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Abstract 

 

 

The distinctive features of human gait are distributed across modalities based on 

vision, inertial measurements, pressure, and sound. Gait features pertaining to a single 

modality have different scales and intensities. Single modality systems suffer from 

misclassification due to the unavailability of complementary features that provide the 

semantic information involved in gait activity. We aim to adequately map the complete gait 

features which is not possible using a simple and feasible modality. In this research work, 

multi-modality sensor fusion approach has been adapted which is capable to extract and fuse 

information from two sources and provides maximum description of individual’s gait. 

Feature level-based sensor fusion is proposed for the spatio-temporal data obtained 

from 3 inertial sensors based Ambulatory Inertial Sensors (AIS) placed at pelvis and both 

heels of user and a set of 116 collaborative Floor Sensors (FS), which is novel. The 

complimentary nature and relationships among datasets of the associated spatio-temporal 

features are explored using Principal Component Analysis (PCA) and Canonical Correlation 

Analysis (CCA) techniques. Supremacy of the proposed approach is tested using different 

machine learning (ML) algorithms. With K-Nearest Neighbour (K-NN) and Kernel Support 

Vector Machine (K-SVM), our multi-modal sensor fusion approach demonstrates improved 

f-scores of 95% and 94% respectively, beyond the individual f-scores. 

Furthermore, deep learning (DL) models will be utilized to perform automatic feature 

extraction of the ground reaction force and lower body movements using FS and AIS, 

simultaneously. Benefits of implementing DL models are twofold: First, the spatio-temporal 

information from the two modalities are balanced despite disproportionate number of inputs. 

Second the extracted information is fused over DL model layers whilst reserving the 

categorical content of each gait activity. This proposed fused approach is further assessed 

with f-scores using various DL models i.e., LSTM (99.90%), 2D-CNN (88.73%), 1D-CNN 

(94.97%) and FFNN (89.33%). It is concluded that using given DL models, robustness and 

execution time are the tradeoff while observing the overall performance of proposed system. 
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Chapter 1 

Introduction 

 

 

1.1 Gait and its applications 

 Gait defines the movement of center of gravity of human body during locomotion. 

Gait can be interpreted as a unique walking sequence that gets effected by multiple 

independent elements such as age, gender, weight, and height etc. People can be identified 

and monitored on the basis of their walking behaviours using gait recognition techniques 

[1]. Walking behaviour in humans forms a unique biometric method just like other biometric 

modalities i.e., face, fingerprints, iris detection etc.  

 Many research areas have implementations and wider research in the field of gait 

analysis. Monitoring of human gait and daily life activities adds an essential medical feature 

to the health monitor systems which could improve life’s quality, prescribe personalised 

treatments, inform doctors about the health of patient, minimize the health costs and ensure 

quick response to medical emergencies. Gait is also researched to monitor and examine the 

pathological conditions such as Parkinson’s disease, Alzheimer and other neuromuscular 

disorders [2]. These days, modern gait labs have been established in many orthopaedic 

hospitals for routine treatment plans and the follow-up procedures. 

 In security applications, gait analysis has been exploited in many applications 

varying from personal access to border control systems [3]. Moreover, gait analysis has 

implications in sports where athletes are observed and monitored after returning from 

injuries caused during sports activities [4]. 
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1.2 Aim of research 

Floor sensors (FS) are unobtrusive and commonly used to collect footprint 

information in which body pressure on the feet is used to determine the type of gait activity. 

Stance and swing phases comprise approximately 60% and 40% of a complete gait cycle 

respectively. However, there are certain situations in which the range of feet motion during 

swing phase encloses important gait cycle information. Focusing on the healthcare scenarios 

for patients having abnormal gait i.e., Hemiplegic gait in which patient will have to 

circumduct or swing one leg around to step forward. Similarly, Neuropathic gait results in 

high stepping gait to avoid dragging of toe on ground. Irregular, jerky and involuntary 

movements in both upper and lower extremities are caused during Choreiform gait. In 

Myopathic gait, a waddle type walking pattern results due to the inability of patients to 

stabilize the pelvis as they lift their leg to step forward and cause pelvis to tilt towards the 

non-weight carrying leg.  

Therefore, a complete gait information includes interaction of feet with and above 

the ground and hence requires additional sensor installation to be installed on lower body 

parts of the user to capture the intermediate information between ground contacts. In this 

research work, we aim at acquiring gait information from the lower parts of human body 

mostly related to healthcare scenarios, e.g. age related factors [5],[6] and cognitive tasks 

[7],[8]. 

 

1.3 Motivation of multi-modality sensor fusion  

Different sensing modalities have developed distinct set of features based on bio-

mechanical measures related to physical body dimensions, body part masses and time 

varying forces generated by muscles during the gait cycle. Advances in gait sensing 

instruments have resulted in the evaluation of many human locomotion characteristics 

obtained from high quality information. However, the feasibility of a simple and widely used 

modality to adequately map the complex gait features is still unclear.  

Multi-modality sensor fusion results in producing new data representations which 

are unique to the collection of individual sensors and sensing modalities [9]. Our motivation 

is to capture the complex nature of gait information using a multisource and multi-modality 

sensor fusion approach. The research hypothesis for this work is as follows: 
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‘The fusion of gait information (during and between the ground contacts) acquired 

from multi-modality systems would improve the classification accuracies of an individual’s 

gait activity when compared to a single modality system’. 

 

1.4 Objective of research 

Gait feature fusion has been immensely used to study human gait parameters and 

anomalies associated with motion generated during gait cycle. The objective of this research 

is to propose a novel approach to fuse gait activity information, at feature level, using two 

different gait sensor systems. To achieve this, an ambulatory inertial sensor (AIS) sub-

system is designed and operated to allow signal acquisition protocols suitable for processing 

and fusion with those from an existing original floor sensor sub-system [10] as illustrated in 

figure 1.1.  

Both systems are used to simultaneously capture information from healthy volunteers 

for multiple cognitive load-based gait activities. We have investigated the individual gait 

modalities and analysed the complementarity between both modalities gait data at feature 

level, at the same time allowing closer observation on how the choice of machine learning 

(ML) models affects the outcome of feature-level fusion. The data obtained from the separate 

modalities is processed and classified using supervised ML models such as Logistic 

Regression (LR), K-Nearest Neighbour (K-NN), Naïve Bayes (NB), Linear Support Vector 

Machine (SVM), Kernel Support Vector Machine (K-SVM), Decision Trees (DT) and 

 
 

Figure 1.1: Overall diagram of the proposed multi-modality sensor fusion system [133] 
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Random Forest (RF). ML models mainly rely on handcrafted features or feature extraction 

techniques for the classification of gait related activities. Feature domains containing various 

features increase the chances of redundancy and irrelevancy.  

 Therefore, deep learning (DL) is called upon to maximize the use of data variance 

and removes the dependencies on handcrafted features from individual whilst exploring the 

effectiveness of the combined information from a discriminant angle. Deep learning (DL) is 

inspired by the biological neural networks and function like human brain. Multi-layered 

artificial neural network (ANN) is built to learn data representations automatically which 

make them a choice whilst dealing with high volume datasets. The benefit of utilizing DL 

models is twofold: First, with minimal pre-processing on complex data, DL models can 

achieve robust and improved accuracies. Second, the automatic extraction of features from 

data using DL models layer also reduces the chances of redundancy and leads to substantially 

robust and accurate results as compared to the other ML techniques. However, accuracy and 

performance of these systems is highly debated and there is significant amount of work for 

improving the quality of data from the gait sensors. We will utilize DL models, such as Feed-

Forward Neural Network (FFNN), Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) models to automatically extract and fuse rich representations of 

various gait activity patterns for robust and efficient classification. 

 

1.5 Structure of the thesis 

 This section describes each chapter included in this thesis. 

 Chapter 1 introduces the various implementations of human gait analysis and 

developments in sensor technologies in this field of research. It highlights the need of sensor 

information fusion within and across the modalities. It also presents the motivation and 

approach of our multi-modality sensor fusion in which ML and DL based models are utilized 

to handle gait parameters spread across datasets. 

 Chapter 2 presents a preliminary background of gait parameters, gait analysis and 

different factors affecting human gait. Cognitive based gait activities which are explored 

using multi-modalities in this research and the related research are also introduced. 

Contribution of different modalities such as inertial sensors, video camera, floor sensors and 

multi-modalities involved in gait studies is also presented. Theoretical concepts behind 

various ML and DL models have been explored in literature review. 
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 Chapter 3 describes the multi-modality system involved in the study of gait analysis 

i.e., FS and AIS. Complete sensing principle and architecture of both systems has been 

described. The data acquisition and pre-processing methods have been discussed before 

allocating data to ML or DL models for further processing. Gait activities data has been 

analysed for mostly visible gait parameters from the datasets from two modalities. 

 Chapter 4 elaborates the feature level extraction approach using Principal component 

Analysis (PCA) and Canonical Correlation Analysis (CCA). Analysis of extracted features 

and feature selection has been performed to calculate the best optimum features from the 

data of two modalities. Correlation inside the individual and combined dataset has been 

highlighted. Proposed fusion approach using PCA and CCA has been explained. Datasets 

obtained from two modalities using four gait activities: walking while subtracting 7, listening 

to a story, texting on a mobile and talking to operator is described along with the data 

distribution for training and test sets required for ML model classification. Part of this work 

has been presented in publications number 1 and 4 under section ‘List of Publications’. 

Chapter 5 explains the DL models-based approach for the extraction of gait activity 

features obtained using two modalities. The observation span is increased to seven gait 

activities including: normal walk, fast walk, walking while subtracting 3, subtracting 7, 

listening to a story, texting on a mobile phone and talking to operator. Proposed fusion 

strategy is tested on DL models: Feed Forward Neural Networks (FFNNs), 1D/2D 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM). Datasets 

comprising gait activities have been described for single and multi-modality cases. Part of 

this work has been presented in publications number 2 and 5 under section ‘List of 

Publications’. 

Chapter 6 presents the results and discussion related to the proposed multi-modality 

sensor fusion. Selection of features extracted using PCA and CCA has been discussed and 

comparison has been made between the two methods. Furthermore, the roles of ML and DL 

models for all gait activities has also been exploited in case of single and multi-modality 

cases. The contents of this chapter are also presented in publications number 1 and 2 under 

section ‘List of Publications’. 

Chapter 7 summarizes the insights of this research and concludes the results presented 

in this thesis. It also provides the recommendations and future work to be done following 

the route of the proposed multi-modality sensor fusion. 
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Appendix A presents the abbreviations used in this research. 

Appendix B is furnished with codes written in Arduino, MATLAB and Python Integrated 

Development Environment (IDE). 
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Chapter 2 

Background theory and literature review 

 

 

2.1 Gait cycle 

Gait defines walking activities in humans. Gait can be defined as a conversion of 

human brain action to body muscle motion sequences which result in a walking pattern. 

Commands are originated in human brain which are transferred through spinal cord to the 

lower body portion and consequently causes body muscular motion which is assisted by 

joints, bones, and other receptors. Gait can be perceived as a repetitive cycles of each foot 

results due to a sequence of periodic movements [11], 

 

 

In figure above, where the subject can be seen while performing gait (with arrows 

marked on the right foot). It can be seen that going from heel contact of the right foot to the 

heel contact of the right foot back again, there a number of stages in each phase. These stages 

are as follows: 

 

 

          a      b          c     d            e               f         g              h 

Figure 2.1: Stages of human gait cycle [135] 

 

Stance Phase Swing Phase 

Gait Phase 
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2.1.1 Stance phase 

a) Heel strike – It is a short period which starts when the leading foot touches the 

ground, and it is the initial phase of double leg support.  

b) Foot flat – Body adjusts the impact of leading foot on ground in pronation. Knee is 

flexed and lower body is at its lowest position. 

c) Mid stance – During this period all body weight is on one leading leg and comprises 

main time of stance phase. Lower body moves to the highest position and the trailing 

feet leaves the ground.  

d) Heel off – The trailing heel (leading previously) leaves the floor during this period. 

Lower body leaves the highest position whilst the leading foot in contact with the 

ground. 

e) Toe off – Toe leaves the floor during this moment. Body moves forward whilst all 

the body weight starts shifting on the leading leg with knee flex.  

Stance phase comprises around 60% of the gait cycle approximately. 

 

2.1.2 Swing phase 

f) Initial swing – Moment after toe leaves the ground and trailing foot goes in the air. 

All body weight is on leading leg with straight knee. 

g) Mid swing – Foot remains in the air and crosses the other mid-stance foot.  

h) Terminal swing – Moment before the heel strikes the ground and leading foot comes 

to the ground. 

Swing phase comprises the remaining 40% of the gait cycle approximately. 

 

2.2 Gait parameters 

For healthcare in clinical environments, various sensing and data processing methods 

are used [12]:  

• Cadence (steps per unit time)  

• Stride length 

• Acceleration 

• Linear and Angular Velocities 

• Direction of limb segments  
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• Step angle 

• Step width 

• Swing time 

• Support time  

• Ground reaction force  

• Muscles’ electrical activity  

• Momentum and body forces 

• Posture of body 

All stated methods provide observational values related to health conditions however, it 

is not possible to capture the complete variability from gait data. 

 

2.3 Analysis of human gait 

Gait analysis is on the way to maturity with applications in many research areas. 

Many studies have described the potential of gait in differentiating individuals. Walking 

behaviour changes on the basis of age, weight, height and gender in humans. Human gait 

can be classified as either natural (used by humans instinctively) or trained (used by humans 

not instinctively or learned through training) [13]. Abnormal gait is a specific type of gait in 

which humans walk in a way different than natural. Abnormal gait could be caused by 

ageing, physical disability or event, such as a stroke. However it could be improved through 

medical treatments and exercises. 

In the medical field, the study of human gait is used to diagnose neurological diseases 

such as  Huntington’s, Parkinson’s, Alzheimer’s, myelopathy, specific types of dementia, 

neuro-muscular diseases, brain tumors, spinal amyotrophic disease, multiple sclerosis, 

cerebellar ataxia etc. A non-invasive approach is implemented [2] using Inertial 

Measurement Units (IMUs) placed on patients leg to early diagnose the effects of 

Alzheimer’s and Parkinson’s disease. Abdulhay et al. [14] presented an approach to detect 

gait impairment and tremor occurrences during different stages of Parkinson’s disease. They 

extracted and used temporal features such as stance, swing phases and stride time to 

distinguish Parkinson’s disease patients from healthy individuals.  

Progressive loss of structure or function of neurons in patients suffering from 

neurodegenerative diseases is studied by Chakraborty et al. [15]. They employed force 
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sensors in combination with Received Signal Strength Indicators (RSSI) to effectively 

monitor patients with Parkinson’s over wireless network. Furthermore, IMU based sensors 

have been used to analyse gait parameters from lower limb prosthesis users [16].  

Gait analysis in security applications makes it more robust and trustworthy whilst 

identifying individuals with minimal invasion. Use of CCTV cameras is reported for the 

identification of individuals [17],[18]. Subject identification is also achieved using footstep 

signals as ground reaction forces in [19],[20]. 

Moreover, gait analysis has applications to assess the ability of sportsmen after 

injuries occurred during sport activities. Gouwanda et al. proposed body mounted sensors to 

acquire human motion for various indoor and outdoor sports training activities and clinically 

rehabilitee patients [21]. Lee et al. presented a review to determine the viability of the dual-

task paradigm for the comprehensive evaluation of athletes’ sports related concussion [4]. 

Analysis of human gait using different modalities in  

 

2.4 Factors affecting human gait  

Gait in humans is a distinguished biometric method just like other biometric 

modalities like face, fingerprints, iris detection to give valuable information like identity, 

age, gender, and ethnicity. Gait patterns are difficult to duplicate due to their individual 

nature. However gait patterns get affected by many factors such as illness [22], fatigue [23], 

emotions [24], cognitive and motor tasks [25]. In addition, gait is also prone to influence 

from external factors such as clothing, shoes or carrying load [26]. 

 

2.5 Cognitive based gait activities 

Gait is no longer considered as an automated activity that utilises minimal higher-

level cognitive input. In fact, the multi-faceted neuropsychological effects on gait and the 

interconnection between the mobility control and related factors incorporate new research 

pathways [8]. There are several factors that may cause variance in gait patterns during the 

performance of cognitive activities. 

Woollacott et al. [27] reviewed the connection between attention and control of body 

posture during gait. They highlighted the involvement of cognitive factors to maintain 

balance during standing and walking patterns. Additional task-based gait is used to observe 
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the performance among healthy and the unhealthy adults. They concluded that complexity 

of a dual task whilst gaiting directly effects the attention level of the individual.  

O’Sheas et al. [28] observed the performance of simultaneous motor or cognitive 

tasks such as walking at a certain speed (single task), transferring a coin (motor task) and 

performing number subtraction (cognitive task) on 15 PD patients. They evaluated that gait 

changes whilst performing a cognitive and motor demanding task, however an additional 

secondary task does not necessarily determine the severity of disease. They concluded that 

task-based gait variations could help to predict falls and the individuals with lower executive 

control are prone to the risk of falling. 

Relationship between walking, thinking and falling is exploited by Herman et al [29]. 

They reported that cognitive load-based tasks have higher chances on gait disturbance 

among individuals having fall history. They evaluated the effects of executive control 

deficits which can lead to fall on 262 healthy older adults. They concluded that future falls 

can be predicted among individuals with lower executive functions. 

Ijmker et al. [30] investigated gait variations in single and dual tasks among healthier 

and dementia patients. They concluded that gait variability and stability have a direct 

relationship with executive functions and measures should be deemed during the diagnosis 

of dementia.  

Costilla-Reyes et al. explored the capability of POF based FS (the “intelligent carpet” 

[31]) to detect changes in gait patterns using 10 manners of walking and 3 cognitive oriented 

tasks [32]. They demonstrated that raw level data leads to substantial better performance 

than manually extracted features. Raw information obtained from footprint imaging system 

evaluated using deep convolutional neural networks (D-CNN) and achieved superior f-score 

of 97.88% ±1.7% over other ML methods. 

Zebin et al. [33] reported 6 daily life including 3 walking activities with 92% average 

recognition accuracy using only accelerometer and gyroscope data as inputs. They presented 

Long short-term memory (LSTM) based approach to explore the correlation between 

successive time-samples in raw datasets. In their further research [34], they compared the 

overall performance of Deep neural networks (DNNs) (86.55%), LSTM (92.2%) and 

Convolutional neural networks (CNNs) (96.4%) for the same dataset.  

However, implementation of a robust and an accurate multi-modality approach to 

observe and analyse the effect of cognitive tasks on human gait is still a challenging problem. 
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2.6 Gait modalities 

 From the evolutionary research in the field of gait analysis, it has been suggested that 

various gait modalities have attempted to capture the uniqueness of human gait from the 

biomedical measures specific to physical dimensions of human body and its parts or the 

forces generated during a gait cycle. In the past few years, the exponential rise in the 

efficiency and capabilities of sensor systems has resulted in the production of various gait 

sensing modalities [35]. Gait sensing modalities can be grouped into three main groups: 

Inertial sensors, video cameras and floor sensors, which are described as follows: 

 

2.6.1 Video cameras 

Human gait is acquired through video cameras. High quality video cameras are 

required to use under moderate lightening conditions. Image and video processing 

techniques are used to extract gait features from the data. Normally the aim is to identify the 

person, or the activities being performed. A prototype of video cameras in shown in figure 

2.2. Basic video is captured with two cameras or more with a known focal length at a fixed 

distance from subject. Results obtained from all cameras are further calibrated to give correct 

results. The information obtained using video camera is analysed using image processing 

techniques such as filtering, edge detection, segmentation and thresholding etc [36].  

