

The University of Manchester

Corrosion Assessment of Pig Receiver and Gas Lift Riser

A dissertation submitted to The University of Manchester for the degree of Master of Science by Research in the Faculty of Science and Engineering

2021

Clovis Nzonlie Fosso

School of Natural Sciences

Department of Materials

Table of Contents

1	Abstract		9
2	Declarati	on	10
3	Copyrigh	t Statements	11
4	Dedicatio	on	12
5	Acknowl	edgements	13
6	Introduc	tion	14
7	Literatur	e review	16
8	Methodo	blogy	25
8	3.1 Cori	rosion risk assessment	25
٤	3.2 Risk	-based assessment methodology and overall procedure	25
	8.2.1	Input data	26
	8.2.2	Equipment grouping/sectioning	28
	8.2.3	Hazard Identification and Probability assessment	28
	8.2.4	Consequence evaluation	38
	8.2.5	Criticality (Risk)	39
	8.2.6	Confidence rating	40
	8.2.7	Inspection interval	41
	8.2.8	Development of integrity strategy	41
	8.2.9	Risk-based assessment actions	42
	8.2.10	Peer review	42
	8.2.11	Audit	43
	8.2.12	Inspection method	43
	8.2.13	Inspection evaluation and reporting	48
9	Inspectio	on method used	49
ç	9.1 Cori	rosion mapping inspection and long-range ultrasonic testing inspection	50
	9.1.1	Corrosion mapping equipment information and internal cracking criteria evaluation	50
	9.1.2	Long range ultrasonic testing Tools Information and criteria evaluation	52
10	Results 8	discussion shell No.3 pig receiver and 6 inches gas lift riser	57

1	0.1 Risk	x-based inspection: case study on a hydrocarbon shell No.3 of pig receiver
	10.1.1	Internal corrosion assessment on a hydrocarbon shell No.3 of pig receiver
	10.1.2	External corrosion assessment on a hydrocarbon shell No.3 of pig receiver
10	0.2 Risk	c-based inspection case study on a 6 inches gas lift riser
	10.2.1	Internal corrosion assessment
	10.2.2	External corrosion assessment
10	D.3 Insp	pection of shell No.3 pig receiver and 6 inches gas lift riser
	10.3.1	Inspection of shell No.3 pig receiver
	10.3.2	Internal inspection data analysis - Scan images77
	10.3.3	Inspection of 6 inches gas lift riser
	10.3.4	Long range ultrasonic testing data analysis82
	10.3.5	General visual inspection
	10.3.6	Long range ultrasonic testing summary table results of 6 inches gas lift riser
	10.3.7	Ultrasonic testing measurement - minimum wall thckness at tool location of gas lift riser 95
10	0.4 Fitn	less for service
	10.4.1	Fitness for service - pig receiver
	10.4.2	Fitness for service-6 inches gas lift riser99
11	Conclusi	ons and Recommendation 101
12	Reference	ces

List of tables

Table 1: Equipment sectioning example	
Table 2: Internal failure modes	
Table 3: External failure modes	
Table 4: Description of probability ranking	
Table 5: Guidelines on allocation of Probability Grading	
Table 6: Guidelines on allocation of Probability Grading	
Table 7: Guidelines on allocation of Probability Grading	
Table 8: Guidelines on allocation of Probability Grading	35
Table 9: Guidelines on allocation of Probability Grading	
Table 10: Guidelines on allocation of Probability Grading	
Table 11: Business Consequence Assessment	
Table 12: Safety Consequence Assessment	
Table 13: Environmental consequence assessment	
Table 14: Criticality matrix	
Table 15: Confidence Questionnaires	40
Table 16: Confidence rating	40
Table 17: Inspection interval matrix	41
Table 18: Non-destructive testing method versus damage	44
Table 19: Non-destructive testing method versus damage	45
Table 20: Non-destructive testing method versus damage	46
Table 21: Non-destructive testing method versus damage	47
Table 22: Non-destructive testing method versus damage	
Table 23: Corrosion mapping tools information	50
Table 24: Internal cracking evaluation criteria (62, 63)	51
Table 25: Long range ultrasonic testing tools Information	52
Table 26: Anomaly evaluation matrix	56
Table 27: Anticipated internal corrosion mechanisms within pig receiver	57
Table 28: Probability evaluation - pig receiver	
Table 29 Consequence evaluation - pig receiver	59
Table 30: Criticality evaluation - pig receiver	59
Table 31: Confidence rating evaluation - pig receiver	60

Table 32: Confidence rating evaluation - pig receiver	61
Table 33: Inspection interval pig receiver	62
Table 34: Anticipated external corrosion mechanisms within the shell No.3 pig receiver	62
Table 35: Probability evaluation - pig receiver	63
Table 36: Consequence evaluation - pig receiver	63
Table 37: Criticality evaluation - pig receiver	63
Table 38: Confidence rating - pig receiver	63
Table 39: Inspection interval - pig receiver	63
Table 40: Anticipated internal corrosion mechanisms within 6 inches gas lift riser	65
Table 41: Probability evaluation - 6 inches gas lift riser	66
Table 42: Consequence evaluation - 6 inches gas lift riser	67
Table 43: Criticality evaluation - pig receiver	68
Table 44: Confidence rating evaluation - 6 inches gas lift riser	68
Table 45: Confidence rating evaluation - 6 inches gas lift riser	69
Table 46: Confidence rating evaluation - 6 inches gas lift riser	70
Table 47: Confidence rating evaluation - 6 inches gas lift riser	71
Table 48:Inspection interval - 6 inches gas lift riser Inspection interval	71
Table 49: Anticipated internal corrosion mechanisms within 6 inches gas lift riser	73
Table 50: Probability evaluation - 6 inches gas lift riser	74
Table 51: Consequence evaluation - 6 inches gas lift riser	74
Table 52: Criticality evaluation - 6 inches gas lift riser	75
Table 53: Confidence rating evaluation - 6 inches gas lift riser	75
Table 54: Inspection interval - 6 inches gas lift riser	76
Table 55: Pig receiver shell No.3 measurement XY axis	77
Table 56: Pig receiver C-Scan measurement	79
Table 57: Gas lift riser-long range ultrasonic testing data information at test location 1 (TL01))82
Table 58: Focal distance -13.83m Result	83
Table 59: Focal distance -12.88m result	83
Table 60: Gas lift riser-long range ultrasonic testing data information at test location 2 (TL02))86
Table 61: Gas lift riser-long range ultrasonic testing data information at test location 3 (TL03))89
Table 62: General visual inspection summary	93
Table 63: Summary of thickness results of gas lift riser	94
Table 64: Minimum wall thickness at tool location of gas lift riser	95
Page 5 of 108	

List of figures

Figure 1: Corrosion reaction with transfer of electron (4)	14
Figure 2: Corrosion process – Anode and Cathode (5)	15
Figure 3: Rust on carbon steel (7)	15
Figure 4: Uniform corrosion (21)	18
Figure 5: Pitting corrosion (22)	18
Figure 6: Stress corrosion cracking (28)	19
Figure 7: Hydrogen induced cracking (34)	19
Figure 8: Crevice Corrosion (38)	20
Figure 9: Inter-granular corrosion (48)	20
Figure 10: Galvanic corrosion (51)	21
Figure 11: Fretting corrosion (55)	21
Figure 12: CO ₂ corrosion (63)	22
Figure 13: H ₂ S corrosion (70)	22
Figure 14: Microbial induced corrosion (77)	23
Figure 15: Preferential weld corrosion (83)	23
Figure 16: Filiform corrosion (84)	24
Figure 17: Overview risk-based assessment process	25
Figure 18: Accutrak scanner – Corrosion mapping tools	50
Figure 19: Long range ultrasonic testing Tools	52
Figure 20: Schematic of the teletest A-scan, showing the amplitude categories (109)	54
Figure 21: Directionality 3 responses from focused tests (105)	54
Figure 22: Directionality 3 responses from focused tests (105)	55
Figure 23: Directionality 3 responses from focused tests (105)	55
Figure 24: Directionality 0 responses from a weld from a focused test (105)	55
Figure 25 Offshore platform showing relative corrosion rate	72
Figure 26: Shell No.3 pig receiver horizontal cross section 3 O'clock at 9 O'clock	76
Figure 27: 6 inches gas lift riser (Long range ultrasonic testing inspection)	81
Figure 28 Long range ultrasonic testing A-Scan image test location 1 (TL01) - 6 inches gas	lift riser
	82
Figure 29: Vertical line – 6 inches collar attached to the gas lift riser at test location 1 (TL01)	83

Figure 30: Riser-Long range ultrasonic testing A-Scan image test location 2 (TL02) - 6 inches gas lift Figure 31: Vertical line – 6 inches collar attached to the gas lift riser at test location 2 (TL02)87 Figure 32: Long range ultrasonic testing A-Scan image test location 3 (TL03) - 6 inches gas lift riser Figure 33 Vertical line – 6 inches collar attached to the gas lift riser at test location 3 (TL03)90

Abbreviations

- ACFM: Alternating current field measurement
- AIM: Asset integrity management
- API: American petroleum institute
- ASME: American society of mechanical engineers
- CVI: Close visual inspection
- CO₂: Carbon dyoxide
- DNV RP: Det norske veritas recommended practice
- **DPT:** Dye penetration testing
- ECT: Eddy current testing
- ESDV: Emergency shut down valve
- Fe: Iron
- Fe²⁺: Iron ion
- Fe (OH) 2: Iron (II) hydroxide or ferrous hydroxide
- Fe₂O₃.H₂O: Iron (III) oxide or rust
- GVI: General visual inspection
- H₂O: Water
- H₂S: Hydrogen sulfide
- HSE: Health and Safety Executive

- HIC: Hydrogen inducd cracking
- LoF: Likelihood of failure
- MIC: Microbial influenced corrosion
- mm: Millimeter
- m: Meter
- Mmscf: Million standard cubic feet
- MPT: Magnetic particle testing
- NACE: National Association of Corrosion Engineers
- NDE: Non-destructive examination
- NDT: Non-destructive testing
- OH⁻: Ion hydroxide
- PA: Phase array
- pptb: Pounds per thousand barrels
- UDC: Under deposit corrosion.
- UT: Ultrasonic testing
- V: Velocity
- **RBI:** Risk Based inspection
- RBA: Risk-based assessment
- **RT: Radiographic testing**
- SOHIC: Stress-oriented hydrogen induced cracking
- SSC: Sulphide stress cracking
- SSCC: Sulphide Stress Corrosion Cracking
- SWC: Step wise cracking
- TOFD: Time of flight diffraction

1 Abstract

The corrosion assessment of a pig receiver and gas lift riser following the failure of the gas lift is discussed in this dissertation. Corrosion evaluation is a critical component of asset and facility management. Most equipment/system failures are caused by a lack of corrosion evaluation and poor material selection. In general, an effective corrosion evaluation should be carried out to solve this problem. This dissertation outlines a risk-based assessment that was conducted to determine an appropriate non-destructive testing method for the pig receiver and gas lift riser. Internal examination was performed using the chosen non-destructive testing method and the corrosion rate was determined using API 510 Standard. The minimum thickness required for the gas lift riser was obtained using ASME B31.3, and the minimum thickness required for the pig receiver was calculated using ASME Section VIII Div. 1. General visual inspection was also conducted in accordance to API 570. Both the pig receiver and the gas lift riser were deemed to be fit to remain in operation under acceptable operating conditions (temperature, pressure, etc..) after examination. External coating degradation, crevice corrosion and rust on the surface of the gas lift riser were discovered during a general visual inspection (GVI), however this did not preclude the equipment/system from continuing service. To plan inspections or estimate the maximum inspection frequency during routine inspections, the remaining life of the pig receiver and gas lift riser was calculated.

2 Declaration

No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university of other institution of learning.

3 Copyright Statements

- The author of this thesis (including any appendices and/or schedules to this thesis)
 owns certain copyright or related rights in it (the "Copyright") and s/he has given
 The University of Manchester certain rights to use such Copyright, including for
 administrative purposes.
- Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made.
- iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual property (the "Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.
- iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (https://documents.manchester.ac.uk/display.aspx?DocID=7441), in any relevant Thesis restriction declarations deposited in the University Library, The University Library's regulations

(https://www.library.manchester.ac.uk/about/regulations/) and in The University's policy on Presentation of Theses.

4 Dedication

The work is dedicated to my lovely late father Mr Justin Fosso for who I remember every

day for the legacy you left behind and all your sacrifices you did for me, brothers and sisters. I know you are proud of me for this achievement, to my dear lovely mother Mrs Pauline Njimhouo Fosso, to my dear lovely wife Bamidele Adewuyi Nzonlie, to my lovely son Darel John Adewuyi Nzonlie, to my dear lovely daughters Aurielle Fortune Njinang Nzonlie and Evanie Sorelle Njimhouo Nzonlie

5 Acknowledgements

First of all, I would like to give my sincere appreciation to my supervisor, Dr. Michele Curioni for his valuable support, guidance and helpful discussions throughout this work. I would also like to thank Dr. Xiaorong Zhou for his encouragement throughout the research and endless support, assistance and advice during the studies.

I deeply appreciate the support I received from my family, my supervisor, and friends. My sincere gratitude to my wife; Mrs Bamidele Adewuyi Nzonlie, for all your care and support for me, and the family.

Above all, I appreciate God Almighty for His grace and strength all through the studies. Despite all the challenges, His presence in my life makes the difference.

6 Introduction

Most of the equipment/system in oil and gas industry is made of metals (1). It is estimated that about 90% of oil and gas distribution equipment/system are cast iron and steel (1). Due to their long-term service and exposure to aggressive environment, ageing and deterioration, high rate of failures which can be mechanical, localized corrosion or general corrosion are expected (1, 2). The consequences of equipment/system failures can result in substantial disruption of daily operation, considerable economic loss, environmental pollution, damage to company reputation and even casualties.

Due to different environments, the mechanisms of corrosions are different for internal and external surfaces of equipment/system. Corrosion is an oxidation process. This means that metallic iron will react with oxygen and form iron oxide (rust) (2). The reaction will progress at different rates depending on several conditions. In general, the worst conditions will be when the iron or steel is immersed in seawater. The corrosion reactions will involve a transfer of electrons in the presence of an electrolyte (2, 3) (see figure 1 below). Seawater is a very good electrolyte because of its high salt concentration.

Figure 1: Corrosion reaction with transfer of electron (4)

For iron and steel to corrode, anodic and cathodic reactions must take place (see figure 2 below).

For the anodic reaction: Fe \rightarrow Fe²⁺ + 2 e⁻

And for the cathodic reaction: $O_2 + 4 e^- + 2 H_2O \rightarrow 4 OH^-$

Combining the above anodic and cathodic reaction gives: Fe²⁺ + 2 OH- \rightarrow Fe (OH) ₂

Figure 2: Corrosion process – Anode and Cathode (5)

Fe (OH) $_2$ is an insoluble salt that precipitates on the surface. It is then further oxidized by dissolved oxygen to hydrated ferric oxide, commonly known as rust (see figure 3 below). Fe (OH) $_2$ + O $_2$ + H $_2$ O ---> Fe $_2$ O $_3$.H $_2$ O (Rust) (1, 6).

Figure 3: Rust on carbon steel (7)

Moisture, temperature, pH values, mineral salt content, sulphides, organics, precipitates, etc. are major factors that contribute to internal/external corrosion of equipment/system (2, 8). The understanding and knowledge of corrosion deterioration and mechanical properties of metals can prevent equipment failures.

Assessment using appropriate pipeline integrity management system (PIMS) has been undertaken on the effect of corrosion on pig receiver and gas lift riser materials. Risk-based assessment used was to describe the overall process or method to Identify hazards and risk factors that have the potential to cause harm (hazard identification), to determine appropriate ways to eliminate the hazard, or to control the risk when the hazard cannot be eliminated (risk control). For the risk-based inspection, ultrasonic testing for thickness, general visual Inspection, long-range ultrasonic testing and corrosion mapping were conducted to assess the internal and external condition of pig receiver and gas lift riser during the assessment.

7 Literature review

Corrosion is the deterioration of metal by direct chemical and electro-chemical reaction with its environment (3, 6). Corrosion is the largest single cause of plant and equipment breakdown in the process industries (9, 10). For most applications, it is possible to select materials of construction that are completely resistant to attack by the process fluids. In practice, it is normal to select materials that corrode slowly at a known rate and to make an allowance for this in specifying the material thickness or chemical treatment to reduce the corrosivity of fluid (9). However, a significant proportion of corrosion failures occur due to some form of localised corrosion, which results in failure in a much shorter time than would be expected from uniform corrosion (10).

