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Chapter 1

Introduction

1.1 Overview

This thesis outlines research arising from a long-standing open problem in complex

geometry which, due to the intimate connection between the two fields, has recently been

reformulated in purely algebro-geometric terms. There is a particularly interesting class

of manifolds, Kähler manifolds1, which have mutually compatible complex, Riemannian

and symplectic structures. One definition is that a complex manifold X is Kähler if it

admits a Hermitian metric h such that the 2-form ω : (u, v) 7→ Reh(iu, v), called the

Kähler form or Kähler metric, is closed. In particular, this class includes all complex

projective varieties.

A given compact complex manifold X may admit many different Kähler metrics,

and we want to find those which are well-behaved or canonical in some way. Of

particular interest are the following: a Kähler metric ω on X is Kähler-Einstein2 if the

Ricci form on X is proportional to ω, i.e. if Ricω = λω for some λ ∈ R. One reason

that these metrics are important is that the Einstein condition implies that X has

constant scalar curvature λ dimX.

The natural question to ask is: given a compact Kähler manifold (X,ω), does there

exist a Kähler-Einstein metric ω′ in the cohomology class [ω], and if so, is such a metric

unique?

1It is regrettable that such fundamental objects are named after a man who remained an apologist
for national socialism throughout his life (see [Seg14]), but the terminology seems too firmly established
to be avoided.

2Named so because such a metric gives a vacuum solution to the Einstein field equations of general
relativity.

11
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As a first step in answering the question, note that the de Rham cohomology class

of Ricω defines a characteristic class

c1(X) =
1

2π
[Ricω] ∈ H2

dR(X,R),

the first Chern class of X. This is an integral cohomology class which turns out to be

independent of ω [Szé14, Lemma 1.22]. Now if the Einstein condition holds, then c1(X)

must be zero or a definite class, in the sense that the bilinear form corresponding to

Ricω must be positive or negative definite (being proportional to ω, which is positive

definite). So we can split the question of the existence of Kähler-Einstein metrics into

cases in which the first Chern class is negative, zero or positive.

Aubin proved that when c1(X) < 0, there exists a unique Kähler-Einstein metric

in each Kähler class [ω] [Aub76], and Yau independently proved the same result for

c1(X) ≤ 0 as a consequence of his proof of the Calabi conjecture [Yau78]. These cases

are thus completely solved.

When c1(X) > 0, the question turns out to be far more difficult and interesting.

Matsushima proved [Mat57] that in this case, for X to admit a KE metric, it is

necessary that the Lie algebra η(X) of holomorphic vector fields on X is reductive.

But there are certain Kähler manifolds with positive first Chern class, such as the

projective plane blown up at one or two points, for which η(X) is not reductive, and

hence these manifolds do not admit a KE metric [Tia97]. The question of exactly

which manifolds do admit such a metric is still open. In 2012, Chen, Donaldson and

Sun proved [CDS15] that when c1(X) > 0, the existence of a Kähler-Einstein metric

on X is equivalent to another condition called K-stability, which is defined purely in

terms of algebraic geometry.

Unfortunately, K-stability is in general a difficult condition to check, for reasons

which will be clarified in the following chapter, where the notion is defined properly.

Because of this, certain specialised variants of K-stability have been developed. Of

most interest for this thesis is the case in which X comes equipped with the action of a

reductive algebraic group G, where, due to results of Datar and Székelyhidi [DS15], an

equivariant version of K-stability makes the situation far more amenable to analysis.

The complexity of the G-action on X is the minimal codimension of the orbits of

a Borel subgroup B of G. Thus if G = B = T is an algebraic torus, the complexity
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zero T -varieties are exactly the toric varieties. A simple criterion for the existence of

Kähler-Einstein metrics in this case was proved by Wang and Zhu [WZ04]. Conditions

for K-stability of complexity one T -varieties have been found by Ilten and Süß [IS17],

and the complexity zero case for general G (the spherical varieties) has been solved

by Delcroix [Del16]. In this thesis similar techniques are used to find conditions for

equivariant K-stability of complexity one G-varieties, for general reductive G.

1.2 Structure of the Thesis

Here we summarise the content of the remaining chapters of this thesis.

Chapter 2 - Background

In this chapter we collect some background theory which will be required later. We

begin with the basics of Kähler geometry, then describe the translation of the problem

of Kähler-Einstein metrics to algebraic geometry, which brings us to the notion of

K-stability. Next we discuss the representation theory of reductive algebraic groups

and the structure of varieties and line bundles on which they act. Following that,

we describe how these actions and representations can be exploited using geometric

valuations to obtain combinatorial descriptions of varieties.

Chapter 3 - Combinatorial Description of Smooth Fano SL2-

Threefolds

Here we explain the combinatorial classification due to Timashev of complexity one

G-varieties in terms of coloured hyperfans, and describe all homogeneous complexity

one SL2-spaces. Finally, the author’s work in applying this classification to smooth Fano

SL2-threefolds is presented. Specifically, we classify the smooth Fano SL2-threefolds

with reductive automorphism group and which do not admit a faithful action of a 2- or

3-torus.
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Chapter 4 - β-Invariant and K-Stability

This chapter begins with some results, also due to Timashev, describing the combinato-

rial properties of divisors on complexity one varieties, then discusses the β-invariant of

Fujita-Li, which they have shown to be an indicator of K-stability. We finally apply the

preceding results to prove the K-stability of all smooth Fano SL2-threefolds classified

in Chapter 3.



Chapter 2

Background

2.1 Kähler Geometry

2.1.1 Basic Definitions

Here we give a brief overview of Kähler geometry. The material and proofs mostly

follow [Huy05, Szé14]. We first discuss almost-complex structures on real manifolds

and how their behaviour with respect to complexified differential forms can induce a

complex structure.

Definition 2.1. Let X be a real manifold of even dimension. An almost-complex

structure on X is an endomorphism J : TX → TX of the tangent bundle such that

J2 = −Id.

Example. Let X be a complex manifold and identify TpX with Cn for each p ∈ X.

Then multiplication by
√
−1 is an almost-complex structure on X.

Let (X, J) be an almost-complex manifold. The endomorphism J on TX extends

to a complex-linear endomorphism of the complexified tangent bundle TCX = TX ⊗C

and induces a direct sum decomposition TCX = T 1,0X ⊕ T 0,1X into
√
−1 and −

√
−1

eigenspaces. In turn this induces a decomposition of the complexified cotangent bundle

T ∗CX = T ∗1,0X ⊕ T ∗0,1X. Finally, this decomposition extends to higher-degree forms,

giving

Ωk
CX =

⊕
p+q=k

Ωp,qX.

We call an element of Ωp,qX a form of type (p, q), or simply a (p, q)-form.

15
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Let d : Ωk
CX → Ωk+1

C X be the complex-linear extension of the exterior derivative on

X. If p+ q = k, then composing d with the projections from Ωk+1
C X to forms of type

(p+ 1, q) and (p, q + 1) induces maps ∂ : Ωp,qX → Ωp+1,qX and ∂ : Ωp,qX → Ωp,q+1X.

Definition 2.2. An almost-complex structure J on a manifold X is called integrable

if dα = ∂α + ∂α for all forms α on X.

For an integrable almost-complex structure, we have ∂
2

= ∂2 = 0 and ∂∂ = −∂∂.

Newlander-Nirenberg theorem. [NN57] The almost-complex structure induced by

the holomorphic atlas on a complex manifold X is integrable. Any integrable almost-

complex structure on a real manifold X of even dimension is induced by a holomorphic

atlas on X.

We will call an integrable almost-complex structure a complex structure, and the

theorem says that a complex structure is essentially the same as a holomorphic atlas.

Now we discuss Hermitian metrics on complex manifolds, which are the complex

version of Riemannian metrics. Recall that a Riemannian metric on a real manifold

X is a smooth section of the bundle T ∗X ⊗ T ∗X inducing an inner product on each

tangent space, or equivalently a smooth map : TX ×X TX → R where the restriction

to each fibre is an inner product.

Definition 2.3. Let (X, J) be a complex manifold with its complex structure. A

Riemannian metric g on the underlying real manifold of X is called Hermitian if

g(U, V ) = g(JU, JV ) for all vector fields U, V on X.

Given a Hermitian metric g on a complex manifold (X, J), we define an antisymmet-

ric real (1,1)-form ω on X, called the fundamental form of g, by ω(U, V ) = g(JU, V ).

Definition 2.4. A Hermitian metric g on X is Kähler if the fundamental form ω of g

is closed, i.e. dω = 0. A complex manifold admitting a Kähler metric is called a Kähler

manifold.

An almost universal abuse of terminology in the field of Kähler geometry, which we

heartily adopt, is to ignore g as often as possible and refer to ω as the Kähler metric.

This is harmless as g is recovered from ω by g(U, V ) = ω(U, JV ).
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Note that ω is a closed, non-degenerate 2-form on X, so induces a symplectic

structure on X along with the Riemannian and complex structures, and all three of

these structures are mutually compatible.

Example. [Szé14, Ex 1.12] Let X = Pn be complex projective space. Let π be the

projection map Cn+1\{0} → Pn and let s be some holomorphic section of π over an open

subset U ⊆ Pn. Define ωFS, the Fubini-Study metric on Pn, by ωFS =
√
−1∂∂ log ‖s‖2.

This is well-defined: first, such a section always exists for a given open subset U , and

second, given another holomorphic section s′ on an open subset V , we have s′ = fs on

U ∩ V for some holomorphic function f : U ∩ V → C×, and

√
−1∂∂ log ‖fs‖2 =

√
−1∂∂ log ‖s‖2 +

√
−1∂∂ log f +

√
−1∂∂ log f̄

=
√
−1∂∂ log ‖s‖2

since holomorphicity of log f gives ∂ log f = ∂ log f̄ = 0.

Thus ωFS is a well-defined, closed (1,1)-form and it remains to check positive-

definiteness. To do so, note that the unitary group Un+1 acts transitively on Pn and

since ‖As‖2 = ‖s‖2 for any A ∈ Un+1, this action preserves ωFS. We can therefore check

positive-definiteness at a single point. Let P = [1 : 0 : . . . : 0] ∈ Pn and introduce local

holomorphic co-ordinates zi on the chart U0 3 P defined by non-vanishing of the first co-

ordinate. We can choose a section s : (z1, . . . , zn) 7→ (1, z1, . . . , zn) of π over U0, so that

ωFS =
√
−1∂∂ log (1 + z1z̄1 + . . . znz̄n). At P this gives ωFS(P ) =

√
−1
∑

i dz
i ∧ dz̄i,

which is positive definite. Hence Pn is Kähler.

Example. Let X ⊆ Pn be a closed submanifold of complex projective space. Let

i : X → Pn be the inclusion, so that ωFS|X = i∗(ωFS) is a positive-definite real (1, 1)-

form on X. Then ωFS|X is closed, since d commutes with pullbacks, so gives a Kähler

metric on X. Hence all complex projective manifolds are Kähler.

2.1.2 Ricci Form and Einstein Condition

We can now approach the Einstein condition. To do so we must discuss the curvature of

Kähler manifolds and vector bundles over them. Recall that in Riemannian geometry,

we define connections on the manifold, which essentially allow us to move tangent

vectors from point to point, and curvature measures the failure of a tangent vector
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moving along a closed path to return to its original starting point. We can do the same

on an arbitrary complex vector bundle.

Let E → X be a complex vector bundle. We denote the sheaf of differentiable E-

valued k-forms on X by Ωk(E). Hence Ω0(E) in particular is the space of holomorphic

sections of E.

Definition 2.5. Let E → X be a complex vector bundle over a complex manifold

(X, J). A connection on E is a C-linear map ∇ : Ω0(E)→ Ω1(E) satisfying the Leibniz

rule ∇(fs) = f∇s+ df ⊗ s for all holomorphic functions f and sections s of E.

We can also introduce metrics on vector bundles:

Definition 2.6. A Hermitian structure on E → X is a smooth section h of E∗ ⊗ E∗

inducing a Hermitian inner product on each fibre.

A Riemannian manifold has a canonical connection (the Levi-Civita connection) on

its tangent bundle which is compatible with the metric, and this situation is replicated

in the complex case.

Theorem 2.1. Let (E, h) be a holomorphic Hermitian vector bundle over a complex

manifold. There exists a unique connection on E, called the Chern connection, such

that:

(i) for any section s of E, the (0, 1)-component of the E-valued 1-form ∇s is ∂s;

(ii) for any sections s, t of E we have

d(h(s, t)) = h(∇s, t) + h(s,∇t).

Another interesting characterisation of Kähler manifolds is that they are exactly the

Hermitian manifolds on which the Chern connection on the holomorphic tangent bundle

coincides with the complexification of the Levi-Civita connection on the underlying

real manifold [Szé14, Ex 1.33].

To study the curvature of a connection, we extend an arbitrary connection ∇ to

higher-degree forms as follows: if α ∈ Ωk(E) is an E-valued k-form, and s is a smooth

section of E, set ∇(α⊗ s) = dα⊗ s+ (−1)kα ∧∇s.
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Definition 2.7. Let ∇ be a connection on a holomorphic vector bundle E → X. The

curvature of ∇ is the map F∇ = ∇◦∇ : Ω0(E)→ Ω2(E). It is an EndE-valued 2-form.

We can now introduce one of the most important invariants of a Kähler manifold,

the Ricci form:

Definition 2.8. Let (X, g, ω) be a Kähler manifold. Then g induces a Hermitian

metric on the anticanonical line bundle K−1
X , which is the top exterior power of the

tangent bundle TX. Let F∇ be the curvature of the Chern connection on K−1
X . The

form given by (U, V ) 7→ F∇(JU, V ) is called the Ricci form of X and denoted Ricω.

Proposition 2.1. The Ricci form Ricω on a Kähler manifold (X, g, ω) is a real

closed (1, 1)-form given by Ricω = −
√
−1∂∂ log(det g), and hence the cohomology class

[Ricω] ∈ H2(X,R) is independent of the choice of ω.

Proof. [Szé14, Lemma 1.22] We can split ∇ into ∇1,0 +∇0,1, and since ∇ is a Chern

connection, we have ∇0,1 = ∂. Now if s is any holomorphic section, we have ∂s = 0, so

F∇(s) = ∇(∇1,0s) = ∇1,0(∇1,0s) + ∂(∇1,0s).

Consider the norm h(s, s) of a holomorphic section s of K−1
X under its Hermitian

metric. By property (ii) of Chern connections, and by checking degrees, we have

∂h(s, s) = h(∇1,0s, s) + h(s,∇0,1s) = h(∇1,0s, s) = h(s, s)∇1,0(s).

So ∇1,0 = h−1∂h. Now since K−1
X is the top exterior power of the tangent bundle, h is

the determinant of the metric g on X, which is a real function. Taking conjugates, we

then get ∇1,0 = (det g)−1∂(det g) = ∂ log det g. Then

F∇ = ∇1,0(∇1,0) + ∂(∇1,0) = ∂2 log det g + ∂∂ log det g = ∂∂ log det g.

Switching ∂ and ∂, we have

Ricω =
√
−1F∇ = −

√
−1∂∂ log det g

as promised.

This formula makes it clear that Ricω is a real closed (1, 1)-form. Let g′ be another

choice of Hermitian metric with corresponding fundamental form ω′. Then

Ricω′ − Ricω = −
√
−1∂∂ log

(
det g′

det g

)
is an exact form, since det g′

det g
is a globally defined function. Thus [Ricω] is independent

of ω.
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Remark. Note that since the Chern connection ∇ on the tangent bundle of X is the

complexification of the Levi-Civita connection on the underlying real manifold, the

curvature of ∇ is the Riemann curvature of the real manifold, and so the curvature of

the Chern connection on K−1
X = detTX does indeed correspond to the Ricci curvature

of the underlying real manifold by the identity log det g = tr log g, since the Ricci

curvature is the trace of Riemann curvature.

Definition 2.9. The first Chern class of a Kähler manifold (X,ω) is the real coho-

mology class

c1(X) =
1

2π
[Ricω] ∈ H2(X,R).

Remark. Chern classes are most generally and properly defined on general vector

bundles. When one speaks of the first Chern class of a manifold, this means the

first Chern class of the tangent bundle. The Ricci form represents the first Chern

class because it is the curvature form of the top exterior power of the tangent bundle,

i.e. K−1
X , and the first Chern class is insensitive to taking top exterior powers (see

e.g. [GH78, §3.3]).

The factor of 2π actually guarantees that c1(X) is integral, i.e. lies in H2(X,Z),

which is interesting but makes little difference to us. What is important to us is stating

the Einstein condition:

Definition 2.10. A Kähler metric ω is Kähler-Einstein if there exists a real constant

λ with

Ricω = λω.

A Kähler manifold (X,ω) is Kähler-Einstein if there exists a Kähler-Einstein metric

ω′ ∈ [ω].

Two immediate things to note about this are the following: first, the scalar curvature

of X is the trace of the Ricci form, and the trace of the metric is the dimension, so

Kähler-Einstein manifolds have constant scalar curvature λ dimX. Second, the Einstein

condition also means that the first Chern class of a Kähler-Einstein manifold must be a

definite class, since Ricω is proportional to the metric, which is positive definite. Hence

the question of whether a given Kähler manifold admits a Kähler-Einstein metric can

be split into cases where c1(X) is assumed to be positive, negative or zero. The latter

two cases are completely solved:
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Aubin-Yau theorem. [Aub76,Yau78] Let (X,ω) be a compact Kähler manifold with

c1(X) ≤ 0. Then there exists a unique Kähler-Einstein metric ω′ ∈ [ω].

Hence we are interested in the case c1(X) > 0, which is considerably more difficult.

In this case such metrics do not always exist:

Matsushima’s obstruction. [Mat57] Let X be a compact Kähler manifold with

c1(X) > 0. If X admits a Kähler-Einstein metric, then the holomorphic automorphism

group AutX is reductive.

Example. Let X be the projective plane blown up at a point. Then X is projective,

which we have shown means that X is a compact Kähler manifold. The first Chern

class of X is the divisor class of the anticanonical line bundle on X. The latter is

3H −E where H is a hyperplane class and E is the exceptional divisor of the blow-up.

This is an ample class and hence by the Kodaira embedding theorem it is positive, i.e.

c1(X) > 0.

Since AutP2 = PGL3, the automorphism group of X is the subgroup of PGL3

consisting of matrices fixing a point, i.e. of the form (assuming p = [0 : 0 : 1]):
∗ ∗ 0

∗ ∗ 0

∗ ∗ 1

 .

The map to GL2 given by sending each element to its top-left 2 × 2 square realises

this group as C2 o GL2(C), which has nontrivial unipotent radical C2 and hence is not

reductive. Therefore by Matsushima’s obstruction, X does not admit a Kähler-Einstein

metric. A similar calculation shows the same result for P2 blown up at two points.

In dimension two, the above are known to be the only counterexamples: specifically,

a compact Kähler surface with positive first Chern class is isomorphic either to P1× P1

or to P2 blown up at 0 ≤ k ≤ 8 general points, and Tian-Yau [TY87] proved that all

such manifolds admit Kähler-Einstein metrics except when k = 1 or k = 2.

In the face of obstructions such as Matsushima’s, conditions guaranteeing the

existence of Kähler-Einstein metrics in the c1(X) > 0 case were searched for. In [Tia97],

Tian proved that the Matsushima condition is not sufficient for the existence of such

metrics, i.e. that there even exist Kähler manifolds with c1(X) > 0 whose automorphism
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group is reductive which still do not admit KE metrics. In the same paper, Tian

conjectured that the existence of KE metrics is equivalent to a certain stability condition

on the manifold, which we discuss in the next section.

2.2 K-Stability

2.2.1 Theorems of Kodaira and Chow

The notion of K-stability was introduced as an attempt to translate the problem of

existence of Kähler-Einstein metrics into the language of algebraic geometry, through

what became known as the Yau-Tian-Donaldson conjecture. We thus begin this

discussion by addressing which algebraic varieties correspond to the compact Kähler

manifolds with positive first Chern class. To begin with, note that any smooth complex

projective variety X is automatically a projective complex manifold, so in particular

Kähler. Conversely, we have:

Chow’s theorem. [Cho49] Any closed submanifold of complex projective space is a

smooth projective variety.

Now it remains to interpret the condition c1(X) > 0. Consider the following:

Definition 2.11. A line bundle L on a complex manifold is called positive if its first

Chern class can be represented by a positive-definite form.

So in particular, as we have seen, c1(X) > 0 if and only if the anticanonical bundle

K−1
X is positive. Recall that a line bundle L is called very ample if it is generated by

global sections s0, . . . , sn ∈ H0(X,L) and the map ϕL : X → Pn, p 7→ [s0(p) : . . . : sn(p)]

is a closed embedding, and L is called ample if some tensor power of L is very ample.

The following theorem of Kodaira completes our discussion:

Kodaira embedding theorem. [Kod54] A holomorphic line bundle L→ X over a

complex manifold is positive if and only if it is ample.

Definition 2.12. A Fano variety is a complete, normal variety with ample anticanon-

ical bundle.
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Combining the above results, we see that ‘compact Kähler manifold with positive

first Chern class’ and ‘smooth complex Fano variety’ refer to essentially the same

concept. Therefore any algebro-geometric condition equivalent to the existence of a

Kähler-Einstein metric should be applied to smooth complex Fano varieties.

2.2.2 K-Stability and Its Equivariant Version

There are various notions of ‘stability’ in algebraic geometry which usually take the

form of a numerical criterion associated to some family of deformations of a scheme or

variety, in the following sense: suppose we have schemes X, Y and S, a flat morphism

of schemes f : X → S and a point s ∈ S such that the fibre Xs is isomorphic to

Y . Then we can regard the fibres of f as constituting a family of deformations of Y

parameterised by the points of S. The flatness condition means that various numerical

invariants such as dimension, genus etc. are constant along the fibres [Har77, §III.9].

For K-stability, the relevant deformations are defined as follows by Donaldson [Don18]:

Definition 2.13. Let (X,L) be a complex polarised variety and let m > 0. A test

configuration for (X,L) of exponent m consists of:

• A flat morphism of schemes π : X → A1
C;

• A π-relatively ample line bundle L → X ;

• A C× action on X ,L;

such that π and the bundle map L → X are C×-equivariant for the standard action of

C× on A1
C by multiplication, and for some (and hence all by equivariance) t 6= 0 in A1

C,

the pair (Xt, Lt) := (π−1(t),L|π−1(t)) is isomorphic to (X,L⊗m). We also require that

the central fibre X0 is irreducible.

We call (X ,L) a product configuration if X ∼= X × A1 and a trivial configuration if

it is a product configuration and the C×-action is trivial on X.

Note that since 0 ∈ A1
C is fixed by the standard C× action, the morphism π induces

a C× action on the central fibre X0 and the line bundle L0. Also note that Fano

varieties are polarised by their anticanonical bundle, so the notion of test configuration

makes sense in this case.
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In the general case of a projective scheme Z with an ample line bundle Λ, we can

consider the vector spaces Hk = H0(Z,Λ⊗k) of global sections of the tensor powers of Λ.

Let dk := dimHk. For k large enough that Λ⊗k is very ample, the dk are known to be

given by a Hilbert polynomial of degree n = dimZ. Now suppose there is a C×-action

on the pair (Z,Λ). This induces a C× action on each Hk. Let wk be the sum of the

weights of this action, or equivalently the weight on the top exterior power. Then for

k large enough, wk is also given by a polynomial, this being of degree n+ 1 [Don18].

Now set F (k) = wk/kdk, so that there is an expansion for large k given by:

F (k) = F0 + F1k
−1 + F2k

−2 + . . . .

Definition 2.14. The Donaldson-Futaki invariant of (Z,Λ) is the coefficient F1 in

the above expansion. For a test configuration (X ,L) of a polarised variety (X,L), we

define DF (X ,L) to be the Donaldson-Futaki invariant of the central fibre (X0, L0).

Definition 2.15. A polarised variety (X,L) is:

• K-semistable if DF (X ,L) ≥ 0 for every test configuration (X ,L) on (X,L);

• K-polystable if it is K-semistable and DF (X ,L) = 0 only for product configura-

tions;

• K-stable if it is K-semistable and DF (X ,L) = 0 only for trivial configurations;

• K-unstable if it is not K-semistable.

An important result of Li-Xu immediately allows us to restrict the set of test

configurations we need to check in order to verify K-(semi/poly)stability:

Definition 2.16. A test configuration (X ,L) for a polarised variety (X,L) is called

special if the central fibre X0 is normal.

Li-Xu theorem. [LX14] For a Fano variety (X,−KX), K-(poly/semi)stability can be

verified by checking the Donaldson-Futaki invariant of only the special test configurations.

We can now state the theorem which allows us to investigate the Kähler-Einstein

metric problem through algebraic-geometric means:

Chen-Donaldson-Sun theorem. [CDS15] A smooth complex Fano variety X admits

a Kähler-Einstein metric if and only if (X,K−1
X ) is K-polystable.
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This is the main result leading to the interest in K-(poly/semi)stability of Fano

varieties. Unfortunately, since there are generally infinitely many test configurations

for a given polarised variety, it is very difficult to check K-stability in the general case,

even accounting for the Li-Xu theorem.

The α-invariant of Tian [Tia87] was for a long time one of the only practical methods

to check K-stability. Recently, work of Abban-Zhuang [AZ20,AZ21] has provided other

more powerful methods of verification. Otherwise, most progress on this front has come

from the equivariant perspective due to the work of Datar-Székelyhidi [DS15]. They

showed that if (X,L) comes with the action of a reductive algebraic group G, there

exists a variant of K-stability for (X,L) which is easier to check and still guarantees

the existence of a Kähler-Einstein metric. This has allowed concrete conditions for

K-stability, and thus the existence of Kähler-Einstein metrics, to be found in various

new contexts.

Definition 2.17. Let X be a G-variety, and let π : L→ X be a line bundle on X. We

say that L is G-linearised if there is a G-action on L such that π is G-equivariant and

the map π−1(x)→ π−1(g · x) induced on the fibres is linear for all g ∈ G and all x ∈ X.

Definition 2.18. Let G be a reductive algebraic group and let (X,L) be a polarised

variety with a G-action on X such that L is G-linearised. A test configuration (X ,L)

of exponent m is G-equivariant if there is a G-action on (X ,L) which commutes with

the C× action and such that the isomorphisms between (X,L⊗m) and (Xt, Lt) for

t 6= 0 are G-equivariant. Then (X,L) is equivariantly K-(poly/semi)stable if it is

K-(poly/semi)stable with respect to G-equivariant special test configurations.

The main result of Datar-Székelyhidi is the following:

Datar-Székelyhidi theorem. [DS15] Let G be a reductive algebraic group and let

X be a smooth complex Fano G-variety. Then (X,K−1
X ) is equivariantly K-polystable

if and only if X admits a Kähler-Einstein metric.

Remark. We should mention that the result of Datar-Székelyhidi has been generalised

to the singular case when G is finite by Liu-Zhu [LZ20] and for general reductive groups

by Zhuang [Zhu21]. Specifically, Zhuang uses a purely algebraic argument showing

(among other things) that K-polystability of a log Fano pair (X,∆) is equivalent to

G-equivariant K-polystability when G is reductive.
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The equivariant perspective has been fruitful in the recent study of K-stability for

Fano varieties, since many natural and highly symmetric classes of varieties can be

equipped with reductive group actions which often facilitate their analysis by simple

combinatorial techniques.

For toric Fano varieties, T -equivariance means that the only test figuration which

needs to be checked is the trivial one, making it very easy to prove the existence of a

KE metric. Although this result had already been proved by Wang and Zhu [WZ04]

using a different method, the new approach is easier and more adaptable to different

circumstances. For example, in the case of complexity one torus actions, Ilten and Süß

[IS17] found new examples of K-polystable Fano T -varieties for which the existence of a

KE metric was not previously known by any other method. Similarly, Delcroix [Del16]

characterised K-stability for spherical varieties (i.e. G-varieties of complexity zero),

generalising the result of Wang and Zhu significantly beyond what had previously been

known.

In both cases just mentioned, equivariant K-stability was shown to be equivalent

to much more easily checkable criteria expressed in terms of combinatorial objects

associated to the group action. In the next section we discuss some general theory of

reductive groups and their actions which facilitate these types of description.

2.3 Representations and Actions of Reductive Groups

Here we recall some basic results on the properties of reductive group actions on

algebraic varieties and the representation theory induced by such actions. The material

and proofs will largely follow [Hum75,PV94,Tim11]. By algebraic group we will mean,

unless otherwise specified, a connected affine algebraic group over a fixed algebraically

closed field k of characteristic 0. All varieties are assumed to be integral over k.

2.3.1 Homogeneous Spaces and Embeddings

We will for the remainder of this thesis be considering algebraic group actions on

varieties, especially those which can be viewed as embeddings, or compactifications, of

homogeneous spaces.

Definition 2.19. An algebraic G-action on a variety X is a morphism G×X → X,
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(g, x) 7→ g · x such that g · (h · x) = (gh) · x and e · x = x for all g, h ∈ G and all

x ∈ X, where e ∈ G is the identity. In this case we call X a G-variety. A morphism

ϕ : X → Y of G-varieties is equivariant, and called a G-morphism, if ϕ(g · x) = g · ϕ(x)

for all x ∈ X and all g ∈ G. A G-variety X is homogeneous if the G-action on X is

transitive, and a homogeneous space for G is a pair (X, x) consisting of a homogeneous

G-variety X and a distinguished basepoint x ∈ X. A morphism of homogeneous spaces

is a G-morphism which preserves basepoints.

Many of the points of interest and results to follow will be particularly concerned

with the orbit structure of a given G-variety X, so let us address the basic properties

of these orbits:

Proposition 2.2. Let X be a G-variety. Then each G-orbit in X is a smooth, locally

closed subvariety, whose boundary is a union of orbits of strictly lower dimension. Also,

orbits of minimal dimension are closed, so in particular X contains a closed orbit.

Proof. [Hum75, Prop 8.3] Let x ∈ X and consider the G-orbit G · x. The orbit map

G → X, g 7→ g · x is the composite of the inclusion G → G × {x} and the action

morphism, so is itself a morphism. The image G · x is therefore a constructible subset

of X, so contains an open subset U of its closure. Since G acts transitively on G · x, we

have G ·x =
⋃
g∈G g ·U , so G ·x is in fact open in its closure and hence is a locally closed

subvariety. The existence of a nonsingular point in G · x ensures that it is smooth,

since the action carries nonsingular points to nonsingular points. Now since G · x is

dense in its closure, its boundary G · x \G · x has strictly lower dimension than G · x,

and must be a union of orbits since it is G-stable. Finally, the boundary of an orbit of

minimal dimension must then be empty, so these orbits are indeed closed.

Each orbit G · x in X gives rise to a homogeneous G-space (G · x, x), and if Gx is

the stabiliser of x in G, then the orbit map induces a bijection G/Gx → G · x which

maps Gx to x. It would therefore be desirable to endow G/Gx with the structure of

a variety such that this bijection is in fact an isomorphism of varieties; then every

homogeneous space (X, x) for G could be viewed in the form (G/Gx, Gx). This would

allow us to analyse the possible homogeneous spaces for G entirely in terms of G and

its closed subgroups. With a preliminary result to follow, we will demonstrate exactly

this construction.
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Chevalley’s theorem. Let H be a closed subgroup of G. Then there is a rational

G-module V on which G acts and a line L ⊆ V such that H is the stabiliser of L.

Proof. [Hum75, Thm 11.2] Let I be the ideal of functions in k[G] vanishing on H. Then

I is finitely generated since k[G] is Noetherian, so there is a finite dimensional subspace

U ⊆ k[G] which generates I. Let G act on k[G] by translation of functions. Then I is

H-stable, so we may assume that U is H-stable as well. Then U is contained in a finite

dimensional G-stable subspace W ⊆ k[G] (here W is spanned by the G-translates of a

finite basis of U), since V is a rational G-module, and H is the stabiliser of U under

this action. Now let n = dimU and pass to the nth exterior power: then H is the

stabiliser of the line L := ∧nU in the finite dimensional G-vector space V := ∧nW .

This theorem allows us to view H as the stabiliser of the point x ∈ P(V ) correspond-

ing to L, and thus identify (as sets) the coset space G/H with the orbit G · x ⊆ P(V ).

We will define the variety G/H first abstractly, following [Tim11], then use Chevalley’s

theorem to prove it has the properties we want.

Definition 2.20. Let H be a closed subgroup of G and let q : G→ G/H be the coset

map. The geometric quotient of G by H is the coset space G/H equipped with the

quotient topology induced by q and the sheaf of functions OG/H = q∗OHG , where OHG
are the H-invariant regular functions on G under the H-action by right translation.

Theorem 2.2. For any closed subgroup H of G, (G/H,OG/H) is a smooth quasipro-

jective variety.

Proof. [Tim11, Thm 1.3] Using Chevalley’s theorem, pick a finite dimensional G-

vector space V such that H is the stabiliser of a line L. Then under the induced

G-action on P(V ), H stabilises the point x corresponding to L, so the orbit map

π : G→ G ·x factors through q and a bijection π̄ : G/H → G ·x, which is continuous by

the universal property of the quotient topology. Since π is a morphism, we have maps

OG·x(U)→ OG(π−1(U)) for each open U ⊆ G · x, and since π is constant on cosets of

H, we can view these as mapping into OG(π−1(U))H = OG/H(π̄−1(U)). Hence π̄ is a

morphism of schemes. If we can show that π̄ is an isomorphism, we will be done, since

G · x is a smooth, locally closed subset of P(V ) by Proposition 2.2.

By [Har77, Cor III.10.7], since π is a morphism of varieties over k and G is smooth,

there is a nonempty open subset W ⊆ G · x such that π : π−1(W )→ W is a smooth
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morphism. Since π is G-equivariant, it is smooth on all G-translates of W , which

cover G · x, so π is a smooth morphism. Now smooth morphisms are in particular

open [Har77, Ex. III.9.1], and since the quotient G→ G/H is open, it follows that π̄

must also be open. Hence π̄ is an open continuous bijection, i.e. a homeomorphism.

It remains to show the isomorphism of sheaves OG·x ∼= π̄∗OG/H . We first note

that π̄∗OG/H = π̄∗(q∗OHG ) = π∗OHG . Now π is a surjective morphism of varieties,

so induces an injective morphism π# : OG·x → π∗OG, whose image is a subsheaf of

π∗OHG since regular functions on G · x are H-invariant. Let U ⊆ G · x be open and

let f ∈ π∗OHG (U) = OG(π−1(U))H . We need to show that f = π#(h) for some

h ∈ OG·x(U).

Let ϕ : G 99K G · x × A1 be the rational map given by ϕ(g) = (π(g), f(g)) and

let Z be the closure of ϕ(G). Now ϕ(G) is constructible, so contains an open dense

subset O ⊆ Z, and the projection p1 : Z → G · x is injective when restricted to O

by H-invariance of f . An injective morphism in characteristic 0 is birational, so we

get an isomorphism of function fields k(U) ∼= k(Z). On the other hand, f is the

pullback under ϕ of the projection p2 : Z → A1, that is, f = ϕ#(p2). Now since p2 is a

rational function on Z, we have p2 = p#
1 (h) for some rational function h ∈ k(U). Thus

f = ϕ#(p#
1 (h)) = π#(h). Then if h has a pole on U , f has a pole on π−1(U), which

is impossible, so h is a regular function, i.e. h ∈ OG·x(U) as required. Hence we are

done.

It is immediate from the definition of the variety G/H that it satisfies the following

universal property: for any morphism ϕ : G → X which is constant on cosets of H,

there is a unique morphism ϕ̄ : G/H → X such that ϕ̄ ◦ q = ϕ, where q : G→ G/H is

the quotient map. In particular, for a homogeneous space (X, x) with Gx ⊇ H, the

orbit map π : G→ X factors through π̄ : G/H → X, and π̄ is an isomorphism if and

only if Gx = H. This specifies G/H uniquely.

Definition 2.21. An embedding of a homogeneous space G/H is a G-variety X

containing a dense open orbit isomorphic to G/H.

Embeddings of a fixed homogeneous space G/H are then by definition birational

to each other, and much of the theory to follow will concern classifying up to isomor-

phism the embeddings of a given homogeneous space. We first need to develop some
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representation theory.

2.3.2 Representation Theory of Reductive Groups

For the most part, we will be considering actions of specifically reductive algebraic

groups on varieties, because these groups have good representation-theoretic properties,

which we discuss here.

Recall that any connected algebraic group G acts on its own co-ordinate ring k[G]

by right translation of functions: for g, h ∈ G and f ∈ k[G], (g ·f) : h 7→ f(hg). We call

g ∈ G unipotent if right translation by g is a unipotent linear map when restricted to

any finite dimensional subspace of k[G], and call a subgroup of G unipotent if all of its

elements are unipotent in this sense. Note that unipotent groups are nilpotent [Hum75,

Cor 17.5].

Definition 2.22. An algebraic group G is reductive if it contains no nontrivial con-

nected normal unipotent subgroup and semisimple if it contains no nontrivial connected

normal solvable subgroup.

Example. Examples of reductive groups include GLn, (k×)n and SLn, which is semisim-

ple. Non-reductive groups include any unipotent group, e.g. (k+)n.

A Borel subgroup of an algebraic group G is a maximal closed connected solvable

subgroup. A torus is an algebraic group isomorphic to (k×)n for some n. Borel

subgroups are conjugate in any algebraic group: we usually fix a particular Borel

subgroup B ⊆ G, which is isomorphic to U o T for some maximal unipotent subgroup

U ⊆ G and maximal torus T ⊆ G. If a Borel subgroup B contains the maximal torus

T , there is a unique opposite Borel subgroup B− with B ∩ B− = T . There is also a

corresponding opposite maximal unipotent subgroup U−.

We will denote the Lie algebra of an algebraic group by the corresponding lowercase

Fraktur character, so g is the Lie algebra of G, b of B, and so on. The Lie algebra of a

connected, reductive group G with a maximal torus T has a root space decomposition

g = t⊕
⊕
α∈∆

gα

where ∆ is the root system with respect to T and gα are the root spaces. The choice of

a Borel subgroup B with maximal unipotent subgroup U determines a set of positive
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roots ∆+, namely the α such that gα span u. Finally, ρ will denote half the sum of the

positive roots.

We will use freely the fact that any algebraic group G embeds in GL(V ) for some

finite-dimensional vector space V [Hum75, Thm 8.6]. In this case, we will choose B, U

and T to be the upper triangular, upper unitriangular and diagonal matrices in the

image of G, respectively.

Definition 2.23. A rational G-module is a k-vector space V equipped with a linear

action of G such that V is a union of finite dimensional G-stable subspaces.

We will throughout speak of ‘G-modules’ with rationality assumed. One of the

most useful aspects of reductivity is the following:

Theorem 2.3. An algebraic group G is reductive if and only if every G-module V is

completely reducible, i.e. if and only if every G-stable submodule W of V has a G-stable

complement W ′ with V = W ⊕W ′.

Remark. Note the above theorem uses our assumption that k is of characteristic 0

essentially.

Lemma 2.1. Let G be a unipotent algebraic group and let V be a non-zero G-module.

Then V contains a non-zero fixed point under G.

Proof. [Bri10, Ex. 1.22] If V contains a nonzero G-stable submodule W , then a fixed

point in W is also a fixed point in V , so we can assume that V is simple. We will prove

that V ∼= k and G acts trivially on V , so in particular V contains a fixed point.

Suppose G acts nontrivially on V . Consider the subgroup GV :=
⋂
v∈V Gv, which

is normal. The quotient G/GV acts on V with no fixed points, and (gGV ) · v = g · v

for all g ∈ G and v ∈ V . Now G is nilpotent, and thus so is G/GV , so the centre

Z(G/GV ) is nontrivial, and thus acts nontrivially on V . Hence Z(G) itself contains

some element which acts nontrivially. Since V is simple, by Schur’s lemma each

g ∈ Z(G) acts via scalar multiplication g · v = χ(g)v for some morphism of algebraic

groups χ : Z(G) → k×. But Z(G) ∼= kn for some n, being isomorphic to a closed

subgroup of the upper unitriangular matrices, so any such morphism is constant. Hence

Z(G) acts trivially, a contradiction.



32 CHAPTER 2. BACKGROUND

Proof of Theorem 2.3. [Mil17, Thm 22.42] Suppose every G-module is completely

reducible, and let U be a connected normal unipotent subgroup of G. We can choose a

non-zero finite-dimensional G-module V such that G embeds as a closed subgroup of

GL(V ). Then V U ⊆ V is non-zero by the lemma, and normality of U ensures that V U

is G-stable. Thus by complete reducibility of V , V U admits a G-stable complement W

in V . Then W is a U -module with WU = 0, so W = 0. Thus V U = V , i.e. U fixes V

pointwise. Since U was embedded injectively into GL(V ), it follows that U is trivial

and hence G is reductive.