In literature, gait recognition can be further subdivided into skeleton model based 

and skeleton model free approaches. In model-based approach, the multi-segment skeleton 

models are fixed on video sequences. This approach requires computational resources as it 

relies on matching of skeletal segments on the image sequences as proposed by [37],[38]. 

The extracted features are further classified based on ML or DL models.  

On the other hand, model free approaches rely on feature extraction from video 

sequences and require feature engineering [39],[40]. In this approach, data is mainly 

represented in the form gait energy images (GEI), silhouettes and chrono-gait images.  

There are also many publicly available datasets related to gait based video sequences 

such as MoBo (The CMU motion of body database) [41], CASIA [42], OU-ISIR treadmill 

[43], OU-ISIR [44], TUM-GAID [45] and human ID challenge [46]. These datasets are 

available to test, and train using ML and DL models to access and improve the performance 

of the datasets.  



 

29 
 
 

2.6.2      Inertial sensors 

 Use of ambulatory sensors to monitor and classify human activities and gait has 

proven to be important [47]. A specific type of sensor, the inertial measurement unit  (IMU) 

has been widely used due to its small size, cost, light weight and high precision 

characteristics. IMU sensors consist of accelerometer, gyroscope and magnetometer which 

give information about the acceleration, angular velocity and the heading direction 

respectively. IMU based sensors are used to calculate the acceleration resulted from the 

acting forces with the help of an accelerometer whilst a gyroscope is used to measure the 

angular velocity in the response of rate of change of the sensors orientation. Data obtained 

from an IMU based sensor provides a comprehensive report on the acceleration, velocity, 

gravitational forces and human body orientation. IMU sensor could be worn on different 

parts of human body such as head, chest, waist, thigh, shank and foot [48]. When connected 

with batteries, microprocessors and communication devices, make an IMU based system. 

IMU sensors on human body for testing can be seen in figure 2.3.  

IMU sensors have been extensively used inside smart phones with advantages of 

predictable variability and position whilst avoiding the requirement of additional hardware 

support. The benefits of gait assessment and monitoring in patients can also be realized  with 

smart phone based IMUs [49]. The smart phone now days is capable of performing all 

necessary tasks such as making decisions and contacting the health providers in case of 

emergency situations. 

 
 

Figure: 2.2 Prototype video cameras with markers on different body parts to create a 

skeleton [136] 
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For gait analysis, mainly experiments are conducted on Heel strike and Toe-off 

events which determine the stance time and swing time of subject in gait cycle. Performance 

is checked on a dataset of information using different classification algorithms and 

techniques [50].  Panebianco et al. presented a systematic review to assess the human gait 

and its temporal parameters in terms of accuracy and repeatability using 17 algorithms [51]. 

5 IMUs were used, one on the back, two on the shanks and two on the feet. It was determined 

that for human gait detection and estimation of stance time, algorithms based on the 

acceleration measurements on the shank and foot perform better than those based on lower 

trunk. It was established that for human gait detection and estimation of stance time, 

algorithms based on the acceleration measurements on the shank and foot perform better 

than those based on the lower trunk. However, the sensor position did not affect the step 

estimation.  

In deviation from normal gait, the analysis of human gait for healthcare has attained 

the interest of researchers and clinical studies. Various methods and techniques have been 

developed and proposed to classify and analyze neurodegenerative conditions and prevents 

of fall among elderly patients. IMU sensors are widely used in recognition of human motion 

disorders such as Parkinson’s disease (PD) [52], [2] and early detection of Freeze Of Gait 

(FOG) [53]. 

However, it is still challenging to directly capture and analyse gait signals due to the 

complex spatio-temporal nature and the difficulty to relate the data directly specially in case 

of larger number of observations [48],[51]. Many feature extraction techniques have been 

 
 

Figure 2.3: IMU sensors on legs to detect gait [50] 
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adopted which are time-consuming and require knowledge of the context for which the gait 

signals are acquired. Feature extraction methods are time consuming and manual therefore, 

deep DL has appeared as an automatic and reliable tool to hunt the distinctive features of 

human gait and outperforms the other handcrafted feature-based techniques.  

A deep learning approach has been proposed with 5 IMU based sensors attached on 

lower back, thighs and shanks for human activity recognition has been proposed by Zebin at 

al [54]. Gait features are automatically extracted from raw data using CNN models and 

superior performance using CNN is compared with the other machine learning techniques. 

Similarly, Dehzangi et al. [55] used 5 IMU sensors attached on chest, lower back, right wrist, 

right knee and right ankle. Data is collected from 10 people which is subject to early and late 

fusion methods using deep CNNs. Superior performance is achieved using the later fusion 

method. 

 

2.6.3 Floor sensors 

Floor sensors (FS) are used to capture the force produced on the ground by human 

foot during a gait cycle. This interaction of human body is natural and cannot be changed or 

altered at will. However, due to temporary or long-term health condition either neurological 

or physical conditions changes can take place in this interaction. Gait monitoring using FS 

requires minimal intervention which make FS suitable for long term and continuous data 

capture [56]. FS are useful to capture the distinct information related to gait events, record 

the evolution of walking behaviours, and observe any reactions to the psychological and 

physical involvements. 

FS provide an unobtrusive way of acquiring gait information and are mainly installed 

at the front entrance of buildings or in access control areas. These systems can also be used 

to identify the location of subject within a certain area [57]. FS can be used on the factory 

floor to provide data needed for monitoring of the position and activity of ambulatory 

industrial robots and, in cases of co-occupancy with humans, can provide additional 

information needed for health and safety.  

Mostly, FS comprises a set of sensors or force plates placed on the floor. Resistive, 

capacitive, inductive or fiber optic-based sensors are commonly used, sample prototype of 

FS is shown in figure 2.4. Data obtained from these is used to analyse and calculate gait 
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features. Middleton et al. [57] used different gait features such as stride length, stride cadence 

and ratio between time on toe to time on heel and achieved 80% recognition accuracy with 

a resistive sensor mat. Vera-Rodriguez et al. [58] have assembled SFootBD database using 

20,000 footstep signals obtained from more than 120 volunteers. Gait analysis has its 

implementations in healthcare such as diagnosis of flat foot among children [59], monitoring 

for fall detections in homes [60] and effect of cognitive dual task on human gait [28], [61]. 

Raw values from floor sensors can be used with ML methods and techniques, 

circumventing calculations of pre-determined “man-made” gait features e.g., from image 

reconstructions. Costilla-Reyes et al. [6] used raw readings from floor sensors and achieved 

93% of classification accuracy using Support Vector Machine (SVM) on large datasets. 

Further DL has been used extensively for automatic feature finding from the complex spatio-

temporal gait signals. Singh et al. [62] proposed a 17 layer based CNN and gated recurrent 

units based Inception-v3 model to extract gait features from the images constructed from 

ground reaction force. 13 people are tested with their samples taken on a 80cm x 80cm grid 

area of resistive FS and yielded 87.66% accuracy. Again, Costilla-Reyes et al. implemented 

deep learning models such as Feed forward neural networks (FFNNs) and Recurrent Neural 

Networks (RNNs) to perform classification of 10 walking manners and 3 dual task [63]. 

They demonstrated that DL based models outperformed the other ML based approaches with 

overall accuracy of around 97.88% and few exceptions due to the shortage of training 

       
 

Figure: 2.4: Prototype FS Left: Resistive sensors [105], right: POF based sensors [10]  
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dataset. They also established UoM-Gait-13 dataset representing raw spatio-temporal gait 

signals recorded at 1400 frames at 256 Hz using 116 FS.  

 

2.6.4 Multi-modality sensor fusion 

Multi-modality sensor fusion combines data from multiple modality sensors 

resulting in an information category of new representations, which is distinct from the 

original and individual information dataset [64], [65]. Multi-modal approach is used for 

higher reliability and accurate identification by combining results obtained from more than 

one modality. It is obvious to achieve the improved accuracy when information from one 

modality is integrated with another. Not only just in accuracy, but the multi-modality 

approaches also create robust and fool proof biometric system as compared to single 

modality systems. In literature, sensor fusion based on multi-modality systems can be 

categorised into two main categories: 

 

2.6.4.1 Feature level based multi-modality sensor fusion 

Feature-level fusion of different modalities involves extracting features from 

multiple sensors and generating new representations which can be different [64]. Feature-

level fusion is helpful in situations where lower computational cost is a key challenge. The 

focus on feature-level fusion is essential, since the efficiency of gait analysis depends on 

employing the maximum variability of data by automatically extracted features, rather than 

using hand-crafted features based on observational practice.  

Shakhnarovich at al. [66] combined data from face recognition and video camera gait 

features. Canonical view estimation, rendering and recognition has been implemented on 

image sequences. Face recognition provided 80%, video camera-based gait produced 87% 

and combined results were 91% respectively. Zhou et al. reported the combination of side 

face and gait as two biometric sources to achieve recognition [67]. They tested their approach 

on 45 people and observed an improvement of 100% combined as compared to 64.3% using 

face recognition and 85.7% using video recognition.  

Elena Vildjiounaite et al. [68] proposed a unique way of combining speaker 

recognition with accelerometer based gait recognition. In a tentative test on 31 users, the 

EER was 2% - 12%, typically less than half of the EER obtained from individual modalities.  
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Table 2.1: Feature level-based fusion of multi-modality systems 
 

Note: EER = Equal Error Rate 
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Vera-Rodriguez et al. [69] considered gait and footstep biometrics using manual 

feature extraction techniques to perform fusion using machine learning techniques. This 

approach is amenable to DL methods for automatic extraction of fused features and 

improved accuracy. 

Table 2.1 reflects our awareness of research on multi-modality sensor fusion at 

‘feature level’ (including some not on human gait data). Here, the calculated accuracy of 

fusion pertains mainly to the methodology of the data processing and not necessarily to the 

merit of the sensing results. 

 

2.6.4.2      Deep learning based multi-modality sensor fusion 

Deep Learning (DL) has become the state-of-the-art in many pattern classification 

techniques such as iris [70], face [71], finger-print [72], palm vein [73], ECG [74], human 

action [75] and gait [76] etc. In many inertial sensor-based modalities, DL is used to fuse the 

body position and orientation in the artificial neural network layers. Similarly, log of forces 

related to feet obtained using either switch sensors, pressure plates or POF sensors are fused 

in case of floor sensors. In table 2.2, we have summarized the research on sensor fusion of 

multi-modality gait data based on DL. 

Mazumder et al. proposed a multi-channel redundant fusion technique to detect stride 

time and gait phase [77]. Basic theme of prosthesis and lower limb exoskeleton is followed 

to generate the lower limb joint trajectories. This technique used Radial basis ANN to 

process the joint trajectories across each gait event and phases. User intention to start, stop 

and change in a particular pattern is estimated during gait cycles. Modalities involved in this 

research include a four-channel myoelectric sensor for electromyography (EMG) signals, 

IMU and foot pressure sensors. The proposed study was conducted on five subjects walking 

on treadmill, an overall classification accuracy with minimum square error smaller than 0.05 

is achieved. 

In healthcare context, gait phase detection has been performed using DL methods. 

Ding et al. [78] used one IMU sensor attached to the shank and 3 foot switches and performed 

real time gait phase detection. LSTM is used for gait phase recognition with an accuracy of 

96.1% as compared to ML methods such as Support vector Machine (SVM) (89.1%) and 

multi-layer perceptron (MLP) (91.8%). A strong correlation between shank kinematics and 

gait phase were noticed in this work. 
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To predict the gait spatio-temporal parameters using deep ANNs, Mun et al. used 

foot characteristics [79]. To achieve this, they have used foot feature measurement system 

(FFMS) based on force sensors and RGB-Depth camera along with a set of IMU sensors 

based on an integrated motion capture system. Gait features such as stride length/time, step 

length/time, velocity and single/double limb support, swing and stance times are fused over 

deep layers of ANN. This study was tested with 95% accuracy on 42 subjects for slow, fast 

and normal walks. 

Vu et al. used gait phase detection in gait cycles for powered transtibial prosthesis 

[80]. They implemented an exponentially delayed fully connected neural network (ED-FNN) 

and it was tested on 7 subject performing daily walking on flat ground and 15-degree slope. 

Data is acquired from raw IMU sensors placed on lower shank and two force sensitive 

resistors for heel strike and toe-off det4ection. The proposed implementation consumes less 

computational power therefore was found suitable for autonomous systems. 

 For the elderly people walking with mobility supported platforms, Chalvatzaki et al., 

[81] presented a method to monitor on-line gait stability. They fused the information 

obtained from upper portion of body using depth camera and leg motion using LRF. LSTM 

based network is used to predict the gait stability state as safe or fall risk. They have achieved 

Modalities 
DL 

Models 
Extracted Features Results References 

EMG, inertial & foot 

pressure sensors 
RB-FNN Stride time 

Fused error 

rate = 0 
Mazumder at al. [77] 

Inertial & foot switch 

sensors 
LSTM Gait phase 

Accuracy = 

91.8% 
Ding et al. [78] 

Inertial, force sensors 

& depth camera 
DNN Gait phase 

Accuracy = 

95 % 
Mun et al. [79] 

Inertial & force 

sensitive resistors 
ED-FNN Gait phase detection 

MAE = 

2.1%±0.1 
Vu et al., [80] 

Depth camera & laser 

range finder (LRF) 
LSTM Gait stability prediction 

F-score = 

86.79% 
Chalvatzaki et al., [81] 

Video, inertial & 

pressure sensors 

3D-CNN 

& LSTM 

Gait activity 

recognition 

Accuracy = 

91.3% 
Kumar et al. [82] 

Inertial & force 

sensors 
CNN Gait recognition 

Accuracy = 

93.3% 
K. Ivanov et al. [83] 

 

Table 2.2: DL based fusion of multi-modality systems 
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accuracy of 84.36% with a combination of LSTM layers and two fully connected layers as 

compared to only LSTM layers, SVM and rule-based methods. 

A multi-modal data acquisition system to implement using evolutionary decision 

fusion is presented by Kumar et al. [82]. Two LSTM models are used: one after CNN layers 

and the other to extract the spatio-temporal information from IMU sensors. Grey Wolf 

Optimizer (GWO) is used to combine the output of LSTM models. An overall accuracy of 

91.3% for gait recognition is achieved from 23 subject, including 19 males and 4 females 

using four different gait activities: normal, fast, walking while listening to music, and 

walking while watching multimedia content on a mobile. 

 Ivanov et al. performed identity recognition and test 59 users by acquiring kinetic 

and kinematic data from multi-modal sensor enabled footwear using inertial and force 

sensors [83]. CNN are used with four strategies and multiple segmentation overlaps. Parallel 

multi-cascaded CNN architecture with Extreme Learning Machine (ELM) and 70% overlap 

attained superior accuracies over any other strategy. 

 To access our proposed study multi-modality sensor fusion, we have thoroughly 

investigated and implemented different classification models which are discussed in the next 

section. 

 

2.7     Machine learning models 

Classification is a methodology to predict a set of categories for test data, based on 

trained/observed data set whose category is known. There are wide applications of 

classification models in Machine Learning (ML) which is a domain of Artificial Intelligence 

(AI) and first introduced by Arthur Samuel in 1959 [84]. ML has emerged as a key tool for 

sensor data analysis, is becoming a centric part of novel sensor design. ML is widely 

applicable has a major role to play in the field of data processing and sensor fusion in 

particular [85].  

ML models are used to implement complex techniques and methods through 

predictions which can learn and make decisions on data obtained from multiple sensors. 

These models are also very useful in exploring the hidden aspects through learning 

background relationships and trends in data.  ML has now entered everyday lives due to the 

reliable and repeatable results delivered, namely with facial recognitions, Kinect devices, 
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virtual reality headsets, speech or voice recognition over phones, robot dogs, online retail 

such as Amazon and Netflix etc. There are several ML models, we have focused a few 

suitable for our multi-modality sensor fusion approach, details of which are as follows: 

 

2.7.1  Logistic regression (LR) 

LR is a linear predictive analysis technique. This technique is used to describe 

relationship between one dependent variable and one or more independent variables [86]. 

LR is the extension of linear regression model for classification scenarios. Simple linear 

regression is given by,  

𝑦 =  𝑏0 + 𝑏1 ∗ 𝑥                                                      (2.1) 

Multiple linear regression is given by,                       

   𝑦 =  𝑏0 + 𝑏1 ∗ 𝑥1 + ⋯+ 𝑏𝑛 ∗ 𝑥𝑛                                        (2.2) 

Linear regression works well for regression but not for classification as it is not 

capable to predict probabilities. Therefore, LR [87] uses sigmoid function to fit the values 

between 0 and 1 as shown in figure 2.5. Sigmoid curve is placed between the test data values 

according to the structure of data and predicted values are obtained from the projections of 

input values on the curve. 

                                  
 

Figure: 2.5 Logistic regression implementation 

y= 𝑏0 + 𝑏1 ∗ 𝑥

 =
 

 +    
Sigmoid Function
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2.7.2      K-nearest neighbour (K-NN)  

K-NN is a non-linear and non-parametric model which uses a database in which data 

points are distributed among several classes to classify a new sample point [88]. K-NN 

algorithm can be summarized in the following steps: 

i. Select the number of neighbours’ k. 

ii. For a new data point take the k nearest neighbours based on the Euclidean distance. 

iii. Between the k neighbours, count the number of data points belonging to each category. 

iv. Assign the new data point to the category for which the most neighbours have been 

counted. 

For example, we have a green sample to classify, if k=1 it should be classified as 

‘Class 1’ member and if k=3 it should belong to ‘Class 2’ as there are more neighbours as 

shown in figure 2.6. 

2.7.3      Support vector machine (SVM)  

SVM is a non-probabilistic linear classifier. It creates a boundary called maximum 

margin hyperplane based on its maximum distance between the nearest data values for 

different categories [89]. These nearest points are called support vectors as shown below, 

 
 

Figure 2.6 Working principle of K-NN 
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2.7.4      Kernel-support vector machine (K-SVM) 

In case of non-linear data, SVM implicitly maps input data from 2D space into higher 

dimensional space using hyperplane and then projects back the data from higher dimensional 

space into 2D space [89] as shown in figure 2.8(a) and (b). 

This procedure makes SVM a highly computationally intensive method in case of 

large datasets. Therefore, SVM makes use of ‘kernel trick’ in order to avoid map to and from 

higher dimensional space.  Following filters are some of the filters used to avoid mapping 

data into higher dimension space. 

 

Gaussian Kernel: 

𝐾(�⃑�, 𝑙𝑖⃑⃑⃑) =  
  

||�⃑⃑⃑�−𝑙𝑖⃑⃑⃑ ⃑||

2𝜎2

2

                                                 (2.3) 

Sigmoid Kernel: 

𝐾(𝑋, 𝑌) = 𝑡𝑎𝑛ℎ(𝛾. 𝑋𝑇𝑌 + 𝑟)                                     (2.4) 

Polynomial Kernel: 

𝐾(𝑋, 𝑌) = (𝛾. 𝑋𝑇𝑌 + 𝑟)𝑑, 𝛾 > 0                                (2.5) 

 

 
 

Figure 2.7 SVM example 
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2.7.5      Naïve Bayes (NB) 

    Naïve Bayes is a predictive analysis technique which is based on probability function 

to perform classification [90]. Basic equation used in naïve Bayes is as follows: 

𝑃(𝑐|𝑥) =  
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
                                                (2.6) 

wherer P(c|x) iw the posterior probability, P(x|c) is the likelihood, P(c) is the class 

priority probability and p(x) is the predictor prior probability. Naïve Bayes uses conditional 

independence assumption whilst performing classification. Disadvantage is that it does not 

learn interaction between independent variables. 

