 M1b 3 0.031 830 650 876 1561 4217 

 M2 3 0.047 830 650 618 591 2054 

24b Patil et al. (2015) 1440 9.89 650 650 230662 135305 181519 

(H= Lagzi et al. (2017b) 145 0.172 650 650 9355 6913 10117 

1440min) Lagzi et al. (2017a) 3 2.64 830 650 3296 4132 14194 

 M1a 3 0.062 830 650 876 1201 3977 

 M1b 3 0.063 830 650 876 1561 4217 

 M2 3 0.031 830 650 618 591 2054 

25a Patil et al. (2015) 480 1.81 688 688 62470 59656 57191 

(H= Lagzi et al. (2017b) 49 0.078 688 688 2837 2353 15288 

480min) Lagzi et al. (2017a) 3 0.125 868 688 3280 3816 13852 

 M1a 3 0.047 868 688 906 1216 4021 

 M1b 3 0.046 868 688 906 1540 4237 

 M2 3 0.062 868 688 615 560 2083 

25b Patil et al. (2015) 1440 35.5 688 688 228641 137325 171431 

(H= Lagzi et al. (2017b) 145 0.062 688 688 9291 6892 22318 

1440min) Lagzi et al. (2017a) 3 15.5 868 688 3280 3816 13852 

 M1a 3 0.078 868 688 906 1216 4021 

 M1b 3 0.140 868 688 906 1540 4237 

 M2 3 0.078 868 688 615 560 2083 

Note Δn = 0 for all examples. 

 

Table 8 Computational results for Examples 26-32 with maximization of productivity 

Example Model Event 

points 

CPU 

time (s) 

RMILP 

(cu) 

MILP 

(cu) 

Disc. 

Var. 

Cont. 

Var. 

Constr. 

26a Patil et al. (2015) 480 6.08 1280 1280 95756 118676 87448 

(H= Lagzi et al. (2017b) 49 0.14 1280 1280 4145 4561 5701 

480min) Lagzi et al. (2017a) 5 60.1 2288 1280 8424 12042 36275 

 M1a 5 0.344 2173 1280 2830 3646 16649 

 M1b 5 0.296 2173 1280 2830 4326 17193 

 M2 5 0.156 2173 1280 1755 1496 7126 

26b Patil et al. (2015) 1440 18.1 1280 1280 360876 281716 262168 

(H= Lagzi et al. (2017b) 145 0.171 1280 1280 7669 13681 16198 

1440min) Lagzi et al. (2017a) 5 3600a 2288 1280 8424 12042 36275 

 M1a 5 10.5 2288 1280 2830 3646 16649 

 M1b 5 9.24 2288 1280 2830 4326 17193 

 M2 5 0.188 2288 1280 1755 1496 7126 
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27a Patil et al. (2015) 480 8.83 1284 1284 111175 111435 90816 

(H= Lagzi et al. (2017b) 49 0.141 1284 1284 5012 4513 5637 

480min) Lagzi et al. (2017a) 5 96.6 2244 1284 8856 13392 38669 

 M1a 5 0.483 2140 1284 2920 3776 18010 

 M1b 5 0.421 2140 1284 2920 4546 18626 

 M2 5 0.109 2140 1284 1845 1577 7388 

27b Patil et al. (2015) 1440 18.7 1284 1284 421995 245095 272256 

(H= Lagzi et al. (2017b) 145 0.172 1284 1284 16630 13537 16909 

1440min) Lagzi et al. (2017a) 5 3600b 2244 1284 8856 13392 38669 

 M1a 5 4.76 2244 1284 2920 3776 18010 

 M1b 5 4.38 2244 1284 2920 4546 18626 

 M2 5 0.188 2244 1284 1845 1577 7388 

28a Patil et al. (2015) 480 2.53 1260 1260 103942 124920 86486 

(H= Lagzi et al. (2017b) 49 0.140 1260 1260 4868 4561 5605 

480min) Lagzi et al. (2017a) 5 158.3 2220 1260 9144 12084 38633 

 M1a 5 0.421 2116 1260 3140 3951 19027 

 M1b 5 0.358 2116 1260 3140 4621 19563 

 M2 5 0.110 2116 1260 1905 1486 7768 

28b Patil et al. (2015) 1440 12.2 1260 1260 404323 281299 259286 

(H= Lagzi et al. (2017b) 145 0.234 1260 1260 16336 13681 16813 

1440min) Lagzi et al. (2017a) 5 3600c 2220 1260 9144 12084 38633 

 M1a 5 15.4 2220 1260 3140 3951 19027 

 M1b 5 14.6 2220 1260 3140 4621 19563 

 M2 5 0.156 2220 1260 1905 1486 7768 

29a Patil et al. (2015) 480 7.97 1188 1188 97698 118659 86968 

(H= Lagzi et al. (2017b) 49 0.078 1188 1188 4413 4513 5653 

480min) Lagzi et al. (2017a) 5 670.0 2196 1188 8544 12072 36685 

 M1a 5 0.374 2081 1188 2880 3691 16875 

 M1b 5 0.265 2081 1188 2880 4371 17419 

 M2 5 0.047 2081 1188 1780 1487 7223 

29b Patil et al. (2015) 1440 18.0 1188 1188 376692 271665 260728 

(H= Lagzi et al. (2017b) 145 0.172 1188 1188 14798 13537 16959 

1440min) Lagzi et al. (2017a) 5 3600d 2196 1188 8544 12072 36685 

 M1a 5 6.33 2196 1188 2880 3691 16875 

 M1b 5 5.88 2196 1188 2880 4371 17419 

 M2 5 0.156 2196 1188 1780 1487 7223 

30a Patil et al. (2015) 480 4.76 1348 1348 110609 114886 94182 

(H= Lagzi et al. (2017b) 49 0.078 1348 1348 5082 4561 5813 

480min) Lagzi et al. (2017a) 5 737.0 2308 1348 8976 13836 39385 

 M1a 5 0.452 2204 1348 2940 3816 17978 

 M1b 5 0.359 2204 1348 2940 4616 18618 

 M2 5 0.078 2204 1348 1870 1616 7465 

30b Patil et al. (2015) 1440 20.2 1348 1348 411010 264725 282342 

(H= Lagzi et al. (2017b) 145 0.250 1348 1348 16751 13681 17437 

1440min) Lagzi et al. (2017a) 5 3600e 2308 1348 8976 13836 39385 

 M1a 5 5.48 2308 1348 2940 3816 17978 

 M1b 5 5.15 2308 1348 2940 4616 18618 

 M2 5 0.078 2308 1348 1870 1616 7465 
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31 Patil et al. (2015) - - - - - - - 

(H= Lagzi et al. (2017b) 241 5.98 34805 35005 228859 228481 235461 

2400min) Lagzi et al. (2017a) - - - - - - - 

 M1a - - - - - - - 

 M1b - - - - - - - 

 M2 40 3600f 46516 36965 119360 78029 306653 

32 Patil et al. (2015) - - - - - - - 

(H= Lagzi et al. (2017b) 241 5.98 39827 39827 220892 228481 235461 

2400min) Lagzi et al. (2017a) - - - - - - - 

 M1a - - - - - - - 

 M1b - - - - - - - 

 M2 40 3600g 56727 49991 117360 78029 302753 
aRelative gap 44.1%. bRelative gap 42.8%. cRelative gap 43.2% dRelative gap 45.9%. eRelative gap 

41.6%. fRelative gap 25.4%. gRelative gap 8.1%. Note Δn = 0 for all examples. 

 

 

Figure 5 Optimal schedule for Example 17 using the model M2 with maximization of 

productivity 

 

 Tables 7-8 present the computational results for Examples 21-32. From Tables 7-8, 

it seems that the discrete-time model of Patil et al. (2015) as well as the models M1a, 

M1b and M2 are more efficient compared to the process-slot model of Lagzi et al. 

(2017a). For instance, in Example 27b, the formulation of Lagzi et al. (2017a) could 

generate the optimal solution but could not converge after 1 hour, while all other 

formulations are able to generate the optimal solution in less than 1 minute. The 

developed model M2 is more superior compared to the discrete-time model of Patil et al. 

(2015). For example, the model M2 requires 99.0% less computational time than the 

discrete-time model of Patil et al. (2015) (0.188 s vs. 18.7 s) to generate the optimal 

solution for Example 27b. The model of Lagzi et al. (2017b) is also able to generate the 
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optimum solution for Examples 21-30. Furthermore, the tight relaxation of the Lagzi et 

al. (2017b) model makes it as efficient as the mathematical models M1a, M1b and M2 

for this set of examples. However, the model of Lagzi et al. (2017b) fails to generate the 

optimal solution for large-scale examples. For instance, for Example 31 the model of 

Lagzi et al. (2017b) generates a solution of 35005 cu, while the proposed model M2 

generates a better solution of 36965 cu. Similarly, for Example 32 the proposed model 

M2 is able to generate a significantly better solution of 49991 cu than the model of Lagzi 

et al. (2017b) which generates a solution of 39827 cu. On the other hand, both 

mathematical models M1a and M1b are more efficient than the discrete-time model of 

Patil et al. (2015). More specifically, both M1a and M1b models require at least one 

order of magnitude less computational time than the model of Patil et al. (2015) to 

generate the optimal solution for all these examples. This is because both models lead to 

significantly smaller model size. For instance, both models M1a and M1b require 98.6% 

less discrete variables (966 vs 71220) to generate the optimal solution for Example 21a.  

Minimization of makespan 

Table 9 gives the computational results for Examples 2-8. From Table 9, it seems that the 

process-slot model of Lagzi et al. (2017a) is not suitable for the problem of makespan 

minimization since it is unable to generate the optimum solution within 1 hour for most 

examples. The model of Lagzi et al. (2017b) is also not suitable since it fails to generate 

the optimum solution for all these examples. The discrete-time formulation of Patil et al. 

(2015) and the model M2 are able to generate the optimum solution within 1 hour. 

Between these two models, the model M2 is more efficient since it generates the optimum 

solution in at least two orders of magnitude less computational time. This is due to the 

fact that the model M2 leads to both much smaller model size and a tighter MILP 

relaxation. Similarly, the models M1a and M1b require less computational time than the 

discrete-time formulation of Patil et al. (2015), due to their much smaller model size and 

tighter MILP relaxation. However, in some cases such as Examples 3 and 6, the proposed 

models fail to converge after 1 hour, while the discrete-time of Patil et al. (2015), requires 

significantly less computational time to converge (93.5 s and 17.3 s respectively). 
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Table 9 Computational results for Examples 2-8 with minimization of makespan 

Example Model Event 

points 

CPU 

time 

(s) 

RMILP 

(min) 

MILP 

(min) 

Disc. 

Var. 

Cont. 

Var. 

Constr. 

2 Patil et al. (2015) 250 43.62 16.34 1005 12420 10251 21810 

 Lagzi et al. (2017b) 43 0.327 198.29 1215 1523 1723 2187 

 Lagzi et al. (2017a) 7 3600a 95.46 1005 1664 2336 7364 

 M1a 6 2.70 224.25 1005 552 835 3358 

 M1b 6 2.64 224.25 1005 552 907 3418 

 M2 6 0.249 843.38 1055 312 474 1283 

3 Patil et al. (2015) 250 93.5 23.90 1065 14544 11501 25636 

 Lagzi et al. (2017b) 43 0.312 351.82 1275 1696 1933 2396 

 Lagzi et al. (2017a) 8 3600b 99.50 1065 2196 2709 9411 

 M1a 8 3600c 125.13 1065 880 1297 5894 

 M1b 8 3600d 125.13 1065 880 1393 5978 

 M2 8 0.187 934.38 1065 488 717 2068 

4 Patil et al. (2015) 250 147.5 18.43 1055 13846 11251 24626 

 Lagzi et al. (2017b) 43 0.421 229.15 1275 1605 1891 2355 

 Lagzi et al. (2017a) 8 3600e 79.61 1055 2088 2682 9039 

 M1a 7 84.7 143.54 1055 728 1086 4667 

 M1b 7 80.1 143.54 1055 728 1170 4739 

 M2 8 1.17 845.00 1055 464 702 1995 

5 Patil et al. (2015) 250 49.2 18.34 1035 12155 10001 21216 

 Lagzi et al. (2017b) 43 0.343 209.43 1215 1415 1682 2145 

 Lagzi et al. (2017a) 6 9.35 67.28 1035 1428 2037 6337 

 M1a 6 1.01 230.75 1035 540 817 3128 

 M1b 6 1.04 230.75 1035 540 889 3188 

 M2 6 0.218 864.50 1035 306 463 1247 

6 Patil et al. (2015) 250 17.3 69.61 1230 13315 11001 23816 

 Lagzi et al. (2017b) 45 0.280 327.38 1455 1552 1938 2421 

 Lagzi et al. (2017a) 8 3600f 152.92 1230 2016 2664 8791 

 M1a 8 3600g 144.63 1230 792 1209 5088 

 M1b 8 3600h 144.63 1230 792 1305 5172 

 M2 8 0.280 1018.88 1230 440 687 1923 

7 Patil et al. (2015) 600 103.0 5.84 570 20287 15001 58986 

 Lagzi et al. (2017b) 23 0.078 209.44 665 521 551 793 

 Lagzi et al. (2017a) 6 3600i 56.35 570 1050 1176 4444 

 M1a 6 197.5 106.38 570 372 559 1847 

 M1b 6 194.4 106.38 570 372 631 1907 

 M2 6 0.655 360.75 570 222 323 878 

8 Patil et al. (2015) 650 69.02 25.68 635 20199 16251 59412 

 Lagzi et al. (2017b) 25 0.109 471.00 785 525 601 863 

 Lagzi et al. (2017a) 7 784.1 25.92 635 1104 1320 4758 

 M1a 6 5.210 134.13 635 336 523 1645 

 M1b 6 4.633 134.13 635 336 595 1705 

 M2 7 0.686 481.00 635 238 380 986 
aRelative gap 34.1%%. bRelative gap 25.9% cRelative gap 22.5%. dRelative gap 25.9%. 
eRelative gap 45.6%. fRelative gap 32.9%. gRelative gap 10.8% hRelative gap 11.0%.  
iRelative gap 1.62%. Note Δn = 0 for all examples. 
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 Table 10 presents the computational results for Examples 9-19. From these 

examples, it can be concluded that the model M2 is superior compared to the other five 

models, even though it requires more number of event points compared to models M1a 

and M1b in some cases. It can also be observed that the model M2 is able to generate 

solutions for more complex examples, (Examples 18-19). More specifically, the model 

M2 can generate the optimum solution for Example 18 within a minute (i.e., 28.5 s). 

However, the models of Patil et al. (2015) and Lagzi et al. (2017a) are unable to generate 

a feasible solution and the models M1a and M1b fail to generate the optimum solution 

after 1 hour. The superiority of the model M2 lays to the fact that it not only leads to 

smaller model size but also leads to tighter MILP relaxation for makespan minimization 

problems. The optimal schedule for Example 17 using model M2 is illustrated in Fig. 4. 

Similarly, it can be confirmed that the proposed model allows more than one tasks to take 

place in a processing unit simultaneously (Fig. 4 and Table 12). From Table 10, it seems 

that both the models M1a and M1b perform better than the models Patil et al. (2015), 

Lagzi et al. (2017a) and Lagzi et al. (2017b). The main reason that the models M1a and 

M1b are more efficient is that they both lead to smaller model size and tighter MILP 

relaxation. For instance, in Example 15, the model M1a requires one order of magnitude 

less computational time than the discrete-time formulation of Patil et al. (2015) (1.451 s 

vs 13.74 s), two orders of magnitude less computational time than the process-slot model 

of Lagzi et al. (2017a) (1.451 s vs 119.7 s) and one order of magnitude less computational 

time than the model of Lagzi et al. (2017b) (1.451 s vs 13.7 s). However, both M1a and 

M1b fail to generate optimum solutions in more complex problems (Examples 17-19). 

By comparing the models M1a and M1b, both tightening constraints lead to the same 

MILP relaxation, indicating that they are very similar. Furthermore, the model M1a leads 

to slightly smaller model size. Despite that, for both models the computational time 

required is within the same order of magnitude.  
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Figure 6 Optimal schedule for Example 17 using model M2 with minimization of 

makespan 

Table 10 Computational results for Examples 9-19 with minimization of makespan 

Example Model Event 

points 

CPU 

time (s) 

RMILP 

(min) 

MILP 

(min) 

Disc. 

Var. 

Cont. 

Var. 

Constr. 

9 Patil et al. (2015) 200 4.57 3.97 176 3650 3601 13338 

 Lagzi et al. (2017b) 60 0.203 52.19 212 918 1081 1685 

 Lagzi et al. (2017a) 7 3600a 6.64 176 768 992 3394 

 M1a 5 0.406 38.28 176 180 301 753 

 M1b 5 0.421 38.28 176 180 361 801 

 M2 6 0.265 132.96 176 144 246 560 

10 Patil et al. (2015) 1300 317.2 34.89 1272 27519 22101 75296 

 Lagzi et al. (2017b) 35 0.281 227.59 1519 773 596 1144 

 Lagzi et al. (2017a) 7 23.2 432.31 1272 736 984 3284 

 M1a 7 0.842 443.43 1272 238 400 990 

 M1b 7 0.858 443.43 1272 238 484 1062 

 M2 7 0.093 1146.24 1272 161 276 621 

11 Patil et al. (2015) 1100 1984 5.01 1045 33334 24201 92636 

 Lagzi et al. (2017b) 38 0.593 156.09 1342 1133 837 1396 

 Lagzi et al. (2017a) 8 3600b 239.51 1056 1188 1170 4939 

 M1a 8 2.50 225.76 1045 432 657 2071 

 M1b 8 2.37 225.76 1045 432 753 2155 

 M2 8 0.171 712.64 1045 264 392 1050 

12 Patil et al. (2015) 500 1.79 2.49 465 3961 4001 11659 

 Lagzi et al. (2017b) 24 0.047 99.70 551 116 185 315 

 Lagzi et al. (2017a) 4 0.047 45.48 465 180 190 786 

 M1a 4 0.078 123.70 465 48 93 187 

 M1b 4 0.094 123.70 465 48 117 205 

 M2 4 0.124 225.56 465 36 75 142 

13 Patil et al. (2015) 300 0.484 3.91 289 2049 2101 6118 

 Lagzi et al. (2017b) 21 0.015 109.99 299 91 142 244 

 Lagzi et al. (2017a) 4 0.125 35.40 289 160 185 718 

 M1a 4 0.093 68.08 289 40 81 158 

 M1b 4 0.094 68.08 289 40 105 176 

 M2 4 0.109 116.03 289 32 68 123 
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14 Patil et al. (2015) 750 69.6 6.26 703 8068 6001 21212 

 Lagzi et al. (2017b) 16 0.109 299.86 759 162 121 279 

 Lagzi et al. (2017a) 9 300.2 193.48 703 480 620 2190 

 M1a 9 5.37 195.94 703 144 253 566 

 M1b 9 5.38 195.94 703 144 325 630 

 M2 9 0.078 367.81 703 108 193 420 

15 Patil et al. (2015) 600 13.7 4.02 555 8064 6401 26642 

 Lagzi et al. (2017b) 101 0.374 91.97 625 939 1401 2138 

 Lagzi et al. (2017a) 8 119.7 88.09 555 540 585 2343 

 M1a 7 1.45 137.39 555 154 281 637 

 M1b 7 1.48 137.39 555 154 337 685 

 M2 7 0.203 307.50 555 105 221 469 

16 Patil et al. (2015) 500 2.12 6.92 466 8202 6501 22707 

 Lagzi et al. (2017b) 51 0.062 253.66 520 583 651 1101 

 Lagzi et al. (2017a) 6 8.13 0.00 466 504 539 2175 

 M1a 4 0.062 159.19 466 104 177 410 

 M1b 4 0.234 159.19 466 104 217 440 

 M2 5 0.140 327.32 466 90 156 341 

17 Patil et al. (2015) 1200 1447 8.18 1185 25100 25201 73824 

 Lagzi et al. (2017b) 70 0.094 305.17 1297 876 1450 2071 

 Lagzi et al. (2017a) 19 3600c 108.11 1185 1760 1980 7644 

 M1a 19 3600d 255.29 1185 646 1141 2880 

 M1b 19 3600e 255.29 1185 646 1331 3060 

 M2 19 151.4 919.06 1185 418 896 2051 

18 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) 376 4.20 1228.30 1725 12692 30001 33492 

 Lagzi et al. (2017a) - - - - - - - 

 M1a 52 3600f 167.75 1820 7072 11597 52711 

 M1b 52 3600g 167.75 1966 7072 12325 53425 

 M2 52 28.5 1562.00 1696 3900 8357 21628 

19 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) 365 27.28 3604.89 6095 22983 45502 50370 

 Lagzi et al. (2017a) - - - - - - - 

 M1a - - - - - - - 

 M1b - - - - - - - 

 M2 59 3600h 3573.47 3722 6903 14642 38785 
aRelative gap 5.24%. bRelative gap 25.9%. cRelative gap 60.7%.  dRelative gap 43.3%. eRelative 

gap 39.4%. fRelative gap 89.4%. gRelative gap 89.6%. hRelative gap 1.98%. Note Δn = 0 for all 

examples. 

 

 Table 11 presents the computational results for Examples 21-23 and 27, which are 

highly complex. The computational results for Examples 20, 24-26 and 28-32 are not 

presented because none of the models could generate optimal solutions or even feasible 

solutions for these six examples within the predefined CPU time (i.e., 1 hr). From Table 

11, it seems that the model M2 is able to generate the best solution within 1 hour. The 
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discrete-time models of Patil et al. (2015) and Lagzi et al. (2017b) are unable to generate 

a feasible solution within 1 hour. Therefore, it can be concluded the model M2 is superior 

compared to the other four models. The models M1a and M1b are only able to generate 

feasible solutions for Examples 21-23. However, they both fail to converge after 1 hour. 

Similar observations can be done regarding the model size of M1a and M1b. 

 

Table 11 Computational results for Examples 21-23 and 27 with minimization of 

makespan 

Example Model Event 

points 

CPU 

time (s) 

RMILP 

(min) 

MILP 

(min) 

Disc. 

Var. 

Cont. 

Var. 

Constr. 

21 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) - - - - - - - 

 Lagzi et al. (2017a) 13 3600a 14.25 7431 13104 18340 59434 

 M1a 13 3600b 169.00 5131 4186 5760 22360 

 M1b 13 3600c 169.00 5131 4186 7658 24112 

 M2 13 3600d 624.38 5131 3042 3039 13097 

22 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) - - - - - - - 

 Lagzi et al. (2017a) 87 3600e 15027.1 39846 71456 94248 320980 

 M1a 87 3600f 16261.4 20930 25404 34540 138580 

 M1b 87 3600g 16261.4 20930 25404 44458 148384 

 M2 87 3600h 620.63 20880 17661 17793 82658 

23 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) - - - - - - - 

 Lagzi et al. (2017a) 14 3600i 56.5 6850 10800 14355 48340 

 M1a 14 3600j 342.00 5131 3640 5013 18767 

 M1b 14 3600k 342.00 5131 3640 6413 20067 

 M2 14 3600l 620.63 5131 2520 2632 11472 

27 Patil et al. (2015) - - - - - - - 

 Lagzi et al. (2017b) - - - - - - - 

 Lagzi et al. (2017a) - - - - - - - 

 M1a - - - - - - - 

 M1b - - - - - - - 

 M2 18 3600m 1203.8 5121 6642 5893 31678 
aRelative gap 99.7%.  bRelative gap 91.2%. cRelative gap 78.9%.  drelative gap 59.5%. eRelative 

gap 58.9%. fRelative gap 12.9%. gRelative gap 5.27%. hRelative gap 21.9%. iRelative gap 49.4%. 
jRelative gap 22.5%.  kRelative gap 49.4%.   lRelative gap 21.8%. mRelative gap 57.0%. Note Δn 

= 0 for all examples. 

5 Conclusions 

In this paper, we developed three novel MILP mathematical formulations using the well-

established unit-specific event-based modelling approach for scheduling of multi-tasking 

multipurpose batch processes in a scientific service facility. Multiple tasks were allowed 
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to be processed simultaneously in the same units. While the timing variables were defined 

based on tasks of the process in the first two models (M1a and M1b), they were 

introduced based on processing units of the process in the third model (M2). Two 

different tightening constraints were proposed in the models M1a and M1b to improve 

their MILP relaxation. The computational results demonstrate that the model M2 is the 

most efficient for most examples since it generates the optimum solution in significantly 

less amount of computational time than all other models. The proposed tightening 

constraints for the models M1a and M1b resulted in the same MILP relaxation for all 

examples. Although the model M1a has less number of constraints and continuous 

variables than the model M1b, it seems that their performance is almost the same. The 

future work is to employ rolling-horizon decomposition approach to solve all examples 

especially those large-scale complex problems that the best model M2 fail to solve. Even 

though this work is focused on scientific service facilities, it can be also implemented in 

any multipurpose batch process industry which allows multiple tasks to take place 

simultaneously in a processing unit. 

 

Table 12 Optimal results for Example 17 with minimization of makespan 

Unit Order/Sample group Samples Start time (min) End time (min) 

J1 O1 14 38 57 

  14 57 76 

  14 76 95 

  14 95 114 

  4 285 304 

 O2 11 19 38 

  4 171 190 

  14 209 228 

  14 228 247 

  14 247 266 

  14 266 285 

 O4 14 0 19 

  3 19 38 

  14 114 133 

  14 133 152 

  14 152 171 

  7 171 190 

  14 190 209 
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J2 O2 11 38 78 

  60 285 325 

 O3 77 95 135 

 O4 17 38 78 

 O4 28 152 192 

  31 209 249 

  4 285 325 

J3 O1 56 135 198 

  4 327 390 

 O2  11 135 198 

  60 327 390 

 O3 77 135 198 

J4 O1 56 198 220 

  4 390 412 

 O2  11 198 220 

  60 390 412 

 O3 77 198 220 

 O4 17 78 100 

  28 324 346 

  31 346 368 

  4 368 390 

J5 O1 56 317 534 

  4 968 1185 

 O2 2 317 534 

  9 751 968 

  60 968 1185 

 O3 9 317 534 

  68 534 751 

 O4 17 100 317 

  59 751 968 

  4 968 1185 
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Nomenclature 

Sets 

𝐼: tasks 

𝐈𝑗: units that can process task 𝑖 

𝐈𝑠
𝐶: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

𝐽: units 

𝑁: event points 

𝑃: processes 

𝐏𝐽: units that are able to process process 𝑝 

𝑆: states 

𝐒𝑅: raw material states 

𝐒𝐼𝑁: intermediate states 

𝐒𝑃: product states 

Indicies 

i: tasks 

j: units 

s: states 

n: event points 

Parameters 

𝛼𝑖: processing time of task 𝑖 

𝛼𝑗: processing time of unit j 

𝐵𝑖
𝑚𝑎𝑥: maximum amount of materials that can be processed at task 𝑖 

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗 

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗 

𝐷𝑠: total amount of samples that have to be examined 

𝐻: scheduling horizon 

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖 

𝑆𝑇0𝑠: initial amount of available state 𝑠 
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𝐵𝑖
𝑚𝑎𝑥: maximum amount of materials that can be processed at task 𝑖 

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗 

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗 

𝐷𝑠: total amount of samples that have to be examined 

𝐻: scheduling horizon 

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖 

𝑆𝑇0𝑠: initial amount of available state 𝑠 

Δ𝑛: maximum number of event points that a task 𝑖 is allowed to span 

𝑀: a large positive number 

Binary variables 

𝑤𝑖,𝑛,𝑛′: 1 if task 𝑖 is active from event point 𝑛 to event point 𝑛′ 

𝑤𝑗,𝑛,𝑛′: 1 if unit 𝑗 is active from event point 𝑛 to event point 𝑛′ 

Integer variables 

𝑏𝑖,𝑛,𝑛′: amount of materials that are processed in task 𝑖 from event point 𝑛 to event point 

𝑛′ 

𝑏𝑖,𝑗,𝑛,𝑛′: amount of materials that are processed in task 𝑖 which takes place at unit 𝑗 from 

event point 𝑛 to event point 𝑛′ 

Continuous variables 

𝑀𝑆: makespan 

𝑆𝑇𝑠,𝑛: amount of state 𝑠 that has to be stored at event point 𝑛 

𝑇𝑖,𝑛
s :  start time of task 𝑖 at event point 𝑛 

𝑇𝑖,𝑛
f : end time of task 𝑖 at event point 𝑛 

𝑇𝑗,𝑛
𝑠 : start time of unit 𝑗 at event point 𝑛 

𝑇𝑗,𝑛
f : end time of unit 𝑗 at event point 𝑛 

𝑦𝑗,𝑛,𝑛′: 1 if unit 𝑗 is active from event point 𝑛 to event point 𝑛′ 

𝑧: total profit 
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Appendix A Discrete-time mathematical model proposed by 

Patil et al. (2015) 

Sets 

𝐼: tasks 

𝐈𝑝: tasks that belong in process p 

𝐈𝑠
𝐶: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

𝐽: units 

𝑃: processes 

𝐏𝐽: units that are able to process process 𝑝 

𝑆: states 

𝑇: time slots 

Parameters 

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗 

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗 

𝑅𝑝: number of resources available for property 𝑝 

𝑆𝑇0𝑠: initial amount of available state 𝑠 

𝑇𝑟𝑝: Duration of examination of property 𝑝 

𝜌𝑖,𝑠: proportion of state 𝑠 that is consumed/produced from task 𝑖 at time slot 𝑡 

Binary variables 

𝑦𝑗,𝑡: binary variable which take the value 1 if unit 𝑗 is active at time slot 𝑡 

Integer variables 

𝑏𝑖,𝑝,𝑡: amount of materials that are processed in task 𝑖 which belongs to process 𝑝 at time 

slot 𝑡 

Continuous variables 

𝑆𝑇𝑠,𝑡: amount of state 𝑠 that has to be stored at time slot 𝑡 
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𝑆𝑇𝑠,𝑡 = 𝑆𝑇𝑠,𝑡−1 + ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡−𝑇𝑟𝑝

𝑝𝑖∈𝐈𝑆
𝑃

+ ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡

𝑝𝑖∈𝐈𝑆
𝐶

 

 ∀s, t > 2 (A1) 

𝑆𝑇𝑠,𝑡 = 𝑆𝑇0𝑠 + ∑ 𝜌𝑖,𝑠 ∑𝑏𝑖,𝑝,𝑡

𝑝𝑖∈𝐈𝑆
𝐶

 

 ∀s, t = 2 (A2) 

𝑦𝑗,𝑡𝐵𝑗
min ≤ ∑ 𝑏𝑖,𝑝,𝑡

𝑖∈𝐈𝑝

≤ 𝑦𝑗,𝑡𝐵𝑗
max 

 ∀p, j∊ Pj, t (A3) 

∑ ∑ 𝑦𝑗,𝑡′

𝑡−𝑇𝑟𝑝+1≤𝑡′≤𝑡𝑗∈𝐏𝑗

≤ 𝑅𝑝 

 ∀p, t  (A4) 

 

Maximization of productivity 

𝑧 = ∑𝑝𝑠

𝑠

∑ ∑∑𝜌𝑖,𝑠 ⋅ 𝑏𝑖,𝑝,𝑡

𝑡𝑝𝑖∈𝑰𝑠
𝑃

 

   (A5) 

Minimization of makespan 

((𝑡 − 1) + 𝑇𝑟𝑝) ⋅ 𝑦𝑗,𝑡 ≤ 𝑀𝑆  ∀p, jPj, t (A6) 

𝑆𝑇𝑠,𝑡 + 𝑏𝑖,𝑝,𝑡 ≥ 𝐷𝑠 ∀s, i, p, t = T (A7) 

While the model of Patil et al. (2015) for maximization of productivity includes 

constraints A1-A5, the model of Patil et al. (2015) for makespan minimization consists 

of A1-A4 and A6-A7. 
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Appendix B Continuous-time mathematical model proposed by 

Lagzi et al. (2017a) 

Sets 

𝐼: tasks 

𝐈𝑗: units that can process task 𝑖 

𝐈𝑠
𝐶: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

𝐽: units 

𝑁: event points 

𝑃 processes 

𝐏𝐽: units that are able to process process 𝑝 

𝑆: states 

Parameters 

𝐵𝑗
𝑚𝑖𝑛: minimum capacity of unit 𝑗 

𝐵𝑗
𝑚𝑎𝑥: maximum capacity of unit 𝑗 

𝐻: scheduling horizon 

𝑇𝐴𝑖: earliest available time that task 𝑖 is available 

𝑇𝑀𝑗: earliest available time that unit 𝑗 is available 

𝛼𝑖: initial amount of materials in task 𝑖  

𝜏𝑗: processing time of unit 𝑗 

Binary variables 

𝑌𝑖,𝑗,𝑛: binary variable which take the value one if task 𝑖 is assigned to unit 𝑗 to start being 

processed at event point 𝑛 

Integer variables  

𝐵𝑖,𝑗,𝑛: amount of materials from task 𝑖 that begins processing in unit 𝑗 at time point 𝑛 

𝐵𝐸𝑖,𝑗,𝑛: amount of materials from task 𝑖 that completes its processing at unit 𝑗 at event 

point 𝑛 

𝐵𝑅𝑖,𝑗,𝑛: amount of materials from task 𝑖 that continues its processing at unit 𝑗 at time point 

