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Abstract
The work presented in this thesis is centred around Symmetric Achromatic Variab-
ility, a rare phenomenon observed in the light curves of blazar sources. SAV is hy-
pothesised to arise through gravitational milli-lensing when relativistically mov-
ing components traverse the lensing caustics created by some intervening massive
object(s). It was first identified due to the presence of symmetric U-shaped fea-
tures within 15GHz blazar light curves produced using the Owens Valley Radio
Observatory 40m telescope. In this thesis I present a model to describe the light
curve of a lensed blazar source. I then introduce a fitting procedure which uses
nested sampling to fit this model to blazar light curves, with the goal of using this
procedure to identify SAV within the the OVRO data set. I also demonstrate how
this procedure can then be used to generate artificial blazar light curves based on
real OVRO data. I then show the results of running the fitting procedure with both
real and simulated blazar light curves.

Additionally, I propose a framework for a transdimensional alternative to stand-
ard nested sampling algorithms, where the number of model parameters, N, is
itself included as a free parameter. Such an approach could have wide-ranging
applications, including for the problem of SAV identification. I describe the pro-
cess by which we explore the parameter space, including the introduction of a
novel concept - the ‘flattened’ particle space. Using both data and an analytical
approach, I investigate the performance of this method.

Finally, I detail an ongoing campaign to monitor the SAV candidate J1415+1320
using e-MERLIN at both L- and C-band, in order to gather evidence for or against
the achromaticity of the SAV events. I then present and analyse light curves pro-
duced from the most recently available data.
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Chapter 1

Introduction

Symmetric Achromatic Variability (SAV) is a rare phenomenon, in which the

emission from blazar sources is believed to be gravitationally lensed by an in-

tervening massive object. In this chapter I introduce the material necessary to

understand this process, giving an overview of Active Galactic Nuclei (AGN),

their classifications and the mechanisms through which they emit electromagnetic

radiation. I then introduce the Owens Valley Radio Observatory (OVRO) 40m

blazar monitoring program, which provided the first evidence of SAV activity. I

then recount the origins of the SAV hypothesis, giving a description of a typical

proposed lensing scenario. Finally, I give an overview of the structure and content

of the rest of this thesis.

1.1 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are the most luminous sustained sources of elec-

tromagnetic radiation in the universe, observed across every frequency band from
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radio to gamma rays. The current consensus understanding of AGN is that their

emission results from a rapidly spinning super massive black hole (SMBH) at the

centre of a host galaxy. This SMBH, typically with a mass between 104−1010M�

(Beckmann & Shrader 2012), is orbited by a disk of diffuse material called an ac-

cretion disk. Through an accretion process, the SMBH channels the released po-

tential energy of the matter in this disk into an outflow of radiation and particles

in the form of relativistic jets aligned with the spin axis of this ‘central engine’.

These jets are highly collimated, often to distances over 100 kpc, and are so ener-

getic that their kinetic power can, in some cases, contribute a significant fraction

of the total bolometric luminosity of the system. Although we can observe AGN

back to redshifts of z > 7, it seems that the maximum AGN activity is found

around z = 1−3.

1.1.1 AGN Classification

A multitude of AGN types have been observed and, over the years, a number of

classifications have arisen to distinguish between their observational characterist-

ics. These classifications are intrinsically linked to the history of AGN research,

and so, to understand the modern view of AGN, it is important to consider that his-

tory. In the early 20th century, the physical properties of a number of sources had

been explored, however these objects had not yet been identified as AGN. Broad

lines were found in the emission spectra of nebulae, indicating material moving

with high velocity dispersions (Slipher 1917, Seyfert 1943). These Seyfert galax-

ies were later split into two categories: Type I and Type II. Seyfert I galaxies show

both narrow and broad lines in their emission spectra, whereas Seyfert II galaxies
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only exhibit narrow emission lines. Here, broad emission lines are those with a

velocity width of ' 1000 kms−1, whereas narrow emission lines have a velocity

width of / 1000 kms−1.

In 1959, members the Radio Astronomy Group of the University of Cam-

bridge published the Third Cambridge Catalogue of Radio Sources (3C), which

was later revised in 1962 (Edge et al. 1959, Bennett 1962). For many years this

catalogue was considered to be the definitive listing of bright radio sources in the

Northern Hemisphere. It proved difficult to identify optical counterparts for these

sources until Schmidt (1965) identified a star-like counterpart for 3C 273. This

counterpart, along with others identified later, was dubbed a quasi-stellar object,

or quasar. Although the optical source was point like, it had a very different

spectrum and was identified as having a high redshift of z = 0.158.

Osterbrock (1978) suggested that the lack of broad emission lines in Seyfert II

galaxies could be due to absorption of most of the ionizing photons in the dense

gas near the central source. This idea paved the way for a “unified scheme”, which

suggests that observationally different classes of AGN are fundamentally the same

type of object, viewed from different angles (Orr & Browne 1982, Readhead et al.

1978, Antonucci 1993). This leads to the modern picture of the structure of AGN

which is depicted in fig. 1.1. Here we see a broad line region (BLR), which is

comprised of gas clouds close to the accretion disk in a rapid orbit, as well as nar-

row line region (NLR) clouds which are further out from the central engine. The

accretion disk is surrounded by a torus of optically thick dust, which is typically

larger than the accretion disk and so, from some angles, would obscure the BLR.

The NLR, being further out, is visible from a much wider range of viewing angles,

thus explaining the observational differences in Seyfert I and II galaxies.
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Figure 1.1: Schematic representation of our understanding of the AGN phenomenon in
the unified scheme. The type of object we see depends on the viewing angle, whether
or not the AGN produces a significant jet emission, and how powerful the central engine
is. Note that radio loud objects are generally thought to display symmetric jet emission
(Figure from Beckmann & Shrader 2012).

We also see that AGN can be classified as radio-loud objects, indicating the

presence of large scale radio jets and lobes, as well as radio-quiet objects, in which

no well-defined radio jets can be identified. Interestingly, it seems that radio-loud

AGN tend to be found within elliptical galaxies, whereas radio-quiet AGN are

more typically associated with spiral galaxies. The exact reason for this large

range in radio powers remains elusive, but Wilson & Colbert (1995) suggest that

the difference between the classes is associated with the spin of the black hole.

Assuming that the process of accretion is not enough to produce rapidly spinning

holes, the merger of two SMBHs following the merger of their host galaxies could

be. This idea conforms with the generally-accepted opinion that elliptical galax-

ies are formed by the merger of spiral galaxies, and would therefore explain the
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association of radio-loud AGN with elliptical galaxies.

Radio-loud AGN are then further divided into 3 categories. Fanaroff & Ri-

ley (1974) identified two of these categories based on the brightness and structure

of the object’s radio emission: Fanaroff-Riley type I (FR I) galaxies, which are

low-luminosity and the FR II galaxies which are high-luminosity. The third group

of radio-loud AGN are blazars. These are AGN which have a relativistic radio

jet aligned closely with our line of sight from Earth. It is generally accepted that

because of this alignment, anisotropic boosting of the radiation along the direc-

tion of motion gives rise to an apparent enhanced luminosity at all wavelengths

(Kellermann et al. 2003). This also leads to the measured flux density of these

sources being highly variable (in comparison with the more stable measurements

of other AGN). This phenomenon involves the observation of apparent faster-than-

light motion, however this is merely an ‘optical illusion’ which can be simply

explained without any incompatibilities with the theory of special relativity. Be-

cause AGN jets are emitting light at every point of their path and are travelling at

relativistic speeds, if they are aligned at a very small angle relative to the observer

then the light they emit does not approach the observer much more quickly than

the jet itself. Hence, light emitted over large time scales (hundreds of years) over

the course of the jet’s travel does not have hundreds of light-years between the

earliest and latest light emitted in the jet (front and back ends). This means the

complete “train” of light arrives at the observer over a much smaller time period,

giving the illusion of faster-than-light travel.
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1.1.2 Jet Emission Process

Blazar broadband emission is characterised by an observed spectral energy distri-

bution (SED) with two components. The first component is widely accepted to be

the result of synchrotron emission and ranges from radio through ultraviolet/X-

ray radiation, with a peak around the infrared (IR) band. Synchrotron radiation

involves highly relativistic charged particles (electrons and possibly positrons) be-

ing subjected to a radial acceleration due to a magnetic field. Larmor’s equation

tells us that any charged particle radiates when accelerated, so the accelerated

particles in the AGN jets will radiate as they travel. While synchrotron is under-

stood to be the dominant emission process from the radio to the optical/UV/X-

ray domain, the second component is less well-understood, but typically it is

thought to originate from inverse Compton scattering. This involves low-energy

photons being scattered to higher energies by ultrarelativistic electrons, meaning

the photons gain energy and the electrons lose energy. At present, however, it

is unclear where the seed photons for this second SED component emerge from

(Beckmann & Shrader 2012). One possibility is that blazars are predominantly

one-zone synchrotron self-compton emitters (SSC), that is to say that the electro-

magnetic radiation from the synchrotron emission provides the very same seed

photons for inverse Compton scattering. This would explain the SEDs observed,

since we would likely see contributions from both emission mechanisms. Altern-

atively, it could be that the seed photons emerge from e.g. the accretion disk or

broad line region, indicating an external Compton process (Dermer et al. 1992).
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1.2 Symmetric Achromatic Variability

Symmetric Achromatic Variability refers to a very rare form of AGN variability,

where the brightness of an active galaxy is observed to fluctuate in a specific man-

ner, resulting in time-symmetric U-shaped features in its light curve. It is currently

hypothesised that this phenomenon is the result of gravitational millilensing due

to some intervening, massive lens.

1.2.1 The OVRO 40m Blazar Monitoring Program

The Owens Valley Radio Observatory (OVRO), located in California, USA, is one

of the largest university-operated radio observatories in the world. Since it was

established in 1958, it has been involved in decades of research, spanning many

fields of radio astronomy. In late 2007, OVRO embarked upon a new research

campaign involving the 40m telescope. Originally this involved supporting the

then-recently launched Fermi Gamma-ray Space Telescope by monitoring 1158

blazars every two days. By performing measurements at 15 GHz (with a band-

width of 3GHz), the resulting light curves could be compared with those produced

using Fermi gamma-ray measurements of the same sources. This allowed for ana-

lysis of correlations in the variability, in the hopes of bettering our understanding

of the AGN emission mechanisms.

One key element of such a campaign is the selection of sources to monitor. It

is desirable to draw conclusions that are statistically robust, which may be mean-

ingfully extrapolated to the parent population. Therefore the sample drawn was

designed to be complete with respect to to the physical characteristics that could

affect those conclusions. If it is not possible for the sample to be complete in this
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regard, the impacts must be understood thoroughly before making claims about

any conclusions drawn. In the case of OVRO, the sample selection was driven by

three considerations (Richards et al. 2011). Firstly, since the goal was the detailed

study of the radio variability properties of the blazar population and the depend-

ence of those properties on observables such as redshift, the sample had to be large

enough to divide into sub-samples (e.g. in redshift or luminosity bins), with each

sub-sample containing enough members to permit statistical characterisation.

Secondly, to allow for the evaluation of the confidence level of any correlations

or variable dependencies identified in the data through Monte Carlo simulations,

and the generalisation of any findings to the parent blazar population, the sample

would have to be statistically well-defined, using uniform and easily repeatable

criteria. It would not be sufficient for robust statistical study to simply choose

bright, easily observable sources.

Finally one of the major goals of the program was the cross-correlation of

15GHz light curves with Fermi gamma-ray data. Therefore, it would be ideal

for the sample to include a large number of gamma-ray-loud blazars. At the

same time, however, it was also preferable that the sample could help to an-

swer the question of why some blazars are gamma-ray-loud, while others, with

apparently similar properties, are not. For this reason the sample would ideally

be preselected, before Fermi data biased any understanding of what constitutes a

likely gamma-ray-loud blazar. Therefore a comparable number of blazars which

are not gamma-ray loud would be preferable. Blazars in the Candidate Gamma-

Ray Blazar Survey (CGRaBS) satisfy all of the requirements above (Healey et al.

2008).
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Figure 1.2: Positions of the CGRaBS sources in the OVRO 40m program in equatorial
coordinates. Filled circles indicate CGRaBS that are also in the 1LAC sample. The solid
line marks the −20◦ declination limit of the program. The semi-circular gap is excluded
to avoid the galactic plane. From Richards (2012).

The CGRaBS sample is a total of 1625 AGN over the whole sky outside a

±10◦ band around the galactic plane. This sample was compiled before the launch

of Fermi and was expected to contain a large fraction of the extragalactic sources

that would be detected by the Fermi Large Area Telescope (LAT). The sample

then used in the OVRO 40m monitoring program included all CGRaBS objects

with a declination > −20◦, a total of 1158 sources. Figure 1.2 shows the sky

positions of these sources. Each of these sources has been continuously mon-

itored (twice a week, where possible) since the program started, with publication-

quality data available since 1st January 2008. An example light curve of the source

J1415+1320 is shown in Figure 1.3.
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Figure 1.3: Light curve of the blazar J1415+1320 showing measurements between Janu-
ary 2008 and December 2017, the same span of data that was available when SAV activity
was first identified.

Once Fermi-LAT had begun its operation, the Fermi-LAT collaboration routinely

published source catalogues, each with an associated study of the blazars and other

AGN. After 3 months of data had been collected, the LAT Bright Source List

was released (0GFL, Abdo et al. 2009b) alongside the LAT bright AGN sample

(LBAS, Abdo et al. 2009a). The first Fermi-LAT catalogue (1FGL, Abdo et al.

2010a) and first LAT AGN catalogue (1LAC, Abdo et al. 2010c) were released

using 11 months of data, and the second Fermi-LAT catalogue (1FGL, Abdo et al.

2010a) and second LAT AGN catalogue (2LAC, Ackermann et al. 2011) were

released using 24 months of data. With more data, a better understanding of the

instrument and improved methods to analyse the data, each new catalogue iter-

atively improved on its predecessor. As such, the original OVRO 40m sample

was augmented to include all of the original CGRaBS sources plus the blazars

in the 1LAC and 2LAC “clean samples”, which contain sources detected with

high statistical significance and that are not affected by analysis issues like mul-

tiple associations (Richards 2012). Today, the OVRO 40m program has grown to

regularly monitor over 1800 blazar sources.
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1.2.2 Extreme Scattering Events

In early 2017, working with the OVRO 40m data set, Vedantham et al. (2017b)

(V2017B henceforth) identified particular transient events of unknown origin which

resulted in time-symmetric U-shaped features in the light curve of the blazar

J1415+1320 (fig. 1.3). It was thought that these unusual variations were likely due

to some form of lensing. Lensing can be caused by various mechanisms, such as

rays being deflected by spatial fluctuations in the refractive index of the medium of

propagation. In terms of interstellar ray propagation, electron density fluctuations

in interstellar plasma provide the refractive index variation. One typical signature

of lensing is the presence of multiple magnified images of the lensed source. Even

if individual images cannot be resolved (as is the case with the OVRO 40m tele-

scope, due to its low, arcmin-scale angular resolution) flux-density variations due

to the relative motion in the source-lens-observer system may be observed in light

curves. An example of how this can occur is shown in fig. 1.4, which demon-

strates how relative motion in such a lensing system may produce a U-shaped

feature like the ones identified in the OVRO 40m data. Moreover, it must be the

case that, on average, lensing yields time-symmetric features. A manual search

was undertaken to find such events in the OVRO data, which revealed several pos-

sible candidates. One source in particular, J1415+1320 (see fig. 1.3), stood out

for a number of reasons. Firstly, it shows recurring, highly symmetric, U-shaped

features in its light curve, which seemed like they may be chromatic (frequency

dependent). V2017B illustrates that a collation of multi-frequency data from the

Metsähovi radio observatory, the Sub-Millimeter Array (SMA), and OVRO shows

that the U-shaped events persist even in the mm-wave band.
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Figure 1.4: A cartoon depiction (not to scale) of the effect of a diverging plasma lens
on a background source. Black circle is the Earth, and the gray circle is the lens. Rel-
ative motion in the source-lens-observer system leads to symmetric magnification events
that bracket a de-magnification trough as shown in the U-shaped curve on the left (From
V2017B).

It was originally thought that the features seen in J1415+1320 and several

other blazar sources could be explained as Extreme Scattering Events (ESEs)

(Fiedler et al. 1987). Upon initially being reported, these highly symmetric, chro-

matic events were explained to be caused by lensing due to intervening plasma.

The plasma lenses were inferred to possess high electron column densities (Ne ∼

1017cm−2) over relatively small transverse extents (. 10AU). Such lenses would

therefore be highly over-pressurized (density of ne∼ 103cm−3), and therefore can-

not exist in pressure balance with the ambient interstellar medium (ne∼ 0.03cm−3).

To explain this, two classes of models were put forth. In the first, the lens is the

photo-ionized ‘skin’ of an underlying cool, self-gravitating cloud in the galactic

halo (Walker & Wardle 1998). It was found, however, that such objects would
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form a considerable fraction of Galactic dark matter. It therefore seems somewhat

unlikely that dark matter could exist in this form and not have previously been de-

tected. The second class of models invokes highly elongated plasma sheets seen

edge-on, such that the required column density can be obtained with comparably

low over-densities (Goldreich & Sridhar 2006). Whether plasma sheets with such

large axial ratios indeed exist remains unknown, and ESEs have remained an un-

solved mystery for over 3 decades (V2017B).

The implied ESE rate based on previous surveys is about 7×10−3source−1year−1

(Fiedler et al. 1987). From this we should therefore see an ESE event from

J1415+1320 every 140 years on average. Instead, four ESE-like events were ob-

served in about 25 years. J1415+1320 showed this ESE-like variability down to a

wavelength of 0.1cm, which implies a very strong and compact plasma lens. Ad-

ditionally, it is debatable as to whether the events seen in its light curve are truly

chromatic. In fact, the observed magnitude of the (de-)magnification was almost

achromatic over a factor of 20 in wavelength. The question of the chromaticity

of these events is explored in chapter 5. Overall, however, these inconsistencies

indicate that the plasma lensing hypothesis is not a good fit to the events observed

here.

The plasma lensing interpretation was critically examined in V2017B, in which

a range of possible lensing geometries were considered, with the authors present-

ing three key conclusions. First, any extragalactic plasma lens would require un-

realistically high axial-ratios (width/depth) of & 103 to yield enough free-free opa-

city. Second, the lens would have to be placed well beyond the galactic disk, since

there is an absense of asymmetry one would expect to see from the Earth’s orbit

around the Sun. The placement of this putative lens would be in a region devoid
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of dense interstellar material. Finally, the U-shaped events seen are not well de-

scribed as de-magnification events. The model light curves provide poor fits to the

data, since the flux density of the source at the bottom of the ‘trough’ (the centre of

the U-shaped dip) is comparable to that away from the U-shaped events. V2017B

therefore rejects the ESE hypothesis for J1415+1320. The evidence, however,

does still seem to indicate that these events are caused by some type of lensing.