(a)    

(b)  
 

Figure 2.8 (a) Mapping of data in 2D space to a higher space using hyperplane  

(b) Projection of higher space data back into 2D space 
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2.7.6      Decision tree (DT) 

Decision tree works in the form of trees and breakdown a dataset into smaller datasets 

whilst building an associated decision tree at the same time [91]. This technique finds 

optimal splits that are going to maximize the number of points in each portion where a leaf 

represents a classification, or a decision and topmost decision node is called a root node. DT 

example is shown in figure 2.9. Decision trees are extremely fast at classification however a 

minor change in data may lead in major changes to the decision strategy. 

 

2.7.7       Random forest (RF) 

RF makes use of ensemble learning in which many models are combined to form a 

bigger algorithm with better classification and improved results [92]. RF algorithm can be 

summarised as follows: 

i. Select ‘k’ data points or nodes randomly from the training set. 

ii. For each ‘k’ nodes build the decision tree. 

 
(a) 

 
(b) 

Figure 2.9 (a) Sample data set before and after DT classification algorithm, (b) Example 

criteria to split data among branches and terminal leaves 
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iii. Select the number ‘n’ trees and repeat steps 1 and 2. 

iv. For a new data point, use the ‘n’ trees to predict the category and assign the new node 

to the category that has majority of votes. 

Basically, random forest method is an ensemble of decision trees as shown in figure 

below, these decision trees are trained with bagging method. Main idea of bagging is to use 

a combination of learning algorithms to improve the overall result. However deep decision 

tree might cause over fitting on data. 

2.8 Deep learning models 

    Deep Learning (DL) is the most emerging and powerful branch of ML. DL 

algorithms can be used for a variety of complex tasks such as: 

• Artificial neural networks for regression and classification 

• Convolutional neural networks for computer vision 

• Recurrent neural networks for time series analysis 

• Self-organizing maps for feature extraction 

• Deep Boltzmann machines for recommendation systems 

• Auto encoders for recommendation systems 

Focusing the multi-modality sensors fusion, we have selected the following models: 

 

 
 

Figure 2.10 Example of RF algorithm 
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2.8.1 Feed-forward neural network (FFNN) 

  The neural network in which output from one layer in fed to the next layer in forward 

direction without any loops in the network is called a feed-forward neural network [93]. The 

basic architecture of a FFNN model consists of an input layer, few hidden layers and an 

output layer of neurons as shown below, 

The complete FFNN works as follows: 

i. Weights are initialized with a value close to zero.  

ii. Forward propagation – Neurons get activated, the outputs from each layer are 

passed in forward direction to the next layer. The weight of every neuron is 

multiplied by the input and passed through the activation function as shown in figure 

2.12. Propagation continues until a prediction is achieved. For fused case, forward 

propagation takes places over the fused layers. The output of a 𝑘𝑡ℎ neuron is given 

by, 

𝑍𝑘 = ∑ 𝑤𝑖𝑘𝑥𝑖 +
𝑛
𝑖=0  𝑏𝑘                                          (2.7) 

where i enumerates all neurons in the layer, n is the total number of neurons 

in the layer, x is the input, w is weight and b is bias of the 𝑘𝑡ℎ neuron. 

 
 
 

 
 
 
 
 
 

 

 

 

Fig. 2.11 A simple FFNN 
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The effect of every weight is determined by the activation function which 

allows the model to achieve a desired output between a certain range normally 

between 0 and 1. Activation function is given by, 

𝐴𝑘 = 𝑓(𝑍𝑘)                                                  (2.8) 

In order to solve the complex problems, the network should be able to 

introduce the non-linearity. This purpose is achieved using activation function as 

well as the biases. There are many possible activation functions that exist: 

 Linear:  

𝐴 = 𝑍 = 𝑤. 𝑥 + 𝑏                                             (2.9) 

    Sigmoid: 

𝐴 = 𝜎(𝑍) =
1

1+𝑒−𝑧
                                             (2.10) 

 Hyperbolic tangent: 

𝐴 = 𝜎(𝑍) =
𝑒𝑧  𝑒−𝑧 

𝑒𝑧+ 𝑒−𝑧                                            (2.11) 

 
 

 
 

Fig. 2.12 Forward propagation using activation functions 
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Rectified Linear Unit (ReLU): 

A = max (0, 𝑍)                                               (2.12) 

 Leaky ReLU: 

A = max (0.  𝑥 𝑍, 𝑍)                                          (2.13) 

 

iii. The predicted results are compared with the actual results and the error is quantified 

with the help of a cost function. Cost functions are found in literature, such as mean-

squared-error [94] and cross-entropy [95]. We have used cross-entropy which uses 

logarithmic function to handle very small errors. 

iv. Back propagation – The error is back propagated in the form of updated weights 

send to the neurons layer-wise in backward direction as shown in figure 2.13. 

Gradient based algorithms like stochastic gradient descent [96], conjugate gradient 

[97] and Adam [98] are the commonly used methods for error optimization, later is 

used to determine the learning rate of new weights and biases in our research. In the 

output layer, Zk is the input vector for a linear classifier, namely a Softmax function 

given by   

𝑓𝑖( ) =
𝑒𝑧𝑖

∑𝑘𝑒
𝑧𝑘

                                               (2.14) 

 
 

Fig 2.13: Backward propagation adjusted using gradient based algorithms 
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v. Steps 1-5 are repeated, and weights are updated after each observation 

(reinforcement learning) or a batch of observations (batch learning) from the training 

set. 

vi. One epoch is completed when one whole training set passes through the FFNN. 

 

2.8.2 Convolutional neural network (CNN) 

CNN is a typical DL model which uses different levels of abstraction to learn the 

hierarchical representations of patterns existing in the dataset [99]. CNN are mainly used in 

the analysis of visual imagery. CNN consists of an input layer, convolution layers, down 

sampling or pooling layers, flattening layers, fully connected layers and an output layer.  

The CNN functionality can be summarized as follows:  

i. Convolution – Convolution operation is a combined integration of two functions, 

and it shows the modified behaviour of one function due to the other. Considering a 

case of images, suppose first function is the input image and the second function is 

the feature detector, kernel or filter then after performing the convolution operation 

result will be an extracted ‘feature map’ as shown in figure 2.14. Convolution 

operation also helps to reduce the size of input image however the amount of 

information does not get lost. Resulting feature map has features which are the 

integrals of input information and the filter. 

    A desired set of feature maps are created during convolution operations. Each 

feature map has its own filter applied on the input image. To increase the non-

linearity in all feature maps, an activation function is required as shown in figure 

                                                                             
 

Fig 2.14: Convolution operation 
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2.15. Mainly used activations functions are sigmoid, tanh, ReLU (Rectified Linear 

Unit) and Leaky ReLU (as mentioned earlier in FFNNs).  

The convolution operation is applied to automatically extract the unique 

variability features from the dataset. The complete output of a convolution layer is 

given by: 

𝑐𝑡
𝑘 = 𝜎(bk + ∑ 𝑤𝑖

𝑘𝑥𝑡+𝑖 1
𝑘𝑛

𝑖=0
)                                            (2.15) 

where 𝜎 is the activation function, bk is the bias, 𝑤𝑖
𝑘is weight of the kth feature map 

and n is the size of the convolution kernel. 

ii. Pooling – Max pooling is used to down-sample the large volume of data after 

convolution. Max-pooling outputs the maximum value from the nearby input values 

as given by: 

𝑚𝑡
𝑘 = 𝑚𝑎𝑥(𝑚𝑡𝑥𝐿+𝑜

𝑘 )                                              (2.16) 

where 𝐿 is the stride length and o is the pooling size. 

iii. Flattening – Extracted features are the 2D feature maps and required to get aligned 

in a 1D feature vector of inputs for fully connected layers: 

f
i
( ) = [f

1
, f

2
, … f

k
 ]                                                    (2.17) 

where 𝑘 is the number of outputs from last pooling layer. 

 
 

Fig 2.15: Convolution operation with ReLU 
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iv. Full connection – A fully connected layer is a specific type of hidden layer which is 

fully connected to its input layer. CNN make use of fully connected layers in which 

all inputs are connected to the hidden layer completely. Fully connected layers in 

CNNs do the discriminative learning just like ANNs. Complete convolution network 

can be seen in figure below, 

2.8.3 Long short-term memory (LSTM) 

Recurrent neural networks were introduced in the 80’s [100], [101] for modelling of 

time-series data. The basic structure of RNNs is similar to FFNNs, where connections exist 

among hidden layer units based on time delays. These connections retain the information 

from previous inputs and help to find out the temporal correlations between events which 

are spread out in the dataset.  However, the network output while cycling around recurrent 

connections gets affected from exponentially vanishing or exploding gradients [102]. 

Therefore, the efficient gradient-based technique, Long Short-Term Memory (LSTM), is 

introduced to cover the time lag between the time steps by enforcing constant error flow 

within special cells [103]. A single LSTM cell from a single hidden layer has three inputs: 

present input(𝑥𝑡), previous output(ℎ𝑡 1), previous memory(𝑐𝑡 1)  and two outputs: new 

output(ℎ𝑡), new memory(𝑐𝑡), as shown in figure 2.17, 

LSTM cells are implemented with three gates and operations similar to a 

conventional FFNN, details of which are described as follows: 

i). The forget gate 𝑓𝑡 controls the contribution of previous cell 𝑐𝑡 1 to pass through the 

current cell as 𝑐𝑡, 

𝑓𝑡 =  𝜎(𝑤𝑓[𝑥𝑡, ℎ𝑡 1] + 𝑏𝑓)                                        (2.18) 

 

 

 

Fig 2.16: Implementation of complete CNN 
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where 𝑤𝑓,𝑏𝑓 and 𝜎 are the associated weights, bias and activation respectively. 

ii). The input gate 𝑖𝑡 handles the new input contribution in the current cell, using a sigmoid 

activation function as, 

𝑖𝑡 =  𝜎(𝑤𝑖[𝑥𝑡, ℎ𝑡 1] + 𝑏𝑖)                                       (2.19) 

where 𝑤𝑖, 𝑏𝑖 and 𝜎 are the associated weights, bias and activation respectively. 

iii). �̃�𝑡 is the short-term memory that is created using current input and previous output as, 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑤𝑐[𝑥𝑡, ℎ𝑡 1] + 𝑏𝑐)                                   (2.20) 

where 𝑤𝑐, 𝑏𝑐 and 𝑡𝑎𝑛ℎ are the associated weights, bias and activation respectively. 

Short-term memory holds the information to store during every iteration of predictions. 

iv). Multiplication of steps ii and iii results in filtered memory information (related to 

previous inputs), which is added to forget gate outputs (related to present inputs) to 

update the new memory as, 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡 1 + 𝑖𝑡 ∘ �̃�𝑡                                        (2.21) 

v). Output gate reads the input as 𝑜𝑡 and outputs the information relevant to the new 

memory as ℎ𝑡, 

𝑜𝑡 =  𝜎(𝑤𝑜[𝑥𝑡, ℎ𝑡 1] + 𝑏0)                                     (2.22) 

where 𝑤𝑜, 𝑏𝑜 and 𝜎 are the associated weights, bias and activation function respectively. 

ℎ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                            (2.23) 

 
 

 

 

 

 

 

Fig 2.17: Illustration of a single cell in a LSTM layer 
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2.9 Evaluation of classification models 

The evaluation of a classification is not straight forward and requires a procedure to 

follow. The initial and crucial step to prepare a ML or DL based classification model is data 

pre-processing. During this step, dataset is prepared to be fed into the model. A set of 

independent variables are used to predict a dependent or set of dependent variables. Libraries 

are used to perform specific job. Libraries and database are imported in an Integrated 

Development environment (IDE) using a programming language. Missing dataset values are 

dealt with and scaling is performed where required. 

In any classification model, data is split in to training and test sets before feeding it. 

Models learn from the training data and assessment is performed on test datasets. The 

performance on test dataset should not be much different than the training dataset which 

might shows that the model has learned the correlation between the values and not merely 

the values themselves. Outcome possibilities from a classification procedure are judged 

using the following analytical quantities: 

• True Negatives (TN)  –  Correct prediction, model predicts the negative class. 

• True Positives (TP)  –  Correct prediction, model predicts the positive class. 

• False Negatives (FN)  –  Incorrect prediction, model predicts the negative class. 

• False Positive (FP) –  Incorrect prediction, model predicts the positive class. 

 

2.9.1 F-score measure 

F-score is a measure to find out the usefulness of a classification procedure. It 

considers both precision and recall in order to calculate the score. F-score should be higher 

for better predictive power of the classification procedure. The lowest and highest possible 

values of f-score are 1 and 0 respectively where 1 represents perfect classification procedure. 

0 ≤ 𝐹 ≤   

F-score is the harmonic mean representation of precision and recall, 

F = 
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
 + 

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

                                                   (2.24) 

F = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                               (2.25) 
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where, precision is defined as the ratio between correct positive cases divided by the 

sum of correct and incorrect positive cases, recall is defined as the ratio between correct 

positive cases divided by the sum of correct and incorrect false cases and accuracy is the 

ratios of total correct predictions divided by sum of all predictions, 

Precession = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    (2.26) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (2.27) 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
                                                   (2.28) 

In this chapter we have surveyed the literature about cognitive based gait activities, 

gait sensing modalities and feature extraction techniques used in our multi-modality sensor 

fusion approach. Also, we have explored the classification models used for classification of 

cognitive based gait activities involved in our research. 
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Chapter 3 

Data acquisition and analysis using gait sensor systems 

 

 

Floor sensors (FS) are unobtrusive and mainly based on resistive plates, capacitive 

plates, piezoelectric sensors, or fiber optic cables. These systems are typically installed 

indoors, in controlled environments such as offices and buildings. Most FS have been 

employed to record physiologically defined features, such as centre of pressure, step length 

and cadence, rather than for collecting raw data over longer periods of time [104],[105]. 

Recently, inertial sensors have been actively and widely used to acquire gait information due 

to their small size, weight and cost [47]. An important factor to consider is that although 

ambulatory inertial sensors (AIS) are non-invasive, they require the individual to cooperate 

in wearing them on different body parts such as head, waist, chest, thigh, shank and foot to 

record gait signals [48]. 

In our research, two systems i.e., AIS and FS are used for gait acquisition and data 

processing. FS were already existing however AIS were developed in this research. Selection 

of the AIS sensors under the highlights of their measures and abilities to support our 

proposed research is discussed in section 3.2.1. During our experiments, user is asked to put 

AIS sensors on their body whilst performing gait activities on FS. Signals are collected from 

both systems wirelessly into servers where it is pre-processed and prepared for further 

processing and analysis. Details of the proposed multi-modality system are stated as follows: 

 

3.1 Floor sensors (FS) 

In this work, an original FS system (size: 2 m x 1 m approx.) is used to acquire the spatio-

temporal dynamics of the ground reaction force during the chosen gait activities. FS 

comprises 116 plastic optical fiber (POF) sensor elements, each terminated with an LED as  
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Fig. 3.1 Present design of FS available at UoM 

 

Walking Area 

Hard Plastic Covering PCB Boards 
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a light source and a photodiode as detector.  The three-ply arrangement of POF based cables 

with circuit boards and wires are enclosed around the periphery of the FS and connecting 

with an umbilical cord to a R-Pi in a shielded box, as shown in figure 3.1. The set of POF 

sensors provides efficient sampling of the spatial-temporal distribution of the integrated 

transmission losses resulting from the applied pressure on the contact surface The R-Pi is 

used to transfer information to external workstation using a Wi-Fi connection. 

 

3.1.1 Hardware implementation of FS 

FS is an illustration of POF based carpet which is meant for human to manoeuvre. 

Plastic optic fiber (POF) based carpet was introduced by The University of Manchester 

(UoM), a collaboration between CEAS, EEE and NMHS.  The Mk1 design made use of 256 

wires to control 116 light emitting diodes (LEDs) and 116 photo detectors (PDs) coming out 

of the non-maintainable part of the sensor and going to an integrated circuit board with 

FPGA used in combination with National Instrumentation Data Acquisition Devices 

(NIDAQ) such as NI-9172, NI-9401, and NI-9205 for faster data acquisition and processing.  

 

 

 

         
 

 

 

Fig 3.2:  Top: User standing on the FS, Bottom: Overall connection of 116 POF (server) 

sensors to the outside workstation (client) through a dedicated R-Pi 
 

Server Client 
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To perform real time monitoring of data during acquisition needed hardware changes in PCB 

and upgraded expensive NI hardware and software. 

To monitor the signal on real time, a comparatively cheaper and distributed approach 

has been implemented compared to the previous FS. The current version of FS contains POF 

sensors and associated electronics closed in a hard shell located at the rectangular boundaries 

called non-maintainable part with a total 8 wires including the power and ground wires 

coming out of it. This structure makes it non degradable by humans during their gait 

activities. Also, there is a maintainable part which is used for data filtering, processing and 

control. This maintainable part is connected through an umbilical to the non-maintainable 

part with a minimum number of wires for ease of maintenance. Both parts together make a 

‘server’ which could be installed at any location such as hospitals and care homes. Now this 

server could be accessed through Ethernet or Wi-Fi interface from a remote computer called 

‘client’ to monitor and observe gait activities, as shown in figure 3.2. Though, performance 

changes should be made from the maintainable part at server. 

 

3.1.2 Software implementation of FS 

The current FS has been built on Server Client based model approach. Server 

comprised all floor sensors connected through an umbilical cord to a 2x1 feet metal box 

containing a raspberry pi, CPLD and power supply connection. Client could be any computer 

connected through an Ethernet wire or wireless connection over internet and capable to run 

python IDE. Upon receiving a request of connection from client, the server would establish 

a secure connection with client and would start sending data frames up to 256Hz maximum. 

Server could also be able to save data on its memory with temporal information to allow 

testing and further analysis on data. 

Server program for this system is developed in python language, the code is provided 

in Appendix B.1.2. This program is capable to perform mapping, calibration, converting raw 

values from binary to decimal format, data processing and filtering on the input information. 

Socket programming is used at server to hold information for a requesting remote client. 

Server must have the knowledge of IP address and port number of the remote client as this 

information is required to authenticate the remote client over the network. 
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Python is used to develop a client which could be used on any machine capable of 

running python IDE. Client program is required to have the knowledge of IP address and 

port number information of server as well. Upon successful connection, client node will be 

receiving up to 256 frames/second maximum from 116 FS in the form of a long string. 

Output frame speed per second could be altered by changing the block size of each set of 

information from sensors. Snapshot of client’s screen receiving 116 inputs from server is 

shown in figure 3.3. 

 

3.1.3 Image reconstruction of FS 

In order to analyse the output on screen for better visualization and understanding by 

a common user, a graphical user interface (GUI) of the output has also been created. This 

GUI developed in MATLAB is shown in the figure 3.4. Following steps have been adapted 

to perform the image reconstruction on individual outputs from 116 FS: 

i). Ply arrangement – Arrangement of individual sensor values in three plies as 

hardware system looks at the output as a long string of values. The FS has 116 fibers, 

the distribution of fibers is made in three plies as shown in figure 3.5, ply-1 

comprising 22 fibers (number 1 to 22) at 90-degree angle from horizontal axis, ply-

2 is diagonal containing 47 fibers (number 23 to 69) at 225-degree angle from 

horizontal axis and ply 3 is also diagonal including 47 fibers (number 70 to 116) at 

315-degree angle from horizontal axis. 

