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Abstract

NEURAL NETWORKS FOR TEXTUAL EMOTION RECOGNITION AND

ANALYSIS

Hassan Alhuzali
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Textual Emotion recognition (TER) is an important task in Natural Language Pro-
cessing (NLP), due to its high impact in real-world applications from health and well-
being to author profiling, consumer analysis and security. The task of TER is often
formalised as the process of detecting, interpreting, and understanding users’ emotions
(i.e., the experience of feeling). This process can be performed on different units of
analyses like words, phrases, sentences, documents and tweets/posts. Since the ma-
jority of existing emotion corpora are collected from social media data, the focus of
this thesis is specifically on tweets and posts. This thesis investigates three research
questions, as discussed below.

Firstly, we recommend that emotion correlations and associations should be taken
into consideration when dealing with the classification and identification of emotion
expressions in texts. This aims to enable TER models to account for the ambiguity
and complexity of the task by taking into account that certain emotions can be highly
correlated with each other. More specifically, we want to leverage information about
emotion-to-emotion correlations, as well as associations between emotions and words
in the case of multi-label emotion classification. To address the first research question,
we propose “a novel model SpanEmo casting multi-label emotion classification as a
span-prediction problem”, which can help TER models learn associations between la-
bels and words in an input instance. Furthermore, we introduce a training objective
focused on modelling multiple co-existing emotions in the input instance. Experi-
ments performed on a multi-label emotion corpus across multiple languages demon-
strate our method’s effectiveness in terms of improving the model performance and
learning meaningful correlations as well as associations.
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Secondly, existing emotion corpora labelled for a single-label emotion classifi-
cation problem are more than those labelled for a multi-label emotion classification
problem. Through extensive experiments, we observe that certain emotions are highly
associated with each other, causing TER models to select incorrect predictions. There-
fore, we want to improve TER models ability to handle highly associated emotions by
introducing discriminator features. To address this, we introduce an auxiliary task to
emotion classification. Furthermore, we introduce a method for evaluating the impact
of intra- and inter-class variations on each emotion class. Experiments performed on
three emotion corpora demonstrate our method’s effectiveness in terms of improving
the prediction scores and producing discriminative features against highly confused
emotions.

Thirdly, emotion features can be beneficial for related tasks that share common pat-
terns with emotion. Based on the observation that in social media, negative sentiments
and emotions are frequently expressed towards certain topics, such as politics, but also
adverse drug reactions and depression. We examine the benefits of emotion features
to the last two topics, while at the same time modelling them without the use of hand-
crafted features. To avoid the use of hand-crafted features, we decide to use transfer
learning by training a neural model on sentiment/emotion corpora and then fine-tuning
it on the target tasks. We also adapt our proposed model for the first research ques-
tion to both Adverse Drug Reactions (ADRs) and depression. Experiments performed
on different corpora for the topics of ADRs and depression demonstrate our model’s
effectiveness in achieving strong performance compared to previous approaches and
being easily adapted to other tasks.
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Chapter 1

Introduction

1.1 Motivation

Emotion is a key aspect of human life, and hence Textual Emotion Recognition (TER)
research is bound to have a wide range of real-world applications from health and well-
being to user profiling, security and marketing, among others (Mohammad and Turney,
2013a). Emotion research also plays a significant role in improving human-machine
interaction (Fung, 2015; Picard, 2000). Picard (2000) states that human interaction
with machines could be enhanced when they are enabled with proper understanding of
emotion. She pointed out that emotion could help machines adapt to their users and
better understand users’ expressions and reactions. This indicates, for example, that
chatbots may not be able to produce pleasant and positive language when they have
little understanding and knowledge of emotion.

“Tay.ai” is a good illustration of a chat-bot made by Microsoft via Twitter that
suddenly began to post offensive tweets, forcing the company to shut down the system.
The bot had no notion of emotion (e.g., negative vs positive content); therefore it ended
up posting abusive and offensive tweets. This incident is related to Picard’s point where
human-machine interaction could be improved by enabling machines to understand
emotion and hence adapt to their users accordingly, while encouraging them to be
aware of certain behaviours and feelings. This highlights the significant role of emotion
research, a sub-field of affective computing science, that can lead to a positive impact
on society.

As we mentioned above, research in TER has contributed to a wide range of real-
world applications, e.g. health and well-being, author profiling and human-machine
interaction, and we now turn to discussing below some of these applications that have
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been influenced by the research in this area.

• Author profiling: Understanding an individual’s personality provides valuable
information about their thought and attitude towards decision-making, risks and
preferences. Previous research has shown that emotion features are beneficial
for author profiling (Mohammad and Kiritchenko, 2013, 2015a; Farnadi et al.,
2014; Volkova and Bachrach, 2016). Mohammad and Kiritchenko (2013, 2015a)
evaluated the use of emotion features on personality detection from text using
“hashtag emotion lexicon”, corresponding to fine-grained emotions as well as
equivalent to more than 500 words. They found a strong indicator between fine-
grained emotions and being able to infer an individual’s personality. Volkova and
Bachrach (2016) also analysed communications in social media by contrasting
between groups of users, i.e., those who expressed the same emotions from those
who do not. In this respect, contrasting between the different groups contributed
highly to inferring users’ attributes, such as, age, gender, education, ethnicity,
income, children and life satisfaction. Another study examined the relation be-
tween emotions and users’ age, gender and personality, observing interesting
properties between emotions and those users’ attributes (Farnadi et al., 2014).
One can further benefit from such information in understanding users’ prefer-
ences towards products and services, which are of interest to businesses as they
can gain a broader knowledge of their customer.

• Customer experience: Emotion is the main key to customer experience, where
it can play an important role in driving brand preferences, purchase decisions,
and customer loyalty. Understanding customer needs can not only boost their
satisfaction, but also unlock their motivation. In the world of social media to-
day, online users share experiences about many products and services which
they interact with and then provide feedback, whether it be positive or negative.
The feedback attempts to inform businesses about how to improve their services
and products when users’ needs are not met. Being responsive to the feedback
can improve satisfaction and make customers loyal to such businesses because
they see that their frustration and anger have been taken care of. Clibbon (2020)
claims that “understanding customers in their own words to extract emotional
territories is the key to transforming brand experience”. Thus, through under-
standing customer needs, businesses can adapt to them, which in turn drives
brand growth in the longer term. Herzig et al. (2016) analysed customer support
conversations taking place in social media to improve customer satisfaction as
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well as determining which conversation must be dealt with right away. The au-
thors found out that incorporating emotion features into their model led to better
prediction of customer satisfaction and handling of prioritised conversations.

• Health and well-being: Emotion analysis can play an important role in monitor-
ing users’ health and well-being, especially on social media because they share
opinions on various aspects of life. Doctors and health professionals can also
benefit from this monitoring system to track users’ emotional and well-being
changes, from which they can intervene immediately before something is esca-
lated. For example, they could use the system to send alerts to care givers or
request a visit when something is abnormal. This is even useful for mitigating
major psychological disorders or preventing suicidal behaviours/thoughts. Some
works utilised emotion-based features to specifically detect adverse drug reac-
tions reported by users on social media, which can guide health professionals
and pharmaceutical companies in making medications safer and advocating pa-
tient safety (Alhuzali and Ananiadou, 2019; Aragón et al., 2019; Chen et al.,
2018; Khanpour and Caragea, 2018; Korkontzelos et al., 2016). Moreover, the
idea of emotional contagion can further play a crucial role in either improving
the overall well-being of users or preventing them from developing mental health
problems. Kramer et al. (2014) states that emotions can be transferred to others
through emotional contagion. This makes people experience the same emotions,
even if they are not aware of their emotional changes. On the one hand, other
works found a strong link between people’s mental health problems (i.e., depres-
sion and anxiety) and the outbreak of Covid-19, due to the intense exposure to
negative content on social media (Gao et al., 2020; Van Bavel et al., 2020). On
the other hand, one can also expose people to positive or desired emotions (e.g.,
calm, joy, optimism and rest) to improve their overall well-being (Kramer et al.,
2014).

• Security: Potential hazards and dangerous behaviours of online users can be
modelled by having access to knowledge about their emotional stability or sudden-
change. In this respect, tracking online users’ emotion can be vital for different
reasons, including natural disasters (Desai et al., 2020) and flagging those who
are threatening, abusive or risky (Karlgren et al., 2012). For example, O’Toole
(2009) stated that individuals, who planned to cause some sort of harm, disclose
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their intention in advance or during the planning stage. This is in particular rele-
vant to social media, which people use to disseminate both negative and positive
contents about various aspects of their life and intended behaviours.

Examples (Discussed ↓):

S1. “school-name” 11 kids in a Year-10 class have tested positive for Covid in the
last 10 days. The school was NOT ALLOWED to advise us following a change
to the rules. Guessing 7 unnecessary infections, holidays ruined plus all the fear,
anxiety and God knows how many people isolating #COVID19.

S2. I expected the media to report this the same way they did regarding the floods
in Germany and Belgium...but am totally disappointed ... Or because it is in
Africa . This is how heavy rain left the city of Lagos in Nigeria.

The growing interest in TER has also been motivated by the proliferation of social
media and online data, which have made it possible for people to communicate and
share opinions on a variety of topics. Social media have become a key source, where
people express their opinions, feelings and emotions. This is often caused by events
and activities happening around the world, encouraging those individuals to express
their attitude towards those events. Examples S1 and S2 highlight typical emotion
expressions, where the first example reports anger and disappointment against “hiding
information about infected kids at school” and the second example reports the same
emotions against media outlets. We can observe that the examples indeed convey some
emotional reactions. Analysing these emotions can help researchers study how people
react to different situations and issues happening in real-time. This allows various
companies to know what their users complain about exactly and in return work out
ways to improve their services/products in the case of businesses. In a similar vein,
authorities can benefit from such research by flagging risky, abusive or threatening
behaviours.

In addition, as the volume of data increases on a daily-basis, it becomes almost
impossible to process information manually. This challenge has given rise to new NLP
methods focusing on TER identification and classification from social media data. One
popular platform of social media, which has been used extensively by the community
of NLP, is Twitter. Twitter makes data collection easy for large scale purposes, and it
also allows users to utilise different symbols (e.g., hashtags, emoticons and emojis),
some of which are rich in emotional expression. These symbols have helped the com-
munity to gather large data using hashtags (e.g., #joy, #anger, and #fear, among others)
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as well as to take advantage of emoticons and emojis in analysing and understanding
emotions (Shoeb and de Melo, 2020; Felbo et al., 2017).

Despite the increase in the number of publications for TER, there are challenges
that hinder existing approaches in handling emotion expression effectively. This is be-
cause emotion is a complex phenomenon in that it is context sensitive as well as sub-
jective. The sensitivity and subjectivity emerge from different personal and specific
circumstances, where an emotive expression may be perceived differently by differ-
ent people whose understanding and interpretation of the emotion depends on some
factors (e.g., direct influence, previous experience, cultural differences etc.). Because
of the multiple interpretations issue, an emotive expression is more likely to be asso-
ciated with different emotions, yet similar to some extent to their valence space. For
example, “anger and disgust” have been found to be highly correlated together in the
case of multi-label emotion classification or even confused with each other in the case
of single-label emotion classification (Agrawal et al., 2018; Mohammad and Bravo-
Marquez, 2017a; Strapparava and Mihalcea, 2007).

The majority of existing approaches tackle TER without considering the above
mentioned challenges by simply focusing on classification of emotion expressions.
This limits the ability of TER models to better understand the complexity of the task,
and more specifically, highly correlated and confused emotions. In the context of
highly correlated emotions, it would be beneficial for TER models to learn to group
together highly correlated emotions, while disentangling less correlated emotions. In
the case of highly confused emotions, it would be useful for TER models to incorpo-
rate this information to improve their capability of introducing discriminated features
between those highly confused emotions and hence, enhance their performance.

Examples (Discussed ↓):

S3. I get so [trigger word] when parents smoke right next to their little kids. (Ground-
Truth “GT”: disgust)

S4. I’m doing all this to make sure you’re smiling down on me bro. (GT: joy, love
and optimism)

To give an example, consider S3, whose correct label is “disgust”, but a TER model
may choose “anger”. Although labelling this example with “anger” is acceptable, it is
incorrect from the single-label point of view. The model confusion can be attributed
to the two emotion similarities in linguistic expressions as well as to the lack of ex-
plicit verbal cues. On the other hand, S4 is labelled with three emotions that are often
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correlated with each other. This example illustrates multi-label emotions, where posi-
tive emotions are highly correlated with each other, while they are less correlated with
negative emotions. In this thesis, we address these issues and develop new computa-
tional approaches for TER that take emotion correlations into account in downstream
applications, such as multi-label emotion classification. In addition, we demonstrate
that our methods improve the discriminator capability of TER models to disambiguate
between emotions.

1.2 Research Questions, Hypotheses and Objectives

This section describes our research questions, hypotheses and objectives, and discusses
each one of them separately. In this thesis, negative labels or classes refer to wrong
predictions made by a TER model, whereas negative emotions refer to negative emo-
tional polarity (e.g., anger, disgust, fear and sadness)1. We make this distention clearer
from the beginning in order to prevent any potential confusion or misunderstanding.

Research Question (RQ#1)
The first research question aims to extend the scientific understanding of how emo-

tion is reflected in text in terms of tackling expressions evoking multiple emotions.
TER research should focus on the objective that emotion expressions can have not
only a single interpretation, but potentially multiple ones depending on the context and
situation in which they occur. Limited research has been done to tackle the problem
of detecting multiple emotions, while at the same time learning emotion-specific as-
sociations (i.e., associations between emotion labels and words in an input instance),
as well as emotion correlations (i.e., label-label correlations). Our research question is
if we can learn emotion correlations and associations with the purpose of improving
TER performance as well as without using any external resources (lexicons or theories
of emotion).

Research Hypotheses #1

⋆ Potential ambiguities, in which multiple emotions overlap, can be addressed by
taking correlations between emotions into account such that highly correlated
emotions are grouped together, while less correlated emotions are distant from
each other.

⋆ Embedding descriptive label information with an input instance can help TER

1More discussions and definitions will be given in Chapter 3.
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models learn associations between emotions and words, which in turn reduce the
effect of highly correlated emotions and enhance their performance considerably.

Research Objectives #1

⋆ Develop an instance-level emotion recognition model that learns correlations and
associations in an end-to-end fashion (i.e., training a single model to learn both
correlations and associations, as well as performing emotion recognition), and
is independent of theories of emotion and emotion lexicons, to ease adoption to
other languages and tasks.

⋆ Incorporate multiple co-existing emotions in the input instance into the training
objective to improve the model capability in handling highly correlated emo-
tions.

⋆ Validate the proposed approach on a widely used multi-label emotion corpus
labelled over multiple languages and against state-of-the-art approaches.

⋆ Analyse the benefits of the learned associations and correlations for multi-label
emotion classification.

Research Question (RQ#2)
The second research question aims to extend scientific understanding of the ben-

efits of emotion in downstream applications. This is motivated by previous findings,
demonstrating that emotion features can improve the performance of other tasks, es-
pecially when they share similarities. Nevertheless, prior research has relied on hand-
crafted features engineering; we aim to address this by investigating the applicability
of emotion features to two case studies or applications: adverse drug reactions (ADR)
and early signs of depression detection.

Can we improve the results of both ADR and depression by taking into account
knowledge of sentiment and emotion? Can we apply the developed model for RQ#1
to improve identification of adverse drug reactions (ADRs) reported in social networks
as well as the detection of early signs of depression?
Research Hypotheses #2

⋆ Emotion knowledge can be beneficial for downstream tasks. This is because
negative sentiments/emotions are frequently expressed towards different topics,
i.e., such as ADRs and depression.

Research Objectives #2
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⋆ Develop a neural model with knowledge of sentiment/emotion that is trained and
then transferred into both ADRs and depression.

⋆ Validate the claim that emotion features are beneficial for other tasks.

⋆ Apply the proposed model in RQ#1 to the two case studies, i.e., the detection of
adverse drug reactions and depression.

Research Question (RQ#3)
The third research question aims to extend the scientific understanding of how emo-

tion is expressed in text in terms of studying highly associated emotions, especially in
the case of single-label emotion classification. As mentioned in the above discussion,
certain emotions (e.g., anger, disgust and sadness) can be confused with each other,
due to the high associations between those emotions. It is worth mentioning that we
use the term “ highly confused or associated” emotions interchangeably in this thesis.
This is because highly associated emotions can make TER models confused in terms
of selecting the correct label.

Previous research has mainly focused on emotion classification, while ignoring the
problem of highly confused emotions. In this research question, we aim to address
this problem, by first adapting the concept of correlations from RQ#1. We define the
concept of correlation for single-label emotion classification as input instances that are
labelled with the same emotion. In other words, input instances labelled with the same
emotion are more likely to share similar features rather than instances labelled with
dissimilar emotions. Our research question is if we can improve the model ability to
disentangle positive emotive expressions from negative ones. This notion is inspired
by our proposed method in RQ#1, in which we aim to disentangle highly correlated
emotions from negative ones. However, we focus in RQ#3 on a single-label emotion
classification problem instead of multi-label emotion classification. Specifically, our
proposed method does not rely on label co-occurrences, which makes it more suitable
for the single-label emotion classification case as such information can be found only
in multi-label emotion classification datasets.

Research Hypotheses #3

⋆ Input instances labelled with specific emotions (e.g., anger, disgust or sadness)
can be confused with each other, which can be addressed by improving the dis-
criminator power of an emotion classifier. This can be achieved by incorporating
intra- and inter-class variations.
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⋆ Enabling TER models to incorporate variations within and between different
classes of emotion can improve their capability in learning better discriminator
features, and also enhance their performance considerably.

Research Objectives #3

⋆ Adapt the concept of correlation to single-label emotion corpora and then incor-
porate variations within and between different classes of emotion into the model.

⋆ Propose a training objective that enforces variations within and between different
classes of emotion into the model.

⋆ Validate the proposed approach on widely used single-label emotion corpora,
against state-of-the-art approaches and on each emotion class.

⋆ Analyse and evaluate the advantages of the proposed approach for TER.

1.3 Contributions and Publications

In this thesis, our novel contributions related to the above-mentioned research ques-
tions, hypotheses and objectives are:
The contributions corresponding to RQ#1.

• We proposed a novel model SpanEmo casting multi-label emotion classification
as span-prediction. The main attributes of our SpanEmo model, in contrast to
previous work, are summarised as follows: 1) the inclusion of emotion classes to
the input instance, 2) the selection of predictions from the label segment directly,
3) the modelling of multiple co-existing emotions and 4) the independence from
emotion lexicons and theories of emotion in learning both emotion correlations
and associations, which makes it easily adaptable to other tasks, emotion corpora
and languages.

• We incorporated emotion correlations into the training objective, enabling SpanEmo
to model highly correlated emotions together, while distancing less correlated
emotions from each other.

• We tested the applicability of SpanEmo on the SemEval-2018 multi-label emo-
tion corpus (Mohammad et al., 2018) based on tweets labelled in English, Arabic
and Spanish. This helps to show that our approach is language agnostic in the
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sense that it can be easily adapted to emotion corpora in other languages without
requiring any change in the model architecture.

The contributions corresponding to RQ#2.

• We investigated the benefits of emotion features in enhancing the detection of
ADRs and depression.

• We adapted the architecture of SpanEmo to the detection of ADRs and depres-
sion by firstly training the model with knowledge of emotion and subsequently
fine-tuning it on the chosen target tasks. We demonstrated that our SpanEmo
model can be easily adoptable to other tasks and applications.

• We presented an in-depth analysis that illustrates the advantages and utility of
using emotion data and SpanEmo model in enhancing the detection of ADRs
and depression.

The contributions corresponding to RQ#3.

• We introduced a loss function as an auxiliary task to emotion classes by taking
variations within and between different classes of emotion into account. This
was inspired by our training objective introduced for RQ1, which attempted to
separate a set of negative labels from the set of positive ones. The main attributes
of our method, in comparison to prior methods, are summarised as follows: 1)
the introduction and incorporation of the concept of intra- and inter-class varia-
tions into TER models, 2) the introduction of an evaluation method to quantify
the benefits of intra- and inter-class variations on each emotion class, 3) the im-
provement of the discriminative ability of TER models and 4) the independence
from emotion lexicons as well as theories of emotion in incorporating both intra-
and inter-class variations, which makes it easily adaptable to other networks and
corpora.

• We further proposed an evaluation metric that is able to compute intra- and inter-
class variations for each emotion class.

• We evaluated our introduced loss function on three single-label emotion cor-
pora, demonstrating that our approach helps TER models obtain high prediction
scores, and is also a better discriminator against highly confused emotions.
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It is worth mentioning that the majority of the work proposed in this thesis has been
already published. This thesis includes existing, improved or additional details with
respect to the following publications, as described in the corresponding chapters.

• Chapter #4. SpanEmo: Casting Multi-label Emotion Classification as Span-
Prediction

⋆ Alhuzali, H., and Ananiadou, S. (2021, April). SpanEmo: Casting Multi-label
Emotion Classification as Span-prediction. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for Computational Linguistics:
Main Volume (pp. 1573-1584).

• Chapter #5. Improving classification of Adverse Drug Reactions by Using Sen-
timent Analysis and Transfer Learning

⋆ Alhuzali, H., and Ananiadou, S. (2019, August). Improving classification of
adverse drug reactions through using sentiment analysis and transfer learning.
In Proceedings of the 18th BioNLP Workshop and Shared Task (pp. 339-347).

• Chapter #5. Predicting Signs of Depression by Using Frozen Pre-trained Mod-
els and Standard Classifiers.

⋆ Alhuzali, H., Zhang, T., and Ananiadou, S. (2021). Predicting Sign of De-
pression via Using Frozen Pre-trained Models and Random Forest Classifier. In
Conference and Labs of the Evaluation Forum (CLEF-2021), (pp. 888-896).

• Chapter #6. Improving Textual Emotion Recognition Based on Intra- and Inter-
class Variations

⋆ Alhuzali, H., and Ananiadou, S. (2021). Improving Textual Emotion Recog-
nition Based on Intra-and Inter-Class Variation. IEEE Transactions on Affective
Computing (In Press).

1.4 Thesis Structure

The thesis consists of seven chapters. The first chapter (i.e., current one) is the in-
troduction, in which we discuss our motivation, research questions, hypotheses and
objectives. The contributions presented in this thesis are then discussed, along with
those that are already published. Next, the thesis structure is given, with an outline
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of the other chapters in the following order, i.e., an overview of both technical back-
ground and textual emotion recognition, three main chapters and finally the conclusion
chapter.

In Chapter 2, we offer some technical background on neural network components
and some of the advanced techniques that inspire our works presented in this thesis.
This aims to help readers transition easily from chapter to chapter, as well as helping
them when reaching future chapters. Chapter 3 provides an extensive overview of the
task of emotion recognition, in which we start with the problem definitions and then
move on to discuss terms related to emotion. Next, we discuss models of emotion that
tend to provide a taxonomy of emotion classification and categorisation. We further
describe existing emotion corpora as well as common approaches to TER. Finally, we
conclude with some observations and limitations of previous research and demonstrate
how our works presented in this thesis build upon them.

In Chapter 4, we cover our initial research question (i.e., RQ#1). We first men-
tion the motivation behind SpanEmo and then discuss it in greater detail, including its
architecture and training objective. After that, we elaborate on our experiments, i.e.,
implementation details and dataset and task settings. A large number of experiments
and analyses both at the word- and tweet-level are also conducted on the different
components of SpanEmo to better understand its behaviour. It is worth noting that the
contents of this chapter have been published in Alhuzali and Ananiadou (2021b).

In Chapter 5, we first introduce each case study and highlight some of the motiva-
tions behind the use of emotion/sentiment knowledge to improve the detection of ADR.
An overview of the related work with respect to the task of interest is given. Next, we
discuss some experimental details, including our proposed approach, evaluation and
analysis. This chapter specifically addresses RQ#2, in which we examine the effect
of emotional knowledge to the improvement of ADR. To achieve this, we demonstrate
how a neural model can be trained to acquire knowledge of sentiment/emotion and then
adapted to the task of ADR. We run two experiments: 1) we are interested in testing
our hypothesis to determine whether adapting a pre-trained model on sentiment data
can help improve the classification of ADRs. 2) If the first experiment shows improve-
ment, we expect to obtain the same, or even better results when the model is pre-trained
with emotional knowledge, due to the inclusion of fine-grained annotation of emotions
rather than coarse-grained annotation (i.e., positive vs negative). In this experiment,
we use the SpanEmo architecture and follow the initial experiment setting presented
in this chapter, by making use of transfer learning. We also run the same experiments
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on detecting early signs of depression, but without any fine-tuning. Finally, parts of
this chapter have been published in Alhuzali and Ananiadou (2019) and Alhuzali et al.
(2021).

In Chapter 6, we examine the last RQ#3 and provide motivation about the impor-
tance of incorporating intra- and inter-class variations within and between different
classes of emotion. Then, we review some related approaches and describe how our
proposed approach builds upon them. Next, an overview of our implementation and
the used corpora are included. Finally, we provide extensive evaluations and analyses
of the proposed approach and its benefits to the task of TER. It should be mentioned
that this chapter is drawn from Alhuzali and Ananiadou (2021a).

In the last chapter, we synthesise the findings of each individual chapter and high-
light the important observations from the overall thesis. We then refer to the limitations
of the works presented, including those related to the task of TER as well as those re-
lated to the proposed models in this thesis. Finally, we discuss future directions. In
the reminder of this thesis, we use examples of text to motivate our novel methods and
to describe our results/analyses. It should be mentioned that some of those examples
contain words that might be found offensive by some readers.
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Technical Background

Before the revolution of neural networks in early 2010, most research in Natural Lan-
guage Processing (NLP) focused on developing many types of feature templates de-
rived from domain knowledge. This type of feature engineering was time-consuming
and expensive, required domain expertise to generate features, and was not general-
isable. However, with the advent of neural networks, hand-crafted features can be
avoided by simply learning features from text automatically. Learning features auto-
matically has given rise to new NLP methods that enable better representation learning,
e.g., word embeddings (Mikolov et al., 2013a; Pennington et al., 2014; Agrawal et al.,
2018) and contextual embeddings (Peters et al., 2018b,c; Devlin et al., 2019). In this
respect, it has become common to use such representation learning approaches to learn
features that are beneficial for many NLP tasks, including Textual Emotion Recogni-
tion (TER), which is the main topic of this thesis. We now turn to describing neural
networks, their training process and popular types of neural networks, from which this
thesis benefits.

2.1 Neural Networks

Neural Networks (NN) are computing mechanisms that were inspired by efforts to
mimic the processing of information in the brain. The basic unit of NN is the neu-
ron, which is also called a unit or node. The neuron takes an input from an external
resource (e.g., text or image) and then computes an output. Each input is associated
with a weight, and both are eventually multiplied together. The computation of a single
neuron is often called a Perceptron, formulated via a weighted summation of its inputs.
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Figure 2.1 depicts the Perceptron and its computation is shown in equation (2.1).

y = f
(
w⊤x+ b

)
, (2.1)

where y represents the output of the neuron, f is an activation function, x ∈ Rn are the
inputs to the network, w ∈ Rn is a vector with the associated weights and b is a scalar
value.

Figure 2.1: Perceptron. Adapted from the follwing blog: “Intro to Perceptron”

The first and simplest type of neural network is known as the Feed-Forward Net-
work (FFN), which consists of multiple neurons combined together. Similar to the
computation of the Perceptron, we can reformulate the computation of a single-layer
Perceptron as follows.

y = f (Wx+ b) , (2.2)

where W ∈ Rd×n is a weight matrix multiplied by the input vector x ∈ Rn, b ∈ Rd

is a bias vector and y ∈ Rd is the output vector of the network, with d denoting
the dimensional size. Figure 2.2a illustrates the single-layer Perceptron. The single-
layer Perceptron can overcome the limitation of the Perceptron, which can only solve
linear decision boundaries. A famous yet intuitive example is the logic XOR operator,
which obviously requires non-linear decision boundaries to be solved. The single-
layer Perceptron can also be extended to multi-layer Perceptrons, where the input is
connected to the output via an intermediate hidden layer. An instance of this is a two-
layer network shown in Figure 2.2b.

The output of the two-layer network can be computed as in equation (2.3). With the
analogy of the two-layer network, one can construct deep neural network architectures
by stacking multiple layers.

ŷ = f2 (W2f1 (W1x+ b1) + b2) , (2.3)

https://www.doc.ic.ac.uk/~jce317/introduction-neural-nets.html
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(a) Single-layer Perceptron. (b) Multi-layer Perceptrons.

Figure 2.2: Single-layer Perceptron vs two-layer Perceptrons, Adapted from (Intro to
Perceptron)

where y ∈ Rm, W1 ∈ Rd×n, W2 ∈ Rm×d, b1 ∈ Rd, b2 ∈ Rm. f1 and f2 are two
hidden layers, where the second layer takes its input from the first layer (i.e., f1). ŷ

represents the final output, which can be used directly for classification.

2.2 Neural Network Training

2.2.1 Classification

We have already defined the output of a multi-layer neural network as a vector ŷ. The
last layer of the network converts the output to a vector of dimensionality equivalent
to the number of classes (ŷ ∈ RC) in classification settings (i.e., multi-class or multi-
label). Each score in the vector maps to a class in un-normalised form. To transform
the un-normalised scores of the output vector, we typically use the softmax activa-
tion function in the case of multi-class classification. The softmax activation function
squashes the scores between zero and one (i.e., [0, 1]) that add up to one. Because of
this, it has a probabilistic interpretation, where one can determine how much confi-
dence the network assigns to a class. In other words, we can compute the probability
pc of a class ci ∈ C given an input vector x as shown in equation (2.4).

pc = softmax (ŷc) ≡
exp (ŷc)∑C
j=1 exp (ŷj)

, (2.4)

where ŷc is the un-normalised score obtained from the network for class c. In the
case of multi-label classification, we typically employ the sigmoid activation function,
which squashes the score of each class between zero and one. Then, a threshold value

https://www.doc.ic.ac.uk/~jce317/introduction-neural-nets.html
https://www.doc.ic.ac.uk/~jce317/introduction-neural-nets.html
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is set to select whether or not the class should be chosen. The sigmoid function can be
computed as follows.

pc = sigmoid (ŷc) ≡
1

1 + e−ŷc
, (2.5)

where ŷc is the un-normalised score obtained from the network for class c that receives
an independent probability score from the rest of classes. If the received score is above
the threshold, the class will be selected.

2.2.2 Loss Function

A network can be defined as a function that maps between inputs and outputs. It is
parameterised by a set of weights (e.g., W and b). It is often the case that the data
(i.e., input and output) is given and fixed, and hence we do not have control over them.
However, we can control the weights such that the predicted scores are compatible with
the correct classes in the training. In this respect, the loss function, which is known as
the cost function or the objective, measures our satisfaction with outcomes produced
by the network. When the loss is high, the network performs poorly, while performing
well when the loss is low.

Let {(xi, yi)}Ni=1 be a set of N examples with the corresponding class yi, where xi

denotes the ith example and yi represents the correct class associated with this example.
We define p (yi | xi) being the probability of example i predicted by a network and θ

representing the parameter set of the network. The loss function L (θ) is computed
over the entire data set by averaging its losses. Computing the loss for a classification
task is based on the cross-entropy, which optimises the negative log likelihood of the
correct class.

L (θ) = 1

N

N∑
i=1

− log p (yi | xi) (2.6)

2.2.3 Learning

Back-propagation. The process of network optimisation follows right after the loss
is computed, for which we update the parameters of the network utilising the back-
propagation algorithm (Rumelhart et al., 1986). The goal of the back-propagation
algorithm is to compute the partial derivative of a loss function with respect to any pa-
rameter in the network. In other words, this algorithm back-propagates errors from the
output layer to the input layer. By using this algorithm, we can compute the gradient
with respect to the input. In the case of a scalar input x, let us assume we have the
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following expression (x+ y)z. We can easily differentiate this expression directly, but
will take an alternative approach that helps us illustrate the process of back-propagation
intuitively. To simplify the process, let us first assign u to represent (x + y) and let
f = uz. Here f is a multiplication of both u and z. We can now compute the partial
derivative of the expression with respect to each term as shown in Equation (2.7).

∂f

∂u
= z,

∂f

∂z
= u,

∂u

∂x
= 1,

∂u

∂y
= 1 (2.7)

In the case of NNs, we are always interested in computing the partial derivative of the
output f with respect to the input variables (i.e., x, y, z) as follows:

∂f

∂x
=

∂f

∂u

∂u

∂x
= z · 1 = z, (2.8)

∂f

∂y
=

∂f

∂u

∂u

∂y
= z · 1 = z, (2.9)

∂f

∂z
= u = (x+ y), (2.10)

We have computed so far the gradient for scalar inputs, but this analogy can easily
be extended to other forms like vectors. To give an example of the process, let us
assume that a neural network has the following expression, in which we assign the
inner function to u and the outer function to g for simplicity.

f(x,W) = (Wx)2,u = Wx, g = u2 (2.11)

As shown in Equation (2.11), we are interested in computing the gradients of the
two parameters (i.e., ∂g

∂W
and ∂g

∂x
). This can be done by computing the gradients of these

two parameters beginning from the output of the network and moving backwards up
to the input layer. It is worth mentioning that the output dimension of each gradient
equals the dimension of the respective parameter. The process discussed above can be
extended to networks with multiple layers.