API RP 581 developed risk-based inspection (RBI) methods and methodology, an integrated methodology that analyses both the likelihood and effects of equipment/system failure as a basis for prioritizing and monitoring an in-service equipment/system inspection program (11). API RP 581 was developed using the knowledge and experience of various global risk-based inspection practitioners with substantial implementation experience. The suggested practices for calculating

corrosion rates in hydrocarbon production and process systems where the corrosive agent is CO_2 is presented in NORSOK M-506 (12).

In sour oil and gas production, NACE MR 0175 specifies techniques for qualifying and selecting materials that are resistant to cracking. The need for natural gas was recognized shortly after World War II, and the oil and gas industry began an exploratory program to meet the need. Unfortunately, part of the gas reserves discovered contained hydrogen sulphide (H₂S), which resulted in sulphide stress cracking (SSC) failures in metals employed in production equipment/system (13). In 1950, the National Association of Corrosion Engineers (NACE) organized a committee at the request of the companies concerned to better understand and prevent these occurrences. Following subsequent equipment/system failures, a combined Canadian industry task group was formed to find answers to the challenges. Later, this organization became affiliated with NACE and contributed to a NACE report which was published in 1963 (13).

According to DNV RP C302, 60% of the world's offshore constructions have exceeded their theoretical design life of 20 years, with many more nearing the end of their design life. Offshore structures are frequently kept operational for longer than their design lives (14). To guarantee the integrity and safety of these ageing structures, material deterioration must be managed. Carbon steel materials are widely used in the oil and gas production industry because of its availability, constructability, and relatively low cost. However, there are limits to the durability of carbon steel because of its low corrosion resistance (10, 15). Carbon steel will corrode if left unprotected or inadequately protected from the natural environment (16, 17).

Effective management of assets in the oil and gas industry is vital in ensuring equipment/system availability, increased output, reduced maintenance cost, and minimal non-productive time (13, 18). Due to the high cost of assets used in oil and gas production, there is a need to enhance performance through good assets management techniques (13). Failures experienced in oil and gas production industry is associated with different type of corrosions in equipment/system (16, 18-20).

Main types of corrosion are (20):

- Uniform corrosion
- Pitting corrosion
- Environmental induced cracking
- Hydrogen induced cracking
- Crevice corrosion
- Inter-crystalline (inter-granular) corrosion
- Galvanic corrosion
- Fretting corrosion
- ➢ CO₂ corrosion
- Microbial induced corrosion
- Preferential weld corrosion
- Filiform corrosion

Uniform corrosion – This corrosion results from the continual shifting of anode and cathode regions of the surface of a metal in contact with the electrolyte and leads to a nearly uniform corrosive attack on the entire surface. An example of such corrosion is the rusting of steel plate in seawater (18-21). Uniform corrosion takes place on unprotected carbon steel and on zinc-coated steel under atmospheric conditions (see figure 4 below).

Thickness is reduced uniformly

Uniform Corrosion

Figure 4: Uniform corrosion (21)

Pitting corrosion – Pitting corrosion is a localized form of corrosion which leads to the creation of small holes or pits in the steel. The pits or holes are obscured by a small amount of corrosion product (rust) on the surface. When a cathodic reaction in a large area (coating) sustains an anodic reaction in a small area (exposed metal), a pit, cavity or small hole will form (see figure 5 below) (22). Pitting corrosion may occur in stainless steels in neutral or acid solutions containing halides, primarily chlorides (Cl⁻), such as seawater (22-24).

Figure 5: Pitting corrosion (22)

Environmental induced cracking – There are two types of environmental induced cracking. These are stress corrosion cracking, and hydrogen induced cracking (25, 26).

Stress corrosion cracking is a highly specific form of corrosion which occurs only when the following three different requirements are fulfilled at the same time (see figure 6) namely: mechanical (load, stress), material (susceptible alloy, e.g... steel), and environment (highly corrosive, chlorides) (18, 26-28). It can lead to unexpected sudden brittle failure of normally ductile metals subjected to stress levels well below their yield strength. Internal stresses in a material can be sufficient to initiate an attack of stress corrosion cracking (26-29).

Figure 6: Stress corrosion cracking (28)

Hydrogen induced cracking is caused by the diffusion of hydrogen atoms into the steel (30, 31). The presence of hydrogen in the lattice weakens the mechanical integrity of the metal and leads to crack growth and brittle fracture at stress levels below the yield strength (32). Like stress corrosion cracking, it can lead to sudden failure of steel parts without any detectable warning signs (32, 33). In common applications, hydrogen damage is usually only relevant for high-strength steel with a tensile strength of around 1 MPa or higher (see figure 7) (18, 32-34).

Figure 7: Hydrogen induced cracking (34)

Crevice corrosion – Crevice corrosion refers to corrosion occurring in cracks or crevices formed between two surfaces (made from the same metal, different metals or even a metal and a non-metal) (see figure 8) (35-37). This type of corrosion is initiated by the restricted entrance of oxygen from the air by diffusion into the crevice area leading to different concentrations of dissolved oxygen in the common electrolyte (19, 35-38).

Figure 8: Crevice Corrosion (38)

Inter-crystalline (inter-granular) corrosion – Inter-crystalline corrosion is a special form of localized corrosion, where the corrosive attack takes place in a quite narrow path preferentially along the grain boundaries in the metal structure (see figure 9) (29, 39-41). Is generally considered to be caused by the segregation of impurities at the grain boundaries or by enrichment or depletion of one of the alloying elements in the grain boundary areas (29, 42-45). The most common effect of this form of corrosion is a rapid mechanical disintegration (loss of ductility) of the material (46-48).

Figure 9: Inter-granular corrosion (48)

Galvanic corrosion – Galvanic corrosion refers to corrosion damage where two dissimilar metals (cathode and anode) have an electrically conducting connection and are in contact with a common corrosive electrolyte (29, 49-50). Electrolytes act like a wire connecting an electrical circuit between two metals, enabling galvanic corrosion (see figure 10) (50, 51).

Figure 10: Galvanic corrosion (51)

Fretting corrosion – A rapid localized attack which occurs on mated surfaces under load when a small amount of slip is allowed to occur (29, 52-53). It is often observed on bearings, shafts, and mounted gears in vibrating machinery (see figure 11) (54, 55). Depending on the material or application used, fretting can have abrasive wear, adhesive wear, or both. Abrasive wear occurs when a surface slides across another surface, the former having a rougher surface than the latter (56-58). This causes material loss on the softer surface. Adhesive wear occurs during direct frictional contact whereby both surfaces begin to lose material fragments (59, 60). This type of wear can increase roughness and create protrusions. Since the fragments cannot escape contact during fretting, they further contribute to wear (61).

Figure 11: Fretting corrosion (55)

CO₂ corrosion – is a form of degradation that occurs when dissolved CO₂ in condensate forms carbonic acid (H₂CO₃), which corrodes steels and low alloys to form an iron carbonate scale (see figure 12) (62-64). Carbonic acid is formed by gaseous carbon dioxide first dissolving into water, and then reacting to it (65, 66). CO₂ corrosion is most typically found in boiler condensate return systems that are not adequately treated with corrosion inhibitors is a complex process and many variables are involved, such as: pH, temperature, chloride concentration, fugacity, and system total pressure (66, 67).

Figure 12: CO₂ corrosion (63)

 H_2S corrosion – is a form of aqueous corrosion that can occur on all upstream steel components exposed to H_2S , such as well tubing, flow lines, transport pipelines and processing equipment/system (see figure 13) (68-70). All water-wet internal surfaces are prone to H_2S corrosion, either by produced water in the bottom of the line or condensed water in the top-of-line (68, 71).

Figure 13: H₂S corrosion (70)

Microbial induced corrosion – is the deterioration of a metal by corrosion processes that occurs directly or indirectly because of the metabolic activity of microorganisms in cold water systems (72-75). This type of corrosion results in severe pitting of metals, leading to rapid failures (see figure 14) (76, 77). The type of bacteria that cause this type of corrosion are anaerobic, they can only thrive in oxygen-deprived regions under deposit (78).

Figure 14: Microbial induced corrosion (77)

Preferential weld corrosion – (also known as grooving corrosion, knife-line attack or trench-like corrosion) is a selective and rapid corrosion of a weld or bond line (79). The corroded area formed is groove shaped and is thus a potentially severe defect (see figure 15) (80-83). It tends to form a relatively sharp notch in material which is also usually less tough than the parent material (79, 82).

Figure 15: Preferential weld corrosion (83)

Filiform corrosion – is a form of corrosion specific to painted steel, aluminium and magnesium surfaces. It results in a detachment of the coating from its metallic support, which is caused by the surface corrosion of the underlying metal at the metal/coating interface (see figure 16) (84, 85)

Figure 16: Filiform corrosion (84)

The major risk of corrosion in oil and gas production requires the understanding of the failure mechanism and procedures for assessment and control (86). The rate of corrosion of carbon steels is dependent on both the environmental conditions, structural and compositional properties of the steel (87, 88). Carbon steel which includes mild steels is by its nature has limited alloy content, usually less than 2% by weight for the total of all additions (89). Small additions of copper, chromium, nickel, and/or phosphorus complement their properties which reduces the corrosion rate of carbon steel (90).

To reduce equipment failure and enhanced life cycle, corrosion specialist should understand the mechanisms of corrosion, the risk assessment criteria and mitigation strategies (91, 92). This dissertation explores existing corrosion in equipment, to show the mechanisms, the risk assessment methodologies, and the framework for mitigation.

8 Methodology

8.1 Corrosion risk assessment

Corrosion risk assessment is the backbone to any corrosion management system as it provides the information to enable appropriate selection of inspection, monitoring and mitigation strategies (implementation and analysis) (11, 91-93). The output of the inspection and monitoring processes is then fed back into the risk assessment process to enable continual improvement (monitoring and measuring performance and review of system performance) (11, 91-93).

8.2 Risk-based assessment methodology and overall procedure

Corrosion is a combination of multiple interactions of physical, chemical and mechanical properties and predicting the long-term behavior of equipment/system present a major challenge in oil and gas industry (11, 94, 95). An understanding these phenomena interactions makes it possible to effectively choose the most appropriate material which agrees with the standard specification and appropriate protection method (11, 96-101). The methodology describes how the risk-based assessment was carried out.

Risk-based assessment is a term used to describe the overall process or method where we comprehensively evaluate the internal and external factors affecting equipment failure and the severity of the failure consequences, enabling the risk level of each segment to be determined as the basis of maintenance works (see figure 17 below) (11, 96-101).

Figure 17: Overview risk-based assessment process

Figure 17 above described the overview of risk-based assessment process of an equipment starting with collation of all relevant data/information, determination of the limit of equipment and grouping them if necessary. This is followed by identification of all applicable threats/hazards, evaluation of probability and consequence assessment of each identified hazard. Then the risk evaluation which is the resultant combination of the probability evaluation and consequence assessment of each hazard to determine the level of criticality (risk). Finally, determination of any required risk reduction or mitigation and their implementation.

The overall process of risk-based assessment is listed below:

- Input data
- Equipment grouping/sectioning
- Probability assessment
- Consequence evaluation
- Criticality (Risk)
- Confidence rating
- Inspection interval
- Development of integrity strategy
- Risk-based assessment actions
- Peer review
- > Audit
- Inspection method
- Inspection evaluation and reporting

Each of the parameter in the overall process of risk-based assessment is described in section 8.2.1 to section 8.2.13 below.

8.2.1 Input data

Risk-based assessment (RBA) and overall asset integrity management (AIM) systems are highly dependent on data, with the accuracy of assessments often being dependent on the amount of quality input data available for consideration including the reliability of the inspection technique and methods used (11, 96-101). The required input data include as a minimum the following: CO₂ content, H₂S content, water-cut, gas-oil ratio, water chemistry, operating parameters/boundaries (pressures, temperatures, flow rates, sand/solid content, etc.), chemical applications, geographical layout, variations in terrain along equipment/system route, major component parts, operating

intent, cathodic protection design, incidents during construction/fabrication/installation and any unique/special design features (11, 96-101). Incidents during construction and fabrication may need to be captured and reviewed during the first year of operation once the relevant documentation becomes available. Latest and historic inspection data, any failure/degradation report and maintenance reports will also be required (11, 96-101). A good general sectioning of the system arrangement is essential before any risk assessment and subsequent inspection schemes can be developed (11, 96-101).

It is standard practice to conduct the risk assessment with input from engineers and experts from many disciplines (materials, corrosion, inspection, maintenance, process, etc..) to guarantee that all sides are examined. It's important to note that the approach is heavily reliant on expert technical judgement, yet it nonetheless assures that a consistent process is followed. The first step is to examine the operating conditions/environment and remove any corrosion processes/threats that are not applicable to the system, circuit, or vessel in question. The process next takes the evaluation team through each corrosion mechanism one by one. When employing the electronic database technique, all relevant system information is displayed together with guideline notes, recognized concerns, and standard industry practice when each present mechanism/hazard is addressed (11, 101).

The evaluation team determines a likelihood of failure ranking for each mechanism based on this information, which is recorded together with justification remarks. The information required for the risk-based assessment are as follow (11, 101):

- Platform operating procedures and safety case
- Marine operations procedures
- Inspection reports (current and historical)
- Process and instrumentation diagrams
- Process flow diagrams
- General and specific basis of design documents.
- General arrangement drawing
- Oil and gas fluid properties
- Operations Manuals
- Current/design maximum allowable operating pressure or initial hydro-test pressures of the systems
- General environmental data

> Other operations that may affect the system under assessment

8.2.2 Equipment grouping/sectioning

Equipment grouping/sectioning simplify the process of subsequent inspection and maintenance routine preparation and implementation. Equipment grouping involve sectioning individual components and then collecting common components into groups to allow an efficient assessment of the equipment/system (see below table 1) (11, 96-101).

Group	Equipment	Comments	
Group 1	Pig receiver	Pig receiver collects pigs and it is design in form of the vessel	
Group 2	Gas lift riser	Gas lift riser is the pipeline used for lifting gas from the reservoir to topsides/surface process equipment	
Group 3	Pipe support, clamp, flange	Pipe supports and clamps are metals used for supporting pipes. Flanges are used for joining sections of pipes or equipment. This are all exposed to threat of crevice corrosion	
Group 4	ESDV	ESDV (emergency shutdown valve) is the safety critical equipment used during emergency to shot down the flow of fluid	

Table 1: Equipment sectioning example

8.2.3 Hazard Identification and Probability assessment

After sectioning, the degradation mechanisms are identified and reviewed to ensure that every hazard is properly captured. For the internal and external probability assessment, a total of thirteen degradation mechanisms (6 internal and 7 external) are considered and is outlined in table 2 and 3. Also the description of probability ranking is outline in table 4 below.

Probability assessment is likelihood that a piece of equipment will fail at a given time and an important part of effective risk analyses (11, 93-94, 98). Probability assessment is carried out qualitatively and quantitatively where a quantitative risk assessment focuses on measurable and often pre-defined data, whereas a qualitative risk assessment is based more on subjectivity and the knowledge of the assessor. Qualitative probability assessment is taken from table 5 to table 10 below (11, 13, 93-101).

A practical application of the probability assessment is used for the assessment of the gas lift riser and pig receiver in section 10.1 and 10.2. The factors considered when assessing the probability are:

- Design data.
- Historical inspection data.
- ➢ In-service failures from own and other assets.
- ➢ Historical repairs.
- > On-line corrosion monitoring data.
- Mitigation methods.
- Process conditions.
- > Operating conditions and operational data.
- > Lessons learnt from similar operators.
- > Material type used and resistance to any specific aggressive environment

Corrosion type	Influencing factor	Possible failure scenario
CO ₂ corrosion	CO ₂ + water, corrosion	Pitting due to carbonic acid attack, localized loss
	inhibition failure	of wall thickness perhaps leading to more
		generalized metal loss. Subsequent loss of
		containment.
Sulphide stress	H ₂ S + water	Local weakening of material by stress-initiated
corrosion		cracking. Possible hydrogen blistering.
cracking;		Mechanical strength compromised affecting
Hydrogen		pressure retention ability. Subsequent loss of
induced		containment.
cracking		
Microbial	Sulphate reducing	Deep localized loss of wall thickness, pitting, and
induced	bacteria contamination	subsequent loss of containment.
corrosion.		
Under deposit		
corrosion		
Galvanic	Dissimilar metals	Very localized loss of wall thickness close to
corrosion		galvanic couple, loss of containment.
Erosion	Entrained solids	Local loss of wall thickness, possibly exacerbated
	in fluid	by erosion corrosion. In severe cases will lead to
		loss of mechanical strength and possible loss of
		containment.
Preferential	Weld material susceptible to	Very localized loss of wall thickness in heat
weld corrosion	preferential attack,	affected zone (knife line attack) or preferential
	weld misalignment.	corrosion of weld metal, generally in lower half of
		equipment/system. Can lead to cracking and
		failure of weld. Major loss of containment.