 

Fig 3.3: Screen shot of client application 
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Fig 3.5: Three ply arrangement of FS 

 

 

 

 
 

Fig 3.4: Top: top-view; Bottom: side-view displaying foot prints of the user standing on FS 
 

 
Note:  The legend bar represents the percentage of light stopped by exerting pressure on the POF based FS 

 



 

59 
 
 

ii). Thresholding – Thresholding to initialize all sensor values to zero prior any 

disturbance caused due to the uneven surface carpet. A threshold value of 0.5% is 

used before starting any experiment and is used as initial threshold value for all 

sensors. 

iii). Image reconstruction – Image reconstruction is performed using Landweber 

algorithm. As compared to other image reconstruction algorithms, the Landweber 

algorithm is found to converge faster than other techniques [106] and has more 

control through relaxation factor factor/gain α and number of iterations. Landweber 

is an iterative solver designed for an ill-posed set of linear equations. The error 

decreases dramatically in the start however after some iterations it requires a good 

stopping value of α to achieve optimum results. Landweber algorithm’s output is 

given by,  

𝐺𝑘+1 = 𝐺𝑘 +  𝛼𝑆𝑇(𝐶  𝑆𝐺𝑘)                              (3.1) 

where 𝐺𝑘 is the output, 𝛼 is the gain, the term (𝐶  𝑆𝐺𝑘) is used to calculate 

the error in which 𝑆𝑇 is the transpose of the sensitivity matrix for area of walking on 

FS. Implementation of landweber algorithm is mentioned in appendix B.1.3. 

iv). Convolution – Convolution filtering is implemented using a mask ‘M’ (a vector of 

ones, size 3x3) to filter out the pixels having more than the seven noisy pixels from 

every image as shown in figure 3.6. This procedure is adapted to remove the artifacts 

caused due to POF based sensor arrangement in three plies for FS. Left figure in 

figure 3.6 illustrates a re-constructed image before convolution operation while the 

right figure illustrates the same image after-convolution filtering (code is provided 

in Appendix B.1.4). 

            

Fig 3.6: Left: Original reconstructed image, Right: Image after convolution filtering 
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v). Image segmentation - ‘Closing’, an image segmentation technique to fill out the 

closed area contouring the intact areas on carpet. Effects of image segmentation 

followed by convolution operation, can be seen in figure 3.7. 
 

vi). Smooth filtering – Further, Gaussian filter of size 2x2 is used to smooth the 

boundaries of segmented image and boost the central uniform density values such 

that more pressurized areas on carpet will appear as high peak signals. This would 

also help in measuring the difference between peaks of different signals. The effect 

of smoothing filter after image segmentation is shown in figure 3.7. 

 

3.1.4 Data acquisition and pre-processing 

Data obtained from FS is a string of values output from 12bit ADC converter at every 

timestamp. These strings of information are processed and converted into transmitted light 

percentages. FS is synchronized at the same frequency of 20Hz used with AIS. The spatial 

average (SA) of the spatio-temporal information obtained from FS from different gait 

activities is given by,  

SA[t] =  
1

n
∑ (

n

k=1
Fk[t])                                           (3.2) 

where n is the total number of sensor inputs (n=116) and Fk is the input signal at 

every time instance t. A set of 10-SA signals for each gait activity are shown in figure 3.8 

(a)-(g). It is noticeable that some of the SA signal (in same gait activity) have a delay which 

represent the time delay before initializing the gait activity by user. However, each user is 

allocated 6 seconds window to complete one gait activity. 

 
 

Fig. 3.7 Application of left: image segmentation, Right: smooth filtering 
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(a)  

(b)  

(c)  

(d)  
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(e)  

(f)  

(g)  
 
 

Fig 3.8:  FS results of a user performing 10 gait cycles for 7 gait activities i.e., (a) normal 

walk, (b) fast walk, walking whilst (c) subtracting number 3, (d) subtracting number 7,  

(e) listening, (f) typing on mobile (g) talking whilst walking 



 

63 
 
 

3.1.5 Relationship between FS and gait activities 

To observe the response from 116 sensors during each gait activity, the spatial 

average is calculated for the data related to seven gait activities as shown in figure 3.8. The 

activities including comparatively higher cognitive load such as subtracting-3, subtracting-

7 and walking while typing on the mobile are spread across 120 times frame (representing 

one gait activity experiment) as compared to the activities involving lower cognitive loads 

such as normal walk, walking while listening, walking while talking and fast walk which 

consume lesser time. It was observed that higher cognitive load activities slow down the 

walking process and tend to have more foot intact than the lower cognitive ones which can 

be seen in the form of signal peeks (representing heel strikes on the FS carpet area). The 

second peak signal represents the heel strike of the second foot on FS and signal drops its 

intensity as the weight of the user gets distributed on the other foot during gait cycle. 

 

3.2 Ambulatory inertial sensors (AIS) 

The utility of inertial sensors to monitor and classify human activities, and gait in 

particular, is well established [26]. Inertial sensors require attachment on body to capture 

information from different body locations during human gait activity. A portable AIS system 

has been developed and deployed to study the effect of gait on the movements in the lower 

half of human body. The AIS system comprises: (i) a Raspberry-PI (R-Pi) (ii) Sense-HAT 

board, (iii) two 9DoF Razor IMUs. 

 

3.2.1 Hardware components of AIS 

Initially, Arduino microcontroller[107] is used in this research which does not need 

a separate operating system like Raspberry-Pi (R-Pi). However, Arduino needs an extra 

connection of Wi-Fi to transfer real-time data to the processing machine which would result 

in additional hardware attached to the user. Therefore R-Pi is selected which is a credit card 

sized computer, with a quad core 1.4GHz processor, 1GB RAM, Bluetooth and built-in Wi-

Fi[108]. Keyboard, Mouse, plug and play USB devices, HDMI display, power supply and 

additional hardware can be attached with raspberry pi with ease. Third version and B+ model 

of R-Pi is used which can be seen in figure 3.9 (the latest versions among all models or R-

Pi at the time of proposed study). 
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Sense-HAT[109] with a built-in 3D accelerometer (+/-16g) and a gyroscope (+/-

2000dps), is an add-on board which fits on the top of R-Pi. Sense-HAT is selected due to its 

smart design and suitability to attach with user pelvis during experiments. 

Two 9DoF Razor IMU M0[110] sensors (as shown in figure 3.10) are used in this work. 

These sensors are designed to work either with a USB power cable or a Lithium polymer 

battery (3.7-4.2V). These sensors have been selected due to their compact size (3x3x0.1cm) 

and suitability to attach with user heels with/without wires during experiments. Each sensor 

has the following specifications: 

• 3 axis accelerometer (+/-16g) and a gyroscope (+/-2000dps) 

• Integrated Atmel SAMD21cortex-M0+ microprocessor (32 bit) to filter and pre-process 

data during acquisition 

• Programmability through a dedicated USB connection 

• LiPo battery charger connection for wireless charging 

• MicroSD card socket for data recording whilst attached on the user 

 
 

Fig 3.9: Raspberry-Pi (ver: III, model: B+) (left), Sense-HAT Board for R-Pi (right) 

 
 

Fig. 3.10 9DoF Razor IMU M0 front view (left) and back view (right) 
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3.2.2 Design and build 

The R-Pi with the Sense-HAT board (attached at the top) with a 2000-mAh portable 

battery bank (attached at the bottom) is called ‘Sensor 1’ which is connected through USB 

cables to both 9DoF Razor IMUs called ‘Sensors 2 & 3’ as shown in figure 3.11. Further, 

AIS is connected to a workstation for data transfer and control through a Wi-Fi connection. 

Concerning the AIS system, sensors 1-3 (highlighted yellow) are attached to the pelvis and 

both heels of the user, to capture pelvic and foot motions during gait activities. The feet, 

being furthest from the centre of mass, are the obvious fastest movers during gate phases; 

the pelvic motion engages in body weight shifting, as part of natural gait patterns. 

Different number of sensors have been reported to capture gait activities in literature 

[48]. However, deploying the minimum number of sensors may result in performance bottle 

necks whilst recording the complex gait activities [111]. The sensor positioning and number 

of sensors attached to the human body are also important factors whilst judging the quality 

of extracted data. Panebianco et al. [51], reported accuracies using 17 algorithms on 5 IMUs 

placed on back (1 IMU), shanks (2 IMUs) and feet (2 IMUs). To estimate the stance time, 

results obtained from the acceleration values of shank and foot performed better than the 

lower trunk. However, angular velocity estimation performed better in the detection of toe 

off and heel-strike events, with noticeable dependencies on sensor position. 

 
 

Fig 3.11 AIS placed on the user, comprising the Sense-HAT board attached to the R-Pi 

powered by a portable battery bank (sensor 1) and 9DOF Razor IMUs (sensors 2&3) 

connected through USB cables to RPI. 
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3.2.3 Data acquisition and pre-processing 

From AIS, raw data on acceleration and angular velocity values is obtained from 

sensors 1-3, a normal walking gait activity of a subject using 3 sensors is shown in figure 

3.12.  

 

The default sampling frequency of sensor 1 is 30Hz while sensor 2 and sensor 3 are 

sampled at 100Hz. After filtering and re-sampling, the spatio-temporal information from all 

three  sensors of AIS is synchronized at 20Hz. Raw acceleration values are in two’s 

compliment format; therefore, these values are converted into values between +16g and -

16g (where 1g = 9.8m/s2). Synchronized data acquired from AIS is shown in figure 3.13. 

ACL/X, ACL/Y and ACL/Z are the accelerations in x, y and z-axis from sensor 1 (prefix: 

HAT), sensor 2 (prefix: IMU1) and sensor3 (prefix: IMU2) respectively. Similarly, GYR/X, 

GYR/Y and GYR/Z are the angles in x, y and z-axis from sensor 1 (prefix: HAT), sensor 2 

(prefix: IMU1) and sensor3 (prefix: IMU2) respectively. To calculate the angle (θ) from raw 

angular velocity (ω) values, the following formula is used: 

𝜃 = 𝜔 . Δ𝑡 + 𝜃                                                          (3.3) 

 
 

Fig. 3.12 Accleration and angular velocity values from three sensors attached to a 

subject performing normal gait pattern; Bottom right: Test program. 

Sensor 1 

Sensor 2 

Sensor 3 
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where Δ𝑡 is the time step. Data acquisition of acceleration and angular velocity values 

from three AIS for seven gait activities is shown in figure 3.14. The nature of each 

experiment requires subjects to start walking from one end of the FS to the other in forward 

direction whilst wearing the AIS. Therefore, all IMUs are aligned so that the highest 

acceleration (in forward direction) is represented by X-axis; weaker acceleration (vertical, 

in up/down direction between heel strike and toe off events of each foot) is represented by 

Z-axis; the weakest acceleration (lateral, in left/right direction) is represented by Y axis. 

 

3.2.4 Relationship between AIS and gait activities 

A suitable approach to compare all gait activities across the acceleration and angular 

velocity values is the correlation bars which can be seen in figure 3.15. A1-A3 and G1-G3 

on horizontal axis represent acceleration and angular velocity values obtained from sensors1-

3, vertical axis represents correlation factor with maximum varience of ±1 (+1 representing 

maximum positive, 0 means nill and -1 means maximum negative correlation between the 

selected value and the related gait activity). Root of squared acceleration and angular 

velocity values in all three direction is used to calculate a combined response from each  
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sensor of AIS. It can be seen that gait activities with higher cognitive load have an overall 

negative correlation as compared to lower cognitive load have an overall positive correlation 

with the input values. Higher cognitive load tends to negatively correlate with the 

acceleration and the angular velocity values which is more noticeable in case of ‘Fast Walk’ 

with maximum positive correlation of 0.1. However, a mixed response can be seen for ‘Gait 

while Talking activiy’. 

 

3.3 Visual gait analysis 

The full gait cycle can be represented (see figure 1 in [9]) as 5 events in the stance 

phase, starting with a heel strike (HS) and finishing with the HS of the opposite foot. Some 

of the gait events are possible to identify by visual inspection of data obtained separately 

from both modalities. For illustration purposes, in figure 3.16 representing a normal gait 

activity where only HS is indicated on the FS signals (as the mean of all 116 sensor outputs) 

and the AIS signals (as the root of squared maximum accelerations in all 3 directions) given 
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by, 

𝐴 𝑎𝑥 = √𝐴𝑥
2 + 𝐴 

2 + 𝐴𝑧
2 2

                                            (3.4) 

The notable HS dip at the dashed lines is alternating between the two legs: HS1 and 

HS3 from sensor 3 and HS2 and HS4 from sensor 2. Sensors 1 is not sensitive to HS as 

expected because of its position close to centre of mass and not on the limbs. 

 
 

Fig 3.16: (a) Mean of 116 values from FS; (b),(c),(d) Root sum of maximum accelerations 

from AIS sensors1/2/3(placed on pelvis/left-foot/right-foot respectively) vs time frames 

for a normal walk gait pattern.  

Note: Mean of 116 FS values represents the overall disturbance in light channel from 100% and maximum acceleration represents 

maximum movement for every sensor measured in g where 1g = 9.8m/𝑠2 
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3.4 Experiments and data acquisition 

An ethical request for the proposed research on healthy subjects using FS and AIS 

has been approved from Manchester University Research Ethics Committee (MUREC). 

Prior to experiments, written consent from each volunteer’s was obtained prior to all 

experiments and research was conducted in accordance with the general guidelines of ethics 

board. However, the data acquisition programme has been substantially affected by the 

pandemic, as elaborated in COVID-19 statement. 

Data was collected from 11 healthy volunteers; volunteer profile is shown in table 

3.1. Volunteers, wearing AIS while walking on FS, performed all the activities. Serial 

subtraction of number 7 from a random starting number, listening to a story, texting on a 

mobile device and talking to the operator, are the cognitive load-based activities involved in 

our research and each activity is recorded 10 times for every volunteer. From each of the 3 

AIS sensors 3 axis acceleration and 3 angle values were collected yielding a set of 18 values.  

From FS, 116 values were used after calibration. These values from both modalities 

are further extracted for the unique gait features as described in Chapter 4 and 5. 

 

User Weight(kg) Height(cm) Gender Age(year) 

1 71 160 Female 31 

2 68 175 Female 29 

3 57 162 Male 48 

4 80 186 Male 24 

5 69 170 Female 40 

6 75 185 Male 31 

7 79 176 Female 21 

8 65 171 Male 23 

9 70 173 Male 29 

10 96 177 Male 33 

11 53 168 Female 23 

 

Table 3.1: Subject Profile 
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3.5 Data pre-processing 

Python is used as programming languages which provides complete support through 

its libraries for data pre-processing, feature extraction, feature selection, feature fusion, and 

final classification. Data pre-processing is used to make data ready before feeding it to any 

ML and DL model for classification and involves the following steps: 

• Importing libraries – Libraries are the predefined functions that tell the IDE to perform 

certain functions. For example, in python, the NumPy library helps to use mathematical 

tools; matplotlib library helps to draw charts and pandas library helps to import datasets 

and manage datasets. We have utilized python libraries such as Keras, TensorFlow, 

Pandas, NumPy and Matplotlib in this research work.  

• Importing dataset – Data needs to be imported in the form of matrices. Data could also 

be divided in sub-matrices containing independent values (inputs) and dependent values 

(outputs). 

• Categorical dataset – Data containing values as categories like names of gait activities 

is required to convert into numerical values. Categories could not be fed directly into 

strong mathematical equations used by ML algorithms. Therefore, these categorical 

values need to be decoded into numeric values. As we are dealing with seven different 

gait activities therefore these categories are converted into numerical values for 

supervised machine learning procedures involved in our research. 

• Splitting dataset into the training set and test set – Any dataset could be split into 

training set and test set. ML algorithms make use of correlation between values of dataset 

called the training set and build a model which is tested on slightly different dataset called 

the test set. Performance of ML model on test set is not different than the performance 

obtained from the training set which means that the model is quite flexible; it has 

understood the correlation between the values and not learned the training set values by 

heart. We have implemented 80%-20% split [112] for training-testing on our original 

dataset. 

• Feature scaling – Some time data values in different column or rows need scaling 

otherwise it would cause issues in machine learning models. Euclidean distance is a 

common measure used for feature scaling. Euclidian distance two points 

P(x1, y1) & P(x2, y2) is given by, 
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   𝑑 = √(𝑥2   𝑥1)2  (𝑦2   𝑦1)2 
2

                               (3.5) 

Other methods of scaling are listed as: 

Standardization: In this technique the values are centred around the mean with standard 

deviation. So, the mean of attribute turns zero and results in a unit standard deviation. 

𝑥𝑠𝑡𝑎𝑛𝑑 = 
𝑥  𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥)
                                      (3.6) 

Normalisation: The values are scaled between 0 and 1 without destroying differences in 

the ranges of values or loosing information. 

𝑥𝑛𝑜𝑟 = 
𝑥  𝑖𝑛(𝑥)

 𝑎𝑥(𝑥) min (𝑥)
                                          (3.7) 

Any method could be used for scaling, however no variable should be dominated by any 

other variable. We have implemented standardization in our research before handing our 

data to any ML model. Another main advantage of feature scaling is that ML like DT 

algorithm converge much faster if the data is scaled properly and take longer time otherwise. 

In this chapter we have described the hardware and software implementation of FS and 

the designed AIS system used in our research. We have also reported the data acquisition 

and pre-processing methods used for both modalities. Further, we have explored the 

relationship between gait sensor data and the related gait activities. 
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Chapter 4 

Feature level based multi-modality sensor fusion 

 

 

It has been suggested by various studies that the fusion of sensory information can 

take place at a) data level b) feature level and c) decision level [113]. In data level fusion, 

the raw data obtained for a measured object using sensors is combined directly. Fusion of 

information at data level contains maximum information therefore it is expected to produce 

better results. However, data level fusion aims to combine similar nature sources of sensory 

data. Data level fusion has limited actual implications as various physical quantities can be 

calculated from a more comprehensive analysis. 

In feature level fusion, features are extracted from the data collected using multiple 

sensors which are combined and utilized in a special classification model for final decision 

making. In human gait classification, extracted features include metrics such as mean, 

variance, standard deviation, energy, entropy, signal amplitude, root mean square, 

percentiles, as well as characteristics in the frequency domain available through Fourier 

transform, discrete cosine transform, spectral entropy and energy [114]. Typically, these 

undergo a further feature selection process involving e.g. the windowing method, kernel 

discriminant analysis , minimum redundancy,  maximum relevance and correlation analysis 

[115].  

Decision level fusion involves the data processing techniques such as feature 

extraction and pattern recognition implemented on the data followed by the production of a 

decision vectors used in decision level techniques such as Bayesian theory [116], Dempster-

Shafer evidence theory [117] and behavior knowledge space [118]. 
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4.1 Feature extraction 

Feature extraction is used for dimension reduction mainly used in case of larger data 

sets in which initial set of raw data is broken into more manageable groups for processing. 

Larger datasets require more computational resources, feature extraction helps to effectively 

reduce the number of inputs into features whilst keeping the accuracy and the complete 

description of the original dataset. However, in most cases throwing away of data is not 

recommended as we could lose part of some meaningful information.  