The only other lensing mechanism known is gravitational lensing, which, being

achromatic, may fit the events we see.

1.2.3 The SAV Hypothesis

With the rejection of the ESE hypothesis, the next logical step is to investig-

ate an alternative lensing mechanism: gravitational lensing. Vedantham et al.

(2017a) (V2017A henceforth) investigated this proposal. They proposed that SAV

is caused by the modulation of the flux density of a luminal or superluminal com-

pact emission region as it traverses the magnification pattern cast by an intervening

gravitational lens. The proposed lensing mechanism is similar to microlensing of

stars by stellar-mass lenses (Alcock et al. 1993), but the lenses would need to be in

the milli-lensing mass range ∼ 103−106M� with a projected surface mass dens-

ity of & 104M�pc−2. Potential lens candidates with these properties include the

dense cores of globular clusters and molecular clouds, and massive black holes.

The lenses likely consist of multiple components that are projected close to the

line of sight to the source, but are not necessarily gravitationally bound to each

other. Figure 1.5 demonstrates how a gravitational lens can result in U-shaped flux

density variation in a similar manner to the plasma lensing case shown in fig. 1.4.



1.2 Symmetric Achromatic Variability 33

Figure 1.5: A recreation of fig. 1.4 for the case of a gravitational lens, again showing how
relative motion in the source-lens-observer system can lead to symmetric magnification
events that bracket a de-magnification trough as shown in the U-shaped curve on the left.

V2017A established that we can distinguish two types of U-shaped events within

the context of gravitational lensing: a “volcano” type in which the first spike dis-

plays a slow rise and a fast decline and the second spike shows a fast rise and slow

decline (SRFD-FRSD); and a “crater” type in which a fast rise, slow decline is fol-

lowed by a slow rise, fast decline (FRSD-SRFD). This is demonstrated in fig. 1.6.

Initially, in order to identify these features within the data from the OVRO light

curve catalogue, two of the co-authors independently examined a sample of 981

high quality light curves which were determined to have a high enough signal-to-

noise ratio for symmetrical U-shaped features to be identified. Both experts selec-

ted all those U-shaped features deemed to have sufficient symmetry to be of in-

terest. One co-author picked out 23 U-shaped features, and the other 25 U-shaped

features. Out of these selected features, only ten were selected by both authors.
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These were accepted as candidates. The large disparity of possible candidates

between the two experts invites the possibility of a less-subjective approach for

identifying SAV in blazar light curves. This idea is explored in chapter 3. The

ten selected features were seen across the light curves of seven objects, of which

one had two features, and another had three. From this we can gather that the U-

shaped features in the OVRO light curves are rare. We can determine the random

probability of a U-shaped feature in one of the 981 light curves looked at is 1.02%.

J1415+1320 stood out amongst these seven objects, having two clear, isolated U-

shaped features relative to the rest of the light curves (over the course of 8 years).

It is highly unlikely that the U-shaped features observed in this source are random

events. V2017A identified four events in the light curves of J1415+1320 over the

course of 27 years. Assuming these events are randomly distributed throughout

the light curves of all sources, we can calculate a probability of ∼ 4× 10−6 that

three or more events occur in one object in a 27 year time window. It is very likely,

therefore, that these are either unusual intrinsic features of the objects themselves,

due to propagation effects along the line of sight, or a combination of both.
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Figure 1.6: Curves emphasising the two types of U-shaped events described in V2017A.
The top plot shows a FRSD-SRFD ‘crater’ type event and the bottom plot shows a SRFD-
FRSD ‘volcano’ event.

1.2.3.1 Gravitational Lensing

Schneider et al. (1992) give a description of a general Gravitational Lensing sys-

tem, which is summarised in fig. 1.7. Consider the source sphere Ss, i.e. a sphere

with radius Ds (i.e. the distance to the source), centred on the observer O, and,

the corresponding deflector sphere Sd with radius Dd , i.e. distance to the centre

of the lens L. In addition, consider the observed sphere So, which is the apparent

“sky” of the observer. On So the source would have apparent angular position β ,
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if it were the case that the light rays from the source S were not influenced by the

gravitational field of the deflector. The lens, however, does bend the light rays,

so the straight line SO is no longer a physical ray path. Rather, the light rays are

curved near Sd . One such ray SI′O is drawn along with its approximation SIO,

consisting of the two asymptotes of the real ray, SI and IO. The angle α̂ between

these asymptotes is the deflection angle caused by the matter distribution L. The

observer would therefore see the source at position θ .

Figure 1.7: A General GL system; the ‘centre’ of the lens is at L, and the line through L
and the observer O is the ‘optical axis’. Relative to that, the source S has an undisturbed
angular position β . A light ray SI′O from the source is deflected by an angle α̂ , so that
an image of the source is observed at position θ . (Recreated from Schneider et al. (1992),
p30, Fig. 2.2.)

In an astrophysical context, for all of the cases we are interested in, the deflection

angles are very small. Therefore, only a small cone around the optical axis OL

needs to be considered in general. In this case, we can replace the three spheres in

our lensing description with their corresponding tangent planes (the source plane,
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lens plane and observed plane). This is depicted in fig. 1.8. The separation of the

light ray from the optical axis, LI, can be described as a two-dimensional vector

ξ in the lens plane. Again, since the deflection angle α̂ is small, the distinction

between I and I′ is unnecessary, so the angles θ and α̂ can be described as angular

vectors in the tangent plane So.

Figure 1.8: A modification of the system shown in fig. 1.7, where the spheres are each
approximated by their tangent planes due to the deflection angles being small.

From this description, we can derive a relation between the source position (de-

scribed by the unlensed position angle β ) and the positions of the images θ =

ξ/Dd of the source (the lens equation):

β = θ − Dds

Ds
α̂(ξ ) (1.1)

or, in terms of the distance η = Dsβ from the source to the optical axis:
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η =
Ds

Dd
ξ −Ddsα̂(ξ ) (1.2)

It is often useful to rewrite this, however, in dimensionless form. If we define a

length scale ξ0 in the lens plane and a corresponding length scale η0 = ξ0Ds/Dd

in the source plane. Then, we can define the dimensionless vectors

x =
ξ

ξ0
; y =

η

η0
. (1.3)

With these definitions, we can rewrite eq. (1.2) as

y = x−α(x), (1.4)

where

α(x) =
DdDds

ξ0Ds
α̂(ξ0x). (1.5)

In the case of an axially symmetric lens, the matter within a disc of radius x located

at the centre of mass contributes to the deflection at the point x as if it were located

at that centre, and the matter outside does not contribute, in a similar manner to

gravitational forces of spherical mass distributions in three dimensions. Schneider

et al. (1992) show in chapter 8 that

α(x)≡ m(x)
x

. (1.6)

where m(x) is the dimensionless mass within a circle of radius x, related to the

mean surface mass density inside the circle κ̄(x) by
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m(x) = x2
κ̄(x). (1.7)

This allows us to update eq. (1.4) to

y = x− m(x)
x

. (1.8)

In addition to describing a general lensing situation, Schneider et al. (1992) provide

a number of gravitational lensing models, which form the basis of the SAV identi-

fication procedure being developed. The simplest of these models is the Schwar-

zschild lens. This is a lens formed by a single “point mass” M. In this case, we

have m(x) = 1, giving the lens equation

y = x− 1
x
. (1.9)

Further to this, we can obtain what is known as the ‘Chang-Refsdal lens’. This

involves the perturbation of the gravitational field of a point mass, for example

if a star in a galaxy acts as a lens, the field of the galaxy will perturb that of the

star. As a two length-scale problem, the lensing by stars is generally referred to

as microlensing, whereas the lensing by the galaxy as a whole is distinguished

as macrolensing. In the case of the Chang-Refsdal lens, we obtain an updated

version of eq. (1.9). For a point mass M, again using the length scale ξ0, the lens

equation becomes

y = x− x

|x|2
−

κc + γ 0

0 κc− γ

 · x (1.10)
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where "·" denotes matrix multiplication and κc and γ are the surface mass density

and the shear (a measure of the distortion of images by the lens), respectively, of

the macrolens at the location of the point mass. As discussed in section 1.2.3,

there are two types of U-shaped features - volcanoes and craters. As explained

in V2017A, binary lenses typically yield a six-cusped caustic pattern which has

sufficient complexity to generate a large range of light curve features including

both crater and volcano type SAVs. Here, a ‘caustic pattern’ describes the ‘en-

velope’ of light rays projected onto the source plane. The patterns feature ‘folds’

(lines) and ‘cusps’ (points) which separate regions of different image multiplicity.

Sources located in the vicinity of the folds/cusps will be highly magnified.

Keeping this in mind, we are therefore looking for a lensing model involving

two masses. We can generalise the lens equation from the Chang-Refsdal model

to account for an arbitrary number of point masses. Consider a reference mass

M, and N point masses with mass mi and position xi measured in units of ξ0.

Equation (1.10) then becomes:

y =

1−κc + γ 0

0 1−κc− γ

 · x− N

∑
i=1

mi

|x− xi|2
(x− xi). (1.11)

In the case of a binary mass system, we obtain

y = x− x

|x|2
−q

x−d

|x−d|2
−

κc + γ 0

0 κc− γ

 · x. (1.12)

as stated in V2017A, where our two point-like objects are of mass 1 and q, located

respectively at 0 = [0,0] and d = [d,0]. In this case we are employing the usual
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dimensionless units, where all angles are expressed in units of the Einstein Radius,

θE .

1.3 This Thesis

The remainder of this thesis focuses on concepts surrounding Symmetric Achromatic

Variability and Bayesian Inference. Chapter 2 introduces Bayesian statistics, fol-

lowed by Bayesian inference. We then explore modern computational methods

for performing Bayesian inference, with a particular focus on nested sampling.

The subsequent chapters all consist of my own novel research. Chapter 3 then in-

troduces an automated approach for identifying SAV in blazar light curves using

nested sampling. I first propose a model capable of capturing the long- and short-

term variations seen in the light curve of a lensed blazar source, then describe a

fitting procedure which uses nested sampling to fit the proposed model to data. I

then build upon this fitting procedure to describe a method for simulating artificial

blazar light curves using real data from the OVRO 40m telescope. The chapter

closes with a discussion of the results of applying the fitting procedure to real

data. Chapter 4 features an exploration of a ‘transdimensional’ nested sampling

approach in which the dimensionality of the problem is not fixed and the number

of model parameters is allowed to vary freely. I introduce a framework for explor-

ing a transdimensional space, then introduce some toy problems which allow us

to analyse the current approach. Finally, chapter 5 describes an ongoing campaign

to observe the blazar J1415+1320 using e-MERLIN. The observations are carried

out at both C- and L-band, with the hopes of observing a future SAV event at a

lower frequency than in the OVRO 15GHz light curves. This would provide very
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strong evidence as to whether these events are truly achromatic, which would have

significant implications for the validity of the SAV hypothesis.



Chapter 2

Bayesian Inference

Inference is a process central to our daily lives. As events occur day-to-day, we

take in information about what we see and hear, and, using past experiences, we

reach conclusions which help us interpret the world around us. If one suddenly

notices smoke inside a building, we might naturally conclude that there is a fire

and take actions accordingly. Dark clouds accumulating overhead might drive us

to take an umbrella to work. As scientists, we are more specifically concerned

with making inferences about data. Having completed an experiment and collec-

ted results, are our hypotheses affected? If so, how? Bayesian Inference provides

us with a statistical framework by which we can answer these questions in a mean-

ingful and intuitive manner. This chapter introduces Bayesian statistics, tools and

methods, including a description of two popular approaches to Bayesian Infer-

ence: Markov Chain Monte Carlo and nested sampling.
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2.1 Frequentist vs Bayesian Statistics

When discussing probability, it is useful to do so within the context of one of the

two rivaling schools of thought which exist within the field of statistics, Bayesians

and frequentists. Both paradigms are well-founded within the rules of probability

theory, with the key difference between them being how they view the definition of

probability. A frequentist would understand the probability of an event occurring

as

“The relative frequency of the event in the limit of an infinite number

of independent trials.”

This definition fits nicely with the problems we often encounter when first intro-

duced to probability and statistics in school. For example, if one was to roll a fair

6-sided die a sufficiently large number of times, one would find that roughly 1
6 of

all rolls would result in a 6, with this relative frequency moving closer to being

exactly 1
6 as the number of rolls increases.

While this definition seems perfectly intuitive in these situations, what if we

wanted to assess the probability that it will rain tomorrow? The frequentist defini-

tion implies that this question should be framed as “What is the relative frequency

of rain tomorrow in the limit of an infinite number of tomorrows?”. Suddenly this

definition does not feel as intuitive, since it is immediately clear that this situation

is unrepeatable. Tomorrow will only occur once, so are we now considering some

infinite number of alternate realities in order to determine the relative frequency

of this event? Instead, it might be more meaningful to consider e.g. the relative

frequency of rain across all previously recorded days in which the atmospheric

conditions (wind speed, air pressure, etc.) were exactly as they are expected to



2.1 Frequentist vs Bayesian Statistics 45

be tomorrow. Alternatively, we could find the relative frequency of rain across all

days with tomorrow’s date from previous years. These approaches allow us to use

historical data to provide a prediction of our desired probability, but within the

frequentist framework this will only ever be an estimate and we cannot give a true

answer to the question.

In addition to being unable to handle unrepeatable events, Trotta (2008) provides

additional arguments as to why the frequentist definition is unsatisfactory. Firstly,

the definition is circular, in the sense that it assumes that repeated trials have the

same probability of outcomes, which is exactly the definition of probability we

wanted to define in the first place. Additionally, the definition only holds for an

infinite sequence of repetitions, which will we will never have in practice. This

leads to awkward situations where complicated corrections have to be made to

account for a small sample size.

These issues give way to the Bayesian school of thought which does not suffer

from these problems. Bayesian statistics gives us a different definition of probab-

ility:

“A measure of the degree of belief in a proposition.”

With this definition, we can obtain a solution to both of the problems posed above.

Given a fair dice, we can determine the probability of rolling a 6 as our belief that

such an event will occur. Since we believe this to be a fair dice, each result is

equally likely to appear, so we can assign each result an equal probability of 1
6 .

When asked “Will it rain tomorrow?”, we are no longer worried about the question

being unrepeatable. It is perfectly possible to quantify one’s degree of belief that

it will rain, but this raises an important point: Bayesian statistics is viewed by
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some as being subjective, since one individual’s degree of belief in an event may

be different than another’s. However, as explained by Sivia & Skilling (2006),

this is not truly subjectivity: it is simply the case that one’s degree of belief is

conditional on the information at one’s disposal, and that conditioning should be

stated explicitly.

2.2 Bayes’ Theorem and Marginalisation

One critical aspect of the Bayesian approach to probability is that one’s belief in

a given proposition is not necessarily fixed. A person driving to an appointment

may expect to arrive on time, based on when they set off, but upon seeing a sign for

roadworks along their route, they might begin to anticipate that they are going to

be late. We often change our minds in light of new information, and we therefore

need some way to express how our belief in a proposition might change once new

data has been acquired.

In addition to providing an excellent introduction to Bayesian data analysis,

Sivia & Skilling (2006) show that we achieve the sum and product rules as a

consequence of following the axioms of probability (Cox 1946). The sum rule is

given as:

P(X |I)+P(X |I) = 1, (2.1)

where X denotes the proposition that X is false, the vertical bar ‘|’ means ‘given’

(i.e. everything to the right of this symbol is taken as being true), and I is the

relevant background information, since there is no such thing as an absolute prob-
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ability. Conditioning on I is often omitted from calculations to reduce algebraic

cluttering, but it is important to acknowledge its existence. The product rule states:

P(X ,Y |I) = P(X |Y, I)P(Y |I), (2.2)

where the comma is read as the conjunction ‘and’. The ‘and’ conjunction is com-

mutative, i.e. P(X ,Y |I) = P(Y,X |I), so by applying the product rule we get:

P(X |Y, I)P(Y |I) = P(Y |X , I)P(X |I), (2.3)

which we can rearrange to give Bayes’ theorem:

P(X |Y, I) = P(Y |X , I)P(X |I)
P(Y |I)

. (2.4)

This simple formula describes how one’s prior belief in X (given the background

information) is updated given some new information Y . The quantities in Bayes’

theorem each have formal names. P(X |I) is called the prior, since it expresses our

knowledge about X prior to considering the new information Y . This is augmented

by the likelihood P(Y |X , I) to give the posterior P(X |Y, I). This calculation is

weighted by the evidence P(Y |I), which acts as a normalisation constant and does

not depend explicitly on X . If we expand P(X ,Y |I) using eq. (2.2), we get:

P(X ,Y |I) = P(Y,X |I) = P(Y |X , I)P(X |I). (2.5)

If we add the expression P(X ,Y |I) to both sides, while similarly noting that,

P(X ,Y |I) = P(Y |X , I)P(X |I), we get:
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P(X ,Y |I)+P(X ,Y |I) =
[
P(Y |X , I)+P(Y |X , I)

]
P(X |I). (2.6)

The sum rule in eq. (2.1) tells us that the quantity in square brackets is equal to

unity, so we are left with:

P(X |I) = P(X ,Y |I)+P(X ,Y |I). (2.7)

This equation tells us that the probability that X is true, irrespective of whether or

not Y is true, is equal to the sum of the probability that both X and Y are true and

the probability that X is true and Y is false.

Rather than having a proposition Y , with its negative counterpart Y , we could

instead have a set of alternative possibilities: Y1,Y2, · · · ,YM = {Yk}. If this is a

mutually exclusive and exhaustive set of possibilities, i.e. exactly one of the M

propositions must be true and the others must all be false, then we can generalise

eq. (2.7) to give:

P(X |I) =
M

∑
k=1

P(X ,Yk|I). (2.8)

We can extend this further by taking eq. (2.8) to the continuum limit, where Y is

now taken to be a continuous variable which has a value in some given range:

P(X |I) =
∫ +∞

−∞

P(X ,Y |I)dY (2.9)

This result is known as marginalisation, which is a very useful tool for Bayesian

Inference, as it enables us to ‘marginalise over’ parameters we are uninterested in,

removing them from consideration.
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2.2.1 A Bayesian Example

Here we will consider an example of how Bayes’ theorem may be applied to a

problem, as a way of consolidating the above information. Consider a disease

which is known to affect 0.1% of the population. Say there is a test which is

known to have a sensitivity (True Positive rate) of 85% and a specificity (True

Negative rate) of 95%. Let D be the event that a given person has the disease

and let T be the event that, after being tested, the person’s test result comes back

positive. We therefore know:

P(D) = 0.001,

P(T |D) = 0.85,

P(T |D) = 0.95.

Making use of the sum rule from eq. (2.1), we also therefore know:

P(T |D) = 0.15,

P(T |D) = 0.05.

Let’s say a patient is given the test, but it is a priori unknown whether they have

the disease. If the test comes back positive, how confident should we be (i.e. what

is our degree of belief) that the patient actually has the disease? We would express

this quantity as P(D|T ) and using Bayes’ theorem from eq. (2.4), we have:
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P(D|T ) = P(T |D)P(D)

P(T )
.