𝑛   
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Continuous variables 

𝑆𝐿𝑛: length of time slot 𝑛 

𝑇𝑛: location of event point 𝑛 

𝑇𝑅𝑖,𝑗,𝑛: amount of time remaining to complete processing materials from task 𝑖 that 

continue to be processed at unit 𝑗 at event point 𝑛 

𝑤𝑖,𝑘,𝑛: amount of materials from task 𝑖 that have visited process 𝑝𝑘−1
𝑖  and are waiting to 

visit process 𝑝𝑘
𝑖  at event point 𝑛 

𝑌𝐸𝑖,𝑗,𝑛: 0-1 continuous variable which take the value one if a subset of materials from 

task 𝑖 completed their processing at unit 𝑗 at event point 𝑛 

𝑌𝑅𝑖,𝑗,𝑛: 0-1 continuous variable which take the value one if a subset of materials from 

task 𝑖 continues to be processed at unit 𝑗 at event point 𝑛 

𝑍𝑗,𝑛: 0-1 continuous variable which take the value one if unit 𝑗 starts processing materials 

at event point 𝑛 

∑ 𝑆𝐿𝑛

𝑛>1

= 𝐻 

 (B1) 

𝑇𝑛 − 𝑇𝑛−1 = 𝑆𝐿𝑛 ∀ n > 1 (B2) 

𝑇𝑛 ≥ (max𝑇𝐴𝑖𝑇𝑀𝑗 ⋅ 𝑌𝑖,𝑗,𝑛) ∀j, i ∊ Ij, n (B3) 

𝑧𝑗,𝑛 ≥ 𝑌𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B4) 

𝑧𝑗,𝑛 ≤ ∑𝑌𝑖,𝑗,𝑛

𝑖∈𝐼𝑗

 

 ∀j, n (B5) 

𝑌𝑅𝑖,𝑗,𝑛 = 𝑌𝑅𝑖,𝑗,𝑛−1 + 𝑌𝑖,𝑗,𝑛 − 𝑌𝐸𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n > 1 (B6) 

𝑧𝑗,𝑛 ≥ 𝑌𝐸𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B7) 

𝑧𝑗,𝑛 ≤ 1 − 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B8) 

1 − ∑𝑌𝑅𝑖,𝑗,𝑛

𝑖∈𝐼𝑗

≤ 𝑧𝑗,𝑛 

 ∀j, n (B9) 

𝑌𝑖,𝑗,𝑛 ≤ 1 − 𝑌𝐼0,𝑗,𝑛 ∀j, i ∊ Ij, i ≠ I0, n (B10) 

𝑌𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝑖,𝑗,𝑛 ≤ 𝑌𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B11) 

𝑧𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ ∑𝐵𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ 𝑧𝑗,𝑛 ⋅ 𝐵𝑗
max 
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 ∀j, n (B12) 

𝑌𝑅𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝑅𝑖,𝑗,𝑛 ≤ 𝑌𝑅𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B13) 

(1 − 𝑧𝑗,𝑛) ⋅ 𝐵𝑗
min ≤ ∑𝐵𝑅𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ (1 − 𝑧𝑗,𝑛) ⋅ 𝐵𝑗
max 

 ∀j, n (B14) 

𝑌𝐸𝑖,𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ 𝐵𝐸𝑖,𝑗,𝑛 ≤ 𝑌𝐸𝑖,𝑗,𝑛 ⋅ 𝐵𝑗

max
 ∀j, i ∊ Ij, n (B15) 

𝑧𝑗,𝑛 ⋅ 𝐵𝑗
min ≤ ∑𝐵𝐸𝑖,𝑗,𝑛

𝑖∈𝐈𝑗

≤ 𝑧𝑗,𝑛 ⋅ 𝐵𝑗
max 

 ∀j, n ,  j n  (B16) 

∑ ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖𝑛

≤ 𝛼𝑖 

 ∀ i, p, k = 1 (B17) 

𝐵𝑅𝑖,𝑗,𝑛 + 𝐵𝐸𝑖,𝑗,𝑛 = 𝐵𝑅𝑖,𝑗,𝑛−1 + 𝐵𝑖,𝑗,𝑛−1 ∀j, i ∊ Ij, n (B18) 

𝑊𝑖,𝑘,𝑛 = 𝛼𝑖 + ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘−1
𝑖

− ∑ 𝐵𝐸𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖

 

 ∀ i, k, n = 1 (B19) 

𝑊𝑖,𝑘,𝑛 = 𝑊𝑖,𝑘,𝑛−1 + ∑ 𝐵𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘−1
𝑖

− ∑ 𝐵𝐸𝑖,𝑗,𝑛

𝑗∈𝐉𝑝,𝑝=𝑝𝑘
𝑖

 

 ∀ i, k, n > 1 (B20) 

𝑇𝑅𝑖,𝑗,𝑛 ≤ 𝜏𝑗 ⋅ 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n (B21) 

𝑇𝑅𝑖,𝑗,𝑛+1 ≥ 𝑇𝑅𝑖,𝑗,𝑛 + 𝜏𝑗 ⋅ 𝑌𝑅𝑖,𝑗,𝑛 ∀j, i ∊ Ij, n < N (B22) 

Maximization of productivity 

𝑧 = ∑𝑝𝑠

𝑠

∑ ∑ ∑𝜌𝑖,𝑠 ⋅ 𝐵𝐸𝑖,𝑗,𝑛

𝑛𝑖∈(𝑰𝑗∩𝑰𝑆
𝑃)𝑗

 

 (B23) 

Minimization of makespan 

𝑇𝑛 ≤ 𝑀𝑆 ∀ n = N (B24) 

∑ ∑ ∑𝜌𝑖,𝑠 ⋅ 𝐵𝐸𝑖,𝑗,𝑛

𝑛𝑖∈(𝐈𝑗∩𝐈𝑆
𝑃)𝑗

≥ 𝐷𝑠 

 ∀ s ∊ SP  (B25) 

While the model of Lagzi et al. (2017a) for maximization of productivity includes 

constraints B1-B23, the model of Lagzi et al. (2017a) for makespan minimization consists 
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of B1-B22 and B24-B25. 
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6.3 Rolling horizon decomposition approach for large-scale multi-

tasking multipurpose batch process scheduling problems 

6.3.1 Introduction 

In Chapter 6.2 we presented three unit-specific event-based mathematical models for 

scheduling of multi-tasking, multipurpose batch processes. While the first two models 

use timing variables based on tasks, the timing variables of the third model is based on 

units. The latter model is the most efficient to solve the multi-tasking multipurpose batch 

problem, since it leads to significantly smaller model sizes, which leads to smaller 

computational times. For minimization of makespan, the model also leads to tigher 

relaxation and as a result, it is even able to generate optimum solutions for examples that 

existing model even fail to generate a feasible solution. 

Despite the high efficiency of the unit-specific event-based mathematical model 

using timing variables based on units, it seems that even this model cannot handle large-

scale and complex problems. For instance, for some examples, with minimization of 

makespan as objective, any of the examined mathematical models were able to generate 

a feasible solution after one hour. The main reason behind this issue is that significantly 

high number of orders with many properties have to be examined. This leads to 

exceptionally large model sizes, which makes it impossible for a short-term model to 

solve it directly. 

As discussed before, a number of rolling horizon decomposition approaches were 

developed for the job-shop scheduling problem and the multipurpose batch problem 

(Singer 2001; Lin et al. 2002; Janak et al. 2004; Shaik et al. 2009; Li et al. 2012; Yan et 

al. 2013; Mohammadi and Poursabzi 2014). On the other hand, a rolling horizon 

decomposition approach was not implemented in the multi-tasking problem before. 

Additionally, there is no decomposition approach that can effectively solve problems with 

the same due dates for a large number of due dates or problems with no or the same due 

dates. 

To tackle this problem, we enhance the rolling horizon decomposition approach 

developed for multipurpose batch processes (Lin et al. 2002; Janak et al. 2004; Shaik et 

al. 2009; Li et al. 2012). In this decomposition approach the properties examined are 

divided into a number of groups using mixed-integer programming. Each group is a 

subproblem and the allocation and sequencing of samples included in the same group is 
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considered simultaneously. To effectively divide a large-scale problem, the number of 

groups generated are minimized, while minimizing the difference in the number of orders 

included in each group. Additionally, the number of properties to be included in the model 

are controlled, to generate subproblems that the short-term mathematical model is able to 

generate the optimum solution in small computational time.  The results demonstrate that 

the proposed enhanced rolling horizon decomposition model can successfully decompose 

and solve problem, which all mathematical models fail even to generate a feasible 

solution. 

6.3.2 Enchased Rolling horizon decomposition approach 

As already discussed, there are multiple properties that have to be examined for each 

order/sample group. The scientific service facility cannot randomly examine those 

properties. Instead, the property examination sequence is predefined. To effectively 

divide the scheduling horizon, we introduce a new set K (k = 1, 2, …, K) which denotes 

the kth property that has to be examined of each order. For instance, k = 3 denotes the third 

property that has to be examined for a given order. 

To enhance the rolling horizon decomposition approach, we first introduce a binary 

variable Yg to denote the active groups/subproblems for the given problem. To monitor 

the properties of each order examined in each subproblem, we introduce a binary variable 

𝑌𝑜,𝑘,𝑔
𝑜 .  According to constraint (1), we can examine the kth property of a given order 

during a group/subproblem only if the group/subproblem is active. 

𝑌𝑜,𝑘,𝑔
o ≤ 𝑌𝑔   ∀𝑜, 𝑘 ∈ 𝑂𝑘, 𝑔  (1) 

Additionally, if a group g is active, then it should include at least one property during this 

subproblem. 

∑ 𝑌𝑜,𝑘,𝑔
o

𝑜,𝑘∈𝑂𝑘

≥ 𝑌𝑔 

 ∀ 𝑔  (2) 

During the scheduling horizon all properties of all orders should be examined once. 

∑𝑌𝑜,𝑘,𝑔
𝑜

𝑔

= 1 

         ∀𝑜, 𝑘 ∈ 𝑂𝑘  (3) 
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The examination of the kth property of a given order o can take place in a group g, only if 

(k – 1) property of the same order is already examined in a previous group g < g, or it is 

included in the current group g. 

𝑌𝑜,𝑘′,𝑔
𝑜 ≤ 𝑌𝑜,𝑘,𝑔

𝑜 + ∑ 𝑌𝑜,𝑘,𝑔′
𝑜

𝑔′<𝑔

 

     ∀𝑜, 𝑘, 𝑘′ ∈ 𝑂𝑘, 𝑘
′ = 𝑘 + 1  (4) 

A group g + 1 cannot be selected if the previous group g is not selected. 

𝑌𝑔+1 ≤ 𝑌𝑔  ∀ 𝑔  (5) 

To monitor the number of properties of each order o that a group g contains, we introduce 

a continuous variable TNOo,g. 

𝑇𝑁𝑂𝑜,𝑔 = ∑ 𝑌𝑜,𝑘,𝑔
𝑜

𝑘∈𝑂𝑘

 

         ∀ 𝑜, 𝑔  (6) 

Constraint (7a) sequences the number of properties of each order included in each group 

in decreasing order. 

𝑇𝑁𝑂𝑜,𝑔+1 ≤ 𝑇𝑁𝑂𝑜,𝑔  ∀ 𝑜, 𝑔 < 𝐺  (7a) 

Constraint (7a) limits the minimum number of properties that can be included in a group 

g. For instance, in each group, at least one property from each order should be included. 

Otherwise, if no properties from a given order o are included at group g, then no properties 

from this order can be included in the next groups g > g. As a result, the minimum number 

of orders that can be included in each group (with the exception of the last group) is |O|. 

For very large examples, this however can still lead to subproblems with large model 

sizes, which requires excessive computational time. To avoid this case, we relax 

constraint (7a) by introducing a parameter Mmax. 

𝑇𝑁𝑂𝑜,𝑔+1 ≤ 𝑇𝑁𝑂𝑜,𝑔 + 𝑀max     ∀ 𝑜, 𝑔 < 𝐺  (7b) 

Additionally, the total number of properties included in a group g is monitored by using 

the continuous variable TNOPg. 



 248 

𝑇𝑁𝑂𝑃𝑔 = ∑ 𝑌𝑜,𝑘,𝑔
𝑜

𝑜,𝑘∈𝑂𝑘

 

 ∀ 𝑔  (8) 

To avoid generating subproblems with many properties to be examined, that require 

excessive computational time to generate the optimum solution, we introduce a parameter 

Lmax, which denotes the maximum number of properties that can be included in a group 

g.  

𝑇𝑁𝑂𝑃𝑔 ≤ 𝐿max  ∀ 𝑔  (9) 

Finally, we use two penalties PEN1 and PEN2 in order to minimize the difference in the 

total number of properties included in each group g. 

𝑃𝐸𝑁1 ≥ 𝑇𝑁𝑂𝑜,𝑔 ∀ 𝑜, 𝑔  (10) 

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝑂𝑜,𝑔 + |𝐺| ⋅ (1 − 𝑌𝑔) ∀ 𝑘, 𝑔  (11) 

The objective of this model is to minimize the number of groups selected. In this way we 

minimize the number of subproblems that the main problem is divided. 

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2) 

          (12) 

Where w1 and w2 are the importance weight parameters. 

For each subproblem, the number of event points (ENg) used are equal to the maximum 

number of samples that a unit is able to process plus the number of different properties 

included in the given group g. 

𝐸𝑁𝑔 = max
𝑝

(

 
 

⌈
⌈
⌈
⌈
 

∑

(

 
 ∑ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑜𝑘∈𝐾𝑝,𝐾𝑜

∑ 𝐵𝑗
max

𝑗∈𝐽𝑝 )

 
 

𝑜∈𝑃𝑜

⌉
⌉
⌉
⌉
 

)

 
 

+ |𝑃𝑔| − 1 

         ∀𝑔  (13) 

6.3.3 Computational results 

We implement the proposed enhanced rolling horizon decomposition approach to solve 
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Examples 20-31 from Rakovitis et al. (2020) with minimization of makespan as objective. 

Examples 21-25 contain 5 orders, while examples 26-30 contain 10 orders. On the other 

hand, Examples 20 and 31 large-scale examples, with 100 orders and 200-300 samples 

each. Additionally, 25 properties can be examined in the facility in 84 processing units 

for all Examples. The relevant data for all these examples are presented in Rakovitis et 

al. (2020). Table 1 depicts the parameters Lmax and Mmax used to solve this problem. All 

examples are solved to 1% of optimality gap using CPLEX 12/GAMS 24.6.1. on a 

desktop computer with Intel® Core™ i5-2500 3.3 GHz and 8 GB RAM running Windows 

7. The maximum computational time is one hour for all examples. 

 

Table 1 Additional data for Examples 20-31 

Example Lmax Mmax Example Lmax Mmax 

20 100 0 26 10 0 

21 5 0 27 10 0 

22 5 0 28 10 0 

23 5 0 29 10 0 

24 5 0 30 10 0 

25 5 0 31 50 1 

Table 2 presents the results generated for all examined examples. The results 

demonstrate that the proposed approach is able to generate a schedule for all examples, 

even for those examples that the short-term model of Rakovitis et al. (2020) is not able 

to generate a feasible solution after one hour. For example, by only using the short-term 

model of Rakovitis et al. (2020) we can only generate a solution for Examples 21-23 and 

27. On the contrary, the rolling horizon decomposition approach can generate a solution 

for all Examples 20-31. This approach can even generate solutions for very large and 

complex examples (Example 31). However, for this example excessive computational 

time is required even with rolling horizon decomposition approach. Another conclusion 

is that the proposed approach is able to generate slightly worse solutions than by only 

using the short-term model. For instance, in Example 21 only using the short-term model, 

leads to a solution with a makespan of 5131 min (Rakovitis et al. 2020), after one hour of 

computational time. On the other hand, the proposed rolling horizon decomposition 

approach requires less than one second (0.7 s) to generate an approximately 9% worse 

solution (5621 min). As a result, the benefits of significantly reducing the computational 

time overpass the fact that a slightly worse solution is generated. 
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Table 2 Summary of computational results for large-scale examples 

Example Makespan 

(min) 

Total CPU 

time (s) 

Example Makespan 

(min) 

Total CPU 

time (s) 

20 36199 63.9 26 35075 44.3 

21 5621 0.7 27 7156 1.0 

22 22295 1.2 28 18860 10.9 

23 5815 0.8 29 33775 12.0 

24 19295 1.2 30 23235 2.3 

25 20795 1.1 31 642652 15079.1 

Table 3 depicts more details for each subproblem solved for example 20. In 

Example 20, 100 orders have to be examined for 8 to 9 different properties. We set the 

maximum number of properties (tasks) to be examined (Lmax) is 100. Therefore, in each 

subproblem at most 100 properties can be examined. This is the case for the first eight 

subproblems, while for the last subproblem, only 50 properties are examined. Note that 

different orders can be examined for the same property within a specific subproblem. 

However, the examination of a property for different orders is considered as a different 

task. 

 

Table 3 Computational results for each subproblem for Example 20 

Sub-

problem 

Properties 

(tasks) 

Examined 

Makespan 

(min) 

CPU 

time 

(s) 

Integer 

variables 

Continuous 

variables 

Constraints 

1 100 2660 0.19 3976 6553 11728 

2 100 4910 1.3 3456 5116 12868 

3 100 6326 2.0 3408 6819 14724 

4 100 10674 0.84 3388 3981 11464 

5 100 16969 0.50 4053 3985 12889 

6 100 19843 1.1 2328 3421 8564 

7 100 22699 6.7 6842 6288 21246 

8 100 27424 51.0 6058 7409 20890 

9 50 36199 0.27 2752 5896 11486 

From Table 3, it seems that the rolling horizon decomposition approach can 

successfully decompose the problem that the short-term model can easily solve. For 

instance, the short-term model requires less than one minute to generate the optimal 

solution for a given subproblem. For most subproblems, less than one second is required 

to generate the optimal solution (subproblems 1, 4, 5, 9). Additionally, it seems that all 

examples lead to similar model sizes for all subproblems. As a result, the rolling horizon 

decomposition approach proposed can efficiently divide the problem in smaller 

subproblem that the short-term model can efficiently solve. 
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6.3.4 Conclusions 

Even though the proposed short-term model for scheduling of multi-tasking multipurpose 

batch processes can be very efficient, it seems that in some cases it may fail to generate 

the optimal solution or even to fail to generate a feasible solution in small computational 

time. In this work, we enhance the rolling horizon decomposition approach that is able to 

decompose problems without due dates. From the results generated, it seems that the 

proposed approach can efficiently decompose the problem, in smaller subproblems. As a 

result, implementing this approach to a number of multitasking multipurpose batch 

process scheduling problems, can significantly reduce the computational time required to 

generate a slightly worse solution. Additionally, the proposed approach can generate a 

solution for all examples, in contrast to the case that only the short-term model is used. 
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Chapter 7: Energy-efficient scheduling of flexible 

job-shops 

 

7.1 Introduction 

The flexible job-shop scheduling problem has been well examined in the past decades 

with multiple metaheuristics and mathematical modelling methodologies proposed to 

solve this problem. However, the majority of the formulations only take into 

consideration the economic performance without considering energy consumption. Such 

approaches, even though they generate schedules where the processing units process all 

jobs at the earliest possible time, they often lead to significantly high energy demands. 

Therefore, it is crucial to consider energy consumption in the scheduling problem. Only 

a few approaches considered energy-efficient scheduling of flexible job-shops. Such 

methodologies, either fail to generate the optimal solution even for small examples, since 

they do not consider switching off and on the processing units, or they lead to large model 

sizes and excessive computational time required to generate a solution.  

In this chapter, the proposed framework presented in the previous research 

contributions is implemented to solve the flexible job-shop scheduling problem by 

considering energy consumption. Switching off and on of processing units is also 

considered. Additionally, two mathematical models using sequence-based representation 

is proposed to compare its performance with the proposed unit-specific event-based 

framework. Several examples were solved to examine the capabilities of the models as 

well as the proposed formulations. For large-scale problems, that require excessive 

computational time, an enhanced rolling horizon decomposition approach, by developing 

mixed-integer mathematical programming to group operations is proposed. Finally, the 

capabilities of hybrid algorithms were examined by combining the mathematical 

programming with the genetic evolutionary programming (GEP) approach. More 

specifically, GEP is used to generate the allocation and sequence of operations into units 

and mathematical programming to develop the optimal timings of those operations into 

units. 
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7.2 Research contribution 5 
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Abstract 

In this work, we develop three mathematical models for scheduling of energy-efficient 

flexible job shops, based on unit-specific event-based and local sequence-based approach. 

The computational results demonstrate that the proposed model based on the unit-specific 

event-based representation is superior to the existing models with the same or better 

solutions in less computational time. Furthermore, it can generate feasible solutions for 

some large-scale examples that the previous models fail to solve. To solve larger-scale 

problems, we enhance the existing rolling-horizon decomposition approach in which a 

grouping strategy using mixed-integer programming divides the entire horizon into 

different subproblems. This enhanced rolling-horizon decomposition approach can 

generate good solutions for those large-scale examples that cannot be directly solved 

using the mathematical models in significantly less computational time. It can also 

achieve up to 43.1% less energy consumption for most examples in comparison to the 

existing efficient gene-expression programming-based algorithm. Finally, we combine 

the approaches of mathematical modelling and GEP. Such approach leads to up to 20% 

less energy consumption than the solutions generated by only implementing GEP. 

 

Keywords: Scheduling, mixed-integer programming, flexible job-shops, energy-

efficient, unit-specific event-based approach, sequence-based approach 

 

 

 
§ To whom correspondence should be addressed. jie.li-2@manchester.ac.uk. Tel: +44 (0) 161 306 8622 



258 

 

1. Introduction 

The process industries such as chemical industry, car industry and iron and steel industry 

usually receive multiple orders from different customers daily. Each facility process 

several jobs in the available processing units/machines to fulfil the customers’ demands,. 

Each of these jobs contains multiple operations, where several units are processing . The 

main objective of such a facility is to determine the best sequence of operations on the 

processing units to eliminate their operational cost and satisfy their customer demands 

simultaneously. Furthermore, facilities aim to reduce their energy consumption, which 

also contributes to their expenses, as well as their environmental footprint. Such a 

scheduling problem is commonly known as job-shop scheduling problem (JSSP) 

(Bowman 1959). In JSSP, a processing unit can process at most one operation at each 

time. However, it can process multiple of those operations during the scheduling horizon. 

With highly increasing customer demands, facilities often install several processing units 

that can process the same type of operations instead of one processing unit. Scheduling 

of such facilities is commonly known as flexible job-shop scheduling problem (FJSSP) 

(Wagner 1959). FJSSP is a more general case of the classical job-shop scheduling 

problem. 

 The flexible job-shop scheduling problem has gathered considerable attention 

during the past decades. The first attempts (Brandimarte 1993; Paulli 1995) were solving 

the problem by using the two-stage hierarchical method. While Brandimarte (1993) 

generated schedules based on Tabu search, Paulli (1995) used several dispatching rules 

to solve the same problem. The first stage defines the assignment of operations into 

machines, while the second stage then determines the best sequence of those operations 

in each processing unit. Using such an approach can significantly reduce the 

computational time. However, it is only limited to generate a feasible solution. Integrated 

methods were later proposed, to improve solution quality. These integrated methods solve 

both the assignment and sequence of operations into simultaneously. Different research 

groups developed several metaheuristic approaches including tabu search (Hurink et al. 

1994; Mastrolilli et al. 2000; Saidi-Mehrabad and Fattahi 2007; Fattahi et al. 2007; 

Liouane et al. 2007), genetic algorithm (Chen et al. 1999; Pezzella et al. 2008; Zhang et 

al. 2011; Al-Hinai and ElMekkawy 2011), artificial immune algorithm (Bagheri et al. 

2010; Roshainaei et al. 2013), imperialist competitive algorithm (Karimi et al. 2017), ant 

colony optimization (Liouane et al. 2007), simulated annealing (Fattahi et al. 2007), 
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variable neighbourhood search (Yazdani et al. 2010) and hybrid methods such as particle 

swarm optimization and tabu search (Zhang et al. 2009), genetic algorithm and local 

search (Gao et al. 2006; Gao et al. 2008). Even though these metaheuristics can efficiently 

generate good feasible schedules for the FJSSP, they cannot guaranty the solution 

optimality. Additionally, they also require excessive computational time to solve 

industrial-scale problems. Such issue led to the development of mathematical 

programming approaches for this scheduling problem (Choi and Choi 2002; Gao et al. 

2006; Fattahi et al. 2007; Özgüven et al. 2010; Roshainaei et al. 2013; Karimi et al. 2017). 

Chaudhy and Khan (2016) and Xie et al. (2019) includes more information for different 

approaches for solving the FJSSP. 

 Most of the discussed works considered the economic performance of the FJSSP 

only without incorporating energy consumptions during scheduling. As reported, the 

existing real-life industries suffer from high energy consumption. The processing units 

can consume up to 65% of the total energy consumption during the period that they 

remain idle (Gutowski et al. 2005; Devoldere et al. 2007; Nguyen et al. 2019). A 

processing unit consumes this amount of energy even if it does not process any 

operations/tasks to maintain its functionality. Since most of the existing approaches only 

consider makespan minimization, they generate schedules where one or more processing 

units can remain idle for long periods during the scheduling horizon, resulting in 

significantly high energy consumption. Furthermore, most of the existing formulations 

do not consider switching off-on strategy, which can save energy if a processing unit does 

not process an operation for long periods. The switching off-on strategy can potentially 

lead to significant energy savings of at least 13% (Mouzon et al. 2007).  

 Only a few approaches considered the case of developing energy-efficient 

schedules for the flexible job-shop problem. Zhang et al. (2017) developed an efficient 

algorithm to create good dispatching rules that can generate schedules using gene 

expression programming (GEP). GEP is an evolutionary algorithm which is used to 

develop an efficient model. Similarly, to other evolutionary approaches, a population of 

random chromosomes is used, which are evolved through the mutation and selection 

procedure. Each chromosome can be converted to a formula, model or, in this case, into 

an efficient dispatching rule. This approach can generate several dispatching rules by 

using a set of examples as “training sets”. For more information on GEP, the reader can 

be refer to Zhang et al. (2017). Even though the GEP-based algorithm of Zhang et al. 

(2017) can generate good schedules, even for large-scale problems, it cannot guarantee 
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the solution optimality. As we demonstrate later, the solution obtained from the GEP-

based approach is a bit far from the optimal solution. Zhang et al. (2017) also developed 

a mixed-integer linear programming (MILP) model, which can solve small-scale 

problems to optimality. However, the model requires huge computational time or fails to 

generate schedules for large-scale examples. Wang et al. (2018) developed a two-stage 

optimization method for energy-efficient scheduling of flexible job shops. In the first 

stage, the assignment of operations into processing units is determined using a modified 

genetic algorithm while in the second stage a hybrid genetic algorithm-particle swarm 

optimization approach is used to generate the optimal sequence of operations on each 

processing unit. Although the proposed meta-heuristic approach can generate feasible 

schedules for large-scale examples, it often fails to provide the optimal energy-efficient 

schedule as the assignment and sequencing problems are not solved simultaneously. It 

also did not consider the machine switching off-on strategy, which could further reduce 

energy consumption. Meng et al. (2019) developed six mathematical formulations using 

the modelling approach of Wanger (1959) for a such scheduling problem. By comparing 

those models with the mathematical model of Zhang et al. (2017), they concluded that 

most of their models are more efficient than that of Zhang et al. (2017) due to smaller 

model size and less computational time required. However, these models still require 

excessive computational time or fail to find feasible solutions for large-scale problems. 

Finally, several works have considered the multi-objective optimisation problem of both 

minimizing makespan and total energy consumption for both JSSP (May et al. 2015) and 

FJSSP (Dai et al. 2013; Lei et al. 2016; Mokhtari and Hasani 2017; Zhang et al. 2018; 

Wu and Sun 2018), which will be our future work to extend our approach for the multi-

objective optimisation problem. 

 In this work, we first develop three novel mathematical formulations for the energy-

efficient scheduling of flexible job-shop problem using the improved unit-specific event-

based (Rakovitis et al. 2019) and the local sequence-based (Méndez and Cerdá, 2000) 

time representation. For the local sequence-model, we examine two different sets of 

binary variables to define the sequencing between operations. The proposed formulations 

lead to a tighter MILP relaxation and smaller model size compared to the existing models 

of Zhang et al. (2017) and Meng et al. (2019). As a result, they can generate the same or 

better feasible solutions than the models of Zhang et al. (2017) and Meng et al. (2019).  

Furthermore, they can generate solutions for examples that the existing mathematical 

models of Zhang et al. (2017) and Meng et al. (2019) fail after a specified computational 
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time (e.g., 1 hour). The model based on unit-specific event-based time representation is 

the most efficient and robust since it can generate better solutions than all models. 

Additionally, it can develop solutions for most examples. To solve large-scale and 

computationally expensive problems, we enhance the rolling horizon decomposition 

approach (Lin et al., 2002; Janak et al., 2006; Li et al., 2012) in which a grouping strategy 

using the mixed-integer programming further divides the optimization problem with the 

same due date into sub-problems. The computational results demonstrate the proposed 

decomposition approach can generate optimal schedules for small-scale examples, while 

for large-scale ones, it can generate improved schedules than eGEP with up to 27.6% 

additional energy savings. It can also improve the solution quality with up to 28.5% 

energy savings for the examples with more than ten jobs in significantly less 

computational time in comparison to the short-term model. Finally, we develop a hybrid 

algorithm through a simple combination of the mathematical programming approach with 

the GEP-based approach. In the hybrid algorithm, we use the GEP-based algorithm of 

Zhang et al. (2017) to generate the allocation of operations to the processing units and 

their sequence on these processing units. Then, the two sequence-based models are used 

to determine the optimal timings of operations on the processing units. The computational 

results demonstrate that this hybrid approach can generate improved solutions with up to 

20% energy savings in comparison to the GEP-based method. By comparing the results 

between the enhanced rolling horizon decomposition and the hybrid approach, it seems 

that, even though the hybrid approach can lead to higher energy savings, there are many 

cases where the enhanced rolling horizon decomposition approach can generate a 

schedule with less energy consumption. 

2. Problem description 

Figure 1 illustrates a typical flexible job-shop facility. There are 𝐾 (𝑘 = 1, 2, 3, … , 𝐾) 

jobs to be processed with up to 𝐿 (𝑙 = 1, 2, 3, … , 𝐿) operations in each job and 𝐽 (𝑗 =

1, 2, 3, … , 𝐽) processing units/machines. Each job 𝑘 contains 𝐋𝑘 operations. Each 

operation 𝑙 can be processed in 𝐉𝑙 units. At a time, at most one operation can be processed 

in a processing unit. Each operation is processed exactly once during the entire scheduling 

horizon. The processing sequence of operations in a job 𝑖 is known a prior. An operation 

in a job 𝑖 can only start if all precedent operations in this job have already been processed. 

The disjunctive graph is a method used to represent job-shop and flexible job-shop 

facilities (Roy and Sussmann 1964).  
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Figure 1 A typical flexible job-shop facility using the disjunctive graph representation 

 At a time, a processing unit 𝑗 can either process operations or be idle. When it 

processes an operation 𝑙 that belongs to a job 𝑘, it should process for some duration 

denoted as 𝛼𝑘,𝑙,𝑗. Energy consumed during processing includes direct and indirect energy. 

While direct energy is the energy consumed by processing units to process operations, 

indirect energy is consumed within the facility for processing an operation. Indirect 

energy is not directly related to the processing of an operation. For instance, the facility 

should be properly lighted so that personnel can operate processing units. The cutting 

power that a unit 𝑗 directly requires to process an operation 𝑙 in a job 𝑘 is denoted as 

𝑃𝐶𝑘,𝑙,𝑗. After a processing unit finishes an operation, it can remain on until the next 

processing, or it can be switched off and on right before the next processing. While the 

former is called standby mode, the latter is called switch off/on mode. During standby, a 

processing unit requires energy to maintain its functionality. Such energy is called 

standby energy. Standby energy consumption is related to the time (𝑆𝑇𝑗) that the unit 

remains idle. The unit unload power for standby is constant, and it is denoted as 𝑃𝑈𝑗. 

Energy consumed during switch off and on mode is assumed to be a constant for each 

machine/processing unit, which is denoted as 𝐸𝑂𝑗. The time that the processing unit 

remains idle is denoted as 𝑆𝑇𝑗. The standby energy should not be higher than the switch 

off-on energy between two operations. Figure 2 illustrates the energy consumption profile 

for a processing unit. 

 



263 

 

 

Figure 2 The energy consumption profile for a machine/processing unit 

With these, the energy-efficient scheduling of flexible job-shop problem can be stated as 

follows,  

Given: 

a) 𝐾 jobs to be processed, and corresponding 𝐋𝑘 operations; 

b) 𝐽 processing units, suitable operations that can be processed, processing times; 

c) Unit cutting power (𝑃𝐶𝑘,𝑙,𝑗), indirect energy consumption coefficient (𝛽), unit 

unload power in standby (𝑃𝑈𝑗) and the switch off-on energy consumption (𝐸𝑂𝑗); 

d) Scheduling horizon. 

Determine: 

a) Optimal processing schedule including the allocation of operations to units, their 

sequences, and timings on each unit; 

b) Optimal operating mode for a unit; 

c) Optimal energy consumption profile. 

Operating rules: 

a) At most one operation can be processed in a unit at a time. 

b) An operation must be processed exactly once during the scheduling horizon. 

c) An operation in a job can start only after all precedent operations in the same job 

have finished. 

Assumptions 

a) All parameters are deterministic; 

b) Unlimited unit wait policy;  

c) Unlimited resources are available; 
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d) All jobs must be completed in the scheduling horizon. 

e) All processing units are switched off at the beginning of the scheduling horizon. 