∂g

∂W
=

∂g

∂u

∂u

∂W
= 2ux⊤

∂g

∂x
=

∂g

∂u

∂u

∂x
= 2W⊤u

(2.12)

Parameter update. After computing the gradients, we can update the network
parameters (θ), where θt represents the parameter set at iteration t. One of the most
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widely used optimisation algorithms is Gradient descent (GD) (Cauchy et al., 1847).
Its main objective is to minimise a loss function L (θ) with respect to the parameters
of the network, which are updated globally over the entire training set. The update is
often set towards the opposite direction of the gradient of the loss.

θt+1 = θt − η
∂L
∂θt

, (2.13)

where η is known as the learning rate that is responsible for scaling the volume of
updates. Large learning rate tends to make large changes to the network parameters,
whereas small learning rate tends to make small changes. The learning rate η is a
hyper-parameter that needs to be tuned depending on the chosen algorithm of opti-
misation. There are other variants of GD (Ruder, 2016), such as Stochastic GD and
mini-batch GD, where the SGD estimates the gradient of the loss for each sample at a
time, while the mini-batch GD computes the gradient of the loss for every mini-batch
of n training samples. The second variant benefits from both GD and SGD. Besides
GD, there are other optimisation algorithms that tend to work well for training NNs,
e.g., Adam (Kingma and Ba, 2014).

2.2.4 Regularisation

A major challenge in training a neural network is how to make them perform well both
on the training set and the test set (i.e., unseen inputs during training). When training
the neural network, we often evaluate it against another set, known as the validation
or development set. Once the training process is over, we test the network capability
on a second different set called the test set. The key idea of such evaluation is to
assess the network generalisation on unseen inputs during training, on which it should
obtain similar or comparable results to the ones observed on the validation set. Since
this is not always the case, some regularisation techniques are introduced to reduce
both under-fitting and over-fitting as shown in Figure 2.3. We briefly discuss a couple
of regularisation techniques (i.e., dropout and early stopping) that are relevant to the
works presented in this dissertation.

Dropout is an effective way to regularise deep NNs during training. This means
that, unlike in the past, when the network parameter weights were learned together,
some parts of the network weights are learned in the iteration steps instead. It was pro-
posed by Srivastava et al. (2014) to prevent NNs from co-adaptation. This means that
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(a) Under-fitting. (b) Appropriate-fitting. (c) Over-fitting.

Figure 2.3: An illustration of over-fitting vs under-fitting. Taken from (geeks.org).

some neurons have stronger predictive capability than others, which can lead the net-
work to over-fitting by only concentrating on the strong signals. The main advantage
of dropout is to address this problem by randomly replacing weights in the networks
with zeros and the amount is determined by a probability p ∈ [0, 1], set in advance
before the training process begins. Figure 2.4 presents an illustration of dropout. The
process of dropout is applied to different units at each iteration step, and it produces
a different model in each iteration, which eventually results in an ensemble. Another
benefit of dropout is the incorporation of noise into the network via the missing units.
Finally, the probability p is a hyper-parameter that can be tuned for different parts of
the network.

Figure 2.4: Dropout Illustration. Standard Neural Network (left) and after dropout is
applied (right). Taken from (Srivastava et al., 2014).

Early Stopping is another regularisation technique that indicates when the network
should stop the training process (Caruana et al., 2001). The criteria for when to stop the
training process are determined based on the validation loss when it reaches a plateau
or starts to increase. Figure 2.5 depicts the early stopping criterion. It can be clearly
observed that once the validation loss deteriorates drastically from the training loss, it
becomes obvious to stop the network from training as it is more likely to overfit the

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
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training data. Typically, a hyper-parameter, known as “patience”, indicates how many
epochs are required before the training should stop. After the training is terminated,
we select the model parameters that achieve the lowest validation loss.

Figure 2.5: Early stopping criterion. Taken from (Stanford-cs-230).

2.3 Neural Network Approaches

We discussed in the previous sections that NNs take an input, and transform it via a
series of hidden layers. Each hidden layer is composed of a set of neurons, where
each one is connected to all neurons in the previous layer. The last output layer is
called a fully-connected layer, which represents the classes in classification problems.
There are several NNs that have been developed in the literature for different purposes
(e.g., Convolutional NNs, Long-Short Term Memory, Attention Mechanisms and Pre-
training of Deep Bidirectional Transformers for Language Understanding). We first
describe the initial step of transforming words into real-valued vectors and then discuss
each one of these four architectures. Next, we discuss the concept of “fine-tuning”,
describing how NNs trained on specific domains and corpora can be adapted to other
domains and corpora as well. Finally, we conclude with deep metric learning.

2.3.1 Word Representations

The initial step of any NLP model is to represent words in real-valued vectors, where
each vector maps to a single unique word. The process of converting the input of a
network is called embedding. The first step in performing this process is by defining
a dictionary D that consists of all the words in a corpus. Next, a mapping between
each word and its associated real-valued vector is created. The embedding layer (EL)

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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is then built to form a look-up table (Collobert and Weston, 2008), where each word
i ∈ D is embedded into a d-dimensional feature vector.

ELW (i) = Wi, (2.14)

where Wi ∈ Rd is the ith column of a matrix W and d denotes the dimensionality
of the column vector. The concept of word embeddings/representations has found its
popularity in NLP right after the work of Mikolov et al. (2013b) who proposed the
“Word2Vec” algorithm. This algorithm is based on a neural network to learn word as-
sociations from a large data set via the use of a context window as a hyper-parameter.
Then, any type of NNs can use word embeddings to initialise or represent their in-
puts. Subsequently, another word embedding is introduced by Pennington et al. (2014)
known as “Glove”. The Glove embedding is also an unsupervised learning algorithm
for obtaining word representations. This is based on the concept of word-word co-
occurrence statistics that are learned from a large data set. The learned co-occurrences
are then aggregated and mapped into a meaningful space, where common co-occurred
words are distantly similar, whereas less co-occurred words are distantly dissimilar.
The above discussed word embeddings are called static word representations because
each word is represented by the same embedding/vector even if the contexts of words
have changed.

2.3.2 Convolutional Neural Networks (CNN)

The architecture of CNN was firstly adapted to images, and it was proposed for au-
tomatic training of the Convolutional map/kernel (LeCun et al., 1998). The Convo-
lutional layer consists of a set of learnable parameters called filters. It was firstly
introduced to text by Kim (2014). Figure 2.6 illustrates how it works on a sequence of
words. The first layer is basically the embedding layer, which transforms each word
into a real-valued vector. The embedding layer is a matrix of words and their asso-
ciated real-valued vectors that is then fed into a convolutional layer with a non-linear
activation. As shown in Figure 2.6, we can utilise multiple filters, where each one
learns a different set of features, similar to how n-grams are used to extract features
from text. After that, a pooling operation is used, which can be one of the following,
e.g., a max, min or mean operation. The purpose of the pooling operation is to select
the most salient and important features. Let us now distil each component of the CNN
network. Given a sequence of words s = [w1;w2; · · · ;wn], where wi ∈ Rk represents
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Figure 2.6: An illustration of a Convolutional Neural Network (CNN). Adapted
from (Kim, 2014)

the ith word in the sequence, k denotes the dimensional size and “;” represents the con-
catenation of n words. Later, we use a filter f ∈ Rh·k, with dimensionality equivalent
to the number of a sliced window of words h and their dimension k. Again, the sliced
window in the convolutional layer mimics the process of n-grams. The computation
of one filter on a window size of h words results in a single feature ci, as depicted in
Equation ( 2.15).

ci = g
(
f⊤wi:i+h−1 + b

)
(2.15)

where wi:i+h−1 ∈ Rh·k is the concatenation of h words, b is a scalar and g is a non-layer
activation function. This process is performed on all slices of the sequence, producing
a set of features called the feature map, Equation (2.16). The feature map output is
then passed through the same pooling operation discussed above, such as the max as
shown in Equation (2.17). When multiple filters are utilised, one can concatenate all
m filters. This produces a single vector that is then fed into the output layer (i.e., a
fully-connected layer).

c = [c1, c2, · · · , cn−h+1] (2.16)

ĉ = max(c) (2.17)
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2.3.3 Recurrent Neural Networks (RNN)

When learning a new skill, humans do not begin from scratch. In other words, they
make use of previous experiences which have been accumulated over time. This se-
quential process, which cannot be achieved by CNN and Perceptron, leads to the emer-
gence of RNN that process information in loops. Every loop performs some compu-
tation on an input and then passes it to the next step. Figure 2.7 presents an unrolled
RNN, depicting the process of an unrolled loop.

Figure 2.7: An illustration of an unrolled-RNN. Taken from (colah.github).

From Figure 2.7, we can see that such networks can be effective for text due to
the nature of how words are grouped to form a sequence. There are different types of
RNN that have been introduced (e.g., Long-Short Term Memory (LSTM) and Gated
Recurrent Unit (Cho et al., 2014)). Gated Recurrent Unit (GRU) is another variant of
RNN and is quite similar to LSTM. However, GRU differs from LSTM in the sense
that it consists of only two gates (i.e., reset and update gates). In this respect, GRU
contains less training parameters, which makes it fast to execute. In this section, we
only describe LSTM since it is widely used in NLP.

Long-Short Term Memory (LSTM). One of the positive properties of RNNs is
the notion that they can connect history to the future (i.e., previous information to
present information). However, how much history is relevant to the current task is neg-
ligible. For one task, it might be useful to look far back in history, while it may not
be the case for another task. If the former is the case, RNN fails to model such long
dependency, which is known as the problem of long-term dependencies. LSTM was
proposed by Hochreiter and Schmidhuber (1997) to overcome this challenge, which
performs well in comparison to its counterpart RNN and has become widely used for
many tasks (e.g., language modelling (Howard and Ruder, 2018), machine transla-
tion (Bahdanau et al., 2014), summarisation (See et al., 2017), text classification (Al-
huzali and Ananiadou, 2019), etc.). Figure 2.8 presents the LSTM architecture, which
still has a chain-like structure, similar to that of RNN.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.8: An illustration of an LSTM architecture. Each block shows an abstract
representation of an LSTM cell. Yellow boxes correspond to hidden layers, while pink
circles correspond to pointwise operation. Taken from (colah.github).

The main idea of LSTM lies in its ability to retain useful information, as well as
removing redundant information. This is achieved by introducing three gates, each
one of them is responsible for different objectives. The first gate (left) is called the
forget gate layer that receives a previous hidden state ht−1 and a current input xt (e.g.,
a word), Equation (2.18). Both are then fused together through a sigmoid activation
function to determine which information to exclude from the cell state (top black line).

ft = σ (Wf · [ht−1,xt] + bf ) (2.18)

where W and b are trainable parameters and σ denotes the sigmoid activation function.
Once the information removal process is completed, the next step is to determine which
new information should be stored in the cell. This gate is called the input gate layer,
which indicates which values that need to be updated. Next, another layer with a tanh

activation function creates a vector of candidate values that are then combined with the
input gate and added to the cell state, Equation (2.19).

it = σ (Wi · [ht−1,xt] + bi)

c̃t = tanh (Wc · [ht−1,xt] + bc)
(2.19)

At this point, we update the previous cell state by taking into account the forget
and input gates, Equation (2.20). The forget gate is multiplied by the previous cell
state and it is then added to the input gate.

ct = ft ∗ ct−1 + it ∗ c̃t (2.20)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Finally, the computation of the above steps (ct) is passed through a tanh activation
function to round values in the range ∈ [−1, 1]. Another gate is created, known as
the output gate, which is fused with tanh(ct) via a multiplication operation, and which
decides what aspects of the cell state to output, Equation (2.21).

ot = σ (Wo [ht−1,xt] + bo)

ht = ot ∗ tanh (ct)
(2.21)

The LSTM architecture can be applied to sequences from left-to-right and from
right-to-left. This concept is called “Bi-directionality”, which was firstly proposed
by Schuster and Paliwal (1997) for RNNs. A bi-directional LSTM processes both past
and future information all at the same time. The future states may include additional
contextual information that aids the network to take advantage of it. Consider a simple
example, I am blank in / to..., where the future choice of either “in” or “to” is a strong
indicator of which word to use in the blank (i.e., interested or interesting). Allowing
the network to have access to such information can help in the disambiguation of both
options and eventually the selection of the correct one. The output of bi-directionality
is typically concatenated together to form a final representation for the input sequence
as follows:

ŷt =
[−→o t;

←−ot

]
, (2.22)

where −→o t and ←−ot represents the output from left-to-right and from right-to-left, re-
spectively. “;” denotes a concatenation operation and ŷt is the final output of the bi-
directional LSTM.

2.3.4 Attention Mechanisms

The concept of attention is derived from humans’ visual attention, which enables them
to focus on a specific region of an image. The same notion can also be seen in text,
especially in reading. It is often the case that we do not read a whole sentence from
left-to-right, but we skip certain words of the sentence and can still understand the
meaning of the whole sentence. This is a powerful mechanism that could help NNs for
effective understanding of a piece of text.

In NLP research, attention mechanisms were firstly applied to machine translation
by Bahdanau et al. (2014) who used the attention to jointly align and translate at the
same time. After this work, attention mechanisms have become popular in NLP, and
utilised for different tasks beyond machine translation, such as classification (Alhuzali
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and Ananiadou, 2019; Felbo et al., 2017), summarisation (See et al., 2017; Cheng and
Lapata, 2016), etc. The popularity of attention in NLP led to enhanced mechanisms
that serve different objectives but still share the same function in that they assess the
importance of different elements in a sequence with respect to other elements in the
same sequence. Given an input sequence x = {w1,w2, . . . ,wn}, the attention weight
ai is then estimated by normalising the weights via the softmax activation function
across the entire sequence as follows.

ai = f (Wi,hi) , (2.23)

αi = softmax (ai) =
exp (ai)∑n
j=1 exp (aj)

, (2.24)

r =
n∑

i=1

ai · hi (2.25)

where W ∈ Rm×d is a trainable attention parameter, hi ∈ Rd is the hidden repre-
sentation corresponding to an element in the sequence, ai is the normalised attention
score corresponding to the element i and n is the size of the sequence. f is an acti-
vation function, and r holds the attention weights associated with each element in the
sequence.

Self-attention, also known as intra-attention, is an attention mechanism allowing
sequences to interact with each other and find out which part of the sequence should
pay more attention to what with respect to an element. The interaction is then aggre-
gated to form the attention scores. Self-attention was introduced by Lin et al. (2017)
and applied to different NLP tasks, including machine reading comprehension (Zhuang
and Wang, 2019), abstractive summarisation (Xu et al., 2020b), image description gen-
eration (Li et al., 2020), emotion recognition (Chronopoulou et al., 2018), aspect sen-
timent analysis (Cheng et al., 2017). The self-attention module takes n inputs and
returns n outputs. In other words, the attention vector ai for an element in a sequence
(e.g., a word i) is computed as follows.

ai = v⊤
a tanh (Wahi) (2.26)

where v ∈ Rm and W ∈ Rm×d are trainable attention parameters and hi is the repre-
sentation of an element in the input sequence. This process is performed on the whole
input sequence to extract important spans. The vector v becomes a matrix V ∈ Rm×r,
which contains r attention weights for element i of the input sequence.
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Multi-head Attention is an extension of the self-attention mechanism proposed
by Vaswani et al. (2017). Based on this type of attention, a network, known as the
Transformer, was built that demonstrates strong performance and even surpasses other
NNs (e.g., RNNs and CNNs) on various NLP tasks. Previous studies often utilised
the attention mechanism as an assistant block in a network to enhance an input repre-
sentation, while Transformer-based networks used multi-head attention as their main
source of computation. The use of multi-head attention divides the input into multiple
heads, each of which is made of self-attention that ultimately learns different views of
the input.

Several approaches were inspired by the Transformer architecture, including BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019), GPT (Rad-
ford et al., 2018; Brown et al., 2020), etc. These networks have been pre-trained on a
huge volume of data in unsupervised fashion showing that they can gain some useful
knowledge about the use of language in text (Qiu et al., 2020). After pre-training, we
can apply such models to various NLP tasks through what is known as “fine-tuning”.
Both pre-training and fine-tuning have become the de facto standard in NLP research
nowadays. We turn now to describing the BERT model before covering the concept of
fine-tuning.

2.3.5 Pre-training of Deep Bidirectional Transformers for Language
Understanding (BERT)

This model is designed to perform two steps, i.e., pre-training and fine-tuning. The
first step involves pre-training BERT on a large amount of unlabelled text by benefiting
from both left and right contexts, corresponding to the idea of bi-directionality in the
title. Once this step is done, the pre-trained model is then fine-tuned on any target task
that has shown to achieve state-of-the-art results across a variety of NLP tasks. As
the title includes the word “Transformer”, BERT itself is based on the Transformer’s
architecture.

Let us first understand how BERT processes text. Figure 2.9 depicts an example of
the input text, which contains three embeddings: 1) position embeddings, 2) segment
embeddings and 3) token embeddings. The first embedding is responsible for encoding
positional information since the BERT model follows the Transformer architecture that
processes tokens in parallel instead of in order. This way, the model learns the position
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embedding of a word in the text input. The second embedding is the segment embed-
ding, which helps the model to distinguish segment A from segment B in the case of
tasks requiring sentence pairs, e.g., question answering, entailment, paraphrasing, etc.
Finally, the token embedding represents the vector representation for each word in the
sentence, which is based on the vocabulary set used by the BERT model. An important
token is the [CLS], which is always used for representing the whole input text in the
case of text classification.

Figure 2.9: BERT input representation. Taken from (Devlin et al., 2019)

Next, the pre-training step comprises two objectives, which are Masked Language
Modelling (MLM) and Next Sentence Prediction (NSP). The idea behind MLM is that
some words of the input text are masked with a special token “[MASK]” and the
model has to recover the masked tokens. Consider the example, “I love to read books
on the topic of affective computing”, in which we can replace the word “affective” with
the mask token and the model is then trained to predict the missing word. The authors
of BERT experimented with some strategies to prevent the model from concentrating
on specific positions that are masked (e.g., masking randomly 15% of the words). The
other objective is NSP, which aims to learn the relationship between two inputs. As
the name suggests, the task is to predict whether sentence A is followed by sentence B
or not. By training the BERT model on these two objectives, it can handle many tasks
due to the similarity of both objectives to many tasks in NLP. The fine-tuning step
comes next after the model is pre-trained, which is straightforward and fast to execute.
Figure 2.10 presents how BERT can be utilised for text classification. The output of
the [CLS] is fed into a classifier layer with softmax for multi-class classification or
sigmoid for multi-label classification.
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(a) Single sentence classification. (b) Single sentence tagging.

Figure 2.10: Text classification based on BERT. Taken from (Devlin et al., 2019)

2.3.6 Fine-tuning Methods

There are two strategies for adaptation in NLP research, i.e., fine-tuning and feature
extraction. In the former strategy, the network’s weights are unfrozen and then fine-
tuned to a target task. In the latter strategy, they are frozen and then utilised directly
for feature extraction without any further training on the target task. Several works
have been focused on the fine-tuning strategy (Howard and Ruder, 2018; Devlin et al.,
2019) as well as on the feature extraction (Peters et al., 2018c,a). Peters et al. (2019)
compared the two strategies and provided some guidelines for NLP practitioners.

The concept of fine-tuning has become popular in NLP after the work of Howard
and Ruder (2018) who proposed Universal Language Model Fine-tuning (ULMFiT).
The core idea of ULMFiT involves three phases: i) pre-training a language model
(LM) on a large corpus (i.e., Wikitext-103), ii) pre-training LM on target data, iii) fine-
tuning LM on a target task. Some effective fine-tuning strategies are further introduced
in the same work: i) “gradual unfreezing”, which focuses on fine-tuning each layer of
the network independently and then fine-tuning all layers together. ii) “discriminative
fine-tuning”, which tunes each layer with different learning rates. Another popular and
widely-used model is BERT that also follows the same two-stage fine-tuning. More
specifically, the BERT model is firstly trained on both BooksCorpus (Zhu et al., 2015)
and English Wikipedia, which can then be fine-tuned directly on any target task. These
two models have produced impressive results on a variety of NLP tasks, as well as
contributing to many new studies.
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The two-stage fine-tuning, also known as sequential fine-tuning, has shown to per-
form well on different tasks in NLP, including text classification (Felbo et al., 2017),
story ending prediction (Li et al., 2019b), adverse drug reaction (Alhuzali and Anani-
adou, 2019). Felbo et al. (2017) constructed a bi-directional LSTM with a self-attention
mechanism using millions of emoji data, and then fine-tuned it to emotion, sentiment
and sarcasm classification. In a similar vein, Alhuzali and Ananiadou (2019) devel-
oped a model based on LSTM with the self-attention mechanism that was then pre-
trained on sentiment data. After that, the developed model was fine-tuned on Adverse
Drug Reaction (ADR) corpora. The rationale for using sentiment data for ADR is that
negative sentiment is frequently expressed towards ADR.

Additional studies further demonstrated the important role of pre-training on a
related-domain corpus to the task under investigation, which can further boost the abil-
ity of the model and its performance (Garg et al., 2020; Sun et al., 2019; Phang et al.,
2018). Gururangan et al. (2020) introduced two approaches (i.e., domain-adaptive pre-
training and task-adaptive pre-training) that are similar to the ones discussed in the
above studies. The Domain-Adaptive Pre-Training (DAPT) continued pre-training
RoBERTa on a large corpus of unlabelled data from a related-domain, whereas the
Task-Adaptive Pre-Training (TAPT) performed the same process, with the exception
this time of pre-training on the task of interest. Both approaches demonstrated strong
performance across four domains (i.e., biomedical and computer science publications,
news and reviews) and eight classification tasks.

2.3.7 Deep Metric Learning

Deep Metric Learning (DML) is inspired by humans’ visual system that enables them
to identify similar objects and images effectively. In this respect, DML is a group
of methods that attempt to measure the similarity between data samples, including
objects and images. The main goal of DML methods are to group similar objects
together, while separating dissimilar objects from each other. Popular DML methods
include contrastive loss (Chopra et al., 2005), triplet loss (Schroff et al., 2015) and
centre loss (Wen et al., 2016). Let us first define a set of samples X and their respective
labels Y , which will be used to describe each of these methods briefly. Here, we aim to
provide an overview of DML1 methods that can help readers navigate easily through
chapter 6.

1The discussion in this section is based on the following deep metric learning survey.

https://hav4ik.github.io/articles/deep-metric-learning-survey
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To explain contrastive loss, we sample two data points x1, x2 and their correspond-
ing labels y1, y2. Next, we need to use a distance (D) metric (e.g., Euclidean distance
or Square Euclidean distance), which helps us measure whether the two data points are
similar or dissimilar. A neural network is used to learn an embedding for each data
point (known as feature extractor fθ ∈ Rd), where θ represents the neural network
weights, and d denotes the dimensional size. The neural network can be built based on
any type of architecture discussed in this chapter (e.g., CNN, LSTM, BERT, etc.). The
two points are then passed to the feature extractor fθ (x1, x2), resulting in the embed-
ding vector corresponding to each data point. Now, we can plug everything into the
contrastive loss to estimate whether the two data points are similar or not as follows.

Lcontrast = 1(y1=y2)Dfθ (x1, x2) + 1(y1 ̸=y2) max (0,m−Dfθ (x1, x2)) , (2.27)

where the indicator function 1{condition} = 1 if the condition is satisfied, or 0 other-
wise. max is the hinge style loss and m is the margin. The margin here indicates that
dissimilar data points beyond m do not contribute to the loss.

We can also extend our discussion to triplet loss. The triplet loss takes as input
three samples instead of only pairs of samples, that are called “anchor (a), positive (p)
and negative (n)”. Both anchor and positive samples share the same label, whereas the
negative samples belong to a different label. Let us define xa, xp, xn corresponding to
some samples and ya, yp, yn corresponding to the samples’ labels. Figure 2.11 illus-
trates the main idea of triplet loss, from which we can observe its objective in pulling
the positive sample as close as possible to the anchor sample, while simultaneously
pushing the negative sample as far away as possible from the anchor sample.

Figure 2.11: Illustration of Triplet loss. Taken from (Schroff et al., 2015).

In this respect, it learns an embedding space that minimises the distance between
an anchor sample and a positive sample, while increasing the distance to a negative
sample by at least a margin m. The triplet loss can be computed as in Equation (2.28).
Again, we can still use any type of feature extractor network as well as distance metric.
In order to make triple loss work effectively, we need to leverage what is know as
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“triplet mining” aimed at finding a triplet of xa, xp, xn that satisfies Dfθ (xa, xn) <

Dfθ (xa, xp) +m, which is often quite hard and task-dependent.

Ltriplet = max (0,Dfθ (xa, xp)−Dfθ (xa, xn) +m) , (2.28)

To address the challenges of triplet loss in identifying such triplets, Wen et al.
(2016) introduced the “centre loss”. This loss does not require comparisons between
any samples, but instead it defines a centroid per label. The objective of this loss func-
tion is then to pull samples as close as possible to their corresponding centroid. The
authors opt to train it with cross-entropy loss to achieve accurate centroids, especially
at the beginning of the training phase. Equation 2.29 shows the computation of centre
loss, which is much easier to compute than triplet loss.

Lcentre = Dfθ (xi, cyi) , (2.29)

Finally, some previous works have managed to improve the objective of triplet loss
and centre loss, by building on the same objective of triplet loss, but at the same time
avoiding its complexity in finding the triplets (Cai et al., 2021; Li et al., 2019a; He
et al., 2018; Wang et al., 2017).

2.4 Summary

In this chapter, we intended to provide an overview of NNs that are related with our
methodology. More specifically, We began the description with some basic back-
ground of the building block of NNs, and then elaborated on how they can be trained.
Next, we discussed common NNs, e.g., CNN, LSTM, Attention Mechanisms and
BERT. We concluded the description with fine-tuning and deep metric learning meth-
ods.

We briefly highlight which types of NNs were used in this thesis. In chapter 4, we
used BERT and a FFN to develop “SpanEmo”. In chapter 5, we further utilised some
of the introduced networks in this chapter (i.e., BERT, LSTM, Attention Mechanism
and FFN) to develop a neural model. In chapter 6, we finally used deep metric learning,
BERT and CNN to develop our proposed Variant of Triple Centre Loss (VTCL). We
will elaborate on each developed neural network in the corresponding chapter.



Chapter 3

Emotion Recognition: Background

What people think and how they feel serve as important information in understanding
their decision making. “What do you think of the Spirit Untamed” movie?, “What
is your opinion of the new Huawei p40”? or “Do you have any preferences for a
specific type of food/restaurant?”, are just a few questions one would encounter in ev-
eryday discussion and communication. Answering these questions on a large scale can
improve decision making, as well as helping people decide which movies to watch,
phones to purchase, restaurants to visit, etc. In this thesis, we investigate the area of
Textual Emotion Recognition (TER), which is concerned with the analysis and classi-
fication of a piece of text into discrete emotions (e.g., anger, joy and sadness, among
others). Figure 3.1 provides an illustration of a TER model that takes an input text,
processes it and then predicts some potential emotions.

We now turn to describing the task in greater detail, including terms related to

Textual Emotion Recognition

Text

Text

Text Text

Text

Text

Figure 3.1: Illustration of TER.
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emotion, how emotion is expressed in text, models of emotion (also known as theories
of emotion), existing emotion corpora, common approaches to TER and evaluation
metrics. Finally, we conclude the discussion with some observations and limitations
of prior research.

3.1 Problem Definitions

3.1.1 Task

Emotion recognition selects the most appropriate emotion class ei ∈ E for an in-
put instance x (i.e., a tweet or an example) in the case of multi-class classification
or chooses more than one emotion in the case of multi-label emotion classification.
E = {e1, e2, . . . , ek} corresponds to a set of emotion classes, where k denotes the
number of emotions and x = {w1, w2, . . . , wn}, with n representing the number of
words in x. We make use of the categorical model1 and the number/type of emotions
may vary from one corpus to another. More specifically, the categorical model consists
of discrete emotion classes, such as joy, anger, disgust, among others.

3.1.2 Word-Emotion Association

Mohammad and Turney (2013b, 2010) created the NRC Word-Emotion Association
Lexicon (also called EmoLex), deriving associations between a set of emotions and
more than 14k words. The NRC lexicon associates words with multiple emotions by
using a binary value, where one means there is association between the given word and
emotion class, and zero means there is no association. For example, the word “reject” is
associated with anger, fear, sadness and negative, showing that this word can be used
to express any one of these four emotions or a combination of two emotions when
expressed in text. Consider the example, “well my day started off great the mocha
machine wasn’t working @ mcdonalds.”, which contains clue words like “great” which
is more likely to be associated with “joy”, whereas “wasn’t working” is more likely to
be associated with negative emotions. This can be observed clearly via the ground
truth labels (i.e., anger, disgust, joy, sadness) assigned to this example, where the first
part of this tweet only expresses positive emotions (e.g., joy and love), while the other
part expresses negative emotions. In this thesis, the term association refers to learning
a mapping function between each word in the input and the set of emotions, where the

1We will discuss what the categorical model is in Section 3.4.1.
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mapping function determines the value of association between the two. The overall
goal is to find words that are more associated with one emotion over another.

3.1.3 Emotion Correlation

We define the concept of correlation based on the type of emotion corpus, whether it is
a single-label or multi-label corpus. For the multi-label case, the concept of correlation
is obvious because it aims to learn correlations between emotion classes that share a
similar emotion space (Wang and Zong, 2021), such as anger, disgust and sadness.
However, the concept of correlation has not been studied for the single-label emotion
case because each input is only labelled with one emotion class. We describe the
concept of correlation for each case below and how we specifically define it for the
single-label case.

Single-label emotion corpora allow each input instance to be labelled with one
emotion, which limits textual emotion recognition models from taking advantage of
multiple emotion annotations. However, correlations can be modelled between labels,
as well as between instances. In order to capture correlations for the single-label case,
we model correlations at the instance-level. The reason for this is that instances la-
belled with the same emotion class are more likely to have similar patterns and hence
should be considered more highly correlated than those labelled with different emo-
tions. Thus, we define examples sharing the same emotion class as “intra-class”, while
examples belonging to different emotion classes are defined as “inter-class”. This def-
inition is sensible for the following reasons: i) The single-label case holds the assump-
tion that all labels are independent from each other. ii) Disentangling between negative
emotions in the single-label case can also lead to better performance since they may be
confused with each other in certain expressions. Consider the example, “I love you so
much and i am [trigger word] because you do not know that i exist.”, which contains
both positive and negative emotion keywords although it is more negative oriented.
The use of the word “love” can mislead the model to select the “joy” class over “sad-
ness”. iii) TER models are more likely to benefit from such information, which in turn
improves their prediction capability.

For the multi-label case, correlations are often modelled at the class-level since the
data allow each input to have multiple labels. In this respect, emotion correlations are
indispensable for multi-label emotion classification. This can be attributed to the fact
that emotion classes are not semantically independent; a particular emotive expres-
sion can be associated with one or multiple emotions (Zhang et al., 2018; Deyu et al.,
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2016). Mohammad and Bravo-Marquez (2017a) also observed the notion of negative
emotions being highly correlated with each other, while less correlated with positive
emotions. The high correlations issue between certain emotions can also be attributed
to the lack of explicit emotion-based keywords as well as their inter-connection in
linguistic expressions. Consider the example, “I’m doing all this to make sure you
are smiling down on me bro.”, which is labelled with three highly correlated emotion
classes (i.e., joy, love, optimism). The same idea has also been mentioned in psy-
chological theories of emotion (e.g., Plutchik’s Wheel of Emotion). According to the
wheel of emotion, “joy, love and optimism” are close to each other.

3.1.4 Emotion Labels

This section defines emotion classes used in this thesis to study textual emotion recog-
nition. For each term, we draw inspiration from Mohammad et al. (2018) who pro-
posed the SemEval-2018 multi-label emotion corpus that was labelled with eleven
emotions, as discussed below. We also use emojis just as an approximation to rep-
resent the respective emotion, but they are not exhaustive. The emojis are derived from
the work of Shoeb and de Melo (2020) who examined the association between 1200

emojis and emotions. It should be mentioned that we used the eleven emotions in
Chapter 4, whereas a subset of them was utilised in Chapter 6, based on Ekman’s six
basic emotions. This is because existing emotion corpora do not often follow the same
taxonomy in terms of classifying and categorising emotions in text.

• Anger : A strong feeling of displeasure, annoyance or rage.

• Disgust : A strong feeling of disinterest, dislike, loathing and something
unpleasant.

Fear : A feeling of apprehension, anxiety, concern, terror, fear or worry.

• Joy : A feeling of pleasure and happiness, including serenity and ecstasy.

• Love : A strong positive emotion of regard and affection.

• Optimism : Hopefulness and confidence about the future or the success of
something.

• Sadness : Emotional feeling of pain, sorrow, pensiveness and grief.

• Anticipation : Emotional feeling of interest and vigilance.
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• Pessimism : A strong feeling of cynicism and lack of confidence.

• Surprise : Feeling astonished, startled, distracted or amazed by something
unexpected.

• Trust : Emotional feeling of acceptance, liking, and admiration.