The only term on the right hand side which we don’t yet have an expression for is

P(T ), but by marginalising over D (eq. 2.7) and applying the product rule using

and (eq. 2.2), we find:

P(D|T ) = P(T |D)P(D)

P(T |D)P(D)+P(T |D)P(D)

=
0.85 ·0.001

(0.85 ·0.001)+(0.05 ·0.999)

≈ 0.017.

At first glance this result may seem peculiar. The test seems fairly accurate, so

why does a positive result yield such a low probability of actually having the

disease? The result does make sense after more thought, however. Consider a

population of 1,000,000 people. We would expect only 1000 of these people to

have the disease, and only 850 of those to test positive for it. Conversely, there

are 999,000 people who do not have the disease, out of whom 49,950 would test

positive. This means that we would expect 50,800 people to test positive for the

disease, with only 850 of those people actually having it, or ∼ 1.7%.

Due to the subjective nature of Bayesian statistics, it is important to note that

this calculation only holds true for the given prior. Our prior belief that the patient

has the disease might have been different if we knew more about their medical

history, for example. In fact, Bayes’ theorem even allows us to consider the case

where someone has already been administered one test, and, having tested posit-
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ive, is tested once more. Assuming the two tests are independent from one another,

we can use the posterior from the previous calculation and use it as the prior for the

new calculation. One way to think of this is that the previous positive test result

is absorbed into the background information I (which we are currently omitting

from our calculations, as explained previously). The probability of having the

disease after testing positive a second time is therefore:

P(D|T,T ) = P(T |D,T )P(D|T )
P(T |D,T )P(D|T )+P(T |D,T )P(D|T )

=
0.85 ·0.017

(0.85 ·0.017)+(0.05 ·0.983)

≈ 0.227.

So upon receiving a second positive test result, the probability of having the dis-

ease increases from ∼ 1.7% to ∼ 22.7%. This stands to reason, as two independ-

ent, positive results would naturally increase our belief that the person has the

disease over just a single positive result.

2.3 Parameter Estimation and Model Selection

Scientists are often charged with constructing a model M, usually defined by

some parameters Θ, in order to explain some data D. By applying the Bayesian

techniques introduced in this chapter, we can use the data to make inferences about

a given model and its parameters. This type of analysis is typically divided into

two types of problems: parameter estimation and model selection.
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2.3.1 Parameter Estimation

Parameter estimation is a very common data analysis problem. Given some data

and a model describing it, what can we learn about its parameters? In this context,

Bayes’ theorem (eq. 2.4) defines a relationship whereby our initial knowledge of

the model parameters is updated in light of the data:

P = P(Θ|D,M) =
P(D|Θ,M)P(Θ|M)

P(D|M)
=
L×π

Z
. (2.10)

The posterior P = P(Θ|D,M) constrains the model parameters after taking the

data into account. It is dependent on the three quantities: the likelihood L =

P(D|Θ,M), which is the probability that a given choice of parameter values pro-

duced the data; the prior π = P(Θ|M), our initial belief in the choice of para-

meter values; and the evidence Z = P(D|M), a normalisation constant which is

the probability of observing the data, conditioned on the model, but irrespective

of the parameter values. The evidence is computed by:

Z = P(D|M) =
∫

P(D|Θ,M)P(Θ|M)dΘ =
∫
L(Θ)π(Θ)dΘ. (2.11)

Here, we marginalise out the parameters, hence the alternative name for this

quantity, the marginal likelihood.

2.3.2 Model Selection

Another common problem encountered by scientists occurs when more than one

model exists which could explain some data. In this case, we are interested in
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determining our relative belief in each model, given the observed data. In order to

do so, we again make use of Bayes’ theorem (eq. 2.4). For a given model,Mi:

P(Mi|D) =
P(D|Mi)P(Mi)

P(D)
. (2.12)

On its own, the probability of (i.e. our degree of belief in) a given model doesn’t

really mean much, but when considering several models {M1,M2, · · ·}, the de-

gree of belief in each model is given by:

P(Mi|D) =
Ziπi

∑ jZ jπ j
. (2.13)

Here, πi indicates the prior probability of the model Mi before considering the

data. In order to compare which of two modelsMi andM j a posteriori describes

the observed data better, we can find the posterior odds ratio:

P i
j = log

(
P(Mi|D)
P(M j|D)

)
= log

(
Zi

Z j

)
+ log

(
πi

π j

)
. (2.14)

We often have no reason to believe a priori that one model is any more probable

than another, in which case their prior probabilities would be equal and the final

term in eq. (2.14) would disappear, leaving us with Bayes factor, a more com-

monly used metric:

Bi
j = ln

(
Zi

Z j

)
. (2.15)

Bayes factor is a useful way of denoting our degree of belief in one model relative

to another. If it is positive, we favourMi overM j and vice versa if it is negat-

ive. Jeffreys (1961) provides an often-cited scale for interpreting the Bayes factor,
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Table 2.1: The “Jeffreys’ scale” as reproduced from Trotta (2008). This scale indicates
how much or how littleMi is favoured overM j, as seen in the right-most column. The
probability column refers to the posterior probability of the favoured model, assuming
non–committal priors on the two competing models, i.e. πi = π j = 1/2 and that the two
models exhaust the model space, P(Mi|D)+P(M j|D) = 1.

| logBi
j| Probability Strength of evidence

< 1.0 < 0.750 Inconclusive
1.0 0.750 Weak evidence
2.5 0.923 Moderate evidence
5.0 0.993 Strong evidence

illustrated in table 2.1. While this scale can be useful for comparing the relative

strength of two or more models, it should not be viewed in isolation as a definit-

ive measure of the performance of a model. It is perfectly possible that another,

undiscovered model exists which much better describes the data, and simply cal-

culating Bayes factor between known models might lead one to believe one of

those models is best instead.

2.3.3 Kullback-Leibler divergence and Occam’s razor

Occam’s razor is a principle which can be stated as “Accept the simplest explan-

ation that fits the data” (MacKay 2003). This principle is naturally incorporated

into the Bayesian evidence, which penalises models for unnecessary complexity.

Hergt et al. (2021) provide a clear example of this. Consider a Gaussian likeli-

hood, with mean µ and variance σ2 and having a single parameter x ∈ [xmin,xmax]

with a uniform prior. The Bayesian evidence can then be written

Z = L(µ)× σ
√

2π

xmax− xmin
. (2.16)

Here, the first right-hand term is the maximum likelihood, which will only in-
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crease with additional parameters. The second term incorporates the ratio of

posterior to prior uncertainty. The posterior uncertainty σ is generally smaller

than the prior uncertainty (xmax− xmin), meaning that the second term penalises

the given model for each additional parameter, and thus Occam’s razor is up-

held. A more complex model will only be favoured if it significantly improves the

maximum likelihood, outweighing the Occam penalty. Furthermore, Hergt et al.

(2021) demonstrate that an estimator of this Occam penalty can be found in the

Kullback-Leibler divergence. KL-divergence (sometimes referred to as the relat-

ive entropy) is a measure of the overall compression from the prior to the posterior

distribution. In this context it is defined as:

DKL =
∫
P(Θ) ln

(
P(Θ)

π(Θ)

)
dΘ. (2.17)

Due to the use of the natural logarithm, it is measured in units of nats, the base

e equivalent of bits. The relationship between KL-divergence and the Occam

penalty becomes clearer when rewriting the log-evidence as

ln
(∫
L(Θ)π(Θ)dΘ

)
=
∫
P(Θ) lnL(Θ)dΘ−

∫
P(Θ) ln

(
P(Θ)

π(Θ)

)
dΘ, (2.18)

which, as the authors point out, becomes quite straightforward when going from

right to left and making use of eq. (2.10). The first term on the right side of the

equation encapsulates the fit of the model parameters, whereas the second is the

KL-divergence. This is analogous to eq. (2.16), showing that the KL-divergence

describes the Occam penalty.
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2.4 Existing Computational Methods

When performing Bayesian inference calculations, we are typically concerned

with quantities which are defined by integrals over the posterior distribution, such

as means, variances or posterior intervals for a quantity of interest. These integ-

rals are usually unfeasible to compute (or even approximate), especially when the

problem is high dimensional. If one were to generate a set of samples Θ1,Θ2, · · ·

from the posterior distribution, it is possible to estimate posterior means using the

sample mean and so on (Kass et al. 1998). The problem then becomes finding the

most efficient way to sample the posterior distribution. There is a wealth of liter-

ature detailing methods for tackling this problem, but in this section I will focus

on two popular approaches: Markov Chain Monte Carlo and nested sampling.

2.4.1 Markov Chain Monte Carlo

A very popular approach for generating samples is Markov Chain Monte Carlo

(MCMC). This class of methods involve conducting a random walk through the

parameter space to produce samples forming a Markov chain. A Markov chain is

an ordered sequence of random variables X = X0,X1, · · ·Xn−1 where the probab-

ility of a particular state for one variable in the chain depends only on the state

from the previous step (and not on the states reached in any of the other steps).

The goal of MCMC is to construct a Markov chain with a stationary distribution

equal to the posterior distribution. Let T be the transition probability matrix for

the chain X , that is, Ti j = P(Xn+1 = j|Xn = i) where i and j are states within the

state space. Let ψ be a column vector with elements giving the probability that

the chain is currently in each state in the space ψi = P(Xi). In principal, ψ can be
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seen as a probability distribution, however here we are considering a discrete state

space and so we represent it as using a vector. ψ is said to be stationary if

T ᵀ
ψ = ψ. (2.19)

Note that π is often used to denote the stationary distribution of a Markov chain,

however ψ has been substituted to avoid confusion with the prior distribution. By

applying transition matrix T ᵀψ , we update each element ψi to give the updated

probability of being in that state in light of the probabilities in the transition mat-

rix. If at any step along the Markov chain we find that eq. (2.19) holds, then we

know that further applications of T will not alter ψ , which is the stationary distri-

bution for this chain. That is not to say that the state cannot change between steps,

but that the probabilities of reaching each state remain the same between each sub-

sequent step. To ensure that the chain will converge to a stationary distribution,

the chain must be ergodic, meaning it satisfies two conditions: irreducibility and

aperiodicity. Irreducibility means that a sequence of (non-zero probability) trans-

itions exists from any state to any other state. Aperiodicity means the system does

not return to the state at fixed intervals. A sufficient (but not necessary) condition

to ensure ergodicity is detailed balance, meaning that for every pair of states, the

probability of transitioning from one state to the other is the same probability of

making the reverse transition. Note that π is often used to denote the stationary

distribution of a Markov chain, however ψ has been substituted to avoid confu-

sion with the prior distribution. By applying transition matrix T ᵀψ , we update

each element ψi to give the updated probability of being in that state in light of

the probabilities in the transition matrix. If at any step along the Markov chain



2.4 Existing Computational Methods 58

we find that eq. (2.19) holds, then we know that further applications of T will not

alter ψ , which is the stationary distribution for this chain. That is not to say that

the state cannot change between steps, but that the probabilities of reaching each

state remain the same between each subsequent step. To ensure that the chain

will converge to a stationary distribution, the chain must be ergodic, meaning it

satisfies two conditions: irreducibility and aperiodicity. Irreducibility means that

a sequence of (non-zero probability) transitions exists from any state to any other

state. Aperiodicity means the system does not return to the state at fixed intervals.

A sufficient (but not necessary) condition to ensure ergodicity is detailed balance,

meaning that for every pair of states, the probability of transitioning from one

state to the other is the same probability of making the reverse transition.

Arguably the most common MCMC algorithm in use is the Metropolis-Hastings

algorithm (Hastings 1970). The algorithm is designed to construct a chain of

samples with transition probabilities such that the chain will converge towards the

target distribution (in our case the posterior distribution) as its stationary distribu-

tion. By generating a sufficient number of samples, we can therefore be assured

that the samples will be correctly drawn according to the posterior. The initial

state is determined by choosing an arbitrary point x0 from the parameter space

and a (biased) random walk is conducted to generate the samples which form the

steps in the Markov Chain.

To derive the MH algorithm, we first start with the condition of detailed bal-

ance. If we let P(x′|x) be the probability of transitioning from state x to x′ and let

P be our target distribution, the posterior, detailed balance asserts that

P(x′|x)P(x) = P(x|x′)P(x′), (2.20)



2.4 Existing Computational Methods 59

which can be re-written as

P(x′|x)
P(x|x′)

=
P(x′)
P(x)

. (2.21)

We split the transition into two sub-steps; the proposal step and the accept-reject

step. We define some proposal distribution q(x′|x) which gives the probability of

proposing a transition from state x to state x′. Typically this is often chosen to be

a simple distribution, such as a Gaussian, but the exact distribution is left for the

analyst to decide on, and is treated as a ‘black box’ by the MH algorithm. We then

define an acceptance distribution α(x′,x), which gives the probability of accepting

the proposed state x′. We can then write

P(x′|x) = q(x′|x)α(x′,x). (2.22)

Combining this with eq. (2.21), we get

α(x′,x)
α(x,x′)

=
P(x′)
P(x)

q(x|x′)
q(x′|x)

. (2.23)

All that remains is then to choose a suitable acceptance distribution, such that the

ratio in eq. (2.23) is satisfied. The commonly used ‘Metropolis choice’ is given

as:

α(x′,x) = min
(

1,
P(x′)
P(x)

q(x|x′)
q(x′|x)

)
. (2.24)

In the original Metropolis algorithm (Metropolis et al. 1953), the precursor to the

MH algorithm, it was assumed that the proposal distribution q(x′|x) was symmet-

ric, i.e. q(x′|x) = q(x|x′), and therefore the acceptance distribution in eq. (2.24)
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reduces to

α(x′,x) = min
(

1,
P(x′)
P(x)

)
. (2.25)

The ‘Metropolis choice’ from the MH algorithm is therefore a more general de-

scription, but it can be useful to consider this version of the acceptance distribution

if the proposal distribution is symmetric. The full Metropolis-Hastings algorithm

is therefore given as follows:

Algorithm 1: Metropolis-Hastings Algorithm

Select an initial state x0;

Set t = 0;

while t < N do

Generate candidate state x′ according to q(x′|xt).;

Calculate the acceptance probability α(x′,xt) = min
(

1, P(x′)
P(xt)

q(xt |x′)
q(x′|xt)

)
.;

Generate a uniform random variable u ∈ [0,1];

if u≤ α(x′,xt) then

Accept the new state and set xt+1 = x′;

else

Reject the new state and set xt+1 = xt ;

end

Set t = t +1

end

Here we have set N as the maximum number of iterations allowed. This is a

straightforward approach to terminating the algorithm and it is left up to the ana-

lyst to determine an appropriate N for their problem. There are alternative termin-
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ation criteria, for which the reader is directed to e.g. Roy (2020).

MCMC methods allow us to generate posterior samples as a way of approxim-

ating the posterior distribution, which is suitable for parameter estimation prob-

lems. On the other hand, these methods do not provide us with the Bayesian

evidence, which is critical for model selection problems. There are methods for

estimating either the evidence from the resultant MCMC chains (Chib & Jeliazkov

2001, Heavens et al. 2017), or Bayes’ factor (Marin & Robert 2009, Lartillot &

Philippe 2006), however in practice these methods are usually computationally

inefficient and often inaccurate. This is primarily the case because the likeli-

hood typically peaks in a very small region of the prior, with likelihood values

away from the peak being orders of magnitude smaller. This results in MCMC

moving quickly away from the extreme regions of the prior volume and spending

much more time near the likelihood peak. These low-likelihood regions (most of

the prior volume) are therefore undersampled and their contribution to the evid-

ence integral won’t be accurate (Feroz 2008). This is not a problem for nested

sampling, another Monte Carlo algorithm which reverses the priorities of MCMC,

focusing on computation of the evidence, while providing posterior samples as a

by-product.

2.4.2 Nested Sampling

Nested sampling (Skilling 2006) provides a method for efficiently computing the

Bayesian evidence:

Z =
∫
L(Θ)π(Θ)dΘ. (2.11 revisited)
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Figure 2.1: Sorted nested likelihood contours enclosing portions of the prior volume. The
area under the right-hand curve is equal to the evidence as given by eq. (2.27). Recreated
from Skilling (2006).

As indicated previously, numerical analysis quicky becomes impractical for this

problem as the dimensionality of Θ increases past a few dimensions. For the

nested sampling approach, we instead consider the prior volume X . This quantity

can be accumulated from its elements dX in any order, so we define

X(L∗) =
∫
L(Θ)>L∗

π(Θ)dΘ (2.26)

as the cumulative prior volume covering all likelihood values greater than L∗. For

a given likelihood value L∗, this naturally defines an iso-likelihood contour, en-

closing a region containing some fraction of the prior, consisting of all coordinates

Θ for which L(Θ) = L∗. By writing the inverse function of X(L∗) as L(X), the

evidence can be computed as

Z =
∫ 1

0
L(X)dX , (2.27)
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a one-dimensional integral over unit range, where dX = π(Θ)dΘ. This process is

depicted in fig. 2.1. This transformation removes all complications of gemoetry,

topology and dimensionality, making the task of computing the evidence much

more straightforward. One can make use of numerical quadrature techniques to

find

Z ≈∑
i

wiL(Xi), (2.28)

where wi is the quadrature weight associated with the point Xi. For simplicity,

this is often taken as wi = Xi−1−Xi. At this point, the complex nature of evalu-

ating the evidence integral has just been shifted onto the calculation of the prior

volume; given a complicated, high dimensional space, it is not trivial to identify

the volume enclosed by a given likelihood contour. Nested sampling deftly deals

with this issue by making use of a probabilistic integration technique. We simply

draw sequential samples according to the prior and subject to the constraint that

the sample must be drawn from within the iso-likelihood contour defined by L∗.

Because dX = π(Θ)dΘ, sampling according to the prior means that the samples

will have their prior volumes drawn uniformly from the interval [0,X∗], where

X∗ = X(L∗) as defined in eq. (2.26). Taking our first sample from somewhere

within the entire prior volume, we can evaluate the likelihood at that point, giving

us a new iso-likelihood contour from which to sample our next point, and so on. It

is expected that the bulk of the posterior occupies a small fraction X ≈ e−H of the

prior volume (Sivia & Skilling 2006), where H is the information entropy given

by:
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H =
∫
P(Θ) lnP(Θ)dΘ. (2.29)

It is therefore sensible for the sampling to be linear in lnX , rather than in X . We

therefore define a sequence of ‘shrinkage ratios’ t = t1, t2, t3, · · · , tm, where each t j

is in the range [0,1] and

Xi =
i

∏
j=1

t j. (2.30)

We expect that, on average, each sample will reduce the previous volume by 1
2 .

Therefore the expected volume enclosed by the iso-likelihood contour defined by

Li is 〈Xi〉=
(1

2

)i
. As we continue generating samples, the volume will shrink ex-

ponentially towards the high-likelihood region. The initial samples will contribute

very little towards the evidence, since their likelihoods will be insignificant until

reaching Xi ≈ e−H . Once the volume shrinks far past this fraction, we once again

find that samples will stop contributing to the evidence, since their quadrature

weights will diminish significantly.