Table 2: Internal failure modes

Corrosion Type	Influencing Factor	Possible Failure Scenario
Impacts	Excavation, dropped object,	Damaged coating, gouging, dents, and other
	transportation	mechanical damage, which could lead to
	System Accident	localized areas of increased hardness and
		subsequent cracking.
External	Coating damage.	General or localized loss of wall thickness, loss
corrosion	Cathodic protection system	of containment, filiform corrosion (corrosion
	failure; Cathodic protection	under coating damage).
	System Interference,	
	cathodic protection system	
	inadequate, dissimilar metals	
	in contact, contaminated land.	
Stress	High strength steels	Damaged coating/holidays allowing corrosive
corrosion or	(Above X-65), coating	medium to contact equipment. pH and
Environmental	integrity, cathodic protection	temperature within range, high strength
Cracking	potentials, pH, temperature of	equipment steels > inter-granular and trans-
	equipment/system.	granular cracking phenomena.
Structural	Expansion/Buckling,	Overstressing and/or fatigue. Loss of
	crossing overload,	mechanical strength loss of pressure
	vibration/pressure	retention ability, loss of containment.
	cycling, tunnel/casing	
	collapse.	
Material	Weld defect, steel defect.	Local weakness in material leading to
		overstressing and/fatigue crack initiation and
		subsequent propagation. Loss of
		containment.
Fire/Explosion	Accidental, malicious.	Fire melts equipment/explosion ruptures
		equipment (structural). Loss of containment.
Natural	Flooding/Scour,	Overstressing and/or fatigue, loss of
hazards	subsidence/earthquake.	mechanical strength and pressure retention
		ability. Loss of containment.

Table 3: External failure modes

Probability	Definition
High	Item highly susceptible to degradation.
Medium	Item susceptible to degradation under normal conditions.
Low	Item susceptible to degradation under upset conditions.
Very Low	Item not susceptible under normal operating conditions.
Negligible	Item under normal operating conditions-no susceptible degradation.

Table 4: Description of probability ranking

The probability ranking is assessed based on table 5 below.

Note: Below table 6 to table 10 are the continuities of table 5

No.	Internal failure mechanism	Probability	Probability
			ranking
1	Internal corrosion - general	Equipment/System will definitely not meet	High
	and/or localised due to corrosive	the design requirements for resistance to	
	fluids in the Equipment/System	degradation from internal corrosion and	
	example: carbon dioxide and	failure well before the end of the design life is	
	water.	certain.	
	Note: This is the predicted	Equipment/System may not meet the design	Medium
	corrosion rate prior to	requirements for resistance to degradation	
	operations. It assumes that no	from internal corrosion and failure before the	
	inhibition will be used, or that	end of the design life is probable.	
	the inhibition system requires	Equipment/System will meet the design	Low
	being verified as capable of	requirements for resistance to degradation	
	meeting design proposals.	from internal corrosion.	
		There is no possibility of equipment/system	Negligible
		failure during the design lifetime attributable	
		to the predicted corrosion rate.	

Table 5: Guidelines on allocation of Probability Grading

No.	Internal failure mechanism	Probability	Probability
			ranking
2	Erosion of carbon steel.	Equipment/System may not meet the design	Medium
	(Reference-IA Erosion guidelines	requirements for resistance to degradation	
	Revision 2.1:1999).	from internal corrosion and failure before the	
		end of the design life is probable.	
		Equipment/System will meet the design	Low
		requirements for resistance to degradation	
		from internal corrosion.	
		There is no possibility of equipment/system	Negligible
		failure during the design lifetime attributable	
		to the predicted corrosion rate.	
		Flow velocity is more than 20m/s in inhibited	High
		equipment/system or actual erosion rate	
		more than 0.1mm/yr or V actual/V erosional	
		is equal or less than 1.	
3	Preferential Weld Attack applies	Flow velocity is higher than design, but	Medium
	to uncoated internal weldments	nominally solids free (less than1 pptb for	
	of process equipment/system	liquid systems or <0.1lb/mmscf for gas	
	constructed from carbon steel.	systems).	
	May be exhibited in the form of	V actual /V erosional more than 0.8 but less	Low
	loss of weld root or knife line	than 1.	
	attack of the heat affected zone	No foreseeable occurrence of erosion or	Negligible
	predominantly in the bottom	velocity actual /velocity erosional is equal or	
	half of the equipment/system.	less than 0.8.	
		Equipment/System in wet hydrocarbon or	High
		water service, not inhibited.	
		Weld misalignment observable on	
		equipment/system sections. Oxygen may be	
		present.	

Table 6: Guidelines on allocation of Probability Grading

No.	Internal failure mechanism	Probability	Probability
			ranking
4	Microbiologically Influenced	Sulphate reducing bacteria identified	High
	Corrosion.	temperature less than 60°C and liquid water	
	Note: This mechanism is	present.	
	synergistically linked with	Sulphate reducing bacteria identified, and no	Medium
	sulphide stress corrosion	liquid water present or temperature greater	
	cracking.	than 60°C and liquid water present.	
		Sulphate reducing bacteria identified	Low
		temperature greater than 60°C and no liquid	
		water present OR no sulphate reducing	
		bacteria (SRB) identified temperature less	
		than 60°C, no water present.	
5	Sulphide Stress Corrosion	Liquid water present, operating in sour	High
	cracking.	Service (NACE MR-01-75) and non-NACE	
	Note: This mechanism is	compliant material.	
	synergistically linked with	Liquid water present, operating in sour	Medium
	microbiologically influenced	service (NACE MR-01-75) and NACE compliant	
	corrosion.	material.	
		Non-sour service (NACE MR-01-75).	Negligible

Table 7: Guidelines on allocation of Probability Grading

No.	Internal failure mechanism	Probability	Probability
			ranking
6	Impacts by mechanical interference,	Positive evidence of the equipment/system	High
	dropped objects.	has been violently impacted by mechanical	
		means. Equipment/System coating have	
		become damaged or Dis-bonded by impact	
		or equipment is inadequately protected and	
		runs through congested/confine locations.	
		Equipment/System may have been	Medium
		impacted by mechanical means. Equipment	
		coating has become damaged or dis-bonded	
		by impact or mechanical handling problems.	
		Equipment/System runs in congested area.	
		Equipment/System run in congested area	Low
		but is well protected and there is no history	
		or recent evidence of mechanical	
		interference.	
		Equipment/System does not run through	Negligible
		congested area and is deeply buried or	
		protected or sleeved or in protective	
		conduit.	
		Cathodic protection readings and trends	Negligible
		'normal' and anode wastage rates 'normal'	
		and evidence gathered within last three	
		months.	

Table 8: Guidelines on allocation of Probability Grading

No.	Internal failure mechanism	Probability	Probability
			ranking
7	External Corrosion (sacrificial	Inconclusive cathodic protection readings or	High
	cathodic protection system).	changes in cathodic protection trends and/or	
		evidence that system is over performing - high	
		anode current outputs (magnesium anodes)	
		or equipment/system to soil potential more	
		negative than -0.7V where related to clean	
		carbon steel on 13Cr or duplex stainless-	
		steel).	
		Changes in cathodic protection trends and/or	Medium
		evidence that system is underperforming -	
		low anode wastage rates or passivated	
		anodes provided that evidence has been	
		gathered within last three months. If not, then	
		probability is high 'H'.	
		Cathodic protection readings and trends	Low
		'normal' and anode wastage rates 'normal'	
		but evidence gathered more than three	
		months ago but less than one year ago. More	
		than one year, then probability is 'M'.	
		Cathodic protection readings and trends	Negligible
		'normal' and anode wastage rates 'normal'	
		and evidence gathered within last three	
		months.	

Table 9: Guidelines on allocation of Probability Grading
No.	Internal failure mechanism	Probability	Probability
			ranking
8	Under Deposit Corrosion	Solids and sulphate reducing bacteria	High
		(SRB) AND water reported.	
		No solids but sulphate reducing bacteria (SRB)	Medium
		and water reported or solids, sulphate	
		reducing bacteria (SRB) and no water	
		reported.	
		Solids reported or sulphate reducing bacteria	Low
		or water reported.	
		No solids, sulphate reducing bacteria or water	Negligible
		reported.	
		Equipment does not run through congested	Negligible
		area and is deeply buried or protected or	
		sleeved or in protective conduit.	
		Cathodic protection readings and trends	Negligible
		'normal' and anode wastage rates 'normal'	
		and evidence gathered within last three	
		months.	
9	Hydrogen Induced Cracking	Equipment/System where materials of	High
		construction cannot be certified to be HIC	
		resistant and in sour service (NACE MR-01-	
		75).	
		Equipment/System where materials of	Medium
		construction cannot be certified to be	
		hydrogen induced cracking resistant but	
		classed as non-sour service (NACE MR-01-75).	
		Materials of construction certified hydrogen	Low
		induced cracking resistant or Materials of	
		construction not HIC resistant but in non-	
		corrosive service e.g., dry gas.	

Table 10: Guidelines on allocation of Probability Grading

8.2.4 Consequence evaluation

The consequence of the system is determined by assessing business consequence, health/safety and environmental consequence separately (11, 93-94, 98). The consequence is evaluated for each sectioning of the equipment/system as described table 1 in section 8.2.2. The consequences are divided into three areas described in tables 11, 12 and 13 below. The worst-case consequence scoring is applied to all the threats in the risk-based assessment for the section.

Definition	Description	
High	Shutdown of production for more than 24hours resulting in significant loss of income	
	above £5000000 or adverse national/international media attention or enforcement	
	action such as probation notice from the regulatory authority.	
Medium	Loss of production for less than 24hours or loss of income is above £200000 and less	
	than £5000000 or adverse local media attention or enforcement such as an	
	improvement notice from the regulatory authority.	
Low	Would not affect production or loss in production OR loss of income is above £200000	
	and less than £200000 Or No media attention - Adverse peer group or stakeholder	
	commentary on a Specific issue.	
Very low	Loss of income is above £200000 or no commentary within the immediate	
	stakeholder community.	

Table 11: Business Consequence Assessment

Definition	Description
High	Multiple/Single Fatalities. Or Major injury to more than one person or a localised component failure, or systematic failure to meet defined safety critical element performance standard.
Medium	Single major injury or minor injury to more than one person or Failure of a defined safety critical element.
Low	Single minor injury or first aid treatment to more than one person.
Very low	Single first aid case.

Table 12: Safety Consequence Assessment

Definition	Description		
High	Major or Significant release as classed under reporting of injuries, diseases and		
	dangerous occurrences regulations or uncontrolled and sustained environmental		
	release with widespread or long-term environmental impact or Release of hazardous		
	material that cannot be contained, or a catastrophic component failure.		
Medium	Minor release as classed under reporting of injuries, diseases and dangerous		
	occurrences regulations with localised or short- term environmental impact OR		
	Release of hazardous material that can be contained, or a localised component		
	failure, or systematic failure to meet defined safety critical element performance		
	standard.		
Low	Environmental release with no significant environmental impact or resulting in		
	permit non-compliance.		
Very low	Environmental release with no environmental impact of short duration and within		
	permit/consents.		

Table 13: Environmental consequence assessment

8.2.5 Criticality (Risk)

Criticality is the product of the consequence and the probability and represents the overall risk to integrity of an equipment/system. The criticality is assigned using table 14 below. It is assessed for each relevant failure mode and the highest of business, safety and environmental consequence is assigned as the worst case. There are five categories of criticality, very high (VH), high (H), medium (M), low (L) and very low (VL). Very high "VH" denotes extreme criticality requiring an action plan to lower the criticality (11-14, 93-101).

		Probability of failure			
		VL	L	М	Н
	Н	М	Н	VH	VH
Consequence of loss	М	L	М	Н	VH
or integrity	L	VL	L	М	Н
	VL	VL	VL	Ĺ	М

Table 14: Criticality matrix

Table 14 define the level of risk identify for each equipment grouping by considering the category of probability or likelihood against the category of consequence severity.

8.2.6 Confidence rating

Confidence rating is an important input parameter to the risk-based assessment methodology and the integrity review process (11-14, 93-101). Confidence can be assessed by reviewing the following:

- > The predictability of the degradation mechanism.
- > The number and reliability of inspections.
- > The reliability of monitoring of the operating parameters.

Confidence rating is carried out differently for internal and external degradation mechanisms. The confidence assessment is based on answers to a questionnaire. The questionnaire is based on the answers to appropriate inspection results or information (11-14, 93-101).

If equipment/system is accessible by an inspection technique that has been used and reliable data been produced, then the confidence assessment will be medium or high (11-14, 93-101). If an inspection technique has been used and reliable data has not been produced, then the confidence assessment will depend on the answers to operational technique carried out (if any) (11-14, 93-101). Confidence in this instance can only be very low, low, or medium. The final score is applied to the overall rating (see table 15 and table 16 below).

Age related degradation confidence questions	If 'Yes' score	If 'No' score
Is the failure mode unstable and/or uncontrolled and/or poorly understood?	-1	0
Has reliable and accurate inspection been carried out?	+1	-1
Has a reliable assessment of the failure mode been carried out?	+1	0

Table 15: Confidence Questionnaires

Confidence rating total score	Confidence rating
2	High
0 or 1	Medium
-1	Low
-2	Very Low

Table 16: Confidence rating

A practical application of the confidence rating is used for the assessment of the gas lift riser and pig receiver in section 10.1 and 10.2.

8.2.7 Inspection interval

The inspection interval is dependent on the criticality in above table 14 and the confidence assessment. All intervals assigned should be thoroughly peer reviewed and formally accepted. The inspection intervals in the table 17 below are shown in years (11, 94). There are five categories of criticality and confidence rating, very high (VH), high (H), medium (M), Low (L) and very low (VL).

	Confidence rating			
Criticality	VL	L	М	Н
VH	1	2	3	4
Н	1.5	3	4	6
М	2	4	6	8
L	4	6	8	10
VL	8	9	10	12

Table 17: Inspection interval matrix

Table 17 define the interval of inspection period per year by considering the confidence rating and criticality which means when combine both, example: if the level of criticality is low and the confidence rating is low then the interval period of inspection will be shorter accordingly, if the level of criticality is low and the confidence rating is high then the interval period of inspection will be shorter accordingly.

8.2.8 Development of integrity strategy

The result of risk-based assessment is utilised to develop integrity strategy for the equipment/system concerned. This strategy will schedule all mitigation and the monitoring measures identified by the risk-based assessments with appropriate inspection techniques (11, 93-94).

On completion of the risk-based assessment, a written scheme of examination and data management technique is established for storing inspection and corrosion related information. This is to facilitate easy access and allow for the regular updates of the strategy (11, 93-94).

Integrity status of all equipment should be reviewed and formally reported on an annual basis to verify that the equipment operating procedures address the threats identified in the operational safety risk-based assessment (11, 93-94).

8.2.9 Risk-based assessment actions

The actions that are produced from the risk-based assessment are transferred into the Integrity Action database. The action tracker is used as a central location and to monitor the closeout of actions (92). When the risk-based assessments are revisited as part of the ongoing integrity management, the assessment will have to be updated with the information from the integrity report and the closed-out actions ready for the review (11, 93-94).

8.2.10 Peer review

On completion of the risk-based assessment, a peer review is performed. The purpose of the review is to confirm the accuracy of any assumptions or data used in assessing the criticality and inspection intervals, and to advice on any operational changes, which could affect the assessment (11, 93-94, 96).

The peer review is performed by a team comprising of personnel responsible for the equipment within the Asset Integrity Engineering Service provider and the owner of the facility. The asset integrity Engineering Service provider is responsible for providing the corrosion and inspection expertise and to ensure the technical aspects related to the probability and consequence of failure are fully evaluated (11, 96-98). The asset integrity engineering service provider team is comprising a minimum of corrosion Engineer, inspection engineer, process engineer and Integrity Engineer (11, 96-98). The Integrity Engineer is responsible for the selection of participants in line with capabilities, ensuring all necessary information is distributed and action items collated. The site's owner where the assignment is performed is responsible for providing sufficient personnel from integrity department, operations, maintenance, HSE and other disciplines as necessary to ensure that the consequences of failure and criticalities can be fully evaluated (11, 96-98).

The peer group have responsibility to review the equipment immediately after the risk-based inspection and thereafter annual operational review is conducted (8, 96-98).