3.2 Related Terms

This section aims to discuss some of the viewpoints regarding the concept of emotion
and other related terms, such as affect and sentiment, which are used interchange-
ably. It is worth noting that there is still no consensus on what emotion is and which
classification scheme should/should not be used. However, this section attempts to
better distinguish emotion from other related terms and then report on how emotion
is conceptualised in text. As Izard (2010) pointed out in his interviews with emotion
scientists and theorists, there is still no consensus on the meaning of emotion. Having
no clear meaning for the term emotion is not the problem, but having many different
meanings, is.

3.2.1 Emotion and Subjectivity

The term subjectivity is often contrasted with the term objectivity, where the former
corresponds to the expression of feelings, views, opinions, allegations, desires, suspi-
cions, speculations or beliefs, while the latter corresponds to the expression of factual
information (Liu, 2012; Riloff et al., 1993).
Examples (Discussed ↓):

S1. Huawei phones are amazing because of their cheap price.

S2. Huawei is a technology company.

To give an example of the two terms, S1 represents the subjectivity term because
it expresses some opinions about Huawei phones, whereas S2 is a fact in that it does
not express anything specific about the company. In sentiment analysis, there is a
first-step task called subjectivity classification which aims to classify an input as either
subjective or objective. It is worth noting that a subjective expression may not express
sentiment (i.e., positive or negative sentiment). Consider the example, “I think she is
busy with something”, which is a subjective expression, but does not reveal any specific
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Subjectivity

Sentiment Emotion

NegativePositive Sadness JoyFearDisgustAnger Surprise

Figure 3.2: Taxonomy of subjectivity, sentiment and basic emotions. Dashed lines
indicate that those emotion classes can be possibly part of the same valence space (i.e.,
positive or negative).

sentiment. The task of subjectivity classification is also relevant to the task of emotion
classification in the sense that some previous works started by classifying the input as
it expresses either emotion or no-emotion (Alhuzali et al., 2018a; Ghazi et al., 2010;
Aman and Szpakowicz, 2007). After the input expressing emotion is determined, it is
then classified into fine-grained emotions. We can conclude that the subjectivity term
is an umbrella term for both sentiment and emotion. Figure 3.2 presents a taxonomy of
subjectivity, emotion and sentiment, where both sentiment and emotion include subjec-
tivity expressions. Sentiment analysis is more of a coarse-grained task, while emotion
recognition is a fine-grained task. In this respect, emotion as a task can be connected
to sentiment. The same applies to emotion labels, where negative emotions are linked
to the negative sentiment class, while positive emotions are linked to the positive emo-
tion class. It is worth mentioning that “surprise” can express both negative and positive
feelings. Because of this, some prior research considered this class as an ambiguous
emotion that is neither positive nor negative (Demszky et al., 2020).

3.2.2 Emotion and Sentiment

We discuss the differences between subjectivity and the emotion above and now turn
to describing the relationship between emotion and sentiment. The task of sentiment
analysis tends to differentiate positive content from negative and in some cases, the
neutral class is added to determine subjective expressions that are neither positive nor
negative. In this respect, it is coarse-grained in comparison to emotion classification,
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which can involve fine-grained emotions. Some previous studies attempted to build
emotion corpora with fine-grained set of emotions. For example, both Liew et al.
(2016a) and Demszky et al. (2020) created emotion corpora labelled with 28 emotions,
but each followed a different scheme and categorisation for emotions.

In addition, Munezero et al. (2014) examined the differences between sentiment
and emotion. The authors reported that sentiment is defined as an evaluation, attitude
or opinion towards a certain object or situation. Cambria et al. (2017) and Liu (2012)
also described sentiment as the “underlying feeling, attitude, evaluation, or emotion
associated with an opinion”. The above definitions highlight that sentiment is often
expressed towards an object, entity or a topic. Another aspect, which makes a clear
distinction between emotion and sentiment, is that emotion can last a short period of
time, whereas sentiment can last a long period of time. A further line of work claimed
that sentiment is expressed by individuals based on previous experience, beliefs or
external influences, while emotion is triggered by a reason/cause/stimulus (Cambria
et al., 2017).

Examples (Discussed ↓):

S3. I don’t have a Lexus car, but I think it looks amazing and cool.

S4. I purchased a Lexus car, but I do not feel happy anymore because its maintenance
is super expensive.

The first sentence S3 illustrates an instance of sentiment expression, where the au-
thor of this sentence expressed her/his opinion about Lexus cars being cool and amaz-
ing. Suppose that she/he purchased a Lexus car, the likelihood of being positive/happy
would be high, but this is still an opinion and may change after owning the car. This
can be clearly observed in the second sentence S4, which expressed a negative emotion
(i.e., feeling not happy) about the Lexus car being very expensive to maintain. On the
one hand, we can observe from the above examples that emotion is often caused by a
stimulus representing why someone felt that way. On the other hand, sentiment does
not require that kind of stimulus and could just be attributed to some external influ-
ences, like in the case of S3, where the author might have a relative/friend/colleague
owning a Lexus car and based on that she/he came to the opinion that Lexus cars are
amazing and cool.
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3.2.3 Emotion and Affect

Although emotion and affect are used interchangeably in the literature, there are spe-
cific properties that can distinguish emotion from affect. Affect is an umbrella term
that encompasses all topics related to emotion, feeling and mood (Cambria et al., 2017;
Russell, 2003). In this respect, it is a more of an abstract concept, something that the
more complex emotion builds upon. According to the Merriam Webster dictionary, the
term affect is defined as “a set of observable manifestations of an experienced emo-
tion”. This regards affect as what drives the resulting emotion. Russell (2003) also
defined affect as a feeling evident in moods and emotions. The distinction here is that
such a feeling is not directed, but primitive. For instance, suppose you are walking in
the forest and suddenly see a bear, you are more likely to feel afraid. This may lead
to screaming, crying, and running, which are the possible potential emotions in the
given situation. Therefore, emotion is the display of affect, as well as the label given to
the affect of the experienced emotion. Liu (2012) describes emotion as a “compound
feeling concerned with a specific object, such as a person, an event, a thing or a topic”,
which tends to be strong and to last a short period of time. This definition distinguishes
emotion from affect as it is directed at something and is not primitive. Emotion is also
accompanied by some reactions (e.g., physiological/physical changes).

3.3 How Emotion is Reflected in Text?

In this section, we focus on describing how emotion is expressed in text. Figure 3.3
illustrates the process that started with some emotional experience up until the under-
standing of the expressed emotion by the perceiver, which is often called “emotion
perception”. Based on this illustration, one can define emotion as an expression that
contains descriptions of emotion reactions formed in written text. This enables us to
distinguish the concept of emotion from other general concepts and it also provides us
with a mechanism to link it with the works presented in this thesis.

Emotional
Experience

Emotional
Expression Text

PerceiverWriter

Figure 3.3: Emotion communication in text.
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Writer is an individual who feels an emotion. Some individuals understand their
feelings and can verbalise them in some way or another, while others may find it diffi-
cult to do so. This stage is also known as an emotional state, referring to the individual
who feels an emotion. The emotional state can only be observed by the same person,
but not by other people since it has not yet been shared with others.

Emotional experience corresponds to the situations, events or activities that are
experienced by the person. In this respect, the emotional experience is the outcome of
the outside world on the person who experiences the situation and how she/he under-
stands it. This is relevant to the above point which highlights that emotion is often the
result of stimulus. At this stage, the person, who feels the emotion, becomes aware
and conscious of her/his emotion.

Emotional expression is a behaviour that describes the emotional state or feeling
to the outside world, including friends, family etc. Emotional expression can be com-
municated via verbal and non-verbal cues. When verbal cues are used to express emo-
tion in text, it is often the case that they describe a person’s emotional state or someone
else’s. The person decides how much of her/his emotional state is to be shared with
others. At this stage, the user can transmit her/his emotional state with some verbal
cues (e.g., a word, phrase, sentence or document).

Text includes emotional cues utilised by the person who writes the text. Emotional
cues depend on the choice of words, phrases or clauses that occur in the written text.
This can be extended to the new channels of today’s communications like social media,
in which people can use emoticons and emojis to express their opinions and emotions.
Consider the example, “I love the topic of affective computing ”, which contains
the word “love” as well as the smiley emoji. Both the word and emoji can be used as an
emotion class or can be utilised to describe emotion classes, e.g., joy and excitement.
On the other hand, there are cue words that trigger an emotional state like accident

and failure, which can cause the “sadness” emotion. Emotional expression in text is
influenced by different factors, including negation, syntax, intensifiers, models, and
more importantly context, among others.

Emotional perceiver is the perceiver of the emotional expression. He looks for
cues that aid the identification of the emotional state reported in text. Humans through
previous experiences and knowledge of emotion can recognise emotion in text to some
extent, depending on how much the text contains clear signals. When enough emo-
tional cues exist in text, it becomes easier for the perceiver to understand and interpret
the emotional expression. For example, if someone writes, “I am so happy because
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my paper has been accepted by a major venue”, the perceiver of such expression can
conclude that the person certainly expresses joy.

3.4 Models of Emotion

Understanding models of emotion is crucial for TER as they are the main source for
determining how emotions should be categorised/classified. The classification of emo-
tion is based on two widely used models of emotion: i) the categorical model, and ii)
the dimensional model. These two models are derived from theories of psychology,
which classify emotions into taxonomies. We now turn to describing each one of the
two models in greater detail.

3.4.1 Categorical Model

The categorical model defines emotions based on discrete categories, and each cate-
gory represents a distinctive emotion concept. An emotion concept is used to represent
a set of similar/associated terms. For example, the emotion label ”joy” is associated
with different terms to describe someone feeling positive/happy (e.g. glad, pleased
and joyful). The basic emotion taxonomy is part of the categorical model, which or-
ganises emotions based on discrete classes/categories (Ekman, 1992; Plutchik, 1980,
1984). Plutchik (1980) proposed the wheel of emotion theory consisting of eight pri-
mary emotions, including (joy, anger, disgust, fear, sadness, surprise, trust and antic-
ipation). The wheel is arranged in three circles, where each one represents different
degrees of emotion intensity; emotions intensify as they move from the outer to the
centre of the wheel that is also represented by colours. In other words, the darker the
colour, the more intense the emotion is, whereas the lighter the colour, the less in-
tense the emotion is. The middle circle corresponds to what is known as the primary
eight emotions. The wheel shows that each primary emotion has a polar opposite emo-
tion, e.g., the polar opposite of joy is sadness. There are also complex emotions that
are identified based on a combination of two close emotions. For example, “love” is
composed of two emotions (i.e., joy and trust). Another popular emotion taxonomy is
based on Ekman’s basic emotions, which are also a subset of Plutchik’s list, excluding
trust and anticipation. Both theories have been widely used to study emotion expres-
sion in the field of natural language processing (Klinger et al., 2018c; Alhuzali et al.,
2018a; Mohammad and Turney, 2013b; Mohammad, 2012b).
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Figure 3.4: Categorical of emotions: Plutchik’s (top) and Ekmans’s (bottom).

Figure 3.4 presents the two mentioned categorical models of emotions (i.e., wheel
of emotion and Ekamn’s basic emotion, respectively). The categorical model is straight-
forward and easy to understand as well as flexible in that terms corresponding to each
emotion category can be selected. However, such flexibility may cause some confu-
sion due to the closeness of certain emotions, which require further assessment of the
criteria for emotion selection. There2 are a few approaches to TER that use the cate-
gorical model. Figure 3.5 shows the three common approaches to TER. The simplest
type of approach aims to assign a single emotion category to an example (Islam et al.,
2019a; Xia and Ding, 2019; Alhuzali et al., 2018c,b; Agrawal et al., 2018; Saravia
et al., 2018; Felbo et al., 2017; Abdul-Mageed and Ungar, 2017), whereas the more
challenging type of approach allows multiple emotion categories to be assigned to the
same example (Fei et al., 2020; Xu et al., 2020a; Ying et al., 2019; Zhou et al., 2018;
Baziotis et al., 2018; Yu et al., 2018; He and Xia, 2018). However, a more interesting
and even more complex type enables multiple emotions, with the addition of assign-
ing each emotion category with an intensity value that determines how much a given
emotion category is associated with this example (Zhang et al., 2018; Zhao and Ma,

2We will discuss the citations used in this paragraph in greater detail in Section 3.6.
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2019). The third type is known in NLP literature as “emotion distribution learning”
firstly proposed by Zhou et al. (2016) and it has not received as much attention as the
above two types because of its difficulty as well as the lack of emotion corpora labelled
with distribution information.

(a) Single-label (b) Multi-label (c) Distribution Learning

Figure 3.5: Illustration of the different learning schemes for TER. Source (Geng, 2013)

3.4.2 Dimensional Model

The dimensional model identifies emotions in a two or three-dimensional space, with
the most commonly used dimensions being valence, arousal and dominance. Rus-
sell and Mehrabian (1977) constructed “Valence-Arousal-Dominance”, also known
as PAD/VAD, which is a semantic model that rates emotion on three-dimensional
spaces. Russell (1980) further introduced the Circumplex model of affect that maps
emotions into two dimensional space of valence (positiveness-negativeness) and arousal
(active-passive), and it is shown in Figure 3.6. The circumplex model establishes that
emotions are not independent but interconnected, i.e., they can be recognised by a com-
position of both the valence and arousal dimensions. Several studies in NLP research
have utilised the dimensional approach to develop emotion recognition models (Mo-
hammad, 2018; Warriner et al., 2013), to create emotion lexicons (Zhu et al., 2019;
Park et al., 2019; Akhtar et al., 2019) or to build emotion corpora (Buechel and Hahn,
2017; Preoţiuc-Pietro et al., 2016). The former identifies emotion in text based on the
valence, arousal and dominance dimensions, whereas the latter curates annotation of
VAD annotation to words (e.g., anger, joy, fear, etc).

3.5 Datasets & corpora

Textual emotion recognition has received a great deal of attention in the last two
decades, for which several emotion corpora have been created. Some of them focus
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Figure 3.6: Russell’s circumplex model of emotion

on general domains (i.e., news, events, blogs and stories), while the majority of recent
published corpora focus on social media (i.e., Twitter, Facebook and Reddit). Some
corpora have been created manually by humans, known as gold annotated corpora.
In the last decade, distant supervision (DS) has been extensively utilised for emotion
resource creation due to its advantages in building large emotion corpora automati-
cally without requiring any human effort with regard to data annotation. In addition,
emotion corpora are mostly collected from social media because of the availability of
large volumes of data, which is user-generated content. Social media data also possess
specific characteristics, such as informal language, misspellings, symbols, and abbre-
viations, which make the task of TER challenging as well as interesting. It is worth
noting that emotion corpora collected from general domains other than social media
do not pose such challenges.

Table 3.1 presents the timeline of emotion corpora collected from different sources
(i.e., news, blogs, events’ description and social media). The number of publications
of emotion corpora after the year 2010 has clearly increased as shown in Table 3.1.
Another interesting observation is that distant supervision has become quite popular
during this period and has allowed the creation of large emotion corpora (e.g., Bipolar-
Emo., HarnessingT., EmoNet and CARER). The number of corpora collected from
social media has also increased dramatically. This can be attributed to the nature of
language used on social media platforms, which enables the study of TER at scale as
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well as being an easy-way for gathering data based on the so-called “self-labelling”.
This term refers to the use of emotion-cue keywords that are utilised by users, such as
hashtags, emojis and emoticons. An instance of a hashtag, an emoticon and emoji is
#happy, :) and , respectively. These symbols have been used extensively and con-
tinue to be used on social media. In the past five years, we have started to observe more
corpora containing sets of emotions, the labels of which are both greater in number and
more diverse.

Dataset Pub.Y Gran. #Exp. #Lab. Task Lang. Avail. Anno.

ISEAR 1994 Des. 7,665 7 MC En Y Gold
Tales 2005 Sent. 15,302 6 MC En Y Gold
Affective 2007 Head. 1,250 6 MC/Dis En Y Gold
TEC 2012 Tweets 21,051 6 MC En Y DS
HarnessingT. 2012 Tweets 2,488,982 7 MC En N DS
Bipolar-Emo. 2013 Tweets 3,041,952 4 Bin En N DS
EmoTweet 2016 Tweets 15553 28 MC/ML En N Gold
EmoNet 2017 Tweets 1,608,233 24 MC En N DS
CBET 2017 Tweets 76,860 9 MC En Y DS
EmoInt 2017 Tweets 7,097 4 Reg En Y Gold
EmoBank 2017 Sent. 10,548 3D Reg En Y Gold
SemEval-Ec 2018 Tweets 10,983 11 ML En, Ar, Es Y Gold
IEST 2018 Tweets 191,731 6 MC En Y DS
CARER 2018 Tweets 562,002 8 MC En N DS
GoEmotion 2020 Posts 58,009 27 MC/ML En Y Gold

Table 3.1: Available Emotion Recognition Datasets. Pub.Y refers to the year of pub-
lication, Gran. refers to granularity, #Exp. refers to the number of examples, #Lab.
refers to the number of labels, Lang. refers to language, Avail. refers to the avail-
ability of the corpus and Anno. refers to the type of annotation (i.e., Gold or Distant
Supervision “DS”). Des. stands for description, Sent. stands for sentence and Headl.
stands for headline. MC stands for multi-class classification, ML stands for multi-label
classification, Bin stands for Binary classification (i.e., one-vs-one), Reg stands for re-
gression and Dis stands for distribution (i.e., assigning intensity values ∈ [0, 1] to all
emotion classes). Y means the data is available for download, while N means it is not
available. 3D refers to the valence, arousal and dominance dimensions.

Table 3.1 also discusses different emotion corpora in terms of text granularity, clas-
sification, language, availability and annotation. The number of samples and emotion
classes are also included in Table 3.1. One of the first created emotion datasets was
ISEAR, which stands for “International Survey on Emotion Antecedents and Reac-
tions” (Scherer and Wallbott, 1994). This corpus consists of 7, 665 sentences, where
each sentence is annotated with a single category of emotions based on five categories
of Ekman (i.e., joy, anger, sadness, fear and disgust) and two additional categories
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(i.e., shame and guilt). The dataset is acquired from questionnaires based on descrip-
tions of people’s experiences who have different cultural backgrounds. The goal was
to determine if such emotional experiences are universal or specific across cultures.
Subsequently, Altman (1991) built an emotion corpus of 15, 302 sentences from 185

children stories annotated with one of Ekman’s six basic emotions, with the exception
of dividing the surprise class into positive and negative surprise. In addition, Strappa-
rava and Mihalcea (2007) created an emotion dataset for the SemEval affective-Text
shared task, annotated 1, 250 news headlines with one of Ekman’s basic emotions. This
dataset includes distribution information across all the six emotion classes, where each
class is assigned with an intensity value to indicate its association with the headline.

Unlike the above-mentioned corpora, social media have become increasingly pop-
ular since 2012 as shown in Table 3.1. A couple of emotion datasets were created in
2012 (i.e., TEC and HarnessingT.). Both Mohammad (2012b) and Wang et al. (2012)
gathered emotion data from Twitter using the same method of data annotation and cre-
ation, which is based on a list of predefined hashtags corresponding to each class of
emotion (e.g., #joy, #glad, #sad, and #anger, among others). On the one hand, the
former study collected a corpus of 21, 048 tweets self-labelled by the users of such
tweets via “hashtags”. The objective was to determine whether or not this method can
be used as a surrogate for gathering emotion data automatically. On the other hand,
the latter study followed the same method and collected a large emotion corpus to ex-
ploit the effectiveness of the size of training data on emotion classification. In order
to increase the quality of data, the authors randomly sampled 400 tweets and labelled
them manually with a tag from the set relevant and irrelevant, which are then used to
filter out noisy data. Suttles and Ide (2013a) also utilised distant supervision, but fo-
cused on creating an emotion corpus according to a set of eight basic bipolar emotions
defined by the wheels of emotion. In addition to hashtags, the authors used emoticons
and emojis for data creation. Next, Abdul-Mageed and Ungar (2017) followed-up the
self-labelled method of hashtags and collected a large dataset (EmoNet) of emotion via
distant supervision labelled with a diverse set of emotion classes equivalent to 24. In
a similar vein, Saravia et al. (2018) built upon this work and created a large emotion
datasets (CARER), but it was only labelled with 8 emotions, corresponding to the pri-
mary set of emotions defined in the wheel of emotion. Another emotion corpus called
“Cleaned Balanced Emotion Tweets” (CBET) was developed by Shahraki and Zaiane
(2017) utilising the same hashtag approach for collecting the data. The “Implicit Emo-
tions Shared” Task (IEST) is an additional dataset created via distant supervision, but
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the tweets were gathered using an expression of an emotion-keyword plus either “that,
because or when” (Klinger et al., 2018a). The authors claim that this method can help
capture the cause of the emotion from tweets.

Furthermore, a few emotion corpora have also been created through gold annota-
tion and involved multi-label classification. Liew et al. (2016b) built an emotion corpus
called “EmoTweet-28”, which contains 15, 553 tweets labelled with one of 28 emo-
tions as well as multiple emotions. The corpus also includes annotations for valence,
arousal and emotion cues. Another widely-used multi-label emotion corpus was cre-
ated by Mohammad et al. (2018) known as “SemEval-Ec” based on labelled data from
tweets in three languages (i.e., English, Arabic and Spanish). The corpus is labelled
with 11 emotions plus neutral, some of which are corresponding to Plutchik’s eight pri-
mary emotions. Recently, Demszky et al. (2020) proposed an emotion corpus, known
as “GoEmotions”, composed of 58K Reddit comments and manually labelled with
one or more of 27 emotions plus neutral. The authors also include emotion grouping
at two levels, where the first grouping involves mapping all the 27 emotions into a sen-
timent category (i.e., positive, negative, ambiguous and neutral), while the second one
involves mapping them into Ekman’s six basic emotions. The rationale behind such
grouping is based on their popularity in the NLP community. Although this corpus
contains multi-label annotations, the majority of Reddit posts are labelled with a sin-
gle emotion class (i.e., roughly around 83%), while the remaining posts are labelled
with more than one emotion.

Moreover, a regression corpus was built for the task of emotion based on four
classes of Ekman’s basic emotions, i.e., anger, joy, sadness and fear (Mohammad and
Bravo-Marquez, 2017b). This corpus contains 7097 tweets with intensities correspond-
ing to four emotions, and it aims to link each tweet with various intensities of emotion.
Another corpus was introduced by Buechel and Hahn (2017) based on multiple genres
and domains. It includes 10, 548 sentences, each of which was manually annotated
from the perspectives of both writer and reader. The annotation follows the dimen-
sional model of emotion, from which the authors annotated sentences using valence
(the polarity of emotion), arousal (the intensity of emotion) and dominance (the degree
of control). It is worth mentioning that Klinger et al. (2018c) conducted an extensive
analysis of some of the above-mentioned corpora as well as other existing emotion
corpora. We now turn to discussing common approaches to TER.
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3.6 Approaches to Textual Emotion Recognition

This section describes common approaches to TER based on our taxonomy as shown
in Figure 3.7. The taxonomy consists of four categories, i.e., computational tools, fea-
tures, learning and tasks, some of which are also discussed in Deng and Ren (2021), Al-
swaidan and Menai (2020b) and Seyeditabari et al. (2018). The first category is com-
putational tools, which is divided into two sub-categories, i.e., traditional machine
learning (ML) and neural networks. The first sub-category was popular before the rev-
olution of neural networks and it was the main tool used for TER. However, neural
networks have become the da facto tool for TER because they enable TER models
to learn and extract features automatically. We described some of the popular neu-
ral networks in Chapter 2, whereas we illustrate in this chapter how they have been
used for the detection and identification of emotion expressions. The second category
is focused on features, which is divided into three sub-categories, i.e., corpus-based,
knowledge bases and languages models. Each of which has its own advantages and
disadvantages, but language models have been widely-used for TER. This can be at-
tributed to the fact that they can learn complex linguistic phenomena and can produce
high quality word representations (Clark et al., 2019). The third category is learn-
ing, which is divided into four sub-categories, i.e., lexicon-based learning, supervised
learning, unsupervised learning and transfer learning. The majority of TER research is
focused on supervised and transfer learning approaches due to their ability to achieve
high performance on existing emotion corpora. Both supervised and transfer learn-
ing approaches can be divided into further sub-categories that have been extensively
explored for TER. The fourth category is the tasks of TER, which are divided into
three main tasks, i.e., multi-class classification, multi-label classification and distribu-
tion learning. We introduced each of these three tasks in Section 3.4. In the next few
sections, we base our discussion on the third category (i.e., learning), in which we also
describe the other categories.

3.6.1 Lexicon-based

Earlier studies focused on recognising emotion using lexicon-based approaches, which
rely on seed words and their corresponding labels to identify emotions in text. The
rationale is that emotion-bearing keywords convey emotional meaning, and hence they
can describe a text in which they occur. A simple matching algorithm is commonly
adapted to search for emotion keywords in text from an emotion lexicon. In the case
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Figure 3.7: Taxonomy of Emotion Recognition approaches.

of multiple emotion keywords found in the text, a counts-based method is adopted, for
which the goal is to select an emotion label with the highest count.

There are several emotion lexicons that are developed in the literature, such as
WordNet-Affect (Strapparava et al., 2004), NRC (Mohammad and Turney, 2013b),
LIWC (Pennebaker et al., 2015), NRC-VAD (Mohammad, 2018), among others. The
WordNet-Affect lexicon is an extension of WordNet and contains affective concepts
associated with affective words, covering 4,787 words. The NRC lexicon, on the other
hand, consisting of 14,182 words, focused on the realisation that Words are associ-
ated with multiple emotions. For this reason, each word receives a binary score of
zero and one. The former means that there is no association between the given word
and emotion class, whereas the latter means an association exists between the two.
The selected classes are based on Plutchik’s eight primary emotions plus negative and
positive sentiment. Linguistic Inquiry and Word Count, known as LIWC, has 1393
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words in the affective category. Finally, the NRC-VAD contains more than 20k En-
glish words that were manually annotated for valence, arousal and dominance. The
method used to annotate VAD words is based on the so called “Best-Worst” scaling,
which aimed at addressing issues related to annotation consistency as well as achieving
fine-grained annotation scores. The authors claimed that this method produces more
reliable annotations than in the past. Although the lexicon-based approach is easier
to be interpreted, implemented and evaluated, it is time-consuming, context-free and
domain-dependent, and has poor-coverage. More importantly, detecting emotion from
text is not effectively achieved by simply adding up the emotional associations and
their words. The above reasons make lexicon-based approaches ineffective for TER.

3.6.2 Supervised Learning

Supervised learning is focused on the development of computational methods that can
be learned from labelled data. The labelled data are obtained via either human annota-
tors or some heuristics based on predefined emotion classes (e.g., joy, anger, sadness,
etc.). Although distant supervised approaches do not require human effort in terms
of annotation, they are still created based on predefined noisy labels. That is why we
also discuss distant supervision approaches in this section. The goal of developed su-
pervised learning methods is to learn patterns associated with the predefined emotion
classes from the given annotated or distantly created emotion corpus.

Feature-based Learning. Some works demonstrate the contributions of features
derived from corpus-based texts (e.g., bag of words, n-grams, syntax, emoticons and
punctuation features) and knowledge-based methods (e.g., WordNet-Affect, Roget’s
Thesaurus and General Inquirer) by running binary classification experiments (Alm
et al., 2005; Aman and Szpakowicz, 2007, 2008; Gupta et al., 2010). Alm et al. (2005)
explored several corpus-based features with the Winnow linear classifier to identify
emotion in Fairy Tales, while Aman and Szpakowicz (2007, 2008) exploited corpus-
based and knowledge-based features with Support Vector Machine and Naive Bayes
to classify emotion in blogs. Gupta et al. (2010) used n-grams and presence of word-
s/phrases from specific dictionaries that are then used by Boostexter to recognise emo-
tion in email.

Other works use multi-class classification experiments, in which a learner (e.g. lin-
ear classifier based methods) is trained on the features of labelled data to classify inputs
into one label (Klinger et al., 2018c; Liew et al., 2016a; Mohammad and Kiritchenko,
2015b; Mohammad, 2012c,b; Wang et al., 2012). Klinger et al. (2018c) experimented
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with a Maximum Entropy classifier (MaxEnt) with a bag of words features as a simple
baseline for emotion classification across various emotion corpora, whereas Moham-
mad (2012c,b) used Support Vector Machine (SVM) and Logistic Regression to clas-
sify emotion in text based on n-gram and emotion lexicon features. Wang et al. (2012)
applied two machine learning algorithms (i.e., LIBLINEAR and Multinomial Naive
Bayes) to a large Twitter dataset collected via distant-supervision by using a list of
hashtags to exploit the effectiveness of the size of training data on emotion classifica-
tion. In a similar vein, Mohammad and Kiritchenko (2013) utilised hashtags to capture
emotions from Tweets and demonstrated that hashtags were not only a strong indicator
of emotion in tweets, but also produced consistent annotations to that obtained from
trained annotators. Purver and Battersby (2012) constructed a distant supervision emo-
tion corpus by using hashtags and emoticons, and they experimented with SVM by
utilising a linear kernel and unigram features.

In contrast to the above studies, additional works conducted emotion classifica-
tion experiments based on theories of emotion or some learning schemes (i.e., flat vs
hierarchical). Ghazi et al. (2010) introduced a learning scheme which classified emo-
tion expression as: 1) emotion vs no-emotion and 2) six basic emotions. The intent
is to group these emotions and their relations into a hierarchy and then leverage it in
the classification process. The developed method outperformed the often utilised flat
classification scheme. Furthermore, Suttles and Ide (2013b) classified emotion in text
according to a set of eight basic bipolar emotions by following Plutchik’s wheels of
emotion. The setup is quite similar to binary classification experiments, but the focus
is on the opposite emotion pair (e.g., joy vs sadness).

Moreover, some studies used feature-based learning for multi-label emotion clas-
sification. Badaro et al. (2018) was one of the teams who participated in the SemEval-
2018 shared task. The team proposed “EMA” using various pre-processing steps
(e.g. diacritics removal, normalisation, emojis transcription and stemming), as well
as different classification algorithms. Another team “Tw-StAR” applied similar pre-
processing steps and then used TF-IDF to learn features of a Support Vector Machine
for the same shared task (Mulki et al., 2018).

Even though standard machine learning is utilised extensively in the area of recog-
nising emotion, their quality and coverage relies heavily on hand-crafted features,
which are time-consuming and expensive. They also suffer from poor-coverage and
cannot identify patterns beyond those features engineered. In general, the quality of
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generated features depends on the expertise and understanding of the area under in-
vestigation. Due to these challenges, the focus of today’s research in TER is on deep
learning methods due to their ability to learn the features automatically.

Deep Learning. More recently, several neural network models have been devel-
oped for TER, obtaining competitive results on different emotion corpora. Some of
these models generally focus on a single label emotion classification, in which only
a single-label is assigned to each input (Islam et al., 2019a; Alhuzali et al., 2018a,c;
Saravia et al., 2018; Zhang et al., 2018). Other models have also been proposed for
multi-label emotion classification, in which one or more labels are assigned to each
input (Huang et al., 2021; Fei et al., 2020; Xu et al., 2020a; Alswaidan and Menai,
2020a; Zhou et al., 2020; Gaonkar et al., 2020a; Ying et al., 2019; Fei et al., 2019; He
and Xia, 2018; Baziotis et al., 2018). In addition, multi-label emotion classification
was extended into what is known in NLP research as “emotion distribution learning”.
This task focuses not only on selecting multiple emotions, but also on associating each
emotion with an intensity value (Zhao and Ma, 2019; Zhang et al., 2018; Zhou et al.,
2016). We now turn to describing each of the three approaches in greater detail.

The first approach is focused on multi-class emotion classification. Abdul-Mageed
and Ungar (2017) proposed an emotion classification model developed using Gated
Recurrent Unit (GRU) based on a large data collected via distant supervision from
Twitter. Saravia et al. (2018) also followed the same principles of gathering data from
Twitter, upon which contextualised affect representations were built and used as fea-
tures for training various neural networks (e.g., GRU). Islam et al. (2019a) created
a Multi-Channel-Cnn (MCC), where each channel was built to learn specific embed-
dings for each sample as well as additional features that occur in the same sample (e.g.,
emojis, emoticons and hashtags). The MCC was then evaluated against four emotion
datasets (i.e., HarnessingT., TEC, CBET and EmoInt). Zhang et al. (2018) proposed a
Multi-Task-Loss approach (MTL) that involved learning both emotion distribution and
classification, based on a CNN network (Kim, 2014) trained with cross-entropy and
Kullback-Leibler loss functions jointly. Next, this approach was tested on four emo-
tion datasets (i.e., ISEAR, TEC, CBET and Tales). Fei et al. (2019) developed a neural
network for implicit emotion detection. The proposed model involved firstly capturing
the implicit sentiment objective as a latent variable using Variational Autoencoder and
then incorporated it into an emotion classifier as prior information. This addition en-
ables the network to make better predictions as well as to achieve strong performance
over two benchmark datasets (i.e., ISEAR and IEST). All the above-mentioned models
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are only applied to English. Alhuzali et al. (2018a) described an automatic data collec-
tion method for emotion classification in both Modern Standard and Dialectal Arabic
based on Robert Plutchik’s 8 basic emotions. The method exploited first person emo-
tion seeds, where each consists of a phrase composed of the first person pronoun plus
a seed word expressing an emotion (e.g., “I’m” + “happy”). This method is then eval-
uated on standard machine learning algorithms and Gated Recurrent Unit network.