For the converse, we assume the following fact: a reductive group G decomposes as

G = Z ·G′, the product of the identity component of its centre, which is a torus, and

its derived subgroup, which is semisimple (see e.g. [Hum75, Thm. 27.5]). Now let V

be a nonzero G-module. All T -modules for a torus T are completely reducible, so V is

completely reducible when viewed as a Z-module. Write V =
⊕

i Vi where Vi are the

simple submodules of V . Then since Z and G′ commute, each Vi is G′-stable. Since

G′ is semisimple in characteristic 0, its Lie algebra g′ is semisimple [Hum75, Th 13.5],

so any g′-module is completely reducible by Weyl’s theorem. But each Vi is such a

module, so we have Vi =
⊕

j Vij for simple submodules Vij of Vi, and so V is completely

reducible.

Corollary 2.1. Let IrrG denote the set of isomorphism classes of simple G-modules.

Any G-module M admits a decomposition

M ∼=
⊕

V ∈IrrG

HomG(V,M)⊗ V .

Let G×G act on G by (g, h) ·x = gxh−1 for g, h, x ∈ G. Then there is a decomposition

of G×G-modules

k[G] ∼=
⊕

V ∈IrrG

V ∗ ⊗ V .

Proof. [Bri10, Lemma 2.1] By complete reducibility, M is a direct sum of simple

G-modules, so we may assume that M itself is simple. Then by Schur’s lemma,

HomG(V,M) ∼= k if V ∼= M and is zero otherwise. The first claim follows.

The second claim follows from the first provided that HomG(V, k[G]) ∼= V ∗. For

f ∈ HomG(V, k[G]), let ϕ(f) ∈ V ∗ be the function v 7→ f(v)(eG). For h ∈ V ∗, let ψ(h)

be the function V → k[G] given by v 7→ (g 7→ h(g · v)). An easy check shows that ϕ

and ψ provide the required isomorphism.
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Definition 2.24. A rational G-algebra is a rational G-module A with the structure of

a commutative associative algebra where the G-action is by algebra automorphisms.

Another useful property of reductive groups is the following:

Theorem 2.4. Let G be a reductive group and let A be a rational G-algebra. Then AG

is finitely generated if A is finitely generated.

Proof. [PV94, Thm 3.6] Since G is reductive, A is completely reducible, so the G-

submodule AG of invariants has a complement AG, which can be characterised as the

sum of all nontrivial G-submodules of A. Let RA : A→ AG be the projection to AG.

Then RA has the following properties:

(i) if ϕ : A→ B is a G-morphism of rational G-algebras, ϕ ◦RA = RB ◦ ϕ;

(ii) if ϕ(A) = B, then ϕ(AG) = BG;

(iii) for all a ∈ AG and b ∈ A, RA(ab) = aRA(b).

Note that (ii) follows directly from (i), and by viewing multiplication by a as a

G-endomorphism of A, so does (iii). For (i), equivariance gives ϕ(AG) ⊆ BG and

ϕ(AG) ⊆ BG, from which the claim follows.

Let U be a finite dimensional G-subspace which generates A and let SU be the

symmetric algebra of U . The action of G on U naturally extends to an action on SU ,

and the inclusion U ↪→ A induces a surjective G-morphism π : SU → A. Then by (ii)

we have π((SU)G) = AG, so it suffices to prove that (SU)G is finitely generated. Since

SU has a natural G-grading, we can replace A with SU and assume that A =
⊕

n≥0An

is a G-graded G-algebra with A0 = k.

Let I be the homogeneous ideal
⊕

n>0A
G
n of A, which by the Hilbert basis theorem

is finitely generated, say by b1, . . . , bm, which we can assume to be homogeneous. It

remains to prove that each AGn is contained in B = k[b1, . . . , bm]. Let a ∈ AGn for

some n > 0. Then a ∈ I so we can write a =
∑m

i=1 aibi, assuming without loss

of generality that each ai is homogeneous of degree n − deg bi. Using (iii) we have

a = RA(a) = RA (
∑m

i=1 aibi) =
∑m

i=1RA(ai)bi. Now proceed by induction on n: if

n = 1, the ai are scalars and a ∈ B. If AGk ⊆ B for all k < n, then the RA(ai) lie in B,

so a does too. Hence we are done.
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Corollary 2.2. If X is an affine G-variety, then k[X]G is finitely generated.

Remark. In fact, this property characterises reductive groups, in a sense. Specifically,

let G be an algebraic group. It is a theorem of Popov that if k[X]G is finitely generated

for every affine G-variety X, then G is reductive [PV94, Thm. 3.8].

The next result demonstrates why the representation of a Borel subgroup B ⊆ G

induced by a G-action is also important to keep track of.

Lie-Kolchin theorem. Let a connected solvable algebraic group G act on a finite

dimensional vector space V . Then there exists v ∈ V which is a simultaneous eigenvector

for all g ∈ G.

Proof. [Spr98, Thm 6.3.1] We proceed by induction on d, the derived length of G, and

n = dimV . If V contains a nonzero proper G-stable submodule W , then dimW < n

so induction gives us a common eigenvector v ∈ W for G, hence a common eigenvector

in V . So we may assume V is irreducible.

Let G′ be the derived subgroup of G, which is a connected solvable normal subgroup

of G with derived length d− 1. Induction then gives a common eigenvector of G′ in V .

Let V ′ be the subspace of V spanned by all such vectors. It follows from normality of

G′ that V ′ is G-stable, so V ′ = V by irreducibility.

Now G′ acts on V via scalar multiplication, and since commutators have determinant

1, these scalars must be nth roots of unity, of which k contains finitely many. So G′ is

finite and connected, hence trivial. Then G is commutative, whence the result follows

from the Jordan decomposition.

This leads naturally to the notions of characters and highest weights, which further

simplify the study of B-actions.

Definition 2.25. A character of an algebraic group G is a morphism of algebraic

groups χ : G → k×. The set of characters of G forms an abelian group X(G) under

pointwise multiplication, called the character group of G.

Example. The character group of a torus T = (k×)n is free abelian of rank n. The

character group of a unipotent group is trivial.
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Example. Let G be a connected algebraic group. Then a Borel subgroup B ⊆ G is

isomorphic to U o T for a maximal unipotent subgroup U and maximal torus T of G.

Since characters of B are trivial on U , X(B) = X(T ) is free abelian of rank dimT .

Theorem 2.5. Let M be a simple G-module. The subspace MU is a line where B acts

via a character χM , and M is uniquely determined up to isomorphism by χM .

Proof. [Bri10, Thm 2.4] By the Bruhat decomposition (see [Hum75, Prop. 28.5]),

the product U−B = B−B = B−U is open in G. Let v ∈ MU be nonzero and using

the Lie-Kolchin theorem, choose f ∈M∗ to be a nonzero B−-eigenvector of weight λ.

Consider the U -invariant map G→ k, g 7→ f(g · v). It is nonzero, since M is simple

and spanned by G · v. It is also, by choice of f , a B−-eigenvector in k[G]. Then given

any other nonzero v′ ∈MU , the map

g 7→ f(g · v)

f(g · v′)

is a nonzero rational function on G, invariant on the open subset B− × U , hence

constant. Then there is some t ∈ k× with f(g · (v − tv′)) = 0 for all g ∈ G. It follows,

since f is nonzero, that v = tv′ and hence MU is indeed a line. That B then acts via a

character χ follows from Lie-Kolchin.

It follows that f is a B-eigenvector of weight −χ = λ, seen by restricting to

B ∩B− = T . It also follows that (M∗)U
−

is a line spanned by f . Now by Corollary 2.1

we have a decomposition of T ×G-modules

k[G]U
− ∼=

⊕
V ∈IrrG

(V ∗)U
− ⊗ V ∼=

⊕
V ∈IrrG

V.

This identifies M with the T -eigenspace of k[G]U
−

where T acts with weight χ, and

uniqueness of M follows from uniqueness of T -eigenspaces.

We call χM the highest weight of M . The simple module with highest weight χ will

be denoted Vχ. Characters χ ∈ X(B) with Vχ 6= 0 are called dominant weights and we

let X+ be the set of these. It follows that the nonzero simple G-modules are classified

up to isomorphism by the dominant weights of G.

For an arbitrary G-module M and χ ∈ X(B), let

M (B)
χ = {m ∈M | b ·m = χ(b)m for all b ∈ B}.
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This is the set of highest weight vectors of weight χ. The full set of highest weight

vectors is M (B) =
⋃
χ∈X+ M

(B)
χ .

Proposition 2.3. For any G-module M , there is a decomposition

M ∼=
⊕
χ∈X+

M (B)
χ ⊗ Vχ.

Proof. By Corollary 2.1 and Theorem 2.5 it suffices to show that M
(B)
χ
∼= HomG(Vχ,M).

By Schur’s lemma a G-morphism ϕ : Vχ →M is either 0 or an isomorphism onto a G-

submodule of M containing M
(B)
χ , so ϕ is determined by the image ϕ(1) ∈M (B)

χ when

it is restricted to the line V U
χ and any element of M

(B)
χ determines such a morphism.

We can use the proposition above to calculate dimensions of (finite-dimensional)

G-modules:

Corollary 2.3. Let mχ(M) denote dimM
(B)
χ . If M is a finite-dimensional G-module,

we have

dimM =
∑
χ∈X+

mχ(M)
∏

α∨∈∆∨+

(
1 +

(χ, α∨)

(ρ, α∨)

)
.

Proof. The product is the Weyl dimension formula for dimVχ (see e.g. [Hum72, §24.3]).

The result then immediately follows from Proposition 2.3.

2.3.3 Group Actions on Varieties

We can apply the results of the previous subsection to the action of a reductive group

G on an algebraic variety X. If X is affine, we have seen that k[X] is a rational

G-algebra with a finitely generated subalgebra of invariants. For any variety X, there

is also an action on the function field k(X), although this is not in general a rational

G-algebra. We will call a highest weight vector in k[X] or k(X) a B-eigenfunction or

semi-invariant. Let Λ(X) ⊆ X(B) be the set of all weights of rational B-eigenfunctions

on X: it is a sublattice of the character group called the weight lattice of X. We

define the rank rG(X) of X to be rk Λ. The rank and weight lattice are G-birational

invariants of X. Another particularly important birational invariant of the G-action is

the complexity:

Definition 2.26. Let G be an algebraic group and let X be a G-variety. The complexity

cG(X) of the G-action on X is the minimal codimension of a B-orbit on X.
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The following theorem of Rosenlicht allows an alternative characterisation:

Rosenlicht’s theorem. [Ros56] Let G be a connected algebraic group acting on a

variety X. Then there exists a nonempty open G-stable subset X0 ⊆ X, a variety

X0/G (a geometric quotient) and a surjective morphism π : X0 → X0/G whose fibres

are exactly the G-orbits in X0, such that X0/G has the quotient topology induced by π,

and k(X0/G) ∼= k(X0)G.

Proposition 2.4. For a G-variety X, cG(X) = trdegk k(X)B.

Proof. Using Rosenlicht’s theorem, let X0 ⊆ X be nonempty, open and B-stable with

geometric quotient Y0 = X0/B. Since k(Y0) = k(X0)B = k(X)B we have:

trdeg k(X)B = dimY0 = dimX −max
x∈X

dimB · x = cG(X)

as required.

Example. LetG = C× act onX = A2 by t·(x, y) = (tx, t−1y). This orbits of this action

are the origin {(0, 0)}, the punctured axes {(x, 0) | x ∈ C×} and {(0, y) | y ∈ C×}, and

the conics {(x, y) | xy = a} for each a ∈ C×.

Since G = B in this case, the existence of maximal orbits of codimension 1 means

that this is a complexity one action.

On the other hand, as per Rosenlicht’s theorem, this variety has an open subset

X0 = A2\{xy = 0} admitting a geometric quotient X0/B = A1\{0}, via the morphism

π : X0 → P1, (x, y) 7→ xy. This quotient, defined by the B-invariant rational function

xy on X has dimension 1, and function field k(xy) with transcendence degree 1 over k.

This demonstrates the connection between the complexity, the field of B-invariants

and geometric B-quotients.

A helpful result of Knop [Kno95] shows that complexity, rank and the weight lattice

behave well when considering G-stable subvarieties:

Theorem 2.6. Let X be a normal G-variety and let Y ⊆ X be a closed irreducible G-

subvariety. We can extend rational B-eigenfunctions from Y to X, so cG(Y ) ≤ cG(X),

rG(Y ) ≤ rG(X) and Λ(Y ) ⊆ Λ(X).

Lemma 2.2. Let X be an affine G-variety. Any rational semi-invariant f ∈ k(X)(B)

can be written as a quotient of regular semi-invariants.
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Proof. [PV94, Thm 3.3] Write f = p
q

with p, q ∈ k[X]. The B-module spanned by B ·q

is finite dimensional, so by Lie-Kolchin contains a B-eigenfunction q′ =
∑

i ai(bi · q) for

some ai ∈ k and bi ∈ B. Then fq′ =
∑

i ai(bi · p) := p′ ∈ k[X](B) and f = p′

q′
.

Proof of Theorem 2.6. [Tim11, Thm 5.7] Since complexity, rank and the weight lattice

are birational invariants, we may assume that X is projective. Let X̂, Ŷ be the affine

cones over X and Y . The G-action on X lifts to a Ĝ = G× k×-action on X̂, where k×

acts by homotheties, and Ŷ is Ĝ-stable. A rational semi-invariant f ∈ k(Y )(B) pulls

back to k(Ŷ )(B̂), where B̂ = B×k×. By the above Lemma, f = p
q
, where p, q ∈ k[Ŷ ](B̂)

are homogeneous. Let p′, q′ ∈ k[X̂](B̂) be extensions of p, q to X̂, so that f̃ = p′

q′
pushes

forward to a rational B-eigenfunction on X restricting to f on Y .

Since any B-eigenfunction on Y extends to one on X of the same weight, we get

Λ(Y ) ⊆ Λ(X) and hence rG(Y ) ≤ rG(X). Furthermore, the above proves that k(Y )B

is the residue field of OBX,Y from which follows cG(Y ) = trdeg k(Y )B ≤ trdeg k(X)B =

cG(X).

The invariants, semi-invariants and weight lattice of a G-variety have an important

relationship which will be used to good effect later on:

Proposition 2.5. [Tim11, §13.1] Let X be a G-variety, let K = k(X) and let Λ be

the weight lattice of X. There is a split exact sequence of abelian groups

0 (KB)× K(B) Λ 0.

Proof. The first map is an inclusion, since a nonzero B-invariant function is just a

semi-invariant of weight 1. The second map sends a semi-invariant f to its weight

χ ∈ Λ. This map is surjective by definition of Λ and has kernel (KB)×. Hence the

sequence is exact. Since Λ is free, the sequence splits under a map e : Λ→ K(B), given

by sending a basis weight χ to some eigenfunction with weight χ.

2.3.4 G-Linearisation of Line Bundles

We will need various results on line bundles on G-varieties, which we collect here,

following [Pop74,KKV89,KKLV89]. Recall:

Definition 2.27. Let G be an algebraic group, let X be a G-variety, and let L be a

line bundle on X. A G-linearisation of L is a G-action on L such that:
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(i) the natural projection L→ X is G-equivariant;

(ii) the induced maps Lx → Lg·x are linear for every x ∈ X and g ∈ G.

A line bundle with a G-linearisation is called a G-line bundle. We denote the group of

isomorphism classes of G-line bundles by PicGX.

Proposition 2.6. Let H be a closed subgroup of a connected algebraic group G.

Then PicG (G/H) is isomorphic to the character group X(H). In particular, every

G-linearisable line bundle on G is trivial. The kernel of the forgetful homomor-

phism PicG (G/H) → Pic (G/H) consists of characters corresponding to different

G-linearisations of the trivial line bundle G/H×k, and these are exactly the characters

of H obtained by restricting characters of G.

Proof. [KKV89, §3] Let χ ∈ X(H) be a character and define a line bundle Lχ as follows:

let H act on G × k by h · (g, x) = (gh−1, χ(h)x), and take the quotient (G × k)/H,

i.e. equip this set with the quotient topology and the direct image of the sheaf of

H-invariant functions. Let G act on G× k by g′ · (g, x) = (g′g, x). It is easy to see that

this commutes with the H-action, so induces a G-action on Lχ, linear on fibres. Hence

we have a homomorphism X(H)→ PicG (G/H).

Conversely, let L be a G-linearised line bundle on G/H. Then H acts on the

fibre LH ∼= k over eH ∈ G/H linearly, and hence by a character χ. Hence the

projection G × LH → L induces an isomorphism L ∼= Lχ, giving our isomorphism

X(H) ∼= PicG (G/H). Taking H = {e} gives triviality of PicGG.

Now suppose Lχ is a G-linearisation of the trivial line bundle G/H × k. Then the

fibrewise map Lχ,gH → Lχ,g′gH is an action of G on k, i.e. given by a character of G,

and hence χ must be a restriction to H of that character. Likewise if we assume χ is the

restriction of a character of G, then the map G× k→ G/H × k, (g, x)→ (gH, χ(g)x)

induces a G-isomorphism of Lχ with G/H × k.

Theorem 2.7. [KKLV89, Prop 4.5, 4.6] Let G be a connected affine algebraic group.

Then PicG is finite and there exists a finite covering G̃→ G of algebraic groups such

that Pic G̃ = 0.

Proposition 2.7. [KKLV89, Prop 2.4] Let L be a line bundle on a normal G-variety

X. There is an integer n > 0 such that L⊗n is G-linearisable. We can in fact take n
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to be the order of PicG. In particular, if G is factorial, i.e. PicG = 0, then any line

bundle on X is G-linearisable.

Using Theorem 2.7 and Proposition 2.7, we may assume from now on that all line

bundles on normal G-varieties are G-linearised.

Lemma 2.3. Let L be a G-linearised line bundle on a normal G-variety X. Then

there is a G-action making H0(X,L) a rational G-module.

Proof. For a section s : X → L, the action is given by (g · s)(x) = g · (s(g−1 · x)).

See [KKLV89, Lemma 2.5] for details.

We can use this property to find an open cover of any normal G-variety by G-

invariant quasiprojective subsets, by the following theorem of Sumihiro [Sum74, Lemma

8]:

Sumihiro’s theorem. Let G be an algebraic group and let X be a normal G-variety.

Any point x ∈ X has an open G-stable neighbourhood U which admits a locally closed

G-equivariant embedding U ↪→ P(V ) for some G-module V .

Proof. [Tim11, Thm C.7] Let D be an effective divisor on X such that X \D is an

affine open neighbourhood of x. Let U0 = X \
⋂
g∈G gD. Then U0 is a G-stable affine

open neighbourhood of x, and its complement is an effective Cartier divisor. Let L be

the corresponding line bundle, and choose a section σ0 ∈ H0(X,L) such that U0 = Xσ0 .

Then for some di ≥ 0 and σi ∈ H0(X,L⊗di) we have:

k[U0] =
⋃
d≥0

H0(X,L⊗d)/σd0 = k
[
σ1

σd10

, . . . ,
σm

σdm0

]
.

We can replace L by some power and assume both that all di = 1 and by Proposition 2.7

that L is G-linearised. By Lemma 2.3, the σi lie in some finite dimensional G-stable

submodule M ⊆ H0(X,L). The induced G-equivariant rational map ϕ : X 99K P(M∗)

is then an embedding of U0 onto a locally closed subvariety of P(M∗).

Corollary 2.4. Let Y be a closed G-stable subvariety of a normal G-variety X. Then

there is an open affine B-stable subset X0 ⊆ X intersecting Y .

Proof. [Tim97, Lemma 1.1] Sumihiro’s theorem allows us to assume that X ⊆ P(V ) is

quasiprojective. Consider the boundary Z := X \X of X in P(V ) and denote by X̂, Ŷ
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and Ẑ the affine cones in V over X,Y and Z respectively. Let g1 be a homogeneous

B-eigenfunction on Ŷ t Ẑ which vanishes on Ẑ but not on Ŷ . By Theorem 2.6 we

can extend g1 to a B-eigenfunction g0 on X̂. Then the set X0 := {x ∈ X | g0(x) 6= 0}

is affine and open, is B-stable since g0 is a B-eigenfunction, and intersects Y by

construction of g1.

2.4 Combinatorial Description of G-Varieties

2.4.1 Valuations

As much of the theory to follow concerns the analysis of the interactions of valuations

on the function field of a G-variety and the G-action itself, we begin by collating some

useful theory on this topic, most of which can be found in [Tim11, §19, Appendix B].

Let k be an algebraically closed field of characteristic zero, and let K be a finitely

generated field extension of k. When K is acted on by an algebraic group G (assumed

to be connected and reductive over k), fix a Borel subgroup B and let KB and K(B)

denote the invariant and semi-invariant elements, respectively. Write K
(B)
χ for the set

of semi-invariants of a specific weight χ ∈ X(B).

We call a normal k-variety X with k(X) = K a model of K, and a G-model if X has

a G-action compatible with the G-action on K. Let D denote the set of non-G-stable

prime divisors on all G-models of K and let DB denote the subset of B-stable divisors

(called colours). Finally, let KB ⊆ K denote the subalgebra of functions with B-stable

divisor of poles on some G-model of X.

For our purposes, a valuation of K means the following:

Definition 2.28. A valuation of K/k is a function ν : K → Q ∪ {∞} such that:

• ν(K∗) ∼= Z or {0};

• ν(k∗) = {0};

• ν(f) =∞ if and only if f = 0;

and for all f, g ∈ K∗ :

• ν(f + g) ≥ min{ν(f), ν(g)};
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• ν(fg) = ν(f) + ν(g).

An immediate result from the definition which will come in useful later is the

following:

Lemma 2.4. Let ν be a valuation on K and let f, g ∈ K with ν(f) 6= ν(g). Then

ν(f + g) = min{ν(f), ν(g)}.

Proof. We already have that ν(f + g) ≥ min{ν(f), ν(g)}. We can assume without

loss of generality that ν(f) > ν(g), giving ν(f + g) ≥ ν(g). Suppose further that

ν(f + g) > ν(g). Then we have:

ν(g) = ν(f + g − f) ≥ min{ν(f + g), ν(−f)} = min{ν(f + g), ν(f)} > ν(g)

a contradiction. Hence ν(f + g) = ν(g).

A valuation ν defines a valuation ring Oν = {f ∈ K | ν(f) ≥ 0}, which is a local

ring with maximal ideal mν = {f ∈ K | ν(f) > 0}, residue field k(ν) = Oν/mν and

fraction field K. In particular Oν is a discrete valuation ring, so upon choosing an

element g ∈ mν (a uniformising parameter), any element f ∈ K can be written in

the form f = ugk for some uniquely determined unit u ∈ Oν and integer k. Then

ν(f) = ν(u) + kν(g) = kν(g), since u is a unit.

Proposition 2.8. Let ν be a valuation of K with valuation ring Oν. Then Oν is a

maximal subring of K and determines ν up to proportionality.

Proof. Suppose Oν ( A ⊂ K. Choose a uniformising parameter t ∈ mν and let

g ∈ A \ Oν , so that we can write g = ut−k for some u ∈ O×ν and k ≥ 1. Since u−1 ∈ A,

u−1g = t−k ∈ A. Since t ∈ A, A contains all powers of t and hence all elements of the

form utk for u ∈ O×ν , i.e. A = K.

For the second claim, suppose Oν = Oν′ and choose a uniformising parameter

t ∈ mν = mν′ . Let f = utk ∈ K where u is a unit in Oν and k ∈ Z. We have

ν(f) = kν(t) and ν ′(f) = kν ′(t), so ν(f)/ν ′(f) = ν(t)/ν ′(t) = c ∈ Q+. The first

equality shows that the right hand side is independent of f and hence ν = cν ′.

Geometric Valuations

The principal examples of valuations in algebraic geometry are those given by the order

of vanishing of a rational function along a prime divisor.
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Definition 2.29. Let D be a prime divisor on a normal variety X over k with local

ring OX,D and let f ∈ k(X)∗. We can write f = g/h where g, h ∈ OX,D. Then the

order of vanishing of f along D is the difference of the lengths of the modules OX,D/(g)

and OX,D/(h). This defines a valuation νD of K = k(X).

Hence we make the following definition:

Definition 2.30. A valuation ν on K/k is geometric if there exists a model X of K

and a prime divisor D ⊆ X such that ν(f) = c · νD(f) for some c ∈ Q+ and all f ∈ K.

Definition 2.31. Let X be a model of K. A closed subvariety Y of X is a centre of ν

on X if Oν dominates OX,Y (i.e. Oν ⊇ OX,Y and mν ⊇ mX,Y ).

Proposition 2.9. A prime divisor D ⊆ X is a centre for its own geometric valuation

νD.

Proof. Let f ∈ K∗ and write f = g/h = δn−mḡ/h̄ where δ is a uniformising parameter

and ḡ, h̄ ∈ OX,D are units. Then νD(f) = n−m, and f ∈ OX,D if and only if n−m ≥ 0,

i.e. if and only if f ∈ OνD , and likewise f ∈ mX,D if and only if n−m > 0, i.e. f ∈ mνD .

Hence OνD = OX,D and mνD = mX,D.

Proposition 2.10. If ϕ : X → X ′ is a dominant morphism and ν has centre Y on X,

then the restriction ν ′ of ν to K ′ = k(X ′) has centre Y ′ = ϕ(Y ) ⊆ X ′.

Proof. Since ϕ is dominant, it induces an inclusion ϕ∗ : K ′ ↪→ K, so the description of

ν ′ makes sense. Now ϕ(Y ) is an open subset of Y ′ and hence has the same local ring,

and ϕ∗ induces inclusions OX′,ϕ(Y ) ⊆ OX,Y , mX′,ϕ(Y ) ⊆ mX,Y . Hence Oν dominates

OX′,Y ′ .

Valuative Criterion of Separation. A normal prevariety X is separated if and only

if any geometric valuation of K = k(X) has at most one centre on X.

Proof. See [Tim11, Appendix B]

Valuative Criterion of Properness. A morphism ϕ : X ′ → X of normal varieties

is proper if and only if any geometric valuation of K ′ = k(X ′) has a centre on X ′

whenever the restriction to K has a centre on X.

Proof. See [Tim11, Appendix B]
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Valuative Criterion of Completeness. A normal variety X is complete if and only

if any geometric valuation ν on K has a centre on X.

Proof. Completeness is properness over a field, and every valuation has centre on

Spec k.

Proposition 2.11. Let X be an affine model of K and let ν be a valuation on K.

Then ν has a centre Y ⊆ X if and only if ν|k[X] ≥ 0, in which case I(Y ) = k[X] ∩mν.

Proof. If ν|k[X] ≥ 0, then the subvariety Y = Z(k[X]∩mν) is a centre for ν. Conversely,

if Y ⊆ X is a centre for ν, then k[X] ⊆ OX,Y ⊆ Oν so ν|k[X] ≥ 0 as required. Note

that I(Y ) ⊆ mX,Y ⊆ mν , so I(Y ) ⊆ k[X] ∩ mν . Let f ∈ (k[X] ∩ mν) \ I(Y ). Then

f is invertible in OX,Y ⊆ Oν . But f ∈ mν cannot be invertible in Oν , so we have a

contradiction. Thus I(Y ) = k[X] ∩mν as required.

Proposition 2.12. A valuation ν 6= 0 on K is geometric if and only if trdeg k(ν) =

trdegK − 1.

Proof. [Tim11, Prop B.7] Suppose ν is geometric, i.e. ν = νD up to multiples for some

prime divisor D on some model X of K. Then k(ν) = k(D) has transcendence degree

trdeg k(D) = dimD = dimX − 1 = trdegK − 1.

Let n = trdegK and suppose that the residues of f1, . . . , fn−1 ∈ Oν form a

transcendence basis of k(ν) over k. Choose some nonzero fn ∈ mν . Then f1, . . . , fn is

a transcendence basis for K: indeed a nontrivial algebraic relation g(f1, . . . , fn−1) = fn

over k gives rise to a relation g(f̄1, . . . , f̄n−1) = 0 in k(ν), a contradiction. Now let X

be the affine variety defined by the integral closure of k[f1, . . . , fn] in K. Since Oν is

integrally closed and contains f1, . . . , fn, we have k[X] ⊆ Oν , so ν|k[X] ≥ 0 and hence

by Proposition 2.11, ν has a centre Y on X. Now f1, . . . , fn−1 ∈ k[Y ] are algebraically

independent, so Y is a prime divisor. Finally, since Oν = OX,Y , we have ν = νY up to

a constant, so ν is geometric.

The above theorem allows us to show that not all discrete valuations are geometric:

Example. [Spi90, Ex 2.8] Let K = k(x, y) = k(A2) be the function field of the affine

plane. Let q(t) ∈ k[[t]] be a formal power series not algebraic over k[t] (e.g. the

exponential series over C). Let νt be the t-adic valuation on k((t)), i.e. νt(q(t)) is
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the degree of the first non-zero term in q(t). We can embed K = k(x, y) ↪→ k((t))

by mapping x 7→ t and y 7→ q(t). Now we pull back νt under this embedding to a

valuation νq on K. Then the value group is Z and every non-constant element of k[x, y]

has positive value. It follows that the residue field of νq is k, i.e. trdegk k(νq) = 0. The

above theorem shows that νq is therefore not geometric.

Theorem 2.8. Let K ′ ⊆ K be a subfield containing k. Then:

(i) If ν is a geometric valuation of K, then ν ′ = ν|K′ is geometric.

(ii) Any geometric valuation ν ′ of K ′ extends to a geometric valuation ν of K.

Proof. [Tim11, Prop B.8] First, if ν is geometric, take f1, . . . , fm ∈ Oν whose residues

in k(ν) form a transcendence basis of k(ν) over k(ν ′). Then the fi are algebraically

independent over K ′: indeed if not, one can take an algebraic dependence over Oν′

with some term not in mν′ , which when passing to k(ν ′) contradicts the assumption

that these residues form a transcendence basis. Hence m = trdegk(ν′) k(ν) ≤ trdegK′ K,

giving:

trdeg k(ν ′) = trdeg k(ν)−m ≥ trdegK − 1− trdegK′ K = trdegK ′ − 1.

Since trdeg k(ν ′) cannot exceed trdegK ′−1, we have equality, and hence by Theorem 2.8,

ν ′ is geometric.

Now if ν ′ is geometric, we can take a complete normal variety X ′ with a prime

divisor D′ such that ν ′ is proportional to νD′ . Now let X be any complete model of K

and note that since k(X ′) = K ′ ⊆ K = k(X), there is a rational map ϕ : X 99K X ′.

Then the graph of ϕ is a locally closed subvariety of X×X ′: let Z be the normalisation

of its closure. Then Z is a complete normal variety with k(Z) = K, and we can take a

divisor D ⊆ Z to be a component of the preimage of D′ which maps onto D′, so that

ν = νD extends ν ′.

G-Valuations

Since this thesis concerns varieties equipped with reductive group actions, we also need

to consider how these geometric valuations behave with respect to an action. With

this in mind, consider the following:
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Definition 2.32. Let a reductive group G act birationally on K, i.e. such that K is

the function field of some G-variety X. A valuation ν of K is called G-invariant if

ν(g · f) = ν(f) for all g ∈ G and all f ∈ K. A G-valuation is a G-invariant geometric

valuation. We denote by V = V(K) the set of all G-valuations of K.

Our first result, due to Sumihiro, shows that we can approximate arbitrary geometric

valuations using G-valuations:

Sumihiro’s approximation. [Sum74, §4] Let ν be a geometric valuation of K. Then

there exists a G-valuation ν̄ such that for any f ∈ K we have ν̄(f) = ν(gf) for general

g ∈ G.

Proof. [Tim11, Prop 19.2] Let X be a model of K with prime divisor D such that

ν = νD. Then ν ′ = νG×D is a geometric valuation on k(G×X). From any f ∈ k(G×X)

and some fixed g ∈ G, we can obtain a rational function f(g,−) ∈ k(X) to which

we can apply ν. The order of vanishing of f along G × D should only be different

from the order of f(g,−) along D for choices of g in some closed subset. Hence for

general g ∈ G we have ν ′(f) = ν(f(g,−)). Now the action of G on X (a morphism

G×X → X) induces an embedding k(X) ↪→ k(G×X), so we can define ν̄ = ν ′|k(X).

Then ν̄ is geometric by Theorem 2.8, it is G-invariant by construction, and we have

ν̄(f) = ν(gf) for general g ∈ G by the above argument.

Corollary 2.5. Let K ′ ⊆ K be a G-subfield. The restriction of a G-valuation of K to

K ′ is a G-valuation, and any G-valuation of K ′ can be extended to a G-valuation of K.

Proof. [Tim11, Cor 19.6] Let ν be a G-valuation of K. By Theorem 2.8, ν ′ = ν|K′ is

geometric, and it clearly remains G-invariant, proving the first claim. Now let ν ′ be

some G-valuation of K ′ and extend it to K using Theorem 2.8. We obtain a geometric

valuation ν on K, and Sumihiro’s approximation tells us that there exists a G-valuation

ν̄ of K with ν̄(f) = ν(gf) for general g ∈ G and any f ∈ K. In particular if f ∈ K ′

then ν̄(f) = ν(gf) = ν ′(gf) = ν ′(f), so ν̄ extends ν ′ and we are done.

Corollary 2.6. [Tim11, Cor 19.7] Let X be a G-model of K and let L be a G-line

bundle on X. For any G-valuation ν of K, any σ, η ∈ H0(X,L) with η 6= 0 and any

g ∈ G, we have ν(σ/η) = ν(gσ/η).
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Proof. Let R =
⊕

n≥0H
0(X,L⊗n). Then R is a rational G-algebra because L is a

G-line bundle. The quotient field of R consists of functions which can be represented

by a ratio of sections of some L⊗n and, since η 6= 0, we can write this field as K ′(η) for

some subfield K ′ ⊆ K. Now by Corollary 2.5 we can extend ν from K ′ to R. Then we

have ν(σ/η) = ν(σ)− ν(η) = ν(gσ)− ν(η) = ν(gσ/η) since ν is now a G-valuation on

R.

Theorem 2.9. Any G-valuation is proportional to νD for a G-stable prime divisor D

on some G-model X of K.

Proof. [Tim11, Prop 19.8] Let ν be a G-valuation of K and choose f1, . . . , fs ∈ Oν
whose residues generate k(ν). Let X be a normal projective G-model of K and let

L be a G-line bundle on X such that fi = σi/σ0 for some σi, σ0 ∈ H0(X,L). Let

M ⊆ H0(X,L) be the G-submodule generated by σ0, . . . , σs.

We obtain a rational map ϕ : X 99K P(M∗) which is G-equivariant by construction.

Taking the closure of the graph of ϕ and its normalisation, we obtain a normal projective

G-model with a G-equivariant morphism ϕ to P(M∗), so we can replace X with this

variety. We can assume that ν|k(X′) has a centre Y on X ′ = ϕ(X) since this variety is

complete. Since ν(fi) ≥ 0, by Corollary 2.6 ν(g · σi/σ0) = ν(σi/σ0) ≥ 0 for all g ∈ G

and all i, so ν is non-negative on M/σ0.

Hence Y intersects the affine chart X ′σ0 , and so f1, . . . , fs ∈ OX′,Y . Pulling back,

this means that if D is the centre of ν on X, then f1, . . . , fs ∈ OX,D, and since the

residues of these generate k(ν), D has codimension 1 and is therefore a divisor.

Lemma 2.5. Let A ⊆ K be a rational G-algebra. Then for any ν ∈ V and any f ∈ A,

if M ⊆ A is the G-submodule generated by f , we have ν(f) = minf̃∈M(B) ν(f̃).

Proof. [Tim11, Lemma 19.10] As M is generated by f , we have ν(g) ≥ ν(f) for

any g ∈ M , so we just need to show that there exists f̃ ∈ M (B) with equality. By

Proposition 2.3, M (B) generates M , and hence ν(f) ≥ minf̃∈M(B) ν(f̃) and we are

done.

The following lemma of Knop [Kno93, Cor 3.5] allows us to replace many functions

with B-eigenfunctions, and will be used frequently:

Knop’s Lemma. For any G-valuation ν of K and any rational function f ∈ KB there

exists f̃ ∈ K(B) such that:
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• ν(f̃) = ν(f);

• w(f̃) ≥ w(f) for all G-valuations w of K;

• νD(f̃) ≥ νD(f) for all D ∈ DB.

Proof. [Tim11, Lemma 19.12] Let X be a G-model of K and let δ = div∞ f be the

(B-stable) divisor of poles of f on X. Then δ is an effective divisor, so H0(X,O(δ))

contains a canonical section ηδ. Let σ = fηδ ∈ H0(X,O(δ)). Extend all G-valuations

of K to the rational G-algebra R =
⊕

n≥0H
0(X,O(nδ)) and consider the G-submodule

M ⊆ H0(X,O(δ)) generated by σ. For any B-eigensection σ̃ ∈ M (B), set f̃ = σ̃/ηδ.

Then νD(f̃) ≥ νD(f) for all D ∈ DB, w(f̃) ≥ w(f) for all w ∈ V, and by Lemma 2.5,

there exists σ̃ such that ν(f̃) = ν(f).

Corollary 2.7. A G-valuation of K is uniquely determined by its restriction to K(B).

Proof. [Tim11, Cor 19.13] By Corollary 2.4 any G-model X of K admits a B-stable

affine open subset X0. Let f ∈ K = k(X) be regular on X0. Then the divisor of poles

of f lies in Y = X \X0. If codimY ≥ 2, then by normality f is regular on X, so its

(empty) divisor of poles is B-stable, and f ∈ KB. If codimY = 1, then Y is a union of

B-stable prime divisors, one of which must be the divisor of poles of f , hence f ∈ KB

here too. It follows that K is the quotient field of KB. Now if ν1, ν2 are G-valuations

which differ on K, they must in fact differ on KB, so we can choose f ∈ KB with

ν1(f) < ν2(f). Then Knop’s Lemma gives f ′ ∈ K(B) with ν1(f ′) < ν2(f ′) and we are

done.

Corollary 2.8. A G-valuation ν of K is determined by its restriction to KB and a

functional on the weight lattice Λ.

Proof. By Corollary 2.7, ν is determined by its restriction to K(B). The splitting of

the exact sequence in Proposition 2.5 shows that this restriction is determined by its

value on KB and a functional `ν : χ 7→ ν(e(χ)) on Λ, where e : Λ→ K(B) is the chosen

splitting of the exact sequence.
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2.4.2 Luna-Vust Theory

Overview

The well-known combinatorial description of toric varieties in terms of fans, and

indeed the more general description of spherical varieties with coloured fans turn out

to be special cases of a very general theory of embeddings of homogeneous spaces,

first described by Luna and Vust [LV83] and later developed by Knop [Kno93] and

Timashev [Tim97]. We will develop this theory here.

We keep the set-up of the last subsection: K is a finitely generated field extension of

k with a birational action of a connected and reductive algebraic group G with a fixed

Borel subgroup B, maximal unipotent subgroup U and maximal torus T . This fixes a G-

birational class ofG-models ofK, and the theory uses properties of B-eigenfunctions and

G-valuations on K to classify these G-models up to G-isomorphism. The classification

of G-birational classes of G-models is achieved using Galois cohomology, see [PV94, §2].

The Luna-Vust theory classifies G-models in terms of coloured data associated to G-

germs, which give local information around closed G-stable subvarieties, and B-charts,

which are open affine B-stable subvarieties.

The key idea in this approach is that all G-models of K can be glued together

into a scheme X = X(K), which allows us to study them all at once. The points of X

correspond to localisations of finitely generated k-algebras whose quotient field is K,

i.e. all possible local rings of points in G-models of K. Thus any G-model X can be

considered as a subset of X consisting of the points corresponding to its local rings.

Since G acts on K birationally, this action moves around the local subrings of K,

i.e. the points of X. So G acts on X as a set, but this is not an action in the category

of schemes. The action map G× X→ X is rational but not necessarily a morphism.

Example. [Tim11, Ex 12.1] Let G = k act on A1 by translations, so that we have a

birational action of G on K = k(t). Let X be the cuspidal curve given by the equation

y2 = x3. Setting t = y/x shows that X is also a model of K. Consider the singular

point x0 = (0, 0) on X. Its local ring Ox0 consists of rational functions in x = t2 and

y = t3 whose denominator has nonzero constant term.

Let X = X(K) and let α : G × X → X be the action map. We have an induced

map α∗ : K → k(G × X). Then, letting u be a co-ordinate on G = k, we have that
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α∗(t) = u + t. Then α∗(td) = ud + ud−1t + . . . + td. This function is not defined at

0× x0 ∈ G× X because t is not defined at x0. It follows that the action map α is not

a morphism of schemes, but it is regular away from x0. Indeed all other points of X

are identified via the normalisation X → A1 with points of A1 where G acts regularly.

In the above example we see that there is a maximal G-stable open subset of X

on which G acts as an algebraic group. This is the case in general [Tim11, Prop 12.1]

and we denote this subset by XG. All of the rest of the theory takes place in XG, and

all G-models are realised as G-stable Noetherian separated open subsets of Xnorm
G , the

subset of normal points in XG.

The local ring of a closed subvariety determines much of the local geometry in

a neighbourhood of that subvariety, and for a G-stable closed subvariety Y ⊆ X of

some G-model X, the local ring OX,Y corresponds to some G-fixed point or G-stable

subvariety of XG. Since they determine local properties of G-models, we refer to such

stable points in XG as G-germs, in analogy with the germ of a function.