Analysis using large number of variables also requires more memory and 

computational power. Therefore, feature extraction is very effective in removing the 

redundant and irrelevant data values whilst improving learning accuracies and increasing 

result comprehensions [119]. A number of features based on statistical or model-based 

approaches are available; some are listed as follows: 

 

• Minimum • Maximum • Sum 

• Sum of squares (SOS) • Mean • Median 

• Variance • Standard Deviation • Entropy 

• Root Mean Square 

(RMS) 

• Fast Fourier Transform 

(FFT) 

• Discrete Wavelet 

Transform (DWT) 

• Principal Component 

Analysis (PCA) 

• Linear Discriminant 

Analysis (LDA) 

• Canonical Correlation 

Analysis (CCA) 

 

These features are extracted from the original dataset and serve as inputs to the 

classification algorithms. These features can also be scaled or normalized depending on the 

user requirements. In this research, Principal Component Analysis (PCA) and Canonical 

Correlation Analysis (CCA) are proposed as feature extraction methods for the data obtained 

from FS and AIS, as explained below: 

 

4.1.1 PCA methodology 

Larger datasets suffer from multi-collinearity problem among the independent 

variables of a dataset which could result in increasing standard errors of the parameter 

estimate [120]. PCA has been used extensively to extract the uncorrelated linear composites 

of independent variables into p feature vectors, where p equals the number of original input 
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variables in a dataset. The first feature vector accounts for the maximum variance among 

input variables of a given dataset and each subsequent feature vector accounts for the 

maximum variance which has not been accounted by the previous vector. All new feature 

vectors are uncorrelated to each other. The original set of p independent variables X = [X1, 

X2, …, Xp] can be described in terms of set of p feature vectors  = [1, 2, …, p] as follows: 

𝜉1 = 𝑤11𝑋1 + 𝑤12𝑋2+. . . +𝑤1𝑝𝑋𝑝 

𝜉2 = 𝑤21𝑋1 + 𝑤22𝑋2+. . . +𝑤2𝑝𝑋𝑝                                        (4.1) 

                                                           … 

𝜉𝑝 = 𝑤𝑝1𝑋1 + 𝑤𝑝2𝑋2+. . . +𝑤𝑝𝑝𝑋𝑝 

The weights wij are estimated such that 1 accounts for the maximum variance in X, 

2 accounts for the maximum variance not accounted by 1 in X, and so on. The orthogonality 

among feature vectors is ensured by, 

𝑤𝑖1𝑤𝑗1 + 𝑤𝑖2𝑤𝑗2+. . . +𝑤𝑖𝑝𝑤𝑗𝑝 = 0,      𝑖 ≠ 𝑗                            (4.2) 

There is a possibility of increase in the variance of linear combinations, while 

adjusting the scale of weights; therefore (37) is used to fix the scale of feature vectors, 

 𝑤𝑖1
2 + 𝑤𝑖2

2 +. . . +𝑤𝑖𝑝
2 =  ,           𝑖 =  ,2, . . . , 𝑝                           (4.3) 

Furthermore, the correlation between the original independent variables and the 

feature vectors is called loading. Loadings can be obtained using the formula: 

𝑙𝑖𝑗 =
𝑤𝑖𝑗

𝑠𝑗
√𝑣𝑖                                                       (4.4) 

where l𝑖𝑗 and w𝑖𝑗 are the respective loading and weight of the jth variable of the ith 

feature vector, v𝑖 is the variance of the ith feature vector and s𝑗 is the standard deviation of 

the jth variable.  

 

4.1.2 PCA based feature selection 

  For feature selection, statistically the first few feature vectors should be sufficient to 

capture most variance and result in substantially reduced representations in any modalities’ 

datasets, as shown in table 4.1. However, the exact amount of unaccounted variance also 
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affects the data interpretations and further analysis. Therefore, the following strategies have 

been proposed for the choice of the number of feature vectors: 

i). Retain only those feature vectors for which the eigenvalue is greater than one 

[121]. 

ii). Plot variance proportion across the feature vectors and determine an “elbow”, 

marking the threshold of retaining the significant number of feature vectors. 

iii). Retain only those feature vectors which are statistically significant.  

Strategy (i) is the default in most of the statistical analysis methods [120]. In our case, 

it results in retaining 19 feature vectors out of 116 values for FS (table 4.1, column 2) and 7 

feature vectors out of 18 values for AIS (column 7). On the other hand, strategy (ii) is widely 

used in scree plots (figure 4.1: plotting table 4.1 column:4 for FS and AIS feature vectors 

respectively). Scree plot shows that no elbow is clearly visible for FS feature vectors, while 

an elbow with a weak inflection point can be seen at 3rd feature vector for AIS feature vectors 

as shown in figure 4.1. From significant contribution of feature vectors and keeping at least 

2 out of 3 strategies satisfied, a set of significant 19 feature vectors from FS and another set 

of significant 7 feature vectors from AIS are selected for multi-modality fusion. 

In our work, loadings point out the extent to which the original independent variables 

are influential in forming feature vectors. Loadings of each feature vector can be defined as 

the contribution in total variance (listed in column:4 of table 4.1). In case of FS, the first 

independent variable is responsible for 44.35% of the total variance in forming the first 

feature vector, the second variable is responsible for 5.41% and the last 116th variable is 

responsible for 0.00% of the total variance. However, in case of AIS, the first variable is 

responsible for 13.68%, the second variable is responsible for 12.06% and the last 18th 

variable is responsible for 1.42% of the total variance. 
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FS 

 

Feature 

Vectors 

 

Eigenvalue 

 

Difference 

 

Variance 

Proportion 

(%) 

 

 

Cumulative 

Proportion 

(%) 

1 47.01 41.27 44.35 44.35 

2 5.74 1.79 5.41 49.76 

3 3.95 0.53 3.73 53.49 

4 3.42 0.39 3.23 56.72 

5 3.03 0.48 2.86 15.23 

6 2.56 0.12 2.41 61.99 

7 2.43 0.51 2.29 64.28 

8 1.93 0.05 1.82 66.10 

9 1.88 0.07 1.77 67.87 

10 1.81 0.17 1.70 69.57 

11 1.63 0.18 1.54 71.11 

12 1.46 0.07 1.37 72.48 

13 1.38 0.05 1.31 73.79 

14 1.33 0.07 1.26 75.05 

15 1.27 0.05 1.20 76.25 

16 1.22 0.06 1.15 77.40 

17 1.16 0.08 1.10 78.50 

18 1.08 0.05 1.02 79.52 

19 1.03 0.07 0.97 80.49 

20 0.96 0.03 0.91 81.40 

21 0.93 0.07 0.88 82.28 

     
115 0.00 0.00 0.00 100.00 

116 0.00 - 0.00 100.00 

AIS 

 

Feature 

Vectors 

 

Eigenvalue 

 

Difference 

 

Variance 

Proportion 

(%) 

 

Cumulative 

Proportion 

(%) 
1 2.46 0.29 13.7 13.7 

2 2.17 0.48 12.06 25.76 

3 1.69 0.05 9.38 35.14 

4 1.64 0.33 9.1 44.24 

5 1.30 0.12 7.25 51.49 

6 1.18 0.06 6.57 58.06 

7 1.12 0.18 6.23 64.29 

8 0.94 0.09 5.21 69.5 

9 0.85 0.08 4.71 74.21 

10 0.77 0.04 4.26 78.47 

11 0.73 0.09 4.03 82.5 

12 0.63 0.08 3.51 86.01 

13 0.55 0.04 3.04 89.05 

14 0.50 0.03 2.8 91.85 

15 0.48 0.08 2.65 94.5 

16 0.39 0.05 2.19 96.69 

17 0.34 0.08 1.89 98.58 

18 0.26 - 1.42 100 
 

Table 4.1: Eigenvalues of the feature vectors using PCA 
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4.1.3 CCA methodology 

CCA is a multivariate statistical model that facilitates to find the relationship between 

two set of variables. CCA is very close to PCA in terms of its application on data however 

difference is the criteria of forming new feature vectors. In CCA, feature vector are formed 

in pairs with maximum correlation between them and uncorrelated with other feature vector 

pairs.  Implementation of CCA can be summarized as follows [122]: 

•  Consider two sets of variables,  X = [X1, X2, …, Xp]            and  

Y = [Y1, Y2, …, Yq]  

•  Calculate the first feature vector pair as, 

𝑈1 = 𝑎11𝑋1 + 𝑎12𝑋2+. . . +𝑎1𝑝𝑋𝑝                                          (4.5) 

                      𝑉1 = 𝑏11𝑌1 + 𝑏12𝑌2+. . . +𝑏1𝑞𝑌𝑞                                            (4.6) 

 

 

 

 

Fig 4.1: Top: Variance contributions of 116 feature vectors of FS; Bottom: Variance 

contributions of 18 feature vectors of AIS using PCA 
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where U1 and V1 are the first canonical variates pair (CVP) with canonical 

correlation C1 between them. The objective of CCA is to estimate a11, a12, …, a1p 

and b11, b12, …, b1p, such that C1 is maximum.  

•  Calculate the second feature vector pair as, 

 𝑈2 = 𝑎21𝑋1 + 𝑎22𝑋2+. . . +𝑎2𝑝𝑋𝑝                                        (4.7) 

                        𝑉2 = 𝑏21𝑌1 + 𝑏22𝑌2+. . . +𝑏2𝑞𝑌𝑞          ,                              (4.8) 

where U2 and V2 are the second CVP, uncorrelated with U1 and V1 and 

maximum canonical correlation C2 between them. C2 is the maximum correlation not 

accounted by C1. This process continues until the mth CVP, 

𝑈 = 𝑎 1𝑋1 + 𝑎 2𝑋2 + ⋯+ 𝑎 𝑝𝑋𝑝                               (4.9) 

            𝑉 = 𝑏 1𝑌1 + 𝑏 2𝑌2+. . . +𝑏 𝑞𝑌𝑞       ,                            (4.10)       

where m ≤ min(p,q). Um and Vm are the last canonical variates with maximum 

canonical correlation Cm between them. The following conditions of canonical 

correlation must be met by the set of m CVPs: 

𝐶 (𝑉𝑗, 𝑉𝑘) = 0    𝑗 ≠ 𝑘                                               (4.11) 

𝐶 (𝑈𝑗 , 𝑈𝑘) = 0     𝑗 ≠ 𝑘                                              (4.12) 

𝐶 (𝑈𝑗 , 𝑉𝑘) = 0    𝑗 ≠ 𝑘                                               (4.13) 

 

4.1.4 CCA based feature selection 

  For feature selection, CCA has been applied on FS and AIS datasets to generate the 

CVPs. The maximum correlation between the initial CVPs, as compared to further ones, is 

shown in figure 4.2. Therefore, it is expected to have fewer CVPs with reduced dimensions 

and higher quality. 

Table 4.2 describes the information related to each CVP, where 2nd column shows 

the correlation between canonical pairs. It is evident that the first pair has the maximum 

correlation of 52.24% and the last pair has the minimum correlation of 4.28%. Wilks’ 

Lambda provides the significance of canonical correlations and tests the variance between 
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two datasets with variable number of inputs. Table 4.2, column: 3 shows Wilks’ Lambda 

values as a cumulative contribution between 0 and 1 given by, 

𝛬𝑖 = ∏ (  𝐶𝑘
2) 

𝑘=𝑖  ,                                             (4.14) 

where 𝐶𝑘
2 is the shared variance between V𝑖 and U𝑖. F-distribution and probability 

values [123] are used to find the most significant CVPs (see 4th and 5th column). Normally 

significance values are thresholder at 0.05 or 0.01 [124]. The latter in used our research 

which results in 16 significant CVPs out of a total 18. 

In the case of larger datasets, even smaller canonical correlation values could be 

statistically significant. On the other hand, a larger canonical correlation may not result from 

a stronger correlation between the two datasets. This is because CCA targets the maximum 

correlation among the linear combinations of variables in set X and set Y, and not the amount 

of variance in one of the sets, accounted for by the other. To find the total amount of variance 

among the two sets of variables, the redundancy measure is calculated as,  

𝑅𝑉𝑖|𝑈𝑖
= 𝐴𝑌|𝑉𝑖

× 𝐶𝑖
2                                             (4.15) 

 

 
 

 
 

Fig. 4.2: 1st (U1,V1), 4th (U4,V4), 14th (U14,V14) and the 18th (U18,V18) CVPs obtained with 

p=116 and q=18 
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Table 4.2: Canonical correlation analysis results 
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where 𝑅𝑉𝑖|𝑈𝑖
 is the redundancy measure, or the amount of variance in set Y that is 

accounted for by set X for the ith canonical correlation 𝐶𝑖
2. 𝐴𝑌|𝑉𝑖

is the average variance in 

set Y accounted for by the canonical variate V𝑖  expressed as, 

𝐴𝑌|𝑉𝑖
=

∑ 𝐿
𝑌𝑖𝑗
2

𝑞
𝑗=1

𝑞
                                                    (4.16) 

Here, 𝐿𝑌𝑖𝑗
2 is the loading of the jth variable in set Y on the ith canonical covariate. 

The total redundancy is the total variance accounted in one set of variables by the 

other set of variables, given by  

𝑇𝑅𝑌|𝑋
= ∑ 𝑅𝑉𝑖|𝑈𝑖

 
𝑖=1                                                   (4.17) 

Table 4.2 shows the redundancy measures of variance in AIS input variables 

accounted by FS input variables and vice versa in two sets of two colums, with the maximum 

variance and the total variance shown in bold. In the AIS/FS case, the maximum variance of 

0.0247 (see 6th Column) is manifested by the 2nd CVP and total variance is 0.0648 (see 7th 

column). Likewise, in the FS/AIS case the maximum variance of 0.0299 (see 8th column) is 

attributed to the 1st CVP and total variance is 0.0474 (see 9th column). 

 

4.2 Feature-level based sensor fusion approach 

Feature-level fusion of different modalities involves extracting features from 

multiple sensors and generating an information pool of new representations which can be 

different from those acquired [9]. Feature-level fusion is helpful in situations where low 

computational cost is a key challenge. The focus on feature-level fusion is essential, since 

the efficiency of gait analysis depends on employing the maximum variability of data by 

automatically extracted features, rather than using hand-crafted features based on 

observational practice.  

The proposed multi-modality sensor fusion system can be seen in figure 4.3. Raw 

data is obtained from two modalities i.e., FS and AIS is pre-processed and prepared for 

feature extraction. Feature are extracted using two techniques i.e., PCA and CCA. In case of 

PCA, 19 and 7 feature vectors are selected a FS and AIS respectively. These two feature sets 

have no relationship between them. However, in case of CCA the 16 CVPs are selected  
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Fig. 4.3 Data flow diagram of proposed feature-level multi-modality sensor  

fusion system [133] 
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among FS and AIS such that each pair is mutually correlated and totally un-correlated with 

the other pairs. This mutual correlation between CVPs of FS and AIS is represented by dotted 

line in figure 4.3.  

Selection of gait activity features using PCA/CCA when fused combine the 

discriminatory information obtained from two modalities and allow to capture more of the 

gait dynamics as it involves information gathered from measurements of diverse physical 

quantities. Concatenation is the most common and straightforward method used for feature-

level sensor fusion [125]. In this work, having identified two sets of selected features; in FS 

feature space 𝑆1  ∈ 𝑅𝐹𝑆 and in AIS feature space 𝑆2  ∈ 𝑅𝐴𝐼𝑆 , the fused samples can be 

written as 𝑆 = (𝑆1 , 𝑆2 ).  

In this research, four cognitive based gait activities: walking while subtracting 7, 

walking while listening to a story, walking while texting on a mobile and walking while 

talking to operator are used to acquire spatio-temporal gait signals from 11 people using two 

modalities i.e., FS and AIS. One gait activy comprises a fixed 120 time frames window to 

complete,  this procedure is repeated 10 times which increases the number of samples to 

1200 for one person. Table 4.3 describes the spatio-temporal samples included in raw and 

fused modallity datasets used for classification purposes. Complete datasets including all 4 

gait activities including single modality and multi-modality data are further split into 80% 

training and 20% test set ratio [112] before feeding to the ML algorithm. All experiments in 

this research are 10-fold cross validated in order to get the best learning outcomes [126]. 10-

fold cross validation creates 10 trained test-folds of the training set (80% of data). ML model 

is trained on each test-fold and at the same time tested seperately on the test set (20% of 

data). Therefore, the model is evaluated on different test sets which increases the chances of  

accurate model predictions. 

Spyder is an open source development environment which helps in data exploration, 

inspection, executions and visualizations using python libraries. Python libraries such as 

pandas, numpy, sklearn, seaborn, matplotlib etc are used in our work different task: data 

acquisition, feature extraction, concatenation, classification and visualisation of the spatio-

temporal information obtained from both modalities. ML algorithms: LR, SVM, NB, K-NN, 

K-SVM, DT, RF (discussed in chapter 2: literature review) are used to find the best 

approximations that correctly map the sensors’ data to the gait activities in supervised 

manner. The challenge for the ML models is to achieve the highest classification accuracies, 

as observed through the classification scores with optimized hyper-parameters. 
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Experiment Total 

Samples 

per 

person 

Raw 

Samples 

using FS 

(116 Inputs) 

Raw 

Samples 

using AIS 

(18 

Inputs) 

Fused 

Samples 

using PCA 

(26 Comp) 

Fused 

Samples 

using CCA 

(16 CVPs) 

1. Walking while subtracting 7 

2. Walking while listening to a 

story 

3. Walking while texting on a 

mobile 

4. Walking while talking to 

operator 

1,200 1,200 

samples  

x 11 person 

= 

13,200 

1,200 x 11 

= 13,200 

13,200 FS 

samples + 

13,200 AIS 

samples = 

26,400 

13,200 + 

13,200 = 

26,400 

Total Samples 1,200 x 4 

activities

= 

4,800 

13,200 x 4 

= 

52,800 

13,200 x 4 

= 

52,800 

26,400 x 4 

= 

105,600 

26,400 x 4 

 = 

105,600 

 

Table 4.3: Samples for feature-level based classification 
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Chapter 5 

Deep Learning based multi-modality sensor fusion 

 

 

 

Multi-modality sensor fusion results in producing new data representations which 

are unique to the collection of individual sensors and modalities. Several modalities have 

demonstrated their capabilities to capture gait attributes and anomalies; however, most of 

these methods rely on handcrafted features. In such approaches, feature engineering might 

lose the salient features involved in problems. In our work, DL achieves the learning and 

extracting of highly statistically significant features from the gait activity data recorded from 

two different modalities. DL models implemented and used to extract gait features from both 

modalities, are discussed as follows: 

 

5.1 FFNN for single and multi-modality cases 

The neural network in which output from one layer is fed to the next layer in forward 

direction without any loops in the network is called a feed-forward neural network [93]. The 

basic architecture of a FFNN model consists of an input layer, few hidden layers and an 

output layer of neurons. In the input layer, each input value from the respective datasets is 

represented by an input node. The spatio-temporal data from both modalities, after pre-

processing is passed to the fully connected input layers of sizes 64 (116 input FS) and 16 (18 

input AIS) respectively. In FFNN, the neurons in one layer are fully connected to the next 

layer through synapses or assigned weights to learn the complex representations of data. The 

weights are initialized with a value close to zero and bias is added to breakup linearity during 

model training. 

In our work, for AIS, the training set is a 2D vector (73920x18) in which each row 

represents the spatial data at a single time instance. 18 Input values are passed to the fully 
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connected (FC) layers of sizes 16, 12, 10, 8 and an output layer of size 7 (representing 7 gait 

activities). The first layer size (16 being a multiple of 2 and closer to the average of input 

(18), output (1)) is selected, however, any number between number of input and output can 

be selected. Also, higher accuracy is observed using first layer of size 16 than 8. The effect 

of every weight at FFNN layers is determined by the activation function which allows the 

model to achieve a desired output. To introduce the non-linearity of the spatio-temporal gait 

patterns in our dataset a Rectified Linear Unit (ReLU) activation function [127] is 

implemented at all the hidden layers. The weight of every neuron is multiplied by the input 

and passed through the activation function. Propagation continues until a prediction is 

achieved. At the output layer of size 7, a linear classifier SoftMax is used to transform results 

into probabilities [128]. 

For FS, the training set is also a 2D vector (73920 x 116). 116 input values are passed 

to the FC layers of sizes 64, 32, 10, 8 and an output layer of size 7. For the multi-modality 

case, in order to create a balance between the number of features, the FC layers of size 10 

from each modality are merged as shown in figure 5.1. The outputs from each layer are 

passed in forward direction to the next layer. For multi-modality case, forward propagation 

takes places over the merge layer. 