They are switched on right before the time that the first operation has to be 

processed in this unit; 

f) All processing units are switched off after the finish processing the last operation. 

 The objective is to minimize total energy consumption, which consists of direct, 

indirect, standby and switch off-on energy consumptions. 

3. Mathematical formulations 

We develop four mathematical formulations using the unit-specific event-based 

modelling approach and the sequence-based modelling approach. While the first model 

is based on unit-specific event-based representation, the next two models use the local 

sequence-based approach.  

3.1. Unit-specific event-based formulation (M1) 

The improved unit-specific event-based modelling approach (Rakovitis et al. 2019) is 

used to develop the model M1 since its advantages have been well established in the 

literature. In this modelling approach, the scheduling horizon is divided based on 

processing units (Rakovitis et al. 2019; Rakovitis et al. 2020). The start and end times of 

the same event point on different units can differ. Furthermore, A parameter Δn is used 

to denote the maximum number of event points that a task is allowed to span over. The 

state-task network representation (Kondili et al. 1993) is used to represent the process, as 

illustrated in Figure 3, which is the STN representation of Figure 1. In this representation, 

an operation is denoted as a task, and it is represented with a rectangle. A circle represents 

an operation that can “produce” or “consume” a state. Then the processing sequence of 

two operations in a job is established with the state. It is assumed that the first operation 

or task in each job consumes a “feed” state denoted as 𝐒𝐹, while the last task of each job 

produces a “product” state, denoted as 𝐒𝑃. Other operations or tasks in a job “produce” 

or “consume” intermediate states, denoted as 𝐒𝐼𝑁. A parameter 𝜌𝑖,𝑠 is used to indicate 

whether a state is consumed (i.e., 𝜌𝑖,𝑠 = −1) or produced (i.e., 𝜌𝑖,𝑠 = 1) by a task 𝑖.  Set 

𝐈𝑗  is defined to denote tasks that can be processed in a processing unit 𝑗, while set 𝐉𝑖 

denotes units that can process a task 𝑖.  
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Figure 3 STN representation of a typical flexible job-shop facility 

3.1.1. Allocation constraints 

We introduce a binary variable 𝑤𝑖,𝑗,𝑛,𝑛 to denote if a task 𝑖 is processed in a unit 𝑗 from 

event point 𝑛 to event point 𝑛 as given below, 

 

, , ,

if a task  is processed in a unit  from event point  to event point 1

0 otherwise
i j n n

i j n n
w 


= 


 

At a time, a processing unit can process at most one task. 

∑ ∑ ∑ 𝑤
𝑖,𝑗,𝑛′,𝑛′′

𝑛≤𝑛″≤𝑛′+Δ𝑛𝑛−Δ𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

≤ 1 

  j, n (1) 

All tasks must be processed once during the scheduling horizon. 

∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑗∈𝐉𝑖

= 1 

 i (2) 

If two tasks 𝑖 and 𝑖 belonging to the same job are related to the same state (i.e. task i 

produces a state  which is consumed by task 𝑖), then the task 𝑖 can only start being 

processed at event point 𝑛 if its related production task 𝑖 ends being processed at the same 

event point 𝑛 or a previous event point 𝑛. 

∑ ∑ ∑ 𝑤𝑖,𝑗,n′′,𝑛′

𝑛′−Δ𝑛≤𝑛′′≤𝑛′𝑛′≤𝑛𝑗∈𝐉𝑖

≥ ∑ 𝑤𝑖′,𝑗′,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛

 

 s 𝐒IN, i∈ 𝐈𝑆
P, j, i∈ (𝐈𝑗 ∩ 𝐈𝑆

C), n (3) 

The number of tasks processed in a processing unit 𝑗 should be within the minimum 

(𝑁𝑗
𝑚𝑖𝑛) and maximum (𝑁𝑗

𝑚𝑎𝑥) limits.  

∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≥ 𝑁𝑗
min 

 j (4) 
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∑∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗

≤ 𝑁𝑗
max 

 j (5) 

The minimum and maximum number of tasks that can be processed in a unit 𝑗 can be 

easily calculated if the available processing units for each task are known. More 

specifically, the minimum number of tasks processed is equal to the number of tasks that 

are only available to be processed exclusively in this unit (𝐈𝑗
𝑒), while the maximum 

number of tasks processed is equal to all tasks that are suitable to be processed in the unit. 

 𝑁𝑗
min = |𝐈𝑗

𝑒| j (6) 

𝑁𝑗
max = |𝐈𝑗| j (7) 

3.1.2. Standby energy calculation 

We introduce a binary variable 𝑥𝑗,𝑛 to denote if a unit 𝑗 remains in the standby mode at 

event point 𝑛 below,  

 ,

if unit  remains in the standby mod

w

e at the begining of event p

s

 1

0 other i e

oint
j nx

j n
= 


 

We also define a positive continuous variable 𝐸𝑆𝑗,𝑛 to denote the standby energy 

consumption of a unit 𝑗 calculated at the beginning of event point 𝑛. Constraints (9) and 

(10) enforce the standby energy consumption of a unit 𝑗 at event point 𝑛 to be equal to 

the idle time multiplying the unit unload power of the unit, if the unit remains in standby 

mode. Otherwise, constraint (8) enforces the standby energy consumption to be equal to 

zero. 

𝐸𝑆𝑗,𝑛 ≤ 𝐸𝑂𝑗 ∙ 𝑥𝑗,𝑛 j, n (8) 

𝐸𝑆𝑗,𝑛 ≤ (𝑇𝑗,𝑛
s − 𝑇𝑗,𝑛−1

f ) ∙ 𝑃𝑈𝑗 j, n > 1 (9) 

𝐸𝑆𝑗,𝑛 ≥ (𝑇𝑗,𝑛
s − 𝑇𝑗,𝑛−1

f ) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ 𝑃𝑈𝑗 ∙ (1 − 𝑥𝑗,𝑛) j, n > 1 (10) 

3.1.3. Duration constraints 

Once a task is processed on a unit 𝑗, it must be processed for some duration (𝛼𝑖,𝑗). 

Therefore, the end time of a unit 𝑗 at event point 𝑛 must be equal to the start time plus the 

processing time of the task processed on this unit 𝑗. If a unit 𝑗 does not process any task, 

then the finish time of this unit 𝑗 should be equal to the start time at event point 𝑛.  
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𝑇𝑗,𝑛
f = 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 

  j, n (11) 

Note that the end time of a unit 𝑗 at event point 𝑛 is enforced to be exactly equal to the 

start time plus the total processing time to correctly monitor the standby energy 

consumption. 

3.1.4. Sequencing constraints 

A processing unit 𝑗 at an event point (𝑛 + 1) must always start after the finish time of 

this unit at the previous event point 𝑛. 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f  j, n < N (12) 

Different tasks in different units 

We need to sequence tasks that are related to the same state but processed in different 

units. More specifically, a consumption task 𝑖 must start after the finish time of its related 

production task 𝑖 at event point 𝑛. We define a continuous variable 𝑇𝑠,𝑛 to denote the time 

that a state 𝑠 is available to be consumed at event point 𝑛. In this case, the finish time of 

a unit j, processing a task which “produces” state 𝑠 should be before 𝑇𝑠,𝑛. 

𝑇𝑠,𝑛 ≥ 𝑇𝑗,𝑛
f − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝑃)

) 

 ,, , 0,
j

IN

s i

i

s j n


  
I

S  (13) 

Furthermore, the start time of unit 𝑗 at event point 𝑛, processing a task which “consumes” 

state 𝑠 should be after the time that state 𝑠 is available at the same event point 𝑛. 

𝑇𝑠,𝑛 ≤ 𝑇𝑗,𝑛
s − 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈(𝐈𝑗∩𝐈𝑠
𝐶)

) 

 

( )
,, , 0,

P
j S

IN

s i

j i

s j n




  

   
I I

S  (14) 

Finally, the time that a state 𝑠 is available at event point 𝑛 must be before the time that 

the same state is available at the next event point (𝑛 + 1).  

𝑇𝑠,𝑛 ≤ 𝑇𝑠,𝑛+1 s  SIN, n < N (15) 

3.1.5. Makespan calculation 

It is necessary to calculate makespan to calculate the total energy consumed in a facility. 
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We define a variable 𝑀𝑆 to denote makespan. Makespan is the earliest time that all tasks 

have already been processed. 

𝑇𝑗,𝑛
f ≤ 𝑀𝑆 j, n = N (16) 

The time that state 𝑠 is available at event point 𝑛 cannot exceed makespan. 

𝑇𝑠,𝑛 ≤ 𝑀𝑆 s  SIN, n (17) 

3.1.6. Additional constraints 

If a job k has a non-zero release time (𝑟𝑘), then all tasks belonging to this job have a non-

zero release time (denoted as 𝑟𝑖). The start time of a unit j processing a task i that belongs 

to this job should be after the release time. 

𝑇𝑗,𝑛
s ≥ ∑ ∑ 𝑟𝑖 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+∆𝑛𝑖∈𝐈𝑗

 

 j, n, ri > 0 (18) 

Similarly, if a job k has a due date (𝑑𝑘), then all tasks belonging to this job has a non-zero 

due date (denoted as 𝑑𝑖). The completion time of a unit j processing a task i that belongs 

in this job should be before the due date. 

𝑇𝑗,𝑛
f ≤ ∑ ∑ 𝑑𝑖 ∙ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

+ 𝑀 (1 − ∑ ∑ 𝑤𝑖,𝑗,𝑛′,𝑛

𝑛−∆𝑛≤𝑛′≤𝑛𝑖∈𝐈𝑗

) 

 j, n, di > 0 (19) 

Additionally, constraints (20) and (21) are introduced to avoid violation of forbidden 

sequencing paths and assignments. 

∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

+ ∑ ∑ 𝑤𝑖′,𝑗′,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

≤ 1 

 k, (j, jʹ)  FP, i (Ij ∩ Ik), i(𝐈𝑗′ ∩ 𝐈𝑘), i ≠ i (20) 

∑ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛

= 0 

 j, i  FIj (21) 

Finally, (22) and (23) denote all the continuous and binary variables of model M 

respectively. 

 𝐸𝑆𝑗,𝑛, 𝑀𝑆, 𝑇𝑠,𝑛, 𝑇𝑗,𝑛
s , 𝑇𝑗,𝑛

f ≥ 0  (22) 

𝑤𝑖,𝑗,𝑛,𝑛′, 𝑥𝑗,𝑛 {0, 1}  (23) 
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3.1.7. Objective function 

The objective is to minimize total energy consumption (denoted as TEC), which is 

classified in four different types of energy consumption. In constraint (24), the first term 

calculates direct energy consumption, which is equal to the processing time multiplying 

the unit cutting power, the second term calculates the indirect energy consumption, which 

is proportional to the makespan, while the third term calculates the standby energy 

consumption and the switch off and on energy consumption. 

𝑇𝐸𝐶 = ∑∑∑ ∑ (𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝛼𝑖,𝑗 ⋅ 𝑃𝐶𝑖,𝑗)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗𝑗

+ 𝛽 ⋅ 𝑀𝑆 + 

+∑ ∑[𝐸𝑆𝑗,𝑛 + 𝐸𝑂𝑗 ⋅ (1 − 𝑥𝑗,𝑛)]

𝑛>1𝑗

 

  (24) 

We complete our mathematical model M1, which consists of constraints 1-23 with the 

objective function in 24. The model M1 is a MILP formulation. 

3.1.8. Extensions 

The model M1 is not difficult to extend for the case with varying processing times. If the 

variable processing time is assumed to be linearly dependent on the processing batch size 

(𝑏𝑖,𝑗,𝑛,𝑛), which is denoted as 𝛼𝑖,𝑗,𝑛,𝑛 + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛, then constraint 11 can change by 

replacing the term 𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛 with 𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛 + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛. The following 

constraints can be added for the batch size. 

𝑇𝑗,𝑛
f = 𝑇𝑗,𝑛

s + ∑ ∑ (𝛼𝑖,𝑗 ∙ 𝑤𝑖,𝑗,𝑛,𝑛′ + 𝛽𝑖,𝑗 ∙ 𝑏𝑖,𝑗,𝑛,𝑛′)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑖∈𝐈𝑗

 

  j, n (11a) 

𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝐵𝑖,𝑗
min ≤ 𝑏𝑖,𝑗,𝑛,𝑛′ ≤ 𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝐵𝑖,𝑗

max j, i  Ij, n ≤ n ≤ n + Δn (11b) 

 As already discussed, it is assumed that all processing units switch off before they 

process the first operation and after they finish processing the last operation. However, it 

can be more energy efficient for a unit to remain idle between two scheduling horizons. 

Therefore, we can easily to omit such assumption by calculating the time that the last 

operation of unit j in scheduling horizon H finishes in comparison to the next scheduling 

horizon (H + 1). We use a parameter 𝑇𝑗
0 to denote the time that a unit remaining idle 

before the next scheduling horizon starts |(𝐻 +  1)𝑠𝑡𝑎𝑟𝑡|. After the scheduling problem 

with a scheduling horizon H is solved, then we can calculate the value of 𝑇𝑗
0 as follows, 
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𝑇𝑗
0 = 𝑇𝑗,𝑛

f − |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡|  

 j, n, , , , , , ,1 0 

       +     +

=  =   
j j

i j n n i j n n

j i n n n n j i n n n n n n

w w
I I

 (25) 

Note that  𝑇𝑗
0 < 0, since it is calculated based on the next scheduling horizon (H + 1). In 

this case the standby energy consumption for the first event point is calculated as follows  

𝐸𝑆𝑗,𝑛 ≤ (𝑇𝑗,𝑛
s − 𝑇𝑗

0) ∙ 𝑃𝑈𝑗 j, n = 1 (26) 

𝐸𝑆𝑗,𝑛 ≥ (𝑇𝑗,𝑛
s − 𝑇𝑗

0) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ 𝑃𝑈𝑗 ∙ (1 − 𝑥𝑗,𝑛) j, n = 1 (27) 

Finally, the objective function is modified to consider the standby and switch off-on 

energy consumption at the first event point. 

𝑇𝐸𝐶 = ∑∑∑ ∑ (𝑤𝑖,𝑗,𝑛,𝑛′ ⋅ 𝛼𝑖,𝑗 ⋅ 𝑃𝐶𝑖,𝑗)

𝑛≤𝑛′≤𝑛+Δ𝑛𝑛𝑖∈𝐈𝑗𝑗

+ 𝛽 ⋅ 𝑀𝑆 + 

+∑ ∑[𝐸𝑆𝑗,𝑛 + 𝐸𝑂𝑗 ⋅ (1 − 𝑥𝑗,𝑛)]

𝑛𝑗

 

  (24a) 

Finally, if there is a changeover time from a task to another in a unit j, then it can be 

ensured using the following constraints. 

𝑇𝑗,𝑛+1
s ≥ 𝑇𝑗,𝑛

f + 𝜏𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛+1,𝑛′′

𝑛+1≤𝑛′′≤𝑛+1+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛

𝑛−∆𝑛≤𝑛′′≤𝑛

) 

 𝑗, 𝑖, 𝑖ʹ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖ʹ, n < N, 𝜏𝑗 > 0 (28a) 

where a parameter 𝜏𝑗 denotes the sequence-independent changeover time, which only 

depends on units.  

𝑇𝑗,𝑛
s ≥ 𝑇𝑗,𝑛′

f + 𝜏𝑖′,𝑖,𝑗 ∙ ∑ 𝑤𝑖,𝑗,𝑛,𝑛′′

𝑛≤𝑛′′≤𝑛+∆𝑛

− 𝐻 (1 − ∑ 𝑤𝑖′,𝑗,𝑛′′,𝑛′

𝑛′−∆𝑛≤𝑛′′≤𝑛′

) − 

−𝐻 (1 − ∑ ∑ ∑ 𝑤𝑖′′,𝑗,𝑛′′,𝑛′′′

𝑛′′≤𝑛′′′≤𝑛′′+∆𝑛𝑛′≤𝑛′′≤𝑛𝑖′′

) 

 

 𝑗, 𝑖, 𝑖ʹ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖ʹ, 𝑛′ <  𝑛, 𝜏𝑖′,𝑖,𝑛 > 0     (28b) 

where a parameter 𝜏𝑖′,𝑖,𝑗 denotes the sequence-dependent changeover time. 

3.2. Local sequence-based formulation (M2a) 

In this model, we use the local sequence-based modelling approach where the immediate 

precedence of two operations processed on a unit is examined. Therefore, we do not use 
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any time interval, slot or event point to divide the scheduling horizon. To denote if an 

operation 𝑙 belonging to a job 𝑘 is processed immediately before another operation 𝑙 in 

a job 𝑘 on a unit 𝑗, we introduce a binary variable 𝑥𝑘,𝑙,𝑘,𝑙,𝑗 as follows, 

, , , ,

if an operation  in a jo

0

b  immidiately precedes operation  in

w

b1

other

 jo   in a unit

i

 

se
k l k l jx

l k l k j
 

 
= 


 

Note that one operation can have at most one immediate predecessor as we use the local 

sequence-based modelling approach.  

3.2.1. Allocation constraints 

We define two 0-1 continuous variables  𝑤𝑘,𝑙,𝑗 and 𝑋𝐹𝑘,𝑙,𝑗 as follows, 

, ,

if an operation that belongs to job  is processed in a unit 1

0 otherwise
k l j

k j
w


= 


 

 

, ,

if an operation  in a job  is the first operation that is processed in a unit1  

0 otherwise
k l j

l k j
XF


= 


 

If an operation 𝑙 is processed in a processing unit 𝑗, then it should be either be processed 

first or be immediately preceded by another operation 𝑙. 

∑ ∑ 𝑥𝑘′,𝑙′,𝑘,𝑙,𝑗

𝑙′∈𝐋𝐊𝐉𝑘′,𝑗

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

+ 𝑋𝐹𝑘,𝑙,𝑗 = 𝑤𝑘,𝑙,𝑗 

 k, j, l  LKJk,j (29) 

where LKJk,j denotes the operations that a unit 𝑗 is able to process. 

If an operation 𝑙 is not processed in a unit 𝑗, then it should not immediately precede any 

other operation processed in this unit 𝑗. 

∑ ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑙′∈𝑳𝑲𝑱𝑘′,𝑗

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

≤ 𝑤𝑘,𝑙,𝑗 

 k, j, l  LKJk,j  (30) 

At most one operation can be processed first in a unit j during the scheduling horizon. 

∑ ∑ 𝑋𝐹𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘

≤ 1 

 j (31) 

Constraint (32) is introduced to ensure that all operations are processed exactly once in 

the scheduling horizon. 
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∑ 𝑤𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

= 1 

 k, l  Lk (32) 

 The number of operations that can be processed in a processing unit 𝑗 should be 

within the minimum (𝑁𝑗
𝑚𝑖𝑛) and maximum (𝑁𝑗

𝑚𝑎𝑥) limits, which are similar to model 

M1. 

∑ ∑ 𝑤𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑙,𝑗𝑘

≥ 𝑁𝑗
min 

 j (33) 

∑ ∑ 𝑤𝑘,𝑙,𝑗

𝑙∈𝐋𝐊𝐉𝑘,𝑙,𝑗𝑘

≤ 𝑁𝑗
max 

 j (34) 

 To monitor standby and off-on mode of a processing unit during the periods that it 

does not process any operation, we introduce a binary variable 𝑧𝑘,𝑙,𝑗 and a 0-1 continuous 

variable 𝑦𝑘,𝑙,𝑗 defined below, 

, ,

if a unit  remains standby after it processes an operation  that belongs to j1

0 ot

ob 

herwise
k l jy

j l k
= 


 

, ,

if a unit  is switched off after it processes an operation  that belongs to j1

0 ot

ob 

herwise
k l jz

j l k
= 


 

If a unit 𝑗 is idle, it can be switched off or remain standby only after it completes 

processing an operation 𝑙 that belongs to a job 𝑘. Both 𝑦𝑘,𝑙,𝑗 and 𝑤𝑘,𝑙,𝑗 should be zero if 

this unit 𝑗 does not process an operation 𝑙 of a job 𝑘. To ensure this, we impose the 

following constraints. 

𝑦𝑘,𝑙,𝑗 + 𝑧𝑘,𝑙,𝑗 = 𝑤𝑘,𝑙,𝑗 k, j, l  LKJk,j  (35) 

3.2.2. Sequencing constraints 

Operations in the same job 

To model the timing of an operation that is processed in a unit, we define a positive 

continuous variable 𝑇𝑘,𝑙, to denote the start time of an operation 𝑙 in a job 𝑘 that is 

processed in a unit. Note that it is not necessary to define this timing variable based on a 

specific unit 𝑗, as an operation 𝑙 that in a job 𝑘 can only be processed once during the 

scheduling horizon. An operation 𝑙 that belongs to a job 𝑘 should start after the previous 

operation 𝑙 (𝑙 = 𝑙 − 1) in the same job finishes. 
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𝑇𝑘,𝑙 ≥ 𝑇𝑘,𝑙′ + ∑ (𝛼𝑘,𝑙′,𝑗 ⋅ 𝑤𝑘,𝑙′,𝑗)

𝑗∈𝐉𝑘,𝑙′

 

  k, l  Lk, l  Lk, l = l -1 (36) 

Operations in different jobs processed in the same unit 

We define a continuous variable 𝑆𝑇𝑘,𝑙,𝑗 to denote the time of a unit 𝑗 on standby mode 

after it completes processing an operation 𝑙 in a job 𝑘, respectively. An operation 𝑙 in a 

job 𝑘 in a unit should start after its direct predecessor 𝑙 finishes plus the idle time, as 

indicated in constraints (37)-(38). Note that if the unit 𝑗 is in switch off-on mode, then 

constraint (38) should be relaxed due to a longer idle time required compared to that in 

the standby mode. 

𝑇𝑘′,𝑙′ ≥ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

− 𝐻 (1 − ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑗∈(𝐉𝑘,𝑙∩𝐉𝑘′,𝑙′)

) 

 k, k, k  k, l  Lk, l  Lk (37) 

𝑇𝑘′,𝑙′ ≤ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

+ 𝐻 (1 − ∑ 𝑥𝑘,𝑙,𝑘′,𝑙′,𝑗

𝑗∈(𝐉𝑘,𝑙∩𝐉𝑘′,𝑙′)

) + 

+𝐻 ⋅ ∑ 𝑧𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 

 k, k, k  k, l  Lk, l  Lk (38) 

3.2.3. Standby energy calculation 

We define a continuous variable 𝐸𝑆𝑘,𝑙 to denote the standby energy consumption of a unit 

after operation 𝑙 finishes being processed. It is equal to the time of this unit 𝑗 on standby 

mode after it processes operation 𝑙 multiplies the unload power rate (𝑃𝑈𝑗). 

𝐸𝑆𝑘,𝑙 = ∑ (𝑆𝑇𝑘,𝑙,𝑗 ⋅ 𝑃𝑈𝑗)

𝑗∈𝐉𝑘,𝑙

 

 k, l  Lk (39) 

In any case, the standby energy consumption should be less than the energy consumed by 

a unit 𝑗 in the switch off-on mode (𝐸𝑂𝑗). Therefore, we set an upper limit for the time of 

a unit on standby mode.  
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𝑆𝑇𝑘,𝑙,𝑗 ≤ 𝑚𝑖𝑛 (𝐻,
𝐸𝑂𝑗

𝑃𝑈𝑗
) ⋅ 𝑦𝑘,𝑙,𝑗 

 k, j, l  LKJk,j  (40) 

3.2.4. Makespan calculation 

As already discussed, makespan is the earliest time that all tasks have been processed.  

𝑇𝑘,𝑙 + ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

≤ 𝑀𝑆 

 k, l  Lk (41) 

3.2.5. Tightening constraints 

The processing time of all operations processed in a unit j plus the idle time should be 

less than the makespan. 

∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑙∈𝐊𝐋𝐉𝑘,𝑙,𝑗𝑘

≤ 𝑀𝑆 

 j (42) 

3.2.6 Additional constraints 

Similar to model M1, the release time and the due dates of each job should be respected. 

𝑇𝑘,𝑙 ≥ 𝑟𝑘 k, l  (Lk∩ LRk) (43) 

𝑇𝑘,𝑙 + ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

≤ 𝑑𝑘 

 k, l  (Lk∩ LDk) (44) 

where LRk is the jobs with non-zero release time and LDk is the jobs that have a due date. 

Additionally, constraints (43) and (44) are introduced to avoid violation of forbidden 

sequencing paths and assignments. 

𝑤𝑘,𝑙,𝑗 + 𝑤𝑘,𝑙′,𝑗′ ≤ 1 k, l, l Lk, (j, j)  FP (45) 

𝑤𝑘,𝑙,𝑗 = 0 k, l  Lk, l  JPk,j (46) 

where FP is the set including the forbidden sequencing paths, JPk,j is the set including the 

forbidden assignment. 

3.2.7. Objective function 

The objective is to minimize the total energy consumption, which is similar to model M1. 
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𝑧 = ∑∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 ⋅ 𝑃𝐶𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ 𝛽 ⋅ 𝑀𝑆 + ∑ ∑ 𝐸𝑆𝑘,𝑙

𝑙∈𝐋𝑘𝑘

+ 

+∑∑ ∑ (𝐸𝑂𝑗 ⋅ 𝑧𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

 

  

  (47) 

Bounds on variables 

The start time of an operation 𝑙 in a job 𝑘 should be always after the minimum time 

required for all previous operations in the same job to be processed. 

𝑇𝑘,𝑙 ≥ ∑ {min
𝑗

(𝛼𝑘,𝑙′,𝑗)}

𝑙′<𝑙
𝑙′∈𝐋𝑘

 

         k, l  Lk (48) 

Finally, (47) and (48) denote all the continuous and binary variables of the model 

respectively. 

𝐸𝑆𝑘,𝑙, 𝑆𝑇𝑘,𝑙,𝑗, 𝑇𝑘,𝑙 >= 0  (49) 

0 =< 𝑤𝑘,𝑙,𝑗, 𝑋𝐹𝑘,𝑙,𝑗, 𝑦𝑘,𝑙,𝑗 <= 1  (50) 

𝑧𝑘,𝑙,𝑗, 𝑥𝑘,𝑙,𝑘,𝑙,𝑗{0, 1} 

We complete the local sequence-based formulation denoted as M2a, which comprises 

constraints 29-46, 48-50 with the objective function in constraint 47. 

3.2.8 Extension 

Similar to model M1, model M2a can also be extended for the case with the varying 

processing time. If the variable processing time is assumed to be linearly dependent on 

the processing batch size (𝐵𝑘,𝑙,𝑗), which is denoted as 𝛼𝑘,𝑙,𝑗 + 𝛽𝑘,𝑙,𝑗 ∙ 𝐵𝑘,𝑙,𝑗, then 

constraints 34-36, 42 and 46 can change by replacing the term 𝛼𝑘,𝑙,𝑗 ∙ 𝑤𝑘,𝑙,𝑗 with 𝛼𝑘,𝑙,𝑗 ∙

𝑤𝑘,𝑙,𝑗 + 𝛽𝑘,𝑙,𝑗 ∙ 𝐵𝑘,𝑙,𝑗. The following constraints can be added for the batch size. 

𝑤𝑘,𝑙,𝑗 ⋅ 𝐵𝑘,𝑙,𝑗
min ≤ 𝐵𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗 ⋅ 𝐵𝑘,𝑙,𝑗

max k, j, l  LKJk,j  (51a,b) 

Similar to model M1, we can omit assumptions e) and f) by introducing two additional 

variables 𝑦𝑗
0 and 𝑧𝑗

0 to denote whether the unit is standby or switched off respectively at 

the beginning of the scheduling horizon. If the unit is in standby mode at the beginning 

of the scheduling horizon, then the initial standby energy consumption (𝐸𝑆𝑗
0) is 

calculated as follows. 
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𝐸𝑆𝑗
0 ≤ (𝑇𝑘,𝑙 − 𝑇𝑗

f0) ∙ 𝑃𝑈𝑗 k, l  Lk, j (52) 

𝐸𝑆𝑗
0 ≥ (𝑇𝑘,𝑙 − 𝑇𝑗

f0) ∙ 𝑃𝑈𝑗 − 𝑀 ∙ (2 − 𝑋𝐹𝑘,𝑙,𝑗 − 𝑦𝑗
0) k, l  Lk, j (53) 

Where  𝑇𝑗
𝑓0 the time that the last operation of unit j in scheduling horizon H finishes in 

comparison to the next scheduling horizon starts |(𝐻 +  1)𝑠𝑡𝑎𝑟𝑡| and it is calculated as 

follows. 

𝑇𝑗
𝑓0 = 𝑇𝑘,𝑙 + 𝛼𝑘,𝑙,𝑗 − |(𝐻 + 1)𝑠𝑡𝑎𝑟𝑡|  

 j, k, l  Lk, , , , , , ,0 1
k

k l k l j k l j

k l

x w


 

 

=  =
L

 (54) 

In this case the objective function is modified as follows. 

𝑧 = ∑∑ ∑ (𝑤𝑘,𝑙,𝑗 ⋅ 𝛼𝑘,𝑙,𝑗 ⋅ 𝑃𝐶𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ 𝛽 ⋅ 𝑀𝑆 + ∑ ∑ 𝐸𝑆𝑘,𝑙

𝑙∈𝐋𝑘𝑘

+ 

+∑ ∑ ∑ (𝐸𝑂𝑗 ⋅ 𝑧𝑘,𝑙,𝑗)

𝑙∈𝐋𝐊𝐉𝑘,𝑗𝑘𝑗

+ ∑(𝐸𝑆𝑗
0 + 𝐸𝑂𝑗 ⋅ 𝑧𝑗

0)

𝑗

 

   (55) 

3.3 Local sequence-based formulation (M2b) 

In model M2b we also examine the immediate precedence of two operations. The main 

difference with model M2a is that M2b does not examine in which unit the two operations 

are processed. Therefore, we introduce a binary variable 𝑥𝑘,𝑙,𝑘,𝑙to denote if an operation 

𝑙 belonging to a job 𝑘 is processed immediately before another operation 𝑙 in a job 𝑘 as 

follows, 

, , ,

if an operation  in 

0

a job  immidiately precedes operat

w

1

othe

 

r

 

ise

ion in job
k l k lx

l k l k
 


=

 



 

Since in this local sequence-based model the defined binary variable does not examine 

the unit that the two operations are processed, constraints (56) and (57) are introduced to 

ensure that if an operation l immediately precedes another operation  𝑙 then both 

operations are processed in the same unit. 

𝑤𝑘′,𝑙′,𝑗 ≥ 𝑤𝑘,𝑙,𝑗 + 𝑥𝑘′,𝑙′,𝑘,𝑙 + 𝑥𝑘,𝑙,𝑘′,𝑙′ − 1 k, k,  j, l LKJk,j , l LKJk,j, l < l      (56) 

𝑤𝑘,𝑙,𝑗 ≥ 𝑤𝑘′,𝑙′,𝑗 + 𝑥𝑘′,𝑙′,𝑘,𝑙 + 𝑥𝑘,𝑙,𝑘′,𝑙′ − 1 k, k,  j, l LKJk,j , l LKJk,j, l < l     (57) 

Similar to model M2a, if an operation 𝑙 is processed in a processing unit, then it should 

be either be processed first or be immediately preceded by another operation 𝑙. 
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∑ ∑ 𝑥𝑘′,𝑙′,𝑘,𝑙

𝑙′∈𝐋𝑘′

(𝑘≠𝑘′∨(𝑘=𝑘′∧𝑙≠𝑙′))

𝑘′

+ ∑ 𝑋𝐹𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

= ∑ 𝑤𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 

 k, l  Lk, (58) 

Additionally, an operation l of job k can be processed first in unit j (𝑋𝐹𝑘,𝑙,𝑗 = 1) only if 

the operation is processed in this unit  (𝑤𝑘,𝑙,𝑗 = 1) 

𝑋𝐹𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗 

 k, j, l  LKJk,j (59) 

For different operations in different units, an operation 𝑙 belonging to a job 𝑘 should start 

after its predecessor 𝑙 finishes plus the idle time. 

𝑇𝑘′,𝑙′ ≥ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

− 𝐻(1 − 𝑥𝑘,𝑙,𝑘′,𝑙′) 

          k, k, k  k, l  Lk, l  Lk (60) 

𝑇𝑘′,𝑙′ ≤ 𝑇𝑘,𝑙 + ∑ (𝛼𝑘,𝑙,𝑗 ⋅ 𝑤𝑘,𝑙,𝑗 + 𝑆𝑇𝑘,𝑙,𝑗)

𝑗∈𝐉𝑘,𝑙

+ 𝐻(1 − 𝑥𝑘,𝑙,𝑘′,𝑙′) + 𝐻 ⋅ ∑ 𝑧𝑘,𝑙,𝑗

𝑗∈𝐉𝑘,𝑙

 

 k, k, k  k, l  Lk, l  Lk (61) 

Mathematical model M2b consists of constraints 31-36, 39-46 and 55-61, with the 47 to 

be the objective. 

4. Enhanced Rolling horizon decomposition approach 

The rolling horizon decomposition approach proposed by Lin et al. (2002); Janak et al. 

(2004); Li et al. (2012) is often used to solve industrial-scale scheduling problems that 

are difficult to solve directly using the mathematical programming models. The key idea 

of the decomposition approach is to divide the entire scheduling problem into small-scale 

subproblems based on job or order due dates. Each subproblem is then solved using the 

mathematical programming model. However, it cannot directly solve this flexible job-

shop scheduling problem due to the same due dates of all jobs. In this work, we develop 

a grouping strategy to enhance the rolling horizon decomposition algorithm (Lin et al. 

2002; Janak et al. 2004; Li et al. 2012) using a mixed-integer linear programming model 

below in which assigns operations/tasks to several groups. 