We can generalise this process for the case where, instead of taking a single

sample within each iso-likelihood contour, we can take N samples. By choosing

the worst point (lowest L, highest X) as the i’th sample in our sequence, we ef-

fectively increase the resolution with which we sample the prior volume. In this

case, we have

X0 = 1, Xi = tiXi−1, P(ti) = NtN−1
i in (0,1), (2.31)

with ti in this case being the largest of N random numbers drawn uniformly from
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[0,1]. The mean and standard deviation of ln t are − 1
N and 1

N respectively. The

individual ln t are independent, so after i steps, we can estimate the (log-) prior

volume using lnXi ≈ −(i±
√

i)/N. Note that the uncertainties in these volume

estimates will propagate through to give some uncertainty to our evidence estim-

ate. Skilling (2006) explores this further. Now that we can statistically estimate

the prior volume, we can determine a termination condition. Given that we now

have Xi ≈ e−i/N and that we know most of the prior mass is contained within the

region X ≈ e−H , we can run the algorithm until the number of steps i significantly

exceeds NH, i.e. when most of Z has been found.

It is not actually necessary to generate N samples each step of the algorithm,

since there are N− 1 left over after deleting the worst one. The N samples are

referred to as live points, whereas the deleted points are added to the set of dead

points. At each step, we therefore only need to generate one new point, accord-

ing to the prior, within the iso-likelihood contour, in order to replace the point

being deleted. Finding a method to draw new points subject to these constraints

is widely accepted to be the most challenging aspect of nested sampling. There

are many ways to approach this problem, however. Several nested sampling vari-

ants exist, which distinguish themselves by the method used to sample from the

iso-likelihood contour. Perhaps the most common approach involves copying one

of the remaining points and performing a random walk using MCMC, while re-

jecting proposals which would lie outside of the enclosed prior volume. With

any such MCMC approach, it is important to ensure that, in addition to maintain-

ing detailed balance (and therefore ergodicity), the chain is long enough that the

final point is effectively independent from the starting point, as to not bias the

exploration of the enclosed prior volume. Other alternative approaches have been
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developed to improve sampling efficiency, while being more robust to parameter

degeneracies or distributions with multiple modes. Two popular nested sampling

variants are: MultiNest (Feroz et al. 2009), which constructs sets of intersecting

ellipsoids in an effort to approximate the iso-likelihood contours and then rejec-

tion samples from within those; and POLYCHORD (Handley et al. 2015), which

generates samples using an MCMC procedure that utilises slice sampling (Neal

2000) at each step.

Whichever method is used for sampling, when the algorithm terminates, the

set of dead points can then be used to calculate the evidence using eq. (2.28). Fur-

thermore, as a byproduct we can use the dead points to produce posterior samples

(allowing us to perform parameter estimation). Posterior samples can be acquired

by randomly sampling from the area Z under the one-dimensional curve L(X).

This area has already been divided into regions with area Liwi, so the posterior

probability for a dead point i is given by

pi =
Liwi

Z
. (2.32)

Thus, nested sampling allows us not only to calculate an estimate of the Bayesian

evidence, but also to sample from the joint posterior distribution over the paramet-

ers, making it a powerful computational tool for Bayesian inference problems.



Chapter 3

SAV Identification

When the SAV hypothesis was first introduced (V2017A), ten features were iden-

tified in the light curves of seven of the 981 blazar sources investigated. These

features were manually identified by eye, as detailed in section 1.2.3. While this

was sufficient in identifying sources of interest with regards to this emerging phe-

nomenon, it requires a significant amount of time and effort and is not easily

reproducible. A better alternative would be to design an automated procedure

which is capable of identifying SAV events within the OVRO 40m data set, with

some statistically rigorous way of quantifying our belief in the results. This type

of procedure would theoretically be capable of finding evidence of SAV in the

OVRO data set which has gone unnoticed during manual inspection of the light

curves. In this chapter I provide the details of one such approach, which makes

use of Bayesian inference (more specifically nested sampling) to fit a model to

OVRO 15GHz light curves and identify any SAV events present.
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3.1 Modelling SAV

In order to use Bayesian inference to identify SAV activity, we require a model

capable of describing features like those seen in the OVRO 15GHz light curves.

Since SAV is hypothesised to occur as a result of gravitational lensing, it is sens-

ible to try and construct a physical model based on the binary mass lensing system

suggested in V2017A and described in section 1.2.3.1.

3.1.1 Physical Model

Following the method described in V2017A we can employ eq. (1.12) to simu-

late a series of ‘lensing patterns’ using the technique of inverse ray-tracing, which

involves follow a large number of rays from the observer to the source plane.

We ‘shoot’ around 108 rays onto a regular grid on x. Using eq. (1.12), we then

compute the source-plane location of each ray. The rays are then binned on a

suitable grid in the source plane. Because lensing preserves surface brightness,

the magnification is the ratio of the image area to the source area on the sky. The

magnification for each source bin is thus the ratio between the number of rays in

the bin and the number of rays in the absence of the lens detection. These 2D

bins form an image, where each bin is a pixel and the pixel’s colour represents

the magnification at that point. Figure 3.1 shows the lensing patterns described in

V2017A as “Cupid’s Bow” and “Barbed Arrow”. By plotting the trajectory of a

source component across the source plane, one can then trace out a ‘magnification

curve’ showing the magnification that the emission of that component would un-

dergo as it travels. We can think of this curve as a function of time µ(t), where µ

is the ratio of the flux of the lensed component to the flux of the same component
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if it was unlensed.

Figure 3.1: ‘Cupid’s Bow’ (left) and ‘Barbed Arrow’ (right) lensing patterns.

Simulating a binary lens according to eq. (1.12) requires four parameters: the

binary mass ratio q, the binary separation d (given in units of the Einstein radius),

the external convergence κ , the external shear γ . There are additional variables

involved in the inverse ray-shooting simulation such as the maximum/minimum

angle of the rays, however these could be fixed pre-runtime. To then include the

trajectory of the source component we must include another four parameters: the

x and y coordinates of the starting position in the source plane sx and sy and the 2D

velocity components vx and vy. Finally, the source component will have a physical

size, even if it can’t be resolved by the OVRO 40m telescope and thus is treated

as a point source. We therefore convolve the lensing pattern with a 2D Gaussian

filter defined by σ , which represents the size of the component. This will have the

additional effect of smoothing the resultant magnification curve.

This nine-parameter model is sufficient to generate a magnification curve (as



3.1 Modelling SAV 70

a function of time) for a given set of parameter values, however this approach

has a significant flaw. One could design a likelihood function which, given a set

of parameter values and the corresponding magnification curve, would return a

measure of how well that curve describes some data, however this means that

for every likelihood evaluation in the nested sampling run, an inverse ray-tracing

simulation would need to be run. This process is slow and ultimately makes us-

ing this model intractable for use with nested sampling. While the model, being

physically derived, captures how SAV events are hypothesised to occur, it is not

feasible to use it in this case. It is therefore desirable to develop a model which

can approximate the magnification curves the physical model produces, but with

far less overhead.

3.1.2 Toy Model

It was established in V2017A that we can distinguish two types of U-shaped

events: a volcano type and a crater type (see section 1.2.3). In order to be able

to correctly identify SAV, we must identify a model flexible enough to capture

both of these event types. Obreschkow et al. (2009) introduced a parameterised

model for the normalised profiles of HI- and CO-emission lines. The model gives

a line profile in terms of the normalised flux density, ψ and uses five paramet-

ers: The normalised flux density at the line centre ψ0; the normalised peak flux

density ψmax; the line width between the two peaks wpeak ; the line width at the 50-

percentile level of the peak flux density w50; and the line width at the 20-percentile

level w20. The model is shown diagrammatically in fig. 3.2.
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Figure 3.2: Diagram illustrating the five-parameter Obreschkow et al. (2009) model.

While HI- and CO-emission line profiles are entirely unrelated to the problem

of fitting to SAV, this model does produce curves with two symmetrically opposed

peaks separated by a U-shaped dip. Moreover, the model parameters provide an

intuitive sense of what the resultant curve will look like. This means that this

model can be adapted quite easily to approximate the magnification curves which

inverse ray-tracing would allow us to produce. In fact by tuning the parameters

of this model, it is possible to produce both volcano and crater shaped curves, as

shown in fig. 3.3. The disadvantage of such an approach is that it is not physically

motivated, so identifying SAV activity by fitting a model like this one to some
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data would not provide any information about the lensing system. In this case

however, once SAV activity has been identified, it may then be possible to follow

up with the physically-derived lensing model to perform fits more locally to the

discovered events. The posterior on the parameters of the physical model would

then be informative in investigating the lensing system.

Figure 3.3: FRSD-SRFD ‘crater’ (top) and SRFD-FRSD ‘volcano’ (bottom) magnific-
ation curves described in V2017A, approximated using the Obreschkow et al. (2009)
model.

In its original form, the model uses an analytic function to approximately re-

cover the normalised velocity profiles ψ(V ) of emission lines, where the function

is given as
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ψ(V ) =


ψmax · e[k1(|V |−k3)

k2 ]

k5(k4−V 2)−0.5

ψ0

if |V | ≥ wpeak
2

if |V |< wpeak
2 and ψmax> ψ0

if |V |< wpeak
2 and ψmax= ψ0

, (3.1)

where k1, · · · ,k5, are free parameters which can be inferred from the five model

parameters as follows:

k1 =−0.693 ·2.322
[

ln(w50−wpeak)−ln2
ln(w50−wpeak)−ln(w20−wpeak)

]
,

k2 =
0.842

ln(w20−wpeak)− ln(w50−wpeak)
,

k3 =
wpeak

2
,

k4 =


1
4

w2
peakψ2

max

ψ2
max−ψ2

0

0

if ψmax > ψ0

if ψmax = ψ0

,

k5 = ψ0
√

k4.

(3.2)

While this model can produce both magnification curve shapes, it needs some

modifications to actually produce magnification curves. Firstly, to avoid any con-

fusion, we will rename the ψmax and ψ0 parameters to µmax and µ0 respectively,

and we replace V with t, since we are now concerned with magnification as a

function of time µ(t), rather than normalised flux density as a function of velo-

city ψ(V ). In addition, the baseline magnification of the curve (away from the

U-shaped feature) using the original model would be zero, when the magnifica-

tion should be unity. This can be fixed by simply adding 1 to µ(t) at every point
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along the curve. The modified function becomes:

µ(t) =


µmax · e[k1(|t|−k3)

k2 ]+1

k5(k4− t2)−0.5 +1

µ0 +1

if |t| ≥ wpeak
2

if |t|< wpeak
2 and µmax> µ0

if |t|< wpeak
2 and µmax= µ0

, (3.3)

In addition to magnification, the source can also experience demagnification, where

the curve dips below unity, which the model does not yet allow for. We can further

modify eq. (3.3) to give

µ(t) =


µmax · e[k1(|t|−k3)

k2 ]+1

k5(k4− t2)−0.5 · µmax+1
µmax

µ0 +1

if |t| ≥ wpeak
2

if |t|< wpeak
2 and µmax> µ0

if |t|< wpeak
2 and µmax= µ0

, (3.4)

which preserves the overall shape of the curve, while allowing the U-shaped

‘trough’ to drop below unity. At this point, a value of e.g. µmax = 2 would mean

the curve peaks at µ = 3, since we added 1 to µ(t) at all points. It would be

more convenient for µmax to represent the actual magnification at the peaks, so

we then replace µmax with µmax− 1 anywhere it appears in the function defin-

ition (including the definitions of k1, · · · ,k5). Next, we must consider that the

magnification curves given by the model are centred at t = 0, when in actual-

ity the events found in the OVRO light curves could be centred at any arbitrary

point in time (within the span of time that observations have been ongoing). We

therefore introduce a sixth parameter t0 to indicate the time at which the event

is centred. Subtracting a constant factor of t0 from t in our function will trans-

late the curve to be centred at t = t0. One final aspect of the model to consider

is that defining a prior distribution over the model parameters, as is required for
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nested sampling, could be potentially problematic. More specifically, if one were

to define a prior over µmax (for example) for some range of values and then define

a prior over µ0 with and overlapping range, this introduces the possibility that

µmax < µ0, a situation for which µ(t) is undefined. The same problem arises

for the ‘width’ parameters wpeak, w50 and w20, since we must ensure that the U-

shaped feature widens as the magnification tapers off. One tactic for dealing with

this problem is to define a likelihood function which simply returns zero when

this condition is met. While this approach is functional, there is nothing to stop

the nested sampling algorithm from proposing points which would have zero like-

lihood in this way and would therefore lie outside of the iso-likelihood contour.

This could decrease the efficiency of the algorithm, as time is wasted proposing

these points. An alternative solution is to reparameterise the model in such a

way that the output is preserved, but where we can ensure that overlapping priors

will not be a problem. We can replace µ0 with a new parameter q = µ0/µmax,

where 0 < q < 1. Similarly, we can replace w50 with ∆w1 = w50−wpeak and

replace w20 with ∆w2 = w20−w50 = w20−wpeak−∆w1, with the added condi-

tions that 0 < ∆w1 and 0 < ∆w2. This reparameterisation enforces the assertions

that µmax ≥ µ0 and that wpeak < w50 < w20, while maintaining an intuitive sense

of how the altering the values of the new parameters would affect the resultant

magnification curve. The downside of this approach is that we are introducing

linear parameter degeneracies, which nested sampling can traditionally struggle

with, although this is not a problem for POLYCHORD thanks to its in-built contour

whitening. With those modifications, our final magnification model comprises six

parameters Θmag = (µmax,q,wpeak,∆w1,∆w2, t0), with magnification curves pro-

duced using the function
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µ(t) =


(µmax−1) · e[k1(|t−t0|−k3)

k2 ]+1

k5(k4− (t− t0)2)−0.5 · µmax
µmax−1

q ·µmax

if |t− t0| ≥
wpeak

2

if |t− t0|<
wpeak

2 and q< 1

if |t− t0|<
wpeak

2 and q= 1

, (3.5)

where we now have

k1 =−0.693 ·2.322[
ln∆w1−ln2

ln∆w1−ln(∆w1+∆w2)
]
,

k2 =
0.842

ln(∆w1 +∆w2)− ln∆w1
,

k3 =
wpeak

2
,

k4 =


1
4

w2
peak(µmax−1)2

(µmax−1)2−(q(µmax−1))2

0

if q < 1

if q = 1
,

k5 = q(µmax−1)
√

k4.

(3.6)

The final magnification model allows for the approximation of the magnification

curves we can attain using inverse ray-tracing, while also being nicely suited for

use with nested sampling.

3.1.3 Background Variability

So far we have considered models which generate magnification curves repres-

entative of the lensing undergone by a source due to SAV, however these events

obviously do not occur in isolation and SAV is not the only form of variability
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observed in blazars. To complete our model we must also attempt to account for

the typical variability seen in the light curves of unlensed sources.

We firstly consider the long-term variability of sources observed by the OVRO

monitoring program. Over the course of several years, the source flux densities

can often (but not always) be seen to increase or decrease according to some trend.

This trend can sometimes be linear, but is often more complex and would require

a higher order polynomial to describe. Generally, however, a cubic function of the

form S(t) = at3 +bt2 + ct +d is sufficient to capture the long-term variability of

OVRO sources. A naive approach would be to incorporate the cubic coefficients

a, b, c and d as model parameters, although doing so would make defining a prior

distribution quite difficult, as it is not immediately obvious what combination of

these parameters would produce a cubic which describes a given light curve’s

long-term variability. Instead, it is better to consider the (time and flux density)

coordinates of the stationary points of the cubic, which are easier to relate to a

given light curve. If we only consider cubic curves with two unique stationary

points, we have the coordinates of the first turning point (t1,S1) and the second

turning point (t2,S2). Given these coordinates, it is possible to identify the unique

cubic curve which passes through (and has zero derivative at) both points. Ul-

timately the stationary point coordinates are preferable parameter candidates for

modelling long-term variability, compared to the cubic function coefficients.

When it comes to shorter-term variability, a common approach is to model

blazar light curves as a series of exponential flares (Hovatta et al. 2009, Abdo

et al. 2010b). We can define a flare using four parameters: the peak flux Speak, the

peak time tpeak, the rise rate r and the decay rate d. The amplitude of a given flare

at time t is then given by
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S(t) =

Speake(t−tpeak)/r, t ≤ tpeak

Speake(t−tpeak)/d, t > tpeak.
(3.7)

While this model is perfectly suitable for describing an exponential flare, there

is a problem. For most of (if not all of) the OVRO 15GHz light curves, fitting a

single flare would not be sufficient for capturing the observed variability. Several

flares will be needed, however the exact number will be different from source to

source and that number will not be known a priori. This is problematic because

traditional nested sampling algorithms expect a fixed dimensionality, whereas this

problem would be ideally solved by an approach which allows the number of

flares to freely vary (therefore varying the dimensionality of the problem as the

algorithm progresses). Chapter 4 explores a novel framework which would facilit-

ate such a ‘transdimensional’ approach, however for the current problem, we will

instead make use of the ‘adaptive’ method (Higson et al. 2019, Hee et al. 2016,

Chua et al. 2018). We term each set of four parameters describing an individual

flare as a ‘particle’. We then choose a fixed dimensionality which is sufficient to

include N particles, in addition to any other model parameters which don’t con-

tribute to the particles. In this case, inspection of the OVRO light curves indicates

that any of the light curves can be decomposed into no more than 15 exponential

flares, so we would then include 60 parameters in our model to describe those 15

flares. We then also include in our model the remaining parameters which de-

scribe the cubic background and the magnification curve. Finally, we add in one

final parameter N, which represents the interpreted dimensionality of the current

parameters. Each live point in a nested sampling run will have some (integer)

value for N and we can treat that live point as only having that many particles,
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only considering the first N particles and ignoring the rest. In this way, N is able

to vary freely and we can determine the most likely value for N (i.e. the most

likely number of particles) a posteriori.

3.1.4 Noise Modelling

With each OVRO observation, an estimate of the telescope thermal noise is cal-

culated from the variance of the time stream data that go into producing the flux

estimate, however this is not the only contribution to the total flux error. Gener-

ally there will also be an additional pointing error, which will be approximately

constant during a single observation and thus will not affect the thermal noise es-

timate. It will, however, result in a random error in the flux estimate such that

the expectation flux measured is AS, where S is the source flux and A is determ-

ined by the pointing calibration measurement carried out just before the source

observation. We assume that the value of A is independent between subsequent

observations, and its distribution will be complicated, however it will result in

an additional error between successive data points equal to αS. If we take the

(seemingly unlikely) assumption that α is Gaussian distributed, we can sum this

additional error with the thermal noise in quadrature to find the total error on each

data point
√
(αSi)2 +σ2

i . If we include α as a free parameter in our SAV model,

we can perform model selection against the same model without α . The Bayesian

evidence will indicate which of these two models better describes the data. The

additional parameter must provide a significantly better description of the data,

otherwise the additional term will naturally incur an Occam penalty and the ori-

ginal model will be preferred. Testing both models, it seems that including the
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additional error term does produce a model which is preferred, as indicated by

the Bayesian evidence. Typically, we find that the maximum a posteriori (MAP)

value for α to be around α = 0.05. Interestingly, the OVRO data reduction pro-

cess already includes a term to account for the pointing error, however this result

may indicate that it currently gives an underestimate.