 
 

Fig 5.1:  Layer-wise distribution of AIS (orange), FS (green) and Proposed FS & AIS 

multi-modality approach (white) using FFNN 
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Likewise forward propagation, the FC layers are responsible for the propagation of 

error in back ward direction. The predicted results are compared with the actual results and 

the error is quantified with the help of a cost function [94], [95]. We have used cross-entropy, 

based on a logarithmic function to handle very small errors. The error is back propagated in 

the form of updated weights send to the neurons layer-wise in backward direction. Among 

the gradient based algorithms such as stochastic gradient descent [96], conjugate gradient 

[97] and Adam [98], which are the commonly used methods for error optimization, the latter 

is used to determine the learning rate of new weights and biases in our research.  

The above procedure is repeated, and weights are updated after each batch of 

observations from the training set for each modality. Batch size of 120 observations is 

selected to update the weights which is equal to one activity. One epoch is completed when 

one whole training set passes through the FFNN. We have trained all experiments through 

100 epochs for all cases. Results are further discussed in chapter 6. 

 

5.2 1D-CNN for single and multi-modality cases 

A basic CNN consists of an input layer, convolution layers, down-sampling or 

pooling layers, flattening layers, FC layers and an output layer [129]. In this work, the 

implementation of 1D-CNN for single and multi-modality cases can be seen in figure 5.2. 

For AIS, the training set 73920x18 is converted into 73920 arrays of size 1x18, where a 

single array determines the spatio information at a single time instance. Each array is passed 

to a 1D-Convolution layer (Conv1: 32 filters, kernel size 3, stride 1) to automatically extract 

the unique variability features from the training dataset. Max-pooling layer (MP1: kernel 

size 2) is used to down-sample the large volume of data after convolution. Results obtained 

from MP1 are feed to another 1D-Convolution layer (Conv2: 16 filters, kernel size 3, stride 

1) and a Max-pooling layer (MP2: kernel size 2). Extracted features from max-pooling layers 

are in 2D format and therefore required to get aligned in a 1D feature vector of inputs for FC 

layers using the flattening function. FC layer of size 16 is used to connect flattening output. 

ReLU is the activation function used to handle the non-linearity at the convolution layers 

and the FC layers. SoftMax function is used at the output layer (size 7) as discussed earlier. 

For FS, the training set 73920x116 is converted into 73920 arrays of size 1x116, 

where a single array contains the spatial information at a single time instance. Each array is 

passed to a 1D-Convolution layer (Conv1: 64 filters, kernel size 3), Max-pooling layer 
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(MP1: kernel size 2), another 1D-Convolution layer (Conv2: 16 filters, kernel size 3), Max-

pooling layer (MP2: kernel size 2), flattening layer and a FC layer of size 16 followed by 

output layer of size 7. For the multi-modality case, to create a balanced number feature set, 

the FC layers of size 10 from each modality are merged.  

 

5.3 2D-CNN for single and multi-modality cases 

The implementation of 2D-CNN for single and multi-modality cases can be seen in 

figure 5.4. The same number of layers and filters at each layer are used for the 1D and 2D 

approach. However, the dimensions of inputs and size of convolutional and max-pooling 

layer are different. Since CNN are most applied to analyze visual images, therefore we have 

utilized their ability by transforming the 18 inputs of AIS into a 5x5 image and 116 inputs 

of FS into a 7x7 image with zero padded columns each as shown in figure 5.3. The filters 

kernel size for each convolutional layer is 3x3 and for max-pooling layer is 2x2. Results 

obtained for all cases are discussed in chapter 6. 

It is important to mention here that for both CNN-1D &2D, the number of filters is 

only different in the first convolutional layer however all the following filtered and hidden 

layers are identical for FS and AIS cases when compared. First convolutional layer of size 

32 and 64 are reported for AIS and FS respectively due to the best performance achieved in 

terms of higher accuracy and lesser execution time for both cases. 

 

 
 

Fig. 5.2 Layer-wise distribution of AIS (orange), FS (green) and Proposed FS & AIS 

multi-modality approach (white) using 1D-CNN 
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Fig. 5.4:  Layer-wise distribution of AIS (orange), FS (green) and Proposed FS & AIS 

multi-modality approach (white) using 2D-CNN 

 
 

 

 
 

 Fig. 5.3 Random spatio-temporal samples from Top: FS and Bottom: AIS training datasets 

where each input is an image of size 11 x 11 and 5 x 5 respectively 
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5.4 LSTM for single and multi-modality cases 

LSTM models work on time-processed data and are capable of learning time 

dependencies in sequence prediction problems. Since timestamps are equal in number for 

both modalities, the first layer of operation has been implemented with 16 blocks for both 

cases. Stacked layer LSTM models have been used to deeply exploit the dependencies 

between time-stamps [130]. The two stacked layered LSTMs, reported in many cases have 

been adopted in our approach to implement the individual [33] and multi-modality cases 

[131]. 

For AIS, the training data set is a 2D vector (73920 timestamps x 18 inputs) which 

is converted into a 3D vector (73824 time-stamps x 120 window samples x 18 inputs), with 

120 window samples out of 119 serve as memory for the associated timestamp. Training 

data is fed to the successive LSTM model in the form of batches of size 120 for different 

epoch values. The LSTM stack of two layers is implemented with 16 LSTM units which are 

selected due the best performance achieved in terms of higher accuracy and lesser execution 

time for FS and AIS cases. Higher sizes of LSTM layers such as 32 and 64 causes system 

hang up problems for the available computational resources mentioned on page 97. Each 

LSTM layer is followed by a dropout layer (DO) which utilizes percentage probability of 

data to prevent any overfitting. In our research, dropout more and less than 20% had no 

improvement in accuracies therefore we have reported the optimized value of 20% dropout 

 
 

Fig. 5.5 Layer-wise distribution of AIS (orange), FS (green) and Proposed FS & AIS 

multi-modality approach (white) using LSTM 
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in our case. In case of FS, we have training data as a 3D vector (73824 time-stamps x 120 

window samples x 116 inputs) following a similar LSTM model like AIS. After two layers 

a similar layered approach has been utilized as in case of FFNN, 1D-CNN, 2D-CNN for 

single and multi-modality cases as shown in figure 5.5. 

 

5.5 Overview of DL based multi-modality sensor fusion 

In this work, a DL based fusion of lower human body joint angle trajectories 

(obtained from an AIS modality) and ground reaction forces generated by feet (obtained 

using POF based FS modality) is presented.  

AIS and FS, each modality records their datasets on their own RPI. The two 

respective RPIs are programmed to synchronize and record readings at 20Hz. Both 

modalities are checked, and tested before starting experiments. Seven gait activities such as:  

Normal Walk, Fast Walk, Subtracting 3 walk, Subtracting 7 walk, Listening story & walk, 

Typing on mobile & walk and Talking & walk are performed to generate and acquire spatio-

temporal gait signals from 11 people during each gait activity (recorded 10 times) using both 

modalities.  

120 samples are obtained from a single person during a single gait activity (recorded 

10 times increases the sample number to 1,200) in a single modality. 13,200 samples are 

collected for one activity and 92,400 samples are collected for 7 activities using a single 

Gait Activities Samples 

per person 

Single  

Modality 

Samples 

Multi- 

Modality 

Samples 

1. Normal Walk 

2. Fast Walk 

3. Subtracting 3 Walk 

4. Subtracting 7 Walk 

5. Listening story & Walk 

6. Typing on mobile & 

Walk 

7. Talking & Walk 

1,200 1,200 samples 

x 11 person = 

13,200 

13,200 FS samples + 

13,200 AIS samples 

= 26,400 

Total Samples 1,200 x 

7 activities 

= 8,400 

13,200 x 7 = 

92,400 

26,400 x 7 = 

184,800 

Table 5.1: Samples for DL based classification 



 

95 
 
 

modality. Similarly, 184,800 samples are collected for 7 activities using multi-modality as 

mentioned in table 5.1. Each case of single and multi-modality is split into 80% training, 

10% validation and 10% test sets before feeding to the DL model. Training dataset from two 

modalities is used to train the DL model which is validated and tested for maximum 100 

epochs and 120 batch size of information. All data processing and computational tasks are 

conducted on Lenovo ThinkPad with Intel® Core™ i7-8560U CPU @ 1.9GHz 2.11GHz 

and 8GB physical memory. 

From the point of view of the fusion task, the data is collected from synchronized 

RPIs separately. In this research, we have utilized the first two layers from each DL model 

(as shown in figure 5.6) to automatically extract unique gait activity features from both 

modalities that mostly contribute towards gait classification whilst dropping the less 

significant values across the complex network layers. Fusion of this unique information 

helps to retain most of the gait activity dynamics from individual modalities. Python 

environment libraries, including TensorFlow and Keras, are utilized to implement and run 

DL models. DL model layers can process the body orientation, positioning and forces in 

space and time using AIS. Likewise, these layers are equally useful to process the effect of 

forces resulted in foot on ground contact captured in FS data. Different techniques have been 

proposed and adapted for sensor fusion using DL models [132]. Some of the techniques 

implemented in this work, are as follows: 

i). Add: Two input vectors of same size are added into a single vector of the same size 

as individual inputs. 

ii). Multiply: Multiply two inputs vectors (like Add). 

iii). Average: Computes the average of two input vectors into a single vector of the same 

size as individual inputs. 

iv). Maximum: Computes the maximum of the two input vectors into a single vector of 

the same size as individual inputs. 

v). Minimum: Computes the minimum of the two input vectors (like Maximum). 

vi). Concatenate: Combines two inputs vectors into a single long vector, so that that the 

second input vector comes below the first. 

The listed layers perform arithmetic operations on their input layers and require them to 

be the same shape for fusion. However, concatenate layer can work with different shape 

inputs. Results obtained using these layers are discussed in chapter 6. 
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Chapter 6 

Results and discussions 

 

 

FS captures information related to feet contact on the floor and it can only measure 

limited aspect of movement manifested in human gait.  Likewise, AIS captures only the 

acceleration and angles representing the kinematic movements from lower portion of body 

such as lower back and ankles. It is reasonable to expect that fusion of information from both 

sources helps to compensate the degraded spatial and temporal accuracy in certain situations, 

making the overall classification more robust as compared to a single modality approach. 

Benefits of the deployed complementary modalities with a balanced in cost and acceptability 

by the individuals can be seen in the comparison of results obtained from single and multi-

modality approaches. Meanwhile keeping the focus on fusion of spatio-temporal information 

at feature level, this works examines significant differences in the performance of multiple 

classification algorithms using single and multi-modality systems. Results are summarized 

and discussed as follows: 

 

6.1 Feature level based multi-modal fusion 

Feature level fusion of single modality systems has obvious advantages. Features 

extracted from single modalities reflect different characteristics of data. Combination of 

these different features not only preserves the essential discriminant information but also 

eliminates the redundant information to a certain extent. PCA and CCA are used as data 

reduction methods whilst fusing the extracted features. Using PCA, features are extracted in 

such a way that initial feature vectors represent maximum variance in the dataset then the 

latter one. Number of new feature variables formed are equal to the sum of inputs in both 

datasets (134 feature vectors from input {116,18}). On the other hand, in CCA, the new 
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feature vectors are formed in pairs and number of pairs is equal to the number of inputs in 

the minimum input dataset (18 CVPs or 32 feature vectors). Feature vectors in the initial 

CVPs have more tendency to maintain linearity than the latter ones (as shown in figure 4.2). 

Therefore, the obvious advantages using CCA on PCA are two folds: First, CCA results in 

overall lesser number of feature vectors i.e., 32 as compared to 134 feature vectors using 

PCA to describe the total variance of the two datasets. Second, CVPs help to eliminate the 

redundant information whilst preserving the essential discriminant information resulting in 

fewer feature vectors as compared to PCA. This aspect of CCA makes it useable in 

computational load reduction when dealing with huge datasets. 

Data selection has been implemented to find out the most significant features using 

PCA and CCA. This resulted in 26 significant feature vectors using PCA and 16 CVPs (32 

feature vectors) using CCA. The techniques used to select these significant values using both 

methods are mentioned in chapter 4. A comparison of classification between single modality 

f-scores (data without feature extraction) and dual-modality f-scores (data with feature 

extraction) can be seen in Table 6.1, where the 2nd and 3rd columns represent the results of 

‘raw’ values obtained from a set of 116 inputs from FS and 18 inputs from AIS. A direct 

comparison between the disproportionate sensed parameters from the 2nd and 3rd columns is 

futile. However, we have proposed a balanced and successful methodology to fuse the two 

modalities using PCA and CCA to keep the maximum variant features from the two. This 

sort of fusion is implemented on reduced inputs without the substantial degradation of the 

spatio-temporal information occurs in individual modalities. 

 

6.1.1 Results and discussion (Part-I) 

Results obtained using ML algorithms are shown in table 6.1. Column 2 & 3 show 

results of ML algorithms using 116 and 18 raw inputs obtained from single modality FS and 

AIS respectively. Column 3, 4 and 5 show results of ML algorithms using fused inputs 

comprising 26 PCA components, 10 and 16 CVPs respectively. 

The second column might show higher f-scores 99.92±0.23% using 116 raw inputs 

using FS in some cases which brings up the question about the need for proposed fusion. In 

this research, we have proposed a suitable feature level fusion of spatio-temporal information 

obtained from two modalities which is specific to the scenario in which the user is using 

both modalities. Results for ‘raw’ input are listed to highlight the imbalanced number of 
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inputs from both modalities and their respective f-score for reference. PCA and CCA are 

implemented as robust and efficient feature extraction techniques which reduce the 

computational load of inputs on ML algorithms (say, 116 in case of FS to the fused 26 PCA, 

10 and 16 CVPs). Further, the resulting data is fused and assessed using various 

classification algorithms. Classification f-scores results for multi-modality fusion in case of 

26 components PCA and 10/16 component CCA are listed in columns 4, 5 and 6 respectively 

with improvements in later case. Here 26 component PCA has overall high f-score with few 

exceptions when compared with 10 CVPs (10 +10 components). On the other hand, 26 

component PCA has overall lesser high scores when compared with 16 CVPs (16 +16 

components). This shows CCA as an overall advantageous method when compared to PCA 

for most of the ML algorithms based on the selected significant components (method of 

selection is mentioned in chapter 4). 

It can be seen in table 6.1 (highlighted cases) that f-score measure for 26 component 

PCA using K-SVM (4th column) and for 16 CVPs using NB, K-NN and K-SVM are higher 

than individual modalities (2nd and 3rd column) simultaneously. It is noticeable that when 

compared with the individual modalities 16 CVPs has higher f-scores than 26 component 

PCA for NB, K-NN and K-SVM. However, in terms of computational load 26 components 

PCA is still efficient as compared to 16 CVPs or 32 component CCA. 

Since CCA make use of correlation to describe the unique information between two 

datasets, this resulting in the option to select fewer components to achieve higher f-scores.  

Using 10 CVPs or 20 component CCA (5th column), it is evident that higher f-scores are 

achieved using NB and K-SVM.  

 

6.1.2 Role of ML models 

For multi-modality cases, the overall accuracies for linear classifiers: LR and SVM 

are lower compared to the non-linear classifiers: NB, K-NN, K-SVM, DT and RF. Since we 

are dealing with two modalities of different nature i.e., FS uses the disturbance of light 

stopped by the pressure asserted on the POF based sensors whereas AIS captures 

acceleration and angular velocity values from pelvis and both heels of the individuals.  

As shown in table 6.1, K-NN outperforms all ML models and acquires 95.03±0.98% 

f-score for 16 CVPs using CCA. It is clear that the improvement is marginal over FS (2nd 

column)  
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Table 6.1: Overall classification f-scores ± standard deviation percentages for single 

modality and multi-modality systems 

SM: Single Modality; MM: Multi-Modality; LR: Logistic Regression; NB: Naïve Bayes, DT: Decision Tree, RF: Random Forest 
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but substantial over AIS (3rd column). However, K-SVM has an overall increased f-scores 

for 26 component PCA and 10/16 CVPs CCA as compared to single modalities FS and AIS. 

DT and RF manifest higher f-scores in case of individual modalities (especially for FS) but 

show degraded f-scores for the proposed multi-modality feature fusion. 

Figure 6.1 shows the classwise f-scores of individual gait activities. The ‘talking 

activity’ in 10 CVPs CCA, ‘texting on mobile’ and ‘talking’ activity in 16 CVPs CCA have 

higher f-score than any other gait activity and these results are obtained using K-NN. 

Specifically considering K-NN, activity comparison of 26 component PCA with 10 CVP 

CCA reveals the latter as a better approach for all activities with one exception of 

‘Subtracting-7’ activity (93%) for 26 component PCA. However, activity comparison of 26 

component PCA with 16 CVP CCA yields later as a superior method for multi-modality 

sensor fusion. 

Similarly, considering K-SVM, activity comparison of 26 component PCA with 10 

CVP CCA reveals the former as a better approach for all activities with one exception of 

‘Talking’ activity (87%) for 26 component PCA. However, activity comparison of 26 

component PCA with 16 CVP CCA yields later as a superior method for multi-modality 

sensor fusion. For all gait activities and using our proposed feature level multi-modality 

sensor fusion 10 CVP CCA appeared as 2nd best choice in terms of low computational load 

and robust classification f-scores. 
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6.2 Deep learning based multi-modal fusion 

 In our previous work, we have performed feature extraction using PCA and CCA.  

However, feature engineering might lose the salient features involved in problems. 

Therefore, we have employed deep learning methods to learn and extract the highly 

statistically significant features from gait activity data recorded using two modalities. The 

results achieved using single and multi-modality systems are used to explore the benefits of 

complementary modalities in comparison with the cost and acceptability by the user. While 

retaining our focus on multi-modality fusion, significant differences in the performance of 

multiple DL models are observed. 

 

6.2.1 Results and discussion (Part-II) 

In our work, we have compared single and multi-modality fusion over DL models: 

FFNN, 1D-CNN, 2D-CNN and LSTM. We have used two processing layers from every DL 

model to perform the fusion of multi-modality sensor data as shown in figure 5.6. Results 

are corroborated in table 6.2 for a range of epochs 1-100 and DL models are accessed based 

on the f-scores and execution times.  

It is expected to achieve higher f-scores for FS (116 inputs) as compared to AIS (18 

inputs) which can be seen in table 6.2. It is also understandable that the execution time to 

generate classifications from FS (116 inputs) is much higher than AIS (18 inputs). In our 

work, we have proposed a fusion strategy to balance the disproportional number of inputs 

between the two modalities, without substantial degradation of the information content. The 

classification features obtained using the fused multi-modality data yielded better f-scores 

as compared to individual modalities using all DL models (see Table 6.2, columns 3, 5 & 7). 

However, this is achieved at higher execution time than single modalities.  

The accuracy and loss graph for training and validation datasets obtained using all 

DL models is presented in figure 6.2(a)-(d).  Further, test accuracy is also mentioned across 

all DL models in figure 6.2(e). It is found that in case of LSTM, the validation accuracy is 

minimum (bottom left figure) at 10th epoch as compared to other DL models. However, for 

50 and 100 epochs, LSTM has attained highest accuracies over other DL model. A detailed 

record of tested results for individual and multimodality cases of all DL models has been 

described in table 6.2, which confirms the behaviour of models for the combined dataset. 
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Table 6.2: F-scores percentages for single modality and multi-modality fusion using DL 

models 
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The effectiveness of this DL based multi-modality fusion has been further tested and 

verified using different fusion techniques as discussed in section 5.5. The ‘add’ method 

appears to deliver the most accurate fused result among all. However worst f-scores are 

obtained using ‘minimum’ and ‘multiply’ methods in case of 2D-CNN, as shown in figure 

6.3.  