4.1. Mathematical formulation for grouping 

We introduce two binary variables 𝑌𝑔 which is equal to 1 if a group g is selected and 𝑌𝑖,𝑔 

which is equal to 1 if a task 𝑖 is assigned to the group 𝑔 respectively. A task 𝑖 can be 
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included to a group 𝑔 only if the group 𝑔 is selected. 

𝑌𝑖,𝑔 ≤ 𝑌𝑔 i, g  (62) 

A task should be assigned to exactly one group. 

∑𝑌𝑖,𝑔

𝑔

= 1 

         i  (63) 

Furthermore, a task 𝑖 belonging to a job 𝑘 can be included in a group 𝑔 only if the 

preceding task is included in same group g or in a previous group g < g. 

𝑌𝑖′,𝑔 ≤ 𝑌𝑖,𝑔 + ∑ 𝑌𝑖,𝑔′

𝑔′<𝑔

 

     i, i  Ik, i = i + 1  (64) 

If a group 𝑔 is selected, then it should contain at least one operation/task. Constraint (65) 

is introduced to ensure such condition. 

∑𝑌𝑖,𝑔

𝑖

≥ 𝑌𝑔 

         g  (65) 

If a group 𝑔 is not selected, then the next group (𝑔 + 1) cannot be selected either. 

𝑌𝑔+1 ≤ 𝑌𝑔 g < G  (66) 

We introduce a continuous variable 𝑇𝑁𝐼𝑘,𝑔 to denote the number of tasks in a job 𝑘 that 

are included in a group 𝑔. 

𝑇𝑁𝐼𝑘,𝑔 = ∑ 𝑌𝑖,𝑔

𝑖∈𝐈𝑘

 

         k, g  (67) 

The number of tasks from job k that are included in a group (𝑔 + 1) should be less than 

the tasks from the same job included in the previous group 𝑔. In this case, we sequence 

the number of tasks of each job included in each group in a decreasing order. 

𝑇𝑁𝐼𝑘,𝑔+1 ≤ 𝑇𝑁𝐼𝑘,𝑔 k, g < G (68) 

The total number of tasks included in a group g is monitored by using a continuous 

variable TNLg. 

𝑇𝑁𝐿𝑔 = ∑𝑌𝑖,𝑔

𝑖

 

          g (69) 

In order to avoid subproblems with many tasks that require excessive computational time 
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to generate the optimum solution, we introduce a parameter 𝐿𝑚𝑎𝑥 to denote the maximum 

number of tasks is allowed in a group 𝑔. The number of tasks included in each group must 

not exceed 𝐿𝑚𝑎𝑥. 

𝑇𝑁𝐿𝑔 ≤ 𝐿max  g (70) 

Alternatively, we can also limit the model complexity in each group 𝑔 through using the 

constraints (72)-(73). In constraint (72), the number of binary variables can be calculated 

if the number of tasks (|𝐈𝑔|) and units (|𝐉|)  included in the subproblem as well as the 

number of event points (𝐸𝑁𝑔) are known. 

𝐵𝑔
v = (|𝐈𝑔| ∙ |𝐉| ∙ 𝐈𝑗 + |𝐉|) ∙ 𝐸𝑁𝑔  g (71) 

A parameter 𝐵v,max is introduced to denote the maximum number of binary variables 

allowed in each group.  

𝐵𝑔
v ≤ 𝐵v,max     g (72)  

where 𝐵𝑔
v denotes total number of binary variables in each group.  

Finally, we use two penalties 𝑃𝐸𝑁1 and 𝑃𝐸𝑁2 in order to minimize the difference in the 

total number of tasks included in each group g. By introducing such penalties, all groups 

are enforced to contain the same number of tasks of each job. 

𝑃𝐸𝑁1 ≥ 𝑇𝑁𝐼𝑘,𝑔  k, g (73) 

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝐼𝑘,𝑔 + |𝐺| ⋅ (1 − 𝑌𝑔)    k, g (74) 

The objective of this model is to minimize the number of groups selected. In this way, we 

minimize the number of subproblems that the main problem is divided. 

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2) 

          (75) 

where 𝑤1 and 𝑤2 are the two importance weight parameters. 

For each subproblem, the number of event points required is equal to the maximum 

number of tasks that a unit 𝑗 is able to process. 

𝐸𝑁𝑔 = max
𝑗

(∑𝑌𝑖,𝑔

𝑖∈𝐈𝑗

) 

           (76) 

 Figure 4 illustrates the improved rolling-horizon decomposition algorithm. In the 

beginning, the level-1 decomposition model from Lin et al. (2002), Janak et al. (2004) 



280 

 

and Li et al. (2012) determine the sub-horizons and tasks/operations in each sub-horizon 

based on the due dates of orders. In the next step, the proposed model for grouping in this 

work further decomposes the sub-horizon problem through the assignment of the 

operations/tasks in the sub-horizon into multiple groups. Note that for sub-horizon 

problems with small model complexity, the model for grouping includes all 

tasks/operations into one group. Operations/tasks that belong to a group are scheduled in 

the available processing units simultaneously using the short-term scheduling model. 

After the generation of the optimal schedule for a given group, this schedule is fixed and 

the time that the processing units are available to process new operations/tasks is 

calculated for the operations/tasks in the next group. The procedure continues until the 

approach assigns all operations/tasks in all groups to available processing units. Integer 

cuts are also introduced to the level-1 model or the proposed grouping model to generate 

a new combination of integer solutions if the current integration solution is not 

satisfactory after solving a grouping problem or a sub-horizon problem. Note that the 

energy consumption is calculated at the start time of the first event point in the current 

group or subhorizon, which depends on the finish time of each processing unit in the 

previous subproblems. 

 

Figure 4 The enhanced rolling horizon decomposition algorithm 
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5. Hybrid algorithm 

The GEP-based algorithm of Zhang et al. (2017) can generate several dispatching rules 

that can efficiently develop good feasible solutions even for large-scale examples, as 

demonstrated in Zhang et al. (2017). However, the solution obtained for this energy-

efficient scheduling of job-shop problems is often a bit far from the optimal solution. The 

main reason may lay to the methodology of how the dispatching rules generate the 

schedule. More specifically, a dispatching rule only decides which is the next 

operation/task that will take place and in which processing unit is going to be processed 

(sequencing and allocation). If the operation/task and the processing unit is chosen, then 

the operation/task is assigned to start at the earliest time possible. Although such an 

approach can lead to the smallest possible makespan, it often leads to schedules with high 

standby energy consumption and switch off-on energy consumption. To further 

demonstrate this issue, let consider an example with ten units and ten jobs , and generate 

a schedule using the dispatching rule 8 from the GEP-based algorithm of Zhang et al. 

(2017), as illustrated in Figure 5. From Figure 5, it seems that most processing units 

remain idle for multiple times during the scheduling horizon. For instance, unit J10 does 

not process any task in five periods (398 min – 420 min, 503 min – 517 min, 604 min – 

781 min, 829 min – 952 min, and 974 min –1031 min). While the unit remains in the 

standby mode in the first two periods, the unit switches off in the remaining periods. The 

total standby and switch off-on energy consumption for unit J10 is 91.8 kW. 

 

Figure 5 A schedule for the example with 10 units and 10 jobs using Rule 8 from Zhang 

et al. (2017) 
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 To make the best trade-off between indirect energy consumption, standby energy 

consumption, and switch off-on energy consumption, we develop a hybrid algorithm 

through the combination of the eGEP and the mixed-integer linear programming 

approach. We first use the eGEP algorithm to generate efficient dispatching rules. These 

dispatching rules determine the allocation of operations/tasks and their sequence on a 

unit. After this step, the proposed local sequence-based models (i.e., M2a) determine the 

best operation/task timings and the best trade-off between indirect energy consumption 

and switching off-on energy consumption. Figure 6 illustrates the hybrid algorithm. 

 

Figure 6 The proposed hybrid algorithm 

6. Computational studies 

We solve 58 examples from Zhang et al. (2017) to illustrate the capability of the proposed 

models M1, M2a and M2b. Examples 1-20 are small-size examples having from 2 to 3 

jobs, and a total of 2 or 3 processing units. Each of those jobs includes from 2 to 3 

operations. Examples 21-58 are large-size problems, where each job contains from 5 to 

15 operations that can be processed on 5-15 processing units available. We also use the 

model of Zhang et al. (2017) and the best model (i.e., model 2) from Meng et al. (2019) 

to solve all examples for a fair comparison. We also solve the same examples by using 

the rolling horizon decomposition approaches RH-M1 and RH-M2 and the hybrid 

algorithm eGEP-M2. For the hybrid algorithm, we use the five most effective dispatching 

rules from Zhang et al. (2017). Table 1 depicts those dispatching rules. All examples are 
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solved using CPLEX 12/GAMS 24.6.1. on a desktop computer with Intel® Core™ i5-

2500 3.3 GHz and 8 GB RAM running Windows 7. The maximum computational time is 

set as one hour for all examples. 

Table 1. Effective dispatching rules (Zhang et al. 2017) 

ID Dispatching rule 

1 
𝑃𝐶 −

𝑁𝑅

𝐼𝑇 ∙ 𝛼
 

5 𝑃𝐶 + 𝐼𝑇 +
𝛼

𝑁𝑅
 

7 𝛼 + 𝐼𝑇 ∙ 𝛼

𝑁𝑅
+ 𝑃𝐶 + 𝛼 

8 2𝑃𝑈 ∙ 𝐼𝑇 +
𝛼

√𝐼𝑇 + 𝑁𝑅
+ 𝑃𝐶 

9 2√𝑁𝑅 + 𝑃𝐶 + 2𝑃𝑈

2𝑁𝑅 ∙ √𝑁𝑅
− 2𝑁𝑅 + 𝑃𝐶 

PC: cutting power. PU: unloaded power. 𝛼: processing time. IT: idle time. 

6.1. Small-size problems: Examples 1-20 

Tables 2-3 present the computational results for Examples 1-20. From Tables 2-3, it 

seems that the model of Zhang et al. (2017) leads to significantly larger model sizes than 

the proposed models M1, M2a and M2b as well as the model of Meng et al. (2019). For 

instance, the model of Zhang et al. (2017) has 218 constraints for Example 1, which is 

69% more than the model of Meng et al. (2019) and models M1 and M2b (218 vs 68) 

and 74% more than model M2a (218 vs 57). It also requires 30 binary variables, which 

is 30% (30 vs 21), 37% (30 vs 19), 56.7% (30 vs 13) and 56.7% (30 vs 13) more than the 

number of binary variables from the models of Meng et al. (2019), M1, M2a and M2b, 

respectively. Furthermore, the model of Zhang et al. (2017) leads to much worse MILP 

relaxation than the other models for all examples. As a result, this model requires at least 

one order of magnitude more computational time, even for examples with three jobs, three 

operations and three processing units (Examples 16-20). For instance, the model of Zhang 

et al. (2017) requires 2.8 s to generate the optimum solution for Example 20, while the 

model of Meng et al. (2019) and models M1, M2a and M2b require 0.3 s, 0.05 s, 0.02 s, 

0.05 s, respectively. In brief, the model of Zhang et al. (2017) is the least efficient among 

all the models.  
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Table 2. Computational results for Examples 1-10 from different models 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(kW) 

TEC  

 (kW) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Ex1 ZTWW 3 0.19 7.33 63.03 30 45 218 

 MZSR 3a 0.06 63.03 63.03 21 23 68 

 M1 3 0.02 63.03 63.03 19 28 68 

 M2a - 0.02 63.03 63.03 13 30 57 

 M2b - 0.02 63.03 63.03 13 30 68 

Ex2 ZTWW 2 0.09 13.98 122.44 20 31 128 

 MZSR 3a 0.06 122.44 122.44 28 26 85 

 M1 2 0.03 120.44 122.44 14 20 51 

 M2a - 0.02 122.44 122.44 18 34 65 

 M2b - 0.02 122.44 122.44 16 34 79 

Ex3 ZTWW 4 0.44 7.71 75.74 40 59 324 

 MZSR 4a 0.08 72.74 75.74 37 29 106 

 M1 4 0.02 75.74 75.74 34 28 52 

 M2a - 0.02 75.74 75.74 25 38 72 

 M2b - 0.02 75.74 75.74 19 38 91 

Ex4 ZTWW 2 0.05 13.22 146.63 20 31 128 

 MZSR 3a 0.05 143.63 146.63 28 26 85 

 M1 2 0.11 142.63 146.63 14 20 51 

 M2a - 0.02 143.63 146.63 18 34 65 

 M2b - 0.03 143.63 146.63 16 34 79 

Ex5 ZTWW 3 0.20 7.90 78.40 30 45 218 

 MZSR 4a 0.03 75.40 78.40 37 29 106 

 M1 3 0.02 78.40 78.40 25 28 79 

 M2a - 0.02 78.40 78.40 25 36 72 

 M2b - 0.02 78.40 78.40 19 36 91 

Ex6 ZTWW 3 0.19 24.58 220.74 63 84 596 

 MZSR 4a 0.05 214.74 220.74 37 35 114 

 M1 3 0.02 220.74 220.74 30 44 123 

 M2a - 0.03 220.74 220.74 24 46 94 

 M2b - 0.03 220.74 220.74 24 46 114 

Ex7 ZTWW 3 0.20 10.95 97.54 63 84 596 

 MZSR 4a 0.14 95.51 97.54 37 35 114 

 M1 3 0.03 96.51 97.54 30 44 124 

 M2a - 0.02 96.51 97.54 24 46 95 

 M2b - 0.02 96.51 97.54 24 46 115 

Ex8 ZTWW 2 0.08 9.99 146.81 42 57 323 

 MZSR 5a 0.14 145.81 146.81 62 44 173 

 M1 2 0.02 137.81 146.81 25 31 91 

 M2a - 0.03 145.81 146.81 43 58 129 

 M2b - 0.03 145.81 146.81 39 58 162 

Ex9 ZTWW 3 0.22 16.86 230.66 63 84 596 

 MZSR 3a 0.03 222.06 230.66 28 32 93 

 M1 3 0.03 219.06 230.66 27 44 118 

 M2a - 0.03 222.06 230.66 17 42 79 

 M2b - 0.02 222.06 230.66 17 42 94 
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Ex10 ZTWW 3 0.19 11.20 161.06 63 84 596 

 MZSR 4a 0.14 159.23 161.06 44 38 131 

 M1 3 0.03 158.06 161.06 30 44 121 

 M2a - 0.03 159.06 161.06 24 46 95 

 M2b - 0.03 159.06 161.06 24 46 115 

ZTWW is the model of Zhang et al. (2017 model), MZSR is the model of Meng et al. 

(2019) model. aMaximum number of positions of all units. 

 

Table 3. Computational results for Examples 11-20 from different models 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(kW) 

TEC 

(kW) 

Bin.

Var. 

Cont. 

Var. 
Constr. 

Ex11 ZTWW 3 0.20 20.00 166.23 42 57 292 

 MZSR 4a 0.05 159.23 166.23 46 36 133 

 M1 3 0.02 166.23 166.23 28 31 76 

 M2a - 0.03 166.23 166.23 32 46 103 

 M2b - 0.02 166.23 166.23 30 46 131 

Ex12 ZTWW 3 0.27 17.00 176.75 42 57 292 

 MZSR 6a 0.06 174.75 176.75 70 42 187 

 M1 3 0.02 176.75 176.75 34 31 84 

 M2a - 0.03 176.75 176.75 52 54 126 

 M2b - 0.03 176.75 176.75 40 54 170 

Ex13 ZTWW 5 1.03 13.44 121.30 70 93 608 

 MZSR 5a 0.06 115.30 121.30 48 36 137 

 M1 5 0.02 121.30 121.30 48 49 132 

 M2a - 0.02 121.30 121.30 34 46 107 

 M2b - 0.02 121.30 121.30 32 46 137 

Ex14 ZTWW 4 0.15 16.97 156.86 56 75 438 

 MZSR 4a 0.08 154.86 156.86 30 30 95 

 M1 4 0.02 156.86 156.86 30 40 91 

 M2a - 0.03 156.86 156.86 20 38 79 

 M2b - 0.03 156.86 156.86 20 38 99 

Ex15 ZTWW 3 0.20 18.00 163.20 42 57 292 

 MZSR 4a 0.09 160.20 163.20 46 36 133 

 M1 3 0.03 163.20 163.20 28 31 70 

 M2a - 0.03 163.20 163.20 32 46 103 

 M2b - 0.02 163.20 163.20 30 46 131 

Ex16 ZTWW 5 2.9 19.79 219.46 150 183 1946 

 MZSR 7a 0.19 212.97 219.46 90 56 244 

 M1 5 0.11 218.97 219.46 77 80 274 

 M2a - 0.09 218.97 219.46 67 72 195 

 M2b - 0.03 218.97 219.46 65 72 254 

Ex17 ZTWW 4 1.5 26.72 306.68 120 147 1340 

 MZSR 4a 0.06 294.68 306.68 51 47 157 

 M1 4 0.05 302.68 306.68 49 65 186 

 M2a - 0.03 302.68 306.68 34 60 128 

 M2b - 0.03 302.68 306.68 34 60 160 
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Ex18 ZTWW 4 1.5 14.74 210.60 120 147 1340 

 MZSR 6a 0.17 207.60 210.60 84 66 232 

 M1 4 0.05 203.60 210.60 61 65 206 

 M2a - 0.05 207.60 210.60 61 72 184 

 M2b - 0.05 207.60 210.60 59 72 237 

Ex19 ZTWW 4 2.5 17.58 269.52 120 147 1340 

 MZSR 6a 0.14 264.52 269.52 104 62 278 

 M1 4 0.02 269.52 269.52 69 65 217 

 M2a - 0.06 269.52 269.52 77 80 199 

 M2b - 0.03 269.52 269.52 65 80 264 

Ex20 ZTWW 6 2.8 25.70 274.94 180 219 2660 

 MZSR 6a 0.30 260.94 274.94 84 56 232 

 M1 6 0.05 274.94 274.94 93 95 315 

 M2a - 0.02 274.94 274.94 61 72 183 

 M2b - 0.05 274.94 274.94 59 72 236 

ZTWW is the model of Zhang et al. (2017 model), MZSR is the model of Meng et 

al. (2019) model. a Maximum number of positions of all units. 

  

We also compare the performance of the models M1, M2a and M2b with the model of 

Meng et al. (2019). From Tables 2-3, all these models can efficiently solve all small 

examples in less than one second. Model M1 requires a smaller number of binary 

variables than the model of Meng et al. (2019) for Examples 1-20. For instance, the model 

of Meng et al. (2019) requires 90 binary variables to generate the optimal solution for 

Example 16, while model M1 requires 77 only. Only for Example 20, the model M1 

requires more number of binary variables than the model of Meng et al. (2019) (93 vs 

84). Models M2a and M2b lead to fewer binary variables than the model of Meng et al. 

(2019). Between M1 and models M2a and M2b there is not a clear trend on which model 

requires fewer binary variables to generate the optimal solution. For instance, in Example 

15 model M1 requires fewer binary variables than M2a (28 vs 40) and M2b (28 vs 30), 

whilst in Example 17 it requires more binary variables than M2a and M2b (49 vs 34). 

For continuous variables and constraints, there is not a clear trend on which model 

requires the least either. As a result, it is not clear which of these three models is the most 

efficient by solving such small-scale examples. Despite that, all proposed models lead to 

slightly smaller model sizes for most cases, which can make them potentially more 

efficient than the model of Meng et al. (2019).  The optimal schedule for Example 1 

generated by model M1 is depicted in Figure 7. From this schedule, we can observe that 

unit J1 switches off after task I1 finishes (4 h) and switched, on right before the time that 

task I3 starts (12 h). The switch off-on energy consumption, in this case, is 3.6 kW. If the 

unit J1 remains standby from 4 h to 12 h, then the standby energy consumption would be 
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11.1 kW. Therefore, considering switching off and on unit J1 during the period that it 

does not process any tasks, it leads to 68% energy savings. This example illustrates the 

benefit of switching off-on units that does not process any operation/task for long periods. 

 

Figure 7 Optimal schedule for Example 1 from the model M1 

6.2. Large-size problems: Examples 21-51 

The computational results for Examples 21-51 are presented in Tables 4-5. From Tables 

4-5, it is clear that the model of Zhang et al. (2017) is the least efficient as it can only 

generate a feasible solution for Example 21 after one hour. The main reason is that this 

model both leads to significantly larger model sizes and worse MILP relaxation compared 

to the other models. Similarly, the model of Meng et al. (2019) can only generate a 

feasible solution for Examples 21 and 24-28 after one hour. On the other hand, the 

proposed model M1 and M2a and M2b can provide solutions for significantly more 

examples. More specifically, model M2a can generate a feasible solution in 19 out of the 

38 examined examples (i.e., Examples 21-28, 30-34, 36, 38-43), while model M2b 

generates a solution for 16 out of 38 examined examples (i.e., Examples 21, 22, 24-

33,39,41-43). Model M1 can successfully solve 31 out of 38 tested examples (Examples 

21-51). Therefore, the proposed model M1 is the most general and efficient model among 

all examined models. 

By comparing the performance of models M1 and the models M2a and M2b, it still seems 

that it is not clear which of the proposed models requires the least number of binary 

variables. For instance, model M1 requires more binary variables than M2a and M2b for 

Example 21 (426 vs 298 and 426 vs 296 respectively), but less binary variables for 

Example 25 (645 vs 734 and 645 vs 724 respectively). On the other hand, models M2a 

require a significantly smaller number of continuous variables and constraints. For 
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instance, model M2a requires 59% and 30% less continuous variables and constraints for 

the same example than model M1 (496 vs 1207 continuous variables and 3374 vs 4796 

constraints) for Example 31. Model M2b requires the same number of variables than M2a 

but a significantly larger number of constraints, and as a result, is less robust. Among the 

three models, M1 can solve more examples than model M2. For instance, model M1 can 

generate schedules for Examples 35, 37 and 44-51, while models M2a and M2b fail to 

provide a feasible solution. Therefore, it is concluded that M1 is more robust than models 

M2a and M2b. It should be noted, though, that models M2a and M2b can generate better 

solutions than model M1 in some cases. For instance, model M2a can provide the 

significantly better solution of 3409.61 kW for Example 22 in comparison to the result of 

3674.04 kW generated from model M1. Even though the proposed models M1, M2a and 

M2b are more efficient than the existing models, it seems that they still fail to generate 

the optimal solution within one hour for all examples. Additionally, for some cases, where 

more than ten jobs and fifteen operations have to be processed (Examples 52-58), none 

of the proposed models can generate a feasible solution after one hour. For other examples 

(Examples 44-51) the result from model M1 seems to be far from the optimum, since the 

relative gap after one hour is up to 40 % as depicted in Table 5. 

 

Table 4. Computational results for Examples 21-30 from different models 

Ex Model 
Event 

points 

CPU 

time (s) 

RMILP 

(kW) 

TEC 

(kW) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

Gap 

(%) 

Ex21 ZTWW 6 3600 40.00 252.93 1332 1407 43244 84.2 

  7 3600 39.76 189.90 1554 1641 58010 78.9 

 MZSR 8a 3600 129.50 210.96 376 194 981 36.4 

 M1 9 3600 123.65 182.49 426 440 1567 32.1 

 M2a - 3600 129.50 182.49 298 242 809 27.5 

 M2b - 3600 129.50 191.81 296 242 1095 28.2 

Ex22 M1 14 3600 2729.60 3674.04 1712 1692 6499 25.6 

 M2a - 3600 2775.24 3409.61 1287 654 3137 18.6 

 M2b - 3600 2775.24 3743.42 1285 654 4398 25.9 

Ex23 M1 23 3600 3115.90 3497.00 2709 2192 8841 10.6 

 M2a - 3600 3115.90 3719.05 2573 654 5649 16.9 

Ex24 M1 11 1526 1776.14 1776.14 710 612 2405 0.0 

 M2a - 3600 1776.14 1792.95 937 342 1731 0.9 

 M2b - 3600 1776.14 1897.10 720 342 2433 6.4 

Ex25 MZSR 15a 3600 1455.95 1715.22 853 277 2032 22.6 

 M1 10 3600 1558.32 1789.95 645 557 2191 5.1 

 M2a - 3600 1710.62 1840.23 734 342 1739 7.0 

 M2b - 3600 1710.62 1846.45 724 342 2453 7.4 

Ex26 MZSR 14a 3600 1304.53 1876.93 849 277 2024 22.4 
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 M1 11 3600 1710.62 1783.95 710 612 2405 3.0 

 M2a - 3600 1470.48 1624.92 699 338 1675 9.5 

 M2b - 3600 1470.48 1671.46 693 338 2356 12.0 

Ex27 MZSR 13a 3600 1423.21 1789.42 814 274 1951 20.5 

 M1 10 3600 1579.21 1684.29 635 557 2201 5.6 

 M2a - 3600 1579.21 1719.91 701 338 1671 8.2 

 M2b - 3600 1579.21 1687.79 691 338 2354 6.4 

Ex28 MZSR 14a 3600 1336.72 1595.13 845 277 2016 16.2 

 M1 11 3600 1460.73 1465.37 710 612 2427 0.2 

 M2a - 3600 1460.13 1528.72 730 342 1739 4.4 

 M2b - 3600 1460.13 1493.72 724 342 2449 2.2 

Ex29 M1 17 336.1 2582.66 2583.71 1542 1282 5125 0.0 

 M2b - 3600 2582.66 2748.69 1476 496 4834 6.0 

Ex30 M1 18 3600 2350.70 2388.63 1633 1357 5350 1.3 

 M2a - 3600 2350.70 2576.18 1492 496 3378 8.7 

 M2b - 3600 2350.70 2548.29 1480 496 4848 7.8 
a Maximum number of positions of all units. 

 

Table 5. Computational results for Examples 31-58 from different models 

Example Model 
Event 

points 

CPU 

time 

(s) 

RMILP 

(kW) 

TEC 

 (kW) 

Bin. 

Var. 

Cont. 

Var. 
Constr. 

GAP 

(%) 

Ex31 M1 16 3322 2456.82 2486.18 1451 1207 4796 0.0 

 M2a - 3600 2456.82 2814.41 1494 496 3374 12.7 

 M2b - 3600 2456.82 2826.72 1478 496 4846 13.1 

Ex32 M1 20 3600 2606.72 2637.50 1815 1507 6016 0.3 

 M2a - 3600 2606.72 2807.47 1490 496 3366 7.1 

 M2b - 3600 2606.72 2893.30 1474 496 4834 9.9 

Ex33 M1 18 3600 2518.27 2523.77 1651 1357 5476 <0.1 

 M2a - 3600 2518.12 2707.47 1537 500 3470 7.0 

 M2b - 3600 2518.12 3026.89 1525 500 4983 16.8 

Ex34 M1 21 3600 3297.15 3420.67 2473 2002 8144 3.2 

 M2a - 3600 3297.15 4078.88 2567 654 5653 19.1 

Ex35 M1 21 3600 3002.11 3035.98 2494 2002 8207 0.4 

Ex36 M1 21 3600 3178.89 3196.92 2494 2002 8081 < 0.1 

 M2a - 3600 3610.51 3674.82 2624 658 5749 14.0 

Ex37 M1 21 3600 3393.39 3477.73 2473 2002 8060 2.2 

Ex38 M1 23 3600 3378.11 3459.03 2709 2192 8910 2.3 

 M2a - 3600 3378.11 3842.27 2567 654 5637 12.1 

Ex39 M1 13 3600 2784.29 4041.88 1589 1572 5951 31.0 

 M2a - 3600 2880.97 3833.61 1266 654 3133 24.8 

 M2b - 3600 2880.97 3727.81 1260 650 4327 22.7 

Ex40 M1 12 3600 2512.49 3648.90 1466 1452 5585 31.1 

 M2a - 3600 2590.43 3603.47 1285 654 3129 24.0 

Ex41 M1 12 3600 2717.94 3589.61 1466 1452 5525 24.3 

 M2a - 3600 2757.94 3574.34 1289 654 3145 22.9 

 M2b - 3600 2757.94 3630.29 1289 654 4408 24.0 
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Ex42 M1 11 3600 2857.78 3703.47 1343 1332 5084 22.8 

 M2a - 3600 2857.78 3668.62 1285 654 3137 22.1 

 M2b - 3600 2857.78 3698.93 1285 654 4396 22.7 

Ex43 M1 14 3600 2914.72 3782.58 1712 1692 6499 22.9 

 M2a - 3600 3004.51 3881.38 1285 654 3125 22.6 

 M2b - 3600 3004.51 3720.48 1279 654 4384 19.2 

Ex44 M1 18 3600 4251.69 5374.11 3284 2982 12067 20.8 

Ex45 M1 18 3600 3831.82 5195.68 3284 2982 12013 26.1 

Ex46 M1 17 3600 4246.91 5501.46 3067 2817 11354 22.8 

Ex47 M1 15 3600 4078.29 5916.36 2750 2487 10021 31.0 

Ex48 M1 17 3600 3885.07 6704.23 2934 2652 11439 42.1 

Ex49 M1 21 3600 5459.23 9654.12 4967 4422 17872 43.3 

Ex50 M1 20 3600 5719.35 9953.75 4730 4212 17041 42.4 

Ex51 M1 21 3600 5598.36 9603.38 4946 4422 17809 41.5 

 

 Figure 8 depicts the best schedule for Example 24 from model M1. From this 

schedule, no unit that remains idle during the scheduling horizon. Therefore, there is no 

standby energy or switch off-on energy consumed. 

 

Figure 8 Best schedule obtained for Example 24 using model M1 

 We also compare the results for Examples 21-58 from model M1 and the eGEP 

algorithm of Zhang et al. (2017). These comparative results are provided in Table 6. From 

Table 6, it seems that model M1 can generate better solutions for examples with up to ten 

jobs and fifteen operations (Examples 21-46) than the eGEP algorithm by up to 26.9%. 

For instance, model M1 can generate a schedule with TEC of 2523.77 kW for Example 

33, which is approximately 20% less than the TEC of the solution provided using the 

eGEP algorithm (3036.47 kW). However, the eGEP algorithm can generate a better 
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solution for examples with more than ten operations and ten jobs (Examples 47-58). For 

instance, the eGEP can generate a schedule with TEC of 7351.24 kW for Example 49, 

which contains ten jobs and twenty operations, while model M1 provides a solution with 

23.9 % more TEC (9654.12 kW). More interestingly, those dispatching rules, created 

using eGEP are even able to generate solutions for Examples 52-58, in contrast to model 

M1 where it fails to develop a feasible solution for those examples within one hour. 

 

 Table 6 Comparative results for Examples 21-58 from model M1 and eGEP 
 

eGEP  M1 Diff   eGEP  M1 Diff 

Ex. TEC (kW)  TEC (kW) (%)  Ex. TEC (kW)  TEC (kW) (%) 

Ex21 296.71  182.49 -38.5  Ex40 4082.95  3648.90 -10.6 

Ex22 4047.03  3674.04 -9.2  Ex41 4059.53  3589.61 -11.6 

Ex23 3924.75  3497.00 -10.9  Ex42 3937.63  3703.47 -5.9 

Ex24 1914.55  1776.14 -7.2  Ex43 4311.92  3782.58 -12.3 

Ex25 1975.75  1789.95 -9.4  Ex44 5708.72  5374.11 -5.9 

Ex26 1964.55  1783.95 -9.2  Ex45 5756.06  5195.68 -9.7 

Ex27 1939.76  1684.29 -13.2  Ex46 5987.00  5501.46 -8.1 

Ex28 1859.41  1465.37 -21.2  Ex47 5763.51  5916.36 2.7 

Ex29 2891.37  2583.71 -10.6  Ex48 6640.15  6704.23 1.0 

Ex30 2761.52  2388.63 -13.5  Ex49 7351.24  9654.12 31.3 

Ex31 2765.72  2486.18 -10.1  Ex50 7859.20  9953.75 26.7 

Ex32 3046.21  2637.50 -13.4  Ex51 7173.32  9603.38 33.9 

Ex33 3036.47  2523.77 -16.9  Ex52 7285.72  - - 

Ex34 3947.29  3365.35 -14.7  Ex53 7284.41  - - 

Ex35 3700.86  3035.98 -18.0  Ex54 10036.36  - - 

Ex36 3682.76  3196.92 -13.2  Ex55 10667.02  - - 

Ex37 3796.85  3477.73 -8.4  Ex56 10183.47  - - 

Ex38 3740.39  3459.03 -7.5  Ex57 9865.68  - - 

Ex39 4480.15  4041.88 -9.8  Ex58 10751.25  - - 

6.3. Computational results from the enhanced rolling horizon decomposition 

algorithm 

We use the enhanced rolling horizon decomposition algorithm to solve all Examples 1-

58. The important weight parameters are set to w1 = 0.8 and w2 = 0.2. The maximum 

number of tasks, allowed to be included for each group is ten for Examples 1-20 and thirty 

for Examples 21-58. The computational limit for solving each group subproblem is 100 

s in the rolling-horizon decomposition algorithms RH-M1, RH-M2. Tables 8-10 presents 

the computational results from the enhanced rolling horizon decomposition algorithms 

RH-M1 and RH-M2 for Examples 1-58.  