With all of this in mind, we have finally constructed a model sufficient for

identifying SAV in blazar light curves, defined in terms of the parameters Θ =

(Θmag,Θcubic,Θflares,α), where Θmag is defined previously, Θcubic = (t1,S1, t2,S2)

and Θflares = (N,Speak,1, tpeak,1,r1,d1, · · · ,Speak,N , tpeak,N ,rN ,dN). The cubic acts

as a baseline, which we can then add N exponential flares to by summing their

amplitudes with the cubic. We then find the product of that curve with the magni-

fication curve and the final resultant curve can then be compared to the data.

3.2 The Fitting Procedure

With a suitable model to describe the light curve of a source undergoing SAV,

we return to the problem of designing a procedure to fit this model to data, with

the goal of ultimately identifying SAV within the OVRO 40m data set. Given a

blazar light curve which was known a priori to feature an SAV event, one could

run nested sampling using the model in an attempt to recover the event. Assuming

we appropriately defined both a likelihood and prior distribution, nested sampling

would return a posterior distribution over the parameters. This allows us to make

inferences about the parameter values, such as finding the MAP values for the

parameters in Θmag, which would indicate the most probable position of the SAV

event, among other things.
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Taking things a step further, it is important to consider that when using this

approach with real OVRO data, it would likely be the case that we don’t actu-

ally know a priori whether there might be one event, two events, or no events at

all. It is conceivable that one might extend the adaptive model described above to

also allow for a variable number of SAV events, however this would increase the

complexity of this (already fairly complex) model significantly. As an alternative,

we can simply perform multiple nested sampling runs, each time using an altered

version of the model which expects no SAV events (so Θmag has no parameters),

one SAV event (Θmag has five parameters), two SAV events (Θmag has ten para-

meters), etc. We can then use the Bayesian evidence computed during each run to

perform model selection and determine which model best describes the observed

data.

3.2.1 Likelihood and Weighting

We assume the noise on the data to be approximately Gaussian and so we define

a likelihood function of the form L(Θ) ∝ exp(−1
2 χ2), where χ2 is the standard

statistic measuring the misfit between the observed data O = {O1,O2, ...,ON} and

the data predicted by the model E = {E1,E2, ...,EN},

χ
2 =

N

∑
i

wi(Oi−Ei)
2. (3.8)

Typically, wi = ωi = 1/σ2
i , where σi is the observational uncertainty, so observa-

tions with high uncertainties have less weight in determining goodness of fit. In

this case, however, we are concerned not just with uncertainties, but also the ob-

serving cadence. Typically each source in the OVRO 40m catalogue is observed
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once every three days, however this is not always possible due to telescope main-

tenance, weather conditions (particularly wind), incomplete/bad observations, etc.

This means, as is common with astronomical data, the light curves are unevenly

sampled. It is very feasible, therefore, that uninteresting areas of the light curve

(i.e. a region away from the SAV events) could be quite densely sampled, whereas

the events themselves may be (at least partially) undersampled, and we should

consider weighting the data points accordingly. Robust weighting (Briggs 1995)

introduces a controllable robustness parameter R, allowing a scalable trade-off

between ‘natural’ weighting, where data points are weighted by their inverse vari-

ance, and ‘uniform’ weighting, which gives higher weighting to data points in

sparse regions. While this weighting scheme was originally developed to weight

visibilities in the u-v plane for radio interferometric imaging, in principle there is

nothing to stop it being applied in this case. We first divide our data temporally

into a number of fixed-width windows, and for each window k, we calculate Wk

as the sum of the inverse variances of all data points within that window. The

weights can be calculated using

wi =
ωi

1+Wk f 2 , (3.9)

where

f 2 =
(5 ·10−R)2

∑k W 2
k

∑i ωi

. (3.10)

.

The robustness parameter R can take any value between −2 (close to uniform

weighting) and 2 (close to natural weighting), and can be fixed before the fitting
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procedure begins, or even possibly included as a free parameter in the model.

In effect, this type of weighting scheme should stop the model from necessarily

fitting too closely to dense clusters of data points and allow it more freedom to fit

to undersampled regions.

While initial tests of implementing robust weighting as part of this model

looked promising, time constraints prevented any proper analysis of the impact

it might have on the fitting procedure. Instead, we will simply assume a natural

weighting scheme going forward, although the robust scheme could certainly be

revisited in the future.

3.2.2 The Prior Distribution

We will naively assume fairly broad, uniform priors over all of the model para-

meters, since there is currently nothing to suggest that a more specific distribu-

tion would be preferable for any of the model parameters. The possible ranges

of parameter values are shown in table 3.1. Here tmin and tmax are the time co-

ordinates of the earliest and latest data points respectively, and similarly Smin and

Smax are the minimum and maximum flux density coordinates respectively. By

making use of these values, we can ensure that the range of possible parameter

values is scaled to the data we are fitting to. Some of the parameter ranges have

additional terms which allow the parameter values to extend beyond the bounds

defined by tmin, tmax,Smin and Smax, providing the model some more flexibility.

For example, t1 and t2 can fall anywhere in the range between tmin and tmax, but

also within a margin of 5% of that range on either side. Note that this is not the

case for t0, the time coordinate(s) of the centre of the magnification curve(s), be-
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cause the individual peaks of the magnification curves are very similar in shape

to the exponential flares. This means that if, for example, an SAV event occurred,

but observations on the source only began in time to record the second peak, with

more than half of the magnification curve lying outside of the span of time defined

by the observations, we would not be able to conclude that the variation observed

is the end of an SAV event, rather than just an exponential flare. A similar argu-

ment can then be made for the case where we see a peak at the very end of the

light curve, indicating an event may be ongoing, but more observations would be

needed to extend the light curve and conclude whether it is a true event (or at least

whether the fitting procedure concludes that this is the case). The minimum value

of wpeak was chosen as it would require a minimum of five data points to indicate

the type of variation we see from SAV events: one point at each of the peaks, one

point in the U-shaped dip, and two more points away from the event. This means

that, with an average cadence of 3 days in the OVRO data, we would realistically

only expect to observe an SAV event which spans around 10 days from peak to

peak. Conversely, the maximum value was chosen because if there were some

event which had its peaks separated by the entire span of the currently available

data, we would not be able to see the peaks in that data, and would have to wait

for more observations to be carried out. All other parameter limits were selected

to simply give a wide enough range so that if any one of the parameters took a

value outside of its range, the model would give a very bad fit to any of the light

curves in the OVRO data set.
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Table 3.1: Prior ranges for all parameters in the SAV model. Note that while most of
the parameters can take any values in their respective prior ranges, N is an integer. Addi-
tionally, while the model includes Nmax flares, the parameters of two different flares will
be drawn from the same distribution. Similarly, the model may be extended to include
any number of SAV events (or possibly none), but the parameters of two different SAV
magnification curves will be drawn from the same distribution.

Parameter Prior Range
t1 [tmin−0.05(tmax− tmin), tmax +0.05(tmax− tmin)]

Θcubic t2 [tmin−0.05(tmax− tmin), tmax +0.05(tmax− tmin)]
S1 [Smin−0.05(Smax−Smin), Smax +0.05(Smax−Smin)]
S2 [Smin−0.05(Smax−Smin), Smax +0.05(Smax−Smin)]

µmax [1, 4]
q (0, 1]

Θmag wpeak [10, tmax− tmin]
∆w1 [1, 500]
∆w2 [1, 500]
t0 [tmin, tmax]
N [0, 15]

Speak (0, Smax]
Θflares tpeak [tmin−0.05(tmax− tmin), tmax +0.05(tmax− tmin)]

r (0, 1000]
d (0, 1000]
α (0, 0.1]
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3.3 Light Curve Simulation

With a procedure in place for identifying the presence of SAV in a given blazar

light curve, it is important to test this procedure to determine how well it actu-

ally performs (and then tune the procedure accordingly). Unfortunately, there are

only a handful of confirmed SAV events which occupy a very small proportion

of the set of OVRO 15GHz light curves. It would be desirable, therefore, to find

a way to gather/produce some more data in which we could place artificial SAV

events to test the fitting procedure’s ability to recover those events. Thankfully,

we have already developed a model capable of describing the variation seen in

the light curve of an unlensed source, and so it should be possible to leverage that

to produce a new set of artificial ‘OVRO-like’ light curves, satisfying our need

for more data. It should also be noted that the ability to produce artificial light

curves based on the real OVRO data has applications beyond the scope of SAV

identification, such as identifying periodicity in flare events or finding correlations

between source variability and other indicators e.g. neutrino events. In either of

these cases, it would be useful to simulate OVRO-like light curves with no inbuilt

periodicity/correlations and then assess the significance of any putitive detection

by running the same analysis on the mock data.

We begin by running the fitting procedure with a model which expects no

SAV events. In essence, our model now only consists of the parameters in Θcubic

and Θflares, which capture the non-SAV variability of the source, as well as α

to more correctly model the noise. For brevity this model (i.e. with Θmag re-

moved) will hereafter be referred to as the background model or M0. More

generally, any model which expects N SAV events will be referred to as the N-
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SAV model or MN . We run POLYCHORD to fit the background model to the

data from each of the sources in the OVRO catalogue, using a likelihood func-

tion as described in section 3.2.1 and the priors described in section 3.2.2. Taking

the posterior samples returned by POLYCHORD, along with their corresponding

posterior weights, we can generate a curve for each sample and take a weighted

average of those curves, resulting in an average curve which describes the data

seen in the light curve. In a similar fashion, we can also then find the (weighted)

error associated with that curve, allowing us to plot the curve with a confidence

interval. An example curve is shown in fig. 3.4. By doing so we can inspect how

well the model fits to the data.

Figure 3.4: Posterior weighted average curve with a 1σ confidence interval produced
by fitting the SAV model to the OVRO 15GHz light curve of J0717+4538. Note the
confidence interval widens in particular around regions where the data is sparse/missing.

It seems that generally the model provides a good fit to the OVRO light curves,

with the associated 1σ confidence intervals mostly being very small. By running
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this fitting procedure to a given light curve from the OVRO data set, we can now

begin sampling the posterior distribution over the model parameters in order to

generate new data which mimics the variations seen in that light curve. We select

a sample from the posterior distribution, where the probability of selecting each

sample is proportional to the associated posterior weight. From this sample, we

then retrieve the values of the four parameters which describe the cubic and use

them to produce a cubic curve. We then perform another weighted sample, and

find the value of N from that sample, which informs how many exponential flares

will be added. Sampling flares from the posterior becomes a little more complic-

ated, however. Each sample consists of multiple flares, where the number of flares

is not necessarily consistent between samples. We can get around this by noticing

that each of these flares can be described by a single point within the same four-

dimensional parameter space (since there are four parameters describing a flare).

This ‘flattened’ space is a concept which is further explored in chapter 4. Using

the nested sampling visualisation tool anesthetic (Handley 2019), we can re-

shape the list of posterior samples, splitting each of the original samples into N

new samples, each one taking the values of a different exponential flare. We can

then re-weight this flattened list of samples appropriately. We draw N samples

from the flattened list (again in a weighted fashion), and for each of the samples,

we use the flare parameter values to add a flare to the existing cubic.

The procedure thus far will produce a continuous curve which mimics the

variability seen in the OVRO data. In order to produce an artificial light curve

from this, we must sample points along the curve and then add some noise to

offset the flux values from the generated curve. The OVRO data, as previously

stated, is unevenly sampled. We can mimic the cadence of observations from
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the OVRO light curve which we originally fit to by finding the amount of time

from each observation to the next in the original data, then repeatedly drawing

randomly from this set of time differences and sampling that far along the curve.

Similarly, we can also mimic the uncertainties from the original light curve by

simply taking the uncertainty on a random observation from the original data and

use that uncertainty to introduce a gaussian offset in the flux density. We then

repeat this for each of the newly sampled points along the curve.

The final outcome of this procedure is a brand new artificial light curve. A

handful of light curves produced via this method using J0717+4538 (fig. 3.4) are

shown in fig. 3.5.

Figure 3.5: Four artificial light curves based on the OVRO 15GHz light curve of the
source J0717+4538.
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It should be noted that two other members of the OVRO collaboration have imple-

mented their own distinct methods of simulating artificial light curves using real

OVRO light curves as seeds. These three methods are being analysed to determine

the quality of the simulated light curves they produce (i.e. how similar they are to

the real OVRO light curves). At the time of writing, however, this analysis is still

ongoing and there are no results available to discuss.

3.4 Results

In order to test the ability of the fitting procedure described in section 3.2, we need

to run it with some data. The ultimate goal would be to run the procedure over the

entire set of OVRO 15GHz light curves, however we would first need to confirm

that the procedure works correctly and determine how reliably it can identify SAV

events. Unfortunately time pressures have not allowed such analysis, so instead

we focus on demonstrating the results of running the current fitting procedure

on both simulated and real OVRO 15GHz light curves. The testing framework

presented here is robust and demonstrates how we can analyse the procedure’s

performance and find ways to improve it in future.

3.4.1 Simulated data

In order to determine how effective the fitting procedure is at identifying true

SAV events, we would require a reasonably large number of light curves which

are known to display SAV. There are only seven such SAV candidates within the

OVRO data set (V2017A), however given the procedure for simulating ‘OVRO-

like’ light curves described in section 3.3, it is possible to quickly generate a large
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set of artificial light curves to test the procedure with instead. Given a simulated

light curve, one could place in any number (including zero) of artificial events

using the magnification curve model, either using the toy magnification model,

or the physically-motivated lensing model). One can then run the fitting proced-

ure over the light curve, which hopefully would successfully recover all of the

events without falsely identifying some other variation as SAV activity. Because

the number of events in the curve is a priori known, this process could then be

repeated, allowing us to produce a confusion matrix detailing the overall true/false

positive/negative rates, which could be interpreted to determine the performance

of the fitting procedure. This would also form an excellent starting point for tun-

ing/modifying the procedure to improve its performance. Unfortunately, while

generating the artificial light curves is fairly quick, running the fitting procedure

is not, meaning this kind of analysis has not been possible in the available time

frame. Instead, a demonstration of running the fitting procedure with some sim-

ulated data is included here to give some insight into the procedure’s potential

performance.
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Figure 3.6: Artificial light curve generated using J1322-0937 as a seed (before any artifi-
cial SAV events are placed within the data).

We select J1322-0937 randomly from the catalogue of OVRO sources and the

corresponding OVRO 15GHz light curve was used as the seed to generate an

artificial light curve, shown in fig. 3.6. The ‘toy’ magnification curve model was

then used to place an event into the light curve where µmax = 0.625, q = 0.438,

t0 = 57640, wpeak = 300, ∆w1 = 200 and ∆w2 = 300.

We run the fitting procedure on the artificial light curve, testing three models:

the background model, a 1-SAV model and a 2-SAV model, which expect zero,

one and two SAV events respectively. Taking the evidence estimates produced by

POLYCHORD, we can find the posterior probability for each model, P(MN |D),

using eq. (2.13). The results of doing so are shown in fig. 3.7. It is clear to see that

the 2-SAV model is strongly favoured over the other two models, which might

lead us to conclude that there are (at least) two SAV events present in the data,

however we know that only one event was manually placed in the light curve, so
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this result is indicative of a false positive (type 2 error). In practice, upon seeing

P(MN |D) peak at N = 2, we should keep running the model with higher and

higher values for N (i.e. expecting more and more SAV events), until we find

an N-SAV model which is not preferred over the one before it, indicating that

including more parameters no longer improves the fit enough to offset the Occam

penalty. In this case, we stop at N = 2, as it is found to be enough to indicate the

current capabilities of the fitting procedure.

Figure 3.7: Bar plot indicating the posterior probability of each model given the data
from the artificial light curve, where modelMN expects N SAV events. Note that all bars
are displayed, but those for N = 0 and N = 1 are invisibly small.

We can further investigate what went wrong here by following the methods used

to create fig. 3.4, and, for each model, producing a weighted average curve from

the posterior samples. These curves are shown in figs. 3.8 to 3.10. Note that for

the following plots, the yellow highlighted marker indicates the region of the SAV
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event that was placed into the simulated curve.

Figure 3.8: Weighted average curve from fitting the background model to the given arti-
ficial light curve.

Figure 3.9: Weighted average curve from fitting the 1-SAV model to the given artificial
light curve.
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Figure 3.10: Weighted average curve from fitting the 2-SAV model to the given artificial
light curve.

Interestingly, the fits each look very good when inspecting by eye, although for

the 2-SAV model to be so heavily favoured, the evidence estimate for that run

must have been significantly higher than the others. This means that this model

must provide a significantly better description of the data (at least as far as our

likelihood function is concerned) to offset the Occam penalty of the additional

model parameters.

While the fits look good and the evidences suggest the 2-SAV model is pre-

ferred, we can investigate further to find exactly which features in the curve the

model is reporting as being the result of SAV activity. By marginalising over all

model parameters excluding Θmag, we can produce a similar plot showing the

weighted average magnification curve. Obviously the background model does not

include a magnification curve, but the results for the 1-SAV and 2-SAV model are

shown in figs. 3.11 and 3.13 respectively. We can also inspect the joint posterior
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over the parameters in Θmag by marginalising over the other model parameters

and using anesthetic to produce triangle plots, which are shown in figs. 3.12

and 3.14. On the diagonal of these plots, we see the 1D posterior over each para-

meter, with the other cells showing the joint 2D posterior over each parameter

pair. Note that the 2-SAV model has two sets of magnification curve parameters,

so for readability we create separate plots for each.

Figure 3.11: Weighted average magnification curve from fitting the 1-SAV model to the
given artificial light curve.
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Figure 3.12: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 1-SAV model to the artificial light curve.

Figure 3.13: Weighted average magnification curve from fitting the 2-SAV model to the
given artificial light curve.
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Figure 3.14: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 2-SAV model to the artificial light curve. The top plot includes the parameters
for the first SAV event and the bottom plot includes the parameters for the second SAV
event.

It seems that, in both cases, the magnification curves are very broad and only cap-
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turing a single peak, indicating that they have been fit to some long-term variation

in the light curve. The ‘true’ SAV event is not identified at all. If these are the fits

that the procedure has determined to best describe the data, then the fitting proced-

ure may need to be modified, as it has failed at identifying the SAV activity in this

source. Of course, these results should be taken with a grain of salt, as it would

be unwise to measure the fitting procedure’s performance from fits to a single ar-

tificial light curve. Given more time, we could run this analysis over many such

light curves, which would give a much better idea of the overall performance, and

allow us to quantify our belief that the procedure is correctly identifying SAV.