The second approach is focused on multi-label emotion classification. With this ap-
proach, there are studies that aim to learn correlations between emotions to improve the
task of multi-label emotion classification, and other studies that do not consider that.
Both He and Xia (2018) and Zhou et al. (2018) considered integrating emotion corre-
lations into the loss function and were evaluated on Chinese emotion datasets. More
specifically, He and Xia (2018) introduced a Joint Binary Neural Network (JBNN)
based on Long Short-Term Memory (LSTM) with self-attention mechanism, which fo-
cused on learning the correlations between emotions based on the theory of Plutchik’s
wheel of emotions (Plutchik, 1980). Zhou et al. (2018) also defined a ranking emo-
tion relevant loss focused on incorporating emotion correlations into the loss function
to improve both emotion prediction and rankings of relevant emotions. Gaonkar et al.
(2020b) proposed an approach for multi-label emotion classification that takes advan-
tage of the semantics of emotions. The approach used label embeddings that can track
label-label correlations, which was also enhanced by a semi-supervised method that
can regularise for the correlations on unlabelled data. The first two studies were eval-
uated on a Chinese emotion dataset, whereas the third study was tested on an English
emotion dataset.

There are additional studies that capture emotion correlations through the network
apart from the training objective. Huang et al. (2021) proposed a Sequence-to-Emotion
approach (Seq2Emo) for multi-label emotion classification to tackle emotion correla-
tions in a bi-directional decoder. The correlations were then utilised to recover emo-
tion classes sequentially. Fei et al. (2020) introduced a Latent Emotion Memory net-
work (LEM), in which the latent emotion module learns emotion distribution via a
variational autoencoder, while the memory module captures features corresponding to
each emotion. Moreover, Xu et al. (2020a) considered capturing emotion correlations
through Graph Convolutional Network (GCN), which was then incorporated into both
LSTM and BERT networks.

In contrast to the above-mentioned studies, the following studies are only focused
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on the task of multi-label emotion classification and do not take into account emo-
tion correlations. Zhou et al. (2020) proposed an Emotional Network (EmNet), which
aimed at learning sentence emotions and constructing emotion lexicons that are dy-
namically adapted to a given context. The dynamic emotion lexicons are useful for
handling words with multiple emotions based on different context, which can effec-
tively improve the classification accuracy. Ying et al. (2019) also introduced domain
knowledge into BERT for multi-label emotion classification, which led to strong per-
formance. Alswaidan and Menai (2020a) proposed a Hybrid Neural Network (HNN)
for multi-label emotion classification based on the use of different word embeddings
(e.g. Word2Vec, Glove, FastText) plus variations of RNN variants. González et al.
(2018) proposed “ELiRF” for multi-label emotion classification. The ELiRF model ap-
plied some pre-processing steps (e.g., normalising hashtags and emojis), while adapt-
ing the “TweetMotif” tokeniser (O’Connor et al., 2010) for Spanish tweets. The team
then built their neural network model based on LSTM and CNN, which were further
combined with several emotion and sentiment lexicons. All four works were evaluated
on the same SemEval-2018 dataset, except for the first two that only used the English
set, the third one that utilised the Arabic set and the fourth one that used the English
and Spanish sets.

Finally, the third approach is based on emotion distribution learning. This ap-
proach extends multi-label emotion classification by learning intensity values of an
input among a set of emotions. Although such a task is crucial for better emotion un-
derstanding and interpretation, there is limited research done in this area, which can be
attributed to the lack of existing emotion datasets labelled with both fine-grained emo-
tions as well as their associated scores to each input. Zhou et al. (2016) introduced the
task of emotion distribution learning, which takes into account the theory of Plutchik’s
wheel of emotion in order to learn emotion distributions. Next, Zhang et al. (2018)
proposed a multi-task-loss approach (MTL) involving learning of both emotion distri-
bution and classification, which is based on a CNN network (Kim, 2014) trained with
cross-entropy and Kullback-Leibler loss functions jointly. The former loss function
optimises the classification task, while the latter optimises the distribution learning
task.

3.6.3 Unsupervised Learning

Limited research has been done on unsupervised emotion recognition. This can be at-
tributed to the complexity and ambiguity of the task that makes unsupervised learning
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hard or ineffective. One of the first approaches in modelling unsupervised emotion
recognition was proposed by Mac Kim et al. (2010) who experimented with differ-
ent unsupervised techniques using emotion lexicons and a number of dimensionality
reduction algorithms (e.g., Latent Semantic Analysis, Probabilistic Latent Semantic
Analysis and Non-negative Matrix Factorisation). Agrawal and An (2012) introduced
an unsupervised approach based on the semantic relatedness between word-word sta-
tistical co-occurrences. The authors first selected a small set of emotion-bearing key-
words (e.g., happy, glad, joy, good and love) and computed pointwise mutual informa-
tion between those emotion words and each word in a sentence. After that, a vector
was created that represented how much association there is between the sentence and
each one of Ekman’s six basic emotions. Some syntactic dependency features (i.e.,
adjectival complement, adjectival modifier and negation modifier) were also used to
account for cases like emotional shift and flipping. Finally, the approach was eval-
uated on three benchmark emotion datasets. The authors followed-up on the same
task, but used additional association measures and experimented with three different
window types (Agrawal and An, 2016).

Figure 3.8: An instance of text containing emotion cue (i.e., party) and seed words
(i.e., happy and angry). Taken from (Agrawal and An, 2016).

Figure 3.8 shows how the three settings can be formed for the given instance: i) The
nearest cue word to the seed word is chosen. Based on the nearest selection criteria, the
word “party” is co-occurring with “happy” instead of “anger”. ii) The preceding seed
word is selected as co-occurring with the cue word. Here “angry” is chosen instead
of “happy”. iii) The third setting considers the seed word that follows the cue word.
The cue word “party” is followed by “happy” which is selected. It is worth mentioning
that the word-word statistical co-occurrences were generated in this work from a large
corpus of reviews that is more related to the emotion task.

Recently, Gollapalli et al. (2020) introduced an Emotion Sensitive TextRank (ES-
TeR) approach based on the same idea of prior approaches in terms of taking word-
word co-occurrences. Nevertheless, they exploit random walks on graphs in order
to associate input texts with a set of emotions, whereas Zad and Finlayson (2020)
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discussed a framework for unsupervised emotion recognition, focused on a specific
domain, i.e., narrative text.

3.6.4 Transfer Learning

Transfer learning (TL) is an approach that deals with the scarcity of labelled data. In
this respect, the main idea of this approach is to leverage information/knowledge from
auxiliary domains (also called “domain-adaptation”) or tasks (also called “multi-task
learning”) to boost the model performance on the target domain of interest. Another
widely-used TL approach is two-stage fine-tuning, where the first-stage is focused on
training Language Models (LMs) on a large volume of data, while fine-tuning it on
the target domain of interest in the second-stage. In this way, LMs can learn com-
plex linguistic phenomena (Clark et al., 2019), as well as producing high quality word
embeddings that can be used directly to initialise existing neural architectures.

On one hand, there are approaches that adopt multi-task learning setting for tex-
tual emotion recognition. Yu et al. (2018) proposed a Dual Attention Transfer Net-
work (DATN) to improve multi-label emotion classification with the help of sentiment
classification. The DATN approach considered training both sentiment and emotion
classifiers, while simultaneously encouraging the transfer of knowledge from senti-
ment to emotion. To address this issue, the model explicitly minimised the similarity
between the two sets of attention weights (DA) by using the cosine similarity loss func-
tion. Xu et al. (2018) introduced “Emo2Vec”, which incorporated emotional semantics
into embeddings. Emo2Vec was trained on six different emotion-related tasks and
demonstrated strong performance over previously developed emotion-specific embed-
dings. Zhang et al. (2018) proposed a Multi-Task-Loss approach (MTL) that involved
the learning of both emotion distribution and classification, where the distribution task
is utilised to improve the results of single-label emotion classification. Akhtar et al.
(2019) proposed a multi-task learning framework that jointly models related-emotion
tasks, including emotion classification and emotion intensity prediction.

On the other hand, there are other approaches that use two-stage fine-tuning. Bazio-
tis et al. (2018) was ranked the top-1 model of the SemEval-2018 competition (NTUA)
inspired by the works of Howard and Ruder (2018) and Felbo et al. (2017) in terms
of training their model on a large unlabelled data from the same domain and then fine-
tuning it directly on the target task (i.e., SemEval-2018). Kant et al. (2018) followed
this work and developed a multi-label emotion classification model based on the Trans-
former network trained on 40GB of Amazon reviews (McAuley et al., 2015). This
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model achieved competitive results to the NTUA model. On a different dataset, Al-
huzali et al. (2018c) also used the same two-stage fine-tuning, but focused on the im-
plicit emotion shared task (IEST-2018). The proposed model was firstly trained on top
of a pre-trained language model (LM), including forward (FW) and backward (BW)
LMs. Both were then fine-tuned on the data provided by the task organisers and an
ensemble of the two were considered. Among the 30 participating teams, this model
ranked 3rd with 70.7% F-score. Furthermore, Agrawal et al. (2018) proposed an ap-
proach for producing emotion-enriched word embeddings that can be incorporated di-
rectly to downstream tasks for emotion recognition. The approach was based on train-
ing an LSTM model on large noisy data collected automatically via distant supervision,
which was then used to initialise the word embeddings for evaluation against exist-
ing emotion datasets (i.e., Tales, blogs, ISEAR and EmoTweet-top-83). Chronopoulou
et al. (2018) explored different transfer learning strategies for the Implicit Emotion
Shared Task (IEST). Figure 3.9 presents an overview of those strategies. In the first
strategy, the authors pre-trained the Word2Vec model on a large volume of tweets, but
combined the already trained model in the first strategy with another one trained on a
sentiment dataset. In the third strategy, they followed the work of Howard and Ruder
(2018) by training a LM on the same large volume of tweets and then fine-tuning it on
the IEST dataset. Finally, the three strategies are fused together to produce the final
predictions on this dataset.

Figure 3.9: An overview of the different TL strategies employed in Chronopoulou et al.
(2018).

3This corpus is a sub-set of EmoTweet that is discussed in Section 3.5.
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3.7 Evaluation Metrics

TER models are evaluated with a set of metrics. Some metrics capture the overall per-
formance of TER models, while others assess specific properties. We discuss the most
widely-used metrics designed to estimate the performance of TER models. More de-
tailed information about the evaluation metrics can be found in Grandini et al. (2020).
Consider the case, where we have a binary classification problem with two classes. Let
us first define some terminologies that can help in estimating the model performance.
True Positive (TP) refers to the number of inputs correctly predicted by the model as
being positive, and False Positive (FP) refers to the number of inputs incorrectly pre-
dicted by the model as being positive, but they are actually negative. True Negative
(TN) refers to the number of inputs correctly predicted by the model as being negative
and False Negative (FN) refers to the number of inputs incorrectly predicted by the
model as being negative, but they are actually positive. Table 3.2 presents the confu-
sion matrix for a binary classification problem, from which we can define commonly
used metrics, including precision, recall, accuracy and F1-score.

Prediction

Positive Negative

Actual
Positive TP FN

Negative FP TN

Table 3.2: Confusion matrix of binary classification.

Precision and Recall (P& R). Precision is the ratio of correct positive predictions
(TP) to the total predicted positives (TP + FP), whereas Recall is the ratio of correct
positive predictions (TP) to the total positive examples (TP + FN).

P =
TP

TP + FP
(3.1) R =

TP

TP + FN
(3.2)

Accuracy estimates the correct predictions made by the model, i.e., the ratio of
correctly predicted inputs by the model to the total number of inputs.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

F1-Score (F1). The above metrics can also be combined to estimate another metric,
called F1-score defined as the harmonic mean of precision and recall. It is a special
case of the general Fβ score, in which both precision and recall are equally weighted
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(i.e., β = 1).

Fβ =
(
1 + β2

)
· P · R
β2 · P + R

(3.4)

Jaccard Index (J). The Jaccard Index, also known as the Jaccard similarity coeffi-
cient, is a statistical measure used for understanding the similarities between two sets.
This metric emphasises similarity between sample sets, and is formalised as the size
of the intersection divided by the size of the union of the predicted (P) and correct (C)
sets. The Jaccard metric is often used to evaluate multi-label classification, in which
we have a true set (i.e., obtained from ground-truth ) and a prediction set (i.e., produced
by the model output).

J(C,P ) =
|C ∩ P |
|C ∪ P |

(3.5)

Micro- and Macro-averaged Metrics. The above-discussed measures are often
compatible with binary classification experiments, where the number of classes are
simply equivalent to two. However, it is common to have more than two classes and
hence we can build upon Table 3.2 and extend it to multi-class classification. Table 3.3
demonstrates an example of three-class classification, where the first, second and third
classes correspond to “joy”, “anger” and “neutral or no-emotion”, respectively. For
instance, when the model prediction is “anger”, but the correct class is “joy”. Then,
two types of errors are considered, where the first error is a FP for class (b) because
of mis-classification, while the second error is a FN for class (a) because of failure to
identify the correct class. The same applies to when the model prediction is “joy’, but
the correct class is “anger”. In addition, when the model prediction is “neutral”, FN
errors are only counted for each incorrect prediction. In the case of neutral being the
correct class, FP errors are only considered for each wrong prediction.

Prediction

Joy (a) Anger (b) Neutral (c)

Actual

Joy (a) TP FP (b) & FN (a) FN (a)

Anger (b) FP (a) & FN (b) TP FN (b)

Neutral (c) FP (a) FP (b) TN

Table 3.3: Confusion matrix of multi-class classification.

To obtain the result of F1-score in a multi-class setting, we first compute macro-
averaged metric for both precision and recall, which are calculated per class and then
by taking the average over all classes. The macro-averaged metric estimates all the
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classes independently and does not take the problem of imbalanced classes into ac-
count. One can compute both the macro-averaged and micro-averaged for precision
and recall as in Equation (3.6/3.7) and (3.8/3.9), respectively. k denotes the number of
classes in the multi-class setting. The same can be applied to estimate the F1-score by
substituting P and R in Equation (3.1/3.2) with the following.

Pmacro =

∑K
k=1 Pk

K
(3.6) Rmacro =

∑K
k=1 Rk

K
(3.7)

Pmicro =

∑
k TPk∑

k TPk +
∑

k FPk

(3.8) Rmicro =

∑
k TPk∑

k TPk +
∑

k FNk

(3.9)

3.8 Summary and Limitations

In this chapter, an overview of emotion recognition was presented. Firstly, we re-
viewed the problem of TER and its related tasks that are relevant to the work presented
in this thesis. Secondly, we discussed related terms to emotion, more specifically how
emotion can be distinguished from those related terms. Thirdly, we described models
of emotion that are used to inform the classification and categorisation of emotion. Fi-
nally, we discussed existing emotion corpora as well as common proposed approaches
to textual emotion recognition. This review has been influenced by research drawn
from affective computing, natural language processing and psychology, revealing the
diverse nature of research in this area.

An extensive discussion of previous work in the area of TER is provided in this
chapter. More specifically, emotional expression in text was considered from both the
writer’s and the reader’s point of view. It is often the case that TER models tend to pre-
dict the writer’s emotions, but it can often be hard due to the lack of verbal emotional
cues. Existing emotion corpora that undertake annotation studies often ask human an-
notators to assign emotion classes to a piece of text based on the writer’s feeling (Al-
huzali et al., 2018a; Mohammad, 2012b). Aman and Szpakowicz (2007) also requested
the annotators to choose a “non-emotion” class when the text did not show any sign
of the writer’s feeling in order to restrict any further interpretation from the annota-
tors. Then, we reported on models of emotion because they inform TER research on
how best to classify or categorise emotion expression in text. Next, we described com-
mon approaches to TER and focused our discussion on supervised learning because
it is the main learning setting on which this thesis is based. Nevertheless, we explain
other learning approaches beyond supervised learning for completeness, as well as
highlighting previous efforts undertaken in this area.
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Based on our discussion, we observe the following: i) the categorical model is
widely-adopted since it is straightforward, easy to use/understand and less complicated
as opposed to the dimensional model. ii) Existing emotion datasets are mostly focused
on single-labels and are created based on either gold annotations or distant supervision
methods. Each approach has its own benefits and drawbacks in terms of data quality
and size. iii) The majority of previous approaches on TER are also based on supervised
and distant-supervised learning. This follows the trend of emotion datasets proposed
in the literature as shown in Table 3.1. iv) The main methodology of prior research
focused on the classification and identification of emotion expression in text, but both
correlations and associations are often overlooked. Although there are some works
that tackle emotion correlations, they often rely on theories of emotion or lexicons to
learn emotion-specific features. These approaches are not generalisable and difficult
to apply to different domains and languages.

Nevertheless, the main aim of this thesis is to build generalisable computational
methods for TER, while addressing the problem of learning emotion correlations and
associations without utilising any external resources or theories of emotion. The ra-
tionale for this is that we can easily adapt our approach to other domains as well as
languages, which has often been an obstacle in previous research. The concept of cor-
relation is also defined for single-label emotion corpora, many of those corpora fall
under this problem. Introducing the concept of correlations to the single-label case can
help TER models to be robust against highly confused emotions.

In Chapter 4, we present our method for multi-label emotion classification and how
we incorporate both correlations and associations into the proposed model. In Chap-
ter 5, we investigate the effect of emotion/sentiment knowledge within two different
tasks, and demonstrate that our proposed method in Chapter 4 can be easily adapted to
other relevant tasks, in which we explain in detail how that is achieved. Chapter 6 then
reports on our study of highly confused emotions for the single-label case and this aims
to help TER model to achieve better performance and improve its discriminator ability.
Finally, we conclude with our analyses and observations based on our experiments and
provide some limitations as well as future directions.



Chapter 4

SpanEmo: Casting Multi-label
Emotion Classification as
Span-Prediction

Current approaches to Textual Emotion Recognition (TER), mainly classify emotions
independently without considering that emotions can co-exist. Such approaches over-
look potential ambiguities, in which multiple emotions overlap. In this chapter, we
propose a novel neural model for multi-label emotion classification to address our first
research question (RQ#1), as described in Chapter 1, which is concerned with the
incorporation of emotion correlations and emotion-specific associations without the
use of any external resources (e.g., lexicons and theories of emotion). We introduce
SpanEmo casting multi-label emotion classification as span-prediction, which can aid
TER models to learn associations between labels and words in an input instance. Fur-
thermore, we introduce a training objective focused on modelling multiple co-existing
emotions in the input instance. Experiments performed on the SemEval-2018 multi-
label emotion data over three language sets (i.e., English, Arabic and Spanish) demon-
strate our method’s effectiveness. Finally, we present different analyses that illustrate
the benefits of our method in terms of improving the model performance and learning
meaningful associations between emotion classes and words in the input instance. It is
worth noting that this chapter is drawn from Alhuzali and Ananiadou (2021b).

81
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4.1 Motivation

Emotion is essential to human communication, thus TER models have a host of ap-
plications from health and well-being (Alhuzali and Ananiadou, 2019; Aragón et al.,
2019; Chen et al., 2018) to consumer analysis (Alaluf and Illouz, 2019; Herzig et al.,
2016) and user profiling (Volkova and Bachrach, 2016; Mohammad and Kiritchenko,
2013), among others. Interest in this area has given rise to new Natural Language Pro-
cessing (NLP) approaches aimed at emotion classification, including single-label and
multi-label emotion classification. Most existing approaches for multi-label emotion
classification (Ying et al., 2019; Baziotis et al., 2018; Yu et al., 2018; Badaro et al.,
2018; Mulki et al., 2018; Mohammad et al., 2018; Yang et al., 2018) do not effectively
capture emotion-specific associations, which can be useful for prediction, as well as
learning of associations between emotion labels and words in an input instance. In
addition, standard approaches in emotion classification treat individual emotion in-
dependently. However, emotions are not independent; a specific emotive expression
can be associated with multiple emotions. The existence of association/correlation
among emotions has been well-studied in psychological theories of emotions, such as
Plutchik’s wheels of emotion (Plutchik, 1984) that introduces the notion of mixed and
contrastive emotions. For example, “joy” is close to “love” and “optimism”, instead of
“anger” and “sadness”.

# Sentence GT

S1 well my day started off great the mocha ma-
chine wasn’t working @ mcdonalds.

anger, disgust,
joy, sadness

S2 I’m doing all this to make sure you smiling
down on me bro.

joy, love, opti-
mism

Table 4.1: Example Tweets from SemEval-18 Task 1. GT represents the ground truth
labels.

Consider S1 in Table 4.1, which contains a mix of positive and negative emotions,
although it is more negative oriented. This can be observed clearly via the ground truth
labels assigned to this example, where the first part of this example only expresses a
positive emotion (i.e., joy), while the other part expresses negative emotions. For
example, clue words like “great” are more likely to be associated with “joy”, whereas
“wasn’t working” are more likely to be associated with negative emotions. Learning
such associations between emotion labels and words in the input instance can help
ER models to predict the correct labels. S2 further highlights that certain emotions
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are more likely to be associated with each other. Based on these observations, we
seek to answer the following research questions, as discussed in Chapter 1: i) how
to enable TER models to learn emotion-specific associations by taking into account
label information and ii) how to benefit from the multiple co-existing emotions in a
multi-label emotion data set, with the intention of learning label correlations. Our
contributions, which are described in Chapter 1, are also mentioned below:

• a novel framework casting the task of multi-label emotion classification as a
span-prediction problem. We introduce SpanEmo to train the model to take into
consideration both the input instance and a label set (i.e., emotion classes) for
selecting a span of emotion classes in the label set as the output. The objective of
SpanEmo is to predict emotion classes directly from the label set and capture as-
sociations corresponding to each emotion. This also explains the naming behind
our approach “SpanEmo”.

• a training objective, modelling multiple co-existing emotions for each input in-
stance. We make use of the Label-Correlation Aware loss (LCA) (Yeh et al.,
2017), originally introduced by Zhang and Zhou (2006). The objective of this
loss function is to maximise the distance between positive and negative labels,
which is learned directly from the multi-label emotion data set. The overall train-
ing objective contains both the LCA loss and Binary Cross-Entropy loss (BCE).
Both loss functions are trained jointly in an end-to-end fashion.

• a large number of experiments and analyses both at the word- and tweet-level,
demonstrating the strength of SpanEmo for multi-label emotion classification
across multiple languages.

Our work is motivated by research focused on learning features corresponding to
each emotion as well as incorporating the relations between emotions into a loss func-
tion (Fei et al., 2020; He and Xia, 2018). Our work differs as follows: i) our method
learns features related to each corresponding emotion without relying on any external
resources (e.g. lexicons). ii) We further integrated the relations between emotions into
the loss function by taking advantage of the label co-occurrences in a multi-label emo-
tion data set. In this respect, our approach does not rely on any theory of emotion. iii)
We empirically evaluated our method for three languages, demonstrating its effective-
ness as being language agnostic. In contrast to previous research, we focus on both
learning emotion-specific associations and integrating the relations between emotions
into the loss function.
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The rest of the chapter is organised as follows: Section 4.2 describes our method-
ology, while Section 4.3 discusses experimental details. We evaluate the proposed
method and compare it to related methods in Section 4.4. Section 4.5 reports on the
analysis of results, while Section 4.6 provides some conclusions.

4.2 Methodology

4.2.1 Framework

Figure 4.1 presents our framework (SpanEmo). Given an input sentence and a set of
classes, a base encoder was employed to learn contextualised word representations.
Next, a feed forward network (FFN) was used to project the learned representations
into a single score for each token. We then used the scores for the label tokens as
predictions for the corresponding emotion label. The green boxes at the top of the
FFN illustrate the positive label set, while the red ones illustrate the negative label set
for multi-label emotion classification. We now turn to describing our framework in
detail.

CLS C1 C2 ... Cm SEP W1 W2 ... Wn

Feed Forward Network

CLS C1 C2 ... Cm SEP W1 W2 ... Wn

Classes (C) Input (xi)

BERT Encoding

Figure 4.1: Illustration of our proposed framework (SpanEmo).
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4.2.2 Our Method (SpanEmo)

Let {(xi, yi)}Ni=1 be a set of N examples with the corresponding emotion labels of M
classes (C), where xi denotes the input sentence and yi ∈ {0, 1}M represents the label
set for xi. As shown in Figure 4.1, both the label set and the input sentence were passed
into the encoder BERT (Devlin et al., 2019). The encoder received two segments: the
first corresponds to the set of emotion classes, while the second refers to the input
sentence. The hidden representations (Hi ∈ RT×D)1 for each input sentence and the
label set were obtained as follows:

Hi = Encoder([CLS] + |C|+ [SEP] + xi), (4.1)

where {[CLS], [SEP ]} are special tokens and |C| denotes the size of emotion classes.
Figure 4.2 shows the SpanEmo input representation, which consists of the token, po-
sition and segment embeddings. The token embeddings represent each token with its
vector representation of 768 dimensions, whereas the position embeddings encode po-
sitional information of tokens. The segment embeddings further inform the encoder to
distinguish between the label segment and input segment. Feeding both segments to
the encoder has a few advantages. Firstly, the encoder can interpolate between emo-
tion classes and all words in the input sentence. Secondly, a hidden representation is
generated both for words and emotion classes, which can be further used to understand
whether the encoder can learn association between the emotion classes and words in
the input sentence. Thirdly, SpanEmo is flexible because its predictions are directly
produced from the first segment corresponding to the emotion classes.

CLS SEPEc-1 Ec-2 ... Ec-m
Position
Embeddings SEPEw-1 Ew-2 ... Ew-1

[CLS] anger, anticipation, disgust, fear, joy, love, optimism, pessimism, sadness, surprise, trust [SEP] Today is the best [SEP]Input

Token
Embeddings CLS SEPEanger Edisgust ... Etrust SEPEtoday Eis ... Ebest

CLS SEPEl El ... El SEPEi Ei ... Ei
Segment
Embeddings

Figure 4.2: SpanEmo input construction.

We further introduced a FFN consisting of a non-linear hidden layer with a tanh

activation (fi(Hi)) as well as a position vector pi ∈ RD, which was used to compute

1T and D denote the input length and dimensional size, respectively.
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a dot product between the output of fi and pi. As our task involved a multi-label
emotion classification, we added a sigmoid activation to determine whether classi was
the correct emotion label or not. It should be mentioned that the use of the position
vector is quite similar to how start and end vectors are defined in transformer-based
models for question-answering. Finally, the span-prediction tokens were obtained from
the label segment and then compared with the ground truth labels since there was a 1-
to-1 correspondence between the label tokens and the original emotion labels.

ŷ = sigmoid(FFN(Hi)), (4.2)

4.2.3 Label-Correlation Aware (LCA) Loss

Following Yeh et al. (2017), we employed the label-correlation aware loss, which takes
a vector of true-binary labels (y), as well as a vector of probabilities (ŷ), as input:

LLCA(y, ŷ) =
1

|y0| |y1|
∑

(p,q)∈y0×y1

exp (ŷp − ŷq) , (4.3)

where y0 denotes the set of negative labels (i.e., incorrect predictions), while y1 denotes
the set of positive labels (i.e., correct predictions) . ŷp and ŷq represent the pth and qth

elements of the ŷ vector. The objective of this loss function is to maximise the distance
between positive and negative labels by implicitly retaining the label-dependency in-
formation. In other words, the model should be penalised when it predicts a pair of
labels that should not co-exist for a given example.

4.2.4 Training Objective

To model label-correlation, we combined LCA loss with BCE and trained them jointly.
This aimed to help the LCA loss to focus on maximising the distance between positive
and negative label sets, while at the same time taking advantage of the BCE loss by
maximising the probability of the correct labels. We experimentally observed that
training our approach jointly with those two loss functions produced the best results.
The overall training objective was computed as follows:

L = (1− α)LBCE + α
M∑
i=1

LLCA, (4.4)

where α ∈ [0, 1] denotes the weight used to control the contribution of each part to the
overall loss.
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4.3 Experiments

4.3.1 Implementation Details

We used PyTorch (Paszke et al., 2017) for implementation and ran all experiments on
an Nvidia GeForce GTX 1080 with 11 GB memory. We used a pre-trained BERTbase

model and then fine-tuned it on the data of SemEval-2018, which is described be-
low, by utilising the open-source Hugging-Face implementation (Wolf et al., 2019).
For experiments related to Arabic, we chose “bert-base-arabic” developed by Safaya
et al. (2020), while selecting “bert-base-spanish-uncased” developed by Cañete et al.
(2020) for Spanish. All three models were trained on the same hyper-parameters with
a fixed initialisation seed, including a feature dimension of 786, a batch size of 32, a
dropout rate of 0.1, an early stop patience of 10 and 20 epochs. Adaptive Moment
Estimation Algorithm (ADAM) was selected for optimisation (Kingma and Ba, 2014)
with a learning rate of 2e-5. It should be mentioned that we tuned our method only
on the validation set and further report on the analysis of the effect of parameter α in
Section 4.5.5. Table 4.2 summarises the hyper-parameters used in our experiments.

Parameter Value

Feature dimension 768
Batch size 32
Dropout 0.1
Early stop patience 10
Number of epochs 20
Learning rate 2e-5
Optimiser Adam
Alpha (α) 0.2

Table 4.2: Hyper-parameter values.

4.3.2 Data Set and Task Settings

In this work, we chose SemEval-2018 (Mohammad et al., 2018) for our multi-label
emotion classification, which is based on labelled data from tweets in English, Arabic
and Spanish. The data was partitioned into three sets: training set (Train), validation set
(Valid) and test (Test) set. To have comparable results with prior works, we followed
the metrics in Mohammad et al. (2018), and evaluated our experiments using micro
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F1-score, macro F1-score and Jaccard index score2. Table 4.3 presents the summary
of all three sets for each language, including the number of instances in the train, valid
and test sets. In addition, the number of emotion classes, its distributions, and the
percentage of instances with varying numbers of classes (co-existing) are included. It
is worth noting that these percentages do not include the neutral instances.

Info./Lang. English Arabic Spanish

Train (#) 6,838 2,278 3,561
Valid (#) 886 585 679
Test (#) 3,259 1,518 2,854
Total (#) 10,983 4,381 7,094
Classes (#) 11 11 11

1 co.emo (%) 14.36 21.38 39.11
2 co.emo (%) 40.55 39.03 42.15
3 co.emo (%) 30.92 29.85 12.76

anger (%) 36.1 39.4 32.2
anticipation (%) 13.9 9.6 11.7
disgust (%) 36.6 19.6 14.7
fear (%) 16.8 17.8 10.5
joy (%) 39.3 26.9 30.5
love (%) 12.3 25.2 7.9
optimism (%) 31.3 24.5 10.2
pessimism (%) 11.6 22.8 16.7
sadness (%) 29.4 37.4 23.0
surprise (%) 5.2 2.2 4.6
trust (%) 5.0 5.3 4.6

Table 4.3: Data Statistics. co.emo: refers to the percentage of co-existing emotions.

To pre-process the data3, we used the “ekphrasis” tool designed for the specific
characteristics of Twitter, i.e., misspellings and abbreviations (Baziotis et al., 2017).
The tool offers different functionalities, such as tokenisation, normalisation, spelling
correction, and segmentation. We utilised the tool to tokenise the text, convert words
to lowercase, normalise user mentions, urls and repeated-characters.

Finally, we compared the performance of SpanEmo to some baseline as well as
state-of-the-art models on all three languages. For experiments related to English,
we selected eight models, while we chose three and two models for both Arabic and
Spanish, respectively. We also include the results of BERTbase as an additional strong

2Jaccard score is defined as the size of the intersection divided by the size of the union of the true
label set and predicted label set. This metric was also described in Chapter 3.

3It is worth mentioning that emojis are kept as they are, i.e., no modification or conversion was
applied.
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baseline. More detailed information about the baseline and state-of-the-art models can
be found in Chapter 3, more specifically in Section 3.6.2.

4.4 Results

Table 4.4 presents the performance of our proposed approach (SpanEmo) on all three
languages, in terms of micro F1-score (miF1), macro F1-score (maF1) and Jaccard
index score (jacS), and compares it to the baseline and state-of-the-art models.