8.2.11 Audit

Audits are important component of any management system to quantify how well it functions and to identify any areas of improvement. Audits is carried out by various personnel. An external audit is carried out on a frequency of no greater than 3 years to ensure conformance with the methodology and that best practises are included within the methodology (11, 96-100).

8.2.12 Inspection method

Some intrusive and non-intrusive methods are developed to inspect equipment/system and take the geometric measurements (diameter, wall thickness, metal loss, crack and other defects) (11, 101).

Inspection techniques available for defects detection and measurements are:

- General visual inspection
- Close visual inspection
- Eddy current testing
- Magnetic particle inspection
- Dye penetration testing
- Radiographic testing
- Ultrasonic testing
- Guided wave inspection method (Long range UT)
- Internal rotating inspection system UT-Tubes (Ultrasonic)
- Intelligent pigging in line inspection
- Corrosion mapping
- Phase array
- Time of flight diffraction

The probability of failure evaluation gives an estimation of likely degradation mechanisms, together with their morphology and the data required to estimate the resulting probability of failure (11, 96-101). This information is used to optimize the inspection procedures and techniques, and to select which data is recorded so that the risk-based inspection analysis is updated after an inspection. The choice of inspection method is based on optimizing several factors that characterize each technique. For example:

- > Confidence in detecting the expected damage state.
- Cost of technique/method, including manpower and equipment.

Extent of maintenance support required (scaffolding, process shutdown, opening of equipment.

During operation, non-destructive testing inspections is used to assess the current defect state of equipment, monitor defect mechanisms, and make informed decisions for remaining equipment life evaluations (e.g., RBI, FFS) (11, 101). See below table 19 to table 22 non-destructive testing method versus defect type (11, 93-101).

Damage type	Non-destructive	Capability/limitations
	testing method/technique	
Corrosion/Erosion	General Visual Inspection (Vessels	Good detection capability but requires
(Internal).	Only) – Internal	internal access. Limited sizing
		capability (Depth/remaining wall
		thickness).
	Manual Ultrasonic Testing/0°	Generally good detection and sizing
	Probe – External	capability (can be poor if corrosion
		isolated, particularly the detection of
		pitting).
	Automated Ultrasonic Testing/0°	Very good detection and sizing
	Probe Mapping – External	capability (application limited to
		equipment/system sections where
		simple manipulation can be
		facilitated). Corrosion maps allow
		accurate comparison of data between
		repeat inspections.
	Continuous Ultrasonic Monitoring	Good detection and sizing capability
	– External	(at specific monitoring locations).
	Profile Radiography (Piping Only)	Good detection and sizing capability
	– External	(at specific monitoring locations).

Note: Below table 19 to table 22 are the continuities of table 18

Table 18: Non-destructive testing method versus damage

Damage type	Non-destructive	Capability/Limitations
	testing method/technique	
Weld-root	TOFD and Phase Array – External	Very good detection and sizing capability
Corrosion/Erosion		(depth/remaining wall thickness). Access
		to both sides of weld cap required.
	Manual/Automated	Good detection and sizing capability but
	Ultrasonic Testing/0° Probe – External	require extensive surface preparation i.e.,
		removal of weld cap.
	Manual/Automated	Detection and sizing capability but can be
	Ultrasonic Testing/0° Probe – External	unreliable.
Stress Corrosion	Surface Testing	Penetrant/Magnetic particle (not
Cracking		austenitic)/Eddy current (not ferritic)
(Internal/External)		techniques - good detection capability
		but access required to crack surface.
		Techniques require plant shutdown.
	Ultrasonic Testing – External	Fair detection capability; can be used
		on-line. Specialist techniques have
		some capability to determine crack
		features (orientation and dimensions
		(Inc. height)).
	Acoustic Emission – External	On-line detection of growing SCC in
		large component systems too complex
		to be inspected by other techniques.
		Extraneous system noise can produce
		false indications.

Table 19: Non-destructive testing method versus damage

Damage type	Non-destructive	Capability/Limitations
	testing method/technique	
Fatigue Cracking	Magnetic Particle Testing	Good detection capability but requires
(Internal/External)		access to fatigue crack surface. Good
		length sizing capability. Some surface
		preparations usually required.
	Penetrant Testing/Eddy Current	As above, for non-magnetic materials.
	Ultrasonic Testing/Angle Probe(s)	Good detection and sizing capability
		(length and height), enhanced by use of
		automated systems - TOFD gives very
		accurate flaw height measurement and
		allows in-service crack growth
		monitoring. Enhanced by use of
		automated systems - TOFD gives very
		accurate flaw height measurement and
		allows in-service crack growth
		monitoring.

Table 20: Non-destructive testing method versus damage

Damage type	Non-destructive	Capability/Limitations
	testing method/technique	
Fatigue Cracking	ACFM	Good detection capability but requires
(Internal/External	(Can be used in-lieu of surface	access to fatigue crack surface. Length
	techniques stated above)	and some depth sizing capability. Unlike
		Magnetic Particle does not usually
		require surface preparation and can be
		used through coatings. Better for
		inspecting welds than Eddy Current.
Hot Hydrogen Attack	Ultrasonic Testing - External	Detection capability/base material but
(Internal)	0°Probe/High Sensitivity	can give false indications. Use of
		mapping system facilitates monitoring.
		For welds, removal of cap is required.
	Angle Probe(s)/Medium	Detection capability/welds but cannot
	Sensitivity	detect microscopic stages of HHA. Use
		of automated system facilitates
		monitoring of macro-cracking.
	TOFD	Detection capability/welds although
		discrimination between micro-cracking
		and other weld defects a problem.
		However, establishment of a baseline
		facilitates monitoring of micro cracking.

Table 21: Non-destructive testing method versus damage

Damage type	Non-destructive	Capability/limitations	
	testing method/technique		
Hydrogen Induced	Ultrasonic Testing - External	Good detection at later stages, but there	
Cracking, Stepwise	- 0° probe	is no proven early warning (susceptibility	
cracking.	- 45°/60°/70° angle probe	to cracking).	
Creep damage	Surface Testing	Tests for on-site inspection.	
	Ultrasonic Testing	Magnetic measurements of Barkhuizen	
	- Attenuation/Loss of back wall	noise, Differential Permeability or	
	echo	Coercivity are possible but also affected by	
	- Backscatter	other parameters e.g., stress and heat	
	- Velocity measurement	treatment. Surface Replication can be	
		used to examine microstructure.	

Table 22: Non-destructive testing method versus damage

8.2.13 Inspection evaluation and reporting

When internal or external corrosion is detected, fixed key points at several selected locations are built to monitor the corrosion growth at a frequency decided by the corrosion and inspection engineers; unless this cannot be justified within the remaining economic life of the equipment (93, 97).

Non-destructive testing measurements can be taken from an existing corrosion monitoring points to substantiate corrosion coupon readings if applied. This method is used in all locations where coupon results indicate corrosion more than design corrosion criteria (11, 97-98).

Inspection data evaluation should include as a minimum:

- Assessment of inspection findings
- Estimation of existing minimum wall thickness
- Estimation of corrosion rate
- Remaining life calculations
- Maximum Allowable Working Pressure calculations
- Establishment of retiring thickness
- Conclusions on integrity status
- Recommendations as to further action

The overall evaluation of integrity status because of inspection activity is carried out and the findings of inspection, including the evaluations should be verified. The effectiveness of the inspection activities is assessed periodically where the frequency and the revision of planned activities provide the continued assurance of equipment integrity. Reports of the effectiveness of the planned activities in assuring the required integrity and reliability is produced and reviewed by the management. Part of the review include the effectiveness of the inspection procedures and routines in ensuring individual equipment is maintained fit for service (11, 93-102).

9 Inspection method used

The main inspection methods used in this dissertation are:

- Corrosion mapping inspection
- Long range ultrasonic testing and ultrasonic testing

General visual inspection is part of inspection method used to inspect both equipment.

9.1 Corrosion mapping inspection and long-range ultrasonic testing inspection

9.1.1 Corrosion mapping equipment information and internal cracking criteria evaluation

Corrosion mapping tools information

Item	Gas lift riser	Location	Offshore
Material	Carbon steel	Thickness	28mm
Diameter	363m	Coating	Paint
Scanner	Accutrak	Software	Pros can
Probe type	Triplex (0°, -45°, +45°)	Serial No.	TRI-01
Reference block	Steep/IIW V2	Reference block	FBH, SDH, Step
Frequency	5Mhz	Scanning gain	80% of TCG
Reference block thickness	2mm to 10mm & 12.5mm	Cable type	Coaxial

Table 23: Corrosion mapping tools information

Internal cracking evaluation criteria

Damage ra	ating assessment (1-5) - Terms and definitions guide
HIC	Hydrogen induced cracking (literal definition); general term referring to Wet H_2S
	service damage mechanisms such as SOHIC, blistering, incipient hydrogen induced
	cracking and stepwise cracking.
DRA-1	Inclusions:
	Small inherent fabrication anomalies as scattered or flattened into typical
	laminations.
DRA-2	Laminar inclusions:
	Inherent inclusions or laminations that may have been affected by H_2S service
	showing initial signs of concentrations.
DRA-3	Laminar blistering:
	Laminar inclusions that show initial signs of blistering. Typically, the O ^o backwall
	responses are diminished and may or may not have complete loss in backwall.
	And/or Potential shallow inner diameter cracking that may or may not be associated
	with hydrogen induced cracking.
DRA-4	Blistering:
	Confirmed blistering with total loss in the 0 ^o backwall response.
	And/or Confirmed cracking with established lengths and thru-wall depths in excess
	of 10% thickness.
DRA-5	Stepwise cracking:
	Blistering that has linked up (multi-level) with cracks usually imbedded
	And/or cracking, SOHIC or stress orientated hydrogen induced cracking, usually in
	weld heat affected zones and/or inner diameter connected cracking in excess of 25%
	thickness.

Table 24: Internal cracking evaluation criteria (62, 63)

Table 24 described damage rating assessments (DRA) identified. A damage rating assessment of 1 (DRA-1) is typical for a vessel showing no signs of service-related damage for the data collected. The damage rating assessments of 2-4 (DRA-2 - DRA-4) are typical for vessels having varying degrees of potential damage and can be subjective depending on the level of analysis performed, technicians' interpretations and can be influenced by comparison with previous inspection data. A damage rating assessment of 5 (DRA-5) is typical for a vessel showing conclusive evidence of severe damage for the data collected.

9.1.2	Long range ultrasonic testing Tools Information and criteria evaluatio	n

Itom	Cas lift risor	Location	Offshoro
		LOCATION	Unshore
Material	Carbon steel	Thickness	9.53mm
Diameter	6 Inches	Coating	Paint
Long range ultrasonic testing	MK4 teletest	Software	Pi teletest
	Multiple probe compression mode		
Probe type	zero degre (0°)		

Long range ultrasonic testing tools information

Table 25: Long range ultrasonic testing tools Information

Figure 19: Long range ultrasonic testing Tools

Long range ultrasonic testing evaluation criteria

Long range ultrasonic testing is performed using a system which is made up of a low frequency flaw detector, a pulses receiver unit, some transducer rings, and a laptop computer which contains the software that controls the system. To begin, the transducer rings are fixed around a pipe, through which they will then generate a series of low frequency guided waves (103). It is the uniform spacing of the ultrasonic transducers around the circumference of the pipe that allows for the guided waves to propagate symmetrically along the pipe axis, providing 100% coverage of the pipe wall, including areas such as at clamps and sleeved or buried pipes (104, 105). The waves are then reflected back to the transducer whenever they reach a change in wall thickness, which is how the process is able to detect corrosion, metal loss, or discontinuities (105). Indications identified on the A-scan plots are evaluated based on a combination of:

- > The signal amplitude
- > The directionality of the focused response

This considers that large amplitude responses will be from a large cross-sectional area defect. Small defects cannot produce large amplitude reflections. A small amplitude response does not necessarily mean that the defect is small, as the response may be affected by several factors.

To provide a means of identifying defects which are potentially significant in terms of the integrity of the equipment, it is necessary to examine how localised the response is in terms of the equipment circumference. Responses are assessed only in terms of amplitude, with the categories being 'minor', 'moderate' and 'severe', the signals are now described as Amplitude Category 1, 2 or 3, with Category 3 being the highest (105). There is an additional Distance Amplitude Curve (DAC) curve added to the analysis screen. This is a red line at -20dB compared with a 100% reflector (equivalent to a pipe end), so that it plots in between the blue weld line (-14dB) and the green 9% reflector line (-26dB). This defines the boundary between Categories 2 and 3 anomalies. The bold black line is the 100% reflector curve (105-109). The broken black line is used for determining the valid length of an inspection (107-109). A representation of the DAC curves is shown in Figure 20, below:

- Category 1 responses are those which are lower than the green -26dB line. <Minor>
- Category 2 responses are those above the -26dB line but are lower than the new red line at -20dB. <Moderate>
- Category 3 responses exceed the new red -20dB line. <Severe>

Note: Any signal which is recognisable above the baseline noise level should be evaluated by the interpreter such that a decision is made regarding recommended follow up.

Figure 20: Schematic of the teletest A-scan, showing the amplitude categories (109)

The collection of focused data from suspected defects is an integral part of the test regime. The results from focused tests on each defect are analysed in terms of the directionality of the response (108-109).

If the polar plot shows a high level of directionality, indicated by a single peak in the plot at one focus angle, it is classed as Directionality 3 (figure 21). This indicates that the defect is highly localised on a narrow part of the circumference, so that it is likely to be deep for a given amplitude of response (105).

Figure 21: Directionality 3 responses from focused tests (105)

If the polar plot has two adjacent high amplitude responses it is classed as directionality 2. This is shown in figure 22. This suggests that the defect is localised but has some circumferential length (105).

Figure 22: Directionality 3 responses from focused tests (105)

If the polar plot has 3 or more adjacent high amplitude peaks (figure 23) it is classed as directionality 1. This suggests that it is spread over a wide area of circumference, so that it is likely to be less deep for a given response amplitude (105).

Figure 23: Directionality 3 responses from focused tests (105)

Note, there is also a directionality 0, which corresponds to the approximately uniform response around the circumference obtained from a weld, figure 24 (105).

Figure 24: Directionality 0 responses from a weld from a focused test (105)

The overall classification is obtained by multiplying the two values, amplitude x directionality, obtained from an anomaly. A score of 3 or greater gives a recommendation for a high priority follow up, a score of 2 gives a medium priority and a score of 1 gives a low priority (105-109). This is summarised in table 26.

Amplitude	Directionality	Score	Follow up priority
3	3	9	High
3	2	6	High
3	1	3	High
3	0	0	Weld
2	3	6	High
2	2	4	High
2	1	2	Medium
1	3	3	High
1	2	2	Medium
1	1	1	Low

Table 26: Anomaly evaluation matrix

Hence a defect with a high amplitude response always results in a high priority follow up (unless deemed to be a feature such as a weld), as does a low amplitude response which is highly directional (109-112). Quantitative inspections such as general visual inspection (GVI), close visual inspection (CVI), eddy current testing (ET), remote field eddy current (ET-remote), magnetic particle inspection (MT), dye penetration testing (PT), radiographic testing (RT), real time radiography (RT-RTR), ultrasonic testing (UT), internal rotating inspection system-ultrasonic testing-tubes, intelligent pigging-in line inspection, corrosion mapping, phase array (PA), time of flight diffraction (TOFD), are recommended on all classifications of anomalies.

10 Results & discussion shell No.3 pig receiver and 6 inches gas lift riser

10.1 Risk-based inspection: case study on a hydrocarbon shell No.3 of pig receiver

10.1.1 Internal corrosion assessment on a hydrocarbon shell No.3 of pig receiver

Corrosion risk assessment was conducted for a proposed hydrocarbon shell No.3 pig receiver 2.315m in length commissioned in March 2004. The construction material is a plain carbon steel, API 5L X60. Along with hydrocarbon liquids, the sour gas in the pig receiver contained some quantities of dissolved CO₂, however accordingly to NACE MR0175 standard, natural gas is usually considered sour if:

- > if the system pressure is 10Mpa and hydrogen sulphide concentration is at least 1000ppm
- ▶ if potential hydrogen (PH) is at least 3.5 and minimum partial pressure is 0.001 bar
- ➢ if there are more than 5.7 milligrams of H₂S per cubic meter of natural gas

The anticipated degradation mechanism of the pig receiver under the operating conditions will likely be sulphide stress corrosion cracking, hydrogen induced cracking, step wise cracking, stressoriented hydrogen induced cracking, erosion-corrosion, CO₂ corrosion, preferential weld corrosion (10, 99-101, 106). As shown in table 27 below due to the presence of H₂S and CO₂. Furthermore, hydrogen sulphide when dissolved in water, forms a weak acid and a source of hydrogen ions and which is therefore corrosive (13, 99-101, 107). The corrosion products are iron sulphide (FeS) and hydrogen (100-102). Hydrogen produced in the reaction may lead to hydrogen embrittlement (13, 100-102). However, the probability failure category, the consequence evaluation, the risk/criticality evaluation, the confidence evaluation rating is assessed below in table 28 to table 32.