While the fitting procedure does not run as well as hoped on a full simulated

light curve, there are ways to explore its current limits. By generating some sim-

pler data (fewer features, more pronounced SAV activity, etc.), it is possible to

explore what the procedure can and cannot handle. This would require be a long,

manual process of repeatedly generating data, performing the fitting and then ana-

lysing results, but it would give great insights into how the procedure can be im-

proved. The example given below is designed to illustrate the procedure running

on the most complicated data set which has yielded a correct result.

We begin by producing a cubic with parameter values t1 = 55000, t2 = 59000,

S1 = 0.3 and S2 = 0.9. We place a single SAV event with parameter values µmax =

1.422, q = 0.4433, t0 = 56035, wpeak = 524.5, ∆w1 = 178.4 and ∆w2 = 278. Fi-

nally we add in a single flare with parameter values Speak = 0.5, tpeak = 56789,

r = 100 and d = 200. Following the same procedure as before, we sample the res-

ultant curve according to the cadence distribution of a random source and similarly

sample the errors from another random source. This process gives us a simulated

curve with a single SAV placed on a rising slope, with a single flare placed just to
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the right. The spacing between the peaks of the SAV event has been selected to

be very close to the spacing between the right-most SAV event and the flare peak.

This creates two similar U-shaped features in the curve, making it difficult for the

fitting procedure to identify which is the correct event. The results of running the

procedure on this data set are shown in fig. 3.15, fig. 3.16 and fig. 3.17 for the

background, 1-SAV and 2-SAV models respectively.

Figure 3.15: Weighted average curve from fitting the background model to the simple
artificial light curve.
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Figure 3.16: Weighted average curve from fitting the 1-SAV model to the simple artificial
light curve.

Figure 3.17: Weighted average curve from fitting the 2-SAV model to the simple artificial
light curve.

In each case, we see a good fit to the data which is almost identical between

models. In the cases of the 1-SAV and 2-SAV model, we can once again pro-

duce weighted average magnification curves from the posterior samples, which
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are shown in fig. 3.18 and fig. 3.20. The triangle plots illustrating the joint pos-

terior over Θmag are shown in fig. 3.19 and fig. 3.21

Figure 3.18: Weighted average magnification curve from fitting the 1-SAV model to the
simple artificial light curve.

Figure 3.19: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 1-SAV model to the simple artificial light curve.
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Figure 3.20: Weighted average magnification curve from fitting the 2-SAV model to the
simple artificial light curve.
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Figure 3.21: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 2-SAV model to the simple artificial light curve. The top plot includes the
parameters for the first SAV event and the bottom plot includes the parameters for the
second SAV event.

It is evident that the procedure finds the two U-shaped features well, with the

1-SAV model clearly preferring the left-most feature. We can then see in figure
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fig. 3.22 that the posterior model probabilities indicate that the 1-SAV model is

preferred in this case. This is exactly what would be expected from a working

fitting procedure. A single artificial SAV event was placed in the data, and a

posteriori the results indicate that a 1-SAV model best describes that data, as the

background model lacks complexity and the 2-SAV model suffers from an Occam

penalty for introducing additional parameters without significantly improving the

fit. Ultimately this demonstrates that there is certainly potential for the fitting

procedure introduced in this chapter. While it is not yet able to handle more

complicated data sets, this example demonstrates that the framework built here is

sound.

Figure 3.22: Bar plot indicating the posterior probability of each model given the data
from the simple artificial light curve, where modelMN expects N SAV events.
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3.4.2 OVRO data

To get an idea of what the current fitting procedure does/does not identify to be

SAV events, we would ideally run the procedure over the entire set of OVRO

15GHz light curves, but ultimately this was not possible in the time available. In-

stead, it is still a useful exercise to focus on one OVRO source and see whether or

not the procedure identifies any SAV. We select J1033+56051, one of the original

SAV candidates (V2017A), with one event previously identified, centred at around

MJD 56469. It should be noted here that just because a candidate SAV event has

been identified in this source, we cannot take our procedure’s ability to recover

that event as a measure of how successful it is at identifying SAV in general, since

current evidence cannot definitively tell us that the candidate event is truly a result

of SAV, and there may be other variability in the light curve which has resulted

from SAV that has been overlooked thus far. Nevertheless, it is still interesting to

see whether the fitting procedure does recover that event, or find any others in the

same light curve.

We run the procedure over the OVRO 15GHz light curve of J1033+6051, test-

ing the same three models we used for the artificial light curve. Once again,

we used the evidence estimates to find the posterior probability for each model

P(MN |D), as shown in fig. 3.23.
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Figure 3.23: Bar plot indicating the posterior probability of each model given the data
from J1033+6051 OVRO 15GHz light curve, where modelMN expects N SAV events.
Note that all bars are displayed, but those for N = 0 and N = 1 are invisibly small.

Once again, the 2-SAV model is strongly favoured over the other two models,

meaning our procedure is reporting the presence of at least two SAV events. This

may well be possible; there may be an event which was overlooked originally, or

that had not yet been observed within the data available in V2017A. Once again,

we produce a weighted average curve for each model to inspect the fits (figs. 3.24

to 3.26). This time, the candidate SAV event reported in V2017A is highlighted

in yellow.
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Figure 3.24: Weighted average curve from fitting the background model to the the OVRO
15GHz light curve of J1033+6051.

Figure 3.25: Weighted average curve from fitting the 1-SAV model to the OVRO 15GHz
light curve of J1033+6051.
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Figure 3.26: Weighted average curve from fitting the 2-SAV model to the OVRO 15GHz
light curve of J1033+6051.

Once again the fits appear to be rather good, but this doesn’t tell us anything

about the variability that the procedure has identified as SAV. Weighted average

magnification curves for the 1-SAV and 2-SAV models are shown in figs. 3.27

and 3.29 respectively, and their respective triangle plots are shown in figs. 3.28

and 3.30.
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Figure 3.27: Weighted average magnification curve from fitting the 1-SAV model to the
OVRO 15GHz light curve of J1033+6051.

Figure 3.28: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 1-SAV model to the OVRO 15GHz light curve of J1033+6051.
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Figure 3.29: Weighted average magnification curve from fitting the 2-SAV model to the
OVRO 15GHz light curve of J1033+6051.
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Figure 3.30: Triangle plot illustrating the posterior over the parameters in Θmag from
fitting the 2-SAV model to the OVRO 15GHz light curve of J1033+6051. The top plot
includes the parameters for the first SAV event and the bottom plot includes the parameters
for the second SAV event.

Just like with the artificial light curve, we see that the procedure has fit very broad
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magnification curves, which is fixed to a single peak in the data, and is used by the

model to fit to some long-term variations. Without running a full analysis on arti-

ficial light curves, as described previously, it is not possible to make any definitive

statements about the procedure’s ability to recover true SAV activity, meaning

these fits could be indicative of real events, although it does seem quite unlikely.

It would be possible (although very slow) to follow this up using the physically

motivated magnification curve model, to see if the events found correspond to a

physically viable lensing scenario, but that is beyond the scope of the work done

here.

3.4.3 Discussion

The framework introduced in this chapter certainly goes a decent way towards

fitting an SAV model a given light curve, with the existing procedure providing

very good fits to the target data. In its current form, the procedure does have some

clear shortcomings, but overall the results are promising enough that with more

work, the procedure could very possibly be refined to successfully and reliably

identify SAV events.

In future, the priority would certainly be to investigate why models with mul-

tiple, very broad magnification curves are preferred in these preliminary tests. It

seems quite possible that the model has been allowed to be too flexible thus far,

and would need to be restricted in future. The first step in doing so would likely be

to modify the priors over the model parameters. The current priors were generally

well-motivated, but they were also selected to give very naive assumptions about

the model parameters. Thinking with a Bayesian mindset, we have now gathered
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more data by investigating these early results, which has updated our prior as-

sumptions about the model parameters and their relationships. For example, now

that we know the model finds very good fits with broad magnification curves, it

may be wise to impose a log-uniform prior on wpeak, which would still allow wide

magnification curves when necessary, but generally would shift the bulk of the

prior volume towards lower values of wpeak, meaning we are more likely to fit a

narrower magnification curve. Further investigations would likely reveal other op-

portunities to update the original model. In any case, the fitting procedure should

be run with several more light curves before making any decisions about what

changes should be made.

In addition to the fitting procedure, the work described here has led to the de-

velopment of a novel approach for simulating artificial light curves as described

in section 3.3. These light curves could prove beneficial to a number of projects

involving other OVRO collaborators, in addition to playing an important role in

any future development of this fitting procedure. Given more time, it would likely

prove very useful to perform an analysis of the performance of the fitting proced-

ure over a large set of simulated light curves with placed events (as previously

discussed). Being able to quantify how the model performs with a wide range

of data is an essential step towards the goal of reliably identifying new events

within the OVRO data set. We could also then be more confident in refining the

SAV model, as any changes would be reflected in the model performance. There

are many possible changes which could be made: modifying the model priors;

adding/removing parameters to/from the model; further exploring the use of a

robust weighting scheme; or a number of other possible additions.

Finally, rather than having to run the procedure with multiple different models
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and manually identify which is most probable a posteriori, it might well be bene-

ficial to incorporate the number of SAV events into the model as a free parameter.

This could be done with the adaptive method which has been put to use here for

the exponential flares, but a separate ‘N’ could be included for the number of

SAV events. Alternatively, chapter 4 explores a possible transdimensional nested

sampling framework, which would suit this kind of problem perfectly.



Chapter 4

Transdimensional Nested Sampling

There exists a subset of Bayesian inference problems where there are N compon-

ents in some signal, where N is a priori unknown. This type of problem could

arise in many fields, but is fairly prevalent in astronomy, e.g. finding the number

of sources within some noisy astronomical image, or identifying transient events

within some time-series data. Each component can be individually modelled as

a ‘particle’ described by K parameters from Θ and the components can then be

combined in whatever way suits the problem (e.g. summation) to complete the

model. In this case, the dimensionality of the problem is not fixed. Using clas-

sical nested sampling techniques, these types of problems would usually be solved

by using model selection to compare Nmax models {MN}=M1,M2, · · · ,MNmax ,

where each model expects N particles and therefore ΘN is N ·K dimensional. As

discussed in section 2.3.3, the evidence naturally encapsulates Occam’s razor and

therefore model selection should allow us to identify the posterior distribution for

the number of particles.

While this approach does provide a solution to these types of problems, it
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requires Nmax separate nested sampling runs, meaning it is computationally inef-

ficient, especially if Nmax is large. An alternative approach is the so-called ‘ad-

aptive’ nested sampling method (Higson et al. 2019, Hee et al. 2016, Chua et al.

2018). It was this approach which was used in chapter 3 for SAV identification

and light curve simulation. The adaptive method uses a single model which in-

corporates N as a free parameter, as well as a further Nmax ·K parameters which

for the Nmax particles. We then modify our likelihood function L(Θ) to consider

only the first N particles and ignore the rest. The rest of the nested sampling run

can then continue as normal and we can recover a joint posterior P(Θ) from the

posterior weights. By marginalising over the other parameters, we can then find

the posterior on N and identify the most likely number of components in the prob-

lem. This approach requires only a single nested sampling run, but maintaining

Nmax ·K parameters for each live point when many of those parameters will be

ignored is an inefficient use of compute resources (both time and memory), again,

especially when Nmax becomes large. This is even more evident in cases where

we have multiple types of particles, each with its own N.

We therefore ideally want to find an approach in which N (and therefore the

dimensionality of the space) is allowed to vary freely, but we aren’t maintain-

ing parameters which aren’t going to be used by the algorithm. Reversible Jump

Markov Chain Monte Carlo (Green 1995) is an MCMC algorithm originally de-

signed to deal with inference problems where the dimensionality is not fixed,

therefore allowing model selection to be performed. While on its own, the al-

gorithm is prone to the same shortcomings as any other MCMC approach (inab-

ility to deal with parameter degeneracies and multiple modes), it does provide a

useful framework involving ‘jumps’ which change the dimension of the model,
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which can be adapted for use with nested sampling. This was the approach of

Brewer (2014), who applied this framework to create a trans-dimensional vari-

ant of the earlier ‘diffusive nested sampling’ (DNS) (Brewer et al. 2009). This is

a powerful approach, however DNS relies on multiple tuning parameters, which

complicate the method and may necessitate multiple preliminary runs or analytical

work to correctly tune. Furthermore, as elaborated by Brewer & Foreman-Mackey

(2016), it is not easy to implement models using DNS. Proposal distributions must

be constructed ad hoc for each given sampling problem, which requires intimate

knowledge of both DNS, as well as the intricacies of that particular problem.

This chapter explores the idea of a generalised trans-dimensional nested sampling

variant which uses a similar reversible jump framework, as well as slice sampling

à la POLYCHORD. I then present the results of testing the algorithm in its current

state on a toy problem, before discussing the future development of this approach.

4.1 Exploring a Transdimensional Space

As with most variants of nested sampling, the key distinction of this approach

is the method in which the space is explored when drawing new live points. As

with any MCMC nested sampling method, we are concerned with ensuring that

the chains are uniformly distributed within the given iso-likelihood contour. If

each new live point begins as a copy of an existing live point (which is already

uniformly distributed), then by evolving the copied point using a Markov chain

that satisfies detailed balance i.e. P(x′|x) = P(x|x′), we can guarantee that the

resultant live point will also be uniformly distributed.
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4.1.1 The Particle Space

Normally, nested sampling is focused on exploring the parameter space, where a

given point Θ is a vector with length equal to the dimensionality of the space. In

the problems being considered here, however, Θ is instead a vector with NK + 1

dimensions made up of N particles, each with K parameters, i.e. Θ = (θ ,N),

where θ = (θ1,θ2, · · · ,θN) and each θi is a single K-parameter particle. It is then

helpful to shift our thinking to consider a K-dimensional space where each of the

N particles which make up Θ can exist within the same space. In this way we

have effectively ‘flattened’ θ from an NK-dimensional parameter space into a K-

dimensional particle space. Importantly, this means that any particle in this space

is directly comparable to another. This approach does require some consideration

about how to deal with live points, however. For example, how does one generate

an initial set of live points? Traditionally, the live points will be drawn from the

prior distribution (in the parameter space), however in the transdimensional case,

each live point will have a different number of parameters. A simple way of deal-

ing with this is to implement a distinct prior on N, P(N|M), and then sampling

N for each initial live point. For each point, we can then sample N distinct K-

dimensional points from the the prior distribution (defined in the particle space

here) and concatenate them together with N to give the full live point with NK+1

dimensions. It should be noted here that defining a separate prior on N does not

cause any problems for Bayesian Inference. Because N is a free parameter in this

scenario, the distribution we’re looking to acquire is the joint posterior on θ and

N:
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P(Θ|D,M) = P(θ ,N|D,M) =
P(D|θ ,N,M)P(θ ,N)

P(D|M)
, (4.1)

where, from the product rule we know that

P(θ ,N) = P(θ |N,M)P(N|M). (4.2)

This shows that our two distinct priors are really just two parts of the joint prior

on θ and N. The prior on N could be any distribution and so may well be un-

bounded, e.g. a logarithmic prior which make smaller Ns more likely, with larger

Ns becoming asymptotically less probable. Alternatively, the distribution may be

bounded on either side by some Nmin,Nmax ∈ N, Nmin <= Nmax. For simplicity,

the rest of this section will assume a bounded prior on N.

With all of that in mind, the first step is to define exactly how to transition

from one point to another in a transdimensional space. There are two types of

transitions to consider: transitions where the dimensionality stays the same and

transitions where it changes.

4.1.2 Transitions with matching dimensionality

When proposing a transition to a new point with the same dimensionality as the

point being evolved, the process is much the same as with regular nested sampling,

only now we can leverage the particle space if needed. For this reason, any ex-

isting method for exploring the space will suffice. Slice sampling is an MCMC

algorithm which allows samples to be drawn from a given distribution. It was

introduced as a method to sample from a given posterior distribution, but was

shown by Handley et al. (2015) to be ideally suited for sampling uniformly within
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Figure 4.1: One dimensional depiction of slice sampling. Reproduced from Handley
et al. (2015)

an iso-likelihood contour. The method also scales well with dimensionality, and

naturally satisfies detailed balance, making it a suitable method in this case.

The procedure begins by choosing a ‘slice’ at a given probability P0 from

the target distribution. One then samples uniformly from the region defined by

p(θ)> P0. This is done by first selecting a point x0 from the region (i.e. P(x0)>

P0). A line can then be drawn through x0, horizontally across the slice. In the

one dimensional case (shown in fig. 4.1), this is straightforward, however with a

multivariate distribution, there are infinite such lines. In this case, a direction û

can be chosen randomly from some other distribution. Bounds L and R are set at

x0, then repeatedly ‘stepped out’ by some step size w in opposite directions down

the line until they land outside of the region enclosed by P(θ) = P0. A new point

x1 is then sampled within these bounds. If x1 is not in the slice (P(x1)< P0), L or R

is replaced with x1, ensuring x0 is still within the slice, and sampling is attempted

again.

In the nested sampling case, the slice is analogous to an iso-likelihood contour,
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where P0 = L∗ and x0 is the live point being evolved. All that is then required is

to find some w and û. In order to choose a direction û, one could select randomly

from some distribution, however an alternative approach becomes apparent when

considering the nature of the flattened particle space. We can find a direction û

by choosing two random particles from the flattened space (i.e. we can select

particles from any existing live point) and subtracting one particle from the other

(being careful not to choose the same particle twice so we don’t produce a zero

vector). If we repeat this N times (where N here is taken from x0), we can concat-

enate the resulting vectors together to create our directional vector û. One benefit

of this approach, compared to randomly selecting a direction, is that the algorithm

should be better at exploring spaces with degenerate parameters. Since û is gener-

ated from the existing live points which are known to be within the iso-likelihood

contour, it is more likely to be directed along the length of the degenerate contour,

allowing it to explore the full contour rather than getting stuck locally. Moreover,

the choice of step size w becomes easier. Ideally, w should be roughly the typical

width of the slice. If it is too small, the number of ‘stepping out’ steps increases

making the process less efficient, and we risk ignoring other modes from the dis-

tribution. If it is too large, we’re likely to overstep the actual bounds of the slice

by a large amount, and it will likely take many attempts at sampling and shrinking

the bounds back in, again decreasing efficiency. Since û is produced from existing

live points, its magnitude is likely to be of the same order as the width of the slice.

We can therefore set w = a|û|, where a is drawn randomly from (0,1].
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4.1.3 Transitions with varying dimensionality

Proposing a transition to a point x1 with different dimensionality to x0 is more

complicated, although in principal many things stay the same. Crucially, as long

as detailed balance is maintained, the algorithm will be guaranteed to uniformly

sample from within the iso-likelihood contour. The difficulty arises because the

nature of transitioning up/down in N is fundamentally different than exploring a

space with fixed dimensionality. Firstly, N is discrete, meaning that approaches

like slice sampling would not work (without modification). Secondly, and more

importantly, any transdimensional nested sampling algorithm must have mech-

anisms for the addition and removal of parameters to/from the parameter vec-

tor Θ, but those mechanisms must still maintain the detailed balance constraint.