Definition 2.33. A G-germ of K is a point of XG fixed by G, or a G-stable subvariety

of XG. We denote the set of G-germs in XG by GX, and similarly if X ⊆ XG is an open

subset, the set of G-germs contained in X is denoted GX. A geometric realisation of

a G-germ is a G-model X such that the G-germ is contained in GX, i.e. the G-germ

intersects X in a G-stable subvariety Y .

Any G-germ admits a geometric realisation: we can find an affine open neighbour-

hood X0 ⊆ XG of the G-germ, and then X := G ·X0 is a G-model realising the germ.

The idea now is that we can determine an open subset X ⊆ X by its G-germs and use

properties of these G-germs to prove facts about X.

For example, the support SY of a G-germ Y is the set of G-valuations which have

centre on Y in any geometric realisation of Y . The support of any G-germ Y is

non-empty: take a geometric realisation X of Y , then let X̃ be the normalisation of

the blow up of X along Y . Take the preimage in X̃ of the exceptional divisor of the

blow up. Any of its irreducible components D then defines a valuation νD which has

centre on Y since the normalised blow-up gives a dominant morphism D → Y .

We have a valuative criterion of separation:
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Theorem 2.10. A G-stable open subset X ⊆ XG is separated if and only if the supports

of all its G-germs are disjoint.

Proof. [Tim11, Tjm 12.11] Suppose X is not separated and let ∆ be the diagonal in

X × X. Then ∆ is a G-model of K. The two projections πi : X × X → X induce

birational G-equivariant morphisms ∆→ X. Now let Y ⊆ ∆ \∆ be a G-orbit (such

an orbit exists since ∆ is G-stable in ∆). Then Yi = πi(Y ) for i = 1, 2 are distinct

G-orbits (hence distinct G-germs) on X, but by Proposition 2.10 and the remarks

above we have SY1 ∩ SY2 ⊇ SY 6= ∅.

If X is separated, then by the Valuative Criterion of Separation, any valuation on

X has at most one centre, so supports of G-germs on X are disjoint.

This tells us that a G-model X of K is determined by a Noetherian open subset

GX ⊆ GX of germs with disjoint support. Hence X can be covered by finitely many G-

translates of local neighbourhoods of G-germs. We want to find such a cover consisting

of particularly simple and easy to work with sets, and this is where B-charts are useful.

We will define these in the next subsection after the following discussion on morphisms.

Suppose K ′ ⊆ K is a subfield containing k. The inclusion induces a dominant

rational map ϕ : X 99K X′ = X(K ′). Taking models X ⊆ X and X ′ ⊆ X′, ϕ restricts to

a dominant rational map X 99K X ′.

Proposition 2.13. Let K ′ now be a G-subfield of K, and let X ′ and X be G-models

of K ′ and K respectively. The rational map ϕ : X 99K X ′ is regular if and only if for

any G-germ Y ⊆ X, there exists a G-germ Y ′ ⊆ X ′ such that OX,Y dominates OX′,Y ′.

Proof. [Tim11, Prop 12.12] If ϕ is regular, we can set Y ′ = ϕ(Y ). Then Y ′ is G-stable

since ϕ is G-equivariant by virtue of K ′ being a G-subfield, and OX,Y dominates OX′,Y ′

by Proposition 2.10.

Conversely, if Y is a G-germ of X and Y ′ a G-germ of X ′ such that OX,Y dominates

OX′,Y ′ , then there exist finitely generated subalgebras A ⊆ A′ in K such that OX,Y
and OX′,Y ′ are localisations of A and A′. Taking further localisations of A and A′

allows us to assume that X0 = SpecA and X ′0 = SpecA′ are open subsets of X and X ′

respectively. Then ϕ restricts to a regular map X0 → X ′0, and hence by equivariance

to a regular map G ·X0 → G ·X ′0. Assuming we can do this with every G-germ Y of

X, the sets G ·X0 cover X and the induced maps glue to a regular map X → X ′.
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The inclusion K ′ ⊆ K allows us to restrict valuations of K to K ′. By Corollary 2.5,

this induces a surjective map ϕ∗ : V(K)→ V(K ′). Then if ϕ : X → X ′ is a morphism,

the above Proposition says that for any G-germ Y ⊆ X there is a G-germ Y ′ = ϕ(Y ) ⊆

X ′, and we have ϕ∗(SY ) ⊆ SY ′ . This gives a valuative criterion of properness:

Theorem 2.11. A morphism ϕ : X → X ′ of G-models is proper if and only if

⋃
Y⊆X

SY = ϕ−1
∗

( ⋃
Y ′⊆X′

SY ′
)

where Y and Y ′ run over all G-germs in X and X ′ respectively.

Proof. [Tim11, Thm 12.13] The ‘only if’ part of our theorem follows immediately from

the Valuative Criterion of Properness, since the right hand side consists exactly of

those G-valuations of K having centre on K ′.

Now suppose the equality holds. We will construct a properG-morphism ϕ̄ : X → X ′

with X contained as an open subset in X. Then if X = X, ϕ is proper. If ϕ is

not proper, then X \ X, being non-empty, contains a G-orbit Y0. Then, setting

Y ′ = ϕ̄(Y0), we have ϕ∗(SY0) ⊆ SY ′ . Then SY0 has non-empty intersection with

ϕ−1
∗
(⋃

Y ′⊆X′ SY ′
)

=
⋃
Y⊆X SY . By Theorem 2.10, this contradicts separatedness of X.

The morphism ϕ̄ is constructed as follows: by [Sum74, Thm 3], there exist G-

equivariant completions X, X
′

of X and X ′. Then ϕ gives a rational map X 99K X
′
.

Replace X by the closure of the graph of this rational map, and let ϕ̄ be the projection

to X
′
. Then ϕ̄ is proper since X and X

′
are complete. Finally, replace X with ϕ̄−1(X ′),

so that ϕ̄ is the required proper morphism X → X ′.

B-charts

Definition 2.34. A B-chart is a B-stable affine open subset of Xnorm
G , or a B-stable

affine open subset of a particular G-model X.

By Corollary 2.4, any G-germ Y ∈ GX admits a B-chart X0 ⊆ X intersecting Y ,

so we can cover any G-model by the G-translates of finitely many B-charts. We will

use the behaviour of these B-charts and their G-translates to distinguish G-models of

K using combinatorial data. Let X be a G-model of K, and recall that D is the set

of prime divisors of X which are not G-stable, and DB ⊆ D is the subset of B-stable

divisors. Then DB does not depend on the choice of G-model X. We also have the
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set V of G-valuations of K, and the pair (V ,DB) is called the coloured equipment of

K. Throughout we will identify prime divisors on G-models of K with their respective

geometric valuations.

The next step is to associate coloured data to B-charts and G-models in order to

classify them. Let X0 be a B-chart, so k[X0] is an integrally closed finitely generated

domain, so in particular a Krull ring (see [Mat86, §12]). Then k[X0] is the intersection

in its fraction field of all its localisations at prime ideals of height 1, i.e. the local rings

of the prime divisors of X0. These prime divisors are either G-stable, so their valuation

lies in V , B-stable but not G-stable, so they lie in DB, or neither G-stable nor B-stable.

Hence there are subsets W ⊆ V , R ⊆ DB and R̃ = RtD \ DB such that

k[X0] =
⋂
w∈W

Ow ∩
⋂
D∈R̃

OνD .

It follows that the sets W and R determine the B-chart X0 uniquely, and we

call (W ,R) the coloured data of X0. Think of the coloured data of a B-chart as the

collection of B- and G-stable divisors it intersects on a given G-model. Some other

B-chart X1 will have coloured data which differ from that of X0 by finitely many

elements. Call a pair (W ,R) ⊆ (V ,DB) admissible if it corresponds to some B-chart of

XG. Then the sets W tR for all admissible pieces of coloured data (W ,R) lie in one

equivalence class CD of P(V t DB) under the equivalence relation “differ by finitely

many elements”. Now we want to find conditions on such subsets which guarantee

admissibility.

For any pair W tR ∈ CD, define the k-algebra

A = A(W ,R) :=
⋂
w∈W

Ow ∩
⋂
D∈R̃

OνD .

Then A is a Krull ring: we must check that for all f ∈ K∗, ν(f) 6= 0 for only finitely

many ν ∈ W t R. This is true since by definition of CD, W t R differs from the

coloured data of a B-chart by only finitely many elements, and the condition holds in

this case.

As an example, consider the ring A(∅, ∅): then R̃ = D\DB and A is the intersection

of all valuation rings corresponding to all non-B-stable divisors. Thus f ∈ A if and

only if νD(1/f) ≤ 0 for all non-B-stable divisors D, i.e. the divisor of poles of f is

B-stable, and we see that A = KB.
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We introduce some notation: for f ∈ K and a subset V0 ⊆ W t R, we write

〈V0, f〉 ≥ 0 to mean ν(f) ≥ 0 for all ν ∈ V0, where I identify divisors D ∈ R with their

respective valuations νD.

Now SpecA is a B-chart if and only if (1): QuotA = K and (2): A is finitely

generated. We say that ν is essential for A if removing Oν from the intersection

defining A results in a different ring.

Proposition 2.14. All valuations from R̃ are essential for A.

Proof. [Tim11, Prop 13.7] We construct a function f lying in every valuation ring Oν ,

ν ∈ W t R̃ except for one, so that removing this one adds f to A.

Let X be a smooth G-model of K. Let D ∈ R̃ and consider the G-line bundle

L = OX(D). Let η ∈ H0(X,L) be a section with div η = D. Now D is not G-stable,

so choose g ∈ G with gD 6= D, and let f = g · η/η.

Since div g · η = gD 6= D, we have νD(f) = νD(g · η) − νD(η) = 0 − 1 = −1, so

f /∈ OνD .

Since νD′(η) = 0 for all D′ 6= D, we have 〈R̃ \ D, f〉 ≥ 0, and f ∈ OνD′ for all

D′ ∈ R̃ \D.

Finally, Corollary 2.6 gives us w(g · η/η) = w(η/η) = 0, i.e. f ∈ Ow, for all w ∈ W .

Hence f ∈ Oν for all ν ∈ W t R̃ \D but f /∈ OνD . Then f /∈ A but f ∈ A \ OνD ,

so νD is essential for A.

Now assuming (1) and (2), and in light of the above proposition, the data (W ,R)

corresponds exactly to the B-stable and G-stable divisors of the B-chart SpecA if and

only if all w ∈ W are essential for A. Thus coloured data corresponding to B-charts

can be characterised as follows:

Theorem 2.12. Let A = A(W ,R) as above. Then:

(i) QuotA = K if and only if

(C): for all finite subsets V0 ⊆ WtR, there exists f ∈ K(B) such that 〈V0, f〉 > 0

and 〈W tR, f〉 ≥ 0;

(ii) A is finitely generated if and only if

(F): AU := k[f ∈ K(B) | 〈W tR, f〉 ≥ 0] is finitely generated;
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(iii) A valuation w ∈ W is essential for A if and only if

(W): there exists f ∈ K(B) such that 〈W tR \ {w}, f〉 ≥ 0 and w(f) < 0.

Then (W ,R) are the coloured data of a B-chart if and only if (C) and (F) are satisfied,

and the data corresponds exactly to the G- and B-stable divisors of this B-chart if and

only if (W) is satisfied for all w ∈ W.

Proof. [Tim11, Thm 13.8] (i): Suppose QuotA = K. If V0 = {ν1, . . . , νn} and we have

fi ∈ K(B) with νi(fi) > 0 and 〈W tR, fi〉 ≥ 0, then f = f1 · · · fn has 〈W tR, f〉 ≥ 0

and νi(f) = νi(fi) +
∑

j 6=i νi(fj) ≥ νi(fi) > 0. Hence we can assume V0 = {ν}.

Now choose f ∈ A with ν(f) > 0 and 〈WtR, f〉 ≥ 0. Since A ⊆ KB = A(∅, ∅), we

can apply Knop’s Lemma to obtain f ′ in A(B) with ν(f ′) = ν(f) > 0 and 〈WtR, f ′〉 ≥

0, as required.

Conversely, assume (C) holds and let h ∈ KB. Let V0 = {ν ∈ W tR | ν(h) < 0}.

By (C) there exists f ∈ K(B) with 〈V0, f〉 > 0, so we can take n = maxν∈V0{−ν(h)},

giving hfn ∈ A. Hence KB ⊆ QuotA, and since we have A ⊆ KB and QuotKB = K,

this gives QuotA = K.

(ii): We first show that the definition in the Theorem does indeed give AU . Note

that {f ∈ K(B) | 〈WtR, f〉 ≥ 0} is A(B) = A∩K(B). Now U ⊆ B implies A(U) ⊇ A(B),

but since U has no nontrivial characters, we have AU = A(U), hence it follows that

AU ⊇ k[A(B)]. Likewise if f is U -invariant, then B acts on f the same as T does, and

hence f is B semi-invariant, i.e. f ∈ k[A(B)].

To prove the claim, let X be a smooth G-model of K and choose an effective divisor

D on X with support DB \ R and associated line bundle L. Take a G-linearisation of

L and choose a section η ∈ H0(X,L)(B). Let

Rn = {σ ∈ H0(X,L⊗n) | σ/ηn ∈ A}

and consider the graded algebra R =
⊕

n≥0Rn.

By construction we have A =
⋃
n≥0 η

−nRn, which shows that A ⊆ QuotR, giving

K ⊆ QuotR. Then by Theorem 2.8, we can extend G-valuations of K to QuotR. In

particular, extending valuations in W to QuotR, we can write

Rn = {σ ∈ H0(X,L⊗n) | w(σ) ≥ nw(η) ∀w ∈ W}
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since σ/ηn ∈ A implies w(σ/ηn) ≥ 0. This definition makes it clear that each Rn is

G-stable, hence so is R.

We use the fact that for connected reductive G, a rational G-algebra S is finitely

generated if and only if SU is finitely generated [Tim11, Thm. D.5(1)]. In our case, A

is not a rational G-algebra, but we can construct related G-algebras as follows.

Suppose A is finitely generated by f1, . . . , fm. Let Sn be the G-submodule of Rn

generated by ηnf1, . . . , η
nfm. Then S =

⊕
n≥0 Sn is a finitely generated graded G-

algebra, so SU is finitely generated. Then AU =
⋃
n≥0 η

−nSUn is also finitely generated.

Finally, if AU is finitely generated, say by f1, . . . , fm, let Sn be the G-submodule

of Rn generated by functions ηnf , where f runs over all G-translates of the fi, and

let S =
⊕

n≥0 Sn. Then S is an integrally closed G-subalgebra of R, η ∈ S1 and

QuotS = QuotR. We have by construction AU =
⋃
n≥0 η

−nSUn , so SU is finitely

generated, and hence so is S. The algebra A′ =
⋃
n≥0 η

−nSn is finitely generated

and has the form A′ = A(W ′,R) for some W ′ ⊇ W. We also have AU = (A′)U by

construction.

Let f ∈ A and w ∈ W ′. If w(f) < 0, then we can replace f with a B-eigenfunction

which must then lie inA(B)\(A′)(B), a contradiction sinceA(B) = AU = (A′)U = (A′)(B).

Hence w(f) ≥ 0 for all w ∈ W , from which it follows that A = A′ is finitely generated.

(iii): If (W) holds, then it is clear that f /∈ A but f ∈ A \ {Ow}, so w is essential

for A. Now suppose w is essential. Then there exists f ∈ K with 〈W tR\{w}, f〉 ≥ 0

and w(f) < 0. By Knop’s Lemma, we can replace f with a B-eigenfunction to obtain

(W).

The final claim now follows from discussions above.

G-germs

As above for B-charts, we now describe G-germs in terms of the coloured equipment

(V ,DB) of K. Let Y ∈ GXnorm be a G-germ. The coloured data of Y consists of the

sets VY ⊆ V , DBY ⊆ DB of valuations corresponding to G- and B-stable prime divisors

containing Y on any geometric realisation X of Y .

As mentioned previously, any G-germ intersects a B-chart, so consider a geometric

realisation Y ⊆ X of a given G-germ and a B-chart X0 ⊆ X intersecting Y . Then

Y0 := Y ∩X0 is the centre of any valuation ν ∈ SY , and conversely if a G-valuation
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ν ∈ V is non-negative on A = k[X0], then it determines a G-germ intersecting X0. If

(W ,R) are the coloured data of X0, then (VY ,DBY ) ⊆ (W ,R). We then have:

Proposition 2.15. Let Y be a G-germ with coloured data (VY ,DBY ) and support SY .

Then:

(i) Y is uniquely determined by (VY ,DBY ), and:

(ii) A G-valuation ν is in SY if and only if

(S): for all f ∈ K(B), 〈VY t DBY , f〉 ≥ 0 implies ν(f) ≥ 0, and strictness of any

of the lefthand inequalities implies strictness of the righthand inequality.

Proof. [Tim11, Prop 14.1] Let X be a geometric realisation of the G-germ Y and let

X0 ⊆ X be a B-chart intersecting Y .

We claim that for all f ∈ K(B), we have f ∈ O(B)
X,Y ⇐⇒ 〈VY t DBY , f〉 ≥ 0 and

f ∈ m
(B)
X,Y if and only if one of the inequalities is strict. Indeed, f ∈ O(B)

X,Y if and only

if f is regular in a neighbourhood of Y . Now the divisor of poles of f is B-stable, so

f is regular on all non-B-stable divisors, and f is regular on all other prime divisors

containing Y if and only if 〈VY tDBY , f〉 ≥ 0. The claim on mX,Y follows from the fact

that the divisor of zeroes of f is B-stable, so its valuation lies in VY t DBY .

(ii): Now let ν ∈ SY , i.e. ν has centre on Y . Then Oν dominates OX,Y . By the

above claim and this fact, we have 〈VY tDBY , f〉 ≥ 0 ⇐⇒ f ∈ O(B)
X,Y =⇒ f ∈ Oν =⇒

ν(f) ≥ 0, and there exists ν ′ ∈ VY t DBY with ν ′(f) > 0 ⇐⇒ f ∈ m
(B)
X,Y =⇒ f ∈ mν ,

i.e. (S) holds.

Conversely, let ν ∈ V and assume assume (S) holds for ν. Suppose there exists

f ∈ OX,Y such that ν(f) < 0. We can apply Knop’s Lemma to replace f by a B-

eigenfunction, but then f ∈ K(B), 〈VY tDBY , f〉 ≥ 0, ν(f) < 0, contradicting (S). Hence

Oν ⊇ OX,Y ⊇ k[X0], and ν has some centre Y ′ ⊇ Y on X. It remains to show that

Y ′ = Y . If Y ′ 6= Y , then mν + mX,Y , so we can choose f ∈ mX,Y such that ν(f) = 0.

Replacing f with a B-eigenfunction again, note that f ∈ m
(B)
X,Y , so by the previous

claim there is ν ′ ∈ VY t DBY with ν ′(f) > 0, contradicting (S). Hence Y = Y ′ and we

are done.

(i): The G-germ Y is determined by its local ring OX,Y . Let A = A(VY ,DBY ),

so that we have k[X0] ⊆ A ⊆ OX,Y . Now OX,Y is the localisation of A in the ideal

IY = A ∩mX,Y , hence determined in A by IY . In turn, IY is determined by the fact



58 CHAPTER 2. BACKGROUND

that ν > 0 on IY for all ν ∈ SY . Finally, the equivalence of ν ∈ SY with condition (S)

shown above demonstrates that SY is determined by the coloured data (VY ,DBY ), and

hence so is Y .

The last step in classifying G-models is to determine which G-germs are contained

in a given B-chart X0 = SpecA(W ,R), since a G-model X is determined by the

G-germs in GX. That is, we want conditions on elements of W tR which determine

whether they are contained in VY t DBY . These are:

Theorem 2.13. Let X0 be a B-chart with coloured data (W ,R) and let Y be a G-germ

with coloured data (VY ,DBY ). Then:

(i) A G-valuation ν ∈ V has a centre on X0 if and only if

(V): for all f ∈ K(B), 〈W tR, f〉 ≥ 0 implies ν(f) ≥ 0;

(ii) Let ν ∈ SY . Then a G-valuation w ∈ W belongs to VY if and only if

(V′): for all f ∈ K(B), 〈W tR, f〉 ≥ 0 and ν(f) = 0 imply w(f) = 0;

(iii) A divisor D ∈ R belongs to DBY if and only if

(D): for all f ∈ K(B), 〈W tR, f〉 ≥ 0 and ν(f) = 0, imply νD(f) = 0.

Proof. [Tim11, Thm 14.2] (i): By Proposition 2.11, ν ∈ V has a centre on X0 if and

only if ν|A ≥ 0. Supposing this is the case, let f ∈ K(B) satisfy 〈W tR, f〉 ≥ 0, that is

f ∈ Oν for all ν ∈ W tR. Since f has B-stable divisor of poles, we also have f ∈ OνD
for all D ∈ D \ DB. Hence f ∈ A and ν(f) ≥ 0 as required.

Now assume (V) holds for some ν ∈ V and suppose there exists f ∈ A with ν(f) < 0.

By virtue of being in A, we have 〈W tR, f〉 ≥ 0, and f ∈ KB. Use Knop’s Lemma to

replace f with a B-eigenfunction, we obtain a contradiction with (V). So ν(f) > 0 and

ν has centre on X0.

(ii): Let w ∈ W be the valuation of a G-stable prime divisor D ⊆ X0, and suppose

w ∈ VY , i.e. Y ⊆ D. Let f ∈ A, so 〈W tR, f〉 ≥ 0. If ν(f) = 0, i.e. f does not vanish

on Y , then f also does not vanish on D ⊇ Y , i.e. w(f) = 0. Now restricting to A(B)

and noting that K(B) is its quotient field, (V′) follows.

Now assume (V′) and let w ∈ W be as above. Suppose w /∈ VY , i.e. D does

not contain Y . Then there is f ∈ A vanishing on D but not in Y , i.e. w(f) > 0
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but ν(f) = 0. Replacing f by a B-eigenfunction using Knop’s Lemma, we obtain a

contradiction with (V′), so w ∈ VY .

(iii): This is identical to (ii) but with B-stable divisors instead of G-stable, which

makes no difference to the proof.

G-models

In full, the Luna-Vust theory allows us to classify G-models of a function field K as

follows [Tim11, §14.2]:

• Take a finite collection (Wi,Ri) of coloured data satisfying (C) and (F), and

reduce the Wi if necessary so that they satisfy (W). These define finitely many

B-charts Xi;

• Using (V), (V′) and (D), compute the coloured data (VY ,DBY ) of all G-germs

intersecting the Xi from (Wi,Ri);

• Compute the supports of these G-germs from the coloured data (VY ,DBY ) using

(S);

• If and only if the supports are disjoint, the G-models X ′i := G ·Xi can be glued

together into a G-model X. Then X is uniquely determined among G-models by

the coloured data of its G-germs, and all G-models arise in this way.

Remark. [Tim11, 14.3] Here is a good place to remark that the collection Xi of B-charts

covering a G-model is not uniquely determined, and a given G-germ may intersect

many B-charts. Indeed, suppose X is a G-model, Y is a G-germ in X, ν is a valuation

in SY , and X0 is a B-chart intersecting Y with coloured data (W ,R). Take some

f ∈ A(B) with ν(f) = 0. Then the open subset of X0 given by localising in f is a

new B-chart intersecting Y . Its coloured data is obtained from (W ,R) by removing

the finite subsets (Wf ,Rf ) of valuations which are positive on f . These subsets lie in

W \ VY and R \ DBY , and in particular if these two sets are finite, then Y admits a

minimal B-chart XY with coloured data W = VY , R = DBY .

We can determine some facts about a G-model from the coloured data quite easily.

For example:
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Proposition 2.16. Affine G-models are in bijection with coloured data (W ,DB) sat-

isfying (C),(F) and (W).

Proof. Any affine G-model is in particular also a B-chart. Indeed, the affine G-models

are exactly the G-stable B-charts. Given an arbitrary B-chart X0 = SpecA(W ,R), let

X = G ·X0. Then X \X0 is B-stable but not G-stable, hence a union of colours. These

colours must be exactly those in DB \ R, since they don’t intersect X0. A B-chart is

G-stable if and only if X = X0, i.e. R = DB, from which the claim follows.

Proposition 2.17. A G-model X is complete if and only if
⋃
Y SY = V, where Y runs

over all G-germs in X.

Proof. This follows immediately from Theorem 2.11, since X is complete if and only if it

is proper over Spec k, and V(k) is a point supporting the unique G-germ of Spec k.



Chapter 3

Combinatorial Description of

Smooth Fano SL2-Threefolds

3.1 Varieties of Complexity One

3.1.1 Hyperspace, Divisors and Functionals

We can now approach the topic of finding a combinatorial description of complexity

one G-varieties. This work was mainly completed by Timashev, and this section largely

follows [Tim11,Tim97].

Hyperspace

Now we assume that X is a normal G-variety of complexity one, where G as always is

connected and reductive. Recall that by Corollary 2.8, a G-valuation of K = k(X) is

determined by a functional on Λ and the restriction to KB.

Since KB has transcendence degree 1, it is the function field common to a birational

class of curves which contains a unique smooth projective curve C. The local rings

OC,p at points p ∈ C are regular local rings of dimension 1, i.e. discrete valuation rings.

Hence to any point p ∈ C is associated a valuation νp of KB, the order of vanishing

of a rational function at p. These and their positive rational multiples constitute all

geometric valuations of KB, so the restriction to KB of a G-valuation ν of K must be

of the form hνp for some h ∈ Q≥0 and some p ∈ C, since the restriction of a geometric

valuation to a subfield is itself geometric (Theorem 2.8). If h = 0, then the point

61
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p is irrelevant and the restriction to KB is trivial. We call such valuations central.

Otherwise the pair (p, h) uniquely determines ν|KB .

Hence G-valuations ν ∈ V are described by triples (p, h, `) where p ∈ C, h ∈ Q≥0

and ` ∈ Hom(Λ,Q) = Q. We thus view G-valuations as elements of the space⋃
p∈C{p}×Q≥0×Q, and these valuations are uniquely determined up to the equivalence

relation defined by letting (p, h, `) ∼ (p′, h′, `′) if and only if we have equality or

h = h′ = 0 and ` = `′. We define the hyperspace of K to be

H :=
⋃
p∈C

({p} ×Q≥0 ×Q)/ ∼ .

By the previous discussion, the set V of G-valuations of K is embedded in H, and

we can also map DB into H (not necessarily injectively) by sending a divisor to the

point of H corresponding to its associated valuation. We will refer to this map by

κ, and we call the collection (H,V ,DB, κ) the coloured hyperspace of K. We know

from before that in the Luna-Vust theory we classify G-varieties using the coloured

equipment (V ,DB) of K, and we use the map κ and the hyperspace H to describe this

data combinatorially, with certain types of cones and fans sitting inside the hyperspace.

We also denote by Hp,Vp, etc. the subsets of H, V, etc. corresponding to a specific

choice of p ∈ C, and will call Hp the slice of hyperspace corresponding to p. Finally,

the subset of H of all points with h = 0 is called the central hyperplane and denoted Z.

Splitting Maps

We have seen that the exact sequence in Proposition 2.5 splits under a map e : Λ→ K(B),

but (in complexity one at least) this map is not canonical. Hence neither are the maps

sending V and DB to hyperspace, so it is worth clearing up what happens when a

different splitting map is chosen. Suppose e′ : Λ → K(B) is a different splitting and

ν ∈ V corresponds to (p, h, `) under e and (p′, h′, `′) under e′. The choice of splitting

has no effect on p, h since these are determined by the restriction to KB, but the

functionals `, `′ will be different: for χ ∈ Λ we have

`′(χ)− `(χ) = ν(e′(χ))− ν(e(χ)) = ν(e′(χ)/e(χ)) = hνp(e
′(χ)/e(χ)).

Hence we see that the change in splitting corresponds to a linear ‘co-ordinate change’

(p, h, `) 7→ (p, h, `+h`p), where `p(χ) := νp(e
′(χ)/e(χ)). Since C is a smooth projective
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curve, the principal divisor corresponding to the rational function e′(χ)/e(χ) has

degree zero, so we have 0 =
∑

p∈C νp(e
′(χ)/e(χ)) =

∑
p∈C `p(χ) for all χ ∈ Λ, hence∑

p∈C `p = 0. When C = P1, which will hold in most cases of interest to us, it

is conversely true that any such collection of integral shifts `p ∈ Hom(Λ,Z) with∑
p∈C `p = 0 defines a passage from one splitting to another by taking e′ such that

νp(e
′(χ)/e(χ)) = `p(χ).

Quasihomogeneous and One-Parameter Cases

There are two distinct types of variety which arise in complexity one. Note that

in complexity zero, KB and KG are necessarily the same since KG ⊆ KB = k. In

complexity one, with trdegKB = 1, there are two possibilities for KG which correspond

to different orbit structures in G-models:

• In the quasihomogeneous case, where KG = k, there is an open G-orbit in any

G-model X of K, so X is an embedding of a homogeneous space G/H. This is a

minimal model for the G-birational class determined by K and its G-action.

• In the one-parameter case, where KG = KB = k(C), there is a family (pa-

rameterised by C) of spherical G-orbits of codimension 1 in any G-model of

K.

Remark. The two cases given above do indeed exhaust all possible relationships between

KG and KB in complexity one. A priori, it is possible that KG ↪→ KB is a finite

extension (of degree at least 2) rather than an equality. Suppose this is the case. Then

KG is the function field of some smooth projective curve C ′ and we will have a finite

morphism f : C → C ′ of degree d > 1. We also have rational quotient maps from X

to C and C ′ and these should commute with f and separate orbits. However if we

pull back some p ∈ C ′ to C and then to X, the fibre will contain two different orbits,

while if we pull it back directly to X it should only contain one. Hence KG = k or

KG = KB.

We will primarily be interested in the quasihomogeneous case, and we assume

KG = k from now on.

Theorem 3.1. In the quasihomogeneous case, the smooth projective curve C such that

KB = k(C) is in fact P1.
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Lemma 3.1. Let G be a connected algebraic group over k. Then G is rational as a

variety.

Proof. Assume G is reductive. Then the Bruhat decomposition [Hum75, Prop 28.5]

tells us that G has an open subset isomorphic to U−TU , where U− is the opposite

maximal unipotent subgroup to U relative to T . Now U− and U are isomorphic to

affine spaces and T is a product of open subsets of affine spaces, so these are all rational

varieties. Hence the open Bruhat cell of G is also rational, and thus so is G.

Now let G be connected but not necessarily reductive. By the Levi decomposition

[Hum75, Thm 30.2], G is a semidirect product of a reductive group L and the unipotent

radical Ru(G). By the above, both L and Ru(G) are rational, and hence again so is

G.

Proof of Theorem 3.1. [Tim11, §16.2] Since we are in the quasihomogeneous case,

K = k(G/H) for some H. Then k(C) ⊆ k(G/H) so we get a dominant rational map

G/H 99K C, which gives a dominant rational map G 99K C via the quotient. Since

G is rational, C is unirational and hence C = P1 by Lüroth’s theorem [Har77, Ex

IV.2.5.5].

Regular, Subregular and Central Elements

Any G-model X has an associated dominant rational B-quotient map π : X 99K C,

arising from the inclusion k(C) ⊆ K, which separates general B-orbits (since KB =

k(C)). This means there is a one-parameter family ofB-stable prime divisorsDp ⊆ π∗(p)

in X parameterised by points p ∈ C0 = π(X), an open subset of C.

The choice of splitting map e : Λ→ K(B) marks colours lying in div e(χ) for χ ∈ Λ

out as distinguished: colours lying outside any div e(χ) have ` = 0, and those lying

inside any will have ` = νD(e(χ)) 6= 0. Reducing C0 if necessary to remove all (finitely

many) points whose pullbacks lie in some div e(χ), it follows that ` = 0 for all but

finitely many colours.

In the quasihomogeneous case, the rational B-quotient maps to P1, so is determined

by a one-dimensional linear system of colours, i.e. there is a line bundle L on G/H

and a two-dimensional space M of B-eigensections of L which defines homogeneous

co-ordinates on P1 = P(M∗). Elements of M correspond to equations defining a point
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of P1 and hence in turn a B-divisor on X by pulling back under π.

Any G-line bundle on G/H is determined by a character χ ∈ X(H) [Tim11, §2.1]:

each is of the form Lχ = G ?H kχ = (G × kχ)/H where kχ is k with the H-action

determined by χ (see section 2.3.4). Then the global sections of this line bundle are

given by H-eigenfunctions on G with weight −χ, i.e. H0(G/H,L(χ)) = k[G]
(H)
−χ . Now

in our case a B-divisor on G/H determines a line bundle L which can be in turn

determined by a B-eigensection, uniquely up to multiplication by an invertible function,

that is a nonzero multiple of a character of G. Hence DB(G/H) corresponds bijectively

to generators of k[G](B×H)/k∗X(G), a multiplicative semigroup.

Returning to the linear system defining π, we now see that the line bundle L must

be in the form L−χ and the space M , consisting of B-eigensections of Lχ, must have

the form k[G]
(B×H)
(λ,χ) for some λ ∈ X(B). Irreducible elements of M = k[G]

(B×H)
(λ,χ) and

the corresponding divisors are called regular. A regular colour is of the form Dp = π∗(p)

for some p ∈ P1 and has h-coordinate 1 in hyperspace.

There will also in general be a set of one-dimensional spaces k[G]
(B×H)
(λi,χi)

containing

eigenfunctions which correspond to different B-divisors. Irreducible elements of these

spaces which divide regular semi-invariants are called subregular, as are the correspond-

ing B-divisors, which must then occur inside the element of the linear system defined

by the regular semi-invariant in question. Suppose a subregular colour Di is defined by

ηi ∈ k[G]
(B×H)
(λi,χi)

where ηi divides η ∈M , and div η = π∗(p). Then Di is represented in

hyperspace by (p, hi, `i), where hi > 1 is the multiplicity of ηi in η or equivalently of

Di in div η.

Elements in k[G]
(B×H)
(λi,χi)

which do not divide regular semi-invariants are called central

because the valuation given by the corresponding B-divisor is central in the sense

defined earlier. Hence the corresponding colours lie at points (0, `) in the central

hyperplane of the hyperspace.

Proposition 3.1. For any p ∈ P1, only finitely many colours are mapped to Hp. In

particular there are only finitely many central colours.

Proof. [Tim11, Lemma 20.4] Take a B-chart X0 ⊆ X small enough that there is a

geometric quotient π : X0 → X0/B. Then X0/B is a smooth rational curve so birational

to P1. Hence νp has centre on X0/B for p ∈ P1. If a colour D goes to Hp in hyperspace,
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i.e. νD|KB = hνp, then either D = π−1(D0), where D0 is the centre of νp on X0/B, or

D is an irreducible component of X \X0. In all there are finitely many such D.

A central colour lies in everyHp, so by the above there can only be finitely many.

Since there are finitely many central colours, and there can also only be finitely

many subregular colours, it follows that all but finitely many colours are regular, i.e.

have h = 1. Most colours are regular and non-distinguished, so lie at the points

εp := (p, 0, 1) in hyperspace.

Linear Functionals on Hyperspace

We now want to define linear functionals, cones etc. on the hyperspace H. Specifically

we want to interpret semi-invariants as linear functionals on H.

Definition 3.1. A linear functional onH is a function ϕ : H → Q such that ϕp := ϕ|Hp
is a Q-linear functional on Hp for all p ∈ P1 and

∑
p∈P1 〈εp, ϕp〉 = 0 where εp is the

point (p, `, h) = (p, 0, 1) ∈ Hp. We denote by H∗ the space of linear functionals on H

and for ϕ ∈ H∗ we define the kernel kerϕ to be
⋃
p∈P1 kerϕp.

Now suppose f ∈ K(B) is a semi-invariant, so we can write f = f0eλ for some

f0 ∈ KB and some λ ∈ Λ. Then f determines a linear functional ϕ on hyperspace

as follows: for p ∈ P1 and q = (`, h) ∈ Hp let 〈q, ϕp〉 = hνp(f0) + 〈`, λ〉. Then∑
p∈P1 〈εp, ϕp〉 =

∑
p∈P1 νp(f0) is the degree of the principal divisor (f0) on P1, i.e. 0.

Hence the collection {ϕp}p∈P1 does indeed constitute a linear functional on H.

Proposition 3.2. A semi-invariant f ∈ K(B) is determined up to scalar multiples by

its corresponding functional ϕ. Also, any functional ϕ on hyperspace has a multiple

which is the functional corresponding to a semi-invariant.

Proof. Let f = f0eλ and f ′ = f ′0eλ′ be semi-invariants, and suppose they define the

same functional ϕ on H. Then for any p ∈ P1 and any q = (`, h) ∈ Hp we have

〈q, ϕ〉 = hνp(f0) + 〈`, λ〉 = hνp(f
′
0) + 〈`, λ′〉.

Taking h = 0 we get 〈`, λ〉 = 〈`, λ′〉 for all ` ∈ Q, so λ = λ′. Taking ` = 0 and h = 1

gives νp(f0) = νp(f
′
0), so νp(f0/f

′
0) = 0 for all p ∈ P1, i.e. f0/f

′
0 is a constant.

Likewise, any linear functional {ϕp}p∈P1 onH can be associated with a semi-invariant

rational function. Indeed, since
∑

p∈P1 〈εp, ϕp〉 = 0, the divisor
∑

p∈P1 〈εp, ϕp〉 · p on P1

is principal, i.e. it is the divisor of some f0 ∈ k(P1) = KB.
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For q = (`, h) ∈ Hp, write q = hεp+(`, 0), so we have 〈q, ϕp〉 = hνp(f0)+ 〈(`, 0), ϕp〉.

Now 〈(`, 0), ϕp〉 ∈ Q, and ` : Λ→ Q, so there is some integer multiple k such that we

can choose λ ∈ Λ with 〈`, λ〉 = k〈(`, 0), ϕp〉. Then ϕp(q) = hνp(f0) + 1
k
〈`, λ〉, i.e. kϕ is

the functional associated to the semi-invariant f = fk0 eλ ∈ K(B).

The ‘up to scalar multiples’ caveats turn out to be unimportant since we will only

be interested in whether a linear functional is nonnegative or not at any given point,

as this will determine which points lie in certain cones and which do not. Likewise it

makes no difference if a semi-invariant f is replaced by fn.

Next we see that linear functionals split into two distinct types, determined by their

behaviour on the central hyperplane Z ⊆ H.

Proposition 3.3. Let f ∈ KB. The corresponding functional ϕ vanishes on Z and on

Hp for all but finitely many p ∈ P1. The remaining p split into points for which ϕ is

positive on Hp \ Z and points for which ϕ is negative on Hp \ Z. Conversely, any such

functional is determined by its positive and negative half-spaces Hp and a collection of

numbers dp = 〈εp, ϕp〉 with
∑
dp = 0. We call these ϕ functionals of type I.

Proof. [Tim97, §3.1] Remembering that KB = k(P1), if p ∈ P1 and q = (`, h) ∈ Hp,

we have 〈q, ϕp〉 = hνp(f). From this it is clear that ϕ vanishes on Z, where h = 0, and

ϕ is nonzero only on slices Hp of hyperspace corresponding to p ∈ Supp (f). There are

finitely many such points, and ϕ is positive on Hp when p is a zero of f , and negative

when p is a pole.

Being given a finite collection of positive and negative half-spaces Hp amounts by

the discussion above to being given the points p ∈ P1 on which a divisor D on P1 is

supported. The numbers dp then tell us the multiplicity of p in D, and the condition∑
dp = 0 tells us D = (f) for some f ∈ k(P1).

Proposition 3.4. Functionals ϕ corresponding to semi-invariants f /∈ KB do not

vanish on Z and are determined by the hyperplanes kerϕp ⊆ Hp. These hyperplanes have

common intersection in Z and all but finitely many of them contain εp = (p, 0, 1) ∈ Hp.

These functionals also satisfy the following ‘balancing condition of inclination to

the vertical’: for any ` ∈ Z \ kerϕ and any p ∈ P1, kerϕp meets the line εp + Q` at a

unique point qp = (`p, 1). The condition is that
∑
`p = 0.
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Conversely, any collection of hyperplanes in the Hp having common intersection

in Z and satisfying the above balancing condition determine up to proportionality a

functional of this type, once the positive and negative subspaces in each Hp are specified.

We call these functionals of type II.

Proof. [Tim97, Remark 3.1] Let f = f0eλ, with f0 ∈ KB and λ 6= 1. Then for

q = (`, h) ∈ Hp, 〈q, ϕp〉 = hνp(f0) + 〈`, λ〉. Taking h = 0 gives ϕ|Z(`) = 〈`, λ〉 6= 0 for

` 6= 0, since λ 6= 1. Since ϕ must be a function on H, each ϕp must agree on Z, so

in particular each kerϕp must intersect Z at the same points. For εp ∈ Hp we have

〈εp, ϕp〉 = νp(f0), which is zero for all but finitely many p, so εp ∈ kerϕp for all but

finitely many p, as required.