Susceptible	Internal	Operating	Operating	Flowrate	Material
corrosion mechanisms	environment	temperature	pressure		type
Hydrogen Induced Cracking;	Hydrogen Sulphide	Above 35 ⁰ C	Above	1m/s	Carbon
Step Wise Cracking; Stress-	$(H_2S) + CO_2 + water$		70barg		steel
Oriented Hydrogen Induced	+ entrained solids.				
Cracking; Sulphide Stress					
Cracking, Erosion-Corrosion;					
CO ₂ corrosion, Preferential					
Weld Corrosion.					

Table 27: Anticipated internal corrosion mechanisms within pig receiver

Threat	Probability	Probability justification
Hydrogen	High	In sour service, material used is not NACE MR0175 compliant, where
Induced		possibility of leakage of hydrocarbons fluid expected to propagate
Cracking		through the cracks.
Step	High	In sour service, material used is not NACE MR0175 compliant, where
Wise		possibility of leakage of hydrocarbons fluid expected to propagate
Cracking		through the cracks.
Stress-	High	In sour service, material used is not NACE MR0175 compliant, where
Oriented		possibility of leakage of hydrocarbons fluid expected to propagate
Hydrogen		through the cracks.
Induced		
Cracking		
Sulphide	High	Liquid water present, operating in sour Service (NACE MR-01-75) and
Stress		non-NACE compliant material
Cracking		
Erosion-	Low	Solid presence within the hydrocarbon fluid but the effect is
Corrosion		minimized by the design of the receiver
Preferential	Medium	Equipment in wet hydrocarbon with oxygen present and not corrosion
Weld		inhibitor.
Corrosion		
CO ₂	Medium	Equipment in wet hydrocarbon with oxygen and CO ₂ present and not
Corrosion		corrosion inhibitor.

Table 28: Probability evaluation - pig receiver

Threat	Consequence	Consequence justification
Hydrogen	High	Failure with lead to hydrocarbon leak which can resulting
Induced		shutdown of platform and cause damage/death of personnel.
Cracking		
Step	High	Failure with lead to hydrocarbon leak which can resulting
Wise Cracking		shutdown of platform and cause damage/death of personnel.
Stress-oriented	High	Failure with lead to hydrocarbon leak which can resulting
Hydrogen		shutdown of platform and cause damage/death of personnel.
Induced		
Cracking		
Sulphide Stress	High	Failure with lead to hydrocarbon leak which can resulting
Cracking		shutdown of platform and cause damage/death of personnel.
Erosion-	High	Failure with lead to hydrocarbon leak which can resulting
Corrosion		shutdown of platform and cause damage/death of personnel.
Preferential	High	Failure with lead to hydrocarbon leak which can resulting
Weld Corrosion		shutdown of platform and cause damage/death of personnel.
CO ₂ Corrosion	High	Failure with lead to hydrocarbon leak which can resulting
		shutdown of platform and cause damage/death of personnel.

Table 29 Consequence evaluation - pig receiver

Based on matrix table 14 on section 8.2.5 risk matrix above, putting together the above probabilities and consequences, the risk matrix is assessed in the table 30 below.

Threat	Criticality	Criticality justification
Hydrogen Induced Cracking	Very high	Probability high, consequence high
Step Wise Cracking	Very high	Probability high, consequence high
Stress-Oriented Hydrogen Induced Cracking	Very high	Probability high, consequence high
Sulphide Stress Cracking	Very high	Probability high, consequence high
Erosion-Corrosion	high	Probability low, consequence high
Preferential Weld Corrosion	Very high	Probability medium, consequence high
CO ₂ Corrosion	Very high	Probability medium, consequence high

Table 30: Criticality evaluation - pig receiver

Based on matrix table 15 and table 16 on section 8.2.6 confidence rating is assessed in the table 31 and table 32 below.

Note: Below table 32 is the continuity of table 31.

Threat	Confidence rating	Confidence rating justification
Hydrogen	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Induced		and/or poorly understood? No, where the score is 0.
Cracking		Has reliable and accurate inspection been carried out?
		Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Step	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Wise		and/or poorly understood? No, where the score is 0.
Cracking		Has reliable and accurate inspection been carried out?
		Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Stress-	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Oriented		and/or poorly understood? No, where the score is 0.
Hydrogen		Has reliable and accurate inspection been carried out?
Induced		Yes, where the score is 1.
Cracking		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Sulphide	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Stress		and/or poorly understood? No, where the score is 0.
Cracking		Has reliable and accurate inspection been carried out?
		Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.

Table 31: Confidence rating evaluation - pig receiver

Threat	Confidence rating	Confidence rating justification
Erosion-	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Preferential	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Weld		and/or poorly understood? No, where the score is 0.
corrosion		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
CO ₂	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.

Table 32: Confidence rating evaluation - pig receiver

Based on the criticality in above table 14 and the confidence assessment. The inspection interval was assessed in the table 33 below.

Threat	Inspection	Inspection interval justification
	interval	
Hydrogen Induced Cracking	4 years	Criticality very high, confidence rating high
Step Wise Cracking	4 years	Criticality very high, confidence rating high
Stress-Oriented Hydrogen Induced	4 years	Criticality very high, confidence rating high
Cracking		
Sulphide Stress Cracking	4 years	Criticality very high, confidence rating high
Microbial Influenced Corrosion	4 years	Criticality very high, confidence rating high
Erosion-Corrosion	6 years	Criticality high, confidence rating high
Preferential Weld Corrosion	4 years	Criticality very high, confidence rating high
CO ₂ Corrosion	4 years	Criticality high, confidence rating medium

Table 33: Inspection interval pig receiver

10.1.2 External corrosion assessment on a hydrocarbon shell No.3 of pig receiver

General visual inspection carried out shows no signs of coating damage or deterioration on the pig receiver externally. However, as shown in table 34 due to ultraviolet exposure, precipitated salt, condensation and windy conditions blowing sand, dust, chloride and other pollutants against the pig receiver, atmospheric corrosion producing rusty precipitates or scales is expected or anticipated on the pig receiver externally over time.

Susceptible	External environment	Operating	Operating	Flow	Material
corrosion		temperature	pressure	rate	type
mechanisms					
Atmospheric	Sunlight, precipitated salt,	Above 35 ⁰ C	Above	1m/s	Carbon
Corrosion	condensation, atmospheric		70barg		steel
	sea exposure (pollutants,				
	dust, and sand).				

Table 34: Anticipated external corrosion mechanisms within the shell No.3 pig receiver The probability failure, the consequence evaluation, the risk/criticality evaluation, the confidence evaluation rating is assessed below in table 35 to table 38.

Threat	probability	probability justification
Atmospheric	Low	no sign of coating damage externally on the pig receiver during the
Corrosion		general visual inspection.

Table 35: Probability evaluation - pig receiver

Threat	Consequence	Consequence justification
Atmospheric	High	Failure with lead to hydrocarbon leak which can resulting
Corrosion		shutdown of platform and cause damage/death of personnel.

Table 36: Consequence evaluation - pig receiver

Based on matrix table 14 on section 8.2.5 risk matrix above, putting together the above probability and consequence, the risk matrix is assessed in the table 37 below.

Threat	Criticality	Criticality justification	
Atmospheric Corrosion	High	Probability low, consequence high	

Table 37: Criticality evaluation - pig receiver

Based on matrix table 15 and table 16 on section 8.2.6 confidence rating is assessed in the table 38 below.

Threat	Confidence rating	Confidence rating justification
Atmospheric	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score is
		0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? yes, where the score is 1.

Table 38: Confidence rating - pig receiver

Based on the criticality in above table 14 and the confidence assessment. The inspection interval was assessed in the table 39 below.

Threat	Inspection interval	Inspection interval justification
Atmospheric	10 years	Criticality low, confidence rating high.
Corrosion		

10.2 Risk-based inspection case study on a 6 inches gas lift riser

10.2.1 Internal corrosion assessment

Corrosion risk analysis was conducted for a proposed hydrocarbon 6 inches gas lift riser. A section of the riser was replaced in January 2017 by new spool (refer to figure 27 below). The material of construction is a plain carbon steel API 5L X60.

Along with hydrocarbon liquids, the sour gas in the 6 inches gas lift riser contained very small quantities of dissolved CO₂. Corrosion risk analysis is required to formulate guidelines for a risk-based inspection plan. The CO₂ content is very low to cause any appreciable corrosion damage.

However, accordingly to NACE MR0175 standard, natural gas is usually considered sour if:

- > the system pressure is 10Mpa and hydrogen sulphide concentration is at least 1000ppm
- > potential hydrogen (PH) is at least 3.5 and minimum partial pressure is 0.001 bar
- there are more than 5.7 milligrams of H₂S per cubic meter of natural gas

This further means that sulphide induced corrosion, including sulphide stress corrosion cracking and hydrogen induced cracking, could occur in the 6 inches gas lift riser. The anticipated deterioration mechanism under the operating conditions will likely be hydrogen embrittlement (HE), hydrogen induced cracking, step wise cracking, stress-oriented hydrogen induced cracking, sulphide stress cracking, microbial influenced corrosion, erosion-corrosion, preferential weld corrosion, pitting corrosion and crevice corrosion. As shown in table 40 below due to the presence of H₂S, CO₂.

Furthermore, the riser is quite long, and the containment Gas is flammable (11, 13, 100-102), However, the probability failure category, the consequence evaluation, the risk/criticality evaluation, the confidence evaluation rating is assessed below in table 41 to table 47.

Susceptible	Internal	Operating	Operating	Flowrate	Material
corrosion	Environment	temperature	pressure		type
mechanisms					-71
Hydrogen	Hydrogen Sulphide	Above 35 ⁰ C	Above	1m/s	Carbon steel
Embrittlement,	$(H_2S) + CO_2 + water +$		70barg		
Hydrogen	entrained solids.				
Induced					
Cracking, Step					
Wise Cracking,					
Stress-					
Oriented					
Hydrogen					
Induced					
Cracking,					
Sulphide Stress					
Cracking,					
Microbial					
Influenced					
Corrosion,					
Pitting					
Corrosion,					
Erosion-					
Corrosion,					
Preferential					
Weld					
Corrosion,					
Crevice					
Corrosion.					

Table 40: Anticipated internal corrosion mechanisms within 6 inches gas lift riser

Threat	Probability	Probability justification
Hydrogen	High	In sour service, material used is not NACE MR-01-75 compliant,
Embrittlement		where possibility of leakage of hydrocarbons fluid expected to
		propagate through the cracks.
Hydrogen	High	In sour service, material used is not NACE MR-01-75 compliant,
Induced		where possibility of leakage of hydrocarbons fluid expected to
Cracking		propagate through the cracks.
Step wise	High	In sour service, material used is not NACE MR-01-75 compliant,
Cracking		where possibility of leakage of hydrocarbons fluid expected to
		propagate through the cracks.
Stress-	High	In sour service, material used is not NACE MR-01-75 compliant,
Oriented		where possibility of leakage of hydrocarbons fluid expected to
Hydrogen		propagate through the cracks.
Induced		
Cracking		
Sulphide	High	In sour service, material used is not NACE MR-01-75 compliant,
Stress		where possibility of leakage of hydrocarbons fluid expected to
Cracking		propagate through the cracks.
Microbial	High	Liquid water present, operating in sour Service (NACE MR-01-75)
Influenced		and non-NACE compliant material.
Corrosion		
Pitting	High	Liquid water present, operating in sour Service (NACE MR-01-75)
Corrosion		and non-NACE compliant material.
Erosion-	High	Solid presence within the hydrocarbon fluid but the effect is
Corrosion		minimized by the design of the receiver.
Preferential	High	Equipment in wet hydrocarbon with oxygen present and not
Weld		corrosion inhibitor.
corrosion		
Crevice	High	Failure with lead to hydrocarbon leak which can resulting shutdown
Corrosion		of platform and cause damage/death of personnel.

Table 41: Probability evaluation - 6 inches gas lift riser

Threat	Consequence	Consequence justification
Hydrogen	High	Failure with lead to hydrocarbon leak which can resulting
embrittlement		shutdown of platform and cause damage/death of personnel.
Hydrogen	High	Failure with lead to hydrocarbon leak which can resulting
Induced		shutdown of platform and cause damage/death of personnel.
Cracking		
Step wise	High	Failure with lead to hydrocarbon leak which can resulting
Cracking		shutdown of platform and cause damage/death of personnel.
Stress-	High	Failure with lead to hydrocarbon leak which can resulting
Oriented		shutdown of platform and cause damage/death of personnel.
Hydrogen		
Induced		
Cracking		
Sulphide	High	Failure with lead to hydrocarbon leak which can resulting
Stress		shutdown of platform and cause damage/death of personnel.
Cracking		
Microbial	High	Failure which can cause pin hole and lead to hydrocarbon leak
Influenced		which can resulting shutdown of platform and cause
Corrosion		damage/death of personnel.
Pitting	High	Failure which can cause pin hole and lead to hydrocarbon leak
Corrosion		which can resulting shutdown of platform and cause
		damage/death of personnel.
Erosion-	High	Failure with lead to hydrocarbon leak which can resulting
Corrosion		shutdown of platform and cause damage/death of personnel.
Preferential	High	Failure with lead to hydrocarbon leak which can resulting
Weld		shutdown of platform and cause damage/death of personnel.
corrosion		
Crevice	High	Failure with lead to hydrocarbon leak which can resulting
Corrosion		shutdown of platform and cause damage/death of personnel.

Table 42: Consequence evaluation - 6 inches gas lift riser

Based on matrix table 14 on section 8.2.5 risk matrix above, putting together the above probabilities and consequences, the risk matrix is assessed in the table 43 below.

Threat	Criticality	Criticality justification
Hydrogen Embrittlement	Very high	Probability high, consequence high
Hydrogen Induced Cracking	Very high	Probability high, consequence high
Step Wise Cracking	Very high	Probability high, consequence high
Stress-Oriented Hydrogen Induced Cracking	Very high	Probability high, consequence high
Sulphide Stress Cracking	Very high	Probability high, consequence high
Pitting Corrosion	Very high	Probability high, consequence high
Erosion-Corrosion	Very high	Probability high, consequence high
Preferential Weld Corrosion	Very high	Probability high, consequence high
Crevice Corrosion	Very high	Probability high, consequence high

Table 43: Criticality evaluation - pig receiver

Based on matrix table 15 and table 16 on section 8.2.6 confidence rating is assessed in the table 44 to table 47 below.

Note: Blow table 45 to table 47 are the continuity of table 44.

Threat	Confidence rating	Confidence rating justification
Hydrogen	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Embrittlement		and/or poorly understood? No, where the score
		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.

Table 44: Confidence rating evaluation - 6 inches gas lift riser

Threat	Confidence rating	Confidence rating justification
Hydrogen	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Induced		and/or poorly understood? No, where the score
Cracking		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Step	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Wise Cracking		and/or poorly understood? No, where the score
		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Stress-	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Oriented		and/or poorly understood? No, where the score
Hydrogen		is 0.
Induced		Has reliable and accurate inspection been carried
Cracking		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Sulphide	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Stress		and/or poorly understood? No, where the score
Cracking		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.

Table 45: Confidence rating evaluation - 6 inches gas lift riser

Threat	Confidence rating	Confidence rating justification
Microbial	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Influenced		and/or poorly understood? No, where the score
Corrosion		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Pitting	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score
		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Erosion-	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score
		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.
Preferential	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Weld		and/or poorly understood? No, where the score
Corrosion		is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode
		been carried out? Yes, where the score is 1.

Table 46: Confidence rating evaluation - 6 inches gas lift riser

Threat	Confidence rating	Confidence rating justification
Crevice	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score is 0.
		Has reliable and accurate inspection been carried out?
	Yes, where the score is 1.	
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.

Table 47: Confidence rating evaluation - 6 inches gas lift riser

Based on the criticality in above table 14 and the confidence assessment. The inspection interval was assessed in the table 48 below.