When considering transitions with fixed dimensionality, this constraint is easier

to satisfy, since it is possible to have a single procedure for proposing new points,

whereas adding/removing parameters requires two separate procedures. Here I

introduce two such mechanisms for ‘stepping up/down’ in N. Although it isn’t

immediately clear whether these methods satisfy detailed balance, the assump-

tion going forward will be that they do, with an analysis in section 4.2 reviewing

whether this assumption holds. For now, in both cases, only transitions with a step

size of 1 will be considered, e.g. stepping from N = 4 to N = 5 and vice versa.

4.1.3.1 Stepping up in N

When stepping up in N, we are looking to extend the parameter vector Θ in such a

way that the proposed point x1 is within the region enclosed by the iso-likelihood

contour. The goal is to produce an additional K-parameter particle and append that
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to Θ. A naive approach would be to repeatedly generate some parameter values

from the prior distribution until a combination is found which places the x1 within

the iso-likelihood contour. This would be rather inefficient, however, since the

posterior mass is usually confined to a fairly small region of the prior volume. This

would be especially noticeable as the algorithm progressed and the iso-likelihood

contour shrank. A better alternative would be to generate some parameter values

which are informed by the existing live points. By making use of the particle

space, we can copy the values from an existing particle chosen randomly from one

of the other live points (with all particles having equal probability) and use those

values to extend Θ. By doing so, we are leveraging information we already have

about the iso-likelihood contour from the existing live points. Since the particle

being copied clearly does a good enough job of describing some component of

the data (at least well enough for that live point to fall inside the iso-likelihood

contour), it is more likely that using those parameter values would provide a valid

proposal when compared to drawing from the prior.

4.1.3.2 Stepping down in N

Stepping down in N involves removing a K-parameter particle θi from Θ and,

again, proposing a point x1 which is valid (i.e. within the iso-likelihood contour).

The simplest way to do this is to randomly select a particle from Θ, with equal

probability for each particle, and delete it. It is easy to conceive of alternative

methods which involve aggregating the existing parameters, (e.g. selecting two

particles and replacing them with a single particle containing the averages of their

parameter values), however it is also easy to see how such methods might in-

troduce bias when exploring the space. The method of deleting particles is also
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conceptually closer to the reverse of copying particles, making it easier to consider

detailed balance.

4.1.4 Proposing Transitions

With appropriate procedures in place for each type of transition, the next step is

to consider how a transdimensional nested sampler should use these transitions to

explore the space. For a traditional nested sampling algorithm using MCMC to

evolve live points, the goal is to end up with a new point x1 sampled uniformly

from the iso-likelihood contour which has gone through enough steps to suffi-

ciently de-correlate it from the original live point. Too many steps adds nothing

but additional, unnecessary computation. A series of ∼ O(NK) steps should be

enough to sufficiently de-correlate the two points. In the case of a transdimen-

sional sampler, however, we must also take additional steps to allow N to vary.

A sufficient approach which would allow us to fully explore the space would be

to perform NK slice sampling steps (i.e. keeping N fixed), then make one more

step choosing to either increase N by 1, decrease N by 1, or keep N the same,

and following the appropriate procedure. This procedure can then be repeated a

handful of times to be absolutely sure the new point is de-correlated from the ori-

ginal point, while ensuring the transitions provide enough mobility to explore the

space.

The process of choosing whether to step up/down or keep N the same is best

done probabilistically, however this raises the question of what the associated

probabilities should be with each type of transition. This is easier to think about

if we consider that this can be viewed as a Markov chain, where the states corres-
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Figure 4.2: State-transition diagram of a naive approach to choosing transitions with
Nmin = 1 and Nmax = 5.

pond to the current value of N for the live point being evolved, and we have a cer-

tain probability of transitioning to each other state each time we choose whether

or not to step up/down in N (where these probabilities can be 0). Consider the

case where we naively decide to assign a 50% chance to keep N the same and a

50% chance to change it. If we do decide to change N, we then have a further

50% chance to step up and a 50% chance to step down. This is of course unless

N = Nmin or N = Nmax, in which case the chance of respectively stepping down/up

should be 0%, so we can assign a 100% chance of stepping the other way. This is

best depicted by the state-transition diagram in fig. 4.2.

It becomes clear from this diagram, if it wasn’t already, that there may be a

problem with this naive approach. To rule out any bias in the approach, we want

to create Markov chain in which there is an equal probability of being in any given

state. Put formally, the stationary distribution ψ of this chain should be uniform.

We can identify the actual stationary distribution for this chain by setting some

initial values for ψ:
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ψ =



ψ1

ψ2

ψ3

ψ4

ψ5


=



0.2

0.2

0.2

0.2

0.2


. (4.3)

This vector currently describes the probability of the chain being in each state,

assuming a uniform prior on N. By repeatedly applying the transition matrix T ,

in which each element Ti, j is the probability of transitioning from state i to state j,

ψ should eventually reach a stationary distribution such that T ᵀψ = ψ . Applying

the transition matrix once gives us

T ᵀ
ψ =



0.5 0.5 0 0 0

0.25 0.5 0.25 0 0

0 0.25 0.5 0.25 0

0 0 0.25 0.5 0.25

0 0 0 0.5 0.5





0.2

0.2

0.2

0.2

0.2



T ᵀ
ψ =



0.15

0.25

0.2

0.25

0.15


.

(4.4)

This vector represents the probability of the chain reaching each state after a single

transition. From having an equal probability of the chain, it is now less likely for
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the chain to have reached one of the ‘edge’ states. Repeated applications of the

transition matrix find that the distribution ψ becomes stationary when

ψ =



0.125

0.25

0.25

0.25

0.125


, (4.5)

demonstrating even more pronounced edge effects. It seems that the naive sys-

tem for proposing transitions in N has a natural bias away from the edge states.

Fortunately, the framework is now in place to identify a new set of transition prob-

abilities which do not impose the any bias in this way. Consider a more general

Markov chain, again constructed so that each state is a different value of N. This

is depicted in fig. 4.3 and the associated transition matrix would be

P =



p1,1 p1,2 . . . p1,Nmax

p2,1 p2,2 . . . p2,Nmax

... . . . ...

pNmax,1 pNmax,2 . . . pNmax,Nmax


. (4.6)

Note that for brevity of notation, we have assumed Nmin = 1, whereas in principal

this can easily be extended to any Nmin and Nmax. Our goal is to again identify a

stationary distribution ψ , where we now have
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Figure 4.3: A more general state-transition diagram showing only transitions between
adjacent states for visual clarity.

ψ =



ψ1

ψ2

...

ψNmax


. (4.7)

Since this is the stationary distribution, we again have T ᵀψ = ψ , which gives the

following system of equations:

π1 = π1 p1,1 +π2 p2,1 + · · ·+πNmax pNmax,1

π2 = π1 p1,2 +π2 p2,2 + · · ·+πNmax pNmax,2

...

πNmax = π1 p1,Nmax +π2 p2,Nmax + · · ·+πNmax pNmax,Nmax

(4.8)

Because we are interested in a uniform stationary distribution, we have
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ψ =



1
Nmax

1
Nmax

...

1
Nmax


, (4.9)

so the system of equations in (4.8) reduces to

1
Nmax

=
1

Nmax
(p1,1 + p2,1 + · · ·+ pNmax,1)

=
1

Nmax
(p1,2 + p2,2 + · · ·+ pNmax,2)

...

=
1

Nmax
(p1,Nmax + p2,Nmax + · · ·+ pNmax,Nmax).

(4.10)

This establishes that the condition for a uniform stationary distribution is to simply

construct a Markov chain with a transition matrix where all of the columns sum

to unity. This all assumes, of course, that a stationary distribution exists for the

constructed Markov chain. This adds the additional conditions that the chain must

be irreducible and aperiodic, as discussed in section 2.4.1. It is not particularly

difficult to construct chains which meet these criteria, however when restricted to

a step size of 1 when transitioning in N, it would require extra steps (and prob-

ably some additional tuning parameters) to come up with a generalised system for

producing transition matrices which followed these rules. Instead, consider the

chain depicted in the state-transition diagram in fig. 4.4. Here, we have a chain

where transitions are allowed from any state to any other state, including itself,

with equal probability. This chain would have a transition matrix where every
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element has the same value, Ti, j = 1/N2
max. This would, of course, require us to

extend our procedures for transitioning up and down in N to allow for a step size

of more than 1, which in turn requires an extension of the mechanisms for step-

ping up/down defined earlier. Let ∆N be the difference between the new and old

values of N. If ∆N is positive, we simply repeat the process of stepping up in N

(i.e. copying a particle from another live point) ∆N times. Conversely, we can

repeatedly delete |∆N| particles to step down if ∆N is negative. In either case, we

are effectively just repeating the existing method of stepping up/down the desired

number of times.

With these extensions, the sampler should be able to fully explore the space,

without being biased by the choice of transitions in N. In the context of a transdi-

mensional nested sampling algorithm, each iteration will evolve the live point x0

by first performing a series of NK slice sampling steps to move around with a fixed

N as before, then a new value for N is selected randomly, with equal probability

for all N where Nmin ≤ N ≤ Nmax. The algorithm can then propose a transition to

a point with this new N, stepping up/down as appropriate and the proposed point

will be accepted if it is within the iso-likelihood contour.

4.2 Results

The algorithm detailed in section 4.1 is capable of taking a model consisting of N

K-dimensional particles and performing nested sampling with N as an additional

free parameter, computing the evidence and providing samples from the full joint

posterior over θ and N. This section details the results of some initial tests of an

implementation of that algorithm, firstly with a toy analytical model, then with
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Figure 4.4: A state-transition diagram with five states, where every state has an equal
probability of transitioning to any other state (inlcuding itself).

some data.

4.2.1 Analytical Likelihood

One critical assumption made when designing the transdimensional nested sampler

was that detailed balance was satisfied by the methods of transitioning up/down

in N. This may seem like a wild assumption to make, however by doing so, the

rest of the framework of this transdimensional approach could be constructed. It
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was established that the process of choosing which N to step to in each iteration

of the algorithm should not introduce any bias in N, so any bias that does exist

must originate from the procedures by which N is stepped up/down (i.e. copying

and deleting particles).

In order to identify any such bias in N, a toy analytical likelihood function was

designed. The function gives the joint likelihood over θ and N, and describes a

piecewise Gaussian in the parameters, conditional on N, with a mixing amplitude

AN . The function is given as

L(θ ,N) =
ANNmax(b−a)NK√

|2πΣN |
exp

[
−
(θ −µN)Σ

−1
N (θ −µN)

2

]
, (4.11)

where µK is an NK-dimensional vector, ΣN is an NK×NK-dimensional matrix,

and AN is a scalar defined so that ∑N AN = 1. In practice, µN and ΣN are arbitrary

for the intended purpose of this function, so for simplicity we can set µN to be a

zero vector, and ΣN to be the identity matrix.

To understand the design of this function, consider the calculation of the

Bayesian evidence:

Z =
∫ ∫

L(θ ,N)π(θ ,N)dθdN. (4.12)

Since N is discrete, however, this becomes

Z = ∑
N

∫
L(θ ,N)π(θ ,N)dθ . (4.13)

Applying the product rule, we find:
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Z = ∑
N

∫
L(θ ,N)π(θ |N)π(N)dθ . (4.14)

L(θ ,N) has already been defined, with the other two terms here being our prior

on N and the prior on the parameters conditional on N. We can define these priors

as:

π(θ |N) =
1

(b−a)NK , π(N) =
1

Nmax
, (4.15)

i.e. π(N) is a uniform prior on N between 1 and Nmax, and π(θ |N) is a uniform

prior over the parameters between bounds a and b (where a < b), given some N.

Inserting these into eq. (4.14) and reducing, we’re left with:

Z = ∑
N

∫ AN√
|2πΣN |

exp

[
−
(θ −µN)Σ

−1
N (θ −µN)

2

]
dθ . (4.16)

Because AN is not dependent on θ , we can take it outside of the integral. The

function being integrated is now a normal distribution over θ , so we know that the

integral will equal unity, and since we have defined our AN to also sum to unity,

we have

Z = ∑
N

AN

∫
N (µN ,ΣN)dθ = ∑

N
AN = 1. (4.17)

From Bayes’ rule, it then follows that the joint posterior over θ and N is

P(θ ,N) = L(θ ,N)π(θ ,N). (4.18)

Again using the product rule, we also know that
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P(θ ,N) = P(θ |N)P(N). (4.19)

Rearranging using eqs. (4.18) and (4.19), we obtain

P(N) =
L(θ ,N)π(θ ,N)

P(θ |N)
. (4.20)

We already know the numerator:

P(N) =
ANN (µN ,ΣN)

P(θ |N)
, (4.21)

and by Bayes’ theorem, we have:

P(θ |N) = P(θ |D,N) =
P(D|θ ,N)P(θ |N)

P(D|N)
. (4.22)

Using our shorthand notation, P(D|θ ,N) =L(θ ,N) and P(θ |N) = π(θ |N), so we

have

P(θ |N) =
L(θ ,N)π(θ |N)∫
L(θ ,N)π(θ |N)dθ

=
ANNmaxN (µN ,ΣN)

ANNmax
∫
N (µN ,ΣN)dθ

=N (µN ,ΣN).

(4.23)

Returning to eq. (4.21), we find

P(N) =
ANN (µN ,ΣN)

N (µN ,ΣN)
= AN , (4.24)

This results tells us that the analytical likelihood function, with the priors defined
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Figure 4.5: Posterior on N where K = 2, Nmin = 1 and Nmax = 10.

in this way, should produce a posterior on N which is equal to AN . The trans-

dimensional nested sampler already provides us with a full joint posterior on θ

and N, so by marginalising over θ , we can easily acquire P(N). If we initially set

AN = 1/Nmax ∀N, we should expect a uniform posterior on N as a result of running

the sampler. If this is not the case, there must be a bias in N. Figure 4.5 shows

P(N) acquired from running the sampler with this analytical likelihood function.

Clearly, the sampler in its current form exhibits a strong bias towards high N.

In order to definitively establish the source of this bias, a separate test can

be run. By performing separate runs of the algorithm where Nmin = Nmax =

1,2, · · · ,10, we remove the possibility of performing steps up/down in N in any of

the ten runs. The posterior samples can then be ‘merged’, weighted by the evid-

ence found from each run. This was done using the nested sampling visualisation

tool anesthetic (Handley 2019). This merged posterior is shown in fig. 4.6. In

this case, the posterior is much more uniform than in the case of a single run. This

implies that the strong bias seen towards high N must originate from the proced-
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Figure 4.6: Posterior on N produced from ten separate nested sampling runs with K = 2
and Nmin = Nmax = N

ures for stepping up/down in N. More specifically, because on average a step up

in N is equally likely to be proposed as a step down in N, it must be the case

that a proposed step up is, on average, more likely to be accepted than a proposed

step down. Since this approach does not make use of acceptance probabilities,

this must be because the process of stepping up is more likely to propose a point

which lies within the iso-likelihood contour than the process of stepping down.

Interestingly, it seems that given this bias, the posterior on N becomes log-

linear. The strength of the bias also seems to scale with K. Using linear regression,

a line can be fit to logP(N), which indicates the how strong the bias is. As K

increases, the line becomes steeper. This is all summarised in fig. 4.7. By finding

how this gradient changes with K, we can begin to quantify the bias. While the

bias is not yet completely understood, because the bias gets stronger as the prior

volume increases, it seems that the cause of the bias may be some sort of volume

effect. Identifying exactly how the bias changes with the prior volume (identifying
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some functional form for the relationship) would allow us to better understand

why the bias occurs, as well as possibly developing a method to counter it.

Figure 4.7: Top left: Posterior on N when K = 1. Top right: Log-posterior on N when
K = 1, with line of best fit. Bottom left: Posterior on N when K = 2. Bottom right: Log-
posterior on N when K = 2, with line of best fit.

4.2.2 Testing with Data

Regardless of the bias uncovered using the analytical toy model, it is worth testing

how well this transdimensional approach deals with data. Perhaps the simplest

test would be to produce some data which can be described by the summation of

N ‘events’, each of which is parameterised by the same basis function taking K

parameters. For the purpose of these tests, a Gaussian basis function was used,

featuring three parameters describing the height h, width w and central position p

of the curve. Depending on the test, each of these parameters can be allowed to

freely vary, or one or more of them could be fixed (effectively reducing K).

As a starting point, a curve was generated by first producing a constant back-
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ground with a height of zero, then adding three unit-height, unit-width Gaussians,

spaced apart as to not overlap with one another. The curve was then sampled

uniformly and a small amount of Gaussian noise was added to the sampled data

points. The transdimensional sampler was then run on the data, with the model

heights and widths fixed at 1, only allowing the position to vary (K = 1). A Gaus-

sian (log-)likelihood was used:

logL=−1
2 ∑

i
log(2πσi)−

1
2

χ
2, (4.25)

where χ2 quantifies the misfit between the observed data O and the prediction

from the model E.

χ
2 = ∑

i

(
Oi−Ei

σi

)2

, (4.26)

A uniform prior was assumed on N ∼U(1,10), as well as the position parameter

p∼U(0,25). From the sampler output, the maximum a posteriori (MAP) estim-

ate parameter values were found and plotted against the data in fig. 4.8. Parameter

estimation using the transdimensional sampler has successfully allowed us to re-

construct the true model for this data set. P(N) shows a sharp peak at N = 3,

indicating a strong preference for 3-Gaussian models.
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Figure 4.8: Top: Full MAP reconstruction of the Gaussian model. Middle: MAP curve
deconstructed to show the three constituent Gaussian basis functions. Bottom: Posterior
on N.

Interestingly, if we then also allow the width to vary such that w ∼ U(0.1,5)

and now K = 2, we find that the results are virtually identical. This is not the

case, however, if we keep the width fixed, but allow the height to vary. If we

assume a uniform prior on h∼U(0.05,2), the MAP estimate parameters suddenly

describe a model with four Gaussians (fig. 4.9). The posterior on N also shows a

much wider spread in this case. If all three parameters are allowed to vary freely,
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the effect is very similar. This is easily explained considering the bias towards

higher N found using the analytical likelihood function. The sampler naturally

works towards the ‘true’ posterior, but the in-built bias directs the sampler towards

a model with more particles. This means that the sampler incorrectly favours

models which stack multiple Gaussians on top of one another. This doesn’t happen

if the height is fixed, because adding in additional Gaussians in this case would

require distorting the curve significantly, impairing the quality of the fit enough to

overcome the bias.
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Figure 4.9: Top: Full MAP reconstruction of the Gaussian model. Middle: MAP curve
deconstructed to show the four constituent Gaussian basis functions. Bottom: Posterior
on N.