As for the balancing condition, since 〈qp, ϕp〉 = 0 for all p ∈ P1, we have

0 =
∑
p∈P1

〈qp, ϕp〉 =
∑
p∈P1

〈εp, ϕp〉+
∑
p∈P1

〈`p, λ〉 =
∑
p∈P1

〈`p, λ〉 = 〈
∑
p∈P1

`p, λ〉,

which gives
∑

p∈P1 `p = 0 since λ 6= 1.

Now suppose we are given a collection Lp of subspaces in each Hp, all but finitely

many of which contain εp, which have common intersection K in Z and which satisfy

the balancing condition of inclination to the vertical. Choose ` ∈ Z \K and λ 6= 1

in Λ such that 〈`, λ〉 = 1. For each p ∈ P1, find the points qp = (`p, 1) lying in each

(εp+Q`)∩Lp. Then all but finitely many `p are 0, and
∑

p∈P1 `p = 0. Set dp = −〈`p, λ〉

for each p ∈ P1. Then all but finitely many dp are 0 and
∑

p∈P1 dp = 0 as well. Hence

the divisor D =
∑

p∈P1 dp · p is prinicpal, so equal to (f0) for some f0 ∈ k(P1). Then the

functional ϕ corresponding to f0eλ ∈ K(B) has kerϕp = Lp for all p ∈ P1, dp = 〈εp, ϕp〉

and so on.

This process determines ϕ up to proportionality since ` (hence `p and hence dp) are

all determined up to proportionality as well.

3.1.2 Hypercones and Hyperfans

B-Charts and Hypercones

We are now ready to begin interpreting the conditions of the Luna-Vust theory in

terms of how the coloured data of a G-model appears in the hyperspace. We will
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start with the properties of B-charts, so let (W ,R) ∈ CD, let A = A(W ,R) and let

X0 = SpecA.

Proposition 3.5. Condition (F) holds for all (W ,R) ∈ CD.

Proof. [Tim97, Prop 3.1] Recall that we must show finite generation ofAU = k(A(B)) =

k[f ∈ K(B) | 〈W tR, f〉 ≥ 0]. We know that K(B) = KB · e(Λ), and furthermore we

know from our discussion of (sub)regular and central colours that all but finitely many

valuations from W tR (say all but those in a finite subset W0 t R0) correspond to

regular colours, i.e. are equal to 0 on e(Λ) and are given by νp on KB = k(P1) for p

lying in some open subset P1
0 of P1. Hence the condition 〈W tR, f〉 ≥ 0 requires that

f is regular on P1
0 and we can write A(B) ⊆ k[P1

0] · e(Λ). We may even reduce P1
0 if

necessary such that we can assume that a unique element of W tR falls into Hp for

each p ∈ P1
0.

Now consider P1 as P(A2) so that k(P1) = k(A2)deg=0, let A2
0 be the open subset

of A2 corresponding to P1
0 and let gp be the equation of the line in A2 corresponding

to p ∈ P1. Then the algebra AU = k[A(B)] ⊆ k[A2
0] ⊗ k[e(Λ)] is generated by the

semigroup

A(B) = {f = f0eλ | f0 ∈ k[A2
0], deg f0 = 0, λ ∈ Λ, 〈W0 tR0, f〉 ≥ 0}.

Let Â(B) be the group obtained by allowing homogeneous f of arbitrary degree in

the above description of A(B). Then Â(B) generates a B-algebra Â such that AU =

Âdeg=0 = (Â)k
×

. By Hilbert’s theorem on invariants it will then suffice to show that Â

is finitely generated.

For homogeneous f0 ∈ k[A2
0], write f0 =

∏
p/∈P1

0
g
kp
p · q where q ∈ k[A2] is a homoge-

neous polynomial coprime to all gp, and kp are integers. Now we want to rewrite the

condition 〈W0 tR0, f〉 ≥ 0. For ν ∈ W0 tR0 mapping into Hp, we have

ν(f) = ν(f0) + ν(eλ) = hννp(f0) + 〈`ν , λ〉 = hνkp + 〈`ν , λ〉,

so the condition 〈W0tR0, f〉 ≥ 0 reduces to a finite set of inequalities hνkp+〈`ν , λ〉 ≥ 0.

These inequalities determine a finitely generated subsemigroup in the group{ ∏
p/∈P1

0

gkpp · eλ | kp ∈ Z, λ ∈ Λ

}
.
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This subsemigroup, together with the co-ordinate functions on A2, generates the algebra

Â, so we are done.

Now as with the complexity zero case, we want to form cones in H from the coloured

data (W ,R), but since the hyperspace is not a finite dimensional vector space, we

have to be more careful about our definitions. With that in mind, let C = C(W ,R)

be the subset of H consisting of points q where 〈q, ϕ〉 ≥ 0 for all functionals ϕ with

〈W t R, ϕ〉 ≥ 0. We can view this as something like a ‘double dual’ in H of the set

W ∪ κ(R). It is not a convex cone in the usual sense, but K = C ∩ Z is a cone in Z,

and for each p ∈ P1, Cp = C ∩ Hp is a cone in Hp.

Before we move on to describing the properties of the cones K and Cp, we introduce

a typology of B-charts which will be necessary to keep track of.

Proposition 3.6. B-charts split into two types. Those we will call type I have non-

trivial B-invariants in their algebra of functions, i.e. AB 6= k. In this case, there is

some p ∈ P1 for which no elements of W tR map to Hp \ Z, or equivalently, some

p ∈ P1 with Cp ⊆ K.

A B-chart is of type II if AB = k. For B-charts of type II, all Hp contain

non-central elements of W tR.

Proof. [Tim97, Remark 3.1] Clearly any B-chart is either of type I or of type II and

never both. Suppose X0 = SpecA(W ,R) is a B-chart of type I, i.e. AB 6= k. Let

f ∈ AB be a nonconstant B-invariant with 〈W t R, f〉 ≥ 0. Since f ∈ KB = k(P1),

let p ∈ P1 be a pole of f . For any ν ∈ W tR with ν|KB = hνp and h ≥ 0, we have

ν(f) = hνp(f) ≥ 0 since f ∈ A, but hνp(f) ≤ 0 since νp(f) < 0, so h = 0 and ν lies in

Z. Hence Hp \ Z contains no valuations from W tR.

Now suppose X0 is of type II, i.e. AB = k. For any p ∈ P1, we can choose

nonconstant f ∈ k(P1) = KB with νp(f) < 0. Since f /∈ AB, there must be ν ∈ W tR

with ν(f) < 0. Hence ν|KB = hνp with h 6= 0, i.e. ν lies in Hp \ Z.

First, we can describe the cones Cp for a B-chart of type I:

Lemma 3.2. Let X0 = SpecA(W ,R) be a B-chart of type I. Then:

(i) Any collection {ϕp}p∈P1 of linear functionals on each Hp which agree on Z can be

made into a functional ϕ on H satisfying the balancing condition
∑

p∈P1 〈εp, ϕp〉 =
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0. The resulting functional ϕ can be chosen to have the same positive and negative

half-spaces with respect to W tR as the original collection of functionals;

(ii) If Hp0 contains no noncentral elements of WtR, then for p 6= p0, any functional

ϕp on Hp which is non-negative on elements of W t R can be extended to a

functional ϕ on all of H which is also non-negative on W tR;

(iii) Let C = C(W ,R). For p ∈ P1, the cone Cp = C ∩ Hp is generated by elements of

W tR falling in Hp.

Proof. [Tim97, Lemma 3.1] (i): Let p0 be a point where Hp0 contains no noncentral

elements of W t R. We can vary ϕp0 such that it keeps the same values on Z but

we have 〈εp0 , ϕp0〉 = −
∑

p 6=p0〈εp, ϕp〉. Then the new collection {ϕp}p∈P1 defines a

functional ϕ on H, and the positive/negative half-spaces are the same since Hp0 \ Z is

disjoint from W tR.

(ii): Restricting ϕp to Z gives a linear functional on the common hyperplane of

all Hq, q ∈ P1. Hence we can define linear functionals ϕq on every Hq by extending

ϕp|Z and we are free to require these functionals to be non-negative on W tR. Now

by (i) we can force these functionals to satisfy the balancing condition by varying ϕp0 ,

without effecting non-negativity on W tR.

(iii): If p0 is a point where Hp0 contains no non-central elements of W tR, then

the cone generated by elements of W tR falling in Hp0 is the cone generated by the

central valuations. Hence if the statement holds true for other p, it must be true for p0,

since the central valuations lie in every Hp.

For any other p ∈ P1, let C ′ be the cone in Hp generated by the elements of W tR

falling into Hp. Then q ∈ C ′ if and only if for all functionals ϕp on Hp non-negative

on elements of W tR falling into Hp, we have ϕp(q) ≥ 0. By (ii) any such functional

corresponds to a functional ϕ on all of H which is non-negative onWtR. Likewise, any

functional ϕ on H non-negative on W tR defines a functional ϕp on Hp non-negative

on elements of W tR falling into Hp. It follows that C ′ = Cp.

The cones Cp for B-charts of type II have a different description:

Proposition 3.7. Let X0 = SpecA(W ,R) be a B-chart of type II. Then:

(i) Any functional non-negative on W tR must be of type II;
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(ii) Non-central elements of W tR generate a collection {εp + Pp}p∈P1 of polytopes

in H, where Pp ⊆ Z, and we have Pp = {0} for all but finitely many p;

(iii) Let P =
∑

p∈P1 Pp. Then for any functional ϕp on Hp non-negative on P and

elements of W tR falling in Hp for some given p ∈ P1, there is a corresponding

functional on H non-negative on W tR.

(iv) Let C = C(W ,R). The cones Cp = C ∩ Hp are generated by elements of W tR

falling into Hp and by the polytope P =
∑

p∈P1 Pp.

Proof. [Tim97, Lemma 3.2] (i) For any functional ϕ of type I, there are p ∈ P1 for

which ϕp takes negative values on all of Hp \Z, so ϕ cannot be non-negative onWtR

since it contains valuations mapping to Hp \ Z for any p.

(ii): Fix p ∈ P1 and consider the affine hyperplane εp + Z ⊆ Hp. Any non-central

element q ∈ Hp is uniquely determined by its h co-ordinate and the point of intersection

Q≥0q ∩ (εp + Z). Since we are only interested in elements of W tR up to multiples,

we can in fact determine elements in this set entirely by this point of intersection,

effectively setting h = 1.

Hence non-central elements of W tR generate a polytope εp + Pp in Hp for each

p, given by the convex hull of the points of intersection with εp + Z of noncentral

valuations in W t R which land in Hp. Since for all but finitely many p, the only

noncentral valuation from W tR lying in Hp is εp, it follows that Pp = {0} for all but

finitely many p.

(iii): By the above, the Minkowski sum
∑

p∈P1 Pp makes sense, since Pp = {0} for

almost all p.

To obtain such a functional, define ψp on Hp as the result of rotating kerϕp, without

changing ϕp|Z , so that it becomes supporting for εp + Pp. Then ψp|Z = ϕp|Z , and

kerψp is a supporting hyperplane of εp + Pp. For q 6= p, we can now define ψq by

extending ψp|Z to Hq in such a way that it is supporting for εq + Pq for every q. Now

for all q we have

〈εq + Pq, ψq〉 ≥ 0 =⇒
∑
q∈P1

〈εq, ψq〉+ 〈P , ψ〉 ≥ 0.

Since kerψq is supporting for every εq+Pq, equality is achieved at certain points in each

of the above inequalities. It follows that
∑

q∈P1 〈εq, ψq〉 ≤ 0. By moving the hyperplanes
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kerψq for certain q 6= p away from the ones supporting εq +Pq, we can increase 〈εq, ψq〉

without changing the inequality 〈εq + Pq, ψq〉 ≥ 0, thus giving
∑

q∈P1 〈εq, ψq〉 = 0 as

required.

The resulting functional ψ is non-negative on central elements ofWtR because ϕp

was, and we chose ψ to agree with ϕq on Z. It is non-negative on non-central elements

of W tR by virtue of being non-negative on εq + Pq for all q, since these polytopes

are generated by those elements.

(iv) If ϕ is a functional on H non-negative onWtR, then since εp +Pp is a convex

hull of non-negative rational multiples of points in W tR, we have 〈εp + Pp, ϕp〉 ≥ 0

for any p ∈ P1. Then

0 ≤
∑
p∈P1

〈εp + Pp, ϕp〉 =
∑
p∈P1

〈εp, ϕp〉+
∑
p∈P1

〈Pp, ϕp〉 = 〈P , ϕ〉.

Hence the cone generated by P is contained in Cp for all p ∈ P1. Likewise by arguments

in the type I case, the cones in each Hp generated by elements of W tR falling into

Hp are contained in Cp for all p ∈ P1. The reverse inclusion is given by (iii).

Having shown how C is generated for B-charts of both types, we are ready to

interpret the remaining conditions from the Luna-Vust theory in terms of C.

Proposition 3.8. For any B-chart X0 = SpecA(W ,R) and C = C(W ,R), the

condition (C) of the Luna-Vust theory says that each Cp, p ∈ P1 is strictly convex, and

0 /∈ κ(R). For B-charts of type II, we additionally have 0 /∈ P.

Proof. [Tim97, §3.2] Since each Cp lies in a half-space, these cones are all strictly

convex if and only if K is strictly convex. By Proposition 3.1, only finitely many

elements of W tR fall in Z. Then (C) holds if and only if for any finite subset of

W tR, there is a functional ϕ non-negative on W tR and positive on this subset.

Assume (C). Since there are finitely many central valuations mapping to K, there is

a functional non-negative onWtR and positive on K. This is impossible if K contains

a subspace of Q. Hence K is strictly convex and hence so are all Cp.

Likewise, there are finitely many elements of R falling in any particular Hp, so

there is a functional positive on κ(R) ∩Hp for any p, so 0 /∈ κ(R).

Finally, if X0 is of type II, then all but finitely many Pp are {0}, so P is in fact

generated by a finite set of elements of W tR. Hence there is a functional positive on

P , so 0 /∈ P .
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Now suppose strict convexity of K is given, 0 /∈ κ(R) and, if X0 is of type II, 0 /∈ P .

Let V0 be a finite subset ofWtR, and suppose without loss of generality that elements

of V0 all fall in Hp for some p ∈ P1. Take a functional on Z which is positive on K\{0}

and extend it to functionals ϕq on Hq for all q ∈ P1. If X0 is of type I, the ϕq are

arbitrary, and if X0 is of type II, we choose ϕq to be supporting functionals of the

polytopes εq + Pq as in Proposition 3.7 (iii).

In type I, choose p0 with Hp0 containing no non-central valuations. We increase ϕp

so that it is positive on V0, and vary ϕp0 to obtain the balancing condition.

In type II, we have
∑

q∈P1 〈εq, ϕq〉 ≤ 0, so at the same time we increase 〈εp, ϕp〉 to

make ϕ positive on V0 and satisfy the balancing conditon. Either way, (C) holds.

Proposition 3.9. Condition (W) of the Luna-Vust theory says that elements w ∈ W

are the generators of the edges of the cones Cp which do not intersect κ(R) or (for

charts of type II) P.

Proof. [Tim97, §3.2] Assume (W). If there is a functional ϕ non-negative on C but

negative on w, w generates an edge of Cp for whichever p satisfies w|KB = hνp. These

edges cannot intersect R since 〈R, ϕ〉 ≥ 0 by assumption. If X0 is of type II, then

for the edge generated by w to intersect P, it is necessary that w ∈ K. But then

W \ {w} t R generates the same polytope P as W tR, and 〈W \ {w} t R, ϕ〉 ≥ 0

implies 〈P , ϕ〉 ≥ 0 (by Proposition 3.7 (iii)). Hence P does not intersect the edge

generated by w either.

Conversely, let Q≥0w be an edge of Cp not intersecting κ(R) (or P in type II).

Choose a functional ϕp on Hp which is negative on w, non-negative on elements of

W \{w}tR falling in Hp, and for type II, non-negative on P . Now by applying either

Lemma 3.2(ii) in type I or Proposition 3.7(iii) in type II to ϕp and W \ {w} t R, we

obtain a functional ϕ on H negative on w and non-negative on W \ {w} t R. Hence

W can be recovered from C.

Definition 3.2. A hypercone in H is a union C =
⋃
p∈P1 Cp of finitely generated convex

cones Cp = C ∩ Hp such that:

(i) Cp = K + Q≥0εp for all but finitely many p, where K = C ∩ Z;

(ii) Either:
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(I) there exists p ∈ P1 with Cp = K, or;

(II) the polytope P =
∑

p∈P1 Pp is non-empty, where the Pp are defined by

εp + Pp = Cp ∩ (εp + Z).

The hypercone C is called strictly convex if every Cp is strictly convex and 0 /∈ P .

Definition 3.3. A coloured hypercone in H is a pair (C,R) such that R ⊆ DB, 0 /∈ R,

and C is a strictly convex hypercone in H generated by κ(R), a finite subset W ⊆ V,

and (if C is of type II) the polytope P .

Theorem 3.2. B-charts correspond bijectively to coloured hypercones in H of the

corresponding type.

Proof. [Tim97, Thm 3.1] By Proposition 3.8 and Proposition 3.9, if X0 = SpecA(W ,R)

is a B-chart, then C = C(W ,R) is a coloured hypercone of the corresponding type.

Furthermore from the same results, given a coloured hypercone (C,R), we can construct

W ⊆ V such that C = C(W ,R) corresponds to a B-chart.

G-Germs and Supported Hypercones

Having obtained a full description of the B-charts, we move on to describing how

G-germs behave in hyperspace.

Proposition 3.10. We say that a G-germ Y is of type I if it admits a B-chart of

type I, and of type II if it does not. A G-germ Y is of type I if and only if VY tDBY is

finite, and of type II if and only if it admits a minimal B-chart.

Proof. [Tim97, §3.3] Suppose VYtDBY is finite and choose aB-chartX0 = SpecA(W ,R)

intersecting Y . There are infinitely many p ∈ P1 such that Hp contains no elements

of VY t DBY . Choose one such p with the additional property that C = C(W ,R) is

generated by K and Q≥0εp, and remove any valuation mapping to εp from WtR. The

resulting coloured data define a B-chart of type I intersecting Y .

Conversely, suppose Y admits a B-chart X0 = SpecA(W ,R) of type I, i.e. AB 6= k.

Let f be a nonconstant element of AB ⊆ KB. Then f defines a functional ϕ of type I

on hyperspace, i.e. ϕ vanishes on Z and on all but finitely many Hp, and the remaining

Hp are split into those on which ϕ is positive or negative. Since f ∈ A, we have
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〈W t R, ϕ〉 ≥ 0. In particular, there are only finitely many elements of W t R on

which ϕ is positive. Hence we take f ∈ AB ∩ IY . Then ϕ is positive on any divisor

containing Y , hence there can only be finitely many such divisors, and VY t DBY is

finite.

We see then that a G-germ is of type II if VY t DBY is infinite. Suppose Y admits

a minimal B-chart, i.e. XY = SpecA(VY ,DBY ) is a B-chart. Then VY t DBY must be

infinite since any B-chart must intersect infinitely many colours, hence Y is of type II.

Now suppose Y is of type II. Then VY t DBY must contain a non-central valuation

mapping to Hp for every p ∈ P1, or it would admit a B-chart of type I. Then V \ VY
and R \ DBY must be finite, so X0 = SpecA(VY ,DBY ) is a minimal B-chart for Y .

Proposition 3.11. Let Y be a G-germ with coloured data (VY ,DBY ) and let CY =

C(VY ,DBY ) be the bidual set in H to VY t DBY , as in the definition of the hypercone

corresponding to a B-chart. If Y is of type I, then CY is a coloured cone in some Hp.

If Y is of type II, then CY is a coloured hypercone of type II.

Proof. [Tim97, §3.3] If Y is of type I, we have seen that VY t DBY is finite. For CY to

be a coloured cone in some Hp, the only thing we need to check is that all non-central

elements of VY t DBY fall in the same slice of the hyperspace.

Let X0 be a B-chart of type I intersecting Y and let X = G·X0 be the corresponding

G-model. Consider the rational B-quotient π : X 99K P1. For any B-stable D ⊇ Y ,

either D is central or π(D) is a point pD. Hence for all non-central D whose valuations

lie in VY t DBY , we have π(Y ) ⊆ π(D) = {pD}. Now either π(Y ) is empty, i.e. Y lies

outside the domain of definition of π, in which case VY tDBY consists entirely of central

elements, or π(Y ) is nonempty, in which case ∅ 6= π(Y ) ⊆ ∩D{pD}, and all pD must be

the same point.

If Y is of type II, then it admits a minimal B-chart XY = SpecA(VY ,DBY ) of type

II. Then CY is the coloured hypercone of type II corresponding to XY and we are

done.

Definition 3.4. Let C be a hypercone of type II in H. The relative interior of C is

the union
⋃
p∈P1 relint Cp ∪ relintK.

Proposition 3.12. Let Y be a G-germ with coloured data (VY ,DBY ). Condition (S)

of the Luna-Vust theory means that a valuation ν ∈ V is in SY if and only if ν ∈
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relint CY ∩ V.

Proof. [Tim11, §16.4] Condition (S) says that ν ∈ SY if and only if for any functional

ϕ on H, 〈VY t DBY , ϕ〉 ≥ 0 implies 〈ν, ϕ〉 ≥ 0, and if > appears on the left, it appears

on the right. The first condition is by definition equivalent to ν ∈ CY , and the second

forces ν ∈ relint CY . The claim follows.

Definition 3.5. Let C be a hypercone in H. A face of C is a face of some Cp not

intersecting P. A hyperface of C is a hypercone C ′ = C ∩ kerϕ for some functional ϕ

on H with 〈C, ϕ〉 ≥ 0. We call ϕ a supporting functional for the face C ′.

A (hyper)face of a coloured hypercone (C,R) is a coloured (hyper)cone (C ′,R′)

where C ′ is a (hyper)face of C and R′ = R∩ κ−1(C ′).

Lemma 3.3. Let (C,R) be a coloured hypercone and let ν ∈ C \ relint C be nonzero.

Then there is a unique face or hyperface (C ′,R′) of (C,R) containing ν in its relative

interior, given as the intersection of all hyperfaces of C containing ν.

Proof. [Tim11, Lemma 16.17] Since the relative interior is C with all (hyper)faces

removed, clearly ν lies in some (hyper)face of C. It cannot lie in every (hyper)face,

since {0} is a face, so it must lie in the relative interior of some (hyper)face, which

must then be unique.

Hence let C ′ be the (hyper)face containing ν in its relative interior. Let ϕ be a

functional on H such that 〈C, ϕ〉 ≥ 0 and 〈ν, ϕ〉 = 0, i.e. ν lies in the hyperface

C ∩ kerϕ of C. Then 〈C ′, ϕ〉 = 0 since otherwise, ν ∈ relint C ′ would imply 〈ν, ϕ〉 > 0,

a contradiction. Hence C ′ ⊆ C ∩ kerϕ for any such ϕ, i.e. C ′ is contained in the

intersection of all hyperfaces containing ν. If C is itself a hyperface, then since it

contains ν itself, the reverse inclusion must hold.

Assuming now then that C ′ is a face, the reverse inclusion follows from the claim:

for any q ∈ C \ C ′, there is a functional ϕ on H such that 〈C, ϕ〉 ≥ 0, 〈ν, ϕ〉 = 0 and

〈q, ϕ〉 > 0.

Say C ′ ⊆ Cp for some p ∈ P1. Then take a functional ϕp on Hp such that 〈Cp, ϕp〉 ≥ 0

and C ′ = C ∩ kerϕp. Now take ϕp|Z and extend it to every Hp, using Lemma 3.2(i)

if C is of type I or Proposition 3.7(iii) if C is of type II to ensure that the resulting

collection defines a functional ϕ on H non-negative on C. Then 〈C, ϕ〉 ≥ 0, 〈ν, ϕ〉 = 0
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by construction, and if q ∈ Hx we can increase ϕx to give 〈q, ϕx〉 > 0 while retaining

the balancing condition by decreasing some other ϕy.

Proposition 3.13. Let X0 = SpecA(W ,R) be a B-chart, let C be the associated

coloured hypercone and let Y be a G-germ with coloured data (VY ,DBY ). Then:

(i) Condition (V) of the Luna-Vust theory means that ν ∈ V has centre on X0 if

and only if ν lies in C.

(ii) Conditions (V′) and (D) of the Luna-Vust theory mean that elements of W and

R lie in VY and DBY if and only if they lie in CY , which is a face of C if Y is of

type I or a hyperface of type II if Y is of type II.

Proof. [Tim11, §16.4] (i) Condition (V) says that ν has centre on X0 if and only if

〈W tR, ϕ〉 ≥ 0 implies 〈ν, ϕ〉 ≥ 0 for any functional ϕ, which is the defining property

of elements of C.

(ii) Condition (V′) says that if ν ∈ SY , then w ∈ W lies in VY if and only if for

any functional ϕ on H with 〈W tR, ϕ〉 ≥ 0 and 〈ν, ϕ〉 = 0, we have 〈w,ϕ〉 = 0. We

know that ν ∈ SY means ν is in the relative interior of CY which by the above Lemma

means that CY is the unique (hyper)face of C containing ν in its relative interior, being

a face if Y is of type I or a hyperface if Y is of type II. Then (V′) says that w ∈ VY
if and only if w ∈ CY . Condition (D) says the same for B-divisors, and the proof is

identical.

Definition 3.6. Let C be a hypercone of type II in H. We say that C is supported if

relint C ∩ V is non-empty.

Theorem 3.3. G-germs of type I are in bijection with supported coloured cones in H,

and G-germs of type II are in bijection with supported coloured hypercones of type II

in H. Inclusion of G-germs in each other corresponds to opposite inclusions of the

respective (hyper)cones as (hyper)faces of each other.

Proof. [Tim97, Thm 3.2] For G-germs of either type, we know the corresponding

coloured (hyper)cones must be supported by (S), since SY is nonempty and consists of

valuations mapping to relint CY ∩ V .

Let Y be a G-germ of type I with corresponding coloured cone (CY ,DBY ). Choose a

B-chart of type I intersecting Y with coloured hypercone (C,R). Then we know that
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W can be recovered from C as the set of generators of edges not intersecting κ(R).

Then VY is recovered as the subset of W of generators of edges included in the face CY
of C. Hence the correspondence of G-germs of type I with supported coloured cones is

bijective.

Since G-germs of type II admit minimal B-charts, and B-charts of type II correspond

bijectively to coloured hypercones of type II, we just need to prove that any B-chart

of type II whose coloured hypercone is supported corresponds to a unique G-germ of

type II. Indeed let X0 be a B-chart with coloured hypercone C which is supported.

Then relint C ∩ V is a non-empty finite set of G-valuations and hence corresponds to

the support of a G-germ Y . Since supports of distinct G-germs must be disjoint, Y is

determined by C.

If Y1 ⊆ Y2 are G-germs of any type, then (VY2 ,DBY2) ⊆ (VY1 ,DBY1), so CY2 is contained

in CY1 . Let X0 = SpecA(W ,R) be a B-chart with coloured hypercone C intersecting

Y2, and hence Y1. Then CY1 and CY2 are both (hyper)faces of C, so CY2 is a (hyper)face

of CY1 . The converse implication is immediate.

G-models and Hyperfans

We know that G-models are determined by their G-germs, which lie in a finite collection

of B-charts. The supports of the G-germs must be disjoint, and inclusions of G-germs

must be kept track of. In this spirit we make the following definition:

Definition 3.7. A coloured hyperfan in H is a collection of supported coloured cones

and supported coloured hypercones of type II in H, obtained as the set of all supported

(hyper)faces of a finite collection of coloured hypercones, subject to the condition that

the relative interiors of these (hyper)faces are disjoint inside V .

Then by Theorem 3.2, Proposition 3.12 and Theorem 3.3, we have proved [Tim97,

Thm 3.3]:

Theorem 3.4. G-models of K are in bijection up to isomorphism with coloured

hyperfans in H.

Applying Proposition 2.16 and Proposition 2.17, we obtain:

Corollary 3.1. Affine G-models of K are in bijection with coloured hypercones of the

form (C,DB).
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Corollary 3.2. A G-model is complete if and only if its coloured hyperfan covers V.

Proposition 3.14. We say that a G-model X is of type I if all of its G-germs are of

type I, and of type II if it contains any G-germ of type II. For any G-model X, there

exists a G-model X̌ of type I and a proper birational morphism ϕ : X̌ → X.

Proof. [Tim11, §16.6] We may assume without loss of generality that X contains only

one G-germ Y of type II. Consider the supported coloured hypercone of type II CY ⊆ H

corresponding to Y : for each p ∈ P1, the slice CY,p = CY ∩ Hp of CY is a supported

coloured cone in Hp. Let X̌ be the G-model corresponding to the coloured hyperfan

obtained as the collection of the coloured cones corresponding to all G-germs of X of

type I and all CY,p. Then X̌ is a G-model of K = k(X) of type I.

We have a birational map ϕ : X̌ 99K X since they have the same function field. By

Proposition 2.13, this is a morphism if and only if for any G-germ Ž ⊆ X̌, there exists

a G-germ Z ⊆ X such that OX̌,Ž dominates OX,Z . This is the case since every G-germ

of X̌ is either also a G-germ of X or one of the Y̌p corresponding to CY,p. In this case

the coloured data (VY̌p ,D
B
Y̌p

) are contained in (VY ,DBY ) and so OX̌,Y̌p dominates OX,Y
for all p ∈ P1.

Finally, Theorem 2.11 says that ϕ is proper if and only if
⋃
Ž⊆X̌ SŽ = ϕ−1

∗ (
⋃
Z⊆Y SZ),

where ϕ∗ is the restriction map V(Ǩ)→ V(K). Since Ǩ = K, ϕ∗ is the identity, so we

just need
⋃
Ž⊆X̌ SŽ =

⋃
Z⊆X SZ . This holds since we either have Ž = Z or Ž = Y̌p and

then SY = relintCY ∩ V =
⋃
p∈P1 relint CY,p ∩ Vp =

⋃
p∈P1 SY̌p .

3.2 Homogeneous SL2-Spaces

We can now apply the theory from the previous sections to calculate the coloured

hyperspace of a complexity one homogeneous space, and we explain how we can use

one calculated example to simplify the calculation of others. Using these techniques

we calculate the coloured hyperspace for every homogeneous complexity-one SL2-space.

First, we outline a theoretical technique for calculating the position of G-valuations in

the hyperspace.
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3.2.1 The Method of Formal Curves

Let G/H be a complexity one homogeneous space with function field K, G-valuations V

and so on. The method of formal curves is a way to calculate the position of valuations

in V in the hyperspace H of G/H by restricting functions f ∈ K to formal curves

approaching the associated divisors. We explain this method following [Tim11, §24],

mainly without proofs.

Specifically, let V1 ⊆ V be the subset of G-valuations of K such that k(ν)G = k.

Geometrically, given an embedding G/H → X, if D is a G-stable divisor of X and ν is

proportional to νD, then ν ∈ V1 if and only if D contains a dense G-orbit: indeed if this

is the case, then Oν = OX,D, mν = mX,D, so k(ν) = k(D). Then k(D)G = k(ν)G = k

if and only if D contains a homogeneous space as a dense orbit.

The method of formal curves computes valuations in the subset V1, and the following

fact shows that this is essentially sufficient to calulate V .

Proposition 3.15. When G/H is of complexity one, V1 contains all non-central

valuations in V.

Proof. By [Tim11, Prop. 21.3], a nonzero G-valuation ν is central if and only if

cG(k(ν)) = cG(K) = 1 and non-central if and only if cG(k(ν)) = cG(K)− 1 = 0. Thus

a non-central valuation on G/H has k(ν)G ⊆ k(ν)B = k.

Given this, the central valuations can be calculated as ‘limits’ of the non-central

ones, in a certain sense. We move on now to describe the method itself.

Definition 3.8. Let X be a k-scheme and let A be a ring. We call a k-morphism

SpecA→ X an A-point of X and denote the set of A-points of X by X(A).

Now suppose X is a k-variety and A is a local k-algebra. Let χ be an A-point of

X, i.e. χ : SpecA→ X. The (unique) closed point of A is mapped by χ to the generic

point of a closed subvariety Y ⊆ X, which we call the centre of χ.

Definition 3.9. Let X be a k-variety. A germ of a curve in X is a pair (χ, θ0),

whereΘ is a smooth projective curve, χ ∈ X(k(Θ)), and θ0 ∈ Θ. That is, χ : Θ→ X

is a rational map from a smooth projective curve and θ0 ∈ Θ is a basepoint. The

germ is convergent if χ ∈ X(OΘ,θ0), i.e. χ is regular at θ0, in which case the point

x0 = χ(θ0) ∈ X is then limit of the curve.
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The idea is that for f ∈ K and ν ∈ V1, if ν is proportional to νD for a divisor D

containing a dense G-orbit, we take a curve Θ meeting D transversally at a point x0 ∈ D

with G · x0 = D and calculate ν(f) by restricting to Θ. In terms of germs, take a germ of

a curve χ : Θ 99K G/H which converges to x0 ∈ D. Then we have νD(f) = νθ0(χ
∗(gf))

for general g ∈ G, modulo positive multiples given by the intersection multiplicity of Θ

and D at x0.

It turns out that the calculations are easier using the related notion of a formal

germ in D:

Definition 3.10. A germ of a formal curve (or formal germ) in X is a k((t))-point of

X. A k[[t]]-point is a convergent formal germ and its centre x0 ∈ X is the limit of the

formal germ.

Any germ of a curve θ0 ∈ Θ 99K X defines a formal germ as follows: take the

completion ÔΘ,θ0 of the local ring of Θ at θ0 and a uniformising parameter t in this ring.

This gives ÔΘ,θ0
∼= k[[t]] and k(Θ) ⊆ k((t)), inducing a map Spec k((t))→ Spec k(Θ)→

X, i.e. a formal germ in X. Clearly a convergent germ of a curve induces a convergent

formal germ with the same limit. There is a sense (see [Tim11, Thm A.16]) in which

‘almost all’ formal germs are induced by germs of formal curves.

In the formal germ perspective, the calculation of ν then works as follows: given

a formal germ x(t) ∈ G/H(k((t))) induced by a germ of a curve (χ, θ0), we have

νθ0(χ
∗(gf)) = νx(t)(f) := ordt f(g · x(t)), where g is a general point of G.

Theorem 3.5. For any x(t) ∈ G/H(k((t))), the formula νx(t)(f) = ordt f(g · x(t))

defines a valuation νx(t) ∈ V1, and any ν ∈ V1 is proportional to some νx(t). If

X ⊇ G/H is a G-model of K and Y ⊆ X is the centre of ν, then x(t) ∈ X(k[[t]]) and

Y = G · x(0).

Proof. [Tim11, Thm 24.2]

Hence we can calculate V1 by considering only formal germs. Now we see a series

of useful results which shrink the number of formal germs we actually have to consider

to calculate all valuations in V1.

Lemma 3.4. For any g(t) ∈ G(k[[t]]) and any x(t) ∈ G/H(k((t))), we have νg(t)x(t) =

νx(t).
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Proof. [Tim11, Lemma 24.3]

Lemma 3.5. For any x(t) ∈ G/H(k((t))) there exists n ∈ N such that x(tn) = g(t) ·H

for some g(t) ∈ G(k((t))).

Proof. [Tim11, Lemma 24.5]

Since νx(tn) = n ·νx(t) and we only care about valuations up to positive multiples, the

two above lemmas mean that we can describe V1 using only formal germs in G(k((t))),

considered up to left multiplication by G(k[[t]]) and right multiplication by H(k((t))).

One final decomposition further reduces the number of formal germs to consider:

Iwasawa Decomposition. There is a decomposition G(k((t))) = G(k[[t]]) · X∗(T ) ·

U(k((t))) where T is a maximal torus in G, U is a maximal unipotent subgroup and

X∗(T ) is regarded as a subset of T (k((t))).

Combining all of the above restrictions, we can restate the Theorem above as:

Corollary 3.3. Every ν ∈ V1 is proportional to νg(t) for g(t) ∈ X∗(T ) · U(k((t))).

Proof. [Tim11, Cor 24.6]

We can now use this result to greatly simplify the calculations of non-central

G-valuations for any homogeneous space.

3.2.2 SL2

Now we will caluclate the coloured data of the homogeneous space SL2, as done by

Timashev [Tim97, §5].

Consider the action of G = SL2 on itself by left multiplication of matrices, let

K = k(G) and choose subgroups B,U and T of G consisting of upper triangular, upper

unitriangular and diagonal matrices, respectively. The action gives the homogeneous

space G/H = SL2/{e}. The B-orbit of the identity is B itself, which is a maximal

orbit of codimension 1, so this is a complexity one homogeneous space. Note that

X(B) = Zα where α is the character
(
a b
0 1/a

)
7→ a. For g = ( x y

z w ), the functions g 7→ z

and g 7→ w are semi-invariant of weight α, so Λ = Zα as well. These semi-invariants

generate the space M = k[G]
(B)
α , and KB = k(z/w). Fix a splitting e : Λ→ K(B) given

by eα = z. Then all semi-invariants are of the form fekα where f ∈ KB and k ∈ Z.
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We are interested in G-valuations and valuations of colours of K, which are deter-

mined by their restrictions to K(B), which are in turn determined by their restrictions

to KB and a functional ` : Λ→ Q.

The rational B-quotient map is determined by the invariant z/w and thus looks

like π : SL2 → P1, g 7→ [z : w]. The regular semi-invariants thus lie in the space M

generated by z and w. Since no other semi-invariants can divide z or w, there are no

subregular semi-invariants. Likewise there are also no central colours. The fibre of

a point p = [α : β] ∈ P1 is the regular B-divisor Dp = Z(βz − αw), and all B-stable

divisors are of this form. The chosen splitting e marks out the point ∞ = [0 : 1] with

D∞ = Z(eα) as distinguished. As discussed in Section 3.4, non-distinguished regular

colours Dp for p 6=∞ sit at (p, `, h) = (p, 0, 1) ∈ Hp, and D∞ has ` = ν∞(eα) = 1, so

sits at (∞, 1, 1) ∈ H∞.

We can calculate V1 ⊆ V using Corollary 3.3: fix m ∈ Z and u(t) ∈ k((t)) and let

x(t) =

tm u(t)

0 t−m

 ∈ X∗(T ) · U(k((t)))

where ordt u(t) = n ≤ −m. Then any non-central G-valuation is proportional to νx(t),

where νx(t)(f) = ordt(f(g · x(t))) for any f ∈ K(B) and generic g ∈ G. Let p = [α : β]

and

dp = νx(t)(βz − αw) = ordt((βt
m − αu(t))z − αt−mw).

The value of dp is constant along P1 except at the distinguished point, where it

jumps by some h ∈ Q≥0, so that ν is represented in hyperspace by (x, `, h), where

` = νx(t)(eα).

Note that for any p, dp ∈ [m,−m]. Now suppose that m ≤ n. We have dp ≥

min {ordt(βt
m − αu(t)),−m} = ordt(βt

m − αu(t)) ≥ min {m,n} = m. Now if dp > m,

we have dp ∈ (m,−m]. Otherwise dp = m. Since h is the difference between the

maximum possible value of dp (which is −m) and the minimum, which we see lies

in the interval [m,−m), we have h ∈ (0,−2m]. Finally, ` is given by the value of dp,

which at non-distinguished points is m and at the distinguished point is m+ h.

In the case m > n, we have dp = n when α 6= 0, and when α = 0 (at the

distinguished point), we have dp = m. Hence h = m− n, ` = n for nondistinguished

points and ` = n+ h for ∞.
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In either case we have h > 0 and the possible (`, h) are defined for p 6=∞ by the

inequality 2`+h ≤ 0, and for p =∞ by 2`−h ≤ 0. Re-including the central valuations

allows h ≥ 0. Thus we have valuation cones Vp = {(`, h) ∈ Hp | 2`+ h ≤ 0, h ≥ 0} for

p 6=∞, and V∞ = {(`, h) ∈ H∞ | 2`− h ≤ 0, h ≥ 0}. The picture of the hyperspace is

thus:

`

h

p 6=∞
`

h

p =∞

Figure 1: Coloured data of SL2

where dashed areas denote the valuation cones and colours are denoted by unfilled

circles.

3.2.3 Calculating Hyperspace of Quotients

Having calculated above the coloured data for the homogeneous space SL2/{e}, it

would be useful to be able to exploit this knowledge to make it easier to find the data

for other homogeneous SL2-spaces, rather than starting from scratch. Thankfully this

is possible as follows [Tim97, §2.3]: suppose we know the structure of the hyperspace

associated to a field K = k(G/H) and we want to calculate the data associated to the

homogeneous space G/H, where H contains H as a normal subgroup of finite index.

Then G/H = (G/H)/(H/H), so letting A = H/H we are in a situation where the

finite group A acts on K and we want to find the coloured data for K = k(G/H) = KA

using the known data for K.

First, the lattice Λ of weights of B-eigenfunctions in K will be a sublattice of

Λ of finite index (since A is finite). This has no effect on Q = Hom(Λ,Q), i.e.