Threat	Inspection	Inspection interval justification
	interval	
Hydrogen Embrittlement	4 years	Criticality very high, confidence rating high
Hydrogen Induced Cracking	4 years	Criticality very high, confidence rating high
Step Wise Cracking	4 years	Criticality very high, confidence rating high
Stress-Oriented Hydrogen Induced	4 years	Criticality very high, confidence rating high
Cracking		
Sulphide Stress Cracking	4 years	Criticality very high, confidence rating high
Microbial Influenced Corrosion	4 years	Criticality very high, confidence rating high
Pitting Corrosion	4 years	Criticality very high, confidence rating high
Erosion-Corrosion	4 years	Criticality very high, confidence rating high
Preferential Weld Corrosion	4 years	Criticality very high, confidence rating high
Crevice Corrosion	4 years	Criticality very high, confidence rating high
Erosion-Corrosion	4 years	Criticality very high, confidence rating high
Preferential Weld Corrosion	4 years	Criticality very high, confidence rating high
Crevice Corrosion	4 years	Criticality very high, confidence rating high

Table 48:Inspection interval - 6 inches gas lift riser Inspection interval

10.2.2 External corrosion assessment

A general visual inspection carried out showed signs of rust precipitates or scales due to external corrosion on the 6 inches gas lift riser. The anticipated degradation mechanism of the under the operating conditions will likely be Differential aeration corrosion, pitting corrosion, preferential weld corrosion (11, 13, 99-101). As shown in table 49 below due to the presence of H₂S and CO₂. However, the probability failure category, the consequence evaluation, the risk/criticality evaluation, the confidence evaluation rating is assessed below in table 50 to table 54.

Figure 25 Offshore platform showing relative corrosion rate
Susceptible corrosion	External	Operating	Operating	Flowrate	Material
Mechanisms	environment	temperature	pressure		Туре
		,			
Differential aeration corrosion	Excessive supply of	Above 35 ⁰ C	Above	1m/s	Carbon
occurs during high tide. The	oxygen during high		70barg		steel
surface of the riser becomes	tide, bacteria in				
wet during high tide with	mud or sand at low				
plentiful supply of oxygen and	tide region or zone				
maximum corrosion taking	of riser (see above				
place in the splash zone.	figure 25: Offshore				
Furthermore, severe corrosion	platform showing				
occurs due to continuous	relative corrosion				
wetting and drying.	rate).				
Maximum pitting corrosion					
occur at the low tide area of the					
riser due to mud and sand					
accumulation plus the					
presence of sulphate reducing					
bacteria.					
Preferential weld corrosion.					

Table 49: Anticipated internal corrosion mechanisms within 6 inches gas lift riser

Threat	probability	probability justification
Differential	High	sign of coating damage externally on the riser during the general visual
Aeration		inspection. Excessive supply of Oxygen during high tide, bacteria in
Corrosion		mud or sand at low tide region.
Pitting	High	possibility of leakage of H_2S gas through the cracks or pit that is
Corrosion		expected to propagate from the outside of the riser to the inside or
		internal walls and the toxicity associated with H ₂ S gas.
Preferential	High	In sour service, material used is not NACE MR0175 compliant, where
weld		possibility of leakage of hydrocarbons fluid expected to propagate
corrosion		through the cracks.

Table 50: Probability evaluation - 6 inches gas lift riser

-	1	
Threat	Consequence	Consequence justification
Differential	High	no sign of coating damage externally on the pig receiver during the
aeration		general visual inspection. No possibility of shutdown of production.
corrosion		
pitting	High	Liquid water present, operating in sour Service (NACE MR-01-75)
corrosion		and non-NACE compliant material, possibility of hole within the
		parent metal which can cause hole due to pitting corrosion and lead
		to leakage of H_2S , which can cause Major injury to more than one
		person.
Preferential	High	Due to the leakage through the crack, possibility of shutdown of
weld		production for more than 24hours resulting in significant loss of
corrosion		income, impact or Release of hazardous material H_2S which can
		cause Major injury to more than one person.

Table 51: Consequence evaluation - 6 inches gas lift riser

Based on matrix table 14 on section 8.2.5 risk matrix above, putting together the above probability and consequence, the risk matrix is assessed in the table 52 below.

Threat	Criticality	Criticality justification
Differential Aeration Corrosion	Very high	Probability high, consequence high
Pitting Corrosion	Very high	Probability high, consequence high
Preferential Weld Corrosion	Very high	Probability high, consequence high

Table 52: Criticality evaluation - 6 inches gas lift riser

Based on matrix table 15 and table 16 on section 8.2.6 confidence rating is assessed in the table 53 below.

Threat	Confidence rating	Confidence rating justification
Differential	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Aeration		and/or poorly understood? No, where the score is 0.
Corrosion		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Pitting	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Corrosion		and/or poorly understood? No, where the score is 0.
		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.
Preferential	High (total score result is 2)	Is the failure mode unstable and/or uncontrolled
Weld		and/or poorly understood? No, where the score is 0.
Corrosion		Has reliable and accurate inspection been carried
		out? Yes, where the score is 1.
		Has a reliable assessment of the failure mode been
		carried out? Yes, where the score is 1.

Table 53: Confidence rating evaluation - 6 inches gas lift riser

Based on the criticality in above table 14 and the confidence assessment. The inspection interval was assessed in the table 54 below.

Threat	Inspection	Inspection interval justification
	interval	
Differential Aeration Corrosion	4 years	Criticality high, confidence rating high
Pitting Corrosion	4 years	Criticality high, confidence rating high
Preferential Weld Corrosion	4 years	Criticality high, confidence rating high

Table 54: Inspection interval - 6 inches gas lift riser

10.3 Inspection of shell No.3 pig receiver and 6 inches gas lift riser

10.3.1 Inspection of shell No.3 pig receiver

Figure 26: Shell No.3 pig receiver horizontal cross section 3 O'clock at 9 O'clock

Internal inspection of shell No.3 pig receiver was carried out and completed using the robotic XY axis Scanner motorized automated technique as shown in figure 18.

Note: Scanning area (in blue color) on shell No.3 pig receiver (see above Figure 26) has been covered with recordable robotic XY axis scanner motorized automated (also called accrutrak) where obstacles such as Nozzles and Plug were present.

Recordable automated ultrasonic testing (Accutrack) was used to obtain the results below.			
Measurement is in millimetres (mm). These are from scan images and others			
Diameter	363		
Shell thickness	28		
Shell 3 width (Y axis)	2315		
Circumferential length (X axis)	1140		
Each scan width (Y axis)	500		

Table 55: Pig receiver shell No.3 measurement XY axis

Datum point: Circumferential weld between shell No.3 from 12 O' Clock (0 degree) south to north in clockwise direction

10.3.2 Internal inspection data analysis - Scan images

Y axis length 440mm [0mm to 440mm] and X axis length 670mm [370mm to 1040mm]

Y axis length 500mm [800mm to 1300mm] and X axis length 800mm [300mm to 1100mm]

Y axis length 500mm [1300mm to 1800mm] and X axis length 660mm [480mm to 1140mm]

Y axis length 500mm [1800mm to 2300mm] and X axis length 1160mm [0mm to 1160mm]

Internal inspection cracking finding

Corrosion mapping result table of shell No.3 pig receiver below:

Locations									
File name	X Start mm	X Stop mm	Y Start mm	Y Stop mm	X Incr. mm	Y Incr. mm	Min. 'T' mm	Ave 'T' mm	Nom. 'T' mm
Y0-440- X370-1040	370	1040	0	440	10	10	26.368	27.926	28
Y800-1300- X300-1100	300	1100	800	1300	10	10	26.129	27.83	28
Y1300- 1800-X480- 1140	480	1140	1300	1800	10	10	26.917	27.768	28
Y1800- 2300-X0- 1160	0	1160	1800	2300	10	10	26.410	27.542	28

Table 56: Pig receiver C-Scan measurement

Table 56 above represent the measurement for each scan section area at XY axis of shell No.3 pig receiver.

Example: interpretation of scan measurement taken from table 56:

Scan Y0-440-X370-1040

This scan was carried out to detect internal corrosion. The triplex angle probe (0°, -45°, +45°) attached to the arm of the motorized scanner of accrutrak moves from the left to the right at Y axis and covering the length of 440mm (Y0-440) on the surface of the shell No.3 Pig receiver. when the Y axis scanning is complete, then the accrutrak automatically move forward on the X axis with an increment of 10 set during the calibration of the accrutrak to allow the accrutrak to move forward. this is done sequentially within the X axis and the Y axis until the X axis length of 670mm (X370-1040) is covered to allow the triplex probe to detect the minimum wall thickness 26.36mm and

average wall thickness 27.926mm of the material (refer to table 56 above) compared to the nominal thickness 28mm.

Pig receiver commissioned in March 2004 was inspected using corrosion mapping inspection. The type of inspection used was determined by the risk-based inspection outcome (11, 13). From the result of the inspection of the pig receiver, no relevant indications were found such as hydrogen embrittlement, Inclusion, lamination, blisters or hydrogen induced cracking, step wise cracking, stress-oriented hydrogen induced cracking, sulphide stress cracking, microbial influenced corrosion, erosion-corrosion, CO₂ corrosion or preferential weld corrosion.

Rough surface was observed during inspection period along the surface of the material. Base on C-scan measurement, shell course No.3 is identified to contain minor scattered isolated inclusions reflectors.

From the data analysis A-Scan and C-scan (see section 10.3.2 above) using the triplex probe with 0°, -45° and +45° angle beam attached on Accutrak, result shown that all isolated inclusions/laminations found less than 2mm with amplitude percentage less than 50% of full screen height which was assumed to be manufacturing defect. This result shows that it was not internal cracking presence.

To categorize this inclusion less than 2mm, the hydrogen induced cracking evaluation criteria (refer to table 24 above at section 9.1.1), shell No.3 in pig receiver is therefore evaluated and rated as DRA-1, defined as small inherent fabrication anomalies also known as scattered or flattened into typical inclusions/laminations.

10.3.3 Inspection of 6 inches gas lift riser

Long range ultrasonic Testing also called guided wave and conventional Ultrasonic Testing (UT) technique was completed on 6 inches gas lift riser below MSF (see below figure 27) in accordance with long-range ultrasonic testing procedure. The purpose of this examination is to determine the possible internal/external metal loss on sections of the line.

Figure 27: 6 inches gas lift riser (Long range ultrasonic testing inspection)

Client		Datum point	Tool positioned at 10.29m downstream of weld
Site location	Offshore	Test wave mode	Longitudinal
Tool location	TL01	Test direction	Both
Pipe Ident.	6 inches gas lift riser	Test operator	Clovis Nzonlie Fosso
Nominal Dia.	6 in	Test frequency	51 kHz
Wall Thickness	9.53mm	Tool type	Series 3 multi-mode modules, 30mm L
Procedure		Diagnostic length	-4.8m to 13.1m
Collection date	3/28/2020 5:45 PM	Project No	

10.3.4 Long range ultrasonic testing data analysis

Focusing result		
Test frequency	51kHz	0°
Wave mode	Longitudinal	270*
Test direction	Backwards	
Focal distance	-13.83m	180°
Distance from datum	-3.54m	

Table 58: Focal distance -13.83m Result

Focusing result		
Test frequency	51kHz	0,
Wave mode	Longitudinal	270°
Test direction	Backwards	
Focal distance	-12.88m	
Distance from datum	-2.59m	

Table 59: Focal distance -12.88m result

Figure 29: Vertical line – 6 inches collar attached to the gas lift riser at test location 1 (TL01)

Test location 1 (TL01) on gas lift riser-collected data explanation

Figure 28 is the A scan data showing on the screen of laptop. A scan data was collected using multiple modules attached around the gas lift riser with 5 transducers inserted (three longitudinal and two torsional) which was via wave mode (torsional, longitudinal, and flexural) sent through the riser (torsional wave) to detect internal and external average thickness wall loss. The length of -4.8m in backward direction of the tool and 13.1m in forward direction of the tool was inspected. The distance amplitude curve (DAC) black line with 100% reflexion (0dB amplitude) used to identify feature as flange, blue line (-14dB amplitude) used to identify feature as weld, and the distance amplitude curve (DAC) which are red line (-20 dB), green line (-26dB) are used to identify the level of anomaly or defect severity (refer to section 9.1.2). The distance amplitude curve black line with100% reflexion (0dB amplitude) at a frequency of 51Khz show high flexural response signal from the longitudinal wave at forward direction from the tool location which represent the flange. it also observed that the noise level signal was below the distance amplitude curve -32dB where no change of wall thickness or defect detected. From the datum point at distance from the second weld in the backward direction of the tool as seen on figure 28, located at -3.54m and -2.59m, from the distance

amplitude curve -32dB two flexural responses sign of wall loss thickness is observed and classified as category one (Cat 1) defect found.

Table 58 provide more information related to the exact location of the defect. Flexural signal response from the longitudinal wave mode at frequency of 51Khz, area of thickness wall loss which located at backward direction of the tool within 3 O'clock to 6 O'clock at the distance of -3.54m from the datum point with the focal distance length of -13.83m from the centre of the tool or collar attached around the riser to the flexural signal. The polar plot has 3 adjacent high amplitude peaks (refer to figure 23) it is classed as directionality 1. This suggests that it is spread over a wide area of circumference, so that it is likely to be less for a given response amplitude classified as one, therefor the score of one is given to it with priority classified to be low.

Polar Plot from table 58

Table 59 provide more information related to the exact location of the defect. Flexural signal response from the longitudinal wave mode at frequency of 51Khz, area of thickness wall loss which located at backward direction of the tool within 3 O'clock to 6 O'clock at the distance of -2.59m from the datum point with the focal distance length of -12.88m from the centre of the tool or collar attached around the riser to the flexural signal. The polar plot has 3 adjacent high amplitude peaks (refer to figure 23) it is classed as directionality 1. This suggests that it is spread over a wide area of circumference, so that it is likely to be less for a given response amplitude classified as one, therefor the score of one is given to it with priority classified to be low.

Polar Plot from table 59

Client		Datum Point	Tool positioned at 0.75m downstream of
			flange
Site location	Offshore	Test wave mode	Torsional
Tool location	TL02	Test direction	Both
Pipe Ident.	6 inches gas lift riser	Test operator	Clovis Nzonlie Fosso
Nominal Dia.	6 in	Test frequency	37 kHz
Wall thickness	9.53mm	Tool type	Series 3 multi-mode modules, 30mm L
Procedure		Diagnostic length	-0.2m to 1.5m
Collection date	3/28/2020 7:59 AM	Proiect No	

Table 60: Gas lift riser-long range ultrasonic testing data information at test location 2 (TL02)

Figure 30: Riser-Long range ultrasonic testing A-Scan image test location 2 (TL02) - 6 inches gas lift riser

Figure 31: Vertical line – 6 inches collar attached to the gas lift riser at test location 2 (TL02)

Test location 2 (TL02) on gas lift riser-collected data explanation

Figure 30 is the A scan data showing at the screen of laptop, data A scan collected using multiple modules attached around the gas lift riser with 5 transducers inserted (three longitudinal and two torsional). which assisted via wave mode (torsional, longitudinal, and flexural) sent through the riser to detect internal and external average wall loss thickness. The length of -0.2m in backward direction of the tool and 1.5m in forward direction of the tool was inspected. The distance amplitude curve (DAC) black line with 100% reflexion (0dB amplitude) used to identify feature as flange, blue line (-14dB amplitude) used to identify feature as weld, and the distance amplitude curve (DAC) red line (-20 dB), green line (-26dB) are used to identify the level of anomaly or defect severity (refer to section 9.1.2). As result from the A scan above no sign of defect along the inspected line was detected as the noise is highly attenuated below the black dotted line (-32dB amplitude). High flexural response signal from the torsional wave in the backward direction from the tool location touching the distance amplitude curve black line with100% reflexion (0dB amplitude) at a frequency of 37Khz shown as flange and flexural response signal from the torsional touching the distance amplitude curve black line with100% reflexion (0dB amplitude) at a frequency of 37Khz shown as weld.

Client		Datum point	Tool positioned at 0.75m downstream of
			weld
Site location	Offshore	Test wave mode	Longitudinal
Tool location	TL03	Test direction	Both
Pipe Ident.	6 inches gas lift riser	Test operator	Clovis Nzonlie Fosso
Nominal Dia.	6 in	Test frequency	50 kHz
Wall thickness	22.23mm	Tool type	Series 3 multi-mode modules, 30mm L
Procedure		Diagnostic length	-0.3m to 1.7m
Collection date	3/28/2020 7:49 PM	Project No	

Table 61: Gas lift riser-long range ultrasonic testing data information at test location 3 (TL03)

Figure 32: Long range ultrasonic testing A-Scan image test location 3 (TL03) - 6 inches gas lift riser

Distance relative to datum	Indication description	Comments	Priority				
0.00m	Weld	Rust at weld surface					
1.41m	Weld	from reducer 6 inches to 3 inches (see Figure 24)					
Remarks / Conclusions							
No relevant indication was found in this section of pipeline in term of long-range ultrasonic testing inspection.							
Rust observed as per general visual inspection externally.							