6.2.2 Role of deep learning models 

The f-scores for DL models: FFNN, 1D-CNN, 2D-CNN and LSTM are higher in 

multi-modality cases as compared to individual modalities as shown in table 6.2. In case of 

FS (see column: 3), 1D-CNN shows higher f-scores for all epochs when compared with 

FFNN and 2D-CNN. Comparison of 1D-CNN with LSTM shows mixed results with higher 

f-scores for 50 and 100 epochs in the latter case.  

LSTM models are capable of learning time dependencies in sequence prediction 

problems and work on time processed data. Since the timestamps are equal in number for 

both modalities, the first two layers of operation have been implemented with 16 units for 

both cases (see figure 5.6). A higher number i.e., 32 or 64, is reportedly beyond the 

capabilities of the computer system used. LSTM shows higher f-scores for all epochs when 

  

 

Fig 6.3: F-scores for overall gait classification using fused approaches  

(epochs: 100, batch size: 120) 
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compared with FFNN, 1D-CNN and 2D-CNN in case of AIS (table 6.2: column 5). For the 

multi-modality fusion case, LSTM has the highest f-scores for 10, 50 and 100 epochs in case 

of all DL models.  

In case of 1D-CNN and 2D-CNN, the first two layers of operation have the same 

number of filters for single and multi-modality cases (see figure 5.6). FS data, considering a 

5-fold larger number of inputs compared to AIS, have shown the maximum f-scores with 64 

filters, as compared to AIS with 32 filters. AIS has been checked with 16 filters too 

manifesting reduced f-scores. The scope of this research is to report the most suitable 

approach for the fusion task. 1D-CNN proves itself as a second choice when compared with 

2D-CNN and a single exception at 1 epoch with FFNN. 

The execution time to train 1D-CNN, 2D-CNN and LSTM models is significantly 

higher for FS than AIS in all epochs (see columns: 4 & 6). Only FFNN has comparatively 

closer execution times using FS and AIS. In case of multi-modality fusion, FFNN takes 

much lesser time compared to LSTM which manifests the highest execution time for all 

epochs (see table 6.2, column 8). Therefore, the execution time is in a trade-off with the 

overall performance of the system. Best f-score could be achieved using LSTM-based DL 

model when speed of execution is not of concern and data processing system with higher 

specifications is utilized. 

Since the overall f-scores are significantly higher for multi-modality fusion cases as 

compared to the single modality cases, therefore the discussion of f-scores obtained using 

individual modalities for all gait activities is trivial. Hence, the hypothesis built for this 

research and mentioned in section 1.3 is true. The confusion matrix using DL models for all 

gait activities are presented in figure 6.4. Similarly, f-scores are mentioned and compared 

using DL models for all gait activities in figure 6.5.  
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LSTM yielded f-scores superior to all other DL models in case of all gait activities 

as shown in figure 6.5. The ‘typing’ and ‘talking’ gait show worst f-score results among all 

activities: 64.09% (lowest) and 80.01% in case of FFNN; 75.87% and 70.09% in case of 2D-

CNN. 1D-CNN model appears as the second choice due to its second highest f-scores for all 

gait activities, with some exceptions in ‘subtracting-3’and ‘listening’, as well as ‘subtracting-

7’ gait, showing lesser f-scores than 2D-CNN and FFNN, respectively. It is noticeable that 

1D-CNN shows worst f-score for ‘listening’, which is as high as 89.03% compared to FFNN 

(64.09% for ‘typing’ gait) and 2D-CNN (70.09% for ‘talking’ gait). Standard deviation in 

model- wise f-scores of multi-modality fusion for all classes is calculated as: LSTM (0.09%), 

1D-CNN (3.05%), 2D-CNN (10.18%) and FFNN (11.81%).  

Furthermore, FFNN shows an overall f-score of 89.33% with minimum execution 

time (03min:06sec) and LSTM shows a highest f-score of 99.9% with maximum execution 

time (23hr:23min:45sec) (see table 6.2). From the results achieved using given resources the 

1D-CNN approach appears to be the optimal approach even though the performance is 5% 

lower for our case. However, in the presence of higher computational resources LSTM 

would be the obvious choice. Therefore, 1D-CNN appears as the best DL model for overall 

performance for the proposed multi-modality fusion due to its performance f-score (94.97%) 

and a reasonable execution time (21min:14sec) to train the model (see table 6.2, columns: 7 

& 8). 

 

 

 

Fig 6.5 Model-wise f-scores of multi-modality fusion for all classes  

(epochs: 100, batch size: 120) 
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Chapter 7 

Conclusions  

 

 

7.1 Summary 

The research presented in this PhD thesis is focused on the extraction and fusion of 

unique gait activity features related to cognitive load and applicable for healthcare scenarios. 

Our methodology provides a choice of its application using either manual or automatic 

feature extraction whilst observing the performance of different supervised machine learning 

and deep learning models. Two modalities i.e., FS and AIS were utilised for independent 

and combined gait activity analysis.  

Initially, we investigated gait activities of 11 volunteers and the plan was to extend 

the size of datasets to a higher volume. However, our plan had to terminate due to the world-

wide outbreak of COVID-19 and UoM decided to close its premises for staff, students, and 

the visitors. After approximately one year, the campus re-opened for independently working 

staff and researchers under restricted social distancing measures and guidelines provided by 

the government. Therefore, it was not feasible to conduct further experiments that involved 

direct interaction with volunteers. This left some of the results vulnerable to concerns about 

statistical significance and impacted negatively on the speed of publishing our own results. 

In the past, an older version of FS at UoM has been used for offline raw spatio-

temporal data analysis with limited gait activities: normal, fast, and dual-task gait. In this 

research, we have used an upgraded version of FS to analyse gait activities in real-time with 

remote access. We have included a wider set of gait activities such as: normal walk, fast 

walk, subtracting-3, subtracting-7, listening to story, typing on the mobile phone, and talking 

to operator to analyse and investigate the changes in gait related to cognitive load.  
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During a gait activity, FS are mainly used to capture information from feet contact 

with the ground and represent only limited aspects of the whole-body movement.  Therefore, 

to capture the complex nature of gait activity information more sensors need to be placed on 

other body parts such as heels, shanks, and knees. In this research we have used and 

developed the inertial sensor technology to obtain information from lower body parts during 

gait activities. A portable AIS system has been developed to study the effect of change in 

gait activities by placing one centralized inertial sensor around the pelvis and two on the heel 

of each foot. Inertial sensors are very easy to use and could be used for in/out of lab and 

long-term monitoring in healthcare scenarios. 

The captured movements in the lower parts of the human body, by AIS and of foot 

falls by FS, in the general case are not independent from each other. Therefore, it is possible 

to combine the perceived coordination and complementarity of both data sources. We 

proposed and implemented a multi-modality sensor fusion approach to capture the complex 

nature of gait information.  

This approach uses information from two modalities and provides a more 

comprehensive description of individual’s gait activities. The proposed system is capable to 

update and synchronize the timestamped information obtained from both systems. We have 

created a GUI for FS to display the data related to the foot in contact with the floor. The 

pressure on ground results in different and unique gait patterns corresponding to different 

gait activities. Another GUI is created to monitor the data capture from the lower parts of 

human body using inertial sensors. Acceleration and angular velocity values are the 

parameters used to measure the movement of feet and orientation of sensors placed on the 

pelvis and both ankles. Further, synchronized data obtained from both modalities is visually 

analyzed to match for the gait parameters such as Heel strike which is more noticeable as an 

initial pressure on FS and a peak signal using AIS during different gait activities.  

In this research, the results obtained from gait activity classification have the 

potential to be applied to more complex situations related to detecting changes in human gait 

patterns as a neurodegenerative progression function. 
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7.2 Conclusions 

7.2.1 Sensor fusion based on feature extraction 

Sensor fusion based on feature level presents itself as a desirable option, potentially in a 

range of applications, where the aspects of data variance are not straightforward to 

understand and define as features to allow accurate classification. Like their nature, FS has 

116 and AIS has 18 inputs, which are disproportionate numbers. Therefore, it is a 

challenging task to balance and fuse this information and avoid the biasness and unfairness 

in results. We have proposed PCA and CCA, feature extraction methods which reduce the 

overall number of inputs without degrading substantially the spatio-temporal information 

content from the two modalities. Results obtained from PCA and CCA are classified using 

multiple ML models. When compared CCA appears as first choice and has the following 

advantages over PCA: 

• CCA provides insight of the relationship between CVPs and the adjacent CVPs. PCA 

provides information of adjacent feature vectors only. 

• CCA summarizes the features in CVPs equal to the number of inputs in lower dataset. 

Features are equal to the sum of inputs in all datasets using PCA. 

• CCA is computationally efficient and require lesser extracted feature vectors (CVPs) 

to represent the original datasets as compared to PCA. 

• CCA provides higher f-scores with non-linear classifiers: NB, K-NN and K-SVM 

with limited CVPs for fused multi-modality cases as compared to PCA.  

PCA and CCA are used in conjunction with statistical methods to select the best optimal 

gait features suitable for the fusion task. However, feature domains containing many features 

increase the chances of redundancy and irrelevancy in data which is a major challenge for 

feature extraction methods. Our research in this area has the following contributions: 

“Multi-modality fusion of floor and ambulatory sensors for gait classification”.  

2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). 1st Aug, 2019. 

DOI: 10.1109/ISIE.2019.8781127 

 

“Gait Activity Classification from Feature-Level Sensor Fusion of Multi-Modality Systems”. 

IEEE Sensors Journal, 5th Oct. 2020.  

DOI: 10.1109/JSEN.2020.3028697 
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7.2.2 Sensor fusion based on DL models 

Multi-modality sensor fusion based on DL is new and reports of such fusion are few, 

which should be interpreted in the light of scarcity of suitable datasets. We demonstrate 

multi-modality sensor fusion for gait activity classification using DL models. DL layers are 

used to balance and fuse information whilst reserving the categorical content for each gait 

activity.  DL based models such as: FFNN, 1D-CNN, 2D-CNN and LSTM are implemented 

and used to fuse spatio-temporal gait activity data obtained from FS and AIS.  

The automatic extraction of features from data leads to substantially more robust and 

accurate results as compared to the previously discussed ML techniques. Overall 

performance is studied in detail and reveals best f-score of 99.9% in case of LSTM and 

fastest execution time 3 min 06 sec in the case of FFNN for a limited dataset. Our research 

in this area has the following contributions: 

“Multi-modality sensor fusion for gait classification using deep learning” 

2020 IEEE Sensors Applications Symposium (SAS), 9-11th Mar. 2020 

DOI: 10.1109/SAS48726.2020.9220037 

 

“Gait Activity Classification using Multi-Modality Sensor Fusion: A Deep Learning 

Approach”  

IEEE Sensors Journal, 3rd May. 2021 

DOI: 10.1109/JSEN.2021.3077698 

 

7.3 Limitations 

The classification obtained using multi-source and multi-modality sensor fusion is 

expected to produce superior results when compared to that from a single modality. 

However, the choice of optimal fusion algorithms should also involve the assessment of 

practicality, design, built and maintenance characteristics of such complex systems. 

In this research, multi-modality sensor fusion is used to map maximum spatio-

temporal gait parameters involved in cognitive tasks which results in robust results as 

compared to a single modality approach. Assessment of the multi-modality based results 

show improvements in case of certain ML and DL models as discussed in chapter 6. 

However, the computational models may not capture new test patterns of gait activities due 

to their training on a limited size dataset and hence require more data from more users. 
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 We have adapted model tuning and researched into best hyper-parameters to 

minimize the error during classification. However, this approach does not guarantee results 

in terms of interpretability. The model parameters and features despite training do not deliver 

the insights of the learning procedure during a gait activity. Visualization methodologies in 

case of large amounts of data will not be feasible. Therefore, new ideas, algorithms and 

improved model architectures will be required. 

 

7.4 Future work 

The desirable further steps for future implementation in the proposed study include: 

• Increase in the size of dataset to 20+ users to build an adequate dataset for training 

and testing classification models. 

• Testing of the proposed models for further activities involving external factors such 

as carrying physical weight, wearing a certain type of shoe or balancing a glass of 

water while walking to verify the performance of the proposed methodology for a 

greater range of human gait activities. 

• Additional inertial sensors on the upper part of human body to observe the 

movements of hands, elbows, arms, shoulders and head during the proposed gait 

activities to prepare a high-volume dataset. 

• Current datasets could be used to explore the Kernel based PCA and CCA methods 

which are the extension of the proposed methods. 

• Implantation of CCA could be combined with DL models in which the only CVPs 

will be used as inputs to the DL model rather raw inputs. This might lead to 

substantial improvements in classification f-scores when dealing with larger 

datasets. However, this approach will require powerful computational resources as 

compared to the proposed study (mentioned in section 5.5).  
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Appendix A: Abbreviations 

 

 

 

 
AIS   Ambulatory Inertial Sensors 

CCA   Canonical Correlation Analysis 

CNN   Convolutional Neural Network 

CVP   Canonical Covariate Pair 

DoF   Degrees of Freedom 

DL   Deep Learning 

DNN   Deep Neural Network 

DT   Decision Tree 

DWT   Discrete Wavelet Transform 

EEG   Electroencephalogram 

ECG   Electrocardiogram 

EMG   Electromyography 

FFT   Fast Fourier Transform 

FFNN   Feed Forward Neural Networks 

FS   Floor Sensors 

GUI   Graphical User Interface 

IMU   Inertial Measurement Unit 

K-NN   Kernel Nearest Neighbour  
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K-SVM  Kernel Support Vector Machine 

LDA   Linear Discriminant Analysis 

LR   Linear Regression 

LSTM   Long Short-Term Memory 

NB   Naïve Bayes 

PCA   Principal Component Analysis 

POF   Plastic Optical Fiber 

RF   Random Forest  

RMS   Root Mean Square 

RNN   Recurrent Neural Network 

R-Pi   Raspberry-Pi 

SOS   Sum of squares 

SVM   Support Vector Machine 
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Appendix B: Codes 

 

 

 

B.1  Data acquisition and pre-processing codes 
 

 

B.1.1 Arduino code to acquire data from 9DoF IMU sensors 
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#include <SparkFunMPU9250-DMP.h> 

#define SerialPort SerialUSB 

MPU9250_DMP imu; 

 

void setup()  

{ 

SerialPort.begin(115200); 

 

if (imu.begin() != INV_SUCCESS) 

  { 

    while (1) 

    { 

SerialPort.println("Unable to communicate with MPU-9250"); 

SerialPort.println("Check connections, and try again."); 

SerialPort.println(); 

delay(5000); 

    } 

  } 

 

imu.setSensors(INV_XYZ_GYRO | INV_XYZ_ACCEL | INV_XYZ_COMPASS); 

 

// Gyro options are +/- 250, 500, 1000, or 2000 dps 

imu.setGyroFSR(2000); 

// Accel options are +/- 2, 4, 8, or 16 g 

imu.setAccelFSR(2); 

 

imu.setLPF(10); // Set LPF corner frequency to 5Hz 

imu.setSampleRate(100); // Set sample rate to 10Hz (changed) 

imu.setCompassSampleRate(20); // Set mag rate to 10Hz (changed) 

} 

 

void loop()  

{ 

if ( imu.dataReady() ) 

  { 

imu.update(UPDATE_ACCEL | UPDATE_GYRO | UPDATE_COMPASS); 

    printIMUData(); 

  } 

} 

 

void printIMUData(void) 

{   
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// convert the raw sensor readings (signed 16-bit values) to their respective units. 

float accelX = imu.calcAccel(imu.ax); 

float accelY = imu.calcAccel(imu.ay); 

float accelZ = imu.calcAccel(imu.az); 

float gyroX = imu.calcGyro(imu.gx); 

float gyroY = imu.calcGyro(imu.gy); 

float gyroZ = imu.calcGyro(imu.gz); 

float magX = imu.calcMag(imu.mx); 

float magY = imu.calcMag(imu.my); 

float magZ = imu.calcMag(imu.mz); 

   

SerialPort.println(String(accelX) + "," + String(accelY) + "," + String(accelZ) + "," + 

String(gyroX) + "," + String(gyroY) + "," + String(gyroZ)); 

} 
 
 

B.1.2  Python code to acquire data from FS 
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#!/usr/bin/python3 

import struct 

import sys 

from collections import namedtuple 

from math import sqrt 

import socket 

 

#format strings for unpacking data structures 

headerrecordstruct = '<8sHBxI' 

headerrecordlen = struct.calcsize(headerrecordstruct) 

expectedmagic = b'pigmat\x00\xff' 

 

ledrecordstruct = '<BBHIdd' 

ledrecordlen = struct.calcsize(ledrecordstruct) 

ledrecord = namedtuple('ledrecord',['led','channel','oppoint','reserved','slope','offset']) 

 

adctotalchannels = 128 

resultrecordstruct = '<HHIQ' 

resultrecorditemcount = 4 

resultblockstruct = '<QQQQ' + (resultrecordstruct[1:]) * adctotalchannels; 

#print(resultblockstruct) 

resultblocklen = struct.calcsize(resultblockstruct) 

resultblockinitialitems = 4 

 

clientheaderstruct = '<8sHHI' 

clientheaderlen = struct.calcsize(clientheaderstruct); 

 

address = sys.argv[1]; 

 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.connect((address, 12911)) 

 

magic = b'tamgip\x00\xff' 

version = 0 

reserved = 0 

blocklength = 333; 

clientheader = struct.pack(clientheaderstruct,magic,version,reserved,blocklength) 

 

s.sendall(clientheader) 

 

def receiveall(s,length): 

buf = b''; 

 remain = length; 
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while (remain > 0): 

remain = length - len(buf) 

buf += s.recv(remain) 

 return buf 

 

(magic, version, ledcount,blocklength) = 

struct.unpack(headerrecordstruct,receiveall(s,headerrecordlen)) 

if (magic != expectedmagic): 

print('bad magic') 

sys.exit(1) 

 

print('version: '+str(version)) 

print('ledcount: '+str(ledcount)) 

print('blocklength: ' + str(blocklength)) 

print('ledrecordlen: ' + str(ledrecordlen)) 

 

leds = [] 

ledbytes = receiveall(s,ledrecordlen * ledcount) 

#print(repr(ledbytes)) 

#sys.exit(1) 

 

for ledtuple in struct.iter_unpack(ledrecordstruct,ledbytes): 

#print(repr(ledtuple)) 

leds.append(ledrecord(*ledtuple)) 

 

while 1: 

resultbytes = receiveall(s,resultblocklen) 

resulttuple = struct.unpack(resultblockstruct,resultbytes) 

#print(repr(resulttuple)) 

 

 resultline = [] 

for datacol in range(0,ledcount): 

lrn = datacol #add ply reordering stuff here 

led = leds[lrn].led 

channel = leds[lrn].channel 

dataoffset = resultblockinitialitems + (channel * resultrecorditemcount) 

(minr,maxr,sumr,sosr) = resulttuple[dataoffset:dataoffset+resultrecorditemcount] 

meanr = sumr / blocklength 

mosr = sosr / blocklength 

sdr = sqrt(mosr - (meanr * meanr)) 

#print('led:'+str(led)+' min: '+str(minr)+' max:'+str(maxr)+' mean:'+str(meanr)+' 

sd:'+str(sdr)) 

slope = leds[lrn].slope 

offset = leds[lrn].offset 

minp = minr * slope + offset; 

maxp = maxr * slope + offset; 

meanp = meanr * slope + offset; 

sdp = sdr * slope; 

#print('led:'+str(led)+' min: '+str(minp)+' max:'+str(maxp)+' mean:'+str(meanp)+' 

sd:'+str(sdp)) 

resultline.append(meanp); 

print(repr(resultline)) 
 