Q = Q, but there will be more integral points: Hom(Λ,Z) ⊆ Q has more points than

Hom(Λ,Z) ⊆ Q since Hom reverses sublattice inclusions.
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Now in the case of K we will have chosen a splitting e : Λ→ K(B), so for each λ ∈ Λ

we will have a semi-invariant eλ ∈ K(B), but we need to pass to some eλ ∈ K
(B)

=

K(B)×A. As explained above, the choice of a splitting e can be controlled by making a

balanced collection of integral shifts, i.e. choosing `x ∈ Hom(Λ,Z) with
∑

x∈P1 `x = 0

and defining e such that νx(e(λ)/e(λ)) = `x(λ) for each x. This can be done in such a

way as to obtain A-invariant functions eλ for each λ ∈ Λ.

Finally, the group A will also act on P1 via the B-quotient π. This causes points

p ∈ P1 to be permuted and hence also the sets Qp,Vp in H will be permuted accordingly.

We take the geometric quotient P1 → P1/A = P1 (which is always well-defined for finite

A) which identifies points p ∈ P1 within the same A-orbit, and hence identifies the

slices Hp of hyperspace for points in the same orbit. Since K ⊆ K, every G-valuation

of K extends to a G-valuation of K (Corollary 2.5), so the sets Vp are also identified

as Vp when we ‘factorise’ by the A-action.

Because of this identification of points in the same orbit, we must always ensure

before factorising that the slices Hp of hyperspace corresponding to points in the same

A-orbit align with each other, i.e. the colours, valuation cones etc. look the same

within the slices corresponding to different points.

The final adjustment required is as follows: the action of A on P1 will in general

have a kernel A∗, i.e. the intersection of all point stabilisers may not be trivial. Likewise

certain points in P1 will have nontrivial stabilisers. This means that the h-coordinate

in hyperspace for elements of Hp where p ∈ P1 will be [Ap : A∗] times the h-coordinate

corresponding to any of its preimages p ∈ P1.

3.2.4 Finite Subgroups of SL2

We now want to calculate the coloured data for the remaining homogeneous complexity-

one SL2-spaces. These must all be of the form SL2/H for H finite, so we first discuss

the finite subgroups of SL2.

Let k = C, so that we can identify P1 with the Riemann sphere S2. Then SU2 ⊆ SL2

acts on P1 via the double cover SU2 → SO3. We can thus realise finite subgroups of

SL2 as pullbacks under this double cover of finite rotation groups of the sphere.

Choose any diameter of S2. Then rotations of the sphere about this diameter by

an angle of 2π/n generate a cyclic group Zn of order n in SO3 for any n ∈ N. For odd
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n, Zn does not contain −I, so in this case its preimage in SL2 is still Zn. For even n

we get Zn/2 ⊆ SL2. Either way this realises Zn as a subgroup of SL2 for every n ∈ N.

Now suppose a regular n-gon is inscribed in S2. Then its symmetry group Dn is

a subgroup of SO3 of order 2n, and the preimage of this group in SU2 ⊆ SL2 is a

subgroup of order 4n. This group is the binary dihedral group D̃n.

Similarly, if a regular polyhedron is inscribed in S2, then the preimage in SU2 of its

rotational symmetry group in SO3 is a finite subgroup of SL2. Hence SL2 contains the

binary tetrahedral group T̃ of order 24, the binary cubic group C̃ of order 48 and the

binary icosahedral group Ĩ of order 120. Note that due to duality the binary octahedral

group and binary dodecahedral group are isomorphic to C̃ and Ĩ respectively.

It is well-known (see e.g. [PV94, §0.13]) that up to conjugation any finite subgroup

H ⊆ SL2 is isomorphic either to a cyclic group Zn, a binary dihedral group D̃n or one

of the three distinct binary polyhedral groups. In the remainder of this section we will

describe their hyperspaces and hence (since c(SL2/H) = 1 only if H is finite) classify

the homogeneous SL2-spaces of complexity one, again following the same calculation

by Timashev [Tim97, §5].

3.2.5 SL2/Zm

Consider the homogeneous space G/H = SL2/Zm for m ∈ Z. Here H embeds into SL2

as the subgroup generated by
(
ε 0
0 ε−1

)
, where ε is a primitive mth root of unity. We

have X(H) = Zm by identifying characters
(
ε 0
0 ε−1

)
7→ εk with k ∈ Zm, and we write

these characters as εk with multiplicative notation. We will find the coloured data

for this space using the previous example of SL2/{e} and the techniques outlined in

section 3.2.3

The functions z, w from the earlier case do not lie in K = k(G)H since they are

not H-invariant, but they do lie in k[G](B×H), having weights (α, ε) and (α, ε−1),

respectively. Hence they are subregular semi-invariants and still define B-divisors,

but they cannot be regular as their H-weights are different. To obtain regular semi-

invariants and hence our B-quotient map, we can simply take powers of these functions

which have equal weights. To that end, set m = m for odd m and m = m/2 for even

m. Then zm, wm both have weights (mα, εm). These regular semi-invariants generate

the space M = k[G]
(B×H)

(mα,εm)
and define the B-quotient map π. Then we can obtain Λ
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and choose our splitting as follows: let F ∈M be an arbitrary regular semi-invariant.

Then

Λ =


Zα m is odd, eα = F

(zw)
m−1

2

Z · 2α m is even, e2α = F 2

(zw)
m
2 −1 .

Hence for even m, Hom(Λ,Z) = 1
2
Z, while for odd m it is Z as before.

Now the action of H on P1 via the quotient π : G 99K P1 can be shown to have the

form εk · [α : β] = [εkα : ε−kβ], so the kernel H∗ of the action is as follows:

H∗ =

{e} m odd

〈εm〉 m even.

This corresponds to the stabiliser Hp of a general point p ∈ P1. The specific points

0 = [1 : 0] and ∞ = [0 : 1] are fixed by H, so for these points we have [Hp : H∗] = m,

and the jump for these points will be multiplied by m. All other points have Hp = H∗,

so there is no effect for them.

The result of all of these considerations is that for the distinguished point p1 and

for a general point p 6= 0,∞, the valuation cones and the positions of the colours in

hyperspace are the same as for SL2/{e} as described above, except that for even m

there are twice as many lattice points on the `-axis.

One last issue arises: upon factorising the hyperspace by H, the valuation cone for

the distinguished point in P1 becomes identified with those of the other points in its

orbit, so we must perform shifts to these cones ` 7→ `+ h`p for some p ∈ P1 in order for

them to line up, and these shifts must balance. The orbit of the distinguished point

contains |H|/|Hp1| = m points, and selecting `p = 1 for each p ∈ H · p1 shifts the cone

Vp defined by 2`+ h ≤ 0 to line up with the cone Vp1 defined by 2`− h ≤ 0. Now we

have shifted (m− 1) cones by 1 and we must balance these shifts out. Hence we shift

the two cones V0 and V∞ each by (m− 1)/2 in the opposite direction. To begin with,

these cones were defined by 2`+ h ≤ 0. After the shift, we have 2`+mh ≤ 0, but then

we remember to scale the h-axis by m, obtaining again cones defined by 2`+ h ≤ 0.

The only difference then between the cones for a general point and the cones for

0,∞ is that the colours for the general point have (`, h) = (0, 1) while after the shifts

and scaling, the colours D0, D∞ sit at (`, h) = (1−m
2
,m). Hence (after identifying points

with the same orbit in P1) the hyperspace is given by:
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m

−m−1
2

−m
2

`

h

p = 0,∞
`

h

2

−1
p general

`

h

2

1
p distinguished

Figure 2: Coloured data of SL2/Zm

where Q = Λ∗, the `-axis, is given by Z if m is odd and 1
2
Z if m is even.

3.2.6 Binary Dihedral and Polyhedral Groups

The binary dihedral and binary polyhedral groups each have centre Z2 arising from

the pullback under the double cover SU2 → SO3, and in each case the quotient by

the centre is the usual dihedral or polyhedral group. Hence for all of these groups

H̃ (H = Dn, T, C, I), we can calculate the hyperspace for SL2/H̃ = (SL2/Z2)/H from

that of SL2/Z2 using factorisation by H. In this case the action of H̃ on S2 = P1 is also

obtained by factorisation: we have P1/H̃ = (P1/Z2)/H = P1/H since Z2 acts trivially

on P1.

Now the action of H on P1 is just the usual action of the rotational symmetry

group of a regular polytope inscribed in the sphere. There will be three distinguished

orbits pv, pe and pf of H on P1 consisting of the vertices, the projections of the edge

midpoints onto S2 and the projections of the face centres onto S2. For Dn, we view

the centre of the n-gon as a face centre with projection to S2 consisting of the two

endpoints of the line segment passing through the centre of the sphere at right angles

to the plane containing the n-gon.

These distinguished orbits have orders corresponding to the number of vertices,

edges and faces of the polytope in question and each point p within such an orbit

has a stabiliser of order |H|/|H · p|. Each orbit then has a corresponding subregular

semi-invariant fv, fe, ff of multiplicity equal to the order of the corresponding stabiliser

and B-weight equal to |H · p|α.
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To calculate the hyperspace of SL2/H̃, we start with the hyperspace of SL2/Z2,

which has one distinguished point and the exact same appearance for all other points.

To form a correct hyperspace for SL2/H̃ we must perform a series of balanced integral

shifts (as described in Section 3.1.1) so that the slices of hyperspace for points in the

same distinguished H-orbit look the same, since these points are identified on P1/H.

After this, the h co-ordinates in each slice must be scaled by the multiplicity of the

corresponding subregular semi-invariant. Points lying outside the three distinguished

orbits do not have their slices of hyperspace affected at all.

The distinguished point p0 of P1/Z2 may lie in any orbit of H on P1 and we are

free to choose which one at will, since different choices are related by some series of

balanced integral shifts. However, we can perform our calculations more systematically

by choosing p0 ∈ pv, as follows:

Suppose the distinguished orbits pv, pe and pf have orders v, e and f respectively,

and that p0 ∈ pv. We exploit the fact that v − e+ f = 2. To begin with, the slice of

hyperspace corresponding to p0 lies two units to the right relative to that of a general

point, so we take a general point p1 ∈ pv and shift its slice by one unit to the right,

then shift the slice of p0 one unit to the left, so they now align. These shifts balance,

and there are v − 2 remaining points in pv which we must also shift by one unit to the

right. Now we have performed a total shift of v−2 units to the right on the hyperspace.

But v− 2 = e− f , and the remaining orbits pe and pf consist entirely of general points,

so we shift all points in pe one unit left and all points in pf by one unit right, and

everything balances.

Finally, we scale the three distinguished slices of hyperspace by the respective

multiplicities of fv, fe and ff to obtain the hyperspace of SL2/H̃.

3.2.7 SL2/D̃n

The binary dihedral group D̃n is an extension of the dihedral group Dn of order 2n

by Z2, so has order 4n. It is given by generators and relations by 〈x, r | x2n = 1, r2 =

xn, r−1xr = x−1〉, where x corresponds to rotations of the n-gon by 2π/n about its

centre, and r corresponds to reflections of the n-gon obtained by rotating the sphere

by π about the axis joining either opposite vertices, opposite face midpoints, or a

vertex and its opposite face midpoint. We can thus realise D̃n as a subgroup of SL2 by
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choosing x =
(
ε 0
0 ε−1

)
for ε a primitive 2mth root of unity and r = ( 0 −1

1 0 ).

Adding the relation xr = rx into those defining D̃n, we see that the derived

subgroup is 〈x2〉, of order n, and hence the abelianisation is of order 4, isomorphic

to Z4 for odd n and to Z2
2 for even n. Since X(G) = X(G/[G,G]) for any G, we

calculate characters of D̃n on the abelianisation. Characters of D̃n are determined

by the images of x and r in k∗. After the quotient by x2, the image of x must

be ±1. For odd n, x2 = 1 forces r2 = x, so the possible images (χ(x), χ(r)) are

(1, 1), (1,−1), (−1, i), (−1,−i). For even n, the quotient forces r2 = 1, so we get

characters (χ(x), χ(r)) = (1, 1), (1,−1), (−1, 1), (−1,−1).

By the discussions of Section 3.2.6, there are subregular semi-invariants fv, fe and ff

of multplicities 2, 2 and n respectively, and hence respective B-weights nα, nα and 2α.

Using the fact that k[G]
(B)
α is generated by z, w, we can form (B × D̃n) semi-invariants

by choosing combinations of these which are semi-invariant with respect to D̃n. One

can check that fv = zn + (−iw)n, fe = zn − (−iw)n and ff = zw have the required

B-weights and are D̃n semi-invariant, with respective weights (−1, in), (−1,−in) and

(1,−1). Therefore the regular semi-invariants have (B ×H) biweights given by the

biweights of f 2
v , f 2

e and fnf , i.e. they fill the space M = k[G]
(B×H)
(2nα,(1,(−1)n)).

Thus we have Λ = Z · 2α, we can choose a (B ×H)-invariant function by taking

the quotient of any two elements of M , and we can choose an H-invariant splitting

function e2α = fvfe/f
n−1
f of B-weight 2α.

Now we calculate the hyperspace, slightly diverging from Section 3.2.6. Let the

distinguished point p0 of P1/Z2 lie in pv, and starting with the hyperspace for SL2/Z2,

shift the slice corresponding to p0 one unit to the left and the slices of the remaining

points in pv one unit to the right. Next, shift the slices for the n points in pe by one

unit to the right and the slices for the 2 points in pf by n− 1 units to the left. The

shifts all balance, so it remains only to scale the h co-ordinates in the slices pv, pe and

pf by 2, 2 and n respectively. Hence the hyperspace looks like:
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n

1− n−n `

h

p = pf
`

h

2

1
p = pe, pv

`

h

1

−1
p 6= pf , pv, pe

Figure 3: Coloured data of SL2/D̃n

3.2.8 SL2/T̃

The binary tetrahedral group T̃ ⊆ SL2 is an extension of the tetrahedral group T

of order 12 by Z2, so has order 24. The tetrahedral group is generated by rotations

of the sphere by 2π/3 about the axis joining a vertex and the projection onto the

opposite face midpoint, and rotations by π about two orthogonal axes joining opposite

edge midpoints. Hence T is a semidirect product of D2 and Z3 with Z3 acting on

the normal subgroup D2 by conjugation. Pulling back to T̃ we see that it is thus a

semidirect product of D̃2 and Z3. We can realise T̃ as the subgroup of SL2 generated

by x = ( i 0
0 −i ), r = ( 0 −1

1 0 ) and ω = −1
2

(
1+i −1+i
1+i 1−i

)
.

It follows that D̃2 is the derived subgroup of T̃ and hence the abelianisation is

Z3, generated by the image of ω. Hence characters of T̃ are determined by the image

εk = χ(ω) where ε is a primitive cube root of unity and k = 0, 1, 2.

The tetrahedron has 4 vertices, 6 edges and 4 faces, so the subregular semi-invariants

fv, fe and ff have respective multiplicities 3, 2, 3 and B-weights 4α, 6α and 4α. The

T̃ -weights are determined by the action of ω: this leaves the symmetries of the edge

midpoints unaffected and affects the vertex and face symmetries oppositely, so the

subregular semi-invariants fv, fe and ff have T̃ -weights ε, 1 and ε−1. The regular

semi-invariants are then generated by f 3
v , f 2

e and f 3
f and fill the space M = k[G]

(B×H)
(12α,1).

The weight lattice is therefore Λ = Z ·2α, a quotient of any two elements of M gives

a (B ×H)-invariant, and the splitting e2α = fvff/fe gives an H-invariant function of

B-weight 2α.

Now we follow Section 3.2.6 to calculate the hyperspace from that of SL2/Z2. We
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let the distinguished point p0 ∈ P1/Z2 lie in pv, and shift its slice of hyperspace one

unit to the right, and the slices for the remaining 3 points in pv one unit to the left.

Then pe and pf contain non-distinguished points, so we shift those in pe to the left

and those in pf to the right. Then all shifts balance, and it remains to scale the h

co-ordinate in the slices of pv, pe and pf by factors of 3, 2 and 3, respectively. Hence

the hyperspace looks like:

2

−1 `

h

p = pe
`

h

1

3

p = pv, pf

`

h

1

−1
p 6= pf , pv, pe

Figure 4: Coloured data of SL2/T̃

3.2.9 SL2/C̃

The binary cubic group C̃ ⊆ SL2 is an extension of the cubic group C of order 24 by Z2

and hence has order 48. Note that there are two ways a tetrahedron can be inscribed in

a cube, given by aligning the 6 edges of the tetrahedron with the diagonals of the 6 faces

of the cube, with the two diagonals of each face giving the two different inscriptions.

These inscriptions are related by the rotation of the cube by π/2 along an axis joining

two opposite vertices, and all symmetries of the cube are given by composition of a

tetrahedral symmetry and one of these rotations. Hence C is a semidirect product

of T and Z2, and C̃ is a semidirect product of T̃ and Z2 with Z2 acting on T̃ by

conjugation. We can realise C̃ as the subgroup of SL2 generated by y = 1√
2

(
1+i 0

0 1−i
)

and the generators r and ω from the above description of T̃ , noting that y2 is the third

generator x of T̃ .

This means that T̃ is the derived subgroup of C̃, and the abelianisation is Z2. Hence

characters of C̃ are determined by their value ±1 on y.
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The 8 vertices, 12 edges and 6 faces of the cube mean that the subregular semi-

invariants fv, fe and ff have respective multiplicities 3, 2, 4 and B-weights 8α, 12α, 6α.

Since C̃-weights are determined by the action of y, which fixes vertices and swaps edge

and face midpoints, the subregular semi-invariants have respective C̃-weights 1, −1

and −1. The regular semi-invariants are then generated by f 3
v , f

2
e and f 4

f and fill the

space M = k[G]
(B×H)
(24α,1).

The weight lattice is then Z · 2α, a quotient of any two elements of M gives a

(B × H)-invariant, and the splitting e2α = fvff/fe gives an H-invariant function of

weight 2α.

Following Section 3.2.6, we calculate the hyperspace from that of SL2/Z2. Let the

distinguished point p0 ∈ P1/Z2 lie in pv, and shift its slice of hyperspace by one unit to

the right, and shift the slices of the 7 other points in pv by one unit to the left. Then

pe and pf consist of non-distinguished points, so we shift those in pe by one unit to the

left and those in pf by one unit to the right. Then all shifts balance, and we scale the

h co-ordinate in the slices pv, pe and pf by factors of 3, 2 and 4, respectively, giving:

2

−1 `

h

p = pe
`

h

1

4

p = pf

`

h

1

3

p = pv

`

h

1

−1
p 6= pf , pv, pe

Figure 5: Coloured data of SL2/C̃
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3.2.10 SL2/Ĩ

The binary icosahedral group Ĩ ⊆ SL2 is an extension of the icosahedral group I of

order 60 by Z2, so has order 120. It is a perfect group, i.e. equal to its derived subgroup,

so its abelianisation is trivial and it has no nontrivial characters.

The 12 vertices, 30 edges and 20 faces of the icosahedron mean that the subregular

semi-invariants fv, fe and ff have respective multiplicities 5, 2 and 3, and B-weights

12α, 30α and 20α. The regular semi-invariants are generated by f 5
v , f

2
e and f 3

v , filling

M = k[G]
(B)
60α. The weight lattice is Λ = Z · 2α, an invariant function is obtained

as a quotient of any two elements of M , and the splitting e2α = fvff/fe gives a B

semi-invariant of weight 2α.

Following Section 3.2.6 we calculate the hyperspace from that of SL2/Z2. Let the

distinguished point p0 ∈ P1/Z2 lie in pv, and shift its slice of the hyperspace by one

unit to the left, and shift the slices corresponding to the other 11 points in pv by one

unit to the right. Then shift the slices of all 30 points in pe by one unit to the left and

the slices of the 20 points in pf by one unit to the right. These shifts balance, so we

scale the h co-ordinates in the slices pv, pe and pf by 5, 2 and 3, respectively, giving:

2

−1 `

h

p = pe
`

h

1

3

p = pf

`

h

1

5

p = pv

`

h

1

−1
p 6= pf , pv, pe

Figure 6: Coloured data of SL2/Ĩ
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3.3 Smooth Fano SL2-Threefolds

Recently Cheltsov, Przyjalkowski and Shramov [CPS19] classified all smooth Fano

threefolds with infinite automorphism groups, explicitly listing these groups (specifically

their connected components) in a table. As my research into K-stability focusses on

smooth Fano varieties, and since it is clear that for a threefold to admit a complexity

one group action, it must have an infinite automorphism group, the varieties in this

table provide useful examples for me. Indeed for my purposes the simplest non-trivial

complexity one G-varieties to work with involve SL2 acting with finite point stabilisers

on a smooth Fano threefold. These varieties are the subject of much of the rest of this

thesis.

3.3.1 Existence of SL2-Actions

The first step is to identify within the CPS list those threefolds admitting a (quasi-

homogeneous) SL2-action of complexity one. An algebraic action of SL2 on a variety

X is a morphism (of algebraic groups) ϕ : SL2 → AutX. If X is a threefold, then for

this action to be quasihomogeneous, there must be x ∈ X with dimG · x = 3. Since

G · x ∼= G/Gx, we have dimG · x = dimG− dimGx = 3− dimGx. Hence there must

be at least one point with dimGx = 0, and since kerϕ =
⋂
x∈X Gx, it follows that kerϕ

must be finite. Thus by the first isomorphism theorem, we require that AutX contains

a subgroup isomorphic to SL2/H for some finite normal subgroup H of SL2. Any finite

normal subgroup of a connected group (like SL2) lies in the centre [Hum75, Ex. 7.11],

which in this case is Z2. Thus we have:

Theorem 3.6. Let X be a smooth Fano threefold. If X admits a quasihomogeneous

SL2 action of complexity one, AutX contains a subgroup isomorphic to SL2 or PGL2.

This allows us to eliminate immediately from the CPS list any variety with auto-

morphism group having dimension less than 3, for example.

Although in the long-term it will be useful to calculate combinatorial data for

varieties which are known not to be K-stable, in order to see what differences these

data have to that of the K-stable varieties, for now we will concentrate on varieties for

which there is a chance of K-stability. CPS explicitly specify (in Corollary 1.5) the
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varieties on their list which have non-reductive automorphism groups, and thus cannot

be K-stable by the Matsushima obstruction.

Finally, if I further discount toric varieties and those varieties admitting the action of

a 2-torus (listed by Süß in [Süß14]), since their K-stability has been checked in [IS17], the

list is considerably shortened. Hence below are the smooth Fano threefolds admitting

an SL2-action which have reductive automorphism groups and do not admit the action

of a 2-torus or 3-torus. They are listed by the number used by CPS to identify the

variety, a short description, and the connected component of the automorphism group:

1.10 V22, a zero locus of three sections of the rank 3 vector bundle
∧2Q,

where Q is the universal quotient bundle on Gr (3, 7)

PGL2

1.15 V5, a section of Gr (2, 5) ⊆ P9 by a linear subspace of codimension 3 PGL2

2.21 The blow up of a quadric threefold Q ⊆ P4 along a twisted quartic

curve

PGL2

2.27 The blow up of P3 along a twisted cubic curve PGL2

3.13 The blow up of a divisor W ⊆ P2×P2 of bidegree (1, 1) along a curve

of bidegree (2, 2) which is mapped to irreducible conics by the natural

projections to P2

PGL2

3.17 A divisor on P1×P1×P2 of tridegree (1, 1, 1), or a blow-up of P1×P2

along a curve of bidegree (1, 1)

PGL2

4.6 The blow up of P3 along a disjoint union of three lines PGL2

Table 3.1: Smooth Fano SL2-threefolds with reductive automorphism groups and no 2-

or 3-torus action

(Note: the cases 1.10, 2.21, 3.13 consist of families of varieties, only some of which have

the listed automorphism group.)

3.3.2 SL2-Actions on Symmetric Powers

Many of the SL2-actions on threefolds to be considered here will be induced by an SL2-

action on Pn for some n, often in the case where Pn is realised as the projectivisation

of a symmetric power of k2. We describe these actions and some of their properties

here, and will use the results throughout the remainder of this section.
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Proposition 3.16. Let G = SL2. Fix a Borel subgroup B consisting of the upper

triangular matrices in G. Then X(B) = Zα, where α is the character
(
a b
0 1/a

)
7→ a. The

dominant weights are the non-negative integer multiples of α, and the simple G-module

of highest weight nα can be realised as the space Snk2 = k[x, y]n of homogeneous degree

n polynomials in 2 variables, where G acts by linear change of variables.

Proof. The G-module k[x, y]n is indeed simple: if not, it decomposes as a direct sum

of G-submodules by complete reduciblity (Theorem 2.3). Each of these G-submodules

must contain a nonzero U -invariant by Lemma 2.1. But the only U -invariants in k[x, y]n

are scalar multiples of yn, and complementary submodules cannot both nontrivially

intersect a single line. A simple check shows that B acts on kyn with weight nα.

Proposition 3.17. By the above, G acts on Pn = P(Snk2). Under this action, the

rational normal curve Z ⊆ Pn defined as the image of P1 = P(k2) under the degree n

Veronese map, is a G-orbit.

Proof. Since G acts transitively on P1 under the standard linear action, it suffices to

show that νn is G-equivariant. But νn maps [x : y] to [xn : xn−1y : . . . : xyn−1 : yn] and

since the G-action on Pn is defined by the same linear changes of the variables x, y as

the action on P1, equivariance follows immediately.

Proposition 3.18. Let Pn = P(Snk2) (n ≥ 2) have homogeneous co-ordinates zk,

0 ≤ k ≤ n. Then (where they are regular) zn is a B-semi-invariant of weight nα and

zn−2zn − z2
n−1 is a semi-invariant of weight (2n− 4)α.

Proof. Since zn corresponds to yn ∈ Snk2, it is a semi-invariant of weight nα by

Proposition 3.16. For zn−2zn − z2
n−1, note that

(
a b
0 1/a

)
∈ B maps the co-ordinate

function zk to the linear polynomial given by making the replacement xn−mym 7→ zm in

the expression (ax+ by)n−mym/am. It is then straightforward to check the claim.

Proposition 3.19. Each co-ordinate function zk on Pn = Snk2 is a T -eigenvector of

weight (2k − n)α, where T ⊆ B is a maximal torus. It follows that a homogeneous

B-eigenfunction of degree d must be a linear combination of monomials zk1 · · · zkd with∑d
i=1 ki = 1

2
(m+ dn). In particular, a G-invariant divisor of degree d in Pn must be

defined by a linear combination of such monomials with
∑d

i=1 ki = dn
2

.
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Proof. An element
(
a 0
0 1/a

)
∈ T acts on zk by zk 7→ (ax)n−k(y/a)k 7→ an−2kzk, so zk

has weight (2k − n)α. The B-weight of a B-eigenfunction must equal the T -weight

of the same function, which must in turn equal the weight of any of its individual

terms. Hence for a homogeneous polynomial of degree d, constructed from monomials

zk1 · · · zkd , to be a B-eigenfunction of weight mα we must have
∑d

i=1 (2ki − n) = m,

or
∑d

i=1 ki = 1
2
(m+ dn). Finally, a G-invariant divisor must be defined by a G-semi-

invariant homogeneous polynomial. Since G (being a perfect group) has no nontrivial

characters, such a polynomial must in particular have B-weight 0, from which the final

claim follows.

3.3.3 Blow-up of P3 Along Three Lines (4.6)

Hyperfan of P3

Let G = SL2 act on X = P(M2(k)) ∼= P3 by left multiplication of matrices. Then the

orbit B · ( 1 0
0 1 ) is

{
( x y0 1 ) ∈ P3

}
. This point has stabiliser Z2 and the orbit therefore has

dimension dimB = 2. This must be a maximal orbit and so this action has complexity

one. The G-orbit of the same point is
{

( x y
z w ) ∈ P3 | xw− yz 6= 0

}
= PGL2. This is an

open subset of P3, so we are in the quasihomogeneous case, and P3 is an embedding of

PGL2 = SL2/Z2 = G/H. The degenerate matrices constitute a G-stable prime divisor

D = Z(xw − yz) of P3, which contains all of its closed orbits.

There is a family of colours parameterised by points in P1: namely, for p = [α : β] ∈

P1, the divisor Dp = Z(βz − αw) is a colour.

Coloured Hyperspace

We know from 3.2.5 that the weight lattice Λ of SL2/Z2 is Z · 2α, so we identify

its dual Q with 1
2
Z, and the field of B-invariants can be generated by z/w. In the

case of SL2/Z2, to keep the convention of our analysis of SL2, we would choose a

distinguished semi-invariant e2α = z2 ∈ k[G/H]
(B)
2α . This corresponds to the rational

function F = z2/(xw − yz) on P3. It is still a semi-invariant of weight 2α and we will

set e2α = F .

In the hyperspace, the choice of e2α means that ∞ = [0 : 1] is distinguished, since

its pullback under the B-quotient map is the divisor of F . For all other points, the
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valuation cone is defined by `+h ≤ 0 (not 2`+h as before since we identify Q with 1
2
Z),

and the colour Dp lies at (0, 1) in Hp. For p =∞, the valuation cone is `− h ≤ 0, and

the colour Dp lies at (2, 1). Indeed, we have `D∞ = νD∞(e2α) = νz(z
2/(xw − yz)) = 2.

Let D := Z(xw − yz) ⊆ P3 be the divisor of degenerate matrices, with associated

valuation νD. This valuation is G-invariant and geometric, so lies in V . To locate νD in

the hyperspace H, first note that νD(z/w) = 0, so νD has trivial restriction to KB and

is thus central. We also have νD(e2α) = νD(z2/(xw − yz)) = −1, so νD sits at (−1, 0)

in the centre of the hyperspace. Since any positive rational multiple of νD is also a

G-valuation, the cone of central valuations K = V ∩ Z is Q≤0.

Coloured Data

As has been noted, all closed G-orbits in X lie in the divisor of degenerate matrices D.

Since we are projectivising 2×2 matrices, D must consist exclusively of (projectivisations

of) rank 1 matrices. It is not difficult to check that each closed orbit consists of matrices

with a given kernel, so they are parameterised by P1. For p ∈ P1 we write Yp for

the closed orbit of matrices whose kernel is the line in k2 represented by p. Each

colour Dp contains the closed orbit Yp and this orbit is contained in no other B-divisor,

so the coloured data of the G-germs in X are as follows: VYp = {νD}, DBYp = {Dp};

VD = {νD},DBD = ∅.

Thus for p 6=∞, the minimal G-germ Yp corresponds to the coloured cone in Hp

spanned by the colour Dp at (0, 1) and the G-divisor D at (−1, 0), i.e. it is the upper-left

quarter-plane. Similarly for p =∞ the coloured cone is spanned by D∞ = (2, 1) and

D. We can see that for any p, the coloured cones spanned by the minimal G-germs

cover Vp entirely, in accordance with completeness of P3. Hence the coloured hyperfan

of P3 looks as follows:
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`

h

D

p 6=∞

Dp

`

h

D

p =∞

Dp

Figure 7: Coloured hyperfan of P3 (linear action)

where filled circles represent G-divisors, unfilled circles represent colours, thick lines

indicate rays spanned by G-germs and B-divisors, hatched areas show the coloured

cones generated by minimal G-germs, and dashed lines show the boundaries of the

valuation cones.

Blow-up of One Line

The closed G-orbits Yp ⊆ P3, where p = [α : β] ∈ P1, consist of matrices whose kernel

is the line in k2 represented by p. That is, Yp = Z(βx− αy, βz − αw). Each of these

closed orbits is a G-stable line in P3, and they are mutually disjoint. We will obtain

our example by blowing up three of these lines, which can be chosen arbitrarily. First

we investigate what happens to the coloured data and hyperspace after one blow-up,

and the rest follows easily.

Let 0 = [1 : 0] ∈ P1 and consider Y0 = Z(y, w) ⊆ P3. Let X := BlY0(P3) =

Z(yv −wu) ⊆ P1 × P3. Note that under the blow-up, the colours Dp and closed orbits

Yp of P3 where p 6= 0 pull back isomorphically to X, and since Y0 is G-stable, the

blow-up is equivariant.

The exceptional divisor of this blow-up is E0 = Z(y, w) ⊆ P1 × P3 and the strict

transform of the divisor of degenerate matrices is D̃ = Z(xw− yz, uz− vx, yv− uw) ⊆

P1 × P3. These are the only G-stable prime divisors in X, and their intersection is

the curve Z(uz − vx, y, w). Together D̃, E0, their intersection and the closed orbits Yp

(p 6= 0) constitute all G-germs of X. Meanwhile, the colours of X are the colours Dp

(p 6= 0) of P3 and the strict transform D̃0 = Z(w, v).
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Hence the coloured data of the G-germs of X are as follows: for p 6= 0 we have

VYp = {νD̃}, DBYp = {D̃p}. Then also VD̃∩E0
= {νD̃, νE0}, DBD̃∩E0

= ∅, VD̃ = {νD̃},

DB
D̃

= ∅, VE0 = {νE0}, DBE0
= ∅.

The set-up of the hyperspace is unchanged from the example of P3: Λ is generated

by 2α, Q is identified with 1
2
Z, we choose the splitting e2α = z2/(xw − yz) (marking

∞) as the distinguished point), and the valuation cones are defined by `+ h ≤ 0 for

p 6=∞ and `− h ≤ 0 for p =∞. It remains to locate the colours and G-divisors.

The central divisor D̃ still sits at (−1, 0) in every section of the hyperspace, as

before. For p = 0, the colour D̃0 sits at (0, 1) and the G-divisor E0 sits at (−1, 1). The

coloured cone defined by the minimal G-germ D̃ ∩ E0 spans the rays defined by D̃

and E0. For p 6= 0, the colour D̃p sits at (0, 1) as before and the cone defined by Ỹp

spans the rays defined by D and D̃p. Again we see that the coloured cones defined by

the various G-germs all cover the valuation cone in each slice of the hyperspace, as

required by completeness of X. Thus the coloured hyperfan looks like:

`

h

D̃

p 6= 0,∞

D̃p

`

h

D̃

p = 0

D̃0

E0

`

h

D̃

p =∞

D̃p

Figure 8: Coloured hyperfan of the blow-up of P3 along one line

Blow-up of Three Lines

Now we can go back to P3, choose three arbitrary non-distinguished points (say

q, r, s ∈ P1 \ {∞}) and successively blow up their corresponding G-orbits, in this

case Yq, Yr and Ys. From the calculations above for the first blow up it is clear what

happens as far as G-germs and the hyperspace are concerned: the slices of hyperspace

corresponding to all points p 6= q, r, s will be unchanged from their description above,

and in each of the slices corresponding to q, r, s there will be a new G-divisor (the
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exceptional divisor of the blow-up) sitting at (−1, 1), while the corresponding colour

does not move from (0, 1). The minimal G-germs are Yp for p 6= q, r, s and D̃ ∩ Ep for

p = q, r, s. The former define coloured cones bounded by D̃ and D̃p in Hp (p 6= q, r, s)

and the latter define coloured cones bounded by D̃ and Ep in Hp (p = q, r, s). Hence

we get the following coloured hyperfan:

`

h

D̃

p 6= q, r, s,∞

D̃p

`

h

D̃

p = q, r, s

D̃p

Ep

`

h

D̃

p =∞

D̃p

Figure 9: Coloured hyperfan of the blow-up of P3 along three lines

3.3.4 Blow-up of P1 × P2 (3.17)

Orbits and G-germs Before the Blow-up

Let G = SL2 act on P1×P2, linearly on the first factor and quadratically on the second.

The G-orbit of the point P = ([1 : 0], [1 : 0 : 1]) is

{([a : c], [a2 + b2 : ac+ bd : c2 + d2]) | ad− bc = 1}.

The stabiliser GP is Z4, so this orbit is open, and the B-orbit is easily checked to be

2 dimensional. Hence P1 × P2 is a complexity one G-variety and an embedding of

G/H = SL2/Z4.

The divisors ∆ = Z(x2
0z2 + x2

1z0 − 2x0x1z1) and F = Z(z0z2 − z2
1) are G-stable.

Consider the G-stable curve C = Z(x1z0 − x0z1, x1z1 − x0z2) ⊆ P1 × P2. Note that

C = F ∩∆. The orbits on P1 × P2 are as follows: C is itself a closed orbit, then ∆ \C

and F \ C are orbits, and the open orbit described above is P1 × P2 \ (F ∪∆). This

is shown in detail by calculations after the blow-up in a later subsection. Hence the

proper G-germs of P1 × P2 are C, F and ∆.
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(Semi-) Invariant Functions

Recall that for SL2/Z4, the weight lattice Λ is generated by 2α, Q = Λ∗ is identified

with 1
2
Z, the field of invariants is generated by z2/w2 and we chose a semi-invariant

regular function F from the module M = k[G]
(B×H)

(2α,ε2) spanned by z2 and w2 to give a

splitting e2α = F 2/(zw).

On P1 × P2, the function f0 = g0/h0 = x2
1(z0z2 − z2

1)/(x0z2 − x1z1)2 is B-invariant

and under the isomorphism G/H ∼= P1 × P2 \ (F ∪∆) corresponds to the invariant

z2/w2. Hence this function defines a rational B-quotient map π : P1 × P2 99K P1,

P 7→ [g0(P ) : h0(P )].

For p = [α : β] ∈ P1, the pullbacks π∗(p) = Z(βg0 − αh0) define a family of regular

colours Dp = π∗(p) except at three points:

p =∞ = [0 : 1] : π∗(p) = Z(x2
1(z0z2 − z2

1)) = F ∪ Z(x2
1) = F ∪D∞,

p = −1 = [1 : −1] : π∗(p) = Z(z2(x2
0z2 + x2

1z0 − 2x0x1z1)) = ∆ ∪ Z(z2) = ∆ ∪D−1,

p = 0 = [1 : 0] : π∗(p) = Z((x0z2 − x1z1)2) = D0.

Note that D∞ and D0 correspond to points in P1 of multiplicity 2, i.e. they are

subregular colours and thus have h-coordinate 2 in hyperspace, in accordance with the

calculation of the hyperspace of SL2/Z4 in Section 3.2.5.

Now we choose as the splitting semi-invariant

e2α =
z2

2(x2
0z2 + x2

1z0 − 2x0x1z1)

x1(z0z2 − z2
1)(x0z2 − x1z1)

.

This corresponds in the homogeneous space to the function (z2 +w2)2/(zw), and hence

to the choice F = z2 +w2 ∈M and thus marks out the point −1 ∈ P1 as distinguished.

Coloured Data and Hyperfan

We first note here that the curve C is contained in the G-divisors ∆ and F , and

in every colour Dp for p 6= −1,∞, i.e. in colours lying over points in P1 whose

pullback does not contain ∆ or F . Hence the coloured data of C is: VC = {ν∆, νF},

DBC = {Dp | p 6= −1,∞}, and the remaining coloured data is V∆ = {ν∆},VF = {νF},

DB∆ = DBF = ∅. We see from this that C defines a coloured hypercone of type II in H.

In accordance with Section 3.2.5, the subregular colours D0, D∞ sit at (−1, 2) in their

respective slices of hyperspace, the colour D−1 sitting over the distinguished point sits at
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(2, 1), and the non-distinguished regular colours Dp for p 6= 0,−1,∞ lie at (0, 1). Finally,

the G-divisors F and ∆ go to (p, `, h) = (∞,−1, 1) and (p, `, h) = (−1, 1, 1) respectively.

Then the polytope defined by C is P = P0+P∞+P−1 = {−1/2}+{−1}+{1} = {−1/2}.

Hence the coloured hyperfan of P1 × P2 is as follows:

2

−1 `

h

p = 0

D0

2

−1 `

h

p =∞

D∞

F

`

h

1

2
p = −1

∆ D−1

`

h

−1
p 6= 0,−1,∞

Dp

Figure 10: Coloured hyperfan of P1 × P2

Blow-up

We now blow up C to obtain the variety X = Z(x0y0z2 + x1y1z0 − x0y1z1 − x1y0z1) ⊆

P1 × P1 × P2. Then X contains the G-stable divisors ∆̃ = Z(x0y1 − x1y0), the

strict transform of the divisor ∆ defined above, E = Z(x1z0 − x0z1, x1z1 − x0z2), the

exceptional divisor of the blow-up, and F̃ = Z(y1z0 − y0z1, y0z2 − y1z1), the strict

transform of the above divisor F̃ . Let D = E ∪ F̃ .

Orbits and G-germs After the Blow-up

Claim: the G-orbits on X are X \ (D ∪ ∆̃), which is open, ∆̃ \ (D ∩ ∆̃), E \ (E ∩ ∆̃),

F̃ \(F̃ ∩ ∆̃) and D∩∆̃, which is closed. We note that D∩∆̃ = E∩∆̃ = F̃ ∩∆̃ = E∩ F̃ .

Thus the G-germs of X are ∆̃, E, F̃ and D ∩ ∆̃, with the latter being minimal.
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Proposition 3.20. The open SL2-orbit on X is X \ (D ∪ ∆̃).