4.3 Conclusions

This chapter has explored a framework for performing transdimensional nested

sampling. While this framework has been demonstrated to function, the described

implementation features a strong bias towards higher values of N, which would
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need to be addressed in future. The bias is not completely understood, but seems

to be related to the prior volume. Identifying a functional form to describe this

relationship would be invaluable to identifying exactly how this bias arises. Ad-

ditionally it may be possible to then alter the algorithm to remove the bias. This

could simply involve finding alternative methods for stepping up/down in N, or

even implementing a weighting scheme on the choice of N when transitioning, or

adding an equivalent set of acceptance probabilities dependent on N. In any case,

further testing of this implementation, as well as further analysis of the framework

as a whole would be enlightening.

Looking beyond the issue of bias, the approach could also be extended in a

number of ways. There are a number of features implemented by other popu-

lar nested sampling algorithms which would likely improve this approach. For

example, using clustering to handle posteriors with multiple modes would likely

be a welcome addition. Further than this, it is possible where there are similar

problems that this approach cannot yet handle, but may work with future exten-

sions. It is fairly straightforward to consider models which have additional aux-

iliary parameters which are necessary to describe the data, but aren’t included in

the particles. A simple example would be adding a parameter to the Gaussian

data example from section 4.2 which adds a base height for all of the Gaussi-

ans. This parameter only needs to be included once in the model, not repeatedly

for each Gaussian. In principal, this extension shouldn’t cause any problems. A

more complicated extension would be the case where there are multiple types of

particle, each with a distinct N and K. In the Gaussian example, this could be

adding in a different type of basis function with a different form. The different

Ns would then be free to independently vary as the algorithm progressed. The
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current code is insufficient to deal with this type of problem, however this kind of

extension is certainly not beyond the scope of reason.



Chapter 5

Demonstrating Achromaticity

The discovery of SAV (V2017A) opened a new window on the study of AGN.

SAV is very likely due to gravitational milli-lensing by mass condensates of 103−

106M� and, if so, it provides a uniquely powerful approach to exploring this dif-

ficult to observe mass range. Such a lens is expected from the ΛCDM model,

although at time of writing none have been found by subtle deviations in images

of sources strongly lensed by galaxies, as far as I am aware. Even finding one

definite gravitational lens in this range would have huge implications.

Originally, it was thought that the unusual variations seen in one of these lens-

ing events could be explained by Extreme Scattering Events (ESEs), however this

interpretation was critically examined in V2017B and ultimately rejected. One

reason for this rejection is that ESEs exhibit a strong frequency dependence, which

is not seen in the achromatic events found in the OVRO 40m data. Achromaticity

is a defining feature of SAVs, and providing evidence that these events are in-

deed achromatic would greatly strengthen the argument for SAVs. Alternatively,

if evidence can be found which shows that these events are chromatic, this would
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challenge the gravitational lensing hypothesis and could imply that the events are

due to some intrinsic variation in the blazar jets; a scenario which carries its own

wealth of astrophysical potential. It is worth noting, however, that even if the

SAV hypothesis is correct, we might still expect some chromaticity, since the ra-

dio emissions at different frequencies may come from different regions of the jet.

In this chapter I introduce an observing campaign of the source J1415+1320

using e-MERLIN, which was established to gather evidence for achromaticity of

the lensed source components. I describe the details of the observations, as well

as the motivations behind the campaign. I then finish the chapter by giving an

overview and discussion of the data produced so far.

5.1 Monitoring J1415+1320 with e-MERLIN

Ten SAV events were originally identified across seven sources, with J1415+1320

being the exemplar SAV source, having demonstrated multiple SAV events. Be-

cause SAVs are expected to repeat, the history of SAV activity in this source makes

it the best candidate to observe for future events, which could provide an opportun-

ity to investigate their frequency (in-)dependence. In fact, an as-yet unpublished

paper investigating millilensing of this source has identified a 989-day period-

icity, which, if real, would allow us to make a prediction that the next window

for possible SAV activity begins in August 2022 (personal communication, Read-

head 2021). Ideally, it would be wise to monitor each of the seven confirmed

SAV sources, however this would dramatically increase the overheads involved in

such a campaign, and as will become clear, monitoring J1415+1320 entails certain

benefits which would not occur for the other sources.
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Figure 5.1: Multi-frequency light curves of J1415+1320 showing SAV. Figure from
V2017A.

While there has previously been good evidence to suggest that SAV events are

achromatic, based on observations of J1415+1320 from the Submillimeter Array

(SMA) and the Metsähovi 14m radio telescope, these data sets suffer from low

cadence and large error bars, as seen in fig. 5.1. Lower frequencies are also more

prone to plasma lensing effects, so it is conceivable that the events are actually

frequency-dependent, but the effects have gone unnoticed at the higher frequen-

cies the events have already been observed at. We therefore desire to design a

lower frequency monitoring programme which will produce data of comparable

quality to that of the OVRO 40m data set.

The enhanced Multi-Element Radio Linked Interferometer Network (e-MERLIN)

is an array of seven radio telescopes all situated within the UK, operated by the Jo-

drell Bank Centre for Astrophysics and the University of Manchester for the Sci-

ence and Technology Facilities Council. The array offers three observing bands:

L-band (1.23− 1.74GHz), C-band (4.3− 7.5GHz) and K-band (19− 25GHz).

Comparing this to the OVRO 40m telescope, which has a central frequency of
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15GHz, Metsähovi at 37GHz and the SMA at 234GHz, we see that an obser-

ing campaign carried out in both L- and C-band would allow us to explore lower

frequencies than have previously been investigated. Furthermore, J1415+1320

is fortuitously located very close to the positions of the standard 3C286/OQ208

calibrator combination used by e-MERLIN, as shown in table 5.1.

Table 5.1: ICRS coordinates of sources

Source Right Ascension Declination
J1415+1320 14h 15m 58.818s +13◦ 20′ 23.713”

3C286 13h 31m 08.288s +30◦ 30′ 32.962”
OQ208 14h 07m 00.393s +28◦ 27′ 14.695”

Test data of J1415+1320 taken daily over ten days by the e-MERLIN team in

March 2018 at C-band is shown in fig. 5.2. The scatter of flux density when all

telescopes are present (which is the case for the majority of the days) is less than

1% rms around the mean of 721 mJy from a thirty minute observation. The four

data points with the largest error bars are all from observations when one or more

telescopes in the array were missing. This is to be compared with the expected

flux variations of > 40% during an SAV event, assuming that the events are truly

achromatic. The source is so bright that we calculate that only ten minutes of

observing time is required to make a measurement of sufficient accuracy (∼2%).

Discussions with the scheduling team at Jodrell Bank indicated that shortening the

request any more than this would run into practical issues with time lost to slewing

and settling. The short observing times and close proximity of the calibrators

mean that these observations could be scheduled to take place approximately once

every two days during the array’s normal calibration cycles which are carried out

during observations for other projects. It was decided that this approach would
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be preferable to requesting a longer observation every five days, for a number of

reasons:

• Practically speaking this would have the lowest impact on the overall schedul-

ing of the array.

• Producing light curves sampled at both L and C bands every five days

would require observations at both frequencies for both J1415+1320 and for

the calibrators sources. Often the calibration observations for one of these

bands would be required solely for this observation, leading to a significant

overhead in total telescope time, without increasing the number of useful

on-source measurements. Consulting with e-MERLIN staff, this overhead

was estimated as being an hour of additional time for bandpass and abso-

lute flux calibrations, together with the band switching. Therefore the time

requested for a programme with a regular five day cadence would give an

average request of 16 minutes per day, compared with the five minutes per

day requested for the preferred approach.

• The test data showed that on days where one or more of the telescopes

were not present, the rms of the flux measurement increased dramatically

and there were indications of systematic errors. Should this happen to even

two successive observations in a five day cadence, this would lead to sig-

nificant gaps in the light curve, complicating the analysis and clouding the

interpretation. The test observations indicated that the failures of individual

telescopes are rapidly corrected, so the proposed higher-cadence observa-

tions would be much less prone to that possibility.
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Figure 5.2: Test data from daily thirty minute observations of J1415+1320 with e-
MERLIN.

Based on these test observations, a Director’s Discretionary Time Proposal was

submitted and accepted, allowing observations for the monitoring programme to

begin in January 2019, followed by a full observing proposal which was accepted

for the following e-MERLIN observing cycle, with observations continuing regu-

larly to the present day (barring a long gap due to a pause in obserations during the

COVID-19 pandemic). The programme is planned to continue indefinitely until

another SAV event is observed.

5.2 Data and Discussion

At time of writing, 323 observations have been processed between 25th January

2019 and 28th March 2021. Out of these 323 observations, 53 failed, meaning

around 83.6% of attempted observations gave some usable data. Of the remaining

270 observations, 178 were carried out in C-band with an average cadence of 3.78
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days and 92 were carried out in L-band with an average cadence of 7.21 days. In

both cases the gap in observations due to the COVID-19 pandemic was omitted

in cadence calculations. Figure 5.3 shows a light curve produced from these data,

with the OVRO 40m light curve of the source during the same period for reference.

Figure 5.3: e-MERLIN C- and L-band light curves of J1415+1320 plotted against the
15GHz OVRO 40m light curve of the same source.

These light curves should be viewed as preliminary, as they were produced

using images generated automatically from e-MERLIN data reduction pipeline.

Many of the C-band observations have fairly large error bars, which in many cases

may be due to missing antennas. Although the error bars are large on these data

points, they are consistent with the surrounding points and so there is no indication

of additional systematic errors. The points can therefore be included in any future

analysis, but will be significantly down-weighted. Additionally, there is a large

amount of inter-day scatter from both bands (even between data points with relat-

ively small error bars) which is currently unexplained. A number of initial checks
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have been suggested to identify the cause of this scatter, including examining in

detail the data for 1407+2827, the bandpass calibrator for these observations, in

addition to calculating the closure phases/ampltitudes to identify possible causes

of increased inter-day variability.

Figure 5.4: Recreation of fig. 5.3, where the C- and L-band e-MERLIN light curves have
been smoothed, along with the OVRO 15GHz data. Note that error bars are included for
the entire e-MERLIN data set, but some are invisibly small in this plot. More OVRO
observations have been carried out past the last observations shown at 59200 MJD (and
are expected to continue into the future), although at time of writing these observations
have yet not been processed to provide flux estimates.

In an attempt to overcome the issues of the scatter and large error bars, at least

until these issues can be investigated further, the light curve was smoothed by

binning the data points into fixed 20-day windows and computing the weighted

average flux density (where the ith data point is weighted by wi = 1/σ2
i ). The

result of this smoothing is shown in fig. 5.4. Interestingly, the C-band curve seems

to follow the variations of the 15GHz OVRO data fairly closely, whereas the L-

band data is much flatter. To investigate this, we find the ratio R = SO/SC between
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the OVRO and C-band flux densities for every point along the smoothed curves.

The result is shown in fig. 5.5, where the error bars for each point are calculated

using

σR = R

√(
σC

SC

)2

+

(
σO

SO

)2

. (5.1)

Because the OVRO 15GHz light curve is brighter at all points, the values for

R are all greater than unity, scattered around a mean value of R̄ = 1.218. The

quantile-quantile (Q-Q) plot shown in fig. 5.6 indicates that these ratio values

are approximately normally distributed around the mean, which tells us that the

two light curves do co-vary quite closely, but not exactly. There is one outlying

data point in this plot, which corresponds to the point in the smoothed curve at

MJD 58783 that is somewhat discrepant from the rest of the data. Futhermore,

the scatter plot in fig. 5.7 shows a strong, positive correlation, with the Pearson

correlation coefficient having a value of ρ = 0.941. We have strong evidence,

therefore that these two light curves are correlated with one another.
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Figure 5.5: Ratios of OVRO and C-band flux densities from the smoothed light curves.
The red dashed line indicates the mean value of R.

Figure 5.6: Q-Q plot showing observed ratios between OVRO and C-band data against
predictions from a normal distribution with the same mean and standard deviation.
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Figure 5.7: Scatter plot of flux densities from the smoothed OVRO light curve against
those from the smoothed C-band light curve. The black dashed line is the best fit to the
data found via linear regression.

Repeating the same steps to instead compare the OVRO data with the L-band data,

we find that the new ratios are not as well-described by a normal distribution, as

demonstrated in fig. 5.9. Because the L-band data is much less variable, we see

in fig. 5.8 that the ratios are initially greater than unity, but then drop below as the

OVRO curve falls to a lower flux density. The scatter in fig. 5.10 shows very little

evidence of correlation, with ρ =−0.273.
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Figure 5.8: Ratios of OVRO and L-band flux densities from the smoothed light curves.
The red dashed line indicates the mean value of R.

Figure 5.9: Q-Q plot showing observed ratios between OVRO and L-band data against
predictions from a normal distribution with the same mean and standard deviation.
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Figure 5.10: Scatter plot of flux densities from the smoothed OVRO light curve against
those from the smoothed L-band light curve. The black dashed line is the best fit to the
data found via linear regression.

We observe that the flux density rises between the 5GHz C-band observations

and the 15GHz OVRO observations, indicating an inverted spectrum. Since there

is very strong evidence that, in radio, the emission mechanism for blazars is syn-

chrotron, this implies that at least part of the emitting region is optically thick.

This would suggest, however, that the emission would be even fainter at L-band

compared to C-band, whereas the flux observed is higher. A plausible explanation

for this is that there are multiple sites of synchrotron emission. Firstly, we have a

diffuse, optically thin region, which, in order to be bright enough to observe, must

be extended and therefore will not be variable. We also have source compon-

ents consisting of relativistic plasma which travel away from the central engine

down the jet. These source components will have some intrinsic variability and

will move past the putative gravitational lens, so their emission will show SAV

type structures. At C-band we would therefore observe some constant emission
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from the diffuse material, in addition to some variable emission from the source

components. At lower L-band frequencies, however, the source components are

optically thick and so the dominant emission comes from the diffuse region, with

very little contribution from the source components.

5.3 Conclusion and Further Work

While this initial inspection of the data has unveiled some possible problems with

high inter-day scatter which need to be investigated, applying a weighted smooth-

ing produces data which is stable on timescales short enough to monitor the in-

trinsic variability of the source. The C-band data mimics the variations seen in the

OVRO 40m data well and the observation cadence has been regular enough to ex-

pect to capture fairly short term variations of the source, meaning the data should

hopefully provide some quality analysis once a new event is uncovered. Overall

the data set certainly looks promising, with the monitoring programme continuing

indefinitely, ready to capture the next SAV event. It is not a question of if another

event will occur, but a question of when. SAV sources are repeaters and so we

simply have to keep observing and wait for an event to become apparent. When

attempting to determine whether future events show evidence of achromaticity,

having this second data set (in addition to the OVRO data) would allow for an

excellent level of analysis, given the cadence of the observations and the general

quality of the data. Variations in the OVRO data are mimicked closely by the

C-band e-MERLIN data, so if SAV events are indeed achromatic, we should ex-

pect to see strong evidence in the comparison of the two data sets. Conversely,

discrepancies between the two data sets around the next event could indicate that
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the assumption of achromaticity is incorrect. Either possibility would have strong

implications for the validity of the SAV hypothesis and time will tell exactly what

those implications will be.



Chapter 6

Summary and Future Work

Symmetric Achromatic Variability remains an open and active area of research,

still in its infancy. As our knowledge of this phenomenon grows, we will gain

insight into exciting new frontiers of astrophysics. Because SAV activity is rare,

with only seven blazar sources originally suggested as candidates, it remains a

priority to keep searching for more sources which exhibit this unique type of

variability. It would therefore be extremely useful to have a reliable, statistic-

ally rigorous method for examining blazar light curves for signatures of SAV. In

chapter 3 I introduced a framework designed to do just that. I described a model

which I have developed to describe the light curve of a source exhibiting SAV, and

provided justified reasoning for each of the model’s components. I then detailed

a fitting procedure which uses nested sampling to fit that model to a given blazar

light curve. I showed how this fitting procedure can be utilised in a novel ap-

proach for generating artificial blazar light curves, based off real light curves from

the OVRO data set. Finally, I showed the results of running the fitting procedure

with both real and artificial light curves. My analysis showed that the procedure is
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capable of achieving very good fits to the observed data using three different SAV

models. However, in both test examples the procedure was unable to recover the

a priori known SAV event. In its current form, the fitting procedure seems to have

a tendency to fit broad magnification curves to long-term variations in the data.

The procedure was shown, however, to succesfully identify an SAV event placed

in a simplified light curve (one which is not representative of those seen in the

OVRO catalogue). In order to gain a better understanding, it would be beneficial

to run this kind of analysis over a much wider range of (artificial) light curves,

which would allow us to quantify our belief that the events found by the fitting

procedure are valid. This was not possible in the given time frame, but it is a pri-

ority for future work. Additionally, being able to quantify the performance of the

procedure would allow us to directly measure the impact of modifying the SAV

model. This would make it much easier to refine and tune the model to achieve

demonstrably better results.

Chapter 4 introduced a novel transdimensional alternative to traditional nes-

ted sampling. Contrary to existing nested sampling methods, a transdimensional

approach would allow for the number of parameters in the model to vary as a free

parameters. This is done by defining a set of K parameters called a ‘particle’,

where the model can consist of N particles (each containing their own K paramet-

ers), where N is included as a model parameter and K is fixed. I describe a process

by which N is able to vary, allowing the algorithm to explore a space where the

dimensionality is not fixed. This includes the introduction of a novel concept:

the ‘flattened’ particle space. The approach proved to be functional, successfully

managing to fit a toy model to some data, however it was shown analytically to

produce a strong bias towards larger N. It is likely that this bias comes from the
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mechanisms through which live points are evolved to increase and decrease N, but

the exact cause is currently unknown. Finding the source of this bias and elimin-

ating it would be the top priority for future development of this method. A good

place to start would be to quantify the bias, investigating how it varies with the

model parameters and any hyperparameters. This would hopefully give some in-

sight into why it occurs, and possibly hint at how to counteract it. This could be

by developing alternative mechanisms to step up/down in N, or perhaps by adding

in some acceptance probability conditional on N. I, along with my collaborat-

ors, intend to publish the work we have done on this transdimensional approach

in the near future, which will hopefully inspire other researchers with different

perspectives to help build upon what we have produced so far.

Finally, chapter 5 details an ongoing campaign to monitor J1415+1320 at L-

and C-band with e-MERLIN. It is hoped that the high-cadence light curves pro-

duced from these observations will cover the period of the next expected SAV

event. Thanks to the lower frequency of these observations compared to the

15GHz OVRO data, this will hopefully provide strong evidence as to whether

these events are truly achromatic, which would have significant implications for

the SAV hypothesis either way. I presented the L- and C-band light curves pro-

duced with the currently available data, which look very promising apart from

a few large error bars and a large amount of inter-day scatter which is currently

unexplained. Smoothing these light curves allows us to compare them directly

with the OVRO light curve. Preliminary analysis indicates a strong correlation

between the C-band and OVRO light curves, whereas the L-band light curve is

much less variable and is not correlated. With the C-band data following the vari-

ations in the OVRO data so closely, we can be confident the next expected SAV
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event should show up clearly in both light curves, assuming the SAV hypothesis

is correct. The campaign is expected to continue indefinitely, at least until another

event is observed in the OVRO light curve.
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