 The comparative results of model M1, Μ2, RH-M1, RH-M2 and eGEP 

dispatching rule 1 are also presented in Tables 7-8. From Table 7, it seems that both RH-
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M1 and RH-M2 generates the same optimal solutions as models M1 and M2 for 

Examples 1-20 due to only one group required in the improved rolling horizon 

decomposition, which is equivalent to directly solving models M1 and M2. From Table 

8, it is observed that RH-M1 and RH-M2 obtain worse solutions for most examples in 

Examples 21-44 compared to model M1 within 1 h. These worse solutions is mainly due 

to no or very less units remaining idle during the scheduling horizon in the best schedule 

from model M1 compared to that from RH-M1, as depicted in Figures 8 and 9. However, 

the computational time from RH-M1 and RH-M2 is significantly reduced by 88.5%-

99.9%. More importantly, both rolling horizon decomposition algorithms generate better 

solutions for Examples 45-51 by up to 31.1% in less computational time compared to 

model M1. Additionally, both decompositions approaches provide good feasible 

solutions for Examples 52-58, whilst model M1 fails to solve them.  

  

 Table 7. Computational results for Examples 1-20 from model M1, M2a, RH-M1 

and eGEP dispatching rule 1 

 eGEP  M1/M2a  RH-M1   RH-M2  Diff (%) 

   Ex 

TEC  

(kW) 

 TEC 

 (kW) 

 TEC  

(kW) 

Time 

(s) 

 TEC 

(kw) 

Time 

(s) 

 RH-M1 

vs. M1 

RH-M1 

vs eGEP 

RH-M2 

vs. M1 

RH-M2 

vs. eGEP 

Ex1 63.03  63.03  63.03 0.03  63.03 0.11  0.0 0.0 0.0 0.0 

Ex2 138.16  122.44  122.44 0.03  122.44 0.14  0.0 -11.4 0.0 -11.4 

Ex3 120.76  75.74  75.74 0.03  75.74 0.09  0.0 -37.3 0.0 -37.3 

Ex4 161.73  146.63  146.63 0.03  146.63 0.20  0.0 -9.3 0.0 -9.3 

Ex5 101.01  78.40  78.40 0.03  78.40 0.20  0.0 -22.4 0.0 -22.4 

Ex6 279.84  220.74  220.74 0.02  220.74 0.17  0.0 -21.1 0.0 -21.1 

Ex7 107.69  97.54  97.54 0.05  97.54 0.20  0.0 -9.4 0.0 -9.4 

Ex8 205.32  146.81  146.81 0.08  146.81 0.14  0.0 -28.5 0.0 -28.5 

Ex9 233.66  230.66  230.66 0.03  230.66 0.09  0.0 -1.3 0.0 -1.3 

Ex10 191.68  161.06  161.06 0.05  161.06 0.13  0.0 -16.0 0.0 -16.0 

Ex11 166.23  166.23  166.23 0.03  166.23 0.20  0.0 0.0 0.0 0.0 

Ex12 176.75  176.75  176.75 0.03  176.75 0.19  0.0 0.0 0.0 0.0 

Ex13 121.3  121.30  121.30 0.02  121.30 0.20  0.0 0.0 0.0 0.0 

Ex14 156.86  156.86  156.86 0.03  156.86 0.11  0.0 0.0 0.0 0.0 

Ex15 191.83  163.20  163.20 0.02  163.20 0.14  0.0 -14.9 0.0 -14.9 

Ex16 297.59  219.46  219.46 2.30  219.46 0.16  0.0 -26.3 0.0 -26.3 

Ex17 329.48  306.68  306.68 0.06  306.68 0.27  0.0 -6.9 0.0 -6.9 

Ex18 284.72  210.60  210.60 0.30  210.60 0.22  0.0 -26.0 0.0 -26.0 

Ex19 283.83  269.52  269.52 0.03  269.52 0.17  0.0 -5.0 0.0 -5.0 

Ex20 335.58  274.94  274.94 0.05  274.94 0.23  0.0 -18.1 0.0 -18.1 

  

 We set the maximum computational time of 5 and 10 minutes for solving Examples 

21-40 and 41-58 using model M1 respectively, which are similar to that required by RH-
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M1, the best solutions obtained from model M1 are reported in the column denoted as 

M1* in Table 8. Decomposition algorithms can generate better solutions than model M1* 

for most examples in Examples 21-58. The energy consumption is reduced by up to 

41.4%. 

 From Table 7, it seems that RH-M1 and RH-M2 cam generate the same or better 

solutions than eGEP for Examples 1-20. The reduction in energy consumption can reach 

up to 37.3%. Furthermore, both RH-M1 and RH-M2 can generate better solutions than 

eGEP for most Examples 21-58 (36 out of 38 examples for RH-M1, and 37 out of 38 

examples for RH-M2). The improvement can be up to 35.3%. The comparative results 

of RH-M1, RH-M2 and other eGEP dispatching rules are presented in Tables S1-S8 in 

Supplementary material. RH-M1 and RH-M2 can generate the same or better solutions 

for Examples 1-20 than eGEP dispatching rules 5, 7, 8 and by up to 21.1%, 21.3%, 31.6% 

and 37.0%, respectively. Furthermore, RH-M1 and RH-M2 can generate better solutions 

than eGEP dispatching rule 5 by up to 27.9% and 27.6% for Examples 21-22 and 24-58, 

dispatching rule 7 by up to 43.1% and 42.9% for Examples 21-37 and 39-58, dispatching 

rule 8 by up to 28.2% and 27.2% for Examples 21-22, 24-37 and 39-58, and dispatching 

rule 9 by up to 32.9% and 32.6% for Examples 21-37 and 39-58. 

 

 

Figure 9 Best schedule for Example 24 using RH-M1 

 The schedule for Example 24 from RH-M1 is depicted in Figure 9. From Figure 9, 

it seems that all operations are assigned to three small groups, as provided in Table 10. 

Comparing the schedule generated by RH-M1 with those by M1 (see Figure 8), we notice 

that the proposed methodology units J1, J3 and J4 remain idle once during the scheduling 



294 

 

horizon. On the contrary, no unit remains idle during the scheduling horizon in Figure 8. 

As a result, a slightly worse solution is generated from RH-M1 (1847.84 kW vs. 1776.14 

kW). 

Table 8. Computational results for Examples 21-58 from model M1, M1*, RH-M1and 

eGEP dispatching rule 1 

 eGEP  M1  M1*  RH-M1  Diff (%) 

Ex 
TEC 

(kW) 
 

TEC 

(kW) 
 

TEC 

(kW) 
 

TEC 

(kW) 

Time 

(s) 
 

RH-M1 

vs. 

M1 

RH-M1 

vs. 

eGEP 

RH-M1 

vs. 

M1* 

Ex21 296.71  182.49  191.81  214.78 44.2  17.7 -35.3 12.0 

Ex22 4047.03  3674.04  4563.69  4091.73 157.9  11.4 -13.3 -16.5 

Ex23 3924.75  3497.00  4317.50  4192.16 1.0  19.9 6.8 -2.9 

Ex24 1914.55  1776.14  1877.71  1847.84 100.1  4.0 -17.7 -1.3 

Ex25 1975.75  1789.95  1953.76  1928.84 100.1  7.8 -17.2 -2.5 

Ex26 1964.55  1783.95  1900.86  1712.62 101.2  -4.0 -22.5 -15.7 

Ex27 1939.76  1684.29  1696.54  1914.79 16.7  13.7 -13.5 3.2 

Ex28 1859.41  1465.37  1473.37  1644.57 1.4  12.2 -16.2 5.7 

Ex29 2891.37  2583.71  2680.31  2851.87 0.1  10.4 -6.5 0.8 

Ex30 2761.52  2388.63  2607.22  2820.98 0.2  18.1 -12.1 -0.6 

Ex31 2765.72  2486.18  2544.93  2830.43 0.3  13.8 -14.9 7.4 

Ex32 3046.21  2637.50  2684.47  2821.51 0.2  7.0 -9.2 4.9 

Ex33 3036.47  2523.77  2974.33  2910.03 0.4  15.3 -17.8 -7.7 

Ex34 3947.29  3365.35  4451.29  3632.30 0.6  7.9 -19.1 -18.4 

Ex35 3700.86  3035.98  3414.20  3406.47 1.3  12.2 -13.8 -0.2 

Ex36 3682.76  3196.92  3837.11  3272.25 0.2  2.4 -16.7 -14.7 

Ex37 3796.85  3477.73  4295.25  3636.68 0.8  4.6 -12.8 -15.3 

Ex38 3740.39  3459.03  3845.46  3987.97 0.9  15.3 3.5 3.7 

Ex39 4480.15  4041.88  4928.97  4278.56 217.4  5.9 -18.8 -20.3 

Ex40 4082.95  3648.90  4591.14  3608.97 129.8  -1.1 -26.4 -23.4 

Ex41 4059.53  3589.61  3670.20  4023.78 202.2  12.1 -16.3 2.7 

Ex42 3937.63  3703.47  4096.44  4039.19 330.4  9.1 -12.2 -7.0 

Ex43 4311.92  3782.58  4257.14  4339.28 302.3  14.7 -19.6 -8.8 

Ex44 5708.72  5374.11  9223.46  5984.42 0.8  11.4 -5.3 -41.4 

Ex45 5756.06  5195.68  6311.21  5466.79 1.5  5.2 -15.0 -22.5 

Ex46 5987.00  5501.46  -  5858.67 1.7  6.5 -13.3 - 

Ex47 5763.51  5916.36  -  5578.43 0.6  -5.7 -12.8 - 

Ex48 6640.15  6704.23  7404.23  6178.14 1.0  -7.8 -23.1 -31.0 

Ex49 7351.24  9654.12  -  6946.16 1.6  -28.0 -5.5 12.0 

Ex50 7859.20  9953.75  -  7434.35 1.3  -25.3 -5.4 -16.5 

Ex51 7173.32  9603.38  -  6866.13 1.2  -28.5 -4.3 -2.9 

Ex52 7285.72  -  -  7257.84 1.0  - -0.4 - 

Ex53 7284.41  -  -  7200.05 1.1  - -1.2 - 

Ex54 10036.36  -  -  8698.35 3.5  - -13.3 - 

Ex55 10667.02  -  -  9580.33 4.9  - -10.2 - 

Ex56 10183.47  -  -  8834.19 3.2  - -13.2 - 

Ex57 9865.68  -  -  8958.33 4.5  - -9.2 - 

Ex58 10751.25  -  -  9775.46 4.8  - -9.1 - 
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Table 9. Computational results for Examples 21-58 from model M1, M1*, RH-M2 and 

eGEP dispatching rule 1 

 eGEP  M1  M1*  RH-M2  Diff (%) 

Ex 
TEC 

(kW) 
 

TEC 

(kW) 
 

TEC 

(kW) 
 

TEC 

(kW) 

Time 

(s) 
 

RH-M2 

vs. 

M1 

RH-M2 

vs. 

eGEP 

RH-M2 

vs. 

M1* 

Ex21 296.71  182.49  191.81  215.87 2.6  18.3 -27.2 12.5 

Ex22 4047.03  3674.04  4563.69  3679.99 112.8  0.2 -9.1 -19.4 

Ex23 3924.75  3497.00  4317.50  3808.34 288.1  8.9 -3.0 -11.8 

Ex24 1914.55  1776.14  1877.71  1907.12 5.7  7.4 -0.4 1.6 

Ex25 1975.75  1789.95  1953.76  1941.73 163.3  8.5 -1.7 -0.6 

Ex26 1964.55  1783.95  1900.86  1633.59 170.6  -8.4 -16.8 -14.1 

Ex27 1939.76  1684.29  1696.54  1763.91 138.5  4.7 -9.1 4.0 

Ex28 1859.41  1465.37  1473.37  1598 134.5  9.1 -14.1 8.5 

Ex29 2891.37  2583.71  2680.31  2718.8 108.9  5.2 -6.0 1.4 

Ex30 2761.52  2388.63  2607.22  2521.31 200.8  5.6 -8.7 -3.3 

Ex31 2765.72  2486.18  2544.93  2645.48 101.1  6.4 -4.3 4.0 

Ex32 3046.21  2637.50  2684.47  2685.13 51.2  1.8 -11.9 0.0 

Ex33 3036.47  2523.77  2974.33  2657.98 106.4  5.3 -12.5 -10.6 

Ex34 3947.29  3365.35  4451.29  3565.38 211.9  5.9 -9.7 -19.9 

Ex35 3700.86  3035.98  3414.20  3523.2 262.4  16.0 -4.8 3.2 

Ex36 3682.76  3196.92  3837.11  3417.27 205.2  6.9 -7.2 -10.9 

Ex37 3796.85  3477.73  4295.25  3716.38 189.2  6.9 -2.1 -13.5 

Ex38 3740.39  3459.03  3845.46  3787.02 204.0  9.5 1.2 -1.5 

Ex39 4480.15  4041.88  4928.97  3884.04 17.2  -3.9 -13.3 -21.2 

Ex40 4082.95  3648.90  4591.14  3562.7 10.2  -2.4 -12.7 -22.4 

Ex41 4059.53  3589.61  3670.20  3754.31 0.9  4.6 -7.5 2.3 

Ex42 3937.63  3703.47  4096.44  3717.92 3.7  0.4 -5.6 -9.2 

Ex43 4311.92  3782.58  4257.14  3978.46 7.2  5.2 -7.7 -6.5 

Ex44 5708.72  5374.11  9223.46  5475.11 210.4  1.9 -4.1 -40.6 

Ex45 5756.06  5195.68  6311.21  4941.6 216.6  -4.9 -14.1 -21.7 

Ex46 5987.00  5501.46  -  5185.61 55.5  -5.7 -13.4 - 

Ex47 5763.51  5916.36  -  5257.31 253.9  -11.1 -8.8  

Ex48 6640.15  6704.23  7404.23  5527.5 233.6  -17.6 -16.8 -25.3 

Ex49 7351.24  9654.12  -  6951.96 4.4  -28.0 -5.4 -28.0 

Ex50 7859.20  9953.75  -  7560.55 105.5  -24.0 -3.8 -24.0 

Ex51 7173.32  9603.38  -  6620.26 0.9  -31.1 -7.7 -31.1 

Ex52 7285.72  -  -  7060.59 106.4  - -3.1 - 

Ex53 7284.41  -  -  6938.57 2.3  - -4.7 - 

Ex54 10036.36  -  -  9167.93 374.8  - -8.7 - 

Ex55 10667.02  -  -  9708.14 509.6  - -9.0 - 

Ex56 10183.47  -  -  8861.43 394.8  - -13.0 - 

Ex57 9865.68  -  -  9610.23 551.4  - -2.6 - 

Ex58 10751.25  -  -  10003.95 494.7  - -7.0 - 
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Table 10. Tasks belonging to each job included in each group 

Group Tasks 

G1 K1: I1-I2, K2: I6-I7, K3: I11-I12, K4: I16-I17, K5: I21-I22, K6: 

I26-I27, K7: I31-I32, K8: I36-I37, K9: I41-I42, K10: I46-I47  

G2 K1: I3-I4, K2: I8-I9, K3: I13-I14, K4: I18-I19, K5: I23-I24, K6: 

I28-I29, K7: I33-I34, K8: I38-I39, K9: I43-I44, K10: I48-I49 

G3 K1: I5, K2: I10, K3: I15, K4: I20, K5: I25, K6: I30, K7: I35, K8: 

I40, K9: I45, K10: I50 

 

We also compare the results of RH-M2 with those of RH-M1 in Table 11. From the 

reported results, it seems that in many cases, RH-M2 can generate a better solution than 

RH-M1. For instance, model RH-M2 can provide better solutions, which lead from 1.3 

to 10.6 % less energy consumption for examples with ten jobs and fifteen operations 

(Examples 41-48 and 51-53). On the other hand, RH-M1 is more efficient for cases with 

thirty jobs (i.e., Examples 54-58), as it can generate solutions with up to 7.3% less energy 

consumption. 

Table 11. Comparative results of RH-M1 and RH-M2 

Ex. RH-M1  RH-M2 
Diff 

(%) 
 

 

Ex. 
RH-M1  RH-M2 

Diff 

(%) 

 TEC 

(kW) 

 TEC 

(kW) 

   TEC 

(kW) 

 TEC 

(kW) 

 

Ex21 214.78  215.87 0.5  Ex40 3608.97  3562.7 -1.3 

Ex22 4091.73  3679.99 -10.1  Ex41 4023.78  3754.31 -6.7 

Ex23 4192.16  3808.34 -9.2  Ex42 4039.19  3717.92 -8.0 

Ex24 1847.84  1907.12 3.2  Ex43 4339.28  3978.46 -8.3 

Ex25 1928.84  1941.73 0.7  Ex44 5984.42  5475.11 -8.5 

Ex26 1712.62  1633.59 -4.6  Ex45 5466.79  4941.6 -9.6 

Ex27 1914.79  1763.91 -7.9  Ex46 5858.67  5185.61 -11.5 

Ex28 1644.57  1598 -2.8  Ex47 5578.43  5257.31 -5.8 

Ex29 2851.87  2718.8 -4.7  Ex48 6178.14  5527.5 -10.5 

Ex30 2820.98  2521.31 -10.6  Ex49 6946.16  6951.96 0.1 

Ex31 2830.43  2645.48 -6.5  Ex50 7434.35  7560.55 1.7 

Ex32 2821.51  2685.13 -4.8  Ex51 6866.13  6620.26 -3.6 

Ex33 2910.03  2657.98 -8.7  Ex52 7257.84  7060.59 -2.7 

Ex34 3632.30  3565.38 -1.8  Ex53 7200.05  6938.57 -3.6 

Ex35 3406.47  3523.2 3.4  Ex54 8698.35  9167.93 5.4 

Ex36 3272.25  3417.27 4.4  Ex55 9580.33  9708.14 1.3 

Ex37 3636.68  3716.38 2.2  Ex56 8834.19  8861.43 0.3 

Ex38 3987.97  3787.02 -5.0  Ex57 8958.33  9610.23 7.3 

Ex39 4278.56  3884.04 -9.2  Ex58 9775.46  10003.95 2.3 
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6.4. Computational results from the hybrid algorithm 

The proposed hybrid algorithm eGEP-M2 is also used to solve Examples 21-58. The 

computational results are provided in Tables 12-16, where several GEP-based dispatching 

rules from Zhang et al. (2017) are applied. From Tables 12-16, it seems that a 

significantly better solution by up to 20% less TEC from eGEP-M2 is identified 

compared to that from eGEP. For instance, eGEP-M2 with the dispatching rule 1 

generates a schedule with TEC of 5792.41 kW for Example 48, which is 19.7% less 

energy consumption than that from eGEP using the dispatching rule 1. Furthermore, it 

seems that less than one minute is required to generate the optimal solution for most 

examples from eGEP-M2. For instance, eGEP-M2 generates a schedule with TEC of 

5792.41 kW for Example 48 in 31 s. Even for most large examples (i.e. Example 53-58), 

small computational time (i.e., within 5 minutes) is required to generate the best solution. 

 Figure 10 illustrates the schedule for Example 22 generated from the hybrid 

algorithm GEP-M2 with dispatching rule 8. The schedule for this example from eGEP 

is depicted in Figure 5. Comparing those schedules in Figure 10 and Figure 5, we can see 

that units remain idle for fewer periods during the scheduling horizon in Figure 10. 

Additionally, for those periods, the units are switched off, since it is more energy-

efficient. For instance, unit J10 is switched off at 590 min and switched on at 961 min. 

The switch off-on energy consumption during this period for this unit J10 is 19.8kW. As 

already discussed, eGEP leads to a combined standby and switch off-on energy 

consumption of 91.8kW for the same unit. As a result, GEP-M2 generates a schedule 

with 78.4% less energy consumption for unit J10. 

 

Figure 10 Best schedule for Example 22 using eGEP-M2 with the dispatching rule 8 
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Table 12. Comparison results for Examples 21-58 using eGEP dispatching rule 1 and 

the hybrid algorithm eGEP-M2 

 eGEP  eGEP-M2   

Ex 

TEC 

 (kW) 

 TEC 

 (kW) 

CPU  

Time (s) 

Diff 

(%) 

 

Ex21 331.78  273.44 0.031   

Ex22 4398.33  3973.63 1.0 -9.7  

Ex23 3924.75  3808.29 0.047 -3.0  

Ex24 2251.54  2150.22 0.031 -4.5  

Ex25 2299.34  2139.78 0.032 -6.9  

Ex26 2067.84  1814.60 0.047 -12.2  

Ex27 2023.54  1873.24 0.046 -7.4  

Ex28 1859.41  1784.59 0.047 -4.0  

Ex29 2891.37  2772.52 0.031 -4.1  

Ex30 2947.75  2746.31 0.031 -6.8  

Ex31 3211.28  2971.75 0.047 -7.5  

Ex32 3101.72  2901.06 0.046 -6.5  

Ex33 3340.19  2829.80 0.062 -15.3  

Ex34 4490.27  3779.94 0.046 -15.8  

Ex35 3954.04  3493.97 0.109 -11.6  

Ex36 3926.56  3412.03 0.063 -13.1  

Ex37 4170.90  3873.96 0.078 -7.1  

Ex38 3851.87  3711.79 0.047 -3.6  

Ex39 4837.29  4253.91 0.69 -12.1  

Ex40 4779.03  3950.16 1.0 -17.3  

Ex41 4500.77  3838.06 1.4 -14.7  

Ex42 4337.40  3867.97 0.89 -10.8  

Ex43 4825.34  4329.41 0.98 -10.3  

Ex44 5951.20  5372.26 1.7 -9.7  

Ex45 6257.80  5348.49 1.7 -14.5  

Ex46 6325.06  5569.00 2.0 -12.0  

Ex47 5988.91  5376.65 2.9 -10.2  

Ex48 7211.06  5792.41 31.0 -19.7  

Ex49 7686.70  6777.31 32.6 -11.8  

Ex50 8169.05  7153.02 153 -12.4  

Ex51 7201.22  6687.08 3.6 -7.1  

Ex52 7683.01  6637.30 142 -13.6  

Ex53 7284.41  6711.15 0.94 -7.9  

Ex54 10307.09  8975.42 157 -12.9  

Ex55 11054.20  9815.61 219 -11.2  

Ex56 10736.46  9246.65 95.6 -13.9  

Ex57 10427.51  9161.15 761 -12.1  

Ex58 11196.15  9813.16 3600a -12.4  
a Relative gap 0.07%  
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Table 13. Comparative results for Examples 21-58 using the eGEP dispatching rule 5 

and the hybrid algorithm eGEP-M2  

 
eGEP  eGEP-M2 

 
 

Ex 

TEC  

(kW) 

 TEC  

(kW) 

CPU  

Time (s) 

Diff 

(%) 

 

Ex21 297.98  275.55 0.062 -7.5  

Ex22 4047.03  3649.89 0.81 -9.8  

Ex23 4088.49  3548.94 0.078 -13.2  

Ex24 2070.50  2029.38 0.032 -2.0  

Ex25 1975.75  1943.83 0.031 -1.6  

Ex26 1964.55  1751.54 0.031 -10.8  

Ex27 1939.76  1836.00 0.047 -5.3  

Ex28 2006.52  1865.30 0.078 -7.0  

Ex29 3060.93  2886.49 0.046 -5.7  

Ex30 2835.82  2617.58 0.063 -7.7  

Ex31 2807.84  2754.71 0.047 -1.9  

Ex32 3046.21  2890.21 0.062 -5.1  

Ex33 3271.49  2758.93 0.047 -15.7  

Ex34 4064.60  3671.31 0.063 -9.7  

Ex35 3700.86  3468.03 0.20 -6.3  

Ex36 3682.76  3427.29 0.078 -6.9  

Ex37 3983.02  3672.87 0.109 -7.8  

Ex38 4018.18  3767.52 0.047 -6.2  

Ex39 4982.54  4260.96 0.84 -14.5  

Ex40 4300.04  3715.50 2.4 -13.6  

Ex41 4059.53  3728.99 0.36 -8.1  

Ex42 3937.63  3706.31 1.1 -5.9  

Ex43 4396.11  3897.01 1.3 -11.4  

Ex44 5708.72  5325.92 1.9 -6.7  

Ex45 5876.62  5169.44 5.3 -12.0  

Ex46 6322.86  5578.53 26.2 -11.8  

Ex47 5763.51  5278.09 8.8 -8.4  

Ex48 6640.15  5671.46 2.7 -14.6  

Ex49 7550.94  6793.95 35.8 -10.0  

Ex50 7859.20  7127.99 13.3 -9.3  

Ex51 7201.43  6662.99 4.1 -7.5  

Ex52 7287.90  6552.15 30.6 -10.1  

Ex53 7332.79  6731.61 8.2 -8.2  

Ex54 10108.14  9098.46 1106 -10.0  

Ex55 10939.20  9726.36 159 -11.1  

Ex56 10339.46  9112.79 145 -11.9  

Ex57 10081.65  9142.43 3600a -9.3  

Ex58 10751.25  9459.67 586 -12.0  
a Relative gap 0.80%  
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Table 14. Comparative results for Examples 21-58 using the eGEP dispatching rule 7 

and the hybrid algorithm eGEP-M2 

 
eGEP  eGEP-M2 

 
 

Ex 

TEC  

(kW) 

 TEC  

(kW) 

CPU 

Time (s) 

Diff 

(%) 

 

Ex21 377.73  310.24 0.031 -17.9  

Ex22 4342.12  4014.32 0.52 -7.5  

Ex23 4402.20  3756.34 0.22 -14.7  

Ex24 2172.22  2095.10 0.062 -3.6  

Ex25 2033.00  1947.04 0.031 -4.2  

Ex26 2021.92  1873.05 0.031 -7.4  

Ex27 2059.48  1959.69 0.031 -4.8  

Ex28 1976.26  1849.54 0.078 -6.4  

Ex29 3044.67  2853.12 0.031 -6.3  

Ex30 2826.03  2676.27 0.093 -5.3  

Ex31 2765.72  2679.49 0.078 -3.1  

Ex32 3136.43  2964.49 0.047 -5.5  

Ex33 3036.47  2756.63 0.063 -9.2  

Ex34 3947.29  3691.09 0.062 -6.5  

Ex35 3731.46  3499.69 0.48 -6.2  

Ex36 4061.80  3676.62 0.36 -9.5  

Ex37 4463.81  3926.23 0.078 -12.0  

Ex38 3740.39  3600.77 0.078 -3.7  

Ex39 4480.15  4018.49 0.34 -10.3  

Ex40 4482.24  3914.30 1.4 -12.7  

Ex41 4160.37  3678.10 0.44 709.5  

Ex42 4330.02  3815.93 1.2 -11.9  

Ex43 4437.60  3974.99 1.4 -10.4  

Ex44 5976.21  5560.87 2.6 -6.9  

Ex45 5756.06  5079.62 12.8 -11.8  

Ex46 5987.00  5383.50 13.1 -10.1  

Ex47 6180.85  5394.63 3.6 -12.7  

Ex48 7138.21  5899.35 64.3 -17.4  

Ex49 7504.90  6784.20 3.3 -9.6  

Ex50 8192.58  7206.61 3.9 -12.0  

Ex51 7528.43  6698.02 3.5 -11.0  

Ex52 7388.66  6647.78 37.7 -10.0  

Ex53 7950.47  7080.96 34.1 -10.9  

Ex54 10036.36  9062.42 100 -9.7  

Ex55 10703.56  9799.30 1279 -8.4  

Ex56 10194.85  9146.91 766 -10.3  

Ex57 9884.19  9131.27 3600a -7.6  

Ex58 11269.35  9780.38 32.1 -13.2  
a Relative gap 0.04%  

 

 



301 

 

Table 15. Comparative results for Examples 21-58 using the eGEP dispatching rule 8 

and the hybrid algorithm eGEP-M2 

 
eGEP  eGEP-M2 

 
 

Ex 

TEC  

(kW) 

 TEC 

 (kW) 

CPU 

Time (s) 

Diff 

(%) 

 

Ex21 296.71  255.75 0.124 -13.8  

Ex22 4289.90  3786.76 0.717 -11.7  

Ex23 4101.52  3627.59 0.125 -11.5  

Ex24 2017.38  1996.38 0.094 -1.0  

Ex25 2061.22  1994.99 0.047 -3.2  

Ex26 2077.87  1871.63 0.218 -9.9  

Ex27 1940.73  1836.00 0.219 -5.4  

Ex28 2015.52  1842.34 0.156 -8.6  

Ex29 2921.23  2851.49 0.109 -2.4  

Ex30 2761.52  2668.89 0.218 -3.4  

Ex31 2866.40  2716.39 0.093 -5.2  

Ex32 3122.96  2911.21 0.094 -6.8  

Ex33 3164.21  2830.84 0.078 -10.5  

Ex34 3954.61  3581.06 0.296 -9.4  

Ex35 3751.06  3496.18 1.435 -6.8  

Ex36 3698.97  3456.04 0.266 -6.6  

Ex37 3796.85  3687.75 0.187 -2.9  

Ex38 3876.12  3632.99 0.234 -6.3  

Ex39 4698.71  4073.37 0.624 -13.3  

Ex40 4328.51  3851.69 2.184 -11.0  

Ex41 4219.24  3764.29 1.123 -10.8  

Ex42 4264.51  3820.54 1.388 -10.4  

Ex43 4311.92  3905.98 0.999 -9.4  

Ex44 5972.97  5362.92 2.153 -10.2  

Ex45 6157.10  5136.97 15.6 -16.5  

Ex46 6307.20  5554.23 4.462 -11.9  

Ex47 5981.64  5275.81 1.482 -11.8  

Ex48 7113.48  5832.81 3.946 -18.0  

Ex49 7351.24  6807.56 5.865 -7.4  

Ex50 8244.86  7111.49 43.0 -13.7  

Ex51 7396.69  6720.92 3.432 -9.1  

Ex52 7285.72  6536.35 111 -10.3  

Ex53 7999.57  7147.95 25.9 -10.6  

Ex54 10344.35  9515.27 779 -8.0  

Ex55 10680.83  9763.51 576 -8.5  

Ex56 10183.47  9056.31 1584 -11.1  

Ex57 9865.68  9080.37 3600a -8.0  

Ex58 10832.23  9556.34 134 -11.8  
a Relative gap 0.05%  
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Table 16. Comparative results for Examples 21-58 using the eGEP dispatching rule 9 

and the hybrid algorithm eGEP-M2  

 
eGEP  eGEP-M2 

 
 

Ex 

TEC 

 (kW) 

 TEC 

 (kW) 

CPU 

Time (s) 

Diff 

(%) 

 

Ex21 320.25  286.63 0.047 -10.5  

Ex22 4465.27  3860.23 1.2 -13.5  

Ex23 4355.59  3763.03 0.047 -13.6  

Ex24 1914.55  1881.38 0.062 -1.7  

Ex25 2195.64  2101.69 0.046 -4.3  

Ex26 2294.79  1931.57 0.031 -15.8  

Ex27 2121.88  1925.57 0.062 -9.3  

Ex28 1864.79  1685.43 0.031 -9.6  

Ex29 3314.21  2909.79 0.047 -12.2  

Ex30 2917.68  2700.44 0.047 -7.4  

Ex31 3034.12  2828.43 0.047 -6.8  

Ex32 3220.20  2964.46 0.047 -7.9  

Ex33 3338.57  2888.41 0.063 -13.5  

Ex34 4584.44  3668.83 0.063 -20.0  

Ex35 4070.23  3485.15 0.171 -14.4  

Ex36 3979.86  3333.06 0.047 -16.3  

Ex37 4144.10  3780.81 0.078 -8.8  

Ex38 3841.63  3625.34 0.062 -5.6  

Ex39 4823.96  4183.65 1.4 -13.3  

Ex40 4082.95  3516.39 1.5 -13.9  

Ex41 4117.93  3639.54 0.67 -11.6  

Ex42 4084.68  3853.95 0.64 -5.6  

Ex43 4491.61  3979.13 9.2 -11.4  

Ex44 6116.02  5408.99 25.4 -11.6  

Ex45 5923.10  5061.75 2.4 -14.5  

Ex46 6095.66  5428.28 190 -10.9  

Ex47 6051.80  5191.31 19.3 -14.2  

Ex48 6672.93  5522.70 30.1 -17.2  

Ex49 7727.28  6637.33 133 -14.1  

Ex50 8163.12  7011.05 26.5 -14.1  

Ex51 7173.32  6447.07 14.5 -10.1  

Ex52 7650.43  6489.99 53.7 -15.2  

Ex53 7589.11  6554.44 15.1 -13.6  

Ex54 10070.27  8938.16 417 -11.2  

Ex55 10667.02  9436.44 222 -11.5  

Ex56 10683.11  8802.82 945 -17.6  

Ex57 9939.02  8785.05 142 -11.6  

Ex58 10963.14  9530.19 134 -13.1  

 

 Tables 17-21 demonstrate the comparative results among eGEP and eGEP-M2, as 

well as RH-M1 and RH-M2. From Tables 17-21, it seems that eGEP-M2 and RH-M1 

are the most efficient since they can generate the best solution for most cases among these 
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approaches. For instance, if we use dispatching rule 1, eGEP-M2 and RH-M1 provide 

the best schedule for 26 out of the 38 large-size examples. From those 26 examples, 

eGEP-M2 can generate the best solution for 10 of them, while RH-M1 leads to a better 

solution than all approaches for the rest examples. RH-M2 generates the best schedule 

for 12 cases, while eGEP do not provide the best solution for any of the examples. 

However, the superiority of each approach highly depends on the dispatching rule used. 

For instance, eGEP-M2 using dispatching rule 9 can generate better solutions for 22 

examples out of the 38 large-size examples. On the contrary, RH-M2 can generate the 

best solutions only for 11 examples.  