Proof. For (p, q) ∈ P1 × P1, let Xp,q = X ∩ ({(p, q)} × P2). Since the torus k∗ ⊆ SL2

fixes 0 := [0 : 1],∞ := [1 : 0] ∈ P1, it must also leave X0,∞ stable. We claim that k∗

acts transitively on X0,∞ \D0,∞:

Indeed, suppose Q = (0,∞, [q0 : q1 : q2]) ∈ X0,∞ \ D0,∞. The equation for X

demands that q1 = 0, and this means that the equations for E, F̃ reduce to q0 = 0

and q2 = 0, respectively. Hence we must have Q = (0,∞, [q0 : 0 : q2]), with q0q2 6= 0.

Now consider P = (0,∞, [1 : 0 : 1]), whose image under A =
(
a 0
0 1/a

)
∈ k∗ is

(0,∞, [a2 : 0 : 1/a2]) = (0,∞, [a4 : 0 : 1]). By setting a to be any fourth root of q0/q2,

we thus have that Q = A · P , proving the claim.

Now let S = (p, q, r) ∈ X \ (D ∪ ∆̃). Since p, q ∈ P1 are distinct, there exists

M ∈ SL2 with M · S = (0,∞,M · r) ∈ X0,∞ \D0,∞. Now by the above there exists

A ∈ k∗ with A · (M · S) = P , hence SL2 · P = X \ (D ∪ ∆̃) as promised.

Proposition 3.21. ∆̃ \ (D ∩ ∆̃) is an SL2-orbit on X.

Proof. First, note that the Borel subgroup B ⊆ SL2 fixes ∞ ∈ P1, which we use to

show that B acts transitively on X∞,∞ \ D∞,∞. The equations for X and D here

reduce to z2 = 0, z1 = 0 respectively. Let P = (∞,∞, [0 : 1 : 0]) ∈ X∞,∞ \ D∞,∞,

so that A =
(
a b
0 1/a

)
· P = (∞,∞, [2ab : 1 : 0]). If r = [r0 : r1 : 0] ∈ X∞,∞ \ D∞,∞,

then setting a = 1, b = r0/2r1 gives A · P = (∞,∞, r), so we are done. Now for any

Q = (p, p, q) ∈ ∆̃ \ (D ∩ ∆̃) there exists M ∈ SL2 with M ·Q = (∞,∞,M · q), so there

exists A ∈ B such that A ·M ·Q = P as required.

Proposition 3.22. E \ (E ∩ ∆̃) and F̃ \ (F̃ ∩ ∆̃) are SL2-orbits on X.

Proof. Let Q = (p, q, r) ∈ E \ (E ∩ ∆̃). As above, there exists M ∈ SL2 with

M · Q = (0,∞,M · r) ∈ D0,∞. Now since E is SL2 stable, we have in fact that

M ·Q ∈ (E)0,∞, which is a singleton. Hence E \ (E ∩ ∆̃) is an SL2-orbit, and the case

for F̃ is symmetric.

Proposition 3.23. The final SL2-orbit on X is ∆̃ ∩D. Hence the G-orbits on X are

D ∪ ∆̃, ∆̃ \ (D ∩ ∆̃), E \ (E ∩ ∆̃), F̃ \ (F̃ ∩ ∆̃) and D ∩ ∆̃

Proof. Let Q = (p, p, q) ∈ ∆̃ ∩ D, noting that assuming the equations for ∆̃, the

equations for E and F̃ become the same, i.e. ∆̃∩E = ∆̃∩ F̃ . It follows that D∞,∞ is a
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singleton, say P . We can as before choose M ∈ SL2 such that M ·Q ∈ D∞,∞, showing

that ∆̃ ∩D = SL2 · P .

Now it is clear that the orbits described so far cover X, so they must constitute an

exhaustive list.

Hyperfan of X

As in previous examples, blowing up the curve C does not change the position of any

divisor in hyperspace, but it adds the new G-divisor E. Taking the same invariant

and semi-invariant rational functions used above (i.e. f0 and e2α) we see that E sits

over 0 ∈ P1 and lies at (p, `, h) = (0,−1, 1) ∈ H. The colour D̃0 no longer contains

the minimal G-germ E ∩ ∆̃, which now has coloured data VE∩∆̃ = {νE, νF̃ , ν∆̃},

DB
E∩∆̃

= {D̃p | p 6= −1, 0,∞}.

We thus have P = P0 +P∞ = P−1 = {−1}+ {−1}+ {1} = {−1}. Hence all things

considered the coloured hyperfan for X looks like:

2

−1 `

h

p = 0

D̃0

E

2

−1 `

h

p =∞

D̃∞

F̃

`

h

1

2
p = −1

∆̃ D̃−1

`

h

−1
p 6= 0,−1,∞

D̃p

Figure 11: Coloured hyperfan of the blow-up of P1 × P2 along C
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3.3.5 Blow-up of the Divisor W in P2 × P2 (3.13)

Definition and Structure of W

Let G = SL2 act diagonally on P2 × P2 with the action on each factor P2 = P(S2k2)

described in Section 3.3.2. Then the divisor W = Z(x0y2 − 2x1y1 + x2y0) is G-stable.

The point P = ([1 : 0 : 1], [0 : 1 : 0]) ∈ W has a 2 dimensional B-orbit, and a

G-stabiliser of order 8 generated by ( i 0
0 −i ) and ( 0 i

i 0 ), so let H = GP = D̃2, the binary

dihedral group of order 8. Then we see that W is a quasihomogeneous complexity-one

G-variety containing the homogeneous space G/H.

Now consider the conic C = Z(x0x2 − x2
1) ⊆ P2. It is G-stable under the action

induced from S2k2 by Proposition 3.17, and hence the divisors C × P2 and P2 × C on

P2 × P2 are also G-stable. Let E∞ and E0 respectively be the intersections of these

divisors with W . Their union is the complement of G/H in W and their intersection is a

G-stable curve Z = (C×C)∩W . The equations of W also force Z = diag (P2 × P2)∩W .

Thus the G-germs of W are exactly Z,E0 and E∞, with the latter two containing

the former, which is minimal.

(Semi-) Invariant Functions

For G/H = SL2/D̃2, the weight lattice is Λ = Z(2α), Q = Λ∗ is identified with

1
2
Z and the field of invariants is generated by f 2

f /f
2
v . In W , the equations defining

E0 and E∞ are invariant, and x2, y2 are B-semi-invariant of weight 2α. Hence

f = y2
2(x0x2 − x2

1)/x
2
2(y0y2 − y2

1) is invariant, and one can check that it does indeed

correspond to f 2
f /f

2
v on the open orbit.

Now f defines a B-quotient π : W 99K P1, P 7→ [y2
2(x0x2− x2

1) : x2
2(y0y2− y2

1)]. The

pullback of p = [α : β] ∈ P1 is Z(βy2
2(x0x2−x2

1)−αx2
2(y0y2− y2

1)) and defines a regular

colour for all p except for the following:

p = [1 : 0] = 0 : π∗(p) = Z(x2
2(y0y2 − y2

1)) = Z(x2
2) ∪ Z(y0y2 − y2

1) = D0 ∪ E0

p = [0 : 1] =∞ : π∗(p) = Z(y2
2(x0x2 − x2

1)) = Z(y2
2) ∪ Z(x0x2 − x2

1) = D∞ ∪ E∞

p = [−1 : 1] = −1 : π∗(p) = Z(−(x1y2 − x2y1)2) = D−1.

Here we see three subregular colours (D0, D∞, D−1) of multiplicity 2 corresponding

to the three subregular semi-invariants on G/H, and the two G-divisors E0, E∞ defining
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the minimal G-germ Z. One can check that every colour except D0, D∞ contains Z.

The function x2y2/(x1y2 − x2y1) is semi-invariant of weight 2α and corresponds to

fefv/ff in the homogeneous space, so we choose this as our splitting e2α. Its divisor is

D0 +D∞ −D−1, so these points are distinguished by it.

Hyperfan Before the Blow-up

We recall that the G-germs of W are E0, E∞ and Z, with the latter being minimal.

The coloured data are thus VZ = {νE0 , νE∞}, DBZ = {Dp | p 6= 0,∞} and VEi = {νEi},

DBEi = ∅ for i = 0,∞. Thus Z defines a supported coloured hypercone of type II in H.

From our choice of invariant and splitting semi-invariant, the G-divisors and colours

map to the following points in hyperspace: E0 7→ (0, 0, 1), D0 7→ (0, 1, 2), E∞ 7→

(∞, 0, 1), D∞ 7→ (∞, 1, 2), D−1 7→ (−1,−1, 2) and Dp 7→ (p, 0, 1) for p 6= 0,∞,−1.

Therefore the polytope defined by Z is given by P−1 = {−1/2}, Pp = {0} for p 6= −1,

so P = {−1/2}. Hence the coloured hyperfan of W looks like:

`

h

Dp

−1
p 6= pf , pv, pe

2

−1 `

h

pf = −1

D−1

`

h

1

2

pe = 0

D0

E0

`

h

1

2

pv =∞

D∞

E∞

Figure 12: Coloured hyperfan of the divisor W on P2 × P2
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Blow-up

To obtain the variety we want, we blow up W along Z. Since Z defines a hypercone of

type II, it has a minimal B-chart U = W \ (D0 ∪D∞). We will simplify matters by

blowing up this chart instead.

Hence consider U as an affine chart of W , i.e. we set x2 = y2 = 1 in W to obtain

W ∩ U = Z(x0 − 2x1y1 + y0) ⊆ A4. Eliminate x0 = 2x1y1 − y0 so that W ∩ U =

Spec k[x1, y0, y1] = A3. Then E0∩U = Z(y0−y2
1) ⊆ A3, E∞∩U = Z(2x1y1−y0−x2

1) ⊆

A3 and Z ∩ U = Z(y0 − y2
1, 2x1y1 − y0 − x2

1) = Z(y1 − x1, y0 − y2
1) ⊆ A3.

Now take X = BlU∩Z(W ∩ Z) = Z(z0(y0 − y2
1) − z1(y1 − x1)) ⊆ A3 × P1. The

exceptional divisor is E = Z(y0−y2
1, y1−x1), and we have strict transforms Ẽ0 = Z(y0−

y2
1, z1) and Ẽ∞ = Z(z0(x1− y1)− z1, 2x1y1− y0−x2

1) of the G-divisors from downstairs.

Any two of these three G-divisors intersect in the curve Y = Z(y0 − y2
1, y1 − x1, z1),

which is hence the unique minimal G-germ of the blow-up.

The invariant rational function on W becomes f = (2x1y1 − y0 − x2
1)/(y0 − y2

1)

on U ∩W and hence also on X. Under the induced B-quotient π to P1 we see that

π∗([1 : −1]) = Z(x1 − y1, y0 − y2
1) ∪ Z(x1 − y1, z0) = E ∪ D̃−1. Hence E sits in the

slice of hyperspace corresponding to −1 ∈ P1, and the colour D̃−1 does not contain the

minimal G-germ Y , as D−1 did before the blow-up.

Choosing a uniformising element δ = (2x1y1 − y0 − x2
1 + (y0 − y2

1))/(y0 − y2
1) =

−(y1−x1)2/(y0−y2
1) of the DVR corresponding to −1 and taking an affine chart z0 = 1

of X, a simple calculation shows that hE = νE(δ) = 1.

Likewise, the splitting semi-invariant e2α from above becomes 1/(x1 − y1) on X,

giving `E = νE(e2α) = −1. Hence E 7→ (−1,−1, 1) ∈ H. The positions in hyperspace

of all other G-divisors and colours remain as always unchanged by the blow-up.

Thus the curve Y has coloured data VY = {νE, νẼ0
, νẼ∞}, D

B
Y = {Dp | p 6=

0,∞,−1}. It defines a supported coloured hypercone of type II in H with associated

polytope P = P−1 = {−1}. Hence X (and therefore the variety BlZW ) has the

following coloured hyperfan:
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Ẽ∞

Figure 13: Coloured hyperfan of the blow-up of W along Z

3.3.6 Blow-up of P3 Along the Twisted Cubic (2.27)

Homogeneous Space and Structure

Let G = SL2 act on P3 = P(S3k2) as in Section 3.3.2. The point P = [1 : 0 : 0 : 1] has

as its G-stabiliser the binary dihedral group H = D̃3 of degree 3 and order 12. The

same point has B-stabiliser equal to the group of sixth roots of unity, so dimB · P = 2.

Hence G ·P is the homogeneous space G/H, realising P3 (in a different way to previous

examples) as a quasihomogeneous complexity-one G-variety.

Let Z be the rational normal curve of degree 3 in P3, i.e. Z = Z(x0x2 − x2
1, x0x3 −

x1x2, x1x3 − x2
2). Then Z is a closed orbit in P3 by Proposition 3.17. We will see that

Z is the unique minimal G-germ of P3, and is contained in its unique G-divisor.

(Semi-) Invariant Functions

By Section 3.2.7, there are semi-invariant functions fv, fe, ff in k[G](B×H) of respective

biweights (3α, (−1, 3)), (3α, (−1, 1)) and (2α, (1, 2)).
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In P3, x3 is semi-invariant of B-weight 3α, and x1x3 − x2
2 is semi-invariant of B-

weight 2α by Proposition 3.18. Hence the latter corresponds to ff . On G/H, we see

that, acting with ( 0 i
i 0 ) ∈ H on the right, x3 has H-weight (−1, 3), so x3 corresponds

to fv Finally, 2x3
2− 3x1x2x3 + x0x

2
3 has B-weight 3α and thus by process of elimination

it corresponds to fe.

Now the function f 3
f /f

2
e is B-invariant, so gives the B-quotient map π to P1, i.e.

π(P ) = [f 3
f (P ) : f 2

e (P )] for P ∈ P3. This defines a family of regular colours Dp = π∗(p)

in P3 for all p = [α : β] ∈ P1 except:

p = 0 : π∗(p) = Z(f 2
e ) = D0,

p =∞ : π∗(p) = Z(f 3
f ) = D∞,

p = −4 : π∗(p) = Z(f 2
v ) ∪ Z(3x2

1x
2
2 − 4x3

1x3 − x2
0x

2
3 − 4x0x

3
2 + 6x0x1x2x3) = D−4 ∪ F

where F is a G-divisor. The subregular colours D0, D∞ and D−4 have multiplicities 2,

3 and 2, respectively, in accordance with the pictures above.

Finally, we choose a splitting e2α = fvfe/f
2
f ∈ K

(B)
2α .

Coloured Data and Hyperfan of P3

The minimal G-germ is contained in F and in every colour except D−4, so has coloured

data VZ = {νF}, DB
Z = {Dp | p 6= −4}. It therefore defines a supported coloured

hypercone of type II in H.

By our choice of splitting we see that D0 7→ (`, h) = (1, 2) in hyperspace, D∞ 7→

(−2, 3), D−4 7→ (1, 2), F 7→ (0, 1) and as always the regular colours Dp 7→ (0, 1) for

p 6= 0,∞,−4.

Therefore the polytope defined by Z is given by P = P0 + P∞ + P−4 = {1/2 −

1/3 + 0} = {−1/6}.

Hence the coloured hyperfan of P3 looks like:
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Figure 14: Coloured hyperfan of P3 (cubic action)

Blow-up

Now to get the variety we need, we blow up Z. To simplify what happens, we will

take affine charts. Take the minimal B-chart for Z, which is UZ = P3 \ Z(x3). By

setting x3 = 1, we get UZ ∩ P3 = A3 = Spec k[x0, x1, x2]. Then Z ∩ UZ becomes

Z(x0 − x1x2, x1 − x2
2).

Now X = BlZ∩UZ (A3) = Z(z0(x1−x2
2)− z1(x0−x1x2)) ⊆ A3×P1. The exceptional

divisor is E = Z(x1 − x2
2, x0 − x1x2). Take another affine chart V defined by z1 = 1.

Using the equation for X we can eliminate x0 to obtain X ∩V = A3 = Spec k[x1, x2, z0].

Now E ∩ V = Z(x1 − x2
2).

On V ∩X, the B-invariant above becomes (x2
2−x1)/(2x2(1+z0))2, and the splitting

semi-invariant becomes 2x2(1 + z0)/(x1 − x2
2). Hence E sits over ∞ in hyperspace and

is mapped to (−1, 1) ∈ H∞.

Since the blow-up is an isomorphism away from Z, nothing else in hyperspace moves

from its previous position. There is a new minimal G-germ Y = E ∩ F̃ with coloured

data VY = {νE, νF̃},DBY = {Dp | p 6=∞,−4}. The coloured hyperfan for X is thus:
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Figure 15: Coloured hyperfan of the blow-up of P3 along the twisted cubic

3.3.7 Blow-up of the Quadric Threefold (2.21)

Homogeneous Space and Structure

Let G = SL2 act on P4 = P(S4k2) as in Section 3.3.2. Then the quadric hypersurface

Q = Z(3x2
2 − 4x1x3 + x0x4) is a smooth, G-stable threefold. The stabiliser GP of the

point P = [0 : 1 : 0 : 0 : 1] ∈ Q is the binary tetrahedral group T̃ , hence the orbit G · P

is 3 dimensional and thus open. The same point has the group of sixth roots of unity

as its B-stabiliser, so has a 2-dimensional B orbit, so that Q is a quasihomogeneous

complexity one G-variety containing the homogeneous space G/H = SL2/T̃ .

Let Z be the rational normal curve of degree 4 in P4, i.e. Z = Z(x0x2 − x2
1, x0x3 −

x1x2, x1x4 − x2x3, x2x4 − x2
3). Then Z is a closed G-orbit in Q by Proposition 3.17.

We will see that Z is the unique minimal G-germ in Q, and is contained in a unique

G-divisor.
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(Semi-) Invariant Functions

We know from Section 3.2.8 that there are semi-invariant regular functions fe, ff , fv in

k[G](B×H) of respective biweights (6α, 1), (4α, ε−1) and (4α, ε), where ε is a primitive

cube root of unity.

On Q, x4 and x2x4−x2
3 have B-weight 4α by Proposition 3.18, and checking on the

homogeneous space G/H = G·[0 : 1 : 0 : 0 : 1] we see that acting by
(
ε 0
0 ε−1

)
on the right,

they have H-weights ε−1 and ε respectively. Hence x4 = ff , x2x4 − x2
3 = fv. Finally,

the function 2x3
3 + x1x

2
4 − 3x2x3x4 is B-semi-invariant of weight 6α and H-invariant,

so this is fe.

Now f 3
v /f

2
e is a B-invariant rational function on Q, so the B-quotient map π is

given by π(P ) = [f 3
v (P ) : f 2

e (P )] for P ∈ Q, and defines a family of regular colours

Dp = π∗(p) for all p = [α : β] ∈ P1 except:

p = 0 : π∗(p) = Z(f 2
e ) = D0,

p =∞ : π∗(p) = Z(f 3
v ) = D∞,

p = −4 : π∗(p) = Z(f 3
f ) ∪ Z(4x3

2 + x2
1x4 + x0x

2
3 − 6x1x2x3) = D−4 ∪ F

where F is a G-invariant divisor. Note that the subregular colours D0, D∞ and D−4

have multiplicities 2, 3 and 3, respectively, as we should expect from the hyperspace of

G/H.

Finally, we choose as a splitting semi-invariant e2α = fvff/fe ∈ K(B)
2α .

Coloured Data and Hyperfan of Q

The minimal G-germ Z is contained in F and in every colour except D−4, so has

coloured data VZ = {νF}, DBZ = {Dp | p 6= −4}. Hence it defines a supported coloured

hypercone of type II in H.

Our choice of invariant and splitting functions mean that D0 sits at (`, h) = (−1, 2)

in hyperspace, D−4, D∞ 7→ (1, 3), F 7→ (0, 1) and as always for regular colours we have

Dp 7→ (0, 1) for p 6= 0,∞,−4.

Hence the polytope defined by Z is given by P = P0+P∞+P−4 = {−1/2+1/3+0} =

{−1/6}. Therefore the full coloured hyperfan defined by Q is as follows:
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Figure 16: Coloured hyperfan of the quadric threefold Q

Blow-up

The variety we want is obtained by blowing up Z. We calculate the effect on the

hyperfan by blowing up in an affine chart. Since Z defines a coloured hypercone of type

II, it has a minimal B-chart UZ with the same coloured data. Indeed Z is contained

in every colour except D−4 = Z(x4), so UZ = P4 \ Z(x4). Setting x4 = 1 allows us

to eliminate x0 using the equation for Q, so UZ ∩Q ∼= A3 = Spec k[x1, x2, x3]. Then

UZ ∩ Z = Z(x1 − x2x3, x2 − x2
3).

Now X = BlUZ∩Z(A3) = Z(z0(x2−x2
3)− z1(x1−x2x3)) ⊆ A3×P1. The exceptional

divisor E is given by Z(x1 − x2x3, x2 − x2
3). Now we take another affine chart V

by setting z1 = 1, which allows us to eliminate x1 using the equation for X. Thus

V ∩X = A3 = Speck[x2, x3, z0], and E ∩ V = Z(x2 − x2
3).

On V ∩X, the invariant function f 3
v /f

2
e becomes (x2 − x2

3)/(z0 − 2x3)
2, and the

splitting semi-invariant is 1/(z0 − 2x3), so we see that E 7→ (p, `, h) = (∞, 0, 1) in

hyperspace.
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Since the blow-up is an isomorphism away from Z, all other colours and G-divisors

lie at the same points in hyperspace as before. The blow-up introduces a new minimal

G-germ Y = E ∩ F̃ which must have coloured data VY = {νE, νF̃}, DBY = {Dp | p 6=

∞,−4}. Hence the coloured hyperfan for X looks like:
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Figure 17: Coloured hyperfan of the blow-up of Q along Z

3.3.8 V5 (1.15)

Description and Homogeneous Space

Let G = SL2 act on k2 with the standard linear action, and hence on P6 = P(S6k2).

By [Fur92], we can realise V5 as the closure in P6 of the G-orbit of the point P =

[0 : 1 : 0 : 0 : 0 : −1 : 0]. This explicitly shows that V5 is a quasihomogeneous

G-variety of complexity one. The stabiliser of P in G contains the matrices y, r and ω

which, in Section 3.2.9, were shown to generate the binary cubic group H = C̃. Since

no other finite subgroup of G contains C̃, we see that G · P ∼= G/H. Hence there

are three subregular semi-invariants fv, fe and ff of respective (B × H) biweights

(8α, 1), (12α,−1) and (6α,−1) and multiplicities 3, 2 and 4.
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The description of V5 in [Fur92] realises it as the subvariety of P6 defined by the

equations

x0x4 − 4x1x3 + 3x2
2 = 0,

x0x5 − 3x1x4 + 2x2x3 = 0,

x0x6 − 9x2x4 + 8x2
3 = 0,

x1x6 − 3x2x5 + 2x3x4 = 0,

x2x6 − 4x3x5 + 3x2
4 = 0.

It is clear from the above then that the rational normal curve Z of degree 6 defined as

the image of the Veronese embedding ν6 : P1 → P6 lies inside V5 as a minimal G-germ.

We will show later that Z is in fact the unique minimal G-germ of V5, contained in a

unique G-stable divisor.

(Semi)-Invariant Functions

One can find semi-invariants of the correct B-weights by using a torus action, under

which each co-ordinate function has a given weight. In this case xk has weight −6 + 2k.

It is easy to see immediately that x6 is B semi-invariant of weight 6, so must be the

subregular semi-invariant ff . Likewise x4x6 − x2
5 is B semi-invariant of weight 8, so

represents fv. Now from Section 3.2.9, we know that fvff/fe is a rational function, so

has degree 0. Hence fe must have degree 3 and B- (hence T -) weight 12α, and therefore

must be a linear combination of the monomials x3x
2
6, x4x5x6 and x3

5. A simple check

shows that fe = x3x
2
6 − 3x4x5x6 + 2x3

5 suffices.

Hence f 3
v /f

2
e is an invariant rational function defining a rationalB-quotient π : V5 99K

P1, P 7→ [f 3
v (P ) : f 2

e (P )]. The pullback of p = [α : β] ∈ P1 defines a regular colour for

all p except the following:

p = 0 : π∗(p) = Z(f 2
e ) = D0;

p =∞ : π∗(p) = Z(f 3
v ) = D∞;

p = −4 : π∗(p) = Z(x4
6) ∪ Z(x1x5 + 3x2

3 − 4x2x3) = D−4 ∪ F ;

where F is then a unique G-divisor containing the G-germ Z. Likewise it is straightfor-

ward that Z is contained in every colour except D−4.
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We choose as mentioned the semi-invariant splitting function e2α = fvff/fe of

B-weight 2α, and the colours D0, D∞ and D−4 are distinguished by it.

Coloured Hyperfan

We already know from previous discussions and our choice of splitting that regular

colours Dp for p 6= 0,∞− 4 are mapped to points (p, 0, 1) of hyperspace, and that

D0 7→ (0,−1, 2), D∞ 7→ (∞, 1, 3) and D−4 7→ (−4, 1, 4). Finally, it is easy to check on

the B-chart V5 \ Z(x6) that F is mapped to (−4, 0, 1).

The coloured data of the minimal G-germ Z is VZ = {νF}, DBZ = {Dp | p 6= −4}.

Hence Z is a G-germ of type II and defines a supported coloured hypercone of type

II generated by its coloured data and the polytope P = P0 + P∞ + P−4 = {−1/2}+

{1/3}+ {0} = {−1/6}. Hence the coloured hyperfan of V5 is as follows:

2

−1 `

h

0 = pe

D0

`

h

1

4

−4 = pf

F

D−4

`

h

1

3

∞ = pv

D∞

`

h

−1
p 6= pf , pv, pe

Dp

Figure 18: Coloured hyperfan of V5
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3.3.9 V22 (1.10)

Description and Homogeneous Space

Let G = SL2 act on k2 with the standard linear action, and hence on P12 = P(S12k2).

By [Fur92], we can realise V22 as the closure in P12 of the G-orbit of the point

P = [0 : 1 : 0 : 0 : 0 : 0 : 11 : 0 : 0 : 0 : 0 : 1 : 0].

This explicitly shows that V22 is a quasihomogeneous G-variety of complexity one. The

stabiliser of P in G contains
(
ε 0
0 ε−1

)
for ε a primitive tenth root of unity. Furthermore,

the function x12 on V22 is a B-eigenfunction of weight 12α. The only finite subgroup

H of SL2 containing an element of order 10 and such that SL2/H has a semi-invariant

of weight 12α is Ĩ, the binary icosahedral group. Hence V22 is an embedding of SL2/Ĩ.

Then by 3.2.10 there are three subregular semi-invariants fv, fe and ff of respective

B-weights 12α, 30α and 20α and multiplicities 5, 2 and 3. Note that Ĩ has no weights.

The description of V22 in [Fur92] realises it as the subvariety of P12 defined by the

equations

ρ∑
λ=0

(
8

λ

)(
8

ρ− λ

)
(xλxρ+4−λ − 4xλ+1xρ+3−λ + 3xλ+2xρ+2−λ) = 0

for 0 ≤ ρ ≤ 16. It is easy to check using these equations that the rational normal

curve Z of degree 12, defined as the image of the Veronese embedding ν12 : P1 → P12,

lies inside V22 as a minimal G-germ. We will see that Z is in fact the unique minimal

G-germ of V22, contained in a unique G-stable divisor.

(Semi)-Invariant Functions

One can find semi-invariants of the correct B-weights by using a torus action, under

which each co-ordinate function has a given weight. In this case xk has weight

(−12 + 2k)α. We have mentioned that x12 is B semi-invariant of weight 12α, so must

be the subregular semi-invariant fv. Likewise x10x12−x2
11 is B semi-invariant of weight

20α, so represents ff . Now from Section 3.2.10, we know that fvff/fe is a rational

function, so has degree 0. Hence fe must have degree 3 and B- (hence T -) weight 30α,

and therefore must be a linear combination of the monomials x10x11x12, x
3
11 and x9x

2
12.

A simple check shows that fe = 3x10x11x12 − 2x3
11 − x9x

2
12 suffices.
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Hence f 3
f /f

2
e is an invariant rational function defining a rationalB-quotient π : V22 99K

P1, P 7→ [f 3
f (P ) : f 2

e (P )]. The pullback of p = [α : β] ∈ P1 defines a regular colour for

all p except the following:

p = 0 : π∗(p) = Z(f 2
e ) = D0;

p =∞ : π∗(p) = Z(f 3
v ) = D∞.

We also see that the subregular colour Z(fv) lies over p = −4 = [1 : −4], so we write

D−4 = Z(fv), recalling that this colour has multiplicity 5.

We choose as mentioned the semi-invariant splitting function e2α = fvff/fe of

B-weight 2α, and the colours D0, D∞ and D−4 are distinguished by it.

Coloured Hyperfan

We already know from previous discussions and our choice of splitting that regular

colours Dp for p 6= 0,∞− 4 are mapped to points (p, 0, 1) of hyperspace, and that

D0 7→ (0,−1, 2), D∞ 7→ (∞, 1, 3) and D−4 7→ (−4, 1, 5).

Consider the coloured data of the minimal G-germ Z: we know that DBZ = {Dp |

p 6= −4}. This is infinite, so Z is a G-germ of type II and defines a coloured hypercone

generated by its coloured data and the polytope P. However, the slice H−4 does not

contain a non-central element of DBZ , and hence must contain a non-central element

of VZ since Z is of type II. Hence there must be a G-divisor F ⊆ V22 containing Z

and lying over −4 ∈ P1. In the slice H−4, CZ is then generated by P , which is central,

and F , and by completeness it must cover the valuation cone. Hence we must have

F 7→ (−4, 0, h) for some h ≥ 0, and the hyperfan is the same for any such h, so take

h = 1. Then P = P0 + P∞ + P−4 = {−1/2} + {1/3} + {0} = {−1/6}. Hence the

coloured hyperfan of V22 is as follows:

2

−1 `

h

0 = pe

D0

`

h

1

5

−4 = pv

F

D−4
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`

h

1

3

∞ = pf

D∞

`

h

−1
p 6= pf , pv, pe

Dp

Figure 19: Coloured hyperfan of V22



Chapter 4

β-Invariant and K-Stability

Here we discuss an invariant introduced by Fujita [Fuj16] and Li [Li17] which they

have shown to have an intimate connection to K-stability. In the first section, we

discuss some general properties of divisors on G-varieties of complexity one which will

be needed later on. Then we define the β-invariant of Fujita and Li and use it to state

the main results of this thesis, namely the K-polystability of the varieties described in

the previous chapter. We prove these results in the remaining sections.

4.1 Divisors on Complexity One G-Varieties

We now begin to study the properties of divisors on complexity-one G-varieties, following

[Tim00]. Throughout this section X is a normal but possibly singular variety unless

otherwise specified. Helpfully, we can reduce everything to B-stable divisors:

Proposition 4.1. Let a connected solvable algebraic group B act on a normal variety

X. Then any Weil divisor on X is linearly equivalent to a B-stable one.

Proof. [Tim11, Prop 17.1] We may assume that X is smooth, so that any Weil divisor

δ on X is Cartier. We may also assume that δ is the difference of two effective divisors,

and hence we only need to prove the claim for effective δ. Since δ is Cartier, it has a

corresponding line bundle O(δ), and we may also assume that O(δ) is B-linearised by

Proposition 2.7. Hence the space H0(X,O(δ)) is a B-module by Lemma 2.3, and since

δ is effective, it is non-empty. Then by the Lie-Kolchin theorem, H0(X,O(δ)) contains

a nonzero B-eigensection σ. Then div σ is B-stable and linearly equivalent to δ.

123
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4.1.1 Cartier Divisors

Next we want to investigate conditions which guarantee that a divisor is Cartier. We

will assume that the associated line bundle to any Cartier divisor is G-linearised (see

section 2.3.4).

Lemma 4.1. Any prime divisor D ⊆ X which does not contain a G-orbit is Cartier

and generated by global sections.

Proof. See [Tim11, Lemma 17.3].

Theorem 4.1. Let δ be a divisor on X and assume by Proposition 4.1 that δ is B-stable.

Then δ is Cartier if and only if for any G-germ Y of X, there exists fY ∈ K(B) such

that each prime divisor D containing Y occurs in δ with multiplicity νD(fY ).

Proof. [Tim11, Thm 17.4] We are essentially proving that δ is Cartier if and only if it

is locally principal at generic points of G-germs. Also note that it suffices to verify the

condition at G-orbits since every G-germ is a union of G-orbits.

Suppose δ is locally principal at generic points of G-germs. Choose a G-orbit

Y ⊆ X and replace δ with the linearly equivalent B-stable divisor δ − div fY . Then

no component of δ contains Y since we have removed the term νD(fY ) · [D] from δ for

each D containing Y .

Take a B-chart X0 = SpecA(W ,R) ⊆ X intersecting Y . Let D1, . . . , Dn be the

components of δ intersecting X0. Then the Di are B- or G-stable, since δ is, and they

do not contain Y . Then νDi ∈ W \ VY or Di ∈ R \ DBY depending on if Di is G-stable

or not. Hence by conditions (V′) or (D) of the Luna-Vust theory, there exist fi ∈ A(B)

such that fi|Y 6= 0 but νDi(fi) > 0, for each i. Hence we can localise X0 along f1, . . . , fn

and thereby assume that no component of δ intersects X0.

Then by the proof of Lemma 4.1, δ is Cartier on G ·X0, and hence also on X.

Conversely, assume δ is Cartier. Let Y ⊆ X be a G-germ, and use Sumihiro’s

theorem to find an open quasiprojective G-stable subset X0 ⊆ X intersecting Y .

Then the restriction of δ to X0 can be represented by the difference of two globally

generated divisors, so we can verify the condition assuming that δ is globally generated.

Furthermore, we can replace X with X0 since any prime divisor D ⊇ Y intersects X0

in a prime divisor containing X0 ∩ Y .
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Then H0(X,O(δ)) is a G-module and since O(δ) is generated by global sections,

there exists a section σ which does not vanish on Y . We can take σ to be a B-

eigensection by Lie-Kolchin. Then δ is principal on the B-stable open subset Xσ where

σ does not vanish, and this set contains Y . Hence we can take fY to be the equation

of σ on Xσ.

Corollary 4.1. A Cartier divisor δ on a G-model X is determined by the following

data:

(i) a collection {fY } of B-eigenfunctions for each G-germ Y ⊆ X such that ν(fY1) =

ν(fY2) and νD(fY1) = νD(fY2) for all ν ∈ VY1 ∩ VY2 and all D ∈ DBY1 ∩ D
B
Y2

;

(ii) a collection of integers mD for each D ∈ DB\
⋃
Y⊆X DBY (mD being the multiplicity

of D in the divisor), only finitely many of which are nonzero.

If X is quasihomogeneous of complexity one, each fY determines up to scalar

multiples (and is up to powers determined by) a linear functional ϕY on the coloured

cone or hypercone CY such that ϕY1|CY2 = ϕY2 whenever CY2 is a face of CY1 , that is,

whenever Y2 contains Y1. Then the functionals ϕY paste together to a piecewise linear

function on
⋃
Y⊆X CY ∩ V, which we call a piecewise linear function on the coloured

hyperfan FX = {CY | Y ⊆ X} of X. Then Cartier divisors on X correspond to these

piecewise linear functions.

4.1.2 Globally Generated and Ample Divisors

Proposition 4.2. Let δ be a Cartier divisor on X given by {fY }, {mD} as above.

Then:

(i) δ is globally generated if and only if fY can be chosen such that for any G-germ

Y ⊆ X, we have:

(a) for any other G-germ Y ′ ⊆ X and every B-stable divisor D containing Y ′,

νD(fY ) ≤ νD(fY ′);

(b) for any D ∈ DB \
⋃
Y ′⊆X DBY , νD(fY ) ≤ mD.

(ii) δ is ample if and only if, after replacing δ with some positive multiple, fY can

be chosen such that for any G-germ Y ⊆ X, there exists a B-chart X0 ⊆ X
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intersecting Y such that (a) and (b) hold, and the inequalities therein are strict

if and only if D ∩X0 = ∅.

Proof. [Tim11, Thm 17.18] (i): We first note that δ is globally generated if and only if

for any G-germ Y ⊆ X, there exists η ∈ H0(X,O(δ)) with η|Y 6= 0. Assume this is the

case, and take η to be a B-eigensection. Then there is f ∈ K(B) such that div f +δ ≥ 0,

and no D ⊇ Y appears in div f + δ with positive multiplicity. Since D ⊇ Y appears in

div f + δ with multiplicity zero, it occurs in δ with multiplicty −νD(f) = νD(f−1), so

we can replace fY with f−1.

If Y ′ is another G-germ and D a B-stable divisor containing Y , then D has

multiplicity νD(fY ′) in δ, and non-negative multiplicity in δ + div f = δ − div fY , so

νD(fY ′)− νD(fY ) ≥ 0, giving (a). A similar argument gives (b).

Now assuming (a) and (b), for any G-germ Y ⊆ X, the global section f−1
Y ∈

H0(X,O(δ)) does not vanish at Y , so δ is globally generated.

(ii): Suppose δ is ample. Then we can replace δ with a multiple and assume it

is very ample. Take a G-submodule M ⊆ H0(X,O(δ)) determining a locally closed

G-equivariant embedding X → P(M∗). Now let Y ⊆ X be a G-germ. We can

choose a homogeneous B-semi-invariant polynomial on P(M∗), i.e. an element of

H0(X,O(δ)⊗N)(B) for some N , which vanishes on X \ X but not on Y . Replacing

δ with Nδ, we can assume there is a section η ∈ H0(X,O(δ))(B) with the same

properties. Then Xη ⊆ X is a B-chart intersecting Y and there exists f ∈ K(B) with

div f + δ = div η ≥ 0.

Replacing fY with f−1 as above, we get (a) and (b). Now let Y ′ ⊆ X be another

G-germ and let D be a divisor containing Y . Then D ∩X0 is empty if and only if η

vanishes on D, i.e. D occurs in div η = div f + δ with positive multiplicity. But the

multiplicity of D in div f + δ is νD(fY ′)− νD(fY ), so (c) holds.

Assuming (a), (b) and (c), we will show that a multiple of δ is very ample. Let

Y ⊆ X be a G-germ. By the above there is η ∈ H0(X,O(δ))(B) determined by f−1
Y

such that Xη ⊆ X is a B-chart intersecting Y . We can choose finitely many ηi defining

B-charts Xi such that G ·Xi cover X. Then

k[Xi] =
⋃
n≥0

η−ni H0(X,O(δ)⊗n) = k
[
σi,1
ηnii

, . . . ,
σi,si
ηnii

]
where ni, si ∈ N and σi,j ∈ H0(X,O(δ)⊗ni). Replacing δ by a multiple, we can assume
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ni = 1.

Take the finite dimensional G-submodule M ⊆ H0(X,O(δ)) generated by the ηi

and σi,j . The corresponding rational map ϕ : X 99K P(M∗) is G-equivariant and defined

on Xi, hence on G · Xi, hence on all of X. Also, ϕ−1(P(M∗)ηi) = Xi, and ϕ|Xi is a

closed embedding into P(M∗)ηi for each i. Hence ϕ is a locally closed embedding of X

into P(M∗), and δ is very ample.

4.1.3 Global Sections

Let B(X) be the set of all B-stable prime divisors on X, including the G-stable ones.

Let δ =
∑

D∈B(X) mDD be a B-stable Cartier divisor, and let ηδ ∈ H0(X,O(δ))(B) be

the respective rational B-eigensection (i.e. div ηδ = δ). We have

H0(X,O(δ))(B) = {fηδ | f ∈ K(B), div f + δ ≥ 0}.

The B-weight of an arbitrary B-eigensection σ = fηδ is λ+ λδ, where λ is the weight

of f and λδ is the weight of ηδ. The latter is determined up to a character of G and

can be calculated as follows: let Y be a G-orbit intersecting δ and pull Y ∩ δ back to

G under the orbit map, giving a divisor δ̃ on G. Since we assume G to be factorial, δ̃

is principal, defined by a rational function F ∈ k(G)(B). Then λδ is the B-weight of F .

It follows that

H0(X,O(δ))
(B)
λ+λδ

∼= {f ∈ K(B)
λ | div f + δ ≥ 0} ∼= {f ∈ KB | div f + div eλ + δ ≥ 0}.

We want to calculate the calculate the dimension of the space H0(X,O(δ)) of global

sections of δ. Recall from Corollary 2.3 that, setting mλ(δ) = dimH0(X,O(δ))
(B)
λ+λδ

for

brevity, we have

dimH0(X,O(δ)) =
∑
λ∈Λ

mλ(δ)
∏

α∨∈∆∨+

(
1 +

(λ, α∨)

(ρ, α∨)

)
.

We can calculate mλ(δ) using the notion of a pseudodivisor:

Definition 4.1. Let C be a smooth projective curve. A pseudodivisor µ on C is a

formal linear combination µ =
∑

p∈Cmp · p where mp ∈ R ∪ {±∞} and all but finitely

many mp are 0. Let H0(C, µ) = {f ∈ k(C) | div f + µ ≥ 0} where for all x ∈ R, we

set x+ (±∞) = ±∞.
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If there is p ∈ C with mp = −∞, then H0(C, µ) = 0. Otherwise, H0(C, µ) is the

space of global sections of the divisor bµc =
∑

p bmpc · p on C \ {p ∈ C | mp = +∞},

where bmpc represents the floor of mp.