Figure 33 Vertical line – 6 inches collar attached to the gas lift riser at test location 3 (TL03)

Test location 3 (TL03) on gas lift riser-collected data explanation

Page **90** of **108**

Figure 32 is the A scan data showing at the screen of laptop, data A scan collected using multiple modules attached around the gas lift riser with 5 transducers inserted (three longitudinal and two torsional). which assisted via wave mode (torsional, longitudinal, and flexural) sent through the riser (torsional wave) to detect internal and external average wall loss thickness. The length of -0.3m in backward direction of the tool and 1.7m in forward direction of the tool was inspected. The distance amplitude curve (DAC) black line with 100% reflexion (0dB amplitude) used to identify feature as flange, blue line (-14dB amplitude) used to identify feature as mode (torsion 4, and the distance amplitude curve (DAC) which are red line (-20 dB), green line (-26dB) are used to identify the level of anomaly or defect severity (refer to section 9.1.2). As result from the A scan above no sign of defect along the inspected line was detected as the noise is highly attenuated below the black dotted line (-32dB amplitude). Flexural response signal from the torsional wave in the backward direction and forward direction from the tool location touching the distance amplitude curve blue line (-14dB amplitude) with a frequency of 50Khz shown as weld.

Long range ultrasonic testing finding

General visual inspection was carried out from accessible locations of the limited exposed areas at test location 01 (TL01) above the caisson at flanges location, signs of crevice corrosion were observed (see below figure 34), Poor coating is observed along the surface of the inspected location at the time of long-range ultrasonic testing inspection at test location 1 (TL01), test location 2 (TL02) and test location 3 (TL03). Also, initial apparent signs of surface rusting (see figures 26, 28, 30 and 31).

Figure 34: Showing corroded flange in backward direction test location 2 (TL02)

Long range ultrasonic testing examination identified two Category 1 metal loss indications within the 21.6m of the gas lift riser inspected. Category 1 indications are minor (see long-range ultrasonic testing principles of evaluation method above at section 9.1.2) and indicates that there is little deviation in cross sectional area along the length of the line other than at the schedule changes. As this level of indication detected by the technology is very small, it is generally not considered as a high risk. Further support is gained from the twelve thickness readings that were taken at each of the 3 tool locations plus the additional readings taken around test locations 2 (TLO2) and test locations 3 (TLO3). The analysis of these measurements showed that out of the total fifty-two (52) ultrasonic testing (UT) readings all demonstrated less than 5% material loss from the given nominal thickness (t_{nom}) which would not indicate a general internal corrosion concern in this riser. From the 52 ultrasonic testing scans near the tool locations, the largest percentage wall loss recorded is 3.5% which was observed at test location 1 (TLO1). At this location the minimum recorded wall thickness was found to be 9.2mm as opposed to the given nominal of 9.53mm. The spool at Test Location 3 (TLO3) is a much larger schedule with a nominal of 22.23mm wall thickness.

The spool lengths available at test location 2 (TLO2) and test location 3 (TLO3) were very short in nature and do not allow the guided wave (Long range ultrasonic testing) to form sufficiently to ensure good coverage of the line. To mitigate this, additional ultrasonic testing scan were taken at these locations to access their conditions.

10.3.5 General visual inspection

Pipe identi			ification	ation 6 inches gas lift riser				
Location		Offshore below MSF						
Sr.	Areas of Inspection Sub classi		ification	Code /standard	Comments			
1	Leaks		Process []	API 570	No significant ind	dications found.	
			Steam tracing 🗆					
			Existing clamps 🗆					
2	Misalignme	nt	Piping	misalignment /	API 570	No significant ind	dications found.	
			Restricted	d movement \Box				
			Expansio	n joint misalignment				
3	Vibration		Excessive	overhung weight \Box	API 570	No significant ind	dications found.	
			Inadequa	te support 🗆				
			Thin, sma	Ill bore, alloy piping □				
			Threaded	I connections 🗆				
			Loose sup	pport 🗆				
4	4 Supports		Shoes of	support 🗆	API 570	No significant ind	dications found	
			Hanger d	listortion or breakage				
					_			
			Loose bra	ackets 🗆	_			
			Support/	damage corrosion \Box				
5	Corrosion		Localized	Corrosion	API 570	Painting deterioration and ru		
			Coating /	Painting deterioration		was observed e General Vision Ir	xternally as per spection.	
			Soil to air	Interface 🗆		In backward di	raction of tast	
			Metal to	Metal contact 🗆		location 2 (TLO2) Long Range U Scan 6 inches gas lift riser.		
			Biological	l growth □				
			Scab / blistering Corrosion 🗆			flanges location l corrosion was ob	Rust and Crevice oserved.	
6	Insulation		Damage/Penetration 🗆		API 570	No significant ind	dications found	
			Missing Ja	acketing / Insulation 🗆				
			Sealing deterioration \Box					
			Bulging []				
			Banding (broken / missing)					
7	Small Bore F	Fitting	Chemical	Injection Point 🗆	API 570	No significant ind	dications found.	
	Vents 🗆 Drains 🗆		Vents 🗆					
]				
8	Dead Legs				API 570	No significant ind	dications found.	

Table 62: General visual inspection summary

Site location	Offshore below MSF												
Pipeline name	Location	Test location	Distance from tool location in meter	Pipe Size	Original e thickness e in mm	Gauge thickness in mm.				Lowest thickness	Gauged Mean	Percentage wall loss	
						Clockwise direction							
						12.0	3.0	6.0	9.0	reading in mm.	in mm.	mm	%
6' inches gas lift riser	Below MSF	TL01	At Tool Location	6''	9.53	9.40	9.40	9.50	9.50	9.4	9.5	0.1	1.4
			0.5m Forward	6''	9.53	9.40	9.50	9.40	9.40	9.4	9.4	0.1	1.4
			0.5m Backward	6''	9.53	9.20	9.50	9.50	9.50	9.2	9.4	0.3	3.5
		TL02	At Tool Location	6''	9.53	9.50	9.40	9.50	9.60	9.4	9.5	0.1	1.4
			0.5m Forward	6''	9.53	9.50	9.50	9.40	9.40	9.4	9.6	0.1	1.4
			0.5m Backward	6''	9.53	9.50	9.30	9.30	9.70	9.3	9.5	0.2	2.4
		TL03	At Tool Location	6''	22.23	22.20	22.10	22.40	23.20	22.1	22.5	0.1	0.6
			0.5m Forward	6''	22.23	22.20	22.20	22.20	23.30	22.2	22.5	0.0	0.1
			0.5m Backward	6''	22.23	22.80	22.30	22.50	21.90	21.9	22.4	0.3	1.5

10.3.6 Long range ultrasonic testing summary table results of 6 inches gas lift riser

Table 63: Summary of thickness results of gas lift riser

Table 63 above contain the actual thickness reading of the gas lift riser inspection taking from tool locations (TL01, TL02, TL03) at 0.5m north and south direction. at each direction, the tool is rotated clockwise direction to take reading at 12 O'clock, 3 O'clock, 6 O'clock and 9 O'clock Positions. The readings in show in table above is the lower thickness obtained from the four positions.

Line	Tool location	Nominal wall thickness (mm) mm	Maximum measured at tool wall thickness (mm)	Minimum measured wall thickness (mm)	Coating type	Coating condition Good/Fair/Poor	Date commissioned
6 inches	TL01	9.53	10.2	9.2	Paint	Poor	
gas lift	TL02	9.53	9.8	9.3	Paint	Poor	March 2004
riser	TL03	22.23	23.2	21.9	Paint	Poor	

10.3.7 Ultrasonic testing measurement - minimum wall thckness at tool location of gas lift riser

Table 64: Minimum wall thickness at tool location of gas lift riser

Table 64 above shows the riser coating, the coating condition and the actual minimum thickness reading of the gas lift riser inspection taking at location (TL01, TL02, TL03) in the clockwise direction (12 O'clock, 3 O'clock, 6 O'clock and 9 O'clock).

10.4Fitness for service

Fitness-for-service is a standard and best practice for determining the fitness of in-service equipment before it is used again. The American Petroleum Institute (API) established the most widely used approach in API 579, which includes independent processes for assessing general metal loss, local metal loss, and pitting.

In general, most fitness for service assessment standards is broken into multiple levels. Each successive level (e.g., Levels 1, 2 and 3 of the engineering standards referenced in API 579-1/ASME FFS-1) requires increasing amounts of data, calculations, effort, and cost to arrive at the most accurate outcomes and possible longer equipment remnant life. In addition to calculations, fitness for service involves the consideration of additional data (e.g., pitting patterns and depths, corrosion morphology or shape and depth, crack depths and lengths, operating conditions, materials properties, etc.). Inspection information is often critical input to a fitness for service assessment.

10.4.1 Fitness for service - pig receiver

The rate of corrosion and the asset remaining life can be determined by monitoring the thinning of a wall thickness. During corrosion data collection, these factors are considered as part of the prediction and rejection criteria used to determine the remaining service life and usage worthiness. A non-destructive examination (NDE) method, such as automated ultrasonic testing, is used to acquire data. A horizontal pressure vessel can be inspected using this method. Following the API 579 standard's step-by-step instructions, you can get an estimate of the asset's remaining life. The following mathematical formulas are used to calculate the minimum needed wall thicknesses in circumferential and longitudinal planes.

Minimum thickness of shell No.3 in pig receiver:

With regards to the circumference stress when the thickness does not exceed one half of the inside radius (28<181.5) or pressure (P) do not exceed 0.3855E (1200<0.385x25000x1), the following formulas apply for minimum thickness (t^C_{min}) without corrosion allowance is:

$$t_{\min}^{c} = \frac{PR_{c}}{SE - 0.6P}$$

Where:

E = weld efficient factor

S = allowable stress

P = maximum design pressure

R = pressure vessel radius

$$t_{\min}^{c} = \frac{1200 \times 181.5}{25000 \times 1 - 0.6 \times 1200}$$
$$t_{\min}^{c} = 8.97 \text{mm}$$

Minimum thickness (t_m) acceptable which agree with ASME Section VIII Division 1-UG27:

$$\mathbf{t}_{\mathrm{m}} = \mathbf{t}_{\mathrm{min}}^{\mathrm{c}} + \mathrm{CA}$$

Where:

CA= corrosion allowance

$$t_m = 8.97 + 3$$

 $t_m = 11.97mm$

The minimum thickness (t_m) acceptable of shell No.3 in pig receiver in accordance with ASME Section VIII Division 1-UG27 is 11.97mm.

These two numbers are then compared which are the minimum thickness (t_m) acceptable of shell No.3 in pig receiver in accordance with ASME Section VIII Division 1-UG27 and the lower actual wall thickness measurement of shell No.3 in pig receiver collected from the recent ultrasonic testing inspection. The remaining life of the pressure vessel is determined by factoring the rate of corrosion and the time between measurements with the equations shown below. Corrosion rate determination pig receiver:

The long-term corrosion rate shall be calculated from the following formula:

Corrosion Rate (LT) = $\frac{T_{initial} - T_{actual}}{\text{Year between initial and actual inpection}}$

Corrosion Rate =
$$\frac{28 - 26.129}{2020 - 2004}$$

Corrosion Rate = 0.1169mm/year

The short-term (ST) corrosion rate shall be calculated from the following formula:

Corrosion Rate (ST) = $\frac{T_{Previous} - T_{actual}}{Year between previous and actual inpection}$

Corrosion Rate = $\frac{26.4 - 26.129}{2020 - 2019}$

Corrosion Rate = 0.270 mm/year

Remaining life calculation pig receiver:

The remaining life of the pig receiver (in years) shall be calculated from the following formula:

Remaining life =
$$\frac{t_{actual} - t_{required}}{Corrosion Rate}$$

Remaining life = $\frac{26.129 - 8.97}{0.270}$

Remaining life = 63.55 years

The remaining life will be 63.5 years.

were,

 t_{actual} = The actual thickness of a condition monitoring location, in (mm), measured during the most recent inspection

 $t_{required}$ = The minimum thickness acceptable without corrosion allowance

10.4.2 Fitness for service-6 inches gas lift riser

Fitness for service assessment approaches is developed from a basic straight pipe that ignores discontinuities; the technique of assessment chosen is determined by the available input parameters and which method will assure integrity without being unduly conservative.

A 6-inch gas lift riser below the MSF was used for long-range ultrasonic testing, also known as guided wave and conventional Ultrasonic Testing, in accordance with long-range ultrasonic testing Procedure. In this case, the goal is to establish whether there is a possibility of internal or external metal loss along the line. Following the API 579 standard's step-by-step instructions, you can get an estimate of the asset's remaining life. The following mathematical formulas are used to calculate the minimum needed wall thickness.

Basic equations used for thickness calculation according to ASME B31.3 are:

$$t_m = t_{min} + CA$$

 $t_{min} = minimum$ thickness on design pressure without corrosion allowance

$$t_{\min} = \frac{PD}{2(SEW + PY)}$$

P= Internal design pressure (Psi)

D= Pipe outside diameter (inches)

S= Allowable stress in tension for material (for value refer to ASME B.31.3 TABLE A-1)

E=Longitudinal joint quality factor according (for value refer to ASME B.31.3 TABLE A-1B)

Y= Wall thickness correction factor (for value refer to ASME B.31.3 TABLE 304.1.1)

W= Weld joint reduction factor (for value refer to ASME B31.3 Section 302.3.5(e))

$$t_{\min} = \frac{PD}{2(SEW + PY)}$$

Minimum thickness (t_{min}) without corrosion allowance

$$t_{\min} = \frac{1200 \times 152.4}{2(25000 \times 1 + 1200 \times 0.4)}$$
$$t_{\min} = 3.58mm$$

Page 99 of 108

Minimum thickness (t_{min}) acceptable which agree with ASME B31.3

$$t_m = 3.58 + 1.53$$

 $t_m = 5.11mm$

Corrosion Rate Determination for 6 inches gas lift riser:

Corrosion allowance (CA) =1.53mm

Minimum thickness collected at a recent inspection was 9.2mm (See above section: 10.3.7 -

UT measurement table).

Thickness required is nominal thickness without corrosion allowance is:

Thickness required =
$$t_{nominal-}$$
 CA
Thickness required = $9.53 - 1.53$

Thickness required = 8mm

Metal loss calculation for 6 inches gas lift riser:

 $\label{eq:Metalloss} \mbox{Metalloss} = t_{nominal-} t \qquad \mbox{with t=9.2mm} \mbox{ (See above section: 10.3.7 - UT measurement table)}.$

$$Metal \ loss = 9.53 - 9.2$$

Metal loss =
$$0.33$$
mm

Corrosion rate calculation for 6 inches gas lift riser:

$$Corrosion rate = \frac{Metal loss}{Year between initial and actual inpection}$$

Corrosion rate =
$$\frac{0.33}{2020 - 2017}$$

Corrosion rate =
$$\frac{0.33}{3}$$

Corrosion rate = 0.11mm/year

Remaining Life Calculation 6 inches gas lift riser:

Remaining life =
$$\frac{t_{actual} - t_{required}}{Corrosion Rate}$$

Remaining life = $\frac{9.2 - 8}{0.11}$
Remaining life = 10.9

Where the remaining life for the gas lift riser will be 10.9 years which can be consider to be approximately 11 years

11 Conclusions and Recommendation

Routine inspection of the general pig receiver using corrosion mapping technique did not demonstrate any major hydrogen induced cracking concern. The acceptable minimum thickness of the pig receiver as per engineering standard ASME Section VIII Division 1 is 11.97mm. Therefore, the ultrasonic testing (UT) measurement or scanning carried out on the pig receiver must not be lower than this value at any location or points on the pig receiver during inspection. Inspections shall be carried as per risk-based assessment plan. All components on pig receiver shall be visually examined in accordance with written scheme of examination

The inspected section of the gas lift riser in terms of long-range ultrasonic testing inspection did not demonstrate a major corrosion concern. Data were also taken from the thickness readings at the tool location points as shown in tables above at section 10.3.6 and 10.3.7. From the general visual examination, external degradation has been observed at the surface of the riser (paint failure, large zone affected by rust and crevice corrosion). Consideration should be given for a follow up assessment of the Category 1 indication stated above at the next maintenance opportunity. However, any external surface contaminant (chloride, phosphorus, sulphide) should be removed, coating (paint) should be re-instated, and the primary method of reducing crevice corrosion risks should be follow up closely by eliminate small gaps which might trap electrolyte and lead to stagnation. Inspection should be carried out as per risk-based assessment plan. The minimum thickness acceptable for riser according engineering standard ASME B31.3 is 5.11mm (see above calculation of minimum acceptable thickness of gas lift riser). Therefore, the ultrasonic testing measurement or scanning carried out on the riser must not be lower than this value at any location or points on the riser during inspection.