Table 17. Comparative results for Examples 21-58 using the eGEP dispatching rule 1, 

eGEP-M2, RH-M1 and RH-M2 

Example eGEP eGEP-M2 RH-M1 RH-M2 

Ex21 331.78 273.44 214.78 215.87 

Ex22 4398.33 3973.63 4091.73 3682.85 

Ex23 3924.75 3808.29 4192.16 3808.34 

Ex24 2251.54 2150.22 1847.84 1862.22 

Ex25 2299.34 2139.78 1928.84 1981.00 

Ex26 2067.84 1814.60 1712.62 1807.29 

Ex27 2023.54 1873.24 1914.79 1928.91 

Ex28 1859.41 1784.59 1644.57 1648.33 

Ex29 2891.37 2772.52 2851.87 2771.20 

Ex30 2947.75 2746.31 2820.98 2822.26 

Ex31 3211.28 2971.75 2830.43 2787.95 

Ex32 3101.72 2901.06 2821.51 2878.99 

Ex33 3340.19 2829.80 2910.03 2831.50 

Ex34 4490.27 3779.94 3632.30 3565.38 

Ex35 3954.04 3493.97 3406.47 3523.20 

Ex36 3926.56 3412.03 3272.25 3417.27 

Ex37 4170.90 3873.96 3636.68 3716.38 

Ex38 3851.87 3711.79 3987.97 3787.02 

Ex39 4837.29 4253.91 4278.56 4307.73 

Ex40 4779.03 3950.16 3608.97 3782.58 

Ex41 4500.77 3838.06 4023.78 3754.30 

Ex42 4337.40 3867.97 4039.19 3893.04 

Ex43 4825.34 4329.41 4339.28 4047.04 

Ex44 5951.20 5372.26 5984.42 5630.35 

Ex45 6257.80 5348.49 5466.79 5122.95 

Ex46 6325.06 5569.00 5858.67 5638.42 

Ex47 5988.91 5376.65 5578.43 5263.17 

Ex48 7211.06 5792.41 6178.14 5935.52 

Ex49 7686.70 6777.31 6946.16 6951.96 

Ex50 8169.05 7153.02 7434.35 7560.55 

Ex51 7201.22 6687.08 6866.13 6620.26 

Ex52 7683.01 6637.30 7257.84 7060.59 
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Ex53 7284.41 6711.15 7200.05 6938.57 

Ex54 10307.09 8975.42 8698.35 9167.93 

Ex55 11054.20 9815.61 9580.33 9708.14 

Ex56 10736.46 9246.65 8834.19 8861.43 

Ex57 10427.51 9161.15 8958.33 9610.23 

Ex58 11196.15 9813.16 9775.46 10004.00 

Table 18. Comparative results for Examples 21-58 using the eGEP dispatching rule 5, 

eGEP-M2, RH-M1 and RH-M2 

Example eGEP eGEP-M2 RH-M1 RH-M2 

Ex21 297.98 275.55 214.78 215.87 

Ex22 4047.03 3649.89 4091.73 3682.85 

Ex23 4088.49 3548.94 4192.16 3808.34 

Ex24 2070.50 2029.38 1847.84 1862.22 

Ex25 1975.75 1943.83 1928.84 1981.00 

Ex26 1964.55 1751.54 1712.62 1807.29 

Ex27 1939.76 1836.00 1914.79 1928.91 

Ex28 2006.52 1865.30 1644.57 1648.33 

Ex29 3060.93 2886.49 2851.87 2771.20 

Ex30 2835.82 2617.58 2820.98 2822.26 

Ex31 2807.84 2754.71 2830.43 2787.95 

Ex32 3046.21 2890.21 2821.51 2878.99 

Ex33 3271.49 2758.93 2910.03 2831.50 

Ex34 4064.60 3671.31 3632.30 3565.38 

Ex35 3700.86 3468.03 3406.47 3523.20 

Ex36 3682.76 3427.29 3272.25 3417.27 

Ex37 3983.02 3672.87 3636.68 3716.38 

Ex38 4018.18 3767.52 3987.97 3787.02 

Ex39 4982.54 4260.96 4278.56 4307.73 

Ex40 4300.04 3715.50 3608.97 3782.58 

Ex41 4059.53 3728.99 4023.78 3754.30 

Ex42 3937.63 3706.31 4039.19 3893.04 

Ex43 4396.11 3897.01 4339.28 4047.04 

Ex44 5708.72 5325.92 5984.42 5630.35 

Ex45 5876.62 5169.44 5466.79 5122.95 

Ex46 6322.86 5578.53 5858.67 5638.42 

Ex47 5763.51 5278.09 5578.43 5263.17 

Ex48 6640.15 5671.46 6178.14 5935.52 

Ex49 7550.94 6793.95 6946.16 6951.96 

Ex50 7859.20 7127.99 7434.35 7560.55 

Ex51 7201.43 6662.99 6866.13 6620.26 

Ex52 7287.90 6552.15 7257.84 7060.59 

Ex53 7332.79 6731.61 7200.05 6938.57 

Ex54 10108.14 9098.46 8698.35 9167.93 

Ex55 10939.20 9726.36 9580.33 9708.14 

Ex56 10339.46 9112.79 8834.19 8861.43 

Ex57 10081.65 9142.43 8958.33 9610.23 

Ex58 10751.25 9459.67 9775.46 10004.00 
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Table 19. Comparative results for Examples 21-58 using the eGEP dispatching rule 7, 

eGEP-M2, RH-M1 and RH-M2 

Example eGEP eGEP-M2 RH-M1 RH-M2 

Ex21 377.73 310.24 214.78 215.87 

Ex22 4342.12 4014.32 4091.73 3682.85 

Ex23 4402.20 3756.34 4192.16 3808.34 

Ex24 2172.22 2095.10 1847.84 1862.22 

Ex25 2033.00 1947.04 1928.84 1981.00 

Ex26 2021.92 1873.05 1712.62 1807.29 

Ex27 2059.48 1959.69 1914.79 1928.91 

Ex28 1976.26 1849.54 1644.57 1648.33 

Ex29 3044.67 2853.12 2851.87 2771.20 

Ex30 2826.03 2676.27 2820.98 2822.26 

Ex31 2765.72 2679.49 2830.43 2787.95 

Ex32 3136.43 2964.49 2821.51 2878.99 

Ex33 3036.47 2756.63 2910.03 2831.50 

Ex34 3947.29 3691.09 3632.30 3565.38 

Ex35 3731.46 3499.69 3406.47 3523.20 

Ex36 4061.80 3676.62 3272.25 3417.27 

Ex37 4463.81 3926.23 3636.68 3716.38 

Ex38 3740.39 3600.77 3987.97 3787.02 

Ex39 4480.15 4018.49 4278.56 4307.73 

Ex40 4482.24 3914.30 3608.97 3782.58 

Ex41 4160.37 3678.10 4023.78 3754.30 

Ex42 4330.02 3815.93 4039.19 3893.04 

Ex43 4437.60 3974.99 4339.28 4047.04 

Ex44 5976.21 5560.87 5984.42 5630.35 

Ex45 5756.06 5079.62 5466.79 5122.95 

Ex46 5987.00 5383.50 5858.67 5638.42 

Ex47 6180.85 5394.63 5578.43 5263.17 

Ex48 7138.21 5899.35 6178.14 5935.52 

Ex49 7504.90 6784.20 6946.16 6951.96 

Ex50 8192.58 7206.61 7434.35 7560.55 

Ex51 7528.43 6698.02 6866.13 6620.26 

Ex52 7388.66 6647.78 7257.84 7060.59 

Ex53 7950.47 7080.96 7200.05 6938.57 

Ex54 10036.36 9062.42 8698.35 9167.93 

Ex55 10703.56 9799.30 9580.33 9708.14 

Ex56 10194.85 9146.91 8834.19 8861.43 

Ex57 9884.19 9131.27 8958.33 9610.23 

Ex58 11269.35 9780.38 9775.46 10004.00 
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Table 20. Comparative results for Examples 21-58 using the eGEP dispatching rule 8, 

eGEP-M2, RH-M1 and RH-M2 

Example eGEP eGEP-M2 RH-M1 RH-M2 

Ex21 296.71 255.75 214.78 215.87 

Ex22 4289.90 3786.76 4091.73 3682.85 

Ex23 4101.52 3627.59 4192.16 3808.34 

Ex24 2017.38 1996.38 1847.84 1862.22 

Ex25 2061.22 1994.99 1928.84 1981.00 

Ex26 2077.87 1871.63 1712.62 1807.29 

Ex27 1940.73 1836.00 1914.79 1928.91 

Ex28 2015.52 1842.34 1644.57 1648.33 

Ex29 2921.23 2851.49 2851.87 2771.20 

Ex30 2761.52 2668.89 2820.98 2822.26 

Ex31 2866.40 2716.39 2830.43 2787.95 

Ex32 3122.96 2911.21 2821.51 2878.99 

Ex33 3164.21 2830.84 2910.03 2831.50 

Ex34 3954.61 3581.06 3632.30 3565.38 

Ex35 3751.06 3496.18 3406.47 3523.20 

Ex36 3698.97 3456.04 3272.25 3417.27 

Ex37 3796.85 3687.75 3636.68 3716.38 

Ex38 3876.12 3632.99 3987.97 3787.02 

Ex39 4698.71 4073.37 4278.56 4307.73 

Ex40 4328.51 3851.69 3608.97 3782.58 

Ex41 4219.24 3764.29 4023.78 3754.30 

Ex42 4264.51 3820.54 4039.19 3893.04 

Ex43 4311.92 3905.98 4339.28 4047.04 

Ex44 5972.97 5362.92 5984.42 5630.35 

Ex45 6157.10 5136.97 5466.79 5122.95 

Ex46 6307.20 5554.23 5858.67 5638.42 

Ex47 5981.64 5275.81 5578.43 5263.17 

Ex48 7113.48 5832.81 6178.14 5935.52 

Ex49 7351.24 6807.56 6946.16 6951.96 

Ex50 8244.86 7111.49 7434.35 7560.55 

Ex51 7396.69 6720.92 6866.13 6620.26 

Ex52 7285.72 6536.35 7257.84 7060.59 

Ex53 7999.57 7147.95 7200.05 6938.57 

Ex54 10344.35 9515.27 8698.35 9167.93 

Ex55 10680.83 9763.51 9580.33 9708.14 

Ex56 10183.47 9056.31 8834.19 8861.43 

Ex57 9865.68 9080.37 8958.33 9610.23 

Ex58 10832.23 9556.34 9775.46 10004.00 
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Table 21. Comparative results for Examples 21-58 using the eGEP dispatching rule 9, 

eGEP-M2, RH-M1 and RH-M2 

Example eGEP eGEP-M2 RH-M1 RH-M2 

Ex21 320.25 286.63 214.78 215.87 

Ex22 4465.27 3860.23 4091.73 3682.85 

Ex23 4355.59 3763.03 4192.16 3808.34 

Ex24 1914.55 1881.38 1847.84 1862.22 

Ex25 2195.64 2101.69 1928.84 1981.00 

Ex26 2294.79 1931.57 1712.62 1807.29 

Ex27 2121.88 1925.57 1914.79 1928.91 

Ex28 1864.79 1685.43 1644.57 1648.33 

Ex29 3314.21 2909.79 2851.87 2771.2 

Ex30 2917.68 2700.44 2820.98 2822.26 

Ex31 3034.12 2828.43 2830.43 2787.95 

Ex32 3220.20 2964.46 2821.51 2878.99 

Ex33 3338.57 2888.41 2910.03 2831.5 

Ex34 4584.44 3668.83 3632.3 3565.38 

Ex35 4070.23 3485.15 3406.47 3523.2 

Ex36 3979.86 3333.06 3272.25 3417.27 

Ex37 4144.10 3780.81 3636.68 3716.38 

Ex38 3841.63 3625.34 3987.97 3787.02 

Ex39 4823.96 4183.65 4278.56 4307.73 

Ex40 4082.95 3516.39 3608.97 3782.58 

Ex41 4117.93 3639.54 4023.78 3754.3 

Ex42 4084.68 3853.95 4039.19 3893.04 

Ex43 4491.61 3979.13 4339.28 4047.04 

Ex44 6116.02 5408.99 5984.42 5630.35 

Ex45 5923.10 5061.75 5466.79 5122.95 

Ex46 6095.66 5428.28 5858.67 5638.42 

Ex47 6051.80 5191.31 5578.43 5263.17 

Ex48 6672.93 5522.70 6178.14 5935.52 

Ex49 7727.28 6637.33 6946.16 6951.96 

Ex50 8163.12 7011.05 7434.35 7560.55 

Ex51 7173.32 6447.07 6866.13 6620.26 

Ex52 7650.43 6489.99 7257.84 7060.59 

Ex53 7589.11 6554.44 7200.05 6938.57 

Ex54 10070.27 8938.16 8698.35 9167.93 

Ex55 10667.02 9436.44 9580.33 9708.14 

Ex56 10683.11 8802.82 8834.19 8861.43 

Ex57 9939.02 8785.05 8958.33 9610.23 

Ex58 10963.14 9530.19 9775.46 10004.00 

 

7. Conclusions 

In this work, we developed efficient approaches to generate energy-efficient schedules 

for flexible job-shops. Two MILP models based on unit-specific event-based and 
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sequence-based representations have been presented. The proposed models are 

significantly more efficient than the existing mathematical models since they can generate 

solutions even for large-size examples. Between the proposed models, the unit-specific 

event-based model is more efficient since it can provide schedules for more examples 

than the sequence-based model. However, this model may fail to generate a feasible 

solution after one hour for cases with more than 20 jobs. By enhancing the rolling horizon 

decomposition approach, where the operations are divided into different groups using 

mixed-integer programming, both models can generate schedules for all examples, and 

they can generate up to 27.6% better solution than the best-reported solution generated 

with GEP. The proposed decomposition algorithm with the sequence-based model as 

short-term model scheduling model is more efficient since it can generate schedules with 

a better solution for examples with up to 30 jobs. Furthermore, we examined the 

combinations of mixed-integer programming approach and genetic evolutionary 

programming approach. By combining these approaches significantly better solutions 

with up to 20% less energy consumption, in comparison to the dispatching rules generated 

by using GEP can be generated. 
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Nomenclature 

Sets 

G: groups 

I: tasks 

Ij: units that can process task 𝑖 

Ik: tasks that belong to job k 

𝐈𝑗
𝑒: tasks that can be exclusively processed in unit j 

𝐈𝑠
𝐶: tasks that consume state 𝑠 

𝐈𝑠
𝑃: tasks that produce state 𝑠 

J: processing units/machines 

Ji: units that can process task i 

Jk,l: units that can process operation l which belongs to job k  

JPk,j: jobs that is forbidden to be assigned in unit j 

K: jobs 

KIk: tasks that belong to job k 

KLJk,l,j: operations that can be processed in unit j 

KLKLk,l,k,l: operations that can succeed operation l which belogs to job k 

L:  operations 

Lk: operations that belong to job k 

LDk: jobs with due dates 

LRk: jobs with a non-zero release date  

N: event points 

S: states 

SR: raw material states 

SIN: intermediate states 

SP: product states 

Indicies 

g, g: groups 

i, i: tasks 

j, j: units 

k, k: jobs 

l, l: operations 
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s: states 

n, n, n: event points 

Parameters 

dk: due date for job k 

EOj: switch off-on energy consumption of unit j 

ENg: number of event points for group g 

𝐸𝑆𝑗
0: initial standby energy consumption of unit j  

H: scheduling horizon 

Lmax: maximum number of tasks that can be included in a group g 

M: large positive number 

𝑁𝑗
min: minimum number of tasks/operations that can be processed in unit j 

𝑁𝑗
max: maximum number of tasks/operations that can be processed in unit j 

PCi,j: cutting power of task i in unit j 

PEN1, PEN2: penalty coefficients 

PUj: unload power of unit j 

rk: release time for job k 

w1, w2: importance weight parameters 

αi,j: processing time of task i in unit j 

αk,l,j: processing time of operation l that belong in job k in unit j 

β: coefficient of indirect energy consumption  

Δn: maximum number of event points that a task 𝑖 is allowed to span 

ρi,s: indicator of whether state 𝑠 is consumed (ρi,s = -1) or produced (ρi,s = 1) by task 𝑖.  

Binary variables 

wi,j,n,n: 1 if task i is processed in unit j from event point n to event point n 

xj,n: 1 if unit j is in standby mode at event point n 

xk,l,k,l,j: 1 if operation l of job k precedes operation l of job k in unit j 

zk,l,j: 1 if unit j is switched off after processing operation l of job k 

𝑧𝑗
0:  parameter to denote if unit j is switched-off at the beginning of the scheduling horizon 

Yg: 1 if group g is selected 

𝑌𝑖,𝑔
i : 1 if a task i is included to group g  

𝑌𝑘,𝑙,𝑔
i : 1 if an operation l belonging to a job k is included to group g 

 



316 

 

Continuous variables 

CTk,l,j: time that unit j remains idle after finishing processing operation l of job k  

ESj,n: standby energy consumption of unit j at event point n 

ESk,l: standby energy consumption of the unit after processing operation l of job k 

MS: makespan 

Obj: Objective value (rolling horizon decomposition approach) 

TEC: total energy consumption 

𝑇𝑗,𝑛
s : start time of unit j at event point n 

𝑇𝑗,𝑛
f : end time of unit j at event point n 

Tk,l: start time of operation l that belongs to job k 

Ts,n: time that state s is available to be consumed at event point n 

TNIk,g: number of tasks from each job k that are included in a group g 

TNLg: total number of tasks included in a group g 

wk,l,j: 0-1 continuous variable, 1 if operation l of job k is processed in unit j 

XFk,l,j: 0-1 continuous variable, 1 if operation l of job k is the first being processed in unit 

j 

yk,l,j: 0-1 continuous variable, 1 if unit remains in standby mode after processing operation 

l of job k 

𝑦𝑗
0:  parameter to denote if unit j is idle at the beginning of the scheduling horizon  



317 

 

Appendix A Proof that wi,l,j, XFi,l,j can only take 0 and 1 values 

Let’s consider two tasks l and l of job k and k respectively. Both tasks l and l are able 

to be processed in the same unit j. We can distinct 2 different cases 

Case 1: Task l precedes task l in processing unit j 

In this case xk,l,k,l,j = 1. As a result we have that from (20). 

(20) ⇒ 1 ≤ 𝑤𝑘,𝑙,𝑗 

Since wk,l,j  cannot take values greater than 1, it is concluded that it can only take the value 

1. Similarly, from (19) it is concluded that XFk,l,j can only be zero.  

Case 2: Task l does not precede task l  

In this case xk,l,k,l,j = 0. Therefore, according to (19) we have that wk,l,j = XFk,l,j. As a result 

wk,l,j and XFk,l,j can take any value between 0 and 1 as far as they are equal. If we assume 

that 0 < wk,l,j < 1 then according to (22) there should be at least one more variable of the 

same set that 0 < wk,l,j < 1. However, according to (20). 

(20) ⇒ 𝑥𝑘,𝑙,𝑘,𝑙,𝑗 ≤ 𝑤𝑘,𝑙,𝑗 

 And as a result xk,l,k,l,j = 0 since xk,l,k,l,j is defined as binary variable. This means that no 

other task can succeed operation l. Based on the results presented on Case 1, any other 

operation cannot precede operation l in any unit j or j (xk,l,k,l,j = 1 or xk,l,k,l,j = 1) since in 

such case it should be wk,l,j = 1. 

In conclusion, for Case 2 if wk,l,j and XFk,l,j take any value other than 0 and 1, it means 

that at least two processing units (unit j plus one or more units j where 0 < wk,l,j < 1) can 

only process this operation. Such assignment in most cases will be infeasible, since in 

most cases there are operations that can be processed in these unit j or j, or to significantly 

worse solutions that the optimal solution. 
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Appendix B Rolling horizon decomposition approach for 

sequence-based model 

We use the same rolling horizon decomposition approach for the sequence-based model. 

Since this model is using the definition operations instead of tasks, we slightly modify 

the decomposition model. More specifically, we introduce a binary variable 𝑌𝑘,𝑙,𝑔
i , which 

is equal to 1 if an operation l belonging to a job k is included in group g. The 

decomposition model for the sequence-based model is modified as follows. 

𝑌𝑘,𝑙,𝑔
l ≤ 𝑌𝑔 ∀𝑘, 𝑙 ∈ 𝐊𝐋𝑘,𝑙, 𝑔  (B.1) 

∑𝑌𝑘,𝑙,𝑔
l

𝑔

= 1 

         ∀𝑘, 𝑙 ∈ 𝐊𝐋𝑘,𝑙  (B.2) 

𝑌𝑘,𝑙′,𝑔
l ≤ 𝑌𝑘,𝑙,𝑔

l + ∑ 𝑌𝑘,𝑙,𝑔′
l

𝑔′<𝑔

 

    ∀𝑙′ = 𝑙 − 1, 𝐊𝐋𝒌,𝑙, 𝐊𝐋𝑘,𝑙′  (B.3) 

∑ ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙𝑘

≥ 𝑌𝑔 

         ∀ 𝑔  (B.4) 

𝑌𝑔+1 ≤ 𝑌𝑔 ∀ 𝑔  (B.5) 

𝑇𝑁𝐼𝑘,𝑔 = ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙

 

         ∀ 𝑘, 𝑔  (B.6) 

𝑇𝑁𝐼𝑘,𝑔+1 = 𝑇𝑁𝐼𝑘,𝑔         ∀ 𝑘, 𝑔  (B.7) 

𝑇𝑁𝐿𝑘 = ∑ ∑ 𝑌𝑘,𝑙,𝑔
l

𝑙∈𝐊𝐋𝑘,𝑙𝑘

 

         ∀ 𝑔  (B.8) 

𝑇𝑁𝐿𝑔 ≤ 𝐿max    ∀ 𝑔  (B.9) 
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𝑃𝐸𝑁1 ≥ 𝑇𝑁𝐼𝑘,𝑔       ∀ 𝑘, 𝑔  (B.10) 

𝑃𝐸𝑁2 ≤ 𝑇𝑁𝐼𝑘,𝑔 + |𝐺| ∙ (1 − 𝑌𝑔)         ∀ 𝑘, 𝑔  (B.11) 

𝑜𝑏𝑗 = 𝑤1 ⋅ ∑𝑌𝑔

𝑔

+ 𝑤2(𝑃𝐸𝑁1 − 𝑃𝐸𝑁2) 

          (B.12)
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Chapter 8: Conclusions and Future Work 

 

8.1 Conclusions 

Even though many mathematical models for scheduling of process industry were 

proposed in the past three decades, it still seems that they are not efficient, since they 

require excessive computational time to generate the optimal solution. In some cases, they 

even fail to provide an optimal solution. In this Thesis, multiple different features were 

examined to improve model efficiency. For instance, in research contribution 1, the 

feature of allowing related tasks to take place at the same event point was examined. Such 

a feature was implemented into two new mathematical models for scheduling of 

multipurpose batch processes. A new definition for recycling tasks was also presented, to 

avoid generating suboptimal solutions. In both proposed models all related non-recycling 

production and consumption tasks can take place at the same event point. While the first 

model was based on task-based timing variables, the second model uses timing variables 

based on units. The computational results demonstrated that both models can generate the 

optimal solution for all examples, and they both reduce the number of event points 

required. As a result, they led to smaller model sizes in comparison to existing 

formulations, where related production and consumption tasks are not allowed to take 

place at the same event point (Shaik and Floudas 2009). The model with unit-based timing 

variables was the most efficient since it required the least possible computational time 

which can reach up to one magnitude in most cases. 

The feature of allowing related tasks at the same event point was also implemented 

to a generic and efficient framework for process scheduling in research contribution 2. In 

summary, except for this feature, this framework also included the following features: 

• Related production and consumption tasks are sequenced, only if there is an indirect 

transfer between the units processing those tasks 

• Related production and consumption tasks are aligned, only if there is a direct transfer 

between the units processing those tasks 

• A unit can store materials that produced for more than one event points. 

The proposed framework was first implemented in the multipurpose batch process 

problem. By solving several motivating and benchmark results, it was shown that the 
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proposed framework can always generate the optimal solution, even for those examples 

that existing formulations can only generate a suboptimum solution. Additionally, the 

formulation required a smaller number of binary variables in most cases compared to the 

existing mathematical formulation, especially when a processing unit can process 

multiple tasks.  Furthermore, it did not need to allow a task to span over multiple event 

points to generate the optimal solution, which significantly reduced the model size. As a 

result, the computational time was significantly reduced by one order of magnitude in 

most cases. 

In research contributions 3, 4 and 5, the approach presented in research approach 2, 

is implemented in the continuous, multitasking and flexible job-shop processes, 

respectively. The results demonstrated that the proposed framework can be successfully 

implemented for all those different processes. In all cases, same or better solutions than 

existing formulations were generated. For some examples, the proposed framework was 

even able to provide solutions, that existing formulations fail to generate after a specified 

time (i.e. one hour). As a result, it was concluded that the proposed framework is both 

generic and efficient since it can solve different types of scheduling problems in 

significantly less computational time. 

For large-scale scheduling problems, where it is impossible to generate a good 

solution in small computational time, the rolling horizon decomposition approach was 

enhanced. Such a formulation can decompose the problem even if all orders/operations 

have the same due dates. The proposed decomposition approach grouped different 

orders/operations by using mixed-integer programming. To successfully decompose a 

large-scale problem, the complexity of each subproblem was previously determined. Such 

decomposition approach was successfully implemented in multitasking and flexible job-

shop problems in Chapter 4 and research contribution 5, where up to 99.9% less 

computational time is required to generate near optimum solutions. The proposed 

decomposition approach can even generate good schedules for examples, where all 

mathematical models fail to solve. 

Finally, in the last part of this thesis, a hybrid evolutionary programming and 

mathematical programming approach were developed for the flexible job-shop 

scheduling problem. In the first stage of this approach, the dispatching rules generated by 

GEP were used to provide the allocation and sequencing of tasks into units. In the second 
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stage, the mathematical model is used to generate the optimum timing of operations into 

units for the given allocation and sequencing. Such a hybrid approach was able to generate 

schedules with up to 20% less energy consumption than the efficient dispatching rules 

generated by using eGEP. Additionally, the mathematical model only requires up to 15 

minutes for most of the examples, which is acceptable for large-scale problems.  

8.2 Future work 

As discussed, a generic and efficient mathematical framework for scheduling of process 

industry was presented. Even though the proposed framework can solve different types 

of process scheduling problems and outperforms existing formulations, some limitations 

need to be handled in the future. 

• The proposed framework was considered for unlimited and finite intermediate 

storage policy. Even though it can also solve examples with no intermediate 

storage policy (NIS), the performance of the formulation can be further improved 

by including several additional constraints only for states with this policy. For 

instance, if a unit processes a task that produces a state with NIS policy, then this 

unit can only directly transfer materials to another unit. In this case, the model 

size can be further decreased, by reducing the number of binary variables required 

to generate the optimal solution. This approach could improve the performance of 

the model. 

• For unit wait policies, the proposed framework only considers cases with 

unlimited unit wait. As a result, the current formulation cannot solve examples, 

where several unstable intermediate products are produced within the facility. 

Such case can be easily handled, by using several duration constraints, where the 

duration of each task is limited, for states with limited unit wait policy, or it is 

equal to the processing time, for states with no unit wait policy. Even though such 

unit wait policies have already been considered in unit-specific event-based 

formulations with timing variables based on tasks, there is no unit-specific model 

with unit-based timing variables that consider such policies. 

• In the proposed framework, all resources such as raw materials, utilities and 

manpower are unlimited. Even though the facilities are supplied with up to three 

months of supplies, the market may lack a specific raw material, or there may be 

a significant increase in the price of this material. In such cases, the facility should 
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carefully consider the final products that will schedule to produce based on the 

availability. Additionally, in most cases, a processing facility produces the 

necessary utilities (i.e. steam). As a result, the processing facility may not be 

available to produce all the required utilities based on the resulted schedule, which 

can lead them to buy such utilities in a significantly higher cost. Even if such 

utilizes can be produced in large amounts, it is desirable to only produce the 

amount required to reduce the costs. To tackle this limitation, several resource 

constraints, should be imposed, where they limit the number of tasks that can be 

simultaneously produced based on the available resources. 

As also presented in this PhD thesis, hybrid GEP and mathematical modelling 

approaches can generate significantly better solutions than GEP approach in acceptable 

computational time. More specifically, the hybrid algorithm can provide better solutions 

than by just using the efficient dispatching rules developed by eGEP.  However, such an 

approach is only implemented in the flexible job-shop scheduling problem. Therefore, for 

future work, the use of such hybrid methods in different types of the process industry, 

including multipurpose and continuous processes should be considered. Similar to the 

flexible job-shop scheduling problem, the eGEP can develop several rules that can 

generate allocation and sequencing decisions for multipurpose batch processes and 

continuous processes. The proposed framework can then develop optimal timing and 

batching decisions. By using such a hybrid approach, optimum or near optimum solutions 

for small-scale problems and good solutions in significantly less computational time than 

mathematical modelling approaches for large-scale problems can be generated. As a 

result, the proposed hybrid approach will be able to generate good solutions without 

decomposing the problem in smaller subproblems. 
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Figure S1 STN representation of Example 1 

 

 

Table S1 Data for processing units for Example 1 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

I1 J1 1.333 0.01333 0 100 

I2 J2 1.333 0.01333 0 150 

I3 J3 1.000 0.00500 0 200 

I4 J4 0.667 0.00445 0 150 

I5 J5 0.667 0.00445 0 150 

 

 

Table S2 Initial amount and maximum capacities (FIS) for Example 1 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 200 

S3 0 300 

S4 0 ∞ 

 

 

Figure S2 STN representation of Example 2
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Table S3 Data for processing units for Example 2 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

I1 J1 0.667 0.00667 0 100 

I2 J2 1.334 0.02664 0 50 

I3 J3 1.334 0.01665 0 80 

I4 J2 1.334 0.02664 0 50 

I5 J3 1.334 0.01665 0 80 

I6 J2 0.667 0.01332 0 50 

I7 J3 0.667 0.008325 0 80 

I8 J4 1.334 0.00666 0 200 

 

Table S4 Initial amount and maximum capacities (FIS) for Example 2 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 ∞ ∞ 

S3 ∞ ∞ 

S4 0 100 

S5 0 200 

S6 0 150 

S7 0 200 

S8 0 ∞ 

S9 0 ∞ 

 

 

Figure S3 STN representation of Example 3
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Table S5 Data for processing units for Example 3 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

I1 I1 0.667 0.00667 0 100 

I2 I1 1.000 0.01000 0 100 

I3 I2 1.333 0.01333 0 100 

I4 I3 1.333 0.00889 0 150 

I5 I2 0.667 0.00667 0 100 

I6 I3 0.667 0.00445 0 150 

I7 I2 1.333 0.01330 0 100 

I8 I3 1.333 0.00889 0 150 

I9 I4 2.000 0.00667 0 300 

I10 I5 1.333 0.00667 20 200 

I11 I6 1.333 0.00667 20 200 

 

 

Table S6 Initial amount and maximum capacities (FIS) for Example 3 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 ∞ ∞ 

S3 0 100 

S4 0 100 

S5 0 300 

S6 50 150 

S7 50 150 

S8 ∞ ∞ 

S9 0 150 

S10 0 150 

S11 ∞ ∞ 

S12 0 ∞ 

S13 0 ∞ 
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Figure S4 STN representation of Example 4 

 

 

Table S7 Data for processing units for Example 4 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

I1 J1 0.9500 0.010000 0 6 

I2 J2 2.9400 0.020000 0 3 

I3 J3 2.4800 0.010000 0 2 

I4 J4 4.4666 0.006680 0 6 

I5 J5 1.9663 0.013348 0 8 

 

 

Table S8 Initial amount and maximum capacities (FIS) for Example 4 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 3 

S3 0 4 

S4 0 8 

S5 ∞ ∞ 
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Figure S5 STN representation of Example 5 

 

 

Table S9 Data for processing units for Example 5 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.000 0 0 10 

2 2 3.000 0 0 4 

3 3 1.000 0 0 2 

4 4 2.000 0 0 10 

 

 

Table S10 Initial amount and maximum capacities (FIS) for Example 5 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 6 

S3 0 4 

S4 ∞ ∞ 
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Figure S6 STN representation of Example 6 

 

 

 

Table S11 Data for processing units for Example 6 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.500 0 0 150 

2 2 4.500 0 0 60 

3 3 1.500 0 0 30 

4 4 1.500 0 0 30 

5 5 3.000 0 0 150 

 

 

 

Table S12 Initial amount and maximum capacities (FIS) for Example 6 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 ∞ ∞ 

S3 ∞ ∞ 

S4 0 60 

S5 0 60 

S6 ∞ ∞ 

S7 ∞ ∞ 

0.3 

0.3 

0.4 

0.5 

0.5 
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Figure S7 STN representation of Example 7 

 

 

 

Table S13 Data for processing units for Example 7 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 17.3333 0.866 0 20 

2 2 2.667 0.133 0 20 

3 3 2.667 0.133 0 20 

4 4 4.000 0.200 0 20 

5 5 5.333 0.266 0 20 

6 6 5.333 0.266 0 20 

 

 

 

Table S14 Initial amount and Maximum capacities (FIS) for Example 7 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 100 

S3 ∞ ∞ 

S4 0 100 

S5 0 100 

S6 ∞ ∞ 
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Figure S8 STN representation of Example 8, 9 

 

 

 

Table S15 Data for processing units for Example 8 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.666 0.03335 0 40 

2 2 2.333 0.08335 0 20 

3 3 0.333 0.06800 0 2.5 

4 4 2.667 0.008325 0 40 

 

 

 

Table S16 Initial amount and Maximum capacities (FIS) for Example 8 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 10 

S3 0 17.5 

S4 0 10 

S5 0 18 

S6 ∞ ∞ 
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Table S17 Data for processing units for Example 9 