Now let δ be as above. Note that H0(X,O(δ))(B) is isomorphic tof0eλ | f0 ∈ KB, λ ∈ Λ,
∑

D∈B(X)

[hDνpD(f0) + 〈λ, `D〉+mD]D ≥ 0

 .

Hence fix λ ∈ Λ and consider the pseudodivisor

Hλ = Hλ(δ) =
∑
p∈P1

(
min
pD=p

〈λ, `D〉+mD

hD

)
p,

where we assume x
0

= +∞ for x ≥ 0 and x
0

= −∞ for x < 0. It is clear from the above

description of H0(X,O(δ))(B) that mλ(δ) = dimH0(P1, Hλ(δ)) := h0(δ, λ).

We know that h0(P1, Hλ) = 0 if any of its coefficients are −∞. This is the case

exactly when there is p ∈ P1 and D ∈ B(X) with pD = p satisfying hD = 0 and

〈λ, `D〉 < −mD. Hence we define a polyhedral domain

P(δ) = {λ ∈ Λ⊗ R | 〈λ, `D〉 ≥ −mD for all D with hD = 0}.

Then H0(P1, Hλ) = 0 for all λ /∈ P(δ). Conversely, a coefficient of Hλ is +∞ if and

only if there is p ∈ P1 such that no divisor D ∈ B(X) with pD = p satisfies hD > 0.

This is the case e.g. if X is a B-chart of type I. Then H0(P1, Hλ) is the space of global

sections of bHλc on the affine curve P1 \ {p | mp = +∞} and hence h0(δ, λ) =∞ for

all λ ∈ P(δ).

Otherwise, Hλ is a ‘standard’ Weil divisor on P1, so by Riemann-Roch we have

h0(δ, λ) = deg bHλc+ 1 + h1(δ, λ), where h1(δ, λ) := dimH1(P1, bHλc). If we define

A(δ, λ) =
∑
p∈P1

min
pD=p

〈λ, `D〉+mD

hD
,

i.e. A(δ, λ) = degHλ, then deg bHλ(δ)c differs from A(δ, λ) by some bounded non-

negative function σ(δ, λ) for all δ, λ. We then have h0(δ, λ) = A(δ, λ) − σ(δ, λ) +

h1(δ, λ) + 1.

Proposition 4.3. If A(δ, λ) < 0, then h0(δ, λ) = 0. Otherwise, for large n, h0(nδ, nλ) ∼

nA(δ, λ).
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Proof. [Tim11, §17.4] The first claim follows from the fact that A(δ, λ) < 0 implies

degHλ < 0 and hence deg bHλc < 0, so bHλc has no global sections and h0(δ, λ) = 0.

Suppose A(δ, λ) ≥ 0. If deg bHλ(δ)c ≥ 0, i.e. A(δ, λ) ≥ σ(δ, λ), we have h0(δ, λ) ≤

deg bHλc+ 1 (by [Har77, Ex. II.1.5]), so h1(δ, λ) ≤ 0, i.e. h1(δ, λ) = 0. Since σ(δ, λ) is

bounded while A(nδ, nλ) = nA(δ, λ), the former condition will hold for all sufficiently

large n. Then h0(nδ, nλ) = nA(δ, λ)− σ(nδ, nλ) + 1 ∼ nA(δ, λ) as required.

Inspired by the first part of the above Proposition, define the polyhedral domain

P+(δ) = {λ ∈ P(δ) | A(δ, λ) ≥ 0}.

Then by the above and the definition of P(δ), we have h0(δ, λ) = 0 for all λ /∈ P+(δ).

4.1.4 Volume of Divisors

We discuss the notion of the volume of a divisor, as described in e.g. [Laz17a, §2.2.C].

Definition 4.2. Let δ be a Cartier divisor on a smooth projective variety X of

dimension d. The volume of δ is

vol δ = lim sup
n→∞

dimH0(X,O(δ)⊗n)

nd/d!
.

In fact, by [Laz17b, Ex. 11.4.7] the lim sup is actually a limit.

Proposition 4.4. If δ is ample, vol δ = δd.

Proof. By asymptotic Riemann-Roch, for sufficiently large n we have

dimH0(X,O(δ)⊗n) = χ(X,O(δ)⊗n) =
ndδd

d!
+O(nd−1).

Hence
dimH0(X,O(δ)⊗n)

nd/d!
= δd +O(n−1).

Taking the limit n→∞ gives the result.

Now assume that X is a smooth projective G-model. Let ∆ be the root system

of G, ∆+ the positive roots determined by B, ∆∨+ the corresponding set of positive

coroots and ρ = 1
2

∑
α∈∆+

α. The following formula of Timashev [Tim00] allows us to

compute the volume of a Cartier divisor on a complexity one variety.
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Theorem 4.2. Let δ be a B-stable Cartier divisor of weight λδ on a normal projective

quasihomogeneous G-variety X of dimension d, complexity c = 1 and rank r. Then, in

the notation of the previous subsection:

d = c+ r + |∆∨+ \ (Λ + Zλδ)⊥|,

and

vol δ = d!

∫
λδ+P+(δ)

A(δ, λ− λδ)
∏

α∨∈∆∨+\(Λ+Zλδ)⊥

〈λ, α∨〉
〈ρ, α∨〉

dλ

where the Lebesgue measure on Λ ⊗ R is normalised such that a fundamental paral-

lelepiped of Λ has volume 1.

Proof. [Tim11, Thm 18.8] By the dicussions in section 4.1.3, we have

dimH0(X,O(δ)⊗n) =
∑

λ∈nλδ+nP(δ)∩Λ

mλ−nλδ(nδ) · dimVλ

=
∑

λ∈λδ+P(δ)∩ 1
n

Λ

mn(λ−λδ)(nδ) · dimVnλ

=
∑

λ∈λδ+P+(δ)∩ 1
n

Λ

∏
α∨∈∆∨+

(
1 + n

〈λ, α∨〉
〈ρ, α∨〉

)
[nA(δ, λ− λδ)

− σ(nδ, n(λ− λδ)) + h1(nδ, n(λ− λδ)) + 1]

Take n� 0: by Proposition 4.3 the term in square brackets tends to nA(δ, λ− λδ); in

the product, the +1 becomes negligible; and the scaling of the lattice Λ introduces a

factor of nr, r being rk Λ. Finally, we replace the sum with an integral, giving:

dimH0(X,O(δ)⊗n) ∼ nr
∫

λδ+P+(δ)

nA(δ, λ− λδ)
∏

α∨∈∆∨+\(λδ+P+(δ))⊥

n
〈λ, α∨〉
〈ρ, α∨〉

dλ

= nc+r+|∆
∨
+\(λδ+P+(δ))⊥|

∫
λδ+P+(δ)

A(δ, λ− λδ)
∏

α∨∈∆∨+\(λδ+P+(δ))⊥

〈λ, α∨〉
〈ρ, α∨〉

dλ

Hence it remains to prove that (λδ +P+(δ))⊥ = (Λ +Zλδ)⊥ and the formula for d. For

the former, it suffices to show that P+(δ) generates Λ⊗R. Suppose λ ∈ Λ is the weight

of a B-eigenfunction f on X. Write f as a quotient of B-eigensections of some O(δ)⊗n.

Then λ is the difference of the weights of these eigensections. Since h0(δ, λ) = 0 outside

P+(δ), these weights must lie in P+(δ) and we get the result.

For the formula for d, see [Tim11, Thm 18.8].
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Example. Let G = SL2 so that ∆ = {±α}, ∆+ = {α}, ∆∨+ =
{
α∨ = 2α

(α,α)

}
and

ρ = 1
2
α. Any quasihomogeneous complexity one SL2-threefold X has d = 3, c = 1,

r = 1, so |∆∨+ \ (Λ + Zλδ)⊥| = 1, i.e. this set is just ∆∨+ = {α∨}. If we identify Λ = Zα

with Z, and hence α with 1, we have∏
α∨∈∆∨+\(Λ+Zλδ)⊥

〈λ, α∨〉
〈ρ, α∨〉

=
〈λ, α∨〉
〈α

2
, α∨〉

= 2λ,

and the volume of a Cartier divisor δ on X is given by

vol δ = 6

∫
λδ+P+(δ)

2λA(δ, λ− λδ) dλ.

4.2 β-Invariant

Definition 4.3. Let X be a Fano variety. If σ : Y → X is any projective birational

morphism with Y normal, we call a prime divisor F ⊆ Y a prime divisor over X.

Proposition 4.5. Let X be a smooth complex Fano projective variety. There is a

bijective correspondence between prime divisors over X and test configurations on X

(excluding the trivial test configuration).

Proof. [Xu20, Lemma 3.7] Let F ⊆ Y → X be a prime divisor over X and let −KX

be the anticanonical divisor of X. Consider the section ring R =
⊕

k∈ZH
0(X,−kKX)

of −KX . The prime divisor F induces a filtration

F rR :=
⊕
k∈Z

{f ∈ H0(X,−kKX) | νF (f) ≥ r}

of R. Consider the Rees algebra

A =
⊕
r∈Z

F rR · z−r

of this filtration. Setting r = −1, we see that the k = 0 piece of F rR is C. It follows

that z ∈ A(0,−1), so there is an embedding C[z] ↪→ A. This induces a morphism

X = ProjA → A1, which is automatically compatible with the standard C× action on

A1. Furthermore, since R = A/(z−1) we see that X = ProjR embeds into X = ProjA

as a closed subscheme and is the preimage of 1 ∈ A1 under the given morphism. Hence

(X ,O(1)X ) is indeed a test configuration on (X,−KX).
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Conversely, given a test configuration (X ,L) on (X,−KX), the special fibre X0 ⊆ X

is a prime divisor, having a corresponding valuation ν0 on k(X ) = k(X × A1). We

can thus restrict ν0 to k(X). Since the restriction of a geometric valuation is itself

geometric, there exists some model Y of k(X) with a prime divisor F ⊆ Y such that

νF = ν0|k(X), i.e. a prime divisor over X.

Definition 4.4. Let F r be a filtration of an algebra R. The associated graded ring to

the filtration F r is the ring

B =
⊕
r∈Z

F r/F r+1.

Remark. In the notation of Proposition 4.5, the associated graded ring to the filtration

F r on R is A/(z). The ideal (z) ⊆ C[z] corresponds to 0 ∈ A1, so A/(z) corresponds to

the fibre over 0 of the morphism ProjA → A1, i.e. the central fibre of the corresponding

test configuration.

Definition 4.5. Let X be a Fano variety and let F ⊆ Y
σ−→ X be a prime divisor

over X. The log discrepancy of F over X is AX(F ) = ordF (KY/X) + 1, where

KY/X = KY − σ∗(KX) is the relative canonical divisor.

The usual definition of log discrepancy is more general, but we will only need the

one above. For full details see e.g. [KM98, §2]. A useful consequence of this definition

is that it is not hard to see that if σ is a sequence of n nested blow-ups, of which F is

the final exceptional divisor, then AX(F ) = n+ 1.

Definition 4.6. Let X be a smooth complex Fano variety of dimension n. Let F ⊆ Y

be a prime divisor over X. The β-invariant of F over X is

βX(F ) = AX(F )(−KX)n −
∫ ∞

0

vol(−KX − xF )dx,

where vol(−KX − xF ) is shorthand for vol(σ∗(−KX)− xF ), where σ : Y → X.

Theorem 4.3. [Li17, Fuj16] A smooth complex Fano variety X is K-semistable if

and only if βX(F ) ≥ 0 for any prime divisor F over X, and K-stable if and only if the

inequality is always strict.

The proof of the above essentially amounts to the fact that, under the correspondence

described in Proposition 4.5, the β-invariant of a prime divisor F over X is a positive

multiple of the Donaldson-Futaki invariant of the corresponding test configuration.

This gives a K-polystability criterion as well:
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Corollary 4.2. A smooth complex Fano variety X is K-polystable if and only if

βF (X) ≥ 0 for any prime divisor F over X, and βF (X) = 0 only when F corresponds

to a product test configuration.

In our perspective when X is equipped with a group action, we have:

Corollary 4.3. If X comes equipped with the action of a reductive group G, then we

need only check the β-invariant for prime divisors F ⊆ Y → X in the case where Y

also has a G-action, the morphism Y → X is G-equivariant, and F is G-invariant in

Y .

Proof. This follows by combining the theorem of Fujita-Li with the theorem of Datar-

Székelyhidi.

4.3 K-Polystability of SL2-Threefolds

The main results of this thesis are the following:

Theorem 4.4. Let X be a smooth Fano SL2-threefold. If any of the three conditions

below holds, then X is K-polystable if βF (X) > 0 for all central G-stable prime divisors

over X:

(i) A finite subgroup A ⊆ AutX acts on P1 with no fixed points, such that the

rational B-quotient X 99K P1 is A-equivariant

(ii) A finite subgroup A ⊆ AutX acts on P1, interchanging two points in P1 corre-

sponding to subregular colours of X, and the rational B-quotient X 99K P1 is

A-equivariant

(iii) X has subregular colours lying over three or more distinct points of P1.

Remark. We expect but have not proved that Theorem 4.4 applies with only minor

alterations to smooth Fano G-varieties of complexity one in general, rather than just

to SL2-threefolds.

Remark. We note the similarity of this result to [Süß13, Thm 1.1]



134 CHAPTER 4. β-INVARIANT

Theorem 4.5. The smooth Fano threefolds, (1.16), (1.17), (2.27), (2.32), (3.17),

(3.25) and (4.6) in the Mori-Mukai classification are K-polystable. The families (2.21)

and (3.13) each contain a K-polystable variety.

Remark. The same result were recently obtained independently by other authors using

different methods, see [SC21,ACC+21]. The K-polystability of the Mukai-Umemura

threefold in the family (1.10) was already known by Donaldson [Don08], and the

K-polystability of V5 (1.15) was known by Cheltsov-Shramov [CS09].

We will prove the first of these theorems in the next section for each of the three

cases. We then demonstrate that for each of the varieties listed in Theorem 4.5, one

of these three conditions holds. The remainder of the proof of Theorem 4.5 will be

given in the section after that, using an argument which shows that in all of the above

examples, there can only be one central G-divisor over X, followed by an explicit

calculation of the β-invariant of this divisor in each case.

4.4 Test Configurations From Non-Central Divisors

4.4.1 Action Without Fixed Points

Proof of Theorem 4.4(i). If A acts on P1 and the B-quotient X 99K P1 is A-equivariant,

we have an overall action on X of an extension G′ of G by A which descends to the

quotient. Suppose F is a non-central G-invariant prime divisor over X. Since F is

non-central, it must lie over some point PF ∈ P1. If A acts with no fixed points on

P1, then in particular PF is not fixed, so F cannot be G′-invariant. It follows that

only central divisors can be G′-invariant. Since A is finite, G′ is reductive, so by the

theorems of Fujita-Li and Datar-Székelyhidi, X is K-polystable if β(F ) ≥ 0 for all

G′-invariant prime divisors over X, i.e. for all central G-divisors over X, and is only 0

for divisors corresponding to product configurations.

We now show that this case of Theorem 4.4 applies to P3 (1.17), the blow-up of P3

in two lines (3.25) and the blow-up of P3 in three lines (4.6).

Realise P1 as the unit sphere and consider the action of the symmetric group A = S3

on P1 consisting of rotations permuting the vertices of an equilateral triangle inscribed
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in the equator. This action has no fixed points, one orbit of order 2 consisting of the

north and south poles, and various other orbits of orders 3 and 6.

If X = P3, then S3 ⊆ AutX = PGL4. Recall that the slices of the coloured

hyperfan are all identical to each other except for that of the distinguished point, which

lies two units to the left on the `-axis relative to the other slices. Hence we can shift

the slice of the distinguished point p0 one unit to the right and shift the slice of some

other point p1 one unit to the left. Now Hp0 and Hp1 look the same, so we identify

these two points with the north and south poles of the sphere. It follows that the

A-action preserves the coloured hyperfan of X, in the sense that for a ∈ A and p ∈ P1,

we permute the slices of H via Hp → Ha·p and the coloured data within each slice are

invariant with respect to these permutations. This means that the action of A on X is

such that the B-quotient is A-invariant and Theorem 4.4

If X is the blow-up of P3 along two lines, say Yq and Yr, then let q and r be the

north and south poles of the sphere P1. Shift their slices of the hyperspace two units

to the left each, then choose two other non-distinguished points p1 and p2 and shift

their slices two units to the right each. Then the slices corresponding to p1, p2 and

the distinguished point p0 align, and we can choose these to be the vertices of the

equilateral triangle acted on by S3. Again, S3 acts on X and preserves the coloured

hyperfan up to balanced integral shifts, so Theorem 4.4 applies.

If X is the blow-up of P3 along three lines, Yq, Yr and Ys, the method is the same as

when X = P3, only making sure to choose q, r and s to be the vertices of the triangle.

Again, Theorem 4.4 applies.

As an aside, it is worth mentioning that the blow-up of P3 along one line (2.33)

has non-reductive automorphism group and is thus not K-polystable. It is easy to

see that the method above does not work in this case, since the slice of hyperspace

corresponding to the blown-up line is fundamentally distinct from all other slices for

this variety, so no action on P1 which does not fix the corresponding point could ever

preserve the coloured hyperfan.

4.4.2 Non-Normality

The proof of Theorem 4.4 parts (ii) and (iii) will be by showing that, under these

conditions, the test configurations corresponding to non-central prime divisors over
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X have non-normal central fibre, and hence are not special test configurations, and

therefore we do not need to calculate their Donaldson-Futaki invariant (or, equivalently,

the β invariant of F ). We will use the correspondence hinted at in section 4.1.3 between

B-semi-invariant sections of prime divisors on over X and sections of divisors on the

B-quotient. We show that the filtrations defined by the resulting divisors on P1 give

non-integrally closed rings which correspond to the central fibres of the given test

configuration.

Divisors on P1

Theorem 4.6. Let H =
∑m

i=1 aiQi =
∑m

i=1
bi
ci
Qi be a Q-divisor of positive degree on

P1, and let P ∈ P1. Let

A =
⊕
k∈Z

H0(kH)

be the section ring of H. Fix q ∈ Z and consider the filtration on A over r ∈ Z given

by

F qr =
⊕
k∈Z

{
f ∈ H0(kH) | ordP (f) ≥ r

q

}
.

Then take the associated graded ring

Bq =
⊕
r∈Z

F qr /F
q
r+1.

If at least two Qi, both distinct from P , have non-integral coefficients ai /∈ Z in H,

then for each q ∈ Z≥1, the ring Bq is not integrally closed.

We will prove this theorem in a number of steps, beginning with:

Proposition 4.6. With all notation as in Theorem 4.6, for any q ≥ 1 there exist

integers k, r and n, with k and n positive, such that Bq(k,r) = 0 and Bq(nk,nr) 6= 0.

Lemma 4.2. In the above proposition and theorem, we can assume without loss of

generality that q = 1.

Proof. Let q ≥ 1. We have B1
(k,r) = Bq(k,qr), so if we find k, r and n with B1

(k,r) = 0 and

B1
(nk,nr) 6= 0, then k, qr and n give the required result for q > 1. Hence we set q = 1

going forward, and we drop the corresponding superscript.
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Proof of Proposition 4.6. By the lemma, we assume that q = 1, and we want to find

n, k and r with B(k,r) = 0 and B(nk,nr) 6= 0. We will rewrite H =
∑m

i=1 aiQi+aPP , with

aP = bP
cP

, and assuming all Qi 6= P . Sums and products indexed over i should be under-

stood as running from i = 1 to i = m and excluding P, aP etc. unless otherwise specified.

Before we choose particular values of k, r and n, we will demonstrate an alternative

description of B(k,r). Denote by F(k,r) the degree-k part of Fr, i.e. F(k,r) = {f ∈

H0(kH) | ordP (f) ≥ r}. Then B(k,r) = F(k,r)/F(k,r+1). Define

H(k,r) =

kH −r ≥ bkaP c

kH − kaPP − rP −r ≤ bkaP c.

We will show that F(k,r) = H0(H(k,r)), so B(k,r) = H0(H(k,r))/H
0(H(k,r+1)).

Indeed, when −r ≥ bkaP c, it suffices to show that any f ∈ H0(kH) automatically

has order at least r at P . Any such f must satisfy ordP (f) + bkaP c ≥ 0, and if

0 ≥ r + bkaP c then the result follows.

On the other hand, it is clear that F(k,r) ⊆ H0(kH − kaPP − rP ). Now suppose

f ∈ H0(kH − kaPP − rP ) and −r < bkaP c. We have ordP (f) ≥ r since the coefficient

at P of (f) + bkH − kaPP − rP c is ordP (f) − r, so it remains to show that f ∈

H0(kH). Since kH only differs from kH − kaPP − rP at P , it is sufficient to note that

ordP (f) + bkaP c ≥ r + bkaP c > 0.

Hence to show B(k,r) = 0 it is sufficient either that deg bH(k,r)c < 0 or H0(H(k,r)) =

H0(H(k,r+1)).

Likewise, for B(k,r) 6= 0 we must show that deg bH(k,r)c ≥ 0 and H0(H(k,r)) 6=

H0(H(k,r+1)). Note that when the first of these conditions holds and −r ≤ bkaP c, the

second one also holds by definition of H(k,r). If −r ≥ bkaP c and deg bkHc ≥ 0 we have

0 ≤ deg bkHc =
∑
i

bkaic+ bkaic ≤ r + bkaic ≤ 0,

so −(r + 1) < bkaic and H0(H(k,r)) 6= H0(H(k,r+1)) as well. Thus B(k,r) 6= 0 if and only

if deg bH(k,r)c ≥ 0.

Choice of k:
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Our choice of k is motivated by two requirements, the reasons for which will be

seen later, these being:

(1)
∑
i

{kai} ≥ 1

where {x} = x− bxc is the fractional part of a real number x, and

(2) deg bkHc ≥ 0.

With that in mind, consider

k =


∏

i ci + 1
∑

i {ai} ≥ 1∏
i ci − 1

∑
i {ai} < 1.

This choice satisfies requirement (1): in the first case we have {kai} = {ai} for each i

(by the fact that {x+n} = {x} for all integers n and real x), so
∑

i {kai} =
∑

i {ai} ≥ 1

by assumption. If
∑

i {ai} < 1 we have

∑
i

{kai} =
∑
i

{−ai}

= |{i | ai /∈ Z}| −
∑
i

{ai}

≥ 2−
∑
i

{ai} > 1

since {−x} is 1− {x} whenever x /∈ Z and 0 when x ∈ Z. Note that this is where we

use our assumption that at least two ai are non-integral, and it is essential.

However, this choice of k may not satisfy requirement (2). We have

deg bkHc = deg (kH)−
∑
i

{kai} − {kaP} > deg (kH)− (m+ 1),

since 0 ≤ {x} < 1 for all x. Since degH > 0, for k � 0 we will have deg (kH) ≥ m+ 1

and requirement (2) will be satisfied. Hence replace our initial choice of k with k+`
∏

i ci

for ` large enough to give deg(kH) ≥ m+ 1 - this choice will still satisfy requirement

(1) since {(k + `
∏

i ci) ai} = {kai} for each i in either case.

Choice of r, B(k,r) = 0:
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Let r = bdeg (kH − kaPP )c = b
∑

i kaic. Then

r + bkaP c =

⌊∑
i

kai

⌋
+ bkaP c

≥
∑
i

bkaic+ bkaP c

= deg bkHc ≥ 0

by requirement (2) of our choice of k, so −r ≤ bkaP c and F(k,r) = H0(H(k,r)) =

H0(kH − kaPP − rP ).

We have

deg bkH − kaPP − rP c =
∑
i

bkaic+ b−rc

=
∑
i

bkaic −

⌊∑
i

kai

⌋

=

{∑
i

kai

}
−
∑
i

{kai}

< 1−
∑
i

{kai} ≤ 0

since {x} < 1 for all x and
∑

i {kai} ≥ 1 by requirement (1) of our choice of k. It

follows that B(k,r) = F(k,r)/F(k,r+1) = 0.

Choice of n, B(nk,nr) 6= 0:

Next, choose n = cP
∏

i ci, so that nkH is an integral divisor. To show that

B(nk,nr) 6= 0, recall that it suffices to show that deg bH(nk,nr)c ≥ 0. We have

nr + bnkaP c = n

(⌊∑
i

kai

⌋
+ kaP

)

= n

(
deg (kH)−

{∑
i

kai

})
> 0,

since we chose k satisfying deg (kH) ≥ m + 1 > 1. Hence −nr ≤ nkaP , meaning
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H(nk,nr) = nkH − nkaP − nrP . This divisor has degree

degH(nk,nr) = deg (nkH)− nkaP − nr

= n

(
deg (kH)− kaP −

⌊∑
i

kai

⌋)

= n

{∑
i

kai

}
≥ 0

since {x} ≥ 0 for any x. Hence B(nk,nr) 6= 0, and we are done.

Our goal is to show that for each H as above, the ring B is not integrally closed.

We now know that there exist k, r and n with B(k,r) = 0 and B(nk,nr) 6= 0. Let K

be the algebra consisting of fractions of homogeneous elements of B. If there exists

f ∈ K(k,r) with fn ∈ B(nk,nr) then the monic polynomial xn − fn ∈ B[x] has a root in

K which does not lie in B (since such a root would lie in B(k,r)), which would prove

non-normality. We now show the existence of such an element.

Proposition 4.7. Let H, k, r and n be as above. There exist integers (k′, r′) such

that B(k′,r′) and B(k′+k,r′+r) are both nonzero. Hence there exists a nonzero function in

K(k,r).

Proof. Recall from above that B(k,r) 6= 0 if and only if deg bH(k,r)c ≥ 0.

We have deg bkHc = deg (kH)−
∑

i {kai} − {kaP} > deg (kH)− t, where t is the

number of terms in kH with non-integral coefficients (possibly including kaP ). Hence

choose k′ such that deg (k′H) > t and choose r′ = −bk′aP c. Then H(k′,r′) = k′H =

k′H − k′aPP − r′P and deg bk′Hc > 0, so B(k′,r′) 6= 0.

Now let k and r be as in the proof of Proposition 4.6 and recall that for these values

we have −r ≤ bkaP c. Hence

H(k+k′,r+r′) = (k + k′)H − (k + k′)aPP − (r + r′)P = H(k,r) +H(k′,r′).

Then deg bH(k+k′,r+r′)c ≥ deg bH(k,r)c + deg bH(k′,r′)c. Since deg bH(k,r)c is fixed, we

may increase k′ (and thus increase deg bH(k′,r′)c) to ensure that deg bH(k+k′,r+r′)c ≥ 0,

if necessary.

It follows that B(k+k′,r+r′) 6= 0 as required, and since B(k′,r′) 6= 0 as well, taking the

quotient of a nonzero element of the former by a nonzero element of the latter gives a

nonzero element in K(k,r).
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We can now prove the theorem:

Proof of Theorem 4.6. As always we are free to assume that q = 1 and drop the

superscript.

By some previous remarks, it suffices to find a nonzero element f ∈ K(k,r) with

fn ∈ B(nk,nr). The result above shows that K(k,r) 6= 0, so we may choose f ∈ K(k,r)

to be nonzero, so fn ∈ K(nk,nr) 6= 0. We will show that K(nk,nr) is a line, and since it

contains B(nk,nr) 6= 0, it follows that the two are equal, giving the result.

Let k′, r′ be arbitrary integers, and suppose g, h ∈ K(k′,r′) are nonzero. Their

quotient must lie in K(0,0), which consists of fractions of homogeneous elements of B

of equal degree. Since B(k′,r′) = H0(H(k,r))/H
0(H(k′,r′+1)) by the previous proof, it is

clear that dimB(k′,r′) ≤ 1. Therefore any fraction of elements of B of equal degree is

constant, so K(0,0) = k. Then dimK(k′,r′) ≤ 1 for any (k′, r′), and since K(nk,nr) 6= 0, it

follows that dimK(nk,nr) = 1 as required.

We will now work through an example to demonstrate this theorem.

Example. With all notation as in the rest of this section, let

H =
1

2
Q1 +

1

3
Q2 −

1

2
P.

We will show that the ring B arising from H as described in Theorem 4.6 is not

integrally closed, since H has two non-integral coefficients at Q1 and Q2.

First, we find k, r and n. Since
∑

i {ai} = 1
2

+ 1
3

= 5
6
< 1, we set k = a1 ·a2− 1 = 2 ·

3−1 = 5. Now r = b
∑

i kaic =
⌊

5
2

+ 5
3

⌋
=
⌊

25
6

⌋
= 4. Finally, n = cP ·c1 ·c2 = 2·2·3 = 12.

This gives H(k,r) = 5
2
Q1 + 5

3
Q2 − 4P . Then bH(k,r)c = 2Q1 + Q2 − 4P . This

divisor has no global sections because it has negative degree, so we see that B(k,r) =

H0(H(k,r))/H
0(H(k,r+1)) = 0 as required.

On the other hand, we have H(nk,nr) = 30Q1 + 20Q2 − 48P , which has positive

degree, so B(nk,nr) 6= 0. Indeed we have

B(nk,nr) = H0(30Q1 + 20Q2 − 48P )/H0(30Q1 + 20Q2 − 49P ).

Let P1 have co-ordinates x and y and suppose P = [0 : 1], Q1 = [1 : 0] and Q2 = [1 : 1].

Then B(nk,nr) is generated by the rational functions

x48

y30(x− y)18
,

x48

y29(x− y)19
,

x48

y28(x− y)20
.
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However, note that because we quotient by H0(30Q1 + 20Q2− 49P ), we can show that:

x48

y30(x− y)18
+

x48

y29(x− y)19
=

x49

y30(x− y)20
= 0,

since the result is a section of that divisor. It follows that in B(nk,nr) we have y
x−y = −1,

and we will use this fact later.

Now we choose k′ and r′. We can pick k′ = 4 since that gives k′H = 2Q1 + 4
3
Q2−2P

which has degree 4
3

and only one non-integral coefficient, so deg bk′Hc > 0. Then

r′ = −bk′aP c = 2. We have

B(k′,r′) = H0(2Q1 +Q2 − 2P )/H0(2Q1 +Q2 − 3P )

and

B(k+k′,r+r′) = H0(4Q1 + 3Q2 − 6P )/H0(4Q1 + 3Q2 − 7P ).

Hence take f = x2

y(x−y)
∈ B(k′,r′) and g = x6

y4(x−y)2
∈ B(k+k′,r+r′) and let

h =
f

g
=

x4

y3(x− y)
∈ K(k,r).

We know that h /∈ B since B(k,r) = 0. However, we have

hn =
x48

y36(x− y)12
=

(x− y)6

y6
· x48

y30(x− y)18
=

x48

y30(x− y)18
∈ B(nk,nr),

since (x−y)
y

= −1 in B as seen above.

It follows that h is a root in K, the field of fractions of B, of the monic polynomial

zn − x48

y30(x− y)12
∈ B[z].

Hence B is not integrally closed.

4.4.3 Divisor Correspondence

Now we show that prime divisors over X give rise to divisors on P1, and demonstrate

how, subject to some conditions, Theorem 4.6 can be applied to show that the test

configurations corresponding to these prime divisors have non-normal central fibres.

We refer back to the notation of Proposition 4.5 and Definition 4.4.

Proposition 4.8. Let X be a smooth G-variety of complexity one. The test configura-

tion corresponding to a prime divisor F over X is special if and only if the graded ring

B associated to the filtration on the section ring of −KX induced by F is integrally

closed.
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Proof. The test configuration is special if and only if the central fibre X0 is normal. In

this case we have X0 = π−1(0) = ProjA/(z), where A/(z) =
⊕

r∈ZF rR/F r+1R = B.

Since X0 = ProjB, and in fact B is the section ring of (X0, L0), it follows that X0 is

normal, and the test configuration special, if and only if B is integrally closed.

Now suppose X is a smooth Fano G-variety of complexity one. Let F be a non-

central G-divisor over X. We know that the test configuration corresponding to

X is special if and only if the bigraded ring B defined above is integrally closed.

We will use the B-quotient to allow ourselves to check this using divisors on P1.

Recall that B =
⊕

r∈ZF rR/F r+1R, where R =
⊕

k∈ZH
0(X,−kKX) and F rR =⊕

k∈Z {f ∈ H0(X,−kKX) | νF (f) ≥ r}.

We know that we can find a B-invariant representative of the class −KX , and given

this, the section rings H0(X,−kKX) gain a G-module structure. The B-semi-invariants

of weight λ in this G-module are of the form f0eλ where f0 ∈ KB = k(P1). If B(X) is

the set of B-invariant divisors of X and we have −KX =
∑

D∈B(X) mDD, then

H0(X,−KX)
(B)
λ = {f0eλ | f0 ∈ KB,

∑
D∈B(X)

[hDνPD(f0) + 〈λ, `D〉+mD]D ≥ 0}.

For a fixed weight λ ∈ Λ we have H0(X,−KX)
(B)
λ
∼= H0(P1, Hλ), where

Hλ =
∑
P∈P1

(
min
PD=P

〈λ, `D〉+mD

hD

)
P .

This is a well defined divisor on P1 (i.e. has no coefficients ±∞) provided that (a):

for any P ∈ P1 there exists a B-divisor D on X with PD = P and hD > 0, and (b): λ

lies in the polyhedral domain

P(−KX) = {λ ∈ Λ | 〈λ, `D〉 ≥ −mD for all D with hD = 0}.

Condition (a) holds by completeness of X, but we need to be careful about condition

(b).

Recall the function

A(−KX , λ) =
∑
P∈P1

(
min
PD=P

〈λ, `D〉+mD

hD

)
which computes the degree of Hλ, and the polyhedral domain

P+(−KX) = {λ ∈ P | A(−KX , λ) ≥ 0}.
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In this notation, Hλ is well-defined and has positive degree exactly when λ lies in the

relative interior of P+(−KX).

Lemma 4.3. We may assume that 0 is in the relative interior of P+(−KX).

Proof. Since −KX is ample, we have seen that −Kn
X = vol(−KX), and this quantity

must be positive. We have also seen that vol(−KX) can be expressed as an integral

over λ−KX + P+(−KX). It follows that P+(−KX) has non-empty interior. Let λ lie

in the interior of P+(−KX), and replace −KX with the equivalent divisor −K ′X =

−KX + div eλ.

Suppose hD = 0 for some D ∈ B(X). We know that 〈λ, `D〉 ≥ −mD. The

former is defined to be νD(eλ), so we have mD + νD(eλ) = m′D ≥ 0, or equivalently

0 = 〈0, `D〉 ≥ −m′D, i.e. 0 ∈ P(−K ′X).

Likewise, since λ ∈ relintP+(−KX), we have A(−KX , λ) > 0. But

A(−KX , λ) =
∑
P∈P1

(
min
PD=P

〈λ, `D〉+mD

hD

)
=
∑
P∈P1

(
min
PD=P

m′D
hD

)
= A(−K ′X , 0).

So A(−K ′X , 0) > 0 and the result follows.

Now looking back to B, we have

(F r)(B) =
⊕
k∈Z

{
f ∈

⊕
λ∈Λ

H0(X,−kKX)
(B)
λ | νF (f) ≥ r

}
.

By discussions above, we can rewrite this as

(F r)(B) =
⊕
λ∈Λ

⊕
k∈Z

{f ∈ H0(P1, kHλ) | νF (f) ≥ r}.

Since νF (f) = hF ordPF (f) + 〈λ, `F 〉, we have

(F r)(B)
(λ,k) =

{
f ∈ H0(kHλ) | ordP (f) ≥ r − 〈λ, `F 〉

hF

}
.

We have shown that if degHλ > 0 and Hλ has non-integral coefficients at two

points other than PF , the ring BhF (Hλ) is not integrally closed. The latter is the sum

over (k, r) ∈ Z⊕ Z of

BhF (Hλ)(k,r) =

{
f ∈ H0(kHλ) | ordPF (f) ≥ r

hF

}
{
f ∈ H0(kHλ) | ordPF (f) ≥ r+1

hF

} .
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Note that BhF (Hλ)(k,r−〈λ,`F 〉) = (F r)(B)
(λ,k)/(F r+1)

(B)
(λ,k) as defined above. The shift of

degrees by 〈λ, `F 〉 can be ignored as we sum over Z either way.

We can now write

B(B) =
⊕
λ∈Λ

⊕
r∈Z

⊕
k∈Z

B(B)
(λ,k,r) =

⊕
λ∈Λ

⊕
r∈Z

⊕
k∈Z

BhF (Hλ)(k,r)

=
⊕
λ∈Λ

BhF (Hλ).

Lemma 4.4. Let A be an integral domain with field of fractions K, and let K ′ be a

subfield of K. Let B = A ∩ K ′. If B is not integrally closed in K ′, then A is not

integrally closed in K.

Proof. If B is not integrally closed in K ′, there exists a monic polynomial in B[x] with

a root f ∈ K ′ which does not lie in B. Since K ′ ⊆ K and B[x] ⊆ A[x], we can also

view f as a root in K of a monic polynomial in A[x]. If f ∈ A, then since f ∈ K ′, we

have f ∈ A ∩K ′ = B, a contradiction. Hence f /∈ A and A is therefore not integrally

closed in K.

Theorem 4.7. If there exists λ ∈ P+(−KX) such that Hλ has two non-integral

coefficients at points other than PF , then B is not integrally closed.

Proof. By Lemma 4.4 it suffices to show that B(B)
0 = B ∩KB is not integrally closed.

We have shown that B(B) =
⊕

λ∈Λ BhF (Hλ), so in particular B(B)
0 = BhF (H0). Hence

if BhF (H0) is not integrally closed, then neither is B. We have proved already that

BhF (H0) is not integrally closed when H0 has positive degree and two non-integral

points distinct from PF . We may assume that H0 has positive degree by Lemma 4.3.

If Hλ has non-integral coefficients at two points other than PF , then replace −KX

with −K ′X = −KX + div eλ. Then H ′0 = Hλ and the result follows using H ′0 instead of

H0.

To summarise the results of this section, we have:

Corollary 4.4. Let X be a smooth Fano G-variety of complexity one with anticanonical

divisor −KX . Let F be a non-central prime divisor over X corresponding to a point

PF ∈ P1 on the B-quotient. If there exists λ ∈ P+(−KX) such that Hλ has two non-

integral coefficients at points other than PF , then the test configuration corresponding

to F has non-normal special fibre.
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4.4.4 Non-Integral Coefficients

We will now investigate exactly when the hypotheses of Corollary 4.4 actually hold.

Theorem 4.8. Let X be one of the SL2-threefolds listed in Theorem 4.5, other than

P3 and the blow-up thereof at two or three lines. There exists λ ∈ P+(−KX) such that

Hλ has non-integral coefficients at the points corresponding to subregular colours.

We will demonstrate this result one variety at a time.

V22 (1.10)

It is known that for X = V22, the Mukai-Umemura threefold, we can take −KX to be

a hyperplane section. The B-invariant hyperplane section of X for our action is D−4.

This variety has subregular colours lying over 0,∞,−4 ∈ P1. With this representative

of −KX , we have

Hλ = −λ
2

[0] +
λ

3
[∞] + min

{
λ+ 1

5
, 0

}
[−4].

Choosing λ = −5 gives degHλ = 1
30

and non-integral coefficients at all three points.

V5 (1.15)

This time −KX = 2D−4. We have

Hλ = −λ
2

[0] +
λ

3
[∞] + min

{
λ+ 2

4
, 0

}
[−4].

Again, λ = −5 works, giving degHλ = 1
12

and non-integral coefficients at all three

points.

Q (1.16)

Q is a hypersurface of degree 2 in P4 so its anticanonical divisor is given by its

intersection with a divisor of degree 3 in P4. The three subregular colours D0, D∞ and

D−4 of Q are sections of prime divisors in P4 of degrees 3, 2 and 1, respectively, so we

may take −KQ = 3D−4. Then

Hλ =
−λ
2

[0] +
λ

3
[∞] + min

{
λ+ 3

3
, 0

}
[−4].

Choosing λ = −5 gives non-integral coefficients at each point and degHλ = 1
6
.
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Blow-up of Q (2.21)

With the same −KQ as before, blowing up in the twisted quartic, which is contained

in D0 and D∞ but not in D−4, gives −KX = 3D̃−4 − E. Adding div(f0e
−2
2α ), where

f0 ∈ C(P1) has divisor [∞]− [0] gives −KX = D̃−4 + D̃∞. Then

Hλ =
−λ+ 2

2
[0] + min

{
λ+ 1

3
, 0

}
[∞] + min

{
λ+ 1

3
, 0

}
[−4].

Taking λ = −3 gives non-integral coefficients and degHλ = 1
6
.

Blow-up of P3 along a twisted cubic (2.27)

P3 with the cubic SL2-action has subregular colours D0, D∞ and D−4 of respective

degrees 3, 2 and 1. Hence we may choose −KP3 = 4D−4. Then blowing up the twisted

cubic gives −KX = 4D̃−4 −E, where E is the exceptional divisor and lies over ∞. We

add div(f0e
−2
2α ) to −KX , where div(f0) = [0] − [∞], giving −KX = 2D̃−4 + D̃∞. We

then have

Hλ =
λ

2
[0] + min

{
1− 2λ

3
,−λ

}
[∞] + min

{
λ+ 2

2
, 0

}
[−4].