Language English

Model/Metric LE LC miF1 maF1 jacS

JBNN (He and Xia, 2018) ✗ ✓ 0.632 0.528 -
RERc (Zhou et al., 2018) ✗ ✓ 0.651 0.539 -
DATN (Yu et al., 2018) ✗ ✗ - 0.551 0.583
NTUA (Baziotis et al., 2018) ✗ ✗ 0.701 0.528 0.588
BERTbase (Devlin et al., 2019) ✗ ✗ 0.695 0.520 0.570
BERTbase+DK (Ying et al., 2019) ✗ ✗ 0.713 0.549 0.591
BERTbase-GCN (Xu et al., 2020a) ✓ ✓ 0.707 0.563 0.589
LEM (Fei et al., 2020) ✗ ✓ 0.675 0.567 -
Seq2Emo (Huang et al., 2021) ✓ ✗ 0.700 0.519 0.586
SpanEmo (ours) ✓ ✓ 0.713 0.578 0.601

Arabic

LE LC miF1 maF1 jacS

Tw-StAR (Mulki et al., 2018) ✗ ✗ 0.597 0.446 0.465
EMA (Badaro et al., 2018) ✗ ✗ 0.618 0.461 0.489
BERTbase (Devlin et al., 2019) ✗ ✗ 0.650 0.477 0.523
HEF (Alswaidan and Menai, 2020a) ✗ ✗ 0.631 0.502 0.512
SpanEmo (ours) ✓ ✓ 0.666 0.521 0.548

Spanish

LE LC miF1 maF1 jacS

Tw-StAR (Mulki et al., 2018) ✗ ✗ 0.520 0.392 0.438
ELiRF (González et al., 2018) ✗ ✗ 0.535 0.440 0.458
BERTbase (Devlin et al., 2019) ✗ ✗ 0.596 0.474 0.487
SpanEmo (ours) ✓ ✓ 0.641 0.532 0.532

Table 4.4: The results of multi-label emotion classification on SemEval-2018 test set.
LE refers to the use of label embedding and LC refers to the use of label correlation.
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As shown in Table 4.4, there are some approaches that incorporate label embed-
dings and label correlations, whereas other approaches only focus on the task of multi-
label emotion classification. Table 4.4 demonstrates that our method outperformed all
models on all languages, as well as on almost all metrics, with a marginal improve-
ment of up to 1-1.3% for English, 1.9-3.6% for Arabic and 6.3-9.2% for Spanish. This
demonstrates the utility and advantages of SpanEmo, as well as the label-correlation
aware loss for improving the performance of multi-label emotion classification in En-
glish, Arabic and Spanish.

Based on the empirical results reported in Table 4.4, the following observations
can be made. First, incorporating the relations between emotions into the models
tends to lead to higher performance, especially for macro F1-score. For example, both
DATN and LEM learn emotion-related features and achieve better performance than
NTUA and BERTbase+DK. Additionally, ELiRF makes use of various sentiment/emo-
tion features (i.e., learned from lexica) and it yielded the best performance among
the three compared models. This corroborates our earlier hypothesis that learning
emotion-specific associations is crucial for improving the performance. Although
BERTbase+DK adopts the same encoder as our own and adds domain knowledge, our
method still performs strongly, especially for both macro F1- and Jaccard scores with
a marginal improvement of up to 2.9% and 1%, respectively. In short, capturing
emotion-specific associations as well as integrating the relations between emotions
into the loss function, helped SpanEmo to achieve the best results compared with all
models on almost all metrics.

4.4.1 Ablation Study

To understand the effect of our framework, we undertook an ablation study of the
model performance under three settings: firstly, the model was trained only with BCE
loss; secondly, it was trained only with LCA loss; and thirdly it was trained without the
label segment. The third setting is equivalent to training the model as a simple multi-
label classification task, by only considering the input sentence. Table 4.5 presents
the results. When SpanEmo was trained without the LCA loss, the results dropped by
1-2% for macro F1- and Jaccard score. In addition, the results of SpanEmo dropped
by 1-2% for two metrics apart from the macro F1-score when trained without the BCE
loss. However, the removal of the label segment led to a much higher drop of 3-
6%. The same patterns were also observed in the Arabic and Spanish experiments.
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Language English Arabic Spanish

Model/Metric miF1 maF1 jacS miF1 maF1 jacS miF1 maF1 jacS

SpanEmo (joint) 0.713 0.578 0.601 0.666 0.521 0.548 0.641 0.532 0.532
- L (LCA) 0.712 0.564 0.590 0.654 0.481 0.534 0.629 0.526 0.507
- L (BCE) 0.698 0.583 0.582 0.660 0.526 0.532 0.606 0.544 0.499
- Label Seg. 0.695 0.520 0.570 0.650 0.477 0.523 0.596 0.474 0.487

Table 4.5: Ablation experiment results. The second and third rows correspond to the
removal of the respective loss function, whereas the last row corresponds to the re-
moval of the label segment.

This supports our earlier hypothesis that casting the task of multi-label emotion clas-
sification as span-prediction is beneficial for improving both the representation and
performance of multi-label emotion classification.

In addition, we ran a significance test to further strengthen our claims, for which
the results of SpanEmo (joint) were compared with the results of the last row (i.e., the
removal of both the label segment and the joint training objective). Our hypothesis was
that the two models have a different proportion of errors on the test set of the SemEval-
2018 dataset. To perform the test, we chose the “McNemar test” following the work
of Dror et al. (2018). More specifically, we created a 2 ∗ 2 contingency table, which
highlights the outcomes of the two selected models (i.e., their correct and incorrect
predictions). The test demonstrated that there is statistically significant difference at p
< 0.05 in the disagreements between the two models.

4.5 Analysis

4.5.1 Prediction of Multiple Emotions

We additionally validated the effectiveness of our method for learning the multiple
co-existing emotions on English, Arabic and Spanish sets. Table 4.6 presents the re-
sults, including BERTbase. SpanEmo demonstrated a strong ability to handle multi-
label emotion classification much better than BERTbase. Since BERTbase is trained only
with BCE loss, here we include the results of our method trained only with this loss
function. SpanEmo still achieved consistent improvement as the number of co-existing
emotions increases, showing the usefulness of our method in learning multiple emo-
tions. Improvement on all metrics can clearly be observed for English and Arabic
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experiments, but not as much for Spanish. This may be attributed to the high percent-
age of single-label data, which is around (40%) for Spanish, while it is lower than that
for both English and Arabic. Obviously, SpanEmo can be used without LCA loss,
and still obtain decent performance. Nevertheless, training our method jointly with the
LCA loss leads to better results.

Model/Metric miF1 maF1 jacS miF1 maF1 jacS miF1 maF1 jacS

English L ≥ 1 co.emo ≥ 2 co.emo ≥ 3 co.emo

BERTbase BCE 0.703 0.515 0.587 0.712 0.521 0.596 0.692 0.509 0.554
SpanEmo BCE 0.716 0.563 0.599 0.737 0.578 0.629 0.748 0.597 0.639
SpanEmo Joint 0.724 0.590 0.613 0.746 0.606 0.648 0.753 0.624 0.643

Arabic L ≥ 1 co.emo ≥ 2 co.emo ≥ 3 co.emo

BERTbase BCE 0.656 0.459 0.527 0.668 0.471 0.531 0.682 0.485 0.555
SpanEmo BCE 0.689 0.518 0.565 0.709 0.536 0.586 0.745 0.567 0.629
SpanEmo Joint 0.689 0.534 0.565 0.710 0.551 0.587 0.746 0.584 0.626

Spanish L ≥ 1 co.emo ≥ 2 co.emo ≥ 3 co.emo

BERTbase BCE 0.603 0.476 0.526 0.567 0.461 0.441 0.518 0.432 0.364
SpanEmo BCE 0.653 0.528 0.561 0.646 0.528 0.519 0.663 0.566 0.508
SpanEmo Joint 0.662 0.565 0.581 0.655 0.568 0.530 0.644 0.570 0.490

Table 4.6: Presenting the number of co-existing emotion classes. The second row in
each group corresponds to the removal of LCA loss from SpanEmo. The best results
in each language group are marked in bold.

4.5.2 Learning Emotion-specific Associations

4.5.2.1 Word-Level

In this section, we present the top 10 words learned by SpanEmo for each emotion
class by extracting the learned representations for each emotion class and all words
in every input instance, and then computing the similarity between them via cosine
similarity, Equation (4.5).

Assoc(hei , hwi) =
h⃗ei · h⃗wi

∥h⃗ei∥∥h⃗wi∥
, (4.5)

where hei ∈ Hi is the hidden representation for an emotion class and hwi ∈ Hi is the
hidden representation for the ith word from the input instance xi (see detailed descrip-
tion of Hi/xi in Section 4.2.2) . Finally, we performed this operation on all words
in the SemEval-2018 English validation set and then sorted them for each emotion
class in ascending order. Table 4.7 presents the top-10 words per emotion class. As
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Emotion Top 10 Words
anger anger pissed wrath idiots dammit kicking irritated thrown smashed complain
anti. prediction planning mailsport assumptions upcoming waiting route waited frown ideas
disg. disgusting smashed gross hate pissed wrath dirty awful vile dumb
fear nervous fear terror frightening afraid frown panic terrifying scary dreading
joy happy excitement joyful congratulations glad delightful excited adorable amusing smiling
love love sweetness loved hug mate lucky carefree shine care gracious
optm. optimism integrity salvation persevere perspective bright effort faith glad lord
pesm. hopeless frown disappointed weary dread despair depressing chronic suicide pain
sad. sadness frown depressing saddened hurt disappointed weary upset sorrow hate
sur. stunned awestruck shocking awe mailsport buster genuinely curious hardly believing
trust integrity shine respect courage sign effort confident faith easy kindness

Table 4.7: Top 10 words associated with each corresponding emotion. anti. stands
for “anticipation”, optm. stands for “optimism”, pesm. stands for “pessimism”, disg.
stands for “disgust”, sad. stands for “sadness” and sur. stands for “surprise”.

shown in Table 4.7, the words discovered by our framework are indicative of the cor-
responding emotion. This demonstrates that SpanEmo learns meaningful associations
between emotion classes and words automatically, which can be beneficial for feature
extraction and learning. Additionally, SpanEmo demonstrated that it can learn diverse
words as well as shareable words across some emotions. For example, the words
{pissed, wrath, smashed} are associated with both anger and disgust, demonstrating
the ability of SpanEmo to learn the relations between emotions.

4.5.2.2 Tweet-Level

In Figure 4.3, we visualised an example from the English validation set annotated with
four emotions, i.e., anger, disgust, pessimism and sadness. Our goal was to determine
whether by adding emotion classes to the example, SpanEmo could learn their associ-
ations to each other. To compute the similarity between emotion classes and words in
the example, we also followed the same process discussed in Section 4.5.2.1. As shown
in Figure 4.3, the learned representations capture the association between the correct
emotion label set and every token in the example. Interestingly, we can also observe
that the word “happy” is usually expressed as a positive emotion, but, in this context,
this word becomes negative and the model learns this contextual information. More-
over, the phrase “about to join the police academy” is associated with “anticipation”,
which makes sense although this class is not part of the correct label set. Although
our model associates some functional words with emotion classes, this behaviour is
expected since it takes the contextual information into account as is the case with the
word “happy”. However, other types (e.g., commas, apostrophes and periods) have no
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Figure 4.3: Visualisation of an example. The left presents the emotion labels, and the
bottom presents the example. Each cell shows the cosine similarity value computed
by using the hidden representation of each word and label. Lighter colour indicates
higher similarity, while darker colour indicate lower similarity. Ground-Truth labels:
anger, disgust, pessimism and sadness.

associations at all. This demonstrates the utility and advantages of our approach not
only in deriving associations reported in the annotations, but also providing us with a
mechanism to explore additional information beyond them.

In Section 4.5.2, both word- and Tweet-level analyses suggest that our work might
be beneficial for explainable artificial intelligence. This is because we can easily inves-
tigate model behaviours w.r.t. the whole data or specific instances as is the case in both
Table 4.7 and Figure 4.3. We thus anticipate that future directions can take advantage
of our work to, for example, understand and interpret model predictions.

4.5.3 Qualitative Analysis

We analyse the model predictions, for which we randomly selected two examples per
language and extract their ground truth and predictions. Table 4.8 shows the exam-
ples with their ground truth labels, as well as the model predictions for our approach
SpanEmo and BERT-base (BERT). The first three rows represent examples from En-
glish tweets, the next three rows show examples from Arabic tweets and the last two
rows present examples from Spanish tweets. Our first observation is that our approach
captures more emotion labels than BERT-base. For instance, BERT-base only predicts
one label for four examples out of eight, while their correct sets consist of at least
2-4 emotions. BERT-base also appears to be confused with certain part of the exam-
ples, which cause it to select incorrect emotions. This behaviour can be clearly seen
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# Tweet GT BERT SpanEmo

1 well my day started off great the mocha machine wasn’t
working @ mcdonalds.

A,D,J,S J A,D,J,S

2 What do I do with my heart that is trembling by just the
thought of it? I really don’t know what love is.

L,S J,O L,S

3 Can’t handle rude people. Doesn’t matter what job you
do, a consultant or not, treat people how you would like
to be treated #disapointed.

A,D,S A,D A,D,S
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Trans: (When you thought that God would give you after misery
happiness, and after tears a smile, then you performed a great wor-
ship, which is good thinking of God.)

J,L,O,T J,L,O J,L,O,T
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Trans: (Brother, don’t force people to follow you, people these
days look for something that make them laugh and happy, but they
don’t want to learn.)

A,D J A,D
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Trans: (I have reached this age, and until now I do not know how
to take pills. I can say the phobia of pills has been associated with
me since I was young and still is.)

F,S F,A,S F,S

7 harry está emocionado por la gira mundial, y yo estoy
deprimida de vuelta porque no tengo entrada.
Trans: (harry is excited about the world tour, and I’m depressed
again because I don’t have a ticket.)

P,S J P,S

8 Buenas noches a toda la pipul. Que tengan una exce-
lente semana.
Trans: (Good night to all the pipul. Have an excellent week.)

J,O J J,O

Table 4.8: Prediction of emotion classes with Bert-base (BERT) versus with our
method (SpanEmo). GT: refers to the ground truth labels. Translation for Arabic and
Spanish examples are included in parentheses under each example. A refers to “anger”,
D refers to “disgust”, F refers to “fear”, S refers to sadness, J refers to “joy”, L refers
to “love”, O refers to “optimism”, P refers to “pessimism” and T refers to “trust”.

in the first, fourth and fifth examples in Table 4.8. However, our approach predicts all
correct labels, which can be attributed to two reasons: i) The inclusion of both labels
and each example help guide the model to learn associations between the labels and
each example. This in return improves the model ability to be less confused about
such strong expressions in text. ii) The use of label-correlation aware loss helps to
force the model to take advantage of the label co-occurrences in data, for which often
co-existing emotions are more likely to co-occur together.

We further selected three examples from the English validation set of SemEval-
2018 to evaluate incorrect predictions made by our model. Examples 1-3 below il-
lustrate the three examples with their ground truth (GT) labels as as well as with the
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incorrect predictions. We observed that SpanEmo assigned more labels, which can be
attributed to the use of correlation loss. However, it still captures the correct set as
shown in examples 1-3. Although the SpanEmo predictions are not identical to the
GT labels, they are still acceptable. We expect such difference arises from annotation
artifacts, which can cause the selection of less GT labels. Since the SemEval-2018
data was collected by using hashtags, the presence of such cues during the annotation
phase can bias the annotators to select one emotion or another without considering the
whole context.

1. You could have over a hundred million followers and still not a genuine person
who understands you or wants to #cantshakethis #sadness. (GT: pessimism and

sadness; SpanEmo: disgust, pessimism and sadness)

2. You can have a certain arrogance, and I think that’s fine, but what you should
never lose is the #respect for the others. (GT: disgust and optimism; SpanEmo:
anger, disgust and optimism)

3. I have actually watch drugs destroy an entire family Mother’s on kid row. Oldest
daughter lost her child. Father is estranged. #horrific. (GT: anger, disgust, fear,

pessimism and sadness; SpanEmo: anger, disgust, fear and sadness)

4.5.4 Label Correlations

Since one of the research questions in this thesis was to learn the multiple co-existing
emotions from a multi-label emotion data set, we analysed the learned emotion correla-
tions from SpanEmo and compared them to those adopted from the ground truth labels
in the SemEval-2018 validation set. Figure 4.4 presents the two emotion correlations
as obtained from the ground truth labels and from the predicted labels, respectively.
It can be observed that Figure 4.4(b) is almost identical to 4.4(a), demonstrating that
our method in capturing the emotion correlations is in line with what the emotion an-
notations have revealed. 4.4(b), which was learned by SpanEmo, also highlights that
negative emotions are positively correlated with each other, and negatively correlated
with positive emotions. For example, “anger and disgust” share almost the same pat-
terns, which is consistent with the studies of Mohammad and Bravo-Marquez (2017a)
and Agrawal et al. (2018), both of which report the same issue with negative emotions
of “anger” and “disgust”, as they are easily confused with each other. This is not sur-
prising as their manifestation in language is quite similar in terms of the use of similar
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Figure 4.4: The left plot presents emotion correlations obtained from the ground truth
(GT) labels, whereas the right plot presents emotion correlations obtained from the
predicted labels.

words/expressions. We also noted this finding when analysing the top 10 key words
learned by SpanEmo in Section 4.5.2.1. In short, taking into account emotion cor-
relations is crucial for multi-label emotion classification in addressing the ambiguity
characteristic of the task, especially for emotions that are highly correlated.

4.5.5 Influence of Parameter (α)

The model was trained with BCE loss and with LCA loss via a weight (α), whose
impact on the results is presented in Figure 4.5. It should be mentioned that this anal-
ysis was performed on the validation set of SemEval-2018 data set. The lower bound
(i.e., 0.0) indicates that the model was trained only with the BCE loss, whereas the
upper bound (i.e., 1.0) indicates that it was trained only with the LCA loss. When
the value of α increased from 0.0 to 0.5, the results first improved considerably and
then gradually deteriorated apart from the results of the macro F1-score. The results of
BCE loss favoured the micro F1- and Jaccard score, whereas the results of LCA loss
favoured the macro F1-score. However, integrating LCA with BCE can balance the
results across all three metrics, resulting in strong performance. The best results were
achieved on almost all metrics when the value of α was set to 0.2. Thus, we set the
value of parameter α to 0.2 for all experiments reported in our work.
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Figure 4.5: Sensitivity analysis of the parameter (α). Note that α = 0.0 means that
only BCE loss is used in training SpanEmo, whereas α = 1.0 means that only LCA
loss is utilised in training it.

4.6 Summary

In this chapter, we addressed our first research question (RQ#1) and developed a novel
neural model aimed at casting multi-label emotion classification as a span-prediction
problem. We proposed “SpanEmo” to learn emotion correlations and emotion-specific
associations in an end-to-end fashion.

SpanEmo consists of four components: 1) an input encoding, 2) an input encod-
ing network, 3) a feed-forward network and 4) an output selection layer. The first
component included both an input instance (i.e., input segment) and emotion classes
(i.e., label segment). In this respect, the emotion classes and input instance were con-
catenated together, and this was intended to help the encoding network interpolate
between the two segments. The output of the encoder was then passed into the feed-
forward network to transform the hidden representation for each token into a single
score. The tokens belonging to the label segment were then selected for making the
final predictions. We trained SpanEmo with LCA loss to enable the model to take
emotion correlations into account during the training phase.

We evaluated our model on the SemEval-2018 multi-label emotion classification,
which is based on labelled data from tweets in English, Arabic and Spanish. We
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demonstrated that our proposed method outperforms prior approaches reported in the
literature on three languages (i.e., English, Arabic and Spanish). Our empirical evalua-
tion also demonstrated the utility and advantages of our method for multi-label emotion
classification, specifically the addition of emotion classes to the input sentence, which
helped the model learn emotion-specific associations and increase its performance.
Finally, training our method with LCA loss jointly led to better results, showing the
benefits of integrating the relations between emotions into the loss function.

We conducted a large number of analyses by focusing on four aspects: 1) prediction
of multiple emotions, 2) learning emotion-specific associations both at the word-level
and tweet-level, 3) qualitative study of the model predictions, 4) label correlations.
Our observation regarding the first analysis demonstrated that SpanEmo achieved con-
sistent improvement as the number of co-existing emotions increased. In addition,
SpanEmo showed that it was able to learn meaningful associations between emotion
classes and words automatically. Our observation regarding the third analysis revealed
that SpanEmo can predict all correct labels, which can be attributed to the use of label
correlation aware loss. Furthermore, SpanEmo demonstrated that it can group similar
emotions, as shown in Figure 4.4, and can also learn correlations between emotions
effectively.

From the above discussion, we concluded that the task of recognising emotion ex-
pressions can be modelled better by taking emotion-specific associations and emotion
correlation into account. Taking these two proprieties into consideration can address
the problem of ambiguity between highly correlated emotions. Learning emotion-
specific associations can further help TER models to predict the correct label set as
well as providing a mechanism for interpretation. Our model can be easily applied to
other ER corpora and languages without requiring any modification in its architecture.

Finally, the main attributes of our work can be summarised as follows: 1) the
addition of emotion classes to the input instance, 2) the selection of predictions from
the label segment directly, 3) the modelling of multiple co-existing emotions and 4) the
independence from emotion lexicons as well as theories of emotion in learning both
emotion correlations and associations.



Chapter 5

Case Studies

In the previous chapter, we introduced our neural model (i.e., SpanEmo) for multi-
label emotion classification, which can take advantage of both emotion-specific asso-
ciations and emotion correlations in a tweet. The proposed method was specifically
evaluated against an emotion corpus that was collected from social media data. In this
chapter, we aim to investigate the benefits of emotional knowledge and the adaption
of the SpanEmo architecture to two case studies, which both address our second re-
search question (RQ#2). The two case studies are adverse drug reactions (ADR) and
an application of mental health (i.e., depression). The rationale for choosing these
two case studies is their relevance to emotion expressions. This chapter demonstrates
that emotional knowledge can have a direct influence on downstream applications and
that SpanEmo can be easily adapted to other tasks beyond emotion. In the first part
of this chapter, we describe experiments related to the first case study, and describe
experiments related to the second case study in the second part.

In this chapter, we tackle each case study differently, due to the complexity and
setup of each case. The first case study is simply a binary classification problem,
focusing on determining the presence and absence of ADRs. Whereas, the second
case study contains 21 questions, each of which is a multi-class classification problem.
In addition, the data size of the second case study is scarce, only consisting of 90 users.
The above-mentioned reasons make the second case study more complex than the first
one, and require an alternative solution to address it. We conclude the chapter with
a summary of each case study and report on the analysis of our experiments for both
case studies. It is worth pointing that this chapter is drawn from both Alhuzali and
Ananiadou (2019) and Alhuzali et al. (2021)1.

1Only the work undertaken by Hassan Alhuzali is included in this chapter.

100
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5.1 Use Case on Adverse Drug Reaction

The availability of large-scale and real-time data on social media has motivated re-
search into adverse drug reactions (ADRs). ADR classification helps to identify neg-
ative effects of drugs, which can guide health professionals and pharmaceutical com-
panies in making medications safer and advocating patients’ safety. Based on the ob-
servation that in social media, negative sentiments/emotions are frequently expressed
towards ADRs, this study presents a neural model that combines emotion knowledge
with transfer learning techniques to improve ADR detection in social media postings.
Our model is firstly trained to classify sentiment/emotion in tweets concerning current
affairs, using two SemEval corpora. We then apply transfer learning to adapt the model
to the task of detecting ADRs in social media postings. We show that, in combination
with rich representations of words and their contexts, transfer learning is beneficial,
especially given the large degree of vocabulary overlap between the current affairs
posts in the SemEval17-task4A corpus and posts about ADRs. We compare our results
with previous approaches, and show that our model can outperform them by up to 5%

F-score.

5.1.1 Introduction

Social media generate a huge amount of data for health and are considered to be an
important source of information for pharmacovigilance (Sloane et al., 2015; Harpaz
et al., 2014; Kass-Hout and Alhinnawi, 2013). ADR detection from social media has
attracted a large amount of interest as a source of information regarding morbidity
and mortality. In this respect, social networks are an invaluable source of informa-
tion, allowing us to extract and analyse ADRs from health communication threads
between thousands of users in real-time. Several ADR models have utilised features
related to the sentiment of words to boost their model performance (Wu et al., 2018;
Kiritchenko et al., 2017; Alimova and Tutubalina, 2017; Korkontzelos et al., 2016;
Sarker and Gonzalez, 2015). Korkontzelos et al. (2016) analyse the impact of sen-
timent analysis features on extracting ADR from tweets. The authors observed that
users frequently express negative sentiments when tweeting/posting about ADRs and
that the use of sentiment-aware features could improve ADR sequence labelling and
classification.

We observe that the language used to express sentiment/emotion is often com-
mon across different domains/topics. Consider, for example, the tweet “I hate how



102 CHAPTER 5. CASE STUDIES

[drug name] makes me over think everything and it makes me angry about things that
I shouldn’t even be angry about”. The keywords used in this tweet to express the au-
thor’s negative sentiment/emotion towards an ADR, i.e., hate and anger, are not specific
to ADRs, and may be used to express sentiment/emotion towards many different kinds
of topics. Based on this observation, we hypothesise that we can leverage transfer
learning techniques by using sentiment/emotion data to boost the detection of ADRs.
Our ADR detection model firstly trains a classifier on the SemEval17-task4A data and
the SemEval-2018 multi-label data, which consist of Tweets on the subject of current
affairs. This pre-trained classifier is then adapted to the task of detecting ADRs, us-
ing datasets of social media postings that are annotated according to the presence or
absence of ADRs. To our knowledge, this is the first attempt to apply transfer learn-

ing techniques to adapt a sentiment analysis and an emotion classifier to the task of

detecting ADRs. In contrast to previous research, we use generalised neural methods
that avoid the use of hand-crafted features, since these are time-consuming to generate,
and are usually domain-dependent. We also explore different fine-tuning methods to
determine which one performs best in our scenario. Our main contributions, which are
stated in Chapter 1, are also summarised below:

• Experiment (1): an initial experiment that investigates the benefits of the pre-
trained classifier on sentiment data in improving the detection of ADRs. In this
experiment, we propose a novel neural model that detects ADRs by firstly learn-
ing to classify sentiment, using a publicly available corpus of Tweets that is
annotated with sentiment information and then using transfer learning to adapt
this classifier to the detection of ADRs in social media postings.

• Experiment (2): a second experiment that adapts our SpanEmo architecture.
In this experiment, we follow the findings from the initial experiment that helps
improve the detection of ADRs by pre-training a model on multi-label emotion
data and then applying the pre-trained model to ADRs.

• An in-depth analysis that illustrates the advantages and utility of using emotion
data and SpanEmo model in enhancing the detection of ADRs.

The first part of this chapter is focused on the first case study (i.e., ADRs) and is
organised as follows: Section 5.1.2 provides a review of related work. Section 5.1.3
presents the two datasets used to create our model. Section 5.1.4 describes our method
and model for the initial experiment, whereas Section 5.1.5 describes our method and
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model for the second experiment. We report on the analysis of results in Section 5.1.4.2
and Section 5.1.5.2 for the initial experiment and the second experiment, respectively.

5.1.2 Related Work

There is a growing body of literature concerned with the detection and classification
of ADRs in social media texts (Wang et al., 2018; Huynh et al., 2016; Ebrahimi et al.,
2016; Liu and Chen, 2015). Recent work has employed sentiment analysis features to
improve the classification of ADRs (Wu et al., 2018; Kiritchenko et al., 2017; Alimova
and Tutubalina, 2017; Korkontzelos et al., 2016; Sarker and Gonzalez, 2015).

Nikfarjam et al. (2015) exploited a set of features, including context features, ADR
lexicon, part of speech (POS) and negation, to enhance the performance of ADR ex-
traction. The authors chose Conditional Random Fields as their classifier (CRF). Ko-
rkontzelos et al. (2016) followed the same research hypothesis, but focused on the
evaluation of sentiment analysis features as an aid to extracting ADRs, based on the
correlation between negative sentiments and ADRs. Alimova and Tutubalina (2017)
built a classification system for the detection of ADRs for which they used a Support
Vector Machine (SVM), instead of CRF. The authors also explored different types of
features, including sentiment features and demonstrated that they improved the perfor-
mance of ADR identification. Wu et al. (2018) utilised a set of hand-crafted features
(i.e. sentiment features learned from lexica), similar to all of the other studies intro-
duced above. However, the main difference is that the model is based on a neural
network architecture, including word and character embeddings, Convolutional neural
network (CNN), Long Short-Term Memory (LSTM) and multi-head attentions. This
was the best performing system in the 2018 ADRs shared-task2, which is part of the
social media mining for health workshop (SMM4H).

In contrast to the models proposed in the above studies, it is possible to leverage
sentiment analysis features automatically, without relying on any hand-crafted fea-
tures. One common approach is to pre-train a classifier on a corpus annotated with
sentiment information and then to adapt this pre-trained classifier to the detection of
ADRs. The advantage of this approach is that the target model only needs access to
the pre-trained model, but not the original sentiment corpus, which can be important
for storage and data regulation issues. This method has been investigated by various
researchers (Devlin et al., 2018; Howard and Ruder, 2018; Felbo et al., 2017). Felbo

2https://healthlanguageprocessing.org/smm4h/

https://healthlanguageprocessing.org/smm4h/
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et al. (2017) learned a rich representation for detecting sentiment, sarcasm, and emo-
tion using millions of emojis’ dataset, acquired from Twitter. They demonstrated that
this approach performs well and can achieve results that are competitive with state of
the art systems. Recently, Devlin et al. (2018) built a deep bidirectional representation
from transformers known as (BERT), which can be fine-tuned to different target tasks
with an additional output layer.

Compared to the above approaches, our work uses a simpler network architecture
and does not require any feature engineering. Furthermore, we take advantage of trans-
fer learning techniques acquired knowledge from sentiment analysis data. Our work
is motivated by Felbo et al. (2017) who constructed a pre-trained classifier on emoji’s
data and then adapted it to sentiment and emotion detection. The full details of our
architecture are described in Section 5.1.4.1.

5.1.3 Data

Datasets #ADRs #None
Training

DailyS. 900 417
Twitter 390 384

Validation
DailyS. 600 278
Twitter 260 256

Test
DailyS. 533 225
Twitter 236 192

Table 5.1: Data statistics (DailyS. = DailyStrength)

ADR Corpora. Several datasets have been created for ADRs. Some of these are
gathered from specialised social networking forums for health (Thompson et al., 2018;
Sampathkumar et al., 2014; Yates and Goharian, 2013; Yang et al., 2012), while others
are collected from social media (Ginn et al., 2014; Jiang and Zheng, 2013; Bian et al.,
2012). In this work, we chose a widely used dataset (i.e., containing postings from
Twitter and DailyStrength3) that are annotated according to the presence or absence of
ADRs in each post (Nikfarjam et al., 2015). The authors partitioned the data into a
training (75%) and test (25%) sets. We further divided the training set into a 60% for

3DailyStrength is a specialised social networking website for health.
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training and 40% for validation. The validation set is used to develop our model before
it is evaluated on the original test set (i.e. 25% of the complete corpus). Our model
is designed to perform binary classification, to determine whether or not a given tweet
or post mentions an ADR. Table 5.1 presents the number of tweets/posts belonging to
each category in the three different partitions of the data. More detailed information
about the datasets can be found in Korkontzelos et al. (2016) and Nikfarjam et al.
(2015). Figure 5.1 presents the pipeline of the two conducted experiments in the first
part of this chapter, as described below in greater detail.

training set forSentiment
Dataset

fine-tuned onSentiment Model 
LSTMA-TL

ADR

training set forEmotion
Dataset

Experiment (1)

fine-tuned onTER Model 
SpanEmoExperiment (2)

Figure 5.1: An illustration of the two conducted experiments in the first part of this
chapter.

Sentiment Analysis corpus. In experiment (1), we firstly train a sentiment analysis
model on Twitter data from the SemEval17-task4A, which focuses on classifying the
sentiment polarity of tweets on the subject of current affairs into pre-defined categories,
e.g. positive, negative, and neutral. The dataset is partitioned into a training set of
50, 000 tweets and a test set of 12, 000 tweets (Rosenthal et al., 2017). A description
of the model is provided in Section 5.1.4.1.

Multi-label Emotion corpus. In experiment (2), we firstly train a multi-label emo-
tion classification model on Twitter data from the SemEval-2018, which focuses on
classifying a tweet into multiple emotions (e.g., anger, fear, disgust, love, etc.). The
dataset is partitioned into a training set of 6, 838 tweets, a validation set of 886 and
a test set of 3, 259 tweets (Mohammad et al., 2018). A description of the model is
provided in Section 5.1.5.1.

Preprocessing. Since Twitter data possesses specific characteristics, including in-
formal language, misspellings, and abbreviations, we pre-process the data before ap-
plying the methods described in the next section. We use the “ekphrasis” tool (Baziotis
et al., 2017) that is specifically designed for the Twitter domain. The tool provides
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a number of different functionalities, such as tokenisation, normalisation, spelling-
correction, and segmentation. We use ekphrasis to tokenise the text, to convert words to
lower-case, to correct misspellings, and to normalise user mentions, urls and repeated-
characters.

5.1.4 Experiment (1)

5.1.4.1 Proposed Approach

This section discusses our model architecture, which is composed of two stages: the
first stage involves building a sentiment analysis model, while the second stage adapts
this model to a target task, which in our case is the detection of ADRs. We describe
our architectures in the following subsections.

Network Architecture. Our architecture consists of an embedding layer (Mikolov
et al., 2013a), a Long Short-Term Memory (LSTM) layer (Hochreiter and Schmid-
huber, 1997), a self-attention mechanism (Bahdanau et al., 2014) and a classification
layer. Figure 5.2 depicts the network architecture of our model.
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Figure 5.2: Description of our framework.

In our different experiments, we use both an LSTM and a bi-directional LSTM
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(BiLSTM). Both are able to capture sequential dependencies especially in sequential
data, of which language can be seen as an example. The model’s weights are initialised
from the word2vec embedding with 300 dimensional size, which was trained on 550M
English Twitter messages4. Additionally, the model consists of two LSTM/BiLSTM
layers. For regularisation, we apply a dropout rate of 0.2 and 0.3 on the embedding
output and after the second hidden layer, respectively, to prevent the network from
over-fitting to the training set (Hinton et al., 2012). We choose Adaptive Moment Esti-
mation Algorithm (ADAM) (Kingma and Ba, 2014) for optimisation and select 0.001
as the learning rate. We train the network for 10 epochs and only the best performing
cycle is retained. It should be mentioned that the above set of hyper-parameters was
determined using the validation set. Table 5.2 summarises the network architecture
and hyper-parameters.