Task  Processing Unit 𝛼𝑖 𝛽𝑖 𝐵𝑖
𝑚𝑖𝑛 𝐵𝑖

𝑚𝑎𝑥 

1 1 1.666 0.03335 0 40 

2 2 2.333 0.08335 0 20 

3 3 0.333 0.06800 0 2.5 

4 4 2.667 0.008325 0 40 

 

 

 

Table S18 Initial amount and maximum capacities (FIS) for Example 9 

State  𝑆𝑇0𝑠 𝑆𝑇𝑠
𝑚𝑎𝑥 

S1 ∞ ∞ 

S2 0 10 

S3 0 17.5 

S4 0 10 

S5 0 18 

S6 ∞ ∞ 
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Appendix A. Nomenclature 

Indices 

i, iʹ: tasks 

j, jʹ: units 

n, nʹ, nʹʹ: event points 

s: states 

Sets 

I: tasks 

Ij: tasks that can be performed in unit j 

Is: tasks that produce/consume state s 

𝐈𝑠
𝑐: tasks that consume state s 

𝐈𝑠
𝑃: tasks that produce state s 

IR: tasks considered as recycling tasks 

J: units 

Ji: units that can process task i 

Js: units that produce/consume state s 

N: event points 

S: states 

SFIS: states with unlimited intermediate storage policy 

SP: states that are final products 

SIN: states that are intermediate products 

SR:  states that are raw materials 

SUIS: states with unlimited intermediate storage policy 

Parameters 

𝐵𝑖𝑗
𝑚𝑎𝑥: maximum batch size of task i processed in unit j 

𝐵𝑖𝑗
𝑚𝑖𝑛 ∶ minimum batch size of task i processed in unit j 

Ds: demand of state s 

H: scheduling horizon 

M: big-M value 

Ps: price of state s 

ST0s: initial amount of state s 

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy) 

αij: coefficient of constant term of processing time of task i in unit j 
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βij: coefficient of variable term of processing time of task i in unit j 

Δn: maximum number of event points that task i is allowed to be active 

ρsij: portion of state 𝑠 consumed/produced by task i processed in unit j 

Binary variables 

wijnnʹ: binary variable which takes the value 1 if task i is processed in unit j from event 

point n to nʹ ≥ n 

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in 

unit j at event point n, which were previously produced by task i processed in unit j at 

event point nʹ < n 

zIjjʹn: binary variable which takes the value 1 if there is indirect material transfer between 

unit j and jʹ 

zDjjʹn: binary variable which takes the value 1 if there is indirect material transfer between 

unit j and jʹ 

Continuous variables 

bijnnʹ: amount of materials that are processed in unit 𝑗 processing task 𝑖 from time event 

point 𝑛 to time event point nʹ ≥ n 

bsijn: amount of materials stored in unit j at event point n, which were previously produced 

by task i processed in unit j at event point nʹ < n 

bTiijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

bTdijiʹjʹn: amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

STsn: amount of state 𝑠 that has to be stored at time event point 𝑛 

Tsjn: time that state s produced in unit j is available to be consumed at event point n 

𝑇𝑗𝑛
s :  start time of unit 𝑗 at time event point 𝑛 

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛 
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Appendix B. Modified short-term model and Rolling horizon decomposition 

approach of Janak et al. (2006) 

B1. Rolling-horizon Level 1 Formulation 

Indices 

d: days 

s, s: states 

Sets 

D: days 

I: tasks 

Is: tasks that produce/consume state s 

J: units 

Ji: units that process task i 

SF: final products (materials produced by a task type 6) 

SIN: intermediate products 

SPIN: states which are either final or intermediate products 

Parameters 

asd: amount of ahead time required to fulfil demand of state s which is due of day d  

Df: last day of the previous sub-horizon. Zero for the first sub-horizon  

fillss: parameter to relate final product s with an intermediate product s before being 

processes in a type 6 task 

lasts: parameter to indicate whether state s was still being produced (the relevant task is 

still being processed by a unit) at the end of the previous sub-horizon 

LI1, LI2: weights for the objective function of the level 1 decomposition formulation 

nepd: number of event point used for each day 

prawss: parameter to relate final product s with raw material or intermediate product s 

rsd: demand for product s due on day d 

ubin: maximum number of binary variables in each sub-problem 

uprd: upper amount of production in the current sub-horizon 

wts: weight of product s in the objective function 

Ysd: amount of state s that has to be processed in a type 5 task within the period [d,d+3] 

Binary Variables 

dayd: 1 if day d is included in the current horizon 

prs: 1 if state s is included in the current horizon 
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Continuous variables  

slbin: slack variable to allow extra days to be included in the current sub-horizon 

prdaysd: bilinear term 𝑝𝑟𝑠 ∙ 𝑑𝑎𝑦𝑑 

slackbin: Slack variable to allow extra days to be added in the current horizon 

z: Objective value 

Constraints 

( 1)+d dday day  d, d > Df , d < |D| (B.1) 

s dpr day  d, d > Df , d < |D|, s Df, rsd > 

0 (B.2) 

,( )−
s ds d apr day  d, d > Df , d < |D|, s SF, asd > 0, d > asd

 (B.3) 

,
f f f

, , , ,

( )

, 0 , , 0 , 0

−

     

 + +  s d

s d s d s d s d

s d d a d

d D r d D a r d D Y

pr day day day  s Sf, lasts = 0

 (B.4) 

s spr pr   s SF, s SIN, praws,s > 0

 (B.5) 

, ,, 0 , 0f p
s s s s

s s s

s S fill s S praw

pr pr pr
 



   

 +    ∀ s∊SIN   lasts > 0 (B.6) 

s spr last   ∀s ∊ SPIN (B.7) 

f f s i

s d

d D s S i I j J

nepd pr day ubin slbin
   

 
   +  
 
     (B.8) 

  

   
f F

s i

s d sd

i jd D s

pr day r uprd
I JS

   (B.9) 

1 + +sd s dprday pr day   ∀s, d (B.10) 

sd sprday pr   ∀s, d (B.11) 

sd dprday day   ∀s, d (B.12) 

  

 
  + 
 
 

f f
s i

sd

i jd D s

nepd prday upper slackbin
I JS

   (B.13) 

  

  
f F

s i

sd sd

i jd D s

prday r uprd
I JS

   (B.14) 

1 2

 

= +  + 
f PIN

d s s

d D s

z day LI wt pprod LI slackbin
S

   (B.15) 
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B2. Rolling horizon Level 2 Formulation 

Indices 

i: tasks 

s: states 

Sets 

Ij: tasks that can be processed in unit j 

IT1: set which includes the type 1 tasks 

JT1: units that process type 1 tasks 

Scat1: final product type 1 

Scat2: final product type 2 

Si: states that were produced/consumed by task i  

SPIN: states which are either final or intermediate products 

Parameters 

𝐵𝑖𝑗
max: maximum capacity of task i in unit j 

Dems: demand of state s  

lasts: parameter to indicate whether state s was still being produced (the relevant task is 

still being processed by a unit) at the end of the previous sub-horizon 

lower: lower bound on the utilization level of units processing type 1 tasks 

packss: parameter that relates final products of type 1 with final products of type 2 

𝑝𝑡𝑖
min: minimum processing time of task i in all available processing units 

sls: parameter to indicate whether state s is included in the current horizon because it has 

demands in the horizon or needs to be processed ahead of time to fulfill demands at a 

later horizon 

𝑆𝑇𝑠
max: maximum capacity of state s (for states with FIS policy) 

Binary variables 

reacti: 1 if type 1 task i is included in the scheduling model 

Continuous variables 

z: objective value 

Constraints 

i sreact sl   ∀ i∊IT1, s∊SPIN, Si  (B.16) 

i sreact last   ∀ i∊IT1, s∊SPIN, Si  (B.17) 
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( )( ) ( ) ( )( )1 2 1 1 2 1

min max max

max

1 0 0 0 0
0 0 0 0 0 

           

 + = + = + = + = + =
    



  + +
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T

i

i
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I
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B3. Modified short-term model of Janak et al. (2006) 

Indices 

i, iʹ: tasks 

j, jʹ: units 

n: event points 

Sets 

D: days 

Din: days that included in the current horizon 

I: tasks 

Ij: tasks that can be performed in unit j 

𝐈𝑠
𝐶 : tasks that consume state s 

Iin: tasks included in the current horizon 

Ik: tasks related with order k 

𝐈𝑠
𝑃: tasks that produce state s 

IR: tasks considered as recycling tasks 

IT6b: type 6 tasks that produce category 1 products 

J: units 

Ji: units that can process task i 

Js: units that produce/consume state s 

JT4: units that process task types 4a and 4b 

JT6: units that process task type 6 

K:orders 

Kin: orders included in the current horizon 

Ki: orders related with task i 

Ks: orders that are related with state s 

N: event points 

S: states 

Scat1: category 1 final products 

SFIS: states with finite intermediate storage policy  

SIN: states included in the current horizon 

Sst: states with no intermediate storage policy 

Sunl: states with unlimited intermediate storage policy 

Parameters 
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𝐵𝑠
𝑚𝑎𝑥: maximum available batch that process state s 

𝐵𝑠
𝑚𝑖𝑛: minimum available batch that process state s  

𝐵𝑖𝑗
𝑚𝑎𝑥: maximum capacity of task i in unit j 

𝐵𝑖𝑗
𝑚𝑖𝑛: minimum capacity of task i in unit j 

Dems: demand of state s  

𝐷𝑒𝑚𝑠
𝑟𝑎𝑤: demand of raw material state s  

duekksd: due date of order k for state s on day d 

H: scheduling horizon 

M: big-M value 

mtasks: minimum number of tasks that are allowed to be active in the units processing 

type 1 tasks 

Nmax: event points within the current scheduling horizon  

priors: priority of state s 

𝑝𝑟𝑖𝑜𝑟𝑠
𝑟𝑎𝑤: priority of state s 

rkksd: amount of order k for state s on day d 

sls: indicator that state s is included in the current horizon because there is demand in this 

horizon or in the ahead of time 

𝑆𝑇𝑠
max: maximum storage capacity for state s 

𝑆𝑇𝑠
min: minimum amount of state s that should be stored at any point 

ST0s: initial amount of state s at the beginning of the current scheduling horizon 

α, β, γ, δ, φ, ξ, λ, η, w, w4: weights for objective function 

αij : coefficient of constant term of processing time of task i in unit j 

βij : coefficient of variable term of processing time of task i in unit j 

ρsij : portion of state 𝑠 consumed/produced by task i processed in unit j 

Binary Variables 

wvijn: 1 if task i is processed in unit j at event point n 

yikn: binary variable which assigns the delivery of order k through task i 

ysijn: binary variable which takes the value 1 if there is any amount of materials stored in 

unit j at event point n, which were previously produced by task i processed in unit j at 

event point nʹ < n 

zIjjʹn : binary variable which takes the value 1 if there is indirect material transfer between 

unit j and jʹ 

zDj,jʹ,n : binary variable which takes the value 1 if there is indirect material transfer 
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between unit j and jʹ 

Continuous variables 

bijn: amount of materials processed in unit j processing task i at event point n 

bsijn : amount of materials stored in unit j at event point n, which were previously 

produced by task i processed in unit j at event point nʹ < n 

bTiijiʹjʹn : amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

bTdijiʹjʹn : amount of materials, which produced by task i processed in unit j, were indirectly 

transferred to unit jʹ which consumes task iʹ at event point n 

Dsn: amount of state s delivered at event point n 

𝐷𝑠𝑛
f : amount of state s delivered after the last event point 

kDksn: amount of state s delivered at event point n in order k 

𝑘𝐷𝑘𝑠𝑛
f : amount of state s delivered after the last event point in order k 

sla1ksd: amount of state s due on day d of order k that is not delivered 

sla2ksd: amount of state s due on day d of order k that is overdelivered 

slcapsn: amount of state s that cannot be stored in storage tanks 

slls: amount of state s due in the current horizon but not made  

𝑠𝑙𝑙𝑠
𝑟𝑎𝑤: amount of raw material state s due in the current horizon but not made  

slt1ksd: amount of time state s is due on day d for order k is late 

slt2ksd: amount of time state s is due on day d for order k is early 

𝑠𝑙𝑠𝑛
cap

: Amount of materials of state s required to fulfil the minimum amount requirement 

at event point n  

𝑠𝑙𝑘
𝑜𝑟𝑑𝑒𝑟: 0-1 continuous variable that indicates whether order k is fulfilled 

STsn: amount of state s stored during event point n 

ST0s: amount of state s at the end of the current scheduling horizon 

Tsjn : time that state s produced in unit j is available to be consumed at event point n 

𝑇𝑗𝑛
s :  start time of unit 𝑗 at time event point 𝑛 

𝑇𝑗𝑛
f : end time of unit 𝑗 at time event point 𝑛 

𝑡𝑡𝑗𝑛
s :  start time of unit 𝑗 processing an active task i at time event point 𝑛 

term1-term9: objective terms 

z: objective values 

Constraints 

Allocation constraints 
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1



j

ijn

i

wv
I

 ∀ j, n ≤ Nmax (B.20) 

Capacity constraints 

min max   ij ijn ijn ij ijnB wv b B wv  ∀ j, i  Ij, n ≤ Nmax (B.21) 

Storage constraints 

maxsn sST ST   ∀ s∊SFIS ,  n  (B.22) 

min + cap

sn s snST ST sl   ∀ s∊SFIS ,  n  (B.23) 

Material balance constraints 
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Duration constraints 
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where 𝐵𝑗
𝑚𝑎𝑥 = max
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Table S1 Sample group data for Examples 2-5 

Sample 

group 

Samples Processing path  Sample 

group 

Samples Processing path 

Example 2  Example 3 

1 73 𝑃2 − 𝑃4  1 57 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

2 67 𝑃1 − 𝑃2 − 𝑃4  2 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

3 57 𝑃1 − 𝑃2 − 𝑃4  3 54 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

4 68 𝑃1 − 𝑃2 − 𝑃4  4 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

5 72 𝑃2 − 𝑃3 − 𝑃4  5 58 𝑃1 − 𝑃2 − 𝑃3 

6 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  6 77 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

7 52 𝑃1 − 𝑃2 − 𝑃3  7 70 𝑃2 − 𝑃3 − 𝑃4 

8 63 𝑃1 − 𝑃2 − 𝑃3  8 73 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

9 52 𝑃1 − 𝑃2 − 𝑃4  9 59 𝑃2−𝑃3 − 𝑃4 

10 79 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  10 55 𝑃1 − 𝑃2 − 𝑃4 

Example 4  Example 5 

1 64 𝑃1 − 𝑃2−𝑃3  1 53 𝑃2 − 𝑃3 − 𝑃4 

2 64 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  2 79 𝑃1 − 𝑃3 − 𝑃4 

3 68 𝑃1 − 𝑃2 − 𝑃4  3 72 𝑃1 − 𝑃2 − 𝑃4 

4 55 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  4 52 𝑃3 − 𝑃4 

5 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  5 66 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

6 69 𝑃1 − 𝑃3 − 𝑃4  6 74 𝑃1 − 𝑃2 − 𝑃4 

7 65 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  7 72 𝑃1 − 𝑃2 − 𝑃3 

8 69 𝑃1 − 𝑃2 − 𝑃3  8 77 𝑃2 − 𝑃3 − 𝑃4 

9 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  9 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

10 73 𝑃1 − 𝑃2 − 𝑃4  10 63 𝑃1 − 𝑃2 
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Table S2 Sample group data for Example 6 

Sample 

group 

Samples Processing path 

1 61 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

2 80 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

3 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

4 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

5 70 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

6 72 𝑃1 − 𝑃2 

7 67 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

8 70 𝑃3 − 𝑃4 

9 76 𝑃1 − 𝑃3 − 𝑃4 

10 76 𝑃1 − 𝑃3 − 𝑃4 
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Table S3 Sample group data for Examples 7-10 

Sample 

group 

Samples Processing path  Sample 

group 

Samples Processing path 

Example 7  Example 8 

1 64 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  1 68 𝑃1 − 𝑃2 − 𝑃1 − 𝑃4 

2 61 𝑃1 − 𝑃2 − 𝑃3  2 52 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

3 69 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  3 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

4 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  4 73 𝑃1 − 𝑃2 − 𝑃4 

5 50 𝑃1 − 𝑃2 − 𝑃3 − 𝑃2 − 𝑃4  5 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃1 − 𝑃4 

Example 9  Example 10 

1 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  1 57 𝑃1 

2 74 𝑃1 − 𝑃4  2 77 𝑃3 − 𝑃4 

3 78 𝑃3 − 𝑃4  3 76 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 

4 71 𝑃1 − 𝑃4  4 58 𝑃1 − 𝑃2 − 𝑃4 

5 71 𝑃1 − 𝑃2 − 𝑃3  5 77 𝑃2 − 𝑃4 
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Table S4 Sample group data for Examples 11-16 

Sample 

group Samples Processing path  

Sample 

group Samples Processing path 

Example 11  Example 12 

1 63 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  1 56 𝑃1 − 𝑃2 − 𝑃3 

2 68 𝑃2 − 𝑃3  2 68 𝑃1 − 𝑃2 − 𝑃3 

3 71 𝑃1 − 𝑃2−𝑃3 − 𝑃4     

4 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4     

5 75 𝑃1 − 𝑃2 − 𝑃3     

Example 13  Example 14 

1 50 𝑃1 − 𝑃2  1 50 𝑃1 − 𝑃2 − 𝑃3 

2 71 𝑃1 − 𝑃2 − 𝑃3  2 57 𝑃1 − 𝑃2 − 𝑃3 

Example 15  Example 16 

1 68 𝑃1 − 𝑃2 − 𝑃3  1 59 𝑃1 − 𝑃2 

2 60 𝑃1 − 𝑃3 − 𝑃4  2 51 𝑃1 − 𝑃2 

3 55 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4  3 73 𝑃2 − 𝑃3 − 𝑃4 
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Table S5 Sample group data for Example 17 

Sample 

groups Samples Processing path 

1 60 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 

2 71 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 

3 77 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 

4 80 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 
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Table S6 Sample group data for Example 18 

Sample 

groups Samples Processing path 

1 76 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 

2 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 

3 59 𝑃1 − 𝑃2 − 𝑃3 − 𝑃5 − 𝑃6 − 𝑃7 

4 67 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 

5 63 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 

6 72 𝑃1 − 𝑃2−𝑃3 − 𝑃5 − 𝑃6 − 𝑃7 

7 73 𝑃3 − 𝑃4 − 𝑃6 − 𝑃7 

8 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃7 

9 65 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 

10 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 

11 73 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 

12 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃6 
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Table S7 Sample group data for Example 19 

Sample 

groups Samples Processing path 

1 75 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃8 

2 53 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

3 50 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃6 − 𝑃7 − 𝑃8 

4 74 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

5 72 𝑃1 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

6 55 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃8 

7 56 𝑃1 − 𝑃2 − 𝑃3 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

8 76 𝑃𝑟1 − 𝑃𝑟2 − 𝑃𝑟3 − 𝑃𝑟4 − 𝑃𝑟5 − 𝑃𝑟6 − 𝑃𝑟8 

9 51 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

10 76 𝑃1 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

11 74 𝑃1 − 𝑃2 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

12 72 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

13 64 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

14 62 𝑃1 − 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃8 

15 72 𝑃2 − 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 

16 58 𝑃3 − 𝑃4 − 𝑃5 − 𝑃6 − 𝑃7 − 𝑃8 
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Table S8 Processing unit data for Example 20 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

1 295 8 35 279 1 68 295 9 

2 271 5 36 276 5 69 248 7 

3 220 1 37 224 7 70 284 7 

4 286 7 38 275 6 71 298 3 

5 210 4 39 278 1 72 267 6 

6 212 3 40 241 4 73 283 3 

7 200 2 41 211 6 74 228 10 

8 236 11 42 253 9 75 251 4 

9 234 11 43 261 6 76 237 4 

10 292 2 44 280 3 77 265 2 

11 250 8 45 272 8 78 220 9 

12 225 7 46 252 8 79 247 9 

13 297 11 47 228 4 80 239 4 

14 220 10 48 222 10 81 298 10 

15 263 8 49 276 4 82 200 1 

16 235 9 50 239 11 83 248 3 

17 288 5 51 287 3 84 217 7 

18 204 8 52 221 7 85 214 8 

19 268 2 53 288 8 86 272 4 

20 292 4 54 241 9 87 208 4 

21 222 10 55 204 10 88 238 11 

22 250 5 56 266 8 89 285 7 

23 206 3 57 276 3 90 245 7 

24 223 7 58 252 9 91 229 8 

25 262 9 59 242 7 92 225 9 

26 287 10 60 221 2 93 270 1 

27 244 4 61 262 6 94 267 6 

28 252 7 62 205 10 95 281 6 

29 255 3 63 254 5 96 254 3 

30 284 5 64 203 10 97 206 9 

31 239 5 65 296 8 98 209 2 

32 280 10 66 232 11 99 253 11 

33 257 5 67 254 7 100 271 7 

34 267 4       
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Table S9 Processing unit data for Examples 21-29 

Sample 

group Samples 

Processing 

path  

Sample 

group Samples 

Processing 

path  

Sample 

group Samples 

Processing 

path 

Example 21  Example 22  Example 23 

1 66 8  1 54 3  1 57 6 

2 78 1  2 62 1  2 72 1 

3 66 9  3 79 10  3 77 9 

4 73 5  4 76 4  4 74 2 

5 50 4  5 70 5  5 51 2 

Example 24  Example 25  Example 26 

1 65 10  1 71 10  1 75 5 

2 58 8  2 50 1  2 68 2 

3 77 1  3 75 5  3 67 7 

4 69 9  4 78 5  4 59 7 

5 56 11  5 70 8  5 72 4 

        6 55 5 

        7 52 10 

        8 66 7 

        9 76 10 

        10 50 9 

Example 27  Example 28  Example 29 

1 79 2  1 65 11  1 77 3 

2 53 4  2 71 4  2 58 7 

3 54 2  3 71 3  3 56 4 

4 72 8  4 50 8  4 51 8 

5 68 1  5 70 3  5 70 10 

6 61 4  6 62 4  6 51 10 

7 58 9  7 61 10  7 61 2 

8 56 3  8 52 3  8 54 7 

9 70 2  9 78 5  9 56 4 

10 71 1  10 50 8  10 60 5 
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Table S10 Processing unit data for Example 30 

Sample 

group Samples 

Processing 

path 

1 68 8 

2 68 1 

3 78 10 

4 69 9 

5 56 2 

6 80 3 

7 72 9 

8 65 4 

9 60 11 

10 58 2 
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Table S11 Processing unit data for Example 31 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

1 219 4 35 274 11 68 245 5 

2 299 6 36 224 10 69 225 4 

3 215 10 37 207 1 70 275 4 

4 230 7 38 296 6 71 289 2 

5 295 2 39 289 8 72 241 7 

6 220 2 40 211 2 73 238 2 

7 292 9 41 218 3 74 223 11 

8 250 10 42 225 8 75 207 4 

9 276 5 43 230 3 76 202 9 

10 288 7 44 216 7 77 235 6 

11 261 10 45 232 7 78 232 1 

12 290 9 46 256 10 79 295 9 

13 281 10 47 207 6 80 265 8 

14 218 9 48 270 9 81 298 1 

15 260 1 49 236 10 82 298 1 

16 258 5 50 261 2 83 229 6 

17 291 4 51 200 3 84 236 9 

18 206 8 52 268 8 85 249 1 

19 278 5 53 275 10 86 238 4 

20 211 7 54 255 10 87 293 4 

21 298 7 55 275 5 88 220 9 

22 296 6 56 264 8 89 292 11 

23 288 6 57 250 11 90 206 3 

24 212 5 58 267 5 91 259 2 

25 214 7 59 223 5 92 279 8 

26 251 3 60 298 4 93 269 8 

27 276 8 61 223 5 94 279 8 

28 219 2 62 283 9 95 247 2 

29 216 9 63 292 10 96 237 8 

30 222 5 64 289 4 97 248 8 

31 263 2 65 266 5 98 298 11 

32 243 5 66 223 10 99 243 8 

33 282 7 67 276 4 100 206 5 

34 252 2       
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Table S12 Processing unit data for Example 32 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

Sample 

group Samples 

Processing 

path 

1 283 5 35 292 7 68 330 11 

2 317 6 36 321 11 69 298 2 

3 330 5 37 282 6 70 295 2 

4 309 9 38 279 6 71 256 8 

5 314 9 39 321 8 72 277 1 

6 340 3 40 255 6 73 269 3 

7 337   6 41 256 4 74 316 9 

8 307 3 42 260 6 75 323 5 

9 298 6 43 317 5 76 261 10 

10 268 1 44 308 7 77 250 4 

11 327 10 45 288 7 78 333 7 

12 328 5 46 300 5 79 290 5 

13 294 7 47 256 11 80 316 2 

14 292 8 48 294 6 81 333 1 

15 278 10 49 273 8 82 256 7 

16 322 10 50 325 3 83 280 6 

17 343 1 51 268 2 84 345 3 

18 254 4 52 288 11 85 310 4 

19 333 8 53 306 2 86 335 8 

20 332 2 54 305 9 87 341 9 

21 276 2 55 274 5 88 272 4 

22 341 7 56 257 4 89 260 9 

23 323 9 57 338 4 90 342 8 

24 276 10 58 334 8 91 325 2 

25 303 8 59 266 6 92 320 11 

26 266 4 60 329 5 93 299 5 

27 316 1 61 265 6 94 287 3 

28 329 10 62 329 7 95 265 7 

29 280 5 63 335 4 96 287 8 

30 288 4 64 338 5 97 322 6 

31 325 3 65 297 11 98 330 5 

32 276 2 66 319 2 99 314 11 

33 289 4 67 277 8 100 264 10 

34 320 6       
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Table S13 Processing unit data for Examples 1-13 and 16-17 

Property Unit 

Capacity 

(cu) 

Processing 

time (min) Process Unit 

Capacity 

(cu) 

Processing 

time (min) 

Examples 1-6, 16, 17 Example 7 

1 1 140 50 1 1 187 24 

2 2 70 30 2 2 106 59 

 3 70 30 3 3 105 191 

3 4 50 60     

 5 50 60     

4 6 120 195     

Example 8 Example 9 

1 1 73 70 1 1 50 160 

2 

3 

2 61 20 2 

 

2 50 78 

3 193 179 3 50 78 

 
   3 

 

4 50 165 

   5 50 165 

    4 6 50 199 

Example 10 Example 11 

1 1 50 136 1 1 96 26 

2 2 50 147 2 2 168 150 

 3 50 147  3 138 39 

3 4 50 82 3 4 171 143 

 5 50 82  5 185 17 

4 6 50 55 4 6 114 53 

Example 12 Example 13 

1 1 16 55 1 1 60 26 

2 2 34 99 2 2 49 99 

 3 34 99 3 3 44 20 

3 4 150 219 4 4 122 205 
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Table S14 Processing unit data for Examples 14-15 and 18-19 

Property Unit 

Capacity 

(cu) 

Processing 

time (min) Property Unit 

Capacity 

(cu) 

Processing 

time (min) 

Example 14 Example 18 

1 1 200 30 1 1 14 19 

2 2 165 11 2 2 122 40 

 3 165 11 3 3 180 63 

3 4 179 15 4 4 182 22 

4 5 123 220 5 5 68 217 

Example 15 Example 19 

1 1 15 33 1 1 15 22 

2 2 182 12 2 2 132 48 

3 3 104 56 3 3 164 61 

4 4 102 19 4 4 19 69 

5 5 106 75 5 5 41 69 

6 6 176 25 6 6 176 43 

7 7 196 204 7 7 113 22 

    8 8 88 215 
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Table S15 Process data for Example 20 

Property 

Total capacity 

(cu) No. of units 

Processing time 

(min) 

1 950 2 190 

2 1000 3 250 

3 1135 2 118 

4 803 4 589 

5 354 2 222 

6 1873 2 958 

7 1504 2 382 

8 696 1 1259 

9 1140 1 188 

10 1965 1 268 

11 1054 3 1021 

12 282 2 675 

13 652 4 1020 

14 95 4 297 

15 1405 1 952 

16 819 1 637 

17 569 1 401 

18 1386 10 1372 

19 1622 10 1219 

20 373 8 1111 

21 534 8 1332 

22 694 1 670 

23 760 4 1096 

24 2025 6 1552 

25 1039 1 537 
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Table S16 Process data for Examples 21-31 

Property 

Total capacity 

(cu) No. of units 

Processing time 

(min) 

1 500 2 15 

2 60 3 60 

3 2250 2 1440 

4 50 4 375 

5 420 2 40 

6 216 2 300 

7 21 2 150 

8 48 1 615 

9 7 1 1440 

10 150 1 240 

11 480 3 180 

12 440 2 240 

13 216 4 120 

14 440 4 220 

15 1 1 10 

16 180 1 390 

17 240 1 1440 

18 720 10 735 

19 480 10 471 

20 112 8 1256 

21 135 8 1141 

22 22 1 60 

23 440 4 1620 

24 10 6 10 

25 10 1 10 
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Table S1 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and 

eGEP dispatching rule 5 

 eGEP  M1/M2a  RH-M1   RH-M2  Diff (%) 

   Ex 

TEC  

(kW) 

 TEC 

 (kW) 

 TEC  

(kW) 

Time 

(s) 

 TEC 

(kw) 

Time 

(s) 

 RH-M1 

vs. M1 

RH-M1 

vs eGEP 

RH-M2 

vs. M1 

RH-M2 

vs. eGEP 

Ex1 65.03  63.03  63.03 0.03  63.03 0.11  0.0 -3.1 0.0 -3.1 

Ex2 126.04  122.44  122.44 0.03  122.44 0.14  0.0 -2.9 0.0 -2.9 

Ex3 75.74  75.74  75.74 0.03  75.74 0.09  0.0 0.0 0.0 0.0 

Ex4 161.73  146.63  146.63 0.03  146.63 0.20  0.0 -9.3 0.0 -9.3 

Ex5 78.40  78.40  78.40 0.03  78.40 0.20  0.0 0.0 0.0 0.0 

Ex6 279.84  220.74  220.74 0.02  220.74 0.17  0.0 -21.1 0.0 -21.1 

Ex7 107.69  97.54  97.54 0.05  97.54 0.20  0.0 -9.4 0.0 -9.4 

Ex8 184.44  146.81  146.81 0.08  146.81 0.14  0.0 -20.4 0.0 -20.4 

Ex9 233.66  230.66  230.66 0.03  230.66 0.09  0.0 -1.3 0.0 -1.3 

Ex10 191.68  161.06  161.06 0.05  161.06 0.13  0.0 -16.0 0.0 -16.0 

Ex11 166.23  166.23  166.23 0.03  166.23 0.20  0.0 0.0 0.0 0.0 

Ex12 176.75  176.75  176.75 0.03  176.75 0.19  0.0 0.0 0.0 0.0 

Ex13 121.30  121.30  121.30 0.02  121.30 0.20  0.0 0.0 0.0 0.0 

Ex14 167.46  156.86  156.86 0.03  156.86 0.11  0.0 -6.3 0.0 -6.3 

Ex15 174.85  163.20  163.20 0.02  163.20 0.14  0.0 -6.7 0.0 -6.7 

Ex16 245.44  219.46  219.46 2.30  219.46 0.16  0.0 -10.6 0.0 -10.6 

Ex17 321.80  306.68  306.68 0.06  306.68 0.27  0.0 -4.7 0.0 -4.7 

Ex18 216.86  210.60  210.60 0.30  210.60 0.22  0.0 -2.9 0.0 -2.9 

Ex19 283.83  269.52  269.52 0.03  269.52 0.17  0.0 -5.0 0.0 -5.0 

Ex20 327.30  274.94  274.94 0.05  274.94 0.23  0.0 -16.0 0.0 -16.0 
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Table S2 Computational results for Examples 21-58 from model M1, RH-M1 and 

eGEP dispatching rule 5 

 eGEP  M1  RH-M1  Diff (%) 

Ex 
TEC 

 (kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M1 

vs.  