Ensure adequate injection and monitoring of H_2S scavenger to reduce the amount of H_2S . The gas lift riser and pig receiver hardness should be measured in accordance with ASTM E 92. The hardness shall not exceed 325 HV10 under non-sour conditions and 248 HV10 under sour conditions.

12 References

- Oilfield Metallurgy and Corrosion Third Edition by Bruce D.Craig Pages 20-37, Pages 54-80, Pages 80-82
- 2) The Cost of Corrosion in China, Baorong Hou, Pages 555-764
- P. Gore, M. Sujata, S. K. Bhaumik, Stress Corrosion Cracking of Ring Type Joint of Reactor Pipeline of a Hydrocracker Unit, Journal of Failure Analysis and Prevention, Vol 14 (No. 3), 2014, pages 307-313.Corrosion and Materials Selection: A Guide for the Chemical and Petroleum Industries Alireza Bahadori 2014 Pages 61-88
- 4) https://byjus.com/chemistry/corrosion/
- 5) https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=kts&NM=300
- Ductile-iron Pipe and Fittings, by American Water Works Association, Edition 2002 Page 169
- 7) https://dsiac.org/technical-inquiries/notable/carbon-steel-pipe-corrosion-blockage/
- 8) Corrosion for Everybody, Alec Groysman 2009 Pages 40-110
- Corrosion and Materials Selection: A Guide for the Chemical, by Alireza Bahadori, Edition 2014 Page 61
- S. L. Jiang, Y. G. Zheng, D. L. Duan, Failure analysis on weld joints between the elbow and straight pipes of a vacuum evaporator outlet, Engineering Failure Analysis, Vol 27, 2013 Pages 203-212
- 11) API Recommended Practise 581 3rd Ed.2016 & API Recommended Practise 580 3rd Ed. February 2016
- 12) Standard, M-506 CO₂ corrosion rate calculation model (Rev. 2, June 2005)
- 13) ISO 15156/NACE MR0175-A new international Standard for metallic materials for use in oil and gas production in sour environments, by Milliams, Derek E, Dawn Cottage, and Robert N. Tuttle, Paper Number: NACE-03090, Edition March 16 2003
- 14) DNV-RP-C302 2012 Edition, April 2012, Risk Based Corrosion Management Includes all amendments and changes through Notice 1, July 2015 Page 5
- 15) Corrosion of carbon steel after exposure in the river of Sukabumi, West Java. A Royani et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 541 012031 Pages 1-2
- 16) Handbook of Environmental Degradation of Materials, by Myer Kutz, Edition 2012 Page 546

- 17) Basic Manufacturing, by Roger Timings, Edition 2006 Page 81
- 18) Mechanical engineering concepts and principles. Different forms of corrosion. Edition2015 Pages 147-148
- 19) The Marine Engineer Volume 3 Edition 1882 Page 124
- 20) Research Opportunities in Corrosion Science and Engineering, by National Research Council, Division on Engineering and Physical Sciences, National Materials Advisory Board, Edition 2011 Page 15
- 21) https://www.researchgate.net/figure/a-Schematic-Representation-of-Uniform-Corrosion-and-b-a-Weathering-Steel-16_fig8_308191597
- 22) What is pitting corrosion? Published on 26th May 2019 by D&D Coatings. Retrieved from https://www.ddcoatings.co.uk/2276/what-is-pitting-corrosion
- 23) https://nace.org/resources/what-is-corrosion/forms-of-corrosion#pitting
- 24) Corrosion Mechanisms in Theory and Practice, Third Edition, edited by Philippe Marcus pages 349-390
- 25) Corrosion in the Petrochemical Industry, Second Edition 2015 Page 3
- 26) Pipeline Risk Management Manual: Ideas, Techniques, and Resources, Third Edition2004,W. Kent Muhlbauer pages 4-78
- 27) https://nace.org/resources/what-is-corrosion/forms-of-corrosion#scc
- 28) https://www.metallurgyfordummies.com/do-you-know-the-stress-corrosioncracking.html
- 29) Fundamentals of Materials Engineering- A Basic Guide, by Shashanka Rajendrachari, Orhan Uzun, Edition 2021 Page 155
- 30) Metal Failures Mechanisms, Analysis, Prevention, by Arthur J. McEvily, Jirapong Kasivitamnuay, Second Edition 2013 Page 337
- 31) Mechanical Components and Control Engineering III, by Wei Min Ge, Edition 2014 Page 106
- 32) Handbook of Environmental Degradation of Materials (Third Edition) 2018, Pages 133-162
- 33) http://www.lantoscoatings.com/about-us/
- 34) https://www.piping-world.com/what-is-hydrogen-induced-cracking
- 35) Microbiologically Influenced Corrosion Handbook, by Susan Watkins Borenstein, Edition1994 Page 124

- 36) Handbook of Materials Selection for Engineering Applications, by George Murray, Edition1997 page 363
- 37) Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection, by Abdel Salam H. Makhlouf, Martin A. Botello, in Handbook of Materials Failure Analysis, 2018
- 38) https://www.unifiedalloys.com/blog/crevice-corrosion-causes/
- 39) Proceedings of the twenty first Annual Appalachian Underground Corrosion Short Course,by Engineering Experiment Station, West Virginia University, Edition 1976 Page 549
- 40) Van Nostrand's Scientific Encyclopedia, Eight Edition, by Douglas M. Considine, Glenn D. Considine, Edition 1995 Page 829
- 41) Grain Boundaries in Engineering Materials, by J.L. WALTER, J.H. Westbrook & D.A. Woodford Published by Claitor's PUB. Division, Baton Rouge, LA, 1975 Page 452
- 42) Materials for Nuclear Plants: From Safe Design to Residual Life Assessments, by Wolfgang Hoffelner, Edition 2012 Page 325
- 43) Engineering Chemistry, by Nicky Rutledge, Edition 2018 Page 172
- 44) Corrosion Tests and Standards: Application and Interpretation, BY Robert Baboian, Edition 2005 Page 370
- 45) Corrosion Inhibitors in the Oil and Gas Industry, by Viswanathan S. Saji, Saviour A. Umoren, Edition 2020 Page 57
- 46) Materials Selection for Corrosion Control, by Sohan L. Chawla, Edition 1993 Page 36
- 47) ASM Materials Engineering Dictionary, by Joseph R. Davis, ASM International, Edition 1992 Page 454
- 48) https://knighthawkmaterialslab.com/sensitization-and-intergranular-corrosion-of-anozzle-pipe
- 49) Corrosion for Everybody, by Alec Groysman 2009 Pages 62-72
- 50) Corrosion and Protection, by Einar Bardal, Edition 2007 Pages 94-107
- 51) http://www.npfasteners.com/technical/galvanic-corrosion.htm
- 52) https://nace.org/resources/what-is-corrosion/forms-of-corrosion#fretting
- 53) Corrosion Resistance of Aluminium and Magnesium Alloys: Understanding, Performance and Testing, by Edward Ghali, Edition 2010 Page 271
- 54) Corrosion Engineering, by Mars Guy Fontana, Norbert D. Greene, Edition 1967 Page 91

- 55) Fretting corrosion. Retrieved from <https://www.penflex.com/when-to-fret-aboutfretting-corrosion/>
- 56) Metals Handbook: Mechanical testing Volume 8 -ASM Handbook Committee, Edition 1985 Snippet view Page 602
- 57) Bearing Tribology: Principles and Applications Ming Qiu, Long Chen, Yingchun Li, Edition2016 Page 66
- 58) Materials Degradation and Its Control by Surface Engineering, by Andrew W. Batchelor, Loh Nee Lam, Margam Chandrasekaran, Edition 2011 Page 183
- 59) Oil Spill Response in the Marine Environment, by J.W. Doerffer, Edition 2013 Page 344
- 60) Materials Engineering Volume 15, Edition 1942 Snippet view Page 278
- 61) Fretting Corrosion, by R. B. Waterhouse, M.A., Ph.D, First Published June 1, 1955 Research Article <https://doi.org/10.1243/PIME_PROC_1955_169_112_02>
- 62) Corrosion in the Petrochemical Industry, by Linda Garverick, Edition 1994 Page 99
- 63) The_CO₂_Corrosion_Mechanism, chemical and figure. Retrieved from <http://www.idconline.com/technical_references/pdfs/chemical_engineering/The_CO₂_Corrosion_Mech anism.pdf>
- 64) Zhang Y, Pang X, Qu S, Li Z and Gao K. 2012. Discussion on the CO₂ corrosion mechanism between low partial pressure, supercritical condition. Corrosion Science Pages 1-53
- 65) Bioreaction Engineering Principles: Second Edition, by Jens Nielsen, John Villadsen, Gunnar Lidén, Edition 2012 Page 453
- 66) Environmental Contaminants: Assessment and Control, by Daniel Vallero, Edition 2010 Page 351
- 67) Corrosion and Materials Selection, A Guide for the Chemical and petroleum industries, by Alireza Bahadori, Edition 2014 Page 232
- 68) Metallurgy and Corrosion Control in Oil and Gas Production, by Robert Heidersbach, Edition 2018 Page 139
- 69) EFC Publication No. 16 (1995) Guidelines on Materials Requirement for carbon and low alloy steels for H₂S Containing Environments in Oil and Gas Production
- 70) https://scib.azhar.live/wp-content/uploads/2016/03/Corrosion-in-Petroleumindustryl.pdf
- 71) Trends in Oil and Gas Corrosion Research and Technologies, Production & Transmission by A. M. El-Sherik, Edition 2017 Page 113

- 72) Ground Chemistry: Implications for Construction, by A.B. Hawkins, Edition 1997 Page 346
- 73) Evaluation and Restoration of Water Supply Wells, by Mary Ann Borch, Stuart A. Smith, Lucinda N. Noble, Edition 1993 Page 31
- 74) Biomaterials Science: Processing, Properties and Applications II, by Roger Narayan, Susmita Bose, Amit Bandyopadhyay, Edition 2012 Page 131
- 75) Bioleaching and Biocorrosion: Advances in Interfacial Processes, by Wolfgang Sand, Jinlan Xia, Jizhou Duan, Edition 2021 Page 5
- 76) Degradation Assessment and Failure Prevention of Pipeline Systems, by Gabriella Bolzon, Giovanna Gabetta, Hryhoriy Nykyforchyn, Edition 2020 Page 82
- 77) https://www.rolledalloys.com/technical-resources/environments/microbial-corrosion/
- 78) Handbook of Case Histories in Failure Analysis, Volume 1, by Khlefa Alarbe Esaklul, Edition1992 Page 480
- 79) Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems, by E.W. McAllister, Edition 2015 Page 79
- 80) https://www.twi-global.com/technical-knowledge/faqs/faq-what-are-the-causes-ofand-solutions-to-preferential-weld-corrosion-in-electric-resistance-welded-steel-pipe
- 81) Corrosion of Weldments, by Joseph R. Davis, Edition 2006 Pages 1-10
- 82) Weld Cracking in Ferrous Alloys, by R Singh, Edition 2008 Page 482
- 83) Tribology International Volume 68, The influence of high shear and sand impingement on preferential weld corrosion of carbon steel pipework in CO₂-saturated environments, by Richard Barker, Xinming Hu, Anne Neville, Edition December 2013 Pages 17-25
- 84) https://www.sciencedirect.com/topics/materials-science/filiform-corrosion
- 85) Corrosion of Aluminium, by Christian Vargel, Edition 2020 Page 247
- 86) Corrosion in the Petrochemical Industry, Second Edition, Edition 2015 Page 360
- 87) Metallurgy for the Non-Metallurgist, Second Edition, by Arthur C. Reardon, Edition 2011 Page 373
- 88) Corrosion Fatigue, Proceedings of the First USSR-UK Seminar on Corrosion Fatigue of Metals, Held in Lvov, USSR, 19-22 May, 1980, by Ya. M. Kolotyrkin · 1983 Page 47
- 89) Carbon steel shell steels Weathering steel, SPA-H steel plate, SPA-C steel coil, S355J2WP steel, S355J2WP steel, 09CuPCrNi-A Chinese supplier. Retrieved from https://www.jeuk-hoofdhuid.nl/a572/6f78b2f2b1395008.html
- 90) Atmospheric Corrosion, by W. H. Ailor, Electrochemical Society, Edition 1982 Page 443

- 91) Pipeline Integrity Management Made Simple, By Andy Bolsover, Eric Hansen, Bureau Veritas, Paper No: IPC2006-10341, Pages 507-516
- 92) Process Plants, Shutdown and Turnaround Management, by Trinath Sahoo, Edition 2013 Page 122
- 93) Integrated Management Systems: Leading Strategies and Solutions, by Wayne Pardy, Terri Andrews, Edition 2019 Page 136
- 94) Corrosion Risk Analysis, Risk Based Inspection and a Case Study Concerning a Condensate Pipeline. Procedia Engineering, Elservier Volume 86, 2014, Pages 597-605
- 95) Corrosion and Materials in the Oil and Gas Industries, by Reza Javaherdashti, Chikezie Nwaoha, Henry Tan · 2016 Page 377
- 96) Guidance for Corrosion Management in Oil and Gas Production and Processing, Policy & Strategy, Section B6.2.
- 97) Riser Integrity Management for Deepwater Developments H. Howard Cook, SPE, BP, Douglas, E. Dopjera, BP, Ricky Thethi, 2H Offshore Inc, and Liam Williams, iicorr Ltd, Paper presented at the Offshore Technology Conference, Houston, Texas, USA, May 2006. Paper Number: OTC-17891-MS
- 98) Paper No 10367 Nace Corrosion 2010 Conference Expo, High Level Corrosion Risk Assessment Methodology For oil & Gas System, Steve Hodges, Kerry Spicer, Rachel Barson & Gareth John, Intertek-CAPCIS Manchester, Kirsten Oliver, Intertek-Upstream, Sharjah, Emily Tipton, Intertek-CAPCIS, Canada
- 99) ANSI/NACE TM0284-2016, Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking
- 100) 51314-3893-Hydrogen Induced Cracking (HIC) Assessment of Low Alloy Steel Line pipe for Sour Service Applications
- 101) Subsea Pipeline Integrity and Risk Management, by Yong Bai, Qiang Bai, Edition 2014
- 102) ISO 15156 NACE MR0175/ASTM E 92/NORSOK Standard M-CR-501/API 579 (2000) Recommended Practice for Fitness for Service
- 103) https://inspectioneering.com/tag/lrut
- 104) Long Range Ultrasonic Testing of pipelines and piping, by Peter Mudge (Plant Integrity) and Julian Speck (TWI), Paper published in Inspectioneering Journal, September 2004

- 105) Long Range Ultrasonic Testing (Guided wave). Retrieved from https://www.daconinspection.com/wp-content/uploads/2016/12/Dacon-Long-Range-UT-Presentation-2016-1.pdf
- Long Range Ultrasonic Testing Case Studies, by Prawin Kumar Sharan, Sheethal S, Sri
 Krishna Chaitanya, Hari Kishore Maddi Sievert India Pvt. Ltd. (A Bureau Veritas Company),
 16 & 17, Sec-2, Phase-2, Plot- 2, Nerul, Navi Mumbai, Maharashtra
- 107) ASTM E2775 16 Standard Practice for Guided Wave Testing of Above Ground Steel Pipework Using Piezoelectric Effect Transduction
- 108) ASNT Level III Study Guide: Ultrasonic Testing Method, second edition
- 109) Defect Sizing Using Non-destructive Ultrasonic Testing: Applying Bandwidth-Dependent DAC and DGS Curves, by Wolf Kleinert | 6 May 2016
- 110) Moser, F., Jacobs, L., & Qu, J. (1999). Modelling elastic wave propagation in wave guides with the finite element method. NDT & E international, 32, Pages 225-234
- 111) Norris, A. a. (1995). Scattering of flexural waves on these plates. J Sound Vib, Vol 181, Pages 115-125
- 112) Rose, J. S. (2003). Guided wave flexural mode tuning and focusing for pipe inspection.Materials Evaluation, Vol 61, Pages 162-167