Hyper-Parameter Value
embed-dim 300
layers 2
units {200, 300, 400∗}
batch size {32∗, 64}
epochs 10
sequence length 30
embed-dropout 0.2
lstm-dropout {0.3, 0.4∗}
learning rate 0.001

Table 5.2: Network architecture and hyper-parameters. The asterisk (*): denotes the
best performing setting

Embedding layer. T is a sequence of words {w1, w2, ..., wn} in a tweet/post and
each wi is a d dimensional word embedding for the i-th word in the sequence, where n
is the number of words in the tweet. T should have the following shape n-by-d.

LSTM/Bi-LSTM layer. An LSTM layer takes as its input a sequence of word
embeddings and generates word representations {h1, h2, ..., hn}, where each hi is the
hidden state at a time-step, retaining all the information of the sequence up to wi.
Additionally, we experiment with a BiLSTM where the vector representation is built
as a concatenation of two vectors, the first running in a forward direction

−→
h from

left-to-right and the second running in a backward direction
←−
h from right-to-left hi=

[
−→
h ;
←−
h ].

4https://github.com/alexandra-chron/ntua-slp-semeval2018

https://github.com/alexandra-chron/ntua-slp-semeval2018
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Self-attention. A self-attention mechanism has been shown to attend to the most
informative words within a sequence by assigning a weight ai to each hidden state hi.
The representation of the whole input is computed as follows:

ei = tanh(Whhi + bh) (5.1)

ai = softmax(ei) (5.2)

r =
T∑
i=1

ai · hi (5.3)

, where Wh, bh are the attention’s weights.

Classification layer. The vector r is an encoded representation of the whole input
text (i.e. a tweet or post), which is eventually passed to a fully-connected layer for
classification. A binary classification decision is made according to whether or not the
input text mentions ADRs.

Transfer Learning. After training the sentiment classification model, we exclude
its output layer and replace it by an ADR output layer. Finally, the network is fine-
tuned to detect the ADRs adopting the same architecture and hyper-parameters as the
original model. We analyse the fine-tuning methods in Section 5.1.4.3.

5.1.4.2 Results

Table 5.3 presents the performance of our models in terms of F-score of the positive
class (i.e., instances labelled as containing the mentioning of ADRs)5, and compares
these to the three of the best performing models from recently published research.
For our own results, we report the results of three different experiments. Firstly,
the baseline (LSTMA) is trained to detect ADRs using the ADR datasets mentioned
above, without the use of transfer learning. The other two models (LSTMA-TL and
BiLSTMA-TL) apply transfer learning, making use of pre-training of a sentiment anal-
ysis model using the SemEval17-task4A dataset. These latter two models different in
terms of whether they use a single direction or bi-directional LSTM, respectively. For
experiments related to previous work, we replicated the three models following their
details as described in Huynh et al. (2016), Alimova and Tutubalina (2017) and Wu
et al. (2018).

5The reason for choosing this metric is because the task of ADRs is binary.
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Datasets DailyS. Twitter
Models F1 F1
Previous Work
Huynh et al. (2016) 0.89 0.75
Alimova and Tutubalina (2017) 0.89 0.78
Wu et al. (2018) 0.90 0.79

Contextualised Embeddings
Devlin et al. (2018) 0.89 0.82
This Work
LSTMA (baseline) 0.90 0.79
LSTMA-TL 0.92 0.82
BiLSTMA-TL 0.92 0.81

Table 5.3: Comparison of our models to those reported in previous work. LSTMA:
refers to LSTM with self−attention mechanism, while LSTMA-TL: means the same
thing except the addition of the transfer learning model. BiLSTM-TF: uses a BiLSTM
with transfer learning model. Best: bold.

Previous Work. Alimova and Tutubalina (2017) used an SVM model with dif-
ferent types of hand-crafted features (i.e. sentiment and corpus-based features). Their
model performed to a high degree of accuracy, which is not surprising, due to the
power of the SVM model when applied to small data. Similarly, Huynh et al. (2016)
exploited different neural networks, i.e CNN and a combination of both CNN and
Gated Recurrent Units (GRU). They found that CNN obtained the best performance.
For this reason, the results reported in Table 5.3 are those obtained for the CNN model.
On the Twitter dataset, the performance of the CNN is even lower than the performance
of our baseline model on this dataset. However, the performance on the DailyStrength
dataset is considerably higher. The model developed by Wu et al. (2018) obtained the
best results among the three compared systems; indeed, the results reach the same level
as our baseline system. However, it is important to note that in contrast to our model
architecture, that of Wu et al. (2018) is more complex and it relies on hand-crafted
features as well as deep neural architectures.

Contextualised Embeddings. In this work, we also compared our model to con-
textualised embedding (i.e. BERT) since it has been shown to achieve high results
for various NLP tasks, including text classification (Devlin et al., 2018). We use the
open-source PyTorch implementations 6 and only consider the pre-trained “bert-base-
uncased” model. The model is trained on the default hyper-parameters except that the

6https://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
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number of batch-size and sequence length are chosen as follows 32 and 30, respec-
tively, to match our model hyper-parameters for these two values. As shown in Table
5.3, BERT model achieves the same performance as our best model “LSTMA-TL”
when applied to the Twitter data, although its performance is 3% lower than our best
performing model when applied to the DailyStrength dataset. Even though transfer
learning is beneficial, it can achieve better performance when learned from a related
domain to the problem under investigation.

This Work. As Table 5.3 demonstrates, our proposed model is able to outper-
form all compared systems on the DailyStrength dataset, and all systems apart from
BERT when applied to the Twitter Dataset. More specifically, the “LSTMA-TL” ob-
tained the best results, thus demonstrating the utility and advantages of transfer learn-
ing techniques. The “BiLSTMA-TL” also demonstrates competitive results for the
DailyStrength dataset, but it is 1% less than the “LSTMA-TL” for the Twitter dataset.
This may be due to the size of data and the architecture used in this work. Although
the sentiment analysis model is trained on Twitter data, our ADR detection system still
demonstrated substantial improvement on the DailyStrength dataset. Specifically, we
obtained 3% and 2% improvement over our baseline model (i.e. LSTMA) on the Twit-
ter and Dailystrength datasets, respectively. Even though our experiments are based on
a small dataset, the model demonstrated strong performance for ADR classification.
Recent research claims that transfer learning techniques (i.e. fine-tuning) are bene-
ficial for downstream tasks even if the target data size is small (Howard and Ruder,
2018; Alhuzali et al., 2018d).

5.1.4.3 Analysis

Impact of fine-tuning. We evaluate different methods to fine-tune our model, i.e. Last,
Chain-thaw, Full and Simple Gradual unfreezing (GU). The first three techniques are
adopted from Felbo et al. (2017) while the fourth one is described by Chronopoulou
et al. (2019). “Last” refers to the process of fine-tuning only the last layer (i.e. output
layer), while the other layers are kept frozen. “Chain-thaw” method aims to firstly fine-
tune each layer independently and then fine-tuned the whole network simultaneously.
“GU” is similar to the Chain-thaw method except that the fine-tuning is performed at
different epochs. In this work, we experimented with these methods and selected the
one that achieved the highest results for both datasets (i.e. Twitter and DailyStrength).
The results of these four methods are reported in Figure 5.3.
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“Last”, which is the standard technique in fine-tuning, achieved the lowest per-
formance; this is not surprising, because it contains the least general knowledge. In
contrast, “Chain-thaw” achieved better results than “Last”. The “Full” and “GU” ob-
tained the best results for ADR classification. When we fine-tuned the whole network,
we modified the “Full” method such that the embedding layer is frozen and we called
it “Full-no-Emb”, instead. The intuition behind this is that the embedding layer com-
putes a word-based representation, which does not take into account the context of a
word. This method obtains the best performance for both Twitter and DailyStrength
datasets.

Figure 5.3: F-score for our model with a different set of fine-tuning methods.

Word Coverage. We observed that the vocabularies used in the sentiment analysis
dataset and the ADR datasets share a large proportion of common words. To further
investigate this, we measured the degree of common word coverage between the train-
ing and test parts of each dataset (i.e. Twitter and DailyStrength). The SemEval17-
task4A training set is also included in this comparison. It should be noted that we
compute the word coverage after pre-processing the data. Table 5.4 shows percentage
of shared-vocabulary between the datasets. As shown in Table 5.4, the percentage of
shared words between the training and test set of ADR Twitter data is 56.50%, while
it is 74.22% between the SemEval17-task4A training set and the ADR Twitter test
set. A similar pattern is also observed for the DailyStrength dataset, although there
is a greater proportion of shared vocabulary between the training and test sets of Dai-
lyStrength. The vocabulary of the SemEval17-task4A dataset exhibits a large degree
of overlap with the test sets of both Twitter and DailyStrength.
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Dataset Train SEl17-4A ∆ %
Twitter test 56.50% 74.22% 17.72%
DailyS. test 68.03% 78.22% 10.19%

Table 5.4: Word coverage. “SEl17-4A”: corresponds to the training set of the
SemEval17-task4A. ∆%: represents the difference between the two percentages for
each dataset in a row.

We hypothesise a number of reasons could account for this finding. Intuitively,
users often use non-technical keywords when they post or tweet about ADRs. In other
words, they do not employ terms found in medical lexicons. This allows users to ex-
press their opinion towards ADRs using terms which may be used to express sentiment
towards other different topics. Additionally, several datasets have been collected for
ADRs. However, most of them have not been made available for the research commu-
nity. In contrast, there are dozens of sentiment analysis datasets available online, in-
cluding SemEval17-task4A7, Yelp reviews 8, Amazon reviews9 and Stanford10, among
others. Thus, this confirms our initial observations and helps to reinforce that the ADR
model can benefit from the proliferation of sentiment analysis data available online,
which is the primary motivation of this work.

Error Analysis. We experiment with small data in this work and this may limit
our interpretation and analysis in this section. Nevertheless, performing error analysis
can reveal some strengths and weaknesses of the proposed models and identify room
for future work. For this analysis, we selected examples which are incorrectly clas-
sified by the proposed model in this paper (i.e. LSTMA-TL) and previous work (i.e.
(Huynh et al., 2016; Alimova and Tutubalina, 2017). Figure 5.4 presents the number
of false positive and false negative classifications for each model. As can be seen in
Figure 5.4a, the number of miss-classified examples as false negative is higher than
false positive for the DailyStrength dataset, while the opposite pattern is observed for
the Twitter dataset as shown in Figure 5.4b. Our model also demonstrated balanced
error classifications for both false positive and false negative. In contrast, the other
two models, proposed by previous research, obtained unbalanced error classifications
except Alimova and Tutubalina (2017)’s model achieved quite balanced errors for the
Twitter dataset. For future work, it might be useful to investigate different ensemble

7http://alt.qcri.org/semeval2017/task4/index.php?id=
data-and-tools

8https://www.yelp.com/dataset
9https://s3.amazonaws.com/amazon-reviews-pds/readme.html

10https://nlp.stanford.edu/sentiment/index.html

http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
https://www.yelp.com/dataset
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://nlp.stanford.edu/sentiment/index.html
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methods that can help to reduce the false positive and false negative classifications and
improve the classification of ADR.

(a) Daily Strength. (b) Twitter.

Figure 5.4: The number of miss-classified examples by the proposed models of this
work and previous research. This work: refers to the proposed model in this chapter
(i.e. LSTMA-TL).

In addition, we analysed examples (described below) classified correctly by our
model, and observed that our model is able to classify examples carrying non-specific
keywords to ADRs, but to sentiments in general. This shows the importance of senti-
ment features to ADRs. Examples 1-3 below illustrate the instances that are correctly
predicted by our model. The first two examples are part of the Twitter test set, while
the third example is part of the DailyStrength test set.

• Example 1: is it hot in here or is [durg name] just kicking in?.

• Example 2: anyone ever taken [durg name]? i’ve been on it for a week, not too
sure how i feel about it yet. anyone want to share their experience?.

• Example 3: loved it , except for not being able to be woken up at night . . yeah
that blew.

We also inspected examples that our model failed to correctly classify. For instance,
example (4) below was extracted from the Twitter test set and it was predicted as
negative for the presence of ADR, whereas the true label is positive for the presence of
ADR. Example (5) also illustrates the same observation, but is part of the DailyStrength
test set. We anticipate that our model failed to classify examples (4) and (5) due to the
lack of context and unambiguous keywords. Example (4) can also be interpreted as
either positive or negative for the presence of ADRs. This may explain that the true
label can be sometimes misleading and requires further examination.
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• Example 4: moved on to something else when it quit working.

• Example 5: i’m with you. even though the [durg name] works, i still don’t feel
fully human.

5.1.5 Experiment (2)

5.1.5.1 Proposed Approach

We aim to apply our previously introduced model in Chapter 4, to the adverse drug
reaction problem for social media data. In a similar vein, the architecture consists
of four components: an input encoding, an input encoding network, a feed-froward
network and, finally, an output classification layer. The main differences with our
previous model are featured only in the encoding of input and the output layer. In
addition, we follow our previous findings discussed in Section 5.1.4, and utilise the
best performed transfer learning strategy. We describe these components in more detail
below.

Input Encoding. One distinction between the task of multi-label emotion classifi-
cation and ADR classification lies in the number of labels associated with each input.
For the former, each input can take more than one emotion label, whereas the latter
can only take a single label (i.e., presence/absence of ADR). We formulate the input as
follows:

Hi = Encoder([CLS] + |C|+ [SEP] + xi), (5.4)

where {[CLS], [SEP]} are special tokens and |C| denotes the size of ADR labels ∈
{pos, neg}, which are encoded into the input as positive reaction and negative reaction,
respectively. xi represents the ith input representation.

Classification Layer. One of the goals of SpanEmo is to learn correlations between
emotions, and this has been leveraged by using the co-occurrence statistics among
different emotion categories from the emotion corpus. However, this is not needed
for the ADR task due to the number of outputs being binary. Thus, we exclude the
correlation component for this task and only use the output from the feed-forward
component directly for prediction. We also replace the sigmoid activation function by
the softmax function. This can help the model in selecting either one of the two labels.

ŷ = softmax(FFN(Hi)), (5.5)

where Hi represents the hidden representation for each input and FFN is responsible
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for transforming the hidden representation of each token into a single score. Tokens
correspond to the label segment are selected for final predictions and the selected pre-
dictions are then passed into a softmax activation function.

Transfer Learning. Based on our previous evaluation and analysis, we demon-
strate that transfer learning is beneficial for ADR and it can achieve better performance
when learned from a related domain to the task of ADR. For this reason, we initialise
the model weights using SpanEmo trained on the multi-label emotion corpus. We hy-
pothesise that if training the model on sentiment data improves the performance, then
training it on an emotion corpus should help too, due to the fine-grained nature of the
corpus which captures more nuances beyond those existing in the sentiment corpus.

5.1.5.2 Results and Analysis

Table 5.5 shows the results of our model in terms of F-score, and compares it to the
five of the best performing models from recently published research on both Twitter
and Daily Strength data sets (see detailed description about these four models in Sec-
tion 5.1.4.2).

Datasets DailyS. Twitter

Models F1 F1

Previous Work

Huynh et al. (2016) 0.89 0.75
Alimova and Tutubalina (2017) 0.89 0.78
Wu et al. (2018) 0.90 0.79
Devlin et al. (2019) 0.89 0.82
Alhuzali and Ananiadou (2019) 0.92 0.82

This Work

ours w/ TL 0.95 0.84
ours w/o TL 0.93 0.84

Table 5.5: Comparison of our method to those reported in prior work. TL stands for
transfer learning.

Our model outperforms all previously developed models on the two data sets, with
a high improvement of 3% for the Daily Strength data set and 2% for the Twitter data
set. Consider the example “I hate how drug-name makes me over think everything and
it makes me angry about things that I shouldn’t even be angry about”. A sentiment
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model is more likely to predict a negative sentiment for this example (i.e., coarse-
grained), whereas an emotion model is more likely to provide fine-grained predictions
(e.g., anger and disgust). The fine-grained predictions carry additional useful infor-
mation for the task of ADR beyond those found in coarse-grained predictions. This
confirms our hypothesis that emotion features are not only beneficial, but also more
useful for ADR classification.

Testing Generalisability. To evaluate the generalisation capability of the pro-
posed approach, we performed training on Twitter data and testing on Daily Strength,
as well as vise versa. For this evaluation, we select two models as both achieve high
results on the two datasets (i.e., SpanEmo and BERT). Figure 5.5 presents the results
in terms of F1-score. It is worth noting that when the model is tested on the same test
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Figure 5.5: The results of Daily Strength and Twitter when evaluated against the same
test set (In-distribution) vs the other test set (Out-distribution).

set, we call this “In-distribution”, whereas we call it “Out-distribution” when tested on
the other test set. We obviously see some drop in performance, but the drop of our
model is not as much as that of BERT. For example, BERT’s performance drops up to
0.65, whereas our model drops up to 0.78, with a marginal difference of 11%. In ad-
dition, we notice that the drop in performance is higher for the Daily Strength data set
than the Twitter data set. This is attributed to the fact that our model is pre-trained on
emotion data collected from Twitter. Although our model’s result has dropped down,
it still demonstrates strong performance, which can be beneficial for cases when there
is no or small labelled data to use. This evaluation again shows the potential of transfer
learning, especially when pre-trained on a related domain to the one under investiga-
tion, as well as the potential of our model, which makes use of descriptive label names
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in order to prime the model to focus on associations between the labels and input.



118 CHAPTER 5. CASE STUDIES

5.2 Use Case on Mental Health

In the first part of this chapter, we investigated both the benefits of emotional knowl-
edge and the adoption of SpanEmo model to adverse drug reaction. We demonstrated
the advantages and utility of sentiment/emotion corpora, transfer learning techniques
and more importantly “SpanEmo” for improving the performance of ADR detection
in social media. We now turn to take advantages of the findings discovered from the
ADR experiments and adapt them to an application of mental health (i.e., depression).

Predicting and understanding how various mental health conditions present online
in textual social media data has become an increasingly popular task. The main aim
of using this type of data lies in utilising its findings to prevent future harm as well
as to provide help. In the second part of this chapter, we describe our approach and
findings in participating in sub-task 3 of the CLEF e-risk shared task. Our approach
follows-up our findings described in the first part of this chapter, more specifically the
use of SpanEmo model and transfer learning. We use both to extract features for all
user’s posts and then feed them into a classifier. We achieve better results than prior
approaches on this shared task, with an average hit rate of 35.65% and an average
depression category hit rate of 48.85%.

5.2.1 Introduction

There have been many previous iterations of the CLEF e-risk shared task over recent
years (Losada et al., 2020, 2019; Losada and Crestani, 2016), where the collective
goal of these tasks is to connect mental health issues to language usage. However,
previous work in this area has not been able to produce convincing solutions that con-
nect language to psychological disorders and it therefore remains a challenging task
to produce accurate models. This year’s CLEF e-risk-2021 shared task (Parapar et al.,
2021) provided three different tasks, which are focused on pathological gambling (T1),
self-harm (T2) and depression (T3). We only focus on T3 of the shared-task.

Depression is one of the most common mental disorders, affecting millions of peo-
ple around the world (James et al., 2018). The growing interest in building effective
approaches to detect an early sign of depression has been motivated by the proliferation
of social media and online data, which have made it possible for people to communi-
cate and share opinions on a variety of topics. In this respect, social media are an
invaluable source of information, allowing us to analyse users who present signs of
depression in real-time. Taking advantage of social media data in early detection of
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depression helps to benefit individuals who may suffer from it and their loved ones, as
well as to give them access to professional assistance who could advocate their health
and well-being (Guntuku et al., 2017). In this work, we describe our contribution to
T3 of eRisk-2021, which focused on detecting early risk of depression from a thread
of user posts on Reddit.

The second part of this chapter is focused on an application of mental health (i.e.,
depression) and is organised as follows: Section 5.2.2 provides a review of related
work. Section 5.2.3 discusses some experimental details, including the data/task set-
tings, evaluation metrics and our proposed method. Section 5.2.3.2 discusses our re-
sults and analyses, while Section 5.2.3.3 highlights negative results.

5.2.2 Related Work

There is a large body of literature on early sign detection of depression (Guntuku et al.,
2019; Aragón et al., 2019; Chen et al., 2018; Schwartz et al., 2014; Wang et al., 2013;
Van Rijen et al., 2019; Wang et al., 2018; Cacheda et al., 2018). Some of these studies
make use of the temporal aspect plus affective features in identifying early signs of
depression. For example, Chen et al. (2018) attempted to identify early signs of de-
pression of Twitter users by incorporating a progression of emotion features over time,
whereas Schwartz et al. (2014) examined changes in degree of depression via Facebook
users by taking advantage of sentiment and emotion lexicons. In addition, Aragón
et al. (2019) introduced a method called “Bag of Sub-Emotions (BoSE)” aiming at
representing social media texts by using both an emotion lexical resource and sub-
word embeddings. The choice of posted images and users’ emotion, demographics
and personality traits are also shown to be strong indicators of both depression and
anxiety (Guntuku et al., 2019). The above mentioned studies highlight the important
role of both emotion features and the temporal aspect in early detection of depression
on social media. Due to the increased interest in this area, the CLEF e-risk lab has run
a sub-task of measuring the severity of depression since 2018.

Some of the participant teams in this shared task present different approaches,
including those based on standard machine learning algorithms (ML), deep learning
and transformer-based models. Oliveira (2020) participated in the e-risk shared-task of
2020 and proposed a model named “BioInfo”. This model used a Support Vector Ma-
chine with different types of hand-crafted features (i.e. bag of words, TF-IDF, lexicons
and behavioural patterns), and it ranked the top-1 model of the competition. Martınez-
Castano et al. (2020) was also one of the participant teams who utilised BERT-based
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transformers, achieving competitive results to that of the BioInfo model.

Our work is motivated by research focused on ML algorithms (Oliveira, 2020)
and transformer-based models (Martınez-Castano et al., 2020). Our work differs from
these two studies in the following ways: i) Our method combines the two approaches
instead of relying on one of them. In this respect, we use the former to learn a single
representation per user while utilising the latter to train on the learned representations.
ii) We use the SpanEmo encoder (Alhuzali and Ananiadou, 2021b) that is trained on a
multi-label emotion dataset. iii) We do not fine-tune both the transformer-based models
as well as the SpanEmo encoder on the shared-task data. In other words, we treat them
as feature extraction modules.

5.2.3 Experiments

Data and Task Settings. For our participation in T3 of eRisk-2021, we combined
the 2019 and 2020 sets provided by the organisers, and then randomly sampled 80%
and 20% for training and validation, respectively. Both sets consist of Reddit data
posted by users who have answered the Beck’s Depression Inventory (BDI) question-
naire (Beck et al., 1961). The questionnaire contains 21 questions, each of wich has 4
possible answers except for question #15 and #17, which have 7 possible answers. This
questionnaire aims to assess the presence of feelings like sadness, pessimism, loss of
energy, self-dislike, etc. Figure 5.6 presents an illustration of two questions with their
possible answers11.

Q2. Pessimism

A1. I am not discouraged about
my future.
A2. I feel more discouraged
about my future than I used to be.

A3. I do not expect things to work
out for me.
A4. I feel my future is hopeless
and will only get worse.

Q1. Sadness

A1. I do not feel sad.

A2. I feel sad much of the time.

A3. I am sad all the time.

A4. I am so sad or unhappy that I
can't stand it.

Figure 5.6: Illustration of two questions from the questionnaire with their answers.

11The rest of questions and their possible answers can be found in https://erisk.irlab.
org/2021/index.html.

https://erisk.irlab.org/2021/index.html
https://erisk.irlab.org/2021/index.html
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To pre-process the data, we adopt the following steps: 1) We remove empty, du-
plicate and broken posts (i.e., those that either break the Reddit rule or are removed).
2) We tokenise the text, convert words to lowercase, normalise URLs and repeated-
characters. Table 5.6 presents the summary of all three sets, including the number of
subjects/posts in the train, valid and test sets. The number of depression categories
across the three sets is also included.

Train Valid TEST

#subjects 72 18 80
#posts 35,537 6,207 30,382
avg #posts/subject 493 344 379

#minimal subjects 11 3 6
#mild subjects 21 6 13
#moderate subjects 18 4 27
#severe subjects 22 5 34

Table 5.6: Data Statistics.

Evaluation Metrics. For evaluating the results of our submission, we used four
metrics, which measure different properties (e.g. distance between correct and pre-
dicted answers). The four metrics are12:

• Average Hit Rate (AHR): computes the percentage of predicted answers that are
the same as the ground-truth responses.

• Average Closeness Rate (ACR): computes the absolute difference between pre-
dicted answers and the correct ones. In other words, the CR measure evaluates
the model’s ability to answer each question independently.

• Average Difference between Overall Depression Levels (ADODL): computes
the absolute difference between overall depression level score (i.e., sum of all
the answers) and the real score.

• Depression Category Hit Rate (DCHR): evaluates the results among four cate-
gories which are based on the sum of all answers of the 21 questions. The four
categories are minimal, mild, moderate and severe depression. DCHR computes
the fraction of cases in which the produced category is equivalent to that of the
real questionnaire.

12More details about the evaluation metrics can be found in Losada et al. (2019)
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Finally, the results of each metric are computed for each user, and are then averaged
over all users in the data set.

5.2.3.1 Proposed Approach

We developed a host suite of models based on neural networks for the task of predicting
the severity of depression, and experimented with both feature-based transfer learning
and two-stage fine-tuning. More specifically, we used feature-based transfer learning to
extract a feature vector for each user, whereas we utilised two-stage fine-tuning to train
a model directly on the depression data. Through extensive experiments, we observed
that using feature-based transfer learning for feature extraction achieved the best results
on the validation set; it was selected for conducting our experiments, as described
below. Although we focused our experiments on feature-based transfer learning, we
reported on the negative results of two-stage fine-tuning in Section 5.2.3.3.

Question Classifier

Feature Extraction Module

W1 W2 W3 ... Wn

Mean

MEAN

W1 W2 W3 ... Wn

Figure 5.7: Illustration of our framework.

Let {pi}Ni=1 be a set of N posts, where each pi consists of a sequence of M words
= (w1, w2, . . . , wM). Figure 5.7 presents an illustration of our framework, which takes
a sequence of words. In this work, we experiment with two settings: 1) processing
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user posts as chunks and 2) processing individual posts independently. The first setting
treats all user posts as a single document, whereas the second setting treats each user
post on its own. We now turn to describing each setting in more detail:

1) The first setting treats all user posts as chunks of a maximum of 512 tokens.
Each chunk is fed into a feature extraction module (f 13) and it is responsible for
computing the hidden representation for each user (u) as in Equation (5.6):

u =
1

M

M∑
j=1

f(wj), f(wj) ∈ Rd (5.6)

where the above equation computes the mean over all tokens, with “d” denotes
the dimensional size. This process attempts to obtain a single vector for each
user that is ultimately fed to the classifier. Finally, each separate classifier is
trained to predict one of the possible answers for each question.

2) In comparison to the first setting, we process user posts based on the following
assumptions: i) we anticipate that we should be able to predict users who present
an early sign of depression by using a small set of their posts instead of using all
of their posts. It has been shown that depressed users tend to use similar patterns
in their language use and online activity (Guntuku et al., 2017). ii) As Table 5.6
shows, the average number of posts per user consists of more than 300 posts
across the three sets, i.e., training, validation and test. This means that there are
posts that may not be useful at all and may even mislead our model in select-
ing its correct prediction. Thus, we decide to limit the number of posts that the
model has access to by using a threshold value τ , which determines the num-
ber of posts it can use to make its prediction. To achieve this, we modify how
each user posts are processed and then fed into the feature extraction module.
Instead of concatenating all user posts, we process each post individually to ex-
tract features for each word in the post. Then, the extracted features per word are
aggregated via the mean operation, which leads to a single vector representing
the whole post. This process is performed on all the chosen user posts via the
threshold value. After that, another mean operation is utilised to transform all
post representations into a single vector representing a user. Equation (5.7) and
(5.8) demonstrate how the feature extraction computes the hidden representation

13We will describe the feature extraction modules used in this work below.
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for each post and user, respectively:

pi =
1

M

M∑
j=1

f(wj), f(wj) ∈ Rd (5.7)

u =
1

Nτ

Nτ∑
i=1

pi, pi ∈ Rd (5.8)

where the first equation computes the mean over all tokens in the post while the
second one computes the mean over all posts. f represents the feature extrac-
tion module, M represents the number of words, N represents the number of
posts, u represents a user, τ represents the threshold value and d represents the
dimensional size.

Classification. Once we use the feature extraction module to obtain a single vector
per user, we pass this vector into a specific question classifier. We experiment with
Support Vector Machine (SVM) and Random forest (RF). We also run SVM using two
optimisers, i.e., gradient descent (GD) and stochastic gradient descent (SGD).

Implementation Details. We used both PyTorch (Paszke et al., 2017) and scikit-
learn (Pedregosa et al., 2011) for implementation and ran all experiments on an Nvidia
GeForce GTX 1080 with 11 GB memory. We ran our experiments using the fol-
lowing metrics for evaluation, i.e., AHR, ACR, ADODL and DCHR. We selected
three feature extraction modules, two of which were trained on a general domain (i.e.,
ELMo (Peters et al., 2018b) and BERT (Devlin et al., 2019)), whereas the third one
(i.e., SpanEmo (Alhuzali and Ananiadou, 2021b)) was trained on an emotion corpus.
We briefly describe each of these models below:

• ELMo14 is trained on a dataset of Wikipedia, which we use as our extraction
module. More specifically, we extract the weighted sum of the 3 layers (word
embedding, Bi-lstm1, and Bi-lstm2).

• BERT15 is trained on the BooksCorpus and Wikipedia. It includes a special
classification token ([CLS]), which can be used as the aggregate input represen-
tation. The output of the ([CLS]) token is used for feature extraction.

• SpanEmo16 is trained on the SemEval-2018 multi-label emotion classification
14https://github.com/allenai/bilm-tf
15https://huggingface.co/transformers/index.html
16https://github.com/hasanhuz/SpanEmo
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data set (Mohammad et al., 2018). It focuses on both learning emotion-specific
features/associations and integrating the correlations between emotions into the
loss function. We hypothesise that using a feature extraction model trained on
a related domain to the problem under investigation can further boost the model
performance compared to those models trained on a general domain.

5.2.3.2 Results and Analysis

Table 5.7 presents the results of our extended experiment and compares it to previously
reported approaches on the same task. The first set of results describes two baselines,
which are generated based on trivial rules like assigning all predictions as either zero
(0) or one (1). The results show that the second baseline achieves quite strong per-
formance, especially for the metrics taken distance between answers into account as
ACR and ADODL. In this respect, these two baselines set the lower-bound for this
shared task. The second set of results describes the teams that achieve the best scores,
i.e., DUTH (Spartalis et al., 2021), CYUT (Wu and Qiu, 2021) and UPV (Basile et al.,
2021). We briefly explain each team’s approach below:

• The DUTH team implemented three different methods, including feature-based
transfer learning, feature-based transfer learning with training machine learn-
ing classifiers and transfer learning with fine-tuning. The first method utilised
“Sentence-BERT” to obtain the vector representation of each user posts and then
aggregated the extracted representations via a mean operation. This process
was also performed for the responses of each question in order to apply the co-
sine similarity between the representations of each user posts and the responses.
Lastly, the response with the highest value was chosen. The second method is
similar to the first one, but trained a classifier on top of the extracted represen-
tations. The first and second methods achieved strong performance compared
to the third method. This is also in line with what we have observed in our
experiments.

• The CYUT team addressed the task through the use of the RoBERTa pre-trained
model for each BDI question by concatenating the last four layers. Since each
user has plenty of posts, the authors experimented with three different aggre-
gation methods, where the first one is simply a majority vote, the second one
assigns fixed weight to each response, and the third one is based on a threshold.
They found that the second aggregation method achieved the best results.
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Model AHR ACR ADODL DCHR

Baselines

All 0s Baseline 23.03% 54.92% 54.92% 7.50%
All 1s Baseline 32.02% 72.90% 81.63% 33.75%

Prior Work

DUTH (Spartalis et al., 2021) 35.36% 67.18% 73.97% 15.00%
UPV (Basile et al., 2021) 34.17% 73.17% 82.42% 32.50%
CYUT (Wu and Qiu, 2021) 32.62% 69.46% 83.59% 41.25%

This Work

1st setting

RF (Elmo) 31.43% 64.54% 74.98% 18.75%
RF (Bert) 31.55% 65.00% 75.04% 21.25%
RF (SpanEmo-Encoder) 32.86% 66.67% 76.23% 22.50%

2nd setting

RF (τ = 40) 34.46% 64.74% 77.00% 25.00%
SVM w/o SGD (τ = 30) 35.65% 65.26% 76.88% 27.50%
SVM w/ SGD (τ = 20) 31.96% 63.35% 83.23% 48.75%

Table 5.7: Experimental results on the test set. τ : refers to the number of posts used
by the respective model during the training phase. The best results are marked in bold,
whereas the second best results are underlined.