eGEP 

Ex21 297.98  182.49  214.78 46.9  -38.8 -27.9 

Ex22 4047.03  3674.04  3812.87 301.4  -9.2 -5.8 

Ex23 4088.49  3497.00  4192.16 1.0  -14.5 2.5 

Ex24 2070.50  1776.14  1852.97 7.1  -14.2 -10.5 

Ex25 1975.75  1789.95  1904.05 102.3  -9.4 -3.6 

Ex26 1964.55  1783.95  1602.78 100.3  -9.2 -18.4 

Ex27 1939.76  1684.29  1750.05 100.8  -13.2 -9.8 

Ex28 2006.52  1465.37  1557.80 101.0  -27.0 -22.4 

Ex29 3060.93  2583.71  2703.05 6.2  -15.6 -11.7 

Ex30 2835.82  2388.63  2591.91 6.7  -15.8 -8.6 

Ex31 2807.84  2486.18  2732.67 1.9  -11.5 -2.7 

Ex32 3046.21  2637.50  2814.93 100.3  -13.4 -7.6 

Ex33 3271.49  2523.77  2744.54 43.9  -22.9 -16.1 

Ex34 4064.60  3365.35  3632.30 0.7  -17.2 -10.6 

Ex35 3700.86  3035.98  3406.47 1.3  -18.0 -8.0 

Ex36 3682.76  3196.92  3272.25 0.2  -13.2 -11.1 

Ex37 3983.02  3477.73  3636.68 0.8  -12.7 -8.7 

Ex38 4018.18  3459.03  3987.98 0.9  -13.9 -0.8 

Ex39 4982.54  4041.88  3930.09 113.7  -18.9 -21.1 

Ex40 4300.04  3648.90  3517.77 223.8  -15.1 -18.2 

Ex41 4059.53  3589.61  3767.92 400.1  -11.6 -7.2 

Ex42 3937.63  3703.47  3809.58 400.1  -5.9 -3.3 

Ex43 4396.11  3782.58  3880.84 312.8  -14.0 -11.7 

Ex44 5708.72  5374.11  5405.87 414.7  -5.9 -5.3 

Ex45 5876.62  5195.68  4890.87 308.1  -11.6 -16.8 

Ex46 6322.86  5501.46  5190.55 404.1  -13.0 -17.9 

Ex47 5763.51  5916.36  5027.49 400.7  2.7 -12.8 

Ex48 6640.15  6704.23  5107.14 400.3  1.0 -23.1 

Ex49 7550.94  9654.12  6946.16 1.6  27.9 -8.0 

Ex50 7859.20  9953.75  7434.35 1.3  26.7 -5.4 

Ex51 7201.43  9603.38  6866.13 1.2  33.4 -4.7 

Ex52 7287.90  -  7257.84 1.0  - -0.4 

Ex53 7332.79  -  7200.05 1.2  - -1.8 

Ex54 10108.14  -  8698.35 3.5  - -13.9 

Ex55 10939.20  -  9580.33 4.9  - -12.4 

Ex56 10339.46  -  8834.19 3.2  - -14.6 

Ex57 10081.65  -  8958.33 4.5  - -11.1 

Ex58 10751.25  -  9775.46 4.8  - -9.1 
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Table S3 Computational results for Examples 21-58 from model M1, RH-M2 and 

eGEP dispatching rule 5 

 eGEP  M1  RH-M2  Diff (%) 

Ex 
TEC 

 (kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M2 

vs.  

eGEP 

Ex21 297.98  182.49  215.87 2.6  -38.8 -27.6 

Ex22 4047.03  3674.04  3679.99 112.8  -9.2 -9.1 

Ex23 4088.49  3497.00  3808.34 288.1  -14.5 -6.9 

Ex24 2070.50  1776.14  1907.12 5.7  -14.2 -7.9 

Ex25 1975.75  1789.95  1941.73 163.3  -9.4 -1.7 

Ex26 1964.55  1783.95  1633.59 170.6  -9.2 -16.8 

Ex27 1939.76  1684.29  1763.91 138.5  -13.2 -9.1 

Ex28 2006.52  1465.37  1598 134.5  -27.0 -20.4 

Ex29 3060.93  2583.71  2718.8 108.9  -15.6 -11.2 

Ex30 2835.82  2388.63  2521.31 200.8  -15.8 -11.1 

Ex31 2807.84  2486.18  2645.48 101.1  -11.5 -5.8 

Ex32 3046.21  2637.50  2685.13 51.2  -13.4 -11.9 

Ex33 3271.49  2523.77  2657.98 106.4  -22.9 -18.8 

Ex34 4064.60  3365.35  3565.38 211.9  -17.2 -12.3 

Ex35 3700.86  3035.98  3523.2 262.4  -18.0 -4.8 

Ex36 3682.76  3196.92  3417.27 205.2  -13.2 -7.2 

Ex37 3983.02  3477.73  3716.38 189.2  -12.7 -6.7 

Ex38 4018.18  3459.03  3787.02 204.0  -13.9 -5.8 

Ex39 4982.54  4041.88  3884.04 17.2  -18.9 -22.0 

Ex40 4300.04  3648.90  3562.7 10.2  -15.1 -17.1 

Ex41 4059.53  3589.61  3754.31 0.9  -11.6 -7.5 

Ex42 3937.63  3703.47  3717.92 3.7  -5.9 -5.6 

Ex43 4396.11  3782.58  3978.46 7.2  -14.0 -9.5 

Ex44 5708.72  5374.11  5475.11 210.4  -5.9 -4.1 

Ex45 5876.62  5195.68  4941.6 216.6  -11.6 -15.9 

Ex46 6322.86  5501.46  5185.61 55.5  -13.0 -18.0 

Ex47 5763.51  5916.36  5257.31 253.9  2.7 -8.8 

Ex48 6640.15  6704.23  5527.5 233.6  1.0 -16.8 

Ex49 7550.94  9654.12  6951.96 4.4  27.9 -7.9 

Ex50 7859.20  9953.75  7560.55 105.5  26.7 -3.8 

Ex51 7201.43  9603.38  6620.26 0.9  33.4 -8.1 

Ex52 7287.90  -  7060.59 106.4  - -3.1 

Ex53 7332.79  -  6938.57 2.3  - -5.4 

Ex54 10108.14  -  9167.93 374.8  - -9.3 

Ex55 10939.20  -  9708.14 509.6  - -11.3 

Ex56 10339.46  -  8861.43 394.8  - -14.3 

Ex57 10081.65  -  9610.23 551.4  - -4.7 

Ex58 10751.25  -  10003.95 494.7  - -7.0 

 

 

 



 395 

Table S4 Computational results for Examples 1-20 from model M1, RH-M1, RH-M2 

and eGEP dispatching rule 7 

 eGEP  M1/M2a  RH-M1   RH-M2  Diff (%) 

   Ex 

TEC  

(kW) 

 TEC 

 (kW) 

 TEC  

(kW) 

Time 

(s) 

 TEC 

(kw) 

Time 

(s) 

 RH-M1 

vs. M1 

RH-M1 

vs eGEP 

RH-M2 

vs. M1 

RH-M2 

vs. eGEP 

Ex1 67.03  63.03  63.03 0.03  63.03 0.11  0.0 -6.0 0.0 -6.0 

Ex2 126.04  122.44  122.44 0.03  122.44 0.14  0.0 -2.9 0.0 -2.9 

Ex3 75.74  75.74  75.74 0.03  75.74 0.09  0.0 0.0 0.0 0.0 

Ex4 161.73  146.63  146.63 0.03  146.63 0.20  0.0 -9.3 0.0 -9.3 

Ex5 78.4  78.40  78.40 0.03  78.40 0.20  0.0 0.0 0.0 0.0 

Ex6 263.14  220.74  220.74 0.02  220.74 0.17  0.0 -16.1 0.0 -16.1 

Ex7 98.57  97.54  97.54 0.05  97.54 0.20  0.0 -1.0 0.0 -1.0 

Ex8 186.44  146.81  146.81 0.08  146.81 0.14  0.0 -21.3 0.0 -21.3 

Ex9 233.66  230.66  230.66 0.03  230.66 0.09  0.0 -1.3 0.0 -1.3 

Ex10 162.89  161.06  161.06 0.05  161.06 0.13  0.0 -1.1 0.0 -1.1 

Ex11 166.23  166.23  166.23 0.03  166.23 0.20  0.0 0.0 0.0 0.0 

Ex12 176.75  176.75  176.75 0.03  176.75 0.19  0.0 0.0 0.0 0.0 

Ex13 121.3  121.30  121.30 0.02  121.30 0.20  0.0 0.0 0.0 0.0 

Ex14 167.46  156.86  156.86 0.03  156.86 0.11  0.0 -6.3 0.0 -6.3 

Ex15 171.8  163.20  163.20 0.02  163.20 0.14  0.0 -5.0 0.0 -5.0 

Ex16 253.41  219.46  219.46 2.30  219.46 0.16  0.0 -13.4 0.0 -13.4 

Ex17 321.8  306.68  306.68 0.06  306.68 0.27  0.0 -4.7 0.0 -4.7 

Ex18 216.86  210.60  210.60 0.30  210.60 0.22  0.0 -2.9 0.0 -2.9 

Ex19 269.52  269.52  269.52 0.03  269.52 0.17  0.0 0.0 0.0 0.0 

Ex20 304.98  274.94  274.94 0.05  274.94 0.23  0.0 -9.8 0.0 -9.8 

 



 396 

Table S5 Computational results for Examples 21-58 from model M1, RH-M1 and 

eGEP dispatching rule 7 

 eGEP  M1  RH-M1  Diff (%) 

Ex 
TEC  

(kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1  

vs. 

 eGEP 

RH-M1 

vs.  

eGEP 

Ex21 377.73  182.49  214.78 46.9  -51.7 -43.1 

Ex22 4342.12  3674.04  3812.87 301.4  -15.4 -12.2 

Ex23 4402.20  3497.00  4192.16 1.0  -20.6 -4.8 

Ex24 2172.22  1776.14  1852.97 7.1  -18.2 -14.7 

Ex25 2033.00  1789.95  1904.05 102.3  -12.0 -6.3 

Ex26 2021.92  1783.95  1602.78 100.3  -11.8 -20.7 

Ex27 2059.48  1684.29  1750.05 100.8  -18.2 -15.0 

Ex28 1976.26  1465.37  1557.80 101.0  -25.9 -21.2 

Ex29 3044.67  2583.71  2703.05 6.2  -15.1 -11.2 

Ex30 2826.03  2388.63  2591.91 6.7  -15.5 -8.3 

Ex31 2765.72  2486.18  2732.67 1.9  -10.1 -1.2 

Ex32 3136.43  2637.50  2814.93 100.3  -15.9 -10.3 

Ex33 3036.47  2523.77  2744.54 43.9  -16.9 -9.6 

Ex34 3947.29  3365.35  3632.30 0.7  -14.7 -8.0 

Ex35 3731.46  3035.98  3406.47 1.3  -18.6 -8.7 

Ex36 4061.80  3196.92  3272.25 0.2  -21.3 -19.4 

Ex37 4463.81  3477.73  3636.68 0.8  -22.1 -18.5 

Ex38 3740.39  3459.03  3987.98 0.9  -7.5 6.6 

Ex39 4480.15  4041.88  3930.09 113.7  -9.8 -12.3 

Ex40 4482.24  3648.90  3517.77 223.8  -18.6 -21.5 

Ex41 4160.37  3589.61  3767.92 400.1  -13.7 -9.4 

Ex42 4330.02  3703.47  3809.58 400.1  -14.5 -12.0 

Ex43 4437.60  3782.58  3880.84 312.8  -14.8 -12.5 

Ex44 5976.21  5374.11  5405.87 414.7  -10.1 -9.5 

Ex45 5756.06  5195.68  4890.87 308.1  -9.7 -15.0 

Ex46 5987.00  5501.46  5190.55 404.1  -8.1 -13.3 

Ex47 6180.85  5916.36  5027.49 400.7  -4.3 -18.7 

Ex48 7138.21  6704.23  5107.14 400.3  -6.1 -28.5 

Ex49 7504.90  9654.12  6946.16 1.6  28.6 -7.4 

Ex50 8192.58  9953.75  7434.35 1.3  21.5 -9.3 

Ex51 7528.43  9603.38  6866.13 1.2  27.6 -8.8 

Ex52 7388.66  -  7257.84 1.0  - -1.8 

Ex53 7950.47  -  7200.05 1.2  - -9.4 

Ex54 10036.36  -  8698.35 3.5  - -13.3 

Ex55 10703.56  -  9580.33 4.9  - -10.5 

Ex56 10194.85  -  8834.19 3.2  - -13.3 

Ex57 9884.19  -  8958.33 4.5  - -9.4 

Ex58 11269.35  -  9775.46 4.8  - -13.3 
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Table S6 Computational results for Examples 21-58 from model M1, RH-M2 and 

eGEP dispatching rule 7 

 eGEP  M1  RH-M2  Diff (%) 

Ex 
TEC 

 (kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M2 

vs.  

eGEP 

Ex21 377.73  182.49  215.87 2.6  -51.7 -42.9 

Ex22 4342.12  3674.04  3679.99 112.8  -15.4 -15.2 

Ex23 4402.20  3497.00  3808.34 288.1  -20.6 -13.5 

Ex24 2172.22  1776.14  1907.12 5.7  -18.2 -12.2 

Ex25 2033.00  1789.95  1941.73 163.3  -12.0 -4.5 

Ex26 2021.92  1783.95  1633.59 170.6  -11.8 -19.2 

Ex27 2059.48  1684.29  1763.91 138.5  -18.2 -14.4 

Ex28 1976.26  1465.37  1598 134.5  -25.9 -19.1 

Ex29 3044.67  2583.71  2718.8 108.9  -15.1 -10.7 

Ex30 2826.03  2388.63  2521.31 200.8  -15.5 -10.8 

Ex31 2765.72  2486.18  2645.48 101.1  -10.1 -4.3 

Ex32 3136.43  2637.50  2685.13 51.2  -15.9 -14.4 

Ex33 3036.47  2523.77  2657.98 106.4  -16.9 -12.5 

Ex34 3947.29  3365.35  3565.38 211.9  -14.7 -9.7 

Ex35 3731.46  3035.98  3523.2 262.4  -18.6 -5.6 

Ex36 4061.80  3196.92  3417.27 205.2  -21.3 -15.9 

Ex37 4463.81  3477.73  3716.38 189.2  -22.1 -16.7 

Ex38 3740.39  3459.03  3787.02 204.0  -7.5 1.2 

Ex39 4480.15  4041.88  3884.04 17.2  -9.8 -13.3 

Ex40 4482.24  3648.90  3562.7 10.2  -18.6 -20.5 

Ex41 4160.37  3589.61  3754.31 0.9  -13.7 -9.8 

Ex42 4330.02  3703.47  3717.92 3.7  -14.5 -14.1 

Ex43 4437.60  3782.58  3978.46 7.2  -14.8 -10.3 

Ex44 5976.21  5374.11  5475.11 210.4  -10.1 -8.4 

Ex45 5756.06  5195.68  4941.6 216.6  -9.7 -14.1 

Ex46 5987.00  5501.46  5185.61 55.5  -8.1 -13.4 

Ex47 6180.85  5916.36  5257.31 253.9  -4.3 -14.9 

Ex48 7138.21  6704.23  5527.5 233.6  -6.1 -22.6 

Ex49 7504.90  9654.12  6951.96 4.4  28.6 -7.4 

Ex50 8192.58  9953.75  7560.55 105.5  21.5 -7.7 

Ex51 7528.43  9603.38  6620.26 0.9  27.6 -12.1 

Ex52 7388.66  -  7060.59 106.4  - -4.4 

Ex53 7950.47  -  6938.57 2.3  - -12.7 

Ex54 10036.36  -  9167.93 374.8  - -8.7 

Ex55 10703.56  -  9708.14 509.6  - -9.3 

Ex56 10194.85  -  8861.43 394.8  - -13.1 

Ex57 9884.19  -  9610.23 551.4  - -2.8 

Ex58 11269.35  -  10003.95 494.7  - -11.2 
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Table S7 Computational results for Examples 1-20 from M1, RH-M1, RH-M2 and 

eGEP dispatching rule 8 

 eGEP  M1/M2a  RH-M1   RH-M2  Diff (%) 

   Ex 

TEC  

(kW) 

 TEC 

 (kW) 

 TEC  

(kW) 

Time 

(s) 

 TEC 

(kw) 

Time 

(s) 

 RH-M1 

vs. M1 

RH-M1 

vs eGEP 

RH-M2 

vs. M1 

RH-M2 

vs. eGEP 

Ex1 65.03  63.03  63.03 0.03  63.03 0.11  0.0 -3.1 0.0 -3.1 

Ex2 126.04  122.44  122.44 0.03  122.44 0.14  0.0 -2.9 0.0 -2.9 

Ex3 78.38  75.74  75.74 0.03  75.74 0.09  0.0 -3.4 0.0 -3.4 

Ex4 147.12  146.63  146.63 0.03  146.63 0.20  0.0 -0.3 0.0 -0.3 

Ex5 114.62  78.40  78.40 0.03  78.40 0.20  0.0 -31.6 0.0 -31.6 

Ex6 279.84  220.74  220.74 0.02  220.74 0.17  0.0 -21.1 0.0 -21.1 

Ex7 107.69  97.54  97.54 0.05  97.54 0.20  0.0 -9.4 0.0 -9.4 

Ex8 170.17  146.81  146.81 0.08  146.81 0.14  0.0 -13.7 0.0 -13.7 

Ex9 230.66  230.66  230.66 0.03  230.66 0.09  0.0 0.0 0.0 0.0 

Ex10 191.68  161.06  161.06 0.05  161.06 0.13  0.0 -16.0 0.0 -16.0 

Ex11 166.23  166.23  166.23 0.03  166.23 0.20  0.0 0.0 0.0 0.0 

Ex12 176.75  176.75  176.75 0.03  176.75 0.19  0.0 0.0 0.0 0.0 

Ex13 121.3  121.30  121.30 0.02  121.30 0.20  0.0 0.0 0.0 0.0 

Ex14 156.86  156.86  156.86 0.03  156.86 0.11  0.0 0.0 0.0 0.0 

Ex15 174.85  163.20  163.20 0.02  163.20 0.14  0.0 -6.7 0.0 -6.7 

Ex16 245.44  219.46  219.46 2.30  219.46 0.16  0.0 -10.6 0.0 -10.6 

Ex17 315.08  306.68  306.68 0.06  306.68 0.27  0.0 -2.7 0.0 -2.7 

Ex18 216.86  210.60  210.60 0.30  210.60 0.22  0.0 -2.9 0.0 -2.9 

Ex19 283.83  269.52  269.52 0.03  269.52 0.17  0.0 -5.0 0.0 -5.0 

Ex20 325.86  274.94  274.94 0.05  274.94 0.23  0.0 -15.6 0.0 -15.6 



 399 

Table S8 Computational results for Examples 21-58 from M1, RH-M1 and eGEP 

dispatching rule 8 

 eGEP  M1  RH-M1  Diff (%) 

Ex 
TEC  

(kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M1 

vs.  

eGEP 

Ex21 296.71  182.49  214.78 46.9  -38.5 -27.6 

Ex22 4289.90  3674.04  3812.87 301.4  -14.4 -11.1 

Ex23 4101.52  3497.00  4192.16 1.0  -14.7 2.2 

Ex24 2017.38  1776.14  1852.97 7.1  -12.0 -8.1 

Ex25 2061.22  1789.95  1904.05 102.3  -13.2 -7.6 

Ex26 2077.87  1783.95  1602.78 100.3  -14.1 -22.9 

Ex27 1940.73  1684.29  1750.05 100.8  -13.2 -9.8 

Ex28 2015.52  1465.37  1557.80 101.0  -27.3 -22.7 

Ex29 2921.23  2583.71  2703.05 6.2  -11.6 -7.5 

Ex30 2761.52  2388.63  2591.91 6.7  -13.5 -6.1 

Ex31 2866.40  2486.18  2732.67 1.9  -13.3 -4.7 

Ex32 3122.96  2637.50  2814.93 100.3  -15.5 -9.9 

Ex33 3164.21  2523.77  2744.54 43.9  -20.2 -13.3 

Ex34 3954.61  3365.35  3632.30 0.7  -14.9 -8.2 

Ex35 3751.06  3035.98  3406.47 1.3  -19.1 -9.2 

Ex36 3698.97  3196.92  3272.25 0.2  -13.6 -11.5 

Ex37 3796.85  3477.73  3636.68 0.8  -8.4 -4.2 

Ex38 3876.12  3459.03  3987.98 0.9  -10.8 2.9 

Ex39 4698.71  4041.88  3930.09 113.7  -14.0 -16.4 

Ex40 4328.51  3648.90  3517.77 223.8  -15.7 -18.7 

Ex41 4219.24  3589.61  3767.92 400.1  -14.9 -10.7 

Ex42 4264.51  3703.47  3809.58 400.1  -13.2 -10.7 

Ex43 4311.92  3782.58  3880.84 312.8  -12.3 -10.0 

Ex44 5972.97  5374.11  5405.87 414.7  -10.0 -9.5 

Ex45 6157.10  5195.68  4890.87 308.1  -15.6 -20.6 

Ex46 6307.20  5501.46  5190.55 404.1  -12.8 -17.7 

Ex47 5981.64  5916.36  5027.49 400.7  -1.1 -16.0 

Ex48 7113.48  6704.23  5107.14 400.3  -5.8 -28.2 

Ex49 7351.24  9654.12  6946.16 1.6  31.3 -5.5 

Ex50 8244.86  9953.75  7434.35 1.3  20.7 -9.8 

Ex51 7396.69  9603.38  6866.13 1.2  29.8 -7.2 

Ex52 7285.72  -  7257.84 1.0  - -0.4 

Ex53 7999.57  -  7200.05 1.2  - -10.0 

Ex54 10344.35  -  8698.35 3.5  - -15.9 

Ex55 10680.83  -  9580.33 4.9  - -10.3 

Ex56 10183.47  -  8834.19 3.2  - -13.2 

Ex57 9865.68  -  8958.33 4.5  - -9.2 

Ex58 10832.23  -  9775.46 4.8  - -9.8 
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Table S9 Computational results for Examples 21-58 from model M1, RH-M2 and 

eGEP dispatching rule 8 

 eGEP  M1  RH-M2  Diff (%) 

Ex 
TEC 

 (kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M2 

vs.  

eGEP 

Ex21 296.71  182.49  215.87 2.6  -38.5 -27.2 

Ex22 4289.90  3674.04  3679.99 112.8  -14.4 -14.2 

Ex23 4101.52  3497.00  3808.34 288.1  -14.7 -7.1 

Ex24 2017.38  1776.14  1907.12 5.7  -12.0 -5.5 

Ex25 2061.22  1789.95  1941.73 163.3  -13.2 -5.8 

Ex26 2077.87  1783.95  1633.59 170.6  -14.1 -21.4 

Ex27 1940.73  1684.29  1763.91 138.5  -13.2 -9.1 

Ex28 2015.52  1465.37  1598 134.5  -27.3 -20.7 

Ex29 2921.23  2583.71  2718.8 108.9  -11.6 -6.9 

Ex30 2761.52  2388.63  2521.31 200.8  -13.5 -8.7 

Ex31 2866.40  2486.18  2645.48 101.1  -13.3 -7.7 

Ex32 3122.96  2637.50  2685.13 51.2  -15.5 -14.0 

Ex33 3164.21  2523.77  2657.98 106.4  -20.2 -16.0 

Ex34 3954.61  3365.35  3565.38 211.9  -14.9 -9.8 

Ex35 3751.06  3035.98  3523.2 262.4  -19.1 -6.1 

Ex36 3698.97  3196.92  3417.27 205.2  -13.6 -7.6 

Ex37 3796.85  3477.73  3716.38 189.2  -8.4 -2.1 

Ex38 3876.12  3459.03  3787.02 204.0  -10.8 -2.3 

Ex39 4698.71  4041.88  3884.04 17.2  -14.0 -17.3 

Ex40 4328.51  3648.90  3562.7 10.2  -15.7 -17.7 

Ex41 4219.24  3589.61  3754.31 0.9  -14.9 -11.0 

Ex42 4264.51  3703.47  3717.92 3.7  -13.2 -12.8 

Ex43 4311.92  3782.58  3978.46 7.2  -12.3 -7.7 

Ex44 5972.97  5374.11  5475.11 210.4  -10.0 -8.3 

Ex45 6157.10  5195.68  4941.6 216.6  -15.6 -19.7 

Ex46 6307.20  5501.46  5185.61 55.5  -12.8 -17.8 

Ex47 5981.64  5916.36  5257.31 253.9  -1.1 -12.1 

Ex48 7113.48  6704.23  5527.5 233.6  -5.8 -22.3 

Ex49 7351.24  9654.12  6951.96 4.4  31.3 -5.4 

Ex50 8244.86  9953.75  7560.55 105.5  20.7 -8.3 

Ex51 7396.69  9603.38  6620.26 0.9  29.8 -10.5 

Ex52 7285.72  -  7060.59 106.4  - -3.1 

Ex53 7999.57  -  6938.57 2.3  - -13.3 

Ex54 10344.35  -  9167.93 374.8  - -11.4 

Ex55 10680.83  -  9708.14 509.6  - -9.1 

Ex56 10183.47  -  8861.43 394.8  - -13.0 

Ex57 9865.68  -  9610.23 551.4  - -2.6 

Ex58 10832.23  -  10003.95 494.7  - -7.6 
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Table S10 Computational results for Examples 1-20 from model M1, RH-M1, RH-M2 

and eGEP dispatching rule 9 

 eGEP  M1/M2a  RH-M1   RH-M2  Diff (%) 

   Ex 

TEC  

(kW) 

 TEC 

 (kW) 

 TEC  

(kW) 

Time 

(s) 

 TEC 

(kw) 

Time 

(s) 

 RH-M1 

vs. M1 

RH-M1 

vs eGEP 

RH-M2 

vs. M1 

RH-M2 

vs. eGEP 

Ex1 63.03  63.03  63.03 0.03  63.03 0.11  0.0 0.0 0.0 0.0 

Ex2 162.28  122.44  122.44 0.03  122.44 0.14  0.0 -24.6 0.0 -24.6 

Ex3 99.06  75.74  75.74 0.03  75.74 0.09  0.0 -23.5 0.0 -23.5 

Ex4 147.12  146.63  146.63 0.03  146.63 0.20  0.0 -0.3 0.0 -0.3 

Ex5 124.44  78.40  78.40 0.03  78.40 0.20  0.0 -37.0 0.0 -37.0 

Ex6 279.84  220.74  220.74 0.02  220.74 0.17  0.0 -21.1 0.0 -21.1 

Ex7 107.69  97.54  97.54 0.05  97.54 0.20  0.0 -9.4 0.0 -9.4 

Ex8 225.78  146.81  146.81 0.08  146.81 0.14  0.0 -35.0 0.0 -35.0 

Ex9 248.81  230.66  230.66 0.03  230.66 0.09  0.0 -7.3 0.0 -7.3 

Ex10 172.56  161.06  161.06 0.05  161.06 0.13  0.0 -6.7 0.0 -6.7 

Ex11 166.23  166.23  166.23 0.03  166.23 0.20  0.0 0.0 0.0 0.0 

Ex12 182.69  176.75  176.75 0.03  176.75 0.19  0.0 -3.3 0.0 -3.3 

Ex13 121.3  121.30  121.30 0.02  121.30 0.20  0.0 0.0 0.0 0.0 

Ex14 156.86  156.86  156.86 0.03  156.86 0.11  0.0 0.0 0.0 0.0 

Ex15 191.83  163.20  163.20 0.02  163.20 0.14  0.0 -14.9 0.0 -14.9 

Ex16 240.83  219.46  219.46 2.30  219.46 0.16  0.0 -8.9 0.0 -8.9 

Ex17 315.08  306.68  306.68 0.06  306.68 0.27  0.0 -2.7 0.0 -2.7 

Ex18 251.86  210.60  210.60 0.30  210.60 0.22  0.0 -16.4 0.0 -16.4 

Ex19 296.71  269.52  269.52 0.03  269.52 0.17  0.0 -9.2 0.0 -9.2 

Ex20 393.83  274.94  274.94 0.05  274.94 0.23  0.0 -30.2 0.0 -30.2 
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Table S11 Computational results for Examples 21-58 from M1, RH-M1 and eGEP 

dispatching rule 9 

 eGEP  M1  RH-M1  Diff (%) 

Ex 
TEC  

(kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

 vs. 

eGEP 

RH-M1 

vs. 

 eGEP 

Ex21 320.25  182.49  214.78 46.9  -43.0 -32.9 

Ex22 4465.27  3674.04  3812.87 301.4  -17.7 -14.6 

Ex23 4355.59  3497.00  4192.16 1.0  -19.7 -3.8 

Ex24 1914.55  1776.14  1852.97 7.1  -7.2 -3.2 

Ex25 2195.64  1789.95  1904.05 102.3  -18.5 -13.3 

Ex26 2294.79  1783.95  1602.78 100.3  -22.3 -30.2 

Ex27 2121.88  1684.29  1750.05 100.8  -20.6 -17.5 

Ex28 1864.79  1465.37  1557.80 101.0  -21.4 -16.5 

Ex29 3314.21  2583.71  2703.05 6.2  -22.0 -18.4 

Ex30 2917.68  2388.63  2591.91 6.7  -18.1 -11.2 

Ex31 3034.12  2486.18  2732.67 1.9  -18.1 -9.9 

Ex32 3220.20  2637.50  2814.93 100.3  -18.1 -12.6 

Ex33 3338.57  2523.77  2744.54 43.9  -24.4 -17.8 

Ex34 4584.44  3365.35  3632.30 0.7  -26.6 -20.8 

Ex35 4070.23  3035.98  3406.47 1.3  -25.4 -16.3 

Ex36 3979.86  3196.92  3272.25 0.2  -19.7 -17.8 

Ex37 4144.10  3477.73  3636.68 0.8  -16.1 -12.2 

Ex38 3841.63  3459.03  3987.98 0.9  -10.0 3.8 

Ex39 4823.96  4041.88  3930.09 113.7  -16.2 -18.5 

Ex40 4082.95  3648.90  3517.77 223.8  -10.6 -13.8 

Ex41 4117.93  3589.61  3767.92 400.1  -12.8 -8.5 

Ex42 4084.68  3703.47  3809.58 400.1  -9.3 -6.7 

Ex43 4491.61  3782.58  3880.84 312.8  -15.8 -13.6 

Ex44 6116.02  5374.11  5405.87 414.7  -12.1 -11.6 

Ex45 5923.10  5195.68  4890.87 308.1  -12.3 -17.4 

Ex46 6095.66  5501.46  5190.55 404.1  -9.7 -14.8 

Ex47 6051.80  5916.36  5027.49 400.7  -2.2 -16.9 

Ex48 6672.93  6704.23  5107.14 400.3  0.5 -23.5 

Ex49 7727.28  9654.12  6946.16 1.6  24.9 -10.1 

Ex50 8163.12  9953.75  7434.35 1.3  21.9 -8.9 

Ex51 7173.32  9603.38  6866.13 1.2  33.9 -4.3 

Ex52 7650.43  -  7257.84 1.0  - -5.1 

Ex53 7589.11  -  7200.05 1.2  - -5.1 

Ex54 10070.27  -  8698.35 3.5  - -13.6 

Ex55 10667.02  -  9580.33 4.9  - -10.2 

Ex56 10683.11  -  8834.19 3.2  - -17.3 

Ex57 9939.02  -  8958.33 4.5  - -9.9 

Ex58 10963.14  -  9775.46 4.8  - -10.8 
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Table S12 Computational results for Examples 21-58 from model M1, RH-M2 and 

eGEP dispatching rule 9 

 eGEP  M1  RH-M2  Diff (%) 

Ex 
TEC 

 (kW) 
 

TEC  

(kW) 
 

TEC 

 (kW) 

CPU 

Time (s) 
 

M1 

vs. 

eGEP 

RH-M2 

vs.  

eGEP 

Ex21 320.25  182.49  215.87 2.6  -43.0 -32.6 

Ex22 4465.27  3674.04  3679.99 112.8  -17.7 -17.6 

Ex23 4355.59  3497.00  3808.34 288.1  -19.7 -12.6 

Ex24 1914.55  1776.14  1907.12 5.7  -7.2 -0.4 

Ex25 2195.64  1789.95  1941.73 163.3  -18.5 -11.6 

Ex26 2294.79  1783.95  1633.59 170.6  -22.3 -28.8 

Ex27 2121.88  1684.29  1763.91 138.5  -20.6 -16.9 

Ex28 1864.79  1465.37  1598.00 134.5  -21.4 -14.3 

Ex29 3314.21  2583.71  2718.8 108.9  -22.0 -18.0 

Ex30 2917.68  2388.63  2521.31 200.8  -18.1 -13.6 

Ex31 3034.12  2486.18  2645.48 101.1  -18.1 -12.8 

Ex32 3220.20  2637.50  2685.13 51.2  -18.1 -16.6 

Ex33 3338.57  2523.77  2657.98 106.4  -24.4 -20.4 

Ex34 4584.44  3365.35  3565.38 211.9  -26.6 -22.2 

Ex35 4070.23  3035.98  3523.2 262.4  -25.4 -13.4 

Ex36 3979.86  3196.92  3417.27 205.2  -19.7 -14.1 

Ex37 4144.10  3477.73  3716.38 189.2  -16.1 -10.3 

Ex38 3841.63  3459.03  3787.02 204.0  -10.0 -1.4 

Ex39 4823.96  4041.88  3884.04 17.2  -16.2 -19.5 

Ex40 4082.95  3648.90  3562.7 10.2  -10.6 -12.7 

Ex41 4117.93  3589.61  3754.31 0.9  -12.8 -8.8 

Ex42 4084.68  3703.47  3717.92 3.7  -9.3 -9.0 

Ex43 4491.61  3782.58  3978.46 7.2  -15.8 -11.4 

Ex44 6116.02  5374.11  5475.11 210.4  -12.1 -10.5 

Ex45 5923.10  5195.68  4941.6 216.6  -12.3 -16.6 

Ex46 6095.66  5501.46  5185.61 55.5  -9.7 -14.9 

Ex47 6051.80  5916.36  5257.31 253.9  -2.2 -13.1 

Ex48 6672.93  6704.23  5527.5 233.6  0.5 -17.2 

Ex49 7727.28  9654.12  6951.96 4.4  24.9 -10.0 

Ex50 8163.12  9953.75  7560.55 105.5  21.9 -7.4 

Ex51 7173.32  9603.38  6620.26 0.9  33.9 -7.7 

Ex52 7650.43  -  7060.59 106.4  - -7.7 

Ex53 7589.11  -  6938.57 2.3  - -8.6 

Ex54 10070.27  -  9167.93 374.8  - -9.0 

Ex55 10667.02  -  9708.14 509.6  - -9.0 

Ex56 10683.11  -  8861.43 394.8  - -17.1 

Ex57 9939.02  -  9610.23 551.4  - -3.3 

Ex58 10963.14  -  10003.95 494.7  - -8.7 

 

 