Choosing λ = −3 gives non-integral coefficients at all points and degHλ = 1
3
.

W (2.32)

The divisor W on P2× P2 of bidegree (1, 1) has anticanonical divisor class given by the

intersection with W of a class of bidegree (2, 2) on P2 × P2. The subregular colours D0

and D∞ have bidegrees (1, 0) and (0, 1), so we take −KW = 2D0 + 2D∞. This gives

Hλ = min

{
λ+ 2

2
, 0

}
[0] + min

{
λ+ 2

2
, 0

}
[∞]− λ

2
[−1].

Taking λ = −3 gives non-integral coefficients at all points and degHλ = 1
2
.

P1 × P2 (2.34)

The anticanonical divisor of P1 × P2 has bidegree (2, 3) which we can obtain as

2D∞ + 3D−1. This gives

Hλ = −λ
2

[0] + min

{
2− λ

2
,−λ

}
[∞] + min {2λ+ 3, λ} [−1].

Taking λ = −3 gives non-integral coefficients at the points 0,∞ corresponding to

subregular colours and degHλ = 1.
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Blow-up of W (3.13)

We blow up W in the curve of bidegree (2, 2) obtaining −KX = 2D̃0 + 2D̃∞ − E.

Adding div(e−1
2α ) gives −KX = D̃0 + D̃∞ + D̃−1. Then

Hλ = min

{
λ+ 1

2
, 0

}
[0] + min

{
λ+ 1

2
, 0

}
[∞] + min

{
1− λ

2
,−λ

}
[−1].

Taking λ = −2 gives non-integral coefficients at all points and degHλ = 1
2
.

Blow-up of P1 × P2 (3.17)

Blowing up P1 × P2 along the curve of bidegree (1, 1) gives −KX = 2D̃∞ + 3D̃−1 − E.

We can add div(f0e
−1
2α ), where div(f0) = [−1]− [∞] to get −KX = D̃∞ + 2D̃−1 + D̃0.

Then

Hλ = min

{
1− λ

2
,−λ

}
[0] + min

{
1− λ

2
,−λ

}
[∞] + min {2λ+ 2, λ} [−1].

Choosing λ = −2 gives non-integral coefficients at the points 0,∞ corresponding to

subregular colours and degHλ = 1.

Result

Putting together the results of the above subsections, we have:

Theorem 4.9. Let X be one of the SL2-threefolds mentioned in Theorem 4.8. Let

F be a non-central prime divisor over X corresponding to a point PF ∈ P1. If X

has subregular colours lying over two points in P1 distinct from PF , then the test

configuration corresponding to F has non-normal central fibre.

4.4.5 Action Interchanging Two Points

Proof of Theorem 4.4(ii). Suppose a finite subgroup A ⊆ AutX acts on P1, inter-

changing two points P and Q corresponding to subregular colours of X and that the

B-quotient is equivariant with respect to the A-action. We have an action on X of an

extension G′ of G by A. Any non-central G-invariant prime divisor F over X can only

be G′-invariant if its corresponding point PF ∈ P1 is fixed by A. Since P and Q are not

fixed by A, they are distinct from PF , and since each has a subregular colour lying over

it, Theorem 4.9 applies, and the test configuration corresponding to F is not special.

Therefore we may show that X is K-polystable by checking only central divisors.
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We now show that this case of Theorem 4.4 applies to the blow-up of P1× P2 along

a curve of bidegree (1, 1) (3.17).

Consider the Z2-symmetry of P1 given by [α : β] 7→ [β : α]. This interchanges 0 and

∞, fixes 1 and −1, and puts every other point in an orbit of order 2. Recall that the

blow-up of P1 × P2 has subregular colours lying over 0 and ∞, and has a distinguished

point −1. Since the slices of the coloured hyperfan over 0 and ∞ are identical to each

other, the interchange of these points by Z2 leaves the hyperfan invariant, hence the

Z2 action on X respects the B-quotient map and Theorem 4.4 applies.

Oddly, this method seems not to apply to P1 × P2 itself, even though this variety

is known to be K-polystable, since in this case, one of the two slices with subregular

colours contains a G-divisor while the other does not, and the Z2-symmetry therefore

does not extend. This may require some further exploration.

4.4.6 Three or More Subregular Colours

Proof of Theorem 4.4(iii). If X has subregular colours lying over three or more distinct

points of P1, then for any non-central prime divisor F over X corresponding to a

point PF in P1, there always exist at least two subregular colours lying over two points

distinct from PF and from each other. Then Theorem 4.9 applies and we need only

check the β-invariant of central divisors.

We have seen that any smooth Fano SL2-threefold whose stabiliser subgroup H

is one of {D̃m, T̃ , C̃, Ĩ} has 3 subregular colours, all lying over distinct points in P1.

Then in particular, Theorem 4.4 applies to V22 (1.10), V5 (1.15), Q (1.16), the blow-up

of Q along a twisted quartic (2.21), the blow-up of P3 along a twisted cubic (2.27), W

(2.32) and the blow-up of W along a curve of bidegree (2, 2) (3.13).

4.5 Central Divisors of SL2-Threefolds

Here we prove Theorem 4.5 by calculating the β-invariant for the G-stable central

prime divisors over each of our list of SL2-threefolds. By Theorem 4.4, we need to show

that (1): βX(F ) ≥ 0 for central divisors F over each variety and (2): if βX(F ) = 0

then F corresponds to a product configuration. It will turn out that (2) is never the
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case. Throughout we will mostly use the notation and results of Section 3.3 for curves,

divisors etc. lying in each variety, with any changes to this notation clearly signalled.

4.5.1 Existence and Uniqueness of Central Divisors

In this subsection we will prove the following:

Theorem 4.10. Let X be a smooth Fano SL2-threefold. There exists a unique central

G-divisor over X. If X is of type I, then it contains this central divisor. If X is of

type II, the central G-divisor over X lies on the type I variety over X whose existence

is proved in Proposition 3.14.

Definition 4.7. Let H be the hyperspace of a G-model X of complexity one. The

dimension of H is the common dimension of each half-space Hp for p ∈ P1. If

Cp is a coloured cone in Hp, its dimension is the dimension of a minimal affine

subspace of Hp containing Cp. If C is a coloured hypercone of type II in H, set

dim C = maxp∈P1 dim (C ∩ Hp).

Lemma 4.5. Let X be a G-model of complexity one and rank r, and let H be the

hyperspace of X. We have dimH = 1 + r.

Proof. For each p ∈ P1, the slice Hp of hyperspace corresponding to p is isomorphic

to Λ∗Q ×Q≥0, where Λ is the weight lattice of X, which has dimension 1 + dim Λ∗Q =

1 + rk Λ = 1 + r, by the definition of rank.

Proposition 4.9. Let X be a G-model and let Y ⊆ X be a G-germ. The dimension

of CY in H is equal to the codimension of Y in X.

Proof. This follows from the fact that the coloured hypercone corresponding to X itself

is {0} and that inclusion of coloured hypercones as faces in one another corresponds to

the reverse inclusion of the associated G-germs.

Corollary 4.5. Let X be a complete G-model of dimension d, rank r and complexity

1. Then minimal G-germs in X must have dimension d− r − 1.

Proof. Since V is full dimensional in H, it follows from completeness that the coloured

(hyper)cone corresponding to a minimal G-germ Y in X must have the same dimension

as H, i.e. 1 + r. Then codimX Y = dim CY = 1 + r, so dimY = d− r − 1.
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Now let G = SL2(k) and let X be a complete three dimensional G-model of

complexity one, i.e. a normal projective threefold with a G-action having finite

stabilisers. Then X contains an open orbit isomorphic to G/H for H a finite subgroup

of G.

Let B be the Borel subgroup of G given by the upper triangular matrices. Then

X(B) is of rank 1, generated by the character α which picks out the upper-left entry.

Hence in particular X is a rank 1 variety. The hyperspace H of X then has dimension

2, so minimal G-germs of X must have codimension 2, i.e. they are curves, and in

particular X can contain no G-fixed points. The centre Z of H is a line. Most of the

following results arise from this fact. In particular, note that for any finite H ⊆ G, the

valuation cone V(G/H) intersects Z in a ray.

Proposition 4.10. X contains at most one central G-divisor.

Proof. Any central G-divisor must be mapped to the intersection V∩Z of the valuation

cone and the central hyperplane. As noted, this intersection is a ray. If there were two

distinct central G-divisors, their coloured (hyper)cones would then both be the same

ray, a contradiction.

Proposition 4.11. X contains a central G-divisor if and only if X is a model of type

I.

Proof. Suppose X is of type I, i.e. every G-germ of X corresponds to a coloured cone

in some slice of the hyperspace. By completeness, these coloured cones must cover V .

Since V intersects the central line Z in a ray ρ, there must be a G-germ of X whose

coloured cone is ρ, i.e. a central G-divisor.

Now suppose X has a central G-divisor D and that Y ⊆ X is a G-germ of type II

with coloured hypercone CY . We know that CY must intersect Z in V , i.e. it contains

the ray ρ corresponding to D. Then νD lies in the relative interior of CY , hence in

the support SY of Y . But νD ∈ SD, so the supports of Y and D are not disjoint,

contradicting separation of X. Hence all G-germs of X are of type I, as required.

Proposition 4.12. If X is of type II, there exists a central prime divisor over X.

Proof. We know from Proposition 3.14 that there exists a projective birational mor-

phism ν : X̌ → X where X̌ is of type I. Then by the above proposition there is a central

prime divisor D ⊆ X̌.
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Proposition 4.13. Let X be of type II. Then X has a unique G-germ of type II, a

curve, which must be a closed G-orbit.

Proof. We know that X contains at least one G-germ of type II. Suppose Y, Y ′ ⊆ X

are both G-germs of type II. Their corresponding coloured hypercones CY , CY ′ must

both intersect the central ray ρ ⊆ V , hence their relative interiors must intersect in V .

It follows that Y = Y ′, and X has exactly one G-germ of type II.

Then all other G-germs of X are of type I and so each defines a coloured cone in

some Hp. In particular, these coloured cones cannot contain CY , so Y does not contain

any other G-germ of X. Hence Y is a minimal G-germ, so in particular a curve and a

closed G-orbit.

Proposition 4.14. Let X be of type II and suppose that every G-divisor of X maps

to the boundary of the valuation cone. Then the unique minimal G-germ Y ⊆ X of

type II is contained in every G-divisor, and X has no minimal G-germs of type I. In

particular, Y is the unique closed G-orbit of X.

Proof. Let F ⊆ X be a G-divisor mapping to the non-central boundary of Vp = V ∩Hp.

The ray CF defined by F must then be a face of some coloured cone in Hp or coloured

hypercone of type II in H, i.e. F must contain some minimal G-germ.

We know that X contains a unique minimal G-germ Y of type II, and in particular

the coloured hypercone CY must have CF as a face, i.e. F contains Y . Now suppose F

contains another G-germ Z. This must be of type I since Y is the only G-germ of type

II, so CZ must be a coloured cone in Hp with CF as a face. However, CZ must intersect

V in its relative interior, and since CF is the boundary of V , it follows that CZ and CY
intersect in their relative interiors, a contradiction.

Hence for each Hp containing a G-divisor, the only minimal G-germ whose coloured

(hyper)cone intersects Hp is Y . If Hp does not contain a G-divisor, it can also only

support one coloured (hyper)cone since it only contains one B-divisor, the colour Dp.

Therefore Y is indeed the unique minimal G-germ of X and hence also the unique

closed orbit.

In all cases which we will consider here, we are given a smooth SL2-threefold X,

and either X is of type I and has a central divisor, which is unique, or X is of type II
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and we can obtain the unique central divisor over X by blowing up a finite sequence of

G-invariant curves.

Combining Theorem 4.10 with Theorem 4.4, we see that to prove Theorem 4.5,

we need only find the central divisor over each variety and show that its β-invariant

is positive. In the following sections we will perform this calculation for each of the

examples, thus proving their K-stability.

4.5.2 P3 and Blow-Ups Along Two or Three Lines

P3 (1.17)

The anticanonical divisor of P3 = P(M2(C)) is the class of a divisor of degree 4, which

we may take to be 2∆, where ∆ is the G-invariant divisor of singular matrices. This is

also the unique central divisor on P3.

To calculate βX(∆) when X = P3, note that (−KX)3 = 64 and AX(∆) = 1 since

∆ lies on P3. It remains to calculate vol(δ), where δ = −KX − x∆ = (2− x)∆. Note

that since δ is G-invariant we have λδ = 0.

We have P(δ) = {λ ∈ Λ | 〈λ, `∆〉 ≥ −(2 − x)}. Since Λ = Zα ∼= Z and `∆ = −1,

we get P(δ) = {λ ∈ Z | λ ≤ 2− x}.

Consider

A(δ, λ) =
∑
p∈P1

(
min
pD=p

〈λ, `D〉+mD

hD

)
.

We have `D = mD = 0 for all colours D other than the distinguished colour, which has

mD = 0, `D = 2 and hence contributes a value of 2λ to A(δ, λ).

We therefore have P+(δ) = {λ ≤ 2− x | λ ≥ 0} = [0, 2− x]. Hence

vol(δ) = 6

∫ 2−x

0

2λ · 2λ dλ = 8(2− x)3.

We therefore have

β(∆) = 64−
∫ 2

0

8(2− x)3 dx = 64− 32 = 32 > 0.

Hence by Theorem 4.4, P3 is K-polystable.

Blow-up of P3 Along Two Lines (3.25)

Starting with −KP3 = 2∆ as before, the anticanonical divisor after blowing up two

lines Yq and Yr is 2∆̃ + Eq + Er.
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This time we have (−KX)3 = 44 and again AX(∆) = 1. We must now compute

β(∆̃) by calculating vol(δ) where δ = (2− x)∆̃ + Eq + Er. We still have λδ = 0.

Likewise, P(δ) = (−∞, 2 − x] as before. This time A(δ, λ) receives the same

contribution of 2λ at the distinguished point, and there is no contribution other than

from here and from q and r. At q, we have the exceptional divisor Eq with ` = −1,

m = 1 and h = 1, and the colour with ` = m = 0. Thus there is a contribution to

A(δ, λ) of −λ+ 1 when this is less than or equal to 0, and a contribution of 0 otherwise.

The same holds for r. Hence we have

A(δ, λ) =

2 1 ≤ λ ≤ 2− x

2λ λ < 1.

Therefore P+(δ) = [0, 2− x], and

vol(δ) =

6
∫ 1

0
4λ2 dλ+ 6

∫ 2−x
1

4λ dλ 0 ≤ x ≤ 1

6
∫ 2−x

0
4λ2 dλ 1 < x ≤ 2.

We thus get

βX(∆̃) = 44−
∫ 2

0

vol(δ) dx = 44− 26 = 18 > 0.

Hence the blow-up of P3 at two lines is K-polystable.

Blow up of P3 Along Three Lines (4.6)

The anticanonical divisor of the blow-up of P3 along three lines Yq, Yr and Ys is

2∆̃ +Eq +Er +Es. We have (−KX)3 = 34, AX(∆̃) = 1, δ = (2− x)∆̃ +Eq +Er +Es,

λδ = 0 and P(δ) = (−∞, 2− x].

The calculation of A(δ, λ) goes much the same as in the previous case, only A(δ, λ)

gains an extra contribution of −λ+ 1 from Es when λ ≥ 1, giving

A(δ, λ) =

3− λ 1 ≤ λ ≤ 2− x

2λ λ < 1.

Therefore P+(δ) = [0, 2− x], and

vol(δ) =

6
∫ 1

0
4λ2 dλ+ 6

∫ 2−x
1

6λ− 2λ2 dλ 0 ≤ x ≤ 1

6
∫ 2−x

0
4λ2 dλ 1 < x ≤ 2.
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We thus get

βX(∆̃) = 34−
∫ 2

0

vol(δ) dx = 34− 23 = 11 > 0.

Hence the blow-up of P3 at three lines is K-polystable.

4.5.3 Blow-up of P1 × P2

Central Divisor

Let X = Z(x0y0z2 + x1y1z0 − x0y1z1 − x1y0z1) ⊆ P1 × P1 × P2. This variety is the

blow up of P1 × P2 along the G = SL2-stable curve C = Z(x1z0 − x0z1, x0y1 − x1y0).

In X there are G-invariant divisors ∆ = Z(x0y1 − x1y0, x
2
0z2 + x2

1z0 − 2x0x1z1), E =

Z(x1z0−x0z1, x0y1−x1y0) and F = Z(y1z0−y0z1, y0z2−y1z1). The curve Z = F∩∆∩E

is G-invariant and defined by Z(x1z0 − x0z1, x1z1 − x0z2, x0y1 − x1y0).

Taking x1 = y1 = z2 = 1 gives a maximal B-chart U of Z, given by U = Z(x0y0+z0−

x0z1−y0z1) ⊆ A4, so eliminating z0 gives U = Spec k[x0, y0, z1] ∼= A3. We have ∆∩U =

Z(x0−y0), F ∩U = Z(y0−z1), E∩U = Z(z1−x0) and Z∩U = Z(z1−x0, x0−y0). We

blow up U in this curve to obtain the variety X̃ = Z(u1(z1−x0)−u0(x0−y0)) ⊆ A3×P1.

The B-invariant rational function

f =
x2

1(z0z2 − z2
1)

(x0z2 − x1z1)2

on X becomes, on X̃, f = z1−y0
x0−z1 . From this one can see that the exceptional divisor

D = Z(z1 − y0, x0 − z1) of the blow-up σ : X̃ → X is central.

βX(F ) (3.17)

We now want to calculate

β(D) = AX(D)(−KX)3 −
∫ ∞

0

volX (−KX − xD) dx.

We have AX(D) = 2 since D is the exceptional divisor on a blow-up of X, and

(−KX)3 = 36, so

β(F ) = 72−
∫ ∞

0

volX (−KX − xD) dx = 72−
∫ ∞

0

volX̃ (σ∗(−KX)− xD) dx.

To calculate σ∗(−KX), first let ∆ = Z(x2
0z2 +x2

1z0−2x0x1z1) and F = Z(z0z2−z2
1)

in P1 × P2. The divisors ∆, F above are the strict transforms of these under the
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blow-up µ : X → P1 × P2. Since −KP1×P2 is the class of a divisor of bidegree (2, 3), we

can represent it by ∆ + F = (2, 1) + (0, 2).

Then −KX = µ∗(∆ + F ) − E = (∆ + E) + (F + E) − E = ∆ + F + E. Hence

σ∗(−KX) = ∆̃ + F̃ + Ẽ + 3D, and so we need to calculate the volume of δ =

∆̃ + F̃ + Ẽ + (3− x)D. This is given by

vol(δ) = 6

∫
λδ+P+(δ)

2λA(δ, λ− λδ) dλ.

Since δ is G-invariant, we have λδ = 0. We also have

P(δ) = {λ ∈ Λ⊗ R | 〈λ, `D〉 ≥ x− 3} = {λ | λ ≤ 3− x}

and

P+(δ) = {λ ∈ P(δ) | A(δ, λ) ≥ 0} = {λ ≤ 3− x | A(δ, λ) ≥ 0}

where

A(δ, λ) =
∑
p∈P1

min
pD=p

〈λ, `D〉+mD

hD
.

To calculate A(δ, λ), first note that for p 6= 0,−1,∞, the only B-divisors with

pD = p are the colours Dp with `Dp = mDp = 0, hDp = 1, so there is no contribution in

these cases.

For p = 0, the two divisors with pD = p are E, with ` = −1, m = 1 and h = 1, and

D0 with ` = −1, m = 0 and h = 2. Hence there is a contribution to A(δ, λ) of

min

{
1− λ,−λ

2

}
=

1− λ λ ≥ 2

−λ
2

λ < 2

.

For p =∞, the contribution is the same. The two divisors with pD = −1 are ∆ with

` = 1, m = 1 and h = 1, and D−1 with ` = −2, m = 0 and h = 1, so the contribution

to A(δ, λ) is

min {1 + λ, 2λ} =

1 + λ λ ≥ 1

2λ λ < 1

.

Hence we have

A(δ, λ) =


3− λ λ ≥ 2

1 1 ≤ λ ≤ 2

λ λ < 1

.
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It follows that P+(δ) = {λ ≤ 3− x | 0 ≤ λ ≤ 3}, and since x ≥ 0, 3− x ≤ 3 and P+(δ)

is empty if x > 3. Hence P+(δ) = [0 : 3− x] where 0 ≤ x ≤ 3.

Therefore

vol δ = 6



∫ 3−x
0

2λ2 dλ 2 ≤ x ≤ 3∫ 1

0
2λ2 dλ+

∫ 3−x
1

2λ dλ 1 ≤ x ≤ 2∫ 1

0
2λ2 dλ+

∫ 2

1
2λ dλ+

∫ 3−x
2

2λ(3− λ) dλ 0 ≤ x ≤ 1

=


4(3− x)3 2 ≤ x ≤ 3

6x2 − 36x+ 52 1 ≤ x ≤ 2

4x3 − 18x2 + 36 0 ≤ x ≤ 1

giving

β(F ) = 72−
∫ 3

0

vol δ dx

= 72−
∫ 1

0

4x3 − 18x2 + 36 dx−
∫ 2

1

6x2 − 36x+ 52 dx−
∫ 3

2

4(3− x)3 dx

= 72− 31− 12− 1 = 28.

Hence X is K-polystable.

4.5.4 The Divisor W on P2 × P2 and Its Blow-Up

Central Divisor

Let W = Z(x0y2− 2x1y1 +x2y0) ⊆ P2×P2 . We know that W has G-invariant divisors

E∞ = Z(x0x2 − x2
1) ∩W and E0 = Z(y0y2 − y2

1) ∩W whose intersection is a G-stable

curve Z. We obtain the smooth Fano (3.13) by blowing up W along Z. The curve Z has

a minimal B-chart U = W \ (Z(x2) ∪ Z(y2)) = Z(x0− 2x1y1 + y0) ⊆ A4. We eliminate

x0 to obtain U = Spec k[x1, y0, y1] ∼= A3. Introducing new co-ordinates x = x1 − y1,

y = y0, z = y1, the curve Z ∩ U is defined by x = y − z2 = 0. The divisors E∞ ∩ U

and E0 ∩ U are defined by z2 − y − x2 = 0 and y − z2 = 0, respectively.

Hence blowing up U along Z ∩ U we obtain X = Z(vx − u(y − z2)) ⊆ A3 × P1

with exceptional divisor E = Z(x, y − z2) and strict transforms (abusing notation)

Ẽ∞ = Z(ux− v, z2− x2− y) and Ẽ0 = Z(y− z2, v). The intersection of these three G-

invariant divisors (in fact any two of them) gives a G-invariant curve Y = Z(y−z2, x, v),

the unique minimal G-germ of X.
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Take a chart u = 1 to obtain X = Z(vx − y + z2), then eliminate y so that

X = Spec k[x, v, z] ∼= A3. Then we have Ẽ∞ = Z(x − v), Ẽ0 = Z(v), E = Z(x) and

Y = Z(x, v).

Blowing up this chart along Y , we obtain X̃ = Z(wx − sv) ⊆ A3 × P1. We

now have Ẽ0 = Z(v, w), Ẽ∞ = Z(x − v, w − s), Ẽ = Z(x, s) and an exceptional

divisor F = Z(x, v). The B-quotient map W 99K P1 was originally given by P 7→

[y2
2(x0x2 − x2

1) : x2
2(y0y2 − y2

1)], which on X̃ reduces to P 7→ [v − x : v]. From this one

can see that the exceptional divisor F is central.

Since F is G-invariant we must have `F < 0 (for it to lie in the valuation cone), and

since it is a hyperplane we must then have `F = −1. Since the coloured hyperfan of

any model of type I must consist of strictly convex coloured cones, and the G-invariant

valuations map injectively into the hyperspace, F is the unique central G-invariant

prime divisor over W .

βW (F ) (2.32)

To calculate βW (F ), we first must calculate −KW and its pullback to the model

containing F . Since W is a hypersurface in P2 × P2, the adjunction formula gives

−KW = (−KP2×P2−W )|W . The anticanonical class of P2×P2 is (3, 3) where we identify

the divisor class group with Z ⊕ Z, and since W has bidegree (1, 1) we get −KW =

(2, 2)|W . Represent the divisor class (2, 2) on P2 × P2 by Z(x0x2 − x2
1) + Z(y0y2 − y2

1),

so that the restriction to W of this class is represented by E∞ + E0 = −KW .

After the two blow-ups, this class pulls back to E0 + E∞ + 2E + 4F , and we must

calculate βW (F ) = AW (F )(−KW )3−
∫∞

0
vol(δ) dx where δ = E0 +E∞+2E+(4−x)F .

We have (−KW )3 = 48 and AW (F ) = 3 since F is the exceptional divisor of the second

of two nested blow-ups of W .

We have λδ = 0 and P(δ) = (−∞, 4− x]. To calculate A(δ, λ), first note that there

is no contribution at points other than 0, ∞ and −1. At p = 0,∞, we have divisors Ep

with ` = 0, h = 1 and m = 1, and Dp with ` = 1, h = 2 and m = 0, so the contribution

in each case is min{1, λ
2
}. At p = −1 we have E with ` = −1, h = 1 and m = 2, and

D−1 with ` = −1, h = 2 and m = 0, so the contribution is min{2− λ,−λ
2
}. Overall,
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we have

A(δ, λ) =

4− λ λ ≥ 0

λ
2

λ < 2.

Therefore we have P+(δ) = [0, 4− x], so 0 ≤ x ≤ 4, and:

vol(δ) = 6

∫ 2−x

0

2λA(δ, λ) dλ

=

6
∫ 2−x

0
λ2 dλ 2 ≤ x ≤ 4

6
∫ 2

0
λ2 dλ+ 6

∫ 2−x
2

8λ− 2λ2 dλ 0 ≤ x ≤ 2

=

2(4− x)3 2 ≤ x ≤ 4

4x3 − 24x2 + 80 0 ≤ x ≤ 2.

Hence

βW (F ) = 3 · 48−
∫ 4

0

vol(δ) dx = 144− 120 = 24 > 0

so W is K-polystable.

βX(F ) (3.13)

We now want to calculate

βX(F ) = AX(F )(−KX)3 −
∫ ∞

0

volX (−KX − xF ) dx.

We have AX(F ) = 2 since F is a prime divisor on a blow-up of X, and (−KX)3 = 30.

We have −KX = µ∗(−KW )−E where µ is the blow-up of W in E0 ∩E∞, which gives

−KX = E0 + E∞ + E. Under the next blow-up to the model containing F , this pulls

back to E0 + E∞ + E + 3F , so we set δ = E0 + E∞ + E + (3− x)F .

We have λδ = 0 and P(δ) = (−∞, 3− x]. To calculate A(δ, λ), first note that for

p 6= 0,−1,∞, there is no contribution. For p = 0,∞, the two divisors with pD = p are

Ep, with ` = 0, m = 1 and h = 1, and Dp with ` = 1, m = 0 and h = 2. Hence in each

case there is a contribution to A(δ, λ) of

min

{
1,
λ

2

}
=

1 λ ≥ 2

λ
2

λ < 2

.
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For p = −1, the two divisors with pD = p are E with ` = −1, m = 1 and h = 1, and

Dp with ` = −1, m = 0 and h = 2, so the contribution to A(δ, λ) is

min

{
1− λ,−λ

2

}
=

1− λ λ ≥ 2

−λ
2

λ < 2

.

Hence we have

A(δ, λ) =

3− λ λ ≥ 2

λ
2

λ < 2

.

It follows that P+(δ) = [0, 3− x], so 0 ≤ x ≤ 3

Therefore

vol δ =

6
∫ 3−x

0
λ2 dλ 1 ≤ x ≤ 3

6
∫ 2

0
λ2 dλ+ 6

∫ 3−x
2

6λ− 2λ2 dλ 0 ≤ x ≤ 1

=

2(3− x)3 1 ≤ x ≤ 3

4x3 − 18x2 + 30 0 ≤ x ≤ 1.

Hence

β(F ) = 60−
∫ 3

0

vol(δ) dx = 60− 33 = 27.

So X is K-polystable.

4.5.5 Blow up of P3 along the Twisted Cubic

Central Divisor

Let G = SL2 act on P3 = P(S3k2). The twisted cubic curve

C = Z(x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2)

is G-invariant. The prime divisor

F = Z(3x2
1x

2
2 − 4x3

1x3 − x2
0x

2
3 − 4x0x

3
2 + 6x0x1x2x3).

is G-invariant and contains C - indeed F is the secant variety to C and C is the singular

locus of F , contained with multiplicity 2.
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The smooth Fano (2.27) is obtained by blowing up P3 along C. We first take the

open chart given by x3 = 1, which is the minimal B-chart of C. In this chart,

C = Z(x0x2 − x2
1, x0 − x1x2, x1 − x2

2) = Z(x0 − x1x2, x1 − x2
2),

and

F = Z(3x2
1x

2
2 − 4x3

1 − x2
0 − 4x0x

3
2 + 6x0x1x2)

Now consider the change of co-ordinates

(x0, x1, x2) 7→ (x0 + 3x1x2 + x3
2, x1 + x2

2, x2).

It is easily checked to be an isomorphism, and it sends F to Z(x2
0 − 4x3

1) and C to

Z(x0, x1). Hence we see that F is isomorphic to the product of a line (C) and a

cuspidal cubic plane curve. Performing another transformation x1 7→ x1/
3
√

4 gives

F = Z(x2
0 − x3

1) and leaves C invariant.

Now we blow up C, giving X = Z(y1x0 − y0x1) ⊆ A3 × P1 with exceptional divisor

E = Z(x0, x1). We have

F̃ = Z(x2
0 − x3

1, y1x0 − y0x1) \ Z(x0, x1).

It is easy to check that this gives

F̃ = Z(x2
0 − x3

1, y1x0 − y0x1, y0x0 − x2
1y1, y

2
0 − y2

1x1).

The intersection F̃ ∩E is then given by Z(x0, x1, y0). Since we don’t yet have a central

divisor, we will blow up this curve.

First, take the chart y1 = 1. Then X becomes Z(x0 − x1y0) ∼= Spec k[x1, x2, y0], F

becomes Z(y2
0 − x1), and E becomes Z(x1). Hence we obtain X̃ = Z(z0x1 − z1y0) ⊆

A3 × P1, with exceptional divisor D = Z(x1, y0). The strict transforms of F̃ and E are

Z(y2
0 − x1, z0y0 − z1) and Z(x1, z1), respectively. It is straightforward to check that

Ẽ, F̃ and D mutually intersect in the curve Z(x1, y0, z1). In particular this shows that

D is not central, so we must blow up again.

Take the chart z0 = 1, giving X̃ = Z(x1−z1y0) ∼= Spec k[x2, y0, z1], F̃ = Z(y0−z1),

Ẽ = Z(z1) and D = Z(y0). Blowing up the intersection Z(y0, z1) of these divisors

gives X̃ ′ = Z(u1y0 − u0z1) with exceptional divisor H = Z(y0, z1). Now the strict

transforms Ẽ, F̃ and D̃ all intersect H in different curves and are disjoint from each

other: hence H is a central divisor.
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β(H) (2.27)

We now want to calculate β(H). We have (−KX)3 = 38, and AX(H) = 3 since H is a

prime divisor on a variety obtained by two blow-ups of X. Hence

β(H) = 114−
∫ ∞

0

volX (−KX − xH) dx = 114−
∫ ∞

0

volX̃′ (σ
∗(−KX)− xH) dx

where σ : X̃ ′ → X is the birational morphism given by composing the two blow-ups

described above.

To calculate σ∗(−KX), first note that the anticanonical class of P3 is the class of

a prime divisor of degree 4, so we can set −KP3 = F . Then, blowing up C, which is

contained in F with multiplicity 2, gives −KX = (F̃ + 2E)−E = F̃ +E. The pullback

of this class under the blowing up of F̃ ∩E is then (F̃ +D) + (Ẽ +D) = F̃ + Ẽ + 2D.

Finally, the second blow-up gives

σ∗(−KX) = (F̃ +H) + (Ẽ +H) + 2(D̃ +H) = F̃ + Ẽ + 2D̃ + 4H.

Our next step is the calculate the volume of the divisor δ = F̃ + Ẽ+ 2D̃+ (4−x)H.

We have λδ = 0 and P(δ) = (−∞, 4 − x] since we must have `H = −1. Now we

calculate A(δ, λ). The points p 6= −4, 0,∞ contribute nothing as pD = p in this case

only for colours Dp with mD = `D = 0.

At p = −4, we have two divisors: F̃ , with m = 1, ` = 0 and h = 1, and D−4, with

m = 0, ` = 1 and h = 2. Hence there is a contribution of

min

{
1,
λ

2

}
=

1 λ ≥ 2

λ
2

λ < 2

.

At p = 0, we have two divisors: D̃, with m = 2, ` = 0 and h = 1, and D0, with

m = 0, ` = 1 and h = 2. Hence there is a contribution of

min

{
2,
λ

2

}
=

2 λ ≥ 4

λ
2

λ < 4

.

At p =∞, we have two divisors: Ẽ, with m = 1, ` = −1 and h = 1, and D∞, with

m = 0, ` = −2 and h = 3. Hence there is a contribution of

min

{
1− λ,−2λ

3

}
=

1− λ λ ≥ 3

−2λ
3

λ < 3

.
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All in all, we have

A(δ, λ) =



4− λ λ ≥ 4

2− λ
2

3 ≤ λ < 4

1− λ
6

2 ≤ λ < 3

λ
3

λ < 2

.

We can then read off P+(δ) = [0, 4− x], so in particular x ≤ 4. Hence

vol(δ) = 6

∫ 4−x

0

2λA(δ, λ) dλ.

That is,

vol(δ) =



∫ 4−x
0

4λ2 dλ 2 ≤ x ≤ 4∫ 2

0
4λ2 dλ+

∫ 4−x
2

12λ− 2λ2 dλ 1 ≤ x < 2∫ 2

0
4λ2 dλ+

∫ 3

2
12λ− 2λ2 dλ+

∫ 4−x
3

24λ− 6λ2 dλ 0 ≤ x < 1

=


−4

3
(x− 4)3 2 ≤ x ≤ 4

32
3

+ 2
3
(x3 − 3x2 − 24x+ 52) 1 ≤ x < 2

28 + 2(x3 − 6x2 + 5) 0 ≤ x < 1.

Hence we have

β(H) = 114−
∫ 4

0

vol(δ) = 114− 59 = 55.

So X is K-polystable.

4.5.6 The Quadric Threefold and Its Blow-Up

Central Divisor

Let Q = Z(3x2
2 − 4x1x3 + x0x4) ⊆ P4. The twisted quartic curve

C = Z(x0x2 − x2
1, x0x3 − x1x2, x1x4 − x2x3, x2x4 − x2

3)

is G-invariant. The prime divisor

F = Z(4x3
2 + x2

1x4 + x0x
2
3 − 6x1x2x3) ∩Q

is G-invariant and contains C.
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The smooth Fano (2.21) is obtained by blowing up Q along C. The minimal B-chart

of C is given by taking x4 = 1. In this chart, the equation of Q allows us to eliminate

x0, so that Q ∼= Spec k[x1, x2, x3]. Then C is given by

C = Z(x1 − x2x3, x2 − x2
3)

and F by

F = Z(4x3
2 + x2

1 + 4x1x
3
3 − 3x2

2x
2
3 − 6x1x2x3)

One can read off immediately that there is an isomorphism from this B-chart in Q to

the B-chart in P3 we took in the previous example and that this isomorphism preserves

the G-invariant subvarieties F and C (again, F is the secant variety of C). Hence

finding the central divisor is identical in this case to the previous one. Hence keeping

the same notation as above, we must blow Q up three times, obtaining exceptional

divisors E, D and H, with the latter being central.

βQ(H) (1.16)

To calculate βQ(H), we must first calculate −KQ and its pullback to the model

containing H. Since Q is a hypersurface in P4, the adjunction formula gives −KQ =

(−KP4 −Q)|Q. The anticanonical class of P4 is the class of a divisor of degree 5. If we

represent this by Q+Z(4x3
2 +x2

1x4 +x0x
2
3−6x1x2x3), we see that F is an anticanonical

divisor of Q.

After the three blow-ups described above, this pulls back to F + 2E + 3D + 6H, so

set δ = F + 2E + 3D+ (6− x)H. We have λδ = 0 and P(δ) = (∞, 6− x]. To calculate

A(δ, λ), first note that there is no contribution at points p 6= 0,∞,−4. At p = 0 we

have two divisors: D with ` = −1, m = 3 and h = 1, and D0 with ` = −1, m = 0 and

h = 2. Hence at this point there is a contribution of

min

{
3− λ,−λ

2

}
=

3− λ λ ≥ 6

−λ
2

λ < 6.

At p = −4 we have F with ` = 0, m = 1, h = 1, and D−4 with ` = 1, m = 0, h = 3.

Hence the contribution is

min

{
1,
λ

3

}
=

1 λ ≥ 3

λ
3

λ < 3.
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Finally, at p = ∞ we have E with ` = 0, m = 2, h = 1, and D∞ with ` = 1, m = 0,

h = 3. Hence the contribution is

min

{
2,
λ

3

}
=

2 λ ≥ 6

λ
3

λ < 6.

All in all, we have

A(δ, λ) =


6− λ λ ≥ 6

1− λ
6

3 ≤ λ ≤ 6

λ
6

λ ≤ 3.

Hence A(δ, λ) ≥ 0 for 0 ≤ λ ≤ 6, so we have P+(δ) = [0, 6− x] and 0 ≤ x ≤ 6.

Now we have

vol(δ) = 6

∫ 6−x

0

2λA(δ, λ) dλ

=

6
∫ 6−x

0
λ2

3
dλ 3 ≤ x ≤ 6

6
∫ 3

0
λ2

3
dλ+ 6

∫ 6−x
3

2λ− λ2

3
dλ 0 ≤ x ≤ 3

=


2
3
(6− x)3 3 ≤ x ≤ 6

2x3

3
− 6x2 + 54 0 ≤ x ≤ 3.

We have (−KQ)3 = 54 and AQ(H) = 4, since we reached H as the final exceptional

divisor after 3 nested blow-ups of Q. Therefore

βQ(H) = 216−
∫ 6

0

vol(δ) dx = 216− 135 = 81 > 0

and Q is K-polystable.

βX(H) (2.21)

We now calculate βX(H), where X is the blow-up of Q in the twisted quartic C, i.e.

the smooth Fano (2.21). We have (−KX)3 = 28, and AX(H) = 3.

Since −KQ = F and the curve C has multiplicity 2 in F , we have −KX =

(F + 2E)− E = F + E. Under thw two subsequent blow-ups to the model containing

H, this pulls back to F + E + 2D + 4H, so we set δ = F + E + 2D + (4− x)H. We

have λδ = 0 and P(δ) = (∞, 4− x]. Moving on to calculating A(δ, λ): as before, points

p 6= −4, 0,∞ do not contribute.
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At p = −4, we have two divisors: F , with m = 1, ` = 0, h = 1, and D−4, with

m = 0, ` = 1, h = 3. Hence there is a contribution of

min

{
1,
λ

3

}
=

1 λ ≥ 3

λ
3

λ < 3

.

At p = ∞, the situation is identical to that at p = −4, so we get the same

contribution again.

At p = 0, we have two divisors: D, with m = 2, ` = −1 and h = 1, and D0, with

m = 0, ` = −1 and h = 2. Hence there is a contribution of

min

{
2− λ,−λ

2

}
=

2− λ λ ≥ 4

−λ
2

λ < 4

.

Hence all things considered, we have

A(δ, λ) =


4− λ λ ≥ 4

2− λ
2

3 ≤ λ < 4

λ
6

λ < 3

.

Therefore A(δ, λ) ≥ 0 for 0 ≤ λ ≤ 4. Hence P+(δ) = [0, 4 − x] with 0 ≤ x ≤ 4. We

thus have

vol(δ) = 6

∫ 4−x

0

2λA(δ, λ) dλ

=


∫ 4−x

0
2λ2 dλ 1 ≤ x ≤ 4∫ 3

0
2λ2 dλ+

∫ 4−x
3

24λ− 6λ2 dλ 0 ≤ x ≤ 1

=


2
3
(4− x)3 1 ≤ x ≤ 4

18 + 2(x3 − 6x2 + 5) 0 ≤ x ≤ 1.

Hence

β(H) = 84−
∫ 4

0

vol(δ) dx

= 84−
∫ 1

0

18 + 2(x3 − 6x2 + 5) dx−
∫ 4

1

2

3
(4− x)3 dx

= 84− 49

2
− 27

2
= 46 > 0,

so X is K-polystable.



Bibliography

[ACC+21] C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros,

J. Martinez-Garcia, C. Shramov, H. Süss, and N. Viswanathan. The Calabi

problem for Fano threefolds. MPIM preprint, 2021.
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