• The UPV team used a temporal approach based on features from the NRC lex-
icon and three categories of LWIC. For each post, the number of words corre-
sponding to the chosen features are counted and then normalised by the post
length. For the temporal aspect, the authors group posts that were posted within
the same day, and they then employed two metrics to compare users from the
test set to those in the training set. Although a classifier based on RoBERTa was
used, it did not perform well compared to the temporal approach.

Next, we discuss the results of our two settings. Table 5.7 presents the results of
the first setting on all four metrics (i.e., AHR, ACR, ADODL and DCHR). We report
our results on all three feature extraction modules (i.e., ELMo, BERT and SpanEmo-
encoder). The third feature extraction module based on SpanEmo-encoder achieved
the best results, thus demonstrating the utility and advantages of using a trained model
on a related task to the one under investigation. This confirms our initial observation
and helps to reinforce that our model can benefit from the similarity between the two
tasks in detecting signs of depression, given that some of the BDI questions are also



5.2. USE CASE ON MENTAL HEALTH 127

related to emotion concepts, such as sadness, pessimism, loss of pleasure, self-dislike,
etc.

We also report our results regarding the second setting using the same random
forest classifier (RF). We also include the results of SVM with two optimisers, i.e., GD
and SGD. As shown in Table 5.7, the results of SVM outperforms all models on both
AHR and DCHR metrics, while achieving competitive performance to the “CYUT” on
the ADODL metric, with a marginal difference equivalent to 0.36. The results of SVM
trained with SGD produced the best results for ADODL and DCHR metrics. Although
our model is trained on a small number of posts, it performs strongly or even better
compared to prior approaches, which make use of all posts. This makes our approach
distinctive in the sense that it is able to achieve competitive performance while utilising
a small number of posts for each user.

Evaluating the Results of Different Layers. We evaluated different layers in the
SpanEmo-Encoder to determine which one is best for obtaining the highest results.
The evaluation is presented in Figure 5.8, which reveals that different layers achieve
different scores depending on the chosen metric, especially for AHR and DCHR. Based
on this evaluation, we selected the results of the ninth layer for our submission as it
demonstrates strong performance on almost all four metrics.

Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7 Layer8 Layer9 Layer10 Layer11 Layer12
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Figure 5.8: The results of each SpanEmo-Encoder layer when applied to the validation
data set of the depression task.

Evaluating the impact of #posts (AHR vs ACR). Based on our previous eval-
uation, we observed that classifiers achieved different performance depending on the
number of posts used to train them. Figure 5.9 presents the analysis of those classifiers
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when the number of posts are varied from 10 to 100. The top figure corresponds to the
results of AHR, whereas the bottom figure corresponds to the results of ACR. We can
clearly observe the following: i) Regarding the AHR metric, as the number of posts in-
creases, the performance of classifiers generally improves. Once the number of posts
reaches 40, the performance starts to drop apart from the performance of the SVM
classifier trained with SGD. Since the SVM classifier trained without SGD obtains
the best performance when the number of posts equals 30, we choose this value for the
AHR metric. ii) Regarding the ACR metric, we see similar patterns that the perfor-
mance improves as the number of posts increase, but once the number of posts reaches
30 or 40, the performance begins to drop again. These results demonstrate that we can
predict the level of depression to some extent while using less data, which is sensible
since the selected posts carry information about the user’s behaviour and emotions.
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Figure 5.9: The results of varying the number of posts.

Evaluating the impact of posts (ADODL vs DCHR). Figure 5.10 presents the
results of both ADODL and DCHR. For these two metrics, we observe that the best
performance is achieved by the SVM classifier trained with SGD, with a high marginal
improvement compared to the other two classifiers. For the ADODL metric, we notice
that increasing the number of posts did not contribute much to the performance, but
using only 10 posts produced the best result. However, the performance for the DCHR
improves as the number of posts increases. After the number of posts reaches 40, the
performance deteriorates dramatically. Again, the results of these two metrics help
to enforce that, by using a small number of posts, our approach demonstrates strong
performance.
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Figure 5.10: The results of varying the number of posts.

5.2.3.3 Negative Results

We experimented with multi-task learning (MTL), for which we trained a single model
for all 21 questions. More specifically, a shared BERT-based encoder was utilised to
obtain a hidden representation for each post, and a specific head was then used for each
question. To achieve a single output for each user, we aggregated the produced outputs
from all posts via either averaging or summing. We also employed dynamic weighting
of question-specific losses during the training process (Kendall et al., 2018) as follows:

LMTL =
21∑
q

1

2σ2
q

Lq + log σ2
q (5.9)

where q denotes a question and both Lq and σq represent the question-specific loss and
its variance. After computing all the 21 losses, we average them. However, the results
of MTL were not as high as the one discussed in Section 5.2.3.2. This may be attributed
to a number of factors. Firstly, we used only a simple aggregate function that did not
take the temporal aspect into consideration. This could be useful for detecting early
sign of depression in users posts17. Secondly, there were no annotations provided at the
post-level which could help identify posts expressing severity signs of depression from
those that do not. Thirdly, we observed that the MTL model overfits with respect to the
training data after the third or fourth epoch although we used a dropout to regularise
that. This may be because the size of the data is quite small (i.e., roughly 70 users to
train on), making the model unable to learn effectively from them.

17Due to resource constraints, we could not train our model on the user’s timeline in a sequential
minor.
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5.3 Summary

In this chapter, we aimed to investigate the benefits of emotional knowledge on two
case studies, i.e., adverse drug reaction and an application of mental health-depression.
We began the description of each case study with some introductory background, in-
cluding our motivation and contribution. We then discussed some related work, cor-
pora and experiments relevant to each case study.

In the first case study, we demonstrated our novel neural network architecture
applied for ADR classification. Our approach exploits the fact that in social media,
ADRs are frequently expressed with sentimental and emotional expressions. Taking
advantage of the readily available sentiment and emotion datasets that are available on-
line, our architecture firstly trained an sentiment/emotion classifier on tweets, and then
adapted the trained classifier to detect ADRs in social media. Our empirical results
have demonstrated that the application of the fine-tuned model to ADR datasets ob-
tained a substantial improvement over previously published models. Additionally, the
word coverage analyses revealed that sentiment data share a significant amount of vo-
cabulary with ADR data, which is even higher than the correlation between the words
in training and test sets of the same ADR dataset. We discussed the advantages and
utility of both sentiment/emotion corpora and transfer learning techniques for improv-
ing the performance of ADR detection in social media and specialised health-related
forums, and provided some error analyses and potential future work.

In the second case study, we proposed a framework aimed at detecting signs of
depression from users posts. Our approach benefits from the architecture of SpanEmo
model in extracting features for users posts without even training it on the depression
data. In this work, we experimented with two settings, and found that the second set-
ting achieved better performance, especially for the AHR and DCHR metrics. Our
evaluation further showed that different SpanEmo-encoder layers produced different
results. The choice of which layer to choose depends on the metric of interest. More-
over, we analysed the results of varying the number of posts that the model used for
both training and prediction. We found that our model outperformed prior approaches
while utilising a small set of user posts. Finally, we reported some negative experi-
ments, and hope that it will inspire the community to investigate further the vital role
of learning a single model for all the 21 questions. This is motivated by the fact that
some questions have some correlations/associations, and inferring the answer for one
question may help infer others as well.

For both case studies, we observe that emotional knowledge can help improve the
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performance of downstream applications, especially when the task under investigation
shares common patterns with the task of emotion. Our SpanEmo model demonstrated
that it can be easily adapted to other tasks and can capture generalisable emotion fea-
tures. For example, we used SpanEmo to extract features for user posts without even
training it on the depression data. This means that SpanEmo learned meaningful repre-
sentations, which can benefit downstream applications. Our analysis in Section 5.1.5.2
evaluated the generalisablity of SpanEmo model by training it on one of the ADR cor-
proa and testing it on the other one. This analysis revealed the utility and advantages of
SpanEmo model in terms of improving the performance of ADR model even if tested
on a different dataset from the one it was trained on, especially when the task under
investigation contains a small size of data.



Chapter 6

Incorporating Intra- and Inter-Class
Variations into Textual Emotion
Recognition

In Chapter 4, we proposed SpanEmo for multi-label emotion classification to disentan-
gle positive emotions (i.e., highly correlated emotions) from negative emotions. Our
SpanEmo model takes advantage of label co-occurrences in a multi-label emotion cor-
pus. This requirement is not available in single-label emotion classification, on which
most of the existing emotion corpora are built. In this chapter1, we propose a novel ob-
jective for single-label emotion classification aimed at disentangling highly confused
emotions (i.e., positive emotions from negative ones). This chapter specifically ad-
dresses our third research question (RQ#3). To disentangle highly confused emotions,
we introduce a variant of triplet centre loss as an auxiliary task to emotion classifica-
tion.

Prior research has tackled the automatic classification of emotion expressions in
text by maximising the probability of the correct emotion class using cross-entropy
loss, which does not account for intra- and inter-class variations within and between
emotion classes. In contrast, our approach to Textual Emotion Recognition (TER) ac-
counts for both intra- and inter-class variations in TER. It builds upon the work of He
et al. (2018), who leveraged both intra- and inter-class variations for object recogni-
tion. Our work differs from (He et al., 2018) in the following ways: i) We leverage

1This chapter is drawn from Alhuzali, H., & Ananiadou, S. (2021). Improving Textual Emotion
Recognition Based on Intra- and Inter-Class Variation. IEEE Transactions on Affective Computing (In
Press). IEEE © 2021. Reprinted, with permission.

132



6.1. MOTIVATION 133

intra- and inter-class information to recognise emotion expressions in text, rather than
objects. To the best of our knowledge, this is the first attempt to apply this approach,
in conjunction with triplet centre loss, to text. ii) We employ an alternative method
to compute inter-class distance, so as to disentangle the positive emotion label (i.e.,
ground truth) from negative ones. iii) We empirically quantify the influence of intra-
and inter-class variations directly for each emotion class by introducing an evaluation
method. Finally, we present analyses that illustrate the benefits of our method in terms
of improving the prediction scores as well as producing discriminative features.

6.1 Motivation

The growing interest in TER has been motivated by the proliferation of social media
and online data, which have made it possible for people to communicate and share
opinions on a variety of topics. Interest in TER has also given rise to new Natural
Language Processing (NLP) methods focusing on TER identification and classifica-
tion (Akhtar et al., 2019; Klinger et al., 2018b; Mohammad and Turney, 2013b; Mo-
hammad, 2012a; Tang et al., 2013; Wang et al., 2012; Strapparava and Mihalcea, 2008;
Aman and Szpakowicz, 2007). Research into TER has contributed to a wide range of
real-world applications, e.g., health and well-being (Aragón et al., 2019; Chen et al.,
2018; Khanpour and Caragea, 2018), author profiling (Volkova and Bachrach, 2016;
Mohammad and Kiritchenko, 2013), human-machine interaction (Rashkin et al., 2018;
Fung, 2015; Picard, 2000), education (Voigt et al., 2017; Suero Montero and Suhonen,
2014), financial technology (Li and Shah, 2017; Mansar et al., 2017; Liu et al., 2016)
and consumer analysis (Alaluf and Illouz, 2019; Herzig et al., 2016).

# Sentence GT

S1 I love you so much and i am [trigger word] be-
cause you do not know that i exist.

sadness

S2 I get so [trigger word] when parents smoke right
next to their little kids.

disgust

Table 6.1: Example Tweets from IEST dataset (Klinger et al., 2018b). GT represents
the ground-truth labels (© 2021 IEEE).

The majority of previous research has focused on emotion classification as a single-
label prediction problem by selecting the most dominant class for a given emotion ex-
pression. This approach makes use of cross-entropy loss, which attempts to maximise
the probability of the correct class. However, it does not account for cases in which
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certain emotions (e.g., anger, disgust or sadness) may be confused with each other.
Consider S1 in Table 6.1, which contains a strong expression of “joy”, even though
it is generally more negative oriented. This can lead TER models to choose the “joy”
over “sadness” emotion. S2 is annotated with “disgust”, while at the same time it could
be possibly labelled with “anger”, due to the missing of explicit emotion-based key-
words for the “disgust” emotion, as well as their similarities in linguistic expressions.
This linguistic overlap between different emotion classes can cause TER models to
mislabel emotions and affect their performance in selecting the correct label. Based on
these observations, we hypothesise that taking into account variations both within and
between different classes of emotion can better support TER models in learning dis-
criminative features and improve their prediction capability. In this chapter, we refer to
examples sharing the same emotion class as “intra-class”, while examples belonging
to different emotion classes are referred to as “inter-class”. Our contributions, which
are discussed in Chapter 1, are further stated below:

• a novel loss function aimed at incorporating intra- and inter-class variations into
TER. More specifically, we introduce a variant of triplet centre loss (VTCL)
as an auxiliary task to emotion classification loss (i.e., cross-entropy loss). The
objective of VTCL is to minimise the distance of the examples from the centre
within the same emotion class (intra-class), while maximising their distances
from the centres of other emotions classes (inter-class).

• a new evaluation method to quantify the impact of intra- and inter-class varia-
tions on each emotion class.

• an in-depth analysis that reveals the benefits of taking intra- and inter-class varia-
tion into account, which can improve model performance compared to previous
approaches, even without the use of external resources. Empirical evaluations
and analysis demonstrate that both intra- and inter-class variations can help the
model to achieve high prediction scores, and to be a better discriminator against
highly confused emotions.

The rest of this chapter is organised as follows: Section 6.2 provides an overview
of triplet centre loss and describes how our method improves upon it. Section 6.3
discusses experimental details. We evaluate our method and compare it to related
methods in Section 6.4. We report on the analysis of results in Section 6.5, while we
conclude in Section 6.6.
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6.2 Methodology

6.2.1 Triplet Centre Loss

Triplet centre loss (TCL) is a combination of triplet loss (TL) (Schroff et al., 2015) and
centre loss (CL) (Wen et al., 2016). TL defines a triplet as an anchor sample, a positive
sample and a negative sample; the first two samples belong to the same class, while the
last one belongs to a different class. The objective of TL is to minimise the distance
between an anchor sample and a positive sample, while increasing the distance to a
negative sample by at least a margin m. However, the number of triplets can grow
cubically as the number of samples increases, which requires a long training period.
In addition, the performance of TL is highly dependent on the choice of triplet mining
technique, which is also computationally expensive. The above-mentioned reasons
make TL models hard to train.

An alternative choice to TL is CL, which learns the centre for the samples of each
class, with the objective of pulling them as close as possible to their respective centre.
Although CL is easier to implement, it runs the risk of degrading all features and cen-
tres to zero (Wen et al., 2016). To address this problem, CL is trained in conjunction
with cross-entropy loss, since the latter can act as a guide to learn better centres. Nev-
ertheless, CL does not guarantee that the centres of different classes are pushed suffi-
ciently far from each other. This is because CL only focuses on minimising intra-class
distance, but it does not directly address the issue of maximising inter-class distance.

In response to the above, He et al. (2018) proposed TCL, which follows the same
method as TL, while simultaneously avoiding its complexity. TCL only requires access
to a sample (i.e., its corresponding centre and its nearest negative centre). In this
respect, TCL leverages the benefits of both TL and CL, in that it pulls samples as close
as possible to their corresponding centre, while pushing the same samples as far away
as possible from their nearest negative centre.

6.2.2 Variant Triplet Centre Loss

Our proposed method is an enhancement of He et al. (2018) triplet centre loss, which
we call VTCL. In VTCL, we assume that the features of emotion expressions from
one class could be shared by expressions from other emotion classes. This makes
our approach distinct from TCL for two reasons. Firstly, since TCL only considers
the nearest negative centre, the difference between intra- and inter-class distances for
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multiple (possibly very similar) emotion classes cannot be established. Secondly, TCL
randomly initialises the parametric centres, making the process of selecting the nearest
negative centre hard to achieve. This is particularly problematic for a task like TER, in
which multiple classes could be used as negative centres, due to the close association
between certain emotion classes (e.g., anger, disgust and sadness).

To address the above challenges, we map each emotion class to one corresponding
centre and treat all but the one positive class centre as negative centres. This sim-
plifies our method by obviating the need to determine the closest negative centre. In
other words, examples belonging to the same class should be as close as possible to
each other (intra-class), while the same examples should be as far away as possible
from other emotion classes (inter-class). This ensures that the intra-class distance plus
the margin are always smaller than the inter-class distance. Our experiments in Sec-
tion 6.5.4 show the impact of choosing different numbers of negative centres. We
compute VTCL as follows:

LVTCL = max (intra +m− inter, 0) , (6.1)

where intra- and inter-class distances are computed by using the Squared Euclidean
Distance as shown in Equation (6.2) and Equation (6.3), respectively. m is a marginal
difference between the intra- and inter-class distances.

intra =
1

2

B∑
i=1

∥∥fi − cyi
∥∥2

2
, (6.2)

inter =
1

2

B∑
i=1

C∑
j ̸=yi

∥fi − cj∥22 , (6.3)

where B is the training batch size, C corresponds to the number of emotion classes,
fi ∈ Rd is the ith input representation, cyi ∈ Rd is the centre of class yi and cj ∈ Rd is
the centre of other emotions, with d defining the dimensional size.

6.2.3 Training Objective

As VTCL initialises the parametric centres randomly and updates them based on the
mini-batches, it is difficult to achieve accurate class centres. To mitigate this problem,
we train VTCL jointly with the Cross-Entropy Loss function (CEL). VTCL applies
metric learning to the learned feature representation directly, while CEL focuses on
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mapping examples to their emotion classes, helping to achieve discriminative as well
as compact features, respectively. The overall training objective can be defined as
follows:

LJOINT = LCEL + λLVTCL, (6.4)

where the first term refers to the CEL, which is computed as in shown equation (6.5),
while the second term corresponds to VTCL. λ ∈ [0, 1] denotes the value used to
control the trade-off between LCEL and LVTCL.

LCEL = −
B∑
i=1

C∑
j=1

1 {yi = j} log ea
(i)
j∑C

j=1 e
a
(i)
j

, (6.5)

where the indicator function 1{condition} = 1 if the condition is satisfied, or 0

otherwise. a
(i)
j represents the activation values of emotion classes in the last fully-

connected layer for an example.

6.3 Experiments

In this work, we run our method on two widely used networks for TER: the first net-
work is based on a CNN architecture (Kim, 2014), while the other network is based on
BERT (Devlin et al., 2019)2. Figure 6.1 illustrates the proposed method, which takes
advantage of the same feature representation obtained via either BERT or CNN.

Classification Loss
(CEL)

Intra- and interclass
Loss

(VTCL)

Joint Training

Input: 
I feel happy

today.

Feature Extraction Module

Ex
tra

ct
ed

 R
ep

.

Figure 6.1: Illustration of our method. Given the input, we use a feature extraction
module based on BERT/CNN to learn the input representation and then feed it into our
method, which includes the joint supervision of CEL and VTCL (© 2021 IEEE).

2We train BERT on the default hyper-parameters using the open-source Hugging Face implementa-
tion (Wolf et al., 2019).
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6.3.1 Implementation Details

The CNN network’s weights were initialised from Word2V ec (Mikolov et al., 2013a)
embedding with a size of 300 dimension, and it included filter windows of (3, 4, 5)
with 100 feature maps each, a batch size of 64 and a dropout rate of 0.5. We used the
standard normal distribution to initialise the centres and we set the margin (m) double
the number of negative centres3. Adaptive Moment Estimation Algorithm (ADAM)
was selected for optimisation (Kingma and Ba, 2014) with a learning rate of 1e-3 for
the network, as well as for the centres. All experiments were performed with a fixed
initialisation seed using PyTorch (Paszke et al., 2017) and an Nvidia GeForce GTX
1080 with 11 GB memory. Table 6.2 summarises the hyper-parameters used in this
work, including those related to BERT.

Parameters CNN BERT

Window sizes {3, 4, 5} -
Feature maps 100 -
Feature dimension 300 768
Batch size 64 32
Dropout 0.5 0.1
Learning rate 1e-3 2e-5
Margin (m) 2× |NC|
Optimiser Adam
Early stop patience 10

Table 6.2: Hyper-parameters. |NC|: denotes the number of negative centres (© 2021
IEEE).

6.3.2 Datasets and Task Settings

We evaluated our method on three widely used single-label datasets (i.e., IEST, ISEAR
and TEC) and conducted our experiments in a stratified 10-fold cross-validation setup,
ensuring that all folds contain an approximately equal sample of emotion classes. In
this chapter, we focus on Ekman’s (Ekman, 1992) 6 basic emotions {anger, disgust,

fear, joy, sadness, and surprise} because two of the datasets (i.e., IEST and TEC)
we used are annotated with those 6 emotions. Table 6.3 provides a summary of each
dataset, including the domain (i.e. the source from which the dataset is collected), the
size, the number of words and the average length of sentences/tweets for each dataset.

3The m parameter is set by observing the F1-score curve on validation set.
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For pre-processing the data, we utilise the “ekphrasis4” tool (Baziotis et al., 2017) de-
signed for the specific characteristics of Twitter, e.g., misspellings and abbreviations
since two of the datasets we used are collected from Twitter. The tool offers different
functionalities, such as tokenisation, normalisation, spelling correction, and segmenta-
tion. For all three datasets, we used “ekphrasis” to tokenise the text, convert words to
lower case, and normalise user mentions, URLs and repeated-characters.

Dataset IEST ISEAR TEC

Domain Tweets Events Tweets
# Sentences 30k 7k 21k
# Words 24, 803 8, 293 21, 853
# Avg.length 23.47 25.5 17.56

# Sentences/Tweets per class

Anger 5, 000 1, 096 1, 555
Disgust 5, 000 1, 096 761
Fear 5, 000 1, 095 2, 816
Joy 5, 000 1, 094 8, 240
Sadness 5, 000 3, 285 3, 830
Surprise 5, 000 — 3, 849

Table 6.3: Statistics of datasets. Avg.length refers to the average length of sen-
tences/tweets (© 2021 IEEE).

6.4 Evaluation

6.4.1 Results

Table 6.4 presents the performance of VTCL on each dataset, in terms of precision,
recall and F1-score, and compares it to previously reported state-of-the-art approaches
to TER, contextualised embedding and strong loss functions. The results reported in
Table 6.4 are an average of stratified 10-fold cross-validations. In the sections below,
we briefly describe the methods that we have compared, including methods that learn
a joint loss function to improve the results of emotion classification and those that only
use CEL.

4https://github.com/cbaziotis/ekphrasis

https://github.com/cbaziotis/ekphrasis
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6.4.1.1 Relevant Work

Klinger et al. (2018c) used a Maximum Entropy classifier (MaxEnt) with a bag of
words features for detecting emotion expressions in text. This model exhibits the low-
est performance among all compared approaches, as it was trained only on simple
features. Islam et al. (2019b) built a Multi-Channel-CNN (MCC), which attempts to
learn embeddings for each input instance and additional features that occur in the same
input instance (e.g., emojis, emoticons and hashtags). This model achieves better re-
sults than the MaxEnt classifier, and it also obtains the highest recall apart from BERT
and its variations over all models on the TEC dataset. The fact that MCC used ad-
ditional hand-crafted features (e.g. tweet-specific, affect and sentiment features) may
explain its high recall on this dataset. We only report on the results of MCC on the
IEST and TEC datasets because it was specifically developed for Twitter. Zhang et al.
(2018) proposes a Multi-Task-Loss approach (MTL) involving learning of both emo-
tion distribution and classification (i.e., CEL plus Kullback-Leibler (KL) loss). The
MTL model achieves higher recall and f1 scores than “CNN (ours)” on the ISEAR
dataset. However, it should be noted that, in contrast to our approach, it relies on
emotion lexicons to generate label distributions.

Finally, we compare strong variants of loss functions aimed at learning intra- and
inter-class variations, i.e., including CEL+CL (Tripathi et al., 2020) and CEL+TCL (He
et al., 2018). Based on experimental results, we observe that including intra- and inter-
class information improves the model performance; CL achieves higher results than
TCL on almost all metrics and datasets, proving our earlier hypothesis in Section 6.2.2
that determining the nearest negative centre is indeed not possible for TER. The same
patterns are also observed in BERT experiments, which are discussed below.

6.4.1.2 Contextualised Embeddings

We also compared and applied our method to BERT for two reasons: i) it can serve
as a strong baseline and ii) it can demonstrate the usefulness of VTCL when tested
on a different network. To create a sentence representation, we stack a softmax acti-
vation layer over the hidden state corresponding to [CLS] in BERT and only consider
the “bert-base-uncased” model. As shown in Table 6.4, BERT trained with the other
variants of loss functions apart from VTCL achieves higher results than previously
reported approaches to TER on all three datasets. Nevertheless, “CNN (ours)” outper-
forms the results of BERT trained with the other loss functions apart from VTCL on
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Dataset IEST ISEAR TEC

Model/Metric P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Relevant Work

MaxEnt 49.41 48.90 48.85 61.20 63.60 62.20 49.83 48.50 49.00
CNN (CEL) 55.74 55.20 55.22 64.21 63.97 63.66 57.79 51.43 53.55
MCC (CEL)† 56.20 56.95 56.09 — — — 55.90 56.50 55.60
MTL (CEL+KL)‡ 57.17 56.93 56.95 67.11 66.91 66.80 62.10 52.57 56.94
CNN (CEL+CL) 57.20 56.62 56.63 65.80 64.12 64.27 64.47 53.96 56.96
CNN (CEL+TCL) 57.27 56.56 56.60 65.30 64.03 63.59 63.27 54.18 56.90
CNN (ours) 58.08 57.77 57.71 70.35 64.14 65.79 65.85 54.95 58.19

Contextualised Embedding

BERT (CEL) 56.84 56.23 56.27 68.60 67.50 66.92 58.71 58.72 57.67
BERT (CEL+CL) 59.09 56.77 56.98 68.52 67.84 67.42 60.12 57.87 57.93
BERT (CEL+TCL) 57.88 56.70 56.85 68.03 67.01 66.83 59.07 56.46 57.31
LS (CEL+Corr) 57.74 57.00 57.06 67.32 67.10 67.08 59.31 56.51 57.08
BERT (ours) 60.20 59.34 59.38 70.73 69.44 68.89 60.18 60.24 59.47

Table 6.4: Comparison of our method to previous approaches as well as contextualised
embedding applied to IEST, ISEAR and TEC datasets. (P%), (R%) and (F1%): refers
to precision, recall and f1-score. Note that † indicates that the model uses hand-crafted
features (e.g. tweet-specific, affect and sentiment features), while ‡ indicates that the
model utilises emotion lexicons to generate label distribution. “Corr”: refers to corre-
lation. The best result in each part is marked in bold (© 2021 IEEE).

both IEST and TEC datasets. Although BERT obtains competitive results to “CNN
(ours)”, its trained parameters are much larger than those of CNN trained jointly with
VTCL.

The fact that BERT scores are higher on the ISEAR dataset than “CNN (ours)” may
be because this dataset is quite similar to its pre-training corpus. To investigate this,
we measured the degree of common word coverage between the “bert-base-uncased”
vocabulary and the training set of each dataset. We found that the percentage of shared
words between the “bert-base-uncased” vocabulary and the training set of ISEAR is
74%, while it is less than 50% for the other two datasets. This confirms our above
observation that BERT is pre-trained on a corpus more similar to the ISEAR dataset
than the IEST and TEC datasets.

We considered further a Label Semantic (LS) approach (Gaonkar et al., 2020a)
which adopted BERT as its encoder and aimed at learning emotion classification and
correlation via a joint loss function. Although the LS model used a joint loss function
as well as learning the input representation from BERT, it achieved lower performance
than our method. It is also worth mentioning that this model takes longer to train than
our method because it casts the task as a multiple choice answering task.



142 CHAPTER 6. INTRA- AND INTER-CLASS VARIATIONS

6.4.1.3 Our Method (CEL+VTCL)

Table 6.4 demonstrates that “CNN (ours)” outperforms all compared models on the
IEST and TEC datasets, and all models apart from MTL and BERT when applied to
the ISEAR dataset. However, when BERT is trained jointly with VTCL, it achieves
the highest results across the three datasets. A further observation is that CNN/BERT
trained on VTCL outperforms across all the three datasets compared to CNN/BERT
trained on the other loss functions (i.e., CEL, CEL+CL and CEL+TCL). This proves
the strength of VTCL against these loss functions as well as against both the MTL
and LS approaches. In addition, VTCL does not rely on any external resources un-
like MTL, which relies on emotion lexicons to generate label distribution. Moreover,
VTCL only requires a small number of parameters to be trained, equivalent to the num-
ber of emotion classes multiplied by the size of the feature dimension. Even though
VTCL is tested on the simple CNN network architecture, it shows strong performance
because, unlike other approaches, it benefits from taking into account intra- and inter-
class variation, whose impact on model performance is assessed in the next section via
an ablation study.

6.4.2 Ablation Study

We undertake an ablation study of the results using two settings: firstly, the model is
trained without inter-class variations and subsequently, it is trained without intra-class
variations. Training the model without these two types of information is equivalent to
training it only with CEL. Table 6.5 shows the results. As Table 6.5 shows, the results

Dataset IEST ISEAR TEC

Model F1 (%) F1 (%) F1 (%)

CNN (ours) 57.71 65.79 58.19
-inter 56.63 (↓ 2%) 64.27 (↓ 2%) 56.96 (↓ 2%)
-intra 55.22 (↓ 4%) 63.66 (↓ 3%) 53.55 (↓ 8%)

BERT (ours) 59.38 68.89 59.47
-inter 56.98 (↓ 4%) 67.42 (↓ 2%) 57.93 (↓ 3%)
-intra 56.27 (↓ 5%) 66.92 (↓ 3%) 57.67 (↓ 3%)

Table 6.5: Ablation experiment results. The proportions in parentheses indicate the
relative change with respect to ours (© 2021 IEEE).

of CNN and BERT drop by 2-4% f1-score when the inter-class is removed. When
the intra-class is additionally removed, the performance drop increases to 3-8% in f1-
score. These results demonstrate the benefits of incorporating intra- and inter-class
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variations into TER, supporting our hypothesis that taking into account both types of
information can improve the model performance substantially.

6.4.3 Intra- and inter-class evaluation

We evaluate the ability of our method to distinguish between intra- and inter-class
variations with respect to each emotion. Since there is no existing metric for evaluating
the impact of intra- and inter-class variations on each emotion class, we choose the
confusion matrix. The confusion matrix provides a summary of the model performance
per class, where correct predictions are represented in the diagonal, while incorrect
predictions are shown outside the diagonal. For example, if a row represents joy, we
then obtain the values of “joy-to-joy” (i.e., correctly labelled examples), “joy-to-anger”
(i.e., mislabelled examples), “joy-to-disgust” (i.e., mislabelled examples), etc. We
use the value of correctly labelled examples to represent the intra-class performance,
while utilising the values of incorrectly labelled examples to represent the inter-class
performance. The inter-class values are then summed up by following Equation (6.3).
We can then quantify the impact of intra- and inter-class results with respect to each
emotion class. Table 6.6 depicts an illustration of how intra- and inter-class values are
computed for six emotion classes.

Emotion Anger Disgust Fear Joy Sadness Intra Inter

Anger 0.52 0.12 0.09 0.05 0.22 0.52 0.48

Disgust 0.13 0.53 0.07 0.06 0.21 0.53 0.47

Fear 0.06 0.07 0.61 0.05 0.21 0.61 0.39

Joy 0.06 0.03 0.07 0.63 0.21 0.63 0.37

Sad 0.12 0.06 0.09 0.07 0.66 0.66 0.34

Table 6.6: Illustration of how intra- and inter-class scores are computed. The inter-
class score is obtained by summing all the non-diagonal values in the same row.

Table 6.7 presents the results of intra- and inter-class performance per emotion
class on all three datasets. We compare the performance of TCL and VTCL, because
both are optimised for the objective of minimising the intra-class distance (i.e., within
samples sharing the same emotion) and maximising the inter-class distance (i.e., be-
tween samples sharing dissimilar emotions). As Table 6.7 demonstrates, compared
to TCL, our VTCL method achieves higher values for intra-class distance, and lower
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Dataset Loss Mode/Label anger disgust fear joy sadness surprise

IEST

TCL
intra (↑) 49.80 49.40 57.20 64.20 58.40 61.00
inter (↓) 50.20 50.60 42.80 35.80 41.60 39.00
∆ (↑) -0.40 -1.20 14.40 28.40 16.80 22.00

VTCL
intra (↑) 54.20 53.00 62.60 65.60 61.80 56.60
inter (↓) 45.80 47.00 37.40 34.40 38.20 43.40
∆ (↑) 8.40 6.00 25.20 31.20 23.60 13.20

ISEAR

TCL
intra (↑) 46.36 40.91 48.18 59.09 77.03 —
inter (↓) 53.64 59.09 51.82 40.91 24.22 —
∆ (↑) -7.27 -18.18 -3.64 18.18 52.81 —

VTCL
intra (↑) 51.82 52.73 60.91 62.73 66.26 —
inter (↓) 48.18 47.27 39.09 37.27 33.74 —
∆ (↑) 3.64 5.45 21.82 25.45 32.52 —

TEC

TCL
Intra (↑) 44.32 41.67 47.87 55.83 57.70 55.54
inter (↓) 55.68 58.33 52.13 44.17 42.30 44.46
∆ (↑) -11.36 -16.66 -4.26 11.65 15.40 11.08

VTCL
intra (↑) 54.19 47.56 64.77 65.90 61.88 56.88
inter (↓) 45.81 52.44 35.23 34.10 38.12 43.12
∆ (↑) 8.39 -4.88 29.54 31.80 23.76 13.77

Table 6.7: The results (%) of intra- and inter-class values on three datasets (i.e., IEST,
ISEAR and TEC). Note that ↑ after the mode indicates the larger the better, while ↓
after the mode indicates the smaller the better. ∆ represents the difference between
intra -and inter-class scores. The best scores are highlighted in bold. It should be
mentioned that ISEAR is not annotated with the“surprise” emotion (© 2021 IEEE).

values for inter-class distance among almost all emotion classes apart from the disgust
class in the TEC dataset. We attribute this to the small number of tweets belonging to
the disgust class as shown in Table 6.3, which contains 761 tweets for both the training
and test set. We observe that some emotions are easier to distinguish than others. For
example, the “joy”, “fear” and “sadness” emotions achieved higher marginal difference
between the intra- and inter-class than “anger” and “disgust”. This finding is consistent
with the studies of Agrawal et al. (2018) and Mohammad and Bravo-Marquez (2017a),
both of which report the same issue with negative emotions of “anger” and “disgust”,
as they are easily confused with each other.