 

B.1.3  MATLAB code to implement image reconstruction for FS 
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alpha = 0.5; 

iterations = 20; 

count=0; 

for i=1:iterations 

    % More surrounding values than gk  
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    err4 = sn'*gk;      % 116 x 1 = 116 x 20000 * 20000 x 1 

    % More central values and abnormal values (values with less neighbours) got hidden 

    err3 = (cn-err4);   % 116 x 1 = 116 x 1 - 116 x 1 

    err2 = sn*err3;     % 20000 x 1 = 20000 x 116 * 116 x 1 

    err1 = alpha*err2; 

    gk2 = gk + err1; 

    gk2(gk2<0)=0; 

    gk2(gk2>1)=1; 

    gk = gk2; 

end 
 
 

B.1.4  MATLAB code to implement convolution operation 
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% Convoultion in spatial domain with 3x3 mask of ones 

M=[ 1 1 1; 

    1 1 1; 

    1 1 1]; 

gk1=gk; 

[r,c] = size(gk); 

[m,n] = size(M); 

h = rot90(M, 2); 

center = floor((size(h)+1)/2); 

left = center(2) - 1; 

right = n - center(2); 

top = center(1) - 1; 

bottom = m - center(1); 

Rep = zeros(r + top + bottom, c + left + right); 

% Padding of zeros around the corners 

for x = 1 + top : r + top 

    for y = 1 + left : c + left 

        Rep(x,y) = gk(x - top, y - left); 

    end 

end 

B = zeros(r , c); 

% Convolution Algorithm 

for x = 1 : r 

    for y = 1 : c 

        count = 0; 

        for i = 1 : m 

            for j = 1 : n 

                q = x - 1; 

                w = y -1; 

                B(x, y) = B(x, y) + (Rep(i + q, j + w) * h(i, j)); 

                if((Rep(i + q, j + w) * h(i, j))~=0) 

                    count = count + 1; 

                end 

                gk1(x,y)=B(x,y); 

            end 

            if(count<=7) 

                  gk1(x,y)=0; 

            end 

        end 

    end 

end 
 
 

B.1.5  Python code to acquire data from AIS 
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from sense_hat import SenseHat 

import serial 
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import time 

import csv 

import os 

sense = SenseHat() 

 

import datetime 

from datetime import datetime 

import time 

from time import sleep 

 

monitoringTime=0 

fusedData = [] 

count = 0 

ser0 = serial.Serial('/dev/ttyACM0',115200, timeout = 0.01) 

ser1 = serial.Serial('/dev/ttyACM1',115200, timeout = 0.01) 

s1 = float(round(time.time()*1000))  

 

while monitoringTime < 40: 

print '%13f' %s1 

 

acl = sense.get_accelerometer_raw() 

gyr = sense.get_gyroscope_raw() 

 

hax = round(acl['x'],2) 

hay = round(acl['y'],2) 

haz = round(acl['z'],2) 

hgx = round(gyr['x'],2) 

hgy = round(gyr['y'],2) 

hgz = round(gyr['z'],2) 

         

line_s0 = ser0.readline()[:-2] 

line_s1 = ser1.readline()[:-2] 

line_split0 = line_s0.split(',') 

line_split1 = line_s1.split(',') 

 

iax0 = line_split0[0] 

iay0 = line_split0[1] 

iaz0 = line_split0[2] 

igx0 = line_split0[3] 

igy0 = line_split0[4] 

igz0 = line_split0[5] 

 

iax1 = line_split1[0] 

iay1 = line_split1[1] 

iaz1 = line_split1[2] 

igx1 = line_split1[3] 

igy1 = line_split1[4] 

igz1 = line_split1[5] 

  

s2 = float(round(time.time()*1000)) 

         

while (s2 - s1) <= 51: 

s2 = float(round(time.time()*1000))  

count = count + 1 

print '%13f' %s2 

temp = '%13f' %(s2-s1) 

 print temp 

 

s1 = s2 

s3 = "{:13f}".format(s2) 
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fusedData.append([s3,hax,hay,haz,hgx,hgy,hgz,iax0,iay0,iaz0,igx0,igy0,igz0,iax1,iay1,iaz1,

igx1,igy1,igz1]) 

 print 

monitoringTime = monitoringTime+1 

  

print("Test run completed") 

 

sense.clear() 

 

def open_with_csv(filename, d = ','): 

with open(filename, 'w') as csvin: 

headernames = ['TIME','HAT-ACL/X','HAT-ACL/Y','HAT-ACL/Z','HAT-GYR/X','HAT-

GYR/Y','HAT-GYR/Z','IMU1-ACL/X','IMU1-ACL/Y','IMU1-ACL/Z','IMU1-

GYR/X','IMU1-GYR/Y','IMU1-GYR/Z','IMU2-ACL/X','IMU2-ACL/Y','IMU2-

ACL/Z','IMU2-GYR/X','IMU2-GYR/Y','IMU2-GYR/Z'] 

writer = csv.writer(csvin, delimiter=d) 

writer.writerow(headernames) 

for entry in fusedData: 

writer.writerow(entry) 

 

# Assign filename to csv file 

open_with_csv('fused_wear_sensors.csv') 
 
 

B.1.6  Python code to load and pre-process data from FS and AIS 
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import numpy as np 

import pandas as pd 

import glob 

from pandas import read_csv 

from matplotlib import pyplot 

import os 

os.environ["PATH"] += os.pathsep + 'C:\Program Files\Graphviz 2.44.1\bin' 

from keras.utils import plot_model 

import seaborn as sns # Statistical data visualization 

 

# Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

 

#------------------------------------------------- SMART CARPET 

################################ Normal Walk 

################################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\1. Norm_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f1 = s_frame_norm 

#f1 = sc.fit_transform(f1) 

################################ Fast Walk 

#################################### 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\2. Fast_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 
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for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f2 = s_frame_norm 

#f2 = sc.fit_transform(f2) 

################################ Subtracting 3 

################################ 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\3. Sub3_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f3 = s_frame_norm 

#f3 = sc.fit_transform(f3) 

################################ Subtracting 7 

################################ 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\4. Sub7_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f4 = s_frame_norm 

#f4 = sc.fit_transform(f4) 

################################ Walking While Listening 

###################### 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\5. List_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f5 = s_frame_norm 

#f5 = sc.fit_transform(f5) 

################################ Walking While Texting 

######################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\6. Tapp_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 
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s_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f6 = s_frame_norm 

#f6 = sc.fit_transform(f6) 

################################ Walking While Walking 

######################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\smrt_crpt\activities_smrt_crpt\7. Talk_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_,index_col=None, header=None, skiprows = 1, 

usecols=range(1,117)) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

s_frame_talk = pd.concat(list_, axis = 0, ignore_index = True) 

f7 = s_frame_norm 

#f7 = sc.fit_transform(f7) 

##########################################################################

##### 

 

s_X = np.row_stack((f1,f2,f3,f4,f5,f6,f7)) 

s_X = sc.fit_transform(s_X) 

 

s_X = np.reshape(s_X, (770,120,116,1)) 

 

#------------------------------------------------- Wearable Sensors 

################################ Normal Walk 

################################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\1. Norm_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_norm = pd.concat(list_, axis = 0, ignore_index = True) 

f1 = w_frame_norm 

#f1 = sc.fit_transform(w_frame_norm) 

################################ Fast Walk 

#################################### 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\2. Fast_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_fast = pd.concat(list_, axis = 0, ignore_index = True) 

f2 = w_frame_fast 

#f2 = sc.fit_transform(w_frame_fast) 

################################ Subtracting 3 

################################ 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\3. Sub3_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 
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    list_.append(df) 

w_frame_sub3 = pd.concat(list_, axis = 0, ignore_index = True) 

f3 = w_frame_sub3 

#f3 = sc.fit_transform(w_frame_sub3) 

################################ Subtracting 7 

################################ 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\4. Sub7_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_sub7 = pd.concat(list_, axis = 0, ignore_index = True) 

f4 = w_frame_sub7 

#f4 = sc.fit_transform(w_frame_sub7) 

################################ Walking While Listening 

###################### 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\5. List_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_list = pd.concat(list_, axis = 0, ignore_index = True) 

f5 = w_frame_list 

#f5 = sc.fit_transform(w_frame_list) 

################################ Walking While Texting 

######################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\6. Tapp_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_text = pd.concat(list_, axis = 0, ignore_index = True) 

f6 = w_frame_text 

#f6 = sc.fit_transform(w_frame_text) 

################################ Walking While Talking 

######################## 

path =r'C:\Users\mchijsy3\Google 

Drive\Computer\New_data\ambl_sens\activities_ambl_sens\7. Talk_Walk' 

allFiles = glob.glob(path + "/*.csv") 

list_ = [] 

for file_ in allFiles: 

    df = pd.read_csv(file_, header=None) 

#    df = df.iloc[15:85,:] 

    list_.append(df) 

w_frame_talk = pd.concat(list_, axis = 0, ignore_index = True) 

f7 = w_frame_talk 

#f7 = sc.fit_transform(w_frame_talk) 

##########################################################################

##### 

 

w_X = np.row_stack((f1,f2,f3,f4,f5,f6,f7)) 

w_X = sc.fit_transform(w_X) 
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w_X = np.reshape(w_X, (770,120,18,1)) 

 

from keras.utils import to_categorical 

 

y1 = np.full((110, 1), 0) 

y2 = np.full((110, 1), 1) 

y3 = np.full((110, 1), 2) 

y4 = np.full((110, 1), 3) 

y5 = np.full((110, 1), 4) 

y6 = np.full((110, 1), 5) 

y7 = np.full((110, 1), 6) 

 

# y1 = np.full((13200, 1), 0) 

# y2 = np.full((13200, 1), 1) 

# y3 = np.full((13200, 1), 2) 

# y4 = np.full((13200, 1), 3) 

# y5 = np.full((13200, 1), 4) 

# y6 = np.full((13200, 1), 5) 

 

y = np.row_stack((y1,y2,y3,y4,y5,y6,y7)) 

y = to_categorical(y) 

 

# Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

trainsX, testsX, trainY, testY = train_test_split(s_X,y, test_size=0.20, random_state=42) 

trainwX, testwX, trainY, testY = train_test_split(w_X,y, test_size=0.20, 

random_state=42) 
 
 

B.2  Python codes for multi-modality sensor fusion  
 

 

B.2.1 Implementation of PCA and CCA 
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### Applying PCA 

from sklearn.decomposition import PCA 

pca = PCA(n_components = 12)  

X = np.column_stack((s_X,w_X)) 

X = pca.fit_transform(X) 

explained_variance = pca.explained_variance_ratio_ 

summer = np.sum(explained_variance[0:18]) 

 

# Applying CCA 

from sklearn.cross_decomposition import CCA 

cca = CCA(n_components = 19) 

cca.fit(s_X,w_X) 

s_X,w_X = cca.transform(s_X,w_X) 

X = np.column_stack((s_X,w_X)) 
 
 

B.2.2 Implementation of FFNN 
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from keras.layers import Dense 

from keras.models import Model 

from keras.layers import Input 

from keras.layers.merge import concatenate 

from keras.utils import plot_model 

from keras.layers import BatchNormalization 

 



 

144 
 
 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

def evaluate_model(trainsX, trainwX, trainY, testsX, testwX, testY): 

    # first input model 

    num_classes = 7 

    visible1 = Input(shape=(116,)) 

    hs11 = Dense(64, activation = 'relu')(visible1) 

    hs12 = Dense(32, activation = 'relu')(hs11) 

    hs13 = Dense(10, activation = 'relu')(hs12) 

    # bn1 = BatchNormalization()(hs13) 

    # second input model 

    visible2 = Input(shape=(18,)) 

    hs21 = Dense(16, activation = 'relu')(visible2) 

    hs22 = Dense(12, activation = 'relu')(hs21) 

    hs23 = Dense(10, activation = 'relu')(hs22) 

    # bn2 = BatchNormalization()(hs23) 

    # merge input models 

    merge = concatenate([hs13, hs23]) 

    hs31 = Dense(8, activation = 'relu')(merge) 

    # output 

    output = Dense(num_classes, activation='softmax')(hs31) 

    model = Model(inputs=[visible1, visible2], outputs=output) 

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

 # fit network 

    history = model.fit([trainsX, trainwX], trainY,validation_data=([testsX, testwX], testY), 

epochs=50, batch_size=120) 

     

    # scores = model.evaluate([trainsX, trainwX],trainY) 

    # print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

    # print(model.summary()) 

    plot_model(model, to_file=r'C:\Users\mchijsy3\Google 

Drive\Computer\3_Third_Year\Coding(3rd_Year)\plot_ANN_complete.jpg', 

show_shapes=True, show_layer_names=True) 

     

    y_pred = model.predict([testsX,testwX]) 

    return y_pred, history 
 
 

B.2.3 Implementation of 1D-CNN 
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# Multiple Inputs 

from keras.models import Model 

from keras.layers import Input 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers import BatchNormalization 

from keras.layers.convolutional import Conv1D 

from keras.layers.pooling import MaxPooling1D 

from keras.layers.merge import concatenate 

 

def evaluate_model(trainsX, trainwX, trainY, testsX, testwX, testY): 

    # first input model 

    visible1 = Input(shape=(116,1)) 

    conv11 = Conv1D(64, kernel_size = 3, activation = 'relu', padding = 'same' )(visible1) 

    pool11 = MaxPooling1D(pool_size = 2)(conv11) 

    conv12 = Conv1D(16, kernel_size = 3, activation = 'relu', padding = 'same')(pool11) 

    pool12 = MaxPooling1D(pool_size = 2)(conv12) 

    flat1 = Flatten()(pool12) 

    hs1 = Dense(10, activation = 'relu')(flat1) 

 

    # second input model 

    visible2 = Input(shape=(18,1)) 

    conv21 = Conv1D(32, kernel_size = 3, activation = 'relu', padding = 'same')(visible2) 
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    pool21 = MaxPooling1D(pool_size = 2)(conv21) 

    conv22 = Conv1D(16, kernel_size = 3, activation = 'relu', padding = 'same')(pool21) 

    pool22 = MaxPooling1D(pool_size = 2)(conv22) 

    flat2 = Flatten()(pool22) 

    hs2 = Dense(10, activation = 'relu')(flat2) 

    # merge input models 

    merge = concatenate([hs1, hs2]) 

    hs3 = Dense(8, activation = 'relu')(merge) 

    # output 

    output = Dense(7, activation='softmax')(hs3) 

    model = Model(inputs=[visible1, visible2], outputs=output) 

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

 # fit network 

    history = model.fit([trainsX, trainwX], trainY,validation_data=([testsX, testwX], testY), 

epochs=50, batch_size=120) 

 

    plot_model(model, to_file=r'C:\Users\mchijsy3\Google 

Drive\Computer\3_Third_Year\Coding(3rd_Year)\plot_CNN1d_complete.jpg', 

show_shapes=True, show_layer_names=True) 

     

    y_pred = model.predict([testsX,testwX]) 

    return y_pred,history 
 
 

B.2.4 Implementation of 2D-CNN 
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# Multiple Inputs 

from keras.models import Model 

from keras.models import Sequential 

from keras.layers import Input 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers.convolutional import Conv2D 

from keras.layers.pooling import MaxPooling2D 

from keras.layers.merge import concatenate 

 

def evaluate_model(trainsX, trainwX, trainY, testsX, testwX, testY): 

    # first input model 

    visible1 = Input(shape=(120,116,1)) 

    conv11 = Conv2D(64, kernel_size = 3, activation = 'relu', padding = 'same')(visible1) 

   # print(conv11) 

    pool11 = MaxPooling2D(pool_size = 2)(conv11) 

    conv12 = Conv2D(8, kernel_size = 3, activation = 'relu', padding = 'same')(pool11) 

    pool12 = MaxPooling2D(pool_size = 2)(conv12) 

    flat1 = Flatten()(pool12) 

    # second input model 

    visible2 = Input(shape=(120,18,1)) 

    conv21 = Conv2D(12, kernel_size = 3, activation = 'relu', padding = 'same')(visible2) 

    pool21 = MaxPooling2D(pool_size = 2)(conv21) 

    conv22 = Conv2D(8, kernel_size = 3, activation = 'relu', padding = 'same')(pool21) 

    pool22 = MaxPooling2D(pool_size = 2)(conv22) 

    flat2 = Flatten()(pool22) 

    # merge input models 

    merge = concatenate([flat1, flat2]) 

    hs3 = Dense(32, activation = 'relu')(merge) 

    output = Dense(7, activation='softmax')(hs3) 

    model = Model(inputs=[visible1, visible2], outputs=output) 

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

 # fit network 

    history = model.fit([trainsX, trainwX], trainY,validation_data=([testsX, testwX], testY), 

epochs=50, batch_size=60) 
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    plot_model(model, to_file='plot_CNN2d_complete.jpg', show_shapes=True, 

show_layer_names=True) 

     

    y_pred = model.predict([testsX,testwX]) 

    return y_pred, history 
 
 

B.2.5 Implementation of LSTM 
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from keras.models import Model 

from keras.layers import Dense 

from keras.layers import Dropout 

from keras.layers import LSTM 

from keras.layers import Input 

from keras.layers import BatchNormalization 

from keras.layers.merge import add 

 

def evaluate_model(trainsX, trainwX, trainY, testsX, testwX, testY): 

    # first input model 

    visible1 = Input(shape=(120,116)) 

    LSTM11 = LSTM(16, return_sequences = True)(visible1) 

    drop11 = Dropout(0.2)(LSTM11) 

    LSTM12 = LSTM(16)(drop11) 

    drop12 = Dropout(0.2)(LSTM12) 

    hs1 = Dense(10, activation = 'relu')(drop12) 

    # second input model 

    visible2 = Input(shape=(120,18)) 

    LSTM21 = LSTM(16, return_sequences = True)(visible2) 

    drop21 = Dropout(0.2)(LSTM21) 

    LSTM22 = LSTM(16)(drop21) 

    drop22 = Dropout(0.2)(LSTM22) 

    hs2 = Dense(10, activation = 'relu')(drop22) 

    # merge input models 

    merge = add([hs1, hs2]) 

    hs3 = Dense(8, activation = 'relu')(merge) 

    output = Dense(7, kernel_initializer = 'uniform', activation='softmax')(hs3) 

    model = Model(inputs=[visible1, visible2], outputs=output) 

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

    history = model.fit([trainsX, trainwX], trainY,validation_data=([testsX, testwX], testY), 

epochs=1, batch_size=120) 

     

    # scores = model.evaluate([trainsX, trainwX],trainY)[] 

    # print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

    plot_model(model, to_file='plot_LSTM_Combined.jpg', show_shapes=True, 

show_layer_names=True) 

     

    y_pred = model.predict([testsX,testwX]) 

    return y_pred, history 
 
 

B.2.6 Display for loss and accuracy 
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import time 

import matplotlib.pyplot as plt 

 

start = time.time() 

y_pred, hist = evaluate_model(trainsX, trainwX, trainY, testsX, testwX, testY) 

end = time.time() 

hours, rem = divmod(end-start, 3600) 

minutes, seconds = divmod(rem, 60) 
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epochs = range(1,len(hist.history['loss'])+1) 

plt.figure() 

plt.plot(epochs, hist.history['loss'], 'y', label='Training Loss') 

plt.plot(epochs, hist.history['val_loss'], 'r', label='Validation Loss') 

plt.legend() 

plt.title('Training and validation Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.show() 

 

plt.figure() 

plt.plot(hist.history['acc'],label='train') 

plt.plot(hist.history['val_acc'],label='test') 

plt.legend() 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.show() 
 

 

 