In contrast to our VTCL method, TCL fails to properly distinguish the difference
between intra- and inter-class variations for some emotions in the three datasets. This
confirms our observations introduced in Section 6.2.2 that TCL’s selection of the near-
est negative centre is problematic for TER, in which it is often important to use multiple
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centres as negative centres. Nonetheless, VTCL proved effective in increasing the vari-
ance between negative emotions, which are often positively correlated with each other,
demonstrating the benefits of taking all negative emotions into account instead of only
the nearest negative centre as is the case in TCL.

6.5 Analysis

6.5.1 Model Predictions

We analysed the model predictions on two different objectives: firstly, the model is
trained only with the cross-entropy loss, and subsequently, it is jointly trained with
VTCL. Our research hypothesis is that including VTCL in the emotion classification
loss (i.e., cross-entropy) can generate more discriminative features and thus increase
the model prediction scores. For this analysis, we use the CNN network architecture
and hyper-parameters discussed in Section 6.3. For each dataset, we randomly se-
lected one example per emotion class whose scores are correctly predicted by the two
objectives mentioned above and extracted their prediction scores with respect to each
emotion class.

In Figure 6.2, the graphs illustrate prediction scores when the model is trained
without VTCL (left-hand graphs) and with VTCL (right-hand graphs). The sub-figures
from top to bottom correspond to the instances extracted from IEST, ISEAR and TEC
datasets, respectively. In the top group of sub-figures (corresponding to examples from
the IEST dataset), it can be observed that for the model trained without VTCL overlaps
with other emotion classes and as a result, the prediction score for the correct emotion
class is low and is close to the prediction scores for other emotion classes. How-
ever, when the model is trained jointly with VTCL, a much higher prediction score is
achieved for the correct emotion, which is well distinguished from all the other emo-
tion classes. Figure 6.2b shows the scores of the “disgust” class (i.e., without vs with
VTCL), demonstrating the improvement brought by our approach in increasing the
correct prediction score, as well as reducing the overlap with other highly correlated
emotions (e.g., anger and fear). A similar pattern can be observed for the other in-
stances belonging both to the same dataset (i.e., IEST) and to the ISEAR and TEC
datasets, thus supporting our hypothesis that the incorporation of both intra- and inter-
class variations into the task of TER increases performance by introducing discrimina-
tive features.
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q: “i did not know asian girls could lift stuff that
big.”

Figure 6.2: Prediction scores (y-axis) across emotions (x-axis). Each sub-figure shows
the scores of the two evaluated objectives, i.e., without VTCL (left) vs with VTCL
(right). The corresponding instance to be classified is included at the bottom of each
sub-figure. The frame from top-to-bottom represents instances belonging to IEST,
ISEAR and TEC datasets, respectively. “...”: refers to the removed triggered word
from the IEST dataset (© 2021 IEEE).
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6.5.2 Visualisation of Learned Representations

To provide insights into the ability of our method to introduce discriminative features,
we selected the penultimate layer of BERT and CNN, and then used t-SNE (Maaten
and Hinton, 2008) to visualise the learned features. For this analysis, we randomly
chose 1,000 examples from the test set of IEST data and then trained models by fol-
lowing the same two objectives discussed in the above section (i.e., training the model
without VTCL vs with VTCL).
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sadness
surprise

CNN-w/o-VTCL

anger disgust fear joy sadness surprise

CNN-w/-VTCL

BERT-w/o-VTCL BERT-w/-VTCL

Figure 6.3: t-SNE feature visualisation of CNN (top graphs) and BERT (bottom
graphs). The left- and right-hand graphs illustrate features of the model trained without
VTCL and with VTCL, respectively. All four plots share the same colour scheme, as
defined at the top of the figure (© 2021 IEEE).

Figure 6.3 visualises the learned features for each emotion label, from which we
observe some positive properties: i) The first objective performs poorly in learning
compact and discriminative features, whereas the second one is able to simultane-
ously create compact and more clearly separated clusters. In other words, our method
ensures that the learned embeddings of the same emotion label are as close as possi-
ble to each other, but also as distant as possible from other emotions. ii) The deeply
learned representations from BERT are more clearly separated and compact than the
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ones obtained from CNN, which is not surprising, as it achieves the highest results
when trained jointly with our method. Overall, the visualisations serve to reinforce the
benefits of our method in terms of decreasing intra-class variance between examples
sharing the same emotion as well as increasing their inter-class variances with other
emotions.

6.5.3 Qualitative analysis

We carried out a qualitative analysis of the predictions made by each objective. We ob-
serve that in many cases, the second objective (i.e., training the model with VTCL) per-
forms better than the first objective (i.e., training it without VTCL). Table 6.8 presents
the analysis. Since some emotions share similarities in linguistic expressions, the
model can easily confuse and mislabel emotions. This problem mainly appears in
negative emotions (i.e., anger, fear, disgust and sadness). We also note that the main
sources of errors made by the first objective are cases involving strong expressions of
one emotion over another, implicit emotions and certain lexical units.

Dataset Text Actual w/ VTCL w/o VTCL

IEST

I get so [trigger word] when parents smoke right next to
their little kids.

disgust disgust anger

I think i will finally be [trigger word] when i go to a fete.
just need to get rid of this stress.

joy joy sadness

I love you so much and i am [trigger word] because you
do not that i exist.

sadness sadness joy

ISEAR

Someone told me that i was chosen for english lectures
because the class leader is going out with me (not true).

anger anger disgust

When i heard that a woman of my community had
aborted and got rid of the foetus by throwing it in the
drain.

disgust disgust sadness

Doing unexpectedly well in an examn. joy joy sadness

TEC

The cock who keeps pushing his chair onto my legs
needs to stop.

anger anger sadness

That feeling you get when you open up a bill and there’s
a credit. no payment required.

joy joy anger

Ever wish you could go back a few years , and do it all
differently.

sadness sadness joy

Table 6.8: Analysis of the model predictions trained on two settings, i.e., w/ VTCL vs
w/o VTCL (© 2021 IEEE).

For example, the first, second and final examples of the IEST dataset show implicit
emotion instances, which led the model to select incorrect predictions. Moreover, the
presence of the strong expressions “love you so much” and “get rid of this stress” in
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the fourth and fifth examples of the IEST dataset confuse the model with the first ob-
jective, such that it selects incorrect predictions. In contrast, the model trained with the
second objective is able to overcome these potential confusions and predict the correct
emotion. Similar patterns are also seen in ISEAR and TEC datasets. Overall, introduc-
ing discriminative features helps the model overcome the above-discussed problems
and predict the correct emotion labels with high probabilities, thus supporting our hy-
pothesis regarding the importance of incorporating intra- and inter-class variations for
TER.

6.5.4 Selecting the number of negative centres

Figure 6.4 presents the results of selecting varying numbers of negative centres for each
dataset. It should be noted that ISEAR contains a maximum of four negative centres,
because it only consists of five classes of Ekman’s (Ekman, 1992) basic emotions (i.e.,
anger, disgust, fear, joy and sadness).

Figure 6.4: Our method with a range of C negative centres (x-axis). For the computa-
tion of inter-class, the numbers from 1-4 represents the top-k negative centres, while
the last one combines all negative centres via summation (i.e. VTCL). The sub-figures
from top to bottom represent IEST, ISEAR and TEC datasets, respectively.

Figure 6.4 shows that the greater the number of negative centres that are combined
together in the computation of inter-class distance, the better the performance; the same
trend is observed across all three datasets. These findings also confirm our hypothesis



150 CHAPTER 6. INTRA- AND INTER-CLASS VARIATIONS

that combining all negative centres (i.e., VTCL) via summation helps to simplify our
method as well as to ensure that the intra-class distance is minimised within the same
emotion class, while the inter-class distance is maximised between different emotion
classes. In other words, our method optimises the inter-class distance to be larger than
the intra-class distance plus the margin. In short, our method addresses the problem
of selecting the nearest negative centre, which is the case in TCL, by combining all
negative centres. This is especially beneficial for TER, where multiple centres can be
potentially used as negative ones.

6.6 Summary

In this chapter, we addressed our third research question (RQ#3) and proposed a novel
objective for emotion classification. We specifically introduced variant triplet centre
loss (VTCL) that aims to disentangle positive emotions (i.e., correct labels) from neg-
ative ones. We further presented a new evaluation method to quantify the benefits of
intra- and inter-class variations on each emotion class.

VTCL contains two terms or components, which are responsible for computing
both intra- and inter-class variations within and between emotions. The intra-class
term modelled examples labelled with the same emotion class, whereas the inter-class
modelled the same set of examples with the other emotions. In this respect, the first
term pulls the hidden representation (i.e., features) of each example as close as possible
to its corresponding centroid, while the second term pushes the hidden representation
of the same example as far as possible from the other emotion centroids.

We evaluated our method on three popular single-label emotion corpora. We demon-
strated that VTCL outperformed previous approaches reported in the literature on the
three emotion corpora. Our empirical evaluation also showed the effectiveness of in-
corporating both intra- and inter-class information into TER, demonstrating the ability
of this information not only to increase the model prediction scores, but also to help
more clearly distinguish between different emotions, especially those highly confused
with each other. Our evaluation further demonstrated the advantages and utility of
VTCL as an auxiliary loss for emotion classification.

We conducted an in-depth analysis of VTCL by focusing on three aspects: 1) the
benefits of VTCL to improve predictions and to reduce overlap, 2) the ability of VTCL
to introduce discriminative features, 3) the selection of the number of negative cen-
tres. Our observation regarding the first analysis demonstrated that VTCL can help
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TER models improve their performance and discriminator ability. For example, when
VTCL was added to TER models, it helped them achieve high prediction scores and
reduce the overlap with other emotions. The second analysis also revealed the use-
fulness of VTCL in introducing discriminative features between examples that share
dissimilar emotions as well as learning compact features between examples that share
the same emotion. The last analysis further corroborated the advantages of consider-
ing all but the one positive class centre as negative centres. This helped to simplify our
method and ensure that the intra-class distance is minimised within the same emotion
class, whereas the inter-class distance is maximised between different emotion classes.

From the above discussion, we concluded that the task of recognising emotion
expressions can be modelled better by incorporating intra- and inter-class variations.
The incorporation of both intra- and inter-class variations into TER models can help
address the problem of the highly confused emotions to some extent. Our method can
be easily applied to any types of neural networks without requiring any modifications.

Finally, the main attributes of our work can be summarised as follows: 1) the in-
corporation of both intra- and inter-class variations into TER models, 2) the introduced
evaluation method to quantify the benefits of intra- and inter-class variations on each
emotion class, 3) the improvement of the discriminative ability of TER models and 4)
the independence from emotion lexicons as well as theories of emotion in incorporat-
ing both intra- and inter-class variations.



Chapter 7

Conclusion

This thesis studies the task of Textual Emotion Recognition (TER), i.e., the classifi-
cation of examples into predefined emotion classes (e.g., anger, fear, disgust or joy,
among others). The chapters presented in this thesis were organised into: an introduc-
tory chapter, a technical background chapter, an overview chapter of TER, three main
chapters and the conclusion.

In Chapter 2, we discussed some basic terminologies and tools of neural networks
related with our methodology. We started the description with the basic background
about the building block of neural networks from one Perceptrons up to multi-layer
Perceptrons. We then discussed relevant training procedures, i.e., classification, loss
function and learning (i.e., how to train a neural network). Next, we described relevant
popular networks, e.g., word representations, convolutional neural networks, recurrent
neural networks, attention mechanisms and pre-training of deep bidirectional trans-
formers for language understanding. We finally concluded with different fine-tuning
and deep metric learning methods.

In Chapter 3, we first introduced the definitions used in this thesis. Secondly, we
described some concepts related to emotion and how they are similar to and different
from each other. After that, we conceptualised emotion in text, more specifically the
process of experiencing an emotion up until it is received by someone to understand
and interpret the emotion expression. Third, we described models of emotion that are
concerned with defining how emotions can be categorised and classified into a taxon-
omy. Then, we presented existing emotion corpora, approaches to TER and common
evaluation metrics. Finally, we concluded with some of the limitations and gaps in
previous research that this thesis has addressed.

152



7.1. CONTRIBUTIONS 153

7.1 Contributions

The main aim of this thesis was to build novel computational methods for TER that
specifically take correlations/associations into account due to their effectiveness in
improving model performance and making it more robust against highly correlated
emotions. The proposed computational methods have also enabled TER models to
recognise emotion expression, and to incorporate intra- and inter-class variations. We
discuss below each of the computational methods developed in this thesis for TER.

Firstly, we proposed SpanEmo casting multi-label classification as span-prediction.
Chapter 4 discussed in greater detail the SpanEmo approach and how it learned corre-
lations between emotions as well as associations between emotions and words in the
input example. This chapter specifically tackled the first research question (i.e., RQ#1)
that was concerned with addressing potential ambiguities, in which multiple emotions
overlap. To overcome this problem of ambiguity, we utilised co-occurrence statistics
from a multi-label emotion corpus, in which each input was labelled with one or mul-
tiple emotions. These co-occurrence statistics captured emotion classes that co-exist
together, and those that do not. Then, we incorporated the correlations between emo-
tions into the training objective to aid the model to take them into account during the
training phase. Since we treated the task as a span-prediction problem, the training ob-
jective also enabled the model ability to improve its feature learning. This is because
the selected span of emotions was passed into the training objective. In this respect,
the learned representations captured associations between emotions and words in the
input as well as emotion correlations.

The proposed approach was evaluated both on well-known benchmark multi-label
emotion corpus and against state-of-the-art models. Our approach was further tested in
three languages, i.e., English, Arabic and Spanish. Based on the evaluations and analy-
ses, we observed the following: 1) Embedding emotion classes with the input improved
the model’s ability to recognise emotion expressions, as well as to learn associations
between the emotions and words in the input instance. 2) Allowing the model to select
a span of emotions directly from the label segment enhanced the learned representa-
tions with respect to the correct emotion set that is associated with the input. 3) The
training objective modelled the co-existing emotions which were updated during the
training phase to account for such information. 4) Our approach can be easily adapted
to other languages (i.e., other than English) without requiring any external resources.
5) The model predictions were improved as the number of emotions increased. 6) It
also demonstrated that it can learn correlations and associations both at the word-level
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and tweet-level. Finally, we advocate the following:

• The task of recognising emotion expressions can be modelled better by tak-
ing emotion-specific associations and emotion correlations into account due
to the nature of the task in the sense that it is subjective. Taking emotion cor-
relations into account can help overcome the problem of ambiguity between
highly correlated emotions, in which they could all be associated with an
emotive expression. In this respect, correlations are indispensable for multi-
label emotion classification.

• Embedding descriptive label information with an input instance can help
TER models learn associations between emotions and words, which in turn
reduce the effect of highly correlated emotions and enhance their perfor-
mance considerably.

• SpanEmo can be easily applied to other TER corpora and languages without
requiring any modification in its architecture.

Secondly, we introduced the work of “Incorporating Intra- and Inter-Class Varia-
tions into Textual Emotion Recognition”, in which a Variant of Triplet Centre Loss
(VTCL) was proposed. Chapter 6 discussed this work in greater detail. More specif-
ically, we defined the concept of intra- and inter-class variations. The intra-class rep-
resents examples that share the same emotion class, while the inter-class represents
examples that share different emotion classes. The implementation of VTCL is similar
to the logic of one-vs-rest, which is optimised to pull examples that share the same
emotion class as close as possible to each other, but pushes the same examples as far
as possible from other emotion classes. Such work is important for TER models, es-
pecially those applied to single-label emotion corpora. Previous research has pointed
out that some emotions can be easily confused with each other due to their manifesta-
tion in linguistic expression (Mohammad and Bravo-Marquez, 2017a; Agrawal et al.,
2018). To address this challenge, we attempted to answer RQ#3, which is focused
on adapting the concept of correlation (that is always studied in multi-label emotion
classification) to single-label emotion corpora. Single-label emotion corpora unfortu-
nately lack multi-label information, making it hard to learn correlations. We based
the presented work in this chapter on the idea that semantically similar examples (i.e.,
those sharing the same emotion) are more likely to have similar emotional expressions.
On the other hand, the same examples are more likely to have emotional expressions
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dissimilar to the other emotion classes. In this respect, the objective of VTCL aimed to
minimise the distance of the examples from the centre within the same emotion class
(i.e., intra-class), while maximising their distances from the centres of other emotions
classes (i.e., inter-class).

Since our work was the first attempt to learn intra- and inter-class information in
this way for TER, we also proposed an evaluation method that helped us test the con-
tribution of our approach to each emotion class. Our evaluations and analyses demon-
strated that taking intra- and inter-class variations into account can improve model
performance compared to previous approaches, even without using any external re-
sources. The incorporation of both intra- and inter-class variations into the model can
help achieve high prediction scores and a better discriminator against highly confused
emotions. We conclude the following:

• Intra- and inter-class information are beneficial for textual emotion recogni-
tion.

• Training TER models with VTCL can lead to better results and feature learn-
ing.

• Intra- and inter-class evaluation demonstrates the benefits of intra- and inter-
class variations on each emotion class.

Finally, Chapter 5 discussed two case studies, on which we experimented with our
SpanEmo approach. These two studies correspond to two different domains, i.e., Ad-
verse Drug Reaction (ADR) and depression. Prior research has shown that research
into TER can contribute to a wide range of applications, from health and well-being to
author profiling, marketing, and consumer analysis, among others. We firstly wanted
to investigate the contributions of TER to these two tasks. Next, we adapted the archi-
tecture of SpanEmo because it is straightforward and easily adaptable to other tasks.
In addition, both ADR and depression share some patterns with emotion in the sense
that their expressions often contain emotional expressions/keywords.

The first part of Chapter 5 described experiments related to ADRs. We observed
through our initial analysis that negative sentiment/emotion is frequently expressed to-
wards ADRS. Based on this observation, we presented a neural model that combines
sentiment analysis with transfer learning techniques to improve ADR detection in so-
cial media postings. In this respect, our model was first pre-trained on sentiment data
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and then fine-tuned on the ADR corpora, following the widely-used two-stage train-
ing in Natural Language Processing (NLP). We show that, in combination with rich
representations of words and their contexts, transfer learning is beneficial, especially
given the large degree of vocabulary overlap between the current affairs posts in the
sentiment corpus and posts about ADRs. We also noticed that using the architecture of
SpanEmo boosted the model performance by up to 5% in F1-score. This gain demon-
strates the straightforward use of SpanEmo for other tasks as well as the important role
of embedding the task’s classes with the input, which we called the “label-segment”.
Moreover, we tested the generalisability of the model when tested on data coming from
different distributions rather than the one on which it was trained. Although the model
performance was dropped, it demonstrated strong performance compared to the base-
line, with a marginal difference of approximately 5% on the Daily Strength dataset,
while roughly 17% on the Twitter dataset. The high difference between these two
datasets is expected because the pre-trained data are collected from Twitter too. This
can especially be beneficial for cases when there is no or small labelled data to use for
the ADR, which was the case in our work. The evaluation again shows the potential of
transfer learning, especially when the mode is pre-trained on a related domain to the
one under investigation. The use of descriptive label names is also beneficial because
it primes the model to focus on associations between the labels and input.

In the task of depression, we instead used our SpanEmo as a feature extractor mod-
ule due to both the complexity of the task set-up and the small size of data. The
rationale for using SpanEmo is because the questions, whose answers our model needs
to predict, are related to the emotion classes annotated for the SemEval-2018 datasets
(e.g., sadness, pessimism, self-dislike, loss of pleasure, etc.). Through extensive ex-
periments, we noticed that we can predict the level of depression by using a small set
of posts written by the same user. This is different from the first setting described
in Chapter 5, in which we used all users’ posts and achieved low performance. This
can be attributed to a number of factors: 1) there were no annotations provided at the
post-level which could help identify posts expressing severity signs of depression from
those that do not. 2) The second setting is more sensible compared to the first one, be-
cause a small set of posts should reveal whether the user shows any sign of depression
or not. For example, Guntuku et al. (2017) reported that depressed users can be distin-
guishable from non-depressed users by patterns in their language and online activity.
3) Using a small number of posts can reduce the noise coming from the large pool
of user posts which may not provide useful information about the task of depression.
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From our experiments presented in this chapter, we reach the following conclusions:

• Tasks, such as ADR and depression, can benefit from TER because many
of the expressions found in the task of TER are similar to those expressions
found in ADR and depression.

• The architecture of SpanEmo can be easily applied to other tasks.

• Both transfer learning and SpanEmo can improve the generalisability of the
model in cases when there is no or small labelled data.

7.2 Limitations and Future Work

7.2.1 Task Limitations

In this section, we described two broad limitations: The first one is concerned with
various issues that influence the performance of TER models (e.g., sarcasm, metaphor,
common sense knowledge and social media symbols), and the second one is concerned
with the introduced models for TER in this thesis. It should be mentioned that emo-
tional verbal cues are expressed in various ways beyond the use of explicit emotion-
based keywords, e.g., joy, anger, sadness, pleased, etc. Such cues come into existence
because of social media platforms that enable their users to express emotions in inter-
esting ways by using, for example, emoticons, emojis, hashtags and informal language.

First of all, TER is a subjective task. In some cases, not even a single emotion
could be assigned to a single input. The subjectivity of the task requires better han-
dling of emotion expressions which may evoke multiple interpretations. Each of them
has specific interpretations that can be assigned with an intensity value among all sets
of emotions. We addressed this challenge to some extent in this work by taking multi-
label information into account when designing our models. Nevertheless, we require
more research to determine the level of interpretation the input can generally express
in text. The AffectText is a distribution corpus that contains the intensity value of each
emotion for each headline (Strapparava and Mihalcea, 2007). The intensity value is
based on a 100-point scale, which could easily be normalised to percentages between
zero and one. Although this corpus was published in 2007 and included 1, 200 head-
lines, it is the only available corpus with distribution information that determines the
multiple interpretations occurring in a given input. For example, the headline “Iraq car
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bombings kill 22 people, wound more than 60” is annotated with the intensity values
of 33%, 40%, 15% and 12% corresponding to fear, surprise, anger and sadness, respec-
tively. We can clearly see how this example is linked with each emotion of Ekman’s six
basic emotions. Having such fine-grained information can address the problem of sub-
jectivity and reduce the confusion caused by different interpretations. In this respect,
future work in TER would greatly benefit from creating a corpus with the intensity
values of an input among all emotions. This corpus can help TER models address the
subjectivity of the task because it contains fine-grained information regarding emotion
distribution. Such a corpus can also enable the study of all three tasks simultaneously,
i.e., single-label emotion classification, multi-label emotion classification and emotion
distribution learning.

Secondly, sometimes the problem is not related to the multiple interpretations that
a text may convey, but to finding verbal cues to describe feelings using only language.
The best example is “an image is worth a thousand words”, which reveals that people
can use different modalities to express their feeling/emotion beyond language. Con-
sider the example, “I feel something, but I could not describe it via language”; this
does not express any emotion because the author could not find language to describe
his/her feelings. In this respect, other modalities can aid TER models to overcome
the problem of missing verbal cues to describe feelings of the person who writes the
given example. The above example illustrates another limitation of TER models that
does not take other modalities into account. We attribute this limitation to the fact that
different modalities require different pre-processing and neural network architectures,
which increase the requirement of GPU resources.

Figurative Examples (Discussed ↓): Source Liew et al. (2016b)

S1. “it was!!! I am still on cloud nine! I say and watched them for over two hours. I
couldn’t leave! They are incredible!”. (idiomatic Ex)

S2. “#americanairlines thanks for canceling my flight and rebooking it a day later. You
book a specific return time and day for a reason!”. (sarcastic Ex)

S3. “Loving the #IKEAHomeTour décor #ideas! Between the showroom and the
catalog I am in heaven” (metaphoric Ex).

Thirdly, emotion expressions can include figurative language, e.g., sarcastic, id-
iomatic, metaphoric expressions. If these figurative forms are overlooked, the TER
model can then mislabel emotion expressions because the meaning is not explicitly
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stated, but involves understanding of non-literal expressions. S1 illustrates an instance
of idiomatic expression, where the phrase “on cloud nine” corresponds to “extremely
happy”. These verbal cues are vital for determining the overall emotion expressed in
this instance. S2 also shows an instance of sarcastic expression, causing TER models
to be confused by the phrase “so much fun” and as a result they may select the wrong
emotion. Lastly, S3 presents an instance of metaphoric expression that the phrase “in
heaven” summarises the overall emotion of the writer. The meaning is not meant to be
literal in this context. These variations of expressions have become even widely used
in social media due to restrictions of writing up to a maximum of 240 characters in the
case of Twitter. The reason we did not examine different types of figurative language
extensively in our work is because such a task is beyond the scope of the current work.

Fourth, a sentence such as “Mum, I’ll invite my friends home” does not contain
any verbal cues that are directly related to potential emotions. The use of implicit
knowledge encountered in everyday events, activities and situations are commonly
expressed in text; this common sense knowledge would limit TER models to infer the
correct emotion as they do not effectively understand when a given situation or event
may trigger which type of emotion. If TER models are enriched by common sense
knowledge, they would be able to link the word “friends” with possible options, such
as socialisation, having a party, watching a movie, etc. As a result, this sentence would
then be more likely labelled with “joy” as humans tend to feel happy when gathering
with their friends at home. In this respect, enriching TER models with knowledge
related to various events and activities can help them tackle cases that trigger specific
emotions as well as those that do not contain explicit cues.

Finally, the challenges discussed above make the task of TER complex. We rec-
ommend that future work examines their inter-connection to emotion expression and
find potential approaches that can help TER models to incorporate those challenges
effectively.

7.2.2 TER Models

In this thesis, we proposed two approaches for the task of TER, i.e., SpanEmo and
VTCL. The former was developed for multi-label emotion classification by taking la-
bel information, label-label correlations and label-word associations into account in an
end-to-end fashion. However, the latter was proposed for single-label emotion classifi-
cation by firstly extending the notion of correlations into single-label emotion and then
incorporating them into the classification training objective. We now turn to describe
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each of their limitations and some penitential future directions that can improve them.

SpanEmo. Let us first emphasise the main components of our SpanEmo approach,
i.e., the input, the encoder network, the feed-forward network and the training objec-
tive. For the input component, we embedded label information with the input instance
to enable the model to drive associations between them. This was possible because the
model assigned different embedding segments for each one of them. Then, the input
component was fed into the encoder based on BERT to learn a feature representation
for each token. The BERT encoder can process up to a maximum of 512 tokens, which
was not a problem for our work since we dealt with social media data; they are often
short. Nevertheless, this can be a problem when working with long text or documents
that require us to find ways in order to address the window restriction of the encoder.
Also, embedding all labels with each input is a reasonable and straightforward ap-
proach to prevent the model from only relying on the correct set of emotions. It would
be more interesting to include the correct set, while ensuring that the model does not
over-fit them.

Next, the feed-forward component is responsible for transforming each token rep-
resentation into a single score so that scores corresponding to the label segment can
be used directly for prediction. Apart from only transforming each token into a sin-
gle score, this component can be extended further to model each emotion label and
its associations with any words explicitly, which is similar to a question answering
task. In question answering, the model is provided with a question and it has to find
an answer to the question in a passage. This way of finding the answer is known as
span-prediction (Joshi et al., 2020). In this respect, the question can be an emotion
class and the passage can be the input instance. It would be interesting to investigate
this approach and its applicability to emotion classification.

Finally, the training objective is concerned with incorporating label-label correla-
tions taken from co-occurrence statistics in the multi-label emotion corpus and is then
jointly optimised with the binary cross-entropy loss. Both objectives are combined via
an alpha parameter that is constant during the training phase. However, allowing the
model to learn this parameter dynamically can be beneficial for the task, where some
mini-batches may have inputs with insufficient information about correlations. In this
case, the binary cross-entropy should be assigned more weights than the correlation
loss, but if the input carries more information about the correlations, the correlation
loss should be assigned more weights than the binary cross-entropy loss. This is also
motivated by the analysis performed in Figure 4.5, in which the influence of the alpha
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parameter was tested.

VTCL. We proposed VTCL as an auxiliary task to emotion classification. In Chap-
ter 6, we conceptualised VTCL based on two terms, i.e., intra- and inter-class varia-
tions. The intra-class represents inputs that share the same emotion class, but the inter-
class represents inputs that share dissimilar emotions. The overall objective of VTCL
is to minimise the distance of the examples from the centre within the same emotion
class (intra-class), while maximising their distances from the centres of other emotions
classes (inter-class). In this respect, we treated the input with the correct emotion class
as positive, while treating the same input to other emotion classes as negative. This is
motivated by the notion of the One-Versus-all logic in terms of disentangling the pos-
itive example from the features of negative centres. Although this setup makes sense
for single-label emotion classification, it is also possible to find some examples which
may be associated with more than one emotion. Consider the example, “I love you so
much and i am [trigger word] because you do not know that i exist.”, which is labelled
with “sadness” although “anger” makes sense in this context. Based on this example,
having all emotion classes that are incorrect as negative, is sub-optimal for cases like
this one, where the anger class should not be treated the same way as joy. It would be
interesting to capture such variations between emotions even if they are negative from
the viewpoint of single-label emotion corpora. This can be an important extension
direction for future work.

Another issue emerged from the use of VTCL is the initialisation of centres. We
initialised the parametric centres randomly in VTCL and updated them based on the
mini-batches. At the beginning of the training phase, it was often difficult to achieve
accurate class centres and thus, we opted to train it jointly with the classification loss
to overcome this issue. However, there can be other ways to compute the parametric
centres, which require further examination in future work. It would even be interesting
to enable the VTCL to perform classification instead of feature discrimination. This
is because VTCL and cross-entropy loss share common patterns in the sense that both
optimise the centres weights as well as the weights of the fully-connected layer to
be close to the deep features in terms of the chosen distance metric (e.g. Euclidean
distance). This direction can help overcome the problem of initialising the centres
from scratch, by benefiting from the weights of the fully-connected layer.
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7.2.3 Future Work

The Adoption of SpanEmo to Other Corpora, Languages and Tasks. One of the
contributions of SpanEmo is that it can be easily applied to other corpora and languages
without requiring any modification in its architecture. This was confirmed by testing
it on three different languages (i.e., English, Arabic and Spanish) and on two different
case studies. In addition, SpanEmo was specifically proposed for the task of multi-
label emotion classification, but it can be still applied to other multi-label classification
tasks. In a similar vein, multi-class classification can also benefit from the SpanEmo
model as is the case with the task of ADR, which is simply a binary classification
problem. The above-discussed points demonstrate the strength of our model in making
it easily adaptable to other languages, corpora and tasks. The same can be also applied
to our VTCL method, which was tested on three different emotion corpora as well as
on two different networks.

The Benefits of SpanEmo on Explainable Artificial Intelligence (XAI). This
thesis came over the notion of XAI via the analysis of SpanEmo results in Chapter 4.
More specifically, we illustrated in Figure 4.3 how SpanEmo can support interpreta-
tion of the model behaviour, from which we found associations between emotion labels
and words in the input instance. We observed through this example that the model can
take advantage of contextual information and emotion correlations. Furthermore, the
model was able to capture the association between a phrase (i.e., about to join the
police) and an emotion label (i.e., anticipation) that was not part of the correct label
set. By using such analysis, we can seek answers for some questions as follows: 1)
Can the model handle negations?, 2) Can the model learn from contextual informa-
tion?, Can the model learn association between an emotion label and a phrase? and
Can the following idiom holds ”Birds of a feather fly together” in the case of predict-
ing highly correlated emotions? These are just a few questions that can be possibly
answered by looking at Figure 4.3. We believe that this type of analysis is crucial
for interpreting and understanding the model behaviour in selecting one emotion label
over another. Therefore, research in XAI can take advantage of such work in under-
standing model behaviours on tasks beyond the one being investigated in this thesis.
In NLP research, this type of analysis is also known as “saliency-based visualisations”
(SBVs). Danilevsky et al. (2020) states that SBVs are commonly used now days be-
cause they highlight explanations in a visual way, which make it easily understood by
different types of end users